IEC 62396-2

Edition 1.0 2012-09

INTERNATIONAL STANDARD

Process management for avionics – Atmospheric radiation effects – Part 2: Guidelines for single event effects testing for avionics systems

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2012 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester.

If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office Tel.: +41 22 919 02 11 3, rue de Varembé Fax: +41 22 919 03 00

CH-1211 Geneva 20 info@iec.ch Switzerland www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

Useful links:

IEC publications search - www.iec.ch/searchpub

The advanced search enables you to find IEC publications by a variety of criteria (reference number, text, technical committee,...).

It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available on-line and also once a month by email.

Electropedia - www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing more than 30 000 terms and definitions in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical Vocabulary (IEV) on-line.

Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: csc@iec.ch.

Edition 1.0 2012-09

INTERNATIONAL STANDARD

Process management for avionics – Atmospheric radiation effects – Part 2: Guidelines for single event effects testing for avionics systems

INTERNATIONAL ELECTROTECHNICAL COMMISSION

PRICE CODE

ICS 03.100.50; 31.020; 49.060

ISBN 978-2-83220-389-7

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FΟ	REW	ORD		4
INT	ROD	UCTION	l	6
1	Scop	e		7
2	Norm	native re	eferences	7
3	Term	ns and d	efinitions	7
4	Abbr	eviation	s used in the document	7
5			EE data	
Ü	5.1	•	of SEE data	
	5.2	٠.	existing SEE data	
	J.Z	5.2.1	General	
		5.2.2	Heavy ion data	
		5.2.3	Neutron and proton data	
		5.2.4	Thermal neutron data	
	5.3	-	ng to perform dedicated SEE tests	
6			of existing SEE data for avionics applications	
	6.1		ility of SEE data	
	6.2		of existing SEE data that may be used	
	0.2	6.2.1	General	
		6.2.2	Sources of data, proprietary versus published data	
		6.2.3	Data based on the use of different sources	
		6.2.4	Ground level versus avionics applications	
	6.3	Source	es of existing data	
7	Cons		ns for SEE testing	
	7.1	Genera	al	21
	7.2		ion of hardware to be tested	
	7.3		ion of test method	
	7.4		ion of facility providing energetic particles	
		7.4.1	Radiation sources	
		7.4.2	Spallation neutron source	23
		7.4.3	Monoenergetic and quasi-monoenergetic beam sources	24
		7.4.4	Thermal neutron sources	25
		7.4.5	Whole system and equipment testing	25
8	Conv	erting t	est results to avionics SEE rates	26
	8.1	Genera	al	26
	8.2	Use of	spallation neutron source	27
	8.3	Use of	SEU cross-section curve over energy	27
	8.4	Measu	red SEU rates for different accelerator based neutron sources	30
	8.5		ce of upper neutron energy on the accuracy of calculated SEE rates;	30
Anr	nex A	(informa	ative) Sources of SEE data published before 2000	32
Bib	liogra	phy		33
			arison of Los Alamos, TRIUMF and ANITA neutron spectra with nics neutron spectra (JESD-89A and IEC 62396-1)	15
Fig	ure 2	– Variat	tion of high energy neutron SEU cross-section per bit as a function of	17

Figure 3 – Percentage fraction of SEU rate from atmospheric neutrons contributed by neutrons with $E < 10 \; \text{MeV}$	18
Figure 4 – Comparison of mono-energetic SEU cross-sections with Weibull and piece-wise linear fits	
Table 1 – Sources of existing data (published after 2000)	20
Table 2 – Spectral distribution of neutron energies	30
Table A.1 – Sources of existing SEE data published before 2000	32

INTERNATIONAL ELECTROTECHNICAL COMMISSION

PROCESS MANAGEMENT FOR AVIONICS -ATMOSPHERIC RADIATION EFFECTS -

Part 2: Guidelines for single event effects testing for avionics systems

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and nongovernmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62396-2 has been prepared by IEC technical committee 107: Process management for avionics.

This standard cancels and replaces IEC/TS 62396-2 published in 2008. This first edition constitutes a technical revision.

This first edition includes the following significant technical changes with respect to the technical specification IEC/TS 62396-2.

- a) Clause 5 information expanded including additional information in sections on heavy ion data, neutron and proton data and thermal neutron data.
- b) The neutron sources Clause 6 has been updated, Figure 1 now contains data on additional radiation simulators, and Figure 2 contains more recent data with results for feature sizes below 100 nm. A new Figure 3 contains data on low energy neutron (< 10 MeV) SEU percentage fraction.

- c) The sources of existing data (radiation SEE data) table has been split in to two tables: one for post 2000 sources and the other for pre 2000 sources which is now in Annex A.
- d) The Anita spallation neutron source has been added to Clause 7.
- e) A new subclause, 7.4.5, has been added on whole system and equipment testing.
- f) A new subclause, 8.4, provides a comparison between accelerator based neutron sources.
- g) A new subclause, 8.5, compares the influence of upper neutron energy for neutron sources.

The text of this standard is based on the following documents:

FDIS	Report on voting			
107/186/FDIS	107/192/RVD			

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 62396 series, published under the general title *Process management for avionics – Atmospheric radiation effects*, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- · withdrawn,
- · replaced by a revised edition, or
- · amended.

A bilingual edition of this document may be issued at a later date.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

INTRODUCTION

This industry-wide international standard provides additional guidance to avionics systems designers, electronic equipment component manufacturers and their customers to determine the susceptibility of microelectronic devices to single event effects. It expands on the information and guidance provided in IEC 62396-1.

Guidance is provided on the use of existing single event effects (SEE) data, sources of data and the types of accelerated radiation sources used. Where SEE data is not available considerations for testing are introduced including suitable radiation sources for providing avionics SEE data. The conversion of data obtained from differing radiation sources into avionics SEE rates is detailed.

PROCESS MANAGEMENT FOR AVIONICS – ATMOSPHERIC RADIATION EFFECTS –

Part 2: Guidelines for single event effects testing for avionics systems

1 Scope

This part of IEC 62396 aims to provide guidance related to the testing of microelectronic devices for purposes of measuring their susceptibility to single event effects (SEE) induced by atmospheric neutrons. Since the testing can be performed in a number of different ways, using different kinds of radiation sources, it also shows how the test data can be used to estimate the SEE rate of devices and boards due to atmospheric neutrons at aircraft altitudes.

Although developed for the avionics industry, this process may be applied by other industrial sectors.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 62396-1:2012, Process management for avionics – Atmospheric radiation effects – Part 1: Accommodation of atmospheric radiation effects via single event effects within avionics electronic equipment

IEC/TS 62396-3, Process management for avionics – Atmospheric radiation effects – Part 3: Optimising system design to accommodate the single event effects (SEE) of atmospheric radiation

IEC/TS 62396-4, Process management for avionics – Atmospheric radiation effects – Part 4: Guidelines for designing with high voltage aircraft electronics and potential single event effects

IEC/TS 62396-5, Process management for avionics – Atmospheric radiation effects – Part 5: Guidelines for assessing thermal neutron fluxes and effects in avionics systems

3 Terms and definitions

For the purpose of this document, the terms and definitions given in IEC 62396-1 apply.

4 Abbreviations used in the document

ANITA Atmospheric-like Neutrons from thlck TArget (TSL, Sweden)
BL1A, BL1B, BL2C Beam line designations at the TRIUMF facility (Canada)

BPSG Borophosphosilicate glass

CMOS Complementary metal oxide semiconductor

COTS Commercial off-the-shelf D-D Deuterium-deuterium

DRAM Dynamic random access memory

D-T Deuterium-tritium
DUT Device under test

E Energy

EEPROM Electrically erasable programmable read only memory

EPROM Electrically programmable read only memory

ESA European Space Agency

eV Electron volt

FIT Failures in time (failures in 10⁹ hours)

FPGA Field programmable gate array

GeV Giga electron volt

GNEIS Gatchina Neutron Spectrometer (Russia)

GSFC Goddard Space Flight Center

GV Giga volt (rigidity unit)

IBM International Business Machines

IC Integrated circuit

ICE Irradiation of Chips and Electronics
IEEE Trans. Nucl. Sci. IEEE Transactions on Nuclear Science
IUCF Indiana University Cyclotron Facility (USA)
JEDEC Solid State Technology Association

JESD JEDEC standard

JPL Jet Propulsion Laboratory

LANSCE Los Alamos Neutron Science Center (USA)

LET Linear energy transfer

LETth Linear energy transfer threshold

MBU Multiple bit upset (in the same word)

MCU Multiple Cell Upset
MeV Mega electron volt

NASA National Aeronautical and Space Agency
PIF Proton Irradiation Facility (TRIUMF, Canada)
PNPI Petersburg Nuclear Physics Institute (Russia)

PSG Phosphosilicate glass

QMN Quasi-monoenergetic neutrons

RADECS Radiations, effets sur les composants et systèmes.

RAM Random access memory

RCNP Research Center of Nuclear Physics (Osaka, Japan)

RVC Result of voting (IEC)
SBU Single Bit Upset

SDRAM Synchronous dynamic random access memory

SEB Single event burn-out SEE Single event effect

SEFI Single event functional interrupt

SEGR Single event gate rupture
SEL Single event latchup
SEP Solar energetic particles

SER Soft error rate

SET Single event transient SEU Single event upset

SHE Single event induced hard error

SRAM Static random access memory

SW Software

TID Total ionizing dose

TRIUMF neutron facility (TRIUMF, Canada)
TRIUMF Tri-University Meson Facility (Canada)
TSL Theodor Svedberg Laboratory (Sweden)

WNR Weapons Nuclear Research (Los Alamos USA)

5 Obtaining SEE data

5.1 Types of SEE data

The type of SEE data available can be viewed from many different perspectives. As indicated, the SEE testing can be performed using a variety of radiation sources, all of which can induce single event effects in ICs. In addition, many tests are performed on individual devices, but some tests expose an entire single board computer to radiation fields that can induce SEE. However, a key discriminator is deciding on whether existing SEE data that may be used is available, or whether there really is no existing data and therefore a SEE test on the device or board of interest has to be carried out.

5.2 Use of existing SEE data

5.2.1 General

The simplest solution is to find previous SEE data on a specific IC device. Data may be available on SEE caused by heavy ions, protons, high-energy neutrons, or thermal neutrons. Heavy-ion data is normally only applicable to space applications, where direct ionization by the primary cosmic ray flux is of concern. However, heavy ion data can be useful for screening purposes, as described in 5.2.2. Proton data is usually also gathered for space applications, where primary cosmic rays and trapped particles are of concern. However, high-energy protons provide a good proxy for neutrons in SEE measurements, as they undergo very similar nuclear interactions with device materials. Therefore, both existing neutron data and existing proton data may be applicable to the evaluation of SEE rates in a device of interest, as described in section 5.2.3. Low-energy ("thermal") neutrons can also cause SEE in some devices but such data is only available on a very small number of devices (see section 5.2.4) and it involves neutron interactions with boron-10 rather than silicon.

5.2.2 Heavy ion data

An important resource that can be utilized to eliminate devices is the results from heavy ion SEE testing carried out to support space programs (~80 % of the devices tested for space applications are tested only with heavy ions). This heavy ion SEE data can be used to calculate SEE data from high energy neutrons and protons by utilizing a number of different calculation methods, but this requires the active involvement of a radiation effects expert in the process. Heavy ion testing is characterized by the LET (linear energy transfer) of the ions to which the ICs are exposed. The LET is the energy that can be deposited per unit path length, divided by the density (units of MeV·cm²/mg). With neutron SEE, secondary particles or recoils created by the neutron interactions act as heavy ions, and the highest possible LET of neutron-induced recoils in silicon is ~15 MeV·cm²/mg [1, 2]¹. Thus, any device tested with heavy ions that has a LET threshold > 15 MeV·cm²/mg will be immune from neutron-induced SEE. In a recent paper summarizing SEE testing at NASA-GSFC [3], 21 ICs of various types were tested with only heavy ions and eight of them (~40 %) had LET thresholds > 15 MeV·cm²/mg for diverse SEE effects.

However, for the rare commercial SRAMs that are susceptible to SEL from heavy ions [4], this susceptibility can be increased due to the presence of small amounts of high Z materials

¹ Numbers in square brackets refer to the Bibliography.

within the IC, e.g., tungsten plugs, because higher Z recoils are created which can cause SEE reactions due to their higher values of LET. The high Z materials also lead to higher proton and neutron SEL cross-sections due to the neutron/proton reactions producing these recoils with higher LET and energy. Therefore heavy ion SEL cross-sections need to be examined carefully for applicability to proton-neutron SEL susceptibility caused by embedded high Z materials in the SRAMs. A suggested conservative value of LET threshold above which a device can be considered immune from SEL induced by neutrons is 40 MeV·cm²/mg [4]. However, this caution does not apply to the primary rationale given above for eliminating some devices from consideration for neutron SEE sensitivity based on heavy ion SEE testing, since only some devices incorporate these higher Z materials and the limitation applies to SEL.

