IEC TR 63051:2017-01(en)

IEC TR 63051

Edition 1.0 2017-01

TECHNICAL
REPORT

colour
inside

Documentation on design automation subjects — Mathematical algorithm
hardware description languages for system level modeling and verification
(HDLMath)

THIS PUBLICATION IS COPYRIGHT PROTECTED
Copyright © 2017 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC
copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or

IEC Central Office
3, rue de Varembé
CH-1211 Geneva 20

Switzerland www.iec.ch

your local IEC member National Committee for further information.

Tel.: +41 22 919 02 11
Fax: +41 22 919 03 00
info@iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigenda or an amendment might have been published.

IEC Catalogue - webstore.iec.ch/catalogue

The stand-alone application for consulting the entire
bibliographical information on IEC International Standards,
Technical Specifications, Technical Reports and other
documents. Available for PC, Mac OS, Android Tablets and
iPad.

IEC publications search - www.iec.ch/searchpub

The advanced search enables to find IEC publications by a
variety of criteria (reference number, text, technical
committee,...). It also gives information on projects, replaced
and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published
details all new publications released. Available online and
also once a month by email.

Electropedia - www.electropedia.org

The world's leading online dictionary of electronic and
electrical terms containing 20 000 terms and definitions in
English and French, with equivalent terms in 16 additional
languages. Also known as the International Electrotechnical
Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

65 000 electrotechnical terminology entries in English and
French extracted from the Terms and Definitions clause of
IEC publications issued since 2002. Some entries have been
collected from earlier publications of IEC TC 37, 77, 86 and
CISPR.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or
need further assistance, please contact the Customer Service
Centre: csc@iec.ch.

mailto:info@iec.ch
http://www.iec.ch/
http://webstore.iec.ch/catalogue
http://www.iec.ch/searchpub
http://webstore.iec.ch/justpublished
http://www.electropedia.org/
http://std.iec.ch/glossary
http://webstore.iec.ch/csc
mailto:csc@iec.ch

IEC TR 63051

Edition 1.0 2017-01

TECHNICAL
REPORT

colour
inside

Documentation on design automation subjects — Mathematical algorithm
hardware description languages for system level modeling and verification
(HDLMath)

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

ICS 25.040.01; 35.240.50 ISBN 978-2-8322-3772-4

Warning! Make sure that you obtained this publication from an authorized distributor.

® Registered trademark of the International Electrotechnical Commission

-2- IEC TR 63051:2017 © IEC 2017

CONTENTS
O] T T @] 2 | PP 3
INTRODUGTION ..ttt ettt e et et e et e et e e et e et e e et e e eaa e eean e eeennnas 5
1 S ToTo] o 1= 1 PP 7
2 NOIMALIVE FEIEIEINCES o e ettt et e e e e 7
3 Terms and definitioNS ... e 7
4 Definition and positioning of HDLMath ... 7
4.1 (=Y 1= - U 7
4.2 CUrrent HDLMatNS ..o e 7
4.3 Design abstraction level of HDLMath ..o 8
5 Functional requirements of HDLMath ... 9
5.1 (=Y 1= - U 9
5.2 MathematiCal EXPrEeSSIONS ... i i eeas 9
5.3 Various kinds of precision computationcccooiiiiiiiii 10
5.4 Exception and error handlingc..ooeeiiiiiii i 10
5.5 MUlti-diMeENSIONAl AITAYS ...cuuiii i e 11
5.6 Mathematical fUNCLIONScoeiii e 11
5.7 Mixed numerical and symbolic computations..........ccoouiviiiiiiiiii i, 12
5.8 [=T=To | oF=Tod S o] o Yo T PR 12
5.9 User-defined functions in C-COOEccuuiiiiiiiiiii e 13
5.10 Verification enVIFONMENT ... e 14
6 Comparison of current HDLMath [anguagescc.vieiiiiiiiii e 14
A ©7o o o] 11 =1 [Y o N 15
27 o] oTe [£=1 o] 1 PP 16
Figure 1 — Numbers of description HNeSc.. i 9
Figure 2 — Examples of mathematical eXpressSionS 10
Figure 3 — Multi-dimensional arrays and mathematical functions in HDLMath1...................... 11
Figure 4 — Multi-dimensional arrays and mathematical functions in HDLMath2...................... 12
Figure 5 — Mixed numerical and symbolic computations in HDLMath1 and HDLMath2........... 12
Figure 6 — Example of a feedback proCesS ... 12
Figure 7 — Example of feedback process in HDLMath1 and HDLMath2ccc.ccoiiiieinen. 13
Figure 8 — Examples of user-defined functions in C-code in HDLMath1 and HDLMath2......... 13
Figure 9 — Structure of test-bench description of HDLMath1 and HDLMath2 14
Table 1 — Examples of mathematics applications ... 5
Table 2 — Examples Of PreCiSion tYPec.. i 10
Table 3 — Examples of overflow handlingcouiiiii e 11

