INTERNATIONAL STANDARD ISO 5263-1 First edition 2004-09-01 # Pulps — Laboratory wet disintegration — Part 1: Disintegration of chemical pulps Pâtes — Désintégration humide en laboratoire — Partie 1: Désintégration des pâtes chimiques #### PDF disclaimer This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area. Adobe is a trademark of Adobe Systems Incorporated. Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below. #### © ISO 2004 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland ### **Contents** Page | Forewo | ord | ĺν | |--------|--|----| | 1 | Scope | 1 | | 2 | Normative references | 1 | | 3 | Definition | 1 | | 4 | Apparatus | 1 | | 5 | Preparation of test portion | 2 | | 6 | Procedure | 2 | | 7 | Test report | 3 | | | A (normative) Construction of the Standard disintegrator | | | Annex | B (normative) Checking the Standard disintegrator | 6 | ISO 5263-1:2004(E) #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. ISO 5263-1 was prepared by Technical Committee ISO/TC 6, *Paper, board and pulps*, Subcommittee SC 5, *Test methods and quality specifications for pulps*. This first edition cancels and replaces ISO 5263:1995 which has been technically revised. In the revision, ISO 5263 has been divided into three parts; Part 1 which is applicable to chemical pulps, Part 2 which is applicable to mechanical pulps without latency and Part 3 which is applicable to mechanical pulps exhibiting latency. In Part 3, an informative Annex has been inserted describing the effect of latency in mechanical pulps. ISO 5263 consists of the following parts, under the general title *Pulps — Laboratory wet disintegration*: - Part 1: Disintegration of chemical pulps - Part 2: Disintegration of mechanical pulps at 20 °C - Part 3: Disintegration of mechanical pulps at ≥ 85 °C #### Pulps — Laboratory wet disintegration — #### Part 1: #### Disintegration of chemical pulps #### 1 Scope This part of ISO 5263 specifies an apparatus and the procedure for the laboratory-wet disintegration of chemical pulps. This apparatus and procedure are required for preparation of the test portion in a number of other International Standards dealing with pulps. In principle, this method is applicable to all kind of chemical pulps, including recovered fibres. It is not suitable for mechanical pulps and some very long-fibred chemical pulps such as those from cotton and similar materials. #### 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 638, Pulps — Determination of dry matter content ISO 4119, Pulps — Determination of stock concentration ISO 14487, Pulps — Standard water for physical testing #### 3 Definition For the purposes of this part of ISO 5263, the following definition applies. #### 3.1 #### disintegration of chemical pulp mechanical treatment in water so that interlaced fibres, which were free in the pulp stock, are again separated from one another without appreciably changing their structural properties #### 4 Apparatus Ordinary laboratory apparatus and the following: **4.1 Standard disintegrator**, as described in Annex A. NOTE The procedure for checking the Standard disintegrator is given in Annex B. - **4.2 Balance**, capable of weighing with an accuracy of \pm 0,2 g. - **4.3 Standard water,** for physical testing, as specified in ISO 14487. #### Preparation of test portion 5 Mechanical, semi-chemical and chemi-mechanical pulps shall be disintegrated according to the procedure described in Part 2 or Part 3 of ISO 5263. All pulps which exhibit latency must be disintegrated according to the procedure described in ISO 5263-3. If the pulp is wet or air-dry, determine the dry matter content in accordance with ISO 638. If the pulp is in slush form, determine the dry matter content in accordance with ISO 4119. If the concentration of a slush pulp sample is less than 1,5 % by mass, thicken it to the appropriate volume, carefully avoiding the loss of fines. This is most easily done by sedimentation of the suspension and removing a part of the water phase or by dewatering through a filter paper on a Büchner funnel. Use standard water (4.3) for disintegrating pulps to be used in tests where drainability properties are of importance, including laboratory beating. In all cases, use the same water quality as required in the procedure for which the pulp is disintegrated. For each disintegration, take a test portion corresponding to a mass of (30.0 ± 0.5) g of oven-dry pulp. If the sample is in sheet-form, do not cut the sheets and avoid taking cut edges. If the dry matter content is 20 % or more of the pulp, soak the test portion in 1 I to 1,5 I of water (standard water or other) at (20 ± 5) °C for at least the minimum soaking time specified in Table 1. If the pulp is in the form of sheets or slabs, after soaking tear the test portion into pieces with dimensions of approximately 25 mm × 25 mm. Soaking for a time longer than the minimum specified, for example overnight, has been found not to have any significant effect on the results. The soaking time shall, however, never be longer than 24 h for any pulp grade. Table 1 — Recommended soaking time for chemical pulps | Dry matter content of the pulp,
