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INTERNATIONAL ELECTROTECHNICAL COMMISSION

RADIATION PROTECTION INSTRUMENTATION -
DETERMINATION OF UNCERTAINTY IN MEASUREMENT

FOREWORD

The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.

The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.

IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.

In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.

IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.

All users should ensure that they have the latest edition of this publication.

No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.

Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.

Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. However, a
technical committee may propose the publication of a technical report when it has collected
data of a different kind from that which is normally published as an International Standard, for
example "state of the art".

IEC 62461, which is a technical report, has been prepared by subcommittee 45B: Radiation
protection instrumentation, of IEC technical committee 45: Nuclear instrumentation.

This second edition of IEC TR 62461 cancels and replaces the first edition, published in 2006,
and constitutes a technical revision. The main changes with respect to the previous edition
are as follows:

add to the analytical method for the determination of uncertainty the Monte Carlo method
for the determination of uncertainty according to supplement 1 of the Guide to the
Expression of uncertainty in measurement (GUM S1), and

add a very simple method to judge whether a measured result is significantly different from
zero or not based on ISO 11929.




A Anuriaht

-6 - IEC TR 62461:2015 © IEC 2015

The text of this technical report is based on the following documents:

Enquiry draft Report on voting
45B/783/DTR 45B/813/RVD

Full information on the voting for the approval of this technical report can be found in the
report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this publication will remain unchanged until
the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data
related to the specific publication. At this date, the publication will be

e reconfirmed,

e withdrawn,

e replaced by a revised edition, or

e amended.

A bilingual version of this publication may be issued at a later date.

IMPORTANT - The 'colour inside’' logo on the cover page of this publication indicates
that it contains colours which are considered to be useful for the correct
understanding of its contents. Users should therefore print this document using a
colour printer.
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INTRODUCTION

The ISO/IEC Guide 98-3:2008, Uncertainty of measurement — Part 3: Guide to the expression
of uncertainty in measurement (GUM:1995) as well as its Supplement 1:2008, Propagation of
distributions using a Monte Carlo method (GUM S1), are general guides to assess the
uncertainty in measurement. This Technical Report lays emphasis on their application in the
area of radiation protection and serves as a practical introduction to the GUM and its
supplement 1 (GUM S1).

The process of determining the uncertainty delivers not only a numerical value of the
uncertainty; in addition it produces the best estimate of the quantity to be measured which
may differ from the indication of the instrument. Thus, it can also improve the result of the
measurement by using information beyond the indicated value of the instrument, e.g. the
energy dependence of the instrument.
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RADIATION PROTECTION INSTRUMENTATION -
DETERMINATION OF UNCERTAINTY IN MEASUREMENT

1 Scope

This Technical Report gives guidelines for the application of the uncertainty analysis accord-
ing to ISO/IEC Guide 98-3:2008 (GUM describing an analytical method for the uncertainty
determination) and its Supplement 1:2008 (GUM S1 describing a Monte Carlo method for the
uncertainty determination) for measurements covered by standards of IEC Subcommittee 45B.
It does not include the uncertainty associated with the concept of the measuring quantity,
e. g., the difference between Hp(10) on the ISO water slab phantom and on the person.

This Technical Report explains the principles of the ISO/IEC Guide 98-3:2008 (GUM),its
Supplement 1:2008 (GUM S1) and the special considerations necessary for radiation
protection at an example taken from individual dosimetry of external radiation. In the
informative annexes, several examples are given for the application on instruments, for which
SC 45B has developed standards.

This Technical Report is supposed to assist the understanding of the ISO/IEC Guide 98-
3:2008 (GUM), its Supplement 1: 2008 (GUM S1), and other papers on uncertainty analysis. It
cannot replace these papers nor can it provide the background and justification of the
arguments leading to the concept of the ISO/IEC Guide 98-3:2008 (GUM) and its Supplement
1:2008 (GUM S1).

Finally, this Technical Report gives a very simple method to judge whether a measured result
is significantly different from zero or not based on ISO 11929.

For better readability the correct terms are not always used throughout this technical report.
For example, instead of “random variables of a quantity” only the “quantity” itself is stated.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and
are indispensable for its application. For dated references, only the edition cited applies. For
undated references, the Ilatest edition of the referenced document (including any
amendments) applies.

IEC 60050 (all parts): International Electrotechnical Vocabulary (available at
http://www.electropedia.org)

ISO/IEC Guide 98-3:2008, Uncertainty of measurement — Part 3: Guide to the expression of
uncertainty in measurement (GUM:1995)

ISO/IEC Guide 98-3, Supplement 1:2008, Uncertainty of measurement — Part 3: Guide to the
expression of uncertainty in measurement (GUM:1995) — Propagation of distributions using a
Monte Carlo method
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3 Terms and definitions

For the purposes of this document, the technical terms of IEC 60050-151 [1], and
IEC 60050-311 [2] as well as the following definitions taken from the ISO/IEC Guide 98-
3:2008 (GUM), and its Supplement 1:2008 (GUM S1) apply?.

3.1

calibration factor

N

quotient of the true value of a quantity and the indicated value for a specified reference
radiation under specified reference conditions

3.2
conformity test
test for conformity evaluation

[SOURCE: IEC 60050-151:2001,151-16-15]

3.3

complete result of a measurement

set of values attributed to a measurand, including a value, the corresponding uncertainty and
the unit of measurement

Note 1 to entry: The central value of the whole (set of values) can be selected as measured value and a
parameter characterising the dispersion as uncertainty.

Note 2 to entry: The result of a measurement is related to the indication given by the instrument and to the values
of correction obtained by calibration and by the use of a model.

Note 3 to entry: In this Technical Report, the “measured value”, see Note 1 above, is abbreviated by M.

Note 4 to entry: In this Technical Report, the “indication given by the instrument’”, see Note 2 above, is
abbreviated by G, and called “indicated value”.

Note 5 to entry: In this Technical Report, the “model”, see Note 2 above, is called “model function”, see 3.10 and
5.2.

[SOURCE: IEC 60050-311:2001, 311-01-01, modified]

34

correction factor

K

factor to the indicated value to correct for deviation of measurement conditions from calibra-
tion conditions

3.5
coverage factor

kCOV
numerical factor used as a multiplier of the (combined) standard uncertainty in order to obtain

an expanded uncertainty

Note 1 to entry: A coverage factor k_ is typically in the range of 2 to 3.

[SOURCE: GUM:2008, 2.3.6]

1 Numbers in square brackets refer to the bibliography.
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3.6

decision threshold

m*

value of the estimator of the measurand, which when exceeded by the result of an actual
measurement using a given measurement procedure of a measurand quantifying a physical
effect, one decides that the physical effect is present

Note 1 to entry: The decision threshold is defined such that in cases where the measurement result, m, exceeds
the decision threshold, m*, the probability that the true value of the measurand is zero is less or equal to a chosen
probability, a.

Note 2 to entry: If the result, m, is below the decision threshold, m*, the result cannot be attributed to the physical
effect; nevertheless it cannot be concluded that it is absent.

[SOURCE: 1SO 11929:2010]

3.7

deviation

D

difference between the indicated values for the same value of the measurand of an indicating
measuring instrument, or the values of a material measure, when an influence quantity
assumes, successively, two different values

Note 1 to entry: This definition is applicable to all measuring instruments and influence quantities, but it should
mainly be used in those cases, where this deviation is independent of the indicated value.

[SOURCE: IEC 60050-311:2001, 311-07-03, modified?]

3.8

distribution function

F(x)

a function giving, for every value x, the probability that the random variable X be less than or
equal to x: F(x) = Pr(X < x)

[SOURCE: GUM:2008, C.2.4; GUM S$1:2008, 3.2]

3.9

expanded uncertainty

U

quantity defining an interval about the result of a measurement that may be expected to
encompass a large fraction of the distribution of values that could reasonably be attributed to
the measurand

Note 1 to entry: The expanded uncertainty is obtained by multiplying the (combined) standard uncertainty by a
coverage factor.

[SOURCE: GUM:2008, 2.3.5]

3.10

indicated value

G

quantity value provided by a measuring instrument or a measuring system

Note 1 to entry: An indication is often given by the position of a pointer on the display for analogue outputs, a
displayed or printed number for digital outputs, a code pattern for code outputs, or an assigned quantity value for
material measures.

3.11
influence quantity
quantity that is not the measurand but that effects the result of the measurement

2 Original term “variation (due to an influence quantity)”.
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Note 1 to entry: For example, temperature of a micrometer used to measure length.

[SOURCE: GUM:2008, B.2.10]

3.12

measured value

M

value determined from the indicated value, G, by applying the model function for the meas-
urement

Note 1 to entry: An example of a model function is given below. The calibration factor N, a deviation D, and a
correction factor K are applied:

M=NxKx(G-D)

The calculations according to this model function are not always performed. One main purpose of this model func-
tion of the measurement is, that it is necessary for any determination of the uncertainty according to the GUM (see
GUM, 3.1.6, 3.4.1 and 4.1; see also 5.2 of this Technical Report).

Note 2 to entry: In the GUM the measured value is called value of the measurand.

3.13
probability density function <for a continuous random variable>

Slx)

the derivative (when it exists) of the distribution function: f{x)=dF(x)/dx

b
Note 1 to entry: f{x)-dx is the “probability element”: f{x)-dx=Pr(x<X<x+dx); in general: Pr(a <X <b)=J.f(x)dx .

[SOURCE: GUM:2008, C.2.5; GUM S1:2008, 3.3, modified by adding “in general”]

3.14

reference conditions

set of specified values and/or ranges of values of influence quantities under which the uncer-
tainties, or limits of error, admissible for a measuring instrument are the smallest

[SOURCE: IEC 60050-311:2001, 311-06-02]

3.15

reference response

Rref e . . .
response of the assembly under reference conditions to unit reference dose (rate) or activity
and is expressed as:

G
Rref = M_

where G is the indicated value of the equipment or assembly under test and M, is the true
value of the reference source

3.16

relative response

Rrel

quotient of the response and the reference response under specified conditions

Note 1 to entry: For the specified reference conditions, the response is the reciprocal of the calibration factor.
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3.17

response

R

ratio of the quantity measured under specified conditions by the equipment or assembly under
test and the true value of this quantity

3.18
standard uncertainty
standard deviation associated with the measurement result or an input quantity

Note 1 to entry: See GUM:2008, 2.3.4.

Note 2 to entry: The standard uncertainty of the measurement result is sometimes called “combined standard
uncertainty”.

Note 3 to entry: The quotient of the standard uncertainty and the measurement result is called “relative standard
uncertainty” and sometimes given as percentage.

3.19
type test
conformity test made on one or more items representative of the production

[SOURCE: IEC 60050-151:2001, 151-16-16]

3.20

uncertainty

uncertainty of measurement

parameter, associated with the result of a measurement, that characterises the dispersion of
the values that could reasonably be attributed to the measurand

Note 1 to entry: The parameter may be, for example, a standard deviation (or a given multiple of it), or the half-
width of an interval having a stated level of confidence (coverage probability).

[SOURCE: GUM:2008, 2.2.3]
4 List of symbols

Table 1 gives a list of the symbols (and abbreviated terms) used in the main text of this
Technical Report (excluding annexes).

Table 1 — Symbols (and abbreviated terms) used
in the main text (excluding annexes)

. Unit (dose
Symbol Meaning measuiement)
a Half-width of an interval for possible values of a quantity As quantity
a_ Lower limit of an interval for possible values of a quantity As quantity
as Upper limit of an interval for possible values of a quantity As quantity
a Probability to detect an effect (state a result above zero) although in reality no -
effect is present (the true value is zero) also called “probability of false positive
decision”
cr Sensitivity coefficient for the input quantity K Sv
Cm Sensitivity coefficient for the input quantity M -
CmQ Sensitivity coefficient for the input quantity M( -
ey Sensitivity coefficient for the input quantity N Sv
F(x) Distribution function -
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Symbol Meaning m:ansitjsg:z:\t)
fx) Probability density function (for a continuous random variable) PDF Inverse of
quantity

G Indicated value, for example, reading of the dosemeter in units of Hp(10) Sv

g Best estimate of G Sv

g Possible value (estimate) of G Sv

Go Zero reading Sv

g0 Best estimate of G Sv

£0 Possible value (estimate) of Gg Sv
h(x) Model function, see Note 1 to 3.12 As output
quantity

Hp(10) Personal dose equivalent at a depth 10 mm Sv

i Running index (integer) -

J Running index (integer) -

K Correction factor, for example, for energy and angle of radiation incidence -

k Best estimate of K -

k Possible value (estimate) of K -
k1_q quantile of the standardized normal distribution for a given probability « -
kcov Coverage factor -

L Number of Monte Carlo trials -

M Measured value, for example, personal dose equivalent Hp(10) Sv

Mg True value of a reference source Sv
m Best estimate of M Sv
m Possible value (estimate) of M Sv
m* Decision threshold of M Sv

Calibration factor -

7 Best estimate of N -

n Possible value (estimate) of N -

P Coverage probability -

(0] Distribution function for the output quantity -

q Arbitrary integer -
Rabs Absolute response -
Rpgl Relative response -

g Standard deviation of the distribution of the g-values Sv

550 Standard deviation of the distribution of the gg-values Sv
s§ Standard deviation of the distribution of the 4-values -
sp Standard deviation of the distribution of the n-values -
T Number of input quantities -
U Expanded uncertainty Sv
u(m) Standard uncertainty associated with the best estimate of the measurement Sv
result, m

ug(rﬁ) Unc_:ertainty contribution to u of the input quantity G associated with the best Sv
estimate of the measurement result, m

ugo(rr”l) Unc_:ertainty contribution to u of the input quantity Gy associated with the best Sv
estimate of the measurement result, m

up(m) Uncertainty contribution to u of the input quantity K associated with the best Sv

estimate of the measurement result, m
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Symbol Meaning m:ansirjig;se?\t)
u,(m) Uncertainty contribution to u of the input quantity N associated with the best Sv
estimate of the measurement result, m

X A non-specified quantity As quantity
X Best estimate of X As quantity
X Possible value (estimate) of X As quantity
y Random number from the standard Gaussian distribution -
z Random number out of the interval 0 .. 1 (rectangular distribution) -

5

The GUM and the GUM S1 concept

5.1 General concept of uncertainty determination

511 Overview in four steps

The GUM:2008 and its supplement 1, GUM S1:2008:

consider available quantities influencing the measurement, e.g. the experience of the
person performing the measurement,

are partly based on the Bayes statistics (especially the GUM S1),

are internationally accepted.

NOTE The methods of the GUM and the GUM S1 are described and explained in many papers [3] to [11].

The application of the GUM (analytical method) and GUM S1 (Monte Carlo method), not the
justification or the mathematics behind it, will be described in a simplified example in the
following subclauses. Further details can be found in the literature.

The following four steps are necessary for the propagation (determination) of uncertainty.
Especially, for the first two steps, the expertise of the evaluator is essential.

Step 1: A mathematical model function (or an algorithm) has to be stated describing the
relation of the input quantities X; and the output quantity &/

M = h(Xy,..., X1) (1)

where
T is the number of input quantities;
X; is an input quantity;

1

M is the output quantity.

