

IEC/TR 80002-1
Edition 1.0 2009-09

TECHNICAL
REPORT

Medical device software –
Part 1: Guidance on the application of ISO 14971 to medical device software

IE
C

/T
R

 8
00

02
-1

:2
00

9(
E

)

colour
inside

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

 THIS PUBLICATION IS COPYRIGHT PROTECTED
 Copyright © 2009 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester.
If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication,
please contact the address below or your local IEC member National Committee for further information.

IEC Central Office
3, rue de Varembé
CH-1211 Geneva 20
Switzerland
Email: inmail@iec.ch
Web: www.iec.ch

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigenda or an amendment might have been published.
 Catalogue of IEC publications: www.iec.ch/searchpub

The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,…).
It also gives information on projects, withdrawn and replaced publications.
 IEC Just Published: www.iec.ch/online_news/justpub

Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available
on-line and also by email.
 Electropedia: www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions
in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical
Vocabulary online.
 Customer Service Centre: www.iec.ch/webstore/custserv

If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service
Centre FAQ or contact us:
Email: csc@iec.ch
Tel.: +41 22 919 02 11
Fax: +41 22 919 03 00

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

IEC/TR 80002-1
Edition 1.0 2009-09

TECHNICAL
REPORT

Medical device software –
Part 1: Guidance on the application of ISO 14971 to medical device software

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION XB
ICS 11.040.01

PRICE CODE

ISBN 2-8318-1061-9

colour
inside

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

 – 2 – TR 80002-1 © IEC:2009(E)

CONTENTS

FOREWORD...4
INTRODUCTION...6
1 General ..7

1.1 Scope..7
1.2 Normative references ..7

2 Terms and definitions ...8
3 General requirements for RISK MANAGEMENT ..8

3.1 RISK MANAGEMENT PROCESS ...8
3.2 Management responsibilities ...11
3.3 Qualification of personnel .. 13
3.4 RISK MANAGEMENT plan ..14
3.5 RISK MANAGEMENT FILE ...16

4 RISK ANALYSIS ...17
4.1 RISK ANALYSIS PROCESS..17
4.2 INTENDED USE and identification of characteristics related to the SAFETY of the

MEDICAL DEVICE ..18
4.3 Identification of HAZARDS ...20
4.4 Estimation of the RISK(S) for each HAZARDOUS SITUATION .. 22

5 RISK EVALUATION ...25
6 RISK CONTROL ...26

6.1 RISK reduction ...26
6.2 RISK CONTROL option analysis ..26
6.3 Implementation of RISK CONTROL measure(s) ... 35
6.4 RESIDUAL RISK EVALUATION ...36
6.5 RISK/benefit analysis ...36
6.6 RISKS arising from RISK CONTROL measures ... 37
6.7 Completeness of RISK CONTROL..37

7 Evaluation of overall residual risk acceptability ... 38
8 Risk management report...38
9 Production and POST-PRODUCTION information...39
Annex A (informative) Discussion of definitions... 41
Annex B (informative) Examples of software causes .. 43
Annex C (informative) Potential software-related pitfalls .. 53
Annex D (informative) Life-cycle/risk management grid .. 57
Annex E (informative) SAFETY cases .. 70H60
34HBibliography.. 71H61
35HIndex .. 72H62
36HIndex of defined terms .. 73H63

Figure 1 – Pictorial representation of the relationship of HAZARD, sequence of events,
HAZARDOUS SITUATION and HARM – from ISO 14971:2007 Annex E .. 74H24
Figure 2 – FTA showing RISK CONTROL measure which prevents incorrect software
outputs from causing HARM ... 75H28
Figure A.1 – Relationship between sequence of events, HARM and HAZARD 76H41

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

TR 80002-1 © IEC:2009(E) – 3 –

Table 1 – Requirements for documentation to be included in the RISK MANAGEMENT FILE
in addition to ISO 14971:2007 requirements ...17
Table A.1 – Relationship between HAZARDS, foreseeable sequences of events,
HAZARDOUS SITUATIONS and the HARM that can occur ... 42
Table B.1 – Examples of causes by software function area ... 43
Table B.2 – Examples of software causes that can introduce side-effects 48
Table B.3 – Methods to facilitate assurance that RISK CONTROL methods are likely to
perform as intended .. 52
Table C.1 – Potential software-related pitfalls to avoid .. 53
Table D.1 – LIFE-CYCLE/RISK MANAGEMENT grid .. 57

 L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

 – 4 – TR 80002-1 © IEC:2009(E)

INTERNATIONAL ELECTROTECHNICAL COMMISSION

MEDICAL DEVICE SOFTWARE –

Part 1: Guidance on the application of ISO 14971

to medical device software

FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising

all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.

5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with an IEC Publication.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. However, a
technical committee may propose the publication of a technical report when it has collected
data of a different kind from that which is normally published as an International Standard, for
example "state of the art".

IEC 80002-1, which is a technical report, has been prepared by a joint working group of
subcommittee 62A: Common aspects of electrical equipment used in medical practice, of IEC
technical committee 62: Electrical equipment in medical practice, and ISO technical
committee 210: Quality management and corresponding general aspects for MEDICAL DEVICES.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

TR 80002-1 © IEC:2009(E) – 5 –

The text of this technical report is based on the following documents:

Enquiry draft Report on voting

62A/639A/DTR 62A/664/RVC

Full information on the voting for the approval of this technical report can be found in the
report on voting indicated in the above table. In ISO, the technical report has been approved
by 16 P-members out of 17 having cast a vote.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

In this technical report the following print types are used:

• requirements and definitions: in roman type.
• informative material appearing outside of tables, such as notes, examples and references: in smaller type.

Normative text of tables is also in a smaller type.

• TERMS USED THROUGHOUT THIS TECHNICAL REPORT THAT HAVE BEEN DEFINED IN CLAUSE 2 AND
ALSO GIVEN IN THE INDEX: IN SMALL CAPITALS.

A list of all parts of the IEC 80002 series, published under the general title Medical device
software, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until
the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in
the data related to the specific publication. At this date, the publication will be

• reconfirmed,
• withdrawn,
• replaced by a revised edition, or
• amended.

IMPORTANT – The “colour inside” logo on the cover page of this publication indicates
that it contains colours which are considered to be useful for the correct understanding
of its contents. Users should therefore print this publication using a colour printer.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

 – 6 – TR 80002-1 © IEC:2009(E)

INTRODUCTION

Software is often an integral part of MEDICAL DEVICE technology. Establishing the SAFETY and
effectiveness of a MEDICAL DEVICE containing software requires knowledge of what the
software is intended to do and demonstration that the implementation of the software fulfils
those intentions without causing any unacceptable RISKS.

It is important to understand that software is not itself a HAZARD, but software may contribute
to HAZARDOUS SITUATIONS. Software should always be considered in a SYSTEM perspective and
software RISK MANAGEMENT cannot be performed in isolation from the SYSTEM.

Complex software designs can permit complex sequences of events which may contribute to
HAZARDOUS SITUATIONS. Much of the TASK of software RISK MANAGEMENT consists of identifying
those sequences of events that can lead to a HAZARDOUS SITUATION and identifying points in
the sequences of events at which the sequence can be interrupted, preventing HARM or
reducing its probability.

Software sequences of events which contribute to HAZARDOUS SITUATIONS may fall into two
categories:

a) sequences of events representing unforeseen software responses to inputs (errors in
specification of the software);

b) sequences of events arising from incorrect coding (errors in implementation of the
software).

These categories are specific to software, arising from the difficulty of correctly specifying and
implementing a complex SYSTEM and the difficulty of completely verifying a complex SYSTEM.

Since it is very difficult to estimate the probability of software ANOMALIES that could contribute
to HAZARDOUS SITUATIONS, and since software does not fail randomly in use due to wear and
tear, the focus of software aspects of RISK ANALYSIS should be on identification of potential
software functionality and ANOMALIES that could result in HAZARDOUS SITUATIONS – not on
estimating probability. RISKS arising from software ANOMALIES need most often to be evaluated
on the SEVERITY of the HARM alone.

RISK MANAGEMENT is always a challenge and becomes even more challenging when software
is involved. The following clauses contain additional details regarding the specifics of software
and provide guidance for understanding ISO 14971:2007 in a software perspective.

• Organization of the technical report

This technical report is organized to follow the structure of ISO 14971:2007 and guidance is
provided for each RISK MANAGEMENT activity in relation to software.

There is some intentional REDUNDANCY in the information provided due to the iterative nature
of RISK MANAGEMENT activities in the software LIFE-CYCLE.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

TR 80002-1 © IEC:2009(E) – 7 –

MEDICAL DEVICE SOFTWARE –

Part 1: Guidance on the application of ISO 14971
to medical device software

1 General

1.1 Scope

This technical report provides guidance for the application of the requirements contained in
ISO 14971:2007, Medical devices— Application of risk management to medical devices to
MEDICAL DEVICE SOFTWARE with reference to IEC 62304:2006, Medical device software—
Software life cycle processes. It does not add to, or otherwise change, the requirements of
ISO 14971:2007 or IEC 62304:2006.

This technical report is aimed at RISK MANAGEMENT practitioners who need to perform RISK
MANAGEMENT when software is included in the MEDICAL DEVICE/SYSTEM, and at software
engineers who need to understand how to fulfil the requirements for RISK MANAGEMENT
addressed in ISO 14971.

ISO 14971, recognized worldwide by regulators, is widely acknowledged as the principal
standard to use when performing MEDICAL DEVICE RISK MANAGEMENT. IEC 62304:2006, makes
a normative reference to ISO 14971 requiring its use. The content of these two standards
provides the foundation for this technical report.

It should be noted that even though ISO 14971 and this technical report focus on MEDICAL
DEVICES, this technical report may be used to implement a SAFETY RISK MANAGEMENT PROCESS
for all software in the healthcare environment independent of whether it is classified as a
MEDICAL DEVICE.

This technical report does not address:

– areas already covered by existing or planned standards, e.g. alarms, usability
engineering, networking, etc.;

– production or quality management system software; or
– software development tools.

This technical report is not intended to be used as the basis of regulatory inspection or
certification assessment activities.

For the purposes of this technical report, “should” is used to indicate that amongst several
possibilities to meet a requirement, one is recommended as being particularly suitable,
without mentioning or excluding others, or that a certain course of action is preferred but not
necessarily required. This term is not to be interpreted as indicating requirements.

1.2 Normative references

The following referenced documents are indispensable for the application of this document.
For dated references, only the edition cited applies. For undated references, the latest edition
of the referenced document (including any amendments) applies.

IEC 62304:2006, Medical device software – Software life cycle processes

ISO 14971:2007, Medical devices – Application of risk management to medical devices

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

 – 8 – TR 80002-1 © IEC:2009(E)

2 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 14971:2007,
IEC 62304:2006 and the following terms and definitions apply.

NOTE An index of defined terms is found beginning on page 63.

2.1
DIVERSITY
a form of REDUNDANCY in which the redundant elements use different (diverse) components,
technologies or methods to reduce the probability that all of the elements fail simultaneously
due to a common cause

2.2
REDUNDANCY
provision of multiple components or mechanisms to achieve the same function such that
failure of one or more of the components or mechanisms does not prevent the performance of
the function

2.3
SAFETY-RELATED SOFTWARE
software that can contribute to a HAZARDOUS SITUATION or software used in the implementation
of RISK CONTROL measures

3 General requirements for RISK MANAGEMENT

3.1 RISK MANAGEMENT PROCESS

3.1.1 General

Text of ISO 14971:2007

3 General requirements for RISK MANAGEMENT

3.1 RISK MANAGEMENT PROCESS

The MANUFACTURER shall establish, document and maintain throughout the LIFE-CYCLE an
ongoing PROCESS for identifying HAZARDS associated with a MEDICAL DEVICE, estimating and
evaluating the associated RISKS, controlling these RISKS, and monitoring the effectiveness of
the controls. This PROCESS shall include the following elements:

- RISK ANALYSIS;

- RISK EVALUATION;

- RISK CONTROL;

- production and POST-PRODUCTION information.

Where a documented product realization PROCESS exists, such as that described in Clause 7
of ISO 13485:2003 [1]1, it shall incorporate the appropriate parts of the RISK MANAGEMENT
PROCESS.

NOTE 1 A documented quality management system PROCESS can be used to deal with SAFETY in a
systematic manner, in particular to enable the early identification of HAZARDS and HAZARDOUS SITUATIONS
in complex MEDICAL DEVICES and systems.

—————————
1) Figures in square brackets refer to the Bibliography.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

TR 80002-1 © IEC:2009(E) – 9 –

NOTE 2 A schematic representation of the RISK MANAGEMENT PROCESS is shown in Figure 1. Depending
on the specific LIFE-CYCLE phase, individual elements of RISK MANAGEMENT can have varying emphasis.
Also, RISK MANAGEMENT activities can be performed iteratively or in multiple steps as appropriate to the
MEDICAL DEVICE. Annex B contains a more detailed overview of the steps in the RISK MANAGEMENT
PROCESS.

Compliance is checked by inspection of appropriate documents.

R
is

k
as

se
ss

m
en

t

Risk analysis

• Intended use and
identification of
characteristics related to the
safety of the medical device

• Identification of hazards
• Estimation of the risk(s) for

each hazardous situation

Risk evaluation

Risk control

• Risk control option analysis
• Implementation of risk

control measure(s)
• Residual risk evaluation
• Risk/benefit analysis
• Risks arising from risk

control measures
• Completeness of risk control

Evaluation of overall residual
risk acceptability

Risk management report

R
is

k
m

an
ag

em
en

t

Production and post-production
information

IEC 1836/09

Figure 1 – A schematic representation of the RISK MANAGEMENT PROCESS

SAFETY is a property of the SYSTEM (in this case the whole MEDICAL DEVICE), which can include
software. RISK MANAGEMENT should be performed on the SYSTEM comprising the software and
its whole hardware environment. Software RISK MANAGEMENT activities should not be
conducted in isolation from the SYSTEM.

While software aspects of RISK MANAGEMENT can not be effectively performed in isolation from
overall MEDICAL DEVICE RISK MANAGEMENT, there are activities that may be best performed by
software engineers as an integral part of the software LIFE-CYCLE. There are also elements of
software that require more focus and different explanation than that provided in
ISO 14971:2007 for overall MEDICAL DEVICE RISK MANAGEMENT. It is important to stress that
even the software aspects of RISK MANAGEMENT need to focus on the MEDICAL DEVICE RISK in
order to be effective.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

 – 10 – TR 80002-1 © IEC:2009(E)

NOTE 1 Software aspects of RISK MANAGEMENT can not be effectively performed in isolation from overall MEDICAL
DEVICE RISK MANAGEMENT because of the interdependence of hardware failures, software failures, and hardware
and software RISK CONTROL measures.

NOTE 2 For instance all software failures are systematic not random (as many types of hardware
failures/breakdowns are) and their probability can not be accurately estimated. Therefore, the way in which the
probability component of RISK is applied to software is quite different. See 4.4.3.

There are many opportunities for software engineers to contribute to the overall SAFETY of the
MEDICAL DEVICE during the early stages of MEDICAL DEVICE design. The role of software in the
SAFETY of the MEDICAL DEVICE should be considered before the SYSTEM design is finalised.

By participating in the MEDICAL DEVICE design PROCESS, the software engineer can contribute
to SAFETY-related decisions concerning software-related RISKS as the design evolves. Such
decisions should include but not be limited to:

• the provision of adequate hardware resources to support the software;

• the partitioning of functions between hardware and software;

• the intended use of the whole MEDICAL DEVICE and the intended use of the software user
interfaces;

• the avoidance of unnecessarily complex software.

3.1.2 Iteration

Typical software development LIFE-CYCLES often use iteration. The use of iteration allows:

• investigation of the feasibility of different software designs;

• development of different SOFTWARE ITEMS at different times;

• staged delivery of different VERSIONS of the software;

• correction of errors made during the software development PROCESS.

IEC 62304:2006 requires iteration of RISK MANAGEMENT activities and coordination with SYSTEM
design activities throughout the software LIFE-CYCLE. For example, during software
development, Subclause 5.2.4 of IEC 62304:2006 requires the re-evaluation of the MEDICAL
DEVICE RISK ASSESSMENT when software requirements are established. This re-evaluation may
cause an update to SYSTEM requirement specifications and the MEDICAL DEVICE RISK
ASSESSMENT. RISK EVALUATION should be repeated at all stages from requirements via
ARCHITECTURE and design to the implementation of software.

ISO 14971 does not prescribe a design and development PROCESS, and it generally only
requires RISK MANAGEMENT steps to be done before and after (not during) the implementation
of the design (including RISK CONTROL measures). For example, when a RISK CONTROL
measure has been implemented, ISO 14971 requires that it be reviewed to ensure that it has
not caused any further HAZARDS and HAZARDOUS SITUATIONS. This should not be interpreted as
an instruction to perform this review only after the implementation is complete—it is
advantageous to address any further HAZARDS as soon as they become apparent. This implies
iteration within the implementation of the RISK CONTROL measure.

It is important that all DELIVERABLES are kept consistent at all times. Iteration is a threat to the
consistency of DELIVERABLES. It is therefore important that rigorous configuration management
be used to ensure that all effects of a change are identified and all relevant DELIVERABLES are
updated after a change. This is particularly important if software is involved, since software
can be changed rapidly and an apparently small change can have unexpected side effects. All
information related to the software needs to be up to date in order to avoid miscommunication
between engineers. Proposals for software changes are examined for side-effects, especially
side-effects which affect SAFETY. This may lead to repetition of parts of the RISK MANAGEMENT
PROCESS.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

TR 80002-1 © IEC:2009(E) – 11 –

3.1.3 Pro-active or reactive design approach to SAFETY

RISK MANAGEMENT should begin early with substantial input to the MEDICAL DEVICE
specification, taking SAFETY into consideration in early design phases, i.e. a pro-active design
approach is preferable to a reactive design approach. With a pro-active approach, SAFETY is
considered along with other customer needs and captured as early SAFETY requirements.
While a reactive approach is sometimes unavoidable (for example when a legacy product is
updated), the proactive approach is usually the most effective, quickest and cheapest way to
achieve a safe MEDICAL DEVICE.

The advantages of a pro-active SAFETY design are:

– from the outset the SYSTEM specification not only includes what the MEDICAL DEVICE should
do but also identifies the SYSTEM behaviours that should be avoided in order to reduce the
RISK;

– from the outset a SYSTEM ARCHITECTURE can be planned that can be demonstrated to
provide the desired features while avoiding or preventing unsafe states;

– as the ARCHITECTURE is elaborated into a full design, RISK CONTROL measures can be
developed while avoiding rework;

– the choice of SAFETY approaches and RISK CONTROL measures can be made early (for
example, inherent SAFETY by design can be maximized and information for SAFETY
minimized).

3.1.4 Characteristics of safe SYSTEMS incorporating software

Highly desirable characteristics of safe SYSTEMS include:

– the use of simple hardware SAFETY mechanisms to avoid excessive demands on SAFETY-
RELATED SOFTWARE ITEMS;

– the use of only very simple SAFETY-RELATED SOFTWARE ITEMS;
– the distribution of SAFETY-RELATED SOFTWARE ITEMS between a number of independent

processors;
– sufficient hardware to run all SAFETY-RELATED SOFTWARE when needed and without

contention;
– the use of a deterministic design of software timing;
– the appropriate handling of failure conditions, for example

• warning the user of failures and to allow opportunities for informed intervention;

• providing reduced functionality in failure conditions;

• shutting down safely when possible in failure conditions;

• recovering quickly from failures;
– the means of preventing software code from being modified in its execution environment

either through self-modification or as the result of data input;
– the means of detecting and/or preventing corruption of SAFETY-related data.