Heavy ion SEE data should not be used for application to the atmospheric neutron environment for calculation of neutron cross-section, except by scientists and engineers who have extensive experience in using this kind of data. Unless otherwise stated explicitly, when SEE data is discussed in the remainder of this international standard, it refers only to single event testing using a neutron or proton source, not to the results from testing with heavy ions.

5.2.3 Neutron and proton data

If SEE data on a device of interest is found from SEE tests using high energy neutrons or protons, it will still require expertise regarding how the data is to be utilized in order to calculate a SEE rate at aircraft altitudes. Data obtained by IC vendors for their standard application to ground level systems are often expressed in totally different units, FIT units, where one FIT is one error in 10⁹ device hours, which is taken to apply at ground level.

IC devices are constantly changing. In some cases, devices which had been tested, become obsolete and are replaced by new devices which have not been tested. The fact that a device is made by the same IC vendor and is of the same type as the one it replaced does not mean that the SEE data measured in the first device applies directly to the newer device. In some cases, small changes in the IC design or manufacturing process can have a large effect in altering the SEE response, but in other cases, the effect on the SEE response may be minimal.

5.2.4 Thermal neutron data

There is little data on thermal neutron cross-section. However a number of the spallation neutron sources including TRIUMF, TSL and ISIS contain a substantial percentage of thermal neutrons within the high energy beam. Using thermal neutron filters or time of flight it is possible at such sources to determine thermal neutron cross-section. In addition there are a number of dedicated thermal neutron sources and these are listed in IEC 62396-1:2012.

A continuing problem with the existing SEE data is that there is no single database that contains all of the neutron or proton SEE data. Instead, portions of this kind of SEE data can be found published in many diverse sources. The SEE data in the larger databases is mainly on much older devices, dating from the 1990s and even 1980s, and is primarily from heavy ion tests that were performed for space applications and not from testing with protons and neutrons.

5.3 Deciding to perform dedicated SEE tests

If existing SEE data is not available, for any one of the many reasons discussed above and which will be further expanded upon below, then there is no real alternative but to carry out one's own SEE testing. The advantage of such a test is that it pertains to the specific device or board that is of interest, but the disadvantage is that it entails making a number of important decisions on how the testing is to be carried out. These pertain to selecting the most useful test article (single chip or entire board), nature of the test (static or dynamic (mainly applicable to board testing), assembling a test team, choosing the facility that provides the best source of neutrons or protons for testing, scheduling and performing the test, coping with uncertainties that appear during the test and, finally, using the test results to

calculate the desired SEE rate for avionics. Many of these issues will be discussed in the following clauses.

6 Availability of existing SEE data for avionics applications

6.1 Variability of SEE data

Because of the diverse ways that SEE testing is carried out, and the multitude of venues for how and where such data is published, the availability of SEE data for avionics applications is not a simple matter.

6.2 Types of existing SEE data that may be used

6.2.1 General

SEE data can be derived from a number of different kinds of tests, and all of the differences between these tests need to be understood in order to make comparisons meaningful. Although there are many different types of single event effects, for the purposes of this international standard, the focus is on three of them: single event upset (SEU), single event functional interrupt (SEFI) and single event latchup (SEL). SEU pertains to the energy deposited by an energetic particle leading to a single bit being flipped in its logic state. The main types of devices that are susceptible to SEU are random access memories (RAMs, both SRAMs and DRAMs), field programmable gate arrays (FPGAs, especially those using SRAMbased configuration) and microprocessors (the cache memory and register portions). A SEFI refers to a bit flip in a complex device that results in the device itself or the board on which it is operating not functioning properly. A typical example is an SEU in a control register, which can affect the device itself, but can also be propagated to another device on the board, leading to board malfunction. SEL refers to the energy deposited in a CMOS device that leads to the turning on of a parasitic p-n-p-n structure, which usually results in a high current in the device and a non-functioning state. High energy neutrons in the atmosphere can induce all of these effects: SEU, SEFI and SEL. Where semiconductor devices are operated at high voltage stress (200 V and above) they may be subject to single event burn-out, SEB or single event gate rupture, SEGR; these effects are covered in detail in IEC/TS 62396-4.

One of the important simplifying assumptions to be used in this international standard is that, for single event effects, including SEU, SEFI and SEL, the response from high energy protons, i.e., those with $E>100\,$ MeV, is the same as that from high energy neutrons of the same energy. The SEE response is generally measured in terms of a cross-section (cm²/dev), which is the number of errors of a given type divided by the fluence of particles to which the device was exposed. Therefore, for the SEU, SEFI and SEL cross-sections determined by measurements made with high energy protons can be used as the cross-sections for high energy atmospheric neutrons. This is far more than an assumption, since it has been demonstrated by direct measurement in many different devices see [5, 6, 7, 8, 9] and IEC 62396-1. In these references, SEU was measured in the same devices using monoenergetic proton beams and using the neutron beam from the Weapons Neutron Research (WNR) facility at the Los Alamos National Laboratory. The energy spectrum of the neutrons in the WNR is almost identical to the spectrum of neutrons in the atmosphere. An estimate of the SEE rate at aircraft altitudes in a device can be obtained by the simplified equation:

SEE rate per device = 6 000 $[n/cm^2 \cdot h] \times avionics$ SEE cross-section $[cm^2 \text{ per device}]$ (1)

Here, the integral neutron flux in the atmosphere, E > 10 MeV, is taken to be 6 000 n/cm²·h, the approximate flux at 40 000 ft (12,2 km) and 45° latitude as in IEC 62396-1, this flux is suitable for devices with feature size above 150 nm. This shows the importance of the SEE cross-section. As indicated above, the avionics SEE cross-section is taken to be the SEE cross-section obtained from SEE tests with a spallation neutron source such as the WNR, and also with a proton or neutron beam at energies > 100 MeV. The simplified approach of Equation (1) is used in IEC 62396-1 and is the nominal flux under the above conditions. For

devices with feature size below 150 nm the relevant neutron flux will be higher than $6\,000\,\text{n/cm}^2$ -h because the threshold energy will be lower than 10 MeV, therefore the threshold energy (and flux) used for estimation must be clearly shown and validation demonstrated, see IEC 62396-1.

A more elaborate approach for calculating the SEE rate is to utilize a number of measurements of the SEE cross-section as a function of neutron or proton energy, and integrate the curve of the SEE cross-section over energy with the differential neutron flux. The details for this approach are given in the standard JESD-89A [10], although the neutron flux given in this standard is at ground level and would have to be multiplied by approximately a factor of 300 to make it relevant to avionics applications (see 6.2.3).

Thus the data that is most valuable for estimating the SEE rate in avionics is from SEE crosssection measurements made with: a) a spallation neutron source such as the WNR, b) a monoenergetic proton beam and c) a quasi-monoenergetic neutron (QMN) beam. Other SEE data that are also valuable are SEU cross-sections made with a monoenergetic 14 MeV neutron beam. Based on comparisons of SEU cross-section measurements with a 14 MeV neutron beam and the WNR, the WNR SEU cross-section is approximately a factor of 1,5 to 2 higher than the 14 MeV SEU cross-section for relatively recent devices [7], (feature size < 0.5 µm), and a factor of 4 times higher for older devices [8]. For some of the very latest devices, the factor is close to 1. In general, there are a number of spallation neutron facilities around the world for neutron soft error rate testing, the accuracy of these is considered in references [11, 12]. Calculation of soft-error rate depends largely on the combination of the device and the facility to be used. There does need to be some kind of practical threshold energy to determine the neutron flux, but the threshold cannot be a fixed value and generally decreases as scaling of device proceeds. The value of "10 MeV" threshold has been used for devices with geometry above 100 nm, however the threshold energy used for neutron flux determination must be clearly shown and should be validated with reference to the device technology.

6.2.2 Sources of data, proprietary versus published data

As indicated above, SEE cross-section measurements that are relevant to avionics SEE rates are being made by a variety of different groups. These include:

- a) Space organizations that use only monoenergetic proton beams for their SEE testing;
- b) IC vendors who use neutron sources to measure the upset rate at ground level [which they refer to as the soft error rate (SER), rather than the SEU rate, although the terms have the same meaning];
- c) Avionics vendors who use neutron sources to measure the upset rate at aircraft levels.

Generally, SEE data taken and reported by government agencies contains most if not all of the relevant information, including identifying the specific IC devices tested and providing the measured SEU cross-sections in unambiguous units. This applies to most of the proton data taken and reported by NASA in the open literature by the NASA centres at GSFC and JPL. GSFC and JPL invariably publish almost all of the proton SEE data that they take. However, even though they disseminate essentially all of the results from the proton SEE testing that they carry out, this is data that is usually reported in the open literature in an inclusive compilation that contains results from SEE testing with both heavy ions and protons, thus the proton SEE data has to be carefully sought out. Examples of the most recent NASA-GSFC compilations of SEE testing containing proton SEE test results are given in [13, 14, 15, 16], and examples of JPL reports of SEE testing containing proton SEE test results are given in [17, 18, 19]. Other governmental agencies do not necessarily publish the results from all of the proton SEE tests that they perform.

Data from the other sources, primarily private companies, is not nearly as accessible. IC vendors perform a large number of tests, but only a small fraction of that data is reported upon in the open literature. Furthermore, when the SEE data from IC vendors is published, the results are often disguised, so that the identity of the devices tested or the part number are usually hidden by using an arbitrary designation and the results are expressed in units

that are ambiguous at best and often of little use quantitatively. Sometimes, the data is expressed in FIT units, which means errors per 10 device hours; however, this does not incorporate information on how many bits are included in the device. If only the FIT value is given, this can be converted into a SEE cross-section by using the FIT definition and dividing by 13 (13 n/cm 2 -h is the flux of high energy neutrons (E > 10 MeV) at ground level in New York City, which is the value recommended by the JESD-89A standard [10] and so most often used.) Thus, FIT×10 $^{-9}$ /13 gives the SEE cross-section in cm 2 /device.

Some reports give the SER rate in units of FIT/Mbit, which allows the SEE cross-section per bit to be calculated by multiplying as follows (FIT/Mbit) \times 10⁻¹⁵/13 to obtain the SEE cross-section in cm²/bit. Other papers report the FIT value in arbitrary units which allows the authors to show how the FIT rate varies with a particular parameter (e.g., applied voltage), but it allows no quantitative assessment to be made of the SEE cross-section. Examples of such reports using FIT rates are given in [6], [20, 21, 22, 23].

Most of the SEE data that has been discussed comes from the SEE testing of individual components, placing those devices in a beam of neutrons or protons and monitoring changes in the status of the device for errors. A typical procedure is to fill a portion of memory in a RAM with a specified bit pattern and monitor that memory for bit flips in one or more addresses. However, some tests are done using an entire board to monitor when an error has occurred. In this case, the malfunction of the board is an indication that an error has occurred, and such an error is referred to as a SEFI, but the functional interruption is in the board rather than the actual device being irradiated. If the beam is collimated such that only one or two devices are exposed to the particles in the beam during each test, the likely source of error is a SEE in those devices. However, this is a dynamic type of test and it may be that the device in the beam experienced the initial error which was propagated to another device on the board, and faulty performance of the latter device is what led to the board malfunctioning.

There are some reports of such board level tests in the open literature, but they are less common. NASA-JSC has a requirement to perform such testing on all electronic boards that will be used on manned space missions. This testing is carried out with a beam of protons, and while it is recorded in NASA-JSC reports, these reports are not widely available, examples are given in [24, 25, 26]. Furthermore, the main purpose of the test is to screen all of the devices for the potential of a hard error induced by the protons, such as a single event latchup, so recoverable errors are not analyzed in great detail in these reports. Other government agency groups also perform such board level SEE testing, and the results of these tests are often reported in the literature, but are not included in any organized database. In addition, private companies carry out such board level testing, often for the benefit of specific programs for avionics applications (neutron tests for avionics vendors) or space applications (proton tests for low earth orbit spacecraft contractors), and this data is rarely reported in the open literature. By 2005 the number of user groups had grown to more than 25, but the ratio of test groups that published their results had not changed much.

6.2.3 Data based on the use of different sources

6.2.3.1 Obtaining SEE data using radiation sources

In general, all SEE testing is carried out using an accelerator-based source of neutrons or protons, meaning that the device or board to be tested will receive a larger fluence of particles over a given period of time in the test environment compared to the fluence it would receive during that same time period in the intended vehicle in the atmosphere or space. In the past, testing was usually carried out with only one type of source, but in recent times, some engineering groups have been exposing devices to more than one type of particle environment and comparing the SEE responses. Two main types of sources have been used for this SEE testing for avionics applications, neutrons and protons, although there are a variety of different kinds of neutron sources that have been used, as will be discussed below.

