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Foreword 

IS0 (the International Organization for Standardization) is a worldwide 
federation of national standards bodies (IS0 member bodies). The work of 
preparing International Standards is normally carried out through IS0 
technical committees. Each member body interested in a subject for 
which a technical committee has been established has the right to be 
represented on that committee. International organizations, governmental 
and non-governmental, in liaison with ISO, also take part in the work. IS0 
collaborates closely with the International Electrotechnical Commission 
(IEC) on all matters of electrotechnical standardization. 

The main task of technical committees is to prepare International 
Standards. In exceptional circumstances a technical committee may 
propose the publication of a Technical Report of one of the following 
types: 

type 1 I when the required support cannot be obtained for the publi- 
cation of an International Standard, despite repeated efforts; 

- type 2, when the subject is still under technical development or 
where for any other reason there is the future but not immediate 
possibility of an agreement on an International Standard; 

- type 3, when a technical committee has collected data of a different 
kind from that which is normally published as an International 
Standard (“state of the art”, for example). 

Technical Reports of types 1 and 2 are subject to review within three 
years of publication, to decide whether they can be transformed into 
International Standards. Technical Reports of type 3 do not necessarily 
have to be reviewed until the data they provide are considered to be no 
longer valid or useful. 

lSO/TR 7066-1, which is a Technical Report of type 1, was prepared by 
Technical Committee ISOnC 30, Measurement of fluid flow in closed 
conduits, Subcommittee SC 9, Uncertainties in flow measurement. 

This document is being issued as a type 1 Technical Report because no 
consensus could be reached between IS0 TC 3O/SC 9 and IS0 TAG 4, 
Metrology, concerning the harmonization of this document with the Guide 
to the expression of uncertainty in measurement, which is a basic docu- 
ment in the lSO/lEC Directives. A future revision of this Technical Report 
will align it with the Guide. 

This first edition as a Technical Report cancels and replaces the first 
edition as an International Standard (IS0 7066-I :1988), which has been 
technically revised. 

lSO/TR 7066 consists of the following parts, under the general title 
Assessment of uncertainty in calibration and use of flow measurement 
devices: 



ISO/TR 70664:1997(E) 0 IS0 

- Part 7: Linear calibration re/ationships 

- Part 2: Non-linear calibration relationships 

Annex A forms an integral part of this part of lSO/rR 7066. Annexes B and 
C are for information only. 
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Introduction 

One of the first International Standards to specifically address the subject 
of uncertainty in measurement was IS0 5168, Measurement of fluid f/ow 
- Estimation of uncertainty of a flow-rate measurement, published in 
1978. The extensive use of IS0 5168 in practical applications identified 
many improvements to its methods; these were incorporated into a draft 
revision of this International Standard, which in 1990 received an over- 
whelming vote in favour of its publication. IS0 7066-1, Assessment of 
uncertainty in the ca/ibration and use of flow measurement devices - 
Part 7: Linear calibration relationships, published in 1989, was drawn up 
according to the principles outlined in IS0 5168:1978. The draft revision of 
IS0 7066-l is consistent with both the draft revision of IS0 5168 and with 
IS0 70662: 1988. 

However, the draft revisions of both lSO/TR 5168 and lSO/TR 7066-I were 
withheld from publication for a number of years since, despite lengthy 
discussions, no consensus could be reached with the draft version of a 
document under development by a Working Group of IS0 Technical 
Advisory Group 4, Metrology IS0 TAG 4/VVG 3). The TAG 4 document, 
Guide to the expression of uncertainty in measurement (GUM), was 
published in late 1993 as a basic document in the lSO/IEC Directives. At a 
meeting of the IS0 Technical Management Board in May 1995 it was 
decided to publish the revisions of IS0 5168 and IS0 7066-I as Technical 
Reports. 

This document is published as a type 1 Technical Report instead of an 
International Standard because it is not consistent with the GUM. A future 
revision of this part of lSO/rR 7066 will align the two documents. 
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Assessment of uncertainty in calibration and use of flow 
measurement devices - 

Part 1: 
Linear calibration relationships 

1 Scope 

1.1 This part of ISO/rR 7066 describes the procedures to be used in deriving the calibration curve for any method 
of measuring flowrate in closed conduits or open channels, and of assessing the uncertainty associated with such 
calibrations. Procedures are also given for estimation of the uncertainty arising in measurements obtained with the 
use of the resultant graph, and for calculation of the uncertainty in the mean of a number of measurements of the 
same flowrate. 

1.2 Only linear relationships are considered in this part of lSO/TR 7066; the uncertainty in non-linear relationships 
forms the subject of lSO/TR 70662. This part of ISOnR 7066 is applicable, therefore, only if 

a) the relationship between the two variables is itself linear, 

or 

one or both variables can be transformed in such a manner as to create a linear relationship between them, as, 
for instance by the use of logarithms, 

or 

the total range can be subdivided in such a way that within each subdivision the relationship between the two 
variables can be regarded as being linear; and if 

b) systematic deviations from the fitted line are negligible compared with the uncertainty associated with the 
individual observations forming the graph. 

NOTE - Examples of the application of the principles contained in this part of ISO/TR 7066 are given in annexes B and C. . 

2 Normative references 

The following standards contain provisions which, through reference in this text, constitute provisions of this part 
of lSO/TR 7066. At the time of publication, the editions indicated were valid. All standards are subject to revision, 
and parties to agreements based on this part of ISOFTR 7066 are encouraged to investigate the possibility of 
applying the most recent editions of the standards indicated below. Members of IEC and IS0 maintain registers of 
currently valid International Standards. 
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IS0 772: 1996, Hydrometric determinations - Vocabulary and symbols. 

IS0 1100-2: --I), Liquid flow measurement in open channels - Part 2: Determination of the stage-discharge 
relationship. 

IS0 4006: 1991, Measurement of fluid flow in closed conduits - Vocabulary and symbols. 

ISO/TR 5168:- *) Measurement of fluid flow - Evaluation of uncertain ties. 

IS0 7066-2: 1988, Assessment of uncertainty in the calibration and use of flow measurement devices - Part 2: Non- 
linear calibration relationships. 

3 Definitions and symbols 

For the purposes of this part of lSO/rR 7066, the definitions and symbols given in IS0 772 and IS0 4006 and the 
following definitions and symbols apply. 

3.1 Definitions 

3.1.1 calibration graph: Curve drawn through the points obtained by plotting some index of the response of a 
flow meter against some function of the flowrate. 

3.1.2 confidence limits: Upper and lower limits about an observed or calculated value within which the true value 
is expected to lie with a specified probability, assuming a negligible uncorrected systematic error. 

3.1.3 correlation coefficient: Indicator of the degree of relationship between two variables. 