3.2 Management responsibilities

Text of ISO 14971:2007

3.2 Management responsibilities

TOP MANAGEMENT shall provide evidence of its commitment to the RISK MANAGEMENT PROCESS
by:
- ensuring the provision of adequate resources
and
- ensuring the assignment of qualified personnel (see 3.3) for RISK MANAGEMENT.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

 – 12 – TR 80002-1 © IEC:2009(E)

TOP MANAGEMENT shall:

- define and document the policy for determining criteria for RISK acceptability; this policy
shall ensure that criteria are based upon applicable national or regional regulations and
relevant International Standards, and take into account available information such as the
generally accepted state of the art and known stakeholder concerns;

- review the suitability of the RISK MANAGEMENT PROCESS at planned intervals to ensure
continuing effectiveness of the RISK MANAGEMENT PROCESS and document any decisions
and actions taken; if the MANUFACTURER has a quality management system in place, this
review may be part of the quality management system review.

NOTE The documents can be incorporated within the documents produced by the MANUFACTURER’S
quality management system and these documents can be referenced in the RISK MANAGEMENT FILE.

Compliance is checked by inspection of the appropriate documents.

Both ISO 14971:2007 and IEC 62304:2006 assume that a quality management system is in place.
The RISK MANAGEMENT requirements for TOP MANAGEMENT are listed in Subclause 3.2 of
ISO 14971:2007.

NOTE Subclause 3.1 of ISO 14971:2007 states that RISK MANAGEMENT can be an integral part of a quality
management system and Subclause 4.1 of IEC 62304:2006 states that the demonstration of the MANUFACTURER’S
ability to consistently meet customer requirements and applicable regulatory requirements can be by the use of a
quality management system that complies with ISO 13485 or a quality management system required by national
regulation. IEC 62304:2006 also provides guidance on the provisions of Subclause 4.1 in Annex B.4, stating that it
is necessary to establish RISK MANAGEMENT as an integral part of a quality management system as an overall
framework for the application of appropriate software engineering methods and techniques.

TOP MANAGEMENT is responsible for putting in place the necessary organizational structure,
adequate resources, accountability, and training (see 3.3) for an effective RISK MANAGEMENT
PROCESS as well as for the safe design and maintenance of MEDICAL DEVICE SOFTWARE.

A MANUFACTURER may consider outsourcing software development or maintenance PROCESS
activities (e.g. design, implementation, testing, or maintenance). In these situations, TOP
MANAGEMENT is still fully responsible for ensuring that appropriate RISK MANAGEMENT activities
occur for outsourced software development or maintenance PROCESSES activities and also
ensuring that RISK CONTROL measures are appropriately applied.

When software development is outsourced, MANUFACTURERS should ensure by suitable
contractual agreements that they will have sufficient control of the software and its design to
ensure the performance of all RISK MANAGEMENT required by ISO 14971, during the whole LIFE-
CYCLE of the MEDICAL DEVICE, including the correction of software ANOMALIES after the software
has been released.

The MANUFACTURER should consider setting performance requirements on suppliers (see
Subclause 7.4 of ISO 13485 [1] for supplier control), such as requiring the supplier to
demonstrate:
– effective RISK MANAGEMENT by compliance to ISO 14971;
– effective software engineering practices by compliance to IEC 62304;
– ability to provide MEDICAL DEVICE SOFTWARE that consistently meets customer requirements

and applicable regulatory requirements.

If there are RISK CONTROL measures applied to outsourced PROCESSES or products, the RISK
CONTROL measures and their importance should be documented and clearly communicated to
the supplier within a contractual agreement.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

TR 80002-1 © IEC:2009(E) – 13 –

3.3 Qualification of personnel

3.3.1 General

Text of ISO 14971:2007

3.3 Qualification of personnel

Persons performing RISK MANAGEMENT tasks shall have the knowledge and experience
appropriate to the tasks assigned to them. These shall include, where appropriate, knowledge
and experience of the particular MEDICAL DEVICE (or similar MEDICAL DEVICES) and its use, the
technologies involved or RISK MANAGEMENT techniques. Appropriate qualification RECORDS
shall be maintained.

NOTE RISK MANAGEMENT tasks can be performed by representatives of several functions, each
contributing their specialist knowledge.

Compliance is checked by inspection of the appropriate RECORDS.

Team members involved in the development and maintenance of the SOFTWARE SYSTEM
should have the knowledge and experience appropriate to the TASKS assigned to them. It is
fundamental that the person assigned to TASKS with RISK MANAGEMENT implications has the
required knowledge of RISK MANAGEMENT. The involvement of a multidisciplinary team,
including clinical experts (such as clinical support and technical service experts, and experts
on other relevant subjects), software engineers, SYSTEM designers, experts on
usability/human factors engineering, and domain experts, and the degree and type of their
interaction with the software engineering and test staff should also be considered with respect
to RISK MANAGEMENT.

This may require the development of a training program for the individuals to ensure full
understanding of the required activities.

Also, the qualification of the member in the RISK MANAGEMENT team with respect to software
should be considered and may require special training.

The following subclauses should provide an overview of the field of required knowledge which
should be considered.

3.3.2 INTENDED USE/domain knowledge

At all stages of the design of a MEDICAL DEVICE, it is important to deploy knowledge of the
INTENDED USE. This is particularly important both for designers of software and for staff
carrying out RISK MANAGEMENT of software. The complex behaviour of software can easily
contribute to misuse or to confusion of the user, leading to previously unforeseen HAZARDS
and HAZARDOUS SITUATIONS. A thorough appreciation of clinical practice will allow RISK
managers to identify HAZARDS and HAZARDOUS SITUATIONS, and allow software engineers to
avoid HAZARDS and HAZARDOUS SITUATIONS or to design RISK CONTROL measures.

MANUFACTURERS should ensure that clinical experts (such as clinical support and technical
service experts, and experts on other relevant subjects) are available to participate in, or at
least advise on, both the design activities and the RISK MANAGEMENT activities.

In addition, MANUFACTURERS should consider training software engineers and RISK managers
in the clinical use of the MEDICAL DEVICE.

3.3.3 Programming experience and attitude

Experienced software developers and testers learn to be realistic about the difficulty of
discovering all software defects during testing, and hence the density of software defects

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

 – 14 – TR 80002-1 © IEC:2009(E)

remaining after testing. It is important to include experienced staff in the software
development team and to give them appropriate authority to mentor, oversee and challenge
less experienced staff.

It is particularly important to assign experienced staff to the following software TASKS:

– identification of the ways in which software can fail;
– analysis of RISKS associated with software failure;
– identification of RISK CONTROL measures;
– analysis of post-release PROBLEM REPORTS;
– design and implementation of changes, especially post-release.

In all these TASKS, experience will lead to an appreciation of the sort of things that can go
wrong with software and with software development PROCESSES, and an awareness of the
difficulties of making a change while maintaining the integrity of a software design.

3.4 RISK MANAGEMENT plan

3.4.1 General

Text of ISO 14971:2007

3.4 RISK MANAGEMENT plan

RISK MANAGEMENT activities shall be planned. Therefore, for the particular MEDICAL
DEVICE being considered, the MANUFACTURER shall establish and document a RISK
MANAGEMENT plan in accordance with the RISK MANAGEMENT PROCESS. The RISK
MANAGEMENT plan shall be part of the RISK MANAGEMENT FILE.

This plan shall include at least the following:

a) the scope of the planned RISK MANAGEMENT activities, identifying and describing the

MEDICAL DEVICE and the LIFE-CYCLE phases for which each element of the plan is
applicable;

b) assignment of responsibilities and authorities;

c) requirements for review of RISK MANAGEMENT activities;

d) criteria for RISK acceptability, based on the MANUFACTURER’S policy for determining

acceptable RISK, including criteria for accepting RISKS when the probability of occurrence
of HARM cannot be estimated;

e) VERIFICATION activities;

f) activities related to collection and review of relevant production and POST-PRODUCTION

information.

NOTE 1 Refer to Annex F for guidance on developing a RISK MANAGEMENT plan.

NOTE 2 Not all parts of the plan need to be created at the same time. The plan or parts of it can be developed over
time.

NOTE 3 The criteria for RISK acceptability are essential for the ultimate effectiveness of the RISK MANAGEMENT
PROCESS. For each RISK MANAGEMENT plan the MANUFACTURER should choose appropriate RISK acceptability criteria.

Options could include, among others:

- indicating in a matrix, such as Figures D.4 and D.5, which combinations of probability of HARM and SEVERITY of

HARM are acceptable or unacceptable;

- further subdividing the matrix (e.g. negligible, acceptable with RISK minimization) and requiring that RISKS first be

made as low as reasonably practicable before determining that they are acceptable (see D.8).

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

TR 80002-1 © IEC:2009(E) – 15 –

Whichever option is chosen, it should be determined according to the MANUFACTURER’S policy for determining criteria
for RISK acceptability and thus be based upon applicable national or regional regulations and relevant International
Standards, and take into account available information such as the generally accepted state of the art and known
stakeholder concerns (see 3.2). Refer to D.4 for guidance on establishing such criteria.

If the plan changes during the LIFE-CYCLE of the MEDICAL DEVICE, a RECORD of the changes
shall be maintained in the RISK MANAGEMENT FILE.

Compliance is checked by inspection of the RISK MANAGEMENT FILE.

The RISK MANAGEMENT plan should address the fact that software is part of the MEDICAL DEVICE
by including:
– a description of the MEDICAL DEVICE including what functionality of the MEDICAL DEVICE will

be implemented in software;
– a statement that software will be developed according to IEC 62304;
– a reference to software development aspects unique to software RISK MANAGEMENT (see

Note);
– the RISK acceptance criteria for software-caused or software-controlled RISKS if they differ

from acceptance criteria for other components of the MEDICAL DEVICE.

NOTE A reference to the software development plan may be the simplest way to address the inclusion of software
development aspects unique to software RISK MANAGEMENT. See also 3.4.2 and 3.4.3 which discuss the relationship
between the RISK MANAGEMENT plan and the software development plan and also specific RISK-related topics of the
software development plan according to IEC 62304.

One reason that RISK acceptance criteria for software-caused or software-controlled RISKS
might differ from acceptance criteria for other components is that the probability of HARM
cannot be estimated. In this case the RISK acceptance criteria should be based on the
SEVERITY of HARM. (See 4.4.3 for a discussion of probability for software caused HARM). If it
can be concluded that the HAZARD is of little practical consequence, the RISK can be judged to
be acceptable and no RISK CONTROL measures are necessary. However, for significant
HAZARDS, that is, HAZARDS which could inflict HARM of high SEVERITY, no level of exposure can
be identified that corresponds to a RISK so low that the RISK is acceptable. In this case RISK
CONTROL measures need to be implemented.

RISK acceptance criteria for RESIDUAL RISK where probability cannot be estimated should take
into account the RISK CONTROL measures that have been implemented and the effectiveness of
those RISK CONTROL measures in reducing the probability of occurrence of HARM. RISK
CONTROL measures should be a combination of all reasonable practicable measures, fulfil
applicable standards and regulations, and be state of the art (see Annex D.4 of
ISO 14971:2007).

When planning the activities related to collection and review of relevant production and POST-
PRODUCTION information the following specific aspects for software should be considered:
– If SOFTWARE OF UNKNOWN PROVENANCE (SOUP) is used, then actively monitoring and

evaluating publicly available ANOMALY lists and information about the SOUP field
performance should be planned. Where possible, this should be supported by a
contractual agreement with the SOUP supplier at the time of SOUP acquisition. If the users
of the MEDICAL DEVICE may (intentionally or not) modify the SOUP of the MEDICAL DEVICE on
their own (e.g. SOUP patches or updates), then special care should be taken in monitoring
the provision of new SOUP VERSIONS for the market. See also Clause 9 regarding SOUP and
POST-PRODUCTION monitoring.

– The MANUFACTURER should make it possible for the originator of a complaint to identify and
report the software VERSION.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

 – 16 – TR 80002-1 © IEC:2009(E)

3.4.2 Relationship between RISK MANAGEMENT plan and software development plan

The requirements of ISO 14971 for a RISK MANAGEMENT plan and the requirements of
IEC 62304 for a software development plan should not be taken as requiring specific
documents with specific titles. Planning elements may be embodied in any documents to suit
the MANUFACTURER’S quality management system, provided that:

– the combination of the planning documents satisfy the requirements of both standards in a
verifiable manner;

– all plans are consistent with each other;
– all plans are available for use in a timely manner;
– all plans are kept up to date to reflect changing circumstances.

3.4.3 Specific RISK-related topics of the software development plan according
to IEC 62304

The software development plan should ensure that the software development PROCESS,
standards, methods, and tools associated with the development of software (described in the
software development plan according to Clause 5 of IEC 62304:2006) are effective RISK
CONTROL measures (see 6.2.2.6 for a discussion of PROCESS as a RISK CONTROL measure). This may
be done by provision of evidence by other organisations, suppliers, and other projects within
the organization. If not known, plan for and verify effectiveness within the project.

When establishing the MEDICAL DEVICE RISK MANAGEMENT PROCESS, aspects unique to software
RISK MANAGEMENT should be considered, such as safe coding standards, VERIFICATION
methods (e.g. formal proofs, peer reviews, walk-throughs, simulations, etc), and use of
syntactic and logic checkers. If such aspects are considered RISK CONTROL measures, then
they would also be subject to VERIFICATION (see Table B.2 for examples of verifying RISK
CONTROL measures).

Software RISK MANAGEMENT activities should be addressed for each stage of MEDICAL DEVICE
development in plans, PROCEDURES, and training, as appropriate.

3.5 RISK MANAGEMENT FILE

Text of ISO 14971:2007

3.5 RISK MANAGEMENT FILE

For the particular MEDICAL DEVICE being considered, the MANUFACTURER shall establish and
maintain a RISK MANAGEMENT FILE. In addition to the requirements of other clauses of this
International Standard, the RISK MANAGEMENT FILE shall provide traceability for each identified
HAZARD to:

- the RISK ANALYSIS;

- the RISK EVALUATION;

- the implementation and VERIFICATION of the RISK CONTROL measures;

- the assessment of the acceptability of any RESIDUAL RISK(S).

NOTE 1 The RECORDS and other documents that make up the RISK MANAGEMENT FILE can form part of other
documents and files required, for example, by a MANUFACTURER’S quality management system. The RISK MANAGEMENT
FILE need not physically contain all the RECORDS and other documents; however, it should contain at least references
or pointers to all required documentation. The MANUFACTURER should be able to assemble the information referenced
in the RISK MANAGEMENT FILE in a timely fashion.

NOTE 2 The RISK MANAGEMENT FILE can be in any form or type of medium.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

TR 80002-1 © IEC:2009(E) – 17 –

The software PROCESS should set up a system that makes this TRACEABILITY possible, starting
from the software-related HAZARDS and the software RISK CONTROL measures and tracing their
implementation to the corresponding SAFETY-related software requirements and the SOFTWARE
ITEMS that satisfy those requirements.

All of the above should be traceable to their VERIFICATION (see Subclause 7.3.3 of
IEC 62304:2006).

Because software may change frequently during development, and because it may be
released in different VERSIONS, that part of the RISK MANAGEMENT FILE relating to software may
also be subject to change and multiple VERSIONS.

Table 1 lists IEC 62304:2006 requirements for documentation to be included in the RISK
MANAGEMENT FILE in addition to ISO 14971:2007 requirements.

Table 1 – Requirements for documentation to be included in the RISK MANAGEMENT FILE
in addition to ISO 14971:2007 requirements

IEC 62304:2006
Subclause RISK MANAGEMENT FILE documentation

4.3c) Software SAFETY class assigned to each SOFTWARE SYSTEM

4.3f) Rationale for using a lower software SAFETY class (than the SOFTWARE
SYSTEM) for a SOFTWARE ITEM in the SOFTWARE SYSTEM which does not
implement SAFETY-related functions

7.1.4 Potential causes of the SOFTWARE ITEM contributing to a HAZARDOUS
SITUATION

7.1.5 Sequences of events that could result in a HAZARDOUS SITUATION that are
identified in Subclause 7.1.2 of IEC 62304:2006

7.2.1 RISK CONTROL measures defined for each potential cause of the SOFTWARE
ITEM contributing to a HAZARDOUS SITUATION

7.3.2 If a RISK CONTROL measure is implemented as SOFTWARE ITEM, the
MANUFACTURER is to evaluate the RISK CONTROL measure to identify and
document any new sequences of events that could result in a HAZARDOUS
SITUATION

9.5 The MANUFACTURER is to maintain RECORDS of PROBLEM REPORTS and their
resolution including their VERIFICATION. The MANUFACTURER is to update the
RISK MANAGEMENT FILE as appropriate

4 RISK ANALYSIS

4.1 RISK ANALYSIS PROCESS

Text of ISO 14971:2007

4 RISK ANALYSIS

4.1 RISK ANALYSIS PROCESS

RISK ANALYSIS shall be performed for the particular MEDICAL DEVICE as described in 4.2 to 4.4.
The implementation of the planned RISK ANALYSIS activities and the results of the RISK ANALYSIS
shall be recorded in the RISK MANAGEMENT FILE.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

 – 18 – TR 80002-1 © IEC:2009(E)

NOTE 1 If a RISK ANALYSIS, or other relevant information, is available for a similar MEDICAL DEVICE, that analysis or
information can be used as a starting point for the new analysis. The degree of relevance depends on the differences
between the devices and whether these introduce new HAZARDS or significant differences in outputs, characteristics,
performance, or results. The extent of use of an existing analysis is also based on a systematic evaluation of the
effects the changes have on the development of HAZARDOUS SITUATIONS.

NOTE 2 Some RISK ANALYSIS techniques are described in Annex G.

NOTE 3 Additional guidance on RISK ANALYSIS techniques for IN VITRO DIAGNOSTIC MEDICAL DEVICES is given in
Annex H.

NOTE 4 Additional guidance on RISK ANALYSIS techniques for toxicological HAZARDS is given in Annex I.

In addition to the RECORDS required in 4.2 to 4.4, the documentation of the conduct and results
of the RISK ANALYSIS shall include at least the following:

a) a description and identification of the MEDICAL DEVICE that was analyzed;

b) identification of the person(s) and organization who carried out the RISK ANALYSIS;

c) scope and date of the RISK ANALYSIS.

NOTE 5 The scope of the RISK ANALYSIS can be very broad (as for the development of a new device with which a
MANUFACTURER has little or no experience) or the scope can be limited (as for analyzing the impact of a change to an
existing device for which much information already exists in the MANUFACTURER’S files).

Compliance is checked by inspection of the RISK MANAGEMENT FILE.

As described in ISO 14971:2007, RISK ANALYSIS is a term used to encompass three distinct
activities;
– identification of INTENDED USE,
– identification of known or foreseeable HAZARDS (and their causes), and
– estimating the RISK of each HAZARD and HAZARDOUS SITUATION.

It is essential to recognize that RISK ANALYSIS is performed as an integral part of the entire
software development PROCESS—not as one or two discrete events—for it to be effective
because HAZARD and failure mode information accrue over the software development LIFE-
CYCLE PROCESS and need to be considered at each stage of design.

Since it is very difficult to estimate the probability of software ANOMALIES that could contribute
to HAZARDOUS SITUATIONS, the focus of software aspects of RISK ANALYSIS is on identification of
potential software functionality and ANOMALIES that could result in HAZARDOUS SITUATIONS—not
on estimating probability. See 4.4.3 for more details on estimating probability.

The SEVERITY of the worst case HARM for which software is a contributing factor is a primary
input in determining the level of rigour of software development PROCESSES (see Subclause
4.3 of IEC 62304:2006). The information provided in 4.2, 4.3, and 4.4 is intended to help
identify software-specific aspects of an effective RISK MANAGEMENT PROCESS. In addition,
software aspects of the RISK ANALYSIS should be identifiable in the resulting documentation
and should include both software used to implement RISK CONTROL measures for hardware
failures and software causes for HAZARDS and their associated RISK CONTROL measures.

