IEC 62526:2007(E) |EEE Std. 1450.1-2005

& IEEE IEC 62526

Edition 1.0 2007-11

INTERNATIONAL IEEE 1450.1™
STANDARD

Standard for Extensions to Standard Test Interface Language (STIL) for
Semiconductor Design Environments

‘NYIING ATddNS YO0S9 A9 A3 11ddNS “ATNO NOILVOOTSIHL 1V ISN TVYNYILN| ¥OS

FHOTVYONVYE/IHON VY - ‘poHWIT NOOIN OL A3ISN3DIT

THIS PUBLICATION IS COPYRIGHT PROTECTED
Copyright © 2007 IEEE

All rights reserved. IEEE is a registered trademark in the U.S. Patent & Trademark Office, owned by the Institute of
Electrical and Electronics Engineers, Inc.

Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from the IEC Central Office.

Any questions about IEEE copyright should be addressed to the IEEE. Enquiries about obtaining additional rights
to this publication and other information requests should be addressed to the IEC or your local IEC member National
Committee.

IEC Central Office The Institute of Electrical and Electronics Engineers, Inc
3, rue de Varembé 3 Park Avenue

CH-1211 Geneva 20 US-New York, NY10016-5997

Switzerland USA

Email: inmail@iec.ch Email: stds-info@ieee.org

Web: www.iec.ch Web: www.ieee.org

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigenda or an amendment might have been published.

= Catalogue of IEC publications: www.iec.ch/searchpub
The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,...).
It also gives information on projects, withdrawn and replaced publications.

" |EC Just Published: www.iec.ch/online_news/justpub
Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available
on-line and also by email.

= Electropedia: www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions
in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical
Vocabulary online.

® Customer Service Centre: www.iec.ch/webstore/custserv

If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service
Centre FAQ or contact us:

Email: csc@iec.ch

Tel.: +41 22 919 02 11

Fax: +41 22 919 03 00

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

mailto:inmail@iec.ch
mailto:stds-info@ieee.org
http://www.iec.ch/
http://www.iec.ch/searchpub
http://www.iec.ch/online_news/justpub
http://www.electropedia.org/
http://www.iec.ch/webstore/custserv
mailto:csc@iec.ch

158 9 IEEE IEC 62526

Edition 1.0 2007-11

INTERNATIONAL IEEE 1450.1™
STANDARD

Standard for Extensions to Standard Test Interface Language (STIL) for
Semiconductor Design Environments

INTERNATIONAL
ELECTROTECHNICAL

COMMISSION PRICE CODE X F

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

ICS 25.040 ISBN 2-8318-9348-8

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

—2- IEC 62526:2007(E)
IEEE 1450.1-2005(E)

CONTENTS
FOREWORD ...ttt sttt st sttt se e bttt e b sueeanens 5
TEEE INTTOQUCTIONviiinieiietiitieeiietieteteit ettt ettt et e 8
1. OVETVIBW ...ttt sttt sttt ettt e eh et e st ettt es bttt e s et eaeeneen e 9
Lol S0P . ettt et et ettt e et eeat e et be e ea bt teeb et et be s e e ebeeeebe e saeaas 10
1.2 PUIPOSE. .ottt ettt et e e et ettt e eat e e e bt e et beeeabtte e bttt et be e e e bt et e saeeas 11
2. Definitions, acronyms, and abDIreVIATIONScceerieriiiriieeeiesieeie ettt erite et eeste et eetaeeteesreesstesebeessaeeennes 11
2.1 DEFTINITIONS ..ttt ittt st st e b e st st s e sa e 11
2.2 Acronyms and abDIEVIALIONSeeueiriueerieriiiiiieitee st erteeeieestte et eesteeste et estaesateesbeasbesnneessseennnes 12
3. Structure of this StANdArdccoociiiiiiiiiiiii s 12
4. STIL SYNAX AE@SCTIPLION ...eeuvveeueirrtiertieiieestieeieestteesttesieeesteetessteestae st eesseestesnseasseesnteesseasnsesssssenseessses 13
4.1 RESEIVEA WOTSviiiiiiiiiiiic et st e st sh e 13
4.2 ReESErved CharaCtersccucuiiiiiiiiiiiiii it s s 14
4.3 Reserved UserFUnCHionscooiiiiiiiiiiiiiii i 15
4.4 Signal and group Name CharacCteriStiCS.eevuiriirriierriirrieerie ettt et ee e ettt st e e et eebbeeaeees 15
4.5 STIL name spaces and Name reSOIULIONc.ccuieiiieeiiriinitiene ettt s v eae e 16
5. EXPIESSIONS .. cuvveeutie ittt ettt ettt ettt et st ettt e e bt et subeesb e sat e she e atesabeeebbesat e eebbeeuteesbbeesabee e 17
5.1 Constant and variable EXPIEeSSIONSceivueeuerruterrtiereerrieeieeseteertteereessteeabeestaeetessbeesstesabeesseeenenes 17
5.2 Expression delimiters—single quotes and parenthesescocceveecuereereneeneenienneeneeeseeneeneenns 17
5.3 Arithmetic expressions—integer, real, time, bOOlean...........ocueeeerieirieeiiinniieniene e 19
5.4 Pattern data EXPIESSIONSc.eeiiruirtirtieiirtie e stiette ettt et et eenes e eates e e et e en e et e saeenaesaeeeeeanes 20
5.5 EXPIession PrOCESSINE.....c.occuieiiiuiritirtiieirtieniesttetee ettt et eeeesteeases e eseesse e et e esneeseesaeenaesaeeaeennes 21
5.6 BO0lean—DbOO0IEAN_EXPI . .ceorvreiiiriieiriieeiiee ittt ettt sttt et bt et bt et et b e e eeee 26
5.7 INEGETS—INIEGOT_CXPT «cueeeeeeeeeeeteeeeeee ettt eeetae e sttt estaeeeaae e ssaeesnseaessseesanseaeansaeensseaenssseansseeenns 26
5.8 LogiC eXPresSIONS—lOZIC_EXPT ..eouutiririeiiriieiitieiie et ettee sttt eesteeste sttt st s sbe et sabesseeeeaeee e 27
5.9 Real expressions—Teal EXPIcccoviiiiiiiiiiiiiiie e e 28
5.10 Addition to timing eXpressionS—time_EXPI......cccccuiuiiieiuireeiee et e s ene s 29
5.11 SignalVariables——SI@VAT_EXPI c.uveeveerrreeruiriiiiiieeieernteertesttessteesae s steeitesbaeeteesreeesaeenseesbbeeseesenee 30
5.12 Formal parameters in procedures and MACTOScccereerererreieeeernieerieeeeieenteeeeeeseeeneesnrecnseeenees 32
5.13 Integer liStS—Ante@ET_TiSt...cco.ueiiiiriiiiieeiie ittt ettt et s et st sae e b e 32
6. Statement structure and organization of STIL informationcceccevveevernicivinnieenne i 33
7. STIL SEALETIEIL . ..ceeeeuieitit et ettt sttt ettt ettt sttt eae e e st eteeabee st e eateesbeeanbeeameessaeemtaesmeeesreeannaeseennas 33
Tl STIL SYNEAX .eeiutiiiiiiitieieiitie et ettt sttt et st et eeeae et et ees e et eeeaneesubeateenbeessaeenbaeenneesaneans 34
7.2 STIL @XAMPLE ..eeoiiiiiieiiiiiiie ettt ettt ettt et eb e et et esat et et eebaeemtee eneesarenas 34
8. UserKeywords STALEIMENTcocueiiiirieeiir ittt ettt sttt ee e et sabe st eeebaeeteeeaeesaneaas 34
8.1 USErKeyWOrds SYNTAX c...cocceiiuiersiiiiiiniieciie ittt et ettt et sttt et et e sae st e eenieennee 34
8.2 UserKeywWords EXaAMPIEcccuuiiiuuiiiiiieieities ittt ettt ettt e te e st ee et e e et e e et eetbe e saaeaeneaee s 34

[Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62526:2007(E) ~3-
IEEE 1450.1-2005(E)

9.

10.

11.

12.

13.

14.

15.

16.

Variables DIOCKcc.eeuiiiiiiititit et sttt bt ettt ettt et st et e es 35
9.1 Variables DIOCK SYINEAXccuiirrueeeiieitiertieeeieiteeitestieeteeeteeestesneassseeseesseaesseenseesssesnsessseesssseesssenns 35
0.2 Variables EXAMPI.......cccviriuiiriieeeieiiieeitee et e steetestteertte et eesteesseesseestessseesssennseenseasssesnseesnnnessseens 37
0.3 Variables SCOPINE .. ceeuveruririiiirieeiieetieeitee st eesteetestteestaeeseeesteassseesseesaessseesssensseenseasssesnsessnseesssenns 37
9.4 Variables SYNCHIONIZINGccoceeruieiiiritieieiesie e st ertte et ee e et eeeteertaesteessteaseesseansaessneesssenssreens 39
SIZNALS DIOCK ...c.eiii ittt et s st s en 40
10.1 Signals bIOCK SYNEAXocviviiiiiiiiiiiiiieiiet et e s e 40
10.2 Signals @XamPIecooiuiiiiiiiiiiiiiicii e e e 40
10.3 Bracketed signal notation enhanCementc..ceoueeuiereinertinienntineenenee ettt evnenne v 40
SIZNAIGTOUPS DIOCKtiitieiitieiitet et ettt et ettt et e et e s b be st eeabeeebesabee st beas sbeesnnaenseeses 43
11,1 SiZNAlGTOUPS SYINEAX .eevvrerieeurirrriertieieessteeteesttessteesaeessseesaeessbeassaesneesssessnsessseesssesnsesssessssesnneenses 43
11.2 SignalGroups, WFCMap, and Variables eXample..........cccevrvieiviirneennieeieinie e 43
11.3 Default WECMap attribULe VAIUEoevvueeiiiiiieiiierie ettt et sttt sttt et sabeeeee e 44
11.4 Defining indexed SigNal STOUPSc.eeueiiiiiriieeiieeiie ettt ettt et sb e ebaeeee sebeene 44
PatternBurst DIOCK........ccociiiiiiiiiiiiiiii s 45
12.1 PatterNBUISE SYNIEAX c..eevuviirtieeiieritieietetieestestteestte e eesteestesatess e sateesseenstesabeansaesneeesbeenntessnseenneenses 45
12.2 PatternBUurSt €XAMPIEcccveeeuviiriieieieiie et ettt ee sttt st et st eeste et subeesaesaeeesbeenatessbesenbeensee 47
12.3 Tiling and synchronization Of PAttEINSeovveeiiirreerie ettt ettt e 48
12.4 If and WHhile STAtEIMENTScoovirvieriiriieniieiiere ettt ettt et et et e s e sne sneenaesae e ennes 50
Timing block and WaveformTable DlOCKccooieiiiiiiiiiiiiin et 51
13.1 Additional domain SPECIfICALIONc..eouieuieiieiiiie ettt s s s 51
13.2 CompareSubstitute OPETation—S, S.........ccceeiieiiiiieiirieeitiert e eee e sre e eanenneenees 51
SCANSIIUCTUTES DIOCKiitieiiiiiie ittt ettt sttt et st e e e ebbeeaee b 52
14.1 SCANSTIUCTUIES SYNEAXeeuviieiriiiereietie st st ettt et eueesses e es e e ess et e e e eseeseesaesneenaesasesaeennes 52
14.2 Scan cell naming—cell_ref, chain_ref, cell_group, chain_groupc.ccececeeviecineccnncenn. 55
14.3 Scoping rules for ScanStructure bIOCKScccciiiiiiiiiiii e 56
14.4 Example indexed list Of SCAN CEIISc.ueiriiiiiiiniiiiiiiie ettt et s 57
14.5 Example of ScanChainGroups and ActiveScanChainccccceveeeviirneinniieieeniecnie e 57
14.6 Scan chain segments and Cell GroUPS.......c.cocovviiiiiiiiiiiiii e 59
PAttern dAta ..c...eeveieiiiiiiie ettt ettt et bt et ea bttt et e e bt she e e naae e eane 60
15.1 Data content read back—\C, \D, \E, \S, \U, \W .ot ee e 61
15.2 Vector data mapping and jOINIng—\M, \J .ecceereririiirneiniie ettt et s 63
15.3 Specifying event data in @ PAttEIN—\€cortrerrterreerie ettt ettt et et et 65
15.4 Using expressions within pattern datacooueeveiiieiineeiin et e 66
Pattern SLALEIMEITSeevutiiiieieiitie ettt sttt et sttt et e st et ea e et et eeeabe st e et eeabe e ebbeeaeesbbeans 67
16.1 Additional Pattern SYMEAX........eovieriiriterie ettt sttt st et et st et st e sabe st ae e eaie e 68
16.2 Vector data constraiNtS—F, E ... ettt ree s 69
16.3 Shift and LoopData StAtEIMENTScevvueertirriiiie ittt ettt et sttt esnaeeeeeesraeseeee s 70
16.4 Loop statement using an inte€Zer EXPIESSIONuierteereerrieerieenrieenteeeeersreeneensaeeeeesreessseenneennne 72
16.5 MergedScan fUNCHOMNccouiitirt ittt ettt ettt ettt et e eb e et enees 73

[Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

—4— IEC 62526:2007(E)
IEEE 1450.1-2005(E)

17. Procedure and macro data SUDSHIULIONccueereirieeriirniie ettt ettt ettt sae e saees e 73
17.1 Nested procedure and mMacro CELISeoveirriiiiiiiiiie ittt 73
17.2 Passing parameters t0 VATIAbIEScoueeiviiiiiiiiiinie ettt s 74
17.3 Default value of formal parametersccceevieivierneiniie ettt et 75
17.4 Data substitution using WFCConstant and SignalVariable..........ccccooceevviiiiiniiinnncinnenncenn. 75
18. Environment BIOCK.coouieiiiiiiiiie ettt ettt ettt st e et e sanenae 77
18.1 ENVITONIMENT SYINTAX ...veurieiieiiieeiteettentee et et et sttecteesteessaeeabeesbaeeaneesbees st aesseeesbeeseesbeesssseesunenns 77
18.2 MAP_STRING SYNAK ...eeutiutintiiietentienterteestesttettesttettesteettesbe et ben bt estenbesaeenbe st esseseesbesseesaessee eneen 79
18.3 NameMaps €XAMPIEceeuuiiiiiiiieiiiieeit ettt ettt et e e et ee ettt e st te e sttt eeeatbe e eaieeessbbeeeantaeseesaees 79
18.4 Compact scan-cell mapping using InheritNameMap...........ccceeviiiiiiiiiiiiiiiii e 81
19. Pragma DIOCKooiiiiiie e ettt ettt et et ettt et e b e et e e eae s 82
19,1 Pragma SYNMEAXeeoiueieeiieieitie ettt cet ettt ettt sateeestteeete e s eateesa bt eesabaeesbbeeeenbbeeeanneesabbee aesanteeesaees 82
20. PatterNFAIIREPOIT ...cvviiie ettt et ettt ete et e et e e sae et e et e eaaesseeessbenssessbeasseesaesnneesssenns 82
20.1 PatternFailREPOTIT SYNEAXiecveeuieriiertierieerteeieesteeeteesteesteseteessaeseeesteessseesseesssesnsesssessssseesssenns 83
20.2 PatternFailRepOrt XAMPIEc.covvieriierieiiie ettt ee et ete et estte st ee st esreesbeesbbesreesbeessaenssaenns 84
ANNEX A (INfOrmMatiVe) GLOSSATY ..ecveevveeiiiriieeiieeieeetteieeetie et eesttes s teseessaeeantessbessseesseasssessseesssensssesnssesneessen 84
Annex B (informative) Signal mapping using SignalVariables.........ccccoeviirveeiiriienniie it st 87
Annex C (informative) Using logic eXpression With SIZNAlSccvevueerieeiierniieieinieereesiieseeeeeseiesnesenee s 91
Annex D (informative) Using boolean eXpressions in PAtternS........ceueeeeerrreereeeueenieeeueesirenseesseenseessessseenns 92
Annex E (informative) Variables and expressions in algorithmic patterns.........coovereveerveeeneereesiersineeseeesnees 93
Annex F (informative) Using ATOWINTEIIEAVE.......cocuveiuiiriiiiie ettt ettt e e et seeesee e s 95
Annex G (informative) Vector data mapping USING NM.......eeevverriirniieriiniienieeieesiiestee e e sieestesebesseaeeeeesee s 98
Annex H (informative) Vector data JOINING USINZ \j ...cecueerieeriieiiirniieniieieeerie et sttt et e sie e teeaieeseveeaeeenees 101
Annex I (informative) Block data COIIECHIONuvviiiiiiiiieie ettt ettt er e eeeeeeennes 104
Annex J (informative) Using Fixed and Equivalent Statementsccceeeuerriiereerieeniesieenieeeesiveeneesenens 106
Annex K (informative) Independent parallel PAtLEINSoeeeriierieerieeriie ettt eeie et sttt e e e 108
Annex L (informative) Applications using new SCanStructures SYNAXeevvverreerueerrueerieenrenseeenneesseesnns 110
Annex M (informative) BreakPoints using MergedScan() function..............ecceevueevienienniieneenie e 114
Annex N (informative) Labels and X statements for diagnostic feedback..........ceeeeviirniieniinicinieniennen. 117
Annex O (informative) Use of STIL.1 for specific appliCationscecveeuerriieriiriieenrieeieeniieneceieee e 120
Annex P (informative) BiblIOZIaphcoceiiiiiiiiiiiiie ettt ettt st 122
Annex Q (informative) List Of PArtiCIPANLScccvviieeriiiieiiiieeiiieeeeieeeeieeeesreeeeree e srbeeesenbreeeeaaeeesnenees 123

[Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.]

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62526:2007(E) ~5-
IEEE 1450.1-2005(E)

1)

2)

3)

4)

5)

6)

INTERNATIONAL ELECTROTECHNICAL COMMISSION

STANDARD FOR EXTENSIONS TO
STANDARD TEST INTERFACE LANGUAGE (STIL)
FOR SEMICONDUCTOR DESIGN ENVIRONMENTS

FOREWORD

The International Electrotechnical Commission (IEC) is a worldwide organization for standardization
comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to
promote international co-operation on all questions concerning standardization in the electrical and
electronic fields. To this end and in addition to other activities, IEC publishes International Standards,
Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter
referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National
Committee interested in the subject dealt with may participate in this preparatory work. International,
governmental and non-governmental organizations liaising with the IEC also participate in this preparation.
IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with
conditions determined by agreement between the two organizations.

The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an
international consensus of opinion on the relevant subjects since each technical committee has
representation from all interested IEC National Committees.

IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.

In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly
indicated in the latter.

IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with an IEC Publication.

Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC/IEEE 62526 has been processed through Technical Committee
93: Design automation.

The text of this standard is based on the following documents:

IEEE Std FDIS Report on voting
1450.1(2005) 93/248/FDIS 93/259/RVD

Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.

The committee has decided that the contents of this publication will remain unchanged until
the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in
the data related to the specific publication. At this date, the publication will be

reconfirmed,

withdrawn,

replaced by a revised edition, or
amended.

[Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

~6- IEC 62526:2007(E)
IEEE 1450.1-2005(E)

IEC/IEEE Dual Logo International Standards

This Dual Logo International Standard is the result of an agreement between the IEC and the Institute of
Electrical and Electronics Engineers, Inc. (IEEE). The original IEEE Standard was submitted to the IEC for
consideration under the agreement, and the resulting IEC/IEEE Dual Logo International Standard has been
published in accordance with the ISO/IEC Directives.

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating
Committees of the IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards
through a consensus development process, approved by the American National Standards Institute, which
brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers
are not necessarily members of the Institute and serve without compensation. While the IEEE administers the
process and establishes rules to promote fairness in the consensus development process, the IEEE does not
independently evaluate, test, or verify the accuracy of any of the information contained in its standards.

Use of an IEC/IEEE Dual Logo International Standard is wholly voluntary. The IEC and IEEE disclaim liability for
any personal injury, property or other damage, of any nature whatsoever, whether special, indirect,
consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance upon
this, or any other IEC or IEEE Standard document.

The IEC and IEEE do not warrant or represent the accuracy or content of the material contained herein, and
expressly disclaim any express or implied warranty, including any implied warranty of merchantability or fitness
for a specific purpose, or that the use of the material contained herein is free from patent infringement.
IEC/IEEE Dual Logo International Standards documents are supplied “AS 1S”.

The existence of an IEC/IEEE Dual Logo International Standard does not imply that there are no other ways to
produce, test, measure, purchase, market, or provide other goods and services related to the scope of the
IEC/IEEE Dual Logo International Standard. Furthermore, the viewpoint expressed at the time a standard is
approved and issued is subject to change brought about through developments in the state of the art and
comments received from users of the standard.

Every IEEE Standard is subjected to review at least every five years for revision or reaffirmation. When a
document is more than five years old and has not been reaffirmed, it is reasonable to conclude that its contents,
although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to
determine that they have the latest edition of any IEEE Standard.