The model function should contain every quantity, including all corrections and correction
factors that can contribute a significant component of uncertainty to the result of the
measurement; details are given in 5.2.

Step 2: The available information for the input quantities X; has to be collected; details are
given in 5.3.

Step 3: The standard uncertainty u(m) of the output quantity has to be calculated using
either the analytical method (explained in 5.1.2) or the Monte Carlo method (explained in
5.1.3). For this step, only the application of mathematics is required. This task can,
therefore, be performed completely by a computer program, for example, the software
“GUM Workbench” [12] or “UncertRadio” [13]; details are given in 5.4.

Step 4: The expanded uncertainty U(m) and or the corresponding coverage interval have
to be stated; details are given in 5.5.
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5.1.2 Summary of the analytical method for steps 3 and 4
In this subclause, a short summary is given in the following to illustrate the analytical method:

a) Firstly, for each input quantity X, i = 1..T, the best estimate x; and its standard uncertainty
s(x;) have to be obtained,;

b) Secondly, the sensitivity coefficient, i.e. the partial derivative of the output quantity with
respect to each input quantity, has to be calculated: ¢; = 0h/0x;; this is the slope of the
model function 4(x;). The larger it is the stronger is the impact of the corresponding input
quantity to the output quantity, thus, it is the “lever arm” or “impact” of the corresponding
input quantity.

c) Thirdly, the uncertainty contribution to the output quantity due to each input quantity has
to be calculated by multiplying the sensitivity coefficient and the standard uncertainty:
u;(m) = c;| - s(x;).

d) Fourthly, the combined standard uncertainty for the output quantity is computed as the

square root of the squared uncertainty contributions: u,.(m)= Z:’Z1{ui(ﬁ1)}2 ; in case some

(random variables expressing the state of knowledge about the according) input quantities
are correlated with one another (i.e. they depend on each other), further terms need to be
added to the sum under the square root sign, as detailed in 5.2 of the GUM:2008.

e) Finally, the expanded uncertainty for the output quantity has to be calculated by
multiplying the standard uncertainty with the appropriated coverage factor (usually k£ = 2):
U.(m) =2 - u.(m); if the probability distribution of the output quantity is not approximately
Gaussian (or normal), the coverage factor may have another value, see 6.3 of the
GUM:2008 .

5.1.3 Summary of the Monte Carlo method for steps 3 and 4

In this subclause, a short summary, taken from the introduction and from 5.9.6 of the
GUM S1:2008, is given in the following to illustrate the Monte Carlo method:

This Supplement to the GUM is concerned with the propagation of probability distributions
through the mathematical model of measurement [GUM:1995, 3.1.6] as a basis for the
evaluation of uncertainty of measurement, and its implementation by a Monte Carlo method.
The treatment applies to a model having any number of input quantities, and a single output
quantity. The described Monte Carlo method is a practical alternative to the GUM uncertainty
framework [GUM:1995, 3.4.8]. It has value when

a) linearization of the model provides an inadequate representation or

b) the probability density function (PDF) for the output quantity departs appreciably from a
Gaussian distribution or a scaled and shifted t-distribution, e.g. due to marked asymmetry
of dominating influence quantities (i.e. those with large uncertainties) or due to a model
function with only very few influence quantities which are, in addition, non-Gaussian
distributed.

The Monte Carlo method can be stated as a step-by-step procedure, see 5.9.6 of the
GUM S1:2008:

a) select the number L of Monte Carlo trials to be made;

b) generate L vectors, by sampling from the assigned PDFs, as realizations of the (set of
i = 1..T) input quantities X,

¢) for each such vector, form the corresponding model value of M = h(X,), yielding L model
values Mi withj =1..L;

d) sort these L model values into increasing order, using the sorted model values to provide
the distribution function for the output quantity Q;

e) calculate the average of M;, ..., M; which is an estimate m of M, and calculate their
standard deviation which is an evaluation of the standard measurement uncertainty u(m)
associated with mi, see 5.4.3 d);
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f) use Q to form an appropriate coverage interval for M, for a stipulated coverage probability
p, see 5.5.3.

514 Which method to use: Analytical or Monte Carlo?

The Monte Carlo method usually delivers better estimates of the result and the uncertainty if
the measurement conditions are modeled properly as no approximation is applied; this is
confirmed by experimental findings [11]. However, the analytical method is easier to apply for
a large number of measurements as they, for example, occur in services performing daily a
large number of similar measurements, and may therefore preferably be applied.

If the model function is linear and the input quantities are limited symmetrically around their
centre value, then the analytical method can be used.

Otherwise, the results of both methods should be given in order to display their difference.
When the 95 % coverage intervals of the Monte Carlo method and of the analytical method do
not deviate by more than 10 %, then the analytical one may be used for the uncertainty
determination in similar cases, i.e. a similar model function and similar or smaller values of
the uncertainty of the input quantities.

5.2 Example of a model function

The basis of any measurement and the first (and probably most important) step of the uncer-
tainty evaluation is the definition of the measurement model. This is a mathematical
relationship between all the influence quantities. However, different evaluators may well have
different knowledge of the process, and different understandings of how the quantities in play
interact and by that state different model functions. This is an image of the scientific reality:
one evaluator is aware of a specific influence quantity and thus includes it in the model
function, while the other is not. As a result, different uncertainties (and maybe even different
measuring results) can be calculated by different evaluators. It is, therefore, important to
explain in detail which input quantities have been taken into account, even when they are
regarded as negligible.

Since different measurement models typically will lead to different uncertainty evaluations,
this is a source of uncertainty, too, often called “model uncertainty" [14], [15]. If different
models appear comparably reasonable to the evaluator, then alternative uncertainty
evaluations should be performed to assess the sensitivity of the results to the modelling
assumptions, and possibly also to quantify the component uncertainty that derives from the
multiplicity of such models.

The model function is in most cases an analytical function, but the GUM S1 method does not
require this: it can also be an algorithm. It is important that the model gives an unambiguous
value of the measurand. To explain the model, an example of a direct reading individual
dosemeter will be considered. The dosemeter’s display indicates the dose directly in units of
the quantity to be measured, for example, in uSv or mSv for the quantity Hp(10).

A proven method to set up the model function is to start from the principle of cause and effect.
The cause — and the aim of the measurement — is the dose M which produces, due to the
absolute response R,,, an indication of M x R,¢, which is increased by the zero indication
Gy. Therefore, the indication of the dosemeter is given by

G = MRabs + GO (2)

where
G is the indicated value, for example, reading of the dosemeter in units of Hp(10);

M is the cause, for example, the personal dose equivalent Hp(10), which shall be
measured;

R is the absolute response;

abs
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Gy is the zero reading.

The aim of the measurement is M, so the model function is

M=1

(G G0) (3)

The inverse of the absolute response R, is given by

T_N_ NK (4)
Rabs  Rrel

where

N is the calibration factor;

R, s the response relative to the response at calibration conditions and, thus, accounts for
the different influence quantities, for example, for energy and angle of radiation
incidence;

K is the corresponding correction factor for deviation from calibration conditions and, thus,

accounts for the different influence quantities, for example, for energy and angle of
radiation incidence.

In order to have symmetrical intervals about the best estimate of the influence quantity, either
R, or K is used depending which one is limited symmetrically to unity in the respective
instrument specific standard, e.g. 1,0 £ 0,4. If none is limited symmetrically, the one with the
interval closer to unity should be used. Exception: If the analytical method is applied K should
be used in case the standard uncertainty exceeds 10 %. The reason is that a linear
approximation of the model function is implicitly used for the analytical method and the
approximation is not good enough for standard uncertainties exceeding 10 %, see 5.1.2 of the
GUM:2008, 7.9 of GUM S1:2008, and [10].

Note 1 When the distribution of R is limited symmetrically and it is relatively wide, e.g. 1,0 + 0,4, the relation
K =11 Rpg is not trivial, i.e. it does not lead to a symmetrical distribution of X and it leads to another (usually not
trivial) probability density function (PDF). For example, a rectangular distribution leads to a hyperbolic one.
However, this is ignored in this report for two reasons: Firstly, for the sake of simplicity. Secondly, instrument
specific standards only lay down limits for the response or correction factor. The transformation of these limits via
K =11/R.g only leads to new limits. Thus, in both cases the principle of maximum entropy (PME) implies a
rectangular distribution.

NOTE 2 For a device accumulating radiation over a long period of time (for example, a personal dosemeter being
worn for several hours up to months), the value of R usually is the mean of all values the input quantity took during
the time of measurement.

Finally, the model function is given by

M:i(G—GO):NK(G—GO). (5)

rel

The model function (5) gives the relation between the measurand (measuring quantity) M,
called output quantity of the evaluation (which is the measured value), and the input quanti-
ties N, R, (Or K,) G and G,

If one or more input quantity is in the nominator of the model function, the results of the
analytical method need to be verified using Monte Carlo methods. This can be done in the
following way: Determine the 95 % coverage intervals resulting from the Monte Carlo method
and from the analytical method: they should not deviate by more than 10 %, see 5.1.4. A
possible fallacy when performing the uncertainty analysis is to perform the analysis with
formula (2) for the indicated value, but this ignores that the aim of the measurement is the
cause M and its associated uncertainty and not the indicated value G.

.
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An alternative method to define a measurement model is of interest in case some of the input
quantities depend on the measurand (i.e. an implicit relation). In such cases the so called
observation formula is a suitable alternative [16].

For routine measurements, often N=R,, =K =1 and G, =0 is assumed resulting in M = G,
which means that no correction at all is considered. However, when the uncertainty
associated with the measurement is discussed, the model function including all corrections
must be considered. Thus, in any measurement, the model function is implicitly included in
the measurement process.

The imperfect knowledge of the true value will be taken into account in such a way that for the
evaluation both the input quantities N, R, K, G, Gy and the output quantity M are being
replaced by random variables. Their possible values are denoted by small letters, for
example, n and r, whereas all quantities are written in capital letters as in formula (5). For
each quantity the possible values are characterized by a distribution, which has an expecta-
tion value (mean value) denoted by the corresponding small letter with a circumflex accent,
for example, 7 and #, and a corresponding standard deviation (standard uncertainty) of the
expectation value, denoted by the letter s and the index given by the mean value, for example,
s; and s. respectively. As seen by formula (5) the output quantity M is linked to the input
quantities N, R, (or K,) G and G, via the model function. Therefore, the distributions of the
possible values of the input quantities lead to a distribution of the possible values of the
output quantity M. This is described by the corresponding expectation value m and its
standard deviation. In analogy to the symbols used for the input quantities this could be given
the symbol s,;, but in all the literature the symbol « is used, so this is followed here. The aim
of the uncertainty analysis according to the GUM and the GUM S1 is the determination of
u(m), this should be read as "u associated with m”. The principle method to determine it is to
vary all the input quantities within their ranges of possible values. This results in a variation of
the possible values m of the output quantity, which is determined by the model function. This
variation determines a distribution of the output values m whose mean value is m and whose
standard deviation is u(m).

m=ril(g—go)="k(g—go) (6)

where
n is a possible value of the calibration factor;

rel 1S @ possible value of the response relative to the response at calibration conditions and,
thus, accounts for the different influence quantities, for example, for the energy and the
angle of radiation incidence;

k is a possible value of the correction factor for deviation from calibration conditions and,
thus, accounts for the different influence quantities, for example, for the energy and the
angle of radiation incidence;

g is a possible value of the indicated value, for example, the reading of the dosemeter in
units of Hp(10);

go is a possible value of the zero reading;

m is a possible value of the measurement result, for example, of the personal dose
equivalent Hp(‘IO), and is calculated from formula (6) with the possible values for n, ...,

gO’
5.3 Collection of data and existing knowledge for the example

5.3.1 General

The second step of the uncertainty analysis is the collection of data and existing knowledge.
This includes both mathematical methods like statistical analysis and other methods like col-
lecting data from data sheets, for example, calibration certificates, or using scientific and ex-
perimental experience. These other methods are the most important new item introduced by
the GUM method and they are most important for realistic uncertainty calculations. This sec-

.
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ond step of the uncertainty analysis depends as well as the first step to a great extent on the
experience and the knowledge of the evaluator. Different evaluators may well assign (or
estimate) different values for the uncertainties of the input quantities and by that calculate
different uncertainties for the output quantity. This is again an image of the scientific reality.
But this should not be interpreted as an uncertainty of the uncertainty; this is due to the
difference in information collected by different evaluators. If the evaluators started with the
same information (and calculated correctly) the uncertainty determined by the evaluators
would be the same.

In particular, the other methods mentioned above can only be reviewed if the uncertainty
analysis is clearly documented. An adequate documentation method, the uncertainty budget,
will be given in 5.4. In the following, these methods will be demonstrated for the mentioned
example of an individual electronic dosemeter with the model function of formula (5).
Therefore, the input quantities N, R, K, G and G, are discussed one after the other in the
following subclauses.

rels

5.3.2 Calibration factor for the example

The individual dosemeter is calibrated at the factory under reference conditions, for example,
Cs-137 radiation, 0° radiation incidence and a dose of 0,3 mSv and a dose rate of 5 mSv h=1.
During the calibration process, the dosemeter is adjusted so that the calibration factor is close
to unity. Therefore, the calibration factor N in formula (5) should only correct for remaining
imperfections in the adjustment process. Such imperfections could be due to the uncertainty
of the field parameters of the calibration facility at the factory — given in the calibration certifi-
cate of that facility — and limits for the adjustment given by the factory procedure, for example,
adjustment until the deviation of the reading from the reference value is less than 10 %.

NOTE The zero reading G, is assumed to be much smaller than the dose of 0,3 mSv used for calibration, so G,
can be neglected when adjusting the dosemeter.

For simplicity the uncertainty of the field parameters of the calibration facility is assumed to
be much less than 10 % and can, therefore, be neglected. The technicians are advised to
adjust until the deviation of the reading from the reference value is less than 10 % and,
furthermore, perform the adjustment as thoroughly as possible. Therefore, no possible value
of n is below 0,9 or above 1,1 and most values are very close to unity. The existing knowledge
about the calibration factor N is given by

0,9<n<1,1 (7)

and by the assumption of a triangular probability density distribution of n, see Figure 1. In this
example, the choice of the triangular probability density distribution is the decision of the
evaluator, other conditions or other evaluators may lead to other distributions.

As shown in 5.3.6, this leads to n»=1,0 and to the standard uncertainty of # of

S; = ot 0,041 for the analytical method. A random number from this distribution is given by

" e

6
n=0,9+0,1x (z4 + zp) with the two independent random numbers z; and z, from the uniform
distribution in the interval 0..1 (needed for the Monte Carlo method).
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Figure 1 — Triangular probability density distribution
of possible values n for the calibration factor N

5.3.3 Zero reading for the example

As mentioned above, the dosemeter indicates the dose directly in units of the quantity to be
measured, thus, a digital display with a resolution of 1 uSv is assumed. During the adjustment
procedure at the factory, the technicians are advised to adjust the zero reading until the dose-
meter indicates 0 pSv. So the zero reading G in formula (5) should only correct for remaining
imperfections in the adjustment process. Due to a resolution of 1 uSv, the adjustment can
only be done within 0,5 uSv, otherwise the indication would be +1 uSv or -1 uSv. Doseme-
ters will normally not display negative values, but this is assumed to be possible for
illustration purposes. The best estimate (mean value) of Gy is g5 =0 uSv. In the range of
+0,5 uSv, each possible value of gy has the same probability, as the indication is always
0 uSv. Consequently, the existing knowledge about the zero reading G is given by

—0,5 uSv < gy < +0,5 uSv (8)

and by the assumption of a rectangular probability distribution of gy, see Figure 2. In this ex-
ample, the choice of the rectangular probability density distribution is the decision of the
evaluator, other conditions or other evaluators may lead to other distributions.