4.2 INTENDED USE and identification of characteristics related to the SAFETY of the
MEDICAL DEVICE

4.2.1 General

Text of ISO 14971:2007

4.2 INTENDED USE and identification of characteristics related to the SAFETY of the
MEDICAL DEVICE

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

TR 80002-1 © IEC:2009(E) – 19 –

For the particular MEDICAL DEVICE being considered, the MANUFACTURER shall document the
INTENDED USE and reasonably foreseeable misuse. The MANUFACTURER shall identify and
document those qualitative and quantitative characteristics that could affect the SAFETY of the
MEDICAL DEVICE and, where appropriate, their defined limits. This documentation shall be
maintained in the RISK MANAGEMENT FILE.

NOTE 1 In this context, misuse is intended to mean incorrect or improper use of the MEDICAL DEVICE.

NOTE 2 Annex C contains questions such as those relating to use that can serve as a useful guide in identifying
MEDICAL DEVICE characteristics that could have an impact on SAFETY.

Compliance is checked by inspection of the RISK MANAGEMENT FILE.

While each MEDICAL DEVICE has an INTENDED USE, the potential for misuse—intentional or
otherwise—should also be considered. While this is not a software-specific concern, the use
of software may lead to an increased RISK of misuse because:
– the MEDICAL DEVICE’s behaviour is more complex and therefore more difficult to master or

understand;
– the user may become over-reliant on software, not understanding its limitations;
– the MEDICAL DEVICE may be configurable, and the user may be unaware of the current

configuration.
– MEDICAL DEVICES may communicate with MEDICAL and non-MEDICAL DEVICES in a manner

that cannot be anticipated in detail by the MEDICAL DEVICE MANUFACTURER.

The person responsible for producing SYSTEM requirements and the software engineer have a
joint responsibility to RECORD in the RISK MANAGEMENT FILE the INTENDED USE of the SYSTEM
including its software, together with all SYSTEM and software requirements that relate to
SAFETY and safe use. The software engineer is specifically responsible for identifying aspects
of INTENDED USE that are too subtle to be apparent at the SYSTEM level.

4.2.2 User interface

Software makes it possible to design flexible user interfaces, which may affect users’
behaviour, leading to new forms of reasonably foreseeable misuse. Common misuses arise
from misunderstanding of an over-complex user interface and over-reliance on software to
avoid errors and unsafe states. It is important to anticipate such misuse and to change the
design to avoid them as far as possible.

This includes implementation of multi-lingual labelling, especially when such labelling is a
RISK CONTROL measure. Special care should be taken of:
a) different need for memory size for different languages;
b) use of different character sets;
c) use of characters instead of symbols;
d) use of different units which may require additional scaling of numerical results;
e) date formatting and numerical punctuation;
f) different layout requirements for different languages and/or character sets;
g) support of validation.

See IEC 62366 [5] for a usability PROCESS complementary to ISO 14971.

4.2.3 MEDICAL DEVICE interconnection

The use of software in MEDICAL DEVICES makes possible a range of interconnections and
intercommunication between MEDICAL and non-MEDICAL DEVICES. Such connections and
communications are likely to give rise to new uses (and misuses) of the SYSTEM comprising

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

 – 20 – TR 80002-1 © IEC:2009(E)

the MEDICAL DEVICE and the interconnected devices. While it is easy to foresee that such new
uses and misuses may occur, it is not easy for the MEDICAL DEVICE MANUFACTURER to identify
all such uses and misuses if the interconnections and intercommunication are unrestricted.

It is therefore important for MANUFACTURERS to specify a limited set of INTENDED USES for the
MEDICAL DEVICE’S communication interfaces and to design the interfaces as far as possible to
limit interconnections and communications to those which are safe.

For example, the software may check treatment data that is entered using the built-in
interface of a MEDICAL DEVICE for consistency and reasonableness based on the identity of the
user and patient and the context of the data preparation. If data is prepared elsewhere and
imported into the MEDICAL DEVICE using a network connection, it may not be possible to apply
the same checks. In such cases, the MANUFACTURER may consider making the software
checks available to the network user as a network application, and/or restricting the data
import to trusted sources, and writing a comprehensive manual for those responsible for
network connections in a clinical environment.

IEC 80001-1 [6] covers the integration of MEDICAL DEVICES into IT networks in a clinical
environment. In particular, it delineates the responsibilities of the MANUFACTURER and the
person who integrates a MEDICAL DEVICE into the IT network.

4.3 Identification of HAZARDS

Text of ISO 14971:2007

4.3 Identification of HAZARDS

The MANUFACTURER shall compile documentation on known and foreseeable HAZARDS
associated with the MEDICAL DEVICE in both normal and fault conditions.

This documentation shall be maintained in the RISK MANAGEMENT FILE.

NOTE The examples of possible HAZARDS in E.2 and H.2.4 can be used as guidance by the MANUFACTURER to
initiate HAZARD identification.

Compliance is checked by inspection of the RISK MANAGEMENT FILE.

The objective of HAZARD identification is to permit the analysis of all foreseeable HAZARDS, and
the design and implementation of effective RISK CONTROL measures.

Unlike heat, electrical energy or suspended masses, software is not itself a HAZARD (a
potential source of HARM); contact with software cannot cause injury. However, software may
cause a person to be exposed to a HAZARD, in other words it may contribute to a HAZARDOUS
SITUATION. Software failures (of any kind) often facilitate the transformation of a HAZARD into a
HAZARDOUS SITUATION.

Thus, although software rarely introduces new HAZARDS, it often changes the HAZARDOUS
SITUATION. More importantly for the MANUFACTURER, it may shift the responsibility for
avoidance of HAZARDOUS SITUATIONS from user to the MANUFACTURER.

For example, a scalpel presents an obvious cutting HAZARD. However, the MANUFACTURER
traditionally took no responsibility for this HAZARD beyond ergonomic design, as the HAZARD
was assumed to be entirely in the control of the surgeon. If the scalpel is part of a remote
surgery SYSTEM, the same HAZARD exists, but responsibility for avoiding the cutting HAZARD is
now shared by the MANUFACTURER who supplies the software that controls the scalpel.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

TR 80002-1 © IEC:2009(E) – 21 –

This means that RISK CONTROL of some HAZARDS which was, in the absence of software, solely
dependent on the professional use of a MEDICAL DEVICE, is now shifted to software RISK
MANAGEMENT by the MANUFACTURER.

An important case is the HAZARD of mistreatment due to the mishandling of data. This was
always a HAZARD, but when the data was handled on the clinician’s desk, it was not the
MANUFACTURER’S responsibility. Many MEDICAL DEVICES now use software to generate, store,
manipulate or use data; this makes the HAZARD partly the MANUFACTURER’S responsibility.

Software may contribute to a HAZARDOUS SITUATION in several ways, including some of the
following (see also Annex B):
– the software may correctly implement an unsafe SYSTEM requirement, leading to behaviour

whose hazardous nature is not appreciated until actual HARM occurs;
– the software specification may incorrectly implement a SYSTEM requirement, leading to

undesired behaviour that is correct according to the software specification;
– the software design and implementation may be faulty, leading to behaviour that is

contrary to the software specification. Obvious faults might arise from misunderstanding of
the software specification, and errors converting the specification into code. Less obvious
faults could arise from unforeseen interactions between SOFTWARE ITEMS and between the
software and its infrastructure, including hardware and the operating SYSTEM.

In a MEDICAL DEVICE incorporating software, careful and comprehensive HAZARD identification
may lead (in later stages of the RISK MANAGEMENT PROCESS) to the following important
outcomes:
– hardware RISK CONTROL measures that will prevent software from causing HARM;
– the removal of a potentially harmful software function from the software specification;
– RISK CONTROL measures that use software to prevent HARM (see Subclause 5.2.3 of

IEC 62304:2006);
– identification of the parts of the software that must be implemented with low defect density

and parts of the software specification which must be targeted for special testing
(Subclause 4.3 of IEC 62304:2006);

– identification of higher SAFETY class SOFTWARE ITEMS that must be segregated from other
SOFTWARE ITEMS (in a lower software SAFETY class) to prevent HARM arising from
unexpected side-effects (see Subclauses 4.3 and 5.3.5 of IEC 62304:2006). See further
discussion of this in 6.2.2.2.4.

To adequately identify HAZARDS, clinical use of the MEDICAL DEVICE must be well understood.
Also, software presents the particular challenge of complexity, including possible complex
user interfaces. Therefore, software HAZARD identification cannot be done in isolation. It
should be done at the SYSTEM level by a multidisciplinary team including clinical experts (such
as clinical support and technical service experts), software engineers, SYSTEM designers, and
experts on usability/human factors engineering (see also 3.3).

HAZARD identification should consider HARM that could result from the nature of the MEDICAL
DEVICE (for example cutting, irradiating or electrocution of the patient) and also additional
HAZARDS related to the use of software. The latter could include, for example:
– provision of misinformation to a clinician or patient;
– misidentification of the patient (in cases where the MEDICAL DEVICE stores patient details or

prescriptions);
– delay or denial of treatment caused by software ANOMALY.

NOTE For many MEDICAL DEVICES delay or denial of treatment is not considered to HARM a patient.

Identified HAZARDS should include both HAZARDS related to software that is operating in
accordance with its specification and also HAZARDS relating to software ANOMALIES (see also
 6.1).

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

 – 22 – TR 80002-1 © IEC:2009(E)

Often the user interface of the MEDICAL DEVICE is made more complex by software. In
particular a MEDICAL DEVICE that incorporates software will often handle information. While
this may be justified in terms of benefits to the patient, additional HAZARDS should be
considered relating to incorrect, or incorrectly used, information, for example:
– incorrect data entry;
– user misreading displays;
– user misunderstanding or ignoring alarms;
– overloading of users with excessive data or excessive number of alarms (see

IEC 62366 [5]).

4.4 Estimation of the RISK(S) for each HAZARDOUS SITUATION

4.4.1 General

Text of ISO 14971:2007

4.4 Estimation of the RISK(S) for each HAZARDOUS SITUATION

Reasonably foreseeable sequences or combinations of events that can result in a HAZARDOUS
SITUATION shall be considered and the resulting HAZARDOUS SITUATION(S) shall be recorded.

NOTE 1 To identify HAZARDOUS SITUATIONS not previously recognized, systematic methods covering the specific
situation can be used (see Annex G).

NOTE 2 Examples of HAZARDOUS SITUATIONS are provided in H.2.4.5 and E.4.

NOTE 3 HAZARDOUS SITUATIONS can arise from slips, lapses, and mistakes.

For each identified HAZARDOUS SITUATION, the associated RISK(S) shall be estimated using
available information or data. For HAZARDOUS SITUATIONS for which the probability of the
occurrence of HARM cannot be estimated, the possible consequences shall be listed for use in
RISK EVALUATION and RISK CONTROL. The results of these activities shall be recorded in the RISK
MANAGEMENT FILE.

Any system used for qualitative or quantitative categorization of probability of occurrence of
HARM or SEVERITY of HARM shall be recorded in the RISK MANAGEMENT FILE.

NOTE 4 RISK ESTIMATION incorporates an analysis of the probability of occurrence and the consequences.
Depending on the application, only certain elements of the RISK ESTIMATION PROCESS might need to be considered.
For example, in some instances it will not be necessary to go beyond an initial HAZARD and consequence analysis.
See also D.3.

NOTE 5 RISK ESTIMATION can be quantitative or qualitative. Methods of RISK ESTIMATION, including those resulting
from systematic faults, are described in Annex D. Annex H gives information useful for estimating RISKS for in vitro
diagnostic MEDICAL DEVICES.

NOTE 6 Information or data for estimating RISKS can be obtained, for example, from:

a) published standards;

b) scientific technical data;

c) field data from similar MEDICAL DEVICES already in use, including published reported incidents;

d) usability tests employing typical users;

e) clinical evidence;

f) results of appropriate investigations;

g) expert opinion;

h) external quality assessment schemes.

Compliance is checked by inspection of the RISK MANAGEMENT FILE.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

TR 80002-1 © IEC:2009(E) – 23 –

To estimate software related RISK it is first necessary to identify the HAZARDOUS SITUATIONS
that include software. The software may be either the initiating cause of the sequence of
events leading to a HAZARDOUS SITUATION, or it may be elsewhere in the sequence, as in the
case of software intended to detect a hardware malfunction. The software could include a
SOUP component or the reuse of a previously developed component.

RISK ESTIMATION is based on the probability of HARM and the SEVERITY of HARM from each
identified HAZARDOUS SITUATION. Because it is very difficult to estimate the probability of HARM
arising from a software ANOMALY (see 4.4.3), the probability of a software ANOMALY occurring
must be used with care in estimating the RISK of a HAZARDOUS SITUATION including software
ANOMALY in the sequence of events leading to HARM.

4.4.2 Methods of identification

A variety of methods can be used to identify potential software roles in HAZARDOUS
SITUATIONS. These techniques take different approaches and may be useful at different times
in the software development. No single one of them is the only correct method. See also
Annex G of ISO 14971:2007 for information on some available techniques for RISK ANALYSIS.

Fault tree analysis (FTA) is a traditional top down method (see IEC 61025 [3]) often used
beginning with the MEDICAL DEVICE as a whole. FTA is primarily used to analyze causes of
HARM. It postulates that a HARM occurs and uses Boolean logic to identify the events or
conditions that must be present for the HARM to occur. The events or conditions are analysed
in increasing detail until a point is reached where one or more RISK CONTROL measures can be
identified which would prevent the HARM. FTA can be used to identify the SOFTWARE ITEMS
involved in a sequence of events that results in a HAZARDOUS SITUATION.

Failure modes and effect analysis (FMEA) is a bottom-up approach (see IEC 60812 [2]) that
begins with a component or subsystem (for software this is a SOFTWARE ITEM in IEC 62304),
and poses the question: If this element failed, what would be the consequences?

In view of the difficulty of anticipating which software defects will be present in each
SOFTWARE ITEM, the starting point for FMEA would be to list the safety-related requirements of
each SOFTWARE ITEM and consider the question: If this requirement is not met, what would be
the consequences?

This leads to the identification of SOFTWARE ITEMS whose failure could cause HARM, and
identification of what types of failure need to be prevented.

When identifying sequences or combinations of events that can result in a HAZARDOUS SITUATION, it
is easiest to focus on software directly related to the essential performance of the MEDICAL
DEVICE (e.g. an algorithm that calculates glucose levels in blood) and the specific causes for
related HAZARDS. It is also important to consider software causes that could result in subtle
failure modes and therefore cause one or more MEDICAL DEVICE HAZARDS. Refer to Annex B for
examples of software causes.

NOTE Specific causes are defects in software whose functionality is clearly related to the clinical functionality of the device
and lead to one of the device HAZARDS. An example is a defect in an algorithm for calculating a test result.

While it is difficult to anticipate exactly what may fail in a SOFTWARE ITEM, it is possible to
identify categories of defects, each of which has well-known RISK CONTROL measures. For
example, corruption of data is a class of fault which could be detected and prevented by using
a checksum procedure. See Annex B for examples of software causes with suggested ways of
handling them. MANUFACTURERS should maintain their own lists of categories of software
defects relevant to their own products.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

 – 24 – TR 80002-1 © IEC:2009(E)

4.4.3 Probability

Software ANOMALIES in a particular VERSION of software will be present in all copies of that
software. However, the probability of a software ANOMALY leading to a software failure is very
difficult to estimate, because of the random nature of the inputs to each separate copy of the
software.

No consensus exists for a method of estimating the probability of occurrence of a software
failure. When software is present in a sequence of events leading to a HAZARDOUS SITUATION,
the probability of the software failure occurring cannot be considered in estimating the RISK for
the HAZARDOUS SITUATION. In such cases, considering a worse case probability is appropriate,
and the probability for the software failure occurring should be set to 1. When it is possible to
estimate the probability for the remaining events in the sequence (as it may be if they are not
software) that probability may be used for the probability of the HAZARDOUS SITUATION
occurring (P1 in Figure 1). If this is not possible, the probability of the HAZARDOUS SITUATION
occurring should be set to 1.

Estimates of probability of a HAZARDOUS SITUATION leading to HARM (P2 in Figure 1) generally
require clinical knowledge to distinguish between HAZARDOUS SITUATIONS where clinical
practice would be likely to prevent HARM, and HAZARDOUS SITUATIONS that would be more likely
to cause HARM.

HAZARD

Exposure (P1)

HARM

P2

Probability
of occurrence

of HARM

P1 × P2

RISK

S
eq

ue
nc

e
of

 e
ve

nt
s

HAZARDOUS

SITUATION

SEVERITY of

the HARM

IEC 1837/09
 NOTE P1 is the probability of a HAZARDOUS SITUATION occurring.

 P2 is the probability of a HAZARDOUS SITUATION leading to a HARM.

Figure 1 – Pictorial representation of the relationship of HAZARD, sequence of events,
HAZARDOUS SITUATION and HARM – from ISO 14971:2007 Annex E

In many cases, estimating the probability of occurrence of HARM may not be possible, and the
RISK should be evaluated on the basis of the SEVERITY of the HARM alone. RISK ESTIMATION in
these cases should be focused on the SEVERITY of the HARM resulting from the HAZARDOUS
SITUATION.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

TR 80002-1 © IEC:2009(E) – 25 –

Although it may not be possible to estimate the probability of the occurrence of a software
failure, it is obvious that many RISK CONTROL measures reduce the probability that such a
failure would lead to a HAZARDOUS SITUATION. Consider, for example, memory corruption
resulting from a software ANOMALY. A checksum of the memory could detect the failure and
reduce the probability of a HAZARDOUS SITUATION. The checksum does not guarantee any
possible corruption would be detected. Rather, it would detect the vast majority of such
corruption and thus lower the RISK to an acceptable level. Although the probability of a
HAZARDOUS SITUATION cannot be estimated either before or after the checksum is
implemented, it can be asserted that the probability of a HAZARDOUS SITUATION after the
checksum is in place is lower than it was before implementing the checksum. It is the
responsibility of the MANUFACTURER to demonstrate that the RISK CONTROL measure is effective
in meeting the acceptability criteria for RESIDUAL RISK that was identified in the RISK
MANAGEMENT plan.

In summary, software RISK ESTIMATION should focus primarily on SEVERITY and the relative
probability of HARM if a failure should occur rather than on attempts to estimate the probability
of each possible software failure.

NOTE This helps provide distinctions between HAZARDS of the same SEVERITY to allow greater focus on those with
higher probability of actual HARM.

4.4.4 SEVERITY

The SEVERITY estimate for a software-caused RISK has an impact on the software development
PROCESS to be used. According to IEC 62304 the rigour of the PROCESS depends on the
SEVERITY of the HARM the software might cause.

Whereas it is open to the MANUFACTURER how SEVERITY levels are defined for the purpose of
RISK EVALUATION according to ISO 14971, it is helpful to define these SEVERITY levels such that
there is a relationship to the software SAFETY classification of IEC 62304. Otherwise it might
be necessary to classify the SEVERITY twice, once for RISK EVALUATION needed for the overall
RISK MANAGEMENT PROCESS and in addition for determining the SAFETY class of the software
according to IEC 62304.

5 RISK EVALUATION

Text of ISO 14971:2007

5 RISK EVALUATION

For each identified HAZARDOUS SITUATION, the MANUFACTURER shall decide, using the criteria
defined in the RISK MANAGEMENT plan, if RISK reduction is required. If RISK reduction is not
required, the requirements given in 6.2 to 6.6 do not apply for this HAZARDOUS SITUATION (i.e.,
proceed to 6.7). The results of this RISK EVALUATION shall be recorded in the RISK MANAGEMENT
FILE.

NOTE 1 Guidance for deciding on RISK acceptability is given in D.4.

NOTE 2 Application of relevant standards, as part of the MEDICAL DEVICE design criteria, might constitute RISK
CONTROL activities, thus meeting the requirements given in 6.3 to 6.6.

Compliance is checked by inspection of the RISK MANAGEMENT FILE.

