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Foreword 

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies 
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO 
technical committees. Each member body interested in a subject for which a technical committee has been 
established has the right to be represented on that committee. International organizations, governmental and 
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the 
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. 

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. 

The main task of technical committees is to prepare International Standards. Draft International Standards 
adopted by the technical committees are circulated to the member bodies for voting. Publication as an 
International Standard requires approval by at least 75 % of the member bodies casting a vote. 

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent 
rights. ISO shall not be held responsible for identifying any or all such patent rights. 

ISO 5168 was prepared by Technical Committee ISO/TC 30, Measurement of fluid flow in closed conduits, 
Subcommittee SC 9, General topics. 

This second edition of ISO 5168 cancels and replaces ISO/TR 5168:1998, which has been technically revised 
(see Annex I). 
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Introduction 

Whenever a measurement of fluid flow (discharge) is made, the value obtained is simply the best estimate 
that can be obtained of the flow-rate or quantity. In practice, the flow-rate or quantity could be slightly greater 
or less than this value, the uncertainty characterizing the range of values within which the flow-rate or quantity 
is expected to lie, with a specified confidence level. 

GUM is the authoritative document on all aspects of terminology and evaluation of uncertainty and should be 
referred to in any situation where this International Standard does not provide enough depth or detail. In 
particular, GUM (1995), Annex F, gives guidance on evaluating uncertainty components. 
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Measurement of fluid flow — Procedures for the evaluation 
of uncertainties 

1 Scope 

This International Standard establishes general principles and describes procedures for evaluating the 
uncertainty of a fluid flow-rate or quantity. 

A step-by-step procedure for calculating uncertainty is given in Annex A. 

2 Normative references 

The following referenced documents are indispensable for the application of this document. For dated 
references, only the edition cited applies. For undated references, the latest edition of the referenced 
document (including any amendments) applies. 

ISO 9300, Measurement of gas flow by means of critical flow Venturi nozzles 

ISO Guide to the expression of uncertainty in measurement (GUM), 1995 

International vocabulary of basic and general terms in metrology (VIM), 1993 

3 Terms and definitions 

For the purposes of this document, the terms and definitions given in VIM (1993), GUM (1995) and the 
following apply. 

3.1 
uncertainty 
parameter, associated with the results of a measurement, that characterizes the dispersion of the values that 
could reasonably be attributed to the measurand 

NOTE Uncertainties are expressed as an absolute value and do not take a positive or negative sign. 

3.2 
standard uncertainty 
u(x) 
uncertainty of the result of a measurement expressed as a standard deviation 

3.3 
relative uncertainty 
u*(x) 
standard uncertainty divided by the best estimate 

NOTE 1 u*(x) = u(x)/x. 

NOTE 2 u*(x) can be expressed either as a percentage or in parts per million. 

NOTE 3 Relative uncertainty is sometimes referred to as dimensionless uncertainty. 

NOTE 4 The best estimate is in most cases the arithmetic mean of the related uncertainty interval. 
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3.4 
combined standard uncertainty 
uc(y) 
standard uncertainty of the result of a measurement when that result is obtained from the values of a number 
of other quantities, equal to the positive square root of a sum of terms, the terms being the variances or 
covariances of these other quantities weighted according to how the measurement result varies with changes 
in these quantities 

3.5 
relative combined uncertainty 
uc

*(y) 
combined standard uncertainty divided by the best estimate 

NOTE 1 uc
*(y) can be expressed as a percentage or parts per million. 

NOTE 2 uc
*(y) = uc(y)/y. 

NOTE 3 Relative combined uncertainty is sometimes referred to as dimensionless combined uncertainty. 

NOTE 4 The best estimate is in most cases the arithmetic mean of the related uncertainty interval. 

3.6 
expanded uncertainty 
U 
quantity defining an interval about the result of a measurement that can be expected to encompass a large 
fraction of the distribution of values that could reasonably be attributed to the measurand 

NOTE 1 The fraction can be viewed as the coverage probability or the confidence level of the interval. 

NOTE 2 U = kuc(y) 

3.7 
relative expanded uncertainty 
U* 
expanded uncertainty divided by the best estimate 

NOTE 1 U* can be expressed as a percentage or in parts per million. 

NOTE 2 U* = kuc
*(y). 

NOTE 3 Relative expanded uncertainty is sometimes referred to as dimensionless expanded uncertainty. 

NOTE 4 The best estimate is in most cases the arithmetic mean of the related uncertainty interval. 

3.8 
coverage factor 
k 
numerical factor used as a multiplier of the combined standard uncertainty in order to obtain an expanded 
uncertainty 

NOTE A coverage factor is typically in the range 2 to 3. 

3.9 
Type A evaluation 
〈uncertainty〉 method of evaluation of uncertainty by the statistical analysis of a series of observations 



ISO 5168:2005(E) 

© ISO 2005 – All rights reserved 3

3.10 
Type B evaluation 
〈uncertainty〉 method of evaluation of uncertainty by means other than the statistical analysis of a series of 
observations 

3.11 
sensitivity coefficient 
ci 
change in the output estimate, y, divided by the corresponding change in the input estimate, xi 

3.12 
relative sensitivity coefficient 
c*

i 
relative change in the output estimate, y, divided by the corresponding relative change in the input estimate, xi 

4 Symbols and abbreviated terms 

4.1 Symbols 

ai estimated semi-range of a component of uncertainty associated with input estimate, xi, 
as defined in Annex B 

At area of the throat 

bi breadth associated with a vertical i 

b′i upper bound of an asymmetric uncertainty distribution as defined in Annex B 

ci sensitivity coefficient used to multiply the uncertainty in the input estimate, xi, to obtain 
the effect of a change in the input quantity on the uncertainty of the output estimate, y 

c*
i relative sensitivity coefficient used to multiply the relative uncertainty in input estimate, xi, 

to obtain the effect of a relative change in the input quantity on the relative uncertainty of 
the output estimate, y 

Cc calibration coefficient 

C discharge coefficient 

CV coefficient of variation 

di depth associated with a vertical i 

do orifice diameter 

do,0 orifice diameter measured at temperature T0,x 

dp pipe diameter 

dp,0 pipe diameter measured at temperature T0,x 

E  mean meter error, expressed as a fraction 
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jE  jth meter error, expressed as a fraction 

f functional relationship between estimates of the measurand, y, and the input estimates, 
xi, on which y depends 

i

f
x

∂
∂

 partial derivative with respect to input quantity, xi, of the functional relationship, f, 
between the measurand and the input quantities 

F flow factor, equal to 
r∆

q
p

 

Fexp flow factor for a new design 

FRedp ( )0,8
dp19 000 Reβ⋅  

Fref reference flow factor 

Fs factor, assumed to be unity, that relates the discrete sum over the finite number of 
verticals to the integral of the continuous function over the cross-section 

k coverage factor used to calculate the expanded uncertainty, U 

kt coverage factor derived from a table; see D.12 

K meter factor 

K  mean meter factor 

jK  jth K-factor; 

lb length of crest 

lh gauged head 

l1 distance from the upstream tapping to the upstream face 

L1 l1 divided by the pipe diameter, dp 

2l′  distance from the downstream tapping to the downstream face 

2L′  2l′  divided by the pipe diameter, dp 

m particular item in a set of data 

m′ number of data sets to be pooled 

m″ number of verticals 

2M ′  ( )22 1L β′ −  

n number of repeat readings or observations 

n′ exponent of lh, usually 1,5 for a rectangular weir and 2,5 for a V-notch 
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n′′ number of depths in a vertical at which velocity measurements are made 

N number of input estimates, xi, on which the measurand depends 

p0 upstream pressure 

∆pmt pressure difference across the orifice meter 

∆pr pressure difference across the radiator 

P(ai) probability that an input estimate, xi, has a value of ai 

q volume flow-rate 

qma mass flow; 

Q flow, expressed in cubic metres per second, at flowing conditions 

R specific gas constant 

Redp Reynolds number related to dp by the expression Vdpρ/µ 

smt,po pooled experimental standard deviation of the orifice plate readings 

spe standard deviation of a larger set of data used with a smaller data set 

spo standard deviation pooled from several sets of data 

sr,po pooled experimental standard deviation for the radiator readings 

s(x) experimental standard deviation of a random variable, x, determined from n repeated 
observations 

( )s x  experimental standard deviation of the arithmetic mean, x  

t Student’s statistic 

T0 upstream absolute temperature 

T0,x temperature at which measurement x is made 

Top operating temperature 

uc,corr(y) combined uncertainty for those components for multiple meters that are correlated  

uc,uncorr(y) combined uncertainty for those components for multiple meters that are uncorrelated 

u*
cal instrument calibration uncertainty from all sources, formerly called systematic errors or 

biases 

u*
cri relative uncertainty in point velocity at a particular depth in vertical i due to the variable 

responsiveness of the current meter 

u*
d relative standard uncertainty in the coefficient of discharge 
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u*
ei relative uncertainty in point velocity at a particular depth in vertical i due to velocity 

fluctuations (pulsations) in the stream 

u*
lb relative standard uncertainty in the measurement of the crest length 

u*
lh relative standard uncertainty in the measurement of the gauged head 

u*
m″ relative uncertainty due to the limited number of verticals 

u*
pi relative uncertainty in mean velocity, Vi, due to the limited number of depths at which 

velocity measurements are made at vertical, i 

u*(Q) combined relative standard uncertainty in the discharge; 

usm standard uncertainty of a single value based on past experience 

u(xi,corr) correlated components of uncertainty in a single meter 

u(xi,uncorr) uncorrelated components of uncertainty in a single meter 

u*(xi) standard uncertainty associated with the input estimate, xi 

*
c ( )u y  combined standard uncertainty associated with the output estimate, y 

u*(xi) relative standard uncertainty associated with the input estimate xi 

*
c ( )u y  combined relative standard uncertainty associated with the output estimate, y 

U*(y) relative expanded uncertainty associated with the output estimate 

U(y) expanded uncertainty associated with the output estimate, y 

UCMC combined uncertainty of the calibration rig 

AS-overall-EU  type A uncertainty in meter error 

*
AS-overall-KU  type A uncertainty in the K-factor 

V mean velocity in the pipe 

Vi mean velocity associated with a vertical i 

xi estimate of the input quantity, Xi 

xm mth observation of random quantity, x 

x0 dimension at temperature T0,x 

x  arithmetic mean or average of n repeated observations, xm, of randomly varying 
quantity, x 

y estimate of the measurand, Y 

∆xi increment in xi used for numerical determination of sensitivity coefficient 
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∆y increment in y found in numerical determination of sensitivity coefficient 

Zn Grubbs test statistic for outliers 

β orifice plate diameter ratio, equal to do/dp 

ϕcf critical flow function 

ΦF ratio of the factor F for a new design compared to the old design 

λ expansion coefficient 

µ dynamic fluid viscosity 

ρ fluid density 

ν degrees of freedom 

νeff effective degrees of freedom 

vpo degrees of freedom associated with a pooled standard deviation 

4.2 Subscripts 

c combined 

corr correlated 

do orifice diameter 

dp pipe diameter, effective 

ex external 

i of the ith input 

j of the jth set 

k = 2 obtained with a coverage factor of 2 

m of the mth observation 

n of the nth observation 

N of the Nth input 

nom nominal value of 

op operating temperature 

pe from past experience 

po pooled 

sm based on a single measurement 

t tolerance interval 



ISO 5168:2005(E) 

8 © ISO 2005 – All rights reserved
 

uncorr uncorrelated 

x of x 

x  of the mean value of x 

95 with a 95 % confidence level 

5 Evaluation of the uncertainty in a measurement process 

The first stage in an uncertainty evaluation is to define the measurement process. For the measurement of 
flow-rate, it will normally be necessary to combine the values of a number of input quantities to obtain a value 
for the output. The definition of the process should include the enumeration of all the relevant input quantities. 

Annex E enumerates a number of categories of sources of uncertainty. This categorization can be of value 
when defining all of the sources of uncertainty in the process. It is assumed in the following sections that the 
sources of uncertainty are uncorrelated; correlated sources require different treatment (see Annex F). 

Consideration should also be given to the time over which the measurement is to be made, taking into 
account that flow-rate will vary over any period of time and that the calibration can also change with time. 

If the functional relationship between the input quantities X1, X2, …, XN, and output quantity Y in a flow 
measurement process is specified in Equation (1): 

( )1 2, ,..., NY f X X X=  (1) 

then an estimate of Y, denoted by y, is obtained from Equation (1) using input estimates x1, x2, … xN, as shown 
in Equation (2): 

( )1 2, ,..., Ny f x x x=  (2) 

Provided the input quantities, Xi, are uncorrelated, the total uncertainty of the process can be found by 
calculating and combining the uncertainty of each of the contributing factors in accordance with Equation (3): 

( ) ( ) 2
c

1

N

i i
i

u y c u x
=

 =  ∑  (3) 

Where the extent of interdependence is known to be small, Equation (3) may be applied even though some of 
the input quantities are correlated; ISO 5167-1:2003 [1] provides an example of this. 

Each of the individual components of uncertainty, u(xi), is evaluated using one of the following methods: 

 Type A evaluation: calculated from a series of readings using statistical methods, as described in 
Clause 6; 

 Type B evaluation: calculated using other methods, such as engineering judgement, as described in 
Clause 7. 

Uncertainty sources are sometimes classified as “random” or “systematic” and the relationship between these 
categorizations and Type A and Type B evaluations is given in Annex I. 

The sensitivity coefficients, ci, provide the links between uncertainty in each input and the resulting uncertainty 
in the output. The methods of calculating the individual sensitivity coefficients, ci, are described in detail in 
Clause 8. 
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6 Type A evaluations of uncertainty 

6.1 General considerations 

Type A evaluations of uncertainty are those using statistical methods, specifically, those that use the spread of 
a number of measurements. 

Whilst no correction can be made to remove random components of uncertainty, their associated uncertainty 
becomes progressively less as the number of measurements increases. In taking a series of measurements, it 
should be recognized that, as the purpose is to define the random fluctuations in the process, the timescale 
for the data collection should reflect the anticipated timescale for the fluctuations. Collecting readings at 
millisecond intervals for a process that fluctuates over several minutes will not characterize those fluctuations 
adequately. 

In many measurement situations, it is not practical to make a large number of measurements. In this case, this 
component of uncertainty may have to be assigned on the basis of an earlier Type A evaluation, based on a 
larger number of readings carried out under similar conditions. Caution should be exercised in making these 
estimates (see Annex D), as there will always be some uncertainty associated with the assumption that the 
earlier measurements were taken under truly similar conditions. 

The methods of calculating the uncertainty in a mean and in a single value reflect the reduction in uncertainty 
obtained by averaging several readings [Equations (4) to (8)] and are explained in more detail in D.4 to D.6. 

6.2 Calculation procedure 

Further explanation of the equations given below can be found in Annex D. 

The standard uncertainty of a measured value, xi, is calculated from a sample of measurements, xi,m, in 
accordance with Equations (4) to (8): 

a) Calculate the average value of the measurements in accordance with Equation (4); see D.1: 

,
1

1 n

i i m
m

x x
n =

= ∑  (4) 

b) Calculate the standard deviation of the sample in accordance with Equation (5); see D.2: 

( ) ( ) ( ) 2
,

1

1
1

n

i i m i
m

s x x x
n =

= −
− ∑  (5) 

The standard uncertainty of a single sample is the same as its standard deviation and is given by 
Equation (6): 

( ) ( )i iu x s x=  (6) 

c) Calculate the standard deviation of the mean value in accordance with Equation (7); see D.4: 

( ) ( )i
i

s x
s x

n
=  (7) 

The standard uncertainty of the mean value is then given by Equations (8): 

( ) ( )i iu x s x=  (8) 



ISO 5168:2005(E) 

10 © ISO 2005 – All rights reserved
 

The use of the mean of several readings is a key technique for reducing uncertainty in readings subject to 
random variations. For the derivation of Equation (7) see Dietrich [2]. 