As shown in 5.3.6, this leads to g, =0 uSv and to the standard uncertainty of g, of

- 05usSv | 0,29 uSv for the analytical method. A random number from this distribution is

RNE)
given by g5 = (-0,5 + z4) ySv with the random number z, from the interval 0..1 (needed for the
Monte Carlo method).
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Figure 2 — Rectangular probability density distribution
of possible values g, for the zero reading G

5.3.4 Reading for the example

The reading G is a statistically distributed quantity. When measuring a dose much higher than
the zero reading Gg, a normal distribution of the possible reading values g is adequate and a
relative standard deviation of the readings of 4 % is assumed. This is not much smaller than
the requirement given in IEC 61526:2010 [17]. A best estimate of g =500 uSv (arbitrarily
chosen) leads to a distribution given by g = (500 + 20 x y) uSv with y a draw from the standard
Gaussian distribution, see 5.3.6, and to a standard deviation of sg = 0,04 x 500 uSv = 20 uSv.
This distribution is shown in Figure 3.
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Figure 3 — Gaussian probability density distribution
of possible values g for the reading G

5.3.5 Relative response or correction factor for the example
5.3.5.1 General

The relative response R, requires a more complex discussion. In general, it is composed of
several separate relative responses for different influence quantities, R, being the product of
all these. In case of individual monitoring, these influence quantities are determined by the
workplace conditions, for example radiation energy and direction of radiation incidence,

At el A
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climatic conditions given by temperature and humidity, dose rate, prevailing during dose
measurement. Different levels of consideration of these workplace conditions are possible.

The lowest level is the assumption that the dosemeter is adequate for the workplace. This
means that the values of influence quantities prevailing at the workplace are within the rated
ranges specified in the data sheet of the dosemeter. This level may be adequate for low dose
values far below the dose limit.

An even worse level could be that the workplace conditions are not covered by the rated
ranges, but this will not be considered here.

The highest level of consideration is given when the workplace conditions of a given dose
measurement are considered in detail. The values of the influence quantities are determined
by on site investigations and the corrections valid for these special conditions are applied to
the dose value. The corrections can, for example, be taken from the response values
determined in the course of a type test. This level of consideration may be adequate in case
of an accident or when the dose value is near or above the dose limit.

In the following, two examples (low and high level of consideration of workplace conditions)
are given.

5.3.5.2 Example of low level of consideration of workplace conditions

The workplace conditions are covered by the rated ranges of the influence quantities given in
the relevant standard, for example, IEC 61526:2010, for the dosemeter used. In other words,
the dosemeter was adequately selected for the measurement task, but the actual values of
the influence quantities are not known or not considered during dose evaluation. Because the
combined influence quantity “radiation energy and direction of radiation incidence” is most
important, this example will focus on this influence quantity and neglect all the others. If nec-
essary other influence quantities can be included in analogy to the method given here by
introducing further relative responses or correction factors. If the dosemeter fulfils the
requirements of IEC 61526:2010 the relative response to photon radiation (relative to the
response to reference radiation, for example, Cs-137) is between 0,71 and 1,67 within the
whole rated range. As this range is non-symmetric to unity, a transformation of variables from
the relative response to the correction factor, K = 1/R, is done. This results in a correction
factor between 1,4 and 0,6. Therefore, all possible values k& of the correction factor K are
within this range: 0,6 < k < 1,4. This transformation of variables is done in this case as the
centre value of the resulting variable is closer to the expected value (unity) than the centre
value of the original variable, see 5.2.

The choice of the distribution of £ within the range given above is guided by the following facts
for a measuring period of one day:

a) The person wearing the dosemeter is changing his orientation in the radiation field during
work because of the persons’ movement. Therefore, the mean value of the angle of radia-
tion incidence is estimated to be close to the centre of the interval valid for the angle. In
general, the correction factor has its extreme values for extreme values of the angle of
radiation incidence. Therefore, the mean value for the correction factor is expected to be
close to the centre of the interval valid for k.

b) The workplace fields, given for example, by the spectral distribution of the photons, are
broader than the radiation fields used during the type test. This also causes the correction
factor to be close to the centre of the interval valid for %.

c) The movement of the person also changes the radiation field he is in. This makes the
range of photon energies impinging on the dosemeter even broader, enhancing the
probability of a correction factor close to the centre of the interval valid for £ even more.

All these statements give rise to a distribution that is even more peaked than the triangular
distribution given in 5.3.2. One possible distribution is a normal (Gaussian) distribution where
99,7 % of all possible k values are within the given interval (the interval half-width is 3 x sp).
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Concerning the normal distribution, there are 0,15 % of the possible £ values below the limit
of 0,6 and 0,15 % above the limit of 1,4. This is small enough to be neglected.

The existing knowledge about the correction factor K is given by

06<k<14 (9)

and by a Gaussian probability distribution of & peaked at the centre of the interval. The
Gaussian probability distribution was chosen as responses in workplace conditions are often
quite close to 1,0 [11]. As always, the choice of the (Gaussian) probability density distribution
is the decision of the evaluator, other conditions may lead to other distributions.

This leads to ¥ = 1,0 and to the standard uncertainty of k of sp = % = 0,133. A random

number from the corresponding distribution is given by £ = (1 + 0,133 x y) with y a draw from
the standard Gaussian distribution, see 5.3.6.

5.3.5.3 Example of high level of consideration of workplace conditions

The workplace under consideration is an X-ray testing equipment for aluminium wheel rims for
cars. In the respective energy range, the relative response of the dosemeter (relative to the
response to reference radiation, for example, Cs-137) is low, always below unity. Therefore, it
is assumed that the correction factor is between 1,0 and 1,4. Again, the indicated dose value,
the reading, was 500 uSv after one working day. As this is an unexpected high value, the
measured dose value should be determined considering all knowledge of the workplace.

All possible values k of the correction factor K are within the range: 1,0<k<1,4. The
arguments for the probability distribution of the & values given above are still valid for a
working period of one day and will, therefore, be applied as well.

Therefore, the existing knowledge about the correction factor K for this example is given by

1,0<k<1,4 (10)

and by a Gaussian probability distribution of £ peaked at the centre of that interval. Again, the
Gaussian probability distribution was chosen as responses in workplace conditions are often
quite close to 1,0 [11].

This leads to k£ =1,2 and to the standard uncertainty of k¥ of s; = % =0,067. A random

number from the corresponding distribution is given by £ = (1,2 + 0,067 x y) with y a draw from
the standard Gaussian distribution, see 5.3.6.

The corrected measured value is m = 1,2 x 500 uSv = 600 uSv with an associated uncertainty
smaller than in case of low level consideration of workplace conditions, this is shown in 5.4.

5.3.6 Comparison of probability density distributions for input quantities

For input quantities that were determined as mean value of several measurements the
standard uncertainty is given by the standard deviation of a single measurement divided by
the square root of the number of the measurements — in the GUM called type A evaluation of
uncertainty. To these input quantities usually a t-distribution can be assigned (see 6.4.9.2 and
Table 1 of the GUM S1:2008).

For all the other input quantities the standard uncertainty has to be obtained by other than
statistical methods, i.e. from an assumed probability density function based on the degree of

.
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belief about the value for the input quantity [often called subjective probability] — in the GUM
called type B evaluation of uncertainty. In most cases one of the following probability density
functions can be assumed: a rectangular, triangular or Gaussian distribution with its half-
width, denoted here by the symbol a. Further distributions are given in table 1 of the GUM S1.
For all these probability distributions, the most probable value, the best estimate, is the centre
of the distribution, denoted here by the symbol x. In practice, either the best estimate, x, is
given and the limits a_ and a, of the distribution have to be chosen symmetrical to this best
estimate as a_ =X —a and a, = X + q, or the limits a_ and a, are given, for example, of the cor-
rection factor discussed in 5.3.5, and the best estimate is the mean value

a_+a,

2 (11)

2:

For comparison purposes, the probability distributions mentioned in this Technical Report are
summarized in Figure 4 and the values for the standard uncertainty and the corresponding
method of computation are given in Table 2. Other distributions may also be used, if
appropriate. Further examples are given in 6.4 of the GUM S1:2008.
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Figure 4 — Comparison of different probability density distributions of possible values:
rectangular (broken line), triangular (dotted line) and Gaussian (solid line) distribution

Table 2 — Standard uncertainty and method to compute
the probability density distributions shown in Figure 4

Type of distribution Standard Computation Remark
uncertainty method’
a 100 % of all possible values are within the
Rectangular T x=a_+2az interval from a_ to a, with the centre at X and
3 a half width of a
a 100 % of all possible values are within the
Triangular T x=a_+a(zq +zp) |interval from a_to a, with the centre at x and
6 a half width of a
u 99,7 % of all possible values are within the
Gaussian 4 X=X+ -y interval from a_ to a, with the centre at X and
3 3 a half width of a

Tz z4, and z, denote random numbers out of the interval 0 .. 1 (rectangular distribution);

y denotes a random number from the standard Gaussian distribution.

NOTE Two values of the standard Gaussian distribution can be obtained using two independent draws z; and z,

from the rectangular distribution via y;=,/~2In(z) cos(27z,) and y, =/~ 2In(zy) sin(2z z, ) .
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5.4 Calculation of the result of a measurement and its standard uncertainty
(uncertainty budget)

5.4.1 General

The third step of the uncertainty analysis is the calculation of the result of a measurement and
the associated standard uncertainty according to the model function. This is done using
established mathematical methods and may, therefore, also be performed by software, see
5.1.1.

5.4.2 Analytical method

A

The standard uncertainty, u(m), associated with the output quantity m depends on the stan-
dard uncertainties, s, of the input quantities. For every input quantity, the “amount” of this de-
pendence is denoted by the symbol u(ni) with a subscript indicating the input quantity, for ex-
ample, uy(m), u(m), u,(m) or u,,(m) for the input quantities given in formula (5). This
“amount” is given by the "extent” to which the output quantity is influenced by variations of the
input quantity multiplied by the standard uncertainty of the input quantity. The “extent” is
called “sensitivity coefficient”, denoted by the symbol ¢ with a subscript indicating the input
quantity, for example, ¢, , ¢;, Cg OF Cgq for the input quantities given in formula (5). In
mathematical language, the “extent” is the change of the output quantity, Am, due to a change
of a particular input quantity, for example, An. Their quotient Am/An is the sensitivity
coefficient. Using differential calculus, this is the partial derivative of the model function of the
measurement with respect to the particular input quantity. Thus, the sensitivity coefficients
according to formulas (5) and (6) are:

oM C (8- 8
cn=5_ . =k(g-g0) 12)
N |N=h, K=k, G=¢.Go=0
oM 1 (g—-¢
k=K 3 e
N=i, K=k, G=g,Go=2o
M =ik
- A -
oG N=h, K=k, G=§,Gy=8g
oM ik
Cgo _ aG A = —nk
0lN=h, K=k,G=¢,Gog=80

The contributions of the standard uncertainties of the input quantities to the standard uncer-
tainty associated with the output quantity are then given by:

(13)

NOTE 1 According to the GUM, the values of u, () , uy(n) , ug(m) or ugy(m) are positive, so the absolute values of
the sensitivity coefficients are used in formula (13).

The total standard uncertainty u(m), associated with the output quantity m is given by the
geometrical sum of all these contributions.

() = Ju2 () + 0 () + 2 ) + 2 () (14)
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NOTE 2 Formula (13) is valid for uncorrelated quantities only. Sometimes correlations can be eliminated by a
proper choice of the model function. For correlated input quantities, see 5.2 of the GUM:2008.

The corresponding uncertainty budget is given in 5.4.4.

5.4.3 Monte Carlo method

The probability density function (PDF) for the output quantity M and its standard uncertainty
has to be obtained from the PDFs of the input quantities via the following steps:

a) Select the number L of Monte Carlo trials to be made, at least 1 000 000 (this figure
serves as an example for the following), see also 7.9 in GUM S1:2008 and [10]. The
corresponding figures for this example of 1 000 000 trials are given in the following in
curly brackets {};

b) Generate L vectors, by sampling from the assigned PDFs, as realizations of the (set of
i = 1..4) input quantities X;: (N, K, G, and Gy)Yy ;

c) For each such vector, form the corresponding model value of M = h(X)): mznk(g—go)

which is the transformed model function, see discussion in 5.3.5, yielding L model values
m; with j =1..L;

d) Use the L values m; to form an estimate m=

~|—

L
D> m; =500 pSv of M and the standard
j=1

L
uncertainty u(rh):\/ﬁZ(mj —rh)2 = 73 uSv associated with m.
=

NOTE m will in general not agree with the model evaluated at the best estimates of the input quantities,
since, for a non-linear model i(X), the expectation value of h(X), E[h(X)], is usually not equal to the model
value of the expectation values of the input quantities, A[E(X)] (see 4.1.4 in the GUM:2008). Irrespective of
whether 4 is linear or non-linear, in the limit as L tends to infinity, m approaches E[A4(X)] when it exists.

5.4.4 Uncertainty budgets

The complete uncertainty analysis for a measurement — sometimes called the uncertainty
budget of the measurement — should include a list of all sources of the uncertainty together
with the associated probability density distributions, standard uncertainties and the methods
of evaluating them. For repeated measurements, the number of observations also has to be
stated. For the sake of clarity, it is recommended to present the data relevant for this analysis
in the form of a table. An example of such a table for the above example of a dose
measurement with an electronic dosemeter using the model function of formula (5) is given in
Table 3 for low level of consideration of the workplace conditions and in Table 4 for high level
of consideration of the workplace conditions. Columns 1, 2, 3, and 4 are relevant for the
Monte Carlo method while columns 1, 2, 3, 5, and 6 are relevant for the analytical method.

It can be seen that in case of high level of consideration of the workplace conditions, the best
estimate of the dose is enhanced from 500 uSv to 600 uSv. This is accompanied by a reduc-
tion of the standard uncertainty from 73 puSv to 48 uSv, which is equivalent to a relative stan-
dard uncertainty of 15 % and 8 %, respectively.