As described in 4.4.3, it is difficult to estimate the probability of software failures. When this
results in the inability to estimate the probability of HARM then RISK should be evaluated on the
basis of the SEVERITY of the HARM alone.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

 – 26 – TR 80002-1 © IEC:2009(E)

6 RISK CONTROL

6.1 RISK reduction

Text of ISO 14971:2007

6 RISK CONTROL

6.1 RISK reduction

When RISK reduction is required, RISK CONTROL activities, as described in 6.2 to 6.7, shall be
performed.

Software aspects of RISK reduction are discussed in 6.2 to 6.7.

6.2 RISK CONTROL option analysis

Text of ISO 14971:2007

6.2 RISK CONTROL option analysis

The MANUFACTURER shall identify RISK CONTROL measure(s) that are appropriate for reducing
the RISK(S) to an acceptable level.

The MANUFACTURER shall use one or more of the following RISK CONTROL options in the priority
order listed:

a) inherent SAFETY by design;

b) protective measures in the MEDICAL DEVICE itself or in the manufacturing PROCESS;

c) information for SAFETY.

NOTE 1 If implementing option b) or c), MANUFACTURERS can follow a PROCESS where reasonably practicable RISK
CONTROL measures are considered and the option providing the appropriate reduction in RISK is chosen before
determining whether the RISK is acceptable.

NOTE 2 RISK CONTROL measures can reduce the SEVERITY of the HARM or reduce the probability of occurrence of
the HARM, or both.

NOTE 3 Many standards address inherent SAFETY, protective measures, and information for SAFETY for MEDICAL
DEVICES. In addition, many other MEDICAL DEVICE standards have integrated elements of the RISK MANAGEMENT
PROCESS (e.g. electromagnetic compatibility, usability, biocompatibility). Relevant standards should be applied as part
of the RISK CONTROL option analysis.

NOTE 4 For RISKS for which the probability of occurrence of HARM cannot be estimated, see D.3.2.3.

NOTE 5 Guidance on information for SAFETY is provided in Annex J.

The RISK CONTROL measures selected shall be recorded in the RISK MANAGEMENT FILE.

If, during RISK CONTROL option analysis, the MANUFACTURER determines that required RISK
reduction is not practicable, the MANUFACTURER shall conduct a RISK/benefit analysis of the
RESIDUAL RISK (proceed to 6.5).

Compliance is checked by inspection of the RISK MANAGEMENT FILE.

6.2.1 Choosing RISK CONTROL options for complex SYSTEMS

6.2.1.1 General

In a complex SYSTEM there may be many sequences of events which can lead to HAZARDOUS
SITUATIONS. It may not be possible or necessary to apply a RISK CONTROL measure to each

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

TR 80002-1 © IEC:2009(E) – 27 –

event in such sequences. It is sufficient to apply RISK CONTROL measures to selected events to
reduce the overall probability of HARM to an acceptable level.

In the following three subclauses, an overview is given how three types of RISK CONTROL
measures can be implemented in software. In addition, it is discussed which events need RISK
CONTROL measures at all (see 6.2.1.5).

6.2.1.2 Inherent SAFETY by design

Inherent SAFETY by design is generally achieved by removing unsafe features of a MEDICAL
DEVICE, or by changing the design to implement a feature in a safer way, i.e. a way that
avoids or minimises HAZARDOUS SITUATIONS. This often has the effect of simplifying the design,
making it easier to implement and easier for the user to operate.

This is particularly true of features implemented in software. There is a temptation in software
SYSTEMS to include all possible customer desires without discrimination. This may result in an
excessive number of ways in which software components can interact, introducing unexpected
HAZARDOUS SITUATIONS. By applying RISK MANAGEMENT early in the development of the MEDICAL
DEVICE and its software, this can be avoided while still satisfying the majority of customers.

In most cases, inherent SAFETY by design, applied to software, will involve:

– eliminating unnecessary features;
– changing the software ARCHITECTURE to avoid sequences of events that lead to HAZARDOUS

SITUATIONS;
– simplifying the user interface to reduce the probability of human errors in use;
– specifying software design rules to avoid software ANOMALIES.

An example of the latter would include:

– using only static memory allocation to avoid software ANOMALIES related to dynamic
memory allocation;

– using a restricted VERSION of a programming language to avoid structures which are likely
to lead to programming errors.

6.2.1.3 Protective measures

Protective measures for a MEDICAL DEVICE that uses software can be implemented in either
hardware or software. The design of a protective measure should demonstrate that the
protective measure is independent of the function to which it is applied. This is relatively easy
to achieve if a software protective measure is applied to hardware or vice-versa.

In choosing protective measures that are implemented in software and applied to software, it
is important to avoid the possibility of multiple failures arising from one cause. If a protective
measure detects and/or prevents a HAZARDOUS SITUATION, the MANUFACTURER should
demonstrate an adequate segregation between the protective measure and software features
that provide essential performance.

For example, software which provides treatment for a patient may run on one processor, while
the software which implements software protective measures runs on a separate processor.

6.2.1.4 Information for SAFETY

The use of software in a MEDICAL DEVICE is likely to lead to more complex behaviour as seen
by the user. This is likely to lead to an increased reliance on information for SAFETY, ranging
from simple on-screen warnings to complex user manuals and defined training courses. The
size and complexity of such written material can be reduced by attention to good user-
interface design (see IEC 62366 [5]).

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

 – 28 – TR 80002-1 © IEC:2009(E)

6.2.1.5 Which events need RISK CONTROL measures?

Many sequences of events can lead to HAZARDOUS SITUATIONS. It may not be possible or
necessary to apply a RISK CONTROL measure to each event in such sequences. It is sufficient
to apply RISK CONTROL measures to carefully selected events to reduce the overall probability
of HARM to an acceptable level.

In deciding which events should be detected, prevented, or made less likely to occur, it is
obviously helpful to map out the sequences of events that could lead to HAZARDOUS
SITUATIONS. While a Fault Tree Analysis (see 4.4.2) does not show sequences of events, it
can be used to identify such sequences. Correct operation of a RISK CONTROL measure would
appear as a FALSE input to an AND gate, leading to the prevention of HARM irrespective of
the other inputs to the AND gate. Figure 2 shows part of an FTA diagram, in which an
incorrect software output (itself the output of a sequence of events), is prevented from
causing injury to a patient by a RISK CONTROL measure which is designed to detect unsafe
conditions and prevent the harmful effects of the output (for example by halting an action).
The incorrect software output can only cause injury to the patient if the RISK CONTROL measure
fails. Note that the sequence of events leading to the incorrect software output does not need
to be explored in detail to ensure that it cannot lead to an injury to the patient.

Figure 2 – FTA showing RISK CONTROL measure which prevents
incorrect software outputs from causing HARM

Obvious points at which RISK CONTROL measures may be applied include:

– inputs to the SOFTWARE SYSTEM as a whole;
– outputs from the SOFTWARE SYSTEM as a whole;
– internal interfaces between software modules.

A RISK CONTROL measure which limits the range of an input to the software can prevent unsafe
outputs. Less obviously, it can also reduce the probability of the input leading to HARM due to
an ANOMALY in the software, because it reduces the probability that the software will operate
in unexpected ways that may not have been tested (see 4.4.3).

Limiting the range of an input to the software can be done using a software or hardware RISK
CONTROL measure. For example:

IEC 1838/09

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

TR 80002-1 © IEC:2009(E) – 29 –

– a software RISK CONTROL measure can check input and reject unsafe or inconsistent
values;

– a hardware RISK CONTROL measure could consist of a locked room to prevent unauthorised
people from inputting data.

A RISK CONTROL measure placed at the output of a MEDICAL DEVICE or its software could check
that the software’s output values are within a safe range and internally consistent and could
prevent HARM if it is not. This could be achieved, for example, by:

– a software RISK CONTROL measure that checks the output values and prevents them from
departing from a safe range;

– a hardware RISK CONTROL measure that limits the energy applied to a patient;
– a RISK CONTROL measure consisting of a combination of a warning label and a hard-wired

STOP switch. This RISK CONTROL measure assumes that a competent operator is able to
detect the HAZARDOUS SITUATION.

In addition to RISK CONTROL measures applied at inputs and outputs of the MEDICAL DEVICE or
its software, RISK CONTROL measures may also be applied to inputs and outputs of software
components. This allows inputs and outputs of smaller parts of the software to be checked,
and HARM prevented.

It may not be possible to specify a single range for a parameter within which the MEDICAL
DEVICE operates safely. However, it may be possible to specify a “safe operating envelope”, in
other words a combination of parameters that form a boundary within which the MEDICAL
DEVICE operates safely. Software can be used to assess whether the MEDICAL DEVICE is
operating inside the safe operating envelope. For example, software could combine the
measured temperature of an applied part and the time of exposure to detect the possibility of
burning the patient.

There are cases when the safe range for the software’s inputs and outputs is known by a
clinician but cannot be anticipated in the design of a MEDICAL DEVICE. In such cases, RISK
CONTROL measures can be used to ensure that the MEDICAL DEVICE does exactly what is
specified by the clinician. A hardware or software RISK CONTROL measure can be used to
detect inconsistencies between the software’s outputs and inputs.

For example, the clinician may prescribe treatments, using a MEDICAL DEVICE, which vary
widely from one patient to the next. A HAZARDOUS SITUATION cannot be detected only by
analysing input or output values. A software RISK CONTROL measure can nonetheless be
applied that ensures that the outputs of the MEDICAL DEVICE accurately match the inputs (the
intended prescription).

6.2.2 RISK CONTROL methods

6.2.2.1 Overview

In order to efficiently implement appropriate RISK CONTROL measures for software, an
understanding of the product development and software LIFE-CYCLES should be carefully
considered. Some types of RISK CONTROL measures are very easy to implement early in design
and impossible or very costly to implement later in development. If software is not carefully
considered from a RISK MANAGEMENT perspective early in the product development PROCESS,
hardware decisions may be made that inadvertently place excessive reliance on proper
software operation for the SAFETY of the MEDICAL DEVICE.

It can be useful to segregate SOFTWARE ITEMS and assign software SAFETY classes to the
SOFTWARE ITEMS to distinguish highly critical SOFTWARE ITEMS (e.g. those that could result in
death if they are defective) from SOFTWARE ITEMS that could not affect SAFETY. See Subclause
4.3 of IEC 62304:2006 for software SAFETY classification.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

 – 30 – TR 80002-1 © IEC:2009(E)

Assigning software SAFETY classes can serve as a basis for greater rigour and focus in
VERIFICATION and configuration management activities for more critical SOFTWARE ITEMS. If this
is done, side-effects should be carefully considered and the less critical SOFTWARE ITEMS
should be rated the same as any more critical SOFTWARE ITEMS they could affect. It should
also be noted that IEC 62304 allows for different methods to be used within an ACTIVITY or
TASK (See Subclause 5.1.4 of IEC 62304:2006 which requires that methods be defined). The
MANUFACTURER may decide to create a scheme for differentiating SOFTWARE ITEMS which have
the software SAFETY classification of Class C. For example, the MANUFACTURER may use a
more formal method of VERIFICATION (i.e., code inspection versus code review) for SOFTWARE
ITEMS with high complexity.

Note that SOFTWARE ITEMS could be classified initially as SAFETY-related and then through
certain RISK CONTROL measures or design choices be treated as less critical. Properly
performed RISK MANAGEMENT can result in reducing SAFETY-related software to the smallest
possible subset through isolation and inherent safe design.

Ensuring software SAFETY requires a variety of activities throughout the product development
LIFE-CYCLE. Reliability techniques such as formal methods for failure analysis do not comprise
complete RISK MANAGEMENT methods. It is also important to recognize that reliability and
SAFETY, although often related, are not identical attributes. A LIFE-CYCLE PROCESS that focuses
on reliability may not achieve adequate SAFETY.

Some specific RISK CONTROL measures are described in more detail and guidance is given on
how to address specific causes for RISKS in 6.2.2.2, 6.2.2.3, 6.2.2.4, 6.2.2.5, and 6.2.2.6.

6.2.2.2 RISK CONTROL measures and software architectural design

6.2.2.2.1 Overview

Software ARCHITECTURE should describe features of the software used to control RISK by
inherently safe design, as well as software mechanisms for protective measures to reduce
RISK.

6.2.2.2.2 Inherently safe design by ARCHITECTURE features

A HAZARD associated with a software control function might be avoided, for example, by using
hardware to implement the function. (Similarly, a HAZARD associated with a hardware function
(wear, fatigue) might be avoided by using software.)

Sometimes a HAZARD may be completely avoided by a high-level design decision. For
example, from a hardware perspective, use of batteries as a power source in place of AC
power could eliminate the RISK of electrocution. Similarly a whole class of programming errors
that could lead to a HAZARD could be eliminated based on high level design decisions. For
example, memory leaks could be avoided by using only static data structures.

A particular problem in SYSTEMS using software is the perception that there is no limit to the
extent to which software can share a physical infrastructure. This perception is false.

It is a normal rule of SYSTEM design that the SYSTEM should include sufficient resources to
perform all necessary TASKS when required. This rule should be applied to software as well as
to hardware. If a SOFTWARE ITEM has a role in SAFETY, then RISK ASSESSMENT should address
the following questions:

– Can the SAFETY-RELATED SOFTWARE ITEM gain access to its processor when needed?
– Can the SAFETY-RELATED SOFTWARE ITEM be guaranteed enough processor time to

complete its TASK before an unsafe state develops into an accident?
– Can it be demonstrated that no other SOFTWARE ITEM can corrupt or otherwise interfere

with the SAFETY-RELATED SOFTWARE ITEM?

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

TR 80002-1 © IEC:2009(E) – 31 –

If SAFETY-RELATED SOFTWARE has to share a processor with non-SAFETY-RELATED SOFTWARE,
then the above questions are particularly important, as SAFETY functions will compete for
resources with non-SAFETY functions (see 6.2.2.2.4 on segregation).

Development methods should be chosen to make all of the above issues visible to the
designer. For example, it is not enough to design a SAFETY-RELATED SOFTWARE ITEM as a
PROCESS which, all being well, will run when the operating system gets around to it. The
development method should support deliberate design of scheduling, priority and timing.

6.2.2.2.3 Fault tolerant ARCHITECTURES

Many functions of a MEDICAL DEVICE may be required to be available to assure the SAFETY of
the patient or user. Such functions may include clinical functions that cannot be interrupted or
delayed, and functions that implement protective RISK CONTROL measures.

Fault-tolerant design is a very common approach to improving MEDICAL DEVICE dependability
(references for software engineering practitioners include Pullum [7] and Banatre [8]). The
objective of fault-tolerant design is to ensure that the SAFETY-related functions will continue to
operate in the presence of component faults, including software ANOMALIES.

Fault tolerant design will usually make use of REDUNDANCY. This may be a simple duplication
of a vital component to provide continued operation when one component fails, or it may
consist of additional components which detect a failure and switch operation to an alternative
mode of operation, possibly with limited functionality.

Fault tolerance may be used to continue vital functions in the event of a software failure. In
this case, simple REDUNDANCY using multiple copies of the same software will probably be
insufficient, as the same defect will be present in each copy of the software.

In such cases, DIVERSITY is required. For example, additional software may be used to detect
a software error and to perform a recovery program. The additional software should avoid
sharing any features with the software that it monitors, thereby eliminating the possibility that
one software defect will cause the failure of both.

In more critical cases, two or more SOFTWARE ITEMS may perform the same function but they
may be independently designed and implemented, starting from a common specification. This
is “DIVERSITY programming”. Note, however, that there is a tendency for the same mistakes to
be made by different development engineers, which would invalidate the DIVERSITY. Note also
that the common specification may contain an incorrect requirement. Finally, some method,
such as voting, must be used to ensure that the malfunctioning software is prevented from
having any effect. At least 3 diverse SOFTWARE ITEMS would be needed to implement a voting
scheme.

When using REDUNDANCY, with or without DIVERSITY, to provide fault tolerance, it is important
to signal to the user that there is a failure. Otherwise, a fault tolerant MEDICAL DEVICE may
appear to operate safely when in fact it is operating with reduced SAFETY.

6.2.2.2.4 Segregation to reduce RISK from software causes

It is possible for software defects to lead to errors in unrelated software running on the same
hardware. The manufacturer should select methods of segregating SAFETY-RELATED SOFTWARE
ITEMS from the non-SAFETY-RELATED SOFTWARE ITEMS such that non-SAFETY-RELATED SOFTWARE
ITEMS cannot interfere with the operation of the SAFETY-RELATED SOFTWARE ITEMS (see
Subclause 5.3.5 of IEC 62304:2006), and should demonstrate that the segregation is
effective. This includes demonstrating the appropriate use of resources (physical or time) by
the SOFTWARE ITEMS to avoid unintended contention between the items.

Effective segregation between SOFTWARE ITEMS must address the following possible ways in
which SOFTWARE ITEMS may be subject to unexpected interaction.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

 – 32 – TR 80002-1 © IEC:2009(E)

SOFTWARE ITEMS may interact in unintended ways when they contend for time on shared
hardware (for example processors, storage devices and other input/output devices). This can
prevent a SOFTWARE ITEM from running at the intended time. The provision of sufficient
hardware is an architectural feature (see 6.2.2.2.2) which should be subject to adequate
specification and planning to ensure that sufficient time is available to run all SOFTWARE ITEMS
when required.

SOFTWARE ITEMS may co-exist in the same memory; this can cause one SOFTWARE ITEM
unexpectedly to change data belonging to another SOFTWARE ITEM. In extreme cases, one
SOFTWARE ITEM may accidentally change the coding of another SOFTWARE ITEM. Many
processors and operating systems offer hardware-assisted methods of segregating memory
usage. Where such methods exist, they should always be used. Most such methods will guard
against unintended interaction even when there is a defect in one of the SOFTWARE ITEMS.

SOFTWARE ITEMS may also interact in unintended ways when they share variables, including
global variables, environment variables, and operating system parameters; this can result in
unintended communication between SOFTWARE ITEMS if there is a defect in one of the
SOFTWARE ITEMS. The sharing of variables between SOFTWARE ITEMS should be minimised. If it
is necessary, rules should be published to all engineers to ensure that the shared variables
are only changed by a small number of specified SOFTWARE ITEMS and that all other SOFTWARE
ITEMS only read the shared variables without changing them.

The strongest form of segregation consists of running SOFTWARE ITEMS that should not interact
on separate processors. However, careful architectural design as recommended above may
provide an appropriate degree of segregation on a single processor.

Testing the SYSTEMS in a lab environment may indicate sufficient physical and time resources
for the test cases given, while the application load or the execution environment (other
processes running on the same box) in the field makes the software fail in a way that causes
HARM.

On the other hand, when test cases in the lab do show that there is low performance and
invalid measures are taken to hastily speed-up the software, these measures possibly break
the design and add other RISKS through unforeseen side-effects.

Effective segregation should demonstrate that under normal operation:

a) data flow corruption is prevented: non-SAFETY-related SOFTWARE ITEMS cannot modify
SAFETY-related data;

b) control flow corruption is prevented:
– SAFETY-related functions can always execute at the correct time, without being

effected by the actions of the non SAFETY-RELATED SOFTWARE ITEMS;
– non-SAFETY-RELATED SOFTWARE ITEMS cannot modify the SAFETY-RELATED SOFTWARE

items;
c) corruption of the execution environment is prevented: corruption of parts of the SOFTWARE

SYSTEM used by both SAFETY-related and non SAFETY-RELATED SOFTWARE ITEMS (e.g.
processor registers, device registers and memory access privileges) cannot occur.

Events that cause any of the above to be violated, e.g. hardware failure, should be detected
and cause the SYSTEM to take necessary actions to ensure continued SAFETY.

6.2.2.3 Details on protective measures

In many cases, it is not practical to avoid all HAZARDS by inherent safe design or to implement
fault-tolerance for all potential failures. In those cases, protective measures are the next best
approach to managing a potential HAZARD. These measures typically operate by detecting a
potentially HAZARDOUS SITUATION, and either intervening automatically to mitigate
consequences, or generating an alarm so that the user may intervene.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

TR 80002-1 © IEC:2009(E) – 33 –

For example, a therapeutic x-ray SYSTEM may have an interlock SYSTEM using software logic
or hardware that shuts down the x-ray generator if any door to the facility is opened. The
interlock function has no role in delivering the therapy. Its sole purpose is to mitigate the
HARM of unintentional radiation exposure.

