

IEC TS 62325-503
 Edition 1.0 2014-01

TECHNICAL
SPECIFICATION

Framework for energy market communications –
Part 503: Market data exchanges guidelines for the IEC 62325-351 profile

IE
C

 T
S

 6
23

25
-5

03
:2

01
4-

01
(E

N
)

®

colour
inside

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 THIS PUBLICATION IS COPYRIGHT PROTECTED
 Copyright © 2014 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC
copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or
your local IEC member National Committee for further information.

IEC Central Office Tel.: +41 22 919 02 11
3, rue de Varembé Fax: +41 22 919 03 00
CH-1211 Geneva 20 info@iec.ch
Switzerland www.iec.ch

About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigenda or an amendment might have been published.

IEC Catalogue - webstore.iec.ch/catalogue
The stand-alone application for consulting the entire
bibliographical information on IEC International Standards,
Technical Specifications, Technical Reports and other
documents. Available for PC, Mac OS, Android Tablets and
iPad.

IEC publications search - www.iec.ch/searchpub
The advanced search enables to find IEC publications by a
variety of criteria (reference number, text, technical
committee,…). It also gives information on projects, replaced
and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished
Stay up to date on all new IEC publications. Just Published
details all new publications released. Available online and
also once a month by email.

Electropedia - www.electropedia.org
The world's leading online dictionary of electronic and
electrical terms containing more than 30 000 terms and
definitions in English and French, with equivalent terms in 14
additional languages. Also known as the International
Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary
More than 55 000 electrotechnical terminology entries in
English and French extracted from the Terms and Definitions
clause of IEC publications issued since 2002. Some entries
have been collected from earlier publications of IEC TC 37,
77, 86 and CISPR.

IEC Customer Service Centre - webstore.iec.ch/csc
If you wish to give us your feedback on this publication or
need further assistance, please contact the Customer Service
Centre: csc@iec.ch.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

mailto:info@iec.ch
http://www.iec.ch/
http://webstore.iec.ch/catalogue
http://www.iec.ch/searchpub
http://webstore.iec.ch/justpublished
http://www.electropedia.org/
http://std.iec.ch/glossary
http://webstore.iec.ch/csc
mailto:csc@iec.ch

IEC TS 62325-503
 Edition 1.0 2014-01

TECHNICAL
SPECIFICATION

Framework for energy market communications –
Part 503: Market data exchanges guidelines for the IEC 62325-351 profile

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

XD

ICS 33.200

PRICE CODE

ISBN 978-2-8322-1368-1

® Registered trademark of the International Electrotechnical Commission

®

 Warning! Make sure that you obtained this publication from an authorized distributor.

colour
inside

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 2 – TS 62325-503  IEC:2014(E)

CONTENTS

FOREWORD ... 7
INTRODUCTION ... 9
1 Scope .. 10
2 Normative references .. 10
3 Terms and definitions .. 11
4 High level concepts ... 12

4.1 What is MADES intended for? .. 12
4.2 General overview ... 13
4.3 Message delivery and transparency ... 14

4.3.1 Message delivery .. 14
4.3.2 Transparency.. 14

4.4 Security and reliability .. 15
4.5 Main components ... 16
4.6 Distributed architecture .. 17
4.7 Components’ exposed interfaces ... 18
4.8 Security features .. 18

4.8.1 Overview .. 18
4.8.2 Transport-layer security .. 19
4.8.3 Message-level security ... 20
4.8.4 Non repudiation .. 21

5 Components’ functions .. 22
5.1 Routing messages ... 22
5.2 Component and message unique identification (ID) .. 23
5.3 Business-type of a business-message ... 23
5.4 Delivery-status of a business-message .. 23
5.5 Communication between components .. 25

5.5.1 Principle ... 25
5.5.2 Establishing a secured communication channel between two

components .. 25
5.5.3 Token authentication of the client component 26
5.5.4 Request authorisation ... 26
5.5.5 Request/Reply validation .. 26

5.6 Storing messages in components ... 27
5.7 Lifecycle of a message state within a component ... 27
5.8 Transferring a message between two components (Handshake) 29
5.9 Accepting a message ... 30
5.10 Event management .. 31

5.10.1 Acknowledgements ... 31
5.10.2 Notifying events .. 32
5.10.3 Lifecycle of an acknowledgement ... 34
5.10.4 Processing a transferred acknowledgement 34

5.11 Message expiration .. 35
5.11.1 Principle ... 35
5.11.2 Setting the expiration time of a message: 35
5.11.3 Looking for the expired messages: ... 35

5.12 Checking the connectivity between two endpoints (Tracing-messages) 35
5.13 Ordering the messages (Priority).. 36

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 3 –

5.14 Endpoint .. 36
5.14.1 Endpoint functions .. 36
5.14.2 Compression .. 37
5.14.3 Signing ... 38
5.14.4 Encryption .. 39

5.15 Node .. 41
5.15.1 Node functions ... 41
5.15.2 Synchronizing directory with other nodes .. 41
5.15.3 Updating the synchronization nodes’ list ... 42

5.16 Certificates and directory management .. 43
5.16.1 Definitions and principles .. 43
5.16.2 Certificates: Format and unique ID ... 44
5.16.3 Used certificates and issuers (CAs) .. 44
5.16.4 Directory services ... 46
5.16.5 Caching directory data .. 46
5.16.6 Trusting the certificates of others components 47
5.16.7 Renewing the expired certificates ... 47
5.16.8 Revoking a certificate ... 48

6 Managing the version of the MADES specification ... 49
6.1 Issues and principles ... 49

6.1.1 General .. 49
6.1.2 Rolling out a new version (Mversion and N-compliance) 49
6.1.3 Service compatibility ... 49
6.1.4 Message compatibility .. 50
6.1.5 Interface with BAs... 50

6.2 Using the correct version for services and messages 51
6.2.1 Node synchronization and authentication .. 51
6.2.2 Directory services and Network acceptance 52
6.2.3 Messaging services .. 53
6.2.4 Which version to use to send a message? 53

7 Interfaces and services .. 55
7.1 Overview .. 55

7.1.1 General .. 55
7.1.2 Error Codes .. 55
7.1.3 Types for Time.. 55

7.2 Endpoint interface .. 56
7.2.1 Overview .. 56
7.2.2 Services ... 56
7.2.3 File System Shared Folders (FSSF) .. 60

7.3 Node interface ... 62
7.3.1 Overview .. 62
7.3.2 Authentication service .. 63
7.3.3 Messaging Services .. 64
7.3.4 Directory services ... 67
7.3.5 Node Synchronization interface .. 70

7.4 Format of the node-list file ... 71
7.5 Typed Elements used by the interfaces .. 72
7.6 Description of the services ... 79

7.6.1 About WSDL and SOAP .. 79

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 4 – TS 62325-503  IEC:2014(E)

7.6.2 Endpoint interface... 79
7.6.3 Node interface .. 86
7.6.4 XML signature example .. 100

Figure 1 – MADES overall view ... 12
Figure 2 – MADES scope .. 13
Figure 3 – MADES key features .. 13
Figure 4 – MADES message delivery overview ... 14
Figure 5 – MADES security and reliability ... 15
Figure 6 – MADES components .. 16
Figure 7 – MADES network distributed architecture .. 17
Figure 8 – MADES interfaces and services ... 18
Figure 9 – MADES transport security overview ... 19
Figure 10 – MADES secure communication initiation .. 19
Figure 11 – Message signature ... 20
Figure 12 – Message encryption and decryption ... 20
Figure 13 – Non repudiation .. 21
Figure 14 – Delivery route of a business-message .. 22
Figure 15 – Reported events during the delivery of a business-message 24
Figure 16 – Lifecycle of the local state of a business-message within a component 28
Figure 17 – Transfer handshake when uploading of a message .. 29
Figure 18 – Transfer handshake when downloading of a message .. 30
Figure 19 – Acknowledgements along the route of the business-message 32
Figure 20 – Encryption process ... 40
Figure 21 – A node synchronizes with two other nodes ... 42
Figure 22 – Certificates and certificate authorities (CAs) for a MADES network 45
Figure 23 – Managing the specification version – node synchronization and
authentication ... 51
Figure 24 – Managing the specification version – Directory services 52
Figure 25 – Managing the specification version – Messaging services 53
Figure 26 – Managing the specification version – Which version to use to send a
message? ... 54
Figure 27 – Node interface – Overview ... 63
Figure 28 – Node interface – Authentication service ... 63
Figure 29 – Node interface – Messaging services – UploadMessages service....................... 65
Figure 30 – Node interface – Messaging services – DownloadMessages service 66
Figure 31 – Node interface – Messaging services – ConfirmDownload service 67
Figure 32 – Node interface – Directory services – GetCertificate service 68
Figure 33 – Node interface – Directory services – GetComponent service............................. 70
Figure 34 – WSDL 1.1 definitions .. 79

Table 1 – Message delivery status .. 25
Table 2 – Business message status .. 28
Table 3 – Accepting a message – Validation checks ... 31

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 5 –

Table 4 – Characteristics of notified events ... 33
Table 5 – Event characteristics description ... 34
Table 6 – Acknowledgement state description ... 34
Table 7 – Compression – metadata attributes ... 38
Table 8 – Signing – metadata attributes .. 39
Table 9 – Encryption – metadata attributes ... 40
Table 10 – Consequences of a certificate revocation .. 48
Table 11 – Service compatibility – Possible changes .. 50
Table 12 – Which version to use to send a message? ... 54
Table 13 – Managing the specification version – Rejection conditions 54
Table 14 – Interfaces and services – Generic error ... 55
Table 15 – Interfaces and services – String value for errorCode ... 55
Table 16 – SendMessage – Service request elements .. 56
Table 17 – SendMessage – Service response elements .. 57
Table 18 – SendMessage – Additional error elements ... 57
Table 19 – ReceiveMessage – Service request elements .. 57
Table 20 – ReceiveMessage – Service response elements ... 57
Table 21 – ReceiveMessage – Additional error elements .. 58
Table 22 – CheckMessageStatus – Service request elements ... 58
Table 23 – CheckMessageStatus – Service response elements .. 58
Table 24 – CheckMessageStatus – Additional error elements ... 58
Table 25 – ConnectivityTest – Service request elements .. 59
Table 26 – ConnectivityTest – Service response elements .. 59
Table 27 – ConnectivityTest – Additional error elements ... 59
Table 28 – ConfirmReceiveMessage – Service request elements .. 59
Table 29 – ConfirmReceiveMessage – Service response elements 59
Table 30 – ConfirmReceiveMessage – Additional error elements .. 60
Table 31 – FSSF – Description and filename format.. 61
Table 32 – FSSF – Filename description ... 61
Table 33 – Authentication – Service request elements .. 64
Table 34 – Authentication – Service response elements ... 64
Table 35 – UploadMessages – Service request elements .. 65
Table 36 – UploadMessages – Service response elements ... 65
Table 37 – DownloadMessages – Service request elements ... 66
Table 38 – DownloadMessages – Service response elements ... 66
Table 39 – ConfirmDownload – Service request elements ... 67
Table 40 – ConfirmDownload – Service response elements .. 67
Table 41 – SetComponentMversion – Service request elements ... 68
Table 42 – SetComponentMversion – Service response elements ... 68
Table 43 – GetCertificate – Service request elements ... 69
Table 44 – GetCertificate – Service response elements .. 69
Table 45 – GetCertificate – Additional conditions .. 69
Table 46 – GetComponent – Service request elements ... 70

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 6 – TS 62325-503  IEC:2014(E)

Table 47 – GetComponent – Service response elements .. 70
Table 48 – GetNodeMversion – Service request elements .. 70
Table 49 – GetNodeMversion – Service response elements .. 71
Table 50 – GetAllDirectoryData – Service request elements ... 71
Table 51 – GetAllDirectoryData – Service response elements ... 71
Table 52 – Node attributes ordered list ... 71
Table 53 – AuthenticationToken .. 72
Table 54 – Certificate .. 72
Table 55 – CertificateType – string enumeration ... 72
Table 56 – ComponentCertificate .. 72
Table 57 – ComponentDescription .. 73
Table 58 – ComponentInformation .. 73
Table 59 – ComponentType – string enumeration ... 73
Table 60 – Endpoint .. 73
Table 61 – InternalMessage .. 74
Table 62 – InternalMessageType – string enumeration ... 75
Table 63 – MessageMetadata ... 75
Table 64 – MessageProcessor .. 75
Table 65 – Map ... 75
Table 66 – MapEntry ... 76
Table 67 – ValueType (enumeration) .. 76
Table 68 – MessageState (string enumeration) ... 76
Table 69 – MessageStatus .. 76
Table 70 – MessageTraceItem .. 77
Table 71 – MessageTraceState (string enumeration) .. 77
Table 72 – NotConfirmedMessageResponse ... 77
Table 73 – NotUploadedMessageResponse .. 78
Table 74 – ReceivedMessage ... 78
Table 75 – RoutingInformation .. 78
Table 76 – SentMessage .. 78

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 7 –

INTERNATIONAL ELECTROTECHNICAL COMMISSION

FRAMEWORK FOR ENERGY MARKET COMMUNICATIONS –

Part 503: Market data exchanges guidelines for the IEC 62325-351 profile

FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising

all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. In
exceptional circumstances, a technical committee may propose the publication of a technical
specification when

• the required support cannot be obtained for the publication of an International Standard,
despite repeated efforts, or

• the subject is still under technical development or where, for any other reason, there is the
future but no immediate possibility of an agreement on an International Standard.

Technical specifications are subject to review within three years of publication to decide
whether they can be transformed into International Standards.

IEC/TS 62325-503, which is a technical specification, has been prepared by IEC technical
committee 57: Power systems management and associated information exchange.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 8 – TS 62325-503  IEC:2014(E)

The text of this technical specification is based on the following documents:

DTS Report on voting

57/1370/DTS 57/1401/RVC

Full information on the voting for the approval of this technical specification can be found in
the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 62325 series, published under the general title Framework for
energy market communications, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until
the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data
related to the specific publication. At this date, the publication will be

• transformed into an International standard,
• reconfirmed,
• withdrawn,
• replaced by a revised edition, or
• amended.

A bilingual version of this publication may be issued at a later date.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates
that it contains colours which are considered to be useful for the correct
understanding of its contents. Users should therefore print this document using a
colour printer.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 9 –

INTRODUCTION

This Technical Specification is part of the IEC 62325 series which defines protocols for
deregulated energy market communications.

The principal objective of the IEC 62325 series is to produce standards which facilitate the
integration of market application software developed independently by different vendors into a
market management system, between market management systems and market participant
systems. This is accomplished by defining message exchanges to enable these applications
or systems access to public data and exchange information independent of how such
information is represented internally.

The common information model (CIM) specifies the basis for the semantics for the message
exchange. The European style market profile specifications that support the European style
design electricity markets are defined in IEC 62325-351. These electricity markets are based
on the European regulations, and on the concepts of third party access and zonal markets.
The IEC 62325-451-n International standards specify the content of the messages exchanged.

The purpose of this technical specification is to provide the guidelines to exchange the above
mentioned messages. A European market participant (trader, distribution utilities, etc.) could
benefit from a single, common, harmonized and secure platform for message exchange with
the European Transmission System Operators (TSOs); thus reducing the cost of building
different IT platforms to interface with all the parties involved.

This Technical Specification represents an important step in facilitating parties entering into
electricity markets other than their national ones; they could use the same or similar
information exchange system to participate in more than one market all over Europe.

This Technical Specification was originally based upon the work of the European Network of
Transmission System Operators (ENTSO-E) Working Group EDI.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 10 – TS 62325-503  IEC:2014(E)

FRAMEWORK FOR ENERGY MARKET COMMUNICATIONS –

Part 503: Market data exchanges guidelines for the IEC 62325-351 profile

1 Scope

This technical specification is for European electricity markets.

This document specifies a standard for a communication platform which every Transmission
System Operator (TSO) in Europe may use to reliably and securely exchange documents for
the energy market. Consequently a European market participant (trader, distribution utilities,
etc.) could benefit from a single, common, harmonized and secure platform for message
exchange with the different TSOs; thus reducing the cost of building different IT platforms to
interface with all the parties involved. This also represents an important step in facilitating
parties entering into markets other than their national ones.

From now on the acronym “MADES” (MArket Data ExchangeS) will be used to designate
these Technical Specifications.

MADES is a specification for a decentralized common communication platform based on
international IT protocol standards:

• From a business application (BA) perspective, MADES specifies software interfaces to
exchange electronic documents with other BAs. Such interfaces mainly provide means to
send and receive documents using a so-called “MADES network”. Every step of the
delivery process is acknowledged, and the sender can request about the delivery status of
a document. This is done through acknowledgement, which are messages returned back
to the sender. This makes MADES networks usable for exchanging documents in business
processes requiring reliable delivery.

• MADES also specifies all services for the business application (BA); the complexities of
recipient localisation, recipient connection status, message routing and security are
hidden from the connecting BA. MADES services include directory, authentication,
encryption, signing, message tracking, message logging and temporary message storage.

The purpose of MADES is to create a data exchange standard comprised of standard
protocols and utilizing IT best practices to create a mechanism for exchanging data over any
TCP/IP communication network, in order to facilitate business to business information
exchanges as described in IEC 62325-351 and the IEC 62325-451 series.

A MADES network acts as a post-office organization. The transported object is a “message” in
which the sender document is securely repackaged in an envelope (i.e. a header) containing
all the necessary information for tracking, transportation and delivery.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and
are indispensable for its application. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any
amendments) applies.

IEC 61970-2, Energy management system application program interface (EMS-API) – Part 2:
Glossary

IETF RFC 1738, Uniform resource locators (URL), http://www.ietf.org/rfc/rfc1738.txt

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

http://www.ietf.org/rfc/rfc1738.txt

TS 62325-503  IEC:2014(E) – 11 –

IETF RFC 3110, RSA/SHA-1 SIGs and RSA KEYs in the domain name system
(DNS),http://www.ietf.org/rfc/rfc3110.txt

IETF RFC 4122, A universally unique identifier (UUID) URN namespace,
http://www.ietf.org/rfc/rfc4122.txt

ITU-T Recommendation X.509, Information technology - Open systems interconnection - The
directory: Public-key and attribute certificate frameworks, http://www.itu.int/rec/T-REC-
X.509/en

3 Terms and definitions

For the purposes of this document, the terms and definitions given in IEC 61970-2 apply, as
well as the following.

NOTE General glossary definitions can be found in IEC 60050, International Electrotechnical Vocabulary.

