TECHNICAL REPORT

IEC TR 62432

First edition 2006-03

The rH index in aqueous and aqueous-organic media

Reference number IEC/TR 62432:2006(E)

Publication numbering

As from 1 January 1997 all IEC publications are issued with a designation in the 60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.

Consolidated editions

The IEC is now publishing consolidated versions of its publications. For example, edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the base publication incorporating amendment 1 and the base publication incorporating amendments 1 and 2.

Further information on IEC publications

The technical content of IEC publications is kept under constant review by the IEC, thus ensuring that the content reflects current technology. Information relating to this publication, including its validity, is available in the IEC Catalogue of publications (see below) in addition to new editions, amendments and corrigenda. Information on the subjects under consideration and work in progress undertaken by the technical committee which has prepared this publication, as well as the list of publications issued, is also available from the following:

• IEC Web Site (<u>www.iec.ch</u>)

Catalogue of IEC publications

The on-line catalogue on the IEC web site (<u>www.iec.ch/searchpub</u>) enables you to search by a variety of criteria including text searches, technical committees and date of publication. On-line information is also available on recently issued publications, withdrawn and replaced publications, as well as corrigenda.

• IEC Just Published

This summary of recently issued publications (<u>www.iec.ch/online_news/justpub</u>) is also available by email. Please contact the Customer Service Centre (see below) for further information.

• Customer Service Centre

If you have any questions regarding this publication or need further assistance, please contact the Customer Service Centre:

Email: <u>custserv@iec.ch</u> Tel: +41 22 919 02 11 Fax: +41 22 919 03 00

TECHNICAL REPORT

IEC TR 62432

First edition 2006-03

The rH index in aqueous and aqueous-organic media

© IEC 2006 — Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch

Commission Electrotechnique Internationale International Electrotechnical Commission Международная Электротехническая Комиссия PRICE CODE

For price, see current catalogue

Ν

CONTENTS

– 2 –

FO	REWC)RD	3
INT	RODU	JCTION	5
1	Scop	e	6
2	General principles		
	2 1	Redax couples redax equilibria redax potentials redax systems	6
	2.1	The rH value	7
	2.2	rH Standards for use in water and aqueous-organic solvent mixtures	' 1
	2.0	Flectrodes for the operational rH cell	2
	2.7	2 4 1 General	2
		2.4.2 The glass electrode	2
		2.4.3 The inert noble-metal electrode (Pt or Au)	2
	2.5	rH Scales in diverse solvents	2
	2.6	Pourbaix's diagrams for the triad rH – pH – E_{OIP}	3
3	Instru	imentation	3
•			Ŭ
Dih	licaro	2 h y	1
מום	liogra	חוועו	4
Fia	ure 1.	- Pourbaix's diagram for the triad rH - nH - E_{num} for some key reday systems 1	٥
i ig		$z = 1$ outbalk 3 diagram for the that $TT = pT = E_{O R}$ for some key reduct systems	Ű
Tak	ole 1		6
Tak		Same reference aqueous colutions proposed as rU metric standards rU [9, 0]	Ů
at 2	25 °C a	and for the calibration of the redox electrode at $E_{O R}$ 1	1
Tab	ole 3 –	Values of $(E_{QHY} - E_{H+ H2})$ [6] with corresponding rH _S values, at various	
con	npatib	e with Quinhydrone) in non-alkaline solution1	2
Tab	ole 4 –	Parallelisms between the aqueous pH-metric and rH-metric scales	1

INTERNATIONAL ELECTROTECHNICAL COMMISSION

THE rH INDEX IN AQUEOUS AND AQUEOUS-ORGANIC MEDIA

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. However, a technical committee may propose the publication of a technical report when it has collected data of a different kind from that which is normally published as an International Standard, for example "state of the art".

IEC 62432, which is a technical report, has been prepared by subcommittee 65D: Analyzing equipment, of IEC technical committee 65: Industrial-process measurement and control.

The text of this technical report is based on the following documents:

Enquiry draft	Report on voting
65D/120/DTR	65D/123/RVC

Full information on the voting for the approval of this technical report can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- · replaced by a revised edition, or
- amended.

A bilingual version of this Technical report may be issued at a later date.