NOTE - Such a relationship may be causal 
cannot be made on statistical grounds alone. 

or may operate through the agency of a third variable, but a decision on this point 

3.1.4 covariance: First product moment measured about the variate means, i.e. 

Cov(x, y) = [& - x)(Yi - F)j/(n - I) 

3.1.5 error of measurement: Collective term meaning the difference between the measured value and the true 
value. 

It includes both systematic and random components. 

3.1.6 error, random: That component of the error of measurement which varies unpredictably from 
measurement to measurement. 

NOTE - No correction is possible for this type of error, the cause of which may be known or unknown. 

3.1.7 error, systematic: That component of the error of measurement which remains constant or varies 
predictably from measurement to measurement. 

NOTE - The cause of this type of error may be known or unknown. 

1) To be published. (Revision of IS0 1 IOO-2:1982) 
2) To be published. 

2 
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3.1.8 error, spurious: Error which invalidates a measurement. 

Such errors generally have a single cause, such as instrument malfunction or the misrecording of one or more 
digits of the measurement value. 

3.1.9 functions. Mathematical formula expressing the relationship between two or more variables. 

3.1.10 line of best fit: Line drawn through a series of points in such a way as to minimize the variance of the 
points about the line. 

3.1.11 residual: Difference between an observed value and the corresponding value calculated from the 
regression equation. 

3.1.12 sample [experimental] standard deviation: Measure of the dispersion about the mean of a series of n 
values of a measurand, defined by the formula: 

S(X) = [C(.Xi - F)‘/(n - l)r* 

NOTE - If the ~1 measurements are regarded as a 
sample estimate of the population standard deviation. 

sample of the underlying population, then the formula below provides a 

CT = [& - u)zq’* 

3.1.13 systematic error limit: That component of the total uncertainty associated with the systematic error. 

Its value cannot be reduced by taking many measurements. 

3.1.14 uncertainty, random: Estimate characterizing the range of values within which it is asserted with a given 
degree of confidence that the true value of the measurand may be expected to lie. 

Its magnitude in terms of mean values may be reduced by taking many measurements. 

variance: Measure of dispersion based on the mean squared deviation from the arithmetic mean, defined 

Var(x) = C(Xi - T)‘/(n - 1) 

3.2 Symbols 

NOTE - Symbols used in the open channel and cl osed conduit examples of annexes B 
in addition to, those listed below are included at the beginning of the respective annexes. 

a 

b 

Intercept of the calibration curve on the ordinate 

Gradient or slope of the calibration curve 

C Coefficient in a weighted least-squares equation 

Cod 1 

es( 1 

In 

n 

Covariance of variables in brackets 

Random uncertainty of variable in brackets 

Systematic error limits of variable in brackets 

Natural logarithm 

Number of measurements used in deriving the calibration curve 

and C where these differ from, or are 

Q Flowrate 

Correlation coefficient 
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d 1 Experimental standard deviation of variable in brackets 

SR Standard deviation (standard error) of points about best-fitting straight line 

t “Student’s” t (as obtained from IS0 5168 or from any set of statistical tables) 

wi ith weighting factor, in weighted least-squares 

x Independent variable; variable subject to the smallest error 

Y Dependent variable; variable subject to the greatest error 

u Total or overall uncertainty 

UADD Uncertainty using the additive model; provides between approximately 95 % and 99 % coverage 

uADD = % * eR 

URSS Uncertainty using the root-sum-square model; provides approximately 95 % coverage 

URSS = (es* + 6?R*)“* 

Y Ratio of the standard deviation of the independent, or X, variable to that of the dependent, or yb variable 

A Difference between an observed and a calculated value 

P Population mean 

CT Population standard deviation 

0 Influence coefficient 

NOTE - In a number of International Standards, the random uncertainty eR and systematic error limits es are denoted by the 
symbols Ur and L& or B respectively. 

Subscripts and superscripts 

NOTE - In the following, the summation sign c is used to represent 

n 

c 
i= 1 

unless otherwise noted; a bar above a symbol (-) denotes the mean value of that quantity; a circumflex (*) denotes the value 
of the variable predicted by the equation of the fitted curve. 

i ith value of a variable 

ij ith value of thejth category 

4 General 

lis part of IS0 7066, the relationship between the variables is 4.1 With the majority of calibrations considered in t 
of a functional nature and is defined by some form 
values from this relationship can then be attributed t1 

of mathematical expression. Any departure of the observed 
o errors of measurement of one kind or another, which may 

affect either or both variables and which may be random or systematic or a combination of the two. 

4.2 The role of the calibration procedure is thus twofold: to assess the form of the underlying mathematical 
relationship and to provide an estimate of the uncertainty of the fitted line. 
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4.3 From a practical viewpoint there will exist pairs of values (x, y) for which the random uncertainties and 
systematic error limits in x and y will have been estimated by one of the methods given in clause 5. The choice of 
the procedure to be used in the calculation of the coefficients and uncertainty of the calibration equation will 
depend on the relative magnitudes of the random components eR(X) and eR(y). 

4.4 Where the error in one or the other of the two variables can be assumed to be negligible, the methods set 
out in clauses 8, 9 and 11 shall be used, the underlying equation being taken to be of the form 

y=a+bx . . . (1) 

where 

x is that variable with the smaller error; 

a and b are coefficients of the fitted line to be determined. 

Where both variables are subject to error and x is the variable with the smaller error, the methods described in 
clauses 8 and 9 can still be used if the x variable can be set to predetermined values during the calibration. This 
approach is known as the Berkson method. 

4.5 A special case arises where y is effectively constant and independent of x, i.e. where the fitted line is parallel 
to the x-axis. In these cases, the methods specified in clause 10 shall be used in estimating the uncertainty. 

4.6 To provide the information needed in selecting the fitting procedure to be used, a preliminary study of the 
data is essential. In particular, this should be directed towards establishing the uncertainties and systematic error 
limits in x and y and the adequacy of the linearity assumption. Where the relationship is known to be curvilinear, 
some attention should be given to the possibility of converting it to a linear form, thus simplifying the subsequent 
manipulation of the data. 

5 Random uncertainties and systematic error limits in individual measurements 

5.1 In determining the random uncertainties and systematic error limits in the two variables, there are no 
alternatives to the procedures given in lSO/TR 5168. As a first step in the estimation process, a table for each 
variable should be prepared indicating the various sources of error. These should include the errors in any basic 
measurements which have to be made and should list the random and systematic elements separately. 