In some cases (i.e., where loss of MEDICAL DEVICE functionality does not pose a HAZARD),
SAFETY may be achieved at the expense of mission. For example, a failure of a laboratory
blood analyzer to provide a result may not in some cases be hazardous, but providing an
incorrect result could be. In this example, shutting down the analyzer when defensive
programming checks indicate unexpected faults, rather than continuing to operate, reduces
RISKS. In a fail-safe ARCHITECTURE, a SYSTEM or component fault, or other hazardous
condition, may lead to a loss of function, but in a manner that preserves the SAFETY of
operators and patients. In a fail-operational SYSTEM, the SYSTEM may continue to operate
safely, but with degraded performance (e.g. reduced capacity or slower response time).

6.2.2.4 Preventing and announcing HAZARDOUS SITUATIONS promptly

An important class of RISK CONTROL measure is one which improves the probability of
preventing a HAZARDOUS SITUATION.

In addition to preventing HARM, consideration should be given to announcing the detected
condition to the user. Without this there is a possibility that a subsequent failure of the RISK
CONTROL measure would allow HARM to occur.

Consideration should be given to the frequency with which software RISK CONTROL measures
should run. The software RISK CONTROL measure should run sufficiently frequently to detect
the condition before it causes HARM.

6.2.2.5 Risk control measures for software anomalies

Software presents a particular difficulty: some events in a sequence leading to a HAZARDOUS
SITUATION may result from undiscovered software ANOMALIES and it is difficult to anticipate
where such ANOMALIES may occur or what their effects might be.

RISK CONTROL measures can reduce the probability of HARM originating from software
ANOMALIES. There will usually be places in the software ARCHITECTURE where a RISK CONTROL
measure can reduce the probability of HARM irrespective of the nature of preceding events. If
this is done carefully, it is not necessary to anticipate the exact nature of software ANOMALIES
in order to prevent them from causing HARM.

In cases where this approach is not practicable, for example if a preventive measure is
implemented in software, methods should be used to assure the integrity of the software (see
 6.2.2.6).

6.2.2.6 Process as a risk control measure

If software ANOMALIES could contribute to a sequence of events leading to a HAZARDOUS
SITUATION, it may not be possible to devise RISK CONTROL measures to prevent HARM from
occurring. The best solution in this case is inherent SAFETY by design, so that software
ANOMALIES cannot result in a HAZARDOUS SITUATION.

When this is not possible, an effective software development PROCESS may be used to reduce
the probability of occurrence of the software ANOMALIES. There is strong consensus that
PROCESS RISK CONTROL measures are beneficial when considered in combination with other
types of RISK CONTROL measures and if defined in detail.

If it can be established that the confidence in the software to perform its intended function
reliably is very high, and the confidence that the software is fault-free is very high, the
software may be treated as a high-integrity component. To achieve this high level of

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

 – 34 – TR 80002-1 © IEC:2009(E)

confidence, the MANUFACTURER must demonstrate that the software development PROCESS can
predictably produce highly reliable, fault-free software. The use of such a PROCESS can then
be claimed to reduce the probability of occurrence of software ANOMALIES.

It is accepted that increasing the rigour of the software development PROCESS can reduce the
number of software ANOMALIES. It should be noted that while testing on MEDICAL DEVICE
SOFTWARE can reduce the number of software ANOMALIES, it cannot be assumed that when the
software passes all planned tests, no software ANOMALIES remain. This is because in clinical
use the inputs to the software will include sequences that were not part of the planned tests.
Since MEDICAL DEVICE SOFTWARE is too complex to test exhaustively, rigorous testing can only
be viewed as a method to lower the probability of HAZARDOUS SITUATIONS. Testing by itself,
however, is not sufficient to establish confidence that the software can be treated as a high-
integrity component.

A starting point for defining a rigorous software development PROCESS would be to include the
activities and TASKS specified in IEC 62304 in the software development PROCESS. Additional
items to consider when developing a rigorous software development PROCESS might include:

– staff competency – skills, qualifications, experience and training (who develops the
software?);

– methods –the suitability of the specification, design, coding and testing methods (what is
the PROCESS of development?);

– rigour, formality, and scope of reviews and inspections (how much static analysis is
performed?);

– tools –quality of tools such as compilers, requirements TRACEABILITY, and configuration
management tools (what tools are used during development of software?).

The predictability of developing high-integrity software depends on having a repeatable
PROCESS that is consistently followed.

When implementation of a rigorous development PROCESS is used to reduce RISK of
HAZARDOUS SITUATIONS resulting from software ANOMALIES, the effectiveness of the RISK
CONTROL measures should be demonstrated by collecting and analyzing data showing the
frequency of failures resulting from software ANOMALIES. To support the claim that a PROCESS
produces high-integrity software, there should be evidence that there are no or very
infrequent software failures.

6.2.3 SOFTWARE OF UNKNOWN PROVENANCE (SOUP) considerations

The use of SOUP is often determined during the SYSTEM design. The higher the potential RISKS
of the MEDICAL DEVICE, the more closely potential failure modes of SOUP should be analyzed
and RISK CONTROL measures identified. SOUP generally can not be modified to incorporate new
RISK CONTROL measures needed to monitor or isolate SOUP to prevent it from contributing to
HAZARDS or HAZARDOUS SITUATIONS if it fails. Nor is there adequate internal design information
available to identify all the potential HAZARDS caused by SOUP. Therefore the SYSTEM and
software ARCHITECTURE should be designed to provide RISK CONTROL measures needed to
monitor or isolate SOUP to prevent it from causing HAZARDS if it fails.

When SOUP is included in the MEDICAL DEVICE, care must be taken to prevent compromising
MEDICAL DEVICE SAFETY. Such a situation may call for the introduction of “wrappers” or a
middleware ARCHITECTURE. The middleware may:

a) prevent the use of features of the SOUP that one does not want to use,

b) perform logical checks to ensure correct information is transferred between the SOUP and
the MEDICAL DEVICE SOFTWARE, or

c) provide additional information needed by the MEDICAL DEVICE.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

TR 80002-1 © IEC:2009(E) – 35 –

Another critical issue related to SOUP is the use of commercial operating and communication
systems. An ARCHITECTURE should be established that permits changes (e.g. stability,
SECURITY) to the software platform, based on a thorough RISK ASSESSMENT without
compromising SAFETY. Such a RISK ASSESSMENT should include an analysis of the frequency of
changes necessary to ensure MEDICAL DEVICE SAFETY integrity; such as installing network
SECURITY patches.

6.3 Implementation of RISK CONTROL measure(s)

Text of ISO 14971:2007

6.3 Implementation of RISK CONTROL measure(s)

The MANUFACTURER shall implement the RISK CONTROL measure(s) selected in 6.2.

Implementation of each RISK CONTROL measure shall be verified. This VERIFICATION shall be
recorded in the RISK MANAGEMENT FILE.

The effectiveness of the RISK CONTROL measure(s) shall be verified and the results shall be
recorded in the RISK MANAGEMENT FILE.

NOTE The VERIFICATION of effectiveness can include validation activities.

Compliance is checked by inspection of the RISK MANAGEMENT FILE.

Once RISK CONTROL measures are identified they need to be implemented and their
effectiveness verified.

VERIFICATION that the RISK CONTROL measures have been properly implemented and are
effective at controlling the RISK is essential for software. Both analysis and testing are likely to
be necessary. Key aspects to consider include:

a) TRACEABILITY to assure that all SAFETY-RELATED SOFTWARE ITEMS are identified and all
SAFETY-related functionality is specified, implemented, and tested in all relevant VERSIONS
and variants (e.g. for different platforms, languages, or MEDICAL DEVICE models) of the
software;

b) greater rigour and coverage when testing RISK CONTROL measures including testing under
a wide range of abnormal and stress conditions;

c) focus on regression testing RISK CONTROL measures and SAFETY-related functionality when
changes are made, even if the changes are not intended to affect SAFETY.

If a process is used that is thought to be rigorous enough to create high-integrity software, the
results must still be verified.

ANOMALY information collected during VERIFICATION and validation activities is often useful if
root cause analysis was performed and anomaly criticality ratings (see Subclause 9.1 of
IEC 62304:2006) associated with SAFETY are tracked and evaluated. ANOMALIES with SAFETY
consequences can be evaluated to determine if they were identified in the RISK ASSESSMENT
and if identified RISK CONTROL measures would suffice for them once implemented. Data on
software ANOMALIES may be used to demonstrate software development PROCESS
effectiveness, or to identify aspects of the software development PROCESS that need
improvement in order to claim it reduces RISK.

The adequacy of software RISK CONTROL measures may not be as obvious as the adequacy of
hardware RISK CONTROL measures. For this reason when dealing with software, one should
consider if the documentation of the RISK ASSESSMENT requires other formats than traditionally
would be required. One way that can be useful is to write “SAFETY cases” (see Annex E).

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

 – 36 – TR 80002-1 © IEC:2009(E)

6.4 RESIDUAL RISK EVALUATION

Text of ISO 14971:2007

6.4 RESIDUAL RISK EVALUATION

After the RISK CONTROL measures are applied, any RESIDUAL RISK shall be evaluated using the
criteria defined in the RISK MANAGEMENT plan. The results of this evaluation shall be recorded
in the RISK MANAGEMENT FILE.

If the RESIDUAL RISK is not judged acceptable using these criteria, further RISK CONTROL
measures shall be applied (see 6.2).

For RESIDUAL RISKS that are judged acceptable, the MANUFACTURER shall decide which
RESIDUAL RISKS to disclose and what information is necessary to include in the ACCOMPANYING
DOCUMENTS in order to disclose those RESIDUAL RISKS.

NOTE Guidance on how RESIDUAL RISK(S) can be disclosed is provided in Annex J.

Compliance is checked by inspection of the RISK MANAGEMENT FILE and the
ACCOMPANYING DOCUMENTS.

RESIDUAL RISK due to software needs to be included in the RESIDUAL RISK associated with the
MEDICAL DEVICE at the SYSTEM level. Given the difficulty in estimating the probability of
software ANOMALIES, RESIDUAL RISK EVALUATION usually involves determining whether all
sequences of events which lead to unacceptable RISK have RISK CONTROL measures to reduce
the probability of their occurrence or to limit the SEVERITY of HARM to an acceptable level as
defined in the RISK MANAGEMENT plan (see 3.4.1).

Any software ANOMALIES identified (during VERIFICATION and validation activities) that are not
corrected should be analyzed to determine if they affect SAFETY-RELATED SOFTWARE (see
Subclause 5.8.3 of IEC 62304:2006). If so, RISK from these ANOMALIES needs to be evaluated
and used in evaluating the RESIDUAL RISK of any HAZARDOUS SITUATION they can impact.

6.5 RISK/benefit analysis

Text of ISO 14971:2007

6.5 RISK/benefit analysis

If the RESIDUAL RISK is not judged acceptable using the criteria established in the RISK
MANAGEMENT plan and further RISK CONTROL is not practicable, the MANUFACTURER may gather
and review data and literature to determine if the medical benefits of the INTENDED USE
outweigh the RESIDUAL RISK. If this evidence does not support the conclusion that the medical
benefits outweigh the RESIDUAL RISK, then the RISK remains unacceptable. If the medical
benefits outweigh the RESIDUAL RISK, then proceed to 6.6.

For RISKS that are demonstrated to be outweighed by the benefits, the MANUFACTURER shall
decide which information for SAFETY is necessary to disclose the RESIDUAL RISK.

The results of this evaluation shall be recorded in the RISK MANAGEMENT FILE.

NOTE See also D.6.

Compliance is checked by inspection of the RISK MANAGEMENT FILE.

No additional guidance for software.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

TR 80002-1 © IEC:2009(E) – 37 –

6.6 RISKS arising from RISK CONTROL measures

Text of ISO 14971:2007

6.6 RISK arising from RISK CONTROL measures

The effects of the RISK CONTROL measures shall be reviewed with regard to:

a) the introduction of new HAZARDS or HAZARDOUS SITUATIONS;
b) whether the estimated RISKS for previously identified HAZARDOUS SITUATIONS are affected

by the introduction of the RISK CONTROL measures

Any new or increased RISKS shall be managed in accordance with 4.4 to 6.5.

The results of this review shall be recorded in the RISK MANAGEMENT FILE.

Compliance is checked by inspection of the RISK MANAGEMENT FILE.

A rigorous software configuration management PROCESS, including rigorous change control
(see Subclause 8.2 of IEC 62304:2006), is essential so that the introduction of a software
RISK CONTROL measure is examined carefully for its impact on other parts of the MEDICAL
DEVICE (see also Subclause 7.4 of IEC 62304:2006).

ISO 14971 does not prescribe a design and development PROCESS. One effect of this is that
when a RISK CONTROL measure has been implemented, ISO 14971 simply requires that it be
reviewed to ensure that it has not caused any further HAZARDS. This should not be interpreted
as an instruction to examine this question only after the implementation is complete.

For software RISK CONTROL measures, it is especially important that this review should not be
left until the software has been implemented. As soon as the software RISK CONTROL measure
has been specified, it should be placed under configuration management and reviewed to
discover adverse side effects including the inadvertent creation of new HAZARDS or HAZARDOUS
SITUATIONS.

Implementation of a RISK CONTROL measure that makes the software design significantly more
complex may increase the potential for additional software ANOMALIES or cause new
HAZARDOUS SITUATIONS. RISK CONTROL measures should be as simple as practicable and
should always be subjected to a new RISK ASSESSMENT.

This review should be repeated (as a minimum) after software design and after SOFTWARE
SYSTEM test.

6.7 Completeness of RISK CONTROL

Text of ISO 14971:2007

6.7 Completeness of RISK CONTROL

The MANUFACTURER shall ensure that the RISK(S) from all identified HAZARDOUS SITUATIONS
have been considered. The results of this activity shall be recorded in the RISK MANAGEMENT
FILE.

Compliance is checked by inspection of the RISK MANAGEMENT FILE.

Subclause 7.3.3 of IEC 62304:2006 should be considered for inclusion in the completeness of
RISK CONTROL when software is a contributing factor in HAZARDOUS SITUATIONS.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

 – 38 – TR 80002-1 © IEC:2009(E)

7 Evaluation of overall residual risk acceptability

Text of ISO 14971:2007

7 Evaluation of overall RESIDUAL RISK acceptability

After all RISK CONTROL measures have been implemented and verified, the MANUFACTURER
shall decide if the overall RESIDUAL RISK posed by the MEDICAL DEVICE is acceptable using the
criteria defined in the RISK MANAGEMENT plan.

NOTE 1 For guidance on overall RESIDUAL RISK EVALUATION, see D.7.

If the overall RESIDUAL RISK is not judged acceptable using the criteria established in the RISK
MANAGEMENT plan, the MANUFACTURER may gather and review data and literature to determine
if the medical benefits of the INTENDED USE outweigh the overall RESIDUAL RISK. If this evidence
supports the conclusion that the medical benefits outweigh the overall RESIDUAL RISK, then the
overall RESIDUAL RISK can be judged acceptable.

Otherwise, the overall RESIDUAL RISK remains unacceptable.

For an overall RESIDUAL RISK that is judged acceptable, the MANUFACTURER shall decide which
information is necessary to include in the ACCOMPANYING DOCUMENTS in order to disclose the
overall RESIDUAL RISK.

NOTE 2 Guidance on how RESIDUAL RISK(S) can be disclosed is provided in Annex J.

The results of the overall RESIDUAL RISK EVALUATION shall be recorded in the RISK MANAGEMENT
FILE.

Compliance is checked by inspection of the RISK MANAGEMENT FILE and the ACCOMPANYING
DOCUMENTS.

The evaluation of overall RESIDUAL RISK requires implementation of all RISK CONTROL
measures. This includes the software being evaluated in the context of each different SYSTEM
configuration that the software is used in.

The results of SYSTEM test activities (with respect to all software functionalities and hardware
RISK CONTROL) should be evaluated in conjunction with the acceptance criteria. All remaining
residual software ANOMALIES are to be documented in the RISK MANAGEMENT FILE and should
be evaluated to ensure that they do not contribute to an unacceptable RISK (see Subclauses 5.8.2
and 5.8.3 of IEC 62304:2006). Where necessary, the evaluation should be accepted by
independent interdisciplinary reviews with clinical/application experts. It may also be
necessary to include information in the ACCOMPANYING DOCUMENTS.

8 Risk management report

Text of ISO 14971:2007

8 RISK MANAGEMENT report

Prior to release for commercial distribution of the MEDICAL DEVICE, the MANUFACTURER shall
carry out a review of the RISK MANAGEMENT PROCESS. This review shall at least ensure that:

- the RISK MANAGEMENT plan has been appropriately implemented;
- the overall RESIDUAL RISK is acceptable;
- appropriate methods are in place to obtain relevant production and POST-PRODUCTION

information.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

TR 80002-1 © IEC:2009(E) – 39 –

The results of this review shall be recorded as the RISK MANAGEMENT report and included in the
RISK MANAGEMENT FILE.

The responsibility for review should be assigned in the RISK MANAGEMENT plan to persons
having the appropriate authority [see 3.4 b)].

Compliance is checked by inspection of the RISK MANAGEMENT FILE.

Clause 6 and Subclause 7.3.3 of IEC 62304:2006 should be considered for inclusion as part
of the review of the RISK MANAGEMENT PROCESS.

9 Production and POST-PRODUCTION information

Text of ISO 14971:2007

9 Production and POST-PRODUCTION information

The MANUFACTURER shall establish, document and maintain a system to collect and review
information about the MEDICAL DEVICE or similar devices in the production and the POST-
PRODUCTION phases.

When establishing a system to collect and review information about the MEDICAL DEVICE, the
MANUFACTURER should consider among other things:

a) the mechanisms by which information generated by the operator, the user, or those

accountable for the installation, use and maintenance of the MEDICAL DEVICE is collected
and processed;

or

b) new or revised standards.

The system should also collect and review publicly available information about similar MEDICAL
DEVICES on the market.

This information shall be evaluated for possible relevance to SAFETY, especially the following:
- if previously unrecognized HAZARDS or HAZARDOUS SITUATIONS are present or
- if the estimated RISK(S) arising from a HAZARDOUS SITUATION is/are no longer acceptable.

If any of the above conditions occur:

1) the impact on previously implemented RISK MANAGEMENT activities shall be evaluated and

shall be fed back as an input to the RISK MANAGEMENT PROCESS and
2) a review of the RISK MANAGEMENT FILE for the MEDICAL DEVICE shall be conducted; if there is

a potential that the RESIDUAL RISK(S) or its acceptability has changed, the impact on
previously implemented RISK CONTROL measures shall be evaluated.

The results of this evaluation shall be recorded in the RISK MANAGEMENT FILE.

NOTE 1 Some aspects of POST-PRODUCTION monitoring are the subject of some national regulations. In such cases,
additional measures might be required (e.g. prospective POST-PRODUCTION evaluations).

NOTE 2 See also 8.2 of ISO 13485:2003 [1].

Compliance is checked by inspection of the RISK MANAGEMENT FILE and other
appropriate documents.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

 – 40 – TR 80002-1 © IEC:2009(E)

Software RISK MANAGEMENT continues throughout the software LIFE-CYCLE, including the
software maintenance PROCESS (see Clause 6 of IEC 62304:2006) and software problem
resolution PROCESS (see Clause 9 of IEC 62304:2006).

Clause 6 of IEC 62304:2006 requires the MANUFACTURER to establish software maintenance
plans which address the use of PROCEDURES to receive, document, evaluate, resolve and
track feedback after the release of the MEDICAL DEVICE SOFTWARE. The maintenance plan(s)
are also to address the use of the software RISK MANAGEMENT PROCESS and the use of the
software problem resolution PROCESS for analyzing and resolving problems arising after the
release of the MEDICAL DEVICE SOFTWARE.