In publishing and making this document available, the IEC and IEEE are not suggesting or rendering
professional or other services for, or on behalf of, any person or entity. Neither the IEC nor IEEE is undertaking
to perform any duty owed by any other person or entity to another. Any person utilizing this, and any other
IEC/IEEE Dual Logo International Standards or IEEE Standards document, should rely upon the advice of a
competent professional in determining the exercise of reasonable care in any given circumstances.

Interpretations — Occasionally questions may arise regarding the meaning of portions of standards as they relate
to specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will
initiate action to prepare appropriate responses. Since IEEE Standards represent a consensus of concerned
interests, it is important to ensure that any interpretation has also received the concurrence of a balance of
interests. For this reason, IEEE and the members of its societies and Standards Coordinating Committees are
not able to provide an instant response to interpretation requests except in those cases where the matter has
previously received formal consideration.

Comments for revision of IEC/IEEE Dual Logo International Standards are welcome from any interested party,
regardless of membership affiliation with the IEC or IEEE. Suggestions for changes in documents should be in
the form of a proposed change of text, together with appropriate supporting comments. Comments on standards
and requests for interpretations should be addressed to:

Secretary, IEEE-SA Standards Board, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331, USA and/or
General Secretary, IEC, 3, rue de Varembé, PO Box 131, 1211 Geneva 20, Switzerland.

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the
Institute of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright
Clearance Center. To arrange for payment of licensing fee, please contact Copyright Clearance Center,
Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy
portions of any individual standard for educational classroom use can also be obtained through the Copyright
Clearance Center.

NOTE - Attention is called to the possibility that implementation of this standard may require use of subject
matter covered by patent rights. By publication of this standard, no position is taken with respect to the
existence or validity of any patent rights in connection therewith. The IEEE shall not be responsible for
identifying patents for which a license may be required by an IEEE standard or for conducting inquiries into the
legal validity or scope of those patents that are brought to its attention.

[Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

IEC 62526:2007(E) ~7-
IEEE 1450.1-2005(E)

IEEE Standard for Extensions to

Standard Test Interface Language (STIL)
(IEEE Std 1450™-1999) for Semiconductor
Design Environments

Sponsor

Test Technology Standards Committee
of the
IEEE Computer Society

Approved 9 June 2005
IEEE-SA Standards Board

Abstract: Standard Test Interface Language (STIL) provides an interface between digital test
generation tools and test equipment. Extensions to the test interface language (contained in this
standard) are defined that (1) facilitate the use of the language in the design environment and
(2) facilitate the use of the language for large designs encompassing subdesigns with reusable
patterns.

Keywords: advanced scan architecture, core, environment, fail feedback, lockstep, parallel
patterns, parameterized data, pattern tiling, pragma, signal variable, system on chip (SoC), test
protocol

[Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

~-8- IEC 62526:2007(E)
IEEE 1450.1-2005(E)

IEEE Introduction

The Standard Test Interface Language (STIL) was initially developed by an ad hoc consortium of automatic
test equipment vendors (ATE), electronic design automation vendors (EDA), and integrated circuit (IC)
manufacturers to address the lack of a common solution for transferring digital test data from the generation
environment to the test equipment.

The scope of the initial STIL standard was limited to satisfy the basic needs of pattern definition. Additional
capabilities are developed as separate projects resulting in separate (dot) extensions to the initial STIL
standard. The scope of this extension is defined in 1.1 and is primarily to address design needs.

Whereas the initial STIL standard was developed by reviewing many languages already in existence in the
industry, this standard has been developed by inventing new capabilities in support of new device designs.
The new language constructs have been added such that they do not alter in any way the initial definition of
STIL, yet are syntactically compatible with the initial STIL language.

Much of the work to develop and validate these extensions has been done by prototyping on the part of the
contributing companies.

Notice to users

Errata
Errata, if any, for this and all other standards can be accessed at the following URL: http:/

standards.ieee.org/reading/ieee/updates/errata/index.html. Users are encouraged to check this URL for
errata periodically.

Interpretations

Current interpretations can be accessed at the following URL: http://standards.ieee.org/reading/ieee/interp/
index.html.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken with respect to the existence or
validity of any patent rights in connection therewith. The IEEE shall not be responsible for identifying
patents or patent applications for which a license may be required to implement an IEEE standard or for
conducting inquiries into the legal validity or scope of those patents that are brought to its attention.

[Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62526:2007(E) ~9-
IEEE 1450.1-2005(E)

STANDARD FOR EXTENSIONS TO
STANDARD TEST INTERFACE LANGUAGE (STIL)
(IEEE Std 1450™-1999) FOR SEMICONDUCTOR
DESIGN ENVIRONMENTS

1. Overview

STIL is an evolving standard being developed in support of various needs for interfacing between test
generation tools and test equipment. IEEE Std 1450-1999 (STIL.0) [B3]! forms the basis for this evolution.
New “dot” standards (like this one) are being developed to address specific needs beyond STIL.O.

This (STIL.1) standard addresses design-related aspects of digital test data. This standard can also be viewed
as the addition of advanced features to the STIL.O baseline to allow for the usage of STIL in more complex
applications, while leaving the basic standard unchanged as a vehicle for transmitting basic test data. The
following is a brief overview of the new features in STIL.1 to support advanced applications such as
(1) embedded cores,2 (2) families of test patterns, (3) mapping to automated test equipment (ATE) systems,3
(4) mapping to simulation, and (5) devices with advanced design for test (DFT). Please see Annex O for a
list of specific statements for each of these features.

Environment mapping: Data for a device exist in many forms and in many other software environments.
Examples include (1) simulation environment, (2) static analysis environment, (3) specific ATE system
environment. The STIL Environment block is a new mechanism to relate STIL data to these other
environments. No assumptions, expectations, or limitations are imposed on the other environments. It is just
a way of relating one to the other.

Parameterized data: Much of STIL data are declarative in nature (i.e., it defines various static attributes of a
device or pattern set). The addition of constant declarations, IntegerConstant and WFCConstant, allows a
data set to be created that applies to a family of devices.

Complex test protocol definition: Test protocol definitions are usually contained in STIL procedures or
MacroDefs and are used to specify the application of a series of data values to a device. STIL.O supports
scan chain data passing and simple WaveformCharacter (WFC) data passing via the # and % characters.
STIL.1 enhances this capability by allowing the use of data substitution from SignalVariables and integer-

"The numbers in brackets correspond to those of the bibliography in Annex P.
“This standard contains syntax in support of embedded cores. See IEEE Std 1450.6™-2005 (Core Test Language) [B5]
for the complete specification.

3This standard contains syntax in support of ATE systems. See IEEE P1450.3™ (Test Resource Constraints) [B4] for the
complete specification.

[Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

~10 - IEC 62526:2007(E)
IEEE 1450.1-2005(E)

Complex test protocol definition: Test protocol definitions are usually contained in STIL procedures or
MacroDefs and are used to specify the application of a series of data values to a device. STIL.0O supports
scan chain data passing and simple WaveformCharacter (WFC) data passing via the # and % characters.
STIL.1 enhances this capability by allowing the use of data substitution from SignalVariables and integer-
expressions. STIL.1 also enhances the functionality of Loops and Vectors and adds If/While decisions on
pattern statements. These capabilities are needed for BIST, embedded cores, and various test access
mechanisms.

Advanced scan architecture: Advanced DFT techniques require additional capabilities beyond what is
defined in STIL.0, which includes multistate scan cells, reconfigurable scan-chains, and scan-chain
indexing.

Run-time pattern decisions: The If, Else, While, and LoopData are new STIL.1 constructs that have been
added for specification of pattern activity. These statements are needed in the specification of patterns to be
run in the simulation environment. Although there is no standardization among ATE systems on run-time
instructions for pattern execution, it is anticipated that restricted versions of these statements will be
incorporated into ATE test patterns.

Pattern burst options: New variations on the PatternBurst have been added to allow for patterns running in
parallel, patterns running in LockStep, and patterns that can be reordered. For parallel pattern execution, the
specification for how the patterns fit together can be specified with the Fixed and Extend statements.

Enhanced user extensibility: The UserKeyword extensibility defined in STIL.0 has been extended to allow
keywords to be defined on a per-block-type basis.

Signal relationships: Additional syntax is provided to allow the specification of relationships between
signals. This process is preformed via \m to map WFCs to another WFC, \j to join WFCs, Extend to define
behavior of signals beyond the bounds of a given pattern, and Fixed to restrict any further changes to signals
within a pattern.

Fail feedback: Three new features are added to facilitate the processing of failure data from an ATE system
back to design tools. The first is the X or cross-reference statement that allows the specification of where in
a pattern/vector sequence a failure occurs. The second is the FailFeedback block for reporting fails. The
third is the S/s timing event that allows for the specification of a data capture protocol for the purpose of
capturing bulk fail data for processing.

1.1 Scope

Structures are defined in STIL to support usage as semiconductor simulation stimulus, including
(1) mapping signal names to equivalent design references, (2) interface between scan and built-in self test
(BIST) and the logic simulation, (3) data types to represent unresolved states in a pattern, (4) parallel or
asynchronous pattern execution on different design blocks, and (5) expression-based conditional execution
of pattern constructs.

Structures are defined in STIL to support the definition of test patterns for sub-blocks of a design4
(i.e., embedded cores) such that these tests can be incorporated into a complete higher level device test.

Structures are defined in STIL to relate fail information from device testing environments back to original
stimulus and design data elements.

4Syntax in this document that is used in the definition of patterns for sub-blocks is summarized in Annex O.

[Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

IEC 62526:2007(E) -11-
IEEE 1450.1-2005(E)

1.2 Purpose

The STIL language definition is enhanced to support the usage of STIL in the design environment, which
includes extending the execution concept to support STIL as a stimulus language, to allow STIL to be used
as an intermediate form of data, and to allow STIL to capture design information needed to port simulation
data to device test environments.

In addition, define extensions to support the definition of subelement tests and to define the mechanisms to
integrate those tests into a complete device test. This effort is to be performed in conjunction with
IEEE Std 1500™-2005 [B6] and IEEE P1450.6 [B5], which are defining standards for the definition and
integration of embedded cores.

Finally, define the constructs necessary to correlate test failure information back to the design environment,
to allow debug and diagnosis operations to be performed based on failure information in STIL format.

2. Definitions, acronyms, and abbreviations

2.1 Definitions

For the purposes of this standard, the following terms and definitions apply. Additional terminology specific
to this standard is found in Annex A. The Authoritative Dictionary of IEEE Standards Terms [B1] should be
referenced for terms not defined in this clause.

2.1.1 automated test equipment (ATE): It refers to a tester that is capable of interfacing to a
semiconductor device and executing test pattern data that is imported from a STIL file/stream.

2.1.2 built-in self-test (BIST): A design practice in which test logic is incorporated into the circuitry of a
semiconductor device. This circuitry may provide completely autonomous testing of a device (i.e., without
any requirement of a tester). It may be such that stimulation by an external tester is required; however, the
STIL file may be substantially different from a device without this circuitry incorporated.