It can also be seen, that the results from the analytical and the Monte Carlo method are
equivalent. The reason is that a linear approximation of the model function is valid in the
range of the uncertainties of the input quantities. In this case, it would be sufficient to apply
the analytical method for similar cases.
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Table 3 — Example of an uncertainty budget for a measurement with an
electronic dosemeter using the model function M =N K (G- Gy) and
low level of consideration of the workplace conditions, see 5.3.5.2

Distribution; el . . . .
Quantity B_est Absolute ) mean value, x; Sens!tl_\nty Uncertainty contrlb_utlon to
estimate | standard uncertainty N coefficient output quantity
half-width, «
N 1,0 01 Triangular; 500 pSv 0,041 x 500 pSv = 20,5 uSv
ﬁ = 0,041 x=1,0;a=0,1
K 1,0 04 _ Gaussian; 500 puSv 0,133 x 500 uSv = 66,5 uSv
- ~0.133 x=10;a=04
G 500 uSv [0,04 x 500 puSv = 20 uSv|Gaussian with one 1,0 20 puSv x 1,0 = 20 pSv
reading;
x =500 pSy;
a =60 uSv
G 0 uSv 0,5uSv Rectangular; -1,0 0,29 uSv x |- 1,0| = 0,29 uSv
T By x=0,0 uSy;
a=0,5puSv
M 500 pSv 73 uSv (15 %) (Analytical method)
M 500 pSv 73 uSv (15 %) (Monte Carlo method)

Table 4 — Example of an uncertainty budget for a measurement with an
electronic dosemeter using the model function M =N K (G - Gy) and
high level of consideration of the workplace conditions, see 5.3.5.3

Q . Best Absolute D'St"bm'on;_ Sensitivity | Uncertainty contribution to
uantity . . mean value, x; . .
estimate | standard uncertainty . coefficient output quantity
half-width, a
N 1,0 01 Triangular; 600 uSv 0,041 x 600 puSv = 24,6 puSv
7o o x=1,0,a=01
K 1,2 02 _ Gaussian; 500 uSv 0,067 x 500 uSv = 33,5 uSv
— = 0.067 x=12,a=0,.2
G 500 pSv [0,04 x 500 puSv = 20 pSv|Gaussian with one 1,2 20 uSv x 1,2 = 24 uSv
reading;
x =500 uSy;
a =60 uSv
Gy 0 uSv 0,5 uSv Rectangular; -1,2 0,29 uSv x |- 1,2| = 0,35 uSv
—=— =0,29 uSv x =0,0 uSv;
a=0,5puSv
M 600 pSv 48 uSv (8 %) (Analytical method)
M 600 uSv 48 uSv (8 %) (Monte Carlo method)
5.5 Statement of the measurement result and its expanded uncertainty

5.5.1 General

For Gaussian distributions, the standard uncertainty u(m) defines an interval from m — u(m) to
m + u(m) which covers 68 % of the possible values of the output quantity that could
reasonably be attributed to the measurement. In general, a larger certainty (coverage prob-
ability or level of confidence) is asked for, therefor, typically the 95 % coverage interval is
stated to represent the expanded uncertainty.

For other distributions the percentages mentioned above differ, however, the probability
distribution of output quantities is often quite similar to a Gaussian, see G.2.1 of the
GUM:2008.
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5.5.2 Analytical method

In order to obtain the expanded uncertainty, the standard uncertainty is multiplied by a factor
larger than one. The factor is called 'coverage factor', usually given the symbol £ but to
distinguish it from the correction factor the symbol k.., is used. The expanded uncertainty is
usually given the symbol U (capital letter).

For the case of low level of consideration of the workplace conditions the result is

M =i + U(n) = 500 uSv £146 pSv (keoy = 2) (15a)

and in the case of high level of consideration of the workplace conditions the result is

M =i + U(ni) = 600 uSv + 96 uSV (kgo, = 2) (15b)

NOTE In the example, the increased knowledge leads to a smaller uncertainty. This is not always the case, it is
also possible that an increase of knowledge leads to an enhanced uncertainty, for example, because new influence
quantities were identified which were ignored previously.

To this statement an explanation should be added which in the general case will have the
following content:

The uncertainty stated is the expanded measurement uncertainty obtained by multiplying
the standard uncertainty by a coverage factor kg, =2. It has been determined in
accordance with the Guide to the Expression of Uncertainty in Measurement. The value of
the measurand then normally lies, with a probability of approximately 95 %, within the
attributed coverage interval.

As mentioned in 5.5.1 the 95 % (and accordingly k., = 2) are only valid for Gaussian output
distributions which can, however, mostly be assumed. In case other output distributions have
to be assumed, G.6.4 of the GUM:2008 should be considered.

5.5.3 Monte Carlo method
In order to obtain the expanded uncertainty, the following steps have to be applied:

a) Sort the L model values m; (at least L = 1 000 000 values obtained according to 5.4.3) into
increasing order; use these sorted model values to provide the distribution function for the
output quantity O, see Figure 5 for the distribution function of the example;

NOTE 1 As mentioned in 5.4.3, 1 000 000 values is the minimum number of Monte Carlo trials to be used. In
addition, this figure serves as an example for the following. The corresponding figures for this example of
1 000 000 are given in the following in curly brackets {}.

b) Assemble the values m; into a histogram (with suitable cell widths) to form a frequency
distribution normalized to unit area. This distribution provides an approximation to the PDF
for M, see Figure 6 for the distribution of the example. Calculations are not generally
carried out in terms of this histogram, the resolution of which depends on the choice of cell
widths, but in terms of Q (see Figure 5). The histogram can, however, be useful as an aid

to understanding the nature of the PDF, e.g. the extent of its asymmetry.

c) Use QO to form an appropriate coverage interval [m,,, mpign] for M, for a chosen coverage
probability p, for example p = 0,95 = 95 % by the following: Let ¢ = pL {= 0,95 x 1 000 000
= 950 000}. If g is no integer it should be rounded to an integer. Then (L — ¢) {= 50 000}
95 % coverage intervals [my,, mpigh] exist for M, where my,,, = m; and mpigp = m;,, for any
j=1..(L-¢q) {=1. 50000}. That means (L —¢g) {= 50 000} different coverage intervals
exist. Two of them are of special interest:
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1) The probabilistically symmetric p = 95 % coverage interval is given by taking j = (L —
q) /2 {= (1000 000 — 950 000) / 2 = 25 000} and j+¢ {= (25 000 + 950 000) = 975 000}.
If j or g is no integer it should be rounded to an integer. This Ieads to
m|ow m25 000 — 361 IJSV and mhlgh = WI975 000 ~ 648 USV Ieading to UlO A -
Moy = 139 uSv and Upigp = mpigh — 7 = 148 uSv. Below and above this mterval 2 5 %
of the distribution are located.

2) The shortest p =95 % coverage interval is given by determining ;* such that, for
j=1..(L —g¢q) ={1..50000}, the inequality My = mj*S Mjyg = M; is valid, i.e. the
dlfference Mixyy = Mx is smaller than all the others. This leads For the shortest interval
{0 1110y, = 356 LSV ad mpgy = 642 PSV.

In this case the shortest interval is only 0,3 % shorter than the probabilistically symmetric
one as the PDF is nearly symmetric to its mean value and unimodal, i.e. it has only one
maximum. In case the PDF is non-symmetric, the length of the two coverage intervals can
be significantly different; a corresponding example is given in C.3.4.

For more detailed information, Clause 7 of the GUM S1:2008 may be used as a guide.

1,0 -

—— Distribution function Q
— — Indicated value

0,8-

0,6 -

0,4

Probability ——

0,2

0,0 71t rr 1 r T r T | _ 1T "+ T *r T T 1
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Measured value, pSv ——»
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Figure 5 — Distribution function Q of the measured value
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Figure 6 — Probability density distribution (PDF) of the measured value

For the above example, in the case of low level of consideration of the workplace conditions,
the complete result of the measurement is given by

M= f}high = (500 *11‘::) uSv at p = 95 % (shortest interval) (16a1)
~ Ylow -
_ A +Uhi h — +145 _ 0 radl PR
M=m 9 = (500 ) uSv at p =95 % (probabilistically symmetric interval) (16a2)

~Uiow -138

and in the case of high level of consideration of the workplace conditions, the complete result
of the measurement is given by

M= *%h‘gh = (600 +Zi’) uSv at p =95 % (shortest interval) (16b1)
~ Ylow -

M= Unien = (600 +97) Sv at p =95 % (probabilistically symmetric interval)  (16b2)
U _go! M P o (P y sy

In both cases, the two intervals overlap, thus, these results are consistent.

To this an explanation should be added which in the general case will have the following
content:

The uncertainty stated is the expanded measurement uncertainty with a coverage
probability of p = 95 % obtained from the distribution function of the output quantity. It has
been determined in accordance with Supplement 1 of the Guide to the Expression of
Uncertainty in Measurement. The value of the measurand then normally lies, with a
probability of approximately 95 %, within the attributed coverage interval (shortest or
probabilistically symmetric interval).

NOTE 2 In the last line in brackets either the words “probabilistically symmetric interval” or “shortest interval”
depending on which is the case should be given.

Usually, the shortest coverage interval should be stated because the corresponding range of
possible values is smallest.
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5.5.4 Representation of the output distribution function in a simple form (Monte
Carlo method)

In case the result of an uncertainty analysis using the Monte Carlo method is used as input
quantity for another uncertainty analysis using the Monte Carlo method, the arbitrarily formed
distribution function should be used (an example is given in Figure 5). To represent the
distribution function a simple piecewise linear interpolation as described in Annex D of the
GUM S1:2008 can be used. To sample draws from this distribution function the corresponding
inverse function can be used, see Clause C.2 of the GUM S1:2008.

6 Results below the decision threshold of the measuring device

This clause is applicable for measurements taking into account a gross and a background
indication. According to formula (21) and 5.3.3 of ISO 11929:2010 [18], a determined primary
measurement result, m, for a non-negative and Gaussian distributed measurand is only
significant (assumed to be larger than zero), if m is larger than the decision threshold m*

*=kq_, - u(0). 17)
« is the probability to detect an effect (state a result above zero) although in reality no effect
is present (the true value is zero). For a given error probability « the corresponding quantile of
the standardized normal distribution k4_, is given in Annex E of ISO 11929:2010. In this
report, a value of a =35 % is used resulting in ky g5 = 1,65 (for a =1 % it is kg g9 = 2,32). u(0)
is the standard uncertainty of the measurand for the result zero — to be calculated according
to Clause 5.

For measurands whose probability density distribution cannot assumed to be Gaussian (or
similar), 1ISO 11929 should be considered. However, as mentioned in 5.5.1, a Gaussian (or
similar) distribution can often be assumed.

NOTE 1 According to its scope ISO 11929:2010 is applicable to counting measurements. Therefore, for the
purpose of this report, it is assumed that it can be applied to electronic counting dose(rate) meters, activity
(rate)meters and others. In addition, it is assumed to be applicable to all kinds of measurements where a gross and
a background indication are used to deduce a net indication.

NOTE 2 In the literature «a is also called the “probability of the error of the first kind” or “probability of false
positive decision”.

Formula (17) represents a simple approximation for the case that the probability distribution of
m is Gaussian or quite similar. In case detailed calculations should be carried out
ISO 11929:2010 should be used.

In case the primary measurement result m is smaller than the decision threshold m*, then the
result should be stated as follows:

The result of the measurement cannot be stated because the measured value is below the
decision threshold m* = k,_, - u(0) determined for an error probability of a (« is usually
chosen to be 5 %).

The uncertainty at an indicated value of zero, u(0), has been determined in accordance
with Supplement 1 of the Guide to the Expression of Uncertainty in Measurement. k,_, is
the quantile of the standardized normal distribution.

Only if the measured value exceeded the decision threshold, would the physical effect to
be measured be recognized as detected. If in reality no physical effect is present, then the
measured value is below m* with a probability of 1-a (usually 95 %).

A corresponding example is given in Annex E.
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7 Overview of the annexes

In Annex A and Annex B, examples of uncertainty analysis for an active photon dose rate
meter according to IEC 60846-1:2009 and for a passive dosimetry system according to
IEC 62387:2012 are given. For each of these instruments, two examples are given. In the first
example, it is only assumed that the instrument fulfils the minimum requirements of the
respective standard (low level of consideration of the workplace conditions, see 5.3.5.2). In
the second example, a special measurement situation is considered, where the values of
some the influence quantities are known and the appropriate corrections are applied using the
results of the type test (high level of consideration of the workplace conditions, see 5.3.5.3).

Annex C contains an example of uncertainty analysis for a neutron dose rate meter according
to IEC 61005:2003. This example clearly demonstrates the benefits of the Monte Carlo
method in the case of a non-linear model function and standard uncertainties well beyond
10 % for those influence quantities in the nominator of the model function. In addition, the
advantage of the shortest coverage interval compared to the probabilistically symmetric
coverage interval is demonstrated in this example.

Annex D contains an example of uncertainty analysis for a radon activity monitor according to
the IEC 61577 series. In this example, interim results are calculated and used in subsequent
uncertainty analysis to obtain the final result and its corresponding uncertainty. In this
example, the results of both the analytical and the Monte Carlo method are equivalent.

Annex E contains an example of uncertainty analysis for a measurement of the surface
emission rate with a contamination meter according to IEC 60325:2002. In this example, the
measurement result lies below the corresponding decision threshold and is, therefore, stated
to be zero (according to Clause 6).

For the sake of readability, the data given in the Annexes are rounded to a reasonable
number of digits. Therefore, some data seem to be inconsistent although they are not in
reality.

In all Annexes the shortest coverage interval is given.
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Annex A
(informative)

Example of an uncertainty analysis for a measurement with an electronic
ambient dose equivalent rate meter according to IEC 60846-1:2009

A.1 General

IEC 60846-1:2009 has the title Radiation protection instrumentation — Ambient and/or
directional dose equivalent(rate) meters and/or monitors for beta, X and gamma radiation —
Part 1: Portable workplace and environmental meters and monitors [19].

For this example, a portable dose equivalent rate meter for the ambient dose equivalent rate
H *(10) for photon radiation with a logarithmic analogue display of three orders of magnitude
is chosen. The lowest range covers 0,1 uSv h=1to 100 uSv h=', so the measuring range starts
according to |IEC 60846-1:2009, 5.4 at 10 % deflection, which is equivalent to
Hy=0,1pSvh1x1003~0,2uSv h=1. This and some arbitrary assumptions lead to the
following measuring range and rated ranges of use for influence quantities:

Measuring range: 0,2 uSv h-'< F*(10) <1 Sv h-1
Rated ranges of use:
Photon energy: 50 keV < Epp < 1,5 MeV
Angle of incidence: 0° < p<45°
Power, pressure, geotropism: minimum rate ranges, see |IEC 60846-1:2009,
Table 7.
Temperature, humidity: minimum rate ranges for outdoor use, see
IEC 60846-1:2009, Table 7.
Electromagnetic compatibility (EMC): minimum rate ranges, see IEC 60846-1:2009,
Table 8.
Mechanical disturbances: minimum rate ranges, see IEC 60846-1:2009,
Table 9.

