
 

IEC/PAS 62814 
Edition 1.0 2012-12 

PUBLICLY AVAILABLE 
SPECIFICATION 
PRE-STANDARD 

Dependability of software products containing reusable components – Guidance 
for functionality and tests  
 

IE
C

/P
A

S
 6

28
14

:2
01

2(
E

) 

  
  

® 
 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



 

 
  

 THIS PUBLICATION IS COPYRIGHT PROTECTED 
 Copyright © 2012 IEC, Geneva, Switzerland  
 
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form 
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from 
either IEC or IEC's member National Committee in the country of the requester. 
If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, 
please contact the address below or your local IEC member National Committee for further information. 
 

IEC Central Office Tel.: +41 22 919 02 11 
3, rue de Varembé Fax: +41 22 919 03 00 
CH-1211 Geneva 20 info@iec.ch 
Switzerland www.iec.ch 

 

About the IEC 
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes 
International Standards for all electrical, electronic and related technologies. 
 

About IEC publications 
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the 
latest edition, a corrigenda or an amendment might have been published. 
 
Useful links: 
 
IEC publications search - www.iec.ch/searchpub 
The advanced search enables you to find IEC publications 
by a variety of criteria (reference number, text, technical 
committee,…). 
It also gives information on projects, replaced and 
withdrawn publications. 
 
IEC Just Published - webstore.iec.ch/justpublished 
Stay up to date on all new IEC publications. Just Published 
details all new publications released. Available on-line and 
also once a month by email. 

Electropedia - www.electropedia.org 
The world's leading online dictionary of electronic and 
electrical terms containing more than 30 000 terms and 
definitions in English and French, with equivalent terms in 
additional languages. Also known as the International 
Electrotechnical Vocabulary (IEV) on-line. 
 
Customer Service Centre - webstore.iec.ch/csc 
If you wish to give us your feedback on this publication 
or need further assistance, please contact the 
Customer Service Centre: csc@iec.ch. 

 

 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

mailto:info@iec.ch
http://www.iec.ch/
http://www.iec.ch/searchpub
http://webstore.iec.ch/justpublished
http://www.electropedia.org/
http://webstore.iec.ch/csc
mailto:csc@iec.ch


 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IEC/PAS 62814
Edition 1.0 2012-12

PUBLICLY AVAILABLE 
SPECIFICATION

Dependability of software products containing reusable components – Guidance 
for functionality and tests  
 

 
 
 

INTERNATIONAL 
ELECTROTECHNICAL 
COMMISSION XA
ICS 03.120.01 

PRICE CODE

ISBN 978-2-83220-501-3

  
  

® Registered trademark of the International Electrotechnical Commission 

® 

   Warning! Make sure that you obtained this publication from an authorized distributor. 

PRE-STANDARD 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



 – 2 – PAS 62814 © IEC:2012(E) 

CONTENTS 

FOREWORD ........................................................................................................................... 4 
INTRODUCTION ..................................................................................................................... 6 
1 Scope ............................................................................................................................... 7 
2 Normative references ....................................................................................................... 7 
3 Terms, definitions and abbreviations ................................................................................ 8 

3.1 Terms related to software engineering ..................................................................... 8 
3.2 Terms related to software dependability .................................................................. 9 
3.3 Terms related to software reuse ............................................................................ 10 
3.4 General terms ....................................................................................................... 13 
3.5 Abbreviations ........................................................................................................ 13 

4 Dependability of software reuse methodology – Reusability-driven software 
development ................................................................................................................... 13 
4.1 General ................................................................................................................. 13 
4.2 Dependability methods for reuse ........................................................................... 15 
4.3 Dependability-related objectives of software reuse ................................................ 16 
4.4 Ingredients of software reuse and hypotheses for reuse dependability .................. 17 

5 Software reuse dependability methodology applications ................................................. 18 
5.1 Application aspects and organization of dependable software reuse ...................... 18 

5.1.1 General ..................................................................................................... 18 
5.1.2 Pre-store characteristics of reusability ....................................................... 19 
5.1.3 Pre-use characteristics of reusability ......................................................... 20 
5.1.4 Build-for-reuse ........................................................................................... 20 
5.1.5 Build-by-reuse ........................................................................................... 21 
5.1.6 Coupling “build-for-reuse” and “build-by-reuse” .......................................... 22 

5.2 Validation, re-validation and reliability of software reuse ....................................... 25 
5.3 Naïve assumptions and rules for improving software reuse dependability .............. 26 
5.4 Dependability and reuse aspects of software/hardware interaction ........................ 26 

5.4.1 General ..................................................................................................... 26 
5.4.2 Reuse of software with an upgrade / remanufactured hardware ................. 26 
5.4.3 Limitations of hardware ............................................................................. 27 
5.4.4 Limitations due to incompatibilities ............................................................ 27 
5.4.5 Dependability, energy consumption and ecology........................................ 27 

6 Software reuse assurance .............................................................................................. 27 
6.1 General ................................................................................................................. 27 
6.2 Build for reuse – Validation and qualification of components to be reused ............. 28 

6.2.1 General ..................................................................................................... 28 
6.2.2 Validation and qualification ........................................................................ 28 
6.2.3 Assessment of quantifiable quality targets ................................................. 28 

6.3 Build by reuse – Validation and qualification of the receiving system ..................... 28 
6.3.1 General ..................................................................................................... 28 
6.3.2 Validation and qualification ........................................................................ 28 
6.3.3 Assessment of quantifiable quality targets ................................................. 29 

7 Warranty and documentation .......................................................................................... 29 
7.1 General ................................................................................................................. 29 
7.2 Life cycle, contextual criticality, warranty period .................................................... 29 
7.3 Product documentation .......................................................................................... 29 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



PAS 62814 © IEC:2012(E) – 3 – 

7.4 Product safety and control ..................................................................................... 29 
7.5 Legal aspects ........................................................................................................ 29 

7.5.1 General ..................................................................................................... 29 
7.5.2 Contractual issues ..................................................................................... 29 
7.5.3 Product liability .......................................................................................... 30 

Annex A (informative)  General remarks on software reuse ................................................... 31 
Annex B (informative)  Qualification and integration of reusable software components .......... 33 
Annex C (informative)  Testing and integration of reusable software components – 
Issues for industrial best practice .......................................................................................... 37 
Annex D (informative)  Example of software pre-use ............................................................. 46 
Annex E (informative)  Influence of reused software to hardware components and 
products ............................................................................................................................... 50 
Bibliography .......................................................................................................................... 52 
 
Figure 1 – Approaches to software reuse and its elements ................................................... 15 
Figure 2 – Elements of the reuse process ............................................................................. 17 
Figure 3 – Integration of the reusable component ................................................................. 17 
Figure 4 – Characteristics of reusability ................................................................................ 19 
Figure 5 – Build-for-reuse framework .................................................................................... 21 
Figure 6 – Build-by-reuse framework .................................................................................... 22 
Figure 7 – Combining “build-for-reuse” and “build-by-reuse” ................................................. 24 
Figure A.1 – Service-oriented architecture ............................................................................ 31 
Figure C.1 – A test process in vendor-oriented component testing [30] ................................. 38 
Figure C.2 – A validation process for completely reused components [30] ............................ 40 
Figure C.3 – A Validation process for adapted and customized components ......................... 41 
Figure C.4 – Maturity levels for a component testing process ................................................ 43 
Figure D.1 – Example of a supervision task .......................................................................... 49 
 
Table 1 – Summary of reuse classification ............................................................................ 14 
Table C.1 – Testing issues of reusable software components ............................................... 43 
Table D.1 – Operating experience, monolithic view ............................................................... 47 
Table D.2 – Operating experience, use of the individual paths .............................................. 47 
Table D.3 – Production demands, use of the individual paths; the values of pi did not 
change.................................................................................................................................. 48 

 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



 – 4 – PAS 62814 © IEC:2012(E) 

INTERNATIONAL ELECTROTECHNICAL COMMISSION 
____________ 

 
DEPENDABILITY OF SOFTWARE PRODUCTS  

CONTAINING REUSABLE COMPONENTS –  
GUIDANCE FOR FUNCTIONALITY AND TESTS 

 
 

FOREWORD 
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising 

all national electrotechnical committees (IEC National Committees). The object of IEC is to promote 
international co-operation on all questions concerning standardization in the electrical and electronic fields. To 
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, 
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC 
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested 
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely 
with the International Organization for Standardization (ISO) in accordance with conditions determined by 
agreement between the two organizations. 

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international 
consensus of opinion on the relevant subjects since each technical committee has representation from all 
interested IEC National Committees.  

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National 
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC 
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any 
misinterpretation by any end user. 

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications 
transparently to the maximum extent possible in their national and regional publications. Any divergence 
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in 
the latter. 

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity 
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any 
services carried out by independent certification bodies. 

6) All users should ensure that they have the latest edition of this publication. 

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and 
members of its technical committees and IEC National Committees for any personal injury, property damage or 
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and 
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC 
Publications.  

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is 
indispensable for the correct application of this publication. 

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of 
patent rights. IEC shall not be held responsible for identifying any or all such patent rights. 

A PAS is a technical specification not fulfilling the requirements for a standard, but made 
available to the public. 

IEC/PAS 62814 has been processed by IEC technical committee 56: Dependability. 

The text of this PAS is based on the 
following document: 

This PAS was approved for 
publication by the P-members of the 
committee concerned as indicated in 

the following document 

Draft PAS Report on voting 

56/1479/PAS 56/1490/RVD 

 
Following publication of this PAS, which is a pre-standard publication, the technical committee 
or subcommittee concerned may transform it into an International Standard. 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



PAS 62814 © IEC:2012(E) – 5 – 

This PAS shall remain valid for an initial maximum period of 3 years starting from the 
publication date. The validity may be extended for a single period up to a maximum of 
3 years, at the end of which it shall be published as another type of normative document, or 
shall be withdrawn. 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



 – 6 – PAS 62814 © IEC:2012(E) 

INTRODUCTION 

Technological growth is accelerating; development cycles for products are becoming shorter 
and shorter. At the same time software is taking an increasingly important part in the control 
and functionality of products and in integrating the functions of hardware components. The 
disciplined development of software has been going on for more than 40 years and software 
is now available in many forms and formats. Apparently, the cost of software development can 
easily be amortized if it is embedded as often, and in as many different products, as possible. 
This potential benefit of software reuse should at no time be at the expense of dependability. 
Dependability is the ability of a system to perform as and when required to meet specific 
objectives under given conditions of use.  

Any innovative product that has matured enough to hit the shelves needs a new and 
progressive approach. Dependability of the products is an attribute that is mandatory for 
newly developed or reused software (and the complete product into which the software is 
embedded) to be accepted and sold. Therefore, the dependability of software and its 
components should be assured in just the same way that the dependability of hardware and 
its components have been assured for many decades. This requires the standardization of 
software and software components to keep up with the ever higher levels which hardware 
components continue to achieve. 

The dependability of a system infers that the system is trustworthy and capable of performing 
the desired service upon demand to satisfy user needs. Whereas a software component may 
be perfectly suited to one application, it may prove to cause severe faults in other 
applications. To allow the innovators to concentrate on their main task – to create new and 
better products with an extended functionality – it is fundamental to provide the certainty that 
reused software is dependable in its new application and does not need to be re-designed 
from scratch. Safety and security aspects might be combined if required. Therefore an 
adequate test process considering the changed purpose and the different application 
configuration in combination with new, reused, or further used components is needed. 
Altogether, testing of software products containing reused components is an important target 
to be reached. 

An additional, important aspect to be considered is the energy efficiency and eco-friendliness 
of hardware products controlled by software. Reuse of a component with a bad energy 
consumption behaviour will multiply this bad behaviour, and thus negatively impact the entire 
energy consumption of the new system that is composed of such components; the same way 
as an undependable component impacts the dependability of the system into which it will be 
built. A rule of thumb is that reused software should not result in a product consuming more 
energy than a comparable energy-efficient product on the market.  

This publicly available specification (PAS) addresses the functionality, testing and 
dependability of software components to be reused and products that contain software to be 
used in more than one application; that is, reused by the same or by another development 
organization, regardless of whether it belongs to the same or another legal entity than the one 
that has developed this software. 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



PAS 62814 © IEC:2012(E) – 7 – 

DEPENDABILITY OF SOFTWARE PRODUCTS  
CONTAINING REUSABLE COMPONENTS –  

GUIDANCE FOR FUNCTIONALITY AND TESTS 
 
 
 

1 Scope 

This publicly available specification introduces the concept of assuring reused components 
and their usage within new products. It provides information and criteria about the tests and 
analysis required for products containing such reused parts. The objective is to support the 
engineering requirements for functionality and tests of reusable software components and 
composite systems containing such components in evaluating and assuring reuse 
dependability.  

Focus is on the dependability of software reuse and, thus, this PAS complements IEC 62309 
which exclusively considers hardware reuse. In addition to this previous hardware-related IEC 
standard, the present PAS also crosses further, appropriate software-related standards to be 
applied in the development and qualification of software components that are intended to be 
reused and products that reuse existing components. In other words, this PAS encompasses 
the features of software components for reuse, their integration into the receiving system, and 
related tests. Their performance and qualification and the qualification of the receiving system 
is subject to existing standards, for example ISO/IEC 25000 [01]1, IEC 61508-3 [01] and 
IEC 61508-4 [03]. The process framework of ISO/IEC 12207 [04] on systems and software 
engineering and ISO/IEC 25000 [01] on system aspects of dependability on software 
engineering apply to this PAS. 

The purpose of this PAS is to ensure through analysis and tests that the functionality, 
dependability and eco-friendliness of a new product containing reused software components 
is comparable to a product with only new components. This would justify the manufacturer 
providing the next customer with a warranty for the functionality and dependability of a 
product with reused components. As each set of hardware/software has a unique relationship 
and is governed by its operational scenario, the dependability determination has to consider 
the underlying operational background. Dependability also influences safety. Therefore, 
wherever it seems necessary, safety aspects have to be considered the way IEC 60300-1 
addresses safety issues. 

This PAS can also be applied in producing product-specific standards by technical 
committees responsible for an application sector.  

This PAS is not intended for certification purposes. 

2 Normative references 

The following documents, in whole or in part, are normatively referenced in this document and 
are indispensable for its application. For dated references, only the edition cited applies. For 
undated references, the latest edition of the referenced document (including any 
amendments) applies. 

IEC 60300-1, Dependability management – Part 1: Dependability management systems 

IEC 62628, Guidance on software aspects of dependability   

___________ 
1 Numbers in square brackets refer to the Bibliography. 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



 – 8 – PAS 62814 © IEC:2012(E) 

IEC 62309, Dependability of products containing reused parts – Requirements for functionality 
and tests 

3 Terms, definitions and abbreviations 

For the purposes of this document, the following terms and definitions apply. 

3.1 Terms related to software engineering 

3.1.1  
software 
programs, procedures, rules, documentation, and data of an information processing system 

Note 1 to entry: Software is an intellectual creation that is independent of the medium upon which it is recorded.  

Note 2 to entry: Software requires hardware devices to run, to store, and transmit data. 

Note 3 to entry: Documentation includes: requirements specifications, design specifications, source code listings, 
comments in source code, “Help” text and messages for display at the computer/human interface, installation 
instructions, operating instructions, user manuals, and support guides used in software maintenance. 