Table 4 — Comparison of current HDLMaths.......ooeie i 15

IEC TR 63051:2017 © IEC 2017 -3-

INTERNATIONAL ELECTROTECHNICAL COMMISSION

DOCUMENTATION ON DESIGN AUTOMATION SUBJECTS -
MATHEMATICAL ALGORITHM HARDWARE DESCRIPTION LANGUAGES
FOR SYSTEM LEVEL MODELING AND VERIFICATION (HDLMath)

FOREWORD

The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international
co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in
addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports,
Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their
preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with
may participate in this preparatory work. International, governmental and non-governmental organizations liaising
with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for
Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.

IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.

In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence between
any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.

All users should ensure that they have the latest edition of this publication.

No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses
arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.

Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent
rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. However, a
technical committee may propose the publication of a Technical Report when it has collected
data of a different kind from that which is normally published as an International Standard, for
example "state of the art".

IEC 63051, which is a Technical Report, has been prepared by IEC technical committee 91:
Electronics assembly technology.

The text of this Technical Report is based on the following documents:

Enquiry draft Report on voting
91/1349/DTR 91/1396/RVC

Full information on the voting for the approval of this Technical Report can be found in the report
on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

-4 - IEC TR 63051:2017 © IEC 2017

The committee has decided that the contents of this document will remain unchanged until the
stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to
the specific document. At this date, the document will be

e reconfirmed,

e withdrawn,

e replaced by a revised edition, or

e amended.

A bilingual version of this publication may be issued at a later date.

IMPORTANT - The 'colour inside’ logo on the cover page of this publication indicates
that it contains colours which are considered to be useful for the correct
understanding of its contents. Users should therefore print this document using a
colour printer.

IEC TR 63051:2017 © IEC 2017 -5-

INTRODUCTION

Around the world, engineers in industries such as electronics and automobiles are developing
many kinds of systems and products. However, these are developed based on conventional
design processes and suffer from many design problems and long design times. Because the
laws of nature can be expressed mathematically, mathematics is a good algorithmic method for
the description and modeling of such systems. Mathematical modeling is also an important
approach for both solving problems and visualizing the abstract concepts involved.

System LSI (Large Scale Integration) can be described at three levels of complexity as follows:

1) The the algorithmic level, which specifies only the algorithm used by the hardware for the
problem solution;

2) the register transfer level, in which the registers are system elements and the data transfer
between these registers is specified according to some rule;

3) the circuit level, where gates and flip-flops are replaced by the circuit elements such as
transistors, diodes, resistors, etc.

For levels 2) and 3), VHDL (IEC 61691-1-1:2011 [1]1) and SystemVerilog (IEC 62530:2011[2])
have already been standardized by the IEC and IEEE and have been in practical use for over
twenty years.

For level 1), System C is able to describe hardware systems at the behavioral level.