A.2 Model function

According to 5.2, multiplicative influence quantities limited symmetrically in terms of relative
response are below the line and those limited symmetrically in terms of correction factor are
above the line. As the standard uncertainty of no influence quantity below the line exceeds
10 % the resulting model function can be used for both the analytical and the Monte Carlo
method:

NOKn KE,(pKtempKhuprresstow %
Rgeo;rel (A- 1 )

[G — Dzero — Demc,1 — Pemc,2 — Demc,3 — Pemc,4 — Demc,5 = Picr — Ddrop]

H*(10)=

where

H*(10) is the measuring quantity ambient dose equivalent rate (measured value);
Ng is the reference calibration factor;

K, is the correction factor for non-linearity;

K, is the correction factor for photon energy and angle of incidence;

Kiemp is the correction factor for ambient temperature;
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Knum is the correction factor for relative humidity;

Koress is the correction factor for atmospheric pressure;

Kpow is the correction factor for power supplies;

Ryeorel is the relative response for orientation of the analogue instrument (geotropism)
(includes analogue scale resolution and reading parallax);

G is the indicated value, reading of the dosemeter in units of A *(10);
(includes coefficient of variation);

D,ero is the deviation due to zero drift;

Demc 1 is the deviation due to EMC by electrostatic discharge;

Demc 2 is the deviation due to EMC by radiated electromagnetic fields;

Demc,3 is the deviation due to EMC by radiated electromagnetic fields (mobile phones
and WLAN);

Demc 4 is the deviation due to EMC by conducted disturbances (radiofrequencies);

Demc s is the deviation due to magnetic field (50 Hz/60 Hz);

Diicr is the deviation due to microphonics;

Dgrop is the deviation due to drop on surface.

NOTE In IEC 60846-1:2009, the deviation is called additional indication.

A.3 Calculation of the complete result of the measurement (measured value,
probability density distribution, associated standard uncertainty, and the
coverage interval)

A.3.1 General

IEC 60846-1 gives maximum permissible values for the relative response, which is the inverse
of the correction factor. Almost all the influence quantities have non-symmetrical limits for the
relative response leading to symmetrical limits for the correction factor.

For the combined influence quantity "radiation energy and direction of radiation incidence”,
these non-symmetrical limits for the relative response are 0,71 and 1,67 leading to respective
limits of the correction factor of 0,6 and 1,4 (1,0 £ 40 %). In 5.3.5.2 a Gaussian distribution of
the correction factor for the combined influence quantity ‘radiation energy and direction of
radiation incidence’ is assumed. Only one of the arguments given there is valid for
measurements of the ambient dose equivalent rate treated here, the argument b), saying that
“The workplace fields, given for example, by the spectral distribution of the photons, are
broader than the test fields used during the type test.”. There is a new argument that a port-
able instrument is turned until the maximum indication is given. Both arguments cause the
correction factor to come closer to the centre of the interval, so a triangular distribution is
adequate, because only two arguments are given. According to 5.3.6, a triangular distribution
with an interval half-width of 0,4 leads to the following distribution: £ = (0,6 + 0,4 x (z4+z5))
with the two independent random numbers z4 and z, from the interval 0..1, see Table 2.

For the relative response due to orientation of the analogue instrument (geotropism) it is
assumed that it includes the effects of analogue scale resolution and reading parallax. A limit
of £2 % of the full scale of maximum angular deflection is given for this. The meaning is
different for linear and logarithmic scales. For a linear scale of 0 uSv h=1 to 100 uSv h-1 this
is equivalent to a constant deviation of + 2 uSv h=1. For a logarithmic scale, this gives a
constant value for the change in relative response. If this scale covers three orders of
magnitude, then a factor of ten (=10') is equivalent to 33 % of the maximum angular
deflection and 2 % of the maximum angular deflection is equivalent to a factor of 102/33 = 1,15
or 15 % change in relative response. A Gaussian distribution is assumed, as three influence
quantities are included, namely, the geotropism, the analogue scale resolution and the
reading parallax. As the relative response is limited symmetrically and the resulting standard
uncertainty is smaller than 10 % (see below) the corresponding distribution is directly used

.
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without any transformation to the correction factor. According to 5.3.6, a Gaussian distribution
with an interval half-width of 0,15 leads to the following distribution: » = (1,0 + 0,05 x y) with y
a draw from the standard Gaussian distribution, see Table 2.

A triangular distribution is assumed for the correction factor for intrinsic error, as it consists of
two different components, the calibration factor and the non-linearity.

For all other multiplicative influence quantities, a rectangular distribution is used.

For the deviation D, it is assumed that the best estimate is 0 uSv h=1 and the interval half-
width is 0,25 x Hy = 0,05 pSv h=". For the deviations Dgyc 4 to Dgpc 5, Ppicr @Nd Dgrp it is
assumed that the best estimate is also 0 uSv h=1 and the interval half-width is given by the
maximum permitted deviation and that the interval of possible values is symmetrical including
negative deviations. For all these additive input quantities, a rectangular distribution is
assumed.

A.3.2 Low level of consideration of measuring conditions

For low level of consideration of measuring conditions, it is only assumed, that the rated
ranges of the instrument given above in Clause A.1 totally cover the corresponding values of
the radiation field to be measured. These assumptions lead to a correction factor of the
indication and to the associated uncertainty valid for these unspecified measuring conditions.
Both values can be provided by the manufacturer from the results of the type test. A better
specification of the measuring conditions will generally lead to a different value of the
correction factor and to a smaller uncertainty.

In Table A.1, the complete uncertainty budget for an indicated value of g =7,5uSv h1 is
given. The analogue indication has a logarithmic scale from 0,1 uSv h=1 to 100 uSv h-1, see
Clause A.1. For an indication of 7,5 uSv h=! the limit of the statistical fluctuation (see
IEC 60846-1:2009, Table 6) is given by 5 % (for a lower limit of the measuring range of

Hy = 0,2 uSv h=1).
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Table A.1 — Example of an uncertainty budget for a dose rate measurement
according to IEC 60846-1:2009 with an instrument having a logarithmic scale and
low level of consideration of the measuring conditions, see text for details

Distribution; . Uncertainty
. Best Absolute . Sensitivity R .
Quantity . . mean value, x; .. contribution to
estimate standard uncertainty . coefficient .
half-width, a output quantity
N, 1,00 _ Triangular; 7,5 uSv h-1 0,15 uSv h-1
0 = ,
005/\6 = 0,020 4 oo s
K 1,00 - Triangular; 7,5 uSv h-1 0,55 uSv h-1
n 018/Y6 =0,073 5 x=1,0;a=0,18
Ke.o 1,00 0.40/J6 =0,163 Triangular; 7,5 uSv h-1 1,20 uSv h-1
’ ’ x=1,0;a=04
Kiemp 1,00 0.15/3 =0,0866 _Rectangular, | 7,5uSvht | 0,65 uSvh
Kium 1,00 0‘10/‘/5 =0,0577 I'\:e1ctg_ngu_laor;1 7,5 uSv h-1 0,43 uSv h-1
x=1,0;a=0,
Koress 1,00 010/43 =0,0577 Rectangular; | 7.5 uSvn-t | 043 pSvh™
. _ -1
Kpow 1,00 0,05/43 =0,0289 } Sicga}nagglgrbs 7,5uSvh-1 | 0,22pSvh
Ryeorrel 1,00 0,15/3 = 0,05 i ;ia;s:i:né .5 -7,5 uSv h-1 0,38 uSv h-1
G 7,5 uSv h-1| 0,05 x 7,5 uSv h-1 = 0,375 uSv h-' | Gaussian with one 1,0 0,38 uSv h-!
reading;
x=7,5uSv h-1;
a=1,125 uSv h-1
D,ero 0 puSv h-1 005 pSvh~'/y3 =0,0289 uSv h-1 Rectangular; -1,0 0,029 pSv h-1
x =0,0 uSv h-1;
a = 0,05 uSv h-1
Deycs | 0pSvht [ 07x02pSvh™"/y3 =0,081 uSvh-' |  Rectangular; -1,0 0,081 pSv h-1
' x =0,0 uSv h-1;
a=0,14 pSv h-1
Deycz | OnSvh-1 | 07x02 pSvh1/43 =0,081 uSv h-1 Rectangular; -1,0 0,081 uSv h-1
x =0,0 uSv h-1;
a=0,14 pSv h-1
Deycs | OuSvh-1 | 07x02puSvh™'/{3 =0,081 uSvh='| Rectangular; -1,0 0,081 uSv h-1
x =0,0 uSv h-1;
a=0,14 pSv h-1
Deyca | OnSvh-1 | 07x02 pSvh1/y3 =0,081 uSv h-1 Rectangular; -1,0 0,081 uSv h-1
x =0,0 uSv h-1;
a=0,14 pSv h-1
Deycs | OuSvh-1 | 07x02uSvh™/y3 =0,081 uSvh-'| Rectangular; -1,0 0,081 uSv h-1
x =0,0 uSv h-1;
a=0,14 pSv h-1
D ior 0 pSv h-1 | 0,7x0,2 pSvh1/43 =0,081 uSv h-1 Rectangular; -1,0 0,081 uSv h-1
x =0,0 uSv h-1;
a=0,14 pSv h-1
Dgrop | OmuSvh-1 | 07x02pSvh™'/y3 =0,081 uSv h~' | Rectangular; -1,0 0,081 uSv h-1
x =0,0 uSv h-1;
a=0,14 pSv h-1
H*(10) |7,50 pSv h-1 1,73 uSv h-1 (23 %) (Analytical method)
H*(10) |7,52 uSv h-1 1,75 uSv h-1 (23 %) (Monte Carlo method)

The complete result of the measurement of the ambient dose equivalent rate for photon
radiation according to Table A.1 is:

At el A
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+35

H*(10) =(7.5 "

) uSv h=1 (Analytical method) (A.2)

H*(10) = (7,5 £ 3,5) uSv h=1 (Monte Carlo method) (A.3)

The two results differ by less than 10 %, therefore, the result of the analytical method can be
used and the corresponding statement is:

The uncertainty stated is the expanded measurement uncertainty obtained by multiplying
the standard uncertainty by a coverage factor k., =2. It has been determined in
accordance with the “Guide to the Expression of Uncertainty in Measurement”. The value
of the measurand normally lies, with a probability of approximately 95 %, within the

attributed coverage interval.

Using the actual results of the type test and the actual measuring conditions both, the correc-
tion factor and the uncertainty can be determined for the actual measurement. In general, this
will lead to a much smaller uncertainty. This is shown in the next subclause.

A.3.3 High level of consideration of measuring conditions

For high level of consideration of measuring conditions, it is assumed that the task was to
measure the radiation of a Co-60 source behind a shield inside a building. So the energy was
in the range from 300 keV to 1,3 MeV and the angle of incidence varies from 0° for direct
ration to 45° for the stray radiation. With the results of the type test, this leads to a correction
factor Kg, of 0,92 to 1,08, again with the assumption of a triangular distribution. The tem-
perature was 10 °C + 1 °C leading to a correction factor of Ko, = 1,03 + 0,01. The relative
humidity was 80 % + 10 % leading to a correction factor of K, = 0,99 + 0,005. Power sup-
plies were fresh batteries and the atmospheric pressure has no influence on the measure-
ment, as the detector is a GM-tube, so both correction factors K, and K¢ss Were unity and
the respective standard uncertainties can be neglected. For the geotropism (and included
analogue scale resolution and reading parallax) the value from the type test is 1 % of
maximum angular deflection, which is equivalent to a factor of 101/33 = 1,07 or 7 % change in
relative response, leading to the interval 1,0 £ 0,07, see above. The zero reading D,,,, Was
as before, see A.3.2. In that building, electromagnetic compatibility (EMC) effects can be
neglected and as the instrument is carried carefully by hand, the effects of vibration and
shock can also be neglected.

In Table A.2, the complete uncertainty budget for an indicated value of g =7,5uSv h-1 is
given. For that indicated value, the type test result shows a correction factor for non-linearity
of 0,96 £ 0,01 and the calibration (and adjustment) certificate gives a respective correction
factor of 1,00 + 0,04. The statistical fluctuation for that indicated value can be interpolated
from the type test result to be 4,5 %.

The above considerations lead to a special correction factor of the indication of 0,98 to get the
best estimate of the dose rate and give the special uncertainty for that measurement. Both
values can only be determined by the user of the instrument. Required for this determination
is the knowledge of the special measuring conditions and the results of the type test.
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Table A.2 — Example of an uncertainty budget for a dose rate measurement
according to IEC 60846-1:2009 with an instrument having a logarithmic scale and
high level of consideration of the measuring conditions, see text for details

. Best Absolute Dlstrlbutlon;. Sensitivity | Uncertainty contribution
Quantity . . mean value, x; L !
estimate standard uncertainty . coefficient to output quantity
half-width, a
Ny 1,00 - Triangular; 7,3 uSv h-1 0,12 puSv h-1
0’04/\/6 0,016 x=1,0;a=0,04
K 0,96 _ Triangular; 7,6 uSv h-1 0,031 pSv h-1
! 0’01/‘/6 0,004 x =0,96; a = 0,001
Kg, 1,00 - Triangular; 7,3 uSv h-1 0,24 pSv h-1
¢ 0,08/v6 =0,033 e s
K 1,03 - Rectangular; 7,1 uSv h-1 0,041 pSv h-1
omp 0,01/4/3 = 0,008 x=1,03; a = 0,01
Khum 0,99 - Rectangular; 7,4 uSv h-1 0,21 pSv h-1
0’005/‘/5 0,003 x =0,99; a = 0,005
Kopress 1,00 0 Rectangular; 7,3 pSv h-1 0 pSv h-1
x=1,0;a=0,0
Kpow 1,00 0 Rectangular; 7,3 uSv h-1 0 pSv h-1
x=1,0;,a=0,0
Rgeo:rel 1,00 0,07/3 = 0,023 Gaussian; -7,3 pSv h-1 0,17 pSv h-1
x=1,0;a=0,07
G 7,5 uSvh-1| 0,045 x 7,5 uSv h-1 = Gaussian with one 0,98 0,33 uSv h-1
0,3375 pSv h-1 reading;
x=7,5uSv h-1;
a=1,0125 pSv h-1
Dyero | O pSv h-1 005usvh~'/y3 = Rectangular; -0,98 0,028 uSv h-1
0,029 uSv h-1 x=0,0 pSv h-1;
a=0,05 uSv h-1
Depc 0 uSv h-1 0 uSv h-1 Rectangular; -0,98 0 uSv h-1
x =0,0 uSv h-1;
a =0,0 uSv h-1
Denc 2 0 uSv h-1 0 uSv h-1 Rectangular; -0,98 0 uSv h-1
x =0,0 uSv h-1;
a =0,0 uSv h-1
Denc s 0 uSv h-1 0 uSv h-1 Rectangular; -0,98 0 uSv h-1
x =0,0 uSv h-1;
a =0,0 uSv h-1
Dgmca | O pSv h! 0 uSv h-1 Rectangular; -0,98 0 uSv h-1
x =0,0 uSv h-1;
a =0,0 uSv h-1
Dgmcs | O puSv h! 0 uSv h-1 Rectangular; -0,98 0 uSv h-1
x =0,0 uSv h-1;
a =0,0 uSv h-1
Dicr 0 uSv h-1 0 uSv h-1 Rectangular; -0,98 0 uSv h-1
x =0,0 uSv h-1;
a =0,0 uSv h-1
Dyrop 0 uSv h-1 0 uSv h-1 Rectangular; -0,98 0 uSv h-1
x =0,0 uSv h-1;
a =0,0 uSv h-1
H*(10) |7,34 uSv h-1| 0,46 uSv h-' (6,3 %) (Analytical method)
H*(10) |7,35 puSv h-1| 0,47 uSv h-1 (6,3 %) (Monte Carlo method)

The complete result of the measurement of the ambient dose equivalent rate for photon
radiation according to Table A.2 is:
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H*(10) = (7,35 _*g’zg) uSv h-1 (Analytical method) (A.4)
H*(10) = (7,34 +0,92) uSv h=1 (Monte Carlo method) (A.5)

The two results differ by less than 10 %, therefore, the result of the analytical method can be
used and the corresponding statement is:

The uncertainty stated is the expanded measurement uncertainty obtained by multiplying
the standard uncertainty by a coverage factor k., =2. It has been determined in
accordance with the Guide to the Expression of Uncertainty in Measurement. The value of
the measurand normally lies, with a probability of approximately 95 %, within the attributed
coverage interval.