5.2 For variate values determined by direct measurement, the random uncertainty at a fixed value of the 
measurand x can be found by calculating the experimental standard deviation from a series of ~2 measurements, 
using the formula 

. . . (2) 

or, alternatively, 

S = {[IZ~X~ - (c*,121/[n(n - I)]}“* 

and then substituting into 

t+) = t+) 

. . . (3) 

. . . (4) 

5.3 In carrying out the above calculations, it should be remembered that the result obtained may vary depending 
on the magnitude of y at which x is measured. Similarly, the uncertainty in y, which can be found by substituting y 
for x in the above formulae, may also vary with the value of x at which it is measured. Since such variations will 

5 
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dictate the method to be used in the subsequent fitting of the calibration curve, it is essential that the estimation of 
uncertainty be carried out at a sufficient number of points to enable the extent of any problem to be accurately 
assessed. 

5.4 Where the variate values are 
measurements, the uncertainty shal 

obtained as the sum or difference 
I be obtained by calculating the overa 

of a 
II sta 

s(x) = [&(x1)2]1’2 

number of indepen dent compon 
ndard deviation from the formula: 

ent 

. . . (5) 

followed by substitution into equation (4). 

In other cases, where the variables are derived from more complex functions of the constituent elements such as 
products or quotients, or where the elements are correlated, the overall standard deviation shall be determined by 
the methods given in annex A. The uncertainty may then again be obtained by substituting into equation (4). 

5.5 The evaluation of the systematic error, which is somewhat more difficult, is described in lSO/TR 5168. Even 
when all known sources have been identified and allowed for, there will still remain a number of unidentified errors. 
In these cases any assessment will depend on a subjective judgement based on such evidence, e.g. past 
calibrations, previous history, etc., as is available. 

5.6 Where the variate values are based on the sum of a number of elemental components, some difficulty may 
be experienced in determining the overall systematic error limits, due to the fact that, in a majority of cases, the 
sign of the components is unknown. In these instances the errors shall be combined using the root-sum-square 
procedure as defined by 

l I 

‘12 
es = c eS,i 2 . . . 

i 
(6) 

Where more complex funtions are involved, the systematic error limit, es, shall be found using the method given in 
annex A, replacing the variance terms by the corresponding eS,i* terms. 

5.7 The estimation process can be regarded as complete once all the sources of error have been identified and 
evaluated and the individual elements combined to give an overall assessment of the random uncertainty and 
systematic error limits for each variable. 

6 Linearity of calibration graph 

6.1 An initial investigation is also desirable to establish whether a linear calibration curve will provide an adequate 
and unbiased fit to the observed measurements. Of the methods available, the most effective are those based on 
a visual study of the deviations of the measurements from the fitted line. An approximation to this line can be 
obtained using Bartlett’s method, as described in 6.2 to 6.5. 

6.2 As a first step, the data should be ranked in ascending order in either the x or y direction, and the general 
means of the two variables found from the equations 

F=CXi/tl; Y=Cyi/lZ . . . (7) 

The data should now be divided into three equal and mutually exclusive groups and the means of the two end 
groups calculated as before. Denoting these by F,, 7, and Y3, &, respectively, the slope b of the approximate line 
can be found as 

b=& --j$)l(X3 --Xl) . . . (8) 
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Since the line must pass through the general means Z, 7 the equation of the curve can then be obtained from 

(yi - y> = b(xi - T) . . . (9) 

or, substituting 7 - b? = a, as 

h 

Yi = a + bxi . . . (10) 

Finally the residuals can be determined from the formula 

A(yi) = (yi - Fi) = (yi - a - bxi) . . . (1 ‘I) 

As an alternative to the above procedure, a more accurate fit can be obtained by using the method of least squares 
as described in clause 8, with the residuals again being found from equation (I I). 

6.3 As a preliminary test, the residuals thus obtained should be ranked in ascending order and plotted as a 
cumulative frequency curve on normal probability paper. If the points lie in roughly a straight line with no evidence 
of any general curvature, the data can be regarded as being approximately normally distributed. 

6.4 The opportunity should also be taken at this stage to examine any exceptionally large or small residuals, as 
the occurrence of these may seriously affect the position of the final fitted line and will inevitably increase the 
uncertainty. To assist in the identification of such “outliers”, use can be made of Grubb’s test as described in 
annex E of lSO/TR 5168. It must be emphasized, however, that even where the test result is positive, the decision 
to reject an observation should always be made on sound physical grounds following a careful study of all the 
relevant circumstances. In reaching a decision, it should be borne in mind that the point may be genuine and the 
size of the residual due to a lack of fit of the model to the observation. It should also be remembered that where an 
observation has been rejected, the whole of the fitting process and calculation of the residuals will need to be 
repeated. 

6.5 Other tests which should be applied include the plotting of the residuals (Ay) against the observed values of 
the independent, (x), variable and against the predicted (j$ values. In either case if 

a) the mathematical relationship is appropriate; 

b) the fitting process has been correctly carried out; 

c) the variance does not change significantly with X; 

the points should lie in a horizontal band of uniform width [figure 1 a)]. Departures from this ideal form can include 
any one or more of the following: 

a) the band forms a distinct upwards or downwards curve [figure 1 b)], implying that the relationship is curvilinear 
rather than linear in form; 

b) a progressive widening or narrowing of the band, which remains horizontal [figure 1 c)]. This would indicate that 
the variance is not constant over the range of measurement and that some form of weighting procedure will be 
required in the final fitting process. 

NOTES 

1 As an alternative to weighting, it may be possible to transform the data to obtain uniform variance. As an example, if 
the variability increases with x, a plotting of log10 y against x or of loglo y against loglo x may give uniform variance in 
loglo y. In making the transformation, care shall be taken that the calibration graph remains linear. 

2 It shou d be noted that any tra nsformatio n of the variables implies a weighting of the data and may be expected 
a curve fit somewhat different to that obtain ed from the original untransformed da ta. 

to give 

c) the band shows a uniform straight-line upward or downward trend in its position [figure 1 d)], suggesting the 
presence of an error in either the fitting process itself or in the subsequent calculation of y. 
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7 Linearization of data 

7.1 Where the initial tests have indicated that the calibration is best represented by some form of curvilinear 
relationship, serious consideration shall be given to the possibility of converting the data to linearity. The advantage 
of such an operation is that the fitting of the calibration curve and the determination of uncertainty then become 
relatively straightforward processes. Two procedures are possible. 

7.1.1 The first of these involves an actual tranformation of the data and applies only where the relationship is of a 
mathematical nature. For this category, the form of transformation will usually be indicated by the form of function 
itself. Thus, for an open-channel calibration, where the relationship between water level and flow is expressed by 
the equation. 

Q = c(h + hg)b . . . (12) 

where 

h is the measured water level, expressed in metres; 

ho is a datum correction denoting level at zero flow; 

c is a coefficient; 

b is an exponent; 

the simple expedient of writing this in the logarithmic form 

In Q = In c + b In (h + ho) . . . (13) 

has the effect of linearizing the data. 

