IEC 62528:2007(E) |EEE Std. 1500-2005

& IEEE IEC 62528

Edition 1.0 2007-11

INTERNATIONAL IEEE 1500™
STANDARD

Standard Testability Method for Embedded Core-based Integrated Circuits

‘NYIING ATddNS YO0S9 A9 A3 11ddNS “ATNO NOILVOOTSIHL 1V ISN TVYNYILN| ¥OS

FHOTVYONVYE/IHON VY - ‘poHWIT NOOIN OL A3ISN3DIT

THIS PUBLICATION IS COPYRIGHT PROTECTED
Copyright © 2007 IEEE

All rights reserved. IEEE is a registered trademark in the U.S. Patent & Trademark Office, owned by the Institute of
Electrical and Electronics Engineers, Inc.

Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from the IEC Central Office.

Any questions about IEEE copyright should be addressed to the IEEE. Enquiries about obtaining additional rights
to this publication and other information requests should be addressed to the IEC or your local IEC member National
Committee.

IEC Central Office The Institute of Electrical and Electronics Engineers, Inc
3, rue de Varembé 3 Park Avenue

CH-1211 Geneva 20 US-New York, NY10016-5997

Switzerland USA

Email: inmail@iec.ch Email: stds-info@ieee.org

Web: www.iec.ch Web: www.ieee.org

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigenda or an amendment might have been published.

= Catalogue of IEC publications: www.iec.ch/searchpub
The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,...).
It also gives information on projects, withdrawn and replaced publications.

" |EC Just Published: www.iec.ch/online_news/justpub
Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available
on-line and also by email.

= Electropedia: www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions
in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical
Vocabulary online.

® Customer Service Centre: www.iec.ch/webstore/custserv

If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service
Centre FAQ or contact us:

Email: csc@iec.ch

Tel.: +41 22 919 02 11

Fax: +41 22 919 03 00

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

mailto:inmail@iec.ch
mailto:stds-info@ieee.org
http://www.iec.ch/
http://www.iec.ch/searchpub
http://www.iec.ch/online_news/justpub
http://www.electropedia.org/
http://www.iec.ch/webstore/custserv
mailto:csc@iec.ch

158 ¢IEEE IEC 62528

Edition 1.0 2007-11

INTERNATIONAL IEEE 1500™
STANDARD

Standard testability method for embedded core-based integrated circuits

INTERNATIONAL
ELECTROTECHNICAL

COMMISSION PRICE CODE X F

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

ICS 31.220 ISBN 2-8318-9481-6

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

—2- IEC 62528:2007(E)
IEEE 1500-2005(E)

CONTENTS
FOREWORD ..ottt ettt et ettt h bbbt be bt bt e bt b e sb e bt sbesaeebesbeseenes 4
02 D s (T L1 15 (o) NSRS URS 7
Lo OVRIVICW ..ttt ettt ettt et e b et b et s bt e bt e bt ea e bt ea e e bt e s e s bt emt e bt eb b e s bt entesbeebeenbesaeenaenaeen 9
L B o) o T ORI 10
1.2 PUIPOSE.eeeeieeiiieeite ettt ettt ettt et et e st e bt et e sabe e st eesbaeeabe e st e ssbe e s b e e esee e e b e e beeenteenbeennaeenbaeenbeenreeteas 10
2. NOIMALIVE TETRIEIICES ...uvieiiieiiietiiiie ettt et ete et te et e ete e st e ebeesteeeebeesseesseeesseesssessseeseassseaseessseesseeseesnns 10
3. Definitions, acronyms, and abbreVIationS..........cccueivueeriierieriieeriiesieereeseesreeseesaeestaeeseesseessressseesseesnns 11
3.1 DEIINIIONS ..outeiiiiieiieiteeitet ettt ettt s b et b et e bt et e bt et e b et e bbb bt e e nae 11
3.2 Acronyms and abDIEVIATIONSecveeriierieiiieriieeieeriie et esieesereesteesereebeeseeessbeessseesseenseesssesnseenses 16
4. Structure of this StANAATAc.coiiiiiiiiiiiii ettt 17
4.1 SPCCIICALIONS....ueevieeieieeieteeitete et et et ete e et esbeest e seeseesaeeseessesseessesseessenseeseansesseansesssesseensesseensens 17
4.2 DESCIIPLIONS ..euveuierrieeieteetieteestetesttetesseessessesseessessaessesseansesseessesseassessesssensesssensesssensesseensesssensessees 18
5. Introduction and motivations of two compliance 1eVeIS.........ccccvevuiiiiieiiieriieiiieiece e 18
6. Overview of the IEEE 1500 scalable hardware architecturecccoceveveieinencnieniciecncnceene 19
6.1 Wrapper Serial POt (WSP) ...c.ooiiiieie ettt sttt ettt seeaesbeessenseennesneens 19
6.2 Wrapper parallel port (WPP)ooiiiieiee ettt eenens 19
6.3 Wrapper instruction register (WIR)cooiiiiiiiiieieieceee e 20
6.4 Wrapper bypass re@iSter (WBY)....oooui ittt ene e 20
6.5 Wrapper boundary register (WBR).......coiviiiriiiiiiiiiirccctcce ettt 20
7. WIR INSTIUCHIONS ...t eiettece ettt ettt ettt et a et e e b et e et e em e e et e st e saeeaeemeeese e e e et e enee s e nbeeneenseeneeneesees 21
7 S U 15 (o 1o A Uo7 5 e USRS PRSPt 21
7.2 Response of the wrapper circuitry to iNStrUCTIONScc.ereerierieiiintieiese ettt 13
7.3 Wrapper instruction rules and naming CONVENTIONcceereeruirierierienieniieiene et eee e 23
7.4 WS BYPASS INSEIUCTION ..ottt sttt ettt b ste b e e e ene 24
7.5 WS _EXTEST INSIUCTON ..eotieiiitiiieitieiieteet ettt ettt sttt ettt sbeestesbeeee e ene 25
7.6 WP _EXTEST INSIIUCHION 1.euveiiiieiieriieeiieieeieesteeteesteeseteeteeteesseessaessseesseenssesnseesssessseenseesssensnes 27
7.7 WX EXTEST INSIUCHION. ..c.tteittietieiieitieteesiiesteesitestteeteesteesebeesseessaessseesseesssesnseesssessseesseesssesnses 29
7.8 WS SAFE INStIUCHON.utiiitiiiiieeiieiieciteteeiie st ete st et esaeesebeebeessaesnsaessaessseeseesssessseenseenseennses 30
7.9 WS PRELOAD INStIUCHON ...eutieiieiieeiieieesiieeieesiieseteesteesitesebeeteessaesaseesseenssesnseesssesssessessseennnes 32
7.10 WP _PRELOAD INSIIUCHONcviitiiieitieietietietieeestesteesesieesesseessessesseessessesssessesssessessssssessesssenns 32
711 WS CLAMP INSEIUCHION. ..c.uiiuieiiitieteiteetetietieteeeetesteesae e eseesseesaessesseessesseessessesssessesssessessesssenns 34
7.12° WS INTEST RING INStIUCHONccviiiertiitieieeiietietietesieeeesteeseesessaesseeseessesseesaessesssessessaessensenes 36
7.13 WS INTEST SCAN INStIUCHIONcuviivrentitieiiesiietenteeetesaeseessesseessesseessessesssessesseessessesssessesssessenns 37
714 WX INTEST INSEIUCHOMN ...ttt ettt sttt ettt ettt sttt st et es e ebeebeebe st ebenbe s et enseneens 40
8. Wrapper serial POTt (WSP) ...oouiiiiiiiieeer ettt ettt et 41
8.1 WSP LEIIMUNALS ...ecuviiiieeiiieii ettt ettt e te et teeetbeeate e s taeesbeeabeessbaesseeseessseenseenseesassannseensens 42
9. Wrapper parallel oIt (WPP)ccooiiiiiieiieieieee ettt ettt ssanseeaaeaeees 43
0.1 WPP LEIMUNALS ...ecvvivieiiiiiiieie ettt ettt ettt e st e e s se e b e saessesteessessessaessessaesseessensenssansenns 43
10. Wrapper instruction register (WIR)ccoiiriiiininiieeicieeene ettt 43
10.1 WIR configuration and DR SEIECION.cciriiiiiiiiiiieecieeeee e 43
LO.2 WIR ESIZI ..ottt ettt ettt ettt ettt e e e st e s e s st eneesneens e seensenseeneesnsenseeneensenns 44
10.3 WIR OPCTALION. ...ttt ettt ettt e sttt ettt e e e et et e seen e ese e e esseeneesseeneesseenseseeneesens 47
11. Wrapper bypass 1€ZISter (WBY)...o.eiiiiiiieiieieee ettt st 49
11.1 WBY register configuration and SEleCtion............ccoceeriiiiiieniiiinieieeeeecee e 49

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) ~3-
IEEE 1500-2005(E)

T1.2 WBY dESIZN....iiiniiiiitiieeieeit ettt ettt ettt a e st b e st eb et ease e e 50
11.3 WBY OPCIATION ...ttt ettt ettt e e e et esaeeseete e et e eeeseenteeneeneeeneeneesneeneensesneans 51
12. Wrapper boundary re@iSter (WBR).......occuiiiiiiiieiiecectee ettt sve st s eae e e 52
12.1 WBR Structure and OPETAtIONcccueereveeiieiiierieeieeteesteeteesteessaesseessaesssessseesseesssessseesseessseenses 54
12.2 'WBR cell structure and OPETration..........cccecueeieueeriierieiiieeriienieesieeseesreeseesaeessreeseesseesssesssessseesnne 55
12.3 WBR OPEIAtiON EVENLS ...cuviiiieiieeieeiiiesieeteesieeeeteeteestteeteeteesssessseesseessseesseesseessseesessssessesnseessns 56
12,4 WBR OPEIation MOAESeecuieriieeieeiiierieeteesieeeete et estteeteeteesaeeteesseeseseesseenseessseesseesssesnsessseennn 59
12.5 Parallel access t0 the WBRcoiiiiiiii et 61
12.6 WBR CEII NAMING......ccvieiieiieiieiiiieie ettt ettt e ste et saeesaesteesaesbaessessesssesseessessesseessessesseens 63
12,7 WBR CEIl @XAMPIESoievieiiieiieiiiieie sttt ettt ste sttt e bestaesbeesaessesseesseeseessesseesnessensnens 64
12.8 TEEE 1500 WBR €XaMPIEccuiiiiiiieiiciieiieieie ettt ettt st ste e sveesae e esaesseessessessnessessnensens 68
L3, WTAPPET STALES ... cuteeniieieiieie ettt ettt sttt b e sttt sb et et e bt e set e e bt e ebeesateeeatesbeesbeeembeenbeenas 71
13.1 Wrapper Disabled and Wrapper Enabled Statesccocoveeriiiieienieiinieere e 71
14, WSP tImMING QIAGIAMN.......eccviitieiiitiiieseeieteet ettt eb e et eaeseesaesseesbesteesseseessesseessessesssessesssessenssessesseensenses 72
T4.1 SPECITICALIONSvveiieiieiieeieteeeeest et e ettt et e te et e sseeseesbesseesbesssessesseessessaesseseeseesseassesseensessesssens 72
14.2 DESCIIPLION...c.uiiiieiieiietietiesteetesteetteteseestesseesbesseesseeseessessesseesseassessesssessasssessenssessesssessessesssessesssens 73
14.3 Synchronous €SEt tIMINE.......c.eeververierierieriesteeeeteereeseseestesseestesseessessessaessesseessesseessessesssessessens 77
15. WSP configurations for IEEE 1500 SyStem ChiPsccccectveririnieneninieieieeeinenie st 78
15.1 Connecting MUItiPle WSPSocuiiiiiieeriie ettt see e 78
16, Plug-and-play (PNP)......c.ccciiiiiiiiii ettt sttt et sb e saesbesaeessesbeessesseessensaensenseenns 81
16.1 Background and definition...........cceecieriiriiierieieieeieteee ettt ere e sreseesaesreebe e e sseesnens 81
16.2 PnP aspects of standard INStUCHONSccveruieierierieeietesteeieste st estesee e e e s eseeseeseesaesseeseesaens 82
16.3 PnP 1limitations 0N PrOtOCOLSc.ccviiciiriiiiicierieeterteeteie et et etesteete s e esaesbeeteesseeseesaesaeesnessesnsens 83
16.4 Non-PnP in IEEE Std 1500........ccooiiiiiiiiiiieeiene ettt ettt 83
17. Compliance definitions common to wrapped and unwrapped COTesocvrirrierirriererreerieeieeeeeenes 83
17.1 GeNETAL TULES ...ttt st s h ettt et e st e es e eesneenaesseenaeeneensesneans 83
17.2 Per-terminal TUIES.......ccuoiiiieiec ettt ettt ettt seeeneesae e nteenens 85
17.3 Test pattern information TUIEScccerieiiit ittt eee e seeeneens 86
18. Compliance definitions Specific to UNWIAPPEA COTESuirruirrirrireriieriierieeieenee e ereeieeseeesreenseeneee e 89
I8.1 GONEIAL TULES ..ttt sttt ae bbbttt e et e st eseebeeseebeebeabenaens 89
18.2 Per-terMinNal TUIES ... cueieuieiieiieiceteetese ettt ettt ettt et e eae b beneens 90
18.3 Additional test infOrmation TULESc..cceeieuiriiiiiirerereeee ettt 90
19. Compliance definitions specific t0 WIapped COTEScccviririiieieirinenienieieieienieste ettt 91
19,1 GENEIAL TUIES ...ttt ettt e et e st e et e e e et e s e eseensesseensessaensesneensenseans 91
19.2 Per-terminal TULES.......ccuiiiieiieieeceee ettt sttt et e te st e saesseeaesneenseeneens 92
19.3 Wrapper protocol information TUIEScccceirereniiiiiieieinenenecreeeeeee e 92
20. TEEE 1500 @PPIiCAtION ..cuviuteiiiieiietietiittetestes ettt ettt ettt et be st e et e et eaeebeseesaenean 93
20.1 CTL (IEEE P1450.6) OVETVIEW ...ccuiiuiieienieiieieiietiettste sttt sttt ettt ettt st sttt eseesesnesaens 93
20.2 TEEE 1500 @XAMPIES.....ccviirieriirieieiietietieteeteeseeteestesteesaesseessessesssesseessessesssessesssessessesssesseessessenss 94
Annex A (normative) Bubble diagram definition............cocevvieriiiieniiiiieniieeeieeeee e 110
Annex B (informative) WBR cell @Xamples........ocooiiriieiinieiinieieseeece e 112
Annex C (informative) Relationship of IEEE Std 1500 to IEEE Std 1149.1coovveiiiiiieieieeieeee 121
Annex D (informative) List Of PartiCiPants..........coceereerieriiiierierieeie ettt st 124

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

1

4)

5)

6)

_4- IEC 62528:2007(E)
IEEE 1500-2005(E)

INTERNATIONAL ELECTROTECHNICAL COMMISSION

STANDARD TESTABILITY METHOD
FOR EMBEDDED CORE-BASED INTEGRATED CIRCUITS

FOREWORD

The International Electrotechnical Commission (IEC) is a worldwide organization for standardization
comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to
promote international co-operation on all questions concerning standardization in the electrical and
electronic fields. To this end and in addition to other activities, IEC publishes International Standards,
Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter
referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National
Committee interested in the subject dealt with may participate in this preparatory work. International,
governmental and non-governmental organizations liaising with the IEC also participate in this preparation.
IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with
conditions determined by agreement between the two organizations.

The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an
international consensus of opinion on the relevant subjects since each technical committee has
representation from all interested IEC National Committees.

IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.

In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly
indicated in the latter.

IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with an IEC Publication.

Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC/IEEE 62528 has been processed through Technical Committee
93: Design automation.

The text of this standard is based on the following documents:

IEEE Std FDIS Report on voting
1500(2005) 93/250/FDIS 93/261/RVD

Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.

The committee has decided that the contents of this publication will remain unchanged until
the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in
the data related to the specific publication. At this date, the publication will be

reconfirmed,

withdrawn,

replaced by a revised edition, or
amended.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

IEC 62528:2007(E) —5-
IEEE 1500-2005(E)

IEC/IEEE Dual Logo International Standards

This Dual Logo International Standard is the result of an agreement between the IEC and the Institute of
Electrical and Electronics Engineers, Inc. (IEEE). The original IEEE Standard was submitted to the IEC for
consideration under the agreement, and the resulting IEC/IEEE Dual Logo International Standard has been
published in accordance with the ISO/IEC Directives.

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating
Committees of the IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards
through a consensus development process, approved by the American National Standards Institute, which
brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers
are not necessarily members of the Institute and serve without compensation. While the IEEE administers the
process and establishes rules to promote fairness in the consensus development process, the IEEE does not
independently evaluate, test, or verify the accuracy of any of the information contained in its standards.

Use of an IEC/IEEE Dual Logo International Standard is wholly voluntary. The IEC and IEEE disclaim liability for
any personal injury, property or other damage, of any nature whatsoever, whether special, indirect,
consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance upon
this, or any other IEC or IEEE Standard document.

The IEC and IEEE do not warrant or represent the accuracy or content of the material contained herein, and
expressly disclaim any express or implied warranty, including any implied warranty of merchantability or fitness
for a specific purpose, or that the use of the material contained herein is free from patent infringement.
IEC/IEEE Dual Logo International Standards documents are supplied “AS IS”.

The existence of an IEC/IEEE Dual Logo International Standard does not imply that there are no other ways to
produce, test, measure, purchase, market, or provide other goods and services related to the scope of the
IEC/IEEE Dual Logo International Standard. Furthermore, the viewpoint expressed at the time a standard is
approved and issued is subject to change brought about through developments in the state of the art and
comments received from users of the standard.

Every IEEE Standard is subjected to review at least every five years for revision or reaffirmation. When a
document is more than five years old and has not been reaffirmed, it is reasonable to conclude that its contents,
although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to
determine that they have the latest edition of any IEEE Standard.

In publishing and making this document available, the IEC and IEEE are not suggesting or rendering
professional or other services for, or on behalf of, any person or entity. Neither the IEC nor IEEE is undertaking
to perform any duty owed by any other person or entity to another. Any person utilizing this, and any other
IEC/IEEE Dual Logo International Standards or IEEE Standards document, should rely upon the advice of a
competent professional in determining the exercise of reasonable care in any given circumstances.

Interpretations — Occasionally questions may arise regarding the meaning of portions of standards as they relate
to specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will
initiate action to prepare appropriate responses. Since |IEEE Standards represent a consensus of concerned
interests, it is important to ensure that any interpretation has also received the concurrence of a balance of
interests. For this reason, IEEE and the members of its societies and Standards Coordinating Committees are
not able to provide an instant response to interpretation requests except in those cases where the matter has
previously received formal consideration.

Comments for revision of IEC/IEEE Dual Logo International Standards are welcome from any interested party,
regardless of membership affiliation with the IEC or IEEE. Suggestions for changes in documents should be in
the form of a proposed change of text, together with appropriate supporting comments. Comments on standards
and requests for interpretations should be addressed to:

Secretary, IEEE-SA Standards Board, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331, USA and/or
General Secretary, IEC, 3, rue de Varembé, PO Box 131, 1211 Geneva 20, Switzerland.

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the
Institute of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright
Clearance Center. To arrange for payment of licensing fee, please contact Copyright Clearance Center,
Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy
portions of any individual standard for educational classroom use can also be obtained through the Copyright
Clearance Center.

NOTE - Attention is called to the possibility that implementation of this standard may require use of subject
matter covered by patent rights. By publication of this standard, no position is taken with respect to the
existence or validity of any patent rights in connection therewith. The IEEE shall not be responsible for
identifying patents for which a license may be required by an IEEE standard or for conducting inquiries into the
legal validity or scope of those patents that are brought to its attention.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

IEEE Standard Testability Method
for Embedded Core-based

Integrated Circuits

Sponsor

Test Technology Technical Council
of the
IEEE Computer Society

Approved 30 June 2005
American National Standards Institute

Approved 20 March 2005
IEEE-SA Standards Board

IEC 62528:2007(E)
IEEE 1500-2005(E)

Abstract: This standard defines a mechanism for the test of core designs within a system on chip
(SoC). This mechanism constitutes a hardware architecture and leverages the core test language
(CTL) to facilitate communication between core designers and core integrators.

Keywords: core test, embedded core test, IP test, test reuse

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) —7-
IEEE 1500-2005(E)

IEEE Introduction

IEEE Std 1500 is a scalable standard architecture for enabling test reuse and integration for embedded cores
and associated circuitry. It foregoes addressing analog circuits and focuses on facilitating efficient test of
digital aspects of systems on chip (SoCs). IEEE Std 1500 has serial and parallel test access mechanisms
(TAMs) and a rich set of instructions suitable for testing cores, SoC interconnect, and circuitry. In addition,
IEEE Std 1500 defines features that enable core isolation and protection. IEEE Std 1500 will reduce test cost
through improved automation, promote good design-for-test (DFT) technique, and improve test quality
through improved access.

Core test language (CTL) is the official mechanism for describing IEEE 1500 wrappers and test data associ-
ated with cores. CTL is defined in IEEE P1450.6 ™? and was originally begun as part of the development of
IEEE Std 1500.

IEEE Std 1500 was broadly influenced by the past work of the IEEE Std 1149.1™ Working Group and has
several members from that group. IEEE Std 1149.1 and IEEE Std 1500 have similar goals at different levels
of integration. IEEE Std 1149.1 describes a wrapper architecture and access mechanism designed for the
purpose of testing components of a board whereas IEEE Std 1500 has a similar structure targeted towards
testing cores in an SoC.

IEEE Std 1500 has been a continuous effort for its participants due to the goal of resolving the needs of rec-
onciling and accommodating disparate test strategies and motives. The greatest effort has been put into sup-
porting as many requirements as possible while still producing a cohesive and consistent standard.

Objective of the IEEE 1500 effort

The Embedded Core Test Working Group was approved in 1997 with the charter to develop a standard test
method for integrated circuits (ICs) containing embedded cores, i.e., reusable megacells. That method would
be independent of the underlying functionality of the IC or its individual embedded cores. The method will
create the necessary testability requirements for detection and diagnosis of such ICs, while allowing for ease
of interoperability of cores originated from distinct sources. This method will be usable for all classes of dig-
ital cores including hierarchical ones (subclause 15.1 discusses hierarchical core-wrapper configurations).

In order to satisfy that charter, the Embedded Core Test Working Group was organized into several task
forces:

Core Test Language
Scalable Architecture
Compliance Definition/Information Model
Terminology/Glossary
Edition
Mergeable Cores Test
Benchmarking

Industry & Media Relations

#nformation on references can be found in Clause 2.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

~8- IEC 62528:2007(E)
IEEE 1500-2005(E)

Achievements

Since its inception, the Embedded Core Test Working Group has produced eight drafts of the preliminary
standard, considering all aspects of core-based test. Due concern has been given to ensuring that a broad
spectrum of users will be satisfied through flexibility. Both serial and parallel TAMs were developed. A
definition for core wrappers was created, and a set of instructions developed. The CTL was begun, and an
information model and compliance definition using that language were developed.

Notice to users

Errata
Errata, if any, for this and all other standards can be accessed at the following URL: http:/

standards.ieee.org/reading/icee/updates/errata/index.html. Users are encouraged to check this URL for
errata periodically.

Interpretations

Current interpretations can be accessed at the following URL: http://standards.ieee.org/reading/ieee/interp/
index.html.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken with respect to the existence or
validity of any patent rights in connection therewith. The IEEE shall not be responsible for identifying
patents or patent applications for which a license may be required to implement an IEEE standard or for
conducting inquiries into the legal validity or scope of those patents that are brought to its attention.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) —9-
IEEE 1500-2005(E)

STANDARD TESTABILITY METHOD
FOR EMBEDDED CORE-BASED
INTEGRATED CIRCUITS

1. Overview

IEEE Std 1500™ defines a scalable architecture for independent, modular test development and test applica-
tion for embedded design blocks and also enables test of the external logic surrounding these cores. Modular
testing is typically a requirement for embedded nonlogic blocks, such as memories, and for embedded pre-
designed nonmergeable intellectual property (IP) cores. In addition, the IEEE 1500 architecture can also be
used to partition large design blocks into smaller blocks of more manageable size and to facilitate test reuse
for blocks that are reused from one system-on-chip (SoC) design to the next.

The IEEE 1500 architecture comprises hardware requirements, through the definition of a standardized core
wrapper, and uses a test-specific language to communicate information between core providers and core
users. This language is the IEEE P1450.6™ ! core test language (CTL). Although IEEE Std 1500 limited
itself to test aspects internal to nonmergeable cores, careful consideration was given to the interoperability
of such cores, resulting in plug-and-play (PnP) requirement definitions. SoC-specific issues such as those
related to the design of test access mechanisms (TAMs) are excluded from this standard and assumed to be
addressed by the SoC designer.

IEEE Std 1500 specifically focuses on defining test requirements for unidirectional non-tristate digital ter-
minals, as these represent a minimum and mandatory set of requirements upon which the more complex
bidirectional terminals are based. It is, therefore, implied that support for bidirectional or tristatable termi-
nals is provided only to the extent that the individual unidirectional terminals, i.e., the bidirectional or tristat-
able terminal, are available for IEEE 1500 wrapper insertion. In addition, the hardware architecture defined
in this standard anticipates a synchronous wrapper design methodology.

While IEEE Std 1500 does not discuss chip-level design, the architecture defined in this standard does not
prevent interfacing with IEEE 1149.1™.-based standards. An example of this interface is provided in
Annex C for the reader’s benefit.

All rules described in this standard apply to the case where the IEEE 1500 wrapper is enabled (the wrapper

logic actively participates in the test of the core) except rules specific to the Wrapper Disabled state of the
IEEE 1500 wrapper. In Wrapper Disabled state, the IEEE 1500 wrapper is disabled, allowing functional

nformation on references can be found in Clause 2.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

~10- IEC 62528:2007(E)
IEEE 1500-2005(E)

operation of the wrapped core. IEEE P1450.6 constructs were added to this standard, where appropriate, to
further guide the reader. It is anticipated that the reader will refer to these CTL constructs documented in
IEEE P1450.6. Additional discussion that complements the body of this standard are presented in annex
clauses:

— Annex A contains the legend for IEEE 1500 wrapper cells.
— Annex B shows examples of IEEE 1500 wrapper cells.

— Annex C presents similarities between IEEE Std 1500 and IEEE Std 1149.1 and discusses an exam-
ple interface between IEEE Std 1500 and IEEE Std 1149.1.

1.1 Scope

IEEE Std 1500 has developed a standard design-for-testability method for integrated circuits (ICs) contain-
ing embedded nonmergeable cores. This method is independent of the underlying functionality of the IC or
its individual embedded cores. The method creates the necessary requirements for the test of such ICs, while
allowing for ease of interoperability of cores that may have originated from different sources.

1.2 Purpose

The aim of IEEE Std 1500 is to provide a consistent scalable solution to the test reuse challenges specific to
the reuse of nonmergeable cores, while preserving the IP aspects that are often associated with these cores.
This objective is achieved through provision of a core-centric methodology that enables successful integra-
tion of cores into SoCs.

IEEE Std 1500 provides a bridge between core providers and core users and also facilitates the automation
of test data transfer and reuse between these two entities via the use of the IEEE P1450.6 CTL. This automa-
tion relies on information requirements (the information model) placed on the core provider to ensure that
the core can be successfully integrated by the core user. The result is shorter time to market for core provid-
ers and core users.

The data transfer and reuse from the core provider to the core user are based on the premise that the core test
data are left unchanged, while the test protocol is adapted from the IEEE 1500 hardware interface to the
SoC.

2. Normative references

The following referenced documents are indispensable for the application of this document. For dated refer-
ences, only the edition cited applies. For undated references, the latest edition of the referenced document
(including any amendments or corrigenda) applies.

IEEE Std 1149.1, IEEE Standard Test Access Port and Boundary-Scan Architecture.”

IEEE P1450.6, Draft Standard for Standard Test Interface Language (STIL) for Digital Test Vector Data—
Core Test Language (CTL), http://grouper.ieee.org/groups/ctl/.

2IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, Piscataway, NJ 08854,
USA (http://standards.ieee.org/).

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) — 11—
IEEE 1500-2005(E)

3. Definitions, acronyms, and abbreviations

This clause lists some definitions of terms that have been used throughout this standard. In addition, a list of
acronyms and abbreviations is also provided. The criteria for differentiating various terms are based on the
following rules:

a) General terminology in the scope of electrical engineering and/or test technology, which do not
influence the definition of this standard itself.

1) These terms are used in this standard without further explanation. It is assumed that the reader-
ship has sufficient background knowledge to understand these terms.

2) Some of these terms may already be defined in The Authoritative Dictionary of IEEE Stan-
dards Terms. Therefore, someone looking for a particular definition could always consult The
Authoritative Dictionary to verify the meaning of the term.

b) Terms that are specific to this standard
1) These terms are defined in this clause.
2) General definitions are valid throughout this standard.

3) Local definitions are relevant only to a specific clause of this standard.

Effort has been made to achieve consistent usage of all terms (e.g., wrapper, TAM).

3.1 Definitions

3.1.1 access mechanisms: Mechanisms by which signals may be propagated to and from a core, from either
embedded circuitry or from the primary inputs and outputs of the system chip. There are two types of access
mechanisms:

(a) Functional access: The mechanism for moving stimuli to and observing responses from a core or
user-defined logic (UDL) during functional operation or normal mode.

b) Test access: The mechanism for moving stimuli to and observing responses from a core or UDL dur-
ing nonfunctional operation or test mode.

3.1.2 auxiliary clock (AUXCK): A functional clock that may be used in conjunction with wrapper clock
(WRCK) during core test for capturing, shifting, updating, and optionally transferring test data in a wrapper.

3.1.3 bypass: As applied to core wrappers, an abbreviated sequential path connecting a wrapper serial input
(WSI) to a wrapper serial output (WSO).

3.1.4 captureWR: A wrapper terminal used to enable and control a Capture operation in the selected
IEEE 1500 wrapper register (WR).

3.1.5 cell functional input (CFI): For input wrapper cells, the cell’s input, which is connected to a wrapper
functional input (WFI); for output wrapper cells, the cell’s input, which is connected to a core output.

NOTE—See CFI pin in Figure 16.

3.1.6 cell functional output (CFO): For input wrapper cells, the cell’s output, which is connected to a core
input; for output wrapper cells, the cell’s output, which is connected to a wrapper functional output (WFO).

NOTE—See CFO pin in Figure 16.
3.1.7 cell test input (CTI): A wrapper boundary register (WBR) cell’s test data input.

3.1.8 cell test output (CTO): A wrapper boundary register (WBR) cell’s test data output.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

—12- IEC 62528:2007(E)
IEEE 1500-2005(E)

3.1.9 control: The process of applying test pattern stimuli.

3.1.10 core: Predesigned circuit block that can be tested as an individual unit.

3.1.11 core data register (CDR): Optional data register that belongs to a core being wrapped.
3.1.12 core input: An input terminal of an unwrapped core.

3.1.13 core integrator: An entity that incorporates one or more cores into an system on chip (SoC).

3.1.14 core isolation: A test mode feature preventing core-to-core or core-to-UDL (i.e., user-defined logic)
interaction.

3.1.15 core output: An output terminal of an unwrapped core.

3.1.16 core provider: An entity that designs cores that can be reused in other designs.

3.1.17 core test: A test methodology that is applied to an embedded core.

3.1.18 core test language (CTL): A standard language for core suppliers to provide test data that can be

used to test a core once it is integrated into a system on chip (SoC). The language presents a format to
describe test and support data so that the core can be effectively integrated, reused and tested.

NOTE—See IEEE P1450.6 reference documentation.

3.1.19 dedicated shift path: A shift path comprising storage elements that do not participate in functional
operation.

3.1.20 dedicated wrapper (cell): A wrapper style that does not share hardware with core functionality. This
style allows certain test operations to occur concurrently and transparently during functional operation.

This definition could apply to individual cells.

3.1.21 external safe state: A configuration of safe state in which the outputs of a core are in a state that pre-
vents them from interfering with a block of logic outside the core. See also internal safe state; safe state.

3.1.22 firm core: A predesigned block of functional logic such as a macro, megacell, or memory that has a
process technology-dependent netlist representation and may be amenable to some modification.

3.1.23 hard core: A predesigned block of functional logic such as a macro, megacell, or memory that has a
physical implementation that cannot be modified.