The two intervals given by formulas (A.2) and (A.4) overlap, thus, the results are consistent.
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Annex B
(informative)

Example of an uncertainty analysis for a measurement with
a passive integrating dosimetry system according to IEC 62387:2012

B.1 General

IEC 62387:2012 has the title Passive integrating dosimetry systems for personal and
environmental monitoring of photon and beta radiation [20].

For this example, a dosimetry system for the personal dose equivalent Hp(10) for photon
radiation is chosen and the following measuring range and rated ranges of influence
quantities:

Measuring range: 0,1 mSv < Hp(10) <1 Sv
Rated ranges of use:
Photon energy: 65 keV < Epp < 1,25 MeV
Angle of incidence: 0° < p<60°

The dosimetry systems uses only one detector. Therefore, the indicated value is additive.

Temperature, light, time: minimum rate ranges for outdoor use
(-10°C to +40°C), see IEC 62387:2012,
Table 13.

Electromagnetic compatibility (EMC): minimum rate ranges, see IEC 62387:2012,
Table 14.

Mechanical disturbances: minimum rate ranges, see IEC 62387:2012,
Table 15.

B.2 Model function

According to 5.2, multiplicative influence quantities limited symmetrically in terms of relative
response are below the line and those limited symmetrically in terms of correction factor are
above the line. Thus, the model function used for the example is:

Hp (1 0) = NO Kn KE,(p Kadd KtempKlighthusztabKtempRKlightRKpow X

[G —Demc,1—DPemc,2 —Pemc,3 —Pemc 4 — Demc,s — Demc,e —Demc,7 _Ddrop] (B-1)
where
Hp(10) is the measuring quantity personal dose equivalent (measured value);
Ny is the reference calibration factor;
K, is the correction factor for non-linearity;
Kg is the correction factor for photon energy and angle of incidence;
Kadd is the correction factor for additivity;
Kiemp is the correction factor for ambient temperature and relative humidity of the
dosemeter;
Kjight is the correction factor for light exposure of the dosemeter;
Kpup is the correction factor for dose build-up, fading, self-irradiation and response to

natural radiation of the dosemeter;

Kgtab is the correction factor for reader instability;
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KiempR is the correction factor for ambient temperature of the reader;
Kjightr is the correction factor for light exposure of the reader;

Kpow is the correction factor for power supplies of the reader;

G is the indicated value, reading of the dosemeter in units of Hp(‘IO);
Demc 1 is the deviation due to electrostatic discharge;

Dgpmc 2 is the deviation due to conducted disturbances (fast transients);
Deme.3 is the deviation due to conducted disturbances (surges);

Demc 4 is the deviation due to conducted disturbances (radiofrequencies);
Demc s is the deviation due to magnetic field (50 Hz/60 Hz);

Demc s is the deviation due to conducted disturbances (voltage dips and interruptions);
Deme,7 is the deviation due to EM by radiated electromagnetic fields;
Dyrop is the deviation due to drop on surface.

B.3 Calculation of the complete result of the measurement (measured value,
probability density distribution, associated standard uncertainty, and the
coverage interval)

B.3.1 General

IEC 62387:2012 gives no type test requirements for the reference calibration factor because
this cannot be tested in a type test. A dosimetry system is usually used in a dosimetry service
with a high precision calibration facility. Therefore, limits of £5 % with a triangular distribution
are assumed.

IEC 62387:2012 gives maximum permissible values for the relative response, which is the
inverse of the correction factor. For all influence quantities, these maximum permissible
values are non-symmetrical to give symmetrical limits for the correction factor.

For the deviations Dgyc; and Dy, it is assumed, that the best estimate is 0 uSv and the
interval of possible values is symmetrical including negative deviations. For all these input
quantities, a Gaussian distribution is assumed.

B.3.2 Low level of consideration of workplace conditions

For low level of consideration of workplace conditions, it is only assumed that the rated
ranges of the instrument given above in Clause B.1 totally cover the radiation field to be
measured and the values of the influence quantities. These assumptions lead to a correction
factor of the indication and to the associated uncertainty valid for these unspecified
measuring conditions. Both values can be provided by the manufacturer from the results of
the type test. A better specification of the measuring conditions will generally lead to a
different value of the correction factor and to a smaller uncertainty.

In Table B.1, the complete uncertainty budget for an indicated value of g = 10 mSv is given.
As the model function is linear and the input quantities are limited symmetrically around their
centre value, only the result from the analytical method is given, see 5.1.4.
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Table B.1 — Example of an uncertainty budget for a photon dose measurement
with a passive dosimetry system according to IEC 62387-1:2007 and low level
of consideration of the workplace conditions, see text for details

Distribution; P Uncertainty
Quantity Best Absolute mean value, x; Sensitivity contribution to output
estimate standard uncertainty . T coefficient .
half-width, a quantity
N, 1,00 _ Triangular; 10 mSv 0,20 mSv
0 ) = ; ,
005/46 = 0,020 4 x=1,0;a= 005
K, 1,00 0’10/‘/5 = 0,057 7 Rectangular; 10 mSv 0,58 mSv
x=1,0;a=0,1
Kg 1,00 0,40/3 = 0,133 Gaussian; 10 mSv 1,33 mSv
x=1,0;,a=04
Kadd 1,00 0 Rectangular; 10 mSv 0,0 mSv
x=1,0;4=0,0
Ktemp 1,00 0,20/3 = 0,066 7 Gaussian; 10 mSv 0,67 mSv
x=1,0;a=0,20
KIight 1,00 0,1/3=0,033 3 Gaussian; 10 mSv 0,33 mSv
x=1,0;a=0,10
K., 1,00 0,1/3=0,0333 Gaussian; 10 mSv 0,33 mSv
P
x=1,0;a=0,10
Ksiab 1,00 0,1/3 =0,033 3 Gaussian; 10 mSv 0,33 mSv
x=1,0;a4=0,10
KtempR 1,00 0,1/3=0,0333 Gaussian; 10 mSv 0,33 mSv
x=1,0;a=0,10
KIightR 1,00 0,1/3 =0,033 3 Gaussian; 10 mSv 0,33 mSv
x=1,0;a=0,10
Kpow 1,00 0,1/3 =0,033 3 Gaussian; 10 mSv 0,33 mSv
x=1,0;a=0,10
G 10 mSv 0,05 x 10 mSv = 0,50 mSv | Gaussian with one 1,00 0,50 mSv
reading;
x =10,0 mSy;
a=1,50 mSv
Dy 4 0 mSv 0,7 x 0,1 mSv/3 = Gaussian; -1,00 0,023 mSv
0,023 3 mSv x = 0,0 mSy;
a = 0,07 mSv
Depe.2 0 mSv 0,7 x 0,1 mSv/3 = Gaussian; -1,00 0,023 mSv
0,023 3 mSv x =0,0 mSy;
a =0,07 mSv
Deyvc 3 0 mSv 0,7 x 0,1 mSv/3 = Gaussian; -1,00 0,023 mSv
' 0,023 3 mSv x =0,0 mSy;
a =0,07 mSv
DEMC,4 0 mSv 0,7 x 0,1 mSv/3 = Gaussian; -1,00 0,023 mSv
0,023 3 mSv x =0,0 mSy;
a = 0,07 mSv
Devc.s 0 mSv 0,7 x 0,1 mSv/3 = Gaussian; -1,00 0,023 mSv
0,023 3 mSv x =0,0 mSy;
a = 0,07 mSv
Devc.s 0 mSv 0,7 x 0,1 mSv/3 = Gaussian; -1,00 0,023 mSv
0,023 3 mSv x =0,0 mSy;
a = 0,07 mSv
Deye 7 0 mSv 0,7 x 0,1 mSv/3 = Gaussian; -1,00 0,023 mSv
0,023 3 mSv x =0,0 mSy;
a = 0,07 mSv
Ddrop 0 mSv 0,7 x 0,1 mSv/3 = Gaussian; -1,00 0,023 mSv
0,023 3 mSv x =0,0 mSy;
a =0,07 mSv
10,0 mSv 1,9 mSv (19 %) (Analytical method)

H,(10)
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The complete result of the measurement of the personal dose equivalent for photon radiation
according to Table B.1 is:

H,(10) = (10,0 + 3,8) mSv (B.2)

The uncertainty stated is the expanded measurement uncertainty obtained by multiplying
the standard uncertainty by a coverage factor k., =2. It has been determined in
accordance with the Guide to the Expression of Uncertainty in Measurement. The value of
the measurand normally lies, with a probability of approximately 95 %, within the attributed
coverage interval.

B.3.3 High level of consideration of workplace conditions

For a high level of consideration of workplace conditions, it is assumed that the workplace
was in a test facility for X-ray tubes with operating voltages between 100 kV and 200 kV
resulting in mean photon energies between 70 keV and 150 keV. Considering the variation of
the spectrum and the different angles of radiation incidence at this real workplace, the limits
of K , are assumed as 1,02 and 1,14, leading to Kg,= 1,08 £ 0,06. Again the assumption of
a Gaussian distribution is justified, see above.

The temperature was 22 °C £ 6 °C leading to a correction factor of Kign,, = 1,02 £ 0,04. All
other correction factors are assumed to be 1,0 + 0,0. As the type test showed no effect due to
EMC and mechanical influences, Dgyc; and Dp,ocn are assumed to be zero as well as their
uncertainties. ’

In Table B.2, the complete uncertainty budget for an indicated value of g = 10 mSv is given.
For that indicated value the type test result shows a correction factor for non-linearity of
K,=0,97 £0,05. The measured statistical fluctuation for that indicated value can be
interpolated from the type test result to be 2,5 %.

As the model function is linear and the input quantities are limited symmetrically around their
centre value, only the result from the analytical method is given, see 5.1.4.
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Table B.2 — Example of an uncertainty budget for a photon dose measurement
with a passive dosimetry system according to IEC 62387-1:2007 and high level
of consideration of the measuring conditions, see text for details

Best Absolute Distribution; Sensitivity Uncertainty
Quantity . . mean value, x; .. contribution to
estimate standard uncertainty half-width. a coefficient output quantity
Ng 1,00 - Triangular; 11 mSv 0,22 mSv
005/46 = 0,020 4 x=1,0;a=005
K 0,97 = Rectangular; 11 mSv 0,32 mSv
n 005/4/3 =0,028 9 ce 0o 08
Kz, 1,08 0,06/3 = 0,020 Gaussian; 9,9 mSv 0,20 mSyv
x=1,08;4=0,06
Kiemp 1,02 - Rectangular; 10 mSv 0,24 mSv
0’04/J§ 0,023 1 x=1,02; a =0,04
Kiight 1,00 0 Gaussian; 11 mSyv 0 mSv
x=1,0;,a=0,0
Kbup 1,00 0 Gaussian; 11 mSv 0 mSv
x=1,0;a=0,0
Kstab 1,00 0 Gaussian; 11 mSyv 0 mSv
x=1,0;a=0,0
KiempR 1,00 0 G1al(1)ssian6 0 11 mSv 0 mSv
x=10;a=0,
Kiightr 1,00 0 Gaussian; 11 mSv 0 mSv
x=1,0;a=0,0
Kopow 1,00 0 Gaussian; 11 mSyv 0 mSv
x=1,0;,a=0,0
G 10 mSv 0,025 x 10 mSv = Gaussian with one reading; 1,1 0,27 mSv
0,25 mSv x=10,0 mSv; @ = 0,75 mSv
Demc 1 0 mSv 0 mSv Gaussian; -1,1 0 mSv
x=0,0mSv; a =0,0 mSv
Deme 2 0 mSv 0 mSv Gaussian; -1.1 0 mSv
x=0,0;a=0,0
Demc 3 0 mSv 0 mSv Gaussian; -1.1 0 mSv
x=0,0;a=0,0
Degmc 4 0 mSv 0 mSv Gaussian; -1,1 0 mSv
x=0,0;,a=0,0
Deme 5 0 mSv 0 mSv Gaussian; -1,1 0 mSv
x=0,0;,a=0,0
Demc 6 0 mSv 0 mSv Gaussian; -1.1 0 mSv
x=0,0;,a=0,0
Demc 7 0 mSv 0 mSv Gaussian; -1,1 0 mSv
x=0,0;a=0,0
Dyrop 0 mSv 0 mSv Gaussian; -1,1 0 mSv
x=0,0 mSv; a = 0,0 mSv
H(10) 10,69 mSv 0,56 mSv (5,3 %) (Analytical method)

The above considerations lead to a special correction factor of the indication of 1,069 to get
the best estimate of the dose and give the special uncertainty for that measurement. Both
values can only be determined by the user of the instrument. Required for this determination
is the knowledge of the special measuring conditions or workplace conditions and the results
of the type test.

The complete result of the measurement of the personal dose equivalent for photon radiation
according to Table B.2 is:

H,(10) = (10,7 £1,1) mSv (B.3)

At el A
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The uncertainty stated is the expanded measurement uncertainty obtained by multiplying
the standard uncertainty by a coverage factor k., =2. It has been determined in
accordance with the Guide to the Expression of Uncertainty in Measurement. The value of
the measurand normally lies, with a probability of approximately 95 %, within the attributed
coverage interval.

The two intervals given by formulas (B.2) and (B.3) overlap, thus, the results are consistent.

At el A




A Anuriaht

- 46 - IEC TR 62461:2015 © IEC 2015

Annex C
(informative)

Example of an uncertainty analysis for a measurement
with an electronic direct reading neutron ambient dose
equivalent meter according to IEC 61005:2003

C.1 General

IEC 61005:2003 has the title Radiation protection instrumentation — Neutron ambient dose
equivalent (rate) meters [21].

For the example, an electronic dosemeter with digital display for the ambient dose equivalent
rate H *(10) for neutron radiation is chosen, which has the following measuring range and
rated ranges of use for influence quantities:

Measuring range: 10 uSv < H*(10) <1 Sv
Rated ranges of use:
Neutron energy: 0,025 eV < E, <15 MeV
Angle of incidence: 0° < p<60°
Power, temperature, humidity, pressure:  minimum rate ranges, see IEC 61005:2003,
Table 3.
Electromagnetic compatibility (EMC): frnir;ilmlim rate ranges, see IEC 61005:2003,
able 4.