7.1.2 In other cases, linearization may still be possible if the calibration curve can be divided into a number of 
sections, each of which can be treated as linear. Unlike the previously described method, the procedure is 
universally applicable and does not depend on the existence of a functional relationship between the two variables. 
To be successful, two conditions must be observed. The first of these is that each section of the curve should, 
wherever possible, be based on a similar number of observations, thus giving approximately the same degree of 
uncertainty to the whole of the fitted line. Secondly, to provide a smooth transition and avoid discontinuity, each 
section of the curve must have two or three points in common with any adjacent sections. 

7.2 On completing the linearization process, it is essential that the tests for linearity described in clause 6 be 
repeated. 

8 Fitting the best straight line 

8.1 General 

8.1.1 The preliminary tests will already have provided estimates of the stan 
and in cons idering the fittting procedure it only remains to calculate th e ratio 

dard deviations of the two variables, 

y = dy)/s(x) . . . ('14) 

Where the value is large, say > 20 the classical least-squares method given in 8.2 shall be followed. , 

Where the value obtained lies below this limit, the procedure of 8.2 can still be used provided the x variable can be 
set to predetermined values as required by the Berkson method. In other cases, the methods needed are beyond 
the scope of this part of lSO/rR 7066. 
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Figure I - Plot of residuals (y - j) against x values 

8.1.2 In describing the calibration procedure, it should be emphasized that the usual convention relating to 
dependent and independent variables has been abandoned. In the following sections, the x variable is always to be 
taken as that with the smallest error. 

8.2 One variable only subject to error or Berkson method applies 

8.2.1 Where the error in one variable can be regarded as negligible in comparison with that in the second variable, 
the fitting of the calibration curve shall be accomplished using a classical regression approach. 

8.2.2 With this type of procedure, the slope b of the fitted line 

A 

Yi = a + bxi . . . (15) 

9 



ISO/TR 7066=1:1997(E) 0 IS0 

can be found from the equation 

b = C[(“i - x)(Yi - y,yC(xi - T)’ . . . (16) 

and the intercept from 

a=y--by . . . (17) 

Similarly the correlation coefficient, r, which expresses the strength of the relationship between x and y, can be 
determined from 

’ = C[cxi - ‘)(Yi - y)II[c(xi - yyx(yi _ y)*]liz 
i o D (18) 

8.2.3 To complete the fitting process, the standard deviation of the observations about the fitted line should be 
calculated either from 

SR =[ C(Yi sYi)2/(ns2)]112 . . . (19) 

- - Yi - a - bxi)*/(n - 2)]“* I . . (20) 

or from 

SR = -r . . . (21) 

where 

‘(Y) = [ C(Yi - F)*/(n - I)]“* . . . (22) 

Where equation (21) is used, a sufficient number of significant figures shall be retained to ensure the absence of 
any major rounding error. 

8.2.4 Where modern computing facilities are not available b, I- and s(y) can be more conveniently obtained from the 
equations 

b = [nCxiYi - xxizYi11[.Cxi2 - (xxi,‘] . . . 

‘+CxiYi -~xi~YiJ/{[n~x? -icy)zI[“~Y~ -(zYir]r* . . . 

s(Y)=([nCy,? B(xYi)‘]/n(ns1)r2 . . . 

(23 

(24 

(25) 

with a again being found from equation (I 7). 

Here also care shall be taken to retain a sufficient set of significant figures to avoid serious rounding errors. 

8.2.5 Where the calibration curve consists of two or more sections, the point(s) of intersection of these shall be 
determined at this stage. Denote the equations of two adjacent sections by 

Yl 
=a1 +blx and y2 =az+bzx . . . (26) 

Then, at the point of intersection, yl = y2 and the common value of x will be given by 

x= al ( - a*)/@* - 4) . . . (27) 

10 



@ IS0 ISO/TR 70664:1997(E) 

The corresponding value of y can then be obtained by substituting into the appropriate equation (26). 

9 Fitting the best weighted straight line 

9.1 Where the preliminary linearity tests given in clause 6 indicate that the variance of y is not constant but varies 
with the value of X, the least-squares method given above is invalid and must be replaced by a weighted form of 
regression analysis if bias is to be avoided. 

9.2 In such cases, a suitable procedure consists of replacing equations (16) (17) and (23) by 

’ = (ccixiYi - [(Ccixi)(CciYi)j/n}/{~qxi2 - [(xCiXir/n]} . . . (28) 

and 

. . . cm 

The standard deviation of the yi values can then be obtained from equation (22) and the standard error of the fitted 
line from equation (19) or (20). 

9.3 Where the variances of the individual observations are known, the weighting coefficient, ci, should be found 
from the relationship 

wi = l/var yi; Ci = Wi/W . . . (30) 

In other cases, suitable values for the coefficients ci can be obtained by 

a) calculating the differences of the yi values from the estimated calibration curve obtained as described in 
clause 6; 

b) plotting the squares of the differences against the respective xi values; 

c) fitting a curve to the data by the methods given in lSO/TR 7066-2; 

d) using a curve to obtain the mean squared differences A*(yi); 

e) substituting the A*(yi) values for var yi in equation (30) to obtain the ci values. 

10 Procedure when y is independent of x 

10.1 A special case arises when the slope of the calibration curve is zero and y is constant over the range of X. In 
these circumstances y is independent of x, the calibration curve becomes a horizontal straight line and the 
calibration coefficient reduces to the arithmetic average of the yi values, i.e. 

Y=xYifn . . . (31) 

10.2 Where the evidence available suggests that a calibration of this form is appropriate, tests shall be carried out 
to determine whether or not the slope of the fitted line can be regarded as zero. For this purpose the value of 

b 31 ts(b) . . . (32) 

should be calculated where 

s(b)= sR 
/[ 

(I’2 - “*S X 9 ( )] . . . (33) 

11 
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Where ze ro is incl uded withi n the limits given by equation (32), it may be concluded that the line is effectively 
horizontal and that the c oeffic ient will be g iven by equation (3 1) . 

11 Calculation of uncertainty 

11.1 The random uncertainty in the fitted line at the point x = xk shall be obtained from the equation 

eR(y) = tsR{(l/n) + [(xk - Z)2/C(Xi - if-j}"* . . . 

whilst the uncertainty in an individual observation at the point x = xk can be found from 

eR(yk) = ,,(I + (l/n) + [(xk - X)*/C(Xi - r)*]}‘* . . . 

(34) 

(35) 

The two values are substantially different; e&) represents the uncertainty in a value calculated from the equation 

of the line, whereas eR(yk) is the uncertainty in the prediction of an individual measurement. 

11.2 In both the above equations, the uncertainty interval is parabolic in form, with its narrowest width at the 
mean value of X. The width will also depend on the level of confidence required, being wider at the 99 % level than 
at the 95 % level. 