3.1.24 hybrid instruction: A wrapper instruction that has mixed use of wrapper serial port (WSP) and
wrapper parallel port (WPP) terminals.

3.1.25 input cell: A wrapper boundary register (WBR) cell that is provided on a core input.

3.1.26 internal safe state: A configuration of safe state whereby a core is protected from the impact of a test
outside the core. See also external safe state; safe state.

3.1.27 interoperability: See plug-and-play (PnP).

3.1.28 inward facing (IF) mode: The test mode where core inputs are controlled by the wrapper boundary
register (WBR) and core outputs are observed by the WBR.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) ~ 13-
IEEE 1500-2005(E)

3.1.29 mergeable core: With respect to testability, a core that can be integrated with other cores and user-
defined logic (UDL) into a system on chip (SoC) so that a uniform design-for-test (DFT) methodology can
be applied across the entire system. A typical mergeable core is provided using a register transfer level
(RTL) or gate-level description.

3.1.30 merged core: With respect to testability, a core that is integrated with other cores and user-defined
logic (UDL) into a system on chip (SoC) so that a uniform design-for-test (DFT) methodology could be
applied across the entire system.

3.1.31 nonmergeable core: With respect to testability, a core that cannot be integrated to apply a uniform
design-for-test (DFT) methodology to the entire system on chip (SoC). A typical nonmergeable core comes
with a physical design implementation that does not accommodate modification of the test methodology. A
nonmegeable core may be represented as a block-box design, making standard automatic test pattern gener-
ation (ATPG) impossible on such a core.

3.1.32 nonmerged core: With respect to testability, a core that has not been integrated with other cores and
user-defined logic (UDL) into a system on chip (SoC) so that a uniform design-for-test (DFT) methodology
could be applied across the entire system.

3.1.33 normal mode: The mode in which the wrapper boundary register (WBR) does not interfere with the
functional operation of a wrapped core.

3.1.34 observation: The process of monitoring pattern response.
3.1.35 output cell: A wrapper boundary register (WBR) cell that is provided for a core output.

3.1.36 outward facing (OF) mode: The test mode where wrapper functional outputs (WFOs) are controlled
by the wrapper boundary register (WBR) and wrapper functional inputs (WFIs) are observed by the WBR.

3.1.37 parallel instruction: A wrapper instruction that uses wrapper parallel port (WPP) terminals and also
configures the wrapper bypass register (WBR) between wrapper serial input (WSI) and wrapper serial out-
put (WSO).

3.1.38 pattern set: A collection of test vectors intended for manufacturing test. In the context of core test
language (CTL), a pattern set is a collection of pattern constructs and their associated macros and procedures
brought together with PatternBurst and PatternExecs.

3.1.39 plug-and-play (PnP): A minimum level of interoperability between various core wrappers in a sys-
tem on chip (SoC).

3.1.40 safe data: Data that satisfy safe state configuration requirements. These data are user-defined.

3.1.41 safe state: A property whereby a test of one block of logic is prevented from interfering with or dam-
aging another block of logic. See also external safe state; internal safe state.

3.1.42 selectWIR: The IEEE 1500 wrapper terminal that determines the selection of a wrapper register
(WR). A value of 1 represents selection of the wrapper instruction register (WIR), and a value of 0 repre-
sents selection of a wrapper data register (WDR).

3.1.43 serial instruction: A wrapper instruction that exclusively uses wrapper serial port (WSP) terminals.
3.1.44 serial scan chain: The scan chain configuration inside a wrapped core where an internal scan chain is

concatenated with the wrapper boundary register (WBR) chain for the purpose of running the WS _INTEST
SCAN instruction.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

— 14— IEC 62528:2007(E)
IEEE 1500-2005(E)

3.1.45 shared wrapper (cell): The wrapper style that shares logic between the test and functional modes of
operation. Shared cells typically include registered core inputs and outputs that can be used in test mode to
control and observe core test data. This style prevents simultaneous functional and test operation uses of the
shared register.

3.1.46 shiftWR: The wrapper terminal used to enable and control a Shift operation in the selected IEEE
1500 wrapper register (WR).

3.1.47 silent shift path: A wrapper boundary register (WBR) shift path comprising a dedicated shift path
and implemented to support a Shift operation that keeps wrapper functional output (WFO) terminals static.

3.1.48 soft core: A predesigned block of functional logic such as a macro, megacell, or memory with a reg-
ister transfer level (RTL) representation. Soft cores are inherently process technology independent.

3.1.49 standard test interface language (STIL): The language in IEEE Std 1450™ for representing digital
test vector data. The core test language (CTL) is an extension of STIL to support a standard way of repre-
senting test data for a core.

3.1.50 system on chip (SoC): An entire system integrated on a single chip. It may include one or more cores
with user-defined logic (UDL) integrated by the core user or system integrator.

3.1.51 test access mechanism (TAM): A feature of a system-on-chip (SoC) design that enables the delivery
of test data to and from cores or core wrappers.

3.1.52 test access mechanism (TAM) harness: Wrapper boundary register (WBR) logic that enables the
coupling of a TAM to cell test inputs (CTIs) and cell test outputs (CTOs).

3.1.53 test input (TI): The serial test data input of a wrapper boundary register (WBR).
NOTE—See TI in Figure 16.

3.1.54 test mode: A configuration whereby a block of logic is made ready for test.

3.1.55 test output (TO): The serial test data output of a wrapper boundary register (WBR).
NOTE—See TO in Figure 16.

3.1.56 test protocol: A sequence of control operations required for a test. A test protocol comprises func-
tions and/or sequences. Functions may consist of other functions and/or sequences, while sequences com-
prise a series of logic 0 and 1 values applied to specified terminals. At the lowest level, a test protocol is just
a series of logic 0 and 1 applied to specified test control terminals. The protocol will typically also contain
symbolic references to the test data that are to be applied to or observed at a specified test data or system
data port. For example, a scan protocol might involve the repetition of the following operations:

a) Apply a logic level to assert an internal scan chain SCAN_ENABLE control signal.

b) Apply a sequence of n clock pulses to a clock port while applying data to the SCAN_DATA_IN of
the scan chain(s). Observe data at the SCAN DATA_ OUT of the scan chain(s) as the data are
clocked through the scan chains.

c) De-assert SCAN ENABLE and clock the scan chains one or more times while controlling primary
inputs and observing primary outputs.

d) Repeat steps (a), (b), and (c) until the application of the scan chain patterns is complete.

3.1.57 test reuse: The ability to apply a predetermined test pattern associated with a core after this core has
been integrated into a system on chip (SoC). Test reuse is a consequence of design reuse and often requires
the adaptation of a test protocol to reflect the core’s new environment within an SoC.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) — 15—
IEEE 1500-2005(E)

3.1.58 transferDR: The IEEE 1500 wrapper terminal provided to enable and control the Transfer operation
for the wrapper boundary register (WBR).

3.1.59 update register: The register used to prevent the outputs of a shift register from propagating to other
circuitry during Shift operation. After shifting is complete, the content of the associated shift register is par-

allel-loaded (updated) into the update register.

3.1.60 updateWR: The wrapper terminal used to enable and control an Update operation in the selected
IEEE 1500 wrapper register (WR).

3.1.61 user-defined logic (UDL): Logic added by the system chip integrator (i.e., not a reused design), as
interface circuitry or part of the feature set that differentiates the system-on-chip (SoC) product.

3.1.62 wrapper: Circuitry added around an embedded core to facilitate test reuse and to interface between a
test access mechanism (TAM) and the embedded core.

3.1.63 wrapper boundary register (WBR): The portion of a wrapper comprising wrapper cells. See wrap-
per cell.

3.1.64 wrapper bypass register (WBY): The IEEE 1500 register providing an abbreviated data register
between wrapper serial input (WSI) and wrapper serial output (WSO).

3.1.65 wrapper cell: The wrapper element associated with a single core terminal.
3.1.66 wrapper clock (WRCK): The IEEE 1500 clock.
3.1.67 wrapper configuration: An arrangement of interconnected wrappers in a system on chip (SoC).

3.1.68 wrapper data register (WDR): The IEEE 1500 register [e.g, wrapper boundary register (WBR),
wrapper bypass register (WBY)] used to perform IEEE 1500 operations.

3.1.69 wrapper functional input (WFI): The wrapper input terminal corresponding to the functional core
input of a wrapped core.

3.1.70 wrapper functional output (WFO): The wrapper output terminal corresponding to the functional
core output of a wrapped core.

3.1.71 wrapper input: An input terminal to a wrapped core. In the case where there is a shared wrapper cell,
the term wrapper input takes precedence over the term core input.

3.1.72 wrapper instruction register (WIR): The IEEE 1500 register used to serially load and store IEEE
1500 instructions.

3.1.73 wrapper output: An output terminal to a wrapped core. In the case where there is a shared wrapper
cell, the term wrapper output takes precedence over the term core output.

3.1.74 wrapper parallel port (WPP): A user-defined set of wrapper terminals corresponding to a test
access mechanism (TAM) and providing parallel access to the wrapper boundary register (WBR) and/or an
embedded core.

3.1.75 wrapper register (WR): A wrapper instruction register (WIR) or wrapper data register (WDR).

3.1.76 wrapper reset (WRSTN): The IEEE 1500 active low reset.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

~ 16— IEC 62528:2007(E)
IEEE 1500-2005(E)

3.1.77 wrapper serial input (WSI): The wrapper serial data input.

3.1.78 wrapper serial output (WSO): The wrapper serial data output.

3.1.79 wrapper serial port (WSP): Standard wrapper terminals providing serial access to the IEEE 1500
wrapper. The following signals comprise the WSP: wrapper reset (WRSTN), wrapper clock (WRCK),

SelectWIR, TransferDR, ShiftWR, CaptureWR, UpdateWR, wrapper serial input (WSI), and wrapper serial
output (WSO). Additionally, user-defined auxiliary clock(s) (AUXCKs) may be part of the WSP.

3.2 Acronyms and abbreviations

ASIC application-specific integrated circuit
ATPG automatic test pattern generation
AUXCK auxiliary clock

CDR core data register

CF1 cell functional input

CFO cell functional output

CTI cell test input

CTL core test language

CTO cell test output

DFT design-for-test

FPGA field-programmable gate array
IC integrated circuit

IF inward facing

/0 input/output

1P intellectual property

OF outward facing

PnP plug-and-play

RF radio frequency

RTL register transfer level

SoC system on chip

STIL standard test interface language
TAM test access mechanism

TAP test access port

TCK IEEE 1149.1 test clock

TI test input

TO test output

UDL user-defined logic

WBR wrapper boundary register

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) —17 -
IEEE 1500-2005(E)

WBY wrapper bypass register
WDR wrapper data register

WFI wrapper functional input
WFO wrapper functional output
WGL waveform generation language
WIR wrapper instruction register
WPC wrapper parallel control
WPI wrapper parallel input
WPO wrapper parallel output
WPP wrapper parallel port

WR wrapper register

WRCK wrapper clock

WRSTN wrapper reset

w.r.t with respect to

WSC wrapper serial control

WSI wrapper serial input

WSO wrapper serial output

WSP wrapper serial port

4. Structure of this standard

The three mandatory hardware blocks along with the standard instructions and the mandatory serial port are
described in separate clauses of this standard:

— Standard instructions: Clause 7

— Wrapper serial port (WSP): Clause 8 and Clause 14
— Wrapper instruction register (WIR): Clause 10

— Wrapper bypass register (WBY): Clause 11

— Wrapper boundary register (WBR): Clause 12

The above hardware clauses are complemented with information model and compliance discussion split
across the following clauses:

— Compliance definitions common to wrapped and unwrapped cores: Clause 17
— Compliance definitions specific to unwrapped cores: Clause 18

— Compliance definitions specific to wrapped cores: Clause 19

4.1 Specifications

Subclauses entitled “Specifications” contain the rules, recommendations, and permissions that define this
standard:

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

~18- IEC 62528:2007(E)
IEEE 1500-2005(E)

a) Rules specify the mandatory aspects of this standard. Subclauses that are rules contain the word
shall.

b) Recommendations indicate preferred practice for designs that seek to conform to this standard. Sub-
clauses that are recommendations contain the word should.

c) Permissions show how optional features may be introduced into a design that seeks to conform to
this standard. These features will extend the application of the test circuitry defined by this standard.
Subclauses that are permissions contain the word may.

It is assumed throughout this standard that rules take precedence over recommendations and recommenda-
tions take precedence over permissions.

4.2 Descriptions

Material not contained in subclauses entitled “Specification” is descriptive material that illustrates the need
for the features being specified or their application. This material includes schematics that illustrate a possi-
ble implementation of the specifications in this standard. Annex clauses to this standard contain alternative
implementation examples. The descriptive material also discusses rationale for inclusion of certain features.

The descriptive material contained in this standard is for illustrative purposes only and does not define a pre-
ferred implementation. Most examples provided are intentionally somewhat ambiguous to not display bias
towards a particular implementation style. Where discrepancies between examples and specifications may
occur, the specifications always take precedence. Readers should exercise caution when using these exam-
ples to ensure full compliance in their specific applications. In particular, it is emphasized that the examples
are designed to effectively communicate the meaning of this standard. As always, a particular implementa-
tion may not operate properly with respect to timing and other parametric characteristics.

The following structural conventions are used in this standard:

— The rules, recommendations, and permissions in each specifications subclause are contained in a
single alphabetically indexed list. References to each rule, recommendation, or permission are
shown in the form:

10.2.1(c)(2)

/SN

subclause option (if any)
number Index

— When the reference and the referring text belong to the same subclause, only the index is indicated
(i.e., the subclause number is omitted).

5. Introduction and motivations of two compliance levels

This standard recognizes the heterogeneous aspect of the embedded core market, i.e., a diversity driven by
the need to cover a variety of design functions implemented in digital logic, analog logic, memory, radio fre-
quency (RF), field-programmable gate arrays (FPGAs), or combinations of the above. Cores come in many
different “flavors” (e.g., hard, firm, soft) and are being used and/or sold within companies as well as
between companies. Within its focus on nonmerged digital logic and memory cores, this standard intends
to support the above diversity and associated business models. This requirement poses a need for flexibility
that was translated into the definition of the following two levels of compliance to this standard:

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

IEC 62528:2007(E) ~19-
IEEE 1500-2005(E)

— IEEE 1500 unwrapped compliance: This compliance level refers to a core that does not have a
(complete) IEEE 1500 wrapper, but does have a IEEE 1500 CTL description on the basis of which
the core could be made IEEE 1500 wrapped compliant, either manually or by using dedicated tools.
The CTL program describes the core test knowledge at the bare core terminals.

— IEEE 1500 wrapped compliance: This compliance level refers to a core that incorporates an IEEE
1500 wrapper function and comes with an IEEE 1500 CTL program. The CTL program describes
the core test knowledge, including how to operate the wrapper, at the wrapper’s external terminals.

The motivation behind the two different levels of compliance is a need to match the core-provider/core-user
business model and provide the flexibility that is required in testing core-based system chips. The ultimate
compliance goal should be to make a core compliant to the IEEE 1500 wrapped level. Nevertheless, the two
levels of compliance provide the option to become IEEE 1500 wrapped directly or via the intermediate step
of being IEEE 1500 unwrapped.

The first alternative, i.e., direct generation of a IEEE 1500 wrapped core, provides the possibility to integrate
the wrapper functionality with the core itself and hence minimize the performance and area impact of the
wrapper. The second alternative is to first create an IEEE 1500 unwrapped core, which is then, in a separate
step, turned into an IEEE 1500 wrapped core. This allows the SoC integrator to take advantage of the scal-
ability of the standardized wrapper and instantiate the wrapper with particular parameter values, which take
into account certain aspects of the system chip environment in which this particular core version is used.

6. Overview of the IEEE 1500 scalable hardware architecture

The IEEE 1500 core wrapper comprises the following:
— Serial interface terminals forming the WSP

— A user-defined set of wrapper terminals forming the wrapper parallel port (WPP) and providing par-
allel access to the wrapper

— AWIR
— A WBY
— A WBR

Figure 1 illustrates the standard components of the IEEE 1500 wrapper.

6.1 Wrapper serial port (WSP)

The WSP terminals serve as the primary interface to the IEEE 1500 wrapper. This set of serial terminals
could be sourced from chip-level pins or from an embedded controller such as an IEEE 1149.1-based con-
troller, as described in Annex C. The WSP is used to load and unload instructions and data into and out of
the IEEE 1500 registers. In addition to the wrapper serial input (WSI) and wrapper serial output (WSO) ter-
minals shown in Figure 1, the WSP contains wrapper serial control (WSC) terminals used to control the
operation of all IEEE 1500 registers. The WSP is described with further details in Clause 8.

6.2 Wrapper parallel port (WPP)

The WPP is a user-defined set of wrapper terminals providing a parallel interface to the IEEE 1500 wrap-
per. These terminals are used when the wrapper is configured into parallel mode. The WPP terminals consist
of the wrapper parallel input (WPI) terminal(s), wrapper parallel output (WPO) terminal(s), and wrapper
parallel control (WPC) terminals. The set of WPC terminals may include elements of the set of WSC termi-
nals. The WPP is described with further details in Clause 9.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

—-20-

IEC 62528:2007(E)
IEEE 1500-2005(E)

Optional User Defined Wrapper Parallel Port (WPP)

| N |
| x|
I e I
I Test Test : I
I Inputs Outputs j> I
i (TI) (TO) | i :
Functional L v Functional
Inputs FI Core FO W > Outputs
Wrapper Wrapper
for FO FI B Regi
Boundary Register -, oundary Register
Wrapper - T];St Wrapper
Bypass Register 22200} Instruction Register
A /
~ —g_; ,
Wrapper — Wrapper
Serial Input B ™ Serial Output
(WSI) * (WSO)
'\ Wrapper Serial Control (WSC) /‘
\\ /
/

Mandatory WrapperI Serial Port (WSP)

Figure 1—Standard IEEE 1500 wrapper components

6.3 Wrapper instruction register (WIR)

The WIR enables all IEEE 1500 wrapper operations. This register is loaded via the WSP with instructions
that select an IEEE 1500 data register. The WIR can optionally be interfaced to the core for establishing test
mode or functional operation. The WIR is described with further details in Clause 10.

6.4 Wrapper bypass register (WBY)

The WBY provides a bypass path for the WSI-WSO terminals of the WSP. The WBY is the default data reg-
ister between WSI and WSO and should be selected by the current wrapper instruction when no other data
register is selected. The WBY is intended to provide a minimum length scan path through the wrapper, so
that when several IEEE 1500 wrappers are serially chained together in a system on chip (SoC), the wrappers
that do not require a data register to be accessed can be bypassed with a short scan path through their WSI-
WSO terminals. The WBY is described with further details in Clause 11.

6.5 Wrapper boundary register (WBR)

The WBR is the data register through which test data stimuli are applied and pattern responses are captured.
This register allows internal testing of the core, as well as testing of external connectivity to other cores and
SoC integration circuitry, in response to an instruction loaded into the WIR. The WBR is described with fur-
ther details in Clause 12.

[Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) —21-
IEEE 1500-2005(E)

7. WIR instructions

The WIR allows instructions to be serially entered into the wrapper circuitry via the WSI and the WSC. This
clause defines the minimum set of instructions that shall be supplied and the operations that occur in
response to those instructions. Optional instructions and the resulting operation of the wrapper circuitry are
also defined, together with the requirements for extensions to the instruction set defined in this standard. The
tests applied using IEEE 1500 instructions are to be completely specified with CTL. The CTL identifies
attributes of the wrapped core such as the following:

— Location and number of core wrapper input and output terminals interfacing with external circuitry,
— Protocol used to input and output the wrapper scan data,

— Condition or state of the core input and output terminals during the external circuitry test, excluding
the test input (TT) and test output (TO) terminals and the terminals interfacing with the external cir-
cuitry, and

— Configuration of the WBR.

7.1 Introduction

The IEEE 1500 wrapper has various modes of operation. There are modes for functional (nontest) operation,
inward facing (IF) test operation, and outward facing (OF) test operation. Different test modes also deter-
mine whether the serial test data mechanism (WSI-WSO) or the parallel test data mechanism (WPI-WPO),
if present, is being utilized.

Instructions loaded into the WIR, together with the IEEE 1500 wrapper signals, determine the mode of oper-
ation of the wrapper and possibly the core itself. There is a minimum set of instructions and corresponding
operations that shall be supplied. Optional instructions and their corresponding behavior are also defined,
together with the requirements for extension of the instruction set. All instructions that establish test modes
that utilize the parallel port WPI and WPO are optional, as the presence of this port is optional. Furthermore,
IEEE Std 1500 also allows for user-defined instructions.

IEEE Std 1500 has a set of instructions that are defined to use only the serial interface (WSP) and a corre-
sponding set of instructions that are defined for the parallel interface. IEEE Std 1500 must allow accessibil-
ity to test the core. There is one main core test instruction—Wx INTEST (user-specified core-test
instruction)—that is flexible enough to allow any core test to execute. [EEE Std 1500 does not define the test
for the core, and this very flexible instruction was specified so that it could be defined differently for each
core test. There are two other instructions that are mandatory: an instruction for functional mode
(WS_BYPASS) and an instruction for external test mode (WS _EXTEST). WS _BYPASS puts the wrapper
into the bypass configuration and allows access to all functional terminals of the core. WS _EXTEST is the
serial EXTEST configuration of the wrapper. Even if there is a WP_EXTEST mode (for parallel access),
there must still be a WS_EXTEST instruction capability.

7.2 Response of the wrapper circuitry to instructions
7.2.1 Specifications

Rules

a) Each instruction shall select the wrapper register(s) (WRs) that operate while the instruction is
active.

b) WRs that are not selected by the active instruction shall be controlled so that they do not interfere
with the operation of the core circuitry or the selected WRs.

c¢) Each instruction shall cause a WR path to be selected to shift data between WSI and WSO with the
proper WSC signals.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

—22- IEC 62528:2007(E)
IEEE 1500-2005(E)

d) The data register path selected between WSI and WSO shall be of fixed length for each instruction,
and the length shall remain constant while the instruction is active.

e) The WBY shall be selected to shift data between WSI and WSO while parallel instructions are
active.

f) Data that are loaded per an instruction into the WBR and to be used by a subsequent instruction must
be held until the subsequent instruction becomes active.

Permissions

g) The WR path [of rule 7.2.1(c)] between WSI and WSO may comprise one or more serially con-
nected wrapper data registers (WDRs) or core data registers (CDRs).

h) A user-defined wrapper instruction may enable an alternate mechanism for access to WDRs and/or
CDRs.

7.2.2 Description

The instructions loaded into the WIR are interpreted in order to achieve two key functions. The active
instruction identifies the wrapper or CDRs that may operate while the instruction is active. Several wrapper
or CDRs may be set into test modes simultaneously. Also, an instruction identifies the WR path that is used
to shift data between WSI and WSO during scan operation. A particular instruction may result in one or
more wrapper or CDRs being serially connected between WSI and WSO or WPI and WPO. Further, the
active instruction may select one or more other registers, separate from the register(s) between WSI and
WSO or WPI and WPO, to perform other test functions. Nonselected wrapper or CDRs should be controlled
so that they will not interfere with the operation of the core circuitry or with the operation of a WR path.
Rule 7.2.1(f) allows for interdependent instructions such as WS PRELOAD and WS CLAMP to properly
establish and use setup data.

The standard instructions are defined in Table 1. Only the WSP is utilized during the serial instructions.

Table 1—Instruction list

Instruction Mandate Description

WS BYPASS Required Allows normal (functional) mode and puts the wrapper into bypass
mode.

WS _EXTEST Required Allows external test using a single chain configuration in the WBR.

WP_EXTEST Optional Allows external test using a multiple scan chain configuration in the
WBR.

Wx_ EXTEST Optional A user-specified external test instruction.

WS SAFE Optional Puts the core into a quiet mode and outputs a predefined static
(safe) state from all output ports. It also puts the WBR into bypass
mode.

WS _CLAMP Optional Outputs a programmable static (safe) state from all output ports. It

also puts the wrapper into bypass mode. Preceded by a
Wx_PRELOAD instruction.

WS _PRELOAD Conditionally Loads data into the single silent shift path of the WBR.
required?
WP _PRELOAD Optional Loads data into the multiple silent shift paths of the WBR.
WS _INTEST RING Optionalb Allows internal testing using a single chain configuration in the
WBR.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

IEC 62528:2007(E)
IEEE 1500-2005(E)

—-23-—

Table 1—Instruction list (continued)

Instruction Mandate Description
WS _INTEST SCAN Optionalb Allows internal testing by concatenation of the wrapper chain with
a single internal chain.
Wx_INTEST Required A user-specified core test instruction.

¥WS_PRELOAD is required only if there is a silent shift path in the WBR.
PThis instruction is also considered a Wx_INTEST instruction, just more completely (specifically) defined. This in-
struction can be used as the required Wx_INTEST instruction.

7.3 Wrapper instruction rules and naming convention

There is a naming convention for the instructions.

W<Parallel/Serial/Hybrid> <Mode>_<Configuration> (e.g. WS_INTEST_SCAN)

— W: Prefaces all standard IEEE 1500 instructions.

— Parallel/Serial/Hybrid: An S denotes a serial mode instruction. A P denotes a parallel mode
instruction. An H denotes a hybrid instruction in which both the serial and parallel data ports are uti-
lized. Note that a standard parallel instruction (e.g., WP_EXTEST) must have the WBY between
WSI and WSO but remain distinct from a hybrid instruction. An instruction by which any register
other than WBY is configured between WSI and WSO and that also uses the parallel port is classi-

fied as a hybrid instruction.

— Mode: A shortened description of the instruction mode, such as BYPASS, PRELOAD, etc.

— Configuration: A shortened description of the configuration selected by a particular instruction. For
instance, during the serial instructions WS INTEST SCAN and WS INTEST RING, SCAN
denotes that internal scan chains are included in the single scan chain between WSI and WSO.

RING indicates that only the wrapper chain is between the WSI and WSO.

7.3.1 Specifications

Rules

a) All serial instructions (e.g., WS_EXTEST) shall use the WSP solely.
b) All parallel instructions (e.g., WP_EXTEST) shall use the WPP solely.

c) Atleast one INTEST instruction is required.

d) Each instruction name in Table 1 shall be used for the standard instruction associated with it.

e) No user instruction shall utilize the standard instruction names.

f) When Wx is stated in this standard, the x shall be replaced with P, S, or H.
g) WS _EXTEST instruction is required.

h) WS BYPASS instruction is required and shall be used during any operation where the wrapper is

disabled.

i) All standard instructions shall have a unique opcode.

j) Standard instruction names, such as WP_EXTEST, defined in this standard shall not be reused as
names for instructions with functionality other than the functionality described in this standard. The

standard instruction names are reserved.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

—24 - IEC 62528:2007(E)
IEEE 1500-2005(E)

Recommendations

k) User and private instructions should follow the same naming convention as the standard
instructions.

Permissions
1) User-defined instructions may share opcodes with standard instructions.

m) Standard instruction names may be used as a prefix for other instructions defined by the user, such
as WP_EXTEST_BIST.

7.3.2 Description

Rules 7.3.1(a) and 7.3.1(b) are meant to specify usage of the WSP and WPP for serial and parallel instruc-
tions. Additional instruction-specific description is provided in 7.4 through 7.14.

Where permission 7.3.1(1) is exercised, the corresponding user-defined instruction is expected to be identical
or a superset of the standard instruction that has the same opcode as this user-defined instruction.

7.4 WS_BYPASS Instruction

The mandatory WS BYPASS instruction enables the functional configuration of the wrapper.
WS BYPASS is selected when no test operation of that core is required and allows only the WBY to be
selected. The WBY provides a minimum-length serial path between the wrapper’s WSI and the WSO. This
allows more rapid movement of test data to and from other core wrappers, provided the wrappers are con-
nected serially.

7.4.1 Specifications

Rules
a) Each wrapper shall provide a WS_BYPASS instruction.

b) The WS BYPASS instruction shall select the WBY to be connected for serial access between the
WSI and WSO of the wrapper.

c¢) While the WS _BYPASS instruction is selected, the operation of the wrapper circuitry shall have no
effect on the operation of the core circuitry.

d) While the WS _BYPASS instruction is selected, all wrapper boundary cells that can operate in either
system or test modes shall perform their system function.

e) While the WS _BYPASS instruction is selected, the WSC shall be utilized for test control.

Permissions

f) The binary code for the WS_BYPASS instruction may be selected by the wrapper designer.
7.4.2 Description

During testing of a particular core or cluster of cores on an SoC, it may be inconvenient to drive data through
the entire length of a WBR. Instead the WBR is replaced by the WBY. This allows data to transfer
through the wrappers of the cores that are not being tested, more directly to and from the wrappers of the
cores that are being tested, provided these wrappers are serially connected. The bypassed cores will have the
ability to continue to run in system mode. The WS_BYPASS instruction could be used for this purpose. This
instruction is the active instruction after wrapper reset (WRSTN) is asserted. Figure 2 shows an example of
the configuration of the wrapper during the WS BYPASS instruction.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) ~25-
IEEE 1500-2005(E)

Wrapper Serial Bypass (WS Bypass) Instruction

Enabled

Normal Mode I:w[(> FI FO
B Core

Normal Mode <]R FO FI <]

Test
Enable(s)
T
T
—| WSO

WIR

[(> Normal Mode

W=

"] Normal Mode

WSI

[] WSP Path wsc | WS Bypass

Figure 2—WS_BYPASS example

7.5 WS_EXTEST instruction

The mandatory WS _EXTEST instruction allows testing of off-core circuitry and core-to-core
interconnections.

NOTE 1—Wrapper boundary cells that support the Wx_PRELOAD instruction (see 7.9 and 7.10) are presumed to have
data loaded into the WBR using the Wx PRELOAD instruction prior to loading the Wx EXTEST instruction.’

NOTE 2—Following use of the WS_EXTEST instruction, the core circuitry may be in an indeterminate state that will
persist until a system reset is applied. Therefore, the core circuitry may need to be reset on return to normal (i.e., nontest)
operation.

7.5.1 Specifications

Rules
a)
b)

d)

Each wrapper shall provide a WS_EXTEST instruction.

While the WS _EXTEST instruction is selected, only the WBR shall be connected for serial access
between WSI and WSO during the Shift operation (i.e., no other test data register may be connected
in series with the WBR).

While the WS_EXTEST instruction is selected, the core circuitry shall be controlled so that it cannot
be damaged as a result of signals received at core input or core clock input terminals.

NOTE—This might be achieved by placing the core circuitry in a reset or hold state while the WS_EXTEST
instruction is selected.

While the WS _EXTEST instruction is selected, the state of all signals driven from the WBR wrap-
per functional outputs (WFOs) shall be completely defined by the data held in the WBR cell associ-
ated with that terminal. The data at the output shall be valid with the Apply event and remain stable
until the next WBR event.

3Notes in text, tables, and figures are given for information only and do not contain requirements needed to implement this standard.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

~26- IEC 62528:2007(E)
IEEE 1500-2005(E)

NOTE 1—Where the WBR provides a silent shift path, the data held in the WBR are presumed to have been
loaded by the previous use of an instruction such as WS_PRELOAD.

NOTE 2—Where the WBR comprises shared wrapper boundary cells (i.e., the wrapper boundary cells are
shared between functional and test operation) that do not have a silent shift path, the data held in the WBR exist
as a result of the previous instruction or of entering the WS_EXTEST instruction.

e) While the WS _EXTEST instruction is selected, the state of all signals received at the core input ter-
minals required to be provisioned with wrapper boundary cells per rule 12.1.1(a) shall be loaded into
the WBR during the Capture event.

f) While the WS_EXTEST instruction is selected, the state of WFO terminals shall not change in
response to the Capture event.

g) While the WS _EXTEST instruction is selected, the WBR shall be in OF mode.
h) While the WS _EXTEST instruction is selected, the WSC shall be utilized for test control.

Recommendations

i) While the WS_EXTEST instruction is selected, the core should be put into a quiet mode (e.g., reset
or clock off).

7)) While the WS_EXTEST instruction is selected and where output cells that are in the WBR shift path
are used, the WFOs should be controlled to safe values during shift.

Permissions

k) A binary code for the WS EXTEST instruction may be selected by the wrapper designer.
7.5.2 Description

The WS _EXTEST instruction allows circuitry external to the core wrapper [typically the interconnects and
user-defined logic (UDL)] to be tested. The wrapper boundary cells at WFOs are used to apply test stimuli,
while the cells at wrapper input terminals capture test results. This instruction also allows testing of blocks
of UDL between cores that do not themselves incorporate wrappers.