3.1
advanced encryption standard
AES
symmetric cryptographic algorithm

3.2
distinguish encoding rule
DER
format for X.509 digital certificates

3.3
European style market profile
ESMP
European style market profile for which this Technical Specification is designed

3.4
market data exchange standard
MADES
standard described in this document for the European market style market profile

3.5
profile
basic outline of all the information that is required to satisfy a specific environment

3.6
transmission system operator
TSO
company responsible for operating, maintaining and developing the transmission system for a
control area and its interconnections

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

http://www.ietf.org/rfc/rfc3110.txt
http://www.ietf.org/rfc/rfc4122.txt
http://www.itu.int/rec/T-REC-X.509/en
http://www.itu.int/rec/T-REC-X.509/en

 – 12 – TS 62325-503  IEC:2014(E)

4 High level concepts

4.1 What is MADES intended for?

TSO

Market
Participant

Auction
Office

Market
Participant DSOTrader

TSO

Documents

Other…

Figure 1 – MADES overall view

MADES’ first intention is to provide TSOs with a standardized communication access point to
securely exchange documents with others parties involved in the European electricity market
as shown in Figure 1. These documents are mainly the ones used in the energy market and
described in IEC 62325-351 and the IEC 62325-451 series. Such parties include TSOs,
distribution system operators (DSO), balance responsible parties (BRP), capacity traders
(CT), market operators (MO), producers, transmission capacity allocators (TCA), etc.

The MADES enables each party to implement MADES access points (referred to as
endpoints) connected to his information system (IS), where he may securely send and receive
documents to and from other parties.

MADES is a market data exchange standard comprised of standard protocols and utilizing IT
best practices to create a mechanism for exchanging data over any TCP/IP communication
network, in order to facilitate business-to-business information exchanges.

New market rules induce new business processes and activities, and generally require new
information exchanges between parties. Experience shows that, for the exchanges to operate
according to the business goals, the chosen technical solution results from an agreement of
involved parties gathering various constraints, including implementation time scale, vendors’
offer, already existing communication links, integration capabilities of existing information
systems, confidentiality of exchanged information, legal risks, etc.

Where business processes require information to be exchanged between multiple systems or
multiple parties, solutions developed bilaterally may become extremely complex, with each
interface taking time, money and resources to be developed and be maintained. It is also a
noticeable consequence that some parties acting in several countries, such as traders, may
have to install different communication tools in order to interface with different trading
solutions. The future vision is a single interface between all parties in all areas of the
electricity market of Europe.

MADES can support any business process whatever the document types being transmitted
might be (e.g. XML, binary) and whatever the sequence for the exchanges.

MADES is independent of the physical underlying communication Infrastructure, which can be
any IP (Internet Protocol) network, such as Internet, a physical private infrastructure, or a
multi access-point virtual private network (VPN).

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 13 –

MADES relies on and only on non-proprietary IT standards for communication protocols, data
integrity, signing and confidentiality (encryption), peer access point authentication, peer party
authentication, parties’ directory (e.g. HTTPS, SOAP, X.509), as shown in Figure 2.

Business Logic
(processes and activities)

Document
structure and content

Reliable Message Delivery
Transparency

Security
Integration

Communication Protocols

Network Infrastructure

B
us

in
es

s
In

fo
rm

at
io

n
Te

ch
no

lo
gy

 (I
T)

Market rules

Implementation Guide
(e.g. ENTSO-E ESS XML)

IT standards (e.g. HTTPS,
SOAP)

e.g. Internet, private network,
virtual private network

MADES

Figure 2 – MADES scope

4.2 General overview

The purpose of the MADES standard is to specify a message delivery platform with the key
features shown in Figure 3.

MADES Standard

Security

Message Delivery

Reliability

Integration

Transparency

Figure 3 – MADES key features

1. Message delivery – A party (sender) connected to the communication network can
send a message to another party (recipient), which is connected or can connect to the
network.

2. Transparency – Any transported message can be tracked down to gather trustworthy
information about the state of delivery and traversal path.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 14 – TS 62325-503  IEC:2014(E)

3. Security – Only the recipient of the message is capable of reading the message-
content. The sender of any message can be unambiguously verified.

4. Reliability – A message cannot get lost.
5. Integration – The MADES functions for sending and receiving messages can be

integrated with wide variety of technologies.

The first four key features (message delivery, security, transparency and reliability) are
capabilities of the communication system, while the other one (integration) is a design
characteristic of the components of the communication system.

4.3 Message delivery and transparency

4.3.1 Message delivery

The main feature of MADES is the message delivery function, as shown Figure 4.

Figure 4 – MADES message delivery overview

A message is transferred from a sender to a recipient. Both sender and recipient are business
applications (BAs). A BA connects to a MADES endpoint using a programming interface.

The sender and recipient view the MADES system only through the defined interface. The
document transported between sender and recipient can be any text or binary data. Alongside
with the document, a MADES message contains additional information, in a header (or
envelope), including information to securely identify, transport and route the message such as
a unique message ID, the identities of the sender and of the recipient, a business-type.

4.3.2 Transparency

The message path – from the sender’s endpoint to the recipient’s endpoint – goes through
some components of the MADES network. When a message traverses a component, the later
notifies the event and a new message (referred as an acknowledgement) is sent back to the
sender’s endpoint. All the events notified during the message delivery can be retrieved by the
sender’s BA.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 15 –

4.4 Security and reliability

MADES ensures a secure message transfer and a fully tracked delivery, as shown in Figure 5.

Figure 5 – MADES security and reliability

A MADES communication system guarantees that any message accepted by the system will
not be lost. The sender can at any time check the delivery status of the messages (delivering,
delivered or failed).

The standard describes a logging mechanism to be implemented in all message handling
components to provide information about the message transfers; MADES describes non-
repudiation features, allowing the verification of a message and its header which includes the
sender, the recipient, the sending time, the delivery time, etc.

MADES defines the way to sign and encrypt the transported messages.

For the communication layer, the MADES components use the secure communication
protocols HTTPS. Information is transported encrypted. Moreover, both sides of
communication are authenticated using industry-standard PKI certificates.

The security features are detailed in 4.8.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 16 – TS 62325-503  IEC:2014(E)

4.5 Main components

MADES describes three logical communication components and their interfaces, as shown in
Figure 6.

Figure 6 – MADES components

From the users’ or business application (BA) point of view, the crucial component is the
endpoint, which provides the interface for the BAs to send and receive the messages. Actually
no graphical user interface is part of MADES; such an interface to provide a manual way for
sending and receiving messages is an application which can be integrated with the endpoint.

The node component serves as a central part of a MADES network. Each node contains a
directory with information on all the registered network components, whether endpoints or
nodes.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 17 –

4.6 Distributed architecture

A MADES network may consist of multiple interconnected nodes, each taking care of a part of
the network, as shown in Figure 7.

Figure 7 – MADES network distributed architecture

A MADES network may contain a large number of collaborating components with the nodes in
the centre. A MADES network has a distributed architecture; it does not have any single
central component. All nodes have equal responsibilities; each manages a part of the
network.

Each endpoint shall register with a home node. The components registered with a node are
referred as the registered components. Endpoints currently connected to a node are the
connected endpoints.

Directory information about all registered endpoints is regularly shared between the nodes,
using the node synchronization interface; so that endpoints registered with different home
nodes can exchange messages.

An endpoint can connect to any node to send messages, but it can only receive messages
from the home node.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 18 – TS 62325-503  IEC:2014(E)

4.7 Components’ exposed interfaces

MADES standard specifies the interfaces between the components. All interfaces and
services are presented in Figure 8.

Figure 8 – MADES interfaces and services

Each arrow on Figure 8 shows a component (at the tail of the arrow) using the interface
exposed by the component at the tip of the arrow.

a) Endpoint interface  used by a business application (BA) – see 7.2.
b) An endpoint shall implement this interface for a BA to connect to a MADES network.
c) Node interface  used by the endpoints – see 7.3.
d) A node shall implement this interface to allow an endpoint to transfer the messages and to

query the node directory.
e) Node synchronization interface  used by the nodes – see 7.3.5.
f) A node shall implement this interface to synchronize directory data with the other nodes of

the MADES network.

4.8 Security features

4.8.1 Overview

Main goals of the MADES security definition are summarized by the following points:

• The security solution is transparent to the business applications (BAs) – no specific
implementation shall be required in the application to communicate securely.

• Any message shall be readable only by the recipient.

• The sender of any message shall be unambiguously identified.

• Non-repudiation of the messages – it shall be possible to unambiguously prove that the
sender sent the message and that the recipient received it.

• All communication routes shall be encrypted. The security solution complies with the
X.509 public key infrastructure.

The security issues are covered on two levels: transport-layer security and message-level
security.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 19 –

On the transport-layer, MADES requires the communication between two components to
always be encrypted. Two components that exchange information shall first unambiguously
identify each other.

On the message-level, MADES requires that all messages shall be signed and encrypted, so
the sender of the message can be unambiguously identified and the message is only readable
by the intended recipient.

4.8.2 Transport-layer security

The transport–layer security of the communication between components relies on the
transport protocol layer. When communicating, components shall use a secure protocol
HTTPS providing the encryption of the communication route. Mutual authentication of
communicating components shall be handled using X.509 certificates; both the client and the
server shall authenticate themselves by their respective authentication X.509 certificates, as
shown in Figure 9.

Figure 9 – MADES transport security overview

The communication (i.e. the IP connection) between components shall always be initiated by
the client. This provides higher security on client-side by not having to allow incoming
connections through firewalls, as shown in Figure 10.

Figure 10 – MADES secure communication initiation

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 20 – TS 62325-503  IEC:2014(E)

4.8.3 Message-level security

The unambiguous identification of the sender of any message sent via the MADES network is
enabled by usage of digital signatures as shown in Figure 11.

Figure 11 – Message signature

On the sender’s endpoint, the message is signed using the sender’s private key of a signing
certificate. On the recipient’s endpoint, the message signature is verified using the sender’s
public key of the certificate.

Any message sent via the MADES shall be encrypted, so that only the intended recipient can
read the message-content as shown in Figure 12.

Message content symmetrically
encrypted using session key.
Session key asymmetrically

encrypted and distributed with
the message

X509 Publics key
of recipient's

endpoint

X509 Private key
of recipient's

endpoint

Plain
Message

Figure 12 – Message encryption and decryption

The content of the message (i.e. the document) is encoded with a randomly generated
session key, which is then itself encoded with the public key of the encryption certificate of
the recipient. The encoded key is transported together with the message.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 21 –

The receiver decodes the key with the private key of his encryption certificate, and then uses
the key to decode the document.

4.8.4 Non repudiation

4.8.4.1 Overview

The general behaviour is first presented in Figure 13, and then detailed in 4.8.4.2 and 4.8.3.

Header
Msg ID
Date

Header
Msg ID
Date

Match n°1!

Document Compressed
Message

Encrypted
Content

Message Fingerprint

Message Fingerprint
Encrypted by sender

Header
Msg ID
Date

Header
Msg ID
Date

Header
Msg ID
Date

Header
Ack Msg ID
Reception date
Original Msg ID

Acknowledgement
fingerprint

Acknowledgement Fingerprint
encrypted by receiver

Header
Ack Msg ID
Reception date
Original Msg ID

Header
Ack Msg ID
Reception date
Original Msg ID

Decrypt
Fingerprint

Match n°2!

Decrypt
Fingerprint

Message delivery

Acknowledgement

Match n°3!

Sender Recipient
Network

Figure 13 – Non repudiation

4.8.4.2 Message delivery

The message fingerprint uniquely identifies the document together with some header
information, such as the message unique ID (MsgID) and the sending date and time. The
document may have been previously compressed.

Both the fingerprint and the document are encoded and transported to the recipient. The
fingerprint is encoded in such a way that uniquely identifies the sender (signature), and the
document in such a way that only the recipient can read it (encryption).

The recipient decodes both the fingerprint and the document. He verifies (match n°1) that the
fingerprint, which he can regenerate from the message, matches the transported signed
fingerprint (signature verification). Then he stores the decoded message and the encoded
fingerprint. Both elements together with the signing certificate prove that the message was
sent by the sender.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 22 – TS 62325-503  IEC:2014(E)

4.8.4.3 Acknowledgement

The recipient sends back a new message, the acknowledgement, using a similar process. The
new message contains the unique ID of the original message (Original Msg ID) and the
attached document is the fingerprint of the original message1.

The acknowledgement is signed but not encrypted and transported to the sender of the
original document.

When he receives the acknowledgement, the sender verifies (match n°2) that the
acknowledgement was sent by the recipient (signature verification). He also verifies that the
acknowledgement document is the original message fingerprint (match n°3).

The set, composed of the original message, the signed acknowledgement and the signing
certificate, proves that the recipient received the original message.

5 Components’ functions

5.1 Routing messages

A message shall be transported from the sender’s BA (business application) to the recipient’s
BA using the route shown in Figure 14.

Sender's
BA

Sender's
Endpoint

Recipient's
Home
Node

Recipient 's
Endpoint

Recipient's
BA

Message

Time

Upload Download

Figure 14 – Delivery route of a business-message

The message is composed by the sender’s endpoint with information and document provided
by the sender’s BA. Then the message is transferred from component to component (from left
to right in Figure 14) until the recipient’s BA.

The message-content (also referred as the message-payload) is the document provided by
the sender’s BA. The composed message contains additional information (i.e. a header) used
for security, routing and delivery tracking.

The arrows in Figure 14 represent the IP connections between the components and each
arrow goes from a client to a server. Thus, a message is uploaded (or sent, or going out) on
the way from sender’s BA to the recipient’s node. It is downloaded (or received, or coming in)
on the way from the node to the recipient’s BA. “Transfer” is the generic word used to mean
either upload or download.

The node, which the message goes through, shall be the home node of the recipient’s
endpoint. Note that a reverse going message between the two BAs will not use the reverse
route if sender and recipient have different home nodes.

There are two types of messages:

1 There are several acknowledgements during the message delivery; the one referred to here is sent by the

endpoint of the recipient party after it correctly receives the message (event n°4 in Figure 19).

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 23 –

• Business-message – is a message composed by the sender’s endpoint from a send
request initiated by a sender’s BA. The goal of MADES is to transport such business-
messages to the requested recipient’s endpoint.

• Acknowledgement – is an ancillary message used for tracking the end-to-end delivery
process of a business-message. The BAs do not know about those internal
acknowledgements, but a BA can request the endpoint about the delivery status of a
previously sent business-message.

5.2 Component and message unique identification (ID)

Each component shall have a unique ID in a MADES network. The identification scheme is a
network governance issue.

• The “component ID” (also referred as “component code”) is used to identify the component
when exchanging with other components.

• A BA shall use an endpoint ID to identify the recipient when sending a document.
Conversely the sender endpoint ID is provided to BA together with a received document.

• The IDs of the sender and the recipient are included in the header of each message.

When a component composes a message, it shall identify it with a UUID (Universal Unique
Identifier), as defined in IETF RFC 4122 (http://www.ietf.org/rfc/rfc4122.txt).

NOTE When delivering a document, a recipient’s endpoint supplies the BA with a guaranteed (i.e. authenticated)
sender’s identity: the component ID of the sender’s endpoint. However the sender’s identity is also often included
within the document itself, and it is up to the BA that analyses the document to check that both identities match.

5.3 Business-type of a business-message

A MADES network may support multiple and concurrent business processes.

A party “P” having an endpoint connected to the network can operate several BAs,
implementing functions to support internal activities and exchanges with others parties in
accordance to the roles he plays in the business processes.

The BAs request the endpoint to send documents to other parties. The endpoint supports
concurrent requests from the BAs.

Other parties, while fulfilling their own roles in these business processes, may also send
some documents to party “P”. For dispatching correctly the received documents between BAs,
each BA may indicate a business-type when requesting for downloading a possibly newly
received document.

So the business-type is mandatory text information provided by a sender’s BA, included in the
header of the business-message, transported with the message to the recipient’s endpoint,
and used by a recipient’s BA to retrieve the only documents it shall process.

Each party is free to organise how he architectures activities, functions and BAs in his own
Information System, in a way transparent to the other parties. However the business-types
shall be agreed between all parties as part of the overall information exchange design2.

5.4 Delivery-status of a business-message

The delivery process of each business-message is fully tracked. Tracking means that the
components taking part in the routing process notifies the sender’s endpoint with events about
the message. The reported events are:

2 Business-types can be compared to port numbers: competing applications in a machine use different port

numbers so that received information can be correctly routed. Used port numbers have to be agreed between
parties (e.g. 21:FTP, 22:SSH, 25:SMTP) but they are not part of IP protocol which accepts any number.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

http://www.ietf.org/rfc/rfc4122.txt

 – 24 – TS 62325-503  IEC:2014(E)

• Delivery event – notifies that the business-message has been either:
a) transferred to a component; i.e. the component confirms it received the business-

message (“Transfer confirmation” is defined in 5.8);
b) accepted by a component; the component confirms that it received the business-

message and that the message successfully passed validation. It also means that the
message is ready to be transferred to the next component on the route to the
recipient’s endpoint (“Acceptance” is defined in 5.9).

• Failure event – notifies that a business-message cannot be delivered because:
a) the message was rejected, for it fails the validation;
b) or an unrecoverable error occurred when processing the message.

Sender's
BA

Sender 's
Endpoint

Recipient's
Home
Node

Recipient's
Endpoint

Recipient's
BA

Accepted by the
sender's Endpoint

Accepted
by the Node

Accepted by the
recipient's Endpoint

Transferred to
a recipient's BA

M
es

sa
ge

de

liv
er

y-
st

at
us

Time

Delivery
Events

ACCEPTED

DELIVERING

DELIVERED

RECEIVED

ErrorFAILED

Any time

VERIFYING
Transferred to
the sender's
Endpoint

Failure
Events

1

2

3 4

6

5

Figure 15 – Reported events during the delivery of a business-message

Figure 15 shows the possible events and the components that issue them.

The delivery-status of a business-message expresses the knowledge of the sender’s endpoint
about the message delivery. The status can be requested at any moment by a sender’s BA
providing the message ID returned by the sender’s endpoint when the message was sent. The
possible values are provided in Table 1.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 25 –

Table 1 – Message delivery status

Message
delivery-status Notified event

VERIFYING

The business-message has been transferred to the sender’s endpoint.

Some additional checks are in progress before the endpoint may accept it, e.g.:
the endpoint is waiting for signature by an external signing device (see 5.16.3), or
is waiting for the encryption certificate requested to the node directory.