3.1.2  
embedded software 
software within a system whose primary purpose is realizing an application 

EXAMPLE Software used in the brake control systems of motor vehicles, or to control an x-ray system in medical 
health-care.  

3.1.3  
software unit/software module 
software element in programming codes that can be separately specified, compiled, 
documented and tested to perform a task or activity to achieve a desired outcome of a 
software function 

Note 1 to entry: The terms “unit” and “module” are often used interchangeably or defined to be sub-elements of 
one another in different ways depending upon the context. The relationship of these terms is not yet standardized. 

3.1.4  
software (configuration) item 
software item that has been configured and treated as a single item in the configuration 
management process 

Note 1 to entry: A software configuration item can consist of one or more software units to perform a software 
function. 

3.1.5  
software function/(software) function block  
elementary operation performed by the software module or unit as specified or defined as per 
stated requirements to fulfil a well-defined user or system function or a part of it  

EXAMPLE Calculation of sinus of a given angle is a function block of a unit to calculate trigonometric functions; 
giving the address to buy a ticket is a function block of a web portal.  

Note 1 to entry: Software units consist of function blocks. 

Note 2 to entry: A function block contains input variables, output variables, through variables, internal variables, 
and an internal behaviour description of the function block. 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



PAS 62814 © IEC:2012(E) – 9 – 

3.1.6  
software system 
defined set of software items that, when integrated, behave collectively to satisfy a 
requirement 

EXAMPLES Application software for accounting and information management, application-oriented system 
software for text processing / performance analysis / programming tools, system software for linking library 
functions.  

3.1.7  
(computer) program 
set of coded instructions executed to perform specified logical and mathematical operations 
on data 

Note 1 to entry: Programming is the general activity of software development in which the programmer or 
computer user states a specific set of instructions that the computer has to perform. 

Note 2 to entry: A program consists of a combination of coded instructions and data definitions that enable 
computer hardware to perform computational or control functions. 

3.1.8  
program code 
character or bit pattern that is assigned a particular meaning to express a computer program 
in a programming language 

Note 1 to entry: “Source codes” are coded instructions and data definitions expressed in a form suitable for input 
to a transducer, that is, assembler, compiler, or other translator. 

Note 2 to entry: “Object code” or “binary code” or “executable code” is the bit pattern obtained from a translator 
and is ready to run. 

Note 3 to entry: “Coding” is the process of transforming of logic and data from design specifications or 
descriptions into a programming language. 

Note 4 to entry: A programming language is a language used to express computer programs. 

3.1.9  
product line 
collection of systems potentially derivable from a single architecture 

3.2 Terms related to software dependability 

3.2.1  
software dependability 
ability of the software to perform as and when required when integrated in system operation 

3.2.2  
reuse dependability  
ability of a composite system containing reusable components to perform as and when 
required to meet users’ service needs 

3.2.3  
software fault 
bug 
error or flaw in a software item that may prevent it from performing as required 

Note 1 to entry: Software faults are either specification faults, or design faults, or programming faults, or 
compiler-inserted faults, or faults introduced during software maintenance. 

Note 2 to entry: A software fault is dormant until activated by a specific trigger and usually reverts to being 
dormant when the trigger is removed.  

Note 3 to entry: In the context of this standard, a bug is a special case of software fault, also known as latent 
software fault. 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



 – 10 – PAS 62814 © IEC:2012(E) 

3.2.4  
software failure 
failure that is a manifestation of a software fault  

Note 1 to entry: A single software fault will continue to manifest itself as a failure until it is removed. 

3.2.5  
validation 
confirmation by examination and through provision of objective evidence that the 
requirements for a specific intended use or application have been fulfilled  

Note 1 to entry: Validation answers the question whether or not the right software has been developed. 

3.2.6  
verification 
confirmation by examination and through the provision of objective evidence that specified 
requirements have been fulfilled 

Note 1 to entry: Verification answers the question whether or not the developed software is correct. 

3.2.7  
qualification 
process of validation and verification (V&V), used to demonstrate that the product is capable 
of meeting its specification for all the required conditions and environments  

3.2.8  
quality target 
specified level of quality as a goal; wherever possible, quantified using a software metric 

EXAMPLE The overall reliability of the composite system in terms of the required MTBF, or the requirement that 
cyclomatic complexity of a software unit be kept below 7. 

3.3 Terms related to software reuse 

3.3.1  
software reuse 
using a software asset, i.e., software or software knowledge, in the solution of a different 
problem in order to construct new software [05] 

Note 1 to entry: This notion covers both “heritage” and “legacy” software, and it is refined into categories: “black-
box”, “white-box”, “adaptive”, “systematic”, and “accidental” reuse (see 3.3.12 to 3.3.16). 

Note 2 to entry: Opposite of “software reuse” is “software one-use” that requires being developed from scratch. 

EXAMPLE Some dedicated software routines, such as security codes, are not designed for reuse; they are one-
use components. 

3.3.2  
software (reuse) asset 
software configuration item that has been designed for use in multiple contexts and domains 

EXAMPLE 1 Design, specification, source code, documentation, test suites, manual procedures, etc. 

EXAMPLE 2 Availability of the information that a specific navigation function uses an algorithm based on Kalman 
filter. 

Note 1 to entry: Also a software-based or software-oriented knowledge is an asset. 

3.3.3  
context 
software environment tied to mission and software requirements 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



PAS 62814 © IEC:2012(E) – 11 – 

3.3.4  
domain 
problem space or application area 

3.3.5  
software reusability 
degree to which a (reuse) asset can be used in more than one software system or in building 
other assets 

Note 1 to entry: In a (reuse) repository software reusability represents the characteristics of an asset that make it 
easy to reuse vertically or horizontally. 

Note 2 to entry: Usability is a measure of software unit’s or system’s functionality, ease of use, and efficiency. 

3.3.6  
(software) component  
constituent of a software system with specified interfaces and explicit context and domain 
dependencies 

Note 1 to entry: A software component can consist of one or more software units to perform a software function. 

EXAMPLE 1 An individual component is a software package, a web service, or a module that encapsulates a set of 
related functions (or data).  

3.3.7  
(software) component off the shelf 
COTS 
commercially available components  

Note 1 to entry: A COTS software can consist of one or more software units to perform a software function. 

Note 2 to entry: Components in governmental use are called “government off the shelf (GOTS)”.  

Note 3 to entry: COTS and GOTS software usually represents components; they can be also stand-alone 
applications. 

Note 4 to entry: COTS and GOTS typically realize reuse incorporation or integration. 

Note 5 to entry: COTS and GOTS are designed to be implemented easily into existing systems without the need 
for customization (“glue code”, “wrappers”, 3.3.8, 3.3.10). 

EXAMPLE 1 Microsoft Office is a stand-alone COTS application that is a packaged software solution for 
businesses. An operating system, a word processor, a compiler, etc. are further examples of stand-alone COTS. 

EXAMPLE 2 Also libraries that need linkage to an application code, e.g., graphic engines, Windows DLLs, etc., 
are COTS components. 

EXAMPLE 3  Software that is used to create software, but is not part of a composite software system, is not 
COTS software; it is a development tool. However, development environments with runtime modules are COTS 
(e.g., Visual Basic™, Sysbase™), or information retrieval applications (e.g., hypertext and data mining tools), or 
operating system utilities (e.g., for file operations and memory management). 

3.3.8  
glue code 
software that intermediates between the reusable component and the receiving system 

3.3.9  
connector 
interface elements of composite system to receive reusable components 

3.3.10  
wrappers 
additional software to complete the functional and interface requirements if they are not 
priorly fulfilled 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Modular_programming


 – 12 – PAS 62814 © IEC:2012(E) 

3.3.11  
(reuse) repository 
storage of a collection of reusable components 

Note 1 to entry: In a narrower sense, “software libraries” have the same function as software repositories, e.g., 
building sets of reusable software units such as trigonometric functions. 

3.3.12  
accidental reuse 
reuse without strategy, typically reusing software components not designed for reuse 

Note 1 to entry: Also known as “ad hoc” or “opportunistic” reuse. 

3.3.13  
systematic reuse 
developing software components intended for reuse and/or building new applications from 
those reusable components, following a formal plan of product line, also known as “planned 
reuse” 

3.3.14  
adaptive reuse 
using previously developed software that is modified only for portability, e.g., a new 
application on a different operating system  

3.3.15  
black-box reuse 
reuse of unmodified software components, incorporating existing software components into a 
new application without modification  

3.3.16  
white-box reuse 
modifying and integrating software (function) blocks into new applications 

3.3.17  
vertical reuse 
reuse in the same domain  

3.3.18  
horizontal reuse 
reuse in different domains  

3.3.19  
internal reuse 
in-house reuse 
reuse of a software unit developed within the company, or government unit  

3.3.20  
external reuse 
reuse of a software unit of another company, or government unit 

Note 1 to entry: A “third party software” is usually written by another company as a legal entity. It incorporates 
external reuse if it will be used in a context or domain other than that for which it has been designed and 
developed. It can be, however, also a dedicated, one-use software component. 

EXAMPLE 1  Open-source software (OSS), mostly for external reuse. 

EXAMPLE 2 A service-oriented architecture (SOA) can operate on components in internal or external reuse. 

3.3.21  
heritage software 
inherited software reused from a previous mission that has currently been in usage 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



PAS 62814 © IEC:2012(E) – 13 – 

3.3.22  
legacy software 
software reused from a previous mission that has currently been out of usage, or in restricted 
usage 

3.4 General terms 

3.4.1  
component to be reused 
software component that is intended to be reused in a different context or domain other than 
its original development context or domain, by any kind of software reuse 

3.4.2  
reusable component 
software component to be reused after being qualified for reuse 

3.4.3  
receiving system 
software system in which reusable component(s) will be integrated 

3.4.4  
integration of reusable components 
process of installation/assembly of reusable components into the receiving system, including 
integration validation to ensure the proper functionality of the final system 

3.4.5  
composite system 
final system resulting from the integration of reusable components 

3.4.6  
qualified composite system 
composite system after qualification 

3.5 Abbreviations 
COTS Commercial-off-the-shelf  
GOTS Government-off-the-shelf  
FB Function block 
FTA Fault tree analysis 
IP Internet provider 
IT Information technology 
KSLOC Kilo-(thousand) source lines of code 
OSS Open-source software 
PAS  Publicly available specification 
RBD Reliability block diagram 
SOA Service-oriented architecture 

4 Dependability of software reuse methodology – Reusability-driven software 
development 

4.1 General 

Software reuse has many facets; the practical and relevant kinds have been defined in 3.3. A 
general taxonomy of software reuse is included in Table 1, which uses the following seven 
aspects for a thorough, exemplary classification [06]. 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



 – 14 – PAS 62814 © IEC:2012(E) 

– reuse assets and entities can be product-oriented and, thus, concrete, such as 
components; they can also be ideal, such as concepts, ideas, algorithms, etc.; 

– domain scope refers to application area (3.3.17 and 3.3.18); 
– development scope refers to origin of the component (3.3.19 and 3.3.20); 
– additional work required prior to reuse is referred to by modification (3.3.14, 3.3.15, 

3.3.16); 
– whether and which kind of work is to be done in performing reuse is a managerial aspect 

(3.3.12, 3.3.13); 
– reuse approach is compositional if existing components are reused (such as the Unix 

shell); generative reuse requires application or code generators (such as refine and meta 
tool); 

– direct reuse approach requires no "glue code" that intermediates between the reusable 
component and the receiving system, indirect reuse necessitates an intermediate entity 
(4.4).  

Table 1 – Summary of reuse classification  

Reuse  
asset 

Reuse entity Domain  
scope 

Development 
Scope 

Modification Management Approach 

Ideas, 
concepts 

Architectures Vertical Internal Adaptive 
 

Accidental Compositional 

Artefacts, 
components 

Requirements Horizontal External Black Box Systematic Generative 

Procedures, 
skills 

Designs   White Box   Indirect 

 Specifications     Direct 

 Source code      

 Object code      

 Test cases      

 

Clause 4 describes which dependability methods are available, which objectives should be 
achieved and which preconditions are assumed.  

Software reuse is the process of creating software systems from existing software rather than 
building software systems from scratch. The vision of software reuse is as old as software 
itself – it was introduced already in 1968, in the year as the term “Software Engineering” was 
coined during the constitutional NATO conference in Germany [07].  

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



PAS 62814 © IEC:2012(E) – 15 – 

 

Commercial / 
Governmental off 
the Shelf Software 

 

Figure 1 – Approaches to software reuse and its elements 

Software reuse is not limited to the source or object code; it has, moreover, to consider all of 
the information that is related to the product generating processes, including also 
requirements, analysis, design, documents, and test cases apart from the code (Figure 1). 
Examples of well-known, widely accepted practices of software reuse are [08]: 

– Component-based development (CBD): Building systems by integrating components that 
conform to system’s specification. 

– COTS integration: CBD using commercial components. 
– Service-oriented systems: Building systems by linking shared services. 
– Program generators: Embedding knowledge of a particular type of application to produce 

component(s) in that domain. 
– Application product lines: Generalization of an application around a common architecture 

so that it can be used to produce different applications in different domains for different 
customers. 

– Object-oriented programming: Implementing applications using "objects" that consist of 
data structures, methods (algorithms) and their interactions and computer programs. 

– Aspect-oriented software development: Weaving shared components into an application at 
different places when the program is compiled, if separation of concerns is feasible. 

4.2 Dependability methods for reuse 

As hardware reuse (IEC 62309), also software reuse, whether involving home-grown or COTS 
components, certainly promises lower cost, better dependability, thus providing a decrease in 
risk, increase of  productivity, and, consequently, considerable potential for a less stressful 
development process. 

During the last decades much research progress has been achieved to technically master 
software reuse by industrial best practices. However, software reuse has proved to be 
complex and steadily evolving with the progress of software engineering so that it needs 
appropriate methods and techniques for dependability assessment and assurance. 

The applicability of the conventional dependability techniques to the analysis and evaluation 
of software reuse is limited. A common recommendation for software reuse is to constraint the 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



 – 16 – PAS 62814 © IEC:2012(E) 

reusable software components to perform only one function completely. This restriction is 
supposed to ease the implementation, deployment, and maintenance of reusable components 
and composite systems that contain such components. Furthermore, deviation from such 
restriction could have adverse effect on dependability due to the possibility of errors 
introduced into the software during implementation or maintenance. This requirement “one 
component – one function” is, however, a severe constraint that limits the scope of software 
reuse, and is thus difficult to be accepted by the industrial and commercial software 
development and marketing, where rather universally deployable components are more 
attractive.  

During the last years, specific methods provide effective and broadly well-understood and, 
thus, accepted solutions for dependability assurance, especially concerning functionality and 
testing of software. A selective amount of them are appropriate for effective reuse 
dependability analysis and evaluation, applicable to both reusable components and composite 
systems. Indeed, many factors influence the dependability performance in the life cycle, 
including the early stages and implementation and integration phases. 