NOTE The approach outlined here represents a simplification and, when the functional relationship defined by 
Equation (1) is highly non-linear and uncertainties are large, the more rigorous approach described in the GUM (1995), 
4.1.4, could yield a more robust answer. 

7 Type B evaluation of uncertainties 

7.1 General considerations 

Type B evaluations of uncertainty are those carried out by means other than the statistical analysis of series of 
observations. 

As explained in D.9, Type A uncertainties result in a bandwidth of 1 standard deviation that would encompass 
68 % of the possible values of the measured quantity. In making Type B assessments, it is necessary to 
ensure that a similar confidence level is obtained such that the uncertainties obtained by different methods 
can be compared and combined. 

Type B assessments are not necessarily governed by the normal distribution and the limits assigned can 
represent varying confidence levels. Thus, a calibration certificate could give the meter factor for a turbine 
meter with 95 % confidence while an instrument resolution uncertainty defines with 100 % confidence the 
range of values that will be represented by that number rather than the next higher or lower. The equations for 
obtaining the standard uncertainty for various common distributions are given in 7.3 to 7.8. 

7.2 Calculation procedure 

Type B evaluations of uncertainty require a knowledge of the probability distribution associated with the 
uncertainty. The most common probability distributions are presented in 7.3 to 7.8; the shapes of the 
distributions are shown in Annex B. 

7.3 Rectangular probability distribution 

Typical examples of rectangular probability distributions include 

 maximum instrument drift between calibrations, 

 error due to limited resolution of an instrument’s display, 

 manufacturers' tolerance limits. 

The standard uncertainty of a measured value, xi, is calculated from Equation (9): 

( )
3
i

i
a

u x =  (9) 

where the range of measured values lies between xi − ai and xi + ai. The derivation of Equation (9) is given by 
Dietrich [2]. 
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7.4 Normal probability distribution 

Typical examples include calibration certificates quoting a confidence level or coverage factor with the 
expanded uncertainty. Here, the standard uncertainty is calculated from Equation (10): 

( )i
Uu x
k

=  (10) 

where 

U is the expanded uncertainty; 

k is the quoted coverage factor; see Annex C. 

Where a coverage factor has been applied to a quoted expanded uncertainty, care should be exercised to 
ensure that the appropriate value of k is used to recover the underlying standard uncertainty. However, if the 
coverage factor is not given and the 95 % confidence level is quoted, then k should be assumed to be 2. 

7.5 Triangular probability distribution 

Some uncertainties are given simply as maximum bounds within which all values of the quantity are assumed 
to lie. There is often reason to believe that values close to the bounds are less likely than those near the 
centre of the bounds, in which case the assumption of rectangular distribution could be too pessimistic. In this 
case, the triangular distribution, as given by Equation (11), may be assumed as a prudent compromise 
between the assumptions of a normal and a rectangular distribution. 

( )
6
i

i
a

u x =  (11) 

7.6 Bimodal probability distribution 

When the error is always at the extreme value, then a bimodal probability distribution is applicable and the 
standard uncertainty is given by Equation (12): 

( )i iu x a=  (12) 

Examples of this type of distribution are rare in flow measurement. 

7.7 Assigning a probability distribution 

When the source of the uncertainty information is well defined, such as a calibration certificate or a 
manufacturer’s tolerance, the choice of probability distribution will be clear-cut. However, when the information 
is less well defined, for example when assessing the impact of a difference between the conditions of 
calibration and use, the choice of a distribution becomes a matter of the professional judgement of the 
instrument engineer. 

7.8 Asymmetric probability distributions 

The above cases are for symmetrical distributions, however, it is sometimes the case that the upper and lower 
bounds for an input quantity, Xi, are not symmetrical with respect to the best estimate, xi. In the absence of 
information on the distribution, GUM recommends the assumption of a rectangular distribution with a full range 
equal to the range from the upper to the lower bound. The standard uncertainty is then given by Equation (13): 

( )
12

i i
i

a bu x
′+

=  (13) 

where (xi − ai) < Xi < (xi + b′i). 
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A more conservative approach would be to take a rectangular distribution based on the larger of two 
asymmetric bounds. 

( )iu x = the greater of 
3
ia

 or 
3
ib′

 (14) 

If the asymmetric element of uncertainty represents a very significant proportion of the overall uncertainty, it 
would be more appropriate to consider an alternative approach to the analysis such as a Monte Carlo 
analysis; see Annex K. 

A common example of an asymmetric distribution is seen in the drift of instruments due to mechanical 
changes, for example, increasing friction in the bearings of a turbine meter or erosion of the edge of an orifice 
plate. 

8 Sensitivity coefficients 

8.1 General 

Before considering methods of combining uncertainties, it is essential to appreciate that it is insufficient to 
consider only the magnitudes of component uncertainties in input quantities, it is also necessary to consider 
the effect each input quantity has on the final result. For example, an uncertainty of 50 µm in a diameter or 
5 % in a thermal expansion coefficient is meaningless in terms of the flow through an orifice plate without 
knowledge of how the diameter or thermal expansion impact the measurement of flow-rate. It is, therefore, 
convenient to introduce the concept of the sensitivity of an output quantity to an input quantity, i.e. the 
sensitivity coefficient, sometimes referred to as the influence coefficient. 

The sensitivity coefficient of each input quantity is obtained in one of two ways: 

 analytically; or 

 numerically. 

8.2 Analytical solution 

When the functional relationship is specified as in Equation (1), the sensitivity coefficient is defined as the rate 
of change of the output quantity, y, with respect to the input quantity, xi, and the value is obtained by partial 
differentiation in accordance with Equation (15): 

i
i

yc
x

∂
=

∂
 (15) 

However, when non-dimensional uncertainties (for example percentage uncertainty) are used, non-
dimensional sensitivity coefficients shall also be used in accordance with Equation (16): 

* i
i

i

xyc
x y

∂
=

∂
 (16) 

In certain special cases where, for example, a calibration experiment has made the functional relationship 
between the input and output simple, the value of ci or c*

i can be unity. Example 1 in Annex G gives an 
example for a calibrated nozzle. 

8.3 Numerical solution 

Where no mathematical relationship is available, or the functional relationship is complex, it is easier to obtain 
the sensitivity coefficients numerically, by calculating the effect of a small change in the input variable, xi, on 
the output value, y. 
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First calculate y using xi, and then recalculate using (xi + ∆xi ), where ∆xi is a small increment in xi. The result 
of the recalculation can be expressed as y + ∆y, where ∆y is the increment in y caused by ∆xi. 

The sensitivity coefficients are then calculated in accordance with Equation (17): 

∆
∆i

i

yc
x

≈  (17) 

They are calculated in non-dimensional, or relative, form in accordance with Equation (18): 

* ∆
∆

i
i

i

xyc
x y

≈  (18) 

Table 1 shows how a typical spreadsheet could be set up to calculate a specific sensitivity coefficient for any 
function where y = f(x1, x2, .. , xN). 

Table 1 — Spreadsheet set-up for calculating sensitivity coefficients 

Sensitivity 
coefficient 

Increment x1 x2 ... xi xN y c c* 

— — x1 x2 ... xi xN y = f(x1, x2,…., xN ) = ynom — — 

c1 ∆xi≈10−6⋅x1 xi + ∆xi x2 ... xi xN yi =  f(x1+ ∆xi, x2,…., x) 
( )1 nom

1∆
y y

x
−

 1
1

nom

xc
y

⋅

The analytical solution calculates the gradient of y with respect to xi at the nominal value, xi, whereas the 
numerical solution obtains the average gradient over the interval xi to (xi + ∆xi). The increment used (∆xi) 
should therefore be as small as practical and certainly no larger than the uncertainty in the parameter xi. 
However, a complication can arise if the increment is so small as to result in changes in the calculated result, 
y, that are comparable with the resolution of the calculator or computer spreadsheet. In these circumstances 
the calculation of ci can become unstable. The problem can be avoided by starting with a value of ∆xi equal to 
the uncertainty in xi and progressively reducing ∆xi until the value of ci agrees with the previous result within a 
suitable tolerance. This iteration process can, of course, be automated with a computer spreadsheet. 

9 Combination of uncertainties 

Once the standard uncertainties of the input quantities and their associated sensitivity coefficients have been 
determined from either Type A or Type B evaluations, the overall uncertainty of the output quantity can be 
determined in accordance with Equation (19): 

( ) ( ) 2
c

1

N
i i

i
u y c u x

=
 = ∑    (19) 

Where relative uncertainties have been used, relative sensitivity coefficients shall also be used, in accordance 
with Equation (20): 

( ) ( )
2* * *

c
1

N
i i

i
u y c u x

=
 = ∑    (20) 

Equations (19) and (20) assume that the individual input quantities are uncorrelated; the treatment of 
correlated uncertainties is discussed in C.6. Correlation arises where the same instrument is used to make 
several measurements or where instruments are calibrated against the same reference. 
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In general, the choice of absolute or relative uncertainties is of little consequence. However, once the decision 
has been made, care is needed to ensure that all uncertainties are expressed in the same terms. 
Measurements with arbitrary zero points give rise to problems if uncertainties are expressed in relative terms. 
For example, an uncertainty of 1 mm in a diameter of 500 mm gives a relative uncertainty of 0,2 % and, if 
expressed in inches, the uncertainty becomes 0,039 4 in out of 19,69 in, leaving the relative uncertainty 
unchanged. However, if the uncertainty in a temperature of 20 °C is 0,5 °C, the relative uncertainty is 2,5 %, 
but by expressing the values in degrees Fahrenheit, the temperature becomes 68 °F and the uncertainty 
becomes 0,9 °F, giving a relative uncertainty of 1,3 %. Relative uncertainties cannot be used in these 
circumstances and absolute uncertainties should be used. A relative uncertainty can only be used when it is 
based on a measurement that is used to calculate the end result. 

10 Expression of results 

10.1 Expanded uncertainty 

In Equations (19) and (20), the overall result is obtained from a summation of the contributions of the standard 
uncertainty of each input source to the uncertainty of the result. The resulting combined uncertainty is, 
therefore, a standard uncertainty; by referring to Figure 1, it can be seen that, with an effective k factor of 1, 
the bandwidth defined by a standard uncertainty will only have a confidence level of about 68 % associated 
with it. There is, therefore, a 2:1 chance that the true value will lie within the band, or a 1 in 3 chance that it will 
lie outside the band. Such odds are of little value in engineering terms and the normal requirement is to 
provide an uncertainty statement with 90 % or 95 % confidence level; in some extreme cases, 99 % or higher 
might be required. To obtain the desired confidence level, an expanded uncertainty, U, is used in accordance 
with Equation (21): 

( )cU k u y=  (21) 

or, where relative uncertainties are being used, in accordance with Equation (22): 

( )* *
cU k u y=  (22) 

 
Key 
X1 standard deviation 
X2

 coverage factor 

Y percent of readings in bandwidth 

Figure 1 — Coverage factors for different levels of confidence with the normal, 
or Gaussian, distribution 

It is recommended that for most applications a coverage factor, k = 2, be utilized to provide a confidence level 
of approximately 95 %; the choice of coverage factor will depend on the requirement of the application. Values 
of k for various levels of confidence are given in Table 2. 
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Table 2 — Coverage factors for different levels of confidence with the normal, or Gaussian, 
distribution 

Confidence level, % 68,27 90,00 95,00 95,45 99,00 99,73 

Coverage factor, k 1,000 1,645 1,960 2,000 2,576 3,000 

 

If the random contribution to uncertainty is large compared with the other contributions and the number of 
readings is small, the above method provides an optimistic coverage factor. In this case, the procedure 
outlined in Annex C should be used to estimate the actual coverage factor. A criterion that can be used to 
determine whether the procedure described in Annex C should be applied is as follows. 

Generally, if an uncertainty evaluation involves only one Type A evaluation and that Type A standard 
uncertainty is less than half the combined standard uncertainty, there is no need to use the method described 
in Annex C to determine a value for the coverage factor, provided that the number of observations used in the 
Type A evaluation is greater than 2. 

The uncertainty associated with an expanded uncertainty can be denoted using subscripts. 

EXAMPLE U95 or Uk = 2. 

10.2 Uncertainty budget 

In reports providing an uncertainty estimate, an uncertainty budget table should be presented, (or referenced) 
providing at least the information set out in Table 3. 

Table 3 — Uncertainty budget 

Standard 
uncertainty  

Sensitivity 
coefficient  

Contribution 
to overall 

uncertainty Symbol Source of 
uncertainty 

Input 
uncertainty 

Probability 
distribution

Divisor 
[[[[see Equations (9) 

to (14)]]]] 
u(xi) ci [ci u(xi)]

2 

u(x1) e.g. 
calibration 5 Normal 2 2,5 0,5 1,56 

u(x2) e.g. output 
resolution 1 Rectangular 3  0,58 2,0 1,35 

…        

u(xi)        

u(xN)        

uc Combined 
uncertainty — — — ( )cu y = Σ  ←a ( )[ ] 2

i ic u x= ∑

U Expanded 
uncertainty 

= k uc(y) ←a k ↵a — — 

a The arrows in the last two rows of the table indicate that, whereas in the upper rows the calculation proceeds from left to right, in 
these rows the calculation of the final expanded uncertainty proceeds from right to left. 

Table 3 is presented here in absolute terms and each input and corresponding standard uncertainty will have 
the units of the appropriate input parameter. The table may, equally validly, be presented in relative terms, in 
which case all input and resulting standard uncertainties will be in percentages or parts per million. Where the 
inputs are all standard uncertainties, the columns headed “Input uncertainty,” “Probability distribution” and 
“Divisor” may be omitted. 
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If the computation of a combined uncertainty is in response to a requirement for a test result to have a 
specified level of uncertainty and the analysis shows that level to be exceeded, the budget table can be of 
particular value in identifying the largest sources of uncertainty as an indicator of the problem areas which 
should be addressed. 

After the expanded uncertainty has been calculated for a minimum confidence level of 95 %, the 
measurement result should be stated as follows. 

 “The result of the measurement is [value].” 

 “The uncertainty of the result is [value] (expressed in absolute or relative terms as appropriate).” 

 “The reported uncertainty is based on a standard uncertainty multiplied by a coverage factor k = 2, 
providing a confidence level of approximately 95 %.” 

In cases where the procedure of Annex C has been followed, the actual value of the coverage factor should 
be substituted for k = 2. In cases where a confidence level greater than 95 % has been used, the appropriate k 
factor and confidence level should be substituted. 

In reporting the result of any uncertainty analysis, it is important to make a clear statement of whether the 
reported uncertainty is that of a single value, of a mean of a specified number of values, or of a curve fit based 
on a specified number of values. 
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Annex A 
(normative) 

 
Step-by-step procedure for calculating uncertainty 

A.1 Dimensional and non-dimensional uncertainty 

Decide whether dimensional or non-dimensional uncertainty estimates (for example parts per million or 
per cent) will be used to prevent any confusion. In making this decision, the guidance of Clause 9 concerning 
parameters with arbitrary zeroes should be borne in mind. 

A.2 Mathematical relationship 

Determine the mathematical relationship between the input quantities and the output quantity in accordance 
with Equation (1): 

( )1 2, , ... , NY f X X X=  

NOTE The equation numbers referred to in this annex correspond with the equation numbers in the body of the text. 

A.3 Standard uncertainty 

A.3.1 General 

Identify the sources of uncertainty in each of the input quantities; see Annex E. Estimate the standard 
uncertainty for each source. The calculation method for each component is dependent upon the uncertainty 
estimates provided and associated probability distributions. The data available usually allow the standard 
uncertainty to be calculated using one of the following methods. 

A.3.2 Type A evaluations — Standard deviation of the mean of repeated measurements 

( ) ( )i iu x s x=  

See Equation (8). 

A.3.3 Type B evaluations — Based on subjective assessment and experience 

A.3.3.1 Rectangular probability distribution 

( )
3
i

i
a

u x =  

See Figure B.1 and Equation (9). 