ACCEPTED The business-message has been accepted by the sender’s endpoint. Conditions
are met to transport the message in the network.

DELIVERING The business-message has been accepted by the node.

DELIVERED The business-message has been accepted by the recipient’s endpoint.

RECEIVED The business-message has been transferred to a recipient’s BA.

FAILED The message delivery has failed. So, the business-message will not be
transported any further.

The acknowledgement, which notifies that a message has been accepted by the recipient’s
endpoint or transferred to a recipient’s BA, does not and shall not mean more that the
document (i.e. the content of the message) has been technically and securely delivered to the
endpoint or a BA of the Information System (IS) of the recipient party. So far, the content of
the document has not been analysed. The probable and further analysis may result in a
“functional acknowledgment”, the document being then accepted or rejected according to the
business rules. Such a functional acknowledgement can even be a new document that the
MADES network will be entrusted to deliver as a new business-message to the sender of the
original document.

5.5 Communication between components

5.5.1 Principle

To communicate, a client component establishes a secured communication channel with a
server component, and then issues requests through the channel.

The server component validates the request and replies. The client component receives back
a request status and validates the reply.

5.5.2 Establishing a secured communication channel between two components

A request from a client component to a server component shall only be processed after the
client has established a secured (i.e. encrypted) communication channel with the server.

The communication channel shall be secured using the HTTPS (HTTP over TLS) protocol. So
each peer, either client or server, verifies that the other peer is a valid and trusted network
component – see 5.16.6.

A client component shall be able to connect to a server component through a network proxy.

An endpoint administrator shall be able to configure a primary and a secondary URL to
connect to the home node.

An endpoint may connect to any node for uploading business-messages and
acknowledgements addressed to a recipient’s endpoint registered with the connected node.
The endpoint shall request by its home node directory the “routing information” for
establishing connection – see 7.3.4.3.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 26 – TS 62325-503  IEC:2014(E)

The node URLs (primary and possibly secondary) in directory should rather contain FQDNs
(Fully Qualified Domain Names) than IP addresses to ease integration with the network
architecture constraints of the parties.

Concerning primary and secondary URLs: the nodes are key components and thus require
high availability. Availability techniques may vary, and redundancy or switch-over mechanism
may not be seamless to other components. So a node administrator may provide two URLs to
access his node. Consequently, the components that connect to a node shall implement a
mechanism to dynamically select the one URL which gains effective access.

5.5.3 Token authentication of the client component

Apart for the node-node synchronization, the server shall always first identify the client, i.e.
know its component ID to authorise the requests.

To do so, the client shall request the server for an authentication-token providing its own
component ID – see 7.3.2.

The server provides back a token which:

• is a randomly generated string (e.g. a UUID);

• has a limited duration validity returned to the client. The later has to request for a new
token when expired or before the expiration time.

For every subsequent request (e.g. message transfer, directory query), the client shall always
provide the server with:

• the authentication-token;

• the signed authentication-token – “signed” means that the hash of the token is encoded
using the RSA algorithm – see 5.16.1;

• the ID of the authentication certificate used for signing the authentication-token.

For every received request, the server shall process the following checks:

• the authentication-token is a known and not expired token;

• the certificate used to sign is a valid and non-revoked certificate owned by the client – see
5.16.8;

• the signature of the authentication-token is correct.

NOTE Such a token-based client authentication is neither part of nor linked to the TLS authentication, and thus
not constrained by specifics of software products used for the implementation of the component (e.g. web servers,
applications servers).

5.5.4 Request authorisation

A node shall reject a request for downloading messages or a request on directory if the client
component is not one of its registered endpoints.

A node shall reject a transfer request (download or upload) when it is already and
concurrently processing the same request for the same client – see 5.8.

5.5.5 Request/Reply validation

The server shall validate data of any request and the client shall check the status and validate
data of any reply.

Validation prevents for foreseeable errors to occur and shall include:

1) Check that all mandatory request/reply elements are set.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 27 –

2) Checks that all set elements do not contain any illegal characters, have the expected
format and size, and have values in expected list or range.

3) Check that the combination values of elements forms a valid set.

In case the request (or the reply) is a message transfer, the validation by the target
component shall include any additional check to ensure that the transferred messages can be
durably stored – see 5.6 (e.g. the size of the message-content does not exceed the maximal
allowed size).

5.6 Storing messages in components

A component shall contain an internal message-box where it durably stores messages.
Durable (or persistent) means that the message shall be recovered after a software crash or a
hardware failure, when the component restarts (reboot or switch to a backup component in a
redundant architecture).

The stored information about a message (either business-message or acknowledgement)
shall be: the content, the header.

The endpoints shall store the compressed (if requested – see 5.14.2) but non-encrypted
content of the message. The stored header shall include the message signature.

Within the message-box, a message shall be associated with additional information only used
locally by the component:

• Transfer timestamp – set by the component when the message is created/stored in the
message box, and used for priority management – see 5.13.

• State – see 5.7 for possible values and lifecycle.

• Priority – see 5.13.

• Receive timestamp (only used for a business-message), the time when the message was
accepted by the recipient’s endpoint – set when processing the acknowledgements of the
message – see 5.10.4

A component administrator shall be able to configure a purge strategy for each business-type.
A purge strategy indicates how the component manages a business-message that has
reached the final state (see 5.7). Possible strategies should include:

• Delete only the message-content (document).

• Delete the whole message and acknowledgements.

• Never delete the message.

A component administrator shall be able to (long term) archive messages and then delete the
correctly archived messages from the message-box.

5.7 Lifecycle of a message state within a component

A business-message has a local state in every component that processes it, and all these
states do not have the same values at the same time. The state is not transported data; it is
not part of the message header. The lifecycle of the state of a business-message within a
component is shown in Figure 16.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 28 – TS 62325-503  IEC:2014(E)

DELIVERING

RECEIVED
(by the

recipient's BA)

FAILED

Component processes the message

Component processes the
delivery events on the message
(e.g. acknowledgements)

ACCEPTED

In Transfer

OutTransfer

Initial state

Final state

DELIVERED
(to the recipient's

Endpoint)

VERIFYING

DELIVERED
Node

Sender's Endpoint

Recipient's Endpoint

Tracing
Messages

Figure 16 – Lifecycle of the local state of a business-message within a component

Possible states of a business-message are listed in Table 2.

Table 2 – Business message status

Business-message
State Description

Verifying

The successful transfer of the business-message in the component has been confirmed
to the component which sent it and, before it may accept it, the message is currently
passing some validation checks or pending (e.g. waiting for an external certificate to
perform security operations such as signature/encryption).

Accepted The business-message has been accepted by the component, and is pending for
transfer to the next component on the message route.

Delivering The business-message has been successfully transferred to the next component.

Delivered
Received
Failed

After the business-message has been transferred to the next component, the message
state is set to the status of the acknowledgements coming back and which inform about
the message delivery (see 5.10).

A business-message in the FAILED state is not delivered. A component shall set the
business-message state to FAILED when it sends a failure-acknowledgement for the
message.

After a message has been successfully transferred (i.e. downloaded) from a node, the state
within the node shall move to DELIVERED which is the final state (and not to DELIVERING).
The reason is the following: If a node is not the home node of the sender’s endpoint of a
business-message, no acknowledgement will ever inform about the rest of the message
delivery.

When a message is accepted by the recipient’s endpoint, the state within the endpoint shall
be directly set to DELIVERED, because the message has reached the destination endpoint
and does not have a next component.

The delivery-status of a business-message, as defined in 5.4, is the local state of the
message in the sender’s endpoint.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 29 –

5.8 Transferring a message between two components (Handshake)

The transfer handshake is the mechanism which ensures that no message can be lost while
passing from a component to another. A component (referred as “target component”) that
receives a message shall confirm to the sender component (referred as “source component”)
that the message has been transferred.

A component is responsible for the message delivery from the moment it sends the transfer
confirmation to the previous component until the moment it receives the transfer confirmation
from the next component.

The target component confirms a message transfer to tell the source component that it took
responsibility for the message, and that it should not transfer it again. It means that either:

• the message has been stored in a durable way,

• the processing of the message has generated an error that has been logged (e.g.
message inconsistency).

The handshake mechanism differs whether the transfer is an upload or a download, as shown
in Figure 17 and Figure 18. When downloading, the target component initiates the request
and an additional request is used to confirm the transfer to the source component.

ACCEPTED

DELIVERING

VERIFYING

ACCEPTED

Prepare
upload
request

Upload request
(messages)

Authorize request
Validate request
Store messages

Request reply
(upload confirmation)

Acceptance validation

Source component Target component

Ti
m

e

Figure 17 – Transfer handshake when uploading of a message

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 30 – TS 62325-503  IEC:2014(E)

ACCEPTED

DELIVERING

VERIFYING

ACCEPTED

Authorize request
Validate request

Prepare reply

Request for
download

Download reply
(messages)

Validate reply
Store messages

Acceptance Validation

Download
confirmation

Reply

Ti
m

e

Source component Target component

Figure 18 – Transfer handshake when downloading of a message

NOTE The use of the VERIFYING state is a component internal design issue. A target component can confirm the
transfer and set the message in the VERIFYING state before asynchronously processing the acceptance checks. A
target component can confirm the transfer after it processes synchronously the acceptance checks, so the
message state is directly set to ACCEPTED (or FAILED) – see 5.9.

The handshake mechanism applies whether a transfer request contains one or several
messages. Actually, the MADES interfaces for uploads and downloads can transfer bulk
messages, mixing business-messages and acknowledgements – see 7.3.3. When multiple
messages are transferred simultaneously, the confirmation shall apply to all the transferred
messages. Note that the BAs can only transfer (send or receive) business-messages one by
one with their endpoint.

A server component shall not authorize a transfer request from a client component while the
same request from the same client is currently being processed. This is necessary to fulfil the
correct delivery sequence of two messages with the same business-type – see 5.13. The bulk
transfer is intended to gain performance without the use of concurrent requests.

The source component shall change the message state to the next state (generally
DELIVERING) after it receives the transfer confirmation.

When the connection between the components is established or recovered after a failure, the
source component shall transfer all pending messages in the ACCEPTED state. Note that it
may happen that some of those messages have already been transferred, that the target
component already sent the confirmation, but that the source component did not receive it or
failed while processing it. So the target component may receive an already existing message
(recognized with the message ID). In this situation, it shall then just confirm the transfer and
log this duplicate transfer event.

5.9 Accepting a message

A component shall accept a transferred message after it passed the validation checks
described in Table 3.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 31 –

Table 3 – Accepting a message – Validation checks

Component Validation checks

Sender’s endpoint

The transferred message can only be a business-message:

• Existence of the recipient’s endpoint.

• Availability of the encryption certificate of the recipient’s endpoint, i.e.
successfully retrieved from directory cache or from home node directory.

• Successful signature of the message.

NOTE The business-message shall be compressed (if requested) while received
by the endpoint, and it shall be encrypted when uploaded to the node.

Node

The transferred message can be a business-message or an acknowledgement:

• The recipient's endpoint has registered with the node.

• The sender's endpoint exists in the directory and owns the certificate used
to sign the message.

• The certificates used for signing and encryption (if encrypted) exists and
are not revoked (see 5.16.8).

Recipient’s endpoint

The transferred message can be a business-message or an acknowledgement:

• Successful decryption of the content, when encrypted.

• Successful verification of the signature, when signed.

• When the message is an acknowledgement notifying the event n°4 (see
Figure 19), successful match between the acknowledgement content and
the original message fingerprint (hash).

NOTE A compressed business-message shall be uncompressed when transferring
to a recipient’s BA.

When a business-message is accepted, the following operations shall be processed as a
transaction3:

• The message is updated (e.g. decrypted content; change of the local state according to
the lifecycle).

• The component notifies the related delivery event – see 5.10.2.

When a business-message is rejected, the component shall notify a failure-event and update
the message as a transaction.

When an acknowledgement is rejected, the component shall log the error and set the
acknowledgement state to FAILED; this stops the delivery.

5.10 Event management

5.10.1 Acknowledgements

A component can notify an event which occurs when delivering a business-message, by
sending an acknowledgment to the sender’s endpoint of the message. The business-message
on which the event occurs is referred as the original message, and its ID shall be included in
the acknowledgement header.

An acknowledgement shall be routed and delivered using the same transfer (upload and
download) mechanism as the business-messages, without being acknowledged itself.

An acknowledgement shall have the same business-type as the original message.

3 In the whole specification a “transaction” means an operation that shall succeed or fail as a complete unit and

cannot remain in an intermediate state.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 32 – TS 62325-503  IEC:2014(E)

The content of an acknowledgement shall never be compressed or encrypted.

5.10.2 Notifying events

“Notifying an event” on a message means either:

• Sending an acknowledgement containing event information to deliver to the sender’s
endpoint of the message.

• Except when the event is notified by the sender’s endpoint of the message itself, then the
event information is just locally stored.

The event issuer shall update the message according the event (e.g. the message state).

Previous operations shall be realized as a transaction, and the issuer shall log the event.

Sender 's
Endpoint

Recipient's
Home
Node

Recipient's
Endpoint

DELIVERED (to
the recipient's Endpoint)

RECEIVED (by
a recipient's BA)

D
el

iv
er

y
Ac

kn
ow

le
dg

em
en

t

Acknowledgements

FAILED

Recipient's
BA

Acknowledgement
status

Fa
ilu

re
Ac

kn
ow

le
dg

em
en

t

4 5

6

Figure 19 – Acknowledgements along the route of the business-message

Figure 19 shows the issuers and the events characteristics notified by acknowledgements.
Table 4 provides the event charecteristics where the events are numbered as in Figure 19.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 33 –

Table 4 – Characteristics of notified events

Event Event characteristics

1

Status: VERIFYING

Issuer: Sender’s endpoint

Acknowledger: None (The event is internal to the Sender’s endpoint and does not generate an
acknowledgement)

2

Status: ACCEPTED

Issuer: Sender’s endpoint

Acknowledger: None (The event is internal to the Sender’s endpoint and does not generate an
acknowledgement)

3

Status: TRANSPORTED

Issuer: Recipient’s node

Acknowledger: None (Although the event is coming from the node, it is notified by the sender’s endpoint
and does not generate an acknowledgement)

Comment: A node never sends an acknowledgement because it could not be delivered if it is not the home
node of the sender’s endpoint of the original message. The reason is that the sender’s endpoint will never
connect for downloading messages, including acknowledgements. Thus the node delegates to the sender’s
endpoint the issuance of the acknowledgement by notifying in the upload response whether it accepts or
rejects the business-message.

4

Status: DELIVERED

Issuer: Recipient’s endpoint

Acknowledger: Recipient’s endpoint

 Content: the non-encoded message fingerprint (hash) of the original message – see 5.14.3.

 Internal type: DELIVERY_ACKNOWLEDGEMENT

 Signed: Yes

 Original message state: DELIVERED

Comment: State and status are set to DELIVERED because the acknowledger is the recipient’s endpoint of
the original message.

5

Status: RECEIVED

Issuer: a recipient’s BA

Acknowledger: Recipient’s endpoint

 Content: irrelevant but as least one character.

 Internal type: RECEIVE_ACKNOWLEDGEMENT

 Signed: No

 Original message state: RECEIVED

Comment: A recipient’s BA (not a MADES component) delegates to the recipient’s endpoint the issuance
of the acknowledgement notifying that the successful transfer of the business-message.

6

Status: FAILED

Issuer: any component.

Acknowledger: if not notified by the sender’s endpoint

 Content: an English readable description of the encountered error or the reason why the message
was not accepted.

 Internal type: FAILURE_ACKNOWLEDGEMENT

 Signed: No.

 Original message state: FAILED

Comment: The event is referred as the “failure-event”. In case a failure-event occurred in the sender’s
endpoint it processes it internally and does not send an acknowledgement.

The meaning of the characteristics is provided in Table 5.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 34 – TS 62325-503  IEC:2014(E)

Table 5 – Event characteristics description

Characteristic Description

Status
The value to set to the “state” element of the “trace” item (see Table 70) reporting
the event to the sender’s BA through the CheckMessageStatus service –
see 7.2.2.3.

Issuer The component that notifies (issues) the event.

Acknowledger The component that sends the acknowledgement, possibly none or possibly different
from the issuer.

Content The content of the acknowledgement message.

Signed Whether the acknowledgement message is signed or not.

Internal type The value to assign to the internalType element of the acknowledgement –
see Table 61

Original message state

The value to set to the local state of the original message in the issuer component
when issuing the event.

5.10.3 Lifecycle of an acknowledgement

Table 6 provides the possible values for the local state of an acknowledgement within a
component; these are a subset of the states of a business-message.

Unless signed using an external device (see 5.16.3), an acknowledgement is created in the
ACCEPTED state, otherwise in the VERIFYING state.

Table 6 – Acknowledgement state description

Acknowledgement
State Description

Verifying

The acknowledgement has been created by the component or successfully transferred
to it, and a signature operation is currently processed or pending (e.g. waiting for the
external device to be signed, or waiting for the external certificate to verify the
signature).

Accepted The acknowledgement is pending for transfer to the next component towards the
destination endpoint.

Delivered The acknowledgement has been successfully transferred to the next component or has
reached the destination, i.e. the sender’s endpoint of the original message.

Failed
The component encountered an unrecoverable error when processing the
acknowledgement. The acknowledgement will never be transferred to another
component.

5.10.4 Processing a transferred acknowledgement

A component shall always accept a transferred acknowledgement. When processing a
transferred acknowledgement:

• The component shall log the event notified by the acknowledgement.

• In case an unrecoverable or an acceptance error (see 5.9) occurs, the component shall
set the acknowledgement and the original message to the FAILED state in a transactional
way, and log the error. This stops the acknowledgement delivery.

• Otherwise the component shall in a transactional way:
– update the state of the original message according to the event in conformance to

Figure 15;

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 35 –

– when the event is n°4 (see Figure 19), set the “receive timestamp” of the original
message to the time the acknowledgement was created (generated item –
see Table 61).

The original message may not exist in a node for it was delivered through another node. The
acknowledgement shall then be correctly processed and route.

The original message may be in the ACCEPTED state. This may happen when the message
was transferred and the component did not receive the confirmation. When the connection is
back, it may receive the acknowledgement before the message is transferred again.

5.11 Message expiration

5.11.1 Principle

The message expiration is a mechanism to notify the sender’s BA that a business-message
has not been delivered in the due time to the recipient’s endpoint. When the time limit is
exceeded, the sender’s endpoint changes the state of the message to FAILED.