12 Systematic error limits and reporting procedure 

12.1 To complete the analysis, the systematic error limits in the calibration shall be estimated in accordance with 
the principles set out in lSO/rR 5168 and clause 5 of this part of lSO/rR 7066. In view of the difficulties in 
determining the signs and sizes of such errors, the individual components should be combined by the root-sum- 
square method. Where th e variate values are obtained 
system atic error ’ limit can be otained from the equation 

as the sum or difference of the elemental values, the overall 

2 1/* 
es = 

(c 1 eS,i . . . (36) 

Where, however, the variate val ues are based on more complex functions such as 
method of annex A shall be used, with the eS,i values replacing the respective variances. 

products or quotients, the 

12.2 As indicated in ISORR 5168, the random uncertainty and systematic error limit should always be reported 
separately. Where a single figure representing the combined uncertainty is also required, this shall be obtained 
from either the additive or root-sum-square models as defined by 

UADD = es + ts . . . (37) 

or 

URSS = [es* + (ts)*]1’* . . . (38) 

the latter always providing the smaller estimate. 

12.3 The value of u ADD or URss thus obtained should not be regarded as a confidence interval in the strict 
statistical sense since the systematic error limit is, by definition, based on subjective judgement. 

12 
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13 Extrapolated values 

13.1 Calibration coefficients and their associated uncertainties obtained by extrapolation of the calibration curve 
do not strictly fall within the scope of this part of lSO/rR 7066, since unpredictable effects may invalidate the 
results. Nevertheless, circumstances can arise which require the evaluation of flowrates outside the range of 
calibration and, in these instances, the procedures described below shall be used. 

13.2 In figure 2 let the solid line represent the calibration graph of a flow measurement device as determined 
between the limits ~1 and x2, and let the dotted line be the extension of this to the required point ~3. Also, let the 
dashed lines be the uncertainty limits extrapolated to the point x3. 

13.3 Where the calibrated device is covered by some International Standard which predicts the flowrates and 
uncertainties then, provided the extrapolated j value and its uncertainty limits lie wholly within the limits predicted 
by the International Standard as shown in figure 2 a), the extrapolated confidence limits shall be accepted. Where, 
however, the extrapolated limits lie outside those predicted by the International Standard, as in figure 2 b), then the 
confidence limits given by the International Standard shall be accepted. Finally, where the value of 9 lies outside 
the interval predicted by the International Standard or where the device is not covered by an International Standard, 
the extrapolated limits shall again be used. 

14 Uncertainty in the use of the calibration graph for a single flowrate measurement 

14.1 Where a calibrated meter is subsequently used to measure flowrate, any uncertainty in the position of the 
calibration curve will be transferred to the calculated value as a systematic error. Except in the case where the 
slope of the line is effectively zero and equation (15) thus reduces to a constant over the range of calibration, the 
uncertainty in the flowrate will always be greater than that due to the calibration graph alone. This will be so even 
when the measurement conditions are nominally identical with those existing during the calibration process, the 
difference arising due to the uncertainty in locating the position to be used on the calibration graph. 

14.2 This additional uncertainty, together with any added contributions arising from data acquisition and reduction, 
shall be evaluated using the procedures given in ISOnR 5168, with the random uncertainty and systematic error 
limit being determined separately and later combined using the URSS model. The total uncertainty in the 
measurement, denoted by URss(jJ, is obtained using the formula 

h&) = [LiRsS* (70) + uRSS2(%)11/2 

where 

URss (9,) is the total additional uncertainty; 

URss (jJ is the total uncertainty in the calibration graph. 

The manner i nw hich the add itiona I unce rtainty contributes to the overall uncertainty in the flowrate will depend on 
the nature of the calibration g raph. There are two main conditi ons, which are described in 14.3 and 14.4. 

. . . (39) 

14.3 Where the slope of the calibration curve is zero, the flowrate is obtained simply by multiplying some function 
of the output of the meter by a coefficient which is independent of the flowrate. There is, therefore, no additional 
uncertainty and equation (39) reduces to 

URSS (9) = URSS (9,) . . . (40) 

and the uncertainty in the flowrate measurement becomes equal to the uncertainty in the calibration graph. 

13 
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/-- Best-fit line TI 

Extrapolated -P-4 
confidence limits 11 

l Confidence limit given by 
International Standard used 

A 

Xl x2 X3 

a) Extrapolated limits within those given by the llnternational Standard used 

confidence limits 

X2 x3 

b) Extrapolated limits outside those given by the IInternatIonal Standard used 

Figure 2 - Criteria for confidence limits 
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14.4 Where the slope of the line is not zero, the calibration coefficient will itself be a function of the flowrate, and 
in estimating the latter some form of iterative process will be necessary. For this purpose an initial estimate of the 
calibration coefficient is used to obtain a first approximation to the flowrate, and this is used to obtain a more. 
precise value for the calibration coefficient. The process is then repeated until successive estimates of the flowrate 
are identical. In this case any error in measuring the meter output will introduce an error in the coefficient used, and 
the overall uncertainty will be given by equation (39). 

14.5 The uncertainty will be still further increased if the conditions of use differ from those under which the 
calibration was carried out, e.g. different layout, fluid, instrumentation, etc., and in these cases it will usually be 
necessary to evaluate the confidence limits for each situation as it arises. 

15 
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Annex A 
(normative) 

Calculation of the variance of a general function 

A.1 If the overall variance is based on the product or quotient of two or more component variances, then the 
simple combinatorial equation (5) will not apply, and the more complex expression associated with the standard 
error of a general function must be used. The differential terms (aXbxi) included in the equation are identical in all 
repects to the influence coefficients (0 = aR/aYi) used in combining elemental errors in lSO/TR 5168. 

A.2 If x = fix,, x2 . . . . x,), wherefis any function, then 

Var X = (aX/a~~) Var xl + (aX/d~~)~ Var x2 + . . . + (ax/axJ2 Var X, + 

+ ~{[(W~=l)(W~2)] COV(Xlf x2) + [(axlaxlpxpq)] cov (q, x3> + . . . (41) 

+...+ ax/ax,-, K p@4] cov (%-If xn)} 

If the terms involving higher differentials can be ignored and the covariances are zero, i.e. the variables are 
independent, then equation (41 ) reduces to the first line only. 

A.3 As an example, consider the equation for flow through a segment of an open channel current-meter gauging 
section 

Qi = bc idiE I . . . (42) 

where b,, d and vare dependent variables. 