A.3.3.2 Normal probability distribution 

( )i
Uu x
k

=  

See Figure B.2 and Equation (10). 
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A.4 Sensitivity coefficients 

A.4.1 General 

The sensitivity coefficients can be calculated either dimensionally or non-dimensionally using either analytical 
or numerical methods. The choice of dimensional or non-dimensional sensitivity coefficients will be 
determined by the choice made in A.1. 

A.4.2 Dimensional 

∆
∆i

i i

y yc
x x

∂
∂

= ≈  

See Equations (15) and (17). 

A.4.3 Non-dimensional 

* ∆
∆

i i
i

i i

x xy yc
x y x y

∂
∂

= ≈  

See Equations (16) and (18). 

A.5 Combined uncertainty 

A.5.1 General 

Decide whether any inputs are correlated. If there are no correlations, calculate the combined standard 
uncertainty of the measurement from A.5.2 or A.5.3. If there are correlations, follow the guidance given in 
Annex F. 

A.5.2 Dimensional 

( ) ( ) 2
c

1

N

i iu y c u x
i

 =  
=
∑  

See Equation (19). 

A.5.3 Non-dimensional 

( ) ( )
2

c
1

N

i iu y c u x
i

∗ ∗ ∗ =  
=
∑  

See Equation (20). 

A.6 Unreliable input quantities 

Where unreliable input quantities are used, for example small sample sizes, the procedure of Annex C should 
be used to obtain the coverage factor for the calculation of expanded uncertainty in A.7. 
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A.7 Expanded uncertainty 

Calculate the expanded uncertainty. 

( )cU k u y=  

See Equation (21); 

or 

( )cU k u y∗ ∗=  

See Equation (22). 

A.8 Expression of results 

The results calculated in accordance with Annex A shall be reported as described in Clause 10. 
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Annex B 
(normative) 

 
Probability distributions 

Figures B.1 to B.5 illustrate the types of probability distributions. 

 

Figure B.1 — Rectangular probability distribution 

 

k is the coverage factor appropriate to the range, ± ai. 

Figure B.2 — Normal probability distribution 

 

Figure B.3 — Triangular probability distribution 
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Figure B.4 — Bimodal probability distribution 

 

Figure B.5 — Asymmetric probability distribution 
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Annex C 
(normative) 

 
Coverage factors 

For a full discussion of this topic, see GUM (1995), Annex G. 

Ideally, uncertainty estimates are based upon reliable Type B evaluations and Type A evaluations with a 
sufficient number of observations such that using a coverage factor k = 2 will mean that the expanded 
uncertainty will provide a confidence level close to 95 %. However, where either of these assumptions is 
invalid, a revised coverage factor and expanded uncertainty have to be determined using the following four-
step procedure. 

a) Calculate the output value, y, the combined standard uncertainty, uc(y), and the individual components of 
uncertainty, ui(y) = ci u(xi). 

b) Calculate the effective degrees of freedom, νeff, of the combined standard uncertainty uc(y) using 
Equation (C.1), the Welch-Satterthwaite equation: 

( )
( )

4
c

eff 4

1

N
i

ii

u y

u y
ν

ν=

=

∑
 (C.1) 

where the degrees of freedom for Type A evaluations is equal to the number of observations minus 1, as 
given by Equation (C.2): 

1iv n= −  (C.2) 

and for Type B evaluations, by Equation (C.3): 

( )
( )

2
∆1

2
i

i
i

u y
u y

ν
−

 
≈  

    (C.3) 

where the relative uncertainty of ui(y) is given by ( ) ( )∆ i iu y u y . Its value is estimated subjectively by 
scientific judgement based on the pool of information available. 

However where upper and lower limits are used in Type B evaluations and the probability of the quantity 
lying outside these values is negligible, the degrees of freedom are infinite, as given by Equation (C.4): 

iv → ∞  (C.4) 

c) Having obtained a value for νeff, determine the value of Student's t from Table C.1. The values quoted 
give a confidence level of approximately 95 %. It is conventional to use the values for 95,45 % to ensure 
that the coverage factor, k = 2 is applicable for νeff → ∞. 
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Table C.1 — Student's distribution, t — 2-sided test, 95,45 % confidence level a,b 

νeff 1 2 3 4 5 6 7 8 10 12 14 16 

t95 13,97 4,53 3,31 2,87 2,65 2,52 2,43 2,37 2,28 2,23 2,20 2,17 

νeff 18 20 25 30 35 40 45 50 60 80 100 ∞ 

t95 2,15 2,13 2,11 2,09 2,07 2,06 2,06 2,05 2,04 2,03 2,02 2,00 
a Values of t for other degrees of freedom can be obtained with sufficient accuracy by linear interpolation 
between the values shown. 
b Values of t for other confidence levels can be obtained from the statistical tables given in, for example, 
Dietrich [2]. 

d) Calculate the expanded uncertainty from Equation (C.5): 

( ) ( )95 95 c 95 cU k u y t u y= =  (C.5) 

NOTE If k = 2 is assumed for any νeff less than ∞, U95 is always underestimated; for νeff = 10 the underestimation 
amounts to 14 %. 
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Annex D 
(informative) 

 
Basic statistical concepts for use in Type A  

assessments of uncertainty 

D.1 Mean of a set of data, x  

The sample mean, x , of a set of data is defined as the arithmetic average of all the values in the sample in 
accordance with Equation (D.1): 

( )1 2 3
1

1 1 n

n m
m

x x x x ....... x x
n n =

= + + + + = ∑  (D.1) 

where 

xm is the mth value in the sample; 

n is the number of values in the sample. 

D.2 Experimental standard deviation, s, of a set of data 

Within any sample of experimental data, there will always be variation between values. In general, it is of more 
interest to estimate the variability of the entire population of values from which the sample is drawn and this 
estimate is given by the standard deviation, s, of the data in the sample. It is defined in accordance with 
Equation (D.2): 

( ) ( ) 2

1

1
1

n

m
m

s x x x
n =

= −
− ∑  (D.2) 

Care needs to be exercised when using a calculator or spreadsheet to calculate s(x) as these devices 
sometimes use the value n in place of n − 1 in the equation and strictly treat the sample as if it were the entire 
population. This has the effect of underestimating the standard deviation. With large (n W 200) data samples, 
the difference is small (< 0,25 %). 

In many statistical applications, the square of the standard deviation is required. This is referred to as the 
variance and is normally denoted by the symbol s2, rather than being given a specific symbol of its own. 

It is sometimes useful to express the variability as a proportion of the mean and this can be done using the 
coefficient of variation, CV, defined in accordance with Equation (D.3): 

V
sC
x

=  (D.3) 

NOTE The coefficient of variation can be expressed as a pure number, as a percentage or in parts per million. 

The use of CV is restricted to measurements that have a true zero and CV is meaningless for measurements 
with an arbitrary zero. 
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D.3 Degrees of freedom, ν, associated with a sample variance or standard deviation 

The degrees of freedom, ν, is the number of independent observations under a given constraint. When 
calculating the standard deviation, the constraint imposed is that the deviations sum to zero (as they are the 
deviations from the mean). Thus the first n − 1 deviations can take any value but the last has to be such that 
the sum of the deviations is zero. There are thus n − 1 independent observations and therefore n − 1 degrees 
of freedom. 

D.4 Standard uncertainty, xu , of a sample mean based on the sample standard 
deviation 

The mean, x , of a sample of data provides only an estimate of the mean of the entire population, since if 
another sample were taken, a new estimate of the mean would be obtained. Clearly, the greater the variability 
of the data, the greater will be the uncertainty about the true mean value, and the greater the number of 
values used, the better the estimate of the mean will be. The measure of the uncertainty in the sample mean 
is called the standard uncertainty of the mean and is defined in accordance with Equation (D.4): 

x
su
n

=  (D.4) 

For the derivation of Equation (D.4), see Dietrich [2]. 

D.5 Standard uncertainty, xu , of the sample mean based on a standard deviation 
derived from past experience 

It is often the case that the sample of data is small and that more information about the variability is available 
from past experience with a larger set of data. In this case, it is permissible to base the standard uncertainty of 
the mean on the standard deviation, spe, of the larger set of data. The mean, x , and the number of readings, 
n, remain those of the current set of data, but the degrees of freedom, ν, are those associated with the 
standard deviation, spe. This will be seen in D.10 to be important to selecting a coverage factor. Thus, xu is 
calculated in accordance with Equation (D.5): 

pe
x

s
u

n
=  (D.5) 

D.6 Standard uncertainty, usm, of a single value based on past experience 

The use of an external standard deviation derived from past data allows an uncertainty value to be estimated 
for a single measurement; this is of particular value in such flow measurement situations as custody transfer 
where repeat measurements are not possible. In this case, the mean, x , becomes the single measurement 
and the number of readings n = 1; however the degrees of freedom, ν, is again that associated with the 
external standard deviation, sp. Thus, usm is defined in accordance with Equation (D.6): 

sm peu s=  (D.6) 

Comparing Equation (D.7) with Equation (D.6), the value of obtaining a mean from two or more readings, 
where possible, can readily be seen, since the standard uncertainty for a single reading is 2  times, or 41 %, 
greater than that from the mean of two readings and 3  times, or 73 %, greater than that from the mean of 
three readings. Whenever possible, a mean based on multiple readings should be used rather than a single 
value. 
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D.7 Pooled standard deviation, spo, from several sets of data 

Data from past measurements do not always form one continuous set of data but can be drawn from several 
sets taken at different times under somewhat different conditions. Provided that the differences in test 
conditions are not likely to have affected the variability, the data from the various sets can be combined to 
provide a pooled standard deviation based on many more degrees of freedom. It is important to note that it is 
the standard deviations (or as will be seen the variances) that are being pooled and not the data sets 
themselves. It is the variability of the sets about their own means that is being combined to provide a better 
estimate of the variability of the measurement technique, and variations between the means of the sets are 
not of interest. The pooled standard deviation, spo, is calculated in accordance with Equation (D.7): 

2
po

1 1

m m

j j j
j j

s ν s ν
′ ′

= =

= ∑ ∑  (D.7) 

where 

sj is the standard deviation of the jth set of data; 

νj is the degrees of freedom associated with sj; 

m′ is the number of data sets to be pooled. 

spo is therefore derived from a weighted average of the variances, sj
2, of the sets of data to be pooled and the 

weighting factors are the degrees of freedom, νj, in each set. 

The standard uncertainty of the sample mean then is calculated in accordance with Equation (D.8): 

po
x

s
u

n
=  (D.8) 

and that of a single value, in accordance with Equation (D.9): 

sm pou s=
 (D.9) 

D.8 Degrees of freedom, vpo, associated with a pooled standard deviation 

The pooled standard deviation is a better estimate of the population standard deviation than any of the 
individual standard deviations because it has more degrees of freedom associated with it. The combined 
degrees of freedom is obtained simply by adding the degrees of freedom associated with each of the 
contributing standard deviations in accordance with Equation (D.10): 

po
1

m

j
j

ν ν
′

=

= ∑  (D.10) 

D.9 Expanded uncertainty, xU , of a sample mean based on the sample standard 
deviation 

While the standard uncertainty of a mean provides a measure of the bandwidth within which the mean might 
lie, the band is narrow and there is a considerable risk that the mean could actually lie outside the band. With 
a standard deviation, and therefore a standard uncertainty, based on two degrees of freedom, there is a 42 % 
chance that the mean will lie outside the band defined by the standard uncertainty and even with 100 degrees 
of freedom, there remains a 32 % chance. It is therefore normal practice to extend the bandwidth to provide a 
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greater level of confidence that the true mean will lie within the expanded band. Bandwidths can be calculated 
to give confidence levels of 90 %, 95 % or 99 %, but in measurement uncertainty analysis a level of 95 % is 
normally selected. This is accomplished by applying a coverage factor, k, to the standard uncertainty in 
accordance with Equation (D.11): 

x xU k u=  (D.11) 

The value of the coverage factor depends on the degrees of freedom associated with the standard uncertainty, 
in the case of a standard uncertainty based on the standard deviation of the current sample of data ν = n − 1. 
A range of values is given in Table C.1. Strictly speaking, the values listed are for a confidence level of 
95,45 %, this level having been being selected in preference to 95 % to give a coverage factor of two as 
ν → ∞. 

D.10 Expanded uncertainty, xU , of a sample mean based on a standard deviation 
derived from past experience 

The equation for the expanded uncertainty is equally applicable when the standard uncertainty is obtained 
from a standard deviation based on past experience, whether from a single set of data or from the pooling of 
several sets. However, in this case, the coverage factor has to be selected for the degrees of freedom 
associated with the standard deviation from past experience. 

D.11 Expanded uncertainty, Usm, of a single value 

The equation for the expanded uncertainty is also applicable in the case of a single value and again the 
coverage factor has to be selected for the degrees of freedom associated with the standard deviation used. 

D.12 Tolerance interval for individual measurements 

The expanded uncertainty of a mean defines, for a given confidence level, a range within which the true mean 
of a measurand can be expected to lie. However, individual values of the measurand will lie in a much wider 
range and there is often a need to define the range within which a given proportion of the values will lie. For a 
known standard deviation, the normal distribution defines the limits within which a given percentage of 
readings will lie. However, when based on a limited sample, the standard deviation is itself subject to 
uncertainty and confidence limits have therefore to be placed on the interval containing the required 
percentage of readings. These limits are provided by the tolerance interval. 

The tolerance interval is defined in accordance with Equation (D.12): 

tx k s±  (D.12) 

where 

x  is the sample mean; 

s is the sample standard deviation; 

kt is taken from Table D.1. 

It should be noted that the values of kt in Table D.1 are presented for different sample sizes, n, and not for the 
degrees of freedom associated with the standard deviation. The values in Table D.1 are based on the 
assumption that the sample is drawn from a normal, or Gaussian, distribution. 
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Table D.1 — Tolerance intervals (values of kt) [2] 

Confidence level 

95 % 99 % 

Percent of items within the tolerance interval Percent of items within the tolerance interval 
Sample size 

90 % 95 % 99 % 90 % 95 % 99 % 

3 8,38 9,92 12,86 18,93 22,40 29,06 

4 5,37 6,37 8,30 9,40 11,15 14,53 

5 4,28 5,08 6,63 6,61 7,85 10,26 

6 3,71 4,41 5,78 5,34 6,35 8,30 

7 3,31 4,01 5,25 4,61 5,49 7,19 

8 3,14 3,73 4,89 4,15 4,94 6,47 

9 2,97 3,53 4,63 3,82 4,55 5,97 

10 2,84 3,38 4,43 3,58 4,27 5,59 

12 2,66 3,16 4,15 3,25 3,87 5,08 

14 2,53 3,01 3,96 3,03 3,61 4,74 

16 2,44 2,90 3,81 2,87 3,42 4,49 

18 2,37 2,82 3,70 2,75 3,28 4,31 

20 2,31 2,75 3,62 2,66 3,17 4,16 

30 2,14 2,55 3,35 2,39 2,84 3,73 

40 2,05 2,45 3,21 2,25 2,68 3,52 

50 2,00 2,38 3,13 2,16 2,58 3,39 

D.13 Detection of outliers 

Occasionally, when a set of measurements is taken, one value appears to be substantially larger or smaller 
than all the others and there is then a temptation to reject the outlying value as being wrong. There could be 
obvious reasons for the outlier, but frequently the reasons will not be apparent and the metrologist will be left 
to decide for himself whether the value is wrong or is simply an extreme value from the same distribution as all 
the others. 

An extreme value will distort both the mean and the standard deviation of the set and these values could be 
more representative of normal operation if the outlier is rejected from the analysis. However, such rejection 
should not be done lightly, as there is always a risk of rejecting valid data. 

Many statistical tests have been developed to assist in deciding the significance of outliers, some testing for 
single outliers, others testing for multiple outliers either at the same or at opposite ends of the range. One 
such test is Grubbs’ test, which compares the distance between the outlier and the mean with the standard 
deviation of the whole set of data. 