While the WS_EXTEST instruction is selected, the core circuitry may receive input signals that differ sig-
nificantly from those expected during normal operation. If the core circuitry can tolerate any permutation of
input signals that is received, then no specific design changes are required. However, for some cores, there
may be input sequences that could place the core circuitry in a state where damage may result or excessive
current may be drawn. In these cases, it is the responsibility of the wrapper designer to prevent the core cir-
cuitry from processing the “illegal” inputs while the WS EXTEST instruction is selected. This may be
achieved by placing the core circuitry into a reset or hold state during WS _EXTEST or by controlling the
WFOs to the core.

The wrapper input terminals provisioned with wrapper boundary cells per rule 12.1.1(a) may optionally be
designed to allow signals to be driven into the core circuitry when the WS EXTEST instruction is selected.
This allows user-defined values to be established at the core input terminals, preventing undesired operation
of the core in response to unknown signals arriving at core inputs during operation of the WS _EXTEST
instruction. The values driven may either be constant for the duration that WS_EXTEST is selected (i.e., by
using signal blocking gates at the core input terminals) or be loaded serially through the WBR. Figure 3
shows an example of the configuration of the wrapper during the WS_EXTEST instruction.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

IEC 62528:2007(E) —27-
IEEE 1500-2005(E)

Wrapper Serial Extest (WS _Extest) Mode

Test is applied
via WSC Controlled

WBR Scan Path Disabled

]

W
B Core
Test
Enable(s)
R [
Wi - —[wso]

wsc | WS _Extest

Figure 3—WS_EXTEST example

7.6 WP_EXTEST instruction

The WP_EXTEST instruction allows testing of off-core circuitry and core-to-core interconnections. The
WP_EXTEST instruction allows the WBR to be divided into segments (multiple scan chains). It also allows
wrapper inputs and wrapper outputs, other than the WSP, to control WBR inputs and observe WBR outputs.
In all other behaviors, WP_EXTEST mimics the WS_EXTEST instruction.

NOTE 1—Wrapper boundary cells that support “preload” are presumed to have data loaded into the WBR using the
WS PRELOAD or WP_PRELOAD instruction prior to loading the WP_EXTEST instruction.

NOTE 2—Following use of the WP_EXTEST instruction, the core circuitry may be in an indeterminate state that will
persist until a system reset is applied. Therefore, the core circuitry may need to be reset on return to normal (i.e., nontest)
operation.

7.6.1 Specifications

Rules

a)

b)

¢)

d)

While the WP_EXTEST instruction is selected, only the WBR shall be selected between WPI and
WPO during the Shift operation (i.e., no other test data register may be connected in series with the
WBR).

While the WP_EXTEST instruction is selected, the core circuitry shall be controlled so that it cannot
be damaged as a result of signals received at core input or core clock input terminals.

NOTE—This might be achieved by placing the core circuitry in a reset or hold state while the WP_EXTEST
instruction is selected.

While the WP_EXTEST instruction is selected, the state of all signals received at the wrapper input
terminals required to be provisioned with wrapper boundary cells per rule 12.1.1(a) shall be loaded
into the WBR during the Capture event.

While the WP_EXTEST instruction is selected, the state of all signals driven from the WBR WFOs
shall be completely defined by the data held in the WBR cell associated with that terminal. The data
at the output shall be valid with the Apply event and remain stable until the next WBR event.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

~28- IEC 62528:2007(E)
IEEE 1500-2005(E)

NOTE 1—Where the WBR provides a silent shift path, the data held in the WBR are presumed to have been
loaded by the previous use of an instruction such as WS_PRELOAD.

NOTE 2—Where the WBR comprises shared wrapper boundary cells (i.e., the wrapper boundary cells are
shared between functional and test operation) that do not have a silent shift path, the data held in the WBR must
exist as a result of either the previous instruction or of entering the WP_EXTEST instruction.

e) While the WP_EXTEST instruction is selected, the WBR shall be in OF mode.

f) While the WP_EXTEST instruction is selected, the state of WFO terminals shall not change in
response to the Capture event.

Recommendations

g) While the WP_EXTEST instruction is selected, the core should be put into a quiet mode (e.g., reset
or clock off).

h) While the WP_EXTEST instruction is selected, where output cells that are in the WBR shift path are
used, the WFOs should be controlled to safe values during shift.

Permissions

i) The WBR may be segmented into one or more scan chains with the input and output port of the scan
chains interfaced to the TAM.

j) While the WP _EXTEST instruction is selected, the ShiftWR, CaptureWR, UpdateWR, and
TransferDR terminals may be used.

k) The binary code for the WP_EXTEST instruction may be selected by the wrapper designer.
7.6.2 Description

The optional WP_EXTEST instruction allows circuitry external to the core wrapper (typically the intercon-
nects and glue logic) to be tested. Wrapper boundary cells at WFOs are used to apply test stimuli, while the
cells at wrapper input terminals capture test results. This instruction also allows testing of blocks of UDL
between cores that do not themselves incorporate wrappers.

While the WP_EXTEST instruction is selected, the core circuitry may receive input signals that differ sig-
nificantly from those expected during normal operation. If the core circuitry can tolerate any permutation of
input signals that is received, then no specific design changes are required. However, for some cores, there
may be input sequences that could place the core circuitry in a state where damage may result or excessive
current may be drawn. In these cases, it is the responsibility of the designer to prevent the core circuitry from
processing the “illegal” inputs while the WP_EXTEST instruction is selected. This may be achieved by
placing the core circuitry into a reset or hold state during WP_EXTEST or by controlling the cell functional
outputs (CFOs) connected to the core.

ShiftWR, CaptureWR, UpdateWR, and TransferDR terminals are defined in 8.1.2.

The wrapper input terminals provisioned with wrapper boundary cells per rule 12.1.1(a) may optionally be
designed to allow signals to be driven into the core circuitry when the WP_EXTEST instruction is selected.
This allows user-defined values to be established at the core input terminals, preventing undesired operation
of the core in response to unknown signals arriving at core inputs during operation of the WP_EXTEST
instruction. The values driven may either be constant for the duration that WP_EXTEST is selected (e.g., by
using signal blocking gates at the core input terminals) or be loaded serially through the WBR. Figure 4
shows an example of the configuration of the wrapper during the WP_EXTEST instruction. Note that both
the WPC and the WSC control pins are shown in the figure; however, either the WPC or the WSC can be
used during the WP_EXTEST instruction, not a combination of both. This is the only parallel standard
instruction that can utilize the WSC.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) ~29-
IEEE 1500-2005(E)

Wrapper Parallel Extest (WP_Extest) Mode

WPC

ﬁ

0y

UDL

L[]
C
ore I

EEEIR

UDL \];v Disabled
(R |

JLL

W] w
ok s || mw || B O]

— Enabl]
e | | i)

[Bypass |
WSI —— WSO
WIR
Test is applied via WPC
or WSC Controlled wse WP Extest
WBR Segments -

Figure 4—WP_EXTEST example

7.7 Wx_EXTEST instruction

Wx_EXTEST is an external test instruction that allows the circuitry external to the core to be tested accord-
ing to the system integrator’s requirements. The x in Wx is a place holder for an S, P, or H to indicate
whether the instruction is serial, parallel, or hybrid, respectively.

The Wx_EXTEST instruction encompasses the WS _EXTEST and the WP_EXTEST instructions. This
instruction provides the same flexibility as the Wx_INTEST instruction. The difference between the two
instructions is that Wx_INTEST is an IF test and Wx_EXTEST is an OF test.

NOTE—Following use of the Wx_ EXTEST instruction, the core circuitry may be in an indeterminate state that will per-
sist until a system reset is applied. Therefore, the core circuitry may need to be reset on return to normal (i.e., nontest)
operation.

The rules in 7.7.1 apply where a Wx_ EXTEST instruction is provided.
7.7.1 Specifications

Rules

a) While the Wx EXTEST instruction is selected, the WBR shall be in OF mode.

Recommendations

b) While the Wx_EXTEST instruction is selected, the core should be put into a quiet mode (e.g., reset
or clock off).

c) While the Wx EXTEST instruction is selected, the testing of the circuitry external to the core
should not disturb circuitry internal to the core.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

~30- IEC 62528:2007(E)
IEEE 1500-2005(E)

d) While the Wx_EXTEST instruction is selected, for core output terminals provisioned with wrapper
boundary cells per rule 12.1.1(a), the data loaded during the Capture event should be independent of
the operation of core circuitry.

e) WS _EXTEST or WP_EXTEST instructions should be utilized unless the more flexible capabilities
of the Wx_EXTEST instruction are needed.

Permissions
f) The binary code(s) for the Wx EXTEST instruction may be selected by the wrapper designer.
g) Any number of Wx_EXTEST instructions may be included by the wrapper designer.

7.7.2 Description

The Wx_EXTEST instruction allows testing of circuitry external to the core. While the Wx EXTEST
instruction is selected, the WBR assumes the role of virtual test points. Cells at core output terminals are
used to apply the test stimulus, while those at core input terminals capture the test response. Stimuli and
responses are moved into and out of the circuit by shifting through the WBR.

7.8 WS_SAFE instruction

The optional WS_SAFE instruction allows the state of the signals driven from WFOs to be determined from
the WBR while the WBY is selected as the serial path between the serial input (WSI) and serial output
(WSO) of the wrapper. The signals driven from the WFOs will not change while the WS _SAFE instruction
is selected. The WS_CLAMP instruction can also be used to put the wrapper into a safe state by utilizing a
Wx_PRELOAD instruction to shift in the proper states and then clamping them with the WS CLAMP
instruction. However, it is important to allow a straightforward way for the core integrator to put wrappers
into a safe state. This is why there is a separate instruction for WS_SAFE. This instruction allows the core
integrator to more easily put various wrappers into safe states while other portions of an SoC are being
tested.

The rules in 7.8.1 apply where the WS_SAFE instruction is provided.

NOTE—Following use of the WS _SAFE instruction, the core circuitry may be in an indeterminate state that will persist
until a system reset is applied. Therefore, the core circuitry may need to be reset on return to normal (i.e., nontest)
operation.

7.8.1 Specifications

Rules
a) While the WS_SAFE instruction is selected, the WBY shall be connected for serial access between
WSI and WSO during wrapper data scan operations.
b) While the WS_SAFE instruction is selected, the state of all signals driven from WFOs shall be hard-
wired to fixed values that have been predetermined at wrapper instantiation.
NOTE—The data output from the WBR shall be safe and established as a result of entering the WS _SAFE

instruction.

¢) Whenthe WS_SAFE instruction is selected, the core circuitry shall be controlled so that it cannot be
damaged as a result of signals received at the core data input or core clock input terminals.

d) While the WS_SAFE instruction is selected, the WSC shall be utilized for test control.

Recommendations

e) While the WS_SAFE instruction is selected, the core circuitry should be put into a quiet mode (e.g.,
reset or clock off).

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) ~31-
IEEE 1500-2005(E)

Permissions

f) The binary code for the WS_SAFE instruction may be selected by the wrapper designer.
7.8.2 Description

During testing of a particular core or cluster of cores on a system chip, it may be necessary to place static
values on signals that control operation of circuitry not involved in the test, e.g., to place the core in a state
where it will not respond to signals received from the circuitry under test.

The optional WS_SAFE instruction is similar to the WS_CLAMP instruction in that it allows safe static val-
ues to be applied using the WBRs of the appropriate core wrapper, but does not retain these registers in the
serial path during test application. In a case in which the WS_SAFE instruction is used to create safe static
signals, the following process would be used.

It is presumed in the following example that every wrapper implements the optional WS SAFE instruction.

— Shift the WS_SAFE instruction into all core wrappers that will provide safe static signals during the
upcoming test. Call this group of wrappers G. If test setup data are required in wrappers not in G
(i.e., in the wrappers that will participate actively in the upcoming test), another instruction (e.g.,
WS EXTEST) may be loaded into these core wrappers simultaneously with the loading of
WS_SAFE into core group G.

— From this point on, until the test is concluded, every time instructions are to be scanned into core
wrappers in the SoC, enter the WS _SAFE instruction into the wrappers in G. As long as the
WS SAFE instruction is maintained as the active instruction in the wrappers of G, the output signal
values of these wrappers will be determined by the safe data at their WBR outputs. Also, as a conse-
quence of the use of the WS _SAFE instruction, the wrappers in G all have their WBYs selected
throughout the test; thus, they contribute very little to the overall test time. Figure 5 shows an exam-
ple of the configuration of the wrapper during the WS_SAFE instruction.

Wrapper Serial Safe (WS _Safe) Instruction

Inputs may also
be controlled to

safe states .

Disabled
Clw i FO W Forced
s Safe States
Forced ﬁ FO FI g]
Safe States <ﬁ
Test
Enable(s)
. 4
WSI Ll—:-B -ass
WS_Safe does not wsc | WS Safe

require WS/P_Preload

Figure 5—WS_SAFE example

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

~32- IEC 62528:2007(E)
IEEE 1500-2005(E)

7.9 WS_PRELOAD instruction

The WS _PRELOAD instruction enables the wrapper to be functionally configured. Wrappers that have a
WBR composed entirely of cells with a silent shift path must include the WS PRELOAD instruction. The
WS PRELOAD instruction allows data values to be loaded into the latched parallel outputs of the registers
in the silent shift path of the WBR. The data are loaded into the silent shift path of wrapper cells, and then
the data are loaded into the update stage, if present, during the Update operation. This instruction would typ-
ically be utilized before other instructions are selected (e.g., WS _EXTEST, WS CLAMP).

7.9.1 Specifications

Rules
a) If the WBR contains a silent shift path, there shall be a WS _PRELOAD instruction.

b) While the WS PRELOAD instruction is selected, only the WBR shall be connected for serial access
between WSI and WSO during the Shift operation (i.e., no other test data register may be connected
in series with the WBR).

c) While the WS PRELOAD instruction is selected, the Shift operation of the WBR shall have no
effect on the operation of the core or UDL.

d) While the WS_PRELOAD instruction is selected, the WSC shall be utilized for test control.

Recommendations

e) While the WS_PRELOAD instruction is selected, if the core is not being used in its normal opera-
tion, the core circuitry should be put into a quiet mode (e.g., reset or clock off).

Permissions

f) The binary code for the WS_PRELOAD instruction may be selected by the wrapper designer.
7.9.2 Description

The WS PRELOAD instruction is used to allow shifting of the WBR, via WSI to WSO, without causing
interference to the operation of the core or UDL attached to the WBR. WS _PRELOAD allows an initial data
pattern to be placed at the latched parallel outputs of the silent shift path register cells through a scan load
operation. For example, prior to selection of the WS _EXTEST instruction, data can be loaded onto the
latched parallel outputs using WS _PRELOAD. As soon as the WS_EXTEST instruction has been trans-
ferred to the update register of the instruction register, the preloaded data are driven from the WFOs. This
ensures that known data are driven immediately when the WS _EXTEST instruction is entered. Without
WS PRELOAD, indeterminate data may be driven until the first scan load is complete. Figure 6 shows an
example of the configuration of the wrapper during the WS _PRELOAD instruction.

7.10 WP_PRELOAD instruction

The WP_PRELOAD instruction enables the wrapper to be functionally configured. Wrappers that have a
WBR composed entirely of cells with a silent shift path and have parallel instruction capability, may include
the WP_PRELOAD instruction. The WP_PRELOAD instruction allows data values to be loaded into the
latched parallel outputs of the registers in the silent shift path(s) of the WBR. The data are loaded into the
silent shift paths of wrapper cells, and then the data are loaded into the update stage, if present, during the
Update operation. This instruction would typically be utilized before other defined instructions are selected
(e.g., WP_EXTEST). The WP_PRELOAD instruction allows the WBR to be divided into segments (multi-
ple scan chains), and may be preferred over the WS PRELOAD instruction before entering the
WP_EXTEST instruction. It also allows wrapper inputs and outputs, other than the WSP, to control WBR
inputs and observe WBR outputs. In all other behaviors, WP_PRELOAD mimics the WS PRELOAD
instruction.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) ~33-
IEEE 1500-2005(E)

Wrapper Serial Preload (WS _Preload) Instruction

Enabled

Normal Mode |:W[:> FI FO w[:> Normal Mode
B Core B
Normal Mode <] R FO FI <] R[] Normal Mode

Test
Enable(s)
f

—{__Bypass |
__Bypass | | [

WIR

WSI

wsc | WS _Preload

Figure 6—WS_PRELOAD example

7.10.1 Specifications

Rules

a) While the WP_PRELOAD instruction is selected, only the WBR shall be connected during the Shift
operation (i.e., no other test data register may be connected in series with the WBR).

b) While the WP_PRELOAD instruction is selected, the data in the wrapper boundary cell shall be
available for the Update operation, if applicable.

¢) While the WS _PRELOAD instruction is selected, the Shift operation of the WBR shall have no
effect on the operation of the core or UDL.

d) While the WP_PRELOAD instruction is selected, the WPC shall be utilized for test control.

Recommendations

e) While the WP_PRELOAD instruction is selected, if the core is not being used in its normal opera-
tion, the core circuitry should be put into a quiet mode (e.g., reset or clock off).

Permissions

f) The WBR may be segmented into one or more scan chains with the input and output port of the scan
chains interfaced to the TAM.

g) The binary code for the WP_PRELOAD instruction may be selected by the wrapper designer.
7.10.2 Description

The WP_PRELOAD instruction is used to allow shifting of the WBR without causing interference to the
operation of the core or UDL attached to the WBR. WP_PRELOAD allows an initial data pattern to be
placed at the latched parallel outputs of the silent shift path register cells through a scan load operation. For
example, prior to selection of the WP_EXTEST instruction, data can be loaded onto the latched parallel out-
puts using WP_PRELOAD. As soon as the WP_EXTEST instruction has been transferred to the parallel
output of the instruction register, the preloaded data are driven from the output wrapper terminals. This

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

~34- IEC 62528:2007(E)
IEEE 1500-2005(E)

ensures that known data are driven immediately when the WP_EXTEST instruction is entered. Without
WP_PRELOAD, indeterminate data may be driven until the first scan load is complete. Figure 7 shows an
example of the configuration of the wrapper during the WP_PRELOAD instruction.

Wrapper Parallel Preload (WP_Preload) Instruction

WPC
WPI
w
' FI FO[_|B Normal Mode
Enabled | M2, w0
Core T
w
FO 1. FI j] B Normal Mode
SR
Enal;le(s) — WPO
Wl = e e
] WPP Paths f

wsc WP _Preload

Figure 7—WP_PRELOAD example

7.11 WS_CLAMP instruction

The optional WS_CLAMP instruction allows the state of the signals driven from WFOs to be determined
from the WBR while the WBY is selected as the serial path between WSI and WSO. The signals driven
from the WFOs will not change while the WS CLAMP instruction is selected.

The rules in 7.11.1 apply where the WS_CLAMP instruction is provided.

NOTE—Following use of the WS_CLAMP instruction, the core circuitry may be in an indeterminate state that will per-
sist until a system reset is applied. Therefore, the core circuitry may need to be reset on return to normal (i.e., nontest)
operation.

7.11.1 Specifications

Rules

a) While the WS_CLAMP instruction is selected, the WBY shall be connected for serial access
between WSI and WSO.

b) While the WS_CLAMP instruction is selected, the state of all signals driven from WFOs shall be
completely defined by the data held in the WBR.

NOTE—Data held in the WBR might be achieved by the previous use of an instruction (e.g., WS_PRELOAD).

¢) While the WS_CLAMP instruction is selected, the WSC shall be utilized for test control.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) ~35-
IEEE 1500-2005(E)

Recommendations

d) While the WS _CLAMP instruction is selected, the core circuitry should be put into a quiet mode
(e.g., reset or clock off).

Permissions

e) The binary code for the WS CLAMP instruction may be selected by the wrapper designer.
7.11.2 Description

During testing of a particular core or cluster of cores on a system chip, it may be necessary to place static
values on signals that control operation of circuitry not involved in the test, e.g., to place the aforementioned
circuitry in a state where it cannot respond to signals received from the circuitry under test.

The optional WS_CLAMP instruction allows static values to be applied using the WBRs of the appropriate
core wrapper, but does not retain these registers in the serial path during test application. In a case in which
the WS_CLAMP instruction is used to create static values, the following processes would be used.

It is presumed in the following example that every wrapper implements the optional WS CLAMP
instruction.

Example: WBRs having dedicated wrapper boundary cells

— Prior to the test, a Wx EXTEST or Wx PRELOAD (the x denotes S, P, or H) instruction would be
loaded into all core wrappers that will provide specific values during the upcoming test. Call this
group of wrappers G. If test setup data are required in wrappers not in G (i.e., in the wrappers that
will participate actively in the upcoming test), a Wx_EXTEST or Wx PRELOAD instruction may
be loaded into these core wrappers simultaneously with the loading of WS CLAMP into core group
G.

— Shift the desired pattern into all relevant wrapper boundary cells of the wrappers in G. Any test setup
data required for the SoC to be tested are also loaded.

— Load WS_CLAMP instruction into the wrappers in G.

— From this point on, until the test is concluded, every time instructions are to be scanned into core
wrappers in the SoC, enter the WS _CLAMP instruction into the wrappers in G. As long as the
WS CLAMP instruction is maintained as the active instruction in the wrappers of G, the output sig-
nal values of these wrappers will be determined by the data in their WBRs. Also, as a consequence
of the use of the WS _CLAMP instruction, the wrappers in G all have their WBYs selected through-
out the test; thus, they contribute very little to the overall test time.

Figure 8 shows an example of the configuration of the wrapper during the WS _CLAMP instruction. This
instruction would be loaded serially into the core wrappers that drive the signals on which static values are
required. The required signal values could be loaded as a part of the complete serial data stream shifted into
the chip-level WBR path, both at the start of the test and each time a new test pattern is entered. However, a
limitation of this approach is that the length of the data pattern to be shifted for each test is increased by
inclusion of the WBR of each core wrapper involved in the process. As a result, the test application rate is
reduced. WS_CLAMP reduces overall shift length when the target wrapper does not take an active part in
the test.

Note that this is just one example of how to clamp a signal. Instructions such as Wx PRELOAD or
Wx_EXTEST can be used to load specific values into the wrapper before WS _CLAMP is enabled.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

~36- IEC 62528:2007(E)
IEEE 1500-2005(E)

Wrapper Serial Clamp (WS _Clamp) Instruction

Inputs may also
be controlled to
reloaded states .
P Disabled
[w[> FI FO w[> Preloaded States
B Core B
Preloaded States <ﬁ R FO FI R[]
Test
Enable(s)
f
r»_Bypass |
s - —»[wso]
WS Clamp is preceded wsc | WS_Clamp

by WS/P_Preload

Figure 8—WS_CLAMP example

7.12 WS_INTEST_RING instruction

The optional serial wrapper core test WS _INTEST RING instruction allows testing of the core circuitry.
During the WS _INTEST RING instruction, test stimuli are shifted in 1 bit at a time and applied to the core
functional terminals via the WBR only. The test results are captured into the WBR and are shifted out 1 bit
at a time for examination. The rules in 7.12.1 apply where the WS _INTEST RING instruction is provided.

NOTE—Following the use of the WS _INTEST RING instruction, the core circuitry may be in an indeterminate state
that will persist until a core reset is applied. Therefore, the core circuitry may need to be reset on return to normal
operation.

7.12.1 Specifications

Rules
a) The WS INTEST RING instruction shall select only the WBR to be connected for serial access
between WSI and WSO (i.e., no other test data register may be connected in series with the WBR).
b) While the WS INTEST RING instruction is selected, the WBR shall be in IF mode.
¢) While the WS _INTEST RING instruction is selected, the WSC shall be utilized for test control.

Recommendations

d) While the WS INTEST RING instruction is selected, all WFOs should be placed in a safe or static
drive state.

e) While the WS INTEST RING instruction is selected, for core input terminals provisioned with
wrapper boundary cells per rule 12.1.1(a), the data loaded during the Capture event should be inde-
pendent of the operation of off-core circuitry or chip-level interconnections.

Permissions
f) The binary code for the WS_INTEST RING instruction may be selected by the wrapper designer.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) ~37-
IEEE 1500-2005(E)

7.12.2 Description

The WS_INTEST_ RING instruction allows single-step testing of core circuitry with each test pattern and
response being shifted through the WBR. The WS _INTEST RING instruction requires that the core cir-
cuitry can be operated in a single-step mode, where the circuitry moves one step forward in its operation
each time shifting of the WBR is completed.

While the WS INTEST RING instruction is selected, the WBR assumes the role of virtual test points. Cells
at nonclock core input terminals are used to apply the test stimulus, while those at core output terminals cap-
ture the response. Stimuli and responses are moved into and out of the circuit by shifting through the WBR.
Note that this requires that the core input terminals provisioned with wrapper boundary cells per rule
12.1.1(a) are able to drive signals into the core circuitry.

Typically, the core circuitry will receive a sequence of clock events between application of the stimulus and
capture of the response so that single-step operation is achieved. The specification of wrapper boundary
cells for core clock input terminals allows the clocks for the core circuitry to be obtained in several ways
while the WS _INTEST RING instruction is selected. The following are offered as examples:

a) The signals received at core clock terminals can be fed directly to the core circuitry as during normal
operation of the core. Where this option is selected, the core design shall guarantee that precisely
one single step of operation of the core circuitry occurs between each shifting (filling) of the WBR.

b) Circuitry may be built into the core that allows the core circuitry to complete one step of operation
on completion of shifting in data into the WBR. If the core were a microprocessor, it would be per-
mitted to complete a single processing cycle by, for example, internal generation of a pulse on the
hold signal. In this case, the clock(s) applied at the core clock terminal(s) during the test could be
free-running.

While the WS _INTEST RING instruction is selected, the state of all WFOs is determined by the wrapper
circuitry. Every WFO should be forced to a static or inactive drive state. This ensures that surrounding cir-
cuitry on an SoC is supplied known, safe signal levels while the core circuitry test is in progress.

Recommendation 7.12.1(¢), where followed, ensures that data shifted out of the core in response to the
WS INTEST RING instruction are not altered by the presence of defects in off-core circuitry, chip-level
interconnections, etc. This simplifies diagnosis, since any errors in the output bit stream can be caused only
by defects in the core circuitry or in the WBR. Figure 9 shows an example of the configuration of the wrap-
per during the WS _INTEST RING instruction.

7.13 WS_INTEST_SCAN instruction

The optional serial core test WS _INTEST SCAN instruction is one of the instructions defined by this stan-
dard that allows testing of the core circuitry. During the WS_INTEST SCAN instruction, test stimuli are
shifted in 1 bit at a time and applied to the core functional terminals via the WBR only. This instruction is
identical to the WS _INTEST RING instruction, with the exception of internal scan chain concatenation to
the WBR scan chain, referred to in this standard as the serial scan chain. The test results are captured into the
serial scan chain and are examined by subsequent shifting.

The rules in 7.13.1 apply where the WS _INTEST SCAN instruction is provided.

NOTE—Following the use of the WS _INTEST SCAN instruction, the core circuitry may be in an indeterminate state
that will persist until a core reset is applied. Therefore, the core circuitry may need to be reset on return to normal
operation.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

~38- IEC 62528:2007(E)
IEEE 1500-2005(E)

Wrapper Serial Intest Ring (WS Intest Ring) Mode

Test is applied
via WSC Controlled
WBR Scan Path Core
o~ T~
w FI FO
B
Rk FO FI
/\/\/
Test
Enable(s)
. t
s = w50

wsc | WS Intest Ring
Figure 9—WS_INTEST_RING example

7.13.1 Specifications

Rules

a) While the WS _INTEST_SCAN instruction is selected, the WBR concatenated with an internal scan
chain, which includes all internal scan cells, shall be connected for serial access between WSI and
WSO.

b) While the WS INTEST SCAN instruction is selected, the WBR shall be in IF mode.
c¢) While the WS _INTEST SCAN instruction is selected, the WSC shall be utilized for test control.

Recommendations

d) While the WS _INTEST SCAN instruction is selected, all WFOs should be placed in a safe or static
drive state.

e) While the WS _INTEST SCAN instruction is selected, for core input terminals provisioned with
wrapper boundary cells per rule 12.1.1(a), the data loaded during the Capture event should be inde-
pendent of the operation of off-core circuitry or chip-level interconnections.

f) The serial scan chain should comprise the WBR and every scanned element in the core.

Permissions

g) The binary code for the WS INTEST SCAN instruction may be selected by the wrapper designer.
7.13.2 Description

The WS_INTEST_ SCAN instruction allows single-step testing of core circuitry with each test pattern and
response being shifted through the serial scan chain.

While the WS INTEST SCAN instruction is selected, the serial scan chain assumes the role of virtual test
points. Cells at nonclock core input terminals are used to apply the test stimulus, while those at core output
terminals capture the response. Stimuli and responses are moved into and out of the circuit by shifting the

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) ~39-
IEEE 1500-2005(E)

serial scan chain. This operation requires that the core input terminals provisioned with wrapper boundary
cells per rule 12.1.1(a) are able to drive signals into the core circuitry.

Typically, the core circuitry will receive a sequence of clock events between application of the stimulus and
capture of the response so that single-step operation is achieved. The specification of wrapper boundary
cells for core clock input terminals allows the clocks for the core circuitry to be obtained in several ways
while the WS _INTEST SCAN instruction is selected. The following are offered as examples:

a) The signals received at core clock terminals can be fed directly to the core circuitry as during normal
operation of the core. Where this option is selected, the core design shall guarantee that precisely
one single step of operation of the core circuitry occurs between each shifting (filling) of the serial
scan chain.

b) Circuitry may be built into the core that allows the core circuitry to complete one step of operation
on completion of shifting in data into the serial scan chain. If the core were a microprocessor, it
would be permitted to complete a single processing cycle by, for example, internal generation of a
pulse on a hold signal. In this case, the clock(s) applied at the core clock terminal(s) during the test
could be free-running.

While the WS INTEST SCAN instruction is selected, the state of all WFOs is determined by the wrapper
circuitry. Every WFO should be forced to a static or inactive drive state. This ensures that surrounding cir-
cuitry on an SoC is supplied known, safe signal levels while the core circuitry test is in progress.

Recommendation 7.13.1(e), where followed, ensures that data shifted out of the core in response to the
WS _INTEST SCAN instruction are not altered by the presence of defects in off-core circuitry, chip-level
interconnections, etc. This simplifies diagnosis, since any errors in the output bit stream can be caused only
by defects in the core circuitry or in the WBR. Figure 10 shows an example of the configuration of the wrap-
per during the WS _INTEST SCAN instruction.

Wrapper Serial Intest Scan (WS _Intest Scan) Mode

Test is applied
via WSC Controlled
WBR & Internal
Scan Path Core
o~ T~
Wl >l FI FO j> W
B B
R ¢ FO FI R
o~
Test
Enable(s)
. i
wsi = w50

wsc | WS Intest Scan

Figure 10—WS_INTEST_SCAN example

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

—40- IEC 62528:2007(E)
IEEE 1500-2005(E)

7.14 Wx_INTEST instruction

One core test instruction that allows the core to be tested according to a test procedure specified by the core
provider or core user is required. [EEE Std 1500 does not describe how to test individual cores; this is the
responsibility of the core provider. The core test invoked by the Wx INTEST instruction (the x in Wx is a
place holder for an S, P, or H to indicate whether the instruction is serial, parallel, or hybrid) is completely
specified with the CTL provided for the core. The Wx_INTEST CTL describes the attributes of the core test
such as the following:

a) Number of cell test input (CTI) and cell test output (CTO) terminals,

b) Test pattern set, including control and/or data, that is applied to the core via associated TI and TO
terminals,

¢) Protocol used to input and output the test patterns,

d) Condition or state of core input and output terminals during the core test, excluding the TI and TO
terminals, and

e) Whether the WBR is used during the core test, and if used, in what configuration it is placed.

The Wx_INTEST instruction encompasses the WS INTEST RING and the WS INTEST SCAN
instruction.

The rules in 7.14.1 apply for the Wx INTEST instruction.
7.14.1 Specifications

Rules
a) Each wrapper shall provide at least one Wx_INTEST instruction.
b) While the Wx INTEST instruction is selected, the WBR shall be in IF mode.