6.2.3.2 Data obtained using neutron sources

Single event effects, in particular, single event upset, can be induced by neutrons in two distinct energy ranges, at high energies (> 1 MeV) and at very low energies (thermal neutron energy, 0,025 eV). High energy neutrons cause the SEU by the nuclear reaction with device materials, causing energetic ions to be emitted. It is the energy from these ions which cause ionization in the semiconductor lattice, leading to the upset. Neutrons with energies above about 10 MeV are of the greatest concern. This is because many of the interactions which lead to SEE have threshold energies in the region between 2 MeV and 10 MeV in silicon. oxygen and other typical device materials [27, 28, 29] because elastic interactions (which have no threshold energy) are more effective at higher energies, and also because the natural neutron spectrum has a minimum around 10 MeV [30, 31, 32, 33]. Nonetheless, neutrons with lower energies (e.g. 3 MeV or below) can cause SEE [28, 34], albeit with much reduced probability. Estimates of the SEU contribution by neutrons below 10 MeV in electronics technologies with geometry greater than 0,2 μm are below 10 %, but for lower feature sizes this fraction increases [28, 35]. This is consistent with measurements made with monoenergetic neutrons on devices of the mid 1990s (feature sizes above 0.5 μm), showing that the SEU cross-section at 3 MeV for these older devices was about a factor of 100 lower than that at 14 MeV for most of the SRAMs tested [36]. However, for more recent devices, especially those with feature sizes less than 0,2 µm and even down to 45 nm, the contribution of neutrons with energies below 10 MeV is expected to be in the range 8 % to 10 % [28].

For high energy neutrons, there are three different types of sources:

- a) a spallation neutron source which has neutrons with energies over a wide energy spectrum similar to that of the atmospheric neutrons;
- b) a quasi-monoenergetic neutron (QMN) source that has a peculiar energy spectrum, roughly half of the neutrons are at a peak energy and the other half are evenly distributed between close to the peak and ~1 MeV; and
- c) a 14 MeV neutron generator, the only source that is close to being truly monoenergetic.

The WNR at Los Alamos which was mentioned previously is the best example of a spallation neutron source, although the neutron irradiation facility at TRIUMF (Tri University Meson Facility, in Vancouver, Canada) is another such source. Since the WNR facility was upgraded around the year 2000, it is sometimes referred to by its new name, the ICE (Irradiation of Chips and Electronics) House [37]. Figure 1 compares the neutron spectra from Los Alamos (the ICE House), the neutron facility at TRIUMF [38], ANITA at TSL [39] and the atmospheric neutron spectrum at ground level [30, 31] and with the avionics neutron spectrum (IEC 62396-1).

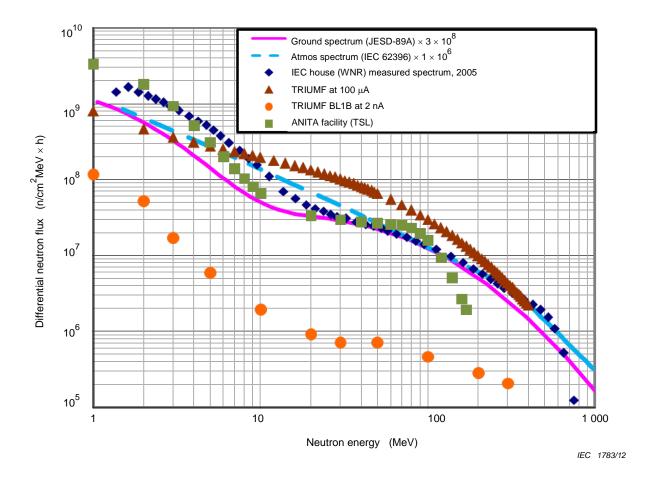


Figure 1 – Comparison of Los Alamos, TRIUMF and ANITA neutron spectra with terrestrial / avionics neutron spectra (JESD-89A and IEC 62396-1)

SEU data on devices that were exposed to the WNR neutron beam have been published in a number of papers [6, 7, 8], [40, 41], however, many more devices have been tested at Los Alamos and those results are considered to be proprietary. These results have not been published, nor are they expected to be published. Reference [42] indicates that in the year 2001, at least eight different groups carried out SEE testing, and of these, it is estimated that only two of the testing groups published some of their results, an American national laboratory and a university. The six private companies, both IC manufacturers and avionics vendors, kept their test results proprietary.

The TRIUMF facility in Canada, called the TNF (TRIUMF Neutron Facility) also provides a spallation neutron source. Until 2004, it had received limited use, but since that time, a number of papers on SEU results from the testing of IC devices at the TNF have been published [38].

A spallation neutron facility PNPI, Petersburg Nuclear Physics Institute has been set up in St Petersburg, Russia to study the effect of high energy neutrons on electronic devices. The high energy neutrons are produced by a 1 000 MeV synchrotron, the GNEIS spectrometer is used to provide a neutron beam that matches that of the atmospheric radiation [43].

At TSL in Uppsala, Sweden, the facility has been developed to produce a pseudo white neutron source called ANITA (Atmospheric-like Neutrons from thick TArget) [39]. The high energy (about 200 MeV) protons interact with a Tungsten target to produce spallation neutrons. The facility was built in 2007, provides neutrons with atmospheric-like spectrum up to the highest energy of \sim 180 MeV (see Figure 1). The neutron flux above 10 MeV is \sim 106 times the atmospheric one at 39 000 ft [39]. A correlation has been established between the

SEE data obtained at ANITA and LANSCE [39], which has enabled the wide use of the ANITA facility for SEU testing of modern DUTs (SRAMs, microprocessors, high-voltage devices, entire servers, etc.) The beam has a lower fraction of high energy neutrons (above 100 MeV) than the LANSCE neutron field. As a consequence, a correction may be required, especially in case of testing for SEL or other SHE phenomena (see 8.5).

The RCNP Research Center of Nuclear Physics in Osaka, Japan provides a spallation neutron beam with energy up to 400 MeV and maximum proton beam energy of 400 MeV that can be used for electronic component test [44].

The ISIS facility at Harwell, UK can provide high energy neutrons up to 800 MeV, there are two target stations. The Vesuvio (Target station 1) beam line [45] is currently available but the high energy neutron flux content is lower than in atmospheric radiation. A new facility ChipIR at ISIS Target station 2 will produce neutrons that have a good correlation with the atmospheric radiation spectrum and will be able to produce a collimated beam for component test and a flood beam for equipment test [46].

There are a number of quasi-monoenergetic (QMN) neutron sources around the world, including some in the United States of America, but until recently they had not been used for testing microelectronics for SEE. The site with the most experience with such tests is the Theodor Svedberg Laboratory (TSL) at Uppsala University, Uppsala, Sweden [47]. A few papers have been published reporting on the results of microelectronics devices being exposed to the TSL neutron beam [9], [48, 49]. Methodologies have been developed for extracting SEU cross-section data at the pseudo-peak energy [48, 49]. In addition, a similar facility has been operating in Japan at Tohoku University [50] which also has been used to make some SEU measurements. A different methodology from that of the Swedish researchers has been developed for extracting SEU cross-section data at the pseudo-peak energy [51, 52].

The facilities at TRIUMF PIF and TSL ANITA are capable of producing high energy neutron beams with large area; these beams are suitable for the accelerated SEE testing of complete equipment and systems.

In Figure 2, SEU measurements made by several different groups at these various facilities are combined to illustrate how the high energy SEU cross-section per bit for SRAMs has varied with feature size over the last five or more years. The trend that is illustrated in Figure 2 shows a consistency within an approximate plateau region of 10 to 30 times between maximum and minimum values, however it cannot predict how this might change in the future, as feature sizes continue to decline below 100 nm.

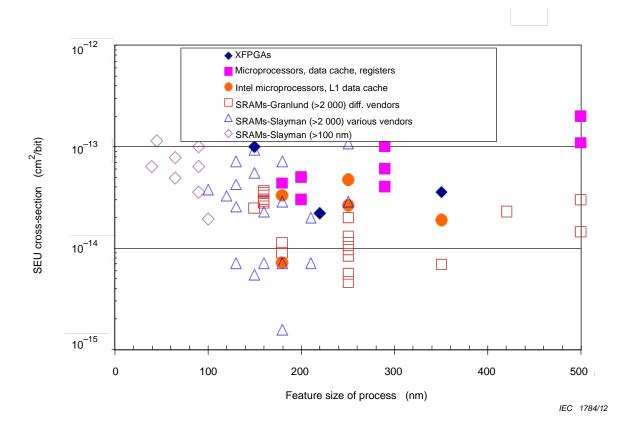


Figure 2 – Variation of high energy neutron SEU cross-section per bit as a function of device feature size for SRAM and SRAM arrays in FPGA and microprocessors

The third kind of high-energy neutron facility is one that provides essentially monoenergetic neutrons, and 14 MeV, from the D-T reaction, is the highest energy of such a monoenergetic neutron beam. A number of facilities in the United States and abroad have such neutron generators. Tests on SRAM devices fabricated in the mid-1990s indicated that the SEU response per bit from a spallation neutron source was 3 to 5 times higher than from a 14 MeV neutron source [8]. Tests on more recent devices have shown a closer agreement in the SEU response between a spallation neutron source and 14 MeV neutron sources [7], [9]. This indicates that for current, low voltage devices, 14 MeV neutrons provide a fairly good simulation of the atmospheric neutrons with respect to inducing SEUs. However, 14 MeV neutrons do not provide a good simulation with respect to inducing single event latchup (SEL) [53].

In 2006 and 2007, it has been shown [54, 28] that for devices with feature sizes smaller than 0,25 μm [39] the SEU susceptibilities to neutrons with lower energies, between 3 MeV to 10 MeV, are much greater than was the case in older technology devices, see figure 3. Previously, the contribution of such lower energy neutrons had been largely ignored, since it was very small. For future devices with even smaller feature sizes (< 90 nm), the contribution to the SEU rate from these lower energy neutrons or protons is likely to grow, and so SEU testing of such devices using neutron sources covering this energy range [53, 54] may be needed to accurately assess the SEU rate, additional references are [35], [55, 56].

Furthermore, the extrapolation of data points in curves that display trends in SEE susceptibility, such as Figure 2, to future reduced feature sizes needs to be updated over time with data on newer devices to be assured of bounding the SEE susceptibilities of future devices. The situation of the higher SEU susceptibility to neutrons in the (3 to 10) MeV range is one such example of how SEE susceptibility trends change with decreasing feature size

and a second is the increase in the susceptibility to MCU with decreasing feature size (see figure G.4 in Annex G of IEC 62396-1:2012).

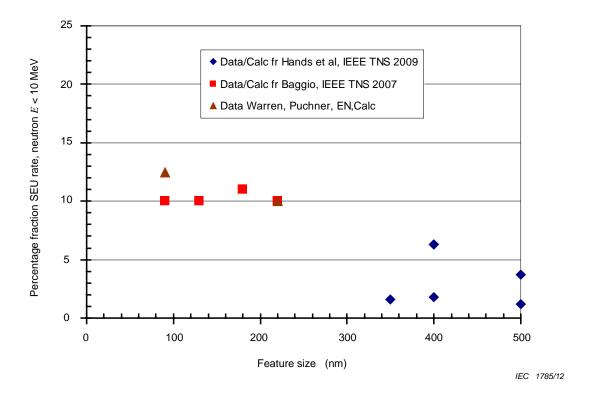


Figure 3 – Percentage fraction of SEU rate from atmospheric neutrons contributed by neutrons with E < 10 MeV

There is a fourth type of neutron facility that should be considered for testing devices for inducing SEUs: that of thermal neutrons. Thermal neutrons cause SEUs through the neutron reactions with the isotope ¹⁰B, boron-10, which can be present in high enough concentrations to be of concern mainly as a constituent of the glassivation layer above an IC, i.e., in BPSG (borophosphosilicate glass) (see IEC/TS 62396-5). Many devices use a different type of glassivation (e.g., PSG) and in some cases, the boron in the BPSG is ¹¹B, boron-11, so there are no ¹⁰B reactions leading to SEU from the reaction products (alpha particle and ⁷Li) of the ¹⁰B interaction. A limited amount of data has been published on the SEU cross-section induced by thermal neutrons [9], [22], [57, 58, 59]. Boron may also be used as a dopant in the semiconductor material and as feature sizes of state of the art devices continue to shrink below 100 nm thermal upset from the use of boron-10 as a dopant may become significant.

6.2.3.3 Data obtained using proton sources

It was demonstrated over 30 years ago [60] that high energy protons cause SEUs in microelectronics. It was also recognized that at high energies, the protons, even though they are charged particles, cause the upsets by the same mechanism as the high energy neutrons, by nuclear reactions with the silicon, rather than by direct ionization in the silicon. However for the smaller geometries below 100 nm there is evidence of direct ionization by low energy protons [61]. Proton SEU cross-sections have therefore been published over the years, but the effectiveness of the low energy protons in causing upsets has increased over time, as the applied voltage to the ICs has decreased below 5 V and feature size has reduced. Thus, for DRAMs made during the 1980s and tested with protons, the SEU cross-section decreased by more than an order of magnitude for proton energies < 50 MeV [62, 63]. For more recent devices, the SEU cross-section has generally not decreased very much with energy, the

cross-section due to 50 MeV protons being only about a factor of 2 higher than the cross-section due to 14 MeV neutrons [7]. A very useful compendium of SEU cross-sections in more than 120 different SRAMs and DRAMs was compiled by ESA in 1997 [64], mostly on 5 V devices, but a few at 3,3 V. However, few if any, of these devices are used today. In contrast, many other papers in the open literature today contain measured proton SEU response data e.g. Coy Kouba, [65] where many devices were tested with 200 MeV protons at IUCF for NASA JPL. There are many references on proton testing and there is a summary each year from NASA GSFC with some proton test results.