INTRODUCTION

The fundamental rationale for the rH index, extended to cover the pure aqueous and the aqueous-organic media, has been recently described critically [1]¹, but for the user's convenience, the essentials will be recalled in the present Technical Report together with the application domains, the recommended procedures and operational details.

¹ Numbers in square brackets refer to the bibliography.

THE rH INDEX IN AQUEOUS AND AQUEOUS-ORGANIC MEDIA

1 Scope

This Technical Report concerns analyzers, sensor units and electronic units used for the determinations of the rH index in aqueous and aqueous organic media.

This Technical Report identifies the terminology, definitions, theory and methodology used for the determination of rH values or redox systems in aqueous solvent or aqueous-organic solvent mixtures.

2 General principles

2.1 Redox couples, redox equilibria, redox potentials, redox systems

An oxidation/reduction couple ("redox" couple) O|R, present in water or in an aqueous-organic solvent mixture involves the concurrence of an oxidant species O (ionic or uncharged) and a reductant species R (ionic or uncharged) of the same chemical element, thereby establishing an oxidation/reduction equilibrium (redox equilibrium) O + ne = R, and an electrochemical oxidation/reduction potential (redox potential) $E_{O|R}$ which is transmitted to the meter by an inert metal electrode (usually platinum or gold). This metal participates in the specific charge transfer which is going on throughout the solution and is called upon only to act as a donor or acceptor of electrons. When both the O and R species are at unit activity (standard state) the redox potential $E_{O|R}$ becomes the standard redox potential, symbolized as $E_{O|R}$.

In the environmental, hydrological, biomedical, winery, dairy-farming, and corrosion domains of interest for rH measurements, only seldom is a single O|R couple present alone in the solvent medium. Instead, an undefined number of redox couples O|R, O'|R', O"|R",...Oⁿ|Rⁿ overlap, thus determining a mixed redox potential of very complex (not to say impossible) interpretation: therefore it is better to speak of a "redox system", but this latter term is also legitimately applicable to a single redox couple.

NOTE Some examples of familiar redox couples with related reaction equilibria and redox potential expressions, are given in Table 1.

Table 1 - Examples of familiar redox couples with related reaction equilibria	and redox				
potential expressions					

Redox couple	Redox equilibrium	Redox potential		
ferric ferrous	Fe ^{3 +} + e = Fe ^{2 +}	$E_{Fe3 + Fe2 +} = E_{Fe3 + Fe2 +} + k \log(a_{Fe3 +} / a_{Fe2 +})$		
H ⁺ H ₂ (hydrogen electrode)	2H + + 2 e = H ₂	$E_{H + H2} = E_{H + H2}^{\circ} + k \log a_{H +} - (k/2) \log p_{H2}$		
Cl ₂ Cl-(chlorine electrode)	Cl ₂ + 2 e = 2Cl ⁻	$E_{C12 C1^{-}} = E_{C12 C1^{-}} - k \log a_{C1^{-}} + (k/2) \log p_{C12}$		
O ₂ H ₂ O (oxygen electrode)	O ₂ + 4 e + 4H + = 2 H ₂ O	$E_{O2 H2O} = E^{\circ}_{O2 H2O} + k \log a_{H+} + (k/4) \log p_{O2} - (k/2) \log a_{H2O}$		
MnO ₄ - Mn ² +	MnO ₄ ⁻⁺ 5 e + 8H ⁺ =	$E_{MnO4 Mn2+} = E^{\circ}_{MnO4 Mn2+} + (k/5)log(a_{MnO4 Mn2+}/a_{Mn2+}) +$		
(permanganate electrode)	Mn ^{2 +} + 4H ₂ O	+ (8k/5)log a _{H +} – (4k/5)log a _{H2O}		
Symbols: e = the electron; k = Nernstian coefficient = 2,303 RT/F ; a = activity; p = pressure.				