2.1.3 core: A component or module that contains separately developed functionality, integrated into a chip
to provide additional overall functionality. See also: System on Chip.

2.1.4 electronic design automation (EDA): The set of software tools that are used for the design and
creation of semiconductor chips. It includes the software tools that create the test patterns for the chips,
which are often referred to as automated test pattern generators (ATPGs).

2.1.5 Standard Test Interface Language (STIL): The set of IEEE standards, including IEEE Std 1450-1999,
and all dotted extensions, including this one.

2.1.6 System on Chip (SoC): An integrated circuit containing modules that are designed/integrated such
that they can be tested independently and have associated test patterns for each module.

2.1.7 WaveformCharacter (WFC): A symbol used for referencing waveforms.

NOTE—See Annex A

SNotes in text, tables, and figures are given for information only, and do not contain requirements needed to implement
the standard.

[Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

~12- IEC 62526:2007(E)
IEEE 1450.1-2005(E)

2.1.8 WaveformTable (WFT): An STIL block statement used to define waveforms across multiple signals
and WFCs.

NOTE—See Annex A.

2.1.9 WaveformGenerationLanguage (WGL): A proprietary standard that was, in part, used as the basis
for STIL.O.

2.2 Acronyms and abbreviations

ATE automated test equipment
BIST built-in self-test

DFT design for test

DUT device under test

EDA electronic design automation
STIL Standard Test Interface Language
STIL.0 IEEE Std 1450-1999 [B3]
STIL.1 this standard

WEFC WaveformCharacter

WFT WaveformTable

WGL WaveformGenerationLanguage

3. Structure of this standard

This standard is an adjunct to STIL.0. The conventions established and defined in STIL.0 are used in this
standard and are included verbatim.

Many clauses in this standard add additional constructs to existing clauses in STIL.0 and are so identified in
the title. The Environment block is a new construct introduced in this standard. All clauses in this standard
are normative. Example code is provided within each clause. More complete examples are provided in the
annexes, which are informative.

The following is a copy of the conventions as defined in STIL.0 and adhered to in this standard.

Different fonts are used as follows:
— SMALL CAP TEXT indicates user data.

— Courier text indicates code examples.

In the syntax definitions
a) SMALL CAP TEXT indicates user data.
b) Bold text indicates keywords.
c) [Italic text references metatypes.
d) () indicates optional syntax that may be used zero or one time.
e) ()+ indicates syntax that may be used one or more times.
f) ()* indicates optional syntax that may be used zero or more times.

g) <> indicates multiple-choice arguments or syntax.

[Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62526:2007(E) ~13-
IEEE 1450.1-2005(E)

In the syntax explanations, the verb “shall” indicates mandatory requirements. The meaning of a mandatory
requirement varies for different readers of the standard:

— To developers of tools that process STIL (readers), “shall” denotes a requirement that the standard
imposes. The resulting implementation is required to enforce this requirement and issue an error if
the requirement is not met by the input.

— To developers of STIL (writers), “shall” denotes mandatory characteristics of the language. The
resulting output must conform to these characteristics.

— To the users of STIL, “shall” denotes mandatory characteristics of the language. Users may depend

on these characteristics for interpretation of the STIL source.

The language definition clauses contain statements that use the phrase “it is an error” and “it may be
ambiguous.” These phrases indicate improperly defined STIL information. The interpretation of these
phrases will differ for the different readers of this standard in the same way that “shall” differs, as identified
here in the dashed list.

4. STIL syntax description
This clause defines extensions to STIL.0, Clause 6.

All constructs and restrictions for STIL.0, Clause 6 are in effect here, with the following additions:

— Additional STIL reserved words are defined (see Table 1) for the top-level blocks specified within
this standard.

— Additional STIL reserved characters are defined (see Table 2) for the new characters specified within
this standard.

— Additional definition of signal and group naming, as well as name space resolution, is provided in
this clause.

— Extensions to the expression environment are defined in this standard. Expression definitions (which
are part of Clause 5 in STIL.0) are now specified in a separate clause (Clause 6 in this standard).

4.1 Reserved words

Table 1 lists all STIL reserved words defined by this standard. Only top-level block names that are defined
in this standard are added to the STIL reserved word list. New keywords that appear inside of top-level
blocks are not restricted from usage in other contexts outside of the definition of that keyword. No change to
reserved words as defined in STIL.0 is made by this standard.

Table 1—Additions to STIL reserved words

Environment

PatternFailReport, Pragma

Variables

[Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

~14 - IEC 62526:2007(E)
IEEE 1450.1-2005(E)

4.2 Reserved characters

Several reserved characters identified in STIL.O are applied in additional contexts for this standard. Table 2
lists additional STIL reserved characters defined in this standard as well as additional contexts of previously
identified reserved characters. No change to reserved characters as defined in STIL.0 is made by this
standard. New reserved characters are so indicated in column two. All other characters in this table have
extended capability beyond that defined in STIL.O.

Table 2—Additions to STIL reserved characters

Char SN,;;VLi.Ill Usage

! exclamation (NOT sign): An inversion operator in expressions

% percent sign: Is used as the modulus in expressions and for parameter passing
to procedures and macros

) parentheses: Are used in expressions

* multiply: Is used in expressions

+ add: Is used in expressions

- subtract: Is used in expressions

& YES and: Is used in expressions

| YES or: Is used in expressions

A YES xor: Is used in expressions

~ YES bit-wise negation: Is used in logic expressions
error return value: Is used when \W has no WFC chars to return

< less than: Is used in integer and real expressions

> greater than: Is used in integer and real expressions

<= less than or equal to: Is used in integer and real expressions

>= greater than or equal to: Is used in integer and real expressions

== equal to: Is used with pattern data expressions (i.e., to compare strings of
WECs)

= not equal to: Is used with pattern data expressions (i.e., to compare strings of
WECs)

[Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

IEC 62526:2007(E) ~15-
IEEE 1450.1-2005(E)

Table 2—Additions to STIL reserved characters (continued)

New in
e
Char | 1L Usag

== YES equal to: Is used with integer and real expressions (i.e., to compare integer or
real numbers)

<> YES not equal to: Is used with integer and real expressions (i.e., to compare integer
or real numbers)

7 conditional: Is used in expressions

= assignment: Is used in signal variable expressions, vector data, group name
definitions, spec category expressions, and spec variable expressions

= YES assignment: Is used in integer and real expressions

_ YES underscore: Is used as a separator in integer values
dot: Is used to designate macro and procedure calls in FailData block
colon: Is used to designate subcomponents of a design (i.e., embedded cores)

YES double colon: Is used to designate a domain reference in expressions

{* *} brace, asterisk: Is used to designate a block of data in the case of Pragma

(same as delimiters used for annotation blocks)

4.3 Reserved UserFunctions

The user function names in Table 3 are reserved for use in expressions.

Table 3—UserFunctions

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

New in
Name STIL.1 Usage

min function: Is used in integer or real expressions to return the minimum value
from a list of values (as defined in STIL.0).

max function: Is used in integer or real expressions to return the maximum value
from a list of values (as defined in STIL.0).

MergedScan YES function: Is used in patterns to test whether scan in/out data have been merged.
See 16.5.

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

[Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved. |

~16 - IEC 62526:2007(E)
IEEE 1450.1-2005(E)

4.4 Signal and group name characteristics
This clause defines extensions to STIL.0, Subclause 6.10.

All constructs and definitions in STIL.0, Subclause 6.10 are in effect. In addition, signals expressed with a
bracketed construct shall allow the use of a previously declared integer-constant, in which integer values are
allowed. See 5.1 for the definition of IntegerConstant.

4.5 STIL name spaces and nhame resolution

Additions to STIL.0, Subclause 6.16.

The Environment block augments the STIL name space as defined in Table 4. This table is incremental to
STIL.0, Table 6; all definitions present in that table remain unchanged.

Variable names and constant names are used by expressions. This name space also contains signal names,
signal group names, and spec variables defined for the context of that expression. Referenced variable-
names shall be unique against all signal names, signal groups names, and spec variable names defined for a
PatternBurst or application of a Pattern referenced by that PatternBurst.

Table 4—Additions to STIL nhame spaces

STIL block Type of name Domain restrictions
Environment Environment domain names Supports a single unnamed block and domain named
blocks. Domain names shall be unique across all
Environment blocks.
Variables Variables domain names Supports a single unnamed block and domain named
blocks. Domain names shall be unique across all
Variables blocks.

Variables, Signal names Names present in this name space are dependent on

Signals, SignalGroup names the domain reference statements in the PatternBurst

SignalGroups, Signal Variable names (SignalGroups domains, Variables domains) and the

Spec Spec variable names PatternExec (Category domains).

Integer names It is an error for defined Variable or Constant names to
IntegerConstant names conflict with Signals, SignalGroups, or Spec variable
WFCConstant names names accessible in the same context.

ScanStructures ScanCell names Names present in this space are dependent on the
ScanChain names (also used domain reference statements for ScanStructures in the
for scan segments and cell PatternBurst. Scan cell names, scan chain names, and
groups) cell group names in this common name space are

unique except if an unnamed ScanStructures block
exists. Names present in an unnamed block are
available unless hidden by a definition of the same
name in a named and referenced ScanStructure block.

[Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

IEC 62526:2007(E) ~17 -
IEEE 1450.1-2005(E)

5. Expressions
This clause defines extensions to STIL.0, Clause 6.

STIL.O defines a limited usage of expressions; see STIL.0, Subclause 6.13 and Subclause 6.14. This standard
extends these expression capabilities with additional variable types (Signal Variable, Integer, IntegerConstant,
WFCConstant) and additional expression constructs. The use of operators and the expression constructs as
defined for STIL.O is unchanged. The full set of STIL.0 and STIL.1 expression operations are defined in
Table 7. The detail of syntax and usage of the new expressions are defined in 5.1 — 5.13.

5.1 Constant and variable expressions

Expression constructs (which are defined in 5.2 — 5.13) can be divided into two classes: those that can be
completely resolved at parse time (i.e., constant expressions) and those that can only be resolved at run time
(i.e., variable expressions).

Constant expressions are those that contain only literal values (e.g., ‘5ns’ or ‘10ns’), or named constants
(e.g., Spec-Variable, IntegerConstant, and WFCConstant). As in STIL.0, statements that contain constant
expressions can be fully resolved once the STIL file/stream has been fully parsed and the domain references
have been resolved. Constant expressions can be used anywhere that the syntax definitions allow a literal
value. The use of constant expressions provides for (1) improved readability, (2) parameterized STIL data,
(3) enhanced reuse, and (4) improved maintainability.