The use of the software problem resolution PROCESS (see Clause 9 of IEC 62304:2006)
integrates the RISK MANAGEMENT activities in the investigation of the software problem and the
evaluation of the problem’s relevance to SAFETY. It is important to involve a multidisciplinary
team including clinical experts, software engineers, SYSTEM designers, and experts on
usability/human factors engineering in this investigation and evaluation of the problem (see
 3.3).

SOUP is also an important aspect of the software maintenance plan and POST-PRODUCTION
RISK MANAGEMENT activities. Some SOUP, by its characteristics (e.g. virus protect software),
may have frequent updates which the MANUFACTURER should take into consideration for the
software maintenance plan(s).

Failures or unexpected results of SOUP and the obsolescence of SOUP (discontinuation of
support) may impact the overall RESIDUAL RISK acceptability of the MEDICAL DEVICE. Therefore,
it is necessary to implement SOUP monitoring and evaluation activities in the development and
maintenance of the SOFTWARE SYSTEM. These activities should address SOUP updates,
upgrades, bug fixes, patches, and obsolescence. Actively monitoring and evaluating publicly
available ANOMALY lists and information about the SOUP field performance allows the
MANUFACTURER to proactively determine if any of the known ANOMALIES result in a sequence of
events that could result in a HAZARDOUS SITUATION (see Subclauses 6.1 f), 7.1.2 c), 7.1.3, and
7.4.2 of IEC 62304:2006).

Released SOUP patches or updates from MANUFACTURERS may include additional functionality
that is not essential for the SAFETY and effectiveness of the MEDICAL DEVICE. These SOUP
updates should be analyzed for excessive components which can be eliminated from the
medical software release to avoid unexpected changes which may lead to a HAZARDOUS
SITUATION.

As with any SOFTWARE ITEM change, the MANUFACTURER should know which SOFTWARE ITEMS
are affected by the SOUP update and perform regression testing (see Subclauses 7.4, 8.2, and
9.7 of IEC 62304:2006).

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

TR 80002-1 © IEC:2009(E) – 41 –

Annex A
(informative)

Discussion of definitions

A couple of key terms from ISO 14971 are HAZARD and HARM. Understanding these is
important for understanding the standard. HARM is physical injury or damage to the health of
people, or damage to property or the environment. HAZARD is defined as a “potential source of
HARM”, and there are (many) causes for the HAZARDS.

According to the definitions in ISO 14971:2007, a HAZARD cannot result in HARM until such
time as a sequence of events or other circumstances (including normal use) lead to a
HAZARDOUS SITUATION (see Figure A.1). This sequence of events includes both single events
and combination of events. Annex D.2 of ISO 14971:2007 provides guidance on HAZARDS and
HAZARDOUS SITUATIONS. Annex E of ISO 14971:2007 provides guidance on examples of
HAZARDS, foreseeable sequences of events, and HAZARDOUS SITUATIONS.

Figure A.1 – Relationship between sequence of events, HARM and HAZARD

A cause of a HAZARD or HAZARDOUS SITUATION is any sequence of events, the combination of
which might reasonably be expected to result in a HAZARDOUS SITUATION. A given HAZARD
might have one, several, or many possible causes (sequence of events).

Unlike heat, electrical energy or suspended masses, software is not itself a HAZARD (a
potential source of HARM); contact with software cannot cause injury. However, software may
cause a person to be exposed to a HAZARD, in other words it may contribute to a HAZARDOUS
SITUATION. Software failures (of any kind) often facilitate the transformation of a HAZARD into a
HAZARDOUS SITUATION.

Software contributes to HAZARDOUS SITUATIONS primarily by contributing to the sequence of
events which exposes the HAZARD and creates a HAZARDOUS SITUATION.

S
eq

ue
nc

e
of

 E
ve

nt
s

HAZARDOUS
SITUATION

HARM

HAZARD

IEC 1839/09

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

 – 42 – TR 80002-1 © IEC:2009(E)

Table A.1 – Relationship between HAZARDS, foreseeable sequences of events,
HAZARDOUS SITUATIONS and the HARM that can occur

HAZARD Foreseeable
sequence of events
involving software

Initiating cause HAZARDOUS
SITUATION

HARM

Electrical energy Software output
controlling current
applied by an eye
implant is too high

(1) Software
algorithm has
limitations.

(2) Software is
correctly specified
but has an ANOMALY

Excessive current
applied to patient’s
eye by implant

Serious burns

Loss of vision

Loss of clinical
function

Software fails to
provide life-
supporting function
for which it is
designed

(1) Software is
unable to handle
unusual input data.

(2) Software fails to
detect incorrect
setup of equipment

(3) Hardware does
not provide
sufficient resources
to support timely
operation of
software

(1) Device cannot
provide treatment
when needed

(2) Device operates
when not correctly
setup

(3) Device fails to
warn of life-
threatening condition

Deterioration of
patient’s condition

Death

Neglect of patient
by clinical staff

Software inputs and
outputs confuse or
mislead the user

(1) Software-human
interface confuses
the user

(2) Software outputs
exceeds the user’s
capacity to respond

(3) User does not
understand the
software’s
limitations

(1) Mistreatment of
patient

(2) Lack of timely
response to
emergencies

(3) Over-reliance on
software replaces
personal initiative

Deterioration of
patient’s condition

Death

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

TR 80002-1 © IEC:2009(E) – 43 –

Annex B
(informative)

Examples of software causes

Table B.1 lists functional areas of software often related to HAZARDS and provides examples of
conditions that are potential causes for HAZARDS. It also provides example questions to ask
during software development that can help lead to improved RISK CONTROL. Some of the
information in this table may not apply to all MEDICAL DEVICE SOFTWARE. The relevancy for
specific MEDICAL DEVICES depends on the INTENDED USE of the MEDICAL DEVICE, the SYSTEM-
level design of the MEDICAL DEVICE, the role of the software in the MEDICAL DEVICE, and other
factors. This table is intended only as a starting point.

This table is not exhaustive but is an aid to the thought PROCESS used for developing safe and
effective software.

Table B.1 – Examples of causes by software function area

Software function area Example causes for HAZARDS Questions to ask

Alarms and alerts:

Priority
Lower priority alarms mask the display or
audible output of higher priority alarms

Critical alarm does not persist

Do specifications identify how the
SYSTEM reacts to multiple alarm
conditions?

Are there multiple levels of alarms?

Do higher level alarms override the
audio for lower level alarms?

Should any of the alarms persist until
the user can acknowledge the alarm?

Protective actions

Protective actions are not clear for each
alarm condition or alarm category

Removal of protective actions once alarm
clears are not specified

Does the protective action create a
usability problem, i.e. can the user
safely navigate from the protective
action?

Shutdown/safe mode/
recovery

Safe mode action is not adequate

Safe mode action creates new HAZARDS

Is safe mode action appropriate for
INTENDED USE?

Has the clinical staff reviewed safe
mode scenarios?

Is safe mode state apparent to the
user?

User interface

Crowded or poor user interface masks the
“real” alarm condition

Actions to take in response to the alarm
are not clear

Has the clinical staff reviewed
protective measures for usability?

Log

Persistent error is signalling a pending
failure

Logged alarms are associated with wrong
patient

Are detected errors logged?

Is log large enough?

Is log storage reliable?

How is log cleared?

Is the user aware when log is cleared?

Audibility

Background noise suppresses alarm
sound

Alarm volume so loud that operators find
alternative means to disable alarm

Audio SYSTEM has failed and user is
unaware of failure

Has INTENDED USE environment been
considered for audible alarm design?

Have users been involved in
developing requirements for user
interface design?

How is audio SYSTEM verified per
power up or per patient?

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

 – 44 – TR 80002-1 © IEC:2009(E)

Table B.1 – Examples of causes by software function area (continued)

Software function area Example causes for HAZARDS Questions to ask

Critical power cycle states

Data integrity

Non-volatile write in progress at shutdown

Critical parameters are not preserved to
resume treatment on power cycle

Critical parameters are inadvertently
overwritten by latent software ANOMALY
during operation

What happens to a memory write that
was in progress when power was lost?

Is the software made aware of
impending power loss?

Is non-volatile storage verified on
power up?

Are critical parameters checked before
use?

Reset

Failure to synchronize with component
after an unexpected reset

Persistent resets go undetected but could
be signalling a pending failure

Is reset being used as a RISK CONTROL
measure?

Will input/output control be
compromised during reset cycle?

Is user made aware of resets?

Recovery

The MEDICAL DEVICE is unavailable for
INTENDED USE while power-on
initializations are occurring

Non-volatile failures at power-on – what
do you do?

User is not aware that critical setting is
restored to factory defaults

Is recovery time a SAFETY issue?

Is availability of the MEDICAL DEVICE a
SAFETY issue?

How is non-volatile storage impacted
by failsafe protective measure?

Power modes

Audible functions or other critical user
interface functions are not available
during low power states

Transition to low power state
inadvertently disables critical interrupt

Are any RISK CONTROL measures
compromised during low power
modes?

Has software recovery from low power
modes been considered as a possible
start-up state for VERIFICATION and
validation activities?

Critical user controls/Usability

Adjustment/navigation/
selection

User interface software PROCESS handles
value change, but control PROCESS never
gets the new value

Is user notified if adjustment is made
to a new value but never selected or
confirmed?

Should the parameter being adjusted
require a two-step operation for
change?

Data entry
User input is an out of range value

User inputs in-range but unintended value

Should user be prompted for
confirmation?

Does software check data entry for
validity?

Does it require supervisory user login
to confirm highly critical inputs or error
overrides?

Accessibility
Concealed shutoff control

Touch screen controls do not function
with surgical gloves

How many “layers” must user navigate
to access SAFETY- related function?

Screen changes Alarm “automatically” causes display to
switch screens

Have all automatic screen switches
been evaluated?

User interface design

Use of colours without regard for common
forms of colour blindness

User can’t determine which condition
causes alarm

How will colour blind operator interpret
error message?

Have users been involved in
developing requirements for user
interface design?

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

TR 80002-1 © IEC:2009(E) – 45 –

Table B.1 – Examples of causes by software function area (continued)

Software function area Example causes for HAZARDS Questions to ask

Display

Diagnostic images
Orientation reversal

Patient incorrectly associated with patient

Is there a technique being used to
ensure correct orientation of image?

How are images associated with
patient?

Diagnostic waveforms
Improper display filter

Aliasing, distortion, scaling errors,
timebase errors, lossy compression

What frequency content is required for
display?

Has the clinical staff reviewed that
requirement?

Has display filter been fully
characterized, i.e. what is rejected
and what is passed, over full range of
inputs?

Hardware controls

Algorithms

Motor control
Integral windup, aliasing, timing, overflow,
port error (serial port/parallel port)

What is the sampling rate?

If PID control, is integral gain limited?
Has algorithm been characterized over
the full variation of manufactured
hardware?

If feedback control, what checks are
made to the validity of the feedback
signal?

Have all data types been evaluated for
the microprocessor and compiler in
use?

Applying energy

Not checking all energy “gates” initially
and continuously during therapy

SAFETY SYSTEM has failed but user is not
aware

Are all assertions continuously verified
on a scheduled basis?

Could a “common mode” error exist in
therapy control software and SAFETY
monitor software?

Are SAFETY monitors verified per
power up or per patient?

Discrete
Stuck bit

Changes in bit go undetected due to
polling interval

Does software detect that bit is stuck
(never changes)?

Has polling rate been discussed with
SYSTEM or hardware engineer?

Calibration/Self-test

Range checks

Assay calibration

(Software specific
calibration)

Poor instructions for use cause the user
to fail to correctly calibrate the MEDICAL
DEVICE which results in erroneous
calibration constant

Auto-zeroing operation done with non-
zero signal, i.e. unexpected pressure in
cuff or in line, or force on transducer

Does software perform a
reasonableness or validity check of
calibration values, i.e. slope or offset?

Is user aware of auto-cal or auto-
zero?

Hardware fault detection

Hardware fault is detectable but never
reported to user

The MEDICAL DEVICE continues to be used
in this condition

Hardware fault occurs after power-up

software only checks for hardware fault at
power-up

Are all hardware faults reported to
user?

Should hardware fault be checked at
power-up, before each treatment or
session or on a continuous basis such
as once per second?

Self-cleaning User aborts cleaning or disinfection
PROCESS mid-cycle

Does software enforce completion of
cycle?

Can software detection of incomplete
cleaning or disinfection cycle be
defeated?

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

 – 46 – TR 80002-1 © IEC:2009(E)

Table B.1 – Examples of causes by software function area (continued)

Software function area Example causes for HAZARDS Questions to ask

Fluid delivery
Detecting improper calibration

Not checking all fluid “gates” initially and
continuously during therapy

Are all assertions continuously verified
on a scheduled basis?

Can SAFETY SYSTEMS be defeated, i.e.
pump operated without tube in SAFETY
clamp?

Life support

Safe state never defined

Out of many shutdown paths, one does
not disable interrupts

No backups for life support functions

Have SAFE STATES been defined and
analyzed thoroughly including impact
of delay of treatment and safe
shutdown sequences for the range of
target populations (e.g. adults,
neonates)?

Can software support a “limited
functionality” mode and inform user of
situation?

Monitoring

Decision

Common Mode error in monitoring
software

Race condition causes incorrect decision
result

Has therapy control and therapy
monitor software been developed
independently?

Has software design eliminated or
minimized possibility for race
condition for this decision point?

Deactivation

Control SYSTEM unaware that monitoring
SYSTEM has shut down subsystem

Networked SYSTEM logging parameter that
is deactivated at MEDICAL DEVICE

Is control subsystem aware of monitor
subsystem actions?

How are deactivated parameters
communicated to user or networked
SYSTEMS?

Display

Displayed value is not being updated but
user is unaware

Display writes are performed at two or
more priority levels.

How is the user made aware of
“frozen” display?

Is video “context” saved before pre-
emption?

Measurement Wrong data acquisition timing or sampling
rate

Is sampling rate appropriate for
frequency content of signal?

Is the measurement value stored in
consistent units throughout software
layers?

Interfaces

Bad argument passing

Function passes value in microlitres but
driver expects value in millilitres

Bad pointer passed

Pointer to volatile memory passed and
values are lost before processing

Does each software function verify
passed parameters?

Does software language support more
robust type checking?

Is software designed with consistent
units for values throughout the
software package?

Are arguments modified at higher
priority processing layer?

Network

Software enters endless loop waiting on
response from host computer

MEDICAL DEVICES on network are given
identical “names” resulting in data loss

Networking data processing dominates
CPU cycles starving SAFETY or INTENDED
USE functions

Has software been designed to
tolerate any physical network
connection condition?

Can remote connection degrade
SYSTEM performance by repeatedly
sending commands or bogus data?

Does the MEDICAL DEVICE check that
the network name is not already in
use?

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

TR 80002-1 © IEC:2009(E) – 47 –

Table B.1 – Examples of causes by software function area (continued)

Software function area Example causes for HAZARDS Questions to ask

Data

Clinical information

SYSTEM accesses wrong patient RECORD
and user interface display does not make
it apparent

SYSTEM stores data from patient in wrong
archive

Can there be display of multiple
independent identifiers to put the user
in the loop of detecting mix-ups?

Can critical identifiers be embedded
with actual data as a cross-check?

Reports
Report provides incorrect data or
identifies it in the wrong sequence or
without units

What reports will be used for clinical
purposes?

What is the SEVERITY of HARM if the
data is incorrect?

How likely is it that a clinician would
notice the problem?

Databases Data corruption due to side-effects from
SYSTEM level failures or SOUP

How can data corruption be detected
prior to use of the data?

Can this be done with each use
instead of only at start-up?

Diagnostic

Decision-making

Artefact detection indication suppresses
asystole indication on the display

Has the alarm indication hierarchy
been thoroughly reviewed and also
reviewed with clinical staff?

Data conversion
Arithmetic precision errors result in invalid
result

Algorithm uses or displays incorrect units

What arithmetic precision is required?

How should mathematical formulas be
coded to ensure adequate precision?

Automated preventive
maintenance

Background diagnostic modifies data
temporarily but while application code is
retrieving the data for actual use

Background diagnostic interferes with
proper timing

Are application PROCESSES locked out
during diagnostics at appropriate
times?

Are diagnostics locked out during
critical timed cycles?

SECURITY

Configuration options No or inadequate protection of access to
critical configuration parameters or data

What data is critical and should not be
modifiable by the user or should
require supervisory authorization to do
so?

Is an audit trail needed?

Functional access
No or inadequate protection of access to
controls of therapy or instrument
operation

Should operators be required to login
before operation?

Can patients inadvertently operate the
MEDICAL DEVICE?

Interface access
No or inadequate protection from data
and commands submitted through
communications interfaces or networks

What should be allowed remotely?

Should assumed controls at the
remote SYSTEMS be relied on and if so
why?

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

 – 48 – TR 80002-1 © IEC:2009(E)

Table B.1 – Examples of causes by software function area (continued)

Software function area Example causes for HAZARDS Questions to ask

Performance

Capacity/load/response
time

Critical timing is affected during peak load

Sequence of transactions/inputs/outputs
is affected or data is lost under peak
loads

Motor control is affected under peak
SYSTEM loads

During peak load or when capacity
limits are reached will data or timing
be lost or affected in undetectable
ways?

Will inputs and outputs be queued up
in a correct deterministic sequence
under peak loads?

Have critical functionality and RISK
CONTROL measures been tested under
these stress conditions?

Have RISK CONTROL measures been
implemented to detect limits?

Can interrupts be set to segregate
critical time constrained functionality
from other functionality?

In addition to the potential software causes of HAZARDS in SAFETY-RELATED SOFTWARE
functionality shown in Table B.1, there are some types of software causes that may result in
side-effects in software unrelated to the software where the failure occurred. If a certain type
of software defect can have unpredictable effects on SAFETY-related parts of the software,
then this potential should be identified and a RISK CONTROL strategy and specific RISK CONTROL
measures developed.

Table B.2 identifies examples of these potential software causes for HAZARDS and some
possible RISK CONTROL measures to consider for each example. Requirements-based SYSTEM
testing is often ineffective at identifying these types of software causes or verifying the RISK
CONTROL measures associated with them and the effectiveness of the RISK CONTROL
measures. The columns on the right of the table provide guidance on the type of static or
dynamic VERIFICATION method(s) that might be appropriate for each example. Table B.3
provides examples of static or dynamic VERIFICATION method(s).