Recommendations

c) While the Wx INTEST instruction is selected, the operation of the core should not disturb circuitry
external to the core.

d) While the Wx INTEST instruction is selected, all WFOs should be placed in a safe or static drive
state.

e) While the Wx INTEST instruction is selected, for core input terminals provisioned with wrapper
boundary cells per rule 12.1.1(a), the data loaded during the Capture event should be independent of
the operation of off-core circuitry or chip-level interconnections.

Permissions

f) The WBR may be segmented into one or more scan chains with the input and output port of the scan
chains interfaced to the TAM.

g) The binary code for the Wx_INTEST instruction may be selected by the wrapper designer.

h) Any number of Wx INTEST instructions (Wx_INTEST user defined)) may be included by the
wrapper designer.

7.14.2 Description
The Wx_INTEST instruction allows testing of core circuitry.
While the Wx_INTEST instruction is selected, the WBR may participate and assume the role of virtual test

points. Cells at nonclock core input terminals are used to apply the test stimulus, while those at core output
terminals capture the response. Stimuli and responses are moved into and out of the circuit by shifting the

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) —41-
IEEE 1500-2005(E)

WBR. Note that this requires that the core input terminals provisioned with wrapper boundary cells per rule
12.1.1(a) are able to drive signals into the core circuitry.

Typically, the core circuitry will receive a sequence of one or more clock events between application of the
stimulus and capture of the response. The specification of wrapper boundary cells for core clock input termi-
nals allows the clocks for the core circuitry to be received in several ways while the Wx _INTEST instruction
is selected. The following are offered as examples:

a) The signals received at core clock terminals can be fed directly to the core circuitry as during normal
operation of the core.

b) Circuitry may be built into the core that allows the core circuitry to complete one step of operation
on completion of shifting in data into the WBR. If the core were a microprocessor, it would be per-
mitted to complete a single processing cycle by, for example, internal generation of a pulse on the
hold signal. In this case, the clock(s) applied at the core clock terminal(s) during the test could be
free-running.

While the Wx INTEST instruction is selected, the state of all WFOs is determined by the wrapper circuitry.
Every WFO should be forced to a static or inactive drive state. This ensures that surrounding circuitry on an
SoC are supplied known, safe signal levels while the core circuitry test is in progress.

Recommendation 7.14.1(e), where followed, ensures that data shifted out of the core in response to the
Wx_INTEST instruction are not altered by the presence of defects in off-core circuitry, chip-level intercon-
nections, etc. This simplifies diagnosis, since any errors in the output bit stream can be caused only by
defects in the core circuitry or in the WBR.

8. Wrapper serial port (WSP)

The WSP is a set of wrapper terminals that facilitate standard plug-and-play (PnP) operation of a core that
implements the IEEE 1500 architecture. IEEE Std 1500 defines mandatory WSP terminals to control serial
access to the WIR, the WBY, and the WBR.

The WSP includes the following mandatory terminals: WSI, WSO, and a set of WSC terminals. The WSC
comprises the wrapper clock (WRCK), wrapper reset (WRSTN), SelectWIR, CaptureWR, ShiftWR, and
UpdateWR terminals. If required for operation of the WBR, the optional TransferDR terminal is also
included in the WSC. Some WBR implementations may also operate using one or more optional auxiliary
clock (AUXCK) inputs, which are depicted as the AUXCKn terminal(s) in Figure 11. The AUXCKn termi-
nal(s) are included in the WSC. The above standard WSP terminals are described in further detail in 8.1.

AUXCKn
WRCK
WSsC WRSTN
(Wrapper TransferDR
Serial UpdateWR
Controls) ShiftWR
CaptureWR i
SelectWIR leF\{l_r?/eg? M\;\IltlgR
WSI etc.
WSO

Core

Figure 11—WSP

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

—42- IEC 62528:2007(E)
IEEE 1500-2005(E)

8.1 WSP terminals

This subclause defines the standard WSP terminals of the IEEE 1500 wrapper. Note that only the WSP’s ter-
minals are specified in this subclause, whereas the WSP timing and protocol, as used to operate the standard
features of the IEEE 1500 architecture, are specified and described in subsequent clauses of this standard.

8.1.1 Specifications

Rules

a) The WSP is mandatory and shall include the following mandatory terminals: WSI, WSO, WRCK,
WRSTN, SelectWIR, CaptureWR, ShiftWR, and UpdateWR.

b) All mandatory WSP terminals, and the optional TransferDR terminal, shall be dedicated wrapper
terminals (i.e., they shall not be used for any other system function).

¢) Ifuser-defined AUXCK(s) are used, per permission (e), the timing relationship between WRCK and
the AUXCK(s) shall be sufficiently specified and documented for use by the SoC integrator.

Permissions
d) The WSP may include the TransferDR terminal.

e) The WSP may include AUXCKn terminal(s) in addition to the dedicated WRCK for operation of
registers other than the WBY and WIR. Such clocks may be shared with other system clocks and
may be used to operate other core features.

f) The user may select a user-defined name for the AUXCK terminal(s).
8.1.2 Description

The mandatory WSP terminals are WSI, WSO, WRCK, WRSTN, SelectWIR, CaptureWR, ShiftWR, and
UpdateWR. The signals connected to these WSP terminals are used to select whether the WIR or a WDR is
connected between WSI and WSO and to select and operate either the WIR or a selected WDR between
WSI and WSO. The WSP may also include the optional TransferDR and AUXCKn terminals.

The following definitions apply to the rules specified in 8.1.1.
WSI and WSO: These WSP terminals are used to scan in and scan out wrapper instructions and data.

WRCK: The signal connected to the WRCK terminal is a dedicated clock used to operate IEEE 1500
functions.

AUXCKn: AUXCKn are optional auxiliary clocks (AUXCK) used [per permission 8.1.1(e)] with some
implementations of the WBR. These may also be shared with system clocks and must have a user-specified
timing relationship to WRCK for operation of the WBR. It is anticipated that more than one AUXCK termi-
nal could exist in an IEEE 1500 wrapper. In such a case, the integer n is used to differentiate these terminals
(e.g., AUXCKI1, AUXCK2). Subclause 16.1 provides further discussion on AUXCKs.

WRSTN: When asserted, WRSTN puts the wrapper into its normal system mode. The signal may be used to
reset other WRs or wrapper circuitry as needed.

SelectWIR: SelectWIR determines what type of WR operation, i.e., instruction or data, is to be performed.
The signal value selects between the WIR and the data registers, e.g., WBY or WBR. While SelectWIR is
asserted to logic 1, the WIR is selected and connected between WSI and WSO. SelectWIR must be de-
asserted to logic 0 in order for any WDR or CDR to be selected and connected between WSI and WSO.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) —43-
IEEE 1500-2005(E)

CaptureWR, ShiftWR, UpdateWR: These terminals control and enable WR operations. When one of
these signals is asserted to logic 1 and the other two signals are deasserted to logic 0, a corresponding Cap-
ture, Shift, or Update operation will be enabled for the selected WR. While the WIR or WBY is selected, the
enabled operation occurs synchronously to WRCK.

TransferDR: TransferDR is required when the WBR includes cells with a transfer capability.

The operation of the WIR, WBY, and WBR using the WSP is described in further detail in Clause 10,
Clause 11, and Clause 12, respectively.

9. Wrapper parallel port (WPP)

In addition to the mandatory WSP, IEEE Std 1500 supports an optional WPP as depicted in Figure 1.

9.1 WPP terminals

WPP terminals are user-defined with the specifications in 9.1.1.
9.1.1 Specifications

Rules

a) If a user-defined WPP is used per permission (c), the timing relationships between its constituent
signals shall be sufficiently specified and documented for use by the SoC integrator.

b) A WPP shall not include the ShiftWR, CaptureWR, UpdateWR, TransferDR, SelectWIR, WSI, or
WSO terminals.

Permissions
c) The wrapper designer may define one or more dedicated WPP(s).
d) A WPP may include the WRCK and AUXCK terminals.

9.1.2 Description

It is permitted to have a parallel access mechanism for increased data bandwidth to the wrapped core.
Figure 1, Figure 17, and Figure 20 show the WPP and its usage. A WPP port is distinct from the WSP, but
may share the WRCK and AUXCKs with the WSP.

10. Wrapper instruction register (WIR)

This clause specifies and describes the WIR. The WIR is an instruction register in which IEEE 1500 wrap-
per instructions are serially loaded through the standard WSP. The WIR also comprises interface circuitry to
other IEEE 1500 components, such as the WBR and WBY, and may also interface to the circuitry of the
core.

10.1 WIR configuration and DR selection

Figure 12 illustrates the WIR within the IEEE 1500 architecture. This figure shows how the standard data
registers (i.e., WBR and WBY) and other optional data registers (i.e., WDRs and CDRs) are configured for
access via the WSP and how they are selected by the WIR. The WIR contains a shift stage, instruction

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

—44 — IEC 62528:2007(E)
IEEE 1500-2005(E)

decode, and update stage. The WIR interfaces to the WSP, the IEEE 1500 wrapper, and conditionally the
core per permission 10.2.1(h).

SelectWIR
|

{SelectWIR, | WER WIR_WSO WSO

W‘g‘;?ﬁ N Core_Modes
CaptureWR, = WDR_Controls CDRk DR_Select[n:0]

ShiftWR, o CDR_Controls :
UpdateWR) g_ =P DR_Select[n:0] '

< P> WBR_Controls_Modes WDR k
=P WBY_Controls DR_WSO
WSI ? » WBY

Figure 12—Example of WIR interface to WBY, WBR, and core

10.1.1 Specifications

Rules
a) The IEEE 1500 wrapper shall contain a single WIR.

b) The WIR shift register shall be selected and connected between WSI and WSO when SelectWIR is
asserted to logic 1, regardless of the current wrapper instruction.

¢) Selection of registers other than the WIR (i.e., WDRs or CDRs) between WSI and WSO shall be
determined by the current wrapper instruction, and these registers are selected when SelectWIR is
asserted to logic 0.

Permissions

d) Alternate mechanisms for access to WDRs or CDRs may be enabled by a user-defined wrapper
instruction.

10.1.2 Description

The WIR is unconditionally accessible by the WSP by asserting SelectWIR. SelectWIR always takes prece-
dence in selecting the WIR, so that when it is logic 1, the WIR is connected between WSI and WSO and is
enabled to shift, update, or capture using the WSP. Thus, access to the WIR for loading wrapper instructions
can always be realized simply by asserting SelectWIR to logic 1, regardless of the current wrapper instruc-
tion and the selected WDR or CDR.

The access of any WDR or CDR through the WSP requires that SelectWIR be logic 0. The register accessed
through WSI and WSO is then determined based on the wrapper instruction previously updated in the WIR.

User-defined wrapper instructions may enable an optional user-defined parallel port. Such a user-defined
parallel interface may encompass an alternative selection mechanism for access to WDRs and/or CDRs. Per-
mission 10.1.1(d) establishes that control of such alternate access mechanisms originates and terminates
exclusively from the WIR.

10.2 WIR design

A block diagram of a WIR design is depicted in Figure 13. The WIR is controlled and clocked by the stan-
dard WSC terminals.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) —45-
IEEE 1500-2005(E)

(Optional) Parallel Capture Data

Serial Shift
Path
ShiftWR —» ; Pl
wsli ={ohiﬁ7n-1 ﬂsmﬂj }—b’shiﬂﬁ} » WIR_WSO
CaptureWR —»| I T T
SelectWIR —» l l l l«— WRSTN
UpdateWR —>| | | Decode & Update | e wrexk
WIR Circuitry l% ls WIR
| | A DR_Select[n:0]

Hjup 810
Ve RTelo]
U0 HAM

HuD
HUD Ag

Figure 13—WIR circuitry design

The design of the WIR and its associated interface circuitry are shown in Figure 12 and Figure 13.

Figure 12 shows an example of the interface signals generated by the WIR circuitry. This interface circuitry
must be designed to provide the necessary control signals for standard data register selection and operation
and to control the standard wrapper modes. The WIR circuitry may be optionally extended to generate con-
trols for the selection and operation of other data registers, for the enabling of a WPP, or for any other core
modes that may be needed.

Control signals generated by the WIR circuitry are derived from the current wrapper instruction and the
states of the signals connected to the WSC terminals. For the standard IEEE 1500 data registers (i.e., the
WBR and the WBY), signals generated by the WIR circuitry will include controls for connecting the WBR
or WBY between the WSI and WSO terminals. For the WBY, the WIR circuitry must generate controls for
its Shift operation, e.g., a ShiftWBY shift enable signal. For standard serial instructions, the WIR circuitry
must also generate control signals for operation of the WBR and its wrapper modes. For example, the WIR
would generate wrapper modes for multiplexing the WBR cells between the test and normal modes of the
wrapper.

Figure 13 shows a block diagram of the WIR circuitry. The WIR is controlled and clocked by the standard
WSC terminals, as shown in the figure. Circuitry in the WIR must generate the necessary controls for its
operation from the signals connected to the standard WSC terminals. For example, a Shift WIR enable signal
may be derived from the signals connected to the SelectWIR and ShiftWR terminal. The specific circuitry
required for WIR operation is dependent on the design implementation of the WIR and is not shown in
Figure 13.

As illustrated in Figure 13, the WIR circuitry includes an »-bit serial shift stage, logic for (optionally) decod-
ing the shift stage contents, and circuitry for updating the wrapper instruction that was loaded into the WIR.
In order to accommodate the mandatory wrapper instructions, the WIR serial shift stage must be at least
2 bits long. The wrapper instruction opcode is serially shifted into the n-bit shift stage and may be encoded,
partially encoded, or unencoded. Thus, logic for decoding the wrapper instruction is optional, depending on
implementation. The update stage latches the wrapper instruction that was loaded into the WIR to ensure
that the current (i.e., previously updated) instruction does not change during subsequent WIR Shift
operations.

The WIR may optionally include parallel capture inputs, as shown in Figure 13. This permits the WIR to
capture test control information or to capture data that can be used for testing the WIR, or other IEEE 1500
circuitry. Further specification and description of the WIR design are given in 10.2.1 and 10.2.2.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

— 46— IEC 62528:2007(E)
IEEE 1500-2005(E)

10.2.1 Specifications

Rules
a) The WIR shall provide signals for selecting the WBR or WBY between WSI and WSO as required
by the wrapper instructions defined in this standard.
b) The WIR shall provide signals to enable and control the operational modes of the WBR, as defined
by this standard.
c) The WIR shall be dedicated IEEE 1500 logic.
d) The shift path through the WIR shall include at least 2 bits.
e) There shall be no inversion of logic values from WSI to WSO for WIR Shift operations.
f) The WIR shall be designed so that data shifted into the WIR shift register do not affect the currently
active wrapper and core modes until a WIR Update operation occurs.
g) Where optional parallel inputs are provided to the WIR, the data at the parallel inputs shall be cap-
tured into the WIR shift register upon execution of a WIR Capture operation.
h) Where cores are provided with test mode enable input terminals, these terminals shall be directly
controlled by the WIR circuitry.
Recommendations
1) When parallel capture inputs are provided to the WIR, any shift register stages that are unused for
capture should be designed to always capture a fixed binary logic value (i.e., either a 0 or a 1) when
a WIR Capture operation occurs. The fixed binary code captured may be determined by the
designer.
j) Operation of the WRSTN to reset the wrapper should load fixed logic values into the WIR shift path.
Permissions
k) Modes of user-defined WDRs may be enabled and controlled by the current instruction in the WIR.
1) Core system operation modes may be enabled and controlled by the current instruction in the WIR.
m) Signals applied to the terminals of the WSC may be used to directly control and/or clock WDRs,
CDRs, or core test functions without going through the WIR.
n) The WIR may capture data values during WIR Capture operations.
0) Control signals provided by the WIR may be output to IEEE 1500 wrapper terminals in order to

facilitate external circuitry that may be required for PnP operation of the WBR or other data
registers.

10.2.2 Description

The WIR circuitry as shown in Figure 12 and Figure 13 is loaded and updated with a wrapper instruction via
the WSP terminals. Based on the protocol applied to the signals connected to the WSC terminals, the WIR
circuitry generates the necessary control signals for shifting and updating wrapper instructions or the data
register specified by the current wrapper instruction. The WIR circuitry also generates the necessary signals
for controlling any wrapper and core modes associated with the instruction.

Interface signals generated by the WIR circuitry for the standard IEEE 1500 instructions must include con-
trols for the following:

Selection of which data register is to be connected between WSI and WSO. This includes controls to
select between the WBY and the WBR.

Control signals for the WBY Shift operation and the optional WBY Capture operation.
Control signals for the wrapper modes of the WBR cells.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) —47 -
IEEE 1500-2005(E)

The WIR circuitry may optionally generate other control signals, such as signals to configure core test
modes, controls to select and enable CDRs and/or WDRs, or controls to select and enable the optional WPP
and its associated data registers.

Control signals generated by the WIR are static control signals, i.e., signals that change relatively infre-
quently. Depending on the implementation of the WBR or other data registers, WSC signals may interface
directly to the data registers or the core. For example, the WRCK may directly clock the WBR cells. The
state of the control signals output from the WIR circuitry, as shown in Figure 12, is generated based on the
state of the WSC terminals and the currently active wrapper instruction in the WIR.

As an example, consider the standard WS EXTEST instruction. When this instruction is loaded into the
WIR, the WBR must be accessed between the WSI and WSO terminals of the wrapper, and the WBR Cells
are put into their OF wrapper mode. Similarly, when the WS _BYPASS instruction is loaded in the WIR, the
WBY is to be accessed between WSI and WSO, and the WBR must be put into a state so that it allows nor-
mal operation of the core. Figure 12 shows a set of control signals called DR_Select[n:0], as being generated
by the WIR circuitry. These controls are then connected to the DR WSO multiplexer. In this example of
WIR implementation, the DR_Select[n:0] controls are used for selecting the data register to be connected
between WSI and WSO. The DR_Select[n:0] signals select among the WBY, the WBR, and any number of
other optional registers, per the currently active wrapper instruction. The scan output of the selected data
register is then output onto the DR_ WSO output of the multiplexer, and the DR WSO multiplexer output
would then be selected at the wrapper’s WSO multiplexer by the SelectWIR signal. The WIR circuitry must
also generate signals to control WBY operations, e.g., a Shift WBY signal to enable shifting the WBY.

Figure 13 shows optional parallel inputs to the WIR. These inputs may be provided to permit data to be cap-
tured into the WIR. These capture data may be used for test control, testing of the WIR circuitry, or testing
of other IEEE 1500 circuitry.

When optional parallel capture inputs are provided to the WIR, it is recommended that any unused capture
inputs be designed to capture fixed binary logic values. This is intended to prevent the capture of unknown
data into any unused bits, which may then need to be masked when examining the captured data that were
scanned out of the WIR. In addition, the designer may consider choosing fixed logic values that will aid in
testing and diagnosis of the WIR logic and SoC scan path integrity. However, care should be taken in the
values that are captured into the WIR, and the operation of the WIR, so that unknown or harmful instructions
are not inadvertently updated in the WIR. This can be avoided after a WIR Capture operation, by first shift-
ing in a known instruction, prior to performing a WIR Update operation.

10.3 WIR operation

Operation of the WIR is controlled by the signals connected to the WSC terminals of the IEEE 1500 wrap-
per. Figure 14 shows a timing diagram of WIR Shift operation followed by a WIR Update operation.
Standard WIR operations are specified and described in 10.3.1 and 10.3.2.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

—48 - IEC 62528:2007(E)
IEEE 1500-2005(E)

WIR_ Shift) WIR !deate
WRCK
SelectWIR : : : ' \
ShiftWR /[: N\
UpdateWR . . ' /_E_\
WIR Shift Register X X X :
WIR Update Register : : : :X

Figure 14—Timing for WIR Shift operation followed by WIR Update operation

10.3.1 Specifications

Rules

a)

b)

d)

e)

2)

h)

The behavior and operation of the WIR shall be defined by WSP protocol applied to the signals con-
nected to the WSC terminals, as follows:

1) When a WRSTN occurs, the WIR update register shall be set to WS _BYPASS, and the WBR
shall be set to normal mode.

2) When a WIR Shift operation occurs, the WIR shift register shall shift instruction data from
WSI to WSO.

3) When a WIR Update operation occurs, the wrapper instruction shall be updated from the WIR
shift register into the WIR update register, and updated wrapper and core modes shall be set.

4) When the optional WIR Capture operation occurs, the WIR shift register shall be loaded with
parallel capture data.

5) During all other WSP operations, the WIR shift and update registers shall retain their current
state or instruction.

The WIR and its associated circuitry shall be clocked and controlled only with the dedicated WSC

signals, as defined by this standard.

A single WSP protocol (i.e., WRSTN, WIR shift, WIR update, or WIR capture) shall be applied, as

defined by this standard, to operate the WIR so that only one WIR operation is enabled for the given
protocol.

The current wrapper modes and core modes shall remain active until either a WRSTN or WIR
Update operation occurs, which shall cause the specified wrapper instruction and modes to take
effect and become the currently active instruction and modes.

NOTE—The previous instruction and modes shall become inactive subsequent to the new Instruction and
Modes becoming active.

The WIR circuitry shall retain its current state (i.e., shift stage values and currently active modes)
indefinitely while the WRCK signal is stopped (i.e., WRCK held at a fixed logic value of 1 or 0) and
the signal connected to the WRSTN terminal is logic 1.

The WIR circuitry shall retain its current state while there are no active WIR operations in progress.

A WRSTN shall occur when the signal connected to the WRSTN terminal transitions to logic 0 and
shall cause the wrapper modes and core modes to be set to normal system mode.

When the signals connected to the WSC’s SelectWIR and ShiftWR terminals are logic 1, a WIR
Shift operation shall occur on the next rising edge of WRCK and shall cause instruction data to shift
through the WIR, from WSI to WSO. The shift stage data shall shift 1 bit toward WSO for each

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) —49 -
IEEE 1500-2005(E)

rising edge of WRCK of the WIR Shift operation. SelectWIR and ShiftWR shall remain logic 1 dur-
ing the WIR Shift operation.

i) During a WIR Shift operation, WSI shall be sampled on the rising edge of WRCK and WSO shall
change only on the falling edge of WRCK.

7)) When the signals connected to the WSC’s SelectWIR and UpdateWR terminal are logic 1, a WIR
Update operation shall occur on the next falling edge of WRCK and shall cause the wrapper modes
and core modes, as determined by the wrapper instruction in the WIR serial shift stage, to take
effect.

k) When the signals connected to the WSC’s SelectWIR and CaptureWR terminals are logic 1, a WIR
Capture operation, if implemented, shall occur on the next rising edge of WRCK and shall cause the
data at the parallel inputs of the WIR to be latched into the serial shift stage of the WIR.

NOTE—For all WIR operations the appropriate WSC terminals must be at valid logic levels prior to the corre-
sponding clock edge of WRCK specified for the operation, and they must meet the setup and hold timing
specifications of the design. Per rule (c), the signals connected to the WSC terminals that are not specified in the
protocol shall be de-asserted in the given protocol.

Recommendations
1) WRSTN should not be used to initialize any other system logic within the core.

m) When a WIR Capture operation has been performed, a WIR Shift operation should be performed
prior to a WIR Update operation.

NOTE—This will prevent an unintended wrapper instruction (i.e., based on the WIR’s capture data) from being
updated in the WIR. Either a WIR Shift operation should always precede a WIR Update operation, or the
designer should implement the WIR so that unintended wrapper instructions are not updated in the WIR.

n) When a WRSTN occurs, the WIR shift register should be set to WS_BYPASS.

Permissions

0) The sequences and number of WIR operations may occur in any order.
10.3.2 Description

Protocol applied to the WSP terminals controls three mandatory operations of the WIR (i.e., WRSTN, WIR
Shift, and WIR Update) and an optional operation (i.e., WIR Capture). For all other data register operations,
the WIR is required to retain the wrapper instruction last updated in the WIR. This guarantees that any wrap-
per modes or core modes controlled by the instruction will not change until a new wrapper instruction is
updated in the WIR. Further, when the WRCK is stopped, the WIR must retain its current state; thus the
WRCK is not required to be free-running.

The WIR circuitry outputs WS _BYPASS when the WSC’s WRSTN terminal transitions to logic 0. This
causes the mode of the core to be set to normal system operation.

A wrapper instruction is loaded into the WIR by asserting the signals connected to the SelectWIR and
ShiftWR terminals to logic 1 and then shifting in the instruction opcode on the WSI terminal with WRCK.
The WSI data will be sampled on the rising edge of WRCK, and the WIR will shift 1 bit of data, towards
WSO, for each rising edge of WRCK. WSO will change on the falling edge of WRCK. Once the proper
number of wrapper instruction bits has been shifted into the serial shift stage of the WIR, the ShiftWR signal
must be deasserted before the next rising edge of WRCK. Following this, the signal connected to the
UpdateWR terminal is asserted to logic 1, and the WIR will then update on the next falling edge of WRCK.
A timing diagram with a WIR Shift operation, followed by a WIR Update operation, is shown in Figure 14.
This falling-edge behavior was adopted in order to prevent race conditions between shift and update and as
an alternative to additional protocol restrictions. This falling-edge behavior also improves PnP.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

~ 50— IEC 62528:2007(E)
IEEE 1500-2005(E)

When a wrapper instruction is updated in the WIR, the corresponding data register is enabled to be selected,
and the appropriate wrapper modes and core modes are set. Once the new instructions and modes are active,
deasserting the SelectWIR signal selects operation of the data register specified by the wrapper instruction.

11. Wrapper bypass register (WBY)

This clause specifies and describes the WBY.

11.1 WBY register configuration and selection

Figure 12 illustrates how the WBY fits into the IEEE 1500 WR configuration and is connected between the
WSI and WSO of the WSP. The WBY is the WDR selected when the WIR contains the WS BYPASS
instruction. Once selected, the WBY is connected between the WSI and WSO terminals of the WSP and can
be shifted using protocol applied to the signals of the WSC terminals.

11.1.1 Specifications

Rules
a) The IEEE 1500 wrapper shall contain a single WBY.

b) The WBY shall be selected for access between WSI and WSO when the currently active wrapper
instruction is WS_BYPASS and the signal connected to the WSC’s SelectWIR terminal is logic 0.

c¢) The WBY shall be selected for access between WSI and WSO when the currently active wrapper
instruction is WS_CLAMP or WS_SAFE, if support for those instructions is provided in the
wrapper.

Recommendations

d) The WBY should be selected for all unused wrapper instruction opcodes or for when a wrapper
instruction does not require a WDR for its operation.

Permissions

e) The WBY may be selected by wrapper instructions other than the WS _BYPASS instruction.
11.1.2 Description

The WBY is a mandatory WDR and must always be selected by the WS _BYPASS instruction. The WBY
may also be selected by other wrapper instructions and should be considered as the default data register (i.e.,
for unused wrapper instruction opcodes or for when the instruction does not require a specific data register)
selected between the WSI and WSO terminals of the WSP. This will ensure that there is always a default
WDR connected between the WSI and WSO terminals so that the scan path for the WSP is never undefined.
Once selected, the WBY can be utilized when the signal connected to the WSC’s SelectWIR terminal is
deasserted to logic 0.

11.2 WBY design

A block diagram for the design of the WBY is shown in Figure 15. The WBY is an n-bit serial shift register.
It can optionally capture parallel data into its shift register stage and does not have an update stage. Further
specification and description of the WBY design are given in 11.2.1 and 11.2.2.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) ~51-
IEEE 1500-2005(E)

ShiftWBY —»|

Shift n-1 | —--—J» Shift 0 > WBY_WSO

) 4

WSI

WRCK—¥ . .
Serial shift stage

Figure 15—WBY

11.2.1 Specifications

Rules

a) The circuitry that forms the WBY shall be dedicated IEEE 1500 logic (i.e., the circuitry shall not be
shared with, or used to perform, system functions).

b) The WBY shall include at least 1 bit of serial shift data.
¢) There shall be no inversion of logic values between WSI and WSO for WBY Shift operations.

Recommendations

d) The serial shift stage of the WBY should be kept to a minimal length in order to provide the shortest
possible bypass path through the WSI-WSO terminals of the WSP. A 1 bit WBY is the preferred
length.

Permissions

e) Parallel input(s) to the WBY that permit capture of data value(s) during WBY Capture operations
may be provided.

11.2.2 Description

The WBY provides an n-bit bypass of the WSP. In most IEEE 1500 wrapper implementations, the WBY
will be a single bit in length; however, it is permitted to be multiple bits in length in order to facilitate con-
nection of the WSP at the system chip level (see Clause 15). In the case where more than a single bit WBY
is implemented, it is recommended that the WBY length be kept as short as possible.

The WBY interfaces to the WSC terminals and to the controls generated by the WIR circuitry. Particular
controls signals for the WBY circuitry will depend on the actual implementation of the WBY.

11.3 WBY operation

Operation of the WBY register involves first loading a wrapper instruction to select the WBY and then
applying the proper protocol to the WSC terminals in order to shift the WBY or optionally capture parallel
data into its shift stage. Detailed specifications and description on operation of the WBY are given in 11.3.1
and 11.3.2.

11.3.1 Specifications

Rules

a) The operation of the WBY shall be defined by protocol applied to the dedicated WSP signals (e.g.,
WRCK, ShiftWR).

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

~ 52— IEC 62528:2007(E)
IEEE 1500-2005(E)

b) The WBY shall retain its current shift stage value indefinitely while the WRCK signal is stopped
(i.e., WRCK held at a fixed logic value of 1 or 0).

c¢) The WBY shall retain its current shift stage value while there are no active WBY operations in
progress.

d) While the WBY is selected and when the signals connected to the WSC’s SelectWIR and ShiftWR
terminals are logic 0 and 1, respectively, a WBY Shift operation shall occur on the next rising edge
of WRCK.

e) A WBY Shift operation shall cause data to shift through the WBY, from WSI to WSO, and the shift
stage data shall shift 1 bit toward WSO for each rising edge of WRCK.

f) During a WBY Shift operation, WSI shall be sampled on the rising edge of WRCK and WSO shall
change only on the falling edge of WRCK.

NOTE—For all WBY operations, the appropriate WSP terminals shall be at valid logic levels prior to the corre-
sponding clock edge of WRCK specified for the operation, and they shall meet the setup and hold timing
specifications of the design.

11.3.2 Description

The operation of the WBY is controlled and clocked with protocols applied to the WSP signals. The WBY
interfaces to the WIR circuitry, where clock and control inputs to the WBY from the WIR will depend on the
actual WBY implementation. For example, in the WBY register illustrated in Figure 15, a ShiftWBY control
input is generated by the WIR circuitry and the WBY receives the WRCK and WSI signals directly from the
WSP. The WBY-WSO output of the WBY is then connected to the DR WSO multiplexer in Figure 12 and
will be output on the DR WSO signal when the WBY is selected as the data register.

12. Wrapper boundary register (WBR)

IEEE Std 1500 mandates a serial interface and supports a parallel interface for accessing a wrapped core.
The serial interface is characterized by a single chain composed of all WBR cells, whereas the parallel inter-
face is characterized by one or multiple IEEE 1500 wrapper cell chains surrounding a core. Figure 16 shows
the WBR in an IEEE 1500 serial interface architecture. The WRSTN shown in this figure may optionally be
used to reset the WBR cells to a known state.

The WBR is constructed of WBR cells, each of which (except for those permitted by permission 12.2.1(g))
has four data terminals: cell functional input (CFI), cell functional output (CFO), cell test input (CTI), and
cell test output (CTO).

Figure 16 shows the following:

a) Wrapper functional inputs (WFIs) are connected to the CFI terminals of WBR cells provided for
core input terminals.

b) CFO terminals of WBR cells provided for core input terminals are connected to the corresponding
core input terminals.

c) Core output terminals are connected to the CFI terminals of corresponding WBR cells provided for
those core output terminals.

d) The CFO terminals of cells provided for core output terminals are connected to corresponding
WEFOs.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) ~ 53—
IEEE 1500-2005(E)

WFI_1 7o L v
1 leJCORE IN1 CORE OUTI PRI cpo B wio |
-t CLK [
CTI CTo
CORE
CTI
CORE OUT2 [mlcrr - WO 2
WFI 2 —{B{CFI CTC(;O JcoRE N2 CFO 3
CLK |-go
(LK S
CTI
? CORE_OUT3 fplcr1 1 WFO 3
WELS | gl 1O - S 3
cro [CORE_IN3 CLK
LK CTO
CTI
WRCK __¢ T
TI A4

Figure 16—Example of WBR in serial interface configuration
to be accessed from WSP

WFI and WFO are generic names for wrapped core terminals that are intended to be connected within an
SoC to integrate the wrapped core within the SoC. It is often the case that identical WBR cells are used for
wrapping both core input terminals and core output terminals. These WBR cells are connected differently
and may receive different control signals (not shown). The WBR shift path is formed by connecting WBR
cells CTO to CTI. TI and TO are defined to be the scan input and scan output terminals of the WBR as a
whole.