6.2.4 Ground level versus avionics applications

There are a number of important differences between the SEU considerations for devices in avionics applications and those on the ground. First and foremost, the neutron flux in the atmosphere is much higher than it is on the ground, so the SEU rate is going to be proportionally higher. The nominal difference is taken to be a factor of 300 between the neutron flux at 40 000 ft (12,2 km) and on the ground, however the difference between flux at 40 000 ft (12,2 km) and sea level is nearer to 450 times. As explained in JESD-89A and in various technical papers [66, 67], there are two main sources of upsets in devices on the ground, the atmospheric neutrons and alpha particles from trace amounts of radioactive materials within the IC package. As the nature of IC packaging has evolved over the years, the specific components responsible for most of the alpha particle emissions have changed. Today, the major source is the lead in solder bumps, but because there is a movement to eliminate the use of lead in ICs, this too may change, although the replacement solder material (e.g., tin-silver-copper or tin-silver-bismuth) may also emit low levels of alpha particles. Therefore, the alpha particle problem will not be going away, but changing.

At the ground level, for some devices, the SEU or SER rate due to the alpha particles from the IC package may be similar to that from the atmospheric neutrons. For other devices, the neutrons are the main source of the upsets. However, in avionics, with the neutron flux in the atmosphere being more than 300 times the neutron flux on the ground, the SEU rate from the alphas emitted by the package is very small compared to the rate from the neutrons. Thus, the alpha particles from the IC package can be neglected as a source of upsets for avionics applications.

As discussed in 6.2.2, for most ground level applications, the upset rate is quantified in terms of the FIT rate, number of upsets in a device in 10⁹ device hours. The reason for this is that the testing and analysis is being done primarily by IC vendors and not by companies that sell ground level systems. That has been changing over the last five years, especially after the possibility of cosmic ray neutrons causing upsets was publicized in the general press [68]. This occurred with the article in Forbes magazine of November, 2000 that reported that some servers were having problems, with dozens of machines crashing due to bit flips in the SRAM used for the L2 cache memory which were caused by cosmic rays or alpha particles. Companies in the server market received a great deal of adverse publicity and hundreds of thousands of people became aware of the fact the cosmic rays can cause errors in memory chips. In this case, the problem was amplified because a server manufacturer initially blamed the vendor of the SRAMs [69].

Companies in the server market have become very involved in neutron-induced upsets, testing devices and systems to quantify the rates and designing error correcting schemes to protect their systems against individual errors. The testing they perform is generally considered proprietary and so the results from these tests are not available; this applies to the testing of both individual devices and entire computer boards.

For ground level applications, it is likely that the IC vendors perform more neutron testing than the server vendors, and their testing is almost always on individual devices. Nevertheless, their SEU or SER results invariably remain proprietary. In some cases, they do publish their results, and in that case, the upset information is expressed in FIT units, with the identity of the individual devices that were tested hidden by means of generic designations (e.g., part A, part B1, etc.). When the data is published by the IC vendors, it is often presented at a particular annual meeting, the International Reliability Physics Symposium (IRPS). Examples

of recent IRPS papers that contain information related to SEUs induced by the atmospheric neutrons, although expressed in units that may not be directly usable, are given in [21, 22, 23], and [52]. Additionally some neutron test data is available from some companies in the server market [73, 74, 75].

There is one group of IC vendors who are more open about their SEU testing results. These are two microelectronics manufacturers who make FPGAs (field programmable gate arrays) including SRAM based and flash (non-volatile) based FPGA types. Examples of some of the papers that they have published containing relevant SEU information are given in [69, 70, 71].

6.3 Sources of existing data

6.2.1, 6.2.2 and 6.2.3 referred to diverse references in the open literature that contain SEU cross-section information from tests carried out with neutron and proton sources. In Table 1 below, descriptions of the SEU information contained in some of these references are compiled, in particular those with the largest amount of data.

Table 1 – Sources of existing data (published after 2000) (1 of 2)

Device tested or listed	Particle type, energy	Data contained	Ref.	Publ. Year	Comments
a) SEU: 18 SRAMs, 6 FPGA, 7 μprocess b) SEFI: 6 FPGA, 2 μprocess c) SEL 3 SRAM	WNR neutrons, 14 MeV neutrons, qmn neutrons and high energy protons	 a) SEU cross-section, cm²/bit b) SEFI cross-section, cm²/dev c) SEL cross-section, cm²/dev 	[76]	2010	Compilation of measured data from 22 separate references; most of devices identified by part number; includes measured cross-sections for devices using different sources (neutron, protons)
 a) SEU, MCU and SEFI in 15 DRAMS b) SEU various SRAMs (0,1- 0,25 μm) 	WNR neutrons	SEU, MCU cross- sections- units of FIT/bit, SEFI, units of FIT/dev	[77]	2007	Plots of SEU and SEFI (>1000 cell upsets) in DRAMs and SEU in SRAMs based on data provided by others
a) SEU in 14 SRAMs, SEL in 2 SRAMs	Neutrons: WNR, TRIUMF, IUCF (LENS), thermal, Protons high energy	SEU cross-section, cm ² /bit, SEL cross- section, cm ² /dev	[78]	2006	Plots of cross-sections for 6 older identified SRAMs and 8 newer (unidentified) SRAMs
SEU in 14 SRAMs	TRIUMF neutrons (includes thermal)	SEU cross-section, cm ² /bit (atmospheric neutron spectrum, thermal)	[59]	2006	Devices and details identified
SEU in 9 SRAMS	WNR, qmn neutrons, high energy protons	SEU cross-sections units of FIT/Mbit,	[79]	2006	Devices and details identified
9 SRAMs, 1 flash memory	14 MeV neut., 250 MeV prot.	SEU and SEL (prot) in cm ² /dev	[80]	2006	All devices had SEU, 4 SRAMs exhibited SEL
SEL in 5 SRAMs	High energy protons	SEL cross-section in units of cm²/dev	[4]	2005	Device details but not part numbers, effect of temp.
SEU in FPGAs	High energy protons	SEU in config. bits and Block RAM, cm ² /bit, SEFI: cm ² /dev	[81]	2004	Two different Virtex II FPGAs tested
8 SRAMs (0,14 to 0,5 μm)	High energy proton and WNR neutron	SEU cross-section, cm ² /bit	[7]	2004	Devices not identified; SEU X- Stns from WNR and from proton data

Table 1 (2 of 2)

Device tested or listed	Particle type, energy	Data contained	Ref.	Publ.	Comments
listeu	energy			Year	
6 SRAMs	High energy proton and neutron 14 MeV and thermal neutron	SEU cross-section, cm ² /bit	[9]	2004	Devices identified; SEU X-Stns from high energy proton and neutron 14 MeV and thermal neutron data
6 SRAMs (0,18, 0,13, 0,09 μm)	150 MeV protons	SEU cross-section, arbitrary units	[21]	2004	Test devices, vendor not identified, SOI and bulk
10 SRAMs	WNR,QMN neutrons	SEU cross-section, cm ² /bit (qmn), SER (arb. Units) compare WNR with qmn	[49]	2004	Devices and details identified mono-energetic SEU X-Stns derived from measurements
FPGA, 4 sections tested	High energy protons	SEU cross-section (cm²/bit), SEFI cross-section (cm²/dev)	[74]	2004	Device and portions of device (configuration memory block memory power-on-reset and external ports) identified
6 SRAMs (0,25, 0,13, 0,09 μm)	WNR neutrons	SER rate, FIT/Mbit	[20]	2003	Test devices, SOI and bulk, from two vendors.
24 SRAMs, 6 feature sizes	WNR neutrons	SER, error/bit•h at 40 000 ft (12,2 km)	[41]	2003	Devices and 4 vendors not identified
SEL in 4 SRAMs	WNR	SEL in units of FIT/Mbit,	[82]	2003	Device details but not part numbers, effect of temp.
9 SRAMs (0,14 to 0,5 μm)	High energy proton, and WNR neutron	SEU cross-section in SER units, FIT/Mbit	[6]	2002	Devices not identified; SER rates from WNR and from proton measurements
SRAMs, DRAMs, other devices	High energy protons	Asymptotic SEU cross-section, cm ² /bit or per device	[18]	2001	Devices identified; SEU X- Sections from high Energy proton measurements

A number of original reference sources published before 2000 appear in Annex A.

7 Considerations for SEE testing

7.1 General

Testing for single event effects for avionics purposes involves the consideration of a variety of factors. These factors include the type of hardware to be tested (individual device or entire board), the type of test used (static or dynamic), and the type of the facility providing the neutron or proton beam. These are discussed in greater detail in 7.2 to 7.4.

In addition, a number of standards are available that provide guidance on how to conduct SEE testing and discuss proper procedures. Existing standards are available for SEE testing with heavy ions [83, 84], and although these do not strictly apply to neutron and proton SEE testing, many but not all of the procedures that are described also apply to SEE tests with neutrons and protons. Three other standards apply specifically to SEE testing with neutrons and protons. These include IEC 62396-1 which directly applies to avionics. Reference [10] is a JEDEC standard that is also directed at SEE testing with neutrons, but its focus is testing for purposes of SEE effects on the ground; nevertheless, it is directly applicable to SEE testing for avionics purposes. Reference [85] is a standard that is also under development which applies to SEE testing with protons.

7.2 Selection of hardware to be tested

It is easier and more direct to test one device type at a time, such as a RAM or a microprocessor. However, if the actual avionics board contains many devices that are potentially susceptible to SEE from high energy neutrons, this approach could involve a large number of tests. When testing individual devices for single event effects, the testing is usually performed on a specially designed test board, one test board for each type of device. To achieve the test goals more quickly, some organizations have been favouring the testing of entire boards. With this kind of testing, either the entire board, or each of the potentially susceptible devices on the board are exposed to a neutron or proton beam.

If a device by device SEE test approach is being considered, it can be narrowed down to three main types of devices that are likely to have SEE effects induced by the atmospheric neutrons: RAM devices, microprocessors and FPGAs as the most susceptible devices.

One of the advantages of testing of individual devices is the ability to distinguish between different types of single event effects. In most cases, single event upset is the dominant effect, but this may not always be true. As described in 6.2.1, single event latchup (SEL) and single event functional interrupt can also be induced by the atmospheric neutrons, in which case, their occurrence in the device under test (DUT) can confuse a proper counting of the upsets errors during the irradiation. Thus, the need to distinguish the various modes of SEE effects is important. However, one of the advantages of testing an entire board is that SEFI effects in one of the other devices on a board may lead to improper functioning of the entire board as an error is propagated from device to device. Such an effect cannot be detected by testing individual devices. Conversely, it may be that the cross-section for such an effect may be smaller than the SEE cross-sections in the three main types of devices referred to above as most susceptible to SEE effects.

7.3 Selection of test method

Selection of the software is generally tied to the selection of the type of devices to be tested and the test vehicle, either a test board with a single device or some version of the actual avionics board. If a RAM, microprocessor or FPGA is to be tested, then the test board containing the DUT has to be interrogated in such a way as to distinguish the different types of SEE that can occur. To guard against SEL, the current is always monitored, since in most cases a latchup state results in an increase in the current. SEL also results in a loss of functionality in the DUT. With a device like a SRAM, in which SEU and SEL are the only expected effects, the software would generally be written to load in a test pattern of words into a specified portion of the SRAM memory cells, usually with a checkerboard pattern of alternating 1s and 0s. The number of bit flips after exposure is the number of upsets, and the current is monitored to detect a possible SEL. Multiple cell upset, MCU (more than one upset induced by a high energy neutron or proton) is a possibility which increases as feature size reduces (see IEC 62396-1:2012, Annex G, Figure G.4). At feature sizes of about 180 nm an MCU rate of about (2 to 3) % of the SEU rate may be expected; for about 100 nm the figure rises to about 30 % and at sizes approaching 25 nm the rate will reach 100 %. There are ways of examining the test pattern words to distinguish which words experienced more than a single bit flip as a result of a single radiation event, where more than one bit is upset in a single word then the effect is termed multiple bit upset, MBU.

With devices like DRAMs, microprocessors and FPGAs, the possibility of burst errors or a SEFI makes the testing more difficult. The combination of test procedures and the accompanying software via the various programs and/or diagnostics that are run by the device or the evaluation board shall be designed to detect an error that is more than a single bit flip. The goal is to detect SEFI events which are often referred to by another name, such as a "hang" or "hang-up". These are errors that cause the device to not function properly, such as when a control register would receive an upset.