C.2 Model function

According to 5.2, multiplicative influence quantities limited symmetrically in terms of relative
response (which is the case for all influence quantities in IEC 61005:2003, even the ones due
to electromagnetic disturbances) are below the line. Thus, the resulting model function is:

H*(1 0)= NogxG )
Rn;rel RE;reI Rtp;rel Rph;rel Rpow;rel Rvibr;rel Rtemp;rel Rtempshock;rel (C. 1 )
1
Remc, 1rel REmc, 2rel REMC,3rel REMC 4rel REMC 5rel REMC 67l
where
H*(10) is the measuring quantity ambient dose equivalent rate (measured value);
Ng is the reference calibration factor;
Ry rel is the relative response for non-linearity;
R rel is the relative response for neutron energy;
R, rel is the relative response for angle of incidence;
Rppirel is the relative response for the influence of photon radiation;
Rpow:rel is the relative response for power supplies;
Ryibrrel is the relative response for vibration;
Riemp:rel is the relative response for ambient temperature;

Riempshock:rel 1S the relative response for temperature shock;

G is the indicated value, reading of the dosemeter in units of H*(10);
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REMGC 1:rel is the relative response for EMC by electrostatic discharge;

REMC, 2:rel is the relative response for EMC by radiated electromagnetic fields;

REMC 3 rel is the relative response for EMC by conducted disturbances
(radiofrequencies);

REMC 4:rel is the relative response for EMC by conducted disturbances (surges);

REMC 5:rel is the relative response for EMC by conducted disturbances (fast

transients/bursts);
ReMC 6:rel is the relative response for magnetic field (50 Hz/60 Hz).
As some limits for the influence quantities have standard uncertainties larger than 10 % (see

below), the model function for the analytical method is as follows (using for these influence
quantities the transformed variables K):

Kn K K, Ktemp No X G

H*(10)= -
Rph;rel Rpow;rel Rvibr;rel Rtempshock;rel (C_2)
1
Remc, 1rel Remc,2irel REMC,3yel REMC 4rel REMC 5rel REMC 67rel
where
K, is the correction factor for non-linearity;
Ky is the correction factor for neutron energy;
K(ﬂ is the correction factor for angle of incidence;
Kiemp is the correction factor for ambient temperature.

C.3 Calculation of the complete result of the measurement (measured value,
probability density distribution, associated standard uncertainty, and the
coverage interval)

C.3.1 General

IEC 61005:2003 gives no type test requirements for the reference calibration factor because
this cannot be tested in a type test, it can only be tested in a routine test. Therefore, limits of
+10 % with a triangular distribution are assumed.

IEC 61005:2003 gives symmetrical limits for all maximum permissible values for the relative
response, see tables 2 to 4 of that standard. For the energy dependence no limits are stated,
therefore, the value of +50 % is adopted from another international standard for neutron
devices [22].

For both the analytical and the Monte Carlo method, always the maximum permissible ranges
of the influence quantities are assumed (low level of consideration of workplace conditions).

C.3.2 Analytical method

Formula (C.2) is used as model function. The transformation of variables leads, for the
example of the relative response for neutron energy, Rg.o, from 1 + 0,5 (which is the interval
0,5...1,5) to 1,33 +£0,67 (which is the interval 0,67 ... 2,0 resulting from the two limits
1/1,5 = 0,67 and 1/0,5 = 2,0) for the corresponding correction factor, Kg. The other response
intervals are transformed to correction factor intervals accordingly in case their standard
uncertainty is beyond 10 %, see below.

In Table C.1, the complete uncertainty budget for an indicated value of g = 10 mSv/h is given.
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Table C.1 — Example of an uncertainty budget for a neutron dose measurement

according to IEC 61005:2003 using the analytical method

Best Absolute Distribution; Sensitivit Uncertainty
Quantity A . mean value, x; Iivity contribution to
estimate standard uncertainty . coefficient R
half-width, « output quantity
Ny 1,00 - Triangular; 15,4 mSv/h 0,63 mSv/h
0,10/46 = 0,041 x=1,0;a=0,1
G 10 mSv/h 0,20 x 10 mSv/h = Gaussian with one 1,54 3,1 mSv/h
2,0 mSv/h reading;
x =10 mSyv; a = 6 mSv
K 1,04 - Rectangular; 14,8 mSv/h 1,8 mSv/h
! 0.21//3 = 0,121 x=1,04; a =021
K 1,33 _ Rectangular; 11,5 mSv/h 4,5 mSv/h
£ , = ; ) ,
0’67/\/5 0,387 x=1,33;a=0,67
K 1,07 - Rectangular; 14,4 mSv/h 2,2 mSv/h
0 027/43 = 0,156 Byl
Ron:rel 1,00 010/J§ = 0,058 Rectangular; -15,4 mSv/h 0,89 mSv/h
’ x=1,0;a=0,1
Ryow:rel 1,00 010/J§ = 0058 Rectangular; -15,4 mSv/h 0,89 mSv/h
’ ’ x=1,0;a=0,1
Ryiprirel 1,00 - Rectangular; -15,4 mSv/h 1,3 mSv/h
vibr;re 0,15/«/5 0,087 x=10:a=015
Kiemp:rel 1,04 - Rectangular; 14,8 mSv/h 1,8 mSv/h
empire 02943 = 0,121 x=1,04; a = 0,21
Ry hock:rel 1,00 - Rectangular; -15,4 mSv/h 1,3 mSv/h
empshock;re 0,15/\/5 0,087 x=1,04=015
Remc 1:rel 1,00 010/J§ = 0058 Rectangular; -15,4 mSv/h 0,89 mSv/h
’ ’ x=1,0;a=0,1
Remc 2:rel 1,00 010/J§ = 0058 Rectangular; -15,4 mSv/h 0,89 mSv/h
’ ’ x=1,0;a=0,1
Remc 3:rel 1,00 - Rectangular; -15,4 mSv/h 0,89 mSv/h
re 010/43 =0,058 f 2100201
ReMC. 4:rel 1,00 010/J§ = 0058 Rectangular; -15,4 mSv/h 0,89 mSv/h
’ ’ x=1,0;a=0,1
REMC 5:rel 1,00 010/J§ = 0058 Rectangular; -15,4 mSv/h 0,89 mSv/h
’ ’ x=1,0;a=0,1
Remc 6:rel 1,00 010/J§ = 0058 Rectangular; -15,4 mSv/h 0,89 mSv/h
’ ’ x=1,0;a=0,1
H*(10) 15,4 mSv/h 7,2 mSv/h (47 %) (Analytical method)

The complete result of the measurement of the ambient dose equivalent rate for neutron
radiation according to Table C.1 is:

H*(10) = (15 + 14) mSv/h (C.3)
The uncertainty stated is the expanded measurement uncertainty obtained by multiplying
the standard uncertainty by a coverage factor k., =2. It has been determined in
accordance with the Guide to the Expression of Uncertainty in Measurement. The value of
the measurand normally lies, with a probability of approximately 95 %, within the attributed
coverage interval.

C.3.3 Monte Carlo method

Formula (C.1) is used as model function. In Table C.2, the complete uncertainty budget for an
indicated value of g = 10 mSv is given.

At el A
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Table C.2 — Example of an uncertainty budget for a neutron dose rate
measurement according to IEC 61005:2003 using the Monte Carlo method

Absolute Distribution;
Quantity Best estimate standard uncertaint mean value, x;
y half-width, a
N 1,00 = Triangular;
0 , = ;
010/6 = 0,041 LS
G 10 mSv/h 0,20 x 10 mSv/h = 2,0 mSv/h Gaussian with one reading;
x =10 mSv; a = 6 mSv
Rorel 1,00 0,20/\5: 0,115 R_e;:tg_ngu_laor';2
x=1,U,a=0,
050145 = 0289
x=1,0;a=0,
1100 025/Y3 = 0,144 0 s
010145 = 0,05
Rpow;rel 1,00 0,10/‘/5 = 0,058 xie::tgpguia(;;‘]
Ruioricl 1,00 0.15/y3 = 0,087 T
Rtemp;rel 1,00 0,20/\/5 = 011 15 xRze;:t(é)\-ﬂsu=|a(;’;2
Riempshockirel 1,00 0,15/4/3 = 0,087 _R(icga_mgglgr%S
x=1,0;a=0,
Remc, 1irel 1,00 0,10/4/3 = 0,058 Fie;:tg.ngu_laor;1
x=1,0;a=0,
Renc 2;rel 1,00 0,10/43 = 0,058 R_e;:t(c;\.ngu_laor;1
x=1,0;a=0,
Renc. 3y 1,00 010/¥3 = 0,058 Rectangulat
x=1,0;a=0,
Remc, 4rrel 1,00 0‘10/‘/5 = 0,058 I:Ee;:tgr\gu_la(;;1
x=1,0;a=0,
Remc,sirel 1,00 0,10/4/3 =0,058 I'-\:e1ct(€;|_ngu_la(;';1
x=1,0;a=0,
Rewmc gire 1,00 010/43 = 0,058 estengulen,
H*(10) 12,0 mSv/h 6,1 mSv/h (51 %) (Monte Carlo method)

The complete result of the measurement of the ambient dose equivalent rate for neutron

radiation according to Table C.2

The uncertainty stated is the expanded measurement uncertainty with a coverage
probability of p = 95 % obtained from the distribution function of the output quantity. It has
been determined in accordance with Supplement 1 of the Guide to the Expression of
Uncertainty in Measurement. The value of the measurand normally lies, with a probability

is:

H*(10) = (12 712

) mSv
-9

of approximately 95 %, within the attributed coverage interval (shortest interval).

C.3.4

In Figure C.1 the resulting probability density function (PDF) from the Monte Carlo method
and the resulting Gaussian PDF according to the analytical method are shown. It can clearly
be seen that the realistic result from the Monte Carlo method is not represented by the result
of the analytical method, neither the mean value nor the coverage interval. This can also be

A

Comparison of the result of the analytical and the Monte Carlo method
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seen by comparing the data given in Table C.3 and was formerly confirmed by
measurements [11].

The reason for the deviation of the best estimate from the indicated value of 10 mSv/h comes
for the Monte Carlo method from the non-linear model function; the even stronger deviation
for the analytical method has its reason in the artificial (but necessary) transformation of
variables from response values to correction factors and the resulting ranges that are not
symmetrical to unity, see C.3.2 and 5.2 (paragraph after the note). As a consequence, two
different model functions are used which is the main reason for the strong deviations between
the results of the analytical and the Monte Carlo method.

In conclusion, the deviation of the best estimate and the limits of the coverage interval is
much larger than the criterion of 10 % introduced in 5.1.4. Therefore, the Monte Carlo method
should be used in this case.

Besides the shortest coverage interval also the probabilistically symmetric coverage interval is
given in Figure C.1 and Table C.2. As the probability distribution function (PDF) of the dose
rate is quite non-symmetric (log-normal), quite different intervals occur although both cover
95 % of the PDF. In such cases the shortest coverage interval is clearly superior the
probabilistically symmetric and should, therefore, always be stated (see 5.5.3).

This example clearly demonstrates the benefits of the Monte Carlo method, not only for the
determination of uncertainty but also for the best estimate of the measured value itself. For all
cases with similar non-linear model functions with large standard uncertainties of the input
quantities (above about 10 %), the Monte Carlo method should to be used.

0,088+ | - [
> | @ I |
» | |
£ | ® |
= | - I
£ ' - . '
— 0,044 | : -~ ~ |
) | . ”~ e ~ |
D | : 7~ ° N .
5 | $ ~ L
= | | . . it |
|12 ° =
1 . I e, 7T N
0 I = T T - |
0 10 20 30 40

H*(10) in mSv/h
IEC

NOTE The vertical lines are the mean values (thick lines), the boundaries of the coverage interval from the
analytical method (thin red dashed lines), the boundaries of the shortest coverage interval from the Monte Carlo
method (blue solid lines), and the boundaries of the probabilistically symmetric coverage interval form the Monte
Carlo method (blue dotted lines).

Figure C.1 — Results of the analytical (red dashed lines) and the Monte Carlo method

(grey histogram and blue dotted and solid lines) for H*(10)

Table C.3 — Results of the analytical and the Monte Carlo method

Best estimate of the

95 % coverage interval
measured value % 9

Analytical method 15 mSv/h 1 mSv/h ... 29 mSv/h

Monte Carlo method

: 12 mSv/h 3 mSv/h ... 24 mSv/h
(shortest coverage interval)

Monte Carlo method 12 mSv/h 4 mSv/h ... 28 mSv/h

(probabilistically symmetric coverage interval)
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Annex D
(informative)

Example of an uncertainty analysis for a calibration of
radon activity monitor according to the IEC 61577 series

D.1 General

IEC 61577 consists of several parts with the general title Radiation protection instrumentation
— Radon and radon decay product measuring instruments [23] to [25].

The following example shows the result of a software based method (GUM workbench [12]) to
determine the uncertainty. The following text consists of the direct output of the software plus
some additional text for enhancing the understanding.

The example comprises the calibration of a radon monitor by a radon reference atmosphere
(realisation of the quantity activity concentration) traceable to the input quantities activity and
volume.

D.2 Model function

The model function used for the example is:

S S T N/ P © S Ay R o (D.1)
Cr —Crpg V+VRn Ty/2 x 24 x60 e »bg
where Table D.1 gives the definitions and units of the quantities used.
Table D.1 - List of quantities used in formula (D.1)
Quantity Unit Definition
A Bqg Activity of the radon gas standard as certified (z = 0)
14 m3 Reference volume as certified (displaced volume considered)
VRn m3 Volume of the radon gas standard container
Ty, d Half-life of Radon-222. Nuclear Data from NuDat 2002,
Evaluation BNL-NCS-52142 [26]
A 1/min Decay constant of Radon-222
T, min Point of time of the radon gas transfer into the reference volume
C Bg/m?® Activity concentration of the reference atmosphere at the point of time (¢ = ¢,)
Cr Bg/m? Average of the observations (¢ = ¢,)
Crre Bq/m3 Parameter while averaging the observations
Crbg Bg/m? Background of the radon monitor
Ky - Measured value (calibration factor)

D.3 Calculation of the complete result of the measurement (measured value,
probability density distribution, associated standard uncertainty, and the
coverage interval)

Table D.2 gives all the available data for the input quantities. These data are requested from
the software.
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Table D.2 - List of data available for the input quantities of formula (D.1)

Quantity Distribution Value Expanc!ed Coverage Remark
uncertainty factor
A Type B normal distribution 152 Bq 4 Bq 2
14 Type B normal distribution 0,05 m3 0,000 3 m3 1
VRn Type B normal distribution | 0,000 062 7 m3 0,1 % 1
Ty, Type B normal distribution 3,823 5d 0,0003d 1
A - - - - Interim result
T, Type B rectangular 499 min - - Half width of limits: 10 min
distribution
C - - - - Interim result
Cr - - - - Interim result. The obser-
vations over a time of more
than 24 h are averaged
Crre Type A summarized 2 883 Bg/m3 25 Bg/m3 - Degrees of freedom: 144
Cr,bg Type A summarized 12 Bg/m3 2 Bg/m3 — Degrees of freedom: 144
K, - - - - Result

In Table D.3 the complete uncertainty budget is given. All the values are direct output of the
software.