The expiration time of a business-message is the time limit when the sender’s endpoint
declare that the message delivery has failed, because it has not received the
acknowledgement notifying that the message was accepted by the recipient’s endpoint (event
n°4 in Figure 19).

5.11.2 Setting the expiration time of a message:

An endpoint administrator shall be able to configure maximum durations for the delivery of the
business-messages as:

• duration values associated to the business-types;

• a non zero and positive default duration value.

The expiration time is part of the header of a message – see Table 61, expirationTime. The
time count shall start when the sender’s endpoint confirms the transfer of the business-
message (event n°1). The expiration time shall be set by the sender’s endpoint according to
the business-type of the message. Otherwise the default duration value shall be used.

The expiration time of an acknowledgement is the expiration time of the original message.

5.11.3 Looking for the expired messages:

Each component shall cyclically look for the expired messages either business-messages or
acknowledgements. A message expires when the expiration time is past and the local state is
not amongst DELIVERED, RECEIVED or FAILED.

The sender’s endpoint shall notify the expiration of a business-message using an event-
failure. Otherwise the component shall set the local message states to FAILED and log the
expiration (date, message ID, sender, recipient, sending time, expiration time).

NOTE The default value for maximum delivery duration is a general mechanism to set to FAILED the state of the
messages whose delivery cannot be processed for whatever reason, ensuring then that they will not be forever
delivering (i.e. “zombie” messages).

5.12 Checking the connectivity between two endpoints (Tracing-messages)

A tracing-message is a business-message used to check end-to-end connectivity between two
endpoints using the message tracking process. The message header contains a special type
for a tracing-message (TRACING_MESSAGE – see Table 62).

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 36 – TS 62325-503  IEC:2014(E)

A BA can request to process a connectivity test with any endpoint. The sender’s endpoint
shall then compose and send a tracing-message to deliver to the required destination
endpoint.

To check that the tracing-message reached the recipient’s endpoint, the sender’s BA can
check its delivery status, as for any business-message.

The business-type and the content of a tracing-message are irrelevant but shall have at least
one character. As any business-message, a tracing-message is signed and the content is
encrypted. So the tracing-message delivery success includes the checks of the certificates’
set-up and processing.

The header of the acknowledgements whose original messages are tracing-messages also
have a special type (TRACING_ACKNOWLEDGEMENT – see Table 62).

Because no recipient’s BA will ever request for the tracing-message, the final state of a
tracing-message is DELIVERED in all components – see 5.7.

5.13 Ordering the messages (Priority)

A component administrator shall be able to configure priority values according to the
business-types, and to configure a default priority value for unknown business-types.

A business-message shall have the priority configured for the business-type if defined;
otherwise the default priority.

The component shall process pending messages and elaborate the transferred list of
messages using the following order:

1) A message with higher priority is processed first.
2) If two messages have the same priority, the one that was first transferred by the

component is processed first – see “Transfer timestamp” in 5.6.

The message priority is local to a component. It may differ between components and is not
transported information.

Assume that two messages (M1 and M2) of the same business-type are sent in this order by
BA1 to BA2. If BA2 receives both messages, M1 shall be received first. Whatever priority is
configured for the business-type by each component, the delivery order shall remain
unchanged.

An acknowledgement has the same priority as the original message, because it has the same
business-type.

The priority of the tracing-messages may be configurable; otherwise they have the default
priority.

5.14 Endpoint

5.14.1 Endpoint functions

An endpoint provides interfaces for BAs to send and receive messages in a secure way. An
endpoint shall provide the following functions:

• Communication:
a) Connect to a node using HTTPS.
b) Validate the send-requests from the BAs.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 37 –

c) Validate the receive-requests from the BAs and provide the received documents.

• Pre-processing the to-send business-messages:
a) Compose the business-messages (e.g. create the message ID, set the expiration time,

and compress the content).
b) Check the existence of the recipients and get their encryption certificates by the home

node directory.
c) Generate the message signature and encrypt the message-content.

• Post-processing the received business-messages:
a) Get the signing certificates by the home node directory.
b) Decrypt the message-content, verify the message signature, and uncompress the

message-content.

• Notifying the events on the message delivery:
a) Send and process the acknowledgements.
b) Verify the signature and the content of the acknowledgements.

• Processing the messages:
a) Upload the encrypted business-messages to recipient's node.
b) Download the encrypted business-messages from the home node.
c) Store the messages in the local message-box.
d) Process the validation checks.
e) Look cyclically for the expired messages.
f) Update the messages’ states according to delivery progress.
g) Manage the queues with messages pending for uploading or downloading.
h) Process the messages according to local priority rules.

• Processing the tracing-messages:
a) Validate the connectivity test requested by the BAs.
b) Compose the message.
c) Process the tracing-messages downloaded from the home node.

• Requesting the home node for directory information:
a) Retrieve other endpoints signing and encryption certificates.
b) Durably store the used signing certificates of the other endpoints.

• Replying to the messages status requests from BAs.

• Administration:
a) Synchronize the endpoint time with a reliable source (recommendation is to use a

standard OS mechanism such as NTP, the Network Time Protocol).
b) Install endpoint and CAs certificates (initial and renewed).
c) Archive and purge the logs.
d) Archive and purge the messages.

5.14.2 Compression

The sender’s endpoint shall compress the content of each business-message whose
business-type is configured to do so.

The endpoint administrator shall be able to configure the business-types of the business-
messages that shall be compressed.

The tracing-messages and the acknowledgements shall not be compressed.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 38 – TS 62325-503  IEC:2014(E)

Compression shall be done using the ZIP algorithm.

Compression means that the message-content is encoded and that the metadata4 (see
Table 7) shall be added to the message header – see Table 61.

Table 7 – Compression – metadata attributes

Metadata
Attribute Name

Metadata Type Description

Compression BOOLEAN Value:= true (i.e. the message was compressed)

The header of a non-compressed message may also contain the metadata with the attribute
value set to “false”.

5.14.3 Signing

The signing principles are presented in 5.16.1.

Only the endpoints sign the messages. A sender’s endpoint shall sign every business-
message. The recipient’s endpoint shall sign the acknowledgement notifying event No. 4 (see
Figure 19).

An endpoint shall verify the signature of every signed message that it receives. A message is
signed if it contains the signature metadata (see Table 8).

Signature algorithm shall be RSA-SHA (IETF RFC 3110 - http://www.ietf.org/rfc/rfc3110.txt).
The signature format shall comply with the “XML Signature Syntax and Processing standard”
(http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/).

An endpoint shall encode the message hash using the private key of the signing certificate.

The manifest used to generate the message hash is:

 Compress (content) + baMessageID + extension + generated + internalType + messageID
+ relatedMessageID + receiverCode + senderCode + senderDescription +
SenderApplication + businessType.

Where:

• the italic names refer to the attributes of the internal message structure as described in
Table 61;

• “+” is the binary concatenation of the message attributes in UTF-8 encoding;

• Note that the content of the message may be compressed or not, according to 5.14.2, but
not encrypted.

Signing means that following metadata is added to the message header – see Table 61.

4 "Metadata" refers to the part of the message header named “metadata” – (see Table 7).

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

http://www.ietf.org/rfc/rfc3110.txt
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/

TS 62325-503  IEC:2014(E) – 39 –

Table 8 – Signing – metadata attributes

Metadata
Attribute Name

Metadata type value

Algorithm STRING
Value:= SHA-512

(The algorithm used to generate the message hash).

Certificate ID STRING
The ID of the certificate whose private key was used to
generate the signature, i.e. to encode the message hash –
see 5.16.2.

Signature STRING

The message signature compliant with the “XML Signature
Syntax and Processing standard”. The XML signature
document is embedded here as a string.

(An example of an XML signature document is provided in
7.6.4).

When receiving a message an endpoint shall check the message was signed, i.e. if the
header contains signature metadata, and then:

1. Recover the signing certificate from the cache or from the home node.
2. Verify that the certificate was valid when the message was generated (Certificate

expiration date-time is a certificate attribute. The generated date-time of a message is
part of the message header).

3. Verify the XML signature (i.e. the “signature” attribute of the metadata) using the
public key of the signing certificate.

4. Regenerate the message hash of the received message using the “Algorithm”.
5. Verify that the hashes provided by operations 3 and 4 are equal.

5.14.4 Encryption

The encryption principles are presented in 5.16.1.

The sender’s endpoint shall encrypt a business-message just before it is uploaded. The
recipient’s endpoint shall decrypt a business-message just after it is downloaded.

Only the message-content of the business-message shall be encrypted. The
acknowledgments shall never be encrypted.

The encryption and decryption processes use a combination of asymmetric and symmetric
cryptography, as shown in Figure 20.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 40 – TS 62325-503  IEC:2014(E)

Figure 20 – Encryption process

The sender’s endpoint shall use the encryption certificate of the recipient’s endpoint. It
retrieves it by the home node.

To encrypt the message-content, the endpoint shall first generate a random symmetric
encryption key (called the session key), which is used to encode the content of the message.
Then the symmetric key shall be encoded using the public key of the encryption certificate of
the recipient’s endpoint.

The symmetric algorithm used to encode the message shall be AES (Advanced Encryption
Standard) and the key size shall be 256 bits.

Encryption means that the message-content is encoded and the metadata (see Table 9) shall
be added to the message header (see Table 61).

Table 9 – Encryption – metadata attributes

Metadata
Attribute Name

Metadata Type Description

Cipher STRING
Value:= AES-256

(The algorithm used to encrypt the message-content with the
session key).

Certificate ID STRING The ID of the certificate whose public key is used to encode
the session key – see 5.16.2.

Session key BYTE_ARRAY The value of the session key encoded using RSA algorithm
and the public key of the encryption certificate.

When receiving a message the recipient’s endpoint shall check if the message is encrypted,
i.e. if the header contains encryption metadata, and then:

1. Verify that the certificate ID used to encrypt the message is one of the owned
encryption certificates.

2. Verify that the encryption certificate was valid when the message was generated
(Certificate expiration date-time is a certificate attribute. The generated date-time of a
message is part of the message header).

3. Decode the symmetric session key using the corresponding private key of the
certificate.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

TS 62325-503  IEC:2014(E) – 41 –

4. Decode the message-content using the decoded session key and the algorithm used
for encryption.

5.15 Node

5.15.1 Node functions

A node shall provide the following functions:

• Communication:
a) Authorize the HTTPS connections from the endpoints or from the other nodes.
b) Connect to the other nodes using HTTPS.

• Processing the messages:
a) Upload and download the messages to and from the endpoints.
b) Store the messages in the local message-box.
c) Process the validation checks.
d) Look cyclically for the expired messages.
e) Update the messages’ states according to the delivery progress.
f) Manage the queues of messages pending for downloading.
g) Process the messages according to the local priority rules.

• Directory services:
a) Provide the registered endpoints with the nodes’ URLs and the endpoints’ description

and certificates.
b) Request the others nodes for their reference directory data – see 5.15.2.
c) Reply to the others nodes’ synchronization requests – see 5.15.2.
d) Manage directory data and the data version (Dversion).

• Administration:
a) Register the endpoints.
b) Generate the certificates for the registered endpoints
c) Import signing and encryption certificates from externals CAs.
d) Revoke the endpoint certificates – see 5.16.8.
e) Import the synchronization nodes’ List – see 5.15.3.
f) Synchronize the node time with a reliable source (recommendation is to use a

standard OS mechanism such as NTP, the Network Time Protocol).
g) Archive and purge the logs.
h) Archive and purge the messages.

5.15.2 Synchronizing directory with other nodes

A node directory is the master reference for all data regarding a sub-network composed of the
node itself and the registered endpoints.

The synchronization between the nodes is carried out cyclically or on the node administrator
demand. Each node requests the others nodes for their sub-network data and stores it in its
own directory.

The synchronization frequency is defined by the network governance.

Example: Figure 21 shows the node A that connects to the node B, and then to the node C to obtain their directory
data.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 42 – TS 62325-503  IEC:2014(E)

Figure 21 – A node synchronizes with two other nodes

Each node shall manage a directory version number, referred as the “Dversion” for the
reference data, which increases every time they are updated.

Each node shall store reference data of the other nodes and the corresponding Dversion. The
Dversion shall always be transferred together with the directory data. When requesting for
data of another node, the client shall provide the Dversion of the remote data that it already
possesses, so the reply can just inform that data is already up-to-date. Thus the nodes may
synchronise frequently (e.g. 5 minutes).

Synchronized data shall include:

• information and certificates of all endpoints registered with the node,

• information and certificates of the node itself.

After received data has been validated (e.g. check that none of the received component ID
already exist in another sub-network), the update in directory shall be a transaction.

5.15.3 Updating the synchronization nodes’ list

The network administrator is responsible to build and send to all the node administrators the
list and the access information of all the nodes of the network, namely for each node:

• The node component ID.

• The node access URLs (primary, secondary).

The list is a single file, referred as the node-list file, whose format is described in 7.4.

A node administrator shall import the file to update the nodes to synchronize with.

• The node shall process the file as a transaction, i.e. any error (e.g. incorrect format, non-
unique component ID, missing certificate and internal error) shall cause the rollback of the
whole update process, and the directory data shall remain unchanged.

• The importation process shall ignore information about the current node which is included
in the list.

• The synchronization process which may update the current node directory shall be
stopped during the importation.

After importation, the node administrator can restart the synchronization process to update
the directory with the reference data of the nodes.

A node shall memorize the last time it successfully retrieved the data of each node of the
node-list file. Such information shall be accessible by the administrator.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 43 –

NOTE A message exchanged between two endpoints having different home nodes can only be delivered correctly
(including acknowledgements) after the two nodes have synchronized with each other at least once.

5.16 Certificates and directory management

5.16.1 Definitions and principles

The security of a MADES network is based on a Public Key Infrastructure (PKI). Such
infrastructure binds certificates both to the network components and to the parties using the
network. Indeed the components cross-check their identities before exchanging information,
the sender parties want that the only intended recipients can read the documents, and each
party want to authenticate the senders of the documents he received.

Certificates use asymmetric cryptography based on private and public keys. On the contrary
of symmetric cryptography, encoding is done using one key and decoding using the other key
(which is different, and hence the asymmetry). Where the public key can easily be deduced
from the private key, the reverse operation is a very complex mathematical challenge. RSA
algorithm is generally used for encoding and decoding.

Encryption:

• A document is encrypted5 when it is encoded with a randomly generated symmetric key.
The key is attached to the document in a secret way, being encoded itself with the
recipient’s public key.

• To decrypt the document, the recipient shall first decode the “encoded symmetric key”
using its private key, and then decode the document with the symmetric key.

Signing:

• A signature is an encoded fingerprint of a list of resources. The list is referred as the
signature manifest. The technical word for the fingerprint is a “hash”, which is generated
via a strong one-way transformation (e.g. SHA-1, SHA-512). The exact manifest of a
MADES message is described in 5.14.3.

• The algorithm used to generate the hash does not require any key, so anyone having the
manifest can generate the hash. Building another meaningful manifest generating the
same hash is also a complex mathematical challenge. The signature is the hash encoded
with the sender’s private key.

• Thus anyone having the manifest, the signature and the sender’s public key can verify that
the manifest is the one that was manipulated by the sender when he generated the
signature. The sender cannot repudiate a manifest he signed.

• Signing refers to the full process, i.e. generating the hash and encoding it.

• Verifying a signature includes: regenerating the hash from the manifest, decoding the
signature, and checking that both results are equal.

A Certificate Authority (CA) is an entity that issues certificates.

A certificate:

• contains a public key, a name;

• is signed with the private key of the certificate of the issuer CA;

• has an expiration date, which is sooner than the expiration date of the certificate of the
issuer CA.

5 Beware that “Encoding” and “Encryption” are not synonymous here. “Encoding” refers to an algorithmic

operation, while “Encryption” is the process described here which ensures confidentiality. Both “Encryption” and
“Signing” processes use “Encoding” operations.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 44 – TS 62325-503  IEC:2014(E)

When signing a certificate, the issuer CA certifies the ownership of the keys (private and
public) by the party whose name is in the certificate. Other parties can verify the certificate
signature using the certificate of the issuer CA. So, if parties trust a CA, they can then rely
upon the signatures generated using the certificates that the CA has issued.

The certificate of a CA may itself have been issued and signed by another CA, the later
delegating to the first the right to issue certificates. The certification chain of a certificate
shows the delegation sequence of CAs: it is the list of the certificates of all CAs’ from the
issuer CA until an unsigned or self-signed certificate, referred as the root certificate.

A valid certificate is a non-expired certificate. An expired certificate shall not be used for
authentication, encryption or for signing a document. However, it can still be used to decrypt
old documents or verify their signatures, and thus to prove whatever may be necessary.

5.16.2 Certificates: Format and unique ID

All components (endpoints and nodes) shall use certificates to be authenticated by their
communication peers (transport-layer security), to sign and to encrypt the messages
(message-level security) when necessary.

The format of the certificates shall comply with the X.509 ITU-T standard, and the certificates’
keys shall have a length of 2 048 bits.

The exact concatenation of the standardized attributes “issuer” and “serial number” of a
certificate forms a unique ID, referred as the “certificate ID”.

5.16.3 Used certificates and issuers (CAs)

5.16.3.1 Overview

Figure 22 describes the certificate authorities and the certificates used in a MADES network.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

http://en.wikipedia.org/wiki/Root_certificate

TS 62325-503  IEC:2014(E) – 45 –

ROOT
CA

INTEGRATED
CAs

External CAs

Authentication
Certificates

(all components)

Signing and encryption
certificates

(Only for Endpoints)

Network
Administrator

Node's Administrators

Self-signed
certificates

Intermediate
CA

certificates

Components'
certificates

MADES Network

Means issuance
of certificates

Private key is installed
in the Endpoint, and
Certificate is imported in
the Endpoint home Node
directory at registration
time

Figure 22 – Certificates and certificate authorities (CAs) for a MADES network

5.16.3.2 Transport-layer security (Authorize data exchanges)

Each component (endpoint and node) shall own an authentication certificate published in the
home node directory.

The authentication certificates are issued by the network organization as follows:

• The organization owns a ROOT CA certificate.

• The organization delegates to each node administrator the right to issue the authentication
certificates of the registered endpoints. Each administrator owns an INTEGRATED CA
certificate issued by the ROOT CA.

Each component shall store the authentication certificate and the corresponding private key.
The authentication certificate is used whether the component acts as a client or a server.