Consider a set of data (x1, x2, … xn) with mean x , standard deviation, s, and the reading, xm, suspected of 
being an outlier. The Grubbs’ test statistic, Zn, is defined in accordance with Equation (D.13): 

m
n

x x
Z

s
−

=  (D.13) 

Zn is then compared with the value given in Table D.2 for the appropriate confidence level and number of 
samples. If Zn exceeds the tabulated value, the measurement, xm, can be classed as an outlier with the stated 
confidence level. 
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Although Grubbs’ test can be automated within a data collection system to flag outliers, the rejection of data 
requires judgement and should not be based purely on the statistical result. 

Table D.2 — Grubbs’ outlier test based on mean and standard deviation 

Confidence level 
Number of observations 

95 % 99 % 

4 1,48 1,50 

5 1,71 1,76 

6 1,89 1,97 

7 2,02 2,14 

8 2,13 2,27 

9 2,21 2,39 

10 2,29 2,48 

12 2,41 2,64 

14 2,51 2,76 

16 2,59 2,85 

18 2,65 2,93 

20 2,71 3,00 

30 2,91 3,24 

40 3,04 3,38 

50 3,13 3,48 

100 3,38 3,75 

D.14 Worked examples 

D.14.1 Mean, variance, standard deviation, degrees of freedom and coefficient of variation 

D.14.1.1 General 

Toluene is being used as a feedstock in a petrochemical plant and the flow-rate is measured using a turbine 
meter. To reduce Type A uncertainties in the flow-rate measurement, each “reading” used for control 
purposes is derived from five individual readings. A typical set of values is given in Table D.3. Calculate the 
mean, standard deviation and coefficient of variation. 

Table D.3 — Typical set of flow-rate readings 

Reading number 1 2 3 4 5 

Flow-rate, litres per second 122,7 123,2 122,3 122,8 123,0 
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D.14.1.2 Mean 

The mean, expressed in litres per second, is calculated as 

( )
1

1

122,7 123,2 122,3 122,8 123,0 5

122,8

n

m
m

x x
n =

=

= + + + +

=

∑
 

D.14.1.3 Variance 

The variance, expressed in litres per second quantity squared, is calculated as 

( ) ( )

( ) ( )
( )

22

1
2 2

1
1

122,7 122,8 123,0 122,8

5 1

0,115 0

n

m
m

s x x
n

...

=

= −
−

 − + + −  =
−

=

∑

 

D.14.1.4 Standard deviation 

The standard deviation, expressed in litres per second, is calculated as 

2

0,115 0
0,339

s s=

=
=

 

D.14.1.5 Degrees of freedom 

The degrees of freedom is calculated as 

1
5 1
4

ν n= −
= −
=

 

D.14.1.6 Coefficient of variation 

The coefficient of variation is calculated as 

V

0,339 122,8
0,002 76

sC
x

/

=

=
=

 

D.14.2 Standard and expanded uncertainties of a mean using sample standard deviation 

D.14.2.1 General 

For the data of example D.14.1, calculate the standard uncertainty of the mean and the expanded uncertainty 
at the 95 % confidence level. 
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D.14.2.2 Standard uncertainty of the mean 

The standard uncertainty of the mean, expressed in litres per second, is calculated as 

0,339
5

0,152

x
su
n

=

=

=

 

D.14.2.3 Expanded uncertainty of the mean at the 95 % confidence level 

For four degrees of freedom, Table E.1 gives a coverage factor, k, of 2,87, thus the expanded uncertainty, 
expressed in litres per second, is calculated as 

2,87 0,152
0,436

x xU ku=

= ⋅
=

 

D.14.3 Standard and expanded uncertainties of a single value 

D.14.3.1 General 

If the control of the flow in example D.14.1 is now based on a single reading of the flow-rate, calculate the 
standard uncertainty and expanded uncertainty at the 95 % confidence level. 

The data of example D.14.1 provide the necessary information on the variability of the flow-rate in question 
and the standard deviation derived from those data can be used as an external standard deviation to calculate 
the required uncertainties for a single reading. 

D.14.3.2 Standard uncertainty 

The standard uncertainty, expressed in litres per second, is calculated as 

sm ex
0 339

u s
,

=

=
 

D.14.3.3 Expanded uncertainty 

As the external standard deviation on which the standard uncertainty is based was obtained from a set of five 
data points, it has four degrees of freedom associated with it and the value of k remains equal to 2,87 (from 
Table C.1). Thus, the expanded uncertainty can be calculated as 

sm sm
2 87 0 339
0 973

U ku
, ,
,

=

= ⋅
=

 

These can be seen to be very much larger than the values obtained for the uncertainties of the mean of five 
readings and this demonstrates the consequences of making single measurements. 
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D.14.4 Pooled standard deviation from several sets of data 

D.14.4.1 General 

In an effort to get a better estimate of the variability of the flow-rate due to Type A uncertainties, the plant 
engineer consults past records of flow-rate and identifies six sets of data obtained at similar flow-rates. These 
data are shown in Table D.4, together with the mean of each set, the standard deviation of each set about its 
own mean and the degrees of freedom associated with each standard deviation. Calculate the pooled 
standard deviation, and its associated degrees of freedom from all the data. 

Table D.4 — Flow-rate data for the example in D.14.4 

Flow-rate a per day per data-set 

Day Set Statistical 
parameter 

1 2 3 4 5 6 

1 — 120,2 123,0 124,3 127,3 118,3 122,7 

2 — 120,8 122,6 124,9 126,7 118,5 123,1 

3 — 121,0 122,7 124,9 127,2 118,2 123,0 

4 — 121,1 122,9 125,1 126,5 118,6 122,7 

5 — 120,4 122,4 124,5 — 118,8 122,2 

6 — — — — — 118,3 122,4 

7 — — — — — 119,1 — 

— — — — — — — — 

— x  a 120,70 122,72 124,74 126,93 118,54 122,68 

— s a 0,387 0,239 0,329 0,386 0,321 0,343 

— ν 4 4 4 3 6 5 

a Flow rates given in litres per second. 

D.14.4.2 Pooled standard deviation 

The pooled standard deviation, expressed in litres per second, is calculated as 

( )

2
po

1 1

22 2 2 24 0,387 4 0,239 6 0,321 5 0,343

4 4 4 3 6 5
0,335

m m

j j j
j j

s ν s ν

.....
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= =

=

⋅ + ⋅ + + ⋅ + ⋅
=
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=

∑ ∑
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D.14.4.3 Pooled degrees of freedom 

The pooled degrees of freedom is calculated as 

po
1

4 4 4 3 6 5
26

m

j
j

ν ν
′

=

=

= + + + + +
=

∑
 

Although in this example the pooling of past data has had little effect on the standard deviation, it has greatly 
increased the degrees of freedom associated with the pooled standard deviation. The benefits are shown in 
the example in D.14.5. 

D.14.5 Expanded uncertainty of a sample mean based on a standard deviation from past 
experience 

D.14.5.1 General 

Using the pooled data of example D.14.4, recalculate the standard and expanded uncertainties of a mean 
based on five readings. 

D.14.5.2 Standard uncertainty 

The standard deviation used to calculate the standard uncertainty is now the pooled value but, as the sample 
from which the mean is derived is still limited to five values, the divisor in the standard uncertainty formula 
remains 5 , thus the equation becomes 

pe

po

0,335
5

0,150

x
s

u
n

s

n

=

=

=

=

 

As the pooled standard deviation was very close to the original sample value, the standard uncertainty is, in 
this example, largely unaffected by the pooling process. 

D.14.5.3 Expanded uncertainty 

In obtaining the coverage factor from Table C.1 to calculate the expanded uncertainty, it is important to 
remember that the degrees of freedom associated with the standard uncertainty is now that associated with 
the pooled standard deviation. The coverage factor is therefore obtained for 26 degrees of freedom, k = 2,11 
and the uncertainty, expressed in litres per second is calculated as 

2,11 0,150 0,317x xU ku= = ⋅ =  

This is substantially smaller than the value of 0,436 obtained using only the data of the original set in example 
D.14.2 and illustrates the value of pooling past data to obtain a better estimate of variability, the improvement 
coming, in this case, from the increased degrees of freedom associated with the pooled standard deviation. 
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D.14.6 Tolerance interval for individual values 

Whisky bottles are marked with a minimum content of 700 ml. Recognizing that there are variations in the 
filling process, the bottling plant manager has to set the average fill volume above 700 ml to minimize the 
chances of bottles containing a short measure. Measurement of the contents of 10 bottles selected at random 
gives a standard deviation of 4 ml. At what value should the plant manager set the mean fill to be 95 % 
confident that 99,5 % of bottles will meet the minimum requirement? 

Since the distribution can be assumed to be symmetrical, 99,5 % of bottles above the minimum implies 0,5 % 
below the minimum, 99 % within the tolerance interval and 0,5 % above the upper bound of the interval. 
Selecting the value in Table D.1 to yield a 95 % confidence that 99 % of items are in the interval gives 
kt = 4,43. 

The interval is therefore ± 4,43 × 4 ml = ± 17,72 ml. 

So, for the lower bound of the interval to be 700 ml, the mean has to be set at 717,72 ml. 

The plant manager recognizes that this mean represents whisky given away with almost every bottle and he is 
keen to tighten up on these losses. He decides that he can accept a mean of 705 ml and at the same time 
wants to improve his confidence level to 99 % that 99,5 % of bottles will conform to the minimum requirement. 
In trying to reduce the uncertainties in the filling process, what standard deviation should he be looking for in a 
sample of 30 bottles? 

For 99 % confidence that 99 % of bottles are in the range (0,5 % below the lower limit) and a sample size 
of 30, Table D.1 gives kt = 3,73. So for a tolerance interval of ± 5 ml, the sample standard deviation needs to 
be reduced to 5 ml divided by 3,73, or 1,34 ml. 

D.14.7 Rejection of outliers 

The flow of water to a cooling tower is measured using a Venturi meter. An estimate of the average daily 
consumption is required and the following data are collected over a period of 20 days. 

Table D.5 — Volume data for example D.14.7 

Day 1 2 3 4 5 

Volume, m3 7,80 7,66 7,87 8,02 8,01 

 

Day 6 7 8 9 10 

Volume, m3 8,08 7,18 7,81 7,99 7,69 

 

Day 11 12 13 14 15 

Volume, m3 7,74 7,60 7,58 7,70 7,73 

 

Day 16 17 18 19 20 

Volume, m3 7,54 7,76 7,78 7,86 7,79 

A calculation of the mean and standard deviation using Equations (D.1) and (D.2) gives a mean of 7,76 m3 
and a standard deviation of 0,202 m3. As the mean is based on 20 readings, the standard uncertainty, 
expressed in cubic metres, of the mean is given by 

0,202 0,045
20x

su
n

= = =  
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The coverage factor for 20 values and therefore 19 degrees of freedom from Table C.1 is 2,14 (by 
interpolation) and the expanded uncertainty, expressed in cubic metres, is 

2 14 0 045 0 096x xU k u , , ,= = ⋅ =  

However, the value of 7,18 recorded on the 7th day appears substantially lower than the others and it is tested 
as an outlier using the Grubbs’ test. 

7,18 7,76
2,87

0,202
m

n
x x

Z
s
− −

= = =  

As the value of Zn exceeds the tabulated value (Table D.2) for 20 observations at the 95 % confidence level, 
the value of 7,18 can be regarded as an outlier with 95 % confidence. However, Zn does not exceed the 
tabulated value at the 99 % confidence level and the value of 7,18 cannot be regarded as an outlier at the 
higher confidence level. An examination of the plant records reveals a problem with feedstock concentrations 
on day 7 and this could have affected cooling requirements. It is therefore decided that the low value can be 
rejected. 

Having rejected the outlier, the mean and standard deviation can be recalculated as 7,79 m3 and 0,153 m3 
respectively. There are now 19 observations, so the standard uncertainty, expressed in cubic metres, of the 
mean is 

0,153 0,035
19x

su
n

= = =  

The coverage factor for 19 observations and 18 degrees of freedom from Table C.1 is 2,15 and the expanded 
uncertainty, expressed in cubic metres, of the mean at the 95 % confidence level is therefore 

2,15 0,035 0,075x xU k u= = ⋅ =  
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Annex E 
(informative) 

 
Measurement uncertainty sources 

E.1 Categories of uncertainty sources 

Sources introducing uncertainty in a measurement process can be divided arbitrarily into the following 
categories: 

a) calibration uncertainty; 

b) data acquisition uncertainty; 

c) data processing uncertainty; 

d) uncertainty due to methods; 

e) others. 

While often helpful, dividing uncertainty sources by category is not necessary for a correct uncertainty analysis. 

E.2 Calibration uncertainty 

Each measurement instrument can introduce uncertainties. The main purpose of the calibration is to reduce 
the measurement uncertainty to an acceptable level. The calibration process achieves that goal by replacing 
the large uncertainty of an uncalibrated instrument by the smaller combination of uncertainties of the standard 
instrument and the comparison between it and the measurement instrument. 

Calibrations are also used to provide traceability to known reference standards and/or physical constants. In 
some countries, there is a hierarchy of laboratories that are concerned with calibration, with the national 
standards laboratory at the apex of the hierarchy, providing the ultimate reference for every standards 
laboratory. Each level in the calibration hierarchy is traceable to the level above and so carries the uncertainty 
of the higher laboratory as its calibration uncertainty, to which is added its own instrumentation and usage 
uncertainties. In this way each level adds uncertainty to the measurement process and, when a particular level 
of uncertainty is sought, it is therefore important to enter the calibration chain at the correct level. Thus, if an 
overall uncertainty of 0,5 % is required and the usage and instrumentation uncertainties of the application 
contribute 0,4 %, the calibration hierarchy should be entered at a level where the calibration uncertainty is 

0,3 %, to yield a combined uncertainty, expressed in percent, of 2 20,4 0,3+ , or 0,5 %, the required value. 

E.3 Data acquisition uncertainty 

Uncertainty in data acquisition systems can arise from the signal conditioning, the sensors, the recording 
devices, etc. The best method to minimize the effects of many of these uncertainty sources is to perform 
overall system calibrations. By comparing known input values with their measured results, estimates of the 
data acquisition uncertainty can be obtained. However, it is not always possible to do this. In these cases, it is 
necessary to evaluate each element of  uncertainty and combine them to predict the overall uncertainty. 
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E.4 Data processing uncertainty 

Typical uncertainty sources in this category stem from curve fits and computational resolution; the latter are 
normally negligible. Curve fits can be used to allow for non-linearities in, for example, a meter factor. However, 
while the equation obtained from a regression analysis of the calibration data represents the best fit to those 
data, the scatter about the curve indicates that, with more data, a slightly different equation would be obtained 
in the same way as the mean of a set of data will change as more values are obtained. Thus, each coefficient 
in a regression equation will have an uncertainty associated with it, just as the mean of a set of values does. 
For details of the methods of evaluating the uncertainties resulting from fitting straight lines or curves to data, 
see ISO/TR 7066-1 [3] and ISO 7066-2 [4], respectively. 

Meter performance characteristics such as non-repeatability are included in the curve-fit uncertainty because 
the curve is necessarily based on multiple readings. In addition, careful design of the calibration experiment 
allows sources of uncertainty such as hysteresis to be included. 