Figure 1 includes constructive methods and approaches that help avoid faults while producing 
reusable software, which is the best way of fault handling. Nevertheless, also analytic 
methods are  necessary to detect and eliminate faults that could not be avoided. For testing 
and test case generation, these analytical approaches use either source code (if available) 
leading to white-box testing, or software specification and user profile, leading to black-box 
testing. Grey-box testing combines both approaches. Measures of the effectiveness of a test 
set in fault revealing, coverage-oriented adequacy criteria use the ratio of the portion of the 
specification or code that is covered by the given test set while testing to the uncovered 
portion. Examples are: C0 test, C1 test, dd-test, du-test (white-box testing), or cause-effect 
analysis and operational profile analysis (black-box testing). Belief is, the higher the degree of 
test coverage, the lower is the risk of having critical software artefacts that have not been 
sifted through.  

To avoid singularity of test case-oriented testing, formal (e.g. sound mathematical methods) 
are recommended, such as model checking, model-based testing, and formal proofs of 
programs. Finally, reliability growth models statistically evaluate software based on test data 
recorded during testing, more precisely the number and time intervals of failures triggered by 
test cases. Thus, with some effort, it is also possible to determine the reliability of software 
reuse. Annex B, Annex C, and Annex D explain and exemplify these methods. 

When considering the dependability of reuse, it is essential to include the operation and 
maintenance stages in the analysis of composite systems, such as legacy or heritage 
software. Dependability performance and dependability of service of reuse should be 
continuously monitored, analysed and evaluated.  

4.3 Dependability-related objectives of software reuse  

Reuse dependability is the ability of a composite system containing reusable components to 
perform as and when required to meet users’ service needs. Thus, for fulfilling the 
requirements of assessment of reuse dependability, the identification and deployment of the 
relevant methods and techniques of reuse dependability are indispensable. 

Several activities influence the dependability of reuse, including the following ones:  

– development, operation, and maintenance of reusable components as reuse assets and 
composite systems with reuse assets; 

– management of practice and assets of reuse. 

The dependability of the composite systems with reuse assets is influenced by following 
factors: 

– software functions to serve and satisfy user needs; 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



PAS 62814 © IEC:2012(E) – 17 – 

– dependability of these services. 

The present document focuses on requirements on functionality and tests of software 
products containing reusable components. 

4.4 Ingredients of software reuse and hypotheses for reuse dependability 

Software reuse, that is, the use of existing software components or knowledge to build a new 
software system, is supposed to realize benefits such as improved productivity, but also not 
negatively impact the dependability. Figure 2 summarizes the reuse process that consists of 
identifying an appropriate reusable component, its analysis, and integration into the receiving 
system. 

 

Figure 2 – Elements of the reuse process 

Figure 3 depicts the integration of a reusable component into a receiving system to produce a 
composite system. This process requires that both parts be “prepared,” e.g. by connectors 
and glue code (3.3.9, 3.3.10), which means additional work and, thus, additional dependability 
risks. 

 

Figure 3 – Integration of the reusable component  

Approaches to measure the software reliability are available. The relationship between 
hardware reuse and dependability has been pursued, for example in IEC 62309. The 
desirable, however, naïve demand about reuse can be stated as follows [06]: 

“Increased software reuse can significantly improve the dependability of a software system.” 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



 – 18 – PAS 62814 © IEC:2012(E) 

This desire necessitates fulfilling following preconditions: 

– D1: Reusable components have to be more dependable than their one-use equivalent. 
– D2: Composite systems built by reusable components have to be more dependable than 

its equivalent built by one-use components. 
– D3: Generating a system from a high-level, user-oriented, behaviour-based specification 

realized by reusable components has to be more dependable than one built by hand.  

To make these requirements operable, D1 and D2 can be studied by means of reliability 
measures that can be determined using software reliability models that are available for 
industrial practice (AIAA R-013-1992 [10], IEEE 1633-2008 [08]). It is evident that, from the 
view point of reliability determination, the glue software, and its relation with connectors of the 
receiving system, are to be considered as a part of the reuse process. Thus, D2 is influenced 
by the reliability of the glue software to an extent that is comparable to the reliability of the 
reusable component.  

D3 concerns the domain which can be judged best by the end user of the system, considering 
also the domain of the composite system. See Annex D for practical examples. 

5 Software reuse dependability methodology applications 

5.1 Application aspects and organization of dependable software reuse 

5.1.1 General 

Dependability methodologies include application aspects and the organization of the reuse. 
Pre-store and pre-use characteristics should be met and the cases build-for reuse or build-by-
reuse should be distinguished. 

Another point covers validation and reliability aspects of the software. Also the assumptions 
and rules to improve software dependability are described and the hardware/software 
interaction is taken into account. 

Architecture is the key to software reuse. The architecture of a system commits its structure 
to combine the elements it is comprised of and their features, and relations among those 
elements. Typical structures are hierarchical, centralized (star-form), or decentralized 
(network-form); relations are defined as consists-of or neighboured. Architectural elements 
can be event, state, or service-oriented. It is important for reuse that the software architecture 
should allow a precise design and specification of interfaces and their dependability-critical 
features so that it enables evaluation, selection, acquisition, and integration of reusable 
components into the receiving system.  

While planning substantial reuse of their software components, software engineers are often 
overly optimistic concerning how much reusable functionality can be achieved. Reuse is not 
an ultimate saver of costs, schedule, or dependability. Even COTS deployment often satisfies 
only less than 40 % of the functionality of an industrial application. 

Also important is the addressing of the critical non-functional requirements, that is, 
dependability and quality, which certainly result in schedule and cost impacts, and, caused by 
poor dependability and reliability, maybe invoke severe safety and security risks. Note that if 
the functional and interface requirements are not fulfilled, glue code (3.3.8) and wrappers 
(3.3.10) are to be planned, specified, designed, implemented, and carefully tested. 

“Software-by-reuse” is the use of existing applications or their components to build new 
applications. It is widely accepted and convenient to consider software reusability from the 
following viewpoints. 

– Build-for-reuse enables planned production of reusable components. 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



PAS 62814 © IEC:2012(E) – 19 – 

– Build-by-reuse attempts planned production of systems using reusable components. 

Both of these viewpoints focus on characteristics of reusability that are to be checked before 
storing the component and before reusing it in a new product. 

Following recommendations do not address only internal reuse; they can easily be adopted 
also for external reuse. 

5.1.2 Pre-store characteristics of reusability 

Before storing a component for reusability, following characteristics are to be considered as to 
whether and how to use it in other systems [12] (Figure 4). 

 

Interoperability 

Compliance 

 
Figure 4 – Characteristics of reusability 

• Universality is defined over the range of the functionality and thus enables reusability in a 
large class of domains and contexts. Remember that the universality feature is likely to be 
in conflict with dependability (4.2). Universality requires the following sub-characteristics: 
– ease-of-modify requires the availability of the source code and an appropriate 

documentation of the component. The most important factors are ease-of-understand 
and ease-of-analyse;  

– ease-of-test requires availability of appropriate test criteria to generate test cases, and 
test oracles to justify the decision whether or not the modification achieves its goals, 
required by both reusable components and new system’s specifications (B.1). 

• Interoperability is defined over the ability to communicate with other systems to adapt and 
communicate, and requires following features. 
– Modularity is an architectural property of software being composed of units that are 

functionally independent from each other in the sense that a change in one component 
has minimal impact on other components. 

– Compliance requires the component follow existing standards and de-facto standards, 
i.e., state-of-the-art rules methodology or best practice techniques. It concerns 
primarily interfaces, protocols, bandwidth, and data structures used, among other 
things. 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



 – 20 – PAS 62814 © IEC:2012(E) 

• Portability is defined by the ability of software to operate on different platforms and 
requires the independence from software and hardware resources, e.g., from programming 
languages, operating system characteristics, etc., and operating hardware and application 
periphery, e.g., processor’s word length and speed, environmental influences (e.g., 
electro-magnetic emissions). 

5.1.3 Pre-use characteristics of reusability 

Prior to reusing a stored component, it will be retrieved from a library or repository, and, 
likely, modified to satisfy the receiving system’s requirements. Accordingly, functionality 
characteristic is the major pre-use factor to be checked. In addition to the pre-store 
characteristics (Figure 4), pre-use process has to check the following sub-characteristics to 
validate functionality. 

– Suitability is the ability of the component to achieve the receiving system’s requirements 
and expectedly produce the results (outputs and behaviour) of the new system. 

– Accuracy is the precision of the results expected from the reused component. 
– Compliance is the feature of the reused component to comply with certain standards the 

composite system has to follow, perhaps in addition to the standards followed by pre-store 
process. 

5.1.4 Build-for-reuse 

To avoid dependability and productivity risks, reusable components have to be of high quality. 
Poor quality, and the risks associated, would be reproduced each time a low-quality 
component is reused. To avoid those risks, the development of reusable components requires 
some extra effort. 

 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



PAS 62814 © IEC:2012(E) – 21 – 

Legend 
 

Process steps, activities 
 

Results / triggers, information 

Figure 5 – Build-for-reuse framework 

Figure 5 summarizes the stages of the development of reusable components having some 
differences from the common software development [12]. 

– In the planning phase, the objectives of the reusability to enable the component extraction 
are defined. The component to be reused will be identified. Domain analysis provides 
precise explanation when/where/how it will be reused, and, if possible, the domains where 
it should not be reused will be listed. 

– In the requirement phase, decision will be made whether to build the component for reuse 
or for only one-use. The reuse library and the market are checked as to whether such a 
component already exists. 

– During analysis, design, implementation, and test phases, the pre-use characteristics are 
considered and assured (Figure 4, 5.1.2). 

– In the pre-store process, the characteristics (Figure 4) of a reusable system are extracted 
to assure its qualification for use in different system(s). 

– In reusability test, pre-store characteristics of the reusable system are validated before it 
is to be transferred to a library or a repository for storing, enabling consideration in a 
market. 

As a result of the build-for-reuse process, two software products are delivered at the point in 
time “Delivered Software Product” (Figure 5) instead of one – even though those two are 
literally identical. The first one is the required system for the market (the component in the 
centre of Figure 5). The second one is the reusable component deployed in the specific com-
posite system. 

5.1.5 Build-by-reuse 

Reusability needs a proper management concept to select, modify (as little as possible), re-
test, and deploy a reusable component. Figure 6 summarizes the stages of the development 
of reusable components that has the following differences from the common software 
development [12]. 

– In the requirement phase, the availability of reusable components should be checked and, 
if available, evaluated.  

– During the system analysis,  design and implementation phases, modifications should be 
considered and carried-out; in addition, likely side effects should be checked. 

– Whereas the requirements defined by the library should be validated by test in build-for-
reuse, or the requirements of the new, composite system should be validated on the 
market by the test in build-by-reuse (5.1.2 and 5.1.3). 

 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



 – 22 – PAS 62814 © IEC:2012(E) 

 

Legend 
 

Process steps, activities 
 

Results / triggers, information 

Figure 6 – Build-by-reuse framework 

5.1.6 Coupling “build-for-reuse” and “build-by-reuse” 

The transfer from “for-reuse” to “by-reuse” realizes the link between the development “for-use” 
and “by-use” and is of great importance for the success of reuse. This link couples Figure 5 
and Figure 6 producing Figure 7, which summarizes the entire reuse process. The coupling 
link is located in the centre of Figure 7 and consists of three elements: 

– Pre-store process, 
– pre-use process, and 
– storage of reusable components. 

Figure 7 reveals also the main steps of the reuse process and also its requirements: 

understand – analyse – modify – test 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



PAS 62814 © IEC:2012(E) – 23 – 

As explained in 5.1.2, ease-of-understanding, ease-of-analysis, ease-of-modification, and 
ease-of-testing are the key factors to ease-of-reuse of a component. They enable the 
selection and analysis of components to be reused in a new system (B.1).

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



 

– 24 –                   PAS 62814 © IEC:2012(E) 

 

Le
ge

nd
 

 
P

ro
ce

ss
 s

te
ps

, a
ct

iv
iti

es
 

 
R

es
ul

ts
 / 

tr
ig

ge
rs

, i
nf

or
m

at
io

n 

Fi
gu

re
 7

 –
 C

om
bi

ni
ng

 “
bu

ild
-f

or
-r

eu
se

” 
an

d 
“b

ui
ld

-b
y-

re
us

e”
 

 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



PAS 62814 © IEC:2012(E) – 25 – 

Note that during its life cycle a reusable component encounters two types of modifications and 
thus two types of tests. The first to satisfy and assure the characteristics required by the 
library and/or the market and a second type of modification and test are then necessary prior 
to its deployment after it has been removed from the storage. Note also that the first 
modification and test aims at generalization of the component, whereas the second one aims 
at specialization of this component to satisfy the requirements of a new system in realizing 
another application in another domain. 

5.2 Validation, re-validation and reliability of software reuse 

The most common form of reuse is using software developed for one-use in a new 
application, which is, accidental reuse. One of the major objectives of the present PAS is to 
warn the managers that this kind of unplanned reuse can be a potential minefield because it 
can cause the inheritance of all the problems of the pre-existing software in the reaping of 
only a few of its benefits. Many managers, while planning for software reuse, forget that both 
the reused component and the composite system are to be tested in the new domain. 
Experience reports say that reusable software can cost 60 % more than one-use software, 
whereby a good portion of additional costs goes to testing. 

Software reuse involves redesign, reimplementation, and re-testing. Redesign arises if the 
existing functionality does not fulfil the requirements of the new task because it requires 
reworking to realize the new function, and, prior to this, necessitates reverse engineering to 
understand its current functionality. The design change leads to reimplementation. Exhaustive 
re-testing (as a kind of regression testing) is necessary to validate the functionality of the 
reused software in the new domain to determine whether or not redesign and 
reimplementation are needed.  

Following undesirable events/situations, mostly caused by managerial misjudgement, 
negatively influence the dependability of software reuse: 

– failing to select the right component, or to favour the wrong selection criteria; 
– failing to justify and adjust the need for and/or extent of the modification of the selected 

component to fulfil operational or application requirements; 
– failing to justify and adjust the need for and/or extent of the maintenance of the selected 

component during operational stage. 

To avoid such undesirability, redesign, re-implementation, and re-testing activities can be 
clustered in following groups: 

• Redesign 
– architectural design modification: detection of architectural design part(s) to be 

modified, realization of the modification, re-validation of the entire architectural 
design; 

– detailed redesign: detection of design part(s) to be modified, realization of the 
modification, re-validation of the entire design; 

– reverse engineering: detection of the part(s) to be modified, which are not familiar to 
developers; understanding, modification, re-validation of the entire component; 

– re-documentation: detection of the part(s) to be modified, modification, re-validation of 
the entire document; 

• Re-implementation requires re-coding, code review, and unit testing (IEC 62628).  

• Re-testing activities can be clustered in following groups (B.1): 
– test re-planning 
– test procedures to be altered: 
– re-integration testing 
– re-release and re-acceptance testing 
– test drivers/simulators to be altered: 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



 – 26 – PAS 62814 © IEC:2012(E) 

– test reports to be rewritten. 

Fundamental facts influence dependability, especially reliability when using commercially 
available components, e.g., COTS components for software development (B.2, Annex D). 

– Very often no source code is available, thus there is no way to correct a detected fault. 
This is a great restriction that prohibits application of the most widely used reliability 
models (“reliability growth models” (AIAA R-013-1992 [10], IEEE 1633-2008 [08]) that 
require perfect correction of detected faults. 