Variable expressions are those that contain named variables, such as SignalVariable and Integer. The use of
variable expressions is intended primarily to support “design” applications. The ability of an ATE system to
support variable expressions may be limited, if possible at all.

Both constant and variable expressions can be further classified into “arithmetic expressions” and “pattern
data expressions.” The allowed constructs of each of these expression types are defined in 5.2 — 5.13.

5.2 Expression delimiters—single quotes and parentheses

Single quotes are defined in STIL.0 as the delimiter to be used around expressions. This usage is unchanged
with the introduction of new expression capabilities in STIL.1, and a STIL.O file is completely compatible
with all STIL.1 rules. However, the rules governing the use of single quotes and parentheses are relaxed. The
following rules apply to the use of single quotes in STIL.1:

a) Single quotes, when used, are always the outermost symbols of an expression.

"T2+5ns’ // timing expression
"SIG1+SIG2+SIG3’ // signal group expression

b) Assignment and boolean operators shall not be used inside a single-quoted expression.

v { "INT := INT+5'; } /illegal
If 'INT :== 5’ { } /illegal

c) Single quotes shall not be nested.
V {'BUS[1..'K+1']" = XXX; } /illegal - nesting of quotes

d) Wherever expressions are allowed, a single token may be used without delimiters. A single token
may be a literal value, a named constant, or a named variable.

Vv { INT := '5'; } //singletoken with quotes
Vv { INT := 5; } //single token without quotes
v { INT1 := INT2; } //single token without quotes

[Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

€)

~18 - IEC 62526:2007(E)
IEEE 1450.1-2005(E)

Wherever expressions are allowed, they may be represented without delimiters, with the exception
that if a multiterm expression is within a complex data stream, then the delimiters are required.
Examples of cases in which delimiters are required are shown in the later examples, using
parentheses.

v { INT := "INT+1’; }
v { INT := INT+1; }
Parentheses may be used inside a single-quoted expression.
v { INT := ' (INT+1)*2'; }
v { ' (GRP-SIG)+SIG’ = 00001; } // make SIG the last WFC in the list

Parentheses are the preferred method of delimiting expressions in STIL.1. Parentheses can be used around
the entire expression or inside the expression to specify the order of processing. The following rules apply to
the use of parentheses:

)

h)

i)

k)

)

Parentheses are allowed anywhere that single quotes are allowed in STIL.0.

v { (SIG1+SIG2) = XX; }
01 { (T2+5ns) D/U; }

Assignment expressions may be constructed with or without the use of delimeters.

v { INT := INT+1; }
vV { INT := (INT+1); }
v { (INT := INT+1); }
V { INT := (X+2)*2; } // parens required to define order
vV { SIG1+SIG2 = XX; }
Vv { (SIG1+SIG2) = XX; }
(

Vv { (SIG1+SIG2 = XX); }

Parentheses are not required to delimit boolean expressions; however, in practice, they are
commonly used.

If (\W(A+B) == \wxx) { }

If \W(A+B) == \wxx { }

If (\WGRP != \w\r(kK+12) X) { }
If \WGRP != \w\r(kK+12) X { }

Parentheses may be nested.

V {SIG = \r(K+12) X; }
If (\WBUS[1..(K-1) != \wxxx) { }

Parentheses are used to delimit parameters to functions within expressions.
v { INT := Min(X,Y); }

If a multiterm expression is within a complex data stream, then delimiters around the expression are
required.

SIG1 + SIG2 = XX;

\W(SIGl1 + SIG2) == XX; // parens required

AB { 2ns D/U; }

AB { TIM D/U; }

AB { (TIM + 2ns) D/U; } // parens required
GRP = \r2 X YZ; }

GRP = \rTWO X YZ; }

GRP = \r (TWO+1l) X YZ; } // parens required
GRP[5 9] = XX; }

GRP[K5 K9] = XX; }

GRP [(KK+5) (KK+9)] = XX; } // parens required

S < << <<

{
{
{
{
{
{

[Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

IEC 62526:2007(E) ~19-
IEEE 1450.1-2005(E)

5.3 Arithmetic expressions—integer, real, time, boolean

Arithmetic expressions are used in various STIL statements. In the statement syntax definition within this
standard, the reference identifiers, integer_expr, real_expr, boolean_expr, and time_expr, indicate that an
arithmetic expression is expected, and they signify the expected output from the expression evaluation. It is
allowed to use an arithmetic expression anywhere a literal arithmetic value is allowed as long as it contains
only constants and literals. This subclause defines the common rules for all arithmetic expressions.

Arithmetic expressions use the following operators:

— .= assignment operator

— 7 conditional operator

— == compare for equality; return integer 1 if equal; else return 0

— <> compare for inequality; return integer 1 if not equal; else return 0

— < compare less than; return integer 1 if less; else return 0

— > compare greater than; return integer 1 if greater; else return 0

— <= compare less than or equal to; return integer 1 if less or equal; else return 0

— >=compare greater than or equal to; return integer 1 if greater or equal; else return O
The one exception to the use of := for integer assignments is in the Spec block. For compatibility with
STIL.O, it is allowed to use either a bare ‘=" or the ‘:=’ in this context.
Arithmetic expressions use the following operands:

— Integer, IntegerConstant that are in scope according to the Variables context

— Spec variables that are in scope according to the Category selection

— Timing event labels when used inside a Timing block as defined in STIL.0

— Literal integers, real numbers, and engineering numbers

Pairs of single quotes are used as delimiters in arithmetic expressions according to the rules as defined in
STIL.O. It is not allowed to nest single quotes, and the usage should be limited to simple expressions
(e.g., “T2+5ns’). Some statements require that delimiters always be used around expressions, even when the
expression is a single literal value or name. If not so stated in the statement definition, then single operands
may be used without any delimiters.

Paired parentheses are the preferred method of delimiting expressions in STIL.1. Parentheses can be used
around the entire expression or inside the expression to specify the order of execution.

Multiple assignment operators are not allowed in an arithmetic expression:

v { INT1 := INT2 := 0; } // illegal use of multiple assignment operators

The following examples are of keyword identified expressions:
Loop 50 {}
ScanLength 100;
Loop K+5 {}
Loop 'K+5’ {}
Loop (K+5) {}

[Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

~20- IEC 62526:2007(E)
IEEE 1450.1-2005(E)

The following examples are of assignment expressions:

Condition { INT := 5; }

v { INT := 5; }

¢ { INT := 5; }

¢ { INT := INT + 1; }

¢ { INT := K; }

¢ { INT := (INT:==0) ? 99 : INT-1;)

The following examples are of boolean expressions:
If (INT :== 6) { }

If (INT >= K*2) { }
If (INT > SPEC) { }
If (SPEC < 250ms) { }
While (INT <> 13) { }

The following example is of an arithmetic expression within a pattern data expression:

V { GRP[1..(K+1)] = \r(K+1) X; }

5.4 Pattern data expressions

Whereas arithmetic expressions operate on numeric data, pattern data expressions operate on lists of WFCs.
To differentiate the two, a different set of operators is used:

— = assignment operator

— == compare for equality; return integer 1 if equal; else return 0

— !=compare for inequality; return integer 1 if not equal; else return O
— ?7: conditional operator

— The pattern data operators that are preceded with a backslash (see Clause 15)

Pattern data expressions use the following operands:
— Signals
— SignalGroups that are in scope according to the PatternBurst context
— Literal lists of WFC’s
— SignalVariables and WFCConstants that are in scope according to the Variables context

— Formal parameters from Procedures and Macros

Single quotes are used as delimiters in pattern data expressions according to the rules as defined in STIL.O.
It is not allowed to nest single quotes, and the usage should be limited to identifying signal groups
(e.g., ‘SIGA+SIGB,” ‘BUS[1..10]’). Some statements require that delimiters always be used around
expressions, even when the expression is a single literal value or name. If not so stated in the statement
definition, then single operands may be used without any delimiters.

Unlike arithmetic expressions, parentheses are not to be used on pattern data assignment expression.
Assignments should be of the form: TWOSIGS=XX; or ‘SIGA+SIGB’=XX;. Parentheses may be used
when needed to control order of evaluation as in the following: ‘(XBUS-XBUS[5])+YBUS’=11110000;.

Multiple assignment operators are not allowed in pattern data expressions:
v { SIGl = SIG2 = X; } //illegal - use of multiple assignment operators

[Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

IEC 62526:2007(E) —21-
IEEE 1450.1-2005(E)

The following examples are of pattern data assignment expressions.
v { SIG = X; } /assigna WFC to a signal

V { GRP = XXXXXX; } // assign WFCs to a signal group

Vv { SIGVAR = XXX; } /assign WFCs to a signal variable

V { GRP[5..6] = XX; } //selective assign of WFCs

v { 'A+B+C' = XXX; } // assign WFCs to multiple signals

Vv { SIGVAR = \W SIG; } // assign WFC from a signal to a variable

v { SIG = \W SIGVAR[3]; } // assign WFC from a variable to a signal
v { GRP = \W HALT; } // assign a WFC-const to a signal group

V { GRP[1..12] = \W SIGVAR[1..4] XXXX \W SIGVAR[5..8]; }

The following examples are of pattern data boolean expressions. Note the use of \W on both sides of the
expression. The \W operators is required to indicate that WFC data are being compared. The \W operator is
used to extract WFC data from a named entity. The \w operator is used to indicate that literal WFC data
follow. Note also that when literal WFC data are used, it may appear on either side of the expression.

If (\WSIGVAR[6..5] == \wxX) { }
If (\wXX == \WSIGVAR[6..5]1) { }
If (\WSIGVARL != \WSIGVAR2) { }

The following example is of a pattern data expression inside an arithmetic expression:
Vv { INT := (\WGRP==\w010) ? 1 : 0; }

The following complete example of statements contains both arithmetic and pattern data expressions:

1: STIL 1.0 { Design 2005; }

2: Header {

3: Source "STD 1450.1-2005";

4: Ann {* sub-clause 5.4 *}

5: }

6: Signals { S[1..4] In; }

7: SignalGroups { SIGGRP = 'S[1..4]'; }
8: Variables (

9: IntegerConstant RUN := 0;

10: IntegerConstant EXIT := 1;

11: IntegerConstant LOAD := 2;

12: IntegerConstant UNLOAD := 3;

13: Integer CMD; // use values RUN, EXIT, LOAD, UNLOAD
14 : Integer INT;

15: Integer HEX {Initialvalue 0x1000;}
16: Integer CC;

17: Integer DD;

18: SignalVariable SIGVAR1[1..4];

19: WFCConstant STOP=00;

20: WFCConstant GO=01;

21: WFCConstant RESET=10;

22: SignalVariable SIGVAR2[1..2]1; / usevalues STOP, GO, RESET
23: }

24: Spec {

25: Category CAT {

26: TIME = '25ns’;

27: }

28: }

29: Pattern PAT ({

30: ¢ {INT := 1;}

[Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

—22- IEC 62526:2007(E)

IEEE 1450.1-2005(E)

31: If (INT) {} Else {} // Execute the If block, INT is True
32: ¢ { INT := 0; }

33: If (INT) {} Else {} // Execute the Else block, INT is False
34: If (INT :== 956) {} // a boolean expression

35: If (TIME >= 20ns) {} // a real number in engr units

36: If (CcC <= DD) {} // test for CC less than or equal to DD
37: If (INT < min(cc,DD)) {} // use of the min function

38: ¢ {INT := 5;} // set variable INT equal to 5

39: ¢ {CcMD = \W RUN; } // set using constant definition

40: C {HEX := OxFF;} // set integer to 255

41: If (CMD <> LOAD) {} // integer compare to a constant

42: C {INT := INT+1;} // integer expression

43: C {SIGVAR1 = LHO1;} // set signal variable to the string LHO1
44 : V {SIGGRP = \WSIGVARL;} // set signals equal to a variable

45: If (\WSIGVAR2 == \WSTOP) {} // compare with a constant

46: If (\WSIGVAR2 == HH) {} // compare with a WFC list

47: } // end Pattern

5.5 Expression processing

This subclause defines the rules for evaluating expressions. Please refer to 5.6 — 5.12 for the definition of the
expression types.