E.5 Uncertainty due to methods 

Uncertainty due to methods is defined as those additional uncertainty sources that originate from the 
techniques or methods inherent in the measurement process. These uncertainty sources can significantly 
affect the uncertainty of the final results and, in a modern measurement system, are likely to be more 
significant than those contained in calibration, data acquisition and data processing. Some common examples 
include the following. 

a) Uncertainty in the assumptions or constants in the calculations. For example, the constant π can be taken 
as 3,14 or 3,141 593 and the gravitational acceleration, g, can be taken as 9,81 m/s2 or can be calculated 
for the particular location using the International Union of Geodesy and Geophysics equation. 

b) Uncertainty due to intrusive disturbance effects caused by the installed instrumentation. For example, a 
pitot tube will cause blockage and increase the flow velocity being measured. 

c) Spatial or profile uncertainty in the conversion from discrete point measurements of a velocity profile to 
station average flow-rate. 

d) Environmental effects on measurement transducers, such as conduction, convection and radiation. Heat 
transfer effects on a temperature probe are particularly important when dealing with very hot or very cold 
fluids. 

e) Uncertainty due to instability, non-repeatability and hysteresis of the measurement process. 

f) Uncertainty due to drift of an instrument between successive calibrations. 

g) Electrical interference with electronic components such as by magnetic fields, electric fields and mains 
spikes. 

h) Variation between the calibration and usage conditions. Meters calibrated at room temperature in a 
laboratory can have increased uncertainty when used in the field at a wide range of ambient temperatures 
or when used in process plant with high or low temperature fluids. Upstream pipework configurations can 
also have a strong influence on some types of flow meter. 
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Annex F 
(informative) 

 
Correlated input variables 

When listing all sources of uncertainty from different categories, the sources should be defined where possible 
so that the uncertainties in the various sources are independent of each other. The input variables and their 
associated uncertainties are then said to be uncorrelated. Where the input variables or the uncertainties in 
those variables are not independent of each other, they are said to be correlated. That correlation can be 
either positive or negative and can be either a 100 % or a partial correlation. 

Correlation will arise where the same instrument is used to make several measurements or where instruments 
are calibrated against the same reference. The latter practice is common in flow measurement laboratories 
where several flowmeters are calibrated against the same reference while connected in series and are then 
used in parallel to meter a larger flow. Correlation also arises when an external influence such as pressure, 
temperature or humidity impacts on several instruments within the measurement system. 

Positive correlation tends to increase the overall uncertainty, as it is no longer possible to assume that the 
uncertainties will be distributed throughout their possible range and so derive a most likely value based on the 
root sum square technique. Instead, the combined value has to reflect the fact that the uncertainties are linked 
and so will act in the same direction on any one measurement. As an example, a temperature correction 
applied to the pipe diameter and meter bore of an orifice plate installation will apply equally to both the 
diameter and the bore. 

Negative correlation occurs when, for example, the same instrument is used to make two measurements and 
the difference or ratio of these measurements is the final measurand. In the former case, a zero offset in both 
readings will have no effect on the final result; while in the latter case, an error in the slope of the calibration 
line will not affect the ratio. Negative correlation can therefore be seen to reduce uncertainty. 

The handling of correlated uncertainties can be difficult, particularly for partial correlation; a detailed 
description is contained in GUM (1995), 5.2. The method described in the GUM is mathematically complex 
and it is recommended that, for most practical applications, the simpler techniques described below be carried 
out to assess the importance of the correlated elements to determine whether or not the complexity of the 
GUM technique is required. 

The best approach to the analysis is to redefine the mathematical relationship to eliminate the correlations. 
For example, as already mentioned, where a correction is made for thermal expansion of the pipe and bore in 
an orifice plate installation, the uncertainties in the corrections will be positively correlated through the 
uncertainty in the temperature and, if the materials are the same, in the thermal expansion coefficient. By 
redefining the mathematical relationship to include equations for the bore and pipe diameter in terms of the 
dimensions at a reference temperature, the operating temperature and the thermal expansion coefficient, the 
correlating variables are introduced into the analysis as independent variables and their contribution to 
uncertainty is fully accounted for through the sensitivity coefficient analysis of Clause 8. Annex G, example 3, 
illustrates the procedure for an orifice plate. Negative correlations can be addressed by redefining the 
measurand to eliminate the correlated variables; Annex G, example 2, where a flow ratio is required, 
illustrates the procedure. 

An alternative approach to the assessment of positively correlated uncertainties is to assume that the 
correlations are all 100 % as it can be shown that, in this case [see, for example, GUM (1995), 5.2], the 
combined uncertainty, uc, is given by Equation (F.1): 

( ) ( ) ( )c 1 1 2 2 ..... N Nu c u x c u x c u x= + + +  (F.1) 

or, in relative terms, by Equation (F.2): 

( ) ( ) ( )* * * * * * *
c 1 1 2 2 ..... N Nu c u x c u x c u x= + + +  (F.2) 
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The analysis technique is then to divide the sources of uncertainty into correlated and uncorrelated and carry 
out parallel analyses adding contributions linearly for the correlated sources and by root sum square for the 
uncorrelated. As a final step, the total correlated and uncorrelated uncertainties are added by a root sum of 
the squares to obtain the overall uncertainty. This approach will overestimate the effect of any elements of 
uncertainty that are only partially correlated, thus adhering to the principle of erring on the side of pessimism 
in assessing uncertainty. 

In dealing with negative correlations, it should be remembered that 100 % negative correlations result in the 
source being eliminated from the analysis and so making no contribution to the overall uncertainty. The 
principle of erring on the side of pessimism therefore requires that partial negative correlations are treated as 
uncorrelated and retained in the analysis. 

Where the rigorous approach of redefining the mathematical relationship cannot be adopted, it is wise to 
compare the contribution of the potentially correlated sources with that of the uncorrelated sources to decide 
whether the correlated effects are worthy of a more detailed analysis. 
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Annex G 
(informative) 

 
Examples 

G.1 Example 1 — A critical flow nozzle is used to measure the mass flow of air in a 
calibration rig 

G.1.1 Mathematical model 

The mass flow is given by Equation (G.1): 

ma t cf 0
0

1q A C p
RT

ϕ=  (G.1) 

where 

qma is the mass flow; 

At is the area of the throat; 

C is the discharge coefficient; 

ϕcf is the critical flow function; 

p0 is the upstream pressure; 

R is the specific gas constant; 

T0 is the upstream absolute temperature. 

As the nozzle is calibrated in air against a reference standard, this equation reduces to Equation (G.2): 

ma c 0
0

1q C p
T

=  (G.2) 

where Cc is the calibration coefficient. 

G.1.2 Contributory variances 

The application of Equation (19) to Equation (G.2) yields Equation (G.3): 

c 0 0
2 2 2 2 2 2 2
c ma c 0 0( ) ( ) ( ) ( )C p Tu q c u C c u p c u T= + +  (G.3) 

The sensitivity coefficients in Equation (G.4) can be obtained by differentiation of Equation (G.2): 

c 0
0

1
Cc p

T
= , 0 c

0

1
pc C

T
=  and 

3
2

0
1 c 02 0Tc C p T −

= −  (G.4) 
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Thus, Equation (G.3) can be rewritten as Equation (G.5): 

( ) 0
2 22 2 c2 2 2 20 c

c ma c 0 030 0 0
( ) ( ) ( )

4

C pp Cu q u C u p u T
T T T

= + +  (G.5) 

and dividing by qma
2 results in Equation (G.6): 

( )2 2 2 2
c ma c 0 0

2 2 2 00ma c

( ) ( ) ( )
4

u q u C u p u T
Tpq C

= + +  (G.6) 

Thus the relative sensitivity coefficients, c*, are as given in Equation (G.7): 

C 0 0
* * * 1

21, 1, andp Tc c cϕ = = = −  (G.7) 

G.1.2.1 Uncertainty in the calibration coefficient, ϕC 

The calibration certificate gives as the expanded uncertainty of the calibration coefficient Cc, U(Cc) = 0,25 % at 
the 95 % confidence level (or with a coverage factor of 2); k = 2 is therefore used to recover the standard 
uncertainty. The calibration was carried out at an outside laboratory. The instrumentation used in the 
calibration was that of the independent laboratory and, in consequence, there are no correlations with the 
instrumentation employed in the use of the nozzle. However, had the calibration experiment been carried out 
using the pressure or temperature instrumentation used in normal operation, the correlation would have had to 
be taken into account. 

G.1.2.2 Uncertainty in the measurement of upstream pressure, p0 

The gauge used to measure the upstream pressure has an acceptance criterion of 0,5 % of the full-scale 
reading. The instrument has a full-scale reading of 2 MPa (20 bar) and the line pressure is normally run at 
1,5 MPa (15 bar). As no calibration correction is applied to the gauge readings provided that they fall within 
the acceptance limit, the maximum uncertainty is 0,5 % of 2 MPa (20 bar) or 0,010 MPa (0,1 bar). Nothing is 
known of the distribution of calibration values within the acceptance range and it is, therefore, prudent to take 
the pessimistic view and assume that all values are equally likely, i.e. a rectangular distribution. The standard 
uncertainty is therefore 0,010 MPa (0,1 bar) divided by 3 , or 0,005 8 MPa (0,058 bar). In use, the 
instrument is read via a 10-bit computer data-acquisition card giving a resolution of 1 part in 1 024. The full 
range of the card is set to the full-scale reading of the pressure gauge [2 MPa (20 bar)], 1 bit on the computer 
card therefore represents 2 MPa (20 bar) divided by 1 024, or 0,002 MPa (0,02 bar). The expanded 
uncertainty is therefore 0,001 MPa (0,01 bar) and, as the digital value represents all values in the range with 
equal probability, a rectangular distribution is assumed, yielding a standard uncertainty of 0,001 MPa 
(0,01 bar) divided by 3 , or 0,000 58 MPa (0,005 8 bar). This is added in quadrature to the calibration 
uncertainty to obtain the overall standard uncertainty, expressed in pressure units, as given in Equation (G.8). 
Thus u2(P0), expressed in square pressure units, is equal to (0,005 82 + 0.000 582) MPa2 
[(0,0582 + 0.005 82) bar2] and u(P0) is equal to 0,005 8 MPa (0,058 bar). With an operating pressure of 
1,5 MPa (15 bar), the overall relative standard uncertainty in the pressure measurement is 0,005 8 / 1,5 
(expressed in MPa) [0,058 /15 (expressed in bar)], or 0,39 %. 

2 2
0( ) (0,005 8 0,000 58 ) 0,005 8 MPau P = + =  

 (G.8) 
2 2(0,058 0,005 8 ) 0,058 bar= + =  

G.1.2.3 Uncertainty in the measurement of upstream temperature, T0 

The upstream temperature is measured with a Type J thermocouple with a stated uncertainty at the 95 % 
confidence level of 1 K. This is an expanded uncertainty and as the confidence level is stated to be 95 %, it is 
assumed that k = 2 when deriving the standard uncertainty. Thus, the standard uncertainty is 1 K divided by 2, 
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or 0,5 K. The scale division on the temperature readout is 0,1 K, giving an expanded uncertainty of 0,05 K. 
This has a rectangular distribution and the standard uncertainty is 0,05 K divided by 3 , or 0,029 K. An 
additional uncertainty arises from the use of the thermocouple and how accurately it measures the mean 
temperature of the flowing gas. The probe is mounted in accordance with the recommendations of ISO 9300 
and compressible flow effects are therefore small. At 313 K the gas temperature is close to ambient and 
conduction effects of the probe are also small. An expanded uncertainty of 0,1 K is therefore assumed and 
this is judged to have a rectangular distribution giving a standard uncertainty of 0,1 K divided by 3 , or 
0,058 K. The standard uncertainties from the various sources are independent of each other and are added in 
quadrature to obtain the overall standard uncertainty in the temperature measurement as given in 
Equations (G.9), with u2(T0) expressed in square kelvins and u(T0) expressed in kelvins: 

2 2 2
0( ) (0,5 0,028 0,058u T = + +  

 (G.9) 
0,5=  

With an operating temperature of 313 K, the relative standard uncertainty, u*(T0), expressed in kelvins, is 
equal to 0,5 divided by 313, or 0,16 %. 

G.1.2.4 Combined uncertainty 

The overall uncertainty budget is set out in Table G.1 

Table G.1 — Uncertainty budget 

Symbol Source of 
uncertainty 

Relative 
expanded 

uncertainty 
U*(xi) 

% 

Probability 
distribution 

Divisor Relative 
sensitivity 
coefficient

c*
i 

Relative 
standard 

uncertainty 
u*(xi) 

% 

Contribution 
to overall 

uncertainty
[ci u(xi)]

2 
10−4 

u*(ϕC) Calibration 0,25 normal 2,00 1,00 0,13 0,02 

u*(p0) Pressure 0,67 rectangular 1,73 1,00 0,39 0,15 

u*(T0) Temperature 0,32 normal 2,00 0,50 0,16 0,01 

 Multiplier  0,18 

 Combined 0,84 ← 2,00 ← 0,42 ↵ 

The combined standard uncertainty, uc
*, is therefore 0,42 % and the overall expanded uncertainty 

*
95U  = 0,84 %. From Table G.1 it can be seen that most of the overall uncertainty in flow-rate comes from 

the uncertainties in measuring upstream pressure. As a general rule, when an uncertainty contribution [ci u(xi)] 
is less than 20 % of the largest contribution, the smaller source can be ignored. In the final column of 
Table G.1, the contributions are shown as [ci u(xi)]2 and therefore only those contributing (0,2)2 or 4 % of the 
largest contribution can be safely ignored. On this basis, although the contribution from the temperature 
measurement is small at 7 % of the pressure contribution, it cannot be ignored. 

G.2 Example 2 — Comparing two flow-rates measured with the same meter 

G.2.1 General 

In many engineering situations, the interest lies not in the true flow-rate but in a comparison of two flow-rates 
measured with the same meter. The uncertainty of the comparison is then independent of many of the 
uncertainties in the measured flow-rate. This example presents an analysis of such a comparison. 
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A company manufacturing automotive radiators uses an orifice plate to compare coolant flows through new 
radiator designs with those through a reference design. 

G.2.2 Mathematical model 

The flow performance of the radiator is expressed in terms of a flow factor, F, that is defined as in 
Equation (G.10): 

r∆
qF
p

=  (G.10) 

where 

q is the volume flow-rate of coolant; 

∆pr the pressure difference across the radiator. 

In the development of a new radiator, the interest is in the ratio, ΦF, of the factor Fexp for the new design to 
Fref, for that for a standard design. The measurand is thus calculated in accordance with Equations (G.11): 

exp
F

ref

F
F

Φ =  or 
( )
( )

exp r,exp
F

ref r,ref

∆
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q p

q p
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 exp r,ref
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∆

∆

q p

q p

⋅
=

⋅
 

where the subscripts “exp” and “ref” refer to the experimental and reference radiators, respectively. 

The flow-rate, q, is measured with an orifice plate and q is therefore given by Equation (G.12): 

2
o mt

4

2 ∆
41

d pCq
ρβ

   π   =
   −   

 (G.12) 

where 

C is the discharge coefficient; 

do is the orifice diameter; 

β is the ratio of do to the diameter of the pipe, dp; 

ρ is the fluid density; 

∆pmt is the pressure difference across the orifice meter. 