– If source code is available: Note that COTS software is no longer COTS after its source 
code is modified to correct a fault detected because the COTS supplier no longer 
maintains the documentation and source code (just as electronics equipment warranties 
are no longer valid after a seal is broken). Furthermore, the modifications can violate the 
original software design. From then on, modified COTS software is to be handled as an 
accidental reuse.  

5.3 Naïve assumptions and rules for improving software reuse dependability 

Commercially available software components for reuse, e.g., COTS software, address 
common needs, and the arguments for them often induce to following assumptions that should 
be, however, seriously questioned [13][14]. 

– “COTS software contains fewer faults than the one-use ones.” Reality is that also this kind 
of software is made by regular developers and, thus, is also likely subject to having bugs. 

– “System integrators know exactly the functionality and interfaces of COTS.” Reality is also 
here that we have ordinary software and software documentation, and, thus, this kind of 
software also needs a learning curve. 

– “Glue code” and “wrappers” are easy to write.” Reality is that they interface other people’s 
software, and thus to get them properly function can be a very tedious and costly process. 

– “Composite system will meet user requirement”. Reality is that almost always additional 
effort is needed. 

The following rules help to improve the dependability of reuse. 

• Minimize the use of reusable components which 
– use “combis,” that is, combine and perform many non-trivial functions (all of which 

need to be learned, trained, and maintained); 
– do not have clearly-defined interfaces. 

• Maximize the use of reusable components which 
– perform clearly-defined functions; 
– have clearly-defined interfaces, all with easy-to-understand, predictable inputs and 

outputs; 
– have a visible architecture that can be identified and easily understood; 
– have been on the market for some time and equivalent alternates are available from 

competitive sources (then look for likely industrial standards). 

5.4 Dependability and reuse aspects of software/hardware interaction 

5.4.1 General 

It is described which limitations for reuse could occur with upgraded software and 
remanufactured hardware. There might be limitations due to incompatibilities between 
hardware and software, dependability or the ecological properties like energy consumption. 

5.4.2 Reuse of software with an upgrade / remanufactured hardware 

Updated, refurbished, or remanufactured hardware means in most cases the reuse of 
software that might not be compatible with the new hardware. An upgrade of the software will 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



PAS 62814 © IEC:2012(E) – 27 – 

be required due to changes and new features or to avoid other side effects, for example 
different word lengths of the present and the new processor, or electro-magnetic compatibility, 
or too high energy consumption. Software could also be combined with the reuse of some 
refurbished hardware components, which might not be compatible with a new product. 

5.4.3 Limitations of hardware 

In those cases where the hardware of a product or a system remains almost the same and the 
system is only checked for quality purposes, two documents are important: The device master 
record (DMR) and the device history record (DHR). DMR describes the total documentation of 
the manufacturer, including the required updates; the DHR describes which updates have 
already been made. After comparison of the requirements and the real state, the necessary 
installations and updates are managed to guarantee the state of the art of the system to be 
resold. The state to be achieved has to be the same as if the product were being put on the 
market the first time.  

5.4.4 Limitations due to incompatibilities 

Also incompatibility of the software to networks or external systems might cause limitations. 
These cases can violate dependability requirements, or it might not be economical to enforce 
compatibility. 

5.4.5 Dependability, energy consumption and ecology 

Embedded software, e.g., wireless sensor networks, in which most applications do not have  
the sensors plugged in, sensors get power from the batteries they carry. To keep the network 
alive as long as possible, it is very important to conserve energy while the network is 
functioning. For this purpose, energy-efficient algorithms are available. The situation is similar 
for software embedded in equipment like mobile phones. Another example is software that 
controls technical processes invoked by green-house gases emissions and waste and 
pollutants production. Tradeoff analysis may be necessary between energy efficiency, sus-
tainability, and dependability requirements, e.g., concerning workload balancing and lifecycle 
extension. It is also then very important for the dependability of the entire system to have the 
software that conserves energy to exploit all possible power-savings features of the hardware 
and controlled devices and processes. 

There are many other ways to reach a better energy consumption goal; for example, by 
sparingly using battery charging commands, avoiding excessive transport of large amounts of 
data, or banning obsolete software routines that do not do this. All these operations, executed 
by reusable software, can cause more energy consumption than necessary. Therefore, 
software reuse should be critically checked and made lean wherever possible. Knowledge of 
the operational conditions of the hardware components is necessary. 

6 Software reuse assurance 

6.1 General 

In Clause 6 the validation and the qualification of components to be reused for build-for-reuse 
and build-by-reuse are explained. 

Software components that are to be reused should be qualified and the qualification process 
should be documented in accordance with ISO/IEC 12207 [04]. The context and domain of 
reuse and operational and/or embedding hardware are to be identified. 

Dependability and safety requirements and potential exceptions should be specified; likely 
conflicts between those requirements are to be identified and solved. 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



 – 28 – PAS 62814 © IEC:2012(E) 

6.2 Build for reuse – Validation and qualification of components to be reused 

6.2.1 General 

The manufacturer of reusable components and, wherever possible, the reusing party should 
together specify the functional properties of these components and should identify the quality 
targets in accordance with ISO/IEC 12207 [04]. Design, redesign, test, and re-test issues are 
to be defined (4.2 and 5.2).  

Any modification and additional software, including wrapper and glue code necessitated by 
reuse, might influence dependability, safety, and/or energy efficiency. They are to be taken 
into account and checked. Conformance to and compatibility with hardware and overall 
system requirements are to be validated. 

6.2.2 Validation and qualification 

The manufacturer of reusable components and, wherever possible, the reusing party should 
together specify and perform the validation and qualification process, and should document 
the test and re-test results in accordance with ISO/IEC 12207 [04]. These documents should 
be included in the validation and qualification documentation. 

For external reuse, e.g., COTS software, where the reusing party is not always known, the 
validation and qualification process should be carried out by the manufacturer of the reusable 
component. Qualification of any other kind of reuse should be carried out by the reusing party. 

Recommendations concerning organization, characteristics of reusability and validation 
process, test and re-test criteria, as explained in Section 4 and Section 5, should be taken 
into account. 

6.2.3 Assessment of quantifiable quality targets 

The manufacturer of reusable components or the reusing party should ensure that quantifiable 
quality targets are met, e.g., reliability measures, complexity metrics, test coverage measures 
(Annex B). 

6.3 Build by reuse – Validation and qualification of the receiving system 

6.3.1 General 

Before integration of the reusable component, the receiving system is supposed to have been 
qualified and the qualification process is documented in accordance with ISO/IEC 12207 [04], 
IEC 61508-3 and IEC 61508-4 [01][03]. 

The manufacturer of the receiving system and, wherever possible, the reusable component 
should together specify the functional properties of these components and should identify the 
quality targets in accordance with ISO/IEC 12207 [04]. Design issues should be defined. 
Architectural issues, e.g., redundancy for realizing fault tolerance, to increase the availability, 
and/or other aspects to meet the quality targets, should be considered during design and 
implementation. 

6.3.2 Validation and qualification 

The manufacturer of the receiving system should specify and perform the validation process 
and should document the validation results in accordance with ISO/IEC 12207 [04] 
IEC 61508-3 and IEC 61508-4 [01][03]. Qualification documents of reused components should 
be included in the qualification documentation of the composite system. Quality targets should 
be validated. 

The composite system should be qualified by the reusing party considering the documentation 
of the components manufacturer in the light of the context and domain foreseen for the reuse. 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



PAS 62814 © IEC:2012(E) – 29 – 

Recommendations concerning organization, characteristics of reusability and validation 
process, test and re-test criteria, as explained in Clause 4 and Clause 5, should be taken into 
account. 

6.3.3 Assessment of quantifiable quality targets 

The manufacturer of the composite system should ensure that quantifiable quality targets are 
met, e.g., reliability measures, complexity metrics, and test coverage measures. 

7 Warranty and documentation 

7.1 General 

For warranty life cycle, contextual criticality and the warranty period are important. The 
product documentation is a basis for these aspects. Product safety and control have to be 
met. Legal aspects cover the contract and product liability. 

7.2 Life cycle, contextual criticality, warranty period 

The life cycle period expected by the relevant market participants and end users at the time of 
release into the market of the product should be defined. The warranty period and the 
warranty should be granted at least as a non-strict liability for new products in accordance 
with the jurisdiction applicable to the product and its release into the market. 

7.3 Product documentation 

The composite system, its purpose and functionality, its components and their interaction 
should be documented. The documentation includes also requirements pertaining to the 
operation description, trade dress, and marketing of the product; also the content of the 
product manual should be documented. 

7.4 Product safety and control 

Safeguarding basic safety requirements to protect human health and life and valuable goods, 
relative to the risks involved and the degree of safety expected from the product in question, 
should be considered. Control should be executed by after sales control of the product’s 
behaviour in the field. 

7.5 Legal aspects  

7.5.1 General 

The reuse of software affects also legal issues regarding the deployment and marketing of the 
composite systems. Some basic principles are outlined in the following. 

7.5.2 Contractual issues 

A composite system containing a reusable component should comply with the required 
standard of quality.  

Reused components may be subject to license restrictions. Even slight modifications of the 
software component that will be reused in a different context may infringe third party rights to 
this component.  

NOTE The context of reuse is problematic in case of open source software that is not necessarily free for any 
third party use, especially in commercial applications. 

The reuse of a software component differs from a simple transfer of COTS software that has 
been purchased and will be forwarded to a third party. Modifications needed to adjust the 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



 – 30 – PAS 62814 © IEC:2012(E) 

software component for reuse for the deployment in a different context may infringe the rights 
granted.  

Any reuse of software in a different context may also result in a loss of warranty rights or 
guarantees granted by the original manufacturer of the software component to be reused.  

7.5.3 Product liability 

Any software component, which is not producing data for interpretation of a person, but is 
generating direct physical effects, may be subject to product liability rules.As a result also the 
safety and integrity of persons and property within reach of the composite system should be 
observed.  

The composite system shall meet the required safety of the new context in which the reused 
software component is deployed. Software components which have been tested and qualified 
for a context in which a lower level of safety was required than the level required for the new 
context, should be re-qualified for the requirements of the new context. 

 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



PAS 62814 © IEC:2012(E) – 31 – 

Annex A  
(informative) 

 
General remarks on software reuse 

 

Many efforts to reuse software have succeeded; there is an increasingly overwhelming 
number of success stories available in literature. Almost all major companies and institutions 
that deal with information & communication technology practice software reuse and report 
about their success, e.g., Nippon Electronic Company, GTE Corporation, Raytheon, DEC, HP, 
NASA, and many more [15], [16] and [17]. 

Nevertheless, the promises of decreased cost and increased dependability, and thus 
decreased risks, are not always realized. The frightening news about recent disasters 
definitely caused by careless software reuse are still being warningly associated with and 
attributed to all software reuse. The failure of Therac-25 system, in which a software 
component was carried over from a previous version of an X-ray system, caused the machine 
to malfunction, resulting in the loss of several lives in a terrible way; patients were actually 
burned [18]. 

In the Ariane project, failure of a reused software component caused the loss of a rocket 
costing around half a billion dollars [19]. 

These recent disasters as a consequence of bad reuse on the one side and success stories 
as a consequence of good reuse on the other side are the key factors  in deciding whether or 
not to enhance and sustain continued provision of reuse from a lucrative business 
perspective. 

 

Figure A.1 – Service-oriented architecture 

Not each “copy and paste” action, which programmers do daily when they construct their 
programs, forms a software reuse this PAS has in mind. Also calling an internal or external 
function and even a remote-procedure call is not necessarily a reuse this PAS would regulate. 
All these examples suggest that the context and domain of the called software does not 
change. Therefore, there is no need for them to perform pre-store and pre-use activities 
described in Clause 5. 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



 – 32 – PAS 62814 © IEC:2012(E) 

Using a service in a service-oriented (SO) landscape or in “Common Object Request Broker 
Architecture (CORBA)” is of more interest to this PAS because the context and domain of the 
software that delivers a service might change. Indeed, Figure A.1 and Figure 7 both have 
similar constellations concerning constructing, offering, selecting, and validating services. A 
service has to be registered and “published” before it will be offered. Infrastructural services 
are offered to realize a broker, etc. [20]. 

The safeguarding of basic dependability requirements to protect human health and life and 
valuable goods, relative to the risks involved and the degree of safety expected from the 
product in question, should be carefully taken into account when considering reuse of existing 
software. Control should be executed by monitoring the product’s behaviour in the field after 
sales. 

To sum up, before reusing a software component, the context and domain it was built for 
should be carefully compared with the context and domain it is intended to be built in, 
including the hardware and physical and organizational aspects [21]. 

 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



PAS 62814 © IEC:2012(E) – 33 – 

Annex B  
(informative) 

 
Qualification and integration of reusable software components 

 

B.1 Testing issues 

B.1.1 General 

Systematic approaches to supporting compositionality during integration testing enable to 
establish reproducible connections between test cases for component testing and integration 
testing. In particular, adequate coverage criteria defining objective integration testing stopping 
rules are required. 

A number of approaches suggest alternative possibilities of performing integration testing. It is 
widely recommended to proceed incrementally, that is, to integrate software units step-by-
step. The reasons for avoiding the so-called “Big-bang” (non-incremental integration testing) 
concern economic aspects as well as effectiveness. In fact, integrating all software units in 
one single step assumes each of them having already been extensively tested on its own, 
thus requiring the cost-intensive provision of a high amount of non-reusable stubs and drivers, 
to be discharged later on without further benefit. In addition, non-incremental testing is likely 
to lead to a globally incorrect behaviour (the already mentioned “Big Bang”), extremely 
difficult to be diagnosed in terms of localizing its cause(s), i.e., the fault(s) to be removed. 

Alternative to the “Big Bang”, incremental techniques for integration of components exist, 
which may be organized 

– in a top-down fashion, i.e., integrating new modules only after all modules invoking them 
were already integrated and tested, or 

– in a bottom-up fashion, i.e., integrating new modules only after all modules they invoke 
were already integrated and tested. 

Both options complement each other with respect to their pros and cons. Consider that the 
hierarchical invocation tree usually consists of 

– logical modules at the higher hierarchical levels, followed by 
– operational modules (typically library packages) at the lower hierarchical levels. 

With this in mind, it is easy to observe that 

– integration testing approaches based on top-down increments will tend to test very 
thoroughly the upper logical modules, at the cost of neglecting the lower operational 
modules; 

– the opposite is true for integration testing strategies based on bottom-up increments, 
which will tend to favour a more thorough verification of operational modules when 
compared with the logical ones. 

Both types of modules, however, may be significantly relevant for different reasons: 

– by encoding the control logic of the design, logical modules are likely to contain the most 
critical and complex faults and to require for such reasons to be thoroughly tested; 

– on the other hand, even when conceived for re-use, operational modules may have been 
experienced in the past only under very particular robustness measures or circumstances 
preventing them from failing; identical defensive design conditions may not apply, 
however, to future applications. 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



 – 34 – PAS 62814 © IEC:2012(E) 

In order to support extensive testing of both logical and operational modules, a compromise is 
offered by the so-called “sandwich integration”, which combines top-down incremental testing 
for logical modules with bottom-up incremental testing for operational modules before joining 
and testing both “sandwich parts”. 

B.1.2 Criteria for integration testing based on coverage measures  

To measure the effectiveness of a test suite in revealing faults, mostly a coverage-oriented 
adequacy criterion is used; this criterion uses the ratio of the portion of the specification or 
code that is covered by the given test suite to the uncovered portion: the higher the degree of 
test coverage the lower is the risk of having critical software artefacts that have not been 
sifted through. 