Expressions are built up in a hierarchical manner; internal subexpressions are processed, and they, in turn,
are used in the next level of the hierarchy. A subexpression is legal expression syntax that is used within
another expression. The only distinction between an expression and a subexpression is that a subexpression
is a part of another expression.

At the lowest level are the primitive terms (Table 5). A primitive term used by itself represents a legal
expression. Each primitive term represents a value and a type. In some cases, the value may not be
determinable until run time. In all cases, the type is determinable when the STIL file/stream is parsed.

Subexpressions may be combined with operators to form subexpressions at the next higher level in the
expression hierarchy. Like the primitive terms, each subexpression represents a value and a type. And, as
with the primitive terms, the value may not be determinable until run time, but the type is determinable when
the STIL file/stream is parsed.

[Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

IEC 62526:2007(E)
IEEE 1450.1-2005(E)

—23_

Table 5—Primitive terms

Term Type Example—Comment
Integer numeric 5, 1066
Hex integer numeric OxFFFF, 0x123
SI units numeric 2mV, 25ns
—SI units are defined in Table 3 and Table 4 of
STIL.O
Real numeric 2e+3, 4.5¢6, 25¢-9
Time event reference numeric @, @], @@, @T1, @TI.1
—used in the context of a Timing->Waveform block
Time label numeric TXX:
—used in the context of a Timing->Waveform block
Signal sigref NAME, “NAME”
Signal group
Signal WEC list \WNAME, \W NAME, \W “NAME”
Signal group —use \W to extract the WFC list fom the named entity
Signal variable
WEC constant
String WEC list 10HLXT, \w 10HLXT, \hO1 FF, \dO1 255

—the \ is required with the boolean operators (== <>)
—the dot notation for concatenation is neither
required or allowed in WFC data; a whitespace
character shall serve as separator for WFC lists of
greater than 1024 characters

Integer list

integer list

1359
—an ordered set of integers, typically used in the
formation of signal groups and scan chains

Bare string

string

STRING, “STRING”, “STRING WITH SPACES”,
“STRING WITH SPECIAL CHARS @$%"”
—used to reference named entities

Concatenated string

string

XXX.YYY yields XXXYY
—used when a string is greater than 1024 characters

Domain reference

string

DOM:NAME

—used to reference an item within a named block, i.e.,
within a named SignalGroups, Timing, or
ScanStructures block

Subcomponent reference

string

COMP:NAME, COMP:DOM::NAME
—reserved for referencing subcomponents of a design
(i.e., embedded cores)

boolean

—a boolean type is the result of a boolean operation,
i.e., ==, :==, ! (see Table 7)

—integer 0 is returned for a boolean true result, and
integer 1 for a boolean false result

—the values TRUE and FALSE are not defined
—there is no variable type for boolean

[Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

—24 - IEC 62526:2007(E)
IEEE 1450.1-2005(E)

Table 6 defines implicit casting rules that are allowed on an expression to change a number from one type of
primitive term to another. The casting rule shall be used when necessary to (1) conform to the requirements
of the next level of hierarchy, (2) conform to the requirements of the statement containing the expression, or
(3) compare a real to an integer number.

Table 6—Implicit numeric casting rules?

Term Cast to Comment
SI units real —used when expression requires a real number
real integer —used when expression requires an integer value
—the fractional part is truncated; i.e., 3.7 yields 3
integer real —used when comparing an integer to a real number
integer boolean —used when expression requires a boolean value
—value of 1 or greater yields TRUE
—value of 0 or negative yields FALSE

4If the required behavior is different from the implicit type casting rules, then explicit casting should be
performed via user functions.

Table 7 is expanded from Table 5 of STIL.O and includes the new STIL.1 operators. The behavior of the
logic operators is defined in IEEE Std 1364™-2001 (Verilog) [B2]. This table is ordered by precedence.
Operators within each double-line separated group are of equal precedence and are processed from left to
right. Each double-line separated group of operators has higher precedence than the groups below them and
shall be processed first.

Table 7—Operators and functions allowed in expressions

- Number Requirements of
Operator New Definition 4 Type of the result
operands operands
Min () minimum value >=1 all of same numeric same as operands
function type
Max () maximum value >=1 all of same numeric same as operands
function type
) parentheses 1 any same as operand
[] square brackets 1 integer or integer list integer list
’ comma - used as an 2 any same as operands
argument separator in
functions
! STIL.1 negation (unary) 1 boolean or sigref same as operand
~ STIL.1 bit-wise negation 1 integer same as operand
(unary)
+ plus (unary) 1 numeric same as operand
- minus (unary) 1 numeric same as operand
/ divide 2 numeric numeric, SI units
adjusted per rules

[Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

IEC 62526:

IEEE 1450.1-2005(E)

2007(E)

—25_

Table 7—Operators and functions allowed in expressions (continued)

Operator New Definition Number Requirements of Type of the result
operands operands
* multiply 2 numeric numeric, SI units
adjusted per rules
% STIL.1 modulus 2 integer integer
+ add 2 same numeric type same as operands
- subtract 2 same numeric type same as operand
+ concatenate signal list 2 signal or signal group signal group
- remove from signal list 2 signal or signal group signal group
integer range (two 2 integer integer list
consecutive dots)
STIL.1 whitespace 2 integer or integer list integer list
< STIL.1 less than 2 same numeric type boolean
> STIL.1 greater than 2 same numeric type boolean
<= STIL.1 less or equal 2 same numeric type boolean
>= STIL.1 greater or equal 2 same numeric type boolean
== STIL.1 equal (WFC) 2 WEC list boolean
= STIL.1 not equal (WFC) 2 WEC list boolean
== STIL.1 equal (numeric) 2 same numeric type boolean
< STIL.1 not equal (numeric) 2 same numeric type boolean
& STIL.1 bit-wise and 2 integer or sigref same as operands
A STIL.1 bit-wise exlusive or 2 integer or sigref same as operands
Ay A STIL.1 bit-wise equivalence 2 integer or sigref same as operands
| STIL.1 bit-wise inclusive or 2 integer or sigref same as operands
&& STIL.1 and 2 boolean boolean
Il STIL.1 or boolean boolean
7 conditional expression 3(172:3) 1: boolean same as operands
2,3: same type— 2,3
numeric or WFC list
= assignment (WFC) 2 —Ileft: must be a name WEC list
of a symbol that can be
assigned WFCs
—right: a WFC list
= STIL.1 assignment (numeric) 2 —Ileft: must be a name same as second
of a symbol that can be | operand
assigned to same type
—right: any numeric
type

[Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

~ 26— IEC 62526:2007(E)
IEEE 1450.1-2005(E)

5.6 Boolean—boolean_expr

An expression is interpreted as a boolean if the context in which it is used requires a boolean result. A
boolean result can be achieved by means of the boolean operators. For pattern data expressions, the boolean
operator shall be either == or !=, and both sides shall be of type WFC (i.e., a list of WFCs preceded by \w,
else a signal, signal group, signal variable, or WFC-constant preceded by \W). For arithmetic expressions,
the boolean operator shall be either :==, <> <=, or >=, and both sides shall be of type integer or real.

An expression that results in an integer or real value shall be interpreted as a boolean if the usage context so
requires; in which case, a nonzero positive value is interpreted as true, whereas a value of zero or negative is
interpreted as false. Expressions that evaluate to WFCs shall not be used as booleans.

Although it may be good practice to use parentheses around boolean expressions, this is not a requirement of
the language.
The following examples are of boolean expressions:

48: STIL 1.0 { Design 2005; }
49: Header ({

50: Source "STD 1450.1-2005";

51: Ann {* sub-clause 5.6 *}

52: }

53:

54: Variables {

55: Integer INT;

56: Integer FLAG;

57: IntegerConstant FALSE := 0; /FLAG value
58: IntegerConstant TRUE := 1; /FLAG value
59: SignalVariable OP_CODE([3..0];

60: WFCConstant RUN = 1011; / OP_CODE value
61: WFCConstant STOP = 0111; /# OP_CODE value
62: WFCConstant RESET = 0000; / OP_CODE value
63: } //end Variables

64 :

65: Pattern MY PAT ({

66: If (I :== 13) {}

67: If (FLAG :== TRUE) {}

68: If (\WOP_CODE == \WRESET) {}

69: If (\wllll == \WOP_CODE) ({}

70: } //end Pattern

5.7 Integers—integer_expr

An integer expression is an expression that evaluates to integer. Integer expressions are allowed anywhere
that the statement syntax calls for an “integer_expr’. See the list of allowed operators in Table 7. The
following rules of interpretation apply to integers and integer expressions:

a) A bare integer may be declared either with or without single quotes, e.g., 5 or ‘5°.
b) The underscore character may be used as a separator within an integer declaration, e.g., 65_535.

c¢) If an integer result is called for and the expression results in a number with a fractional part, the
fraction is truncated to produce an integer value; e.g., the values [6.1, 6.8, 3.1, —3.8] become [6, 6,
-3, =3], respectively. The truncation is performed at the conclusion of the evaluation; i.e., (3/2) x 2
results in a value of 3.

d) The following formats are not allowed for integers: 56E3, 56K.

[Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

IEC 62526:2007(E) —27-
IEEE 1450.1-2005(E)

€)

Integer may be expressed in hexadecimal by preceding the number with Ox, e.g., OXFF.