Whatever the operation using the authentication certificate, it shall fail when the certificate
has expired.

5.16.3.3 Message-level security (Protect message confidentiality and authenticate
message issuer)

Each endpoint shall own an encryption certificate published in the home node directory for the
others endpoints to encrypt the business-messages they sent. The endpoint uses the
corresponding private key to decrypt the business-messages it receives.

Each endpoint shall own a signing certificate published in the home node directory for the
others endpoints to verify the signature of the messages they receive. The endpoint uses the
corresponding private key to sign the messages it sends.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 46 – TS 62325-503  IEC:2014(E)

The signing and encryption certificates can be issued by the home node administrator using
the INTEGRATED CA, or by an EXTERNAL CA trusted by the network parties and not
necessary issued by one the main public trusting organizations.

The signing certificate of an endpoint can either be stored locally or inserted in a
coding/decoding external device (e.g. smart cards).

The endpoint shall never encrypt or sign a message using an expired certificate. The endpoint
shall not decrypt or verify a message signature using a certificate that was expired at the time
the message was created (creation time is included in the message header).

Every endpoint shall durably store the signing certificates of the other endpoints in order to
possess all necessary evidence.

5.16.4 Directory services

5.16.4.1 Content and updates

Each node shall contain a directory where all the network components are described. Each
entry for a component in the directory shall include:

• the component ID (non-significant);

• the component display name (human readable);

• the component type (endpoint, node);

• the technical contact information for operation or administration: name of the responsible
person, e-mail and phones; the latter should be non-personal (hotline, operation centre,
functional/generic e-mail);

• the certificates owned by the component (one or several for each purpose including
authentication, signing, and/or encryption – when applicable).

The node administrator shall be able to update the directory entry of any of the registered
components. This includes registering, updating and removing components, importing or
renewing certificates for components. The description of the other nodes and their registered
components is imported using the node synchronization – see 5.15.2 and 5.15.3.

5.16.4.2 Queries

The endpoints shall query their home node directory to get information on a component and to
retrieve certificates (e.g. to encrypt a message, to verify a message signature or to
authenticate a component that signed a token or a component ID) – see 7.3.4.

5.16.5 Caching directory data

To reduce the request flow on the node directory, the endpoints shall implement a caching
mechanism for directory data.

A node shall implement a TTL (Time-To-Live) mechanism, whose duration is configurable. It
shall provide an expiration time for any dataset returned by a directory request: the time when
the request is processed + the TTL value.

An endpoint shall not use the expired data in cache and shall then request again the home
node for the data.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 47 –

5.16.6 Trusting the certificates of others components

5.16.6.1 Authentication

A component shall only communicate with a peer component if the authentication certificate
presented by the peer component:

• belongs to the ROOT CA certification chain;

• is successfully verified.

During the TLS authentication phase, each peer shall convey to the other the following
ordered certificate chain:

1. Its own authentication certificate.
2. The INTEGRATED CA certificate certified by the ROOT CA and which certifies the

authentication certificate.

A component shall trust the ROOT CA and any authentication certificate provided by the
home node (e.g. used for token-authentication).

5.16.6.2 Signing and encryption

The endpoint shall trust the signing and encryption certificates provided by the home node.

5.16.7 Renewing the expired certificates

5.16.7.1 Renewing the authentication certificates

In case the authentication certificate of a component is renewed, the component will convey
the certificate, possibly certified by a new INTEGRATED CA, to the peer component during
the TLS authentication phase. When the INTEGRATED CA certificate is signed by the
ROOT CA certificate, the communication is possible.

Additionally every component shall be configurable to communicate with components whose
certificates may belong to two distinct certificate chains. So when the ROOT CA is renewed,
components can communicate whether their certificate belongs to the old or to the new
certification chain.

5.16.7.2 Renewing process (authentication, signing and encryption):
• The issuer CA shall renew the certificate enough time before the old one expires so that

their validity periods overlap.

• The new certificate is published (imported) into the component home node.

• The new certificate is then installed into the component (including the private key), before
the old certificate expires.

To do so:

• A node directory shall be able to store two certificates of any type for a component.

• Until the old encryption certificate expires, a node shall not provide the new one when
replying to a directory request, for it may not have been installed into the owner
component – see rules for the GetCertificate service; 7.3.4.2.

• An endpoint shall be able to contain simultaneously two encryption certificates (private
key).

Installing a new certificate into a component shall not last more than 5 minutes to ensure
business continuity.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 48 – TS 62325-503  IEC:2014(E)

5.16.8 Revoking a certificate

A certificate shall only be revoked for security reasons when there is a reasonable doubt that
it could be misused.

Revoking a certificate is a request to the certificate issuer. As a result, the issuer usually
inserts the certificate serial number in a Certificate Revocation List (CRL), which can be
publicly accessed. MADES does not implement such a CRL mechanism.

Within a MADES network, revoking a certificate is a request to the administrator of the node
where the endpoint has registered. The node administration tool shall provide the ability to
revoke any certificate of a registered endpoint. The certificate shall then be tagged as
revoked in the node directory6. This tag is:

• propagated to others nodes by the node synchronization mechanism;

• used to decide whether a requested certificate is delivered or not – see 7.3.4.2.

The node administrator shall be able to revoke a certificate either issued by the
INTEGRATED CA or by an EXTERNAL CA.

Such revocation of a certificate issued by an EXTERNAL CA has no link with the revocation
process stated by the issuer in his certificate policy. The certificate owner shall also and
always and independently ask for the certificate revocation by the certificate issuer. No
MADES components ever access to any CRL of an external issuer.

The consequences of a certificate revocation, resulting from the message delivery mechanism
described in the previous sections, are summarized in Table 10.

Table 10 – Consequences of a certificate revocation

Revoked
certificate Consequences

Endpoint signing
certificate

From the revocation moment, all business-messages and all signed acknowledgements
coming from the endpoint and uploaded to the home node will be rejected.

The business-messages and the signed acknowledgements coming from the endpoint and
uploaded to another node will be rejected after the node has synchronized with the endpoint
home node.

The messages to and from the endpoint pending in a node (home or not) before the revocation
tag is updated in the node, will be delivered.

Endpoint
encryption
certificate

From the revocation moment, all business-messages for the endpoint and uploaded to the
home node will be rejected.

The business-messages for the endpoint pending in the home node before the revocation
moment will be delivered to the endpoint.

Endpoint
authentication
certificate

From the revocation moment, the home node will reject downloading messages for the
endpoint. Those messages will be delivered (if not expired) after the endpoint has renewed
the certificate.

NOTE The process to renew a revoked certificate is defined by the network governance.

6 This shall increase the directory Dversion – see Clause 6.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 49 –

6 Managing the version of the MADES specification

6.1 Issues and principles

6.1.1 General

When the MADES specification changes from version N–1 to version N, a MADES network
should then upgrade to the new version.

A “big bang” rollout on all components would be both complex to coordinate and risky
regarding business continuity, and thus inacceptable.

A smooth rollout means that an upgraded endpoint can successfully exchange messages with
a non-upgraded endpoint (using version N–1), and that two upgraded endpoints can
successfully exchange messages using new version N.

This clause shows how such a rollout shall be done and the constraints that any new version
of the specification should satisfy.

6.1.2 Rolling out a new version (Mversion and N-compliance)

The rollout of a new version shall start with nodes. An endpoint shall only upgrade after the
home node did.

A node upgraded to version N can successfully process the requests from the non-upgraded
endpoints if and only if it still exposes interfaces compliant with version N–1. So, as a general
rule, a node upgraded to version N shall still expose the N–1 compliant interfaces. Also the
upgraded nodes shall still request, being clients, the non-upgraded nodes for synchronization.

A component is referred as N-compliant when it complies with version N of the MADES
specification, and when it can successfully transfer messages with components which comply
with version N–1.

From version 2, every component shall be N-compliant. This means that it complies with a
version and can exchange using the previous version.

Every component shall access the installed version to which it complies, referred as the
Mversion (MADES version).

Notations:

• A N-service or a N-interface is a service or an interface that complies with the version N of
the MADES specification.

• A N-component is a N-compliant component (e.g. N-node, N-endpoint). Note that a N-
component exposes (as server) or uses (as client) N-services and N–1-services.

• A N-message is a message composed according to the version N of the MADES
specification.

6.1.3 Service compatibility

A N-component server exposes both N-interface and N–1-interface. This does not mean that
the N-interface is completely new (e.g. some services may not change).

It is up to the specification team to decide which and how the functions, the interfaces and the
services evolve. The possible changes for a service are listed in Table 11.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 50 – TS 62325-503  IEC:2014(E)

Table 11 – Service compatibility – Possible changes

N° Service changes

1 The service does not change.

2 The description of the service does not change but the way the elements are used in queries and
responses does change, e.g.:

• Some previously technically optional elements are now functionally required.

• New values are now possible in the elements (e.g. new encryption algorithm using different
metadata).

3 The description of the service changes in a compatible way, e.g.:

• A new optional element is created.

• A mandatory element becomes optional.

• An unused optional element is removed.

4 The description of the service changes in a non compatible way  Actually, it is a new service with a
new name.

In order to allow the specification team to use all these possibilities, most services include a
“serviceMversion” element as part of the request. So the service behaviour can change
without creating a new service, provided the client uses that element to tell the server which
version of the specification it is working with. The server can then process the request and
reply as expected.

6.1.4 Message compatibility

The description of a message or the way a message is composed may evolve from version N–
1 to version N. When this happens, a N–1-component will probably fail to process a N-
message.

To ensure that a sender’s endpoint composes a message that a recipient’s endpoint can
understand, the principles are as follows:

• The node directory shall store (dynamically) the installed Mversion of the registered
endpoints, which is then transferred to other nodes through the synchronization process.

• Each endpoint shall notify its installed Mversion to the home node when starting using the
SetComponentMversion service.

• The directory services shall provide the installed Mversion of an endpoint.

• The description of a message contains a messageMversion element which tells the
version of the specification to which the message complies.

• The transfer (upload and download) N-services shall mix N-messages and N–1-messages,
e.g. the collection of messages transferred in the UploadMessage request can contain
both N-messages and N–1 messages.

• A sender’s endpoint shall compose a business-message that the recipient’s endpoint can
understand – see detailed rules in 6.2.4.

• A component shall compose an acknowledgment using the same Mversion as the original
message.

• In case a component receives a message that it cannot process:
a) It shall reject the message, while confirming the transfer when a node.
b) Otherwise it shall log the error and (if possible) it may store the message in the

FAILED state, and shall issue a failure-event.

6.1.5 Interface with BAs

The BAs are not concerned with the MADES specification version; so the used Mversion is
not an element of the endpoint interface.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 51 –

A change in a service of the endpoint interface should be backward compatible; otherwise the
new specification should create a new service, and both (old and new) services should be
described in the new specification. New BAs would then use the new service, and existing
applications would migrate to the new service. Thus the migration timescale for the BAs can
be kept independent of the network components' upgrade.

An endpoint administrator shall be able to configure an association between a business-type
and a minimum required Mversion. The default value is 1. It can be used when some new
features available from this version are required for the business process (e.g. new encryption
algorithm).

6.2 Using the correct version for services and messages

6.2.1 Node synchronization and authentication

N-1-Node

N-2

N-Node

N-1

N-Endpoint N-2-EndpointN-1-Endpoint

N-Node

N-1

N-Endpoint
N-1

N-Synchro

N-1-Synchro

Request token to home node

not to home node

N-1-Endpoint
N-2N-2N-1

Client
Interface

Server
Interface

N-3

Figure 23 – Managing the specification version –
node synchronization and authentication

Figure 23 shows which version of the authentication and synchronisation service is used
between components. A N-component server also exposes a N–1-interface and, acting as a
client can request the N–1-interface of a N–1-component server.

Node synchronization:

• A node shall request and store the Mversion of each node of the node-list file.

• The GetNodeMversion service (see 7.3.5.1) shall be used by a node to get the Mversion of
a node of the node-list file, each time the node (re)starts and each time the node-list file is
updated.

• A NA-node shall stop synchronizing with a NB-node when |NA–NB|>17.

• When requesting for a NB-node directory data using the GetAllDirectoryData service (see
7.3.5.2), a NA-node shall use the N-service, where N = Min (NA, NB)8.

Requesting for an authentication-token:

• A NE-endpoint shall request for a token to the home node using the NE-service.

7 |a|: means "absolute value" (or "modulus") of a.

8 Min (a, b): means "minimum" value of a and b.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 52 – TS 62325-503  IEC:2014(E)

• A NE-endpoint shall request for a token to another NN-node using the N-service where
N = Min (NE, NN). The Mversion of the node is available in the home directory with the
node routing information.

• A NN-node shall reject the authentication request from a NE-endpoint when (NE>NN) or
(NE<NN–1).

6.2.2 Directory services and Network acceptance

Figure 24 describes the management of different MADES version in a MADES network.

N-1-Node

N-2

N-Node

N-1

N-Endpoint
N-1

N-1-Endpoint
N-2

N-1-Endpoint
N-2

N-Node

N-1

N-Endpoint
N-1

N-2-Endpoint

Node shall reject the
Endpoint when it
connects to the

Network.

N-2-Endpoint
N-3

N-3

Figure 24 – Managing the specification version – Directory services

A NE-endpoint shall always use the NE-interface when requesting a directory service.

After an endpoint has obtained an authentication-token from the home node, it shall always
request for acceptance in the network.

To do so, the component uses the SetComponentMversion service (see 7.3.4.1) to inform the
server about its installed Mversion. The reply informs the endpoint whether it is accepted or
rejected by the network.

A rejected component shall log the error and stop running.

Acceptance by the home node

• A NN-node shall reject a NE-endpoint when either:
a) (NE>NN) or (NE<NN–1);
b) the node cannot authenticate the endpoint (i.e. incorrect signed endpoint ID);
c) the endpoint did not register with the node;

• Otherwise the node shall accept the endpoint, store the endpoint Mversion in the
directory, increase the directory data version (Dversion) if NE stored value changes, and
reply providing its own Mversion (NN).

• A node shall log that the Mversion of an endpoint has changed; or that the endpoint has
been rejected.

When a node restarts, after the installed version has changed, no session information (e.g.
token) from the previously connected endpoints shall remain. This ensures that all endpoints
will newly request for network acceptance.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 53 –

NOTE In case an N–1-endpoint is stopped, other endpoints will continue to send it N–1-messages. When it comes
back to the network, being upgraded to version N, other endpoints will still continue to send it N–1-messages until
their directory cache (see 5.16.5) is renewed. But the endpoint will process correctly those N–1-messages. Only
the pending N–2-messages will be rejected, but anyway the endpoint cannot exchange anymore with those N–2
peers until they upgrade.

6.2.3 Messaging services

N-1-Node

N-2

N-Node

N-1

N-Endpoint
N-1

N-1-Endpoint
N-2

N-1-Endpoint
N-2

N-Node

N-1

N-Endpoint
N-1

Exchange
shall be rejected

N-2N-1N

N-2

N-1, N-2
N, N-1

N-1

N, N-1
N-1 N-1

N-2-Endpoint
N-3

N-1
N-2

N-1

N-1

Figure 25 – Managing the specification version – Messaging services

Figure 25 shows:

• the messaging services that shall be used between components and the possible
Mversion of the transferred messages (in blue);

• the endpoints that can exchange messages and the required Mversion for the exchange
(in green).

Figure 25 presents a situation where two endpoints cannot exchange although they only have
1 version difference (N–2, N–1). The reason is that the N–1-endpoint has registered with a N-
node. And the N-node will reject any N–2-message either a business-message or an
acknowledgement.

6.2.4 Which version to use to send a message?

Figure 26 describes the way of handling different versions of MADES and Table 12 provides
the meaning of the references.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 54 – TS 62325-503  IEC:2014(E)

NNS-Node

NS-Endpoint

NNR-Node

NR-Endpoint

Business-message

Acknowledgement

Figure 26 – Managing the specification version –
Which version to use to send a message?

Table 12 – Which version to use to send a message?

Mversion

NS The Mversion of the sender’s endpoint.

NNS The Mversion of the home node of the sender’s
endpoint.

NR The Mversion of the recipient’s endpoint.

NNR The Mversion of the home node of the recipient’s
endpoint.

NB— see 6.1.5 The minimum Mversion required for the business-
type

The used version should be N = Min (NS, NR), however the message shall be rejected if one
of the conditions listed in Table 13 is verified.

Table 13 – Managing the specification version – Rejection conditions

Condition Reason for rejection

NR unknown The MADES version of the recipient’s endpoint is unknown.

|NR – NS| > 1 The sender’s endpoint and the recipient’s endpoint are not MADES compatible.

|NNR –NS| > 1 The sender’s endpoint is not MADES compatible with the recipient’s node

|NNS – NR| > 1 The recipient’s endpoint is not MADES compatible with the sender’s node.

NB > NS The sender’s endpoint is not MADES compatible with the minimal version required for
the business-type

NB > NR The recipient’s endpoint is not MADES compatible with the minimal version required for
the business-type.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 55 –

7 Interfaces and services

7.1 Overview

7.1.1 General

This chapter describes all services for components to exchange each other or with the BAs.
The description provides all elements in a request and the corresponding reply independently
of an implementation language.

7.1.2 Error Codes

In case a service encounters an unrecoverable error, it returns information on the error. When
not described the set of the returned elements is listed in Table 14 and the errorCode values
are listed in Table 15.

Table 14 – Interfaces and services – Generic error

Element name Description Element
type

errorCode A code representing the type of error. string

errorID Unique identification of the error. string

errorMessage An English readable text describing the error. string

errorDetails (optional) Additional English readable details about the error context. string

Table 15 – Interfaces and services – String value for errorCode

String value for errorCode Description

INVALID_PARAMETERS The provided parameters (i.e. request elements) are incomplete, are not in the
expected format or do not have the expected syntax.

AUTHENTICATION_ERROR The peer component cannot be authenticated

VALIDATION_ERROR The message is not valid (content size exceeded, unknown sender/recipient,
signature is not valid etc.).

INTERNAL_ERROR Internal application error. The error was not caused by the content of request but
by the application itself (Null Pointer Exception in code, full database etc.)

CONCURRENT_ERROR The server component is already processing a concurrent request from the same
client.

7.1.3 Types for Time

All date and time shall be expressed in UTC (Coordinated Universal Time). The used time
types are:

• “timestamp” technically means “xsd:long”, and the value is the number of milliseconds
since 'midnight 1.1.1970 UTC'.