Using the first line of equation (41) 

Var Qi = (aQi/abc i>’ Var b, i + (aQ&di)2 Var di + (aQi/&j)2 Var 5 

=(d,V,)2 Var b,i +(bLiFj)’ Var di + (b,idi)2 Var 5 I I I 
. . . (43) 

16 
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Example of an open channel calibration 

B.1 Symbols used 

ho datum correction denoting stage at zero flow, expressed in metres; 

h measured stage, expressed in metres; 

c coefficient; 

b exponent; 

Q flowrate, expressed in cubic metres per second. 

B.2 The information is given in table B.1 for the determination of a stage-discharge relation. Calculate the rating 
equation and compute the standard deviation of the points about the best-fitting straight line (So) and the random 
uncertainty eR(Q) for the relationship. 

NOTE - In a number of International Standards concerning flow measurement, random uncertainty eR(Q) is denoted by the 
symbol ZS,, where smr is defined as the standard error of the mean relationship. 

8.3 In the case of an open channel flow-measurement station where calibration is by the velocity-area method, 
the relationship between stage and discharge may be expressed by the equation 

Q = c(h + bf’ . . . (44) 

which, on writing in logarithmic form gives 

In Q=lnc + b In(h + ho) . . . (45) 

and substituting 

ln(h + ho) = X; In Q = y; ln c = a; 

reduces to the linear equation 

y=a+bx 

as given in equation (1). 

B.4 With this type of calibration, the error in the determination of stage is almost always much less than that 
incurred in the measurement of flowrate, giving a value for y in equation (14) greater than 20. Fitting can, therefore, 
be carried out using the classical least-squares method given in 8.2 of this part of lSO/Tl? 7066. 

Substituting from table B.l into first equation (23) and then equation (17) gives the slope of the calibration curve as 

b = {[32(- 2,933 7)]-[93,785 5(-15,5798)]}/{[32(35,5093)]-(-15,5798)2}=1,5301 
l . . (46) 
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and the intercept as 

In c = 2,930 8 - 1,530 I(- 0,486 9) = 3,675 7 . . . (47) 

Hence 

In Q = 3,675 7 + 1,530 1 In (h - 0,115) 

or, alternatively 

Q = 39,479 (h - 0,115)’ t530 ’ . . . (49) 

The rating curve is drawn in figure B.l with stage on the ordinate and flowrate on the abscissa, following normal 
hydrometric practice. 

Table B.1 - Typical data used in the manual computation of a stage-discharge curve 
by the method of least squares 

Obs. 
No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

Totals 

Q 

m3/s 

2,463 
2,325 
2,923 
3,242 
3,841 
4,995 
5,410 
5,422 
5,883 
6,154 
7,376 
9,832 

11,321 
12,372 
11,825 
13,826 
14,102 
19,020 
19,790 
20,280 
21,204 
23,996 
36,242 
54,591 
67,327 
79,050 

110,783 
162,814 
227,600 
228,800 
228,500 
236,600 

Stage 
(h) 
m 

0,272 
0,273 
0,303 
0,307 
0,334 
0,374 
0,393 
0,394 
0,402 
0,410 
0,463 
0,520 
0,548 
0,576 
0,580 
0,616 
0,626 
0,721 
0,739 
0,747 
0,796 
0,846 
1,041 
1,340 
1,526 
1,761 
2,010 
2,632 
3,265 
3,280 
3,306 
3,340 

(h + hoI 

m 

0,157 
0,158 
0,188 
0,192 
0,219 
0,259 
0,278 
0,279 
0,287 
0,295 
0,348 
0,405 
0,433 
0,461 
0,465 
0,501 
0,511 
0,606 
0,624 
0,632 
0,681 
0,731 
0,926 
1,225 
1,411 
1,646 
1,895 
2,517 
3,150 
3,165 
3,191 
3,225 

In Qi In(h + ho) 
(Y ) i ( 1 3 

v 

0,901 4 -1,851 5 -1,668 9 3,428 0 
0,843 7 -1,845 2 - 1,556 8 3,404 8 
1,072 6 -1,671 3 -1,792 6 2,793 2 
1,176 2 -1,650 2 - 1,941 0 2,723 2 
1,345 7 -1,518 7 - 2,043 7 2,306 4 
1,608 4 -1,350 9 - 2,172 8 1,824 9 
1,688 2 -1,280 1 -2,161 1 1,638 6 
1,690 5 -1,276 5 -2,157 9 1,629 4 
1,772 1 -1,248 3 - 2,212 1 1,558 2 
1,817 1 -1,220 8 - 2,218 3 1,490 4 
1,998 2 -1,055 6 - 2,109 3 I,1143 
2,285 6 - 0,903 9 - 2,066 0 0,817 0 
2,426 6 - 0,837 0 -2,031 1 0,700 6 
2,515 4 - 0,774 4 - 1,947 9 0,599 7 
2,470 2 - 0,765 7 -1,891 4 0,586 3 
2,626 6 - 0,691 1 - 1,815 2 0,477 6 
2,646 3 -0,671 4 -1,776 7 0,450 8 
2,945 5 - 0,500 9 - 1,475 4 0,250 9 
2,985 2 -0,471 6 -1,407 8 0,222 4 
3,009 6 - 0,458 9 -1,381 1 0,210 6 
3,054 2 - 0,384 2 -I,1734 0,147 6 
3,177 9 -0,313 3 -0,995 6 0,098 2 
3,590 2 -0,076 9 - 0,276 1 0,005 9 
3,999 9 0,202 9 0,811 6 0,041 2 
4,409 6 0,344 3 1,449 4 0,118 5 
4,370 1 0,498 3 2,177 6 0,248 3 
4,707 6 0,639 2 3,009 1 0,408 6 
5,092 6 0,923 1 4,701 0 0,852 1 
5,427 6 I,1474 6,227 6 1,316 5 
5,432 8 I,1522 6,259 7 1,327 6 
5,43-l 5 I,1603 6,302 2 1,346 3 
5,466 4 1,170 9 6,400 6 1,371 0 

93,785 5 - 15,579 8 -2,933 7 35,509 3 

NOTE - Datum correction h, = - 0,115 m 
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8.5 As defined by equation (19), the standard deviation of the points about the best-fit line is given by the 
equation 

SR = [x(ln Qi - LY$/(n - 2)]“’ . . . (50) 

from which, on substituting from table 6.2 

SR = (0,029 I 8/30)1’2 = 0,031 . . . (51) 

B.6 The random percentage uncertainty in In Q calculated from the fitted line at the point (h + hO)k may be found 
by using equation (34) in the form 

A 
e$ln Q) = ts~ 

= 6,3 1’2 

. . . (52) 

Similarly, the random percentage uncertainty for individual values of In Qi may be calculated using equation (35) in 
the form 

/A 
e$n Qi) = tsR 

1+ 1 + [I++hO)k -++fd] - 
Iz C[ln(h+h&-ln(h+b)] 

J/2 

x100 
. . . (53) 

=6,3{1,031 25+[ln(h-0,115), +0,4869p/27,9238}‘L 

A 
B.7 The value of eR(ln Q) for the calculated flowrates at each observed (h + h& may be evaluated from equation 

(52) and the results plotted on either side of the stage-discharge curve to give the symmetrical confidence limits for 

the logarithm of flow, the minimum width being at In(h + ho) 

Substituting for observation No. 1 in table B.2 

A 
ek(ln Q) = 6,3 0,031 25 + [(-I,851 5 + 0,486 9)2/27,923 8 1’2 

= I,97 % 

Similarly, for observation No. 18 

A 
ek(ln Qi) 1’2 = 6,3 { 0,031 25 + [(-Of500 9 + 0,486 9)2/27,923 8 

= I,1 1% 

and for observation No. 32 

A 
e$n Qi) = 6,3 0,031 25 + [(-I,1 70 9 + 0,486 9)2/27,923 8 II 1’2 

= 2,27 % 

A summary of these results, together with the values for the remaining observations, is given in the final column of 
table B.2. 