To design a test that includes the possibility of a SEFI requires a more detailed understanding of the operation of the device. It often involves the use of an evaluation board for a device like a microprocessor or FPGA in order to exercise it in its various modes of operation and to

distinguish the various kinds of errors. A better understanding of the design of SEE tests to measure SEFI can be obtained from papers that report on the results from SEFI events during SEE testing. For the testing in microprocessors, these include [86, 87] in which "hangs" or other types of errors in that caused a disruption in the program flow are measured. The emphasis in these two papers is on SEFIs induced during SEE testing with heavy ions, but SEFIs have also been induced by protons in similar microprocessors [88, 89]. SEFIs have also been induced in DRAMs [90], but also SRAMs in rare cases, but this has been seen mainly in testing with heavy ions and not with protons, although upper bound proton SEFI cross-sections have been calculated.

The SEE testing of entire boards or subsystems is much more complex since the devices experiencing SEE will interact with one another. The board or system level effects testing should be performed only after careful expert analysis has been carried out to understand the combined SEE mechanisms. However, testing in this way gives greater realism since all devices on the board are being exposed at the same time. With this kind of testing, it is the malfunctioning of the board that signals the functional interrupt to the system, the functional interrupt being to the entire board and not to any specific device. This testing is dynamic, so that an error in one device can propagate to other devices, ultimately leading to the board no longer being able to function. Examples of reports on the results of this kind of systems level testing are given in [91], which used a heavy ion beam, [92] which used a proton beam and [93] which used a neutron beam.

7.4 Selection of facility providing energetic particles

7.4.1 Radiation sources

In order to expose devices and even entire boards to a particle environment that simulates the atmospheric neutrons, there are two main types of sources that can be used, proton beams and neutron beams. Even within these two overall groups, there are a number of different kinds of sources and these are discussed in the following sections. In Annex C of IEC 62396-1:2012 are listed the main facilities that have these kinds of high energy beams available. Users should still check directly with the facilities for the current costs and availabilities.

7.4.2 Spallation neutron source

The spallation type of neutron source is created by the interaction of a high energy proton beam with a large, dense target, producing secondary neutrons. This is exactly the same way in which the atmospheric neutrons are created in the atmosphere; hence this type of neutron source is closest to the neutrons in the atmosphere with respect to the energy spectrum of the neutrons. There are currently three main neutron spallation sources that have been used for exposing ICs and boards for purposes of SEE testing. These are the WNR, discussed in 6.2.1, the TRIUMF Neutron Facility (TNF) at TRIUMF [10], and the ANITA facility at TSL [39].

The WNR has been much more widely used for SEE testing as discussed in 5.2. At present, with the new ICE House configuration it is very convenient to use, and it has currently an acceleration factor of approximately between five and six orders of magnitude, so that one hour in the beam exposes a device to the same neutron fluence as about 2.5×10^5 hours in an airplane nominally at 40 000 ft (12,2 km). Currently an additional beam line and neutron irradiation facility is being added at the facility to increase the neutron test capacity

The TNF at the TRIUMF (Tri University Meson Facility in Vancouver, Canada) is much less convenient to use than the WNR. However, it provides a neutron spectrum that is quite similar to that of the atmospheric neutrons and the flux available (for E > 10 MeV) is about a factor 3 higher than that at the WNR, and at TRIUMF this is about 10^6 times the neutron flux at an altitude of 39 000 ft (11,9 km). Figure 1 compares the neutron spectra from Los Alamos (the ICE House), the TNF at TRIUMF and the atmospheric neutron spectrum at ground level.

Even though TRIUMF had not been used very much for SEE testing before 2004, with the temporary closing of WNR, it has been in much greater use since 2004. It is not convenient for placing the test board in the beam and it has to be lowered down a channel on a pulley

system, but the TNF has a significant advantage in that the neutron field also contains thermal neutrons. Thus, by conducting a test on a device twice to measure the number of upsets, with and without an effective thermal neutron shield such as a thin sheet of cadmium metal, two SEU cross-sections can be obtained. These are the standard SEU cross-section due to high energy neutrons (> 10 MeV) and the SEU cross-section due to thermal neutrons.

The ANITA neutron beam facility (Atmospheric-like Neutrons from thlck TArget) [39], is briefly described in 6.2.3.2. The features of the ANITA facility are a high LANSCE equivalent flux, user flux control, spacious user area (from 2,5 m to 15 m from the source), possibility to vary the beam size, from pencil-shape to greater than 1 m in diameter, low thermal neutron flux, low ionizing dose rate in the beam, on-line neutron dosimetry, and possibility to use both white and QMN beams during the same test campaign and at the same beam line. The facility is available 9 months/year. Since its launch in 2007, the use of the facility for SEE testing has been steadily increasing.

Due to the options to promptly change the ANITA beam size (from 1 cm to 120 cm) and the neutron flux (from 10^6 n/cm² s down to $5\cdot10^0$ n/cm² s, above 10 MeV), testing of both single devices (components) and larger systems can be combined in the same campaign.

7.4.3 Monoenergetic and quasi-monoenergetic beam sources

As noted in 6.2.3.2, both monoenergetic and quasi-monoenergetic neutron (QMN) sources have been used for testing devices to measure their SEE response from neutrons. The monoenergetic sources produce relatively low energy neutrons, E < 14 MeV, and utilize the interaction of a charged particle with a target. The main source of this type that has been regularly utilized is the 14 MeV neutron generator which produces neutrons with energies in the range of (~13,5 to 14,5) MeV. These neutrons are produced by accelerating a deuteron beam into a tritium target, and so result from the (D, T) reaction. The exact energy of the neutrons depends on the exact energy of the initiating deuteron, which is usually about 200 keV. Similar neutron generators are also available that accelerate deuterons into a deuterium target, but it this case, the energy of the neutrons produced is much lower, ~ 3 MeV. For purposes of SEE testing, this energy is too low to be very useful for avionics purposes, since, based on devices of the mid-1990s (feature size above 0,5 μm), the SEU cross-section at 3 MeV is approximately 100 times lower than the cross-section at 14 MeV (based on about five different devices, [36]). For more recent devices, especially those with feature size below 0,2 µm and even down to 45 nm, the contribution of neutrons with energies below 10 MeV is expected to be in the (8 to 10) % range. As indicated with regard to the high energy neutron SEU cross-section variation with the feature size shown in Figure 2, without test data we cannot predict how the SEU response to neutrons of both high and low energies might change in the future as feature sizes continue to decline below 0,1 μm.

Quasi-monoenergetic neutrons (QMN) are also produced by a similar mechanism, but in this case, it is a beam of protons that is accelerated into a target that is usually lithium. The neutrons produced have a usual energy distribution that is essentially a two-part energy distribution. Approximately half of the neutrons have high energies, within a few MeV of the energy of the protons in the initiating beam, and these constitute an apparent peak or a pseudo peak. The other half of the neutrons is approximately evenly distributed over energy from the high energy pseudo peak down to a few MeV. Thus, there is a peak of neutrons with the same high energy, but there are also a sizable number of neutrons in what is referred to as the "low energy tail". The higher the energy of the initiating proton, the longer the tail extends over energy and the smaller the percentage of all of the neutrons that lie within the pseudo peak.

In the past, the difficulty of using a quasi-monoenergetic neutron (QMN) source was to separate out the SEE contribution from the neutrons within the peak, which have a very specific energy, from the contribution of the SEE events from the neutrons within the "tail". As indicated in 6.2.3.2, two different groups have developed procedures for how to process their SEE data to obtain the SEE cross-section at the peak energy, i.e., a way of subtracting the contribution of the lower energy neutrons in the tail. These are given in [48, 49, 50, 51].

This can be a useful neutron source, but the user has the responsibility of assuring that the SEU data obtained truly applies at each peak energy, and that the overall collection of SEU data obtained, including all of the various peak energies, is self-consistent. We have seen some SEU data from this kind of neutron source that appeared to exhibit larger variations over energy than has usually been seen in monoenergetic proton SEU data. It is unclear whether these larger variations are due to the calculation procedure, the facility, too small a number of upsets during some of the runs, or other causes.

7.4.4 Thermal neutron sources

Thermal neutrons are available at a number of different kinds of facilities. The most widely available type of facility is a nuclear reactor, and in particular, research or test reactors. These reactors usually have an area of high thermal neutrons, called a thermal column, and this would be the best location for exposing electronics to thermal neutrons and measuring the resulting SEU events. A number of such facilities are available and are listed in Annex C of IEC 62396-1:2012. One of the problems with a thermal column is the gamma radiation that usually accompanies the neutrons in a thermal column. If the gamma flux is too high, there could be an effect of the total ionizing dose (TID) absorbed by the devices being tested from the gamma radiation while the device is also receiving the neutrons. For most commercial off the shelf (COTS) devices, a TID dose of under 10 000 rads should not have any deleterious effect in the response of the parts. TID doses in excess of 20 000 to 50 000 rads very likely will have an effect on the response of the devices and should be avoided, unless previous TID testing of the devices have demonstrated that they are immune from such TID effects. When devices are exposed to such a thermal neutron beam as the thermal column, the number of SEU events measured is due to only the thermal neutrons.

The second type of facility that has been used is a high energy neutron facility that has both high energy neutrons (E > 10 MeV) as well as thermal neutrons. TRIUMF is one such facility having both thermal neutrons along with spallation neutrons. The actual atmospheric neutrons are a second source, but to make it practical, the neutron flux has to be increased, and this can be done at high altitude laboratories. Thus TRIUMF and high altitude laboratories both offer a mixed neutron environment, with both high energy neutrons (E > 10 MeV) along with thermal neutrons. To separate out the SEU events due to thermal neutrons from those due to the E > 10 MeV neutrons, two sets of tests are needed, one in which the devices are covered with an efficient thermal neutron shield. Suitable materials such as cadmium and boron (borated materials) have very high efficiencies in absorbing all of the thermal neutrons even with a thin covering of suitable material (between 0,1 mm and 1 mm).

Thus, two sets of SEU measurements are made, one the devices open to all of the neutrons and the second with the devices fully shielded from the thermal neutrons. By subtracting the two sets of SEU events, and accounting for differences in the neutron fluences, from the thermal neutrons and from the E > 10 MeV neutrons, the thermal neutron SEU cross-section can be determined.

The third type of facility is more specialized, one that is generally called a "cold neutron" facility. These are generally used by materials scientists for examining the internal structure of materials, and since this application is in great demand, there are few opportunities to obtain neutron exposure time at such a facility. However, one such facility at NIST (National Institute of Standards and Technology) is available and may be used. Care must be exercised in using such a facility because the cold neutrons are more efficient than the thermal neutrons in interacting with the boron-10 and causing SEU events. Thus, the number of SEUs from a cold neutron source has to be adjusted down to obtain the equivalent number of SEU events from true thermal neutrons. A procedure for carrying this out is found in [94].

7.4.5 Whole system and equipment testing

7.4.5.1 General

The above facilities are suitable in general for testing electronic components and small modules due to restricted beam size. After the individual electronic components and modules

have been radiation assessed it is useful to verify the final electronic unit or system design (see IEC/TS 62396-3:2008) by testing at the higher level. The neutron radiation source for such testing is required to be approximately uniform over a substantial area for example 0,5 m² to 1 m², so that the whole equipment can be exposed to the radiation. In general such equipment would be tested by "in the loop" testing for example the equipment is fed parameters from an external computer test system and its function is in some way closed loop with the parameters so that the response of the equipment on test can be monitored during the trial. Because the response when performing equipment or system test is more complex (many SEE sensitive components present) the beam flux should be much lower than for component test, typically 1 000 to 10 000 times nominal flux. A small number of facilities have been used for test of whole units or systems in the beam these include the following.

7.4.5.2 TRIUMF Proton Irradiation Facility (PIF)

At the PIF facility a large area neutron beam [95] has been developed by stopping energetic protons from either BL2C (116 MeV) or BL1B (500 MeV) in a lead absorber that completely stops the protons and then using the neutrons generated in the forward direction after the absorber. These neutrons have a spectrum similar to the atmospheric neutrons as the production mechanism is similar. The maximum neutron flux of 10 MeV or greater is about a factor 10⁷ higher than the sea level flux. The neutron beam is uniform to about 80 % over transverse dimensions of 80 cm by 80 cm at a distance of 200 cm from the lead absorber. This beam is ideal for testing large electronic systems for effects from terrestrial or aircraft altitude neutrons. The maximum neutron rate is about a factor 100 less than at the TRIUMF neutron facility, TNF location. It can also be varied from more than 50 000 n/cm²·s to less than 1 000 n/cm²·s by changing the proton current or the distance to the test point.

By varying the beam current and distance from the target a wide range of neutron flux is provided [95], a summary of the beam rates, beam size and corresponding years of ground level and aircraft level operation is provided in reference [95]. The variation of neutron rates has proven essential to satisfy testing requirements which range from assessing avionics components for long term regulatory compliance to complex ground level network systems with significant memory, processing and data transmission capabilities. BL2C with proton energy of 116 MeV stopping in a 20 mm lead absorber is more frequently scheduled for neutron use so there is more operating experience and calibrations for this beam line at different geometries. BL1B operating at 500 MeV with protons stopping in a 23 cm lead absorber has been used for neutron work but less frequently due to availability.