Substituting from Equation (G.12) into Equation (G.11) yields Equation (G.13): 

2
exp mt,expo

r, ref 4 exp
F

2
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r,exp 4 ref

2 ∆
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   π ⋅ ⋅ ⋅   −   =
   
     −   

 (G.13) 
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Since the dimensions of the orifice plate remain constant, terms involving do and β cancel out, yielding 
Equation (G.14): 

r,ref exp ref mt,exp
F

r,exp ref exp mt,ref

∆ ∆

∆ ∆

p C p

p C p

ρ
Φ

ρ

⋅ ⋅
=

⋅ ⋅
 (G.14) 

The measurand, ΦF, is therefore independent of the meter dimensions and of any uncertainty in those 
dimensions. Similarly, any uncertainties in C due to the positioning of the tappings or the sharpness of the 
orifice edge are frozen and do not affect the measurand, ΦF. Then C will depend solely on the Reynolds 
number and if the tests are carried out with similar flow-rates, Cexp will equal Cref, since C is only very weakly 
dependent on the Reynolds number. Thus, Equation (G.14) reduces to Equation (G.15): 

r,ref ref mt,exp
F

r,exp exp mt,ref

∆ ∆
∆ ∆

p p
p p

ρ
Φ

ρ
⋅ ⋅

=
⋅ ⋅

 (G.15) 

G.2.3 Contributory variances 

Substituting Equation (G.15) into Equation (19) yields Equation (G.16): 

( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2 2 2
c F ,exp exp ∆ ,mt,exp mt,exp ∆ ,r,ref r,ref ∆ ,r,exp r,exp∆ ∆ ∆ ......u c u c u p c u p c u pΦ ρ= ⋅ + ⋅ + ⋅ + ⋅ +ρ p p p

( ) ( )2 2 2 2
,ref ref ∆ ,mt,ref mt,ref... ∆c u c u pρ+ ⋅ + ⋅ρ p  (G.16) 

The relative sensitivity coefficients can be obtained by partial differentiation of Equation (G.15) to yield 
Equation (G.17): 

( ) ( ) ( ) ( ) ( )2 2 222
exp mt,exp r,expr,refc F

2 2 2 2 2
F exp mt,exp r,ref r,exp

∆ ∆∆1 1 1 1 ...4 4 4 4∆ ∆ ∆
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Φ ρ
= + + + +  

( ) ( )22
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2 2
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∆1 1........ 4 4 ∆

u pu

p

ρ

ρ
+ +  (G.17) 

The relative sensitivity coefficients can then be defined as in Equations (G.18): 

ref mt,exp r,ref exp mt,ref r,exp
* * * * * *

∆ ∆ ∆ ∆0,5; 0,5;c c c c c c= = = = = = −ρ p p ρ p p  (G.18) 

G.2.4 Uncertainty in density measurement 

The density depends on the composition of the coolant (a water - ethylene-glycol mixture) and on the 
temperature. Samples are drawn from the rig during each test and the density is estimated as the mean of 
four readings taken with a hydrometer. In the reference design test, the mean density is 1,070 kg/m3 and in 
the test with the experimental design, it is 1,065 kg/m3. The uncertainty in these values could be obtained 
from the standard deviation of each set of four readings but is more accurately determined from the pooled 
experimental standard deviations of a large number of earlier tests. Five previous tests are used to obtain a 
pooled standard deviation based on 10 sets each of four readings and the value obtained is 1,60 kg/m3. The 
standard uncertainty, expressed in kilograms per cubic metre, of the mean of four readings is then given by 
Equation (G.19): 

( ) ( )mt mt 1,60 4 0,80 u sρ ρ= = =  (G.19) 

The stated “uncertainty” of the hydrometer is 1 kg/m3 and this is taken to be an expanded uncertainty with a 
normal distribution (k = 2), yielding a standard uncertainty of 1 kg/m3 divided by 2, or 0,5 kg/m3. This 
uncertainty is correlated between the two density measurements. Since the densities are used as a ratio, the 
densities are negatively correlated, as indicated by the signs of the relative sensitivities calculated in G.2.3. 
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The uncertainties in the calibration of the hydrometer tend to cancel out, although they would only cancel 
completely if the densities were in fact equal. In the testing of the reference design, the relative uncertainty in 
the density due to the calibration of the hydrometer, u*(ρref)calib, is equal to 0,5 kg/m3 divided by 1,070 kg/m3, 
or 0,046 7 %. In the testing of the reference design, the relative uncertainty in the density due to the 
calibration of the hydrometer, u*(ρexp)calib, is equal to 0,5 kg/m3 divided by 1,065 kg/m3, or 0,046 9 %. 
Substituting these values and those of the relative sensitivity coefficients calculated in G.2.3 into 
Equation (F.2), the combined uncertainty due the correlation between the two densities arising from the 
common calibration can be calculated in accordance with the Equations (G.20): 

( ) ( ) ( )* * * * * * *
c 1 1 2 2 .....

0,5 0,000 469 0,5 0,000 467
0,000 001 or 0,000 1%

N Nu c u x c u x c u x= + + +

= ⋅ − ⋅
=

 (G.20) 

This confirms that in this case the densities are so nearly equal that the residual calibration uncertainty can be 
ignored. 

The use of the standard deviation of multiple readings of the hydrometer to obtain the density makes it 
unnecessary to consider the effect of the resolution to which the hydrometer can be read. This source of 
uncertainty has already been accounted for as a contributor to the scatter of the values obtained, and to make 
any further allowance would result in it being counted twice. 

The percentage uncertainty in each of the two densities is then 0,8 % divided by 1,070, or 0,075 %. 

G.2.5 Uncertainty in manometer readings 

All pressures in the test rig are measured using mercury-in-glass, U-tube manometers. As the pressures are 
used only in calculating pressure ratios, the manometer readings are used directly without the need to convert 
them to pressure units. In each case, four readings are taken and the mean is calculated, yielding the values 
given in Table G.2. 

Table G.2 — Manometer readings 

Manometer location Mean 
mm Hg 

Standard deviation
mm Hg 

Across orifice plate with reference radiator 264 1,7 

Across orifice plate with experimental radiator 249 1,9 

Across reference radiator 637 2,8 

Across experimental radiator 632 2,6 

As with the density measurements, the uncertainties can be obtained from the individual sets of readings or 
from a pooling of past test sets. However, there is a third option and that is to pool the experimental standard 
deviations of the two sets of orifice plate readings to obtain a standard deviation for that range of pressure 
differences and similarly to pool the radiator data for the larger pressure differences. The pooled standard 
deviation, spo, is calculated in accordance with Equation (G.21): 

2

po
j j

j

s v
s

v
= ∑

∑
 (G.21) 

where 

sj is the standard deviation of set j; 

νj is the number of degrees of freedom in the standard deviation of set j, equal to the number of 
readings in set j minus 1. 
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Thus, the pooled experimental standard deviation, s mt,po, expressed in millimetres of mercury, of the orifice 
plate readings is calculated in accordance with Equation (G.22): 

( ) ( )
( ) ( )

2 2

mt,po
4 1 1 7 4 1 1 9

1 8 
4 1 4 1

, ,
s ,

 − ⋅ + − ⋅ = =
 − + − 

 (G.22) 

and the pooled experimental standard deviation, s r,po, expressed in millimetres of mercury, for the radiator 
readings is calculated in accordance with Equation (G.23): 

( ) ( )
( ) ( )

2 2

r,po
4 1 2,8 4 1 2,6

2,7 
4 1 4 1

s
 − ⋅ + − ⋅ = =

 − + − 
 (G.23) 

As the mean of the readings in each set is obtained from four repeated readings, the standard uncertainties of 
the means are 1,8 divided by 4 , or 0,9 mm Hg for the orifice plate values and 2,7 divided by 4 , or 
1,35 mm Hg for the radiator. 

As with the manometer readings, the resolution of the manometer scales has already been covered by the 
use of multiple readings and double accounting is avoided by making no further allowance for this source of 
uncertainty. Additional uncertainties will arise from imperfections in the manometer rulers but these are judged 
to be small compared with the standard uncertainties derived from the spread of readings and, following the 
guidance given in G.1.2.4, they are ignored. 

G.2.6 Combined uncertainty in the flow ratio, ΦF 

The combined uncertainty in the measurand, ΦF, is obtained from the uncertainty budget set out in Table G.3. 

Table G.3 — Uncertainty budget for flow ratio, ΦF 

Source Units Value Standard 
uncertainty 

Relative 
standard 

uncertainty, 
u*(xi) 

% 

Relative 
sensitivity 
coefficient, 

c*
i 

Contribution 
to overall 

uncertainty
[ci u(xi)]

2 
10−4 

Reference density kg/m3 1 070 0,8 0,074 8 0,5 0,001 4 

Experimental density kg/m3 1 065 0,8 0,075 1 −0,5 0,001 4 

Radiator ∆p reference mm Hg 637 1,35 0,211 9 0.5 0,011 2 

Radiator ∆p experimental mm Hg 632 1,35 0,213 6 −0.5 0,011 4 

Orifice plate ∆p reference mm Hg 264 0,9 0,340 9 −0,5 0,029 1 

Orifice plate ∆p experimental mm Hg 249 0,9 0,361 4 0,5 0,032 7 

Combined relative standard uncertainty, 
expressed in percent ( )

2* *
xc u x 

 ∑ 0,295 2 ( )
2* *

xc u x 
 ∑  0,087 2 

Table G.3 shows that the density measurements make only very small contributions to the overall uncertainty 
and can be ignored. The pressure differentials make almost equal contributions and should all be considered. 

To obtain the expanded uncertainty at the 95 % confidence level, it is necessary to estimate the number of 
degrees of freedom in the standard uncertainty and this is done using Equation (C.1), the Welch-Satterthwaite 
equation. 
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The uncertainties in the two density values were obtained from a pooled experimental standard deviation 
derived from 10 sets of data with four readings in each set. There are therefore three degrees of freedom in 
each set and 3 × 10 = 30 in the pooled standard deviation. 

The uncertainties in the four pressure-difference values were obtained from pooled standard deviations 
derived from two sets of data with four readings in each set. There are therefore three degrees of freedom in 
each set and 3 × 2 = 6 in each of the two pooled standard deviations. 

The application of Equation (C.1) is set out in Table G.4. 

Table G.4 — Calculation of effective degrees of freedom in combined standard uncertainty 

Source 
Degrees of 

freedom 
νx 

Relative 
standard 

uncertainty 
u*(xi) 

% 

Relative 
sensitivity 
coefficient 

c*
i 

Contribution  
to uncertainty 

c*
i u(xi)

 

% 

( )
4* *

i i

i

c u x

v

 
   

10−8 

Reference density 30 0,074 8 0,5 0,037 4 0,652 × 10−7 

Experimental density 30 0,075 1 −0,5 −0,037 6 0,663 × 10−7 

Radiator ∆p reference 6 0,211 9 0,5 0,211 9 0,210 × 10−4 

Radiator ∆p experimental 6 0,213 6 −0,5 −0,213 6 0,217 × 10−4 

Orifice plate ∆p reference 6 0,340 9 −0,5 −0,170 5 0,141 × 10−3 

Orifice plate ∆p experimental 6 0,361 4 0,5 0,180 7 0,178 × 10−3 

( )
4* *

i i

i

c u x

v

 
 ∑  

0,000 361 

Relative combined standard uncertainty 0,295 2 % 

Combined effective degrees of freedom 21 

With 21 degrees of freedom, Table C.1 gives a coverage factor of 2,13 at the 95 % confidence level and the 
expanded uncertainty U95 of the flow ratio is thus equal to 2,13 times 0,295 %, or 0,63 %. Had the 
experimental data for the manometer readings not been pooled, the degrees of freedom for each differential 
pressure in Table G.4 would have been three and the analysis of that table would have resulted in an overall 
effective degrees of freedom of 10. This would have given a value of 2,28 for k at the 95 % confidence level 
and an expanded uncertainty U95 of the flow ratio of 2,28 times 0,295 %, or 0,67 %. 

G.3 Example 3 — Computation of the uncertainty of flow measurement made by an 
orifice plate 

G.3.1 General 

An orifice plate has been manufactured to the requirements of ISO 5167-2 [5]. Its dimensions are measured in 
the workshop inspection department at 20 °C and the device is then used with D and D/2 tappings to meter 
the flow of an industrial liquid at a process temperature of 170 °C. 

The practical computational method given in ISO 5167-1:2003 [1] is fully compliant with the method given in 
this International Standard as second-order effects and issues of correlation are assessed prior to the 
application of Equation (3) to the key parameters. However, a more rigorous approach is followed here to 
illustrate such points as the handling of correlation. The approach given here goes beyond what is necessary 
in most practical applications of an orifice plate, where the method of ISO 5167-1:2003 [1] would be adequate. 
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G.3.2 The mathematical model 

The mathematical model is given by Equation (24): 

2
o

ma mt4
2 ∆

41

dCq pρ
β

π
=

−
 (G.24) 

and C is given by Equation (25), the Reader-Harris/Gallagher (1998) equation [8]: 
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 (G.25) 

where 

β is the orifice plate diameter ratio, equal to do/dp; 

do is the diameter of the orifice plate bore; 

dp is the pipe diameter; 

ρ is the fluid density; 

∆pmt is the pressure difference across the orifice plate; 

Redp is the Reynolds number related to dp by the expression Vdpρ/µ; 

V is the mean velocity in the pipe; 

µ is the fluid viscosity; 

L1 is the distance, l1, from the upstream tapping to the upstream face divided by the pipe 
diameter, dp; 

NOTE 1 As the meter is designed and installed in accordance with the requirements of ISO 5167-2, L1 
can be equated to 1 and the dependence on l1 can be dropped from the analysis (ISO 5167-2:2003, 
5.3.2.1) [5]; 

2L′  is the distance, 2l′ , from the downstream tapping to the downstream face divided by the pipe 
diameter, dp; 

NOTE 2 As the meter designed and installed in accordance with the requirements of ISO 5167-2, 2L′  
can be equated to 0,47 and the dependence on 2l′  can be dropped from the analysis (ISO 5167-2:2003, 
5.3.2.1) [5]; 

2M ′  is equal to ( )22 1L β′ − ; 

FRedp is equal to ( )0,8
dp19 000 Reβ⋅ . 
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As the plate and pipe dimensions are measured at a temperature different from the operating condition, the 
expansion of the plate and the pipe should be taken into account. All the components are made of duralumin 
with an expansion coefficient, λ equal to 27 × 10−6/°C. A typical linear dimension, x, is then given by 
Equation (G.26): 

( )0 op 0,1 xx x T Tλ = ⋅ + −   (G.26) 

where 

x0 is the dimension at temperature T0,x; 

Top is the operating temperature. 

All length-dependent parameters, such as β and 2M ′  can then be coded into the model in terms of their 
dimension at T0,x and their expansion. For example, β is replaced in Equation (G.24) by the expression given 
in Equation (G.27): 

( ){ } ( ){ }o,0 do op 0, ,do p,0 dp op 0, ,dp1 1x xd T T d T Tβ λ λ   = + − + −     (G.27) 

In this way, all correlations due to temperature are eliminated, at the expense of making Equation (G.25) more 
complex. 

G.3.3 Contributory variances 

It is clear from Equations (G.24) and (G.25) that the measured flow-rate will depend on a number of 
measurements in a very complex way. The basic measurements fall into two groups: those relating to the 
basic geometry of the meter and those relating to the operating conditions. Uncertainties in the first group will 
be fixed for all measurements made with the orifice plate while uncertainties in the second group will be 
different for each measurement. 

The functional relationship between qma and the input variables is too complex for an analytical approach and 
the numerical approach to the calculation of sensitivity coefficients is the only practical method available. 
Nevertheless Equation (19) can be applied in the form of Equation (G.28): 

( ) ( ) ( ) ( )2 2 2 2 2 2 2
c ma 1 21 2 ....... nu q c u c u c u n= + + +  (G.28) 

where 

ci is the sensitivity coefficient for input variable i; 

u(i) is the uncertainty in input variable, i. 

The n input variables and their nominal values are as follows: 

 do,0 60 mm; 

 dp,0 100 mm; 

 T0,x 20 °C; 

 Top (actual operating temperature); 

 Top nominal 170 °C; 

 ∆p 5 500 Pa; 

 λ 27 × 10−6/°C; 
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 ρ 937,5 ×  [1 − 0,006 0 × (Top − Top nominal)] kg/m3 

 µ 604,0 ×  [1 − 0,014 1 × (Top − Top nominal)] × 10−6 Pa.s 

Several parameters (do, dp, ρ and µ) can be seen to be dependent on temperature  and the uncertainties in 
these values arising from the uncertainty in the determination of the process temperature will all be correlated. 
This complicates the calculation of overall uncertainty but the difficulty can be overcome by coding each of the 
temperature dependencies into the spreadsheet calculation of the sensitivities. In this way, the second order 
effects of temperature on C through the changes in Reynolds number, etc are taken into account. 

The Reader-Harris/Gallagher (1998) equation is a best fit to the available data and is therefore subject to 
some uncertainty; a sensitivity coefficient for the basic value of C is therefore required. 

The results of the sensitivity analysis are set out in Table G.5. 