2.2 The rH value

The notional definition of the rH index [2,3] for a given redox system in a given (aqueous or aqueous-organic) medium is

$$rH = -\log p_{H2}$$
(1)

where p_{H2} is that pressure of hydrogen gas that would equalize the potential $E_{H + |H2}$ of the hydrogen gas electrode to the redox potential $E_{O|R}$ of the system being studied (thus zeroing the pd of the cell resulting from the combination of these two electrodes). **rH is an index of the reducing power of the redox system under consideration.** The Nernstian expression for $E_{H + |H2}$ is (with k = 2,303RT/F):

$$E_{H + |H2} = E_{H + |H2} - k pH + (k/2) rH$$
(2)

where $E_{H + |H2}$ is the standard electrode potential (which varies with the solvent but it is conventionally put equal to zero at any temperature in pure aqueous medium [4, 5]). If the hydrogen gas electrode works at $p_{H2} = 1$ bar (i.e. under standard state conditions), then rH = 0 at any pH of the solution (see Figure 1, which describes the pertinent Pourbaix's E_{Redox} vs. pH diagram), and this is **the nominal zero of the rH-metric scale** to which corresponds **the nominal maximum reducing power** of a redox system

One redox system of paramount importance is the **equimolal (quinone[Q] + hydroquinone[H₂Q]) system**, commonly called the "quinhydrone", of symbol QHY, whose electrode potential is expressed by

$$E_{\mathsf{QHY}} = E_{\mathsf{QHY}} - k \mathsf{pH} \tag{3}$$

On consideration of equations (2) and (3), the potential difference E_4 of the cell (4) below, where the quinhydrone electrode is combined with the hydrogen electrode and the two solutions are at equal activity of the H⁺ ion:

is clearly independent of pH. (In common practice, the two electrode compartments are kept separated by a porous glass frit or a closed stopcock, as indicated by the ¦ symbol, to avoid the mutual diffusion of hydrogen gas and quinhydrone which would produce an irreversible chemical reaction and formation of a useless mixed electrode potential). Therefore, equating $E_{\rm H + |H2}$ to $E_{\rm QHY}$ in accord with the equation (1), *i.e.* putting $E_4 = 0$, gives the related rH_{QHY} value:

$$E_4 = E_{QHY} - E_{H+ |H2} = E_{QHY} - E_{H+ |H2} - (k/2) rH_{QHY} = 0$$
(5)

from which

$$rH_{OHY} = 2 \left(E_{OHY} - E_{H+|H2} \right) / k = rH_S$$
(6)

As equation (6) shows, since the difference $(E_{QHY} - E_{H + H2})$ is a well defined and accurately known quantity which is a function of temperature but is **invariant upon passing from pure** water medium to most water-rich aqueous-organic media [1], the quinhydrone redox system constitutes the key standard rH_s for reference in rH measurements, according to the operational equation (27) described later on. In the context of this invariancy, at 298,15 K, $(E_{QHY} - E_{H + H2}) = 0,699$ 75 V [6] and, therefore:

$$(rH)_{QHY} = rH_S = 2 \times 0,699 75 / 0,059 159 7 = 23,66$$
 (7)

For this reason, the cell (4) can be considered the archetype of the rH-metric **calibration cell**. Another important redox system for which it is important to known the rH value is that of the oxygen gas electrode, of reaction $O_2 + 4H^+ + 4e = 2H_2O$. Thus, its redox potential $E_{O2|H2O}$ will, assuming unit H_2O activity, be given by

$$E_{O2|H2O} = E_{O2|H2O} - k pH - (k/4) rO$$
 (8)

where we use the further definition

$$rO = -\log p_{O2} \tag{9}$$

The rO index, which is a quantity complementary to rH, is an **index of the oxidizing power of the given redox system** in the same medium (analogously, the pOH index of alkalinity is a complementary quantity to the pH index of acidity: see the comparative Table 2). In this context, p_{O2} is that pressure of oxygen gas that would equalize the potential $E_{O2|H2O}$ of the oxygen gas electrode to the redox potential of the system being studied.

The related cell (10)

$$Pt|H_{2}(p_{H2})|H + |H^{+}|O_{2}(p_{O2})|Pt$$
(10)

at p_{O2} = 1 bar (which means rO = 0, at any pH of the solution, and **maximum oxidizing power**, see Table 2 and the pertinent Pourbaix's diagram in Figure 1 has a pd E_{10} given by

$$E_{10} = E_{O2|H2O} - E_{H+|H2} = E^{\circ}_{O2|H2O} - E^{\circ}_{H+|H2} - (k/2) \text{ rH}$$
(11)

Therefore, putting $E_{10} = 0$, in water (where $E_{O2|H2O} - E_{H+|H2} = 1,229$ V at 298,15 K), one obtains the (rH)_{O2|H2O} value (i.e. the **measurand unknown rH_X value**) of the specific O₂|H₂O redox system:

$$(rH)_{O2|H2O} = rH_{X} = 2 (E_{O2|H2O} - E_{H + |H2}) / k = 2 \times 1,229 / 0,059 159 7 = 41,6$$
(at any pH of the solution) (12)

Now, the values rH = 0 and rH = 41,6 mark the rated (nominal) limits of the rH scale (analogously, pH = 0 and pH = 14 mark the limits of the pH scale in water). The cell (10) is the archetype of an rH-metric measuring cell.