The purpose of this document is to accelerate the standardization of a mathematical algorithm
description language (HDLMath). HDLMath will be used to describe and verify the entire
behavior of systems and/or products using mathematical algorithms of electronic systems. It is
a higher level language than conventional HDL (Hardware Description Language) languages
such as VHDL and SystemVerilog.

HDLMath and its design environment can support the design of many domains and applications
as indicated in Table 1.

Table 1 — Examples of mathematics applications

Mathematics Application examples

Complex numbers Resistors, inductors, capacitors, power engineering, analysis of electric and
magnetic fields, digital signal processing, image processing

Matrices and determinants Electrical networks, computer graphics, image analysis

Laplace transforms Circuits, power systems (generators), feedback loops

Statistics and probability Failure rates for semiconductor devices, behavior of semiconductor materials,
image analysis, data compression, digital communications techniques, error
correction

Vector and trigopnometry Oscillating waves (circuits, signal processing), electric and magnetic fields,

design of power generating equipment, radio frequency (RF) systems and
antenna design

Differentiation and integration | Calculation of currents in a circuit, wave propagation, design of semiconductors,
image analyses, design of firing circuits

Functions, polynomial, linear | Curve fitting, fuel cell design, traffic modeling, power analysis, stress analysis,
equations, logarithms, determining the size and shape of parts, software design, computer graphics
Euclidean geometry

1 Numbers in square brackets refer to the Bibliography.

-6- IEC TR 63051:2017 © IEC 2017

Recently, several HDLMath languages have already been used to design the mathematical
algorithms in electronic systems. MATLAB/SIMULINK is one such popular design environment
for the design and verification of various system behaviors. FinSimMath has been proposed and
put to practical use by several groups to design and verify mathematical algorithms in ASIC
(Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array).
System C-AMS is mainly for analog circuit design and is an extension of the System C
standardized by the IEEE and IEC. It is capable of describing mathematical algorithms using
additional C-code extensions. IEC TR 62856:2013 [3] (BVDL, or Bird’s-eye View of Design
Languages) describes the features of existing design languages, as well as listing the
requirements for enhancing design languages and for developing new ones.

Another purpose of this document is to add HDLMath to BVDL as a system modeling language.
This document describes nine functional requirements for an HDLMath and compares current
HDLMath languages from a design viewpoint. It is intended to accelerate the standardization of
a mathematical algorithm design language and to establish a good system modeling
environment in the world.

IEC TR 63051:2017 © IEC 2017 -7-

DOCUMENTATION ON DESIGN AUTOMATION SUBJECTS -
MATHEMATICAL ALGORITHM HARDWARE DESCRIPTION LANGUAGES
FOR SYSTEM LEVEL MODELING AND VERIFICATION (HDLMath)

1 Scope

A hardware description language provides a means to describe the behavior of a system
precisely and concisely. This document describes the main functional requirements for an
HDLMath language and compares existing HDLMath languages from the viewpoint of designers.
Itis intended to accelerate the standardization of a mathematical algorithm design language and
to help establish a new and good system modeling and verification environment.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies.
For undated references, the latest edition of the referenced document (including any
amendments) applies.

There are no normative references in this document.

3 Terms and definitions
No terms and definitions are listed in this document.

ISO and IEC maintain terminological databases for use in standardization at the following
addresses:
o |EC Electropedia: available at http://www.electropedia.org/

¢ |ISO Online browsing platform: available at http://www.iso.org/obp

4 Definition and positioning of HDLMath

4.1 General

HDLMath is defined as a language for describing and verifying the behavior of an entire system
or product using mathematical algorithms.

IEC TR 62856:2013 (BVDL) describes the features of existing design languages used in the
design processes applied to the development of System-on-Chip (SoC) devices, which range
from system level design, IP block creation and analog block design, to SoC design
implementation and verification. HDLMath will cover system level design in the BVDL schema.