7.4.5.3 The ANITA facility at TSL

The ANITA neutron beam facility (Atmospheric-like Neutrons from thIck TArget) [39], briefly described in 6.2.3.2 and 7.4.2, is widely used for system testing, due to the availability of large neutron fields (up to 120 cm in diameter) and the user control of the neutron flux in the range from $1\cdot10^6$ down to $5\cdot10^0$ of the flux at 39 000 ft (11,9 km) altitude. A user may switch between testing of an entire system (unit, board) and testing of single devices (components), or vice versa, at any time during the testing campaign, due to the flexibility in the beam size, which is achieved by flexible collimator opening as well as by a possibility to vary the distance from the neutron source and the DUT from 2,5 m to 15 m. The possibility to switch between the testing modes for systems and components (without any significant rearrangements in users' equipment) is widely used by testing groups as a means to search for the component which is originally responsible for malfunction of the entire system.

8 Converting test results to avionics SEE rates

8.1 General

The goal of any SEE testing for avionics applications is to determine the SEE rates in devices and/or in entire boards that would be expected based on the results of the SEE testing. This is relatively easily done when using a spallation neutron source, but can be more complicated when using other types of neutron sources. Ultimately the results from testing of the individual SEE sensitive elements will be combined to determine the effect on the equipment or system.

8.2 Use of spallation neutron source

When testing with a spallation neutron source, the SEUs recorded are all due to the high energy neutrons, except if there are also thermal neutrons within the source. If in fact there are thermal neutrons which could be contributing to upsets, such as with the TRIUMF neutron source or actually from using the atmospheric neutrons, at high altitudes or even at sea level, the contribution of the thermal neutrons needs to be accounted for and subtracted off. The remaining SEUs are due to the high energy neutrons.

The SEU rate for avionics applications can be calculated in two different ways. The first way is to calculate the SEU cross-section and then apply Equation (1) and the second way is to use the ratio between the high energy (for example devices with threshold E > 10 MeV) neutron flux in the beam and that in the atmosphere (6 000 n/cm²·h). Both methods yield the same SEU rate for avionics applications which can best be shown by an example.

In the example, the WNR or ICE House facility at Los Alamos is used to provide the neutrons such that no thermal neutrons are present. During the testing of a board in the Los Alamos beam, 250 SEUs were recorded in one hour on a given board (or in a specific device on the board) during this time the board received a total neutron fluence of 4.5×10^9 n/cm². In addition, Los Alamos indicates that the neutron flux (E > 10 MeV) in their beam is 7.5×10^5 times more intense than the nominal aircraft neutron flux of 6 000 n/cm²·h. Normally the component or in this case the board is exposed to a known total neutron fluence and during the exposure the total number of events measured from this the cross-section is calculated but each method below is acceptable and provides the same result. The neutron cross-section is then given by the Equation (2) below and the event rate in any environment is given by Equation (1).

Event cross-section (cm²) = total number events / total neutron fluence (
$$n/cm^2$$
) (2)

Using the example the upset cross-section for the board is $250 / 4.5 \times 10^9 = 5.55 \times 10^{-8}$ cm² per board from Equation (2). The upset rate from Equation (1) in the atmospheric radiation environment is $6.000 \times 5.56 \times 10^{-8} = 3.34 \times 10^{-4}$ Upset/board·hour.

Assuming the accelerator beam is constant in intensity with time, the SEU cross-section is $250/(7.5\times10^5\times6~000)$ or $5.56\times10^{-8} \text{cm}^{2/}\text{board}$. Thus, the SEU rate for avionics applications (at 40 000 ft (12,2 km) and 45° latitude) is $5.56\times10^{-8}\times6~000$ or 3.34×10^{-4} Upset/board·hour.

Alternatively if the accelerator beam is constant in intensity with time, we know that the 250 upsets were in a neutron flux that was 7.5×10^5 more intense for an hour than that in an aircraft at 40 000 ft (12,2 km) hence, for an aircraft, the hourly rate would be $250/7.5 \times 10^5$ per hour or 3.33×10^{-4} Upset/board·hour.

8.3 Use of SEU cross-section curve over energy

If a different kind of neutron or proton source is used, one that provides a beam of either monoenergetic protons or quasi-monoenergetic neutrons (QMN), then several different approaches may be taken. The simplest method is to use the SEU cross-section taken at the highest particle energy used (e.g. approximately 200 MeV) and apply it as the SEU cross-section from the atmospheric neutron spectrum. This will generally be conservative since neutrons with lower energies within the atmospheric neutron spectrum have low SEU cross-sections.

The more complicated, but more accurate method is to use the SEU cross-sections taken at a number of different particle energies to create a SEU cross-section curve that varies with energy, and integrate this curve with the differential neutron flux in the atmosphere. This gives more accurately the spectrum averaged SEU cross-section. Equation (3) below is a simplified formula for the variation of the differential neutron flux with energy, E, taken from IEC 62396-1, which applies at 40 000 ft (12,2 km).

$$dN/dE = \begin{cases} 0.346 \times E^{-0.922} \times \exp \left[-0.0152(\ln E)^2\right] & E < 300 \text{ MeV} \\ 340 \times E^{-2.2} & E > 300 \text{ MeV} \end{cases}$$
 (3)

The spectrum averaged cross-section is expected to be very similar to the SEU cross-section from the actual atmospheric neutrons or that when measured using a spallation neutron source.

The difficulty with this method lies is in developing an accurate SEU cross-section curve as a function of neutron energy. First, if a quasi-monoenergetic neutron (QMN) beam has been used, the effect of the "tail" of low energy neutrons has to be determined and subtracted off to enable the SEU cross-section due to just the neutrons within the peak energy to be calculated. As indicated in 6.2.3.2 and 7.4.3, there are a number of different methods available for removing the effect of the neutrons in the low energy tail to determine the SEU cross-section at the peak energy. With monoenergetic proton beams, this is not a problem because each beam contains protons of a single energy. However, it is known that at low energies, e.g., < 50 MeV, there can be differences between the SEU cross-section due to protons and due to neutrons, so using a 14 MeV source for the lowest energy point would be a good idea. In JESD-89A [10], one suggested method uses protons at 50 MeV, 100 MeV and 150 MeV, and neutrons at 14 MeV. However, a recent paper suggests that the 150 MeV point should be replaced by a data point at 200 MeV or higher [7].

In addition, we will review a number of other specifics related to the use of proton SEU data that are generally not discussed in the literature. There should be a minimum number of errors measured at each data point that each SEU cross-section is based upon, but the number of errors is rarely stated in the open literature. Using the minimum number of errors as 30 can serve as a good starting point. The reason for this is that a simplified statistical measure of the variation in the measured number of errors is the square root of the number of errors, and for 30 errors, the variation is about 18 % of the measured number. At present, there are more statistically rigorous methods for accounting for the variation, such as in Annex C of JESD-89A:2006, which could also be used, these are based on confidence levels. Therefore, it would be helpful if curves of the SEU cross-section also included error bars on the measured SEU cross-section, however this is rarely done in open literature papers and reports. In addition, the actual number of errors that each SEU cross-section value is based upon is very rarely specified. It is recommended that where curves are drawn, error bars be included and that the actual number of single events be reported together with the cross-sections.

Additional complications are involved in generating the SEU cross-section curve. When proton SEU cross-sections were first reported in the early 1980s, the first model that was developed, the Bendel model, had only one parameter. It was recognized that this was inadequate, so a two-parameter Bendel model was derived which was much better. These and all subsequent models have the SEU cross-section increasing monotonically with the neutron or proton energy. Other two parameter models were later developed, but while they may have given a better fit, it was at the expense of more complex functions of energy. More recently, the four-parameter Weibull fit model is being used for proton SEU data as a natural extension of the Weibull fit that is applied to describe the variation of the heavy ion SEU cross-section induced by the cosmic rays. Once a distribution like the Weibull was established as being extremely useful for the variation of heavy ion SEU cross-sections with the LET of the ions, it was evident that it could easily be applied to proton SEU cross-sections, in this case, as a function of the energy of the particles. Thus, the Weibull distribution is often used for proton and neutron SEU cross-sections. The Weibull distribution at a proton/neutron E is given as

SEU Cross-section,
$$\sigma(E) = \sigma_{P/N-L} (1 - \exp\{-[(E - E_0)/W]^S\})$$
 (4)

where:

 $\sigma_{\text{P/N-L}}$ is the limiting or asymptotic proton/neutron cross-section (high energy);

 $E_{\rm O}$ is the threshold energy below which there is no SEU cross-section;

W is the "width" parameter;

S is the "fitting" parameter.

Nevertheless, one of the difficulties with measured SEU cross-sections is that the variation of the cross-section with energy is often not smooth, even though all of the fits, the Weibull, the Bendel, etc., are predicated on that fact that the cross-section increases smoothly with energy. Therefore, if a piece-wise linear fit were to be used along with a smooth fit like the Weibull, the results could be different by up to 25 % or more. If test results show irregular variation of the SEU cross-section as a function of energy, using a linear fit to this kind of SEU data to calculate the SEU cross-section from the atmospheric neutrons could lead to low results. An example of this is shown in Figure 4 in which SEU cross-section data from three different SRAMs are shown (Baggio [7], Dyer [9] and Granlund [49]). In each case, the Weibull fit of Equation (3) and a linear fit from each energy point, point to point, were integrated with the differential neutron flux given by Equation (2) to obtain the actual SEU cross-section from the atmospheric neutrons, as in Equation (4). As shown in the figure, there can be large enough variations over energy with the result that the average SEU cross-section using the two different fitting approaches, a smoothed fit versus a linear fit, could differ by more than 25 %.

Spectrum Averaged SEU
$$\sigma = \int_{1}^{1000} \sigma(E)(dN/dE)dE / \int_{1}^{1000} (dN/dE)dE$$
 (5)

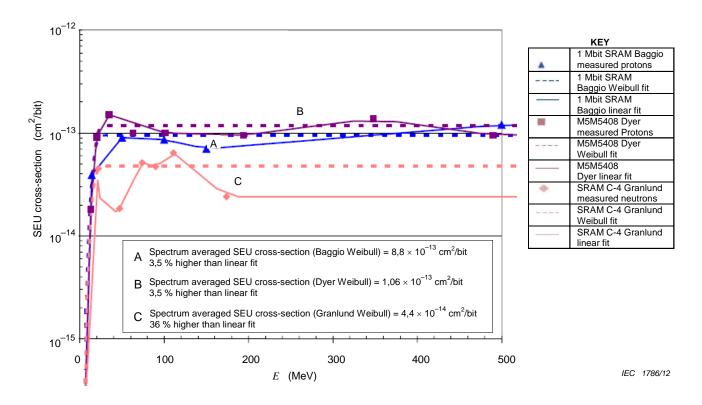


Figure 4 – Comparison of mono-energetic SEU cross-sections with Weibull and piece-wise linear fits

Generally, the Weibull fit is preferred for a number of reasons. It is based on a least squares type of approach, so it averages out all of the variations over energy. It can be based on data from several different samples of the same part and in that sense it can more effectively "average" out the behaviour of different samples, which can often exhibit significant variations between them. It usually gives a higher value "averaged" value of the spectrum-averaged SEU cross-section over the atmospheric neutron spectrum, and so from the perspective of providing conservative values, it is the preferred approach.

Having data from several samples of the same part, a single Weibull fit applies to all of the data and so Equation (4) has to be applied only once to obtain the spectrum-averaged SEU cross-section. However, for the piece-wise linear fit approach, the spectrum-averaged SEU cross-section would have to be calculated for the SEU data from each sample, applying Equation (4) to each set of data. The final spectrum-averaged SEU cross-section would be obtained by averaging the individual spectrum-averaged SEU cross-sections for each sample. By calculating the spectrum-averaged SEU cross-section for a set of SEU cross-section data using the two approaches, a consistency check can be applied to the accuracy of the data. If the variation between the spectrum-averaged SEU cross-section is larger than a given percentage, e.g., 15 %, then perhaps more data points are necessary, or data points based on a larger number of errors are needed in order to improve the internal consistency of the data. In all cases, it should be remembered that good statistics are needed for each and every data point taken at all of the various proton/neutron energies used in the testing.

8.4 Measured SEU rates for different accelerator based neutron sources

The characterization of the different accelerator based neutron sources used by Slayman [96] with three energy ranges: (1 to 10) MeV, (10 to 100) MeV and >100 MeV are represented in the table below. The numbers for the two lower fluence facilities at TRIUMF BL1B and BL2C have been added.

As the production method is similar the distribution for the BL1B spectrum is similar to that for WNR. Comparison measurements for SEU rates between LANSCE WNR and TRIUMF TNF as reported by Sandia and QinetiQ [97] and others (unpublished) indicate the rates are 20 % - 30 % higher at WNR than at TRIUMF using the > 10 MeV fluence for normalization.