To establish the general operational equation for the rH determination, which requires measuring one cell pd (E_{13}) on the selected standard rH_S (QHY) and one (E_{14}) on the sample solution of unknown rH_X, a few steps are still necessary. The generalized pair of the *ad hoc* cells would be:

$$Pt|H_2(p_{H2})|H^+|H^+ + QHY Standard at rH_S|Pt$$
 (13)

$$Pt|H_{2}(p_{H2})|H^{+}|H^{+} + Redox \text{ sample at } rH_{X}|Pt$$
(14)

Putting E_{13} and E_{14} to zero, one gets, respectively:

$$E_{13} = E_{OHY} - E_{H+|H2} = E_{OHY} - (k/2) \text{ rH}_{S} + k \text{ pH}_{S} = 0,$$
(15)

from which

$$rH_{S} = 2 E_{OHY} / k + 2 pH_{S}$$
(16)

and

TR 62432 © IEC:2006(E)

$$E_{14} = E_{\text{SAMPLE}} - E_{\text{H} + |\text{H}2} = E_{\text{SAMPLE}} - (k/2) \text{ rH}_{\text{X}} + k \text{ pH}_{\text{X}} = 0, \quad (17)$$

from which

$$rH_{X} = 2 E_{SAMPLE} / k + 2 pH_{X}$$
(18)

Now, to avoid the above mentioned inconveniences caused by the cumbersome use of the H⁺-reversible hydrogen gas electrodes in cells (13) and (14), these electrodes are replaced by two H⁺-selective glass electrodes, which are totally insensitive to the effects of a diffusion of any redox system on their surfaces. Therefore, no electrode compartment separation by a porous glass frit is now necessary. The standard potential of the glass electrode at a given temperature obviously differs from that of the hydrogen electrode by a constant, which can be determined, if necessary, by one pd E_{19} measurement on the cell (19):

-9-

$$Pt|H_2 (p_{H2} = 1 \text{ bar})| H^+ \text{ solution} | Glass electrode$$
(19)

$$E_{19} = E_{\text{GLASS}} - E_{\text{H} + |\text{H}2} \tag{20}$$

Thus, the cells (13) and (14) take their respective final operational configurations (17) and (18):

$$Pt|Glass electrode|Sample at rH_X|Pt (for measure)$$
 (22)

whose pd's are:

$$E_{\rm S} = E_{\rm QHY} - E_{\rm GLASS} + k \, \rm pH_{\rm S} \tag{23}$$

$$E_{\rm X} = E_{\rm SAMPLE} - E_{\rm GLASS} + k \, \rm pH_{\rm X}$$
⁽²⁴⁾

Of course, the cell diagrams (21) and (22) can be unified in the form:

Pt|Glass electrode|QHY Standard at
$$rH_S$$
 or Sample at rH_X |Pt (25)

Combining equations (16), (18), (20), (23), and (24) one obtains:

$$E_{\rm X} - E_{\rm S} = (k/2) \, \mathrm{rH}_{\rm X} - (k/2) \, \mathrm{rH}_{\rm S}$$
 (26)

from which the final operational equation for the rH measurements [7] is attained:

$$rH_X = rH_S + (2/k) (E_X - E_S)$$
 (27)

NOTE 1 Measuring the rH along with the above cell scheme (25) does NOT involve liquid juntion potentials (unlike in the pH measurement), *i.e.* no need of salt bridges.

NOTE 2 The glass electrode should anyway be periodically controlled by means of the "bracketting pH standards technique" to verify that its "slope factor" k does not significantly deviate from the theoretical Nernstian slope (= 2,303 *RT/F*).