In Figure 16 and Figure 17, the WFI k terminals are WFI terminals, while the WFO_k terminals are WFO
terminals. In the case where an AUXCK is used to operate the WBR, Figure 40 shows an example timing
relationship between WRCK and the AUXCK.

In Figure 17, a parallel interface implementation using two scan chains is depicted. Although this figure
shows all inputs placed on one scan chain and all outputs on a second scan chain, the IEEE 1500 parallel
interface is not limited to this configuration. In addition, although WRCK is shown in both Figure 16 and
Figure 17, IEEE Std 1500 does not mandate the use of WRCK for clocking the wrapper cells. A different
clock, i.e., AUXCK, may be used although the WRCK is required at the wrapper level.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

— 54— IEC 62528:2007(E)
IEEE 1500-2005(E)

TO[0] o]
WFI_1 oo L 1
crl cro] CORE_IN1 CORE _OUT1 CFl ™ cpo [WFO_1
e CLK [
CTI o
CORE *
WEFI_2 1o CORE_OUT? flee €T | —Lp WEO 2
T CH CORE_IN2
CFO (B> el
o »-CLK o
CTI
? CORE OUT3 CTO WFO 3
WFL3 | [€TO - w1 10—t WFO_
(LK CTI
CTI
WRCK ? ke
TI[0] -

Figure 17—Example of WBR in parallel interface configuration
to be accessed from WPP

12.1 WBR structure and operation

12.1.1 Specifications

Rules
a) Every core signal terminal that is digital, except for signals that cause data to be loaded into a
sequential element (e.g., the clock of a flip-flop, the gate of a latch, or the asynchronous set or reset
of either a flip-flop or a latch) or dedicated test signal, shall be provisioned with a WBR cell.
b) The WBR shall have at least one configuration in response to the state of the WIR, allowing serial
access to and from all WBR cells between TI and TO.
c¢) Every wrapped terminal shall be uniquely associated with at least one WBR cell, except as
exempted under permission 12.1.1(h).
d) The WBR must respond to shift, capture, and apply as defined in 12.3.1, except as exempted under
permission 12.2.1(g).
e) Core terminals that have been provided for the purpose of statically enabling one or more core test
modes shall be provisioned with a WIR control.
Recommendations
f) Core terminals exempted from wrapper cell insertion per rule 12.1.1(a) should be provided with
direct access from the SoC to their corresponding wrapped core terminals, except where doing so
would conflict with rule 12.1.1(e).
Permissions
g) Any core terminal may be provisioned with a WBR cell, provided doing so does not alter the behav-

ior of standard instructions.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) — 55—
IEEE 1500-2005(E)

h) In a case in which a core input terminal is used solely as the source of data for an output terminal, a
single WBR cell may be shared between the input and the output terminals.

i) A core input terminal may be provisioned with more than one WBR cell.
12.1.2 Description

For the IEEE 1500 serial interface, the WBR should have a single, uniform shift path between its TI and TO.
WBR structure rules 12.2.1(a) and 12.2.1(b) support this. A shift path in a WBR cell is composed of one or
more storage elements serially connected between CTI and CTO. Likewise, for the serial mode of the IEEE
1500 wrapper, a shift path is the same storage elements of all the cells in the WBR concatenated into a single
serial path.

In the case where core terminals are exempted from wrapper cell insertion, the wrapped core patterns will
likely presume that a direct access is provided from the SoC to these terminals except where prohibited by
rule 12.1.1(e) since those terminals are controlled by the WIR. The SoC integrator has to take this into
account for proper operation at the SoC level.

12.2 WBR cell structure and operation

The WBR cell operation relies on the Shift, Capture, Update, Transfer, and Apply events more fully defined
in 12.3.1.

12.2.1 Specifications

Rules

a) Every WBR cell shall have at least one storage element connected between its CTI and CTO
terminals.

b) Every WBR cell required per rule 12.1.1(a) shall have a storage element provisioned for the purpose
of servicing the Capture event and this element shall be the shift path storage element closest to CTI,
the shift path storage element closest to CTO, or the optional update storage element, if it exists.

¢) Provided that the update storage element is provisioned for servicing the Capture event, the WBR
cell shall support the Transfer event.

d) Provided that the WBR cell’s shift path is composed of more than one storage element, the WBR
cell shall support the Transfer event.

e) Storage elements in the shift path of a WBR cell shall not respond to the Update event.

Permissions
f) Any WBR cell may have a storage element provisioned for servicing the Update event.

g) For core terminals exempted from being wrapped per rule 12.1.1(a), reduced-functionality WBR
cells may be provisioned. When these cells are provided, they must support the Shift event and at
least one of the following:

1) The Capture event to observe the CFI terminal or the CFO terminal
2) The Apply event to control the CFO terminal

12.2.2 Description

WBR cell structure rules 12.2.1(a) and 12.2.1(b) provide for a minimal implementation consisting of only a
means to select test data or functional data as input to a shared storage element.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

— 56— IEC 62528:2007(E)
IEEE 1500-2005(E)

WBR cell structure rule 12.2.1(a) allows for multiple storage elements in the shift path in order to support
test methodologies requiring the application of sequential patterns (e.g., path-delay, transition delay, piece-
wise functional).

Captured data may enter the shift path of a cell at the storage element closest to the CTI or CTO of this cell.
However, in order to prevent captured data from overwriting other test data during sequential tests, captured
data should ultimately move into the shift path of a cell via either the Capture event or Transfer event. WBR
cell structure rules 12.2.1(c) and 12.2.1(d) support this.

This standard anticipates test methodologies requiring the application of functional timing in test mode. For
example, permission 12.2.1(f) and rule 12.2.1(b) allow the Update element to be shared with normal opera-
tion and also service the Capture event.

Unidirectional IEEE 1149.1 boundary-scan cells are usable as IEEE 1500 WBR cells. WBR cell structure
permission 12.2.1(f) supports this.

The WBR cell is fully self-sufficient for the processing of a test so that, after shifting in test data and before
shifting out test data, all data for the test are sourced from and/or sampled into one or more storage elements
in the single cell, i.e., the terminals’ test needs are met solely by their respective WBR cells.

Cells provisioned on core terminals that need not be wrapped per rule 12.1.1(a) may have reduced-
functionality cells as described in permission 12.2.1(g). For instance, one may wish to have an observe-only
cell on clocks as defined in rule 12.1.1(a) or other types of observe cells supporting the Shift, the Capture,
and perhaps the Transfer event in OF mode. If the core terminal provided with a reduced-functionality cell is
a clock terminal and gets connected to the clock input of the reduced-functionality cell, then this clock
would be considered an AUXCK and would have to follow AUXCK requirements and allow for proper
operation of the WBR.

12.3 WBR operation events

An event is an uninterrupted, predefined sequence of one or more steps. Within the interval of the predefined
sequence there may be a particular instant that characterizes the event, when the nominal action of the event
occurs. This is referred to as the characteristic instant. Predefined events are Shift, Update, Transfer, Cap-
ture, and Apply. Some events may overlap with others as indicated in permission 12.3.1(e). Events apply to
the WBR as a whole.

12.3.1 Specifications
12.3.1.1 Definitions
The following definitions apply to the rules specified in 12.2.1.

Shift event: An event whereby the data stored in the WBR shift path are advanced one storage position
closer to the WBR’s TO. The data present at the WBR’s TI are loaded into the shift path storage element
closest to the WBR’s TI. If multiple WBR segments are implemented per Figure 17, this definition applies
individually to each WBR segment.

Capture event: An event whereby the value present on the CFI, or on the CFO, at a characteristic instant is
stored in a sequential element within a WBR cell. The data shall be stored in the shift path storage element
closest to CTI, or in the shift path storage element closest to CTO, or in the off-shift-path update storage
element.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) ~ 57—
IEEE 1500-2005(E)

Update event: An optional event whereby data stored in a WBR cell’s shift path storage element closest to
CTO at a characteristic instant are loaded into an off-shift-path storage element.

Transfer event: An optional event that moves data to or within the shift path of a WBR cell dependent on
both or either

a) The case where data stored by the Capture event are stored in any storage element other than the
shift path storage element closest to CTI (see rule 12.2.1(b)): The Transfer event will cause the value
present in the storage element used for provisioning the Capture event to be stored into the shift path
storage element closest to CTI;

b) The case where more than one storage element exists in the shift path: The Transfer event will cause
data stored in the shift path to move one element closer to CTO.

Figure 18 illustrates Case a, and Figure 19 illustrates Case b. The legend of these figures is in Annex A.

CTO

A

CFI CFO

ST

CTI

Figure 18—WBR cell supporting Transfer event
with off-shift-path capture storage element

The purposes of the Transfer event are to properly position captured data in the shift path for observation
and to provide sequential stimuli data. In order to preserve as many capture values as there are storage ele-
ments in the shift path, captured data should enter a WBR cell’s shift path via the storage element closest to
CTI (see rule 12.2.1(b)). To support this, the Transfer event causes the captured data to be transferred from
the storage element where the Capture event occurred into the shift path storage element closest to CTI. Cer-
tain tests require application of sequential data. Transfer moves data through the shift path to make them
available for the Apply event at the cell’s CFO. In the case where the update storage element is present,
transfer will move data through the shift path so that each bit may be sequentially loaded into the update
storage element.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

~ 58— IEC 62528:2007(E)
IEEE 1500-2005(E)

CTO

CFl

CFO

CTI

Figure 19—WBR cell supporting the Transfer event
with multiple shift path storage elements

Apply: A derivative event (in the sense that it is inferred from the operation of the other four events: Shift,
Update, Transfer, and Capture), whereby test data become active and effective as test stimuli. While the
wrapper is in IF mode, the Apply event causes test data to be applied from input cells onto core inputs.
While the wrapper is in OF mode, the Apply event causes test data to be applied from output cells onto
WBR functional outputs. The test data are the data stored in the shift path storage element closest to CTO
unless the Update event is supported, in which case the test data shall be the data stored in the off-shift-path
storage element described in the Update event. The Apply event is only meaningful in the context of the
WBR as a whole and not on a cell-by-cell basis.

Rules

a) The Shift event shall not occur simultaneously with either Transfer, Capture, or Update events.

b) While the SelectWIR signal is low and in the absence of an active value on other WSC or any WPC
terminal (as defined in the CTL), WRCK shall not cause a WBR storage element to change state.

¢) For serial instructions, in the absence of an active edge on WRCK or pulse on WRSTN, WBR stor-
age elements shall not change state.
Recommendations
d) While the SelectWIR signal is high and in the presence of active values on WSC terminals, with the
exception of UpdateWR, WRCK should not cause a WBR storage element to change state.
Permissions
e) Except where excluded by rule (a), events may be discrete, simultaneous, or overlapping.

f) WBR cells may respond to user-defined events, provided that these events are documented and dis-
tinguished in their behavior from standard IEEE 1500 events.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) ~ 59—
IEEE 1500-2005(E)

12.3.2 Description

WBR events are enabled by the active edge of the clock (rising edge of WRCK for Capture, Shift, and
Transfer; falling edge of WRCK for Update) in conjunction with the assertion of a WSC signal (Cap-
tureWR, ShiftWR, TransferDR, or UpdateWR). WRCK pulses or edges applied in the absence of active
WSC signals do not result in any event. WRCK may be held in a high or low state for arbitrarily long inter-
vals without loss of WBR state. PnP requirements may restrict the degree to which events may be over-
lapped. Subclause 16.3 discusses such restriction. Recommendation 12.3.2(d) allows the WBR to maintain
its state for subsequent instructions that may require the current WBR data.

12.4 WBR operation modes

A mode is a static condition or configuration of the WBR that exists in response to the state of the WIR. This
subclause describes the normal mode, the IF mode, the OF mode, and the nonhazardous mode.

General permissions
a) IF mode and OF mode may be operative at the same time.

b) Whereas the four modes defined in this subclause (i.e., normal, IF, OF, and nonhazardous) are
applied homogeneously across the entire WBR, other modes may be defined in which the cells
respond on an individual basis.

12.4.1 Normal mode
The normal mode is the mode in which the WBR does not interfere with the functional operation of the core.
12.4.1.1 Specifications

Rules

a) While in normal mode, the WBR shall not interfere with the operation of the core or with the flow of
signals to and from the core.

Permissions

b) While in normal mode, the WBR may respond to the Capture, Shift, or Transfer events, provided
that such response does not conflict with rule (a).

12.4.2 Inward facing (IF) mode

The IF mode is a test mode where core inputs are controlled by the WBR and core outputs are observed by
the WBR.

12.4.2.1 Specifications

Rules

a) While in IF mode, cells provided for core inputs shall respond to Shift, Apply, and, if provisioned
for them (under rule 12.2.1(d) or permission 12.2.1(f)), the Transfer or Update events, respectively.

b) While in IF mode, cells provided for core outputs shall respond to Capture, Shift, and, if provisioned
for them (under rule 12.2.1(c) or rule 12.2.1(d)), Transfer events.

Recommendations

¢) While in IF mode, cells provided for core outputs should present safe data at their CFO terminals
(i.e., external safe state).

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

~60- IEC 62528:2007(E)
IEEE 1500-2005(E)

12.4.3 Outward facing (OF) mode
The OF mode is a test mode where WFOs are controlled by the WBR and WFIs are observed by the WBR.
12.4.3.1 Specifications

Rules

a) While in OF mode, cells provided for core inputs shall respond to Capture, Shift, and, if provisioned
for them (under rule 12.2.1(c) or rule 12.2.1(d)), Transfer events.

b) While in OF mode, cells provided for core outputs shall respond to Shift, Apply, and, if provisioned
for them (under rule 12.2.1(d) or permission12.2.1(f)), the Transfer or Update events, respectively.

Recommendations

c¢) While in OF mode, cells provided for core inputs should present safe data at their CFO terminals
(i.e., internal safe state).

12.4.4 Nonhazardous mode

In nonhazardous mode, core inputs are controlled to safe data by the WBR, and WFOs are controlled to safe
data by the WBR.

12.4.4.1 Specifications

Recommendations

a) While in nonhazardous mode, all cells should present safe data at their CFO terminals.

Permissions

b) While in nonhazardous mode, the WBR may respond to any events.
12.4.4.2 Description

Safe data are data that will not harm circuitry internal or external to the core. These data can be static or
dynamic.

12.5 Parallel access to the WBR

In addition to its mandatory serial wrapper access mechanism, IEEE Std 1500 provides for an optional paral-
lel wrapper access mechanism. There are two possible ways to implement parallel access of the IEEE 1500
WBR, distinguished by the presence or absence of an IEEE 1500 wrapper cell on every core terminal:

— In the case where every core terminal contains an IEEE 1500 wrapper cell, as shown in Figure 17,
parallel access of the WBR is achieved via segmentation of the WBR chain.

— In the case where not every core terminal has a WBR cell, per rule 12.1.1(a), parallel harnessing is
implemented, as shown in Figure 20, in order to allow enabling of the parallel test being applied to
the core as a response to a parallel instruction in the WIR.

NOTE—Harnessing logic enables coupling of a TAM to CTIs and CTOs. This includes any logic that is needed between
the core and a TAM provided that such logic obey wrapper states rules defined in Clause 13.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) ~61-
IEEE 1500-2005(E)

Harness circuitr

Test-only terminals

WPC —» ~— WPC
Wrapper Test ins Test outs Wrapper
test-only Test-only
inputs outputs

WPC —» -<+— WPC
> —#1 CORE_INj CORE_OUT]j |—» —
: T CORE ¢ |
|
Core w | w | Core
Functional B B Functional
Inputs R | R | Outputs
I | ! I
| ? ¢ |
| I
| |
. »-JCORE_IN1 CORE_OUT1]—# —»

WPI[0] 4+ L WPOIn]

Figure 20—WBR harnessing via test-only terminals

12.5.1 Parallel configuration of the WBR

This subclause applies to both parallel access types described in 12.5.
12.5.1.1 Specifications

Rules

a) Parallel configuration of the WBR shall be enabled by the WIR, as a response to a parallel or hybrid
instruction, e.g. WP_PRELOAD, WH_EXTEST, WP _INTEST SCAN.

b) WPI and WPO terminals shall be distinct from the mandatory WSP terminals, provided that the par-
allel interface exists.

¢) For every segmentation of the WBR in every parallel configuration, every WBR cell shall be a
member of a unique WBR segment and be provided a direct or indirect path from a WPI to a WPO.

d) In parallel mode, all WBR segments shall be under the control of the WPC.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

~62- IEC 62528:2007(E)
IEEE 1500-2005(E)

Recommendations

e) Incases where a WBR segment drives an internal scan chain, circuitry should be inserted to prevent
certain wrapper events, such as Transfer, from causing data corruption in the internal scan chain.

Permissions
f) The WBR may be segmented into subsets of WBR scan chains accessible via WPI and WPO.

g) When the WBR is configured into parallel mode, the serial input (TT) and serial output (TO) of each
segment may be connected to one of the following:

1) Another WBR segment from the same wrapper (in order to create a larger segment),
2) aTAM via WPI or WPO, respectively,
3) acore internal scan chain output or input, respectively.

h) There may be more than one parallel configuration of the WBR, allowing different parallel instruc-
tions to access different segmentations of the WBR.

12.5.1.2 Description

IEEE Std 1500 allows for a configuration of the WBR as a parallel interface to a core, in order to provide an
increase in data bandwidth to the core. This parallel configuration of the WBR allows flexibility for the con-
nectivity of the WBR segments and for how the parallel test applied to the core is controlled. The flexibility
in connectivity allows WBR segments to be connected via their WPI and WPO to a TAM interface or to
internal scan chains. For standard parallel instructions, nonclock WPC signals that are distinct from WSC
signals, are used to control the WBR segments during the application of a parallel test. User-defined parallel
instructions are not required to use WPC signals that are distinct from WSC signals for controlling the paral-
lel test.

12.5.2 Harnessing of the WBR

This subclause discusses additional rules and permissions specific to the second type of parallel access
described in 12.5, which is the parallel harnessing of the WBR.

12.5.2.1 Specifications

Rules

a) Harnessing logic inserted on test-only terminals shall maintain compliance with Wrapper Disabled
state rules described in 13.1.

b) Parallel harnessing shall be configured only in response to an instruction loaded in the WIR.

Permissions

c) Test-only terminals [which are exempted from the requirement for wrapper cell insertion per rule
12.1.1(a)] may be provided with wrapper harnessing logic that, in response to an instruction present
in the WIR, couples these terminals to a TAM for the application of parallel tests.

d) In response to nonstandard or hybrid/parallel instructions in the WIR, the configuration of the har-
nessing logic may be actuated via a TAM signal, a WBR cell, or a WPC signal.

e) Parallel harnessing may be reduced to a direct connection from a TAM to a core input, provided that
compliance to Wrapper Disabled state rules (described in 13.1) is maintained via control from the
WIR.

f) Parallel harnessing may be configured by a combination of WBR storage elements provided
uniquely for this purpose, provided that the configuration is enabled in response to the WIR. Such
WBR storage clements need not correspond uniquely (one to one) to the core terminals so
harnessed.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) ~63-
IEEE 1500-2005(E)

12.5.2.2 Description

Rules defined in this subclause complement those defined in 12.5.1 in that harnessing requires compliance
to both 12.5.1 and 12.5.2.

Although flexibility is provided to the user in terms of defining the nature of the harnessing logic, the WIR
remains the enabler of the parallel mode. In particular, core terminals with direct harnessing (direct wire) to
a TAM should not interfere with the Wrapper Disabled state mode of the IEEE 1500 wrapper. Test modes
specific to the parallel mode of the wrapper should be enabled only as a response to the WIR. Therefore,
appropriate gating logic is expected to be inserted whereby the connection between the TAM and the core
terminal is enabled by the WIR as part of a parallel test instruction. WBR storage elements may be used to
provide decoding logic for the configuration of parallel harnessing, assuming that this configuration is
requested from the WIR.

12.6 WBR cell naming
IEEE Std 1500 mandates a naming convention for WBR cells.
12.6.1 Specifications

Rules

a) Al IEEE 1500 WBR cell names shall match the following regular expression:
/((WO)|[(WH))((_S[DF\d+)|(_CI?))(_C([TOB][IOUIN)?(_U[DF])?(_0)?(_G[01]7)?/.

12.6.2 Description

WBR cell structures are defined in Perl regular expression format to ease software tool automation as well as
integration with the CTL. The regular expression defined in 12.6.1 allows for the identification of any IEEE
1500 WBR cell by parsing CTL code.

The naming of the various types of WBR cells shall be done in a descriptive, parsable method. Each cell
type name shall begin with WC (WBR cell) or WH (WBR harness cell). This prefix is followed by a
sequence of characters that describe the capabilities and structure of the cell. The information will indicate
whether a particular storage element is shared or dedicated to wrapper operation, how many shift path stor-
age elements exist, the existence and type of the optional update cell, and the existence of safe data support.
In addition, for harness cells, the presence of an inversion will be noted and also if the cell is combinational
or sequential. To support this, from one to five fields will exist in the name in a specified order. Each field
begins with an underscore.

— The first field is mandatory and describes the nature and number of shift path storage elements or the
combinational and/or inverted nature of a harness cell. The first two characters of this field are _S
(shift) or C (combinational). If _S is selected, the third character is either D (dedicated) or F
[(shared) functional], followed by an integer indicating the number of shift path storage elements. If
_C is selected, a third character, I, may be used to indicate an inversion in the data path. This first
field has the following regular expression format: /(_S[DF\d+)|(_CI?)/.

— The second field indicates the site where data are captured. The first two characters of this field are
_C (capture). The third character of this field specifies the origin of captured data: I (CFI), O (CFO),
or B (selectable by design, i.e., can be CFI or CFO). The last letter of this field indicates the capture
site: I (the first element of the shift path), O (the last element of the shift path), or U (the update stor-
age clement). In cases where the wrapper cell being described does not perform the capture function,
both third and fourth characters in this field should be replaced by N (none) to indicate that there is
no origin for captured data and that the capture site does not exist. When C or CI is selected for

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

— 64— IEC 62528:2007(E)
IEEE 1500-2005(E)

the first field, CN is mandatory for the second field. The regular expression matching this second
field is /(_C([IOB][IOU])IN)?/.

The third field describes the nature of the update element. It is composed of three characters, the first
two of which are U (update). The third character is either D (dedicated) or F [(shared) functional].
Its regular expression format is /(_U[DF])?/. The absence of this field indicates the absence of an
update storage element.

The fourth field indicates, by its presence or absence, the presence or absence of an observe-only
characteristic. It is composed of an underscore followed by an O. Its regular expression format is
/_0l.

The final field indicates, by its presence or absence, the presence or absence of safe data support in
nonhazardous mode. It is composed of an underscore followed by a G (guarded data) and optionally
by a 0 or 1 indicating the static value. Its regular expression format is / G[01]?/.

The following is a generic CTL code describing IEEE 1500 WBR cells:

Environment (Env_name) {

}

CTL (CTL name) {
External {

(sigref expr {
(connectTo {
Wrapper IEEE1500
(CelllID cell enum | PinID user defined);

P+
}

cell enum = /(WC)|(WH))((_S[DF]\d+)|(_CI?)(_C([IOBJ[IOUDN)?(_U[DF])?(_O)?(_G[01]?)?/

IEEE P1450.6 (CTL) documentation contains an in-depth description of the above CTL syntax.

12.7 WBR cell examples

Table 2 describes IEEE 1500 WBR cell example names, and a gallery of bubble diagrams depicting each
example follows the table. The bubble diagrams used in these examples are defined in Annex A. It is
understood that the means of data path selection shown in these bubble diagram figures is to be configured

by the content of the WIR.
Table 2—WBR cell example list
Cell description Name Figure number
One storage element shared with functional operation. WC _SF1 _CII Figure 21
One storage element in shift path dedicated to wrapper function, WC_SD1 _COI Figure 22
capturing from CFO.
Two dedicated shift path storage elements, capturing from CFI WC_SD2 _CIO Figure 23
into the shift storage element closest to CTO. This cell captures
data into the storage element closest to the scan output.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) ~65-
IEEE 1500-2005(E)

Table 2—WBR cell example list (continued)

Cell description Name Figure number
One dedicated storage element in the shift path and a shared WC _SD1 _CIU UF Figure 24
update storage element. This cell captures into the update storage
element.
A reduced-functionality cell with one dedicated storage elementin | WC_SD1_CII_O Figure 25
the shift path, performing observe-only function.

The WC_SF1 _CII cell types have the least circuitry. As this cell services both normal operation and test
operation, the two operations are likely mutually exclusive. Also, the CFO terminal toggles as data are
shifted from CTI to CTO and when a capture occurs. WC_SF1 CII_G may drive a safe value in addition to
supporting the functionality described for WC_SF1 CII. See Figure 21.

CTO
(a) WC_SF1_CII
CFI CFO
CTI
CTO (b) WC_SF1 CII G
CFlI
SCF -
) CFO
Safe — p|
Value
CTI

Figure 21—WC_SF1_CIll WBR cell

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

~ 66— IEC 62528:2007(E)
IEEE 1500-2005(E)

WC_SD1_COI has a dedicated shift path, and its CFO may toggle during Shift or Capture operations. How-
ever, compared to the WC_SD1_CII cell, the CFI to CFO connection has superior testability. See Figure 22.

CTO

CF| *
> CFO

Figure 22—WC_SD1_COI WBR cell

The WC_SD2 CIO cell has the capability to circulate a sequential pattern for delay testing applications.
Note that this cell has a dedicated shift path and responds to the Transfer event. A detailed example illustrat-
ing the use of this cell is discussed in 12.8. See Figure 23.

CTO

CTI

CFl

L
CFO

Figure 23—WC_SD2_CIO WBR cell

WC _SD1_CIU_UF has a dedicated shift path. An update storage element that is shared with functional
operation serves as capture site for this cell. Accordingly, the path from CFO to the shift path storage ele-
ment is provided for the Transfer operation to move captured data into the shift path. WC_SD1 CIU UF_G
may be forced to a safe value in addition to supporting the functionality described for WC_SD1_CIU_UF.
See Figure 24.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) —67-
IEEE 1500-2005(E)

CTO

A

CFI | % 'r:> » OO
¢
| (a) WC_SDI1_CIU UF

ST
CTI

CTO

A
CFlI
__>CFO
Safe —p|

Value

ST
(b) WC_SD1_CIU_UF_G
CTI

Figure 24—WC_SD1_CIU_UF WBR cell

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

~ 68— IEC 62528:2007(E)
IEEE 1500-2005(E)

WC _SDI1_CII O is a observe-only harnessing cell. This cell is to be used only in accordance with permis-
sion 12.2.1(g). See Figure 25.

CTO

CFI * » CFO

CTI

Figure 25—WC_SD1_CII_O WBR cell

12.8 IEEE 1500 WBR example

This subclause describes an example of how the WBR and WBR events may be used to perform a delay test.
Figure 26 depicts an example logic schematic of a WC_SD2 CIO WBR cell. The bubble diagram corre-
sponding to this WBR cell is shown in Figure 23. The WBR chosen for this example supports the Transfer
event.

CTI
SHIFT ¢

WRCK —>

— dff 1

XFER

UL[J

HD—

®

CFI MOD

CAPT Di

CFO

Tl T

—L dff 2 _T_> cTo
>

I0_FACE
WRCK

Figure 26—Example logic schematic of a "WC_SD2_CIO" WBR cell

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) ~69 -
IEEE 1500-2005(E)

This cell has a dedicated shift path of two independent data positions; therefore, it responds to the Transfer
event (XFER). It captures data from its CFI port into the shift path storage element closest to CTO (dff 2).
This cell may be used for either core input terminals or core output terminals but it is to be connected differ-
ently for these two cases per Table 3. SHIFT and CAPT are the control signals for the Shift and Capture
events, respectively.

Table 3—Value applied to I0_FACE signal of WC_SD2_CIO example
for different cases

Instruction type

IF OF
Terminal Core input 1 0
type
Core output 0 1

I0_FACE is derived from the WIR. Dff 1 participates in the Shift and Transfer events unconditionally and
holds state in the absence of these events. Dff 2 participates in the Shift event unconditionally and responds
to transfer if [0 _FACE =1 and responds to capture if [0 _FACE = 0; otherwise, DFF 2 holds state. The
combinational logic shown decodes the SHIFT, TRANSFER, and CAPTURE signals along with the WIR-
derived IO0_FACE signal to determine the source of the data clocked into dff 1 and dff 2 in response to the
clock.

Figure 27 depicts a simplified example of an arrangement of an AND gate as a core and three of these
WC _SD2 CIO cells as a WBR. Mode indicates whether the cell is in test or normal mode. The transfer,
shift, and capture signals are derived from TransferDR, ShiftWR, and CaptureWR.

Consider the scan order through 2 bits in each of the cells for terminals INO, IN1, and OUT. The cell pro-
vided for terminal OUT is configured to receive the opposite polarity value of the IO_FACE signal from that
applied to the other two cells. Also depicted are the logic values of a delay test of three vectors applied to the
AND gate inside the simplified core.

Figure 28 depicts a timing diagram of the delay test sequence. For ease of explanation, the rising edges of
WRCK are numbered sequentially.

The sequence begins with 6 data bits being shifted into the WBR. Following the Shift operation, data in
dff 1 and dff 2 of the wc_inO wrapper cell are both 1; dff 1 and dff 2 of the wc_inl cell are loaded with 1
and 0, respectively; data in dff 1 and dff 2 of the wc_out wrapper cell are both 0.

With this data pattern, we_inl has an initial value of 0 applied, but there is a 1 value ready in that cell’s dff 1
storage element.

Clock cycle 7 is a Transfer event where we_in0 and wc_inl internally exchange data between their respec-
tive dff 1 and dff 2 bits. This results in a rising-edge delay test stimulus being applied to the IN1 input of
the AND gate.

Clock cycle 8 performs both the Transfer and Capture events. If the time interval between clock events 7 and
8 is according to the delay time specification of the path from IN1 to OUT, then a first delay test response is
captured in dff 2 of wc_out. Simultaneously, a falling-edge delay test stimulus is applied to the IN1 input of
the AND gate. After a settling time, the WBR Test Output TO reflects the result of the capture.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

~70- IEC 62528:2007(E)
IEEE 1500-2005(E)

wc_in0 WIR
X =
4oL
X & O i ¢
INO —]
CFI CFO MODE
Simplified core I0O_FACE
TI —|cTI CTOL
3 wc_out
X < w _r
O uw a r 1
€ o 9 | | i EE
| = F = | 11 1 WL g
- I
| INl J|ouT CFI CFO
1ofTe | o e 1o
wc_in1 L — — — — 4 3 —
i Kk $ & B
L T < 4 oI o
X n © s = =
IN1 CFI CFO
L {cTI CTO f' E
3]
5 %8
ms S =

Figure 27—WBR cell connectivity around a core

SHFT |

CAPT

XFER |

|
|

1 o] !
|

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

|
o 1 orlo o1 ot

TO 0

|
I
I
AND |
I
I
|

IO_FACE 1

Figure 28—Delay test sequence timing diagram

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) —71-
IEEE 1500-2005(E)

Clock cycle 9 again performs both the Transfer and Capture events. If the time interval between clocks 8 and
9 is according to the delay specification of the AND gate a second delay test response is captured in dff 2 of
wc_out. Simultaneously, the data value that was captured during clock 8 is transferred to dff 1 of wc_out.
After a settling time, the WBR TO reflects the results of the second capture.

Clocks 10 through 14 are used to shift out the last 5 bits of the WBR where the results of the first capture
come out on clock 10.

This simplified example has been presented in the context of a combinational path from a core input termi-
nal, through the core, to a core output terminal while the WBR is in IF mode. It should be understood that
while this simplified example has used the AND gate as a core, the AND gate could have been a UDL, tested
with WBR cells in OF mode.