• “dateTime” technically means “xsd:dateTime” and the value is according to the XSD
specification (http://www.w3.org/TR/xmlschema-2/#dateTime).

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

http://www.w3.org/TR/xmlschema-2/#dateTime

 – 56 – TS 62325-503  IEC:2014(E)

7.2 Endpoint interface

7.2.1 Overview

The endpoint interface provides the business applications (BAs) with the access to the
MADES communication network.

MADES specifies this interface using Web services – The BA calls the web services exposed
by the endpoint.

There are 5 available services:

• SendMessage – used to upload a message into the endpoint in order to send it to another
endpoint.

• ReceiveMessage – used to download a message from the endpoint.

• CheckMessageStatus – used to check the current delivery status of a message.

• ConnectivityTest – used to check if another endpoint can be reached.

• ConfirmReceiveMessage – used to notify the endpoint that a received message has been
technically accepted by a BA.

The BAs can access the network using files. This interface is called FSSF (File System
Shared Folders) and is described in 7.2.3.

7.2.2 Services

7.2.2.1 SendMessage service

The SendMessage service is used by a BA to upload a message into the endpoint in order to
send it to another endpoint.

The service request elements are provided in Table 16.

Table 16 – SendMessage – Service request elements

Element name Description Element type Required

message Sending context, content and requested destination of the
message.

SentMessage
(see Table 76) True

conversationID Unique identifier associated with the request. string False

Concerning conversationID: There are situations where the sender’s BA may not receive back
or may fail to durably store the returned message ID, for example in case of failure of the
endpoint, of the network or of the BA itself. So the BA does not know if the message was or
was not correctly transferred to the sender’s endpoint. There are two subsequent issues:

• If the message was actually correctly transferred and stored in the endpoint, the BA does
not know the message ID needed for further processing, such as checking the delivery
status of the message.

• Considering that losing a message is a non acceptable risk, the BA will send the message
again when the connection with the endpoint is restored. The drawback is that the same
message may then be sent twice with two different IDs.

So, resending the message using the same conversationID value solves both issues. Indeed,
when an endpoint is requested to send a message with a conversationID value that has
already been used for an existing stored and sent message, it shall not send the message
again but return the caller BA with the ID of the already existing message. The
recommendation is that conversationID:= senderApplication + baMessageID.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 57 –

The service response elements are provided in Table 17.

Table 17 – SendMessage – Service response elements

Element name Description Element
type

messageID The UUID (Universal Unique ID) of the message composed and stored by the
endpoint – see 5.2. string

Additional9 error elements for the service are listed in Table 18.

Table 18 – SendMessage – Additional error elements

Element name Description Element
type

receiverCode The component ID of the requested recipient’s endpoint for the message. string

7.2.2.2 ReceiveMessage Service

The ReceiveMessage service is used by a BA to download a message from the endpoint.

The service request elements are provided in Table 19.

Table 19 – ReceiveMessage – Service request elements

Element name Description Element
type

Require
d

businessType
The business-type of the requested message – see 5.3.

Pattern: [A-Za-z0-9]+ 10
string True

downloadMessage

The service returns, if any, the first received and pending
message having the requested business-type. “First”
means according to the priority defined in 5.13.

The content (or document) of the message is or is not
returned according to the value of the element:
 true:= returned;
 false:= not returned.

boolean True

The service response elements are provided in Table 20.

Table 20 – ReceiveMessage – Service response elements

Element name Description Element type

receivedMessage Sending context and possibly content of a message. ReceivedMessage
(see Table 74)

remainingMessagesCount

The number of remaining messages received by the
endpoint, matching the requested business-type and
waiting for delivery.

In case the service returns the content of a message,
the message is not included in the count of the
remaining messages.

integer

9 In addition to the elements described in 7.1.2.

10 Pattern is the « regular expression » that the element value shall match.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 58 – TS 62325-503  IEC:2014(E)

Additional error elements for the service are provided in Table 21.

Table 21 – ReceiveMessage – Additional error elements

Element name Description Element type

businessType The business-type that was requested. string

Until the recipient’s BA confirms to the recipient’s endpoint that the message is correctly
transferred using the ConfirmReceiveMessage service, the endpoint shall consider that the
message has not been transferred, but is still pending and shall be transferred again next
time a BA requests for the business-type. This ensures that no message may be lost. As a
consequence the BAs shall be aware that, in some failure or recovery situations, they may
possibly receive an already delivered message (i.e. having a known message ID).

7.2.2.3 CheckMessageStatus Service

The CheckMessageStatus service is used to check the current delivery status of a message.

The service request elements are provided in Table 22.

Table 22 – CheckMessageStatus – Service request elements

Element name Description Element
type Required

messageID The UUID (Universal Unique ID) of the message whose
status is requested – see 5.2. string True

The service response elements are provided in Table 23.

Table 23 – CheckMessageStatus – Service response elements

Element name Description Element type

messageStatus All Information about the message delivery. MessageStatus
(see 7.5)

Additional error elements for the service are provided in Table 24.

Table 24 – CheckMessageStatus – Additional error elements

Element name Description Element
type

messageID The requested message ID. string

7.2.2.4 ConnectivityTest Service

The ConnectivityTest service can be used to check if another endpoint can be reached. The
service just sends a tracing message whose delivery-status can further be requested using
the CheckMessageStatus service. The connectivity is successful, i.e. the tracing-message
has reached the recipient’s endpoint, when the status is DELIVERED.

The service request elements are provided in Table 25.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 59 –

Table 25 – ConnectivityTest – Service request elements

Element name Description Element
type

Require
d

receiverCode
The component ID of the recipient’s endpoint whose
connectivity is checked.
Pattern: [A-Za-z0-9-@]+

string True

The service response elements are provided in Table 26.

Table 26 – ConnectivityTest – Service response elements

Element name Description Element
type

messageID The message ID of the tracing-message. string

Additional error elements for the service are provided in Table 27.

Table 27 – ConnectivityTest – Additional error elements

Element name Description Element type

receiverCode The component ID of the recipient’s endpoint whose connectivity check was
requested. string

7.2.2.5 ConfirmReceiveMessage service

The ConfirmReceiveMessage service is used by a recipient’s BA to confirm the download
transfer of a message from the recipient’s endpoint.

A BA cannot reject a message; the business functional acceptance (i.e. compliance with
business rules) is another issue. If a message is not confirmed back, for example in case of
failure, the endpoint will provide it again at the next ReceiveMessage call.

In case a BA encounters an unrecoverable error when processing a transferred message, and
when the error comes from the message itself (e.g. inconsistent elements) and not from the
application (e.g. file system full), the BA should confirm the transfer, log the error and
possibly alert, otherwise the message will indefinitely be retransferred by the endpoint until it
is confirmed.

The service request elements are provided in Table 28.

Table 28 – ConfirmReceiveMessage – Service request elements

Element name Description Element
type Required

messageID The UUID (Universal Unique ID) of the message whose
transfer to the BA is being confirmed – see 5.2. string True

The service response elements are provided in Table 29.

Table 29 – ConfirmReceiveMessage – Service response elements

Element name Description Element type

messageID The UUID (Universal Unique ID) of the message whose transfer
has be confirmed. string

Additional error elements for the service are provided in Table 30.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 60 – TS 62325-503  IEC:2014(E)

Table 30 – ConfirmReceiveMessage – Additional error elements

Element name Description Element type

messageID The requested message ID. string

7.2.3 File System Shared Folders (FSSF)

7.2.3.1 Overview

The FSSF interface is the way for a BA to exchange documents as files with the endpoint.
The file system where the files are written is accessed by the endpoint as local file system.
The principles are the followings:

• All the sender’s BAs write in a common and unique OUT-folder the documents that the
endpoint shall send.

• The recipient’s BAs read in an IN-folder the documents that the endpoint has received.

• Additional information that is necessary for the message delivery is included in the
filenames. Such information is the request/reply elements of the SendMessage and
ReceiveMessage services.

• The organisation of the directories is local to each endpoint and is configurable.

When implemented, a file interface with the endpoint shall comply with the FSSF interface as
described in the current section.

NOTE There are differences between interfacing the endpoint using FSSF and using the webservice interface.

• CheckMessageStatus and ConnectivityTest services are not supported.

• ConfirmReceiveMessage is implicit; i.e. a message is moved to the RECEIVED state in
the recipient’s endpoint when the content has been successfully written into a file in the
IN-folder.

• Actually FSSF, i.e. the processing of sending and receiving documents using files, may be
considered —and also probably built— as a business application (BA) embedded with the
endpoint.

7.2.3.2 Used files and file naming convention

There are 4 types of files used by the FSSF interface. Each file type is written into a separate
folder.

The filenames are built from several parts joined by underscores (“_”).

• Each part is limited to alphanumeric or hyphen characters. Accented characters, white
spaces, and special characters shall not be used.

• Joining underscores shall be present even when optional part is missing or empty.

Table 31 provides respectively the description and filename format and Table 32 the filename
description.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 61 –

Table 31 – FSSF – Description and filename format

Type Folder / Writer Description and Filename format

Files to be
sent

OUT /
BAs

The folder contains the files written by BAs to be sent by the endpoint.

The sender’s endpoint removes from the folder the files that it has processed
correctly (i.e. accepted files are deleted) or not (i.e. rejected files are moved to
the OUT_ERROR folder).

Filenames:

<SenderBA>_<Recipient>_<BusType>_<BAmessageID>.<Ext>

Failed files OUT_ERROR /
Sender’s endpoint

The folder contains the files that the sender’s endpoint did not process
correctly. They have been moved from the OUT-folder to the OUT-ERROR-
folder without changing their names.

It’s up to the endpoint administrator to analyse and clean up the folder.

The filenames can match or not the “files to send” filename format. Note that
not matching the filename format is a reason for the file not to be processed
correctly.

Received files IN /
Recipient’s
endpoint

Each file in the folder contains the content of a message that has been
received by the recipient’s endpoint. The filename is built from the header
information of the received message.

The files should be removed from the folder when processed, correctly or not,
by the recipient’s BAs.

Filenames:

<SenderBA>_<Sender>_<BusType>_<BAmessageID>_<MessageID>.<Ext>

Log files OUT_LOG /
Sender’s endpoint

The folder contains one log file for each message accepted by the endpoint.

The file contains English readable text. Each line reports an event about the
message delivery, and is the concatenation of the MessageTraceItem
structure, as provided in the CheckMessageStatus service response.

The file is appended with a new line each time a new event for the message is
notified to the sender’s endpoint.

It’s up to the endpoint administrator to clean up the OUT_LOG folder.

The filename is the exact name of the sent file with an added “.log” extension:

<SenderBA>_<Recipient>_<BusType>_<BAmessageID>.<Ext>.log

Table 32 – FSSF – Filename description

Filename parts Type Description

<BAmessageID> Optional An identifier of the document provided by the sender’s BA. Information
is transported “as is” to the recipient’s BA. – Pattern: [A-Za-z0-9-]*

<BusType> Mandatory The business type for the message (see 5.3). –
Pattern: [A-Za-z0-9-]*

<Ext> Optional The file extension – Pattern: [A-Za-z0-9-]*

<MessageID> Mandatory The UUID (Universal Unique ID) of the message composed by the
sender’s endpoint (see 5.2) – Pattern: [A-Za-z0-9-]+

<Sender> Mandatory The component code of the sender’s endpoint. –
Pattern: [A-Za-z0-9-@]+

<SenderBA> Optional The identifier of the sender’s BA. – Pattern: [A-Za-z0-9-]*

<Receiver> Mandatory The component code of the recipient’s endpoint. –
Pattern: [A-Za-z0-9-@]+

Additional rules:

• The to-be-sent filenames without extension shall not end with the dot character (“.”).

• The sender’s endpoint shall ignore files in the OUT-folder with extension “TMP” (or “tmp”).

• The sender’s endpoint shall fail to send the files that matches one of the following
conditions:
1) Filename does not match the “files to-be-sent” Filename format.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 62 – TS 62325-503  IEC:2014(E)

2) Filename is longer than 200 characters.
3) File is empty.

7.2.3.3 Concurrent access to files

7.2.3.3.1 General

As the BAs and the endpoint concurrently access to the files, special attention is required to
avoid access conflicts and data losses.

7.2.3.3.2 Access conflicts

To avoid access conflicts between the writer and a reader of the file:

• The file-reader shall ignore files whose extension is “TMP” (or “tmp”).

• The file-writer shall write the data first in a temporary file whose extension is “TMP” (or
“tmp”), and then rename it changing the extension (note: “rename” is an atomic operation
on every file system).

7.2.3.3.3 Data losses

Data may be lost if a file is overridden by another file having the same filename. To avoid this,
each file should have a unique filename:

• OUT – OUT_ERROR – OUT_LOG: It is highly recommended that the BAs uses
<SenderBA> and <BAmessageID> to ensure they cannot use the same filename.

• IN: the use of <MessageID> in the filename ensures that the content of two different
messages will always be written in 2 different files.

7.2.3.4 Configuring FSSF

The administrator shall be able to configure the endpoint with following information:

• OUT folder name;

• OUT_ERROR folder name;

• OUT_LOG folder name;

• A list of business-types, and for each one an associated folder name and a default
extension.

The recipient’s endpoint shall write in files the content of the business-messages whose
business-type is in the configured list:

• The file shall be written in the IN folder which is associated with the message’s business-
type.

• The file shall have the extension provided in the “extension” attribute of the message
header – see Table 61. When none, the extension shall be the default extension for the
message’s business-type.

7.3 Node interface

7.3.1 Overview

The node interface (see Figure 27) provides the endpoint access to the node. MADES
specifies the interface exposed by the node using Web services – over SOAP/HTTPS
protocol. The services are classified as follows:

• Authentication service – see 7.3.2.

• Messaging services – see 7.3.3.

• Directory services – see 7.3.4.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 63 –

The node synchronization interface is used by the nodes to synchronize their directory data
each other. MADES specifies the interface using Web services – over SOAP/HTTPS protocol
– see 7.3.5.

Figure 27 – Node interface – Overview

7.3.2 Authentication service

There is one authentication service, named GetAuthenticationToken, used by a client
component to retrieve a token supplied by a server component, which is referred as the
“authentication-token”. The token has an expiration time (i.e. date and time). Such a token
can be generated as a UUID.

The client shall then return the authentication-token signed with the authentication certificate
for every following request – see 5.5.3. The client has to renew the authentication-token using
the same service when expired.

Figure 28 shows the node interface for the authentication service.

Figure 28 – Node interface – Authentication service

The service request elements are provided in Table 33.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 64 – TS 62325-503  IEC:2014(E)

Table 33 – Authentication – Service request elements

Element name Type Description Required

componentCode string The component ID of the connecting client requesting for an
authentication-token. True

serviceMversion integer The MADES version of the current service that is requested
by the client – see 6.1.3. True

The service response elements are provided in Table 34.

Table 34 – Authentication – Service response elements

Element
name

Type Description Required

authToken string The requested authentication token. True

expiration timestamp The expiration date and time of the provided authentication-
token.

True

7.3.3 Messaging Services

7.3.3.1 General

Messaging services are operations for bulk upload and download of messages.

The download process is a two-phase operation: first the client downloads messages from
server; then it confirms that the download was successful – see 5.8.

Two limits shall be configurable within each source component regarding the bulk transfer
mechanism (defined by the network governance):

• the maximum number of messages in one transfer.

• the maximum allowed size for the request (upload) or the reply (download), which contains
the messages.

7.3.3.2 “Transfer confirmation” versus “acceptance”

The transfer confirmation is a technical mechanism to notify a source component that the
target component has taken responsibility for the message. If the source component does not
receive the confirmation, it remains responsible for the message delivery and shall then
transfer it again.

The acceptance of a message by a component generally means more, i.e. that the message
has passed additional validation checks. Moreover, acceptance always leads to an event
notification (whether delivery or failure).

Upload: When a node accepts an uploaded message, it delegates the event notification of the
event No. 3 to the sender’s endpoint and uses the upload response to do so. Other
components shall not use the upload response to reject a business-message. The
interpretation of the possible responses by the sender’s endpoint is:

1. No confirmation is received; the message shall be transferred again.
2. The message is accepted; a delivery acknowledgement shall be issued if the message

is a business-message.
3. The message is rejected (it can only on a business-message); a failure

acknowledgement shall be issued and the message shall not be transferred again.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 65 –

Download: The target component of a download transfer (recipient’ endpoint) always issues
the acknowledgement. So there is no need to accept or reject a message when confirming the
transfer (see ConfirmDownload 7.3.3.5).

7.3.3.3 UploadMessages service

Figure 29 shows the node interface for the UploadMessages service:

Figure 29 – Node interface – Messaging services – UploadMessages service

The service request elements are provided in Table 35.

Table 35 – UploadMessages – Service request elements

Element name Element type Description Required

messages InternalMessage[]
(see Table 61)

The collection of the messages to be uploaded
ordered according to priority rule in the client. True

authToken AuthenticationToken
(see Table 53)

The authentication token provided by the server
which is signed back by the client using the
authentication certificate.

True

serviceMversion integer The MADES version of the current service that is
requested by the client – see 6.1.3. True

The service response elements are provided in Table 36.

Table 36 – UploadMessages – Service response elements

Element name Element type Description Required

uploadedMessages string[]
The collection of the IDs of the messages
which are confirmed as transferred, or
accepted.

False

notUploadedMessages
notUploadedMessag
eResponse[]
(see Table 73)

The collection of {ID, error details} for each
non-accepted (i.e. rejected) message. False

The ID of every message of the request shall belong to a collection of the response.

7.3.3.4 DownloadMessages service

Figure 30 shows the node interface for the DownloadMessages service:

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 66 – TS 62325-503  IEC:2014(E)

Figure 30 – Node interface – Messaging services – DownloadMessages service

A client component shall present the signed component ID of the endpoint for which it
requests messages. The certificate used for signing the endpoint ID shall be the
authentication certificate of the endpoint.

The node shall verify that the endpoint ID is successfully signed with a non-revoked
authentication certificate of the endpoint, and log an error message when the verification fails.

The service request elements are provided in Table 37.

Table 37 – DownloadMessages – Service request elements

Element name Element type Description Required

endpoints Endpoint[]
(see Table 60)

A one-element collection which contains the
component ID of the recipient’s endpoint whose
messages are requested for download.

True

authToken AuthenticationToken
(see Table 53)

The authentication token provided by the server
which is signed back by the client using the
authentication certificate.

True

serviceMversion integer The MADES version of the current service that is
requested by the client – see 6.1.3. True

The service response elements are provided in Table 38.