NOTE 3 Of course, measuring the rH by means of cells of the types (21) and (22) requires using the electrometric voltmeter of highest input impedance (>10¹³ Ω), because both cells contain the glass electrode thus featuring high inner resistances (10⁹ Ω).

NOTE 4 The QHY-saturated solution in the calibration cell should be acidic or neutral, because the component hydroquinone of the QHY undergoes a chemical reaction in alkaline solution.

- 10 -

Figure 1 – Pourbaix's diagram for the triad rH – pH – $E_{O|R}$ for some key redox systems

NOTE The shaded area is the band of thermodynamic stability of water.

_	1	1	_
---	---	---	---

Quantity	pH (Sørensen) ^[10, 11]	rH (Clark) ^[2, 3]		
	pH = $-\log a_{H^+}$	rH = $-\log p_{\rm H_2}$		
Notional definitions	pOH = –log $a_{\rm OH^-}$	rO = $-\log p_{O_2}$		
	(a = adimensional activity)	(p = adimensional pressure)		
Type of H ₂ O dissociation	IONIC:	GASEOUS:		
equilibrium implied	H ₂ O (liq.) = H ⁺ (aq.) + OH [_] (aq.)	$2H_2O$ (liq.) = $2H_2$ (gas) + O_2 (gas)		
Equilibrium constant at 25 °C	$K_{\rm W} = a_{\rm H^+} a_{\rm OH^-} = 1,008 \times 10^{-14}$	$K_{\rm WG} = p_{\rm H_2}^2 p_{\rm O_2} = 8,318 \times 10^{-84}$		
	$pK_W = pH + pOH = 14,0$	$pK_{WG} = 2 rH + rO = 83,1$		
	Acid/Base Neutrality:	Redox Neutrality: p_{H_2} = 2 p_{O_2} ,		
Neutrality conditions		<i>viz</i> .: rH = rO – log 2, <i>therefore</i> :		
	$u_{\rm H^+} = u_{\rm OH^-}$,	rH = (pK _{WG} -log2)/3 = 27,6 and:		
	<i>viz.</i> : $pH = pOH = \frac{1}{2} pK_W = 7,0$	$rO = (pK_{WG} + 2log2)/3 = 27,9$		
	pH = 0 (maximum acidity),	rH = 0 (maximum reducing power),		
Conventional zeroes in	viz.: $a_{H^+} = 1$ (standard state)	viz.: $p_{\rm H_2}$ = 1 (standard state)		
respective scale ranges	pOH = 0 (maximum alcalinity),	rO = 0 (maximum oxidizing power),		
	viz.: $a_{\rm OH^-}$ = 1 (standard state)	viz.: p_{O_2} = 1 (standard state)		
Conventional scale ranges	0 < pH < 14	0 < rH < 41,6		
Conventional scale ranges	14 > pOH > 0	83,1 > rO > 0		
NOTE All all metric standards mede of any and huffers at all 4.7.5 actuated with "aviabudance" at 25.00 viola				

NOTE All rH-metric standards made of aqueous buffers at pH < 7,5 saturated with "quinhydrone" at 25 °C yield rH_S = 23,66, *viz.* at about mid rH scale (41,6 / 2 = 20,8) and also near to redox neutrality (rH = 27,6).

2.3 rH Standards for use in water and aqueous-organic solvent mixtures

Some rH-metric standards rH_S [7 to 9] based on buffered acidic solutions saturated by quinhydrone and required by the operational equation (27) for rH_X measurements at 25 °C are quoted in Table 3. Data at temperatures other than 25 °C can be obtained from Ives and Janz's ($E_{QHY} - E_{H + |H2}$) values [6] quoted in Table 4. Some other rH_S standards were characterized recently [7].