Table G.5 — Calculation of sensitivity coefficients 

Parameter 

dp,0 
m 

do,0 

m 
T0,x 
°C 

Top 
°C 

ρ 
kg/m3 

∆p 
Pa 

λ × 106

per °C 
µ. × 106

Pa.s 
C 
- 

qma 
kg/s 

c c* 

Increment 

Parameter Increment 

0,100 0 0,060 0 20,0 170,0 937,5 5 500 27,0 604,0 0,600 5,994 0 — — 

dp,0 0,000 1 0,100 1 0,060 0 20,0 170,0 937,5 5 500 27,0 604,0 0,600 5,992 0 −20,59 −0,344 

do,0 0,000 1 0,100 0 0,060 1 20,0 170,0 937,5 5 500 27,0 604,0 0,600 6,017 6 235,3 2,352 

T0,x 0,2 0,100 0 0,060 0 20,2 170,0 937,5 5 500 27,0 604,0 0,600 5,994 0 0,000 3a −0,001a

Top 0,2 0,100 0 0,060 0 20,0 170,2 937,5 5 500 27,0 604,0 0,600 5,990 4 −0,018 1 −0,514 

ρ 1 0,100 0 0,060 0 20,0 170,0 938,5 5 500 27,0 604,0 0,600 5,997 2 0,003 2 0,500 

∆p 5 0,100 0 0,060 0 20,0 170,0 937,5 5 505 27,0 604,0 0,600 5,996 8 0,000 5 0,500 

λ 1 0,100 0 0,060 0 20,0 170,0 937,5 5 500 28,0 604,0 0,600 5,995 8 1795,6 0,008 

µ 1 0,100 0 0,060 0 20,0 170,0 937,5 5 500 27,0 605,0 0,600 5,994 1 49,98 0,005 

C 0,001 0,100 0 0,060 0 20,0 170,0 937,5 5 500 27,0 604,0 0,601 6,004 0 9,990 1,000 

a Values for c and c* in this row result from changes in qma that are too small to be displayed in the table. 

G.3.4 Uncertainty in measured pipe diameter, dp,0 

The pipe diameter is measured by internal micrometer across four diameters of the pipe and the mean of 
these values is taken as the value of dp. The micrometer is calibrated with a stated expanded uncertainty 
(k  = 2) of 0,01 mm, giving a standard uncertainty of 0,005 mm. The micrometer has a resolution of 0,01 mm, 
this is treated as a rectangular distribution with equal probability for all values (k = 3  = 1,73); the standard 
uncertainty is therefore 0,01 mm divided by 2 then divided by 3 , or 0,002 9 mm. The usage of the 
micrometer introduces a further uncertainty and this is assessed as a rectangular distribution (k = 1,73) with a 
range of 0,04 mm, giving a standard uncertainty of 0,011 5 mm. The use of the mean of four readings will 
reduce the impact of the uncertainty due to the resolution and usage of the micrometer as the uncertainties in 
successive readings are unrelated but the averaging process will not affect the uncertainty due to the 
calibration, which is correlated across all readings and affects all readings equally. The resolution and usage 
uncertainties are therefore summed in quadrature, and divided by 4 2,n = =  before being added in 
quadrature to the calibration uncertainty. 
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Thus, the combined standard uncorrelated uncertainty, expressed in millimetres, in a single reading is given 
by Equation (G.29): 

2 2
p,0 sm( ) (0,002 9 0,011 5 )

0,011 9

u d = +

=
 (G.29) 

The combined standard uncorrelated uncertainty in the mean of four readings is then 0,011 9 divided by the 
square root of n, where n = 4, or 0,005 9 mm. 

The total combined standard uncertainty, expressed in millimetres, in the measurement of diameter is given 
by Equation (G.30): 

2 2
p,0( ) (0,005 9 0,005 )

0,007 8

u d = +

=
 (G.30) 

The expanded value (k = 2) is 0,015 5 mm. For a nominal value of dp = 100 mm, this gives a relative 
uncertainty of 0,016 %. 

G.3.5 Uncertainty in measured orifice diameter, do,0 

The bore of the orifice plate is measured, using the same procedure, with a micrometer of smaller size. The 
analysis is identical to that for dp and the resulting expanded (k = 2) uncertainty is 0,015 5 mm. The nominal 
value of do = 60 mm and the relative uncertainty is therefore 0,026 %. 

G.3.6 Uncertainty in temperature, T0,x 

The workshop inspection department is maintained at a temperature of 20 °C ± 2 °C. This is taken to be a 
rectangular distribution giving a standard uncertainty of 2 °C divided by 3 , or 1,15 °C. With a sensitivity 
coefficient of 0,001, no further analysis of, for example, the calibration of the thermometer is considered 
necessary. 

G.3.7 Uncertainty in the fluid temperature, Top 

The fluid temperature is measured using a platinum resistance thermometer with a stated calibration 
uncertainty of 0,2 °C (k = 2), giving a standard uncertainty of 0,1 °C. The indicating device has a scale interval 
of 0,2 °C giving a standard uncertainty of 0,058 °C. The usage uncertainty is assessed on the basis that the 
thermometer is installed in a temperature pocket that is in good condition but the fluid has low thermal 
conductivity and an uncertainty value of 1 °C is assumed. This is taken as having a rectangular distribution 
giving a standard uncertainty of 0,58 °C. The flow-rate is calculated from a single measurement of 
temperature and the combined uncertainty of the temperature, expressed in degrees Celsius, is therefore 
given by Equation (G.31): 

( ) ( ) 22 2 2
op 0,1 0,058 0,58 0,59u T = + + =  (G.31) 

This gives an expanded uncertainty of 1,18 °C (k = 2). 

G.3.8 Uncertainty in density, ρ 

The equation used to represent the temperature dependence of the fluid density is known to fit the data with 
an expanded uncertainty of 2 % (k = 2) and the standard uncertainty is therefore 1 % or 9,4 kg/m3. The usage 
uncertainty arising from uncertainties in the measurement of the fluid temperature has been accounted for in 
the analysis of the impact of uncertainty in Top and need not be considered again. 

G.3.9 Uncertainty in pressure difference, ∆p 

The pressure difference across the orifice plate is measured using a differential pressure transmitter with a 
calibration uncertainty of 0,5 % (k = 2) giving a standard uncertainty of 0,25 % or 13,75 Pa. The readout has a 
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resolution of 10 Pa giving a standard uncertainty of 2,9 Pa. To allow for factors such as the operating 
environment a usage uncertainty of 1 % of reading is assumed and this is taken as a rectangular distribution 
giving a standard uncertainty, expressed in percent, of 1 divided by 3 , or 0,58 % of reading or 31,75 Pa. As 
the flow rate is derived from a single reading of the pressure differential, the combined uncertainty in the 
pressure differential, expressed in pascals, is calculated in accordance with Equation (G.32): 

( ) ( ) 22 2 2∆ 13,75 2,9 31,75 35u p = + + =  (G.32) 

The expanded uncertainty (k = 2) is therefore 70 Pa or 1,27 %. 

G.3.10 Uncertainty in thermal expansion coefficient, λ 

The thermal expansion coefficient has a quoted uncertainty of 5 %, and it is assumed that all values in this 
range are equally likely, giving a standard uncertainty of 2,89 % or 7,8 × 10−7/°C. 

G.3.11 Uncertainty in fluid viscosity, µ 

The equation used to represent the temperature dependence of the fluid viscosity is known to fit the data with 
an expanded uncertainty of 3 % (k = 2) and the standard uncertainty is therefore 1,5 % or 9,1 × 10−6 Pa.s. The 
usage uncertainty arising from uncertainties in the measurement of the fluid temperature has been accounted 
for in the analysis of the impact of uncertainty in Top (G.3.8) and need not be considered again. 

G.3.12 Uncertainty in the Reader-Harris/Gallagher (1998) equation 

The Reader-Harris/Gallagher (1998) equation is known to fit the data with an expanded uncertainty of 0,5 % 
(k = 2) and the standard uncertainty is therefore 0,25 %. The nominal value of the discharge coefficient is 0,6 
giving an absolute standard uncertainty of 0,001 5. 

G.3.13 Combined uncertainty in the flow-rate 

Although relative sensitivity coefficients have been calculated in Table G.5, the temperature inputs have 
arbitrary zeros and the use of relative values is therefore inappropriate. The overall combined uncertainty is, 
therefore, calculated in absolute terms as defined in Table G.6. 

Table G.6 — Uncertainty budget for orifice plate example 

Standard 
uncertainty 

Sensitivity 
coefficient 

Contribution to 
overall 

uncertainty Source of uncertainty Unit Nominal 
value 

u(xi) ci [ciu(xi)]
2 

Pipe diameter, dp metre 0,1 0,000 008 −20,59 27,1 × 10−9 

Orifice bore, do metre 0,06 0,000 008 235,3 3,54 × 10−6 

Inspection temperature, T0,x degrees Celsius 20 1,15 −0,000 3 0,119 × 10−6 

Fluid temperature, Top degrees Celsius 170 0,59 −0,018 1 0,000 114 

Fluid density, ρ kilograms  
per cubic metre 

937,5 9,4 0,003 2 0,000 905 

Pressure differential, ∆p pascals 5 500 35 0,000 5 0,000 306 

Thermal expansion coefficient, λ per degree Celsius 27 × 10−6 0,78 × 10−6 1 795,6 1,96 × 10−6 

Fluid viscosity, µ pascal.seconds 604 × 10−6 9,1 × 10−6 49,98 0,207 × 10−6 

Discharge coefficient, C — 0,6 0,001 5 9,990 0,000 225 

— — u(qma) 0,039 4 Σ[ciu(xi)]
2 0,001 55 
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The standard uncertainty in the flow rate u(qma) is therefore 0,039 4 kg/s and the expanded uncertainty (k = 2) 
U95(qma) is 0,078 9 kg/s. The best estimate of the flow rate is 5,994 kg/s giving a relative expanded 
uncertainty of 1,31 %. Table G.6 shows that the only significant contributors to uncertainty in the flow-rate are 
the fluid temperature, fluid density, pressure differential and the basic correlation of the 
Reader-Harris/Gallagher (1998) equation. 

G.4 Example 4 — Computation of uncertainty in a flow (discharge) measurement 
made by a velocity-area survey using a current meter 

G.4.1 Mathematical model 

The measurement method, known as current-meter gauging, consists of dividing the channel cross-section 
under consideration into segments by m′′  verticals and measuring the breadth, depth and mean velocity 
associated with each vertical i. The mean velocity, Vi, at each vertical is computed from point velocity 
measurements made at each of several depths on the vertical. The flow is computed in accordance with 
Equation (G.33): 

s i i iQ F b d V= ∑  (G.33) 

where 

Q is the flow, expressed in cubic metres per second; 

Fs is a factor, assumed to be unity, that relates the discrete sum over the finite number of verticals to 
the integral of the continuous function over the cross-section; 

bi is the breadth associated with vertical i; 

di is the depth associated with vertical i; 

Vi is the mean velocity associated with vertical i. 

G.4.2 Contributory variances 

The relative combined standard uncertainty in the measurement is given by Equation (G.34) [6]: 

( ) ( )
2

2 2 2 2 22* 2 * * * * *
cal b d V

1 1
( )

m m

m i i i i i i i i i
i i

u Q u u b d V u u u b d V
′′ ′′

′′
= =

     = + + + +  
      

∑ ∑  (G.34) 

where  

u*(Q) is the relative combined standard uncertainty in discharge; 

u*
bi, u

*
di, u

*
Vi are the relative standard uncertainties in the breadth, depth, and mean velocity measured 

at vertical i; 

u*
cal is the relative uncertainty due to calibration errors in the current meter, breadth 

measurement instrument, and depth-sounding instrument, and is equal to 
2 2 2* * *

cm bm dsu u u+ + . An estimated practical value of 1 % may be taken for this 
expression; 

u*
cm is the relative uncertainty in the calibration of the current meter; 
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u*
bm is the relative uncertainty in the calibration of the breadth measurement; 

u*
ds is the relative uncertainty in the calibration of the depth-sounding instrument; 

u*
m″ is the relative uncertainty due to the limited number of verticals; 

m″ is the number of verticals. 

The mean velocity, Vi, at vertical i is the average of point measurements of velocity made at several depths in 
the vertical. The uncertainty in Vi is computed in accordance with Equation (G.35): 

( ) ( )2 2 22* * * *
p cr e1i i i iu V u u un

 = + + ′′  
  (G.35) 

where 

u*
pi is the relative uncertainty in mean velocity, Vi, due to the limited number of depths at which 

velocity measurements are made at vertical, i; 

n′′  is the number of depths in the vertical at which velocity measurements are made; 

u*
cri is the relative uncertainty in point velocity at a particular depth in vertical i due to the variable 

responsiveness of the current meter; 

u*
ei is the relative uncertainty in point velocity at a particular depth in vertical i due to velocity 

fluctuations (pulsations) in the stream. 

Combining Equations (G.34) and (G.35) yields Equation (G.36): 

( ) ( )
2

2 2 2 2 2 2 22* 2 * * * * * * *
cal b d p cr e

1 1

1( )
m m

m i i i i i i i i i i i
i i

u Q u u b d V u u u u u b d V
n

′′ ′′

′′
= =

         = + + + + + +    ′′         
∑ ∑  (G.36) 

If the measurement verticals are placed so that the segment discharges (bi di Vi) are approximately equal and 
if the component uncertainties are equal from vertical to vertical, then Equation (G.36) simplifies to 
Equation (G.37): 

( )
1
22 2 2 2 2 2 2* * * * * * * *

cal b d p cr e
1 1

mu Q u u u u u u u
m n′′

        = + + + + + +      ′′ ′′        
 (G.37) 

It is required to calculate the uncertainty in a current-meter gauging from the following particulars: 

 number of verticals used in the gauging: 20; 

 number of points taken in the vertical (0,2 and 0,8): 2. 

Component uncertainties (as percentages) can be obtained from ISO 748:1997 [6], Tables E.1 to E.6 as 
follows: 

 um″ 2,5 % (Table E.6); 

 ucal 1,0 % (see above) ; 

 ub 0,5 % (Table E.1); 

 ud 0,5 % (Table E.2); 

 up 3,5 % (Table E.4); 

 ucr 1,0 % (Table E.5); 
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 ue 2,5 % (at 0,2 depth) (Table E.3); 

 ue 2,5 % (at 0,8 depth) (Table E.3). 

NOTE The values of the component uncertainties in ISO 748, which are expressed at the 95 % confidence level, 
have been halved and expressed at one standard deviation. 

The entire uncertainty calculation then becomes a Type B evaluation of uncertainty since the component 
uncertainties quoted in ISO 748:1997, Annex E, are based on previous measurements and calibration data. 

G.4.3 Combined uncertainty 

The combined uncertainty can be calculated from Equation (G.37), yielding Equation (G.38): 

( )

( ) ( )( ){ }

1
22 2 2 2 2 2 2* * * * * * * *

cal b d p cr e

1
22 2 2 2 2 2 2

1 1

1 12,5 1,0 0,5 0,5 3,5 1,0 2,5 %20 2
2,84 %

mu Q u u u u u u u
m n′′

        = + + + + + +      ′′ ′′        

 = + + + + + +  
=

 (G.38) 

The expanded uncertainty at the 95 % confidence level, U95, is obtained by applying a coverage factor of k = 2 
as given in Equation (G.39): 

( ) ( )* *
95U Q k u Q=  (G.39) 

= 2 × 2,84 % 

= 5,68 % 

Therefore, U*
95(Q) ≈ 6 %. 

If the best estimate of the measured flow, {Q}, is expressed in cubic metres per second, the result of the 
measurement is expressed as follows: 

Q = {Q} m3/s ± 0,06 {Q} m3/s, (expanded uncertainty, coverage factor k = 2, approximate confidence level 
of 95 %). 

G.5 Example 5 — Computation of uncertainty in a flow (discharge) measurement 
made using weirs and flumes 

G.5.1 The mathematical model 

The general equation for the determination of discharge through a weir or flume is given in Equation (G.40): 

b h
nQ C l l ′= ⋅ ⋅  (G.40) 

where 

C is the coefficient of discharge; 

lb is the length of crest; 

lh is the gauged head; 

n′ is an exponent of lh, usually 1,5 for a rectangular weir and 2,5 for a V-notch. 
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Details are given in a range of ISO standards for different types of weirs and flumes. 