Table 38 – DownloadMessages – Service response elements

Element name Element type Description Required

messages InternalMessage[]
(see Table 61)

The collection of the downloaded messages ordered
according to priority rule in the server— see 5.8. False

waitingMessages integer
The number of messages, matching the request, but
not included in the current response and still waiting
to be downloaded by the client.

True

7.3.3.5 ConfirmDownload service

Figure 31 shows the node interface for the ConfirmDownloadMessages service:

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 67 –

Figure 31 – Node interface – Messaging services – ConfirmDownload service

The client (source) component confirms the transfer of all or none of the messages that it
previously received using a download request.

The service request elements are provided in Table 39.

Table 39 – ConfirmDownload – Service request elements

Element name Element type Description Required

messageIDs string[] The collection of the IDs of the messages whose
download transfer is confirmed.

False

authToken AuthenticationToken
(see Table 53)

The authentication token provided by the server
which is signed back by the client using the
authentication certificate.

True

serviceMversion integer The MADES version of the current service that is
requested by the client – see 6.1.3.

True

The service response elements are provided in Table 40.

Table 40 – ConfirmDownload – Service response elements

Element name Element type Description Required

confirmedMessages string[] (Unused) False

notConfirmedMessages NotConfirmedMessageResponse []
(see Table 72) (Unused) False

7.3.4 Directory services

7.3.4.1 SetComponentMversion Service

SetComponentMversion is used by a component to be accepted in the network – see 6.2.2.

To prevent that a component sends wrong data which could disrupt the network behaviour,
the component ID shall be signed.

The service request elements are provided in Table 41.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 68 – TS 62325-503  IEC:2014(E)

Table 41 – SetComponentMversion – Service request elements

Element name Element type Description Required

componentCode string The ID of the component requesting for network
acceptance. True

signature string

The RSA encoding of the SHA-1 hash of the
component ID (componentCode) of the component
requesting for network acceptance.

The certificate used for encoding shall be the
authentication certificate of the component.

True

certificateID string The ID of the certificate used to sign, i.e. to generate
the “signature”. True

componentMVersion integer The installed MADES version of the component
requesting for network acceptance. True

authToken
AuthenticationTok
en
(see Table 53)

The authentication token provided by the server
which is signed back by the client using the
authentication certificate.

True

serviceMversion integer The MADES version of the current service that is
requested by the client – see 6.1.3. True

The service response elements are provided in Table 42.

Table 42 – SetComponentMversion – Service response elements

Element name Element type Description Required

nodeMversion integer The installed MADES version of the home
node. True

acceptance boolean True if the component is accepted in the
network – see 6.2.2 True

7.3.4.2 GetCertificate service

GetCertificate is used to retrieve a certificate of a given type (signing, encryption, or
authentication), owned by the given endpoint and possibly having the requested ID.

Figure 32 shows the node interface for the GetCertificate service:

Figure 32 – Node interface – Directory services – GetCertificate service

The service request elements are provided in Table 43.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 69 –

Table 43 – GetCertificate – Service request elements

Element name Element type Description Required

componentCode string The ID of the component that owns the requested
certificate. True

type CertificateType
(see Table 54) The type of the requested certificate, True

certificateID string The ID of the requested certificate. False

authToken AuthenticationToken
(see Table 53)

The authentication token provided by the server
which is signed back by the client using the
authentication certificate.

True

serviceMversion integer The MADES version of the current service that is
requested by the client – see 6.1.3. True

The service response elements are provided in Table 44.

Table 44 – GetCertificate – Service response elements

Element
name

Element type Description Required

certificate Certificate
(See Table 54)

The returned certificate shall match the requested “type” and
shall be owned by componentCode.

If certificateID is also requested, the returned certificate shall
also match the ID.

Additional conditions about the validity and the revocation of
the certificate are provided further.

If no certificate matches, the response is empty.

False

Additional conditions are provided in Table 45.

Table 45 – GetCertificate – Additional conditions

Certificate type When certificateID is requested When certificateID is not requested

Authentication The returned certificate shall be valid (not
expired) and not revoked.

Request Error: this situation should never
occur. A component shall only request for an
authentication certificate to check a signed
token or a signed component ID, and thus
always knowing the certificate ID.

Encryption

The returned certificate can be expired or
revoked, for it may be requested to
decrypt a message that was composed
before the expiration time or the
revocation time.

The returned certificate shall be valid and not
revoked.

When several certificates match conditions, the
service shall return the certificate that expires
first.

Signing

The returned certificate can be expired or
revoked, for it may be requested to check
the signature of a message that was
composed before the expiration time or
the revocation time.

Request Error: this situation should never
occur. A component shall only request for a
signing certificate to check a signature and
thus always knowing the certificate ID.

7.3.4.3 GetComponent service

GetComponent is used for retrieving descriptive and routing information on a component.

Figure 33 shows the node interface for the GetComponent service:

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 70 – TS 62325-503  IEC:2014(E)

Figure 33 – Node interface – Directory services – GetComponent service

The service request elements are provided in Table 46.

Table 46 – GetComponent – Service request elements

Element name Element type Description Required

componentCode string The ID (or code) of the requested component. True

authToken AuthenticationToken
(see Table 53)

The authentication token provided by the server
which is signed back by the client using the
authentication certificate.

True

serviceMversion integer The MADES version of the current service that is
requested by the client – see 6.1.3. True

The service response elements are provided in Table 47.

Table 47 – GetComponent – Service response elements

Element
name

Element type Description Required

component ComponentInformation
(see Table 58)

The directory Information about the component.
If the requested component does not exist, the
response is empty.

False

7.3.5 Node Synchronization interface

7.3.5.1 GetNodeMversion service

The GetNodeMversion service is used by a node to get the Mversion of another node – see
6.2.1.

The service request elements are provided in Table 48.

Table 48 – GetNodeMversion – Service request elements

Element name Element type Description Required

mversion integer The installed MADES version of the requesting
client node. True

The service response elements are provided in Table 49.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 71 –

Table 49 – GetNodeMversion – Service response elements

Element
name

Element type Description Required

mversion integer The installed MADES version of the replying server node. True

nodeCode string The component ID of the replying server node. True

7.3.5.2 GetAllDirectoryData service

The GetAllDirectoryData service is used by the nodes to synchronize each other.

The service request elements are provided in Table 50.

Table 50 – GetAllDirectoryData – Service request elements

Element name Element type Description Required

dversion integer

The version of the directory data of the server node
that the client node already owns.

NOTE No version shall be provided if the client
synchronizes for the first time with the server.

False

serviceMversion integer The MADES version of the current service that is
requested by the client – see 6.1.3. True

The service response elements are provided in Table 51.

Table 51 – GetAllDirectoryData – Service response elements

Element
name

Element type Description Required

dversion integer The current version of the directory reference data of the
replying server node. True

nodeCode string The component ID of the replying server node. True

components
ComponentDesc
ription[]
(see Table 57)

The collection of the descriptions of all components registered to
the replying server node, plus the description of the node itself.

The collection shall only be provided when the current directory
version of the server node is strictly higher than the version
already owned by the client node.

False

7.4 Format of the node-list file

The node-list file shall be in UTF-8 encoding.

The records in the file shall be delimited by the new line character (LF U+000A).

Each record provides a list of attributes for one node. Attributes are delimited by the empty
space character (SPACE U+0020) and shall appear in the order given in Table 52.

Table 52 – Node attributes ordered list

Attribute Description Required

Node component ID The component ID of the node True

Primary node URL The primary URL to access the node, formatted according to RFC 1738 True

Secondary node URL The secondary URL to access the node, formatted according to RFC 1738 False

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

http://www.ietf.org/rfc/rfc1738.txt
http://www.ietf.org/rfc/rfc1738.txt

 – 72 – TS 62325-503  IEC:2014(E)

7.5 Typed Elements used by the interfaces

MTOM (Message Transmission Optimization Mechanism) is a W3C recommendation for
handling binary data in SOAP messages – http://www.w3.org/TR/soap12-mtom/

MTOM shall be used to optimise the size of the messages sent. Binary data in the SOAP
message have to be encoded as text because SOAP uses XML. The base64 text encoding
increases the size of the data by about 33 %. MTOM provides a way to send the binary data
in the original binary form. MTOM optimizes the element content that is in the canonical
lexical representation of the xsd:base64Binary type.

All element types used in Clause 7 in the interfaces of the services are gathered from
Table 53 to Table 76.

Table 53 – AuthenticationToken

Element name Element
type Description Required

token string
The token received by the client (or requesting) component when it
authenticated against the server (see the GetAuthenticationToken
service).

True

signature string
The signed token, i.e. the RSA encoding of the SHA-1 hash of the
token. The encoding certificate shall be the authentication certificate
of the client.

True

certificateID string The ID of the certificate used for signing the token. True

Table 54 – Certificate

Element name Element type Description Required

certificateID string The ID of the certificate. True

certificate base64Binary The binary data of the certificate in DER (Distinguished
Encoding Rules) format.

True

expiration timestamp The cache expiration date-time of the certificate if cached by
client – see 5.16.5.

Do not confuse with the expiration date of the certificate as
defined by the certificate issuer and included in the
certificate itself.

The element is required for directory service, but not for
directory synchronization

Table 55 – CertificateType – string enumeration

String value Description

AUTHENTICATION A certificate used for TLS and token authentication

ENCRYPTION A certificate used for encryption

SIGNING A certificate used for signing

Table 56 – ComponentCertificate

Element name Element type Description Required

type CertificateType
(see Table 55)

The type of the certificate (e.g. encryption,
signing, authentication)

True

revoked boolean ‘true’ if the certificate has been revoked. False

certificate Certificate
(see Table 54)

The certificate. True

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

http://www.w3.org/TR/soap12-mtom/

TS 62325-503  IEC:2014(E) – 73 –

Table 57 – ComponentDescription

Element
name Element type Description Required

information ComponentInformation
(see Table 58)

All about the component: ID, type, contact
information, routing information.

True

certificates ComponentCertificate[]
(see Table 56)

The collection of the certificates owned by the
component, whatever type (signing, encryption
and authentication), and possibly more than one
for some types.

True

Table 58 – ComponentInformation

Element
name Element type Description Required

code string The component ID to which is associated all
information of the current data structure.

True

type ComponentType
(see Table 59)

The type of component. True

organization string The organization responsible for the component. True

person string The technical contact person. True

email string The email of the technical contact person. True

phone string The phone number of the technical contact person. True

routing RoutingInformation
(see Table 75)

The routing information to access to the
component (ex: URLs)

True

expiration timestamp The cache expiration date-time of the information if
cached by client – see 5.16.5.

The element is required for directory service, but
not for directory synchronization

codeMversion integer The MADES version to which the component
complies – see 6.1.2.

NOTE Information should be initialized in
thehome node at registration time. Otherwise it
remains unknown until the component first
connects to the network, and no message can be
sent to the component.

False

Table 59 – ComponentType – string enumeration

String value Description

NODE The component is a node.

ENDPOINT The component is an endpoint.

Table 60 – Endpoint

Element name Element type Description Required

code string The component ID of an endpoint. True

signature string

The RSA encoding of the SHA-1 hash of the
component ID of the endpoint. The certificate used for
encoding is the authentication certificate of the
endpoint.

True

certificateID string The ID of the certificate used to encode the signature. True

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 74 – TS 62325-503  IEC:2014(E)

Table 61 – InternalMessage

Element name Element type Description Required

messageID string The ID of the message. True

receiverCode string

Business-message, Tracing-message  The
component ID of the recipient’s endpoint.

Acknowledgement  The senderCode of the original
message.

True

businessType string

Business-message  The business-type as provided
by the sender’s BA.

Tracing-message  Irrelevant, but at least one
character needed.

Acknowledgement  The business-type of the
original message.

True

content base64Binary

Business-message  The encrypted content of the
message, possibly compressed before encrypted.

Tracing-message  A non empty (at least one
character) irrelevant and not compressed but
encrypted content.

Acknowledgement  see 5.10.4.

True

extension string

Business-message  The file extension for the
document – only used if the content was transferred
to the sender’s endpoint through a file and by the
FSSF interface (see 7.2.3).

Acknowledgement, Tracing-message  Not used.

False

generated dateTime

Business-message, Tracing-message  The date
and time when the message was created by the
sender’s endpoint.

Acknowledgement  The date and time of the
notified event, i.e. when the acknowledgement was
created in the sending component.

True

expirationTime timestamp

Business-message, Tracing-message  The
expiration date and time of the message – set by the
sender’s endpoint when accepting the message (see
5.9).

Acknowledgement  The expirationTime of the
original message.

True

senderCode string

Business-message, Tracing-message  The
component ID of the sender’s endpoint.

Acknowledgement  The ID of the component
sending the acknowledgement.

True

senderDescription string The display name of the senderCode component. True

internalType
InternalMessageT
ype
(see Table 62)

The technical type of the message. True

relatedMessageID string
Business-message, Tracing-message  Not used.

Acknowledgement  The message ID of the original
message..

False

SenderApplication string

Business-message, Tracing-message  The
identifier of the sender’s BA as provided when
sending the document.

Acknowledgement  Not used.

False

baMessageID string
Business-message, Tracing-message  An identifier
of the document as provided by the sender’s BA.

Acknowledgement  Not used.
False

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 75 –

Element name Element type Description Required

metadata MessageMetadata
(see Table 63)

The metadata added to the message by
compression, signature or encryption – see 5.14. False

messageMversion integer The MADES version to which the message complies
– see 6.1.4 True

NOTE The underlined attributes are those included in the manifest used to generate the message signature –
see 5.14.3.

The “message header” refers to the set of all elements except “content”.

Table 62 – InternalMessageType – string enumeration

String Value Description

STANDARD_MESSAGE A business-message but not a tracing-message.

DELIVERY_ACKNOWLEDGEMENT An acknowledgement notifying that the original STANDARD_MESSAGE
has been accepted by a component.

RECEIVE_ACKNOWLEDGEMENT An acknowledgement notifying that the original STANDARD_MESSAGE
has been transferred to a recipient’s BA.

FAILURE_ACKNOWLEDGEMENT A failure-acknowledgement.

TRACING_MESSAGE A tracing-message – see 5.12.

TRACING_ACKNOWLEDGEMENT An acknowledgement notifying that the original TRACING_MESSAGE
has been accepted by a component.

Table 63 – MessageMetadata

Element name Element type Description Required

messageProcessors MessageProcessor[]
A collection of metadata, each from a used
message processor (collection count may range
from 1 to 3).

False

Table 64 – MessageProcessor

Element name Element
type

Description Required

processorID string

The unique ID of the message processor. There are 3
processors whose IDs are:

“signature”

“encryption”

“compressor”

True

processorData Map A collection of named values. True

Table 65 – Map

Element name Element type Description Required

entries MapEntry[]
A collection of data, each provided with a name and a
value, i.e. a set composed of a key (name), a type
(format) and a value (according to the type).

False

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 76 – TS 62325-503  IEC:2014(E)

Table 66 – MapEntry

Element name Element type Description Required

key string The name of the metadata True

type ValueType The type/format of the metadata. True

value string The value of the metadata. True

Table 67 – ValueType (enumeration)

String Value Description

STRING String

LONG A 64bit number expressed as string. Example number 42 is represented as string "42"
(without quotes)

BYTE_ARRAY  base64Binary type

BOOLEAN A string equal to “true” or “false”.

Table 68 – MessageState (string enumeration)

String value Description

VERIFYING The acceptance of the message by the sender’s endpoint is pending due to
connectivity problem between the sender’s endpoint and the directory services.

ACCEPTED The message has been accepted by the sender’s endpoint.

TRANSPORTED The message has been accepted by an intermediate component (except the recipient’s
endpoint or a recipient’s BA).

DELIVERED The message has been accepted by the recipient’s endpoint.

RECEIVED The message has been accepted by a recipient’s BA.

FAILED The processing of the message has failed and the delivery is stopped.

Table 69 – MessageStatus

Element name Element type Description

messageID string The UUID (Universal Unique ID) of the message whose status is
reported in this data structure – see 5.2.

state MessageState
(see Table 68)

The delivery-status of the requested message.
(see values in 5.4 - uppercase)

receiverCode string The component ID of the recipient’s endpoint of the message.

senderCode string The component ID of the sender’s endpoint of the message.

businessType string The business-type of the message.

senderApplication string The identifier of sender’s BA, if any and as provided by the
sender’s BA in the SendMessage service.

baMessageID string The identifier of the message assigned by the sending BA, if any
and as provided by the sender’s BA in the SendMessage service.

sendTimestamp dateTime
The time when the message was created by the sender’s endpoint
(The generated element of the InternalMessage type – see
Table 61).

receiveTimestamp dateTime

The “reception time” of the message in the sender’s endpoint. It is
the time when the message state was set to DELIVERED in the
sender’s endpoint, which is also the time when the
acknowledgement with the DELIVERED status (event n°6) was
sent.

trace MessageTraceItem []
(see Table 70)

The collection of the traces reporting the events about the
message delivery.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 77 –

Table 70 – MessageTraceItem

Element
name

Element type Description Required

timestamp dateTime The date and time of the reported event. True

state MessageTraceState
(see Table 71) The reported event True

component string The ID of the component (see 5.2) where the event
happened. True

Component
description string The display name of the component where the event

happened. True

Details string The English readable details about the event. False

Table 71 – MessageTraceState (string enumeration)

String value Description

VERIFYING

The acceptance of the message by the sender’s endpoint is pending due to connectivity
problem between the sender’s endpoint and the directory services.

(internal event reported by the sender’s endpoint).

ACCEPTED
The message has been accepted by the sender’s endpoint.

(internal event reported by the sender’s endpoint).

TRANSPORTED

The message has been accepted by an intermediate component (except the recipient’s
endpoint or a recipient’s BA).

(event reported using a DELIVERY_ACKNOWLEDGEMENT or a
TRACING_ACKNOWLEDGEMENT – see Table 62)

DELIVERED

The message has been accepted by the recipient’s endpoint.

(event reported using a DELIVERY_ACKNOWLEDGEMENT or a
TRACING_ACKNOWLEDGEMENT – see Table 62)

RECEIVED
The message has been accepted by a recipient’s BA.

(event reported using an RECEIVE_ACKNOWLEDGEMENT – see Table 62)

FAILED

The processing of the message has failed and the delivery is stopped.