Table 3 – Some reference aqueous solutions proposed as rH-metric standards rH_S [8, 9] at 25 °C and for the calibration of the redox electrode at E_{OIR}

Standard Redox Solution	rH _S	рН _S	$E_{O R}/V$
0,05 m Potassium Tetroxalate buffer solution, saturated with Quinhydrone	23,66	1,65	0,602 1
0,01 M HCl + KCl 0,09 M solution ("Veibel's solution" [10]) saturated with Quinhydrone	23,66	2,07	0,583 1
0,05 <i>m</i> Potassium Hydrogen Phthalate buffer solution, saturated with Quinhydrone	23,66	4,01	0,462 5
0,014 42 <i>M</i> Na ₂ HPO ₄ + 0,026 44 <i>M</i> NaH ₂ PO ₄ buffer solution, saturated with Quinhydrone	23,66	7,00	0,285 6

Tempe	rature	$E_{\text{QUINH}} - E_{\text{H} + /\text{H2}}$	rH _s
/ K	/ °C		
273,15	0	0,717 98	26,57
278,15	5	0,714 37	25,91
283,15	10	0,710 73	25,28
288,15	15	0,707 09	24,66
293,15	20	0,703 43	24,19
298,15	25	0,699 76	23,66
303,15	30	0,696 07	23,11
308,15	35	0,692 37	22,57
313,15	40	0,688 65	22,21

Table 4 – Values of $(E_{QHY} - E_{H + |H2})$ [6] with corresponding rH_S values, at various temperatures, valid for any solvent (water W, or aquo-organic mixture Z = W + S compatible with Quinhydrone) in non-alkaline solution

2.4 Electrodes for the operational rH cell

2.4.1 General

The electrodes required by the cell pair (21) and (22) are the well-known H⁺-selective glass electrode and an inert noble-metal electrode (usually platinum or gold). They should be submitted to the preliminary verifications described below.

2.4.2 The glass electrode

The glass electrode is the classical H⁺-selective electrode used for pH measurements, and it should be submitted to all pretreatments and cares of the pH praxis. In particular, the decay of its performance should be checked frequently by the "bracketting standards" technique.

2.4.3 The inert noble-metal electrode (Pt or Au)

After prolonged use, the platinum or gold electrode may have undergone fouling or filming thus becoming unreliable. Therefore, they should be frequently cleaned by appropriate procedures, possibly of self-cleaning type.

2.5 rH Scales in diverse solvents

A comparative summary, such as that shown in Table 2, may be helpful to the reader to better understand the problem of the intercomparison between rH scales in different solvents.

There are some parallelisms, but also some significant differences, between the range of rH scale and the range of the familiar pH scale. In fact, the pH range is defined as $-\log pK_W = pK_W$, where $K_W = 1,008 \times 10^{-14}$ is the self-ionisation equilibrium constant of water, and $pK_W = pH + pOH = 14,0$, whereas the rH range is defined [12] as $-\log pK_{WG} = pK_{WG}$, where $K_{WG} = 8,318 \times 10^{-84}$ is the gaseous-dissociation equilibrium constant of water, and $pK_{WG} = 8,318 \times 10^{-84}$ is the gaseous-dissociation equilibrium constant of water, and $pK_{WG} = 2$ rH + rO = 83,1. Therefore, the pH scale is symmetrical with respect to its acid/base neutrality point pH = pOH = (1/2) $pK_W = 7,0$, whereas the rH scale is unsymmetrical because the redox neutrality condition is $p_{H2} = 2 p_{O2}$, which corresponds to rH = rO - log 2, so that at the neutrality point one gets rH = ($pK_{WG} - \log 2$) / 3 = 27,6 together with rO = ($pK_{WG} + 2 \log 2$) / 3 = 27,9. Therefore, the nominal scale ranges are: for pH, 0 < pH < 14, and for pOH, 14 > pOH > 0; but for rH, 0 < rH < (83,1 / 2 = 41,6), and for rO, 83,1 > rO > 0. Thus, for the conventional zeroes of the respective scales one has: pH = 0 for the maximum acidity, and pOH for the maximum aciditing power. Finally, it is evident that the recommended saturated-quinhydrone-based standard rH_S = 23,66 is close to both the mid rH scale (41,6 / 2 = 20,8) and the redox neutrality rH = 27,6. It is interesting to note that *any* redox electrode

potential $E_{O|R}$ that simultaneously obeys the acid/base neutrality and the redox neutrality will have $E_{O|R}$ = 0,402 V at 25 °C [12].