Table B.2 – Examples of software causes that can introduce side-effects

 Analysis: static / dynamic / timing

 Test (unit, integration)

 V
ER

IF
IC

A
TI

O
N

ty

pe
s:

Inspection

Software causes RISK CONTROL measures

Arithmetic

Divide by zero Run-time error traps, defensive coding D

Numeric overflow/underflow Range checks, Floating-point data representations D

Floating point rounding Robust algorithms

Improper range/bounds checking Defensive coding S

Off-by-one (OBO) Defensive coding

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

TR 80002-1 © IEC:2009(E) – 49 –

Table B.2 – Examples of software causes that can introduce side-effects (continued)

 Analysis: static / dynamic / timing

 Test (unit, integration)

 V
ER

IF
IC

A
TI

O
N

ty

pe
s:

Inspection

Software causes RISK CONTROL measures

Hardware-related

EEPROM usage: long access times,
wear-out

Use special access modes (Page/Burst mode), write only when
data changes, cache writes and update EEPROM only at power-
loss

 T

CPU/Hardware failures Power-on CPU Check, program image CRC check, RAM test,
Clock check, watchdog check, non-volatile storage check, timeouts
and reasonability checks on hardware responses, short-to
power/ground checks on sensors, test sensor response with known
signal

Noise Debounce digital inputs, filter analogue inputs, all interrupts –
used and unused – have interrupt service routines (ISRs)

Peripheral interface ANOMALIES Start-up delays for ADC/DAC, verify timing and other interface
requirements are always met, reasonability checks

 T

Timing

Race conditions Identify and protect (lock) shared resources during updates,
Implement a single, non-re-entrant PROCESS to handle all
accesses to the shared resource, shared resource analyses

 S

Missed time deadlines Specified timing requirements, appropriate real-time design
algorithms, eliminate priority-inversion and deadlock issues by
design, avoid non-deterministic timing constructs, verify all timing
assumptions in completed code

NOTE Non-deterministic timing constructs include: recursive
routines, waiting for a response from hardware, dynamic memory
allocation, and virtual memory (swapping memory pages to/from
disk)

 T

Missed interrupts Simple interrupt ARCHITECTURE (fewest priorities), ISRs are short
and fast, disabling of interrupt(s) is infrequent and of short
duration, appropriate real-time design

 T

Excessive jitter in outputs ISRs are short and fast, avoid non-deterministic timing constructs,
appropriate real-time design, update all outputs at beginning of
periodic TASK or in high-priority ISR

 T

Watchdog time-outs Determine longest time between watchdog timer resets and set
time-out appropriately, set time-out to longest period possible
while still avoiding HAZARDOUS SITUATION

 T

Moding

Abnormal termination Exit traps, run-time error traps, appropriate watchdog timer design,
validity checks on all program inputs, power-up self test, remove
all “debugging” code and other non-production features from
program before release, insure “special” modes (service,
manufacturing) can not be entered inadvertently

 D

Power loss/recovery/sequencing
problems

Power-up checks: CPU, program image CRC, RAM, clock,
watchdog, non-volatile storage, peripherals, etc., appropriate state
design, initialization of time-averaged values, re-initialization of
peripherals, store/recover SYSTEM state from non-volatile storage,
external voltage monitor / reset circuitry

Start-up/shut-down ANOMALIES Power-up checks (see above), proper initialization of peripherals
and data, appropriate non-volatile memory usage, appropriate
state design

Enter/exit of low power modes Appropriate interrupt design T

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

 – 50 – TR 80002-1 © IEC:2009(E)

Table B.2 – Examples of software causes that can introduce side-effects (continued)

 Analysis: static / dynamic / timing

 Test (unit, integration)

 V
ER

IF
IC

A
TI

O
N

ty

pe
s:

Inspection

Software causes RISK CONTROL measures

Data issues

Data corruption Shadow RAM, block CRCs or checksums, encapsulate data
access through functions, minimize global data, keep data
structures simple, be aware of how compiler aligns data in
structures, avoid casts, (also see “errant pointers” and
“intermediate data” below)

 S

Resource contention issues Shared resource analysis, (see also “race conditions” above)

Errant pointers Defensive coding: test for validity before de-referencing, use a
strongly-typed language, minimize the use of pointers, avoid
pointer casts

S

Data conversion errors: type-casting,
scaling

Avoid type-casts, use floating-point representations S

Incorrect initialization Pre-initialize time-averaged variables, clear all data memory to “0”
at power-up

S

Averaged data out of range Insure enough samples are taken before calculating average
(especially at power-up) or pre-initialize average to a known (or
last) good value

Rollovers Reasonability checks

Volatile data Verify volatile storage class is used for all data changed by
hardware, ISRs, or different priority TASKS

 S

Unintended aliasing Sample data at least 2x faster than the largest frequency
component of the signal (Nyquist criteria), limit the bandwidth of
the signal

Use of intermediate data

NOTE A sequence of calculations
should never be performed on a
global (or shared) variable when the
calculation can be interrupted or pre-
empted. Instead, perform all the
calculations on a temporary variable
and update the global variable with a
single, un-interruptible instruction.

Insure that any data which is assumed to be synchronous in time
is updated all at once, shared resource analysis

Interface issues

Failing to update display Continuous update instead of event-driven

Human factors: MISUSE Logs for re-constructing scenarios, context-sensitive help, simple
user interface design

Network issues, e.g. multi-user Load testing T

Hardware/software configuration
errors / wrong drivers

Software development PROCESS, configuration management tools

Bad patches/updates Program image CRC and VERSION check at power-up, check
protocol revisions, expiration dates

SOUP failure modes : Hangs/doesn’t
return, Locks interrupts too long, etc.

Examine SOUP Errata, Robust design (e.g. timeouts on all blocking
calls), Lock memory pages which are used frequently or used by
ISRs, Use only the SOUP features required: remove all others

 T

Virus Virus Checkers

Browser/web incompatibility Integrate VERSION checking at start-up, compatibility testing

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

TR 80002-1 © IEC:2009(E) – 51 –

Table B.2 – Examples of software causes that can introduce side-effects (continued)

 Analysis: static / dynamic / timing

 Test (unit, integration)

 V
ER

IF
IC

A
TI

O
N

ty

pe
s:

Inspection

Software causes RISK CONTROL measures

Miscellaneous

Memory leaks Avoid dynamic allocation of memory D

SYSTEM deadlocks Simple locking strategies (PROCESS can only have one resource
locked at a given time), deadlock analysis

 S

Re-entrancy Ensure that all functions, including those in third-party libraries,
which are called from interrupts (or multiple TASKS of different
priorities) are designed to be re-entrant

 D

Stack overflow Run-time stack guards, high-water marks, stack analysis S

Logic errors/syntax Use source code analysis tool (such as Lint) and/or max. compiler
warning level

Dual DIVERSITY and cross-checks at critical control points

S

Infinite loops Loop counters, loop timeouts, watchdog timer

Code corruption Power-up and run-time program image CRC check

Dead code If not removed insert an error check that will alarm or perform a
safe shutdown if dead code (in custom or for off-the-shelf software
components) begins to execute.

 D

Incorrect conditional code Ensure conditional compilation is used appropriately and only
when necessary

Unintended macro side-effects Use parenthesis around all macro parameters S

Resource depletion Stack, heap, and timing analyses T

Incorrect alarm/alert prioritization Stress testing

Unauthorized features (“gold plating”,
“back doors”, etc.)

Requirements and design reviews, trace matrices

Incorrect order of
operations/precedence

“Bread-crumbing”, Called from tracking

SAFE state Independent monitor

There are many methods available to facilitate assurance that RISK CONTROL methods are
likely to perform as intended, some more resource-intensive than others. No single method is
sufficient. Some of these methods are identified below in Table B.3.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

 – 52 – TR 80002-1 © IEC:2009(E)

Table B.3 – Methods to facilitate assurance that RISK CONTROL methods are likely to
perform as intended

Static analysis Dynamic testing Modelling

Walkthroughs Functional testing Environmental
modelling

Design reviews Timing and memory tests Timing simulation

Sneak circuit analysis Boundary value analysis Use case/user
workflows

 Performance testing

 Stress testing

 Statistical testing

 Error guessing

 Thread-based testing

 Use-based testing

 Cluster testing

Testing should account for a variety of types of tests (e.g. stress, boundary, timing, power
failure, fault, SOUP failure, etc.) to assure SAFETY-RELATED SOFTWARE is tested under an
adequate range of conditions rather than focusing exclusively on requirement-based testing.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

TR 80002-1 © IEC:2009(E) – 53 –

Annex C
(informative)

Potential software-related pitfalls

Table C.1 lists potential software related pitfalls to avoid during RISK MANAGEMENT activities
(per ISO 14971:2007 clauses) and during the software LIFE-CYCLE (per IEC 62304:2006
clauses).

Table C.1 – Potential software-related pitfalls to avoid

ISO 14971:2007 Clause 4: RISK ANALYSIS
– Applying unrealistic low probability estimates to software failures resulting in unrealistic RISK ratings

leading to inappropriate RISK CONTROL measures.

– Adding software features without performing RISK ANALYSIS to determine if new HAZARDS and HAZARDOUS
SITUATIONS or causes have been added to the MEDICAL DEVICE or if existing RISK CONTROL measures are
compromised (either during initial development or after release as part of maintenance).

– The MEDICAL DEVICE RISK ANALYSIS PROCESS defines only SYSTEM and hardware level aspects and neither
adequately addresses the relationship of software to adequate RISK ANALYSIS nor requires specific
consideration of software ANOMALIES as potential causes for HAZARDS and HAZARDOUS SITUATIONS.

– The rigour of the RISK ANALYSIS and software development LIFE-CYCLE PROCEDURES is not commensurate
with the potential HARM of the MEDICAL DEVICE.

ISO 14971:2007 Subclause 4.1 RISK ANALYSIS PROCESS

– The RISK ANALYSIS PROCESS defines only SYSTEM and hardware level aspects. Software is only addressed
where it implements RISK CONTROL measures for hardware failures.

– The rigour of the RISK ANALYSIS and software development LIFE-CYCLE PROCEDURES is not commensurate
with the potential HARM of the MEDICAL DEVICE.

– Software is considered as part of RISK ANALYSIS only late in the product development LIFE-CYCLE.

ISO 14971:2007 Subclause 4.2 INTENDED USE identification

– Considering only a subset of user environments/ potential computer SYSTEM platforms.

– Not considering the platform evolution or need for SECURITY or other SOUP patches.

– Inadequate consideration of misuse and user error resulting in potential HAZARDS and therefore their
corresponding RISK CONTROL measures are not identified.

ISO 14971:2007 Subclause 4.3 Identification of HAZARDS

– Using FMEA or FTA methodologies as if they alone suffice for adequate RISK MANAGEMENT.

– Performing FMEA or FTA methodologies in isolation for hardware and software.

– Ignoring a whole class of HAZARDS and causes such as:

• software errors that have unpredictable effects;

• errors in software logic used as RISK CONTROL measures for hardware failures;

• errors in software logic for the intended clinical purpose of the MEDICAL DEVICE (such as algorithms
for results calculations);

• failures of software platforms – operating SYSTEMS, libraries, SOUP;

• failures of computer components and peripherals;

• failures of communications interfaces;

• human factors.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

 – 54 – TR 80002-1 © IEC:2009(E)

Table C.1 – Potential software-related pitfalls to avoid (continued)

– Approaching cause identification with the presumption that:

• software ANOMALIES will only affect the functionality in a specific component and will not have side
effects on other SOFTWARE ITEMS or data;

• software will work properly;

• potential software failure causes are too numerous and unpredictable for identification, detection, or
RISK CONTROL;

• it is always sufficient to use RISK CONTROL measures at the beginning or end of software sequences
of events leading to HAZARDOUS SITUATIONS.

ISO 14971:2007 Subclause 4.4 Estimation of RISK

– Assuming single-fault condition concepts apply to software design issues and sequences of events.

– Assuming that testing – which can not be exhaustive – reduces the probability of a particular failure to
zero.

– Assuming, based on functionality, that certain SOFTWARE ITEMS will not be SAFETY- related without
considering the potential for unexpected side-effects.

– Assigning SEVERITY without adequate clinical knowledge or involvement of those with clinical knowledge
(human factors) of the impact of HAZARDS on all potential users and target populations.

– Assigning low severities based on assumptions that clinicians will detect failures or erroneous
information.

– Assigning low severities based on assumptions that all users will follow MEDICAL DEVICE labelling and
manuals exactly or without inadvertent error.

– Assuming some planned RISK CONTROL measure for a HAZARD as part of assigning initial SEVERITY. If the
assumption is wrong, the low initial SEVERITY may cause inadequate RISK CONTROL being identified later.

– Using only the potential for direct patient HARM to identify SEVERITY without considering indirect use of
information provided by the software to the user, delay of treatment, and other factors related to
effectiveness and essential performance of the MEDICAL DEVICE.

– Assuming that a clinician would always cross-check software-provided information or could detect
misinformation, assigning a low SEVERITY, and based on this not implementing other RISK CONTROL
measures.

ISO 14971:2007 Subclause 5 RISK EVALUATION

– Using subjective probability of a software ANOMALY to decide that RISK CONTROL is not required.

– Eliminating a HAZARD from software consideration due to hardware characteristics and later changing or
removing the hardware involved in a way that makes software a possible contributing factor and then not
considering additional RISK CONTROL measures for the software.

– Not considering a potential software ANOMALY as a contributing factor to a HAZARD because it is assumed
that the software would work as intended or that testing would catch all ANOMALIES.

ISO 14971:2007 Subclause 6.3 Implementation of RISK CONTROL measures

– RISK CONTROL measures are verified under normal or limited conditions, not under a wide range of
abnormal and stress conditions.

– Software or data used to implement a RISK CONTROL measures is in components or locations easily
accessible to other software making the potential for hazardous side affects high.

– RISK CONTROL measures are only verified on one operating platform or program variant.

– Some RISK CONTROL measures are not actually verified due to the difficulty of forcing their occurrence
(e.g. memory failure, race condition, data corruption, stack overflow).

– Assuming that all SAFETY- related ANOMALIES are found during development and that testing assures it will
work properly in the field.

– Implementation of a RISK CONTROL measure that makes the software design significantly more complex.
This complexity increases the potential for additional software ANOMALIES or causes new HAZARDS.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

TR 80002-1 © IEC:2009(E) – 55 –

Table C.1 – Potential software-related pitfalls to avoid (continued)

ISO 14971:2007 Clause 9 POST-PRODUCTION information
– Ignoring potentially hazardous field events due to USE ERROR when additional RISK CONTROL measures

could be introduced.

– Assuming initial probability and SEVERITY estimates are accurate with no evaluation of field information.

– Missing that the MEDICAL DEVICE is being used for an unanticipated use for which the implemented RISK
CONTROL measures may be inadequate. For example, an IVD for testing HIV was intended for individual
use but becomes used for screening the public blood supply.

IEC 62304:2006 Subclause 5.1 Software development planning

– RISK MANAGEMENT activities are not established in software plans and LIFE-CYCLE PROCESSES.

– Software RISK MANAGEMENT activities are not related to overall MEDICAL DEVICE RISK MANAGEMENT
activities.

– Software RISK ASSESSMENT occurs only at one phase in the LIFE-CYCLE.

– Software developers and testers are not trained or experienced in RISK MANAGEMENT.

– Software RISK MANAGEMENT is assumed to be covered by general RISK MANAGEMENT activities.

– Software RISK is not managed in a disciplined manner.

– TRACEABILITY of SAFETY decisions is not established

IEC 62304:2006 SOFTWARE of unknown provenance (SOUP) considerations

– Missing inherently safe design RISK CONTROL measures by not considering RISK ASSESSMENT and control
when defining software ARCHITECTURE.

– Assuming that testing will make ineffective ARCHITECTURES adequately safe.

– Failure to identify SAFETY-related aspects of the ARCHITECTURE, resulting in unknown SAFETY RISKS when
these architectural elements are subsequently changed or eliminated.

IEC 62304:2006 Subclause 5.4 Software detailed design

– Focusing only on handling normal cases and assuming that interfaces and parameters passed between
components will be correct, rather than incorporating multiple levels of error checking.

– Not considering identification of potential software failures that could lead to HAZARDS and HAZARDOUS
SITUATIONS and associated RISK CONTROL measures during detailed design brainstorming as well as
subsequent reviews.

– Ignoring software failure causes (see Annex B) in RISK MANAGEMENT activities.

IEC 62304:2006 Subclause 5.5 SOFTWARE UNIT implementation and VERIFICATION

– Believing that the best coding and/or testing PROCESS, practices, tools, or employees can make up for a
poor, inherently unsafe, or overly complex design.

– Using inexperienced developers on critical code development.

– Failure to define and require specific defensive programming practices.

– Reliance on dynamic testing exclusively without performing code inspections or static code analysis,
especially on critical components.

– Deviation from the design without understanding the relevance of the design requirements to RISK
MANAGEMENT.

– Running unit tests on critical components only once, early in the development PROCESS, without repeating
them as part of regression testing.

– Focusing testing exclusively on dynamic, black-box, SYSTEM level techniques and not performing static
and dynamic white-box VERIFICATION.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

 – 56 – TR 80002-1 © IEC:2009(E)

Table C.1 – Potential software-related pitfalls to avoid (continued)

IEC 62304:2006 Subclauses 5.6 – 5.7 Software integration, integration testing, and
SYSTEM testing

– Not using RISK ASSESSMENT information to plan testing or train testers.

– Depending on testing as a RISK CONTROL measure – even though 100% testing is impossible.

– Not simulating the SYSTEM or software failure modes as part of testing to verify RISK CONTROL measures.

– Using automated tools for testing that are not qualified and controlled and relying on the results.

– Failure to properly analyze the code to detect ANOMALIES which testing cannot uncover.

IEC 62304:2006 Subclause 5.8 Software release

– Failure to bring the VERSION of released documentation into agreement with the released software may
mislead the development and test team on future releases of the product. Inaccurate documentation and
TRACEABILITY could lead to loss of links could lead to overlooking HAZARDS and their causes, lost RISK
CONTROL measures or failure to adequately verify SAFETY-RELATED SOFTWARE.

– Failure to involve those with adequate clinical knowledge in the evaluation of residual ANOMALIES.

– Evaluation of the significance of residual ANOMALIES based solely on the functional symptom detected
rather then a complete root cause analysis to determine all potential side-effects under a range of
conditions.

– Overlooking the fact that once a third party is no longer distributing a specific SOUP VERSION, those
VERSIONS will not be available for failure investigations and field corrections.

– Because a specific tool and VERSION of the tool was not archived (such as a compiler) the ability to create
the specific software VERSION is lost.

– The life of the MEDICAL DEVICE might well be longer than the life of the current archive media. As the
MANUFACTURER replaces old archive media with new, they should plan a migration path for old archives
onto the new media.

IEC 62304:2006 Subclause 6.1 Establish software maintenance plan

– Establishing a maintenance PROCESS that does not have a clear approach to RISK MANAGEMENT of
changes.

– Establishing RISK MANAGEMENT for changes that addresses only the intended functionality of a change and
not components affected and their associated RISKS.

IEC 62304:2006 Subclauses 6.2 - 6.3 Problem and modification analysis and
implementation

– Assuming that a small functional change can not affect SAFETY.

– Expanding the use of the MEDICAL DEVICE to new target populations, new disease indications, new types of
users (e.g. nurses instead of surgeons) or new platforms without re-examining the existing RISK CONTROL
measures and the appropriateness of the user interface.

– Setting problem resolution resource priorities based on the reported symptoms of field problems without
determining root cause and potential side-effects.

– Software designed for non-clinical purposes (e.g. billing) contains clinical data which subsequently is
distributed for clinical purposes without appropriate RISK MANAGEMENT.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

TR 80002-1 © IEC:2009(E) – 57 –

Annex D
(informative)

Life-cycle/risk management grid

Table D.1 lists the development activities of IEC 62304:2006 and associated software RISK
MANAGEMENT activities. Note that this table is not intended to represent a strict sequential
waterfall LIFE-CYCLE.

Table D.1 – LIFE-CYCLE/RISK MANAGEMENT grid

ISO 14971:2007 IEC 62304:2006

LIFE-CYCLE
requirements

4 RISK ANALYSIS 5 RISK EVALUATION 6 RISK CONTROL

5 Software development PROCESS

5.1 Software
development
planning

RISK MANAGEMENT planning (3.4 of ISO 14971:2007)

Plan and document:

a) the scope of the planned RISK MANAGEMENT activities, identifying and describing the MEDICAL

DEVICE and the LIFE-CYCLE phases for which each element of the plan is applicable;

b) assignment of responsibilities and authorities;

c) requirements for review of RISK MANAGEMENT activities;

d) criteria for RISK acceptability, based on the MANUFACTURER’S policy for determining acceptable
RISK, including criteria for accepting RISKS when the probability of occurrence of HARM cannot be
estimated;

e) VERIFICATION activities;

f) activities related to collection and review of relevant production and POST-PRODUCTION
information.

5.2 Software
requirements
analysis

• Analyze INTENDED USE
and reasonably
foreseeable misuse and
users to identify
HAZARDS

• Identify known and
foreseeable HAZARDS in
relationship to clinicians,
patients, and service
personnel and anyone
else that comes in
contact with the MEDICAL
DEVICE.