(internal event reported by the sender’s endpoint or event reported using a
FAILURE_ACKNOWLEDGEMENT – see Table 62)

Table 72 – NotConfirmedMessageResponse

Element name Element
type

Description Required

messageID string The ID of the message whose upload failed. True

errorCode string A code representing the type of the error (e.g. validation
error, unexpected error) True

errorID string
Unique identification of the error and for the component
implementation. The error ID shall be always written in the
logs.

True

errorMessage string An English readable text describing the error. True

errorDetails string (optional) Additional English readable details about the error
context. False

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 78 – TS 62325-503  IEC:2014(E)

Table 73 – NotUploadedMessageResponse

Element name Element
type

Description Required

messageID string The ID of the message whose upload failed. True

fatal boolean
Set to true if the error is not recoverable. The message shall
then be set in the failed state by the client source component,
which shall never try to upload it again.

True

businessErrorMess
age string An English readable description of the error. False

errorCode string A code representing the type of the error (e.g. validation
error, unexpected error) True

errorID string
Unique identification of the error and for the component
implementation. The error ID shall be always written in the
logs.

True

errorMessage string An English readable text describing the error. True

errorDetails string (optional) Additional English readable details about the error
context. False

Table 74 – ReceivedMessage

Element name Element
type Description

messageID string The UUID (Universal Unique ID) of the message – see 5.2.

receiverCode string The component ID of the recipient’s endpoint of the message – see 5.2.

senderCode string The component ID of the sender’s endpoint of the message – see 5.2.

businessType string The business-type of the message currently transferred to the BA.

content base64Binary The content of the message as provided by the sender’s BA in the
SendMessage service.

senderApplication string The identifier of sender’s BA, if any and as provided by the sender’s BA
in the SendMessage service.

baMessageID string The identifier of the message assigned by the sending BA, if any and as
provided by the sender’s BA in the SendMessage service.

Table 75 – RoutingInformation

Element name Element
type

Description Required

node string The component ID of the component’s home node. True

primaryURL string The primary URL of the node according to RFC 1738 True

secondaryURL string The secondary URL of the node according to RFC 1738 False

nodeMversion integer The installed MADES version of the component’s home node –
see 6.1.2

True

Table 76 – SentMessage

Element name Element
type Description Required

receiverCode string The component ID of the recipient’s endpoint (see 5.2) –
Pattern: [A-Za-z0-9-@]+ True

businessType string The business-type of the message (see 5.3) – Pattern: [A-Za-
z0-9]+ True

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

http://www.ietf.org/rfc/rfc1738.txt
http://www.ietf.org/rfc/rfc1738.txt

TS 62325-503  IEC:2014(E) – 79 –

Element name Element
type Description Required

baMessageID string
An identifier of the document provided by the sender’s BA.
Information is transported “as is” to the recipient’s BA –
Pattern: [A-Za-z0-9]*

False

senderApplication string
The identifier of the sender’s BA. Information is transported
“as is” to the recipient’s BA –
Pattern: [A-Za-z0-9]*

False

content base64Binary

The content of the message, i.e. the business document.

NOTE There is no constraint about the structure of the
document which is processed as a stream of bytes. E.g. it
can be a human-readable XML document, multiples files
compressed in ZIP format.

True

7.6 Description of the services

7.6.1 About WSDL and SOAP

The services are described using the Web Services Description Language (WSDL) 1.111.
See http://www.w3.org/TR/wsdl and Figure 34.

The SOAP 1.1 and SOAP 1.2 bindings allow using the interfaces via SOAP 1.1 and SOAP 1.2
protocols.

Figure 34 – WSDL 1.1 definitions

7.6.2 Endpoint interface

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="MadesEndpoint" targetNamespace="http://mades.entsoe.eu/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:ecp="http://mades.entsoe.eu/"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/">

 <wsdl:types>
 <xsd:schema targetNamespace="http://mades.entsoe.eu/">

11 Figure 34 from http://en.wikipedia.org/wiki/Web_Services_Description_Language.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

http://www.w3.org/TR/wsdl
http://en.wikipedia.org/wiki/Web_Services_Description_Language

 – 80 – TS 62325-503  IEC:2014(E)

 <xsd:element name="SendMessageRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="message" type="mades:SentMessage"/>
 <xsd:element minOccurs="0" name="conversationID" nillable="true"
type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="SendMessageResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="messageID" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="SendMessageError">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="errorCode" type="xsd:string"/>
 <xsd:element name="errorID" type="xsd:string"/>
 <xsd:element name="errorMessage" type="xsd:string"/>
 <xsd:element minOccurs="0" name="receiverCode" nillable="true"
type="xsd:string"/>
 <xsd:element minOccurs="0" name="errorDetails" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="ReceiveMessageRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="businessType" type="xsd:string"/>
 <xsd:element name="downloadMessage" type="xsd:boolean"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="ReceiveMessageResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element minOccurs="0" name="receivedMessage" nillable="true"
type="mades:ReceivedMessage"/>
 <xsd:element name="remainingMessagesCount" type="xsd:long"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="ReceiveMessageError">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="errorCode" type="xsd:string"/>
 <xsd:element name="errorID" type="xsd:string"/>
 <xsd:element name="errorMessage" type="xsd:string"/>
 <xsd:element minOccurs="0" name="businessType" nillable="true"
type="xsd:string"/>
 <xsd:element minOccurs="0" name="errorDetails" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="ConfirmReceiveMessageRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="messageID" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 81 –

 </xsd:element>

 <xsd:element name="ConfirmReceiveMessageResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="messageID" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="ConfirmReceiveMessageError">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="errorCode" type="xsd:string"/>
 <xsd:element name="errorID" type="xsd:string"/>
 <xsd:element name="errorMessage" type="xsd:string"/>
 <xsd:element minOccurs="0" name="messageID" nillable="true"
type="xsd:string"/>
 <xsd:element minOccurs="0" name="errorDetails" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:complexType name="SentMessage">
 <xsd:sequence>
 <xsd:element name="receiverCode" type="xsd:string"/>
 <xsd:element name="businessType" type="xsd:string"/>
 <xsd:element name="content" type="xsd:base64Binary"/>
 <xsd:element minOccurs="0" name="senderApplication" nillable="true"
type="xsd:string"/>
 <xsd:element minOccurs="0" name="baMessageID" nillable="true"
type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="ReceivedMessage">
 <xsd:sequence>
 <xsd:element name="messageID" type="xsd:string"/>
 <xsd:element name="receiverCode" type="xsd:string"/>
 <xsd:element name="senderCode" type="xsd:string"/>
 <xsd:element name="businessType" type="xsd:string"/>
 <xsd:element name="content" type="xsd:base64Binary"/>
 <xsd:element minOccurs="0" name="senderApplication" nillable="true"
type="xsd:string"/>
 <xsd:element minOccurs="0" name="baMessageID" nillable="true"
type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="MessageStatus">
 <xsd:sequence>
 <xsd:element name="messageID" type="xsd:string"/>
 <xsd:element name="state" type="mades:MessageState"/>
 <xsd:element name="receiverCode" type="xsd:string"/>
 <xsd:element name="senderCode" type="xsd:string"/>
 <xsd:element name="businessType" type="xsd:string"/>
 <xsd:element minOccurs="0" name="senderApplication" nillable="true"
type="xsd:string"/>
 <xsd:element minOccurs="0" name="baMessageID" nillable="true"
type="xsd:string"/>
 <xsd:element name="sendTimestamp" type="xsd:dateTime"/>
 <xsd:element minOccurs="0" name="receiveTimestamp" nillable="true"
type="xsd:dateTime"/>
 <xsd:element name="trace" nillable="true" type="mades:MessageTrace"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="MessageTrace">
 <xsd:sequence>

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 82 – TS 62325-503  IEC:2014(E)

 <xsd:element maxOccurs="unbounded" name="trace"
type="mades:MessageTraceItem"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="MessageTraceItem">
 <xsd:sequence>
 <xsd:element name="timestamp" type="xsd:dateTime"/>
 <xsd:element name="state" type="mades:MessageTraceState"/>
 <xsd:element name="component" type="xsd:string"/>
 <xsd:element name="componentDescription" type="xsd:string"/>
 <xsd:element name="details" nillable="true" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:element name="ConnectivityTestRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="receiverCode" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="ConnectivityTestResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="messageID" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="ConnectivityTestError">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="errorCode" type="xsd:string"/>
 <xsd:element name="errorID" type="xsd:string"/>
 <xsd:element name="errorMessage" type="xsd:string"/>
 <xsd:element minOccurs="0" name="receiverCode" nillable="true"
type="xsd:string"/>
 <xsd:element minOccurs="0" name="errorDetails" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="CheckMessageStatusRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="messageID" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="CheckMessageStatusResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="messageStatus" type="mades:MessageStatus"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="CheckMessageStatusError">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="errorCode" type="xsd:string"/>
 <xsd:element name="errorID" type="xsd:string"/>
 <xsd:element name="errorMessage" type="xsd:string"/>
 <xsd:element minOccurs="0" name="messageID" nillable="true"
type="xsd:string"/>
 <xsd:element minOccurs="0" name="errorDetails" type="xsd:string"/>
 </xsd:sequence>

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 83 –

 </xsd:complexType>
 </xsd:element>

 <xsd:simpleType name="MessageState">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="VERIFYING"/>
 <xsd:enumeration value="ACCEPTED"/>
 <xsd:enumeration value="DELIVERING"/>
 <xsd:enumeration value="DELIVERED"/>
 <xsd:enumeration value="RECEIVED"/>
 <xsd:enumeration value="FAILED"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="MessageTraceState">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="VERIFYING"/>
 <xsd:enumeration value="ACCEPTED"/>
 <xsd:enumeration value="TRANSPORTED"/>
 <xsd:enumeration value="DELIVERED"/>
 <xsd:enumeration value="RECEIVED"/>
 <xsd:enumeration value="FAILED"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:schema>
 </wsdl:types>

 <wsdl:message name="SendMessageRequest">
 <wsdl:part name="parameters" element="mades:SendMessageRequest"/>
 </wsdl:message>

 <wsdl:message name="SendMessageResponse">
 <wsdl:part name="parameters" element="mades:SendMessageResponse"/>
 </wsdl:message>

 <wsdl:message name="ConnectivityTestFault">
 <wsdl:part name="fault" element="mades:ConnectivityTestError"/>
 </wsdl:message>

 <wsdl:message name="ReceiveMessageRequest">
 <wsdl:part name="parameters" element="mades:ReceiveMessageRequest"/>
 </wsdl:message>

 <wsdl:message name="ConfirmReceiveMessageRequest">
 <wsdl:part name="parameters" element="mades:ConfirmReceiveMessageRequest"/>
 </wsdl:message>

 <wsdl:message name="ConnectivityTestRequest">
 <wsdl:part name="parameters" element="mades:ConnectivityTestRequest"/>
 </wsdl:message>

 <wsdl:message name="CheckMessageStatusResponse">
 <wsdl:part name="parameters" element="mades:CheckMessageStatusResponse"/>
 </wsdl:message>

 <wsdl:message name="ConfirmReceiveMessageResponse">
 <wsdl:part name="parameters" element="mades:ConfirmReceiveMessageResponse"/>
 </wsdl:message>

 <wsdl:message name="ReceiveMessageFault">
 <wsdl:part name="fault" element="mades:ReceiveMessageError"/>
 </wsdl:message>

 <wsdl:message name="CheckMessageStatusFault">
 <wsdl:part name="fault" element="mades:CheckMessageStatusError"/>
 </wsdl:message>

 <wsdl:message name="CheckMessageStatusRequest">
 <wsdl:part name="parameters" element="mades:CheckMessageStatusRequest"/>
 </wsdl:message>

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 84 – TS 62325-503  IEC:2014(E)

 <wsdl:message name="ConfirmReceiveMessageFault">
 <wsdl:part name="fault" element="mades:ConfirmReceiveMessageError"/>
 </wsdl:message>

 <wsdl:message name="SendMessageFault">
 <wsdl:part name="fault" element="mades:SendMessageError"/>
 </wsdl:message>

 <wsdl:message name="ReceiveMessageResponse">
 <wsdl:part name="parameters" element="mades:ReceiveMessageResponse"/>
 </wsdl:message>

 <wsdl:message name="ConnectivityTestResponse">
 <wsdl:part name="parameters" element="mades:ConnectivityTestResponse"/>
 </wsdl:message>

 <wsdl:portType name="MadesEndpoint">
 <wsdl:operation name="SendMessage">
 <wsdl:input message="mades:SendMessageRequest"/>
 <wsdl:output message="mades:SendMessageResponse"/>
 <wsdl:fault name="SendMessageError" message="mades:SendMessageFault"/>
 </wsdl:operation>
 <wsdl:operation name="ReceiveMessage">
 <wsdl:input message="mades:ReceiveMessageRequest"/>
 <wsdl:output message="mades:ReceiveMessageResponse"/>
 <wsdl:fault name="ReceiveMessageError" message="mades:ReceiveMessageFault"/>
 </wsdl:operation>
 <wsdl:operation name="ConfirmReceiveMessage">
 <wsdl:input message="mades:ConfirmReceiveMessageRequest"/>
 <wsdl:output message="mades:ConfirmReceiveMessageResponse"/>
 <wsdl:fault name="ConfirmReceiveMessageError"
message="mades:ConfirmReceiveMessageFault"/>
 </wsdl:operation>
 <wsdl:operation name="ConnectivityTest">
 <wsdl:input message="mades:ConnectivityTestRequest"/>
 <wsdl:output message="mades:ConnectivityTestResponse"/>
 <wsdl:fault name="ConnectivityTestError"
message="mades:ConnectivityTestFault"/>
 </wsdl:operation>
 <wsdl:operation name="CheckMessageStatus">
 <wsdl:input message="mades:CheckMessageStatusRequest"/>
 <wsdl:output message="mades:CheckMessageStatusResponse"/>
 <wsdl:fault name="CheckMessageStatusError"
message="mades:CheckMessageStatusFault"/>
 </wsdl:operation>
 </wsdl:portType>

 <wsdl:binding name="MadesEndpointSOAP12" type="mades:MadesEndpoint">
 <soap12:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="SendMessage">
 <soap12:operation soapAction="http://mades.entsoe.eu/SendMessage"/>
 <wsdl:input> <soap12:body use="literal"/> </wsdl:input>
 <wsdl:output> <soap12:body use="literal"/> </wsdl:output>
 <wsdl:fault name="SendMessageError"> <soap12:fault name="SendMessageError"
use="literal"/> </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="ReceiveMessage">
 <soap12:operation soapAction="http://mades.entsoe.eu/ReceiveMessage"/>
 <wsdl:input> <soap12:body use="literal"/> </wsdl:input>
 <wsdl:output> <soap12:body use="literal"/> </wsdl:output>
 <wsdl:fault name="ReceiveMessageError"> <soap12:fault
name="ReceiveMessageError" use="literal"/> </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="ConfirmReceiveMessage">
 <soap12:operation soapAction="http://mades.entsoe.eu/ConfirmReceiveMessage"/>
 <wsdl:input> <soap12:body use="literal"/> </wsdl:input>
 <wsdl:output> <soap12:body use="literal"/> </wsdl:output>

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 85 –

 <wsdl:fault name="ConfirmReceiveMessageError"> <soap12:fault
name="ConfirmReceiveMessageError" use="literal"/> </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="ConnectivityTest">
 <soap12:operation soapAction="http://mades.entsoe.eu/ConnectivityTest"/>
 <wsdl:input> <soap12:body use="literal"/> </wsdl:input>
 <wsdl:output> <soap12:body use="literal"/> </wsdl:output>
 <wsdl:fault name="ConnectivityTestError"> <soap12:fault
name="ConnectivityTestError" use="literal"/> </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="CheckMessageStatus">
 <soap12:operation soapAction="http://mades.entsoe.eu/CheckMessageStatus"/>
 <wsdl:input> <soap12:body use="literal"/> </wsdl:input>
 <wsdl:output> <soap12:body use="literal"/> </wsdl:output>
 <wsdl:fault name="CheckMessageStatusError"> <soap12:fault
name="CheckMessageStatusError" use="literal"/> </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>

 <wsdl:binding name="MadesEndpointSOAP11" type="mades:MadesEndpoint">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="SendMessage">
 <soap:operation soapAction="http://mades.entsoe.eu/SendMessage"/>
 <wsdl:input> <soap:body use="literal"/> </wsdl:input>
 <wsdl:output> <soap:body use="literal"/> </wsdl:output>
 <wsdl:fault name="SendMessageError"> <soap:fault name="SendMessageError"
use="literal"/> </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="ReceiveMessage">
 <soap:operation soapAction="http://mades.entsoe.eu/ReceiveMessage"/>
 <wsdl:input> <soap:body use="literal"/> </wsdl:input>
 <wsdl:output> <soap:body use="literal"/> </wsdl:output>
 <wsdl:fault name="ReceiveMessageError"> <soap:fault name="ReceiveMessageError"
use="literal"/> </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="ConfirmReceiveMessage">
 <soap:operation soapAction="http://mades.entsoe.eu/ConfirmReceiveMessage"/>
 <wsdl:input> <soap:body use="literal"/> </wsdl:input>
 <wsdl:output> <soap:body use="literal"/> </wsdl:output>
 <wsdl:fault name="ConfirmReceiveMessageError"> <soap:fault
name="ConfirmReceiveMessageError" use="literal"/> </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="ConnectivityTest">
 <soap:operation soapAction="http://mades.entsoe.eu/ConnectivityTest"/>
 <wsdl:input> <soap:body use="literal"/> </wsdl:input>
 <wsdl:output> <soap:body use="literal"/> </wsdl:output>
 <wsdl:fault name="ConnectivityTestError"> <soap:fault
name="ConnectivityTestError" use="literal"/> </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="CheckMessageStatus">
 <soap:operation soapAction="http://mades.entsoe.eu/CheckMessageStatus"/>
 <wsdl:input> <soap:body use="literal"/> </wsdl:input>
 <wsdl:output> <soap:body use="literal"/> </wsdl:output>
 <wsdl:fault name="CheckMessageStatusError"> <soap:fault
name="CheckMessageStatusError" use="literal"/> </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>

 <wsdl:service name="MadesEndpointService">
 <wsdl:port name="MadesEndpointSOAP12" binding="mades:MadesEndpointSOAP12">
 <soap12:address location="http://mades.entsoe.eu"/>
 </wsdl:port>
 <wsdl:port name="MadesEndpointSOAP11" binding="mades:MadesEndpointSOAP11">
 <soap:address location="http://mades.entsoe.eu"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 86 – TS 62325-503