Unlike the pH scales, that are wildly different in water and in aqueous-organic solvent mixtures due to the so-called "primary medium effect" [13] upon the single H⁺ ion, no such effect can affect the parallel, neutral H₂ gas, at least to a good approximation. As a result, the pK_{WG} value is found to undergo least or no change [1] on passing from water to water-rich aqueous-organic solvents. This fact, together with the above mentioned invariancy of the $(E_{QHY} - E_{H + |H2})$ term, *i.e.* of the rH_S = 23,66 value of the quinhydrone standards, does simplify both the operation and the interpretation of rH. Thus, if the measured pH<7 or pH>7 means that the system studied is acidic or alkaline, respectively, by analogy, the measured rH<27,6 or rH>27,6 means that the system is reductant or oxidant, respectively. Clearly this feature is an important diagnostic criterion in quality controls. To cite a familiar example, for a wine or a grape juice, an oxidant situation (*i.e.* a rH > 27,6, or rO < 27,9) causes browning and flavour deterioration [12], which makes the routine rH monitoring an ideally suited and desirable control methodology in the winery praxis.

2.6 Pourbaix's diagrams for the triad rH – pH – E_{OIR}

The importance and usefulness of Pourbaix's $E_{O|R}$ vs. pH diagrams [14] extends over electrochemical, electroanalytical, biomedical, environmental, and corrosion domains. In these diagrams, the rH index forms an electrochemical triad of strictly interrelated quantities, which becomes organically mapped altogether, as shown in the Figure 1. To read the latter, begin with the lowest thick slant line, with represents the variation of potential $E_{H + IH2}$ of the hydrogen gas electrode with pH, expressed by equation (2), with $p_{H2} = 1$ bar (*i.e.* rH = 0, maximum reducing power, which also implies rO = 83,1, minimum oxidizing power, at any pH). This line has coordinates $E_{H + |H2} = 0$ at pH = 0, and $E_{H + |H2} = -0.828$ V at pH = 14. The uppermost thick slant line represent the variation with pH for the potential of the oxygen gas electrode, expressed by equation (8), working with $p_{O2} = 1$ bar (*i.e.* rO = 0, maximum oxidizing power, which also implies rH = 41,6, minimum reducing power, at any pH). The shaded diagram band comprised between these two thick lines is the domain of thermodynamic stability of water, in which the potentials for most of the redox processes of interest lay. Any redox process occurring above the oxygen electrode line (e.g. the fluorine electrode) will tend to decompose water by oxidizing it with oxygen gas evolution, and any redox process occurring below the hydrogen electrode line (e.g. the sodium electrode) will tend to decompose water by reducing it with hydrogen gas evolution. The vertical line at pH = 7, is the line of acid/base neutrality for any electrode potential. The intermediate thick slant line is the line of redox neutrality (see Table 2), which implies rH = 27,6 and rO = 27,9. This line intersects the vertical line of acid/base neutrality at a point of coordinates E_{OIR} = 0,402 V and pH = 7, which is the point of **absolute neutrality** in Pourbaix's words [15]. In other words, any electrode working under absolute neutrality conditions in aqueous solution at 25 °C will present a potential of 0,402 V. Passing from water to a water-rich solvent mixture, the pH scale range might change even dramatically, and the same might also happen to the single $E_{O|R}$ values but, at a given temperature, the relative distances between the three lines above (besides the value of the standard rH_S offered by the quinhydrone system), as well as their slope, will likely remain unchanged.

3 Instrumentation

As imposed by the presence of glass electrodes in the working cells for the rH measurements, for the readout of the cell pd's a high-input-impedance (> $10^{13} \Omega$) electrometric millivoltmeter is essential: obviously, a (digital or analog) pH meter of resolution 0,1 mV is appropriate. Of course, the scale graduation should account for the fact that an rH unit is one-half of a pH unit. A 1 mV error on the *E* measurement will cause an error of 0,034 in rH.

Another important point is the temperature control, to which the measuring cell should be submitted. A 1 degree error in the temperature control may cause a further 0,000 5 error in the pd value, with a cumulative error of 0,051 in rH. Obviously, for the operations of calibration and measure the temperature of cell should be the same.