Integer expressions may comprise integer literals, integer variables, integer constants, or multiterm
expressions that result in an integer value. The following examples are of integer expressions and their
usage:

71:
72
73:
74 :
75:
76:
77 :
78:
79:
80:
81:
82:
83:
84 :
85:
86:
87:
88:
89:
90:
91:
92:
93:
94 .
95:
96:
97:
98:
99:

100:
101:
102:
103:
104:
105:
106:
107:
108:

STIL 1.0 { Design 2005; }
Header
Source "STD 1450.1-2005";
Ann {* sub-clause 5.7 *}

Signals { SIGA In; SIGB Out; SIGC InOut; FOO[0x0..0x3F] In;

Variables
Integer II;
Integer JJ { Initialvalue 56%1024; }

IntegerConstant KK := 2;
}
SignalGroups
ALL = 'SIGA+SIGB+SIGC+FOO’;

} //end SignalGroups

Timing { WaveformTable WFT {
Waveforms
ALL {
01 { '2ns+KK*0.5ns’ U/D; }
}
} // end Waveforms
}} //end Timing

Pattern P {

¢ { IT := 1234; }

¢ { IT := 48000000; }

¢ { IT := 48 000 _000; } // equivalent to 48000000

¢ { IT :=1II + 2; } // expression with a variable

¢ { 11 := 13; JJ := 13; } // expression containing assignment
¢ {11 := 33/2; } // truncate (i.e., 13/2 yields 6)

¢ { 11 := JJ*o.s; } // truncate (i.e., 13%0.5 yields 6)
¢ { ITI := O0x7FF_FFFF; } // hex representation of integer
¢ { IT := JJ&Ox00ff; } // bitwise and with a hex number
If (II >= 99) {} // conditional expression

Loop II {} // variable loop count

Loop Oxff { } // loop count defined in hex

} // end Pattern

5.8 Logic expressions—logic_expr

}

A logic expression is used to represent a combination of signal names and signal group names in the context
of a design model. Logic expressions are allowed anywhere that the statement syntax calls for a
“logic_expr”. The rules for interpretation of this expression are outside of the definition of this standard (see
IEE Std 1364-2001 [B2]).

[Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

—28- IEC 62526:2007(E)
IEEE 1450.1-2005(E)

The logic relationship represented by this expression is independent of any timing or waveform
considerations. It is solely indicating that the intended function of the design is to combine the named
signals and signal groups according to the specified logic relationship.

The allowed operators in a logic expression are as follows:

() parentheses

~ bit-wise negation

& bit-wise and

| bit-wise inclusive or
A bit-wise exclusive or
AN

~, ~N bit-wise equivalence

The following example contains a logic expression in the ScanEnable statement. The scan enable condition
for the scan chain CHAINI is active if signals AA and BB are both true, thereby satisfying the logic
expression ‘AA&BB’.

109: STIL 1.0 { Design 2005; }
110: Header ({

111: Source "STD 1450.1-2005";
112: Ann {* sub-clause 5.8 *}
113: }

114:

115: Signals { AA In; BB In; SI1 In; SOl Out;}
116:

117: ScanStructures S1 {

118: ScanChain CHAIN1 ({

119: ScanLength 100;

120: ScanCells CC[1..100];
121: ScanIn SI1;

122: ScanOut SO1;

123: ScanEnable AA&BB;

124 : }

125: }

5.9 Real expressions—real_expr

A real expression is an expression that evaluates to a real number as determined by the context (i.e., key
word) or the variable type on the left-hand side of an expression. Real expressions are allowed anywhere
that the statement syntax calls for a “time_expr” or “real_expr”; i.e., anywhere that an engineering unit
value is allowed, then a real expression is allowed. Real variables and expressions are defined in a Spec
block in STIL.0. A real number can be expressed in one of two formats as follows:

a) A real number can be of the form: <number>e<+\-><number>. A real number can be used to
represent values that are not standard SI units, for example, a slew rate in volts/nanoseconds.

b) A real number can also be of the form <number><prefix><SI unit>. For example, 23ns’ is a time
expression (nanoseconds), ‘10uF’ is a capacitance expression (micro-Farads). This generic reference
can be used whenever one of the standard unit definitions is allowed.

There are commonly accepted rules with regard to the algebraic combination of values with engineering
units. Such rules are not defined in this standard; however, specific tools that implement this standard may
require compliance with these rules, and it is good practice to keep units consistent with the usage. For
example, if a spec value defines VX to be of type voltage, it can be used as time by expressing it as
VX*(1ns/1V).

[Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

IEC 62526:2007(E) —29-
IEEE 1450.1-2005(E)

The following examples are of real number expressions:

126: STIL 1.0 { Design 2005; }
127: Header {

128: Source "STD 1450.1-2005";

129: Ann {* sub-clause 5.9 *}

130: }

131:

132: Signals { SIG_NAME InOut; }

133:

134: Spec {

135: Category CAT {

136: TIME = 25ns;

137: REALVAR = 5.5;

138: VOLTAGE = 2.5V;

139: WATTAGE = 25mW;

140: SLEWRATE = 1V/1lns;

141: } // end Category

142: } //end Spec

143:

144: Pattern PAT ({

145: If (TIME >= 23.5ns+1.5ns/2) {} // time expression

146: If (WATTAGE >= 5V*2ud) {} // where WATTAGE is of type *Waits’
147: If (SLEWRATE’' >= 5V/1ns) {} //where SLEWRATE is of type 'Real’
148: If (REALVAR >= 5) {} // where REALVAR is of type 'Real’
149: If (REALVAR*1mA >= 5mA) {} // where REALVAR is of type 'Real’
150: } //end Pattern

151:

152: Timing

153: WaveformTable WET

154: Waveforms { SIG NAME (

155: 01 { 25ns D/U; } // constant time

156: 01 { (REALVAR*1ns) D/U; } // use a real to define time

157: 01 { (VOLTAGE* (1ns/1V)) D/U; } // use a voltage to define time
158: 1}

159: }

160: } //end Timing

5.10 Addition to timing expressions—time_expr

Additional symbols are added for referencing timing events in waveforms. These are additions to the @n
symbol (as defined in STIL.O, Subclause 6.13), which allows reference to the timing edges in a timing
expression that are in the current period. The new symbols, as defined here (along with the other time
referencing capabilities), allow access to period markers and events in subsequent periods. These new
facilities are provided to support application in other STIL extensions, such as STIL.3 and STIL.6.

a) @ => references the time of the prior event (STIL.0).
b) @n => references the time of the n-th event, where first event is @1 (STIL.0).
¢) @@ => references the time of the current event (STIL.1).

d) @Tm => references the time of the start of the m-th period, where the current period is numbered O.
The time value returned is relative to TO of the current period. @T1 represents the end of the current
period (i.e., the time relative to the current period for the start of the next period).

[Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

~ 30- IEC 62526:2007(E)
IEEE 1450.1-2005(E)

e) @Tm.n => references the events of subsequent periods. The time value returned is relative to TO of
the current period. @T1.3 represents the third event of the second period. Note that events are
numbered starting at 1, because the 0-th event is TO (STIL.1).

f) EVENT_LABEL => references a label that is defined by EVENT_LABEL: anywhere in the current
WaveformTable or WaveformDescriptions block (STIL.0).

g) SPEC_VARIABLE => references a variable defined in a Spec block (STIL.0).

h) VARIABLE => references an Integer or IntegerConstant defined in a Variables block (STIL.1).

Figure 1 illustrates events across three periods.

@T0 @T1 @T2 @T3

100ns o T5ns - 100ns

S5ns 80ns ' 20ns S0ns 5(ns 80ns
@T0 = Ons @T1 =100ns @T2 =175ns @T3 =275ns
@1 =50ns @T1.1 =120ms @T2.1 =225ns
@2 = 80ns @T1.2 = 150ns @T2.2 =255ns

Figure 1—Referencing timing edges

5.11 SignalVariables—sigvar_expr

A SignalVariable is a variable that is used to hold strings of WFC characters. It can be assigned WFC strings
in the same way that signals and signal groups are assigned WFC strings. A sigvar_expr is a reference to a
signal variable, with the result being a list of WFCs. A SignalVariable is assigned a list of WFC values,
which may then be assigned to actual signals or groups. The list of WFC values contained in a variable of
type SignalVariable is obtained by preceding it with \W. A SignalVariable name may be used to pass WFC
information as a parameter in a macro or a procedure calls.

SignalVariables can be used in-line by setting them to a list of WFCs in a vector or a condition statement.
When used in this way, the data are immediately available for use. Note: See also the definition of formal
parameters in the next section. The following example shows in-line use of a signal variable:

¢ { sv = 1111; }
v { GRP = \WSV; }

The contents of the SignalVariable are maintained on a call to a procedure and the return; and the content is
maintained on the invocation and exit from a macro.

The WFC data in a SignalVariable can be used in much the same way as Signals and SignalGroups. Square
brackets are used to indicate the length if there are multiple elements. The following example illustrates
typical SignalVariable definitions:

Variables {
SignalVariable SV1; // define a single element variable
SignalVariable SV3[0..2]; // define a three element variable

}

[Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62526:2007(E) ~31-
IEEE 1450.1-2005(E)

When used in pattern data, the SignalVariable may be used without the square brackets; in which case, all
elements of the SignalVariable are used. If a subset of the elements is desired, then the square bracket
notation is used. The length on both sides of the equal sign must be the same, except when the signal-
variable is being used as a formal parameter (see 5.12). The following example illustrates typical
SignalVariable usage:
Pattern

v { SIG = \W SV1; }

Vv { GRP_OF THREE = \W SV3; }

v { GRP_OF TWO = \W SvV3[0..1]; }

}

The following examples are of SignalVariable usage:

161: STIL 1.0 { Design 2005; }
162: Header {

163: Source "STD 1450.1-2005";

164: Ann {* sub-clause 5.11 *}

165: }

166:

167: Signals {

168: BUSX[1..5] In; // defines 5 signals plus a group named BUSX
169: }

170:

171: Variables {

172: SignalVariable SIG VAR[1..5];
173: }

174 :

175: MacroDefs {

176: APPLY VAR

177: c { SIG VARI[1..5] = #; }

178: v { BUSX = \W SIG VARI[1..5]; }
179: // error if above two lines were changed to:

180: // V { SIG VAR[1..5] = #; BUSX = \W SIG VAR[1..5]; }
181: }

182: APPLY TWO_VARS ({

183: c { s1c VAR[l..S] = #; }

184: v {B = \W SIG VARI[1..5]; } /applylllll

185: ¢ { s1c VAR[l..S] = #; }

186: v { BUSX = \W SIG VARI[1..5]; } /apply 00000

187: }

188: }

189:

190: Pattern PAT ({

191: // following macro call use signal variables as parameters

192: Macro APPLY VAR { SIG VAR[1..5] = 11100; }

193: Macro APPLY VAR { SIG VAR[5 4 2 3 1] = 00011; }
194: Macro APPLY VAR { SIG VAR[5..1] = ABBAB; }

195: Macro APPLY TWO VARS { SIG VAR[5..1] = 11111 00000; }
196: // following use signal variables in line

197: ¢ { SIG VAR[1..5] = 11001; }

198: v { BUSX = \W SIG VAR[1..5]; }

199: }

[Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

~32- IEC 62526:2007(E)
IEEE 1450.1-2005(E)

5.12 Formal parameters in procedures and macros

The concept of a formal parameter was used in STIL.0; however, it was not called that. Now with the
introduction of more complicated pattern data expressions, it is necessary to keep the concept of variable
usage and formal parameter separate. Whereas a signal variable may be set to a value that becomes
immediately available, a parameter in a macro or procedure is only available when it is referenced within the
referenced macro or procedure by the use of the # or % characters. It is the same behavior as for any Signal
or SignalGroup that is used as a parameter as defined in STIL.0. See the following example:

When the name of a SignalVariable is used as a parameter in a macro or a procedure call:
Macro MAC { SV = 1111; }
Call PROC { SV = 1111 0101; })

then the WFC data are not available until a # or % operator is used inside the procedure or macro:

MAC
c { sv=#; } Vv { GRP=\WSV; }

}

PROC (
c { sv=#; }
c { sv=#; }

}

{ GrRP=\WsV; }

\Y
v { GRP=\WSV; }

5.13 Integer lists—integer _list

An integer_list is used to specify an ordered list of integer values. Integer lists are allowed anywhere that the
statement syntax calls for an “integer_list.” The only allowed operator in an integer list is the integer range
operator “..”, which specifies a range of integers. An integer_list may contain either single integers,
whitespace-separated lists of integers, or integer ranges. IntegerConstants may appear in place of integers.
An integer range is represented by two integers (or IntegerConstants) separated by “..”. For example, ‘3..6’
is equivalent to ‘34 5 6’ and ‘4..2’ is equivalent to ‘4 3 2°. Whitespace characters are allowed between the

TR

integer or IntegerConstant, and the “..” operator. The following code shows examples of integer lists:

200: STIL 1.0 { Design 2005; }
201: Header f{

202: Source "STD 1450.1-2005";
203 : Ann {* sub-clause 5.13 *}
204: }

205: Signals {

206: SIG[1..5] In;

207: SI1 In { ScanIn 100; }
208: }

209: ScanStructures S1

210: ScanChain CHAIN1 ({

211: ScanLength 100;

212: ScanCells CC[1..100];
213: }

214: }

215: Pattern PAT ({

216: v { SIG[5 4 3 2 1] = 11001; }
217: v { SIG[5..1] = 00110; }
218: }

[Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

IEC 62526:2007(E) ~33-
IEEE 1450.1-2005(E)

6. Statement structure and organization of STIL information

This standard defines additional top-level STIL blocks: Environment. It is delineated in Table 8, which is
provided to be complete with Table 8 in STIL.O.

Table 8—Additions to optional top-level statements

Statement Purpose
Environment The Environment block defines relationships of STIL data to external
Clause 18 environments. Environment blocks, if referencing other STIL data, shall be

defined after the blocks that define that STIL data, unless those references are
to information contained in MacroDefs, Procedures, or Pattern blocks, which
are allowed to be forward-references.

This is always a top-level block. Environment blocks, if present, do not have a
defined order with respect to other STIL blocks defined in STIL.O.
Environment blocks may appear any place a top-level STIL statement is

allowed.
Pragma The Pragma block allows for embedding application-specific code directly into
Clause 19 a STIL file/stream. The block may be used as a top-level block or embedded in
another STIL block.
PatternFailReport The PatternFailReport block is typically not part of a STIL file/stream that
Clause 20 defines a test program; however, as a top-level block, it would be allowed to exist

without conflict with other STIL blocks. This block is to be generated by the
execution of a STIL test program to report results of execution.

7. STIL statement

This clause defines extensions to STIL.0, Clause 8.

The STIL statement identifies the primary version of STIL.0 information contained in a STIL file and the
presence of one or more standard Extension constructs. The primary version of STIL is defined in STIL.0.

The extension to the STIL statement allows for a block containing extension identifiers that allow for
additional constructs in the STIL file. There may be multiple Extension statements present, to identify the
presence of multiple extension environments. The extension name and the extension statements are defined
in the individual documents for those standards.

“Include” files are required (per STIL.0) to start with the STIL statement. The extension context as defined
in an “Include” file shall be a subset of the definition in the base file; i.e., it is not permissible to specify an
extension in an included file that is not already allowed by the base file. One qualifier to this rule is the
"IfNeed" option. If the parser does not actually consume the "Include," then the extensions in the file are not
relevant.

All other constructs and restrictions for STIL.0, Clause 8 are in effect here.

[Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

— 34— IEC 62526:2007(E)
IEEE 1450.1-2005(E)

7.1 STIL syntax

STIL 1EEE_1450_0_IDENTIFIER { @))]
(EXT_NAME EXT_VERSION;)+)
} /7 end STIL

(1) STIL: A statement at the beginning of each STIL file.
IEEE_1450_0_IDENTIFIER: The primary version of STIL, as identified by 1.0.

(2) EXT_NAME: The name of the Extension. This standard is identified by the name Design.
EXT_VERSION: The version of the extension. This standard is identified by the value 2005.

7.2 STIL example

219: STIL 1.0 {

220: Design 2005;

221: DCLevels 2002;

222: }

223: Header {

224 : Source "STD 1450.1-2005";
225: Ann {* sub-clause 7.2 *}
226: }

227:

8. UserKeywords statement
This clause defines extensions to STIL.0, Clause 11.

This clause defines additional locations in a STIL file/stream where the UserKeywords statement is allowed
to appear.

The UserKeywords construct is expanded from STIL.O to allow the UserKeywords statement to be defined
within any STIL block. When a UserKeywords statement is defined within a STIL block, those definitions
shall apply only within that block and contained sub-blocks. It allows Userkeywords to be “locally scoped”
to a containing STIL block. Note: STIL.0 allows for UserKeywords only at the top level.

All other constructs and requirements for STIL.0, Clause 11 are in effect here.

8.1 UserKeywords syntax

As defined in STIL.O.

8.2 UserKeywords example

228: STIL 1.0 { Design 2005; }
229: Header {

230: Source "STD 1450.1-2005";

231: Ann {* sub-clause 8.2 *}

232: }

233:

234: Signals { A[1..99] InOut; }

235: SignalGroups { ALLSIGNALS = ‘A[1..99]’; }

[Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 62526:2007(E) ~35-
IEEE 1450.1-2005(E)

236:

237: /* The UserKeywords construct is the same as defined in STIL.O,

238: with the additional capability to be defined within another STIL block */
239:

240: Timing ONE {

241: UserKeywords STARTUP SHUTDOWN;

242: WaveformTable ONE (

243: STARTUP { ALLSIGNALS;}

244: }

245: }

9. Variables block

This clause defines variables and named constants. If the block is unnamed, then all definitions shall be
globally available to all other blocks in the STIL file/stream. If the block has a name, then that name must be
referenced by the Pattern, PatternBurst, or Timing block for the variables to be available. Variables and
constants that are defined in the global Variables block shall not be overridden in a named Variables block.

This block should be considered in light of the Spec block that also can define constants. The purpose and
usage of these two blocks is sufficiently different to warrant their separation. The Spec block is intended to
contain parametric data used in specifying device/test characteristics. The Spec block has special handling
defined for Category, Min/Typ/Max/Meas, and Selector, which are to facilitate a flexible definition of these
test parameters.

The Variables block is used to contain control variables and constants. Typical uses for these constants and
variables is to control flow of execution, to provide ‘aliasing’ of values to meaningful names with constants,
and to provide run-time parameters.

Although complex expressions may be supported by an ATE system, in general, most ATE systems will be

able to support only a limited subset of the design capabilities defined herein. The full capabilities are
intended for use by simulation applications or pattern translation tools. See Annex O for more information.

9.1 Variables block syntax

Variables (VARIABLES_DOMAIN) { @))]
(IntegerConstant CONST_NAME := INTEGER ;)* 2)
(Integer VAR_NAME;)* 3)

(Integer VAR_NAME {
(Usage Test;)
(InitialValue integer_expr ;)
})* // end Integer
(SignalVariable VAR_NAME;)* 4)
(SignalVariable VAR_NAME {
(Base < Hex | Dec> WFC_LIST ;)
(Alignment < MSB |LSB > ;)
(InitialValue vec_data ;)
})* // end SignalVariable
(WFCConstant CONST_NAME = WFC_LIST ;)* (®)]
} // end Variables

(1) Variables: This block contains the definitions of variables and constants. It may be either named or
unnamed. If the block is named, then the name must be referenced in the PatternBurst block or Tim-
ing Block for the variables to be available.

(2) IntegerConstant: This statement allows the definition of a named integer that has a constant value.
The “INTEGER” value on the right-hand side may be either a literal integer value (as defined in

[Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

3)

“)

~36- IEC 62526:2007(E)
IEEE 1450.1-2005(E)

STIL.0, Subclause 6.12) or an integer-expr containing only literal integers and other integer-
constant names. The named constant shall be used anywhere that a literal integer value is allowed.
An integer-constant can be more widely used than an integer-variable; for example, if K is an
integer-constant, then it may be used in defining an indexed list of signals (SIGS[1..K] In;), as a
length indicator (Scanln K; DataBitCount K; ScanOutLength K;), and as a loop counter (Loop K {}
MatchLoop K {}).

Integer: This statement or block defines an integer-variable. If the integer-variable is specifed as a
block, then the following optional attributes may be specified:

Usage Test: This statement specifies that the integer-variable is to be used in the translation,
load, or execution of the STIL file/stream for an ATE system. Integer-variables without this
statement may safely be ignored for the purposes of pattern execution. The default is NO;
i.e., do not use as a test variable.

InitialValue: This attribute allows the specification of the initial value that is to be assigned to
the integer-variable at the onset of highest level domain for the variable, i.e., global = upon
creation; PatternBurst = each execution of the burst; Pattern = each execution of the pattern.
The value of the expression defined in the InitialValue statement is not established until a
context is established in which this integer-variable is in scope. The default initial value is zero.

SignalVariable: This statement or block defines a variable that may be used wherever a signal or
group may be used. For example code, see Annex B.

When declaring signal-variables, either the single WFC entity form may be specified that requires
no square brackets or the multiple WFC entity form may be specified with the square bracketed
notation. The square brackets accomplish two purposes: defining the length of the signal-variable
and defining the index range of the signal-variable.

When using a signal-variable within patter