Concerning the definition of suitable coverage measures for integration testing, several 
approaches were proposed in the past. They mainly differ in the granularity of the underlying 
interaction concept. Assuming 

– components to denote units of composition with contractually specified interfaces and 
– interfaces to denote access points of components, through which clients can request 

services, then 
– integration testing denotes the amount of testing activities concerned with exposing 

“defects in the interfaces and in the interactions between integrated components” [22]. 

The above mentioned definition of interface allows for a simple coverage concept based on 
the criterion of exercising at least once all access points to a component (also called opera-
tion coverage). Such a simplistic view of integration, however, neglects a major and frequent 
source of failures, caused by sporadically inappropriate interactions of correctly implemented 
components [23]. For this reason, following coverage concepts address the multiplicity of 
potential interaction behaviours, distinguishing among the following levels [24]: 

– interface coverage, requiring to execute each interface at least once; 
– event coverage, requiring to test each interface against all its possible invocations; in 

other words, event coverage does not only require the invocation of each interface once 
(i.e. interface coverage), but also demands “that each interface be invoked against all 
possible events of invocations in the application environment”; 

– context-dependent coverage, requiring to test at least once all possible operational 
sequences; 

– content-dependent coverage, requiring to cover all pairs of interfaces, where one 
interface modifies the value of a variable used in the other, thus extending classical data 
flow testing concepts to interfaces (s. also [25]). 

On the whole, a suitable level of integration testing granularity should lie between the two 
extremes of 

– black-box integration testing, limited at the coverage of interfaces without taking into 
account the component-specific behaviour triggering the access to such interfaces. As 
commented above, this procedure is likely to result in a rather cursory test coverage; 

– white-box integration testing, taking into account the complete control and data flow 
within each component. This procedure, on the other hand, is likely to result in an 
extremely laborious and inefficient phase, involving a considerable overlap with unit 
testing and requiring source code information which in case of re-usable off-the-shelf 
components may not be available. 

For these reasons, the optimal level for the integrated system under test lies usually between 
both extremes just illustrated and is carried out by 

– grey-box integration testing based on an abstract representation of component 
behaviour, typically a UML diagram, providing relevant information on components 
interaction(s) without requiring full implementation details. 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



PAS 62814 © IEC:2012(E) – 35 – 

Depending on the underlying abstraction selected, different model-based integration testing 
strategies may be applied, like 

– dynamic model-based integration testing, aimed at covering dynamic UML models like 
sequence diagrams or collaboration diagrams (e.g. by requiring the coverage of 
operational call sequences). 

– static model-based integration testing, aimed at covering static UML models like state 
diagrams or collaboration diagrams (i.e. by requiring the coverage of state-based 
information). 

The main limitation of dynamic model-based integration testing strategies is likely to lie in the 
depth of operational call sequences possibly preventing from an accurate data flow analysis. 
The latter is rather captured by state-based models reflecting to some abstract degree the 
internal behaviour of each component via state transitions. Different approaches were 
developed by elaborating on this concept: 

– including state-based information into dynamic models, allowing to visualize state-
dependent behavioural variants by means of graphical paths (e.g., so-called “state 
collaboration test models). 

– encoding component interactions by matching state transitions (so-called “transition 
mappings” . Potential interactions between components (represented by state machines) 
are captured by pairs of state transitions, where the traversal of one transition (in the 
invoking component) has the effect of triggering the traversal of the other transition (in the 
invoked component). 

Finally, a few words are devoted to the cost aspects of the testing techniques surveyed 
above. Except when explicitly required by licensing regulators white-box testing has been and 
still is usually avoided by industrial developers in view of the effort once required. This effort 
concerns the identification of suitable test data achieving the target coverage as well as the 
verification of the behaviour observable upon executing them. While this justification may 
have applied in the past, it is meanwhile obsolete. Test case generation techniques and tools 
based on evolutionary strategies are felt to have achieved the degree of maturity required for 
being applied to an industrial context. While they are not (and will never be) able to guarantee 
complete (i.e. 100 %) coverage (being based on random algorithms), they can nonetheless 
provide valuable support to any systematic testing phase (including integration testing) by 
generating a number as low as possible of test cases (i.e., test sequences with corresponding 
test data) capable of achieving coverage measures as high as possible. 

B.2 Reliability issues 

Intensive research effort was devoted in the past to the compositionality of reliability 
estimation in component-based systems, resulting in a number of different approaches 
summarized in the following. 

Classical reliability approaches addressing component-based systems in general and without 
focusing on specific software engineering aspects, are often based on a Markov model of the 
underlying component-based structure. An analysis of the sensitivity of system reliability to 
changes in specific component reliabilities was carried out in [26]. 

Littlewood [27] considers the particular case of software systems and distinguishes between 
inter-modular failure rates and intra-modular failure rates. It is questionable whether the 
memory-less property (on which Markov transitions rely) always applies to systems. 
Depending on the granularity of components, this property may be violated. 

Successive research work considered also the issue of reusability of components as well as 
of testing with respect to operating experience gained with them. [28] compares testing and 
operational profiles observed in the past with usage profiles expected in future and suggests 
evaluating the maximal relative deviation between past and future frequency of occurrence 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



 – 36 – PAS 62814 © IEC:2012(E) 

per demand. This measure allows deriving a conservative estimation of the overall system 
reliability. 

Saglietti [29] considers a similar problem in the light of individual software component 
reliability estimations derived by analysing correct component-specific operating experience 
by means of statistical sampling theory. This theory allows for an evaluation of testing with 
respect to operational experience of reusable components in case the runs observed fulfil the 
following conditions: 

– the selection of a run should not influence the selection of further runs; 
– the execution of a run should not influence the outcome of further runs; 
– runs should be selected in accordance with their expected frequency of occurrence during 

operation; 
– no failure (or at worst very few failures) is (are) observed during testing. 

The approach taken combines the component-specific reliability estimations into conservative 
system reliability estimation. Further research was carried out to sharpen this estimation by 
providing reliability lower bounds at predefined confidence levels.  

It has to be remarked that these approaches refer to a long-term observation of correct and 
representative executions such as is only possible after extensive component and integration 
testing phases (B.1); the latter support interaction fault detection by focusing on the validation 
of the underlying component-based architecture. 

 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



PAS 62814 © IEC:2012(E) – 37 – 

Annex C  
(informative) 

 
Testing and integration of reusable software components – 

Issues for industrial best practice 
 

C.1 Basic concepts about software component testing  

C.1.1 General 

Today component engineering is gaining substantial interest in the software engineering 
community. In the real world, many software systems are developed based on reusable 
components. This annex reviews and identifies the testing and integration issues and 
challenges of component-based reusable systems. It also discusses testing processes and 
maturity model for controlling the quality of reusable components. Finally, it shares some 
insights on the needs of test standardization for reusable components. 

As more commercial and open-source third-party components are available in the market, 
more software companies begin to build software systems using the component-based 
software engineering approach. As the advances of the software component technology 
continue, people begin to realize that the quality of component-based software products 
depends on the quality of software components and the effectiveness of software testing 
processes [30]. While they applied the conventional testing methods to deal with reusable 
components and their integration, they have encountered some new issues and opening 
challenges in testing and integration of reusable components [31], [30], [32]. Today, as more 
software systems are developed based on reusable components, engineers and managers 
are looking for the answers to the problems and challenges.  

Clause C.2 reviews first the existing challenges and solutions in component testing and 
component-based software are reviewed. Then, the opening challenges in validating reusable 
components are discussed. Clause C.3 discusses testing issues for software components and 
reusable components before Clause 0 introduces component testing maturity levels in quality 
control of reusable components. Clause C.5 discusses the problems and solutions in 
integration of reusable components in component-based software. 

C.1.2 Types of component testing 

In traditional testing concepts, software component testing refers to testing activities that 
uncover software faults and validate and confirm the quality of a software component at the 
unit level. For checking the functions, structures and behaviours based on the given 
specifications in a given operational environment, white-box testing and/or black-box tests are 
performed to detect structure-related program faults, and b) specification-based faults [30]. 

In component-based software engineering, components should be validated from two different 
perspectives: a) vendor-oriented testing, and b) user-oriented testing. These two types of 
component testing have different focuses, tasks, and objectives. 

• Vendor-oriented component testing, which occurs as one step of a component 
development process. It refers to a component test process and testing activities 
performed by a component vendor to validate a software component based on its 
specifications. In vendor-oriented component testing, the primary purpose is to answer the 
following questions for component developers: 
– Are we building a right component with high quality? 
– Are we building a component based on the specified standards and component 

model? 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



 – 38 – PAS 62814 © IEC:2012(E) 

• User-oriented component testing, which occurs as a part of a component based 
software development process for a specific application project. It refers to the component 
validation processes and testing activities in a specific context to make sure all involved 
software components deliver the specified functions, interfaces, and performance. 
Moreover, component reuse is validated in the given context and operational environment. 
User-oriented component testing is performed to find the following answers for component 
users: 
– Are we selecting and deploying a reusable component that is right for a system? 
– Are we reusing a component correctly in a system? 
– Are we adapting or updating a component correctly for a project?   

C.2 Validation processes for reusable software components 

C.2.1 Types of reusable components 

Today, many software systems are made based on four types of reusable components. They 
are: a) third-party commercial components from other vendors, or from open source, b) 
reusable components from other projects, c) altered reusable components from previous 
releases, and d) a set of newly constructed components. Therefore, the quality of software 
products depends on the quality of these components, and their integration as well as the 
effectiveness of involved validation processes and quality standards. This section covers the 
component testing processes for different types of components. 

C.2.2 Vendor-oriented component testing 

In vendor-oriented component testing, test engineers of a vendor implement a component test 
process based on well-defined component test models, methods, strategies and criteria to 
validate the developed software components. The vendor-oriented component testing has 
three major objectives: 

– uncover as many component faults as possible; 
– validate component interfaces, functions, behaviours and performance based on 

component specifications; 
– check component reuse, packaging and deployment in the specified platforms and 

operation environments. 

 

Figure C.1 – A test process in vendor-oriented component testing [30] 

As shown in Figure C.1, a component test process for a vendor consists of the following six 
steps: 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



PAS 62814 © IEC:2012(E) – 39 – 

– Step 1: Component black-box testing – Component developers and test engineers 
exercise black-box tests to check incorrect and incomplete component functions and 
behaviours based on the component specifications. Traditional black-box test methods 
can be used here. 

– Step 2: Component white-box testing – In this step white-box tests are performed to 
uncover the internal faults in program logic, structure, data objects and structure. Existing 
white-box test methods can be used here [31], [30]. 

– Step 3: Component usage testing – Test engineers exercise various component usage 
patterns through contract-based component interfaces to confirm its correct functions and 
behaviours. Traditional usage test methods can be used here. 

– Step 4: Component performance testing – Test engineers and quality assurance people 
validate and evaluate the component performance based on non-functional requirements. 
Traditional performance testing methods can be used here. 

– Step 5: Packaging and customization – This step is only useful for components that 
provide built-in customization features and packaging facility. Its testing focus is 
component built-in customization features and packaging functions. 

– Step 6: Component deployment testing – As the last step of a component test process, 
it validates the component deployment mechanism to make sure it is correctly designed 
and implemented according to a given component model. 

C.2.3 User-oriented component testing and its process 

User-oriented component testing checks component reuse and refers to a component 
validation process and its testing activities that confirm the quality of the involved software 
components for a specific system. Engineers involving user-oriented component testing are 
application component engineers, test engineers, and quality assurance groups. They perform 
component testing to achieve the following objectives: 

– validate the functions and performance of a reusable component to make sure that they 
meet the specified requirements for a project and system; 

– confirm the proper usage and deployment of a reusable component in a specific platform 
and operation environment; 

– check the quality of customized components developed using reused components; 
– test the quality of new components created for a specific project. 

Testing reused components (such as COTS components) in a new context and domain is 
necessary and critical to a component user even though component vendors have already 
tested them in other reuse contexts. As already mentioned, the Ariane 5 disaster has showed 
us that using a component in a new reuse context without validating may cause serious 
consequences and failures. 

In user-oriented component testing engineers should devote their testing efforts to the 
validation of component reuse by answering the following questions: 

– Is a reused component packaged and deployed properly in a targeted operational 
environment?  

– Does a reused component provide the specified user interfaces accessible to a user? 
– Does a reused component provide the correct functional features, proper behaviours, and 

acceptable performance when it is reused in a new context and environment? 

Validating newly developed components is similar to vendor-based component testing. The 
component test process described before can be used here. However, validating reused and 
updated components has different focuses and limitations. For example, a component user 
usually has no access to the source code and artefacts of a completely reused component 
from a third party. The user has to validate the reused components using black box testing 
without access to the personnel and expertise used to create it. This occurs as a part of a 
component evaluation process at the earlier phase of a component-based software 
development process. 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



 – 40 – PAS 62814 © IEC:2012(E) 

 

Figure C.2 – A validation process for completely reused components [30] 

Figure C.2 shows a validation process for completely reused components from a third party. 
The process includes the following five steps: 

– Step 1: Component deployment – In this step a component is validated to see if it can 
be successfully deployed in its new reuse context and operational environment for a 
project. It focuses on the built-in component deployment mechanism and supporting 
facility. 

– Step 2: Component customization and packaging – In this step it is checked whether a 
component can be successfully packaged and properly customized using its built-in 
packaging and customization features in its new context environment. The major focus is 
on the built-in component packaging and customization mechanism, and supporting 
facility. 

– Step 3: Component usage testing – In this step, a component user designs test cases to 
exercise different usage patterns of a component using user interfaces. Its primary goal is 
to cover the important component usage patterns in their new context and environment. 
Two typical examples are checking frequent function invocation sequences and trying 
typical usage patterns on data parameters in component interfaces. 

– Step 4: Component validation – In this step component black-box tests are performed to 
validate component functions and behaviours in the new reuse context and environment. 
Various existing black-box testing methods can be used here. 

– Step 5: Component performance evaluation – In this step the component performance 
is validated and measured in a new context and operation environment to make sure that 
it satisfies non-function requirements. The typical validation focuses are component 
operation (or function) speed, reliability, availability, load boundary, resource usage, and 
throughput. 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



PAS 62814 © IEC:2012(E) – 41 – 

 

Figure C.3 – A Validation process for adapted and customized components 

Validating adapted and updated components is another major task for component users. 
These components are known as customized components. They are developed based on 
reusable components by customizing and altering them. Since they contain reused 
components and newly added parts for a specific project, their validation process differs from 
the reused components. Figure C.3 shows a validation process for customized components. 

– Step 1: Reused component validation – In this step, component users validate 
completely reused components, such as COTS components, based on its previous 
validation process. 

– Step 2: Black-box testing for customized/updated parts – In this step, black-box tests 
are exercised to check those customized parts. The major objective here is to uncover the 
function and behaviour faults of the newly altered parts based on the given specifications. 

– Step 3: White-box testing for customized/updated parts – In this step, white-box tests 
are performed based on the given source code to uncover program logic and structure 
errors in the customized parts, such as added functions, adapters, and tailored parts. 