19 
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A 
Table B.2 - Values required for calculation of SR and eR(In Q) 

~In(h + ho)= - 0,4869; c(xi - f)2 = 27,9238; x(yi - y)* = 0,02918 

20 
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Fitted stage-discharge curve 

95% confidence limits 
for calculated values 

(h + ho), m 

Figure B.1 - Stage-discharge curve based on data of table B.1 

B.8 Asymmetrical limits for the untransformed flows may be obtained using the formulae 

for the upper 95 % confidence limit 

and 

for the lower 95 % confidence limit 

where z is the right-hand side of equation (53) excluding the factor of 100. 

Using the example for observation No. 1, the upper 95 % confidence limit thus becomes 

100 
( 
,0,019 7 - 1 

1 
= 100(1,019 9 - 1) I,99 % 

whilst the I ower 95 % confidence limit becomes 

~(l - 0,980 4) = I,96 % e 

. . . (54) 
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Annex C 
(informative) 

Example of determination of uncertainty in calibration of a closed conduit 

C.l Introduction 

C.l.1 This example describes the determination of the uncertainty in the calibration of an orifice plate with flange 
tappings and illustrates the calculation of the uncertainty in a measurement of flowrate obtained b\ 
plate after calibration. 

CA.2 The calibration facility was one in which the water, after flowing through the orifice plate 
test section of the circuit, normally passed into a sump, from which it was passed back to the 
section. When flow conditions were steady, the flow was diverted for a measured time interva 
tank instead of into the sump. 

using the orifice 

assembly in the 
inlet of the test 
into a weighing 

C.1.3 During the time of diversion, the differential head across the orifice plate was measured using compressed 
air/water or mercury/water manometers, the procedure being repeated at 25 points covering the flowrate range 
over which the calibration was required. The temperature of the water in the test line and the ambient air 
temperature adjacent to the manometers were also noted at each point. Using a density bottle, the density of the 
water used relative to that of distilled water at the same temperature was obtained as 1,001 42 and this figure was 
used throughout the test. 

c2 . 

A0 

C 

D 

d 

ii 

M H 

Ps 

Red 

t 

W 

P 

&I 

V 

Pw 

c3 . 

Definition of symbols specific to present example 

Area of orifice bore 

Discharge coefficient 

Pipe diameter 

Diameter of orifice bore 

Acceleration due to gravity 

Differential head across orifice plate 

Absolute static pressure 

Reynolds number, given by 4Qhvd 

Time of diversion 

Mass of water collected during diversion procedure 

Diameter ratio given by d/D 

Temperature of water in test section 

Kinematic viscosity 

Density of pure water 

Calculation of calibration coefficient 

C.3.1 The mean diameter of the bore of the orifice plate was 164,34 mm and that of the upstream pipework 
204,98 mm, giving a diameter ratio p of 0,801 7. 
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C.3.2 Test results for the 25 points are given in table C.1, the values of the flowrate being derived from the 
equation 

Q = 1,00105W/p, t . . . (55) 

where the constant 1,001 05 is a correction factor for the effect of air buoyancy on the weighbridge reading. 

pw = 1 000,25 - 0,0088, - 0,004 860,* -a- Of46 x 1 O+ ps 

and those of the calibration coefficient from 

C = Q(l- p4)‘/*/b(2gH)1/* s . . (56) 

C.4 Linearity of calibration graph 

C.4.1 By plotting the calibration coefficients against the respective Reynolds numbers, it is immediately obvious 
that the relationship is curvilinear. From previous experience it is known, however, that a linear relationship may be 
obtained by plotting C against some function of the reciprocal of Red, and for this example (l/&d)“* was chosen. 
The resulting graph is shown in figure C.I. 

C.4.2 Examination of the data as described in clause 6 of this part of lSO/rR 7066 confirms the linearity of this 
latter plotting and suggests that the fitting of the line may be carried out using the classical least-squares procedure 
given in clause 8. 

C.5 Uncertainty of individual calibration points 

C.5.1 In accordance with the principles set out in annex A of this part of ISOnR 7066, the percentage random 
uncertainty in C may be calculated from 

e&*(Q) + ei*(s)/4 + ek*(H)/4 + [?/(I - p4)]2 eh*(d) + [2p4/(l - p4)reh2(D)}“* . . . (57) 

C.5.2 The random uncertainty and systematic error limits in the six component quantities as determined using the 
principles given in lSO/TR 5168 are given in table C.2 and by substituting the former into equation (57) a percentage 
random uncertainty of 0,16 % was obtained. By using a similar equation with e;l replaced by ek and substituting 
from the last column of table C.2, the systematic error limit was obtained as 0,75 %. 

C.5.3 In the same way, defining 

X = ‘l/(Red)“* = (wd/4Q)V2 . . . (58) 

the percentage random uncertainty in X may be found from the equation 

e$X) = + eh*(d) + eh*(Q) 
l/2 

. . . (59) 

Substituting the values for eh from table C.2 gives the random uncertainty in X ‘as 0,08 %. Similarly, using the 
corresponding equation for e&(x), the systematic error limit is obtained as 0,28 %. 
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Figure C.1 - Discharge coefficient as a function of 1 OOO/Re~'/* 

C.6 Fitting the best straight line 

C.6.1 Using the above percentages and the figures in table C.3, the absolute random uncertainties in the mean 
values of the two variables become 

eR(l/Re#* = 8,3 x 10w7; e&) = 9,5 x 1 Ow4 

from which, on substituting into equation (14) 

y= 1 144 

C.6.2 The random uncertainty in (I/ Red)“* is thus negligible and the equation of the calibration curve may, 
therefore, be written in the form 

c = a + b 1 03/Re,‘/* . . . (60) 
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Table C.1 - Calibration results 

Test 
result 

number 

1 
2 
3 
4 

Flowrate, 
Q 

m3/s 

0,031 5 
0,046 0 
0,058 9 
0,071 9 

Discharge 
coefficient 

c 
(Y) 

0,599 7 
0,596 2 
0,595 7 
0,593 7 

Reynolds 
numberl) 
Red X IO4 

0,244 8 
0,357 6 
0,459 3 
0,560 9 

1 O3 I Red”* 

( 1 x 

2,020 9 
1,672 3 
1,475 5 
1,335 3 

1) Based on throat diameter. 