4.2 Current HDLMaths

Currently, there are three kinds of language for these design environments: HDLMath1,
HDLMath2, and HDLMath3.

HDLMath1 is a kind of high-level language that has an interactive environment for numerical
computation, visualization, and programming. It is able to analyze data, develop algorithms, and
create models and applications using the language, tools, and built-in mathematical functions.
It features the following:

http://www.electropedia.org/
http://www.iso.org/obp

-8- IEC TR 63051:2017 © IEC 2017

a) a block diagram environment for multi-domain simulation and model-based design;

b) simulation, automatic code generation, and continuous test and verification of embedded
systems.

HDLMath2 is motivated by the need for mathematical modeling within the Verilog language. lts
features are as follows:

e no explicit conversion functions are necessary;
e support for runtime changes of formats, including the number of bits of the various fields;
e data in multi-dimensional arrays that are easy to access globally.

The language is designed to support a large number of mathematical system tasks, and provides
access to information regarding the occurrence of overflows, underflows, maximum number of
bits needed, cumulative error, etc.

HDLMath3 is a language mainly to support analog design. It allows networks of analog parts
such as resistors, capacitors, etc., to be defined. The simulator extracts the differential
equations corresponding to the network of analog parts and solves them based on initial
conditions and using a timestep provided by the user. It is able to handle blocks that are modeled
mathematically and written at the C/C++ level. However, the mathematical capabilities in math.h
(a kind of C function library) are limited at the low level of C/C++ and not at the high levels found
in HDLMath1 or HDLMath2.

4.3 Design abstraction level of HDLMath

Figure 1 shows the number of lines of code for several small examples written using HDLMath1
and HDLMath2. It also shows the length of the C-code generated automatically from an
HDLMath1 description. The number of lines of C-code is several hundred times larger than that
of the HDLMath descriptions. The figure indicates how HDLMath languages can be used to
design at a higher level of design abstraction and hence how design productivity is higher than
C level design.

IEC TR 63051:2017 © IEC 2017 -9 -

¢ HDLMath1

® HDLMath2

40

35
30

25

20 - " =

15
10

@ C code
3 500

3 000

2500

2000

1500

1000

500

IEC

Figure 1 — Numbers of description lines

5 Functional requirements of HDLMath

5.1 General

When designing mathematical algorithms for system level modeling with an HDLMath, the
HDLMath shall cover the following functional requirements in order to achieve utmost precision.

5.2 Mathematical expressions

The mathematical operators +, -, *, **, and / shall be applicable to any combination of the
following operand and result formats: arbitrary-precision fixed-point, arbitrary-precision
floating-point, integer, real, register, and constants. Trigonometric and hyperbolic (direct and
inverse) functions shall be supported for any precision. Power, logarithm, and square root

-10 -

IEC TR 63051:2017 © IEC 2017

operations are also needed. Figure 2 shows a part of a filter described using logarithm function

in HDLMath1 and HDLMath2.

/**** HDLMath1 ****/
function ComputeGainC()
step = (srate/SIZE)/2;
110 = l0og(10.0);
omega = 0;
forj=1:SIZE
Hr = vp*fact;
fori=1:15
t1 = vp*fact;
t1 = t1"2"cos(omega*i*T);
Hr = Hr+t1;
end
Hr = abs(Hr);
y(0,j) = 20*log(Hr)/110;
omega = omega + step;
end

/**** HDLMath2 ****/

task ComputeGainC;
begin
step = (srate/SIZE)/2;
110 = $VpLn(10.0);

omega = 0;
for (j = 1; (j < SIZE); j = j+1)
begin
vp = $VpCopyReg2Vp(mem(fir.Na]);
Hr = vp*fact;
for (i=1; (i <= 15); i = i+1)
begin
vp = $VpCopyReg2Vp(memlfir.Na-i]);
t1 = vp*fact;
t1 = t1*2*$VpCos(omega*i*T);
Hr = Hr+t1;
end