Bibliography

- [1] L.Falciola, P.R.Mussini, and T.Mussini *Coll. Czech. Chem. Comm.*, 68, 1605-1620 (2003).
- [2] Clark W.M., Cohen B.: Public Health Repts. (U.S.), 38, 933 (1923).
- [3] Clark W.M.: Oxidation-Reduction Potentials of Organic Systems, William & Wilkins Co., Baltimore, Md, 1960.
- [4] D.J.G.IVES and G.J.JANZ, *Reference Electrodes Theory and Practice*, Academic Press, New York, 1961, pp.26-28.
- [5] R.G.Bates, *Determination of pH Theory and Practice*, 2nd edn., Wiley, New York, 1973, pp.12-14
- [6] D.J.G.IVES and G.J.JANZ, *Reference Electrodes Theory and Practice*, Academic Press, New York, 1961, pp.312-313.
- [7] D.ANTONINI, *Thesis*, Cod.501486, University of Milan, 2000.
- [8] P.R.MUSSINI and G.MEYER, GIT Fachzeitschrift für das Laboratorium 35, 197 (1991).
- [9] Veibel S.: J. Chem. Soc. 123, 2203 (1923).
- [10] R.G.Bates, Determination of pH Theory and Practice, 2nd edn., Wiley, New York, 1973, pp. 16-22.
- [11] Sørensen S.P.L., Biochem. Z. 21, 131 (1909).
- [12] D.J.G.IVES and G.J.JANZ, Reference Electrodes Theory and Practice, Academic Press, New York, 1961, pp.362-364,478-484.
- [13] B.B.OWEN, J. Amer. Chem. Soc. 54, 1758 (1932).
- [14] M.POURBAIX, N.DE ZOUBOV, and J.VAN MUYLDER: Atlas d'Equilibres *Electrochimiques*, Gauthier-Villars, Paris, 1963.
- [15] M.Pourbaix, Thermodynamics of Dilute Aqueous Systems, Arnold, London, 1949, p.38.
- [16] M.A.AMERINE and C.S.OUGH, *Wine and Must Analysis*, Wiley, New York, 1974.

The IEC would like to offer you the best quality standards possible. To make sure that we continue to meet your needs, your feedback is essential. Would you please take a minute to answer the questions overleaf and fax them to us at +41 22 919 03 00 or mail them to the address below. Thank you!

Customer Service Centre (CSC)

International Electrotechnical Commission 3, rue de Varembé 1211 Genève 20 Switzerland

or

Fax to: IEC/CSC at +41 22 919 03 00

Thank you for your contribution to the standards-making process.

Nicht frankieren Ne pas affranchir

Non affrancare No stamp required

RÉPONSE PAYÉE SUISSE

Customer Service Centre (CSC) International Electrotechnical Commission 3, rue de Varembé 1211 GENEVA 20 Switzerland

Q1	Please report on ONE STANDARD and ONE STANDARD ONLY . Enter the exact number of the standard: $(a, a, 60601, 1, 1)$			If you ticked NOT AT ALL in Question 5 the reason is: (tick all that apply)	
		,		standard is out of date	
				standard is incomplete	
				standard is too academic	
Q2	Please tell us in what capacity(ies) yo)U		standard is too superficial	
	bought the standard (tick all that appl	y).		title is misleading	
				I made the wrong choice	
	purchasing agent			other	
	librarian				
	researcher				
	design engineer		07	Please assess the standard in the	
	safety engineer		u ,	following categories, using	
	testing engineer			the numbers:	
	marketing specialist			(1) unacceptable,	
	other			(2) below average, (3) average	
				(4) above average.	
03	I work for/in/ac a:			(5) exceptional,	
Q.)	(tick all that apply)			(6) not applicable	
	(timeliness	
	manufacturing			quality of writing	•••••
	consultant			technical contents	
	government			logic of arrangement of contents	
	test/certification facility			tables, charts, graphs, figures	
	public utility			other	
	education				
	military				
	other		Q8	I read/use the: (tick one)	
04	This standard will be used for:			French text only	
44	(tick all that apply)			English text only	
				both English and French texts	
	general reference			both English and French texts	
	product research				
	product design/development				
	specifications		Q9	Please share any comment on any	
	tenders			aspect of the IEC that you would like	
	quality assessment			us to know.	
	certification				
	technical documentation				
	thesis				
	manufacturing				
	other				
Q5	This standard meets my needs:				
	(tick one)				
	not at all				
	noral an				
	foirly well				
	σλαυτιγ				

LICENSED TO MECON Limited. - RANCHI/BANGALORE FOR INTERNAL USE AT THIS LOCATION ONLY, SUPPLIED BY BOOK SUPPLY BUREAU.

ICS 19.080; 71.040.40