13. Wrapper states

13.1 Wrapper Disabled and Wrapper Enabled states

The WRSTN signal can be used to force the wrapper logic into a state that enables functional operation of
the core. Figure 29 and Figure 30 identify two main wrapper states: Wrapper Disabled and Wrapper
Enabled, respectively. Both have substates that are entered in a sequence controlled by the WSP as defined
by this standard. The wrapper is forced unconditionally to a Wrapper Disabled state when the WRSTN sig-
nal of the WSP is low. In Wrapper Disabled state, the wrapper is inactive and functional operation of the
core logic can continue unhindered. Test operations are performed while the wrapper is kept in Wrapper
Enabled state by a high value on the WRSTN signal.

WRSTN = 0 4’(Wrapper Disabled :D WRSTN = 0

Figure 29—Wrapper Disabled state conditions

Wrapper Enabled WRSTN = 1

Figure 30—Wrapper Enabled state conditions

13.1.1 Specifications

Rules

a) Asserting logic 0 on WRSTN (WRSTN = 0) shall unconditionally force the wrapper into Wrapper
Disabled state; no actions of the wrapper logic (e.g., WIR, WBR) shall occur in response to WSP
signals and/or WPP signals other than WRSTN and/or WRCK.

b) Asserting logic 0 on WRSTN (WRSTN = 0) shall unconditionally force the WS BYPASS instruc-
tion to become effective.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

~72- IEC 62528:2007(E)
IEEE 1500-2005(E)

c) Asserting logic 1 on WRSTN (WRSTN = 1) shall unconditionally enable the wrapper to respond to
the WSP signals.

d) When the wrapper logic becomes enabled after being disabled, the effective instruction present in
the WIR shall be the WS _BYPASS instruction.

Recommendations

e) The protocol used to control the WRSTN signal should ensure that at least one complete WRCK
pulse is applied when WRSTN is set to logic 0 (WRSTN = 0) before WRSTN can be set to logic 1
(WRSTN =1).

Permissions

f) The wrapper may require an active WRCK during Wrapper Disabled state (WRSTN = 0), prior to
becoming enabled by logic 1 on WRSTN (WRSTN = 1).

13.1.2 Description

Independent of the current state of a wrapper, this wrapper will enter Wrapper Disabled state when the
active low WRSTN signal is asserted. The wrapper will remain in this state while the WRSTN signal
remains low. In the Wrapper Disabled state, the wrapper is forced to its inactive state. This is achieved either
by asynchronously resetting the WIR contents to WS_BYPASS or by gating the WIR outputs (with WRSTN
= 0) to create the same effect. In the latter case, a synchronous reset operation is still needed to load the
WS _BYPASS instruction into the WIR before the wrapper is enabled by de-asserting the WRSTN signal.
For this reason, it is allowed to require an active WRCK during Wrapper Disabled state, prior to using the
wrapper in Wrapper Enabled state.

If asynchronous reset of the WIR is used to implement the Wrapper Disabled state, the sequence prior to test
operations consists only of deasserting WRSTN. When gating of WIR outputs is used to implement the
Wrapper Disabled state and a synchronous reset of the WIR is needed to load WS _BYPASS, the sequence
prior to test operations needs an active WRCK during the Wrapper Disabled state. Because this sequence
can also be used for wrappers with an asynchronous reset of the WIR, it is recommended for all wrappers. In
order to have a reliable operation of the wrapper, WRSTN should be deasserted only on the falling edge of
WRCK so that at least 1/2 WRCK period is left for signals to propagate within the wrapper. Figure 34
describes a synchronous reset timing.

All rules described in this standard apply to the Wrapper Enabled state, except rules specific to the Wrapper
Disabled state of the IEEE 1500 wrapper.

14. WSP timing diagram

This clause defines timing relationships between the mandatory WSP terminals. The actual values, denoted
TBD, are to be supplied in the CTL by the wrapper provider. These timing specification parameters apply to
any wrapper implementation. Values with a hyphen (-) indicate they are not necessary or not pertinent to the
usage. Timing diagrams shown in this clause are not meant to show protocol, but rather timing relationships
between wrapper signals.

14.1 Specifications

Rules
a) SelectWIR, ShiftWR, CaptureWR, and TransferDR shall be sampled on the rising edge of WRCK.
b) The UpdateWR signal shall be sampled on the falling edge of WRCK.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) ~73-
IEEE 1500-2005(E)

¢) Actions of IEEE 1500 standard components (e.g., WIR, WDRs) shall occur on either the rising or
falling edge of WRCK in response to WSC signals as depicted in Figure 31, Figure 32 and
Figure 33.

d) Changes on the SelectWIR signal shall not occur coincident with Shift, Capture, Transfer, or Update
operations.

e) Provided that permission 13.1.1(f) is exercised, the timing relationships depicted in Figure 34 shall
be applicable.

14.2 Description

Even though ShiftWR may change while WRCK is high, it is anticipated that data driven from WSO at the
falling edge of WRCK will result from the data or instruction register that was selected at the immediately
preceding rising edge of WRCK.

Table 4 and Figure 31 describe timing parameters for WSP operation. See Clause 8 for details on these
signals.

Table 4—WSC and WBR timing parameters for WSP operation

Timing parameter Symbol Min Max
Clock pulse high fekwh TBD | —
Clock pulse low tekwl TBD | —
WRSTN Pulse Width Low sl TBD | —
WRSTN negation setup time w.r.t. WRCK rising edge frstsu TBD | —
SelectWIR setup time w.r.t. WRCK rising edge tswsu TBD | —
SelectWIR hold time w.r.t. WRCK rising edge tswhd TBD | —
ShiftWR, CaptureWR, or TransferDR setup time w.r.t. WRCK rising edge Tetlsu TBD | —
ShiftWR, CaptureWR, or TransferDR hold time w.r.t. WRCK rising edge Ietlhd TBD | —
UpdateWR setup time w.r.t. WRCK falling edge tupdsu TBD | —
UpdateWR hold time w.r.t. WRCK falling edge typdhd TBD | —
WSI setup time w.r.t. WRCK rising edge Lsisu TBD | —
WSI hold time w.r.t. WRCK rising edge tsind TBD | —
WSO output valid time w.r.t. WRCK falling edge tsov — TBD

Timing relationship of the AUXCK with respect to WRCK is discussed in Clause 16.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

IEC 62528:2007(E)
IEEE 1500-2005(E)

—74 -

LICENSED TO MECON Limited. - RANCHI/BANGALORE
FOR INTERNAL USE AT THISLOCATION ONLY, SUPPLIED BY BOOK SUPPLY BUREAU.

R R
_ ~
~_ z
U “ |VAI| S
_ -I\Iwm ~ Ay
S AN N O — A= 4 — = = -
It S I S N R S
_
L IIIIIIIII_IIIIIMIII|IIII||.m IIIIIII
_ - Yz =
_ [~
_ 4+ 'llll_ltm
mxﬂ .Vmw
—— = ||tr|
E A |
Syl 3 “ .
E Xl o
E R
Y= [z = 35 3
X = I 5 2 3% o
) N) E g| ¢ 3 = Q
x o _Mv T © © S n n
= ! n Ol F =) = =

IEEE 1500 WSP timing

Figure 31

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

IEC 62528:2007(E) ~75-
IEEE 1500-2005(E)

14.2.1 Timing parameters for event and functional input/output (1/0)

Table 5, Figure 32, and Figure 33 describe timing parameters regarding event and WFI/WFO. Figure 32
describes timing relationships for wrapper cells with minimally required terminals, CaptureWR and
ShiftWR. Figure 33 describes timing relationships for wrapper cells that support Update and Transfer
events. Note that multiple TransferDR operations are possible depending on WBR cell capability.

Table 5—Event and functional timing

Timing parameter Symbol Min Max
CaptureWR or TransferDR setup time w.r.t. WRCK rising edge Ietlsu TBD | —
CaptureWR or TransferDR hold time w.r.t. WRCK rising edge totlhd TBD | —
UpdateWR setup time w.r.t. WRCK falling edge lupdsu TBD | —
UpdateWR hold time w.r.t. WRCK falling edge tupdhd TBD | —
WFO output valid time w.r.t. WRCK rising edge without update trov — TBD
WFO output valid time w.r.t. WRCK falling edge with update ttov — TBD
WFI setup time w.r.t. WRCK rising edge tfisu TBD | —
WFI hold time w.r.t. WRCK rising edge tfihd TBD | —

The minimal configuration timing specification shown in Figure 32 can apply, as an example, to wrapper
cell WC_SF1 CII from Figure 21, where CFI is to be connected to WFI and CFO to be connected to WFO
as shown in Figure 16. An example of a wrapper cell corresponding to the timing specification of Figure 33
would be wrapper cell WC _SD2 CIU_UF shown in Figure B.5.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

- 76— IEC 62528:2007(E)
IEEE 1500-2005(E)

WRCK
I I
I I
I I
I I
SelectWIR | |
| |
I I
| ! !
| I
ShiftWR . :
- |
tctlIsu
I I
| | |
CaptureWR I I
I ALy |
| | ctlsul
: .
WFI | >< | >:<
| |
' I <> b |
I It |
I | fisu | fgpq
I I
WFO I
|
P

Figure 32—IEEE 1500 minimal event and functional 1/O timing

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NV3ANg A1ddNS YO0S9 A9 A3ITddNS “ATNO NOILVYOOTSIHL 1V 3ISN TYNYILNI J0d

FHOTVONVYE/IHON VY - 'Po1WT NOOIIN OL A3ISNIDIT

IEC 62528:2007(E) 77—
IEEE 1500-2005(E)

WRCK
I |
| I
I I
I |
SelectWIR : :
I |
I |
| | i
UpdateWR | |
: |<—>| |
updsu | |
I

I
I
TransferDR ,/ I

|
| +
I I

CaptureWR 1/ -

‘NV3ANg A1ddNS YO0S9 A9 A3ITddNS “ATNO NOILVYOOTSIHL 1V 3ISN TYNYILNI J0d

! | lctllsu
! I
| | |
| /|
WFI A
| . I
; ‘<->: |
[tflisu | | | tﬁhd
| | | | /1
WFO L |
| ' ! I\l
i‘-’I ; |<—>l |
1 oy | | foy 1

Figure 33—IEEE 1500 event and functional I/O timing

14.3 Synchronous reset timing

Table 6 and Figure 34 show the timing parameters for an optional synchronous reset.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - 'Po1WT NOOIIN OL A3ISNIDIT

~78- IEC 62528:2007(E)
IEEE 1500-2005(E)

Table 6—Synchronous reset timing

Timing parameter Symbol Min Max
Clock pulse high fekwh TBD | —
Clock pulse low tekwl TBD | —
Synchronous WRSTN assertion setup time w.r.t. WRCK rising edge Irstsu TBD | —
Synchronous WRSTN assertion hold time w.r.t. WRCK falling edge tsrsthd TBD | —

| Taowl Tekwh
-
| | I

WRCK | |
! I

4 srstsu f—.L

|
<> [othd

WRSTN

Figure 34—IEEE 1500 synchronous reset timing

15. WSP configurations for IEEE 1500 system chips

This clause provides specifications and description for configuring multiple IEEE 1500 WSPs at the system
chip level.

15.1 Connecting multiple WSPs

This subclause exemplifies the system chip configurations for the WIR and WBY registers when connecting
the WSP of IEEE 1500 wrappers. Figure 35 through Figure 39 show various configurations of IEEE 1500
wrapper connections for the WSP. In the figures, the system chip configuration is defined by the way the
WSI-WSO scan path is connected at the system chip or core levels and how the WSPs are controlled. IEEE
Std 1500 allows single or multiple WSI-WSO paths and WSPs to be configured, depending on the applica-
tion needs of the system chip and cores.

In Figure 35, the WSP scan path order is Corel-Core2-CoreN, and the signals connected to the WSC termi-
nals are globally bussed. Therefore, all wrappers are controlled together. This allows different instructions to
be loaded into different WIRs, and the WSP protocol of the cores is controlled in a lock-step fashion. There-
fore, for example, the SelectWIR signal would be bussed and is common to all N cores. Thus, all of the N
WIRs will always be selected simultaneously. To control the WIRs and WDRs separately and, for example,
load the WBRs of some cores with test data concurrent with a WIR Shift operations in other cores would
require the signals connected to the SelectWIR terminals of the cores to be controlled separately for each
core. IEEE Std 1500 recommends against this in the serial WSP configuration.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) -79-
IEEE 1500-2005(E)
wsi1 WsI2 WSIn
—> > —>
WSO01 WSs02 WSOn
Core 1 Core 2 Coren
{SelectWIR,
WRCK, [RE——
WRSTN,
CaptureWR,
ShiftWR, System
UpdateWR} Chip

The multiple parallel configuration shown in Figure 36 shows how the WSC signals can be bussed, as in the
serial WSP configuration of Figure 35, yet the WSI-WSO scan paths of the three cores are separate parallel
scan paths, one scan path for each core. This configuration supports parallel access to the three core WSPs.

Figure 35—Serial connection of WSPs

wsli1

{SelectWIR,

Core 1

—> WSO01

wsI3

Core2

WSI2 —»|

Core 3

WRSTN,

WRCK, {

CaptureWR,
ShiftWR,
UpdateWR}

»
»

B

> WSO03

—> WSO02

System
Chip

Figure 36—Multiple parallel WSP configuration

Figure 37 shows a WSP configuration with a core, Core 2 (which has two subcores), Core 3, and Core 4.
This configuration uses a single WSC bus, as in Figure 35. This is similar to the single serial WSP configu-
ration of Figure 35 in that there is a single WSP scan path through the system chip. The WSP scan path order

for this configuration is Corel-Core2-Core-3-Core4.

WS

{SelectWIR,
WRCK,

Core 1

WSI3
>

Core2

wsl4
>

Core 3 | |Wwso3

Core 4

WRSTN,
CaptureWR,
ShiftWR,
UpdateWR}

\ 4

==

—>WSO02

>
WS04

System
Chip

Figure 37—Serial WSPs with subcores

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

~80- IEC 62528:2007(E)
IEEE 1500-2005(E)

The WSI-WSO connection from Core2 to Core3 requires that the Core2 WSO be brought out of the wrapper
and into the top level of the core. This is shown as the To_ WSI3 output of WSP2 in the detailed figures,
Figure 38 and Figure 39. Further, the WSO of Core4 must be routed to the Core2 wrapper for the final WSO
output. Figure 38 and Figure 39 show two examples of how the WSO4 input to WSP2 can be selected at
WSO2. In Figure 38, the subcore WSPs are always chained with that of Core2, so that WSO4 passes directly
through the wrapper of Core2 and is output on WSO2. In Figure 39, there is a multiplexer for WSO?2 that
enables the subcore WSPs to be bypassed.

WS04 —>
Core Data)
Registers ___.-" » \WSO02
WDRs ._4-al
- e e WSP2
. » To_WSI3
WSI2
<77 SelectWIR
{SelectWIR, WRSTN, WRCK,
CaptureWR, ShiftWR, UpdateWR}
Figure 38—WSP2 with serial subcore paths
WS04 —»
Core Data - R
Registers ___.--~ T —> \WS02
WDRs .l
- 3 - WSP2
-
Ly
k» To_WSI3
WSI2 n
=17 SelectWIR

{Select_WIR, WRSTN, WRCK,
CaptureWR, ShiftWR, UpdateWR}

Figure 39—WSP2 with subcore WDR bypass

15.1.1 Specifications

Recommendations

a) When connecting the WSPs of two or more wrappers in series (i.c., daisy-chaining their WSI-WSO
terminals) at the system chip level, the SelectWIR, WRSTN, WRCK, TransferDR, CaptureWR,
ShiftWR, and UpdateWR terminals from each of the wrappers should be bussed, so that there will
be a common source to all wrappers for each of the above WSC terminals.

Permissions

b) The WSP terminal interfaces may be configured at the system chip level in a manner appropriate to
the system chip’s requirements.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) ~81-
IEEE 1500-2005(E)

15.1.2 Description

When connecting the WSP interfaces of multiple IEEE 1500 wrappers within a system chip, the core inte-
grator may connect and configure the interfaces as is required by the system chip. Three examples of WSP
configurations are shown in Figure 35, Figure 36, and Figure 37. Multiple WSPs connected in series, multi-
ple parallel WSPs, and a serial WSP with subcores are shown in the respective figures.

When chaining the WSPs of subcores in series with their parent core, the subcore WSP may be fixed, as in
Figure 37. In this example, the WRs of the cores are always chained. Therefore, for example, when the
WS BYPASS instruction is loaded into Core2, Core3, and Core4, there will be a multiple-bit bypass path
from WSI2 to WSO2. Figure 39 shows an example of where the subcore scan paths are multiplexed with the
parent cores WDRs. This allows the subcore paths to be bypassed during certain instructions. Other WSP
configurations are possible.

When connecting the WSPs of two or more wrappers in series, it is recommended that the WSC control sig-
nals be bussed and controlled by a common source. This will facilitate PnP of multiple serially connected
WSPs.

16. Plug-and-play (PnP)

This clause provides specifications and descriptions for enabling interoperation between multiple IEEE
1500 wrappers at the system chip level.

16.1 Background and definition

PnP is the term used to describe a level of interoperability between different cores' wrappers on the same
SoC design. This level of interoperability was settled upon as a compromise between these somewhat differ-
ing objectives:

— The architecture should provide for all cores having a uniform test capability utilizing the WSC and
standard instructions;

— The architecture should be amenable to a variety of best practices of design and test of cores and
SoCs. Core designers and SoC integrators should have flexibility to adopt a variety of implementa-
tion styles to meet their system and test design objectives;

— It should be permissible that the resources of the WBR be shared with normal system functionality
(shared use).

As IEEE 1500 entirely owns the WIR and the WBY, it is a simple matter for this standard to specify those
registers so that they may easily interoperate between multiple wrappers. However, specification of the
interoperability of the WBRs is complicated by the notion that WBR may be shared with system functional-
ity. This shared use of WBR resources is the primary constraint on achieving PnP. In the case that a core
designer exercises the liberty to co-mingle WBR functionality with system functionality, it is recognized
that core system clocks may operate the sequential elements in which WBR features reside. In the case that
system functionality is separated from wrapper functionality, PnP is assured by design. At the same time, it
is recognized that the WBR must be responsive to WRCK and the other WSC signals to support a common
test capability. In order to resolve such WBR clocking issues and still mandate a uniform level of interoper-
ability, the compromise accepts a limited decoupling of the cause-and-effect relationship between WRCK
and events in the WBR.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

~82- IEC 62528:2007(E)
IEEE 1500-2005(E)

The governing principle of IEEE 1500 PnP is as follows:

A user of this standard in applying tests on an SoC comprising multiple IEEE 1500 cores via the
WSC is assured that the multiple cores’ wrappers will interoperate robustly at or below some maxi-
mum WRCK frequency.

In other words, robust PnP means that timing margins will improve with decreasing frequency, so below
some maximum frequency, interoperability is assured. Note that this allows SoC testing to be accomplished
without requiring careful timing of any IEEE 1500 test signals and without requiring knowledge of wrapper
timing characteristics.

Permission 8.1.1(e) is repeated here for convenience.

The WSP may include AUXCKn terminal(s) in addition to the dedicated WRCK for operation of registers
other than the WBY and WIR. Such clocks may be shared with other system clocks and may be used to
operate other core features.

Core designers may use AUXCKSs of their choice to actuate WSP-directed WBR events. Such use does not
change the relationship between any of the other WSC terminals and WRCK, nor does it alter any of the
rules governing those relationships. However, it may impose additional operational limitations. For exam-
ple, one design implementation style that is accommodated by these rules is where WBR sequential ele-
ments do not receive WRCK exactly as a clock, but rather as an enable on the data port of the sequential
elements. With such an implementation style, WBR operation would be dependent upon adherence to setup
and hold time specifications of WRCK with respect to the underlying AUXCK as depicted in Figure 40. The
timing parameters shown in this figure are sample parameters representing setup and hold timing of WRCK
with respect to the AUXCK for some hypothetical wrapper implementation employing an AUXCK.

I<—tsuwa ->|

I I

I ' ‘>' thdwa |<'
I I

I I

WRCK ! I

Figure 40—Example of timing relationship specification of WRCK w.r.t. an AUXCK

16.2 PnP aspects of standard instructions
16.2.1 Specifications

Rules

a) All standard serial instructions (WS BYPASS, WS SAFE, WS CLAMP, WS INTEST,
WS _INTEST SCAN, WS _INTEST RING, WS PRELOAD, and WS_EXTEST) must be robustly
PnP with respect to the Shift operation of their selected registers. The respective registers of these
instructions must be responsive to ShiftWR, SelectWIR, and WRCK.

b) All wrappers must be PnP with respect to Capture, Update, and optional Transfer operations of the
WSC while executing the WS _EXTEST instruction.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) ~83-
IEEE 1500-2005(E)

c) Provided that permission 8.1.1(e) is exercised, the timing relationships required between WRCK
and the AUXCK(s) to ensure PnP operation shall be specified.

16.2.2 Description

All wrappers must shift interoperatively when arranged on an SoC with their WSI and WSO terminals seri-
ally concatenated. All wrappers interact during Shift operation.

WS _EXTEST is the only standard instruction provided for testing of SoC circuitry that connects to core ter-
minals. It is assumed that the wrappers of multiple cores are simultaneously involved in testing this circuitry.
Because of this extensive interaction, WS _EXTEST uniquely has the requirement to be fully PnP for all
WSC operations.

WRCK and auxiliary timing relationships required to ensure PnP operation are expected to be provided in
CTL per rule 17.3.1(b). A sample representation of such timing relationship is shown in Figure 40.

16.3 PnP limitations on protocols
16.3.1 Specifications

Recommendation

a) PnP WS _EXTEST operation using the WBR should use protocols in which the intended Apply
event and the corresponding Capture events do not occur simultaneously.

16.3.2 Description

In order for a WBR cell to reliably capture a new test response, the PnP definition requires that there be suf-
ficient timing margin. If the Apply event providing a test stimulus and the Capture event for observing a
response are triggered by the same edge of the same pulse of WRCK, there may exist a timing race. This
may be ameliorated by applying the various events sequentially rather than simultaneously.

16.4 Non-PnP in IEEE Std 1500

Although this standard provides a basic PnP testing capability, there is no intention to inhibit non-PnP uses
of this standard. For example, timing-related testing is inherently timing critical, and such testing is facili-
tated by such aspects of this standard as the WBR Transfer event and the allowance for AUXCKs. The user-
defined parallel port and user-defined instructions and events are all opportunities for innovation within
IEEE Std 1500 that are nonetheless non-PnP.

17. Compliance definitions common to wrapped and unwrapped cores

This clause lists and describes rules that must be followed to claim compliance with this standard. When
used without any qualification, the word core applies to both wrapped and unwrapped cores in these rules.
Words in bold represent CTL (IEEE P1450.6) keywords.

17.1 General rules

The rules in this subclause are general rules, not specific to individual terminals, core wrappers, or test
patterns.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

—84- IEC 62528:2007(E)
IEEE 1500-2005(E)

17.1.1 Specifications

Rules

a)

b)

All test information pertinent to core integration shall be provided in CTL, without relying on user-
specific standard test interface language (STIL) extensions or functions.

The IEEE 1500 compliance level (wrapped or unwrapped) and version to which the core and associ-
ated information apply shall be specified using the Compliancy statement:
Compliancy IEEE1500 2005 <Wrapped | Unwrapped>.

The information related to the length of an existing WBR shall be supplied in CTL using
ScanStructures {Length integer;}

The information related to the order of the wrapper boundary cells within the register shall be sup-
plied in CTL using ScanStructures {Cells cell-list;}

The scan terminals of the WBR shall be specified using the ScanDataType statement:

signame {

DataType ScanDataln {ScanDataType Boundary;}

}

All state elements of the WBR shall be described in CTL as part of a scan chain using the
ScanStructures construct of CTL.

17.1.2 Description

Here is the reasoning behind the general rules:

a)

For automation needs, the information delivered by the core provider to the system integrator is pro-
vided in CTL (IEEE P1450.6). Any use of user-defined mechanisms in the language that are pro-
vided for extensibility will limit interoperability. Furthermore, user-defined mechanisms should not
be used when keywords already exist to convey the same information.

As an example, a core provider wants to communicate to the system integrator that there are three
test modes in the design: two for testing the internal logic of the design and one for providing access
to the wrapper scan chain for testing the external logic of the design. Also, the core provider wants
to communicate the fact that the two internal test modes are different configurations that perform the
same task. In other words, only one of the patterns in each of the internal test modes needs to be exe-
cuted to complete the testing of the core. This text would have been sufficient to describe the infor-
mation; however, it is not easy to automate processing of such text. The following CTL describes
this information in an automatable form:

Environment {
CTL configl {
TestMode InternalTest {AlternateTestMode config2;}

}
CTL config2 {
TestMode InternalTest {AlternateTestMode configl;}

}
CTL config3 {
TestMode ExternalTest;

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) ~85-
IEEE 1500-2005(E)

b)

¢)

d)
e)
f)

While the semantics are relevant to the understanding of the example, CTL’s syntax is easily read-
able because of the verboseness of its keywords. Configurations of the design are test modes that are
defined in CTL blocks of statements (CTL {}). Each test mode is assigned a type or purpose through
the TestMode statement. Alternate test modes are identifiable through the AlternateTestMode
statement. The reader should observe that the information defined in the syntax shown reflects the
text that was intended to be described.

For ease of reference, the CTL shall specify which type of compliance is being provided (IEEE 1500
wrapped or IEEE 1500 unwrapped) and also an identification of which version of the IEEE Std 1500
was used to define this compliance. This is needed to handle any future, enhanced versions of this
standard.

The intention is for the high-level information model provided by CTL to allow such pattern gener-
ation to be possible without need for access to the core’s or even the wrapper’s netlist definition. For
an unwrapped core, providing full information about an existing WBR (if included) enables integra-
tion with other wrapper components. Any core terminals that have IEEE 1500 WBR cells provided
with the core will need to be correctly identified so that the final integrated WBR can include those
cells as well as any additional WBR cells. Also, knowing the correct association between WBR cells
within the built-in WBR’s bit positions and their corresponding core interface terminals is necessary
so that the completed boundary chains can be correctly described for the fully wrapped core.

See (¢).
The WBR chains are differentiated from other scan chains of the core using this statement.

This information aids in automatically recognizing and operating the existing WBR.

17.2 Per-terminal rules

The rules in this subclause are specific to the core’s external interface terminals.

17.2.1 Specifications

Rules

a)
b)

©)

d)

All interface terminals of the core shall be identified using the Signals block of statements in CTL.

All nondigital interface terminals identified for the core shall be classified according to their electri-
cal characteristics using the following statement:

signame {

ElectricalProperty property type;

H

All digital interface terminals of the core shall be categorized according to their test function for all
test modes using the following CTL statement:

signame {

DataType (data_type)+;

}

All digital terminals of IEEE 1500 wrapped or unwrapped cores with corresponding wrapper cells
shall be identified in CTL using the following statement:

Internal {

signame {

IsConnected {

Wrapper IEEE1500 CellID cell_type;

i
i
i

All digital terminals of IEEE 1500 wrapped or unwrapped cores with no WBR cells or intended to
have no WBR cells shall be identified in CTL using the following statement:

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

g)

~ 86— IEC 62528:2007(E)
IEEE 1500-2005(E)

signame {
Wrapper None;
H

Active states of test terminals needed for the validity of test information of the core shall be speci-
fied using the ActiveState statement associated with the DataType statement as follows:

signame {

DataType data_type {ActiveState active state;}

H

Certain terminals such as clock, test mode, and set/reset terminals are assumed to be at a certain state
at the beginning of every test protocol for sequences to be valid. That assumption shall be specified
using the AssumedInitialState statement associated with the DataType statement as follows:
signame {

DataType data_type {AssumedInitialState assumed_state;}

H

17.2.2 Description

Here is the reasoning behind the per-terminal rules:

a)

b)

©)

d)

g

There are many requirements to accurately refer to the core interface terminals. The test patterns will
refer to them, and the core integrator will need to understand which terminals of the core have cer-
tain chip-level test interface connection requirements. Labelling the terminals is the first step
required to pass along all of the important information from the core provider through to the core
integrator.

CTL allows for the description of property types that include digital, analog, power, and ground ter-
minals. Unless specified, the property type of a terminal is assumed to be digital since IEEE Std
1500 is targeted for digital terminals. Use of this property exempts some terminals of the core from
other compliance rules.

A core comes with many types of test terminals that are used in special ways. For example, scan-
related terminals serve a special function in the operation of a scan chain. These are to be identified
using the DataType statement in CTL for all the test modes required for the associated compliance
level.

The correspondence between the WBR cells and the core terminals is identified within the CTL that
accompanies the wrapped core.

Digital terminals that do not have wrapper cells will be explicitly stated.

While more data types may have active states associated with them, the ones listed in this rule are
required to be specified.

It is important to know if certain terminals need to always be at a specific value at the start of every
migrated test, and this is the mechanism used to provide this information.

17.3 Test pattern information rules

The rules in this subclause pertain to requirements placed on the test patterns for the core.

17.3.1 Specifications

Rules

a)

b)

All test patterns shall be supplied using the IEEE P1450.6 (CTL) format, without making use of the
Foreign pattern construct.

All WSC-related critical timing relationships and other design-specific critical timing relationships
shall be specified in the CTL DriveRequirements and StrobeRequirements blocks.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

IEC 62528:2007(E) —87-
IEEE 1500-2005(E)

c) Test patterns shall contain test protocols (Macro or Procedure blocks) in CTL so that the protocol
does not assume that consecutive test patterns are (scan) overlapped.

d) Patterns used to initialize a test mode shall be separated from the test data patterns and identified as
such using the EstablishMode keyword.

e) Any terminal that is not included in the supplied test pattern shall not affect the test result.

f) Values on terminals that are exempted from having WBR cells by IEEE Std 1500, with the excep-
tion of clocks and test signals, shall not affect the test results.

g) There shall be a sufficient set of patterns supplied with the core to validate every test protocol
(Macro and Procedure blocks) provided in the CTL.

h) Provided that the full internal test pattern set is not supplied with the core (to the core integrator), the
complete pattern set shall be made available to the device/chip manufacturer or testing company to
use during production test.

Recommendations

i) Fault grading results for all internal patterns and/or pattern-bursts should be provided in CTL includ-
ing the total number of faults, the number of faults detected, the number of redundant faults, the
number of automatic test pattern generation (ATPG) untestable faults, and the number of possibly
tested faults.

j) Timing information in the CTL DriveRequirements and StrobeRequirements blocks should be

specified with acceptable margin to allow maximum flexibility for event placement.

17.3.2 Description

Here is the reasoning behind the test pattern information rules:

a)

b)

The only acceptable format for test patterns will be the format defined by IEEE P1450.6 (CTL).
While other test pattern formats may be acceptable for certain tools, only IEEE P1450.6 patterns
will be allowed for an IEEE 1500 core.

However, just saying “use CTL” is not sufficient for ensuring interoperability. CTL allows for the
handling of legacy cores and their associated test patterns through the Foreign construct. While the
Foreign construct can utilize the CTL infrastructure for scenarios that are not associated with the
reuse needs for core test-pattern integration in an embedded environment, the Foreign construct is
restricted by IEEE Std 1500 because of the test pattern reuse requirement. Patterns described in CTL
without the Foreign construct have properties such as data-protocol separation that are critical for
pattern mapping tasks. The Foreign construct allows for patterns to be supplied in private formats,
waveform generation language (WGL), or STIL syntax, which do not separate data and protocol
information. Thus, it is disallowed for IEEE 1500 cores.

DriveRequirements and StrobeRequirements are CTL constructs for specifying timing relation-
ships between the pins of wrapped or unwrapped cores. These must be provided to ensure proper
timing operation by the core integrator. Subclause 20.2 shows usage examples of the DriveRequire-
ments and StrobeRequirements constructs.

CTL requires that the data and protocol be separated. Any test pattern will use a protocol that is
defined in a Macro or Procedure blocks and identified with a purpose of DoTest or DoTestOver-
lapped. CTL allows for test protocols to come in both “flavors.” However, when unwrapped cores
are provided with DoTestOverlapped patterns, the test pattern data that use the protocol need to
have redundant parameters to allow for serialization of the parallel values in a DoTestOverlapped
environment. Although this solution works in CTL, this is not a very streamlined approach.

The problem of overlapped tests may not be fully apparent, so the following example is provided to
illustrate why overlapping of test is undesirable:

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

d)

2

h)

~88- IEC 62528:2007(E)
IEEE 1500-2005(E)

Suppose an unwrapped core has three patterns that are overlapped. The core contains one scan chain
and has three parallel inputs (a, b, and c¢) and three parallel outputs (x, y, and z). The CTL pattern
data might look as follows when the patterns are overlapped:

//Overlapped patterns for unwrapped core
//Note: the data values encode the pattern number for convenience in this example.