Table D.3 — Example of an uncertainty budget for the calibration of a
radon monitor according to IEC 61577, see text for details

Quantity Best estimate Absolute ) Sens!tiyity Uncertainty contrit3ution
standard uncertainty coefficient to output quantity

A 152 Bq 2 Bq 0,006 5 Bg! 0,013

v 0,050 0 m3 0,000 3 m3 -20 m-3 0,005 9

VRn 62,700 x 10-6 m? 0,063 x 106 m3 -20 m-3 1,2 x 10-6

Ty, 3,8235d 0,0003d 0,016 d-1 4,9 x 10-6

A 125,893 x 10-6 1/min 0,001 x 10-6 1/min interim result

T, 499,0 min 5,8 min —-0,000 12 min-1 0,000 72

C 2 851 Bq/m3 41 Bg/m3 interim result

Cr 2 895 Bg/m3 25 Bg/m3 interim result
Crre 2 883 Bg/m3 25 Bg/m3 —-0,00034 Bg-"m3 0,008 6
Crbg 12 Bq/m3 2 Bg/m3 0 Bg-'m3 0

Ky 0,989 0,017 (1,7 %) (Analytical method)

Kr 0,989 0,017 (1,7 %) (Monte Carlo method)

The complete result of the measurement of the calibration factor of the radon monitor ac-
cording to Table D.3 is:

K;=0,989 £ 0,033 (Analytical method) (D.2)
K; = 0,989 jggz‘; (Monte Carlo method) (D.3)

The two results differ by less than 10 %, therefore, the analytical method can be used and the
corresponding statement is:

A
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The uncertainty stated is the expanded measurement uncertainty obtained by multiplying
the standard uncertainty by a coverage factor k., =2. It has been determined in
accordance with the Guide to the Expression of Uncertainty in Measurement. The value of
the measurand normally lies, with a probability of approximately 95 %, within the attributed
coverage interval.

In Figure D.1, the resulting probability density function (PDF) from the Monte Carlo method
and the resulting Gaussian PDF according to the analytical method are shown. It can clearly
be seen that the result are equivalent and, therefore, both methods are adequate for similar
cases. For the Monte Carlo method, the shortest coverage interval and the probabilistically
symmetric coverage interval are equivalent as the PDF is symmetrical, see 5.5.3.

NOTE In spite of the non-linear model function, the results are equivalent as the input quantities have rather
small uncertainties, and, therefore, a linear approximation of the model function is possible.

24—
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NOTE The vertical lines are the mean values (at k4 = 0,989) and the boundaries of the coverage intervals from
both methods.

Figure D.1 — Result of the analytical (red dashed lines) and the Monte Carlo method
(grey histogram and blue dotted lines) for Kt
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Annex E
(informative)

Example of an uncertainty analysis for a measurement of surface
emission rate with a contamination meter according to IEC 60325:2002

E.1 General

IEC 60325:2002 has the title Radiation protection instrumentation — Alpha, beta and
alpha/beta (beta energy > 60 keV) contamination meters and monitors [27].

For the example a contamination monitor is used to measure the surface emission rate due to
beta contamination of 4C with the following rated range and ranges of use for influence

quantities:

Measuring range: 10 s=1 to 10 000 s=' (in counts per second)
Area of detector: 100 cm?

Rated ranges of use: nominal ranges

E.2 Model function

The model function used for the example is:

A :C—l_)BF Ky Ky Ktemp Khum Kd,air Kd,geo Kuniform Ksurface (E-1)
where
A is the measured surface emission rate of 14C in terms of s=1 cm=2;
C is the indicated value of the activity in terms of s~1;
B is the indicated value of the background in terms of s~ 1;
D is the area of the detector in terms of cm?;
F is the calibration factor for the reference beta emitter (area related surface
emission rate per indicated activity);
K, is the correction factor for non-linearity;
Kny is the correction factor for detector supply;
Kiemp is the correction factor for ambient temperature;
Knum is the correction factor for humidity;
K4 air is the correction factor for distance effects due to air absorption;
K geo is the correction factor for distance effects due to geometric changes;
K niform is the correction factor for effects of contamination non-uniformity;
Kgurface is the correction factor for effects of surface absorption.

E.3 Calculation of the complete result of the measurement (measured value,
probability density distribution, associated standard uncertainty, and the
coverage interval)

E.3.1 General

IEC 60325 provides for test requirements and methods and specifies the allowable variations
in response for various influence quantities of the monitoring equipment. It does not specify

At el A
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the way the monitoring is to be carried out or the effects of the non-uniformity in the
contamination being measured or the effect of absorption in the surface changing the spec-
trum of the particles being emitted (total absorption of particles is taken into account by
monitoring surface emission rate and not surface activity). The indicated activity value of the
example is ¢=1 600s~! over a measuring time of 1s, the measured background is
b = 1350 s~ over a measuring time of 1 s and the detector area is 100 cm? with an upper limit
of 101 cm2 and an lower limit of 99 cm?; the standard uncertainty of the count rate is 8,5 %.
The calibration factor is determined to be 40 with a standard uncertainty of 8.

For the purposes of this example, the monitoring is assumed to be between 13 mm and
17 mm distance, i.e. at (15 + 2) mm distance from the surface, whereas the calibration
distance was 5 mm. This is considered by the correction factors K, ;i and K; 4o, Which,
therefore, have to correct for 10 mm additional distance.

E.3.2 Effects of distance

IEC 60325 does not specify the actual distance from the source to detector during meas-
urements, but 10 mm is implied. However, in the act of monitoring, a fixed distance will not be
adhered to, in fact it may be impossible to adhere to.

There will be two effects, air absorption and geometric changes.

Air absorption will be small for the higher energy beta emitters but will be significant in the
monitoring of 14C. For this radionuclide, an additional distance of 8 mm, 10 mm or 12 mm
(equivalent to the above given example) results in a reduction in efficiency of about 15 %,
19 % or 23 %, respectively. For the correction factor K, ,;, this results in

1 1
1045 = Kdair <37523

or 1,18 < K, 4ir < 1,30, which gives K, i = 1,24 = 0,06.

Geometric changes alter the solid angle between the detector and source. The effect of this
would be zero for an infinite plane of uniform contamination. The effect could go either way
for non-uniform infinite contamination. The greatest effect will be for points of contamination.
The inverse square law generally will not apply as the distance between the contamination
and detector is small by comparison to the dimensions of the source. It will approach a linear
relationship.

For a contamination nominally 10 mm from a 10 cm x 10 cm detector plane, this geometric
effect alone would cause a 10 % decrease in detection from the calibration value and changes

of up to £ 2 mm in this distance will change the value of this decrease of 8 % and 12 %,
respectively. For the correction factor for geometric effects, K; ¢, this results in

v ok
1-0,08 ~ 490 17012

(E.3)

or 1,087 < K; 460 < 1,136, which gives K; 45, = 1,11 £ 0,02.

It is assumed that this is an upper estimate for the geometric effects of the change in distance
from 5 mm for the calibration to 15 mm for the measurement.

E.3.3 Contamination non-uniformity

The standard only considers the non-uniformity of the detector not that of the contamination.
The non-uniformity of the contamination can only be determined by other tests but the effect
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on the measurement is likely to be comparable to that due to the non-uniformity of the detec-
tor.

For the purposes of this example, the effect of the non-uniformity of the contamination will be
similar to the effect of the non-uniformity of detection over the detector area and is assumed
to be K =1,0 £ 0,025.

uniform

E.3.4 Surface absorption

The effect of absorption in the surface again can only be determined by assessment with
regard to the nature of the surface and experience. The absorption below the surface could be
regarded as not of interest since it is included in the definition of the surface emission rate,
however, on the surface there could be grease or dirt which could be removed later and so
would be of particular interest.

For the purposes of this example, it is assumed that the surface will be covered by a layer
between 0 mg cm=2 and 10 mg cm~2 giving for 14C a reduction in efficiency from 0 % to 76 %.
This is equivalent to

1
<
100 - Ksurface <7575

or 1,0 < Kg\rface < 4,17, which gives K = 2,59 +1,59.

surface

E.3.5 Other influence quantities

For the purposes of the example, it is assumed for the remaining influence quantities that
their associated correction factors all have a value of 1,0 with an uncertainty equivalent to the
maximum permitted value. This gives K, = 1,0 + 0,1; Ky, = 1,00 £ 0,01; Kigpp, = 1,0 £ 0,05 and
Knum = 1,0 £0,025.

E.3.6 Uncertainty budget

In Table E.1, the complete uncertainty budget for this example is given. It can be seen, that
the uncertainty is quite large, therefore, the significance of the result should be checked. For
this, in Table E.2 the uncertainty for a measured value of zero is given. It yields a value of
u(a-O) =250 s~ cm=2. According to clause 6, the decision threshold is then given by

= kg g5 - u(a=0) = 410 s~' cm=2 with kq o5 = 1,65 for an error probability of a=5 %. The
result of the uncertainty analysis (360 s— cm—z, see Table E.1) is well below the decision
threshold, therefore, it is assumed that no effect of the probe is present. Thus, the final
statement for the result of the measurement is as follows:

The result of the measurement cannot be stated because the measured value is below the
decision threshold a* = k4_, - u(0) = 410 s=1 cm=2 determined for an error probability of
a=5%.

The uncertainty at an indicated value of zero, u(0), has been determined in accordance
with Supplement 1 of the Guide to the Expression of Uncertainty in Measurement. k,_, is
the quantile of the standardized normal distribution.

Only if the measured value exceeded the decision threshold, would the physical effect to
be measured be recognized as detected. If in reality no physical effect is present, then the
measured value is below a* = 410 s=1 cm=2 with a probability of 95 %.

Alternatively, an error probability of only 1% can be chosen, leading to
= kg g9 - u(a=0) = 580 s~1 cm~2 with kg g = 2,32 for an error probability of & =1 %. Then,
the final statement for the result of the measurement is as follows:
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The result of the measurement cannot be stated because the measured value is below the
decision threshold a* = kq_, - u(0) = 580 s~1 cm=2 determined for an error probability of
a=1%.

The uncertainty at an indicated value of zero, u(0), has been determined in accordance
with Supplement 1 of the Guide to the Expression of Uncertainty in Measurement. k,_, is
the quantile of the standardized normal distribution.

Only if the measured value exceeded the decision threshold, would the physical effect to
be measured be recognized as detected. If in reality no physical effect is present, then the

measured value is below ¢* = 580 s=1 cm=2 with a probability of 99 %.

Table E.1 — Example of an uncertainty budget for a surface emission rate
measurement according to IEC 60325:2002, see text for details

Quanti- . Absolute Dlstrlbutlon;. Sensitivity | Uncertainty contribution
ty Best estimate standard uncertainty mean value, x; coefficient to output quantity
half-width, a
C 1600 s—1 136 s—1 Gaussian with 1,4 cm—2 190 s=1 cm-2
one reading;
x=1600s";
c=85%
B 1350 s-1 115 s—1 Gaussian with -1,4 cm—2 160 s=1 cm-2
one reading;
x=1350s7";
c=85%
D 100 cm2 1cm2/J§= 0,58 cm2 Rectangulazr; -3,6s71cm—4 2,1s71cm—2
x =100 cm~;
a=1,0cm?
F 40 24/3 =8 Gaussian; 8,9 s=1 cm—2 71 s=1 cm-2
x=40; a=24
K, 1,0 O1/J§ = 0058 Rectangular; 360 s=1 cm—2 21 s=1 cm—2
’ ’ x=1,0; a=0,1
Ky 1,0 001/J§ = 0006 Rectangular; 360 s-1 cm—2 2,1 s=1 cm-2
' ' x=1,0; a=0,01
Kiemp 1,0 - Rectangular; 360 s~1 cm—2 10 s=1 cm—2
0,05/4/3 =0,029 s
Khum 1,0 - Rectangular; 360 s=1 cm—2 5,1 s=1cm-2
0,025//3 = 0,014 x=1,0; a=0,025
Ky air 1,24 - Rectangular; 290 s~' cm~2 10 s=1 cm—2
0'06/‘/5 0,035 x=1,24; a=0,06
K, geo 1,11 - Rectangular; 320 s~ cm—2 3,7 s=1cm—2
0’02/‘/5 0,012 x=1,11; a=0,02
Kyniform 1,0 - Rectangular; 360 s=1 cm-2 5,1s 1 cm-2
0025/4/3 =0,014 ot o s
Keurface 2,59 - Rectangular; 140 s=1 cm—2 130 s=1 cm—2
1’59/J§ 0,918 x=2,59; a=1,59
A 360 s~'cm-2 | 290 s='cm-2 (82 %) (Analytical method)
360 s-'cm-2 | 310 s~ cm-2 (86 %) (Monte Carlo method)
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Table E.2 — Example of an uncertainty budget for a surface emission
rate measurement according to IEC 60325:2002 for the determination

of the uncertainty at a measured value of zero

Distribution;

Quanti- . Absolute . Sensitivity | Uncertainty contribution
Best estimate mean value, x
ty standard uncertainty half-width ’a’ coefficient to output quantity
C 1 350 s-1 115 s—1 Gaussian with 1,4 cm—2 160 s—1 cm—2
one reading;
x=1350s";
c=8,5%
B 1350 s-1 115 s—1 Gaussian with -1,4 cm—2 160 s—1 cm—2
one reading;
x=1350s";
o= 8,5 %
D 100 cm?2 2 - 2 Rectangular; 0s™1cm—+4 0 s~ cm—2
1cm /\/5 0,58 cm =100 cm?.
a=1,0cm?
F 40 24/3 =8 Gaussian; 0s'cm-2 0s~1cm-2
x=40; a=24
K, 1,0 01/J§ =0.058 Rectangular; 0s-1cm-2 0s-1cm-2
’ ’ x=1,0; a=0,1
Ky 1,0 - Rectangular; 0s~1cm-2 0s-1cm-2
y 0,01/¥/3 = 0,008 +=1.0 a=001
K 1,0 - Rectangular; 0s-1cm-2 0s-1cm—2
emP 005/Y3 =0029 | RGO
Knum 1,0 - Rectangular; 0s-1cm-2 0s-1cm-2
0,025/43 =0,014 ot o s
Ky air 1,24 - Rectangular; 0s-1cm-2 0s1cm-2
006/43 = 0,035 x=1.24; a=0,06
K, 1,11 - Rectangular; 0s-1cm—2 0s1cm-2
geo 002/¥3 =0012 | PEENSE G 02
Kunitorm 1,0 - Rectangular; 0s'cm-2 0s~1cm-2
0025/43 =0,014 Iy
Ksurt 2,59 - Rectangular; 0s~1cm-2 0s-1cm-2
surface 1,59/\/5 0,918 =259 a=159
A 0s=1cm—2 230 s-1 cm—2 (Analytical method)
A 0s=1cm—2 250 s-1 cm—2 (Monte Carlo method)
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