Source	(1 to 10) MeV	(10 to 100) MeV	> 100 MeV
IEC 62396-1	35	35	29
JESD89A	35	35	30
QARM (model)	40	36	24
LANSCE WNR	52	26	22
TRIUMF TNF	24	54	21
TRIUMF BL1B	52	29	19
TRIUMF BL2C	69	30	1
TSL ANITA	65	28	7

Table 2 - Spectral distribution of neutron energies

8.5 Influence of upper neutron energy on the accuracy of calculated SEE rates; verification and compensation

The energy of the primary proton beam incident on the spallation target is an important factor in determining the fidelity of the synthetic spallation neutron spectrum with regard to the spectrum of atmospheric neutrons. In this respect the LANSCE ICE House [98] is currently the best, as the primary proton energy there is the highest (800 MeV). At TRIUMF [38, 95], the neutron sources at the TNF/NIF (BL1A) and PIF (BL1B) derive from 500 MeV protons; those at the PIF (BL2C) derive from 116 MeV protons. At TSL ANITA [39], the primary proton source is at 180 MeV. These limited upper energies correspond to a reduction in spectral fidelity to the natural atmospheric neutron spectrum produced by cosmic rays.

Platt et al. [99] have shown that errors in SEE rate estimates derived from measurements in neutron spectra with relatively low upper energy limits can be appreciable for some current devices but negligible for other devices. It also developed a new method for adjusting the measured response from a relatively low upper energy spectrum by combining this measurement with a second, independent SEE measurement made with higher energy particles (neutron or proton). This was achieved through an analysis that utilized a wide range

of cross-section functions available in the literature, leading to an adjustment factor that allowed errors in the SEE rate (derived from the lower energy spectrum) to be reduced.

This adjustment methodology is new and has not be formally endorsed, but it appears to be useful if sources with higher energy neutron spectra are not available but only facilities with lower energy spectra are accessible. This concept of utilizing more than one set of SEE data to adjust and improve one of the data sets is novel, but also has some practical and philosophical limitations. This method works for SEE effects in which the energy dependence is weak at the limiting neutron energy of the facility neutron beam, which is satisfied for SEU in modern COTS devices. In other cases, for example SEL or other SHE phenomena in some devices, the influence of the upper energy appears to be appreciable and so much more caution needs to be taken in trying to use this method.

In other cases, for example SEL or other SHE phenomena in some devices, the influence of the upper energy might not be negligible. If such a case is suspected, a collocated primary proton beam [38] or a derived QMN source [47] can be used to determine whether there is a sensitivity of the studied cross-section to neutron energy at or near the upper energy limit. Reference [99] also shows how cross-section measurements in a spallation beam can be combined with cross-section measurements in collocated QMN (or proton) beam to compensate for the effects of a limited upper energy in the spallation beam. Such an approach enables the SEE rate equivalent to the LANSCE beam to be determined when LANSCE is unavailable or unsuitable, for example because of the size of the DUT.

The method of Platt et al. [99] is expected to be well applicable for SEU in modern devices. On the other hand, as soon as SEL or other SHE phenomena are concerned, it is recommended that the method is used with caution and proper analysis. More extensive use of the method in practical testing is needed, including validating comparisons between SEE data from different facilities and the natural atmospheric spectrum.

Annex A (informative)

Sources of SEE data published before 2000

Table A.1 – Sources of existing SEE data published before 2000

Device tested or listed	Particle type, energy	Data contained	Ref.	Publ. Year	Comments
6 SRAMs, 2 μprocessors, 2 FPGAs	High energy proton, WNR neutron, 14 MeV neutron	SEU cross-section, cm ² /bit	[8]	1998	Devices identified; SEU X-Stns from WNR, 14 MeV and from proton data
5 SRAMs	QMN	SEU cross-section, cm ² /bit	[48]	1998	Devices identified; mono- energetic SEU X-Stns derived from measurements
20 SRAMs and 26 DRAMs	High energy proton and WNR neutron	SEU cross-section, cm ² /bit	[5]	1997	Devices not identified; SEU X- Stns mixture of neutron and proton data
5 SRAMs	3 and 14 MeV neutrons	SEU cross-section, cm ² /bit	[36]	1997	Devices identified; SEU X- Sections from neutron data
87 SRAMs, 48 DRAMs, 10 EEPROMs, 8 Flash EPROMs, 8 UV EPROMs	High energy protons (20, 30, 50, 60, 100, 200, 300 and 500 MeV)	SEU cross-section, cm ² /bit	[64]	1997	All devices identified; devices tested between 1989 to 1996

Bibliography

- [1] HEIMSTRA D.M and BLACKMORE E.W. "LET Spectra of proton energy levels from 50 to 500 MeV and their effectiveness for Single Event Effects Characterization of Microelectronics" IEEE Trans. Nucl. Sci. Vol. 50 No. 6 December 2003
- [2] VASILIY V. Markelov and Michael G. Tverskoy "Evaluation of LET Spectra Produced by High Energy protons in Si" RADECS 2005 Proceedings
- [3] O'BRYAN M.V. et al, "Compendium of Current Single Event Effects Results for Candidate Spacecraft Electronics for NASA," Workshop Record, 2007 IEEE Radiation Effects Data Workshop, p. 153
- [4] SCHWANK J. et al, "Effects of Particle Energy on Proton-Induced Single-Event Latchup," IEEE Trans. Nucl. Sci., 52, 2622, (2005)
- [5] KERNESS and TABER. Neutron SEU Trends in Avionics. *Workshop Record*, 1997 IEEE Radiation Effects Data Workshop, 1997, p. 67
- [6] DODD, P. E. et al. Neutron-induced Soft Errors, latchup and Comparison of SER test Methods for SRAM Technologies. *IEDM Tech. Dig.*, 2002, p. 333
- [7] BAGGIO, J. et al. Analysis of Proton/Neutron SEU Sensitivity of Commercial SRAMs Application to the Terrestrial Environment Test Method. *IEEE Trans. Nucl. Sci*, 2004, 51
- [8] NORMAND, E. Extensions of the Burst Generation Rate Method for Wider Application to Proton/Neutron-Induced Single Event Effects. *IEEE Trans. Nucl. Sci*, 1998, 45, p. 2904
- [9] DYER, C. et al. An Experimental Study of Single-Event Effects Induced in Commercial SRAMs by Neutrons and Protons from Thermal Energies to 500 MeV. *IEEE Trans. Nucl. Sci*, 2004, 51, p. 2817
- [10] JESD-89A, Measurement and reporting of alpha particles and terrestrial cosmic rayinduced soft errors in semiconductor devices, Joint Electron Device Engineering Council (JEDEC), 2006
- [11] SLAYMAN, C., "Accuracy of Various Broad Spectrum Neutron Sources for Accelerated Soft Error Testing," SELSE6, Stanford University, March 23, 24 (2010)
- [12] IBE, E., "Novel Features in SER Characteristics toward New Standards," Special Session 1-Panel:SER standards: Where we are? What's next? IOLTS2010, Corfu Island, Greece, July 5-7 (2010)
- [13] O'BRYAN, M. et al. Recent Radiation Damage and Single Event Results for Candidate Spacecraft Electronics. *Workshop Record*, 2001 IEEE Radiation Effects Data Workshop, 2001, p. 82
- [14] O'BRYAN, M. et al. Current Single Event Effects and Radiation Damage Results for Candidate Spacecraft Electronics. *Workshop Record*, 2002 IEEE Radiation Effects Data Workshop, 2002, p. 85
- [15] O'BRYAN, M. et al. Single Event Effects Results for Candidate Spacecraft Electronics, Workshop Record, 2003 IEEE Radiation Effects Data Workshop, 2003, p. 65
- [16] O'BRYAN, M. et al. Current Single Event Effects Results for Candidate Spacecraft Electronics for NASA. *Workshop Record*, 2004 IEEE Radiation Effects Data Workshop, 2004, p. 10
- [17] COSS, J. et al. Device SEE Susceptibility Update: 1996-1998. Workshop Record, 1999 IEEE Radiation Effects Data Workshop, 1999, p. 60
- [18] COSS, J. et al. Device SEE Susceptibility Update: 1999-200. Workshop Record, 2001 IEEE Radiation Effects Data Workshop, 2001, p. 106

- [19] COSS, J. Update of Integrated Circuit SEE Responses: 2001-2002. Workshop Record, 2003 IEEE Radiation Effects Data Workshop, 2003, p. 43
- [20] ROCHE, J. et al. Comparisons of Soft Error Rate for SRAMs in Commercial SOI and Bulk Below the 130-nm Technology Node. *IEEE Trans. Nucl. Sci*, 2003, 50, p. 2046
- [21] CANNON, E. et al. SRAM SER in 90, 130 and 180 nm Bulk and SOI Technologies. *Proc.* 42nd Int. Reliability Phys. Symp., 2004, p. 300
- [22] KOBAYASHI, H. et al. Comparison Between Neutron-Induced System SER and Accelerated SER in SRAM. *Proc.* 42nd Int. Reliability Phys. Symp., 2004, p. 300
- [23] SINITSKY, D. et al. SER Reliability of 1TRAM Designs. *Proc.* 40nd Int. Reliability Phys. Symp., 2002, p. 226
- [24] NASA-JSC Test Report, JSC 28415, Radiation Test Summary Report for Elements of the EVA Display, Aug. 1998
- [25] NASA-JSC Test Report, JSC 28414, Radiation Test Summary Report for the OCA Router, Aug. 1998
- [26] NASA-JSC Test Report, JSC 29199, Radiation Test Report Octagon 2133 Processor Board, Liquid Crystal Display, and Ethernet Boards, Aug. 2000
- [27] Los Alamos National Laboratory. ENDF/B-VII Incident-Neutron Data [online]. Available from: http://t2.lanl.gov/data/neutron7.html.
- [28] BAGGIO, J. et al. Single Event Upsets Induced by 1-10 MeV Neutrons in State-RAMs Using Mono-Energetic Neutron Sources. 2007, IEEE Transactions on Nuclear Science, Vol. 54, pp. 2149 2155.
- [29] WROBELL, F, et al. *Contribution of SiO2 in Neutron –Induced SEU in SRAMs*. 2003, IEEE Transactions on Nuclear Science, Vol. 50, pp. 2055
- [30] GORDON, M.S. et al. Measurement of the Flux and Energy Spectrum of Cosmic-Ray Induced Neutrons on the Ground. *IEEE Trans. Nucl. Sci.*, 2004, 51, p. 3427
- [31] GORDON, M.S. et al. Correction to "Measurement of the Flux and Energy Spectrum of Cosmic-Ray Induced Neutrons on the Ground". *IEEE Trans. Nucl. Sci.*, 2005, 52, p. 2703
- [32] GOLDHAGEN, P, et al. Measurement of the energy spectrum of cosmic-ray induced neutrons aboard an ER-2 high-altitude airplane. 2002, Nuclear Instruments and Methods in Physics Research A, Vol. 476, pp. 42 51
- [33] GOLDHAGEN, P., et al. The energy spectrum of cosmic-ray induced neutrons measured on an airplane over a wide range of altitude and latitude. 2004, Radiation Protection Dosimetry, Vol. 110, pp. 387 392
- [34] Hands, A., et al. Single Event Effects in Power MOSFETs and SRAMs Due to 3 MeV, 14 MeV and Fission Neutrons. 2011, IEEE Transactions on Nuclear Science, Vol. 58, pp. 952 - 959
- [35] Ibe, E. (Production Engineering Research Laboratory, Hitachi, Ltd.), Taniguchi, H., Yahagi, Y., Shimbo, K., and Toba, T., "Impact of Scaling on Neutron-Induced Soft Error in SRAMs from a 250nm to a 22nm Design Rule," TED, Vol.57, No.7, pp. 1527-1538 (2010)
- [36] THOUVENOUT, D. et al, Neutron Single Event Effect Test Results for Various SRAM Memories. Workshop Record, 1997 IEEE Radiation Effects Data Workshop, p. 61, 1997
- [37] Los Alamos helps industry by simulating circuit failures from cosmic rays, Science Daily, June 11, 2004. Available from: http://www.sciencedaily.com/releases/2004/06/040610080526.htm
- [38] BLACKMORE, E. et al. Improved Capabilities for Proton and Neutron Irradiations at TRIUMF. Workshop Record, 2003 IEEE Radiation Effects Data Workshop, p. 149