Hr = $VpADbs(Hr);
y[0][j] = 20*$VpLn(Hr)/110;
omega = omega + step;
end
end

endtask

IEC

Figure 2 — Examples of mathematical expressions

5.3

Various kinds of precision computation

Data shall include scalar, complex numbers in Cartesian coordinates, and complex numbers in
polar coordinates. The high level support shall be bit-accurate, i.e. the result of computations
performed during simulation should match the results produced by the actual hardware. The
formats (floating or fixed point) of high level data, as well as the number of bits in their respective
fields, shall be modifiable during algorithm design. Modifying formats and their respective fields
allows for a more efficient design space exploration. Table 2 shows the precision type of
HDLMath1 and HDLMath2. HDLMath2 can handle data up to 1 Mbit in width and the precision

type is defined using the “descriptor” construct.

Table 2 — Examples of precision type

HDLMath1 HDLMath2
bit width 8, 16, 32, 64 defined using “descriptor” construct
sign sign and unsigned

floating point

single/double

fixed point

using tool box

5.4

Exception and error handling

To help optimize the implementation of mathematical algorithms, errors shall be minimized
using only the necessary number of bits. Access shall also be provided to information regarding

IEC TR 63051:2017 © IEC 2017 -11 -

the occurrence of overflow, underflow, maximum number of bits required, and cumulative error.
Table 3 shows the overflow handling of HDLMath1 and HDLMath 2. HDLMath2 can define these
using the “descriptor” construct.

Table 3 — Examples of overflow handling

HDLMath1 HDLMath2
floating point rounds to infinite value
integer saturated with the maximum number defined using “descriptor” construct
fixed point rounds to the specified number

5.5 Multi-dimensional arrays

One- and two-dimensional arrays of any kind of data, including sparse arrays, and arithmetic
and logical operations on any kind of legal combination of data shall be supported. This
capability allows the implementation of all mathematical algorithms.

5.6 Mathematical functions

There shall be support for a large number of mathematical functions, such as differential
equations, FFT (Fast Fourier Transform), DFT (Discrete Fourier Transform), finding eigenvalues
and eigenvectors, norms and distances, finding roots of polynomials. Although all mathematical
functionality can be written using the arithmetic operators, such an implementation would be
slow. Figure 3 and Figure 4 show multi-dimensional arrays and mathematical functions in
HDLMath1 and HDLMath2, respectively.

function ar_f_total = diff_math();
alpha = 1.65;
r_total_time = 0.005;

ar_f_total(slice,j) = ar_f_spring(slice) + ar_f_damper(slice) + ar_f_flux(slice);
if (isZero)
ar_f_total(slice,j) = 0;

elseif (ar_f_total(slice,j)>0)
ar_f_total(slice,j)= ar_f_total(slice,j);

else
ar_f_total(slice,j) =0;

end

if ((slice ~=1) && (ar_f_total(slice,j) < 15))
isZero = 1;_

function dydx = vplode(t,x):

global coef;
dydx = [x(2):-(coef(2)*x(2)+coef(3)*x(1))/coef(1)];

IEC

Figure 3 — Multi-dimensional arrays and mathematical functions in HDLMath1

-12 - IEC TR 63051:2017 © IEC 2017

module top;

parameter real alpha = 1.65;

parameter real r_total_time = 0.005;/* seconds */

ar f flux[slice] = 0;

ar f total[j][slice] = ar f spring[slice] + ar f damper[slice] + ar f flux[slice];
ar f total[j][slice] = (isZero) ? 0: ((ar f total[j][slice]>0)?ar f total[j][slice]:0);
if ((slice !=0) && (ar_f total[j][slice] < 15)

$VpLODE(order, nrEqg, h, nr pts per ct coef+1.,x ct, coef, Fe ct,y ct, ressymb);
end

IEC

Figure 4 — Multi-dimensional arrays and mathematical functions in HDLMath2

5.7 Mixed numerical and symbolic computations

All the necessary processing should be performed in one execution. Users should not be
burdened with passing data from a symbolic environment to a numeric environment. When
performing symbolic simulation using strings, a string should be evaluated in the current context,
as if it had been an expression in the numeric environment. Figure 5 shows mixed numerical and
symbolic computations in HDLMath2, but HDLMath1 does not support this functional
requirement.