Table C.2 - Component uncertainties and error limits 

Variable 
Percentage Percentage 

random systematic 
uncertainty error limit 

d 
D 
g 
H 
Q 
V 

0,oo 0,20 
0,oo 0,20 

negligible negligible 
0,lO 0,05 
0,15 0,15 
0,oo 0,50 

Table C.3 - Quantities required to calculate uncertainty in calibration graph 

Quantity Value 

x I,01417 
7 0,591 064 

s* (xl 1,087 864 
s*(y) 8,101 213x10* 

~ Cov(xy) 8,985 401 x lO-7 
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By substituting the required sums of squares and products calculated from table C.3 into equations (16) and (177, 
this then gives 

G = 0,582 7 + 0 n 0 (6’U 

the correlation coefficient as found from equation (18) being 0,957 0. 

C.6.3 From equation (16) it will be noted that & is very small and that the coefficient of discharge changes only 
slowly with the Reynolds number. In view of this it would seem reasonable to enquire whether the slope of the line 
could be taken as zero. Using the values given in table C.3 to substitute into equations (32) and (33) gives the 95 % 
confidence limits for b as 0,008 259 7 + (2,06 x 0,000 500 71, and since this interval does not include zero it must 
be concluded that b is non-zero. 

C.6.4 On this basis, the random uncertainty in any value of C may be obtained from equation (34), the required 
value of SR being first calculated from either equation (19), (20) or (21). Substituting into the latter, 

sR =8,42 xIO-~ 

and, inserting this into equation (34) 

t?R(~)=2,06x(8.42x10-4 Xk - I,0141 7)2/2,610874 I'2 . . . 62) 

At Xk = -x: =1,01417: eR(e) = 3,469 x 1 O-3; 

at Xk = 2,020 9 : +)=1,134x10-3; 

at xk =0,7030 : ,,(t)=4,8 x10-t 

C.6.5 Equation (62) gives the random uncertainty in the value of the calibration coefficient and this must now be 
combined with the systematic error limit. This latter is the same as that in any individual measured value of C, i.e. 

4+ es2(H)/4 + [2/(1- p4)12es2(d) + [2p4/(1 - pni12es2(D)}1’2 . . . 

Substituting the values from table C.2 gives e:(e)= 0,75 %. 

63 

The total uncertainty in any value of c, corresponding to a 95 % coverage, is then obtained by combining, by the 
root-sum-square method, the random uncertainty given by equation (62) with the above systematic error limit, e.g. 

At Xk = ? =1,01417: 

at Xk = 2,020 9: 

at xk = 0,703 0: 

This is the uncertainty associated with the actual value of t which shall be used, for instance, to estimate the 
uncertainty in standardized or tabulated values of the discharge coefficient. It may be noted that in such an 
example the systematic error is largely predominant. 

C.6.6 Nevertheless, when the orifice plate previously calibrated as stated above is used for a flowrate 
measurement in conditions strictly identical to that prevailing during calibration (same fluid at the same pressure 
and temperature, same influence quantities, etc.), then the effect of the errors in the determination of the 
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geometrical characteristics of the orifice plate disappears, for it may be considered that C = kQH-li2. The 
systematic error limit in c is then given by: 

es(e) = [es’(Q) + 0,25eS2(H)] 
112 

. . . (64 

and, on substituting the appropriate values from table C.2, 

e$)=[o,152 +0,25~0,05~] 
112 

= 0,15 % 

The total uncertainty in any value of c is then obtained by the same procedure as in C.6.5, e.g. 

0 ( 
112 

Atx=x=1,01417: uiss e = o,0352 +o,152 %=0,15%; 

at x = 2,020 9: u&s e = 
0 ( 

0,112 + o,152 
1 112 

%=0,19%; 

at x = 0,703 0: 
112 

o,052 + o,152 %= 0,16 %. 

C.7 Uncertainty in a flowrate measurement using the calibrated orifice plate 

C.7.1 Since the slope of the calibration graph is not zero, an additional uncertainty will be incurred in using the 
graph to estimate a flowrate. Bearing in mind the comments of the previous clause, only H and v will have any 

effect on the uncertainty in 1/(Re$/2, and equation (59) thus reduces to 

%(x> = {[eR2(v)]/4 + [eR2(Hj/8}1’2 . . . (65) 

with a similar expression in es for the systematic error limit. 

C.7.2 The effect of the above on the value of C is dependent on the slope of the calibration graph and is given in 
absolute terms by 

URSS = b[eR2(x) + eS2(xf2 . . . (66) 

The total uncertainty in C is then found by combining this value with the uncertainty for the calibration graph using 
the root-sum-square method 

URSS (c) = [I/RSS2 (c) + uRSS2 (cO)11/2 . . . 67) 

C.7.3 In the same way, the random uncertainty in Q will be given by 

q@) = 0~~q+‘) . . . (68) 

and the systematic error limit by 
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es(Q) = [es2(C) + 0,25eS2(H’)11/2 

0 IS0 

. . . (6% 

C.7.4 For the present, let 

efj(v) = 0,O %; es(V) = I,0 % 
e;l(H’) = 0,5 %; es(H’) = IO % 

Then, from equation (38) and the associated formula for the systematic error limit 

ek(X)= 0,518 ‘I2 % = 0 18 % 

ei(X)= (0,25 + 0,125)"' % = 0,61% 

Thus, taking Red at the point where the iteration converges to be 8 x 105 (i.e. & = 0,001 12) 

URSS(CO)=8,26 (0,001 12 x 0,001 8)2 +(O,OOl 

112 
12 x 0,006 l)2 I 

For the above value of Red, C = 0,591 9, giving the absolute uncertainty in the calibration curve as 

URSS (t)=(O,591 9 x 0,001 6)=9,470 4 x10- 4 

Combining URSS (e) with URSS (Co) using the root-sum-square method and dividing by the calibration coefficient 

(9.4704x10-4) 
2 

+(5,88x10-5 
2 )I 112 

U&s(C)= I 0,591 9 = 0,16 % 

C.7.5 Finally, substituting into equations (68) and (69) 

ek(Q)=(0,5 x 0,5)% = 0,25 % 

ei(Q)=[0,162 + 0,25(1)21112 % = 0,52 % 
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