• Take into account
product stages, such as
installation and
assembly, training,
usage, upgrade and
maintenance

• Identify sequences or
combinations of events
that could result in
HAZARDOUS SITUATIONS

• Estimate the RISK for
each identified
HAZARDOUS SITUATION
taking into account the
SEVERITY of possible
consequences

• 4.3 Software SAFETY
classification
(IEC 62304requirement)

• Decide whether RISK
reduction is required
for the identified RISK

• Determine if software
RISK CONTROL
measures alone would
be adequate or if
hardware RISK
CONTROL measures are
necessary or desirable
and feasible

• Identify software RISK
CONTROL measures for
identified RISKS (e.g.
caused by hardware
failures and user error)

• Initial identification of
software RISK CONTROL
measures for software
failures that could
impact design. (e.g.
inherent safe design or
protective measures)

• Identify software to
increase detectability,
reduce SEVERITY and
/or reduce probability
of a HAZARDOUS
SITUATION.

• Review RISK CONTROL
measures for new
HAZARDS

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

 – 58 – TR 80002-1 © IEC:2009(E)

Table D.1 – LIFE-CYCLE/RISK MANAGEMENT grid (continued)

ACTIVITY RISK ANALYSIS RISK EVALUATION RISK CONTROL

5.3 Software
architectural design

• Identify critical data and
components and classes
of defects that could
lead to HAZARDS. Pay
special attention to
software causes

• Identify associated
HAZARDS

• Identify interfaces; what
is communicated and
when is it communicated

• Evaluate performance
criteria and limitations

• 4.3 Software SAFETY
Classification
(IEC 62304 requirement)

• Re-evaluation of
acceptability of
software’s allocated role
from a RISK perspective

• Evaluation of
susceptibility of control
measure to be impacted
by non-SAFETY- related
functionality

• Identify architectural
RISK CONTROL
measures to isolate
critical components
and prevent or detect
specific software
causes for HAZARDS

• Pay special attention
to providing any
appropriate
REDUNDANCY

• Identify HAZARDS
associated with
REDUNDANCY

• Identify global
methods for detection
and control

5.4 Software
detailed design

• Identify additional
potential causes for
HAZARDS

• Assume data, coding and
transmission errors

• Assume hardware failure

• Re-evaluation of
adequacy of RISK
CONTROL measures

• Determine separation of
SAFETY- related, non-
SAFETY- related code

• Implement specific
RISK CONTROL
measures and
defensive design
/programming
practices

• Complete
TRACEABILITY and
coverage analysis to
ensure RISK CONTROL
measures are
implemented

• Determination if
unspecified
functionality has
been implemented

5.5 SOFTWARE UNIT
implementation and
VERIFICATION

• Identify additional
potential causes for
HAZARDS

• Evaluation of each test
failure for similar code
implementations

• Re-evaluation of
adequacy of RISK
CONTROL measures by
challenging RISK
CONTROL measures
under a range of
conditions and by testing
with representative
users in representative
environments

• Verify RISK CONTROL
measures under a
range of conditions
on the range of
platforms

• Regression testing of
RISK CONTROL
measures prior to
final release

• Complete
TRACEABILITY and
coverage analysis to
assure RISK CONTROL
measures are
implemented and
tested

5.6 Software
integration and
integration testing

 • Regression testing of
RISK CONTROL
measures prior to
final release

• Complete
TRACEABILITY and
coverage analysis to
assure RISK CONTROL
measures are
implemented and
tested

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

TR 80002-1 © IEC:2009(E) – 59 –

Table D.1 – LIFE-CYCLE/RISK MANAGEMENT grid (continued)

ACTIVITY RISK ANALYSIS RISK EVALUATION RISK CONTROL

5.7 Software
SYSTEM testing

 • Regression testing of
RISK CONTROL
measures prior to
final release

• Complete
TRACEABILITY and
coverage analysis to
assure RISK CONTROL
measures are
implemented and
tested

5.8 Software
release

• Identify configuration
management plan
including configuration
items, and
interdependencies

 • Verify that proper
VERSIONS of custom
and SOUP software
are released.

• Verify build
environment is under
configuration control

6 Maintenance PROCESS

6.1 Establish
software
maintenance plan

• Plan how RISK MANAGEMENT will be performed for changes, enhancements, and fixes
and how field usage information will be monitored and analyzed to assess adequacy
of RISK CONTROL and opportunities for additional RISK reduction

6.2 Problem and
modification
analysis

• Analyze field
performance to identify
previously unrecognized
or additional HAZARDS
and causes for these
HAZARDS

• Re-evaluation of RISK
ratings and adequacy of
RISK CONTROL measures

• Identify if additional
RISK CONTROL
measures are
needed or if
modifications to
existing measures
are necessary

6.3 Modification

implementation

• Similar to development PROCESS but with a focus on the impact of changes to:

• affect existing RISK CONTROL measures;

• introduce new causes for HAZARDS;

• introduce new INTENDED USE functionality that introduces new HAZARDS;

• regression testing of SAFETY-related code.

• Software release according to Subclause 5.8 of IEC 62304:2006

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

 – 60 – TR 80002-1 © IEC:2009(E)

Annex E
(informative)

SAFETY cases

A SAFETY case is “a structured argument, supported by a body of evidence that provides a
compelling, comprehensible and valid case that a MEDICAL DEVICE is safe for a given INTENDED
USE in a given operating environment.” (adapted from UK MoD Def Stan 00-56).

While in industries such as military SYSTEMS, the off shore oil industry, rail transport and the
nuclear industry the concept of SAFETY cases is widely known, this technique is not mandatory
for the MEDICAL DEVICES industry nor is this annex intended to initiate additional requirements
beyond ISO 14971.

This technical report proposes that a SAFETY case could be a means of structuring,
documenting, and communicating the demonstration of an adequate level of SAFETY of a
MEDICAL DEVICE. The SAFETY case could also assist in ensuring SAFETY is maintained
throughout the lifetime of the MEDICAL DEVICE.

A SAFETY case uses the results of the RISK MANAGEMENT PROCESS to articulate why the
software is safe enough for its INTENDED USE and why it meets all regulatory requirements
(and could do so in the relevant regulatory terminology).

One could view a SAFETY case as a RISK MANAGEMENT or RESIDUAL RISK summary with
references to more detailed documentation for supporting information and the evidence in the
RISK MANAGEMENT FILE. It could also include cross references to demonstrate specification and
test coverage for all RISK CONTROL measures.

To implement a SAFETY case the following steps are needed:
– explicit set of claims about the SYSTEM;
– provision of supporting evidence;
– set of SAFETY arguments that link the claims to the evidence;
– assumptions and judgements underlying the arguments;
– allowance of different viewpoints and levels of detail.

The main elements of the SAFETY case are:

– claim about a property of the SYSTEM or some subsystem;
– evidence which is used as the basis of the SAFETY argument. This can be either

facts, (e.g. based on established scientific principles and prior research),
assumptions, or subclaims, derived from a lower-level sub-argument;

– argument linking the evidence to the claim, which can be deterministic, probabilistic
or qualitative;

– inference the mechanism that provides the transformational rules for the argument.

For more information on elements and construction of a SAFETY case see A Methodology for
Safety Case Development [9].

Two papers that provide a good introduction to SAFETY cases and goal structured notation are
Systematic Approach to Safety Case Management [10] and The Goal Structuring Notation – A
Safety Argument Notation [11].

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

TR 80002-1 © IEC:2009(E) – 61 –

Bibliography

NOTE The Joint Working Group does not endorse the content of any of the technical reference books listed. They
are offered by way of providing additional information relating to the guidance of applying the requirements of
ISO 14971 to MEDICAL DEVICE SOFTWARE.

[1] ISO 13485, Medical devices – Quality management systems – Requirements for
regulatory purposes

[2] IEC 60812, Analysis techniques for system reliability – Procedure for failure mode and effects
analysis (FMEA)

[3] IEC 61025, Fault tree analysis (FTA)

[4] IEC 61882, Hazard and operability studies (HAZOP studies) – Application guide

[5] IEC 62366, Medical devices – Application of usability engineering to medical devices

[6] IEC 80001-12), Application of risk management to information technology (IT) networks
incorporating medical devices – Part 1: Roles, responsibilities and activities

[7] PULLUM, L. Software fault tolerant techniques and implementation. Boston: Artech House,
2001

[8] BANATRE, M., LEE, P. (Eds)., Hardware and Software Architectures for Fault Tolerance:
Experiences and Perspectives. Berlin, Germany: Springer-Verlag, 1994

[9] BISHOP, P., BLOOMFIELD, R. (1998), A Methodology for Safety Case Development,
Safety-Critical Systems Symposium
http://www.adelard.co.uk/resources/papers/pdf/sss98web.pdf

[10] KELLY, T. P., Systematic Approach to Safety Case Management, Proceedings of SAE
2004 World Congress, Detroit, March 2004 (Proceedings published by the Society for
Automotive Engineers)

[11] WEAVER, R. A., KELLY, T. P., The Goal Structuring Notation – A Safety Argument
Notation, Proceedings of the Dependable Systems and Networks 2004 Workshop on
Assurance Cases, July 2004

—————————
2) To be published.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

 – 62 – TR 80002-1 © IEC:2009(E)

Index

ACCOMPANYING DOCUMENT, 37
ACTIVITY, 29
ANOMALY, 5, 11, 17, 20, 22, 23, 24, 26, 27, 30,

32, 33, 34, 35, 36, 37, 39, 41, 48, 52, 53, 55
ARCHITECTURE, 9, 10, 26, 29, 32, 33, 34, 48, 54
DELIVERABLE, 9
DIVERSITY, 30, 50

Definition, 7
HARM, 5, 14, 17, 19, 20, 22, 23, 24, 26, 27, 28,

31, 32, 35, 40, 41, 46, 52, 53, 56
HAZARD, 5, 9, 12, 14, 16, 17, 19, 20, 21, 22, 23,

24, 29, 31, 32, 33, 36, 40, 41, 42, 47, 52, 53,
54, 55, 56, 57, 58
foreseeable, 19
identification, 19, 20

HAZARDOUS SITUATION, 5, 7, 9, 12, 16, 17, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33,
35, 36, 39, 40, 41, 48, 52, 53, 54, 56

INTENDED USE, 12, 17, 18, 19, 42, 45, 52, 56,
58, 59

LIFE-CYCLE, 8, 28, 29, 39, 52, 54, 56, 57
MEDICAL DEVICE, 11
product development, 29
software, 5, 9
software development, 9, 17

MANUFACTURER, 11, 12, 14, 15, 16, 18, 19, 20,
22, 24, 26, 29, 33, 39, 55, 56

MEDICAL DEVICE, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 28,
30, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44,
45, 46, 52, 53, 54, 55, 56, 59, 60
non-, 18

MEDICAL DEVICE SOFTWARE, 11, 33, 39, 42
POST-PRODUCTION, 39

information, 14, 38, 56
monitoring, 14

PROBLEM REPORT, 13, 16
PROCEDURE, 15, 39, 52
PROCESS, 9, 15, 24, 29, 30, 32, 33, 36, 39, 42,

43, 44, 46, 48, 54, 55, 58
configuration management, 36
design, 9
outsourced, 11
product development, 28
risk analysis, 52
risk management, 6, 7, 9, 11, 15, 17, 20, 24,

38, 39, 59
software, 11, 16
software development, 9, 13, 15, 17, 24, 32,

33, 34
software problem resolution, 39
usability, 18

RECORD, 16, 18, 46
REDUNDANCY, 5, 7, 30, 57

Definition, 7
RESIDUAL RISK, 14, 24, 35, 37, 39, 59

RISK, 5, 8, 9, 10, 13, 14, 15, 17, 18, 21, 22, 23,
24, 25, 29, 30, 31, 32, 33, 34, 35, 36, 37, 52,
54, 55, 56, 57, 58
acceptance criteria, 14
manager, 12

RISK ANALYSIS, 5, 17, 22, 52
RISK ASSESSMENT, 9, 29, 34, 36, 54, 55
RISK CONTROL, 20, 25, 36, 37, 42, 47, 50, 53,

55, 56, 57, 58
measure, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 22, 24, 25, 26, 27, 28, 29, 30,
32, 33, 34, 35, 36, 37, 43, 47, 52, 53, 54,
55, 56, 57, 58, 59

methods, 28, 51
RISK ESTIMATION, 22, 23, 24
RISK EVALUATION, 9, 24, 35
RISK MANAGEMENT, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 20, 26, 28, 29, 39, 52, 53, 54, 55, 56,
57, 58, 59
plan, 14, 15, 24, 35, 56
process, 6, 7, 9, 11, 15, 17, 20, 24, 38, 39,

59
report, 37
team, 12

RISK MANAGEMENT FILE, 15, 16, 18, 37, 59
SAFETY, 5, 6, 8, 9, 10, 16, 17, 18, 20, 26, 28,

29, 30, 31, 32, 33, 34, 39, 43, 44, 45, 54, 55,
56, 57, 59
case, 34, 59
information for, 10, 26
-related, 10, 16, 29, 30, 31, 34, 43, 53, 54,

57, 58
requirements, 10
software safety class, 24, 28, 29

SAFETY-RELATED SOFTWARE, 10, 29, 30, 31, 34,
35, 47, 51, 55
Definition, 7
non-, 30

SECURITY, 34, 52
SEVERITY, 14, 17, 22, 23, 24, 35, 46, 53, 54, 56
SOFTWARE ITEM, 9, 10, 16, 20, 22, 28, 29, 30,

31, 34, 39, 53
SOFTWARE SYSTEM, 12, 16, 27, 31, 36, 39
SOUP, 14, 22, 33, 34, 39, 49, 51, 52, 58
SYSTEM, 5, 6, 8, 9, 10, 18, 19, 20, 25, 26, 29,

31, 32, 33, 35, 37, 42, 44, 45, 46, 47, 48, 52,
54, 55, 59
designer, 12, 20, 39
requirements, 18

TASK, 5, 12, 13, 29, 33
TOP MANAGEMENT, 11
TRACEABILITY, 16, 33, 34, 54, 55, 57, 58
USE ERROR, 54
VERIFICATION, 15, 16, 29, 34, 35, 43, 47, 54, 56,

57
VERSION, 9, 14, 16, 23, 26, 49, 55, 58

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

TR 80002-1 © IEC:2009(E) – 63 –

Index of defined terms

ACCOMPANYING DOCUMENT ...ISO 14971:2007, 2.1
ACTIVITY .. IEC 62304:2006, 3.1
ANOMALY ... IEC 62304:2006, 3.2
ARCHITECTURE ... IEC 62304:2006, 3.3
DELIVERABLE .. IEC 62304:2006, 3.6
DIVERSITY ... 2.1
HARM... IEC 62304:2006, 3.8
 ISO 14971:2007, 2.2
HAZARD ... IEC 62304:2006, 3.9
 ISO 14971:2007, 2.3
HAZARDOUS SITUATION ..ISO 14971:2007, 2.4
INTENDED USE .. ISO 14971:2007, 2.5
LIFE-CYCLE ..ISO 14971:2007, 2.7
MANUFACTURER.. IEC 62304:2006, 3.10
 ISO 14971:2007, 2.8
MEDICAL DEVICE ... IEC 62304:2006, 3.11
 ISO 14971:2007, 2.9
MEDICAL DEVICE SOFTWARE ... IEC 62304:2006, 3.12
POST-PRODUCTION.. ISO 14971:2007, 2.11
PROBLEM REPORT ... IEC 62304:2006, 3.13
PROCEDURE ... ISO 41971:2007, 2.12
PROCESS ... IEC 62304:2006, 3.14
 ISO 14971:2007, 2.13
RECORD ... ISO 14971:2007, 2.14
REDUNDANCY .. 2.2
RESIDUAL RISK.. ISO 14971:2007, 2.15
RISK .. IEC 62304:2006, 3.16
 ISO 17971:2007, 2.16
RISK ANALYSIS .. IEC 62304:2006, 3.17
 ISO 14971:2007, 2.17
RISK ASSESSMENT... ISO 14971:2007, 2.18
RISK CONTROL .. IEC 62304:2006, 3.18
 ISO 14971:2007, 2.19
RISK ESTIMATION .. ISO 14971:2007, 2.20
RISK EVALUATION .. ISO 14971:2007, 2.21
RISK MANAGEMENT .. IEC 62304:2006, 3.19
 ISO 14971:2007, 2.22
RISK MANAGEMENT FILE ... IEC 62304:2006, 3.20
 ISO 14971:2007, 2.23
SAFETY .. IEC 62304:2006, 3.21
 ISO 14971:2007, 2.24
SAFETY-RELATED SOFTWARE... 2.3
SECURITY ... IEC 62304:2006, 3.22
SEVERITY ... ISO 14971:2007, 2.25
SOFTWARE ITEM.. IEC 62304:2006, 3.25

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

 – 64 – TR 80002-1 © IEC:2009(E)

SOUP (SOFTWARE OF UNKNOWN PROVENANCE) .. IEC 62304:2006, 3.29
SYSTEM ... IEC 62304:2006, 3.30
TASK.. IEC 62304:2006, 3.31
TOP MANAGEMENT... ISO 14971:2007, 2.26
TRACEABILITY ... IEC 62304:2006, 3.32
USE ERROR .. ISO 14971:2007, 2.27
VERIFICATION ... IEC 62304:2006, 3.33
 ISO 14971:2007, 2.28
VERSION .. IEC 62304:2006, 3.34

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

3, rue de Varembé
PO Box 131
CH-1211 Geneva 20
Switzerland

Tel: + 41 22 919 02 11
Fax: + 41 22 919 03 00
info@iec.ch
www.iec.ch

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
,

FO
R

 IN
T

E
R

N
A

L
 U

SE
 A

T
 T

H
IS L

O
C

A
T

IO
N

 O
N

L
Y

, SU
PPL

IE
D

 B
Y

 B
O

O
K

 SU
PPL

Y
 B

U
R

E
A

U
.

	CONTENTS
	FOREWORD
	INTRODUCTION
	1 General
	1.1 Scope
	1.2 Normative references

	2 Terms and definitions
	3 General requirements for risk management
	3.1 Risk management process
	3.2 Management responsibilities
	3.3 Qualification of personnel
	3.4 Risk management plan
	3.5 Risk management file

	4 Risk analysis
	4.1 Risk analysis process
	4.2 Intended use and identification of characteristics related to the safety of the medical device
	4.3 Identification of hazards
	4.4 Estimation of the risk(s) for each hazardous situation

	5 Risk evaluation
	6 Risk control
	6.1 Risk reduction
	6.2 Risk control option analysis
	6.3 Implementation of risk control measure(s)
	6.4 Residual risk evaluation
	6.5 Risk/benefit analysis
	6.6 Risks arising from risk control measures
	6.7 Completeness of risk control

	7 Evaluation of overall residual risk acceptability
	8 Risk management report
	9 Production and post-production information
	Annex A (informative) Discussion of definitions
	Annex B (informative) Examples of software causes
	Annex C (informative) Potential software-related pitfalls
	Annex D (informative) Life-cycle/risk management grid
	Annex E (informative) Safety cases
	Bibliography
	Index
	Index of defined terms
	Figures
	Figure 1 – Pictorial representation of the relationship of hazard, sequence of events, hazardous situation and harm – from ISO 14971:2007 Annex E
	Figure 2 – FTA showing risk control measure which prevents incorrect software outputs from causing harm
	Figure A.1 – Relationship between sequence of events, harm and hazard

	Tables
	Table 1 – Requirements for documentation to be included in the risk management file in addition to ISO 14971:2007 requirements
	Table A.1 – Relationship between hazards, foreseeable sequences of events, hazardous situations and the harm that can occur
	Table B.1 – Examples of causes by software function area
	Table B.2 – Examples of software causes that can introduce side-effects
	Table B.3 – Methods to facilitate assurance that risk control methods are likely to perform as intended
	Table C.1 – Potential software-related pitfalls to avoid
	Table D.1 – Life-cycle/risk management grid