G.5.2 Contributory variances 

The combined relative (percentage) standard uncertainty for a single determination of discharge can be 
obtained by substituting Equation (G.40) into Equation (19), the sensitivity coefficients being obtained by the 
partial differentiation of Equation (G.40) to yield Equation (G.41): 

( )
1

2 2 2 2 2* * * 2 * *
d lb lh calu Q u u n u u ′= + + + 

 
 (G.41) 

where 

u*(Q) is the combined relative standard uncertainty in the discharge; 

u*
d is the relative standard uncertainty in the coefficient of discharge; 

u*
lb is the relative standard uncertainty in the measurement of the crest length; 

u*
lh is the relative standard uncertainty in the measurement of the gauged head; 

u*
cal is the instrument calibration uncertainty from all sources, formerly called systematic errors or 

biases. 

The exponent, n′, is assumed not to be subject to uncertainty. 

Type A evaluations of the uncertainties in breadth and head can be made by repeated observations of those 
quantities by the user. Alternatively, recommended values (Type B evaluations) for the uncertainty in the 
discharge coefficient as well as for the uncertainties in the measurements of breadth and head are given in 
the ISO standards on weirs and flumes. The uncertainty values should include allowances for instrument 
calibration errors, denoted by u*

cal, in Equation (G.41). These remain constant from observation to observation 
and are not reduced by averaging of repeated observations. 

Typical values for relative standard uncertainties in discharge measurements made by use of thin-plate weirs 
are as follows (ISO 1438-1 [7]): 

 u*
d 1,0 %; 

 u*
lb 0,05 %; 

 u*
lh 0,5 %; 

 u*
cal 0,5 %. 

The entire uncertainty calculation is then a Type B evaluation of uncertainty since the component uncertainties 
in ISO 1438-1 are based on previous measurements and calibration data. 

Then, the combined relative standard uncertainty, u*(Q), expressed in percent, in the discharge is calculated in 
accordance with Equation (G.41): 

( ) ( )
1
2* 2 2 2 2 21,0 0,05 1,5 0.5 0,5 %u Q  = + + ⋅ +  

 

= 1,35 % 
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The expanded uncertainty, with a coverage factor k = 2 and an approximate confidence level of 95 %, is 
calculated as shown in Equation (G.42): 

U*
95(Q) = ku*(Q) (G.42) 

= 2 × 1,35 % 

= 2,70 % 

If the best estimate of the measured flow, Q, is expressed in cubic metres per second, the result of the 
measurement is presented as as follows: 

{Q} m3/s ± 2,7 {Q} m3/s (expanded uncertainty, coverage factor k = 2, approximate confidence level of 95 %). 
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Annex H 
(informative) 

 
The calibration of a flow meter on a calibration rig 

H.1 General 

This annex describes the estimation of the uncertainty of a flowmeter calibrated on a calibration rig of known 
uncertainty. It also includes an estimation of the Type A uncertainty of a single measurement from the 
flowmeter under calibration. 

H.2 Calibration rig uncertainty 

When a flowmeter is calibrated on a calibration rig, the traceability and combined uncertainty of the calibration 
rig should be determined prior to the calibration. An assessment of the repeatability of the calibration rig 
should also be made for use when the meter under calibration is to be calibrated with only a single reading at 
each flow rate. The combined uncertainty of the calibration rig, UCMC, (“calibration and measurement 
capability” or “calibration rig uncertainty”) is derived from all uncertainty sources affecting the rig and is 
calculated in such a way that it represents the uncertainty of the quantity of fluid passing through the 
flowmeter under calibration. The uncertainty therefore contains contributions from the following: 

a) the uncertainty of the reference device used (proving tank, bell prover, or weighing scale, etc); 

b) the uncertainty of the temperature/pressure measurements in the reference device and near the 
flowmeter under calibration, including any equations applied to correct for expansion and compressibility; 

c) the uncertainty of the transfer point when the “standing start and stop” method is used; 

d) the uncertainty in the diverter (used with “flying start and stop” method); 

e) the uncertainty in buoyancy when the weighing method is used. 

UCMC should also reflect variations in operating temperature and pressure during the calibration and any 
uncertainties arising from the calculation procedure used to derive the meter error or K-factor of the flowmeter 
under calibration. 

In most cases, the UCMC will be expressed as either a fraction or a percentage and will normally be for a 
confidence level of at least 95 %. 

H.3 Use of the calibration rig 

H.3.1 General 

Before starting the calibration of a meter using the calibration rig, what is expected from this calibration should 
be clearly understood so that the calibration certificate can include an appropriate statement of the 
uncertainties taken into account. 

a) If the uncertainty of each measurement has to be stated, the combined uncertainty in a single 
measurement (UCS) should be stated in the results of the calibration; UCS should also be stated when the 
meter is being assessed against acceptance limits. 



ISO 5168:2005(E) 

© ISO 2005 – All rights reserved 59

b) If the stability of the meter over time is the subject of interest, the combined uncertainty in the mean 
(UCM) should be quoted. 

c) If the meter is to be used as a reference meter to calibrate other flowmeters (master-meter method), the 
combined uncertainty (UCM) should again be quoted. 

d) If the repeatability of the meter is the subject of interest, then the uncertainty of interest is the type A 
uncertainty in a single measurement (UAS). 

H.3.2 Calibration at a number of different flowrates with n measurements per flowrate 

H.3.2.1 At each flow-rate, the mean meter error is given by Equation (H.1): 

1

n

j
j

E E n
=

= ∑  (H.1) 

where 

E  is the mean meter error, expressed as a fraction; 

jE  is the jth meter error, expressed as a fraction; 

n is the number of measurements at this flow-rate. 

The mean K-factor is given by Equation (H.2): 

1

n

j
j

K K n
=

= ∑  (H.2) 

where 

K  is the mean K-factor; 

jK  is the jth K-factor; 

n is the number of measurements at this flow-rate. 

H.3.2.2 At each flow-rate, the overall type A uncertainty in meter error or K-factor, with confidence level of 
at least 95 %, is calculated. 

To demonstrate the procedure in both absolute and relative terms, Equation (H.3) gives the calculation in 
absolute terms for meter error and Equation (H.4), in relative terms for the K-factor. 

2

1
AS-overall-

( )

( 1)

n

j
j

E

E E

U k
n

=

−

=
−

∑
 (H.3) 

where 

AS-overall-EU  is the type A uncertainty in meter error; 

E  is the mean meter error as a fraction; 

jE  is the jth meter error as a fraction; 
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n is the number of measurements at this flow-rate; 

k  is the coverage factor. 

2

1*
AS-overall-

( )

( 1)

n

j
j

K

K K
kU
K n

=

−

=
−

∑
 (H.4) 

where 

*
AS-overall-KU  is the type A uncertainty in the K-factor; 

K  is the mean K-factor; 

jK  is the jth K-factor; 

n is the number of measurements at this flow-rate; 

k  is the coverage factor. 

If the purpose of the calibration is to assess the repeatability of the meter, the result is either UAS-E or UAS-K 
as appropriate. 

H.3.2.3 At each flow-rate, the type A uncertainty in the mean meter error (in absolute terms) or mean 
K-factor (in relative terms) can then be calculated, from Equation (H.5) or (H.6), respectively: 

AS-overall-
AM-

E
E

U
U

n
=  (H.5) 

*
* AS-overall-
AM-

K
K

U
U

n
=  (H.6) 

H.3.2.4 At each flow-rate, the combined uncertainty for a single measurement, is given by Equation (H.7) 
(in absolute terms) or (H.8) (in relative terms): 

2 2
CS- AS-overall- CMCE EU U U= +  (H.7) 

2 2 2 2* * * *AS-overall-
CS- CMC AS-overall- CMC

K
K K

UU U U U
K

 
= + = + 

 
 (H.8) 

H.3.2.5 At each flow-rate, the combined uncertainty for the mean, is given by Equation (H.9) (in absolute 
terms) or (H.10) (in relative terms): 

2 2
CM- AM- CMCE EU U U= +  (H.9) 

2 2 2 2* * * *AM-
CM- CMC AM- CMC

K
K K

UU U U U
K

 = + = + 
 

 (H.10) 

The uncertainties calculated can be different at different flow-rates; in this case the calibration certificate 
should state the values obtained at each flow-rate. However, if a single uncertainty is required, the certificate 
should state the largest value obtained. 
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Annex I 
(informative) 

 
Type A and Type B uncertainties in relation to contributions to 

uncertainty from “random” and “systematic” sources of uncertainty 

In comparison with ISO/TR 5168:1998 [9], this International Standard contains significant changes in that the 
concepts and terminology of “random” and “systematic” components of uncertainty are no longer the preferred 
categories. There are two main reasons for this. 

a) In conformance with GUM, components of uncertainty arising from random or systematic causes, after 
they have been evaluated, are treated identically. 

b) The terms can be used in ways that are ambiguous or confusing. 

The following two paragraphs are taken from GUM (1995), Annex E, 3.6 and 3.7: 

“An uncertainty component is not either “random” or “systematic”. Its nature is conditioned by the use made of 
the corresponding quantity, or more formally, by the context in which the quantity appears in the mathematical 
model that describes the measurement. Thus, when its corresponding quantity is used in a different context, a 
“random” component may become a “systematic” component, and vice-versa. 

For the reason given above, Recommendation INC-1 (1980) [10] does not classify components of uncertainty 
as either “random” or “systematic”. In fact, as far as the calculation of the combined standard uncertainty of a 
measurement result is concerned, there is no real need for any classificational scheme. Nonetheless, since 
convenient labels can sometimes be helpful in the communication and discussion of ideas, Recommendation 
INC-1 (1980) does provide a scheme for classifying the two distinct methods by which uncertainty 
components can be evaluated, as Type “A” and Type “B”.” 

When a series of measurements is made of a quantity that is varying randomly, an estimate of its value can 
be made from the mean of the measured values, and an estimate of the uncertainty resulting from random 
effects can be made from the spread of the measurements (see Clause 6). In this case, “random” corresponds 
with Type A. 

However, in some circumstances components of uncertainty arising from random effects are evaluated using 
a Type B method, and conversely, a Type A method could have been used in the evaluation of a component 
of uncertainty that arises from a systematic effect, such as an error in the calibration of an intermediate 
measuring instrument. 

As an example of the use of a Type B evaluation of a random uncertainty, consider the case of an instrument 
that displays the value it is measuring to just three digits, and is used to measure a quantity just once. This will 
introduce an error, defined by the limited resolution of the output, that is random in nature. The true value of 
the measurand can lie anywhere in the range ± 0,5 × (value of the least significant digit) with equal probability, 
within this range the values will therefore have a rectangular distribution (see 7.3). 

As an example of the use of a Type A evaluation of a systematic uncertainty, when a measuring instrument is 
calibrated against some standard, the calibration process normally involves taking a number of readings. The 
elements of the uncertainty associated with the calibration that result from random effects will then be 
evaluated statistically (Type A). When the calibrated measuring instrument is then used in the measurement 
of a flow-rate or quantity, the evaluation of uncertainty in the flow-rate measurement process has to include 
the uncertainty in the calibration, part of which will have arisen from random effects and will have been 
evaluated using a Type A method. However, in the evaluation of the uncertainty of the flow-rate measurement, 
errors in the calibration will contribute to errors in the flow-rate measurement in a systematic manner. The 
effect of the random errors in the calibration process will have become “fossilized” into an effect that is 
systematic. 

Independent of the terminology, it is generally obvious which approach has to be used in evaluating the 
different components of uncertainty of a flow-rate measurement. 
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Annex J 
(informative) 

 
Special situations using two or more meters in parallel 

When two or more meter runs are used in parallel on a meter skid, the total flow-rate value is derived by 
summing the values from each meter run. In this case, the uncertainty in the total flow-rate is evaluated as 
described in this annex. 

Divide the sources of uncertainty into 

 those that will produce the same effects in each meter run, and that are therefore correlated between the 
meters; and 

 those that will produce different effects in each meter run, and that are therefore uncorrelated. 

The uncertainties in each list are then combined to derive combined uncertainties for those sources that are 
correlated between meters, uc,corr(y) [see Equation (J.1)] and those sources that are uncorrelated, uc,uncorr(y) 
[see Equation (J.2)]. The contribution to uncertainty from each meter depends on the flow through that meter 
and the analysis is greatly simplified by considering absolute uncertainties. Thus 

( )c,corr 1 1,corr 2 2,corr ,corr ,corr
1

( ) ( ) ... ( ) ( )
N

n N i i
i

u y c u x c u x c u x c u x
=

 = + + =  ∑  (J.1) 

Equation (J.1) assumes 100 % correlation. 

( ) { }1/ 22 2 2
c,uncorr 1 1,uncorr 2 2,uncorr ,uncorr

1/ 2
2

,uncorr
1

( ) ( ) ... ( )

( )

n N

N

i i
i

u y c u x c u x c u x

c u x
=

     = + + +     

   =   
  
∑

 (J.2) 

If the elements within either list are themselves correlated, then the method of combination will be in 
accordance with C.6. The combined uncertainties are then combined to obtain the overall combined 
uncertainty in the total flow. 

As the total flow, Q, is given by 

1 2 ... NQ q q q= + + +  

The sensitivity coefficients, ci, in Equations (J.1) and (J.2) are all equal to 1. 

( ) ( ) ( )
1/ 221/ 22 2 2

c c,corr c,uncorr ,corr ,uncorr
1 1

( ) ( )
N N

i i
i i

u Q u u u x u x
= =

       = + = +         
∑ ∑  (J.3) 
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In the special case when the absolute uncertainties, ui, are all equal, Equation (J.3) can be simplified. 
However, since some components of ui will be proportional to the flow, the uncertainties in all meters are 
unlikely to be equal unless the meters are identical and the flows they are passing are equal. When these 
conditions are satisfied, Equation (J.3) simplifies to Equation (J.4): 

( )
1/ 22

2 ,uncorr
c ,corr

( )
( ) i

i
u x

u Q N u x
N

     = +  
  

 (J.4) 

where u(xi,corr) and u(xi,uncorr) are the correlated and the uncorrelated components of uncertainty in a single 
meter. 

In the case, for example, of a measurement based on parallel orifice plates, the following sources of 
uncertainty will contribute the same effects in each meter run and are therefore correlated between meters: 

 discharge coefficient; 

 expansion factor. 

To the extent that the uncertainties of measurement in each of the parallel runs are independent of each other, 
the following sources of uncertainty will contribute different effects in each run and are therefore uncorrelated: 

 pipeline diameter; 

 orifice diameter; 

 differential pressure; 

 density; 

 computation. 

Uncertainties arising in any of these measurements that produce the same effect in each system, such as 
those arising from the use of the same instruments, have to be included in the first list. 
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Annex K 
(informative) 

 
Alternative technique for uncertainty analysis 

The mathematical theory underlying the analysis of uncertainty is based on the assumption that the 
uncertainties involved are small compared with the measured values (the exception being when the 
measurements are close to zero). This is certainly true for the standards work for which the original theories 
were developed and can also be true for many industrial applications. However, it cannot be said to be true for 
all industrial situations; where the uncertainties are large compared with the measured values, the 
mathematical theory breaks down. In these situations, the technique known as Monte Carlo analysis can be of 
great value in assessing combined values of uncertainty. In this approach, many calculations of the flow-rate 
are made, in each of which different values are assigned to each of the input variables. Each input value is 
drawn at random from the assumed distribution for that parameter, and in this way the distribution of the 
output flow-rate is calculated. 

To obtain a representative distribution for the output requires many thousands of calculations to be performed 
and it is only with the advent of cheap computer power that the Monte Carlo technique has become a viable 
method of assessing combined uncertainty. GUM does not deal specifically with large values of uncertainty 
and on this basis does not discuss the Monte Carlo technique; however those faced with large relative 
uncertainties could find the approach of considerable value. 
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