– Step 4: Integration for customization – Reused components are integrated with 
customized parts (such as an adapter, new function feature) to form a specified 
customized component in a new reuse context and environment. 

– Step 5: Performance evaluation – Concerning component performance, component 
users have to evaluate component performance and its non-function requirements for a 
customized component in a new context and environment. 

C.3 Testing issues for software components and reusable components 

Since 1990, there are a number of testing issues addressed in various technical publications 
[30], [32]. These issues are identified and summarized below. 

– Adequate component test criteria 
 Adequate testing of modern software components is different than adequate testing of 

traditional modules because of their unique properties in reusability, interoperability, 
composition, packaging, and deployment. These new component properties extend the 
semantics and scope of adequate testing. For example, testing a traditional module 
always concerns one specific usage context and operation environment. However, a 
reusable software component should have diverse usage contexts, and it may support 
more than one operating environment. This suggests that a vendor should try to test it for 
diverse reuse contexts, and validate it under all specified operating environments to 
achieve adequate testing. On the other hand, component users also have the difficulty to 
understand and define an adequate test model and criteria for reusable components in a 
reuse context. In the past years, some published papers have proposed different test 
coverage criteria to address the needs in testing software components, such as API-based 
test execution sequences [33] and API-based test pattern coverage [34]. 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



 – 42 – PAS 62814 © IEC:2012(E) 

– Testability of reusable components 
 Testability of software components usually includes a) observability, and b) controllability 

[24]. Controllability of a program (or component) is an important property which indicates 
how to control a program (or component) on its inputs, operations, behaviours and 
outputs. Observability of a program (or component) is another critical property which 
indicates how easy to observe a program in terms of operational behaviours and outputs 
relating to inputs. In [30], three other factors are added to observability and controllability: 
Understandability, traceability, and test support.  

 Based on the feedback from engineers, it is not easy to test third-party software 
components. From a customer’s point of view, the testability of current software 
components depends on the following features: 
– external tracking mechanisms and tracking interfaces in software components for a 

client to monitor or observe external behaviours; 
– built-in controllable interfaces in software components to support the execution of com-

ponent tests and check the test results; 
– built-in tests and standard test interfaces to support component test automation at the 

unit level. 
 Although most in-house components contain some built-in tracking code for fault trace and 

exception reporting, there is not yet any consistent tracking mechanism, trace format, and 
tracking interface for all components. In recent years, many technical papers discuss this 
issue by providing different solutions to increase component testability. Systematic 
methods and standards help create testable components and improve their testability.  

– Component testing processes and certification criteria 
 Today, many software workshops have established in-house quality control processes for 

software products. During the course of paradigm shift from traditional software 
construction to component-based software construction, they frequently run into a 
question about the difference between a component quality control process and a software 
program quality control process. They are not sure whether or not the existing quality 
control process and standards can be applied onto software components. Due the lack of 
standard component quality control processes and standards, they frequently end up in an 
ad-hoc component testing process without well-defined quality certification standards. As 
discussed in [35], [36], well-defined component testing and certification criteria and 
standards are needed in component testing for third-party component certification. 

– Component test drivers and stubs 
 In the component engineering paradigm, software components are reusable parts for 

component-based software products. To support component testing, engineers have to 
construct test drivers and test stubs. In the past, engineers used to construct product-
specific test drivers and stubs (or simulators) for a specific project based on given 
requirements. This approach becomes very ineffective and costly for component-based 
software projects because of the evolution of reusable components and their diverse 
functional customizations. For in-house reusable components, engineers usually use an 
ad hoc approach to develop simple test drivers and/or test stubs for unit tests. However, 
they are not easy to be reused and updated, and integrated to support component 
integration and system tests due to the following factors: 
– they are developed using ad-hoc methods, technologies, and computer platforms; 
– they are project-specific or product-specific; 
– they have no well-defined standard interfaces between components and test suits, and 

components with a test bed. 

The existing software testing methods and tools can help testers generate black-box and 
white-box tests for components in a systematic manner [31], taking the issues listed in Table 
C.1 into account. 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



PAS 62814 © IEC:2012(E) – 43 – 

Table C.1 – Testing issues of reusable software components 

Component test adequacy What are adequate test criteria for reusable components in a reuse context? 

What are adequate test criteria for customizable components? 

Component testability What is the testability of software components? 

How to construct testable components? 

How to measure the testability of software components? 

Component test suite How to construct well-formatted test suites for software components? 

How to manage and maintain test suites for software components? 

Component test platform, 
test stubs & drivers 

How to construct component drivers and stubs in a systematic approach? 

How to maintain and manage test drivers and test stubs in a cost-effective way? 

Certification and quality 
control 

What is a well-defined certification standard for software components? 

How does a quality control process of software components differ from a regular 
quality control process for a software product? 

Component test 
automation 

How to achieve test automation for reusable software components? 

How to generate a reusable component test platform for software components? 

 

C.4 Testing maturity for reusable software components 

Building cost-effective products needs a productive product line. As component engineering 
gains a wide acceptance in today’s software industry, many software companies have begun 
to set up component-based software product lines. Delivering high quality component-based 
software needs also a well-defined component testing process. To understand the status of a 
component test process, it is important for a manager to have a tool to measure the 
effectiveness of the process. A maturity model is a tool that is useful to measure the maturity 
level of a process in an organization. In this section, we define a maturity model to help 
managers measure the status of a component test process. It focuses on component test 
standards, test criteria, management procedures, measurement activities. Figure C.4 shows 
the five process maturity levels which are defined as follows. 

 

Figure C.4 – Maturity levels for a component testing process 

– Level 0: Ad-hoc component testing 
 A component testing process is considered as an ad hoc process if it has the following 

characteristics: a) ad hoc test information formats, including test cases, test procedures, 
test data and scripts, b) ad hoc test generation and test criteria for both white-box and 
black-box tests, c) ad hoc quality assurance standards and quality control systems, d) ad 
hoc construction of component testing environment, such as test drivers and stubs, and e) 
inconsistent requirements and mechanisms on tracking component behaviours. An ad hoc 
component test process is inefficient and costly due its poor reusability of test information 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



 – 44 – PAS 62814 © IEC:2012(E) 

and test drivers/stubs. Besides, it is very hard for managers to control and manage it. The 
most critical issue of the process is the quality of delivered components. Without well-
defined test criteria, managers cannot control the quality of tested components. 

– Level 1: Standard component testing 
 A component testing process is characterized as a standard process if managerial 

operations and engineering activities are performed based on a set of test information 
standards, pre-defined management procedures, well-defined criteria, and well-designed 
mechanisms. The standards define requirements and formats on test plan, test case and 
data, trace messages, test reports and problem reports. Management procedures refer to 
a component quality control process, a component testing workflow, a configuration 
management procedure, and a problem tracking workflow. Test criteria include white-box 
and black-box test criteria, acceptance test criteria, and quality control criteria. The 
defined mechanisms support component tracking, problem tracking, and configuration 
management. 

– Level 2: Managed component testing 
 A component testing process is categorized as a managed process if it collects the 

detailed measures of the process and component quality, including the measures of 
component test cost, component test metrics, component quality metrics, and process 
measurements. 

– Level 3: Certified component testing 
 A component testing process is considered as a certified process if it has defined and 

implemented a certification standard and procedure for software components. The 
certification standard includes certification procedure, test plan, test tools, test platform 
and environment, criteria, test metrics, and test report. The test plan includes certification 
tests, which focus on testing of user accessible component features, installation, and 
customization or configuration functions. Moreover, this process has a well-defined 
certification procedure and workflow. A designated engineer or group, known as a 
component certifier, implements this procedure based on the given standard. After 
completing the certificate tests for a component, the certifier will issue a certificate for a 
component product according to the test report.  

– Level 4: Systematic component testing 
 A component testing process is characterized as a systematic process if it has defined 

and implemented systematic methods and mechanisms to automate this process. To 
achieve this goal, engineers need well-defined systematic methods to support their 
operations and activities. The essential systematic methods are classified in four areas: a) 
test suite design and construction, b) component design for testing, c) component test 
environment, and d) configuration management. 

C.5 Emerging techniques for component integration 

Since 2000, a great number of papers address the problems and solutions in component-
based software integration and system regression testing. They can be classified into three 
approaches: 

– Component-based interaction approach 
A component interaction model, known as CIG, is used to present different types of 
interactions between components in component-based software. The model is used to 
represent three types of component interactions. They are: a) API-based interactions, b) 
event interactions between components, and c) message interaction between 
components. 

– UML-based approach 

UML-based models (such as component collaboration and sequence diagrams) are used 
as system-level test model to support component integration and re-integration, as well as 
system regression testing. 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



PAS 62814 © IEC:2012(E) – 45 – 

– Hybrid approach 
A graphic presentation model is used to present the combining white-box and black-box 
information from specification and implementation, respectively. This graphical 
representation can be used for test case identification and reuse, based on well-known 
structural techniques. 

The major applications of these system-level test models for component-based software 
include: a) integration strategy identification, b) system-level change and impact identification, 
and c) system regression test selection and reuse.  

In a component-based software product line, programs are built based on a set of software 
components. It includes third-party components, in-house components, and newly constructed 
application components. In fact, a product is an integration of customized components to 
meet the specific requirement set. There are two factors, which affect the complexity of 
component integration. The first is the number of involved components. The other is the 
customization capability of components.  

 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



 – 46 – PAS 62814 © IEC:2012(E) 

Annex D  
(informative) 

 
Example of software pre-use 

 

D.1 System under consideration and operation experience 

A software component realizes a supervision system as described by Figure D.1. It controls 
an analogue variable of an industrial plant based on two thresholds: one for warning and 
another one for plant shut-down. In both cases a digital signal plays a role, indicating whether 
the warning should be only optical or optical and acoustical, and whether the shutdown should 
be slow or fast. If the analogue signal is not valid, e.g., if it has noise-level only, another 
digital signal is checked, whether or not a warning should be issued, and a further one 
whether or not an alarm shall be given. As indicated in Figure D.1, a total of eight paths exist. 

Experience is available by observing the software in operating with 

– one supervision channel, and 
– several parallel supervision channels. 

Following, basic reliability theoretical background is summarized for calculating the reliability 
of the above described component for a reuse. 

D.2 Reliability estimation based on sampling theory 

Upper limit p  of unknown probability p of observing failures during operation can be 
estimated by using statistical sampling theory.  

If we assume that successive operation runs are statistically independent Bernoulli trials, the 
number of failures in n operation runs distributes Binomial: 

 
n r n-r
r( ) ( ) (1 )P R r C p p= = −  (D.1) 

where P(R = r) is the probability of r observing failures in n operation runs, and n
rC  denotes 

the number of combinations of r objects from n objects. Hence, the probability of 0 observing 
failures is: 

 
n( 0) (1 )P R p= = −  (D.2) 

For given any confidence level ( )β  and n correct operation runs, p  can be determined as:  

 
n(1 ) 1p β α− = − =  (D.3) 

 ln( ) /p nα= −  (D.4) 

An upper limit of its failure probability for each demand class jC  is: 

 i iln( ) /p nα= −  with i = 1,2, …, k (D.5) 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



PAS 62814 © IEC:2012(E) – 47 – 

where in denotes the number of independent operation runs for ith demand class and k is the 
number of demand classes. Total number of operation runs is the sum of operation runs of 
demand classes: 

 i
1

k

i
n n

=

= ∑  (D.6) 

In this case, the overall effects of different demand profiles can be calculated as follows: 

 2
i i

1

k

i
p pπ

=

= ∑   (D.7) 

where iπ is the probability of operation of ith demand class and is calculated as follows: 

 i i /n nπ =  (D.8) 

D.3 One supervision channel 

The upper limits of probability of observing failures ( p ) at various confidence level can be 
calculated according to Equation (4). For this calculation, past operating experience is used. 
In this example, operating experience comprising 1 000 successful runs without a failure is 
available. Table D.1 shows the results. 

Table D.1 – Operating experience, monolithic view 

Confidence level 0,95 0,99 0,999 

p
 

3 × 10–3 4,6 × 10–3 6,9 × 10–3 

 

As an example, based on past operating experience, upper limit at 95 % confidence level is 
given as 0,000 3.  

By determining the target failure probability, confidence level and the number of operation 
runs required can be estimated.  

According to Figure D.1, the supervision system consists of eight paths. Table D.2 shows the 
number of operation runs of these paths. According to the number of operation runs, the 
upper limits of failure probability at 99 % confidence levels for each path can be calculated by 
using Equation (5). Results are given in Table D.2. 

Table D.2 – Operating experience, use of the individual paths 

Path number 1 2 3 4 5 6 7 8 

Probability πi of operation  
of ith demand class 

0,2 0,2 0,3 0,1 0,05 0,05 0,05 0,05 

Operation runs 200 200 300 100 50 50 50 50 

Values of the upper limits of the 
pi at a confidence level of 0,99 0.023 0,023 0,0153 0,046 0,092 0,092 0,092 0,092 

 

If the operational profile changes as given in the second row of Table D.3, tp  is obtained as 
0,91 × 10–3 using the Equation (7) under the new demand profile.  

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



 – 48 – PAS 62814 © IEC:2012(E) 

Table D.3 – Production demands, use of the individual paths; 
the values of pi did not change 

Path number 1 2 3 4 5 6 7 8 

Probability of operation of  
demand class πi 

0,3 0,1 0,05 0,01 0,135 0,135 0,135 0,135 

Values of the upper limits of the 
pi at a confidence level of 0,99 0,023 0,023 0,0153 0,046 0,092 0,092 0,092 0,092 

 

Related rules 

R1: The paths are to be identified for each demand profile.  

R2: The i iandp π  are to be evaluated or conservatively estimated for each path i. 

R3: The overall effects of different demand profiles may be calculated according to (7).  
R4: Concatenation of modules is allowed if they do not interact; in this case the largest pt 

shall be taken. 
R5: If interacting modules are concatenated, the paths from start to end shall be taken. 
R6: Paths whose correctness has been proven may be counted with p i = 0. 

D.4 Several parallel supervision channels 

If the pre-used application consists of several identical copies of the software of Figure D.1, 
the related execution numbers may be added. This is the case, if the code that underlies 
Figure D.1 is used in a supervision loop, e.g., supervising several channels. Then the 
operation experience for each path is the sum of the operation experience of that loop in all 
paths . 

 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



 
PAS 62814 © IEC:2012(E)             – 49 – 

 
N

O
TE

 
P

ro
ce

ss
in

g 
on

e 
an

al
og

ue
 s

ig
na

l 
an

d 
fo

ur
 d

ig
ita

l 
si

gn
al

s;
 t

w
o 

th
re

sh
ol

ds
 f

or
 t

he
 a

na
lo

gu
e 

va
lu

e;
 a

ll 
ac

tio
ns

 a
re

 s
o 

si
m

pl
e 

th
at

 t
he

y 
do

 n
ot

 c
on

ta
in

 a
ny

 l
oo

ps
 o

r 
br

an
ch

es
; t

he
ir 

co
de

 d
oe

s 
no

t 
m

ak
e 

an
y 

us
e 

of
 d

at
a 

of
 a

ny
 o

th
er

 a
ct

io
n:

 if
 th

e 
an

al
og

ue
 v

al
ue

 c
on

si
st

s 
of

 n
oi

se
 o

nl
y,

 D
ig

it 
3 

an
d 

po
ss

ib
ly

 4
 a

re
 c

he
ck

ed
. 