- [39] A. V. Prokofiev, J. Blomgren, M. Majerle, R. Nolte, S. Röttger, S. P. Platt, A. N. Smirnov, "Characterization of the ANITA Neutron Source for Accelerated SEE Testing at The Svedberg Laboratory", 2009 IEEE Radiation Effects Data Workshop, Quebec, Canada, July 20-24, 2009, pp. 166-173
- [40] NORMAND, E. Single Event Upset at Ground Level. *IEEE Trans. Nucl. Sci.*, 1996, 43, p. 2742
- [41] GRANLUND, T. et al. Soft Error Rate Increase for New Generations of SRAMs. *IEEE Trans. Nucl. Sci.*, 2003, 50, p. 2065
- [42] TAKALA, B. Single Event Effect Measurements at the LANSCE ICE House. Available from: http://www.lansce.lanl.gov/research/ICEHOuse.html
- [43] ABROSIMOV, N.K. et al. Development and Experimental Study of the Neutron Beam at the Synchrocyclotron of the Petersburg Nuclear Physics Institute for Radiation Tests of Electronic Components. Instruments and Experimental Techniques 2010, Vol. 53, No 4 pp. 469 476
- [44] SUGIMOTO, K., Asai, H., Nashiyama, I., Fukuda, M., Iwamoto, Y., and Sakamoto, Y., "Flux Verification of High Intensity Spallation Neutron Beam for SEE Testing," RASEDA2010, Takasaki, Japan, Oct. 27-29, 2010 (2010)
- [45] ANDREANI C, Pietropaolo A, Salsano A, Gorini G, Tardocchi M, Paccagnella A, Gerardin S, Frost CD, Ansell S, Platt SP "Facility for fast neutron irradiation tests of electronics at the ISIS spallation neutron source", Applied Physics Letters Volume: 92 Issue: 11 Article Number: 114101 Published: 2008
- [46] FROST, C.D. Ansell, S., and Gorini, G., "A New Dedicated Neutron Facility for Accelerated SEE Testing at the ISIS Facility," IRPS2009, Montreal, Quebec, Canada, April 28-30, No.SE6, pp. 952-954 (2009)
- [47] PROKOFIEV, A. V. et al. The TSL Neutron Beam Facility, *Rad. Prot. Dosim. v.* 126, pp. 18-22 (2007); doi: 10.1093/rpd/ncm006.
- [48] JOHANSSON, K. et al. Energy-Resolved Neutron SEU Measurements from 22 to 160 MeV. *IEEE Trans. Nucl. Sci*, 1998, 45, p. 2519
- [49] GRANLUND, T. et al. A Comparative Study Between Two Neutron Facilities Regarding SEU. *IEEE Trans. Nucl. Sci.*, 2004, 51, p. 2922
- [50] NAKAMURA, T. et al. Development of p-Li Quasi-Monoenergetic Neutron Field Between 20 and 90 MeV for Cross Section and Shielding Experiments. Proceedings of the 8th International Conference on Radiation Shielding, Arlington, TX, April 1994
- [51] IBE, E. et al. A Self-consistent Integrated System for Terrestrial Neutron Induced Single Event Upset of Semiconductor Devices at the Ground. Proceedings of the International Conference on Information Technology and Applications, 2002
- [52] YAHAGI, Y. et al. Threshold Energy of Neutron-Induced Single Event Upset as a Critical Factor. *Proc.* 42nd Int. Reliability Phys. Symp., 2004, p. 669
- [53] NORMAND, E. Extensions of the FOM Method Proton SEL and Atmospheric Neutron SEU. *IEEE Trans. Nucl. Sci.*, 2004, 51
- [54] DYER, C. et al. Neutron-Induced Single Event Effects Testing across a Wide Range of Energies and Facilities and Implications for Standards. *IEEE Trans. Nucl. Sci.*, Dec. 2006, v. 53, p. 3596
- [55] IBE, E., "Novel SER Standards: Backgrounds and Methodologies," ICICDT, Grenoble, France, June 2-4, pp. 203-207 (2010)
- [56] SIERAWSKI, B.D., Pellish, J.A., Reed, R.A., Schrimpf, R.D., Warren, K.M., Weller, R.A., Mendenhall, M.H., Black, J.D., Tipton, A.D., Xapsos, M.A., Baumann, R.C., Deng, X., Campola, M.J., Friendlich, M.R., Kim, H.S., Phan, A.M., and Seidleck, C.M., "Impact of

- Low-Energy Proton Induced Upsets on Test Methods and Rate Predictions," TNS, Vol.56, No.6, pp. 3085-3092 (2009)
- [57] AGOSTEO, S. et al. Single Event Effects Measurements on the Electronics for the CMS Muon Barrel Detector at LHC. *Nucl. Instr. Meth.*, 2002, A 489, 357
- [58] NORMAND E. et al. Quantifying the Double-Sided Neutron SEU Threat, from Low Energy (Thermal) and High Energy (>10 MeV) Neutrons. 2006, IEEE Transactions on Nuclear Science, Vol. 53, pp. 3587
- [59] GRANLUND T. and N. Olsson, "A comparative study between proton and neutron induced SEUs in SRAMs," IEEE Trans. Nucl. Sci. vol 53, 1871-1875, 2006
- [60] GUENZER, C. S. et al., Single Event Upset of Dynamic RAMs by Neutrons and Protons. *IEEE Trans. Nucl. Soc.*, 1979, NS-26, p. 5048
- [61] HEIDEL D.F. (IBM T. J. Watson Research Center, USA), Marshall, Paul W., Pellish, J.A., Rodbell, K.P., LaBel, K.A., Schwank, J.R., Rauch, S.E., Hakey, M.C., Berg, M.D., Castaneda, C.M., Dodd, P.E., Friendlich, M.R., Phan, A.D., Seidleck, C.M., Shaneyfelt, M.R., and Xapsos, M.A., "Single-Event Upsets and Multiple-Bit Upsets on a 45 nm SOI SRAM," TNS, Vol.56, No.6, pp. 3499-3504 (2009)
- [62] HARBO-SORENSEN, R. et al. Radiation Pre-screening of 4 Mbit Dynamic Random Access Memories for Space Applications. RADECS 91, Proceedings of the First European Conference on Radiation and its Effects on Devices and Systems, Montpellier, France, Sept. 1991, p. 489
- [63] STAPOR, W. J. et al., Two Parameter Bendel Model Calculations for Predicting Proton Induced Upset, IEEE Trans. Nucl. Sci., NS-37, 1966 (1990)
- [64] HARBO-SORENSEN, R. Proton SEE Results A Summary of ESA's Ground Test Data. Workshop Record, 1997 RADECS Conference Data Workshop, 1997, p. 89
- [65] Coy Kouba, "Proton Radiation test results on COTS-Based Electronic Devices for NASA-Johnson, Space Center Spaceflight projects", NSREC Radiation Effects Data Work Shop 2006
- [66] ZIEGLER, J. F. et al. IBM Experiments in Soft Fails in Computer Electronics (1979-1984). IBM J. Res. Develop., 1996, 40, p. 3
- [67] LAGE, C. et al. Soft Error Rate and Stored Charge Requirements in Advanced High Density SRAMs. *IEDM Tech. Digest*, 1993, p. 821
- [68] Sun Screen, Forbes, November 13, 2000
- [69] BASTON, P. Unsafe at Any Speed? Looking under the hood at Sun's recent server engine problems. Available from: http://www.sparcproductdirectory.com/artic-2002-jan-pb.html
- [70] IBE E., Chung, S., Wen, S., Yamaguchi, H., Yahagi, Y., Kameyama, H., Yamamoto, S., and Akioka, T., "Spreading Diversity in Multi-cell Neutron-Induced Upsets with Device Scaling," 2006 CICC, San Jose, CA., September 10 13, 2006, pp. 437-444 (2006).[Cisco]
- [71] SCHINDLBECK G. (Infineon), and C. Slayman, "Neutron-Induced Logic Soft Errors in DRAM Technology and Their Impact on Reliable Server Memory," IEEE Workshop on Silicon Errors in Logic System Effects 3, Austin Texas, April 3, 4, 2007[Sun]
- [72] BORUCKI L., G. Schindlbeck, and C. Slayman, "Comparison of Accelerated DRAM Soft Error Rates Measured at Component and System Level," IRPS 2008, Phoenix, Arizona, April 27-May 1, 2008, No.5A.4, pp. 482-487.[Sun]
- [73] FABULA, J. et al. *The NSEU Response of Static Latch Based FPGAs*, presentation by Xilinx Corp. May, 2004. Available from: http://www.xilinx.com/esp/mil_aero/collateral/RadiationEffects/NSEU_response.pdf
- [74] KOGA, R. et al. Comparison of Xilinx Virtex-II FPGA SEE Sensitivities to Protons and Heavy Ions. *IEEE Trans. Nucl. Sci.*, 2004, 51, p. 2825

- [75] Radiation Results of the SER Test of Actel, Xilinx and Altera FPGA Instances, IROC Technologies report prepared for Actel Corp., March 2004. Available from: http://www.actel.com/documents/RadResultsIROCreport.pdf
- [76] NORMAND E. and DOMINIK L. "Cross Comparison Guide for Results of Neutron SEE Testing of Microelectronics Applicable to Avionics," Workshop Record, 2010 IEEE Radiation Effects Data Workshop, p. 50
- [77] SCHINDLBECK G. and SLAYMAN C., "Neutron-Induced Multi-cell and Logic Soft Errors in DRAM Technology and Their Impact on Reliable Server Memory," presented at 2007 SELSE Meeting (Silicon Errors in Logic System Effects)
- [78] DYER C. et al, "Neutron-Induced Single Event Effects Testing Across a Wide Range of Energies and Facilities and Implications for Standards." IEEE Trans. Nucl. Sci. vol 53, 3596-3601, 2006
- [79] GRANLUND T. and N. Olsson, "SEUs Induced by Thermal to High-Energy Neutrons in SRAMs," IEEE Trans. Nucl. Sci. vol 53, 3798-3802, 2006
- [80] CHUMAKOV A. et al, "SEE in SRAM and Flash Memory under Proton and 14 MeV Neutron Irradiation," presented at RADECS 2006
- [81] "Xilinx Single Event Effects 1st Consortium Report Virtex-II Static SEU Characterization," G. Swift, Ed. JPL, January, 2004
- [82] DODD P. et al., "Neutron-Induced Latchup in SRAMs at Ground Level," Proceedings, 41st International Reliability Physics Symposium, April 2003, p. 51
- [83] ASTM F1192-00:2000, Standard Guide for the Measurement of Single Event Phenomena (SEP) Induced by Heavy Ion Irradiation of Semiconductor Devices
- [84] JESD57:1996, Test Procedures for the Measurements of Single-Event Effects in Semiconductor Devices from Heavy Ion Irradiation
- [85] JEDEC 13.4, Draft Test Standard For The Measurement Of Proton Radiation Effects In Microelectronic Devices
- [86] KOUBA, C. and CHOI, G. The Single Event Upset Characteristics of the 486-DX4 Microprocessor. *Workshop Record*, 1997 IEEE Radiation Effects Data Workshop, p. 48
- [87] IROM, F. et al. Single-Event Upset in Commercial Silicon-on-Insulator PowerPC Microprocessors. *IEEE Trans. Nucl. Soc.*, 2002, 49, p. 3148
- [88] LAYTON, P. et al. Radiation Testing Results of COTS-Based Space Microcircuits. Workshop Record, 1998 IEEE Radiation Effects Data Workshop, p. 170
- [89] HADDAD, N et al, SOI: Is it the Solution to Commercial Product SEU Sensitivity, paper presented at the RADECS 2003 Conference
- [90] KOGA, R. et al. Permanent Single Event Functional Interrupts (SEFIs) in 128- and 256-Megabit Synchronous Dynamic Random Access Memories (SDRAMs). *Workshop Record*, 2001 IEEE Radiation Effects Data Workshop, p. 6
- [91] LABEL, K. et al. SEU tests of a 80386 Based Flight-Computer/Data Handling System and of Discrete PROM and EEPROM Devices and SEL Tests of 80386, 80387, PROM, EEPROM and ASICs. Workshop Record, 1992 IEEE Radiation Effects Data Workshop, p. 1
- [92] NORMAND, E. and WERT, J. L. Test and Analysis Report on the Single Event Effects Testing and Analysis of the OFM-1020 Avionics Optical Time-Domain Reflectometer. Boeing report prepared for the International Space Station Fiber Optic Team 5, Oct. 2000
- [93] BELCASTRO, C., EURE K. and HESS, R. Closed-Loop Neutron Particle Effects Testing on Flight Control Computers, Paper presented at the 2004 SEE Symposium, April, 2004
- [94] BAUMANN, R. C. and SMITH, E. B. Neutron-Induced Boron Fission as a Major Source of Soft Errors in Deep SRAM Devices. *Proc.* 38th Int. Reliability Phys. Symp., 2004, p. 152

- [95] BLACKMORE E. W. Development of a large Area neutron beam, for system Testing at TRIUMF. Workshop Record, 2009 IEEE Radiation Effects Data Workshop, W-25 pp. 157-160
- [96] SLAYMAN C., "Theoretical correlation of broad spectrum neutron sources for accelerated soft error testing", IEEE Trans. Nucl. Sci. vol 57, 3163-3168, 2010
- [97] HANDS A., C.S. Dyer and F. Lei, "SEU rates in atmospheric neutron environments: Variations due to cross section fits and environment models" IEEE Trans. Nuc I. Sci. vol 56, 2026-2034, 2009
- [98] Los Alamos Neutron Science Center. About WNR Beam. [Online] [Cited: 11 March 2011.]. Available from: http://wnr.lanl.gov/newwnr/About/Beam.shtml
- [99] PLATT S., A.V. Prokofiev, X.X. Cai, "Fidelity of energy spectra at neutron facilities for single-event effects testing", Proc. 2010 IEEE International Reliability Physics Symposium (IRPS), pp. 411–416

INTERNATIONAL ELECTROTECHNICAL COMMISSION

3, rue de Varembé PO Box 131 CH-1211 Geneva 20 Switzerland

Tel: + 41 22 919 02 11 Fax: + 41 22 919 03 00 info@iec.ch www.iec.ch