/**** HDLMath1****/ /**** HDLMath2****/

Syms X r; r = $Pi/6;

symb1 = sin(rx); x = $Pi/6;

symb1_val = double(subs(symb1,[x r],[pi/6 pi/6])); symbExpr1 = "$VpSin(rx)";

$Eval(symbExpr1, val);

IEC

Figure 5 — Mixed numerical and symbolic computations in HDLMath1 and HDLMath2

5.8 Feedback process

One important aspect in control system design is to analyze the effects of feedback loops on the
overall system. Figure 7 shows the feedback process in HDLMath1 and HDLMath2 for Figure 6.

Open-loop plant

+ + x y
" l() “ » B - 1/s C f——
A - +
A
K
IEC
Key
A, B, C, K matrix values
1/s Laplace transform of step function

r,u, x,y variables

Figure 6 — Example of a feedback process

IEC TR 63051:2017 © IEC 2017

- 13—

poles = eig(A)

t =0:0.01:2;

u = zeros(size(t));

x0 = [0.01 0 0];

sys = ss(A,B,C,0);
[y,t,x] = Isim(sys,u,t,x0);

poles = $Eig(A);

$PrintM(poles, "%e");

/* The poles are:

poles[0].Re = -3.130495e+01, poles[0].Im = 0.0
poles[1].Re = -1.000000e+02, poles[1].Im = 0.0
poles[2].Re = 3.130495e+01, poles[2].Im = 0.0

plot(t,y) */
xlabel('Time (sec)")
ylabel('Ball Position (m)') K = $Place(A, B, poles);

........... BK = B*K;

K = place(A,B,[p1 p3]); AK = A-BK;

sys_cl = ss(A-B*K,B,C,0); y = $LSim(AK, B, C, D, u, t0, dt, nr_samples, x);

IEC

Figure 7 — Example of feedback process in HDLMath1 and HDLMath2

5.9 User-defined functions in C-code

Support for extending simulation functionality by having the capability to incorporate C code
execution in the simulation in a standard manner is required to enhance performance.

The rationale behind this requirement is that many design teams have their own mathematical
libraries and nothing else can work as well for them. In such cases, the designers can use their
own libraries. Figure 8 is a user-defined C function call example in HDLMath1 and HDLMath2.

/****HDLMath1 ***/ /****HDLMath2 ***/

static void yprime(= = = = = ===« - -«) long tf2ssc(long file, int line,

yp[1l= int sz2SS, int st2SS, int end2SS, long SS);
2*y[3]+y[0]-mus*(y[0]+mu)/(r1*r1*r1)-mu*(y[0]-mus)/(r | | === = ==« s snenn
G M - ti2ssc(b, a); /*call C code */

return;}
void mexFunction(i= = = = = = = = oo - -) L I

yprime(yp,t,y);
return; }

IEC

Figure 8 — Examples of user-defined functions in C-code in HDLMath1 and HDLMath2

—14 -

5.10 Verification environment

IEC TR 63051:2017 © IEC 2017

Test benches are an essential tool in the circuit design environment. They provide a virtual
environment used to verify the correctness of the design or model. The test bench capability of
an HDLMath language shall include four components: input, circuit, check functions, and output.
Figure 9 shows the structure of test-bench descriptions in HDLMath1 and HDLMath2.