E
ig

ht
 p

at
hs

 in
 to

ta
l. 

Fi
gu

re
 D

.1
 –

 E
xa

m
pl

e 
of

 a
 s

up
er

vi
si

on
 ta

sk
 

  

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



 – 50 – PAS 62814 © IEC:2012(E) 

Annex E  
(informative) 

 
Influence of reused software to hardware components and products 

 

See also: http://www.cocir.org “Good refurbishment practice” Guidelines Version II  

E.1 Checklist for the reuse and update of software in a hardware component 
or product for resale, especially for “qualified-as-good-as-new” 
components of IEC 62309 

Background: The software to be reused might be necessary to run on hardware equipment 
which should be remanufactured. Without knowing the necessary old and new functions an 
upgrade of the equipment to the modern state of the art will be difficult. 

IEC 62309, Dependability of products containing reused parts – Requirements for functionality 
and tests”,  deals with the remanufacturing of used equipment to new products with 
components “qualified-as-good-new”. The software upgrade was excluded there, as the 
dependability of hardware and software are very different. But for the complete check of the 
new product also the software has to be checked to avoid quality problems. 

The following checklist should be used to qualify the reused and updated software and should 
be seen in addition to IEC 62309. Of course the preconditions in the main part of this software 
standard should also be valid. 

a) State of the software in the old equipment? 
b) Which software upgrades are available and which would fit to the old and to the upgraded 

equipment? 
c) Which updates have been done with the old software? 
d) Is compatibility of upgrades or reused software with the remanufactured product already 

tested? 
e) Which hardware components (new/reused) should be integrated and which new functions 

should be available in the new hardware product? 
f) Is there a need to develop new software program steps for some hardware components 

which are new in the upgraded/remanufactured hardware product? 
g) Is the number of new hardware components to be used with the remanufactured product 

limited, should it be limited, because problems could occur?  
h) Which hardware components cannot be controlled by the old, upgraded or reused software 

in the new hardware product? 
i) Are there different standards, e.g., transfer rates etc. for data in components used? 
j) In a network e.g. in a production line the product might have worked in a network. Is the 

reused/upgraded product and its software compatible to the network of the, e.g. 
production line? 

k) Testability of the whole product/system? 
l) If the hardware product/component will be used in a network in a plant or with e.g. internet 

what are frame conditions for the software reuse?  
m) Can installation media for old data also be used with the updated hardware product (CD, 

etc.)? 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

http://www.cocir.org/


PAS 62814 © IEC:2012(E) – 51 – 

E.2 Potential influence of reused software in new hardware components and 
products and in “qualified-as-good-as- new” components on energy 
consumption 

Background: Software is usually excluded from the discussion of potential environmental 
impacts. Indeed there are often very strong effects, e.g. on energy consumption.  

In IEC 62309 all those components were excluded which contained, e.g. hazardous 
substances, or had a too high energy consumption in comparison to the new product in the 
market. Additionally, legal trends worldwide will require to reduce especially energy 
consumption. Also for customers the benefit from reused, cheaper equipment could become a 
real disadvantage if energy consumption was too high.  

Therefore, a second checklist was developed to evaluate the state of energy consumption by 
the application reused software. Also, this checklist should be used in addition to a 
qualification of hardware components for new applications according to IEC 62309. In any 
case, the operational conditions of the hardware need to be known so some of the questions 
below might not be valid, or others had to be put. 

a) Is it necessary or possible to integrate energy saving elements in the software, e.g. 
automatic pull down to stand-by? 

b) Are loading commands to batteries, capacitors etc. checked for energy consumption? 
c) Which standards are available to estimate comparable modern energy consumption for 

the equipment like, e.g. Energy Star? 
d) Is the energy consumption of the upgraded equipment much higher with the upgraded 

reused software and how can it be reduced?  
e) Is the run time for some tasks too long? 
f) Energy consumption in comparison with new hardware equipment – Can a too high 

consumption be reduced by a new software approach? 
g) Is a combination of new hardware and software necessary to reduce energy consumption, 

e.g., a combination of switchable power supplies? 
h) Are the impact by the components like printers checked for energy consumption? 
i) Can hardware in the upgraded product be substituted by software, e.g. fax, now 

integrated? 
j) Can hardware be simplified, e.g. batteries be substituted by capacitors? 
k) Can the system (product + software) be simply tested? 
l) Is it easy to use the product and its software? 
m) Are there recommendations available for an energy saving mode of the product? 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



 – 52 – PAS 62814 © IEC:2012(E) 

Bibliography 

[01] ISO/IEC 25000:2005, Software engineering – Software product Quality Requirements 
and Evaluation (SQuaRE) – Guide to SquaRE  

[02] IEC 61508-3:2010, Functional safety of electrical/electronic/programmable electronic 
safety-related-systems – Part 3: Software requirements 

[03] IEC 61508-4:2010, Functional safety of electric/electronic programmable electronic 
safety-related systems – Part 4: Definitions and abbreviations 

[04] ISO/IEC 12207:2008, Systems and software engineering – Software life cycle processes 

[05] IEEE 1517:1999, Standard for Information Technology – Software Life Cycle Process – 
Reuse Processes  

[06] Frakes, W.B., Terry, C., Software Reuse: Metrics and Models, ACM Computing Surveys, 
Volume 28, Issue 2, pp. 415-435, 1996. Available from 
http://dl.acm.org/ft_gateway.cfm?id=234531&type=pdf&CFID=65178775&CFTOKEN=89
447410  

[07] Naur, P., Randell, B. (eds.), Software Engineering, Report on a conference sponsored 
by the NATO Science Committee, Garmisch, Germany, 7th to 11th October 1968. 
Available from http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF  

[08] Sommerville. I., Software engineering, Addison Wesley Longman, Boston, 2007  

[09] Frakes, W.B., Kang, K., Software Reuse research: Status and Future, IEEE 
Transactions on Software Engineering, Volume 31, Issue 7, pp. 529-536, 2005. 
Available from http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=& arnumber=1492369  

[10] AIAA R-013-1992, Recommended Practice for Software Reliability, 1992  

[11] IEEE 1633:2008, IEEE Recommended Practice on Software Reliability, c1-72  

[12] Al-Badareen, A.B., Selamat, M.H., Jabar, M.A., Din, J., Turaev, S., Reusable Software 
Component Life Cycle, International J. of Computers, Volume 5, Issue 2, pp. 191-199, 
2011. Available from www.naun.org/journals/computers/19-863.pdf  

[13] Frakes, W.B., Tortorella, M., Foundational Issues in Software Reuse and Reliability, 
white paper, 2004. Available from 
http://citeseerx.ist.psu.edu/viewdoc/downlo50ad?doi=10.1.1.95.2313&rep=rep1&type=p
df   

[14] Galorath, D., Software Reuse and Commercial Off-the-Shelf Software, Chapter 8 in 
“Software Sizing, Estimation, and Risk Management”, pp. 275-301, Auerbach 
Publications, Taylor & Francis Group, London, 2006, see 
http://www.compaid.com/caiinternet/ezine/ galorath-reuse.pdf   

[15] Mathur, A.P., Foundations of software Testing. Addison-Wesley Professional, Boston, 
2008  

[16] Mohagheghi, P., Ict, S., Conradi, R., An Empirical Investigation of Software Reuse 
Benefits in a Large Telecom Product, ACM Transactions on Software Engineering and 
Methodology, Volume 17, Issue 3, pp. 13:1-13:31, 2008. Available from 
http://dl.acm.org/ft_gateway.cfm?id=1363104&type=pdf&CFID=82907429& 
CFTOKEN=24134248  

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

http://dl.acm.org/ft_gateway.cfm?id=234531&type=pdf&CFID=65178775&CFTOKEN=89447410
http://dl.acm.org/ft_gateway.cfm?id=234531&type=pdf&CFID=65178775&CFTOKEN=89447410
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
http://www.naun.org/journals/computers/19-863.pdf
http://citeseerx.ist.psu.edu/viewdoc/downlo50ad?doi=10.1.1.95.2313&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/downlo50ad?doi=10.1.1.95.2313&rep=rep1&type=pdf


PAS 62814 © IEC:2012(E) – 53 – 

[17] Orrego, A., Mundy, G., SRAE: An Integrated Framework for Aiding in the Verification 
and Validation of Legacy Artifacts in NASA Flight Control Systems”, Proc. 31st Ann. 
Intertnat’l. Comp. Softw. & Applications Conf., IEEE Comp. Press, New York, 2007  

[18] Leveson, N., Medical Devices: The Therac-25, Appendix A in Safeware: System Safety 
and Computers, pp. 1-49, Addison-Wesley,Boston, 1995. Available from 
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=84A18B532CF53C4AEA6F64A
A6038BFEF?doi=10.1.1.39.704&rep=rep1&type=pdf  

[19] Lions, J.L., Ariane 5 Flight 501 Failure, July 1996. Available from 
http://www.ima.umn.edu/~arnold/disasters/ariane5rep.html  

[20] Belli, F., Linschulte, M., Event-Driven Modeling and Testing of Real-Time Web Services, 
J. of Service Oriented Computing and Applications, Vol. 4, No. 1, pp. 3-15, Springer, 
Heidelberg, 2010  

[21] Mohammad, M., Alagar, V., A component-based development process for trustworthy 
systems, J. of Software Maintenance and Evolution: Research and Practice, Wiley 
InterScience, published online: 8 JUN 2010, DOI: 10.1002/smr.472. Available from 
http://onlinelibrary.wiley.com/doi/10.1002/smr.472/pdf  

[22] IEEE, International Software Testing Qualifications Board, Glossary of terms used in 
Software Testing, 2006  

[23] F. Saglietti, Jung, M., Classification, Analysis and Detection of Interface Inconsistencies 
in Safety-Relevant Component-based Systems, Probabilistic Safety Assessment and 
Management, Springer, Heidelberg, 2004  

[24] Freedman, R.S., Testability of Software Components, IEEE Transactions on Software 
Engineering, Vol. 17, No. 6, 1991  

[25] Gallagher, L., Offutt, J., Cincotta, A., Integration Testing of Object-oriented Components 
using Finite State Machines, Software Testing, Verification and Reliability, Vol. 16, 2006  

[26] Cheung, R.C., A User-Oriented Software Reliability Model, IEEE Transactions on 
Software Engineering, Vol. SE-6, No. 2, 1980  

[27] Littlewood, B. A software reliability model for modular program structure, IEEE Trans. on 
Reliability (Special Issue on Software Reliability), Vol. R-28, No. 3, 1979  

[28] Michael, C., Reusing Tests of Reusable Software Components, Proc. 12th Annual 
Conference on Computer Assurance (COMPASS '97), IEEE Press, Los Alamos, 1997  

[29] Saglietti, F., Evaluation of Pre-Developed Software for Usage in Safety-Critical 
Systems, Proc. 26th EUROMICRO Conference on Software Process and Product 
Improvement, IEEE, 2000  

[30] Gao, J. Tsao, J., Ye, W., “Testing and Quality Assurance for Component-Based 
Software”, Artech House Publishers, Norwood, 2003  

[31] Beizer, C., Software Testing Techniques, Van Nostrand Reinhold, New York 1990  

[32] Beydeda, S., Gruhn, V., Testing Commercial-off-the-Shelf Components and Systems, 
Springer, Heidelberg, 2005  

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=84A18B532CF53C4AEA6F64AA6038BFEF?doi=10.1.1.39.704&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=84A18B532CF53C4AEA6F64AA6038BFEF?doi=10.1.1.39.704&rep=rep1&type=pdf
http://www.ima.umn.edu/~arnold/disasters/ariane5rep.html
http://onlinelibrary.wiley.com/doi/10.1002/smr.472/pdf


 – 54 – PAS 62814 © IEC:2012(E) 

[33] Edwards, S.H. Black-Box Testing Using Flowgraphs: An Experimental Assessment of 
Effectiveness and Automation Potential, Journal of Software Testing, Verification, and 
Reliability, Vol. 10, No. 4, December 2000  

[34] Gao, J., Espinoza, R. Jingsha H., “Testing Coverage Analysis for Software Component 
Validation”, Proceedings of 29th Annual International Computer Software and 
Applications Conference (COMPSAC 2005), Edinburgh, Scotland, 2005, IEEE Computer 
Society Press, 26-28   

[35] Councill, W.T. Third-Party Testing and the Quality of Software Components, IEEE 
Software, Vol. 16, No. 4, pp. 55-57, 1999  

[36] Chavez, A. Tornabene, C., Wiederhold, G., Software Component Licensing: A Primer, 
IEEE Software, pp. 60-69, 1998  

Additional non-cited references 

IEEE 1517:1999, Standard for Information Technology – Software Life Cycle Process – 
Reuse Processes 

IEC/TS 62239:2008, Process management for avionics – Preparation of an electronic 
components management plan 

ISO 9000:2005, Quality management systems – Fundamentals and vocabulary 

Binder, R.V., Testing Object-Oriented SystemsC., Addison-Wesley, Boston, 2000 

Frakes, W.B., Isoda, S., Success Factors of Systematic ReUse, IEEE Software, V, Vol-
ume 11, Issue 5, pp. 14-19, 1994. Available from 
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=311045 

GoldPractices Group (DACS), Assess Reuse Risks and Costs, 2011. Available from 
http://goldpractice.thedacs.com/practices/arrc/ 

Latour, L., Wheller, T., Frakes, W.B., Descriptive and Predictive Aspects of the 3Cs 
Model SETA1 Working Group Summary, ACM SIGAda Ada Letters, Volume XI, Issue 3, 
pp. 9-17, ACM, 1991. Available from 
http://dl.acm.org/ft_gateway.cfm?id=112632&type=pdf& 
CFID=82471839&CFTOKEN=73225729  

Lynex, A.P., Layzell, J., “Understanding Resistance to Software Reuse,” in Proceedings 
of 1997 Software Technology and Engineering Practice (STEP97), IEEE Computer 
Society, IEEE Press, New York, 1997 

Griss, M., Wosser, M., Making Reuse Work at Hewlett-Packard, IEEE Software, Vol. 12, 
No. 1, pp. 105-107, 1995. 

Morisio, M., Ezran, M., Tully, C., Success and Failure Factors in Software Reuse, IEEE 
Transactions on Software Engineering, vol. 28, No. 4, 2002 

Prieto-Díaz, R., Status Report: Software Reusability,  IEEE Software, Volume 10,  Issue 
3, pp. 61-66, IEEE Software, 1993, 
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=210605 

Ramamurthy, C.V., Garg, V., Prakash, A., Support for reusability in Genesis, IEEE TSE 
14/8,1988, pp. 1145–1154 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

javascript:doHTTPGetLayer('PrintDetail','41964');
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=311045
http://goldpractice.thedacs.com/practices/arrc/
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=210605


PAS 62814 © IEC:2012(E) – 55 – 

Rehman, M., Jabeen, F., Bertolino, A. Polini, A., Software Component Integration 
Testing: A Survey, Journal of Software Testing, Verification, and Reliability, 2006 

Quella, F., Belli, F., Reuse of components and products – 'qualified as good as new',  
Handbook of Sustainable Engineering,  Springer, Chapter 42, to appear in 2012 

Schmidt, D.C., Why Software Reuse has Failed and How to Make It Work for You, 
Magazine C++ Report, Vol. 11, No. 1, ACM - SIGS Publications Group. Available from 
http://www.cse.wustl.edu/~schmidt/reuse-lessons.html, 1999 

Tortorella, M., Reuse, Reliability, and Safety, Proceedings of ICSR 2006, pp. 1-5, 
2006.Available from http://www.favaro.net/john/RESAFE2006/papers/Tortorella.pdf 

 

_____________ 

 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

http://www.cse.wustl.edu/~schmidt/reuse-lessons.html
http://www.favaro.net/john/RESAFE2006/papers/Tortorella.pdf


C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

INTERNATIONAL 
ELECTROTECHNICAL 
COMMISSION 
 
3, rue de Varembé 
PO Box 131 
CH-1211 Geneva 20 
Switzerland 
 
Tel: + 41 22 919 02 11 
Fax: + 41 22 919 03 00 
info@iec.ch 
www.iec.ch 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.