Pattern overlapped 3 {

P { si=001; so=xxx; abc=001; xyz=001; }
P {si=010; s0=001; abc=010; xyz=010; }
P {si=011; s0=010; abc=011; xyz=011; }
P { si=000; so=011; abc=000; xyz=xxx; }
}

In the above example, parallel stimulus and response data appear together—within the Macro appli-
cation that is associated with that test. Note that the stimulus data are not significant on the final
overlapped test, but the STIL syntax does not allow for stimulus of x.

When the patterns are modified to account for the wrapping of the core, the parallel data will have to
be converted to scan data since these data are now applied through the wrapper chain. With this, data
that were expected on xyz during the load of pattern number n in the unwrapped core patterns will
appear during the load of pattern number n + 1. This requires the unwrapped core patterns to be
modified after wrapping and to look as follows:

//Overlapped patterns for wrapped core

Pattern overlapped 3 {

P { si=001; so=xxx; abc=001; xyz=xxX; }
P {5i=010; s0=001; abc=010; xyz=001; }
P {si=011; s0=010; abc=011; xyz=010; }
P { si=000; so=011; abc=000; xyz=011; }
}

In order to avoid this manipulation of the patterns and provide more flexibility during translation,
patterns are required without overlapping.

Separating out the test setup patterns allows the core integrator to merge the setup patterns for multi-
ple cores to ensure that all such cores being tested in parallel will enter their respective test modes
prior to the application of any tests to any of the cores.

If the test pattern associated to a wrapped or unwrapped core does not include some core terminals,
the values on these terminals shall not change the test result.

If there is one or more core terminals that do not have wrapper cells (perhaps because these termi-
nals are analog inputs) and do not serve a test function as do clocks or scan enable terminals, the test
patterns shall not presume any specific values on these pins because it is not possible to ensure that
such values can be applied on these pins. Without the control provided by the IEEE 1500 wrapper
mechanism, an unwrapped I/O must be assumed to be at an unknown state.

It is important for verification purposes that every migrated pattern work. Since test migration is
effectively done by migrating/modifying the protocols without modifying the pattern data, the main
tasks needing verification are the updated/migrated protocols.

Full pattern sets must eventually be accessible for production test.

Core users want to be able to determine the overall chip test coverage. To be able to compute this
they will need to combine the fault counts for all of the cores and the surrounding

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) ~89-
IEEE 1500-2005(E)

)

application-specific integrated circuit (ASIC) logic. Also, if they cannot apply all of the test patterns
for whatever reason, it is important that they be able to know the effect on test coverage if certain
tests are dropped.

Because of the generally unknown amount of delay in paths between the chip I/O pins and the inter-
nal core pins, it may be difficult to meet very strict timing requirements on test patterns for the core
when they are migrated out to the chip pins. Cores can be provided with information that selects a
certain working timing for the operations possible on it. An integrator can only try to achieve all the
timing specification as depicted by the instance of the timing that is selected for the events. In real-
ity, the core may have some rigid requirements and some flexibility in the timing. This should be
shown in the information for the system integrator to successfully incorporate the core for the pur-
poses of test.

18. Compliance definitions specific to unwrapped cores

18.1 General rules

The rules in this subclause pertain to any test logic within the unwrapped cores that will need to be under-
stood prior to attempting to add or complete the wrapping of the core. Words in bold represent CTL (IEEE
P1450.6) keywords.

18.1.1 Specifications

Rules

a)

b)

©)
d)

e)

f)

All core terminals assigned to share functional registers with the IEEE 1500 wrapper shall be pro-
vided with a complete WBR cell, which includes the functional registers.

All core terminals that cannot be wrapped without logical modification to the unwrapped core shall
have a WBR cell built into the core.

Full control of any embedded WBR(s) shall be provided from core terminals.

If the state of the core relies on the stability of certain core input terminals during the scan Shift
operation of the embedded environment, this information shall be specified using the InputProp-
erty statement as follows:

signame {

InputProperty ScanStable;

}

If the core provider determines the state of the core environment relies on stability of certain core
output terminals during the internal test operation of the core, this information shall be specified in
CTL.

Every core shall come with at least one definition of an internal test mode for the core in CTL.

18.1.2 Description

Here is the reasoning behind the test logic information rules:

a)

b)

A functional I/O register can be reused as part of a WBR cell provided that the full WBR cell is
implemented within the core.

Since it is not feasible to change the logic already built into a hard core or a black-box core, its
unwrapped version shall have WBR cells built in to be compliant with this standard. For example, a
core output driven by a tristate driver should have wrapper cells on both the data and enable inputs
to the tristate driver. A wrapper cell cannot be added to the output of a tristate driver.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

~90- IEC 62528:2007(E)
IEEE 1500-2005(E)

The existing WBR shall be fully controllable from the core’s terminals so that it can be included as
part of the core WBR when the core is wrapped with a IEEE 1500 wrapper.

If the test patterns for the core depend on certain terminals remaining stable during scan operations
for the wrapper and in any logic surrounding the core, the core integrator needs to know this because
it has implications on how the embedded core is connected to the TAM. The input property
ScanStable specifies this requirement.

Any signal made stable to prevent damaging effect on other signals must be described using this
statement. This would be identified by the following:

signame {

OutputProperty ScanStable;

DisableState ExpectOff;

IsDisabledBy Macro scan_macro_name

i

At least one core internal test mode must be fully defined in CTL so that test patterns for testing the
core itself can be migrated to the SoC for that test mode.

18.2 Per-terminal rules

The rules in this subclause pertain to core interface terminals that require wrapping or that are already
wrapped.

18.2.1 Specifications

Rules

a)

The preferred wrapper cell type for every core terminal that is to be wrapped shall be described in
CTL using the ConnectTo wrapper statement.

18.2.2 Description

Here is the reasoning behind the per-terminal rules:

a)

For a wrapper to be automatically created for an unwrapped core, information must be provided to
help the wrapper generator understand which type of wrapper cell should be used for each pin of the
core. The External block in the CTL construct used to specify this information as follows:

signal name {

ConnectTo{

Wrapper IEEE 1500 CellID cell_enum;

H

The term cell _enum represents a WBR cell name as defined in 12.6.

18.3 Additional test information rules

18.3.1 Specifications

Rules

a)

Any existing quiet or powered-down mode shall be defined in CTL using the TestMode keyword.

Recommendations

b)

If a safe mode exists, its associated safe values shall be described in CTL using the following con-
struct: DataType data_type {ActiveState active state;}.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) ~91-
IEEE 1500-2005(E)

18.3.2 Description

Here is the reasoning behind the additional test information rules:

a)

b)

In order to perform Ipp testing for the SoC, it is important to ensure there are no high-current con-
ditions within the design. Each embedded core should be placed into a quiet mode to minimize cur-
rent drain during such testing. By specifying a quiet test mode, this simplifies the Ippg test
generation process for the core integrator. Not providing a quiet mode definition may result in the
core being placed into a state that consumes more current than would otherwise be necessary.

It is important that no damage be done to a core while testing of other cores or surrounding logic is
being performed. To ensure this damage cannot happen, a core safe state should be defined (even for
cores that have no unsafe states).

19. Compliance definitions specific to wrapped cores

19.1 General rules

The rules in this subclause apply to all IEEE 1500 wrapped cores and are not specific to individual termi-
nals. Words in bold represent CTL (IEEE P1450.6) keywords.

19.1.1 Specifications

Rules
a) IEEE 1500 wrapper architecture and operation shall be compliant to all IEEE 1500 hardware rules
described in this standard.
b) The information related to the length of the WIR, implemented public instructions, and their corre-
sponding opcodes shall be provided in CTL.
1) The WIR is to be defined using the ScanStructure construct.
2) The scan cells composing the WIR are to be identified using the ScanDataType construct.
3) The protocol operating the WIR is to be defined as Instruction using the Purpose construct.
4) Instructions and their opcodes are to be defined using the TestModeForWrapper construct.
c¢) Al IEEE 1500 wrapper terminals shall be described in CTL.
d) Available information about the safe state of input and output terminals shall be provided for all pos-
sible test operating modes.
Recommendations
e) The number of (tester) cycles needed to execute the test patterns should be specified for all the pat-

terns of the core.

19.1.2 Description

Here is the reasoning behind the general rules for wrapped cores:

a)

b)

This rule reiterates that all of the wrapper logic must conform to the requirements and behaviors of
the IEEE 1500 wrapper architecture as described in other clauses of this standard.

All wrapper-supported public instructions must be defined and described using CTL in order to
ensure they can be utilized by standard software. Because instructions are considered test modes in
CTL, the TestModeForWrapper construct is to be used to define instructions.

All wrapper pins must be described accurately in CTL in order for standard software to understand
how to integrate the core into surrounding logic. Since the netlist for the wrapper may not be

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

~92- IEC 62528:2007(E)
IEEE 1500-2005(E)

provided, accurate descriptions of all wrapped pins are necessary in order for software to understand
how to test the logic connected to each wrapped pin.

d) In order for the core integrator to know how to prevent unwanted conflicts from occurring during
test, it is important to note the safe state values required on core/wrapper terminals.

e) The ability to schedule pattern application tasks on the SoC relies on this information being pro-
vided. Without this information, optimized scheduling of the tests would be difficult.

19.2 Per-terminal rules
The rules in this subclause pertain to specific external interface terminals of the wrapped core.

19.2.1 Specifications

Rules
a) All IEEE 1500 terminals that are used to operate the wrapper shall be identified with the following
statement:
signame {
Wrapper IEEE1500 PinID pin_type;
H

19.2.2 Description

Here is the reasoning behind the per-terminal rules:

a) By specifying explicitly the function of special IEEE 1500 wrapper control terminals, there is no
requirement that these terminals need to have specific pin names at the wrapped core boundary. The
pin_type field is expected to be a member of the WSP terminal list described in 8.1.2.

19.3 Wrapper protocol information rules
19.3.1 Specifications

Rules

a) The protocol that operates the WIR through a scan operation to establish the test mode is required to
shift values into all state elements of the WIR.

Recommendations

b) The Capture, Shift, and Update events of the protocol that operates the WIR should be identified in
CTL for the wrapped core using the Identifiers syntax or as a purpose of the protocol.

19.3.2 Description

Here is the reasoning behind the wrapper protocol information rules:

a) Partial loads of the WIR are disallowed as they cause problems when multiple cores are integrated.
A typical integration step would daisy-chain all the WIRs into a single scan chain. If the protocol
that operates the WIRs does not shift the complete daisy-chained set of WIRs, the synchronized scan
operation to establish the modes of the top-level scan chain of the SoC may not work.

b) A typical integration of wrapped cores would daisy-chain the WIRs of all the wrapped cores. To
allow for this form of connection, the activities of the WIRs need to be synchronized. Since there is
only one possible protocol at this time, this is a recommended practice.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) ~93-
IEEE 1500-2005(E)

20. IEEE 1500 application

This clause is informative only. Words in bold represent CTL (IEEE P1450.6) keywords.

20.1 CTL (IEEE P1450.6) overview

IEEE P1450.6 defines the CTL. A CTL description of an IEEE 1500 wrapper is required, so a brief over-
view of CTL is included in IEEE Std 1500 to explain the pertinent connection between the two standards.

CTL is a language for capturing and expressing test-related information for reusable cores, which is meant
to co-exist with and complement information expressed as a netlist. It is utilized to describe IEEE 1500
wrappers. Test information about a core can be captured in CTL so that the SoC integrator or automation
tools can successfully create a complete test for the SoC. Using the CTL description of a core, a wrapper can
be constructed, and the appropriate TAM can be determined based on the test constraints in the CTL
description. Once all the structures are in place, the test patterns that are also a part of the CTL description
can be translated from the core boundary to the SoC boundary. CTL is the language to support all the infor-
mation that the core provider needs to give the system integrator so that the latter can successfully test the
embedded core and any UDL around the core. This language is broad enough to describe cores on which
IEEE 1500 wrappers are to be implemented, IEEE 1500 wrapped cores, their different test methodologies,
and the different ways in which they are integrated in the SoC.

One of the most important requirements for CTL is that the patterns, which contain the bulk of the data, are
reusable without any modification whatsoever. This is accomplished by creating patterns using protocol
statements (P statements) as opposed to vector statements (V statements) as used in traditional STIL (IEEE
Std 1450). This allows the vector application protocol to be modified by the core integrator in an expeditious
manner. Each pattern is identified by its intended purpose and associated test mode, so that a test synthesis
tool can select and reorder as desired, again, without actually having to adjust the bulk pattern data.

CTL is both human and computer readable, as is STIL. Hence, it can be utilized for documentation purposes,
as well as for driving chip test integration tools.

Every mode of the core can have a mechanism to initialize the mode. The initialization sequences are
described in CTL on a per-mode basis. Some modes of the core contain test patterns with their associated
timing information, constraints, and statistics. Some modes contain structural information so that the struc-
ture can be used to create patterns at another level of integration of the design. CTL is designed to describe
all these needs of different modes of the core. For any given test mode of a core, typically only a subset of
the full CTL syntax will be required to adequately describe the attributes of the mode.

At the basic level, Signals and SignalGroups are defined with their attributes. The following text explains
CTL keywords. For complete definitions, refer to IEEE P1450.6.

Signals: This block defines each of the signal names of the core. Attributes can be attached to signals for
additional information, e.g., ScanIn and ScanOut length, indicating the length of the scan chain connected
to the signal.

SignalGroups: Signals can be clustered into signal groups. Also here attributes can be attached. A signal
can occur in multiple signal groups, each time having different attributes.

Timing: Each parallel or scan vector in a pattern macro has an associated timing block to define the wave-
form and corresponding timing on each signal.

Pattern: This block contains the parallel and scan data for testing the core. Since pattern data are typically
the bulk of the CTL file, they are often split off into a separate file.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

~94- IEC 62528:2007(E)
IEEE 1500-2005(E)

MacroDefs: This block contains the protocol for applying test pattern data to the core or chip. Protocols for
patterns provided with the core are written at the core boundary. Once integrated, this protocol is expanded
to the chip level. The actual patterns are not changed in this process so they still reference the same macro
name, but in fact a new, expanded macro definition has replaced the core-level definition.

PatternBurst: This collection of patterns represents a schedule and they are to be executed on the core. Pat-
terns can be run serially or in parallel.

ScanStructures: This block can be used to describe in detail the internal scan chains of a core. In addition to
the scan-in and scan-out port, a list of scan cells and clocking information is specified using the
ScanStructures block.

Environment: This block is the top-level construct in CTL and is used to define the test modes for the core.
Information in each test mode is categorized in subblocks such as the Internal, External, and
PatternInformation blocks.

Internal: This block is used to describe the internal characteristics of the core signals. This information is
provided to allow the core integrator to know the pertinent test information for each terminal of the core
without needing full access to the design information. Examples of this information include wrapper type,
timing accuracy required, and electrical characteristics such as analog or digital.

External: This block is used to describe the external characteristics that are expected from the perspective
of the core boundary. Examples include connect to chip pins (input, output, bidirectional), connect to
another named core, and connect to TAM, and connect to UDL.

PatternInformation: This block defines the purpose of each of the test patterns provided and the test mode
necessary for the execution of each pattern. Other information like the fault model used and achieved cover-
age can also be given.

20.2 IEEE 1500 examples

A core and wrapper are depicted in Figure 41. Note that, whereas this figure shows some implementation
details, IEEE Std 1500 defines only the behavior of the wrapper and leaves the implementation open. In this
particular example, the wrapper can connect Core A both to a serial TAM, via WSI and WSO, as well as to
a 3 bit parallel TAM, via WPI[0:2] and WPO[0:2]. There are six instructions that are described by the fig-
ures in this subclause, supporting normal mode and test modes with connections to either serial or parallel
TAMs. Mode setting through the WIR actually means setting the controls of the wrapper’s multiplexers. In
Figure 41, the multiplexers that do occur in the wrapper are named m1, m2, ... ,m12. The dark circles in the
multiplexers show which path is enabled if the multiplexer control signal is set to 1.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

IEC 62528:2007(E) -95-
IEEE 1500-2005(E)

B scan chain 0 (6 FFs 57
WPI 0:2 scan chain S K
10:2]11 ; | BHWPOI0:2]
d[o] do N
m . a A —
d[1] i al0] M q[0]
dj2] d i
q q[1]
d[3] d m
d[4] d[4] s¢ q ql2]
clk
s€ WBY B
WSI WIR % WSO
Wrapper ? SelectWIR
WSC
P
-,
2z222%¢
g == =
z2253°%
A E S

Figure 41—Example Core A and its IEEE 1500 wrapper

Table 7 lists the six instructions and the corresponding multiplexer settings they cause.

Table 7—Instruction decoding for multiplexer for the wrapper of Core A

FHOTVONVYE/IHON VY - 'Po1WT NOOIIN OL A3ISNIDIT

‘NV3ANg A1ddNS YO0S9 A9 A3ITddNS “ATNO NOILVYOOTSIHL 1V 3ISN TYNYILNI J0d

Multiplexer settings

Mode Instruction Opcode

ml m2 m3 m4 mS mé m7 m8 m9 ml0 mll

Normal WS_BYPASS 0000 X X X X X X X X X X 1

Serial WS _BYPASS 0000 X X X X X X X X X X 1
bypass

Serial WS _INTEST _ 1010 1 1 1 1 1 0 0 0 X X 0
intest SCAN
Serial WS _EXTEST 1001 1 1 1 X X 1 0 0 X X 0

extest

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

- 96— IEC 62528:2007(E)
IEEE 1500-2005(E)

Table 7—Instruction decoding for multiplexer for the wrapper of Core A (continued)

Multiplexer settings
Mode Instruction Opcode
ml m2 m3 m4 m5 mé m7 m8 m9 ml10 mll mi2
Parallel WP_INTEST 1110 0 1 1 0 0 1 0 0 0 0 X X
intest
Parallel WP_EXTEST 1101 0 0 0 X X 1 1 1 1 1 X X
extest

In Figure 41 through Figure 44, the six modes are shown by bold highlighting of the active wires in a partic-
ular mode. The CTL description is included for three of the instructions: WS BYPASS,
WS _INTEST SCAN, and WS_EXTEST.

20.2.1 WS_INTEST_SCAN

Figure 42 depicts the wrapper in its serial internal test mode in which the wrapper and internal scan chains
are concatenated into one long scan chain. Following Figure 42 is the CTL code that describes the wrapper
configuration and test for this. It is anticipated that the user will refer to IEEE P1450.6 for details on the CTL
constructs shown in the code.

WPI[0:2] | SHWPO[0:2]
d[o]]
d[1] q[0]
d[2]
ql1]
d[3]
d[4] ql2]

clk
se IIWBYII :
WSI [WiR] WSO
Wrapp er f SelectWIR
WSC

Figure 42—Serial intest mode using WS_INTEST_SCAN

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NV3ANg A1ddNS YO0S9 A9 A3ITddNS “ATNO NOILVYOOTSIHL 1V 3ISN TYNYILNI J0d

FHOTVONVYE/IHON VY - 'Po1WT NOOIIN OL A3ISNIDIT

IEC 62528:2007(E) —97-
IEEE 1500-2005(E)

STIL 1.0 {
Design A-26-2003;
CTL 2004;
Header ({
Title "Serial Intest";
Date "2004";
}
Signals

WSI In {DefaultState N;}

se In {DefaultState D;}

clk In {DefaultState D;}
d[0..4] In {DefaultState N;}
WPI[0..2] In {DefaultState N;}
WPO[0..2] Out;

gl0..2] out;

WSO Out;

WRSTN In {DefaultState U;}
SelectWIR In {DefaultState D;}
CaptureWR In {DefaultState D;}
ShiftWR In {DefaultState D;}
UpdateWR In {DefaultState D;}
WRCK In {DefaultState D;}

}

SignalGroups

si ml23 = '"WSI' {ScanIn 22;}

si wir = 'WSI' {ScanIn 4;}

so_wir = 'WSO' {ScanOut 4;}

so ml23 = 'WSO'{ScanOut 22;}

wsp[0..5] = 'WRSTN+SelectWIR+CaptureWR+ShiftWR+UpdateWR+WRCK' ;

Variables
SignalVariable si[0..1];
SignalvVariable so[0..1];

SignalVariable instruction [0..3];

}

ScanStructures {
ScanChain wir chain
ScanLength 4;
ScanIn WSI;
ScanOut WSO;
ScanCells wcell[0..3];
ScanMasterClock WRCK;

Timing {
WaveformTable default WFT (
Period '100ns';
Waveforms {

'wsp[0..5]+WPI[0..2]+d[0..4]+clk+se+WSI"
01X {'5ns' D/U/N;}

"clk+WRCK' {

P {'Ons' D; '45ns' U; '55ns' D;}

"WPO[0..2]+q[0..2]+WSO" {
{ro

01X ns' X;

}

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

'95ns' L/H/X;}

{

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

-98- IEC 62528:2007(E)
IEEE 1500-2005(E)

MacroDefs
setup intest
W default WFT;
V {WRSTN=0;}
V {wsp[0..5] = 110100;}
C {instruction=#;}
Shift {Vv {si wir= \W instruction[0..3]; WRCK=P;}}
V {si wir=X; WRCK=0; ShiftWR=0; UpdateWR=1;}
V {WRCK=P;}
V {WRCK = 0; SelectWIR=0; UpdateWR = 0;}

do_intest {
W default WFT;
C {se=1; ShiftWR=1; si=#; so=#;}
Shift {V {si m123= \W si[1] \W si[0] \wW d[0..4];
clk=P; WRCK=P;}}

V {WRCK=P; ShiftWR=0; UpdateWR=1;}

V {clk=0; WRCK=0; se=0; CaptureWR=1; ShiftWR=0;}

V {clk=P; WRCK=P;}

V {CaptureWR=0; clk=0; WRCK=0;}

C {se=1; ShiftWr=1;}

Shift {V {so m123= \W g[2..0] \W so[1] \W sol[0]; clk=P;

WRCK=P; }}

}
}
PatternBurst all pats {
PatList {
initSerialInternalTestMode {Protocol Macro setup intest;}
} patl {Protocol Macro do_intest};
}
PatternExec run all
} PatternBurst all pats;

Environment wrapped core {
CTL serial internal test mode ({
TestMode InternalTest;
Compliancy IEEE1500 2004 Wrapped;
TestModeForWrapper WS INTEST SCAN 1010;
Internal {
'd[0..41+q[0..2]+WPI[0..2]+WPO[0..2]" {
DataType Unused;}

clk {
DataType TestControl
CaptureClock ScanMasterClock
{AssumedInitialState D;}
DriveRequirements
TimingSensitive {
Period Min '50ns';
Pulse High Min '1l0ns';

}

se {DataType TestControl ScanEnable {ActiveState U;}
DriveRequirements
TimingSensitive {
Reference clk {
ReferencekEdge Leading;
Setup 'Sns'; Hold '5Gns';

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

IEC 62528:2007(E)
IEEE 1500-2005(E)

— 99 —

}

si ml23 {DataType TestData ScanDataln
{ScanDataType Boundary Internal;}
DriveRequirements
TimingSensitive {
Reference WRCK ({
ReferenceEdge Leading;
Setup 'Sns'; Hold '5ns';

}

so_ml23 {DataType TestData ScanDataOut
{ScanDataType Boundary Internal;}
StrobeRequirements {
TimingSensitive {
Reference WRCK {
ReferenceEdge Trailing;
EarliestTimeValid '5Sns';

}

LaunchClock WRCK {TrailingEdge; }

}

WRSTN {
Wrapper IEEE1500 PinID WRSTN;
DataType Asynchronous TestControl Reset {
ActiveState D;
AssumedInitialState U;

}

SelectWIR {
Wrapper IEEE1500 PinID SelectWIR;
DataType TestControl TestWrapperControl;

}

CaptureWR {
Wrapper IEEE1500 PinID CaptureWR;
DataType TestControl
} ActiveState U;

}

ShiftWR {
Wrapper IEEE1500 PinID ShiftWR;
DataType TestControl ScanEnable
} ActiveState U;

UpdateWR
Wrapper IEEE1500 PinID UpdateWR;
DataType TestControl
} ActiveState U;

WRCK {

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

~ 100 — IEC 62528:2007(E)
IEEE 1500-2005(E)

Wrapper IEEE1500 PinID WRCK;
DataType TestClock ScanMasterClock {
AssumedInitialState D;

DriveRequirements
TimingSensitive {
Period Min '50ns';
Pulse High Min '1lO0ns';

}

}
}
External {
'clk+se+wsp[0..5]' {ConnectTo {DataType In;}}
WSI {ConnectTo {DataType In;}
ConnectTo {Wrapper IEEE1500 PinID WSO;}}
WSO {ConnectTo {DataType Out;}
ConnectTo {Wrapper IEEE1500 PinID WSI;}}
}
PatternInformation ({
PatternExec run all {
Purpose Production;
PatternBurst all pats;
Fault
Type StuckAt;
FaultCount 1092;
FaultsDetected 999;
}
}
Pattern initSeriallInternalTestMode ({
Purpose EstablishMode;
}

Macro setup intest {
Purpose ModeControl;
UseByPattern EstablishMode;
Macro do intest {
Purpose DoTest;

}

Pattern initSerialInternalTestMode ({
P {instruction[0..3]1=1010;}

Pattern patl {
P {d[O..4]=OOOOO; si1[0]=111000; Si[l]=llllOOOO

so[O]:OOlel; so[1]=111100X1; gloO. =001;}
P {d[0..4]1=01101; si[0]=011010; 51[1]_01011101
so[O]-llOOXl so[1]=10110000; g[oO. =110; }
P {d[0..4]=11001; si[0]=110010; s1[1]_00011100
so[O]—OlOOOl s0[1]=1X110100; glo0. =00X; }
P {d[0..4]1=01010; si[0]=001101; 51[1]_10011101
so[O]-llXOOO 50[1]1=101110XX; ql[O. =011;}
P {d[0..4]1=01111; si[0]=010001; 51[1]-10101101
so[O]=OX1111; so[1]1=00001X10; g[0..2]1=000;}

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

IEC 62528:2007(E) -101-
IEEE 1500-2005(E)

20.2.2 WE_BYPASS

Note that both the multiplexer settings in Table 7 AND the highlighted active wires in Figure 43 show that
the functional and serial bypass modes are nonconflicting and hence can be established by one combined
instruction, WS_BYPASS. Following Figure 43 is the CTL code that describes the wrapper configuration
and test.

scan chain 0 (6 FFs

WPI[0:2] [scan chain I (8 FTs) | ' WPOI[0:2]
d[o0]
a) Normal mode:
d[1] q[0] WS _BYPASS
dj2]
q[1]
df3]
d[4] ql2]
clk
se
WSI WIR o | WSO
Wrapper ITI SelectWIR Lr
WSC

|__scan chain 0 (6 FFs) |

WPI [0:2] scan chain 1 (8 FFs WPO [02]
d[o]
b) Bypass mode:
d[1] ql0] WS _BYPASS

d[2]

q[1]
d[3]

d[4] q[2]
clk
se

WSO

WSI

SelectWIR

Figure 43—WS_BYPASS configuration

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - 'Po1WT NOOIIN OL A3ISNIDIT

‘NV3ANg A1ddNS YO0S9 A9 A3ITddNS “ATNO NOILVYOOTSIHL 1V 3ISN TYNYILNI J0d

-102 -

STIL 1.0 {

Design A-26-2003;
CTL 2004;

Header ({

Title "Bypass Mode - WS_BYPASS";
Date "2004";

Signals {

WSI In {DefaultState N;}

se In {DefaultState D;}

clk In {DefaultState D;}
d[0..4] In {DefaultState N;}
WPI[0..2] In {DefaultState N;}
WPO[0..2] Out;

ql0..2] Out;

WSO Out;

WRSTN In {DefaultState U;}
SelectWIR In {DefaultState D;}
CaptureWR In {DefaultState D;}
ShiftWR In {DefaultState D;}
UpdateWR In {DefaultState D;}
WRCK In {DefaultState D;}

IEC 62528:2007(E)
IEEE 1500-2005(E)

SignalGroups
si byp = 'WSI' {ScanIn 1;}
si wir = 'WSI' {ScanIn 4;}
so byp = 'WSO'{ScanOut 1}
wsp[0..5] = 'WRSTN+SelectWIR+CaptureWR+ShiftWR+UpdateWR+WRCK' ;

Variables

}

SignalVariable instruction[0..3];

MacroDefs bypass mode macros |

operateScanChain {
W default WFT;
C {ShiftWR=1; WRCK=0;}

Shift {v {WSI=#; WSO=#; WRCK=P;}}

}

ScanStuctures bypass mode chains {

}

ScanChain bypassChain
ScanIn WSI;
ScanOut WSO;
ScanLength 1;
ScanCells cO;
ScanMasterClock WRCK;

}

ScanStructures {

ScanChain wir chain
ScanLength 4;
ScanIn WSI;
ScanOut WSO;
ScanCells wcell[0..3];
ScanMasterClock WRCK;

Timing {

WaveformTable default WET (
Period '100ns';

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

IEC 62528:2007(E) -103 -
IEEE 1500-2005(E)

Waveforms {
'wsp[0..5] +WPI[0..2]+d[0..4]+clk+se+WSI'
01X {'5ns' D/U/N;}

"clk+WRCK' {
P {'Ons' D; '45ns' U; '55ns' D;}

"WPO[0..2]+q[0..2]+WSO" {
01X {'Ons' X; '95ns' L/H/X;}
}

}

MacroDefs
setup testmode
W default WFT;
V {WRSTN=0; }
V {wsp[0..5] = 110100;}
Shift {V {si wir= \W instruction [0..3]; WRCK=P;}}
V {si wir=X; WRCK=0; ShiftWR=0; UpdateWR=1;}
V {WRCK=P;}
Y {WRCK = 0; SelectWIR=0; UpdateWR = 0;}
}
Environment wrapped core {
CTL {
WRSTN {
Wrapper IEEE1500 PinID WRSTN;
DataType Asynchronous TestControl Reset {
ActiveState D;
AssumedInitialState U;

}

SelectWIR {
Wrapper IEEE1500 PinID SelectWIR;
DataType TestControl TestWrapperControl;

CaptureWR
Wrapper IEEE1500 PinID CaptureWR;
DataType TestControl ({
} ActiveState U;

ShiftWR {
Wrapper IEEE1500 PinID ShiftWR;
DataType TestControl ScanEnable {
} ActiveState U;

UpdateWR
Wrapper IEEE1500 PinID UpdateWR;
DataType TestControl ({
} ActiveState U;

}

WRCK {
Wrapper IEEE1500 PinID WRCK;
DataType TestControl TestClock ScanMasterClock
} AssumedInitialState D;

}

External {
'clk+se+wsp[0..5] ' {ConnectTo {DataType In;}}

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

—104 - IEC 62528:2007(E)
IEEE 1500-2005(E)

WSI {ConnectTo {DataType In;}

ConnectTo {Wrapper IEEE1500 PinID WSO;}}
WSO {ConnectTo {DataType Out;}

ConnectTo {Wrapper IEEE1500 PinID WSI;}}

}

CTL bypass test mode {
TestMode Bypass Normal;
Compliancy IEEE1500 2004 Wrapped;
TestModeForWrapper WS_BYPASS 0000;
DomainReferences
ScanStructures bypass mode chains;
MacroDefs bypass mode macros;
}
Internal
'd[0..4]+g[0..2]+se' {DataType Functional;}
‘WPI[0..2]+WPO[0..2]" {DataType TestData Unused; }
clk {
DataType TestControl MasterClock
{AssumedInitialState D;}
DriveRequirements { TimingSensitive {
Period Min '50ns';
Period Max '100ns';
H
}

WSI {DataType TestData ScanDataln
{ScanDataType ByPass;}}
WSO {DataType TestData ScanDataOut
{ScanDataType ByPass;}}
}
PatternInformation {
Pattern initByPass TestMode
Purpose EstablishMode;
Protocol Macro setup testmode;
}
Macro setup_testmode{
Purpose ModeControl;
UseByPattern EstablishMode;
}
Macro operateScanChain{
Purpose ControlObserve;
ScanChain bypassChain;

}

Pattern initByPass TestMode (
P {instruction[0..3]1=0000;}

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

IEC 62528:2007(E) - 105 -
IEEE 1500-2005(E)