% by mass | Minimum soaking time | |--|----------------------| | < 20 | 0 min | | 20 to 60 | 30 min | | > 60 | 4 h | Where necessary for climatic reasons, a temperature of between 25 °C and 30 °C may be used, provided that this is stated in the test report. #### **Procedure** Transfer the test portion, after preparing as above, into the container of the Standard disintegrator (4.1). Add water, of the same quality as used in Clause 5, at (20 ± 5) °C to give a volume of $(2\ 000 \pm 25)$ ml. Set the revolution counter to zero. Switch the motor on and allow the propeller to make the number of revolutions specified in Table 2. Stop the propeller and check visually that the pulp is completely disintegrated, for instance by diluting a small portion from the disintegrator with water in a glass cylinder and inspecting it under transmitted light. If it is not completely disintegrated, continue the disintegration until complete separation of fibres is achieved. Table 2 — Recommended number of revolutions for chemical pulps | Dry matter content of the pulp % by mass | Number of revolutions | |--|-----------------------| | < 20 | 10 000 | | ≥ 20 | 30 000 | If for any reason a different pulp charge or a different number of revolutions is used, this shall be stated in the test report. #### 7 Test report The test report shall include the following particulars: - a) reference to this part of ISO 5263 (e.g., ISO 5263-1:2004); - b) all the information necessary for complete identification of the sample; - c) the water grade (standard water, distilled water or tap water) used; - d) the soaking time; - e) the dry matter content of the sample; - f) any unusual features observed in the course of the test; - g) any operations not specified in this International Standard, or that are regarded as optional, which might have affected the results. ## Annex A (normative) #### **Construction of the Standard disintegrator** #### A.1 Materials All components that come into contact with pulp suspensions shall be resistant to water and to dilute acids and alkalis. Stainless steel or glass-fibre-reinforced plastic material is normally used. #### A.2 Standard disintegrator The cylindrical container, Figure A.1, is fitted with four equally spaced spiral baffles extending between 32 mm from the bottom and 57 mm from the lid, each baffle traversing half the internal circumference of the container. The baffles spiral downwards in a clockwise direction. There is a fillet of radius 13 mm around the inside of the base of the container. The three-bladed propeller is mounted on a vertical shaft centrally in the container, at a fixed distance above the bottom. It is driven at the specified speed in the stock and a counter is fitted to record the number of revolutions. The counter should preferably be of the pre-set type, which will switch off the disintegrator after the required number of revolutions. Viewed from above, the propeller rotates in a clockwise direction. The container is provided with a lid, which, in most disintegrators, is fitted to the propeller/motor assembly. The container is fixed firmly in position during operation of the disintegrator, but it is capable of being removed and replaced easily and quickly. #### A.3 Dimensions | Part | Dimension | Specified value (unless otherwise stated) | Tolerance | |------------------|--|--|---| | Container | internal height internal diameter radius of fillet | 191 mm
152 mm
13 mm | ± 2 mm
± 2 mm
± 2 mm | | Baffles | square section height from container base distance from rim ends radiused edges radiused spacing (centres) | 6,5 mm
32 mm
57 mm
3 mm
0,4 mm
51 mm | ± 1 mm
± 1 mm
± 1 mm
± 0,5 mm
± 0,1 mm
± 1 mm | | Propeller | diameter of swept circle at tip of blades
diameter of hub
distance between propeller blades and container base
(lowest point) | 90 mm
≽ 22 mm
25 mm | ± 0,5 mm
—
± 2 mm | | Propeller blades | width at hub maximum width thickness edges radiused ends radiused pitch | 18,2 mm
22,5 mm
1,6 mm
0,8 mm
4 mm
2° | ± 0,5 mm
± 0,5 mm
± 0,5 mm
± 0,2 mm
± 1 mm
± 15' | | Propeller shaft | diameter
end taper | ≤ 20 mm
to fit any propeller hub | _ | #### A.4 Rotational frequency The rotational frequency of the propeller shaft is (49.0 ± 1.5) s⁻¹. Dimensions in millimetres #### Key - 1 6,5 mm \times 6,5 mm section - 2 end R 3 - a Not to scale. - 3 round edges R 0,4 - 4 four baffles, each a half-turn around the container (three shown) Figure A.1 — Standard disintegrator details #### Annex B (normative) #### **Checking the Standard disintegrator** Check the Standard disintegrator regularly. Special care shall be taken to ensure that - the propeller shaft rotates smoothly and is always centred with respect to the container; a) - the propeller runs at the specified rotational frequency; b) - the propeller blades are set as specified (this may be checked by means of a propeller gauge); c) - the dimensions of the propeller blades are as specified (see A.3) and the propeller blades are not d) damaged. If the apparatus is used properly, the other dimensions of the Standard disintegrator should remain constant; they shall, however, be checked at intervals. ICS 85.040 Price based on 6 pages