	CONTENTS
	\376\377�F�O�R�E�W�O�R�D
	\376\377�I�N�T�R�O�D�U�C�T�I�O�N
	\376\377�1� �S�c�o�p�e
	\376\377�2� �N�o�r�m�a�t�i�v�e� �r�e�f�e�r�e�n�c�e�s
	\376\377�3� �T�e�r�m�s�,� �d�e�f�i�n�i�t�i�o�n�s� �a�n�d� �a�b�b�r�e�v�i�a�t�i�o�n�s
	\376\377�3�.�1� �T�e�r�m�s� �r�e�l�a�t�e�d� �t�o� �s�o�f�t�w�a�r�e� �e�n�g�i�n�e�e�r�i�n�g
	\376\377�3�.�2� �T�e�r�m�s� �r�e�l�a�t�e�d� �t�o� �s�o�f�t�w�a�r�e� �d�e�p�e�n�d�a�b�i�l�i�t�y
	\376\377�3�.�3� �T�e�r�m�s� �r�e�l�a�t�e�d� �t�o� �s�o�f�t�w�a�r�e� �r�e�u�s�e
	\376\377�3�.�4� �G�e�n�e�r�a�l� �t�e�r�m�s
	\376\377�3�.�5� �A�b�b�r�e�v�i�a�t�i�o�n�s

	\376\377�4� �D�e�p�e�n�d�a�b�i�l�i�t�y� �o�f� �s�o�f�t�w�a�r�e� �r�e�u�s�e� �m�e�t�h�o�d�o�l�o�g�y�  �� �R�e�u�s�a�b�i�l�i�t�y�-�d�r�i�v�e�n� �s�o�f�t�w�a�r�e� �d�e�v�e�l�o�p�m�e�n�t
	\376\377�4�.�1� �G�e�n�e�r�a�l
	\376\377�4�.�2� �D�e�p�e�n�d�a�b�i�l�i�t�y� �m�e�t�h�o�d�s� �f�o�r� �r�e�u�s�e
	\376\377�4�.�3� �D�e�p�e�n�d�a�b�i�l�i�t�y�-�r�e�l�a�t�e�d� �o�b�j�e�c�t�i�v�e�s� �o�f� �s�o�f�t�w�a�r�e� �r�e�u�s�e� 
	\376\377�4�.�4� �I�n�g�r�e�d�i�e�n�t�s� �o�f� �s�o�f�t�w�a�r�e� �r�e�u�s�e� �a�n�d� �h�y�p�o�t�h�e�s�e�s� �f�o�r� �r�e�u�s�e� �d�e�p�e�n�d�a�b�i�l�i�t�y

	\376\377�5� �S�o�f�t�w�a�r�e� �r�e�u�s�e� �d�e�p�e�n�d�a�b�i�l�i�t�y� �m�e�t�h�o�d�o�l�o�g�y� �a�p�p�l�i�c�a�t�i�o�n�s
	\376\377�5�.�1� �A�p�p�l�i�c�a�t�i�o�n� �a�s�p�e�c�t�s� �a�n�d� �o�r�g�a�n�i�z�a�t�i�o�n� �o�f� �d�e�p�e�n�d�a�b�l�e� �s�o�f�t�w�a�r�e� �r�e�u�s�e
	\376\377�5�.�1�.�1� �G�e�n�e�r�a�l
	\376\377�5�.�1�.�2� �P�r�e�-�s�t�o�r�e� �c�h�a�r�a�c�t�e�r�i�s�t�i�c�s� �o�f� �r�e�u�s�a�b�i�l�i�t�y
	\376\377�5�.�1�.�3� �P�r�e�-�u�s�e� �c�h�a�r�a�c�t�e�r�i�s�t�i�c�s� �o�f� �r�e�u�s�a�b�i�l�i�t�y
	\376\377�5�.�1�.�4� �B�u�i�l�d�-�f�o�r�-�r�e�u�s�e
	\376\377�5�.�1�.�5� �B�u�i�l�d�-�b�y�-�r�e�u�s�e
	\376\377�5�.�1�.�6� �C�o�u�p�l�i�n�g�  ˝�b�u�i�l�d�-�f�o�r�-�r�e�u�s�e ˛� �a�n�d�  ˝�b�u�i�l�d�-�b�y�-�r�e�u�s�e ˛

	\376\377�5�.�2� �V�a�l�i�d�a�t�i�o�n�,� �r�e�-�v�a�l�i�d�a�t�i�o�n� �a�n�d� �r�e�l�i�a�b�i�l�i�t�y� �o�f� �s�o�f�t�w�a�r�e� �r�e�u�s�e
	\376\377�5�.�3� �N�a�\357�v�e� �a�s�s�u�m�p�t�i�o�n�s� �a�n�d� �r�u�l�e�s� �f�o�r� �i�m�p�r�o�v�i�n�g� �s�o�f�t�w�a�r�e� �r�e�u�s�e� �d�e�p�e�n�d�a�b�i�l�i�t�y
	\376\377�5�.�4� �D�e�p�e�n�d�a�b�i�l�i�t�y� �a�n�d� �r�e�u�s�e� �a�s�p�e�c�t�s� �o�f� �s�o�f�t�w�a�r�e�/�h�a�r�d�w�a�r�e� �i�n�t�e�r�a�c�t�i�o�n
	\376\377�5�.�4�.�1� �G�e�n�e�r�a�l
	\376\377�5�.�4�.�2� �R�e�u�s�e� �o�f� �s�o�f�t�w�a�r�e� �w�i�t�h� �a�n� �u�p�g�r�a�d�e� �/� �r�e�m�a�n�u�f�a�c�t�u�r�e�d� �h�a�r�d�w�a�r�e
	\376\377�5�.�4�.�3� �L�i�m�i�t�a�t�i�o�n�s� �o�f� �h�a�r�d�w�a�r�e
	\376\377�5�.�4�.�4� �L�i�m�i�t�a�t�i�o�n�s� �d�u�e� �t�o� �i�n�c�o�m�p�a�t�i�b�i�l�i�t�i�e�s
	\376\377�5�.�4�.�5� �D�e�p�e�n�d�a�b�i�l�i�t�y�,� �e�n�e�r�g�y� �c�o�n�s�u�m�p�t�i�o�n� �a�n�d� �e�c�o�l�o�g�y


	\376\377�6� �S�o�f�t�w�a�r�e� �r�e�u�s�e� �a�s�s�u�r�a�n�c�e
	\376\377�6�.�1� �G�e�n�e�r�a�l
	\376\377�6�.�2� �B�u�i�l�d� �f�o�r� �r�e�u�s�e�  �� �V�a�l�i�d�a�t�i�o�n� �a�n�d� �q�u�a�l�i�f�i�c�a�t�i�o�n� �o�f� �c�o�m�p�o�n�e�n�t�s� �t�o� �b�e� �r�e�u�s�e�d
	\376\377�6�.�2�.�1� �G�e�n�e�r�a�l
	\376\377�6�.�2�.�2� �V�a�l�i�d�a�t�i�o�n� �a�n�d� �q�u�a�l�i�f�i�c�a�t�i�o�n
	\376\377�6�.�2�.�3� �A�s�s�e�s�s�m�e�n�t� �o�f� �q�u�a�n�t�i�f�i�a�b�l�e� �q�u�a�l�i�t�y� �t�a�r�g�e�t�s

	\376\377�6�.�3� �B�u�i�l�d� �b�y� �r�e�u�s�e�  �� �V�a�l�i�d�a�t�i�o�n� �a�n�d� �q�u�a�l�i�f�i�c�a�t�i�o�n� �o�f� �t�h�e� �r�e�c�e�i�v�i�n�g� �s�y�s�t�e�m
	\376\377�6�.�3�.�1� �G�e�n�e�r�a�l
	\376\377�6�.�3�.�2� �V�a�l�i�d�a�t�i�o�n� �a�n�d� �q�u�a�l�i�f�i�c�a�t�i�o�n
	\376\377�6�.�3�.�3� �A�s�s�e�s�s�m�e�n�t� �o�f� �q�u�a�n�t�i�f�i�a�b�l�e� �q�u�a�l�i�t�y� �t�a�r�g�e�t�s


	\376\377�7� �W�a�r�r�a�n�t�y� �a�n�d� �d�o�c�u�m�e�n�t�a�t�i�o�n
	\376\377�7�.�1� �G�e�n�e�r�a�l
	\376\377�7�.�2� �L�i�f�e� �c�y�c�l�e�,� �c�o�n�t�e�x�t�u�a�l� �c�r�i�t�i�c�a�l�i�t�y�,� �w�a�r�r�a�n�t�y� �p�e�r�i�o�d
	\376\377�7�.�3� �P�r�o�d�u�c�t� �d�o�c�u�m�e�n�t�a�t�i�o�n
	\376\377�7�.�4� �P�r�o�d�u�c�t� �s�a�f�e�t�y� �a�n�d� �c�o�n�t�r�o�l
	\376\377�7�.�5� �L�e�g�a�l� �a�s�p�e�c�t�s� 
	\376\377�7�.�5�.�1� �G�e�n�e�r�a�l
	\376\377�7�.�5�.�2� �C�o�n�t�r�a�c�t�u�a�l� �i�s�s�u�e�s
	\376\377�7�.�5�.�3� �P�r�o�d�u�c�t� �l�i�a�b�i�l�i�t�y


	Annex A (informative) General remarks on software reuse
	Annex B (informative) Qualification and integration of reusable software components
	Annex C (informative) Testing and integration of reusable software components \205 Issues for industrial best practice
	Annex D (informative) Example of software pre-use
	Annex E (informative) Influence of reused software to hardware components and products
	\376\377�B�i�b�l�i�o�g�r�a�p�h�y
	Figures
	\376\377�F�i�g�u�r�e� �1�  �� �A�p�p�r�o�a�c�h�e�s� �t�o� �s�o�f�t�w�a�r�e� �r�e�u�s�e� �a�n�d� �i�t�s� �e�l�e�m�e�n�t�s
	\376\377�F�i�g�u�r�e� �2�  �� �E�l�e�m�e�n�t�s� �o�f� �t�h�e� �r�e�u�s�e� �p�r�o�c�e�s�s
	\376\377�F�i�g�u�r�e� �3�  �� �I�n�t�e�g�r�a�t�i�o�n� �o�f� �t�h�e� �r�e�u�s�a�b�l�e� �c�o�m�p�o�n�e�n�t� 
	\376\377�F�i�g�u�r�e� �4�  �� �C�h�a�r�a�c�t�e�r�i�s�t�i�c�s� �o�f� �r�e�u�s�a�b�i�l�i�t�y
	\376\377�F�i�g�u�r�e� �5�  �� �B�u�i�l�d�-�f�o�r�-�r�e�u�s�e� �f�r�a�m�e�w�o�r�k
	\376\377�F�i�g�u�r�e� �6�  �� �B�u�i�l�d�-�b�y�-�r�e�u�s�e� �f�r�a�m�e�w�o�r�k
	\376\377�F�i�g�u�r�e� �7�  �� �C�o�m�b�i�n�i�n�g�  ˝�b�u�i�l�d�-�f�o�r�-�r�e�u�s�e ˛� �a�n�d�  ˝�b�u�i�l�d�-�b�y�-�r�e�u�s�e ˛
	\376\377�F�i�g�u�r�e� �A�.�1�  �� �S�e�r�v�i�c�e�-�o�r�i�e�n�t�e�d� �a�r�c�h�i�t�e�c�t�u�r�e
	\376\377�F�i�g�u�r�e� �C�.�1�  �� �A� �t�e�s�t� �p�r�o�c�e�s�s� �i�n� �v�e�n�d�o�r�-�o�r�i�e�n�t�e�d� �c�o�m�p�o�n�e�n�t� �t�e�s�t�i�n�g� �[�3�0�]
	\376\377�F�i�g�u�r�e� �C�.�2�  �� �A� �v�a�l�i�d�a�t�i�o�n� �p�r�o�c�e�s�s� �f�o�r� �c�o�m�p�l�e�t�e�l�y� �r�e�u�s�e�d� �c�o�m�p�o�n�e�n�t�s� �[�3�0�]
	\376\377�F�i�g�u�r�e� �C�.�3�  �� �A� �V�a�l�i�d�a�t�i�o�n� �p�r�o�c�e�s�s� �f�o�r� �a�d�a�p�t�e�d� �a�n�d� �c�u�s�t�o�m�i�z�e�d� �c�o�m�p�o�n�e�n�t�s
	\376\377�F�i�g�u�r�e� �C�.�4�  �� �M�a�t�u�r�i�t�y� �l�e�v�e�l�s� �f�o�r� �a� �c�o�m�p�o�n�e�n�t� �t�e�s�t�i�n�g� �p�r�o�c�e�s�s
	\376\377�F�i�g�u�r�e� �D�.�1�  �� �E�x�a�m�p�l�e� �o�f� �a� �s�u�p�e�r�v�i�s�i�o�n� �t�a�s�k

	Tables
	\376\377�T�a�b�l�e� �1�  �� �S�u�m�m�a�r�y� �o�f� �r�e�u�s�e� �c�l�a�s�s�i�f�i�c�a�t�i�o�n� 
	\376\377�T�a�b�l�e� �C�.�1�  �� �T�e�s�t�i�n�g� �i�s�s�u�e�s� �o�f� �r�e�u�s�a�b�l�e� �s�o�f�t�w�a�r�e� �c�o�m�p�o�n�e�n�t�s
	\376\377�T�a�b�l�e� �D�.�1�  �� �O�p�e�r�a�t�i�n�g� �e�x�p�e�r�i�e�n�c�e�,� �m�o�n�o�l�i�t�h�i�c� �v�i�e�w
	\376\377�T�a�b�l�e� �D�.�2�  �� �O�p�e�r�a�t�i�n�g� �e�x�p�e�r�i�e�n�c�e�,� �u�s�e� �o�f� �t�h�e� �i�n�d�i�v�i�d�u�a�l� �p�a�t�h�s
	\376\377�T�a�b�l�e� �D�.�3�  �� �P�r�o�d�u�c�t�i�o�n� �d�e�m�a�n�d�s�,� �u�s�e� �o�f� �t�h�e� �i�n�d�i�v�i�d�u�a�l� �p�a�t�h�s�;�t�h�e� �v�a�l�u�e�s� �o�f� �p�i� �d�i�d� �n�o�t� �c�h�a�n�g�e