20.2.3 WS_EXTEST

Figure 44 depicts the wrapper in its serial external test mode. Following Figure 44 is the CTL code that

describes the wrapper configuration and test for this.

scan chain 0 (6 FFs

g
WPI [0:2] scan chain 1 (8 FFs g%t
d[0] .
Core A
d[i] q[0]
d[2]
q[1]
d[3]
d[4] dé4] se ck g[2]
clk
se
[
WSI | WIR | ?
Wr apper 4 SelectWIR
WSC
Figure 44—WS_EXTEST configuration
STIL 1.0 {
Design A-26-2003;
CTL 2004;
Header ({
Title "Extest Mode - WS EXTEST";
} Date "2004";
Signals

WSI In {DefaultState N;}

se In {DefaultState D;}

clk In {DefaultState D;}
d[0..4] In {DefaultState N;}
WPI[0..2] In {DefaultState N;}
WPO[0..2] Out;

gl0..2] out;

WSO Out;

WRSTN In {DefaultState U;}
SelectWIR In {DefaultState D;}
CaptureWR In {DefaultState D;}
ShiftWR In {DefaultState D;}
UpdateWR In {DefaultState D;}

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

WPO[0:2]

q[0]

ql1]

ql2]

WSO

‘NV3ANg A1ddNS YO0S9 A9 A3ITddNS “ATNO NOILVYOOTSIHL 1V 3ISN TYNYILNI J0d

FHOTVONVYE/IHON VY - 'Po1WT NOOIIN OL A3ISNIDIT

-106 — IEC 62528:2007(E)
IEEE 1500-2005(E)
WRCK In {DefaultState D;}
}
SignalGroups
si ext = 'WSI';
si wir = 'WSI';
so_ext = 'WSO';
wsp[0..5] = 'WRSTN+SelectWIR+CaptureWR+ShiftWR+UpdateWR+WRCK' ;

Variables
SignalVariable instruction[0..3];
}

MacroDefs extest mode macros |
operateScanChain {
W default WFT;
C {ShiftWR=1; WRCK=0;}
Shift {v {WSI=#; WSO=#; WRCK=P;}}
}
}
ScanStuctures extest mode chains {
ScanChain wrapperChain (
ScanIn WSI;
ScanOut WSO;
ScanLength 8;
ScanCells c[0..7];
ScanMasterClock WRCK;
}
}
Timing {
WaveformTable default WFT (
Period '100ns’';
Waveforms {

'wsp[0..5]+WPI[0..2]+d[0..4]+clk+se+WSI"'

01X {'5ns' D/U/N;}

"clk+WRCK' {
P {'Ons' D; '45ns' U;

"WPO[0..2]+q[0..2]+WSO" {
01x {'o
}

}

MacroDefs
setup_ testmode
W default WFT;
V {WRSTN=0; }
v {wsp[0..5] = 110100;}

'55ns' D;}

ns' X; '95ns' L/H/X;}

Shift {V {si wir= \W instruction[0..3]; WRCK=P;}}
V {si wir=X; WRCK=0; ShiftWR=0; UpdateWR=1;}

V {WRCK=P;}

V {WRCK = 0; SelectWIR=0; UpdateWR

}

Environment wrapped core {
CTL
Internal
WRSTN {

= o;}

Wrapper IEEE1500 PinID WRSTN;
DataType Asynchronous TestControl Reset ({

ActiveState D;

AssumedInitialState U;

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

IEC 62528:2007(E) —107 -
IEEE 1500-2005(E)

SelectWIR {
Wrapper IEEE1500 PinID SelectWIR;
DataType TestControl TestWrapperControl;

CaptureWR {
Wrapper IEEE1500 PinID CaptureWR;
DataType TestControl ({
} ActiveState U;

ShiftWR {
Wrapper IEEE1500 PinID ShiftWR;
DataType TestControl ScanEnable {
} ActiveState U;

UpdateWR
Wrapper IEEE1500 PinID UpdateWR;
DataType TestControl (
ActiveState U;
}
}

WRCK {
Wrapper IEEE1500 PinID WRCK;
DataType TestControl TestClock ScanMasterClock
} AssumedInitialState D;

}

External {
'clk+se+wsp[0..5]' {ConnectTo {DataType In;}}
WSI {ConnectTo {DataType In;}
ConnectTo {Wrapper IEEE1500 PinID WSO;}}
WSO {ConnectTo {DataType Out;}
ConnectTo {Wrapper IEEE1500 PinID WSI;}}
}
}
CTL extest test mode ({
TestMode ExternalTest;
Compliancy IEEE1500 2004 Wrapped;
TestModeForWrapper WS EXTEST 1001;
DomainReferences
ScanStructures extest mode chains;
MacroDefs extest mode macros;

Internal
'd[0..4]" { DataType Functional TestData;
IsConnected In
StateElement Scan ‘c[4..0]’;
CaptureClock WRCK {
LeadingEdge;
StateAfterClock Connection;

}

‘gq[0..2]’ {DataType Functional TestData;
IsConnected Out
StateElement Scan ‘c[5..7]"';
LaunchClock WRCK {
LeadingEdge;
StateAfterClock ExpectUnknown;

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

}
}

-108 -

IEC 62528:2007(E)
IEEE 1500-2005(E)

se {DataType Functional Unused;}

‘WPI[0..2]+WPO[O..2]"

clk {

}

{DataType TestData Unused; }

DataType TestControl MasterClock
UseByPattern EstablishMode;

Macro operateScanChain{
Purpose ControlObserve;
ScanChain wrapperChain;

Pattern initExtest TestMode {

P {instruction([0..31=1001;}

20.2.4 WP_EXTEST and WP_INTEST

Figure 45 illustrates the configuration of the wrapper for the parallel extest and parallel intest modes.

WPI[0:2]
d[o]

d[1]
2]

di3]
d[4]

clk
se

WSI

scan chain 0 (6 FFs

scan chain | (8 FFs

d[o]

Wrapper

SelectWIR

WPO[0:2]

a) Parallel extest
q[0] mode: WP_EXTEST
q[1]
q[2]
WSO

Figure 45—Parallel extest and parallel intest modes

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NV3ANg A1ddNS YO0S9 A9 A3ITddNS “ATNO NOILVYOOTSIHL 1V 3ISN TYNYILNI J0d

FHOTVONVYE/IHON VY - 'Po1WT NOOIIN OL A3ISNIDIT

IEC 62528:2007(E) -109 -
IEEE 1500-2005(E)

scan chain 0 (6 FFs

WPI[0:2] scan chain 1 (8 FFs

d[0]

d[1]
d[2]

d[3]
d[4] clk

clk
se

WSI

SelectWIR

Wrapper

WSC

WPO[0:2]

b) Parallel intest
mode: WP_INTEST
q[0]

q[1]

q[2]

WSO

Figure 45—Parallel extest and parallel intest modes (continued)

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NV3ANg A1ddNS YO0S9 A9 A3ITddNS “ATNO NOILVYOOTSIHL 1V 3ISN TYNYILNI J0d

FHOTVONVYE/IHON VY - 'Po1WT NOOIIN OL A3ISNIDIT

-110 - IEC 62528:2007(E)
IEEE 1500-2005(E)

Annex A

(normative)

Bubble diagram definition

In IEEE Std 1500, an attempt has been made to focus on architecture and remain neutral to implementation
styles. In this spirit, a new graphical vocabulary has been implemented to describe hardware behavior visu-
ally without describing the physical implementation of the hardware. Informally, diagrams drawn using
these symbols have been called bubble diagrams because the much-used symbol for a storage element is a
circle.

The symbols to describe behavior are few. In fact, there are only four as shown in Figure A.1. The first is the
symbol for a storage element, which is a circle. The second is a data path, which is represented as a line with
an arrowhead indicating data flow direction. The third is a dataflow decision point, which is represented as a
vertical line with no arrowhead. The fourth symbol is a connection point, represented as a small filled circle
located at the junction of two datapaths.

g
— >

Figure A.1—The four symbols used in bubble diagrams

The storage element has a characteristic associated with it that indicates the events to which it responds. This
characteristic is displayed as the presence of one or more characters inside the circle from the set S, C, T, U,
and F indicating the Shift, Capture, Transfer, Update, and any Functional event, respectively. Figure A.2
shows various storage elements.

Figure A.2—Various storage elements

Shift data flows from CTI to CTO and can go through multiple storage elements represented by the bubbles.
Capture data come into a storage element from the CFI terminal or the CFO terminal. Transfer data come
from the input sourced from another storage element. Update data come from the shift path storage element
closest to CTO. Functional data come from CFI.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) — 111 -
IEEE 1500-2005(E)

To show how these elements are used together, a IEEE 1149.1 BC 1 cell using the IEEE 1500 cell notation
is shown in Figure A.3. The BC 1 cell supports the Shift, Capture, Update, and Apply events. It should be
noted that the Apply event is a virtual event, composed of other events or modes, and, therefore, is not spe-
cifically represented in these diagrams.

TDO

\ 4

— FDO

FDI —

|

TDI

Figure A.3—Example of IEEE 1149.1 BC_1 cell

For further examples of usage, refer to Annex B where various bubble diagrams are reduced to implementa-
tion examples.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

~112- IEC 62528:2007(E)
IEEE 1500-2005(E)

Annex B

(informative)

WBR cell examples

Table B.1 describes IEEE 1500 WBR cell example names, and a gallery of bubble diagrams depicting each
example follows the table. The bubble diagrams used in these examples are defined in Annex A. It is under-
stood that the means of data path selection shown in these bubble diagram figures is to be configured by the
content of the WIR.

Table B.1—WBR cell examples

Cell description Name Figure number
One storage element in shift path dedicated to wrapper | WC_SD1_CII Figure B.1
function.
Two storage elements in the shift path with one shared | WC_SF2 CIO Figure B.2
with functional operation.
Two dedicated storage elements in the shift path. WC SD2 CII Figure B.3
One dedicated storage element in the shift path and a WC _SD1 _CII_ UD Figure B.4
dedicated update storage element.
Two dedicated storage elements in the shift pathanda | WC_SD2 CIU UF Figure B.5
shared update storage element.
n dedicated storage elements in the shift path and a WC SDn_CII_ UD Figure B.6
dedicated update storage element
A reduced-functionality cell performing control-only WC_SD1 CN Figure B.7
function with one dedicated storage element in the
shift path.
One dedicated storage element in the shift path, WC_SD1_CBI_UD Figure B.8

selectively capturing from CFI or CFO, and a
dedicated update storage element.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

IEC 62528:2007(E) ~ 113 -
IEEE 1500-2005(E)

WC _SD1_CII has the advantage of a dedicated shift path, however, depending on the instruction, the CFO
terminal may toggle during Shift or Capture operations. The connection between CFI and CFO may be diffi-
cult to test. WC_SDI1_CII_G may be forced to a safe value in addition the supporting the functionality
described for WC_SD1_CII. See Figure B.1.

CTO
CFI ?
> CFO
>
CTI (2) WC_SD1_CII
CTO
CFI * -
CFO
_>
Safe —p»
Value
CTI

(b) WC_SD1_CIL_ G

Figure B.1—WC_SD1_CIl WBR cell

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

—114 -

WC_SF2 CIO is similar to WC _SD2 CIO except that functional operation and test operation share the
sequential element closest to CTO. This cell may be used to meet a test objective in which the capture and
apply paths are identical. WC_SF2 CIO_G may be forced to a safe value in addition the supporting the

functionality described for WC_SF2 CIO. See Figure B.2.

CTO

CFI : @

CTI

CTO

CFl

CFO

(a) WC_SF2_CIO

—»(SCTF

CTI

- CFO

Safe —p|
Value

(b) WC_SF2 CIO G

Figure B.2—WC_SF2_CIO WBR cell

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

IEC 62528:2007(E)
IEEE 1500-2005(E)

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) ~ 115 -
IEEE 1500-2005(E)

WC SD2 CII and WC SD2 CII G support the same functionality as the WC _SDI1 _CII and
WC _SDI1_CII_G, respectively, and additionally support a transition test application. See Figure B.3.

CTO

CFl * >

CFO
(D

(a) WC_SD2_CII

CTI
CTO
CFI_. * -
CFO
ST - .
Safe —p]
Value
(a) WC_SD2_CII_ G
CTI

Figure B.3—WC_SD2_CII WBR cell

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

_ 116 IEC 62528:2007(E)
IEEE 1500-2005(E)

WC_SD1 _CII UD corresponds to an IEEE 1149.1 BC 1 cell. It has dedicated shift path and a dedicated
update storage element. WC_SD1_CII_UD_G may be forced to a safe value in addition the supporting the
functionality described for WC_SD1_CII_UD. See Figure B.4.

CTO
CFl A
* - CFO
_>
SC
(a) WC_SDI1_CII_UD
CTI
CTO
A
CFl . >
CFO
—
Safe —p|
Value
SC
(b) WC_SD1 _CII UD G
CTI

Figure B.4—WC_SD1_CII_UD WBR cell

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) — 117 -
IEEE 1500-2005(E)

WC _SD2 CIU UF and WC SD2 CIU UF G support the same functionality as the WC SD1 CIU UF
and WC_SD1_CIU_UF _G, respectively (see Figure 24) except that additionally they have two shift path
storage elements and, therefore, may be used for transition test applications. See Figure B.5.

CTO

‘

CFI CFO

(a) WC_SD2_CIU_UF
CTI

CTO

CFI
CFO

(b) WC_SD2_CIU_UF_G
CTI

Figure B.5—WC_SD2_CIU_UF WBR cell

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

- 118 - IEC 62528:2007(E)
IEEE 1500-2005(E)

WC _SDn CII UD and WC SDn_CII UD_G support the same functionality as the WC _SD1 CII_UD and
WC SDI1_CII_UD_G, respectively, except that additionally they have two or more shift path storage ele-
ments and, therefore, may be used for transition test applications. Similar to the BC 1, the capture sites are
the storage elements closest to CTI. See Figure B.6.

CTO
CFl *
* - CFO
——P
n number
| of shift
storage
elements
(a) WC_SDn_CII_UD
CTI
CTO
CFlI . * >
CFO
_>
Safe
Value — P
I n number
of shift
storage
elements
(b) WC_SDn_CII UD G
CTI

Figure B.6—WC_SDn_CII_UD WBR cell

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) ~119 -
IEEE 1500-2005(E)

WC _SDI1_CN is a control-only harnessing cell. This cell is to be used only in accordance with permission
12.2.1(g). See Figure B.7.

CTO

CE| ?
> CFO

CTI

Figure B.7—WC_SD1_CN WBR cell

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

~120 - IEC 62528:2007(E)
IEEE 1500-2005(E)

WC_SD1 CBI UD and WC SD1 CBI UD G support the same functionality as the WC _SD1_CII_UD
and the WC_SD1_CII_UD_G cells, respectively, except additionally the origin of the capture data is select-
able between CFI and CFO. See Figure B.8.

CTO
A
CFlI e >
o CFO
_>
SC
_>
CTI (a) WC_SD1_CBI_UD
CTO
A
CFlI e >
o P CFO
_>
_>
Safe
; Value
SC
_>
CTl (b) WC_SD1 _CBI UD G

Figure B.8—WC_SD1_CBI_UD WBR cell

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62528:2007(E) —121 -
IEEE 1500-2005(E)

Annex C

(informative)

Relationship of IEEE Std 1500 to IEEE Std 1149.1

The reader will likely note that this standard bears much resemblance to IEEE Std 1149.1, and that is not
accidental. IEEE Std 1149.1 has proven to be very valuable to the electronics industry and has been widely
adopted. While the objectives of both IEEE Std 1149.1 and IEEE Std 1500 are to provide improvements in
testing, their focus differs significantly. It is natural, therefore, that some divergence exists between the two
standards. IEEE Std 1149.1 is primarily concerned with board testing and secondarily concerned with inter-
nal IC testing. IEEE Std 1500 is primarily concerned with testing embedded cores and UDL within an IC.

The IEEE 1500 architecture was designed to allow interface compatibility with the IEEE 1149.1 test access
port (TAP) controller. Indeed, the wrapper’s WSC interface (with the exception of the optional TransferDR
signal) can correspond to the control outputs from the IEEE 1149.1 TAP controller. For example, the WSP
timing diagram in Figure 31 (see 14.2) is compatible with the protocol control issued from a TAP controller.
Thus, while IEEE Std 1500 does not require or suggest it, the WSC interface may be operated by an IEEE
1149.1 TAP controller if the SoC designer wishes to do so to allow access to IEEE 1500 wrappers via the
dedicated TAP pins on the SoC. This would advantageously allow IEEE 1500 to be accessible at any point
in the SoC life cycle.

A consideration of IEEE 1500 has been to facilitate delay testing of cores and UDL within SoCs. The two
and a half cycles of IEEE 1149.1 test clock (TCK) latency between the TAP’s UpdateDR and CaptureDR
states limits the TAP protocol from being able to apply some delay tests. Using the IEEE 1500 WSP inter-
face signals directly (i.e., not via a TAP) allows for delay testing since there are no protocol timing restric-
tions between any desired IEEE 1500 WSC event. For example, a Capture event may immediately follow
either an Update or a Transfer event to facilitate delay testing. In summary, it is possible to design an inter-
face between an IEEE 1149.1 TAP and IEEE 1500 WSC so that the WSC may be operated by the TAP to
achieve all wrapper test operations with the exception of delay testing and use of the Transfer event as
shown in C.1.

C.1 Sample IEEE 1149.1 TAP controller interface

To reduce the congestion of test control interface wiring of IEEE 1500 wrappers in SoCs and/or to consoli-
date the operation of IEEE 1500 wrappers with IEEE 1149.1-based standards (1149.1, 1149.4, 1149.5,
1149.6, 1532, and 5001) in SoCs, the use of an IEEE 1149.1 TAP controller may be required. The following
description provides insight into one way of interfacing the IEEE 1500 wrapper’s WSP to an IEEE 1149.1
TAP controller.

Figure C.1 illustrates the WSP of an IEEE 1500 wrapper being interfaced to an IEEE 1149.1 TAP controller.
As shown, the standard reset and select outputs of the IEEE 1149.1 TAP controller can be directly connected
to the WRSTN and SelectWIR inputs of the IEEE 1500 WSP, respectively. However, the WRCK, ShiftWR,
CaptureWR, and UpdateWR signals of the WSP must be interfaced to the IEEE 1149.1 TAP controller via
glue logic. This implementation does not support the Transfer event. An example of glue logic implementa-
tion is shown in Figure C.2.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

-122 -

IEC 62528:2007(E)
IEEE 1500-2005(E)

{;}44>wso

> Wrapper Data Registers 0
7y X 4 & &
WSI
> Wrapper Instruction Register > 1
rttf [TTT
1 0 O I
X 4 4 &
| x|y
&~ =
£l 8121232
2 212|553
(58|58 2|3
|©)]
[1 {>0
1 I
2 g
g |, 3
ﬁGlue Logic‘

TAP Controller

I

TCK TMS TRST

Figure C.1—IEEE 1500 WSP and IEEE 1149.1 TAP controller interface

Wrapper Serial Port
A m A
Z N 22 22
= S = = = =
% B & £ g z
= = 2 53 3%
= 175} = 3, 2
O D &
FF FF
4 _______
[or | [oR | [OR
A 4 A 4 y
O
2 5 @ 9 S @
=] I I =2 e,
2 4 = 9 & 4
g g g & 2
B = 4 2 2 5| = 3
3 22 5 &8 2B 3
x Bl @ O 9 2| o A
TAP Controller

L]

TCK TMS TRST

Glue
Logic

Figure C.2—IEEE 1149.1 TAP controller interface logic

[Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

IEC 62528:2007(E) —123 -
IEEE 1500-2005(E)

Figure C.2 illustrates a simple implementation of the glue logic of Figure C.1, which interfaces a standard
IEEE 1149.1 TAP controller to an IEEE 1500 WSP interface via logical OR functions. This figure shows a
conceptual model and appropriate timing should be verified for proper operation. As seen in Figure C.2,

An IEEE 1500 WRCK event occurs in response to an IEEE 1149.1 ClockIR OR ClockDR event.

An IEEE 1500 ShiftWR event occurs in response to the IEEE 1149.1 TAP controller being in either
the Shift-IR State OR the Shift-DR state.

An IEEE 1500 CaptureWR event occurs in response to the IEEE 1149.1 TAP controller being in
either the Capture-IR state OR the Capture-DR state.

An IEEE 1500 UpdateWR event occurs in response to an IEEE 1149.1 TAP controller UpdateIR OR
UpdateDR event.

Figure C.3 illustrates IEEE 1500 Capture, Shift, and Update events generated using the IEEE 1149.1 TAP
controller shown in Figure C.1.

Capture
IR/DR State

CaptureWR ' .

Shift
IR/DR State

\

ShiftWR o

Update
IR/DR State

Capture Shift Update

UpdateWR . .

..

Figure C.3—IEEE 1500 Capture/Shift/Update events
generated using TAP controller

It is clear via the glue logic circuit description given in this subclause with respect to Figure C.1 and
Figure C.2 that IEEE 1500 wrappers are easily and efficiently controllable via legacy IEEE Standard 1149.1
TAP based tools, processes, and technologies.

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

‘NV3ANg A1ddNS YO0S9 A9 A3ITddNS “ATNO NOILVYOOTSIHL 1V 3ISN TYNYILNI J0d

FHOTVONVYE/IHON VY - 'Po1WT NOOIIN OL A3ISNIDIT

- 124 - IEC 62528:2007(E)
IEEE 1500-2005(E)

Annex D

(informative)

List of participants

At the time this standard was prepared, the Embedded Core Test Working Group had the following
membership:
Yervant Zorian, Chair
Karim Arabi, Vice Chair, Compliance Definition
Francisco da Silva, Vice Chair, Edition
Lee Whetsel, Vice Chair, Scalable Architecture
Sudipta Bhawmik, Secretary

Luis Basto

Dwayne Burek
Vivek Chickermane
Wu-Tung Cheng
Mike Collins
Bulent Dervisoglu

Past members include the following:

Saman Adham
James Beausang
Debashis Bhattacharya
Tapan Chakraborty
Chen-Huan Chiang
CJ Clark

Adam Cron

Al Crouch

Scott Davidson
Ted Eaton

Joan Figueras
Pradipta Ghosh
Sanjay Gupta
Andy Halliday
Peter Harrod
Douglas Kay
Bernd Koenemann

Ken-ichi Anzou
Luis Basto

Roger Bennetts
Sudipta Bhawmik
Dave Bonnett
Keith Chow
Antonio M. Cicu
Luis Cordova
Francisco da Silva
Dave Dowding
William Eklow
Grady Giles
Sandeep Goel
Alan Hales

Peter Harrod

Jason Doege

Grady Giles

Alan Hales

Rohit Kapur

Brion Keller

Erik Jan Marinissen
Mike Mateja

Maurice Lousberg
Samy Makar
Meryem Marzouki
Jim Monzel
Nilanjan Mukherjee
Date Noorlag
Franc Novak
Adam Osseiran
Chris Papachristou
Srinivas Patil

Kim Petersen
Paolo Prinetto
Janusz Rajski
Rochit Rajsuman
Paul Reuter
Gordon Robinson
Todd Rockoff
Eddie Rodriguez

Mitsuaki Ishikawa
Neil Jacobson
Rohit Kapur

Jake Karrfalt

Brion Keller

Adam Ley

Maurice Lousberg
Yuhai Ma

Ryan Madron

Erik Jan Marinissen
Denis Martin
Gregory Maston
Yinghua Min
Mehdi Mohtashemi
James Monzel
Richard Morren

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

Teresa McLaurin
Fidel Muradali
Mike Ricchetti
Paul Soong

Jon Udell

Tom Waayers

Samvel Shoukourian
Rajagopalan Srinivasan
Tony Taylor

Ted Vaida

Prab Varma

Ken Wagner

Michael Wahl

Ron Walther

Tom W. Williams
Cheng-Wen Wu
Shianling Wu
Hans-Joachim Wunderlich
Sitaram Yadavalli
Avetik Yessayan

Greg Young

Alex Zamfirescu
Kamran Zarrineh

The following members of the individual balloting committee voted on this standard. Balloters may have
voted for approval, disapproval, or abstention.

Benoit Nadeau-Dostie
Charles Ngethe
Franc Novak
Steven Oostdijk
Adam Osseiran
Klaus Rapf

Paul Reuter

Mike Ricchetti
Gordon Robinson
Srinivasa Vemuru
Tom Waayers
Gregg Wilder

T. W. Williams
Li Zhang

Yervant Zorian

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

IEC 62528:2007(E) —125-
IEEE 1500-2005(E)

When the IEEE-SA Standards Board approved this standard on 20 March 2005, it had the following

membership:
Steve M. Mills, Chair
Richard H. Hulett, Vice Chair
Don Wright, Past Chair
Judith Gorman, Secretary

Mark D. Bowman Raymond Hapeman
Dennis B. Brophy William B. Hopf
Joseph Bruder Lowell G. Johnson
Richard Cox Herman Koch
Bob Davis Joseph L. Koepfinger*
Julian Forster* David J. Law
Joanna N. Guenin Daleep C. Mohla
Mark S. Halpin Paul Nikolich

T. W. Olsen

*Member Emeritus

Also included are the following nonvoting IEEE-SA Standards Board liaisons:

Satish K. Aggarwal, NRC Representative
Richard DeBlasio, DOE Representative
Alan H. Cookson, NIST Representative

Michelle D. Turner
IEEE Standards Project Editor

[Published by IEC under licence from IEEE. ©® 2005 IEEE. All rights reserved. |

Glenn Parsons
Ronald C. Petersen
Gary S. Robinson
Frank Stone
Malcolm V. Thaden
Richard L. Townsend
Joe D. Watson
Howard L. Wolfman

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

LICENSED TO MECON Limited. - RANCHI/BANGALORE
FOR INTERNAL USE AT THISLOCATION ONLY, SUPPLIED BY BOOK SUPPLY BUREAU.

LICENSED TO MECON Limited. - RANCHI/BANGALORE
FOR INTERNAL USE AT THISLOCATION ONLY, SUPPLIED BY BOOK SUPPLY BUREAU.

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

3, rue de Varembé
P.O. Box 131
CH-1211 Geneva 20
Switzerland

Tel: +41 2291902 11
Fax: + 41 22 919 03 00
info@iec.ch
www.iec.ch

‘NV3ANg A1ddNS YO0S9 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3ISN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IW OL d3ISN3DIT

	CONTENTS
	FOREWORD
	Title page
	IEEE Introduction
	Objective of the IEEE 1500 effort
	Achievements
	Notice to users
	Errata
	Interpretations
	Patents

	1. Overview
	1.1 Scope
	1.2 Purpose

	2. Normative references
	3. Definitions, acronyms, and abbreviations
	3.1 Definitions
	3.2 Acronyms and abbreviations

	4. Structure of this standard
	4.1 Specifications
	4.2 Descriptions

	5. Introduction and motivations of two compliance levels
	6. Overview of the IEEE 1500 scalable hardware architecture
	6.1 Wrapper serial port (WSP)
	6.2 Wrapper parallel port (WPP)
	6.3 Wrapper instruction register (WIR)
	6.4 Wrapper bypass register (WBY)
	6.5 Wrapper boundary register (WBR)

	7. WIR instructions
	7.1 Introduction
	7.2 Response of the wrapper circuitry to instructions
	7.2.1 Specifications
	7.2.2 Description

	7.3 Wrapper instruction rules and naming convention
	7.3.1 Specifications
	7.3.2 Description

	7.4 WS_BYPASS Instruction
	7.4.1 Specifications
	7.4.2 Description

	7.5 WS_EXTEST instruction
	7.5.1 Specifications
	7.5.2 Description

	7.6 WP_EXTEST instruction
	7.6.1 Specifications
	7.6.2 Description

	7.7 Wx_EXTEST instruction
	7.7.1 Specifications
	7.7.2 Description

	7.8 WS_SAFE instruction
	7.8.1 Specifications
	7.8.2 Description

	7.9 WS_PRELOAD instruction
	7.9.1 Specifications
	7.9.2 Description

	7.10 WP_PRELOAD instruction
	7.10.1 Specifications
	7.10.2 Description

	7.11 WS_CLAMP instruction
	7.11.1 Specifications
	7.11.2 Description

	7.12 WS_INTEST_RING instruction
	7.12.1 Specifications
	7.12.2 Description

	7.13 WS_INTEST_SCAN instruction
	7.13.1 Specifications
	7.13.2 Description

	7.14 Wx_INTEST instruction
	7.14.1 Specifications
	7.14.2 Description

	8. Wrapper serial port (WSP)
	8.1 WSP terminals
	8.1.1 Specifications
	8.1.2 Description

	9. Wrapper parallel port (WPP)
	9.1 WPP terminals
	9.1.1 Specifications
	9.1.2 Description

	10. Wrapper instruction register (WIR)
	10.1 WIR configuration and DR selection
	10.1.1 Specifications
	10.1.2 Description

	10.2 WIR design
	10.2.1 Specifications
	10.2.2 Description

	10.3 WIR operation
	10.3.1 Specifications
	10.3.2 Description

	11. Wrapper bypass register (WBY)
	11.1 WBY register configuration and selection
	11.1.1 Specifications
	11.1.2 Description

	11.2 WBY design
	11.2.1 Specifications
	11.2.2 Description

	11.3 WBY operation
	11.3.1 Specifications
	11.3.2 Description

	12. Wrapper boundary register (WBR)
	12.1 WBR structure and operation
	12.1.1 Specifications
	12.1.2 Description

	12.2 WBR cell structure and operation
	12.2.1 Specifications
	12.2.2 Description

	12.3 WBR operation events
	12.3.1 Specifications
	12.3.2 Description

	12.4 WBR operation modes
	12.4.1 Normal mode
	12.4.2 Inward facing (IF) mode
	12.4.3 Outward facing (OF) mode
	12.4.4 Nonhazardous mode

	12.5 Parallel access to the WBR
	12.5.1 Parallel configuration of the WBR
	12.5.2 Harnessing of the WBR

	12.6 WBR cell naming
	12.6.1 Specifications
	12.6.2 Description

	12.7 WBR cell examples
	12.8 IEEE 1500 WBR example

	13. Wrapper states
	13.1 Wrapper Disabled and Wrapper Enabled states
	13.1.1 Specifications
	13.1.2 Description

	14. WSP timing diagram
	14.1 Specifications
	14.2 Description
	14.2.1 Timing parameters for event and functional input/output (I/O)

	14.3 Synchronous reset timing

	15. WSP configurations for IEEE 1500 system chips
	15.1 Connecting multiple WSPs
	15.1.1 Specifications
	15.1.2 Description

	16. Plug-and-play (PnP)
	16.1 Background and definition
	16.2 PnP aspects of standard instructions
	16.2.1 Specifications
	16.2.2 Description

	16.3 PnP limitations on protocols
	16.3.1 Specifications
	16.3.2 Description

	16.4 Non-PnP in IEEE Std 1500

	17. Compliance definitions common to wrapped and unwrapped cores
	17.1 General rules
	17.1.1 Specifications
	17.1.2 Description

	17.2 Per-terminal rules
	17.2.1 Specifications
	17.2.2 Description

	17.3 Test pattern information rules
	17.3.1 Specifications
	17.3.2 Description

	18. Compliance definitions specific to unwrapped cores
	18.1 General rules
	18.1.1 Specifications
	18.1.2 Description

	18.2 Per-terminal rules
	18.2.1 Specifications
	18.2.2 Description

	18.3 Additional test information rules
	18.3.1 Specifications
	18.3.2 Description

	19. Compliance definitions specific to wrapped cores
	19.1 General rules
	19.1.1 Specifications
	19.1.2 Description

	19.2 Per-terminal rules
	19.2.1 Specifications
	19.2.2 Description

	19.3 Wrapper protocol information rules
	19.3.1 Specifications
	19.3.2 Description

	20. IEEE 1500 application
	20.1 CTL (IEEE P1450.6) overview
	20.2 IEEE 1500 examples
	20.2.1 WS_INTEST_SCAN
	20.2.2 WE_BYPASS
	20.2.3 WS_EXTEST
	20.2.4 WP_EXTEST and WP_INTEST

	Annex A (normative) Bubble diagram definition
	Annex B (informative) WBR cell examples
	Annex C (informative) Relationship of IEEE Std 1500 to IEEE Std 1149.1
	C.1 Sample IEEE 1149.1 TAP controller interface

	Annec D (informative) List of participants