/ HDLMath1 test bench flow/

/I Description: test bench tasks, parameters
task in_task;
task idealOut_task;
task Out_0_task;

/I Hierarchy Level: 1
/] Driving the test bench enable
/I System Clock (fast clock) and reset
/I Test-bench clock enable
/I Read the data and transmit it to the DUT
/I Read the data and transmit it to the DUT
/I Create done signal for Input data

//IChecker: Checking the data received from the
DUT.

// Create done and test failure signal for output
data

// Global clock enable

/ HDLMath2 test bench flow/

//Stimulus Generation

//Top level module of Test Bench
//Test Bench declarations
/IClock Generation
//Amplitude Response Computation
/lInstantiation of Device Under Test
/I Instantiation of Modules generating Stimulus
//Supplying Stimulus to the Device under Test
/I Getting the results from the Device under Test
/ITest Bench Controller
//IComputation and Display of Amplitude Response

//IComputation and Display of Input/Output
Spectrum

//Display Input/Output Waveforms
//ICompute and Display Distances

//Use of Mixed Level Assertions to compare
Results

//Computational Unit of Device under Test

IEC

Figure 9 — Structure of test-bench description of HDLMath1 and HDLMath2

6 Comparison of current HDLMath languages

Table 4 shows a comparison between current HDLMath languages based on the functional

requirements for an HDLMath.

These languages support most of the functional requirements, but they still require further

descriptive capabilities for larger scale designs.

HDLMath1 has bit length limitations (maximum 64 bits) and several problems from a hardware
design perspective such as limitations for functional requirements 2, 3, and 4.

HDLMath2 requires more functionality such as the ability to handle feedback processes without

additional C coding.

HDLMath3 is able to describe mathematical algorithms, but it needs much C coding and

associated debugging.

IEC TR 63051:2017 © IEC 2017 - 15—

Table 4 — Comparison of current HDLMaths

Requirements HDLMath1 HDLMath2 HDLMath3
1) Mathematical expressions V4 V4 a
2) Various kinds of precision computation /P v a
3) Exception and error handling Ve v a
4) Multi-dimensional arrays v v a
5) Mixed numerical and symbolic computations v a
6) Mathematical functions V4 v a
7) Feedback process v a a
8) User-defined function in C-code 2 v v v
9) Verification environment v v v

a8 This function is implemented using additional C coding.
b HDLMath1 has bit length limitations (maximum 64 bits).

¢ HDLMath1 does not support the setting of a flag that can be used by the hardware model such as the HDL
generated by the HDL generator.

There is a structure in which an exception is returned to the calling function, but the user shall program the
actual exception handling mechanism.

The values are only of some small number of formats and sizes.

7 Conclusion

HDLMath is a language to describe and verify the behavior of entire systems and products using
mathematical algorithms of electronic systems. HDLMath and its design environment shall
support various kinds of design domains. When designing mathematical algorithms for system
level modeling using HDLMath, the language shall cover the nine functional requirements to
design system models precisely and concisely.

This document also describes small examples for each functional requirement and the status of
current HDLMaths to accelerate mathematical algorithm description language (HDLMath)
standardization. Current HDLMath languages have some of the functionalities required for
mathematical algorithm design. However, they still need more extensive descriptive capabilities
in order to handle larger scale design.

This document has focused on modeling and verification based on HDLMath because at this
point in time synthesis based on HDLMath still requires further research and development.

[1]

[2]

[3]

- 16 - IEC TR 63051:2017 © IEC 2017
Bibliography

IEC 61691-1-1:2011, Behavioural languages — Part 1-1: VHDL Language Reference
Manual

IEC 62530:2011, SystemVerilog — Unified Hardware Design, Specification, and
Verification Language

IEC TR 62856:2013, Documentation on design automation subjects — The Bird's-eye
View of Design Languages (BVDL)

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

3, rue de Varembé
PO Box 131
CH-1211 Geneva 20
Switzerland

Tel: +412291902 11
Fax: + 41 22919 03 00
info@iec.ch
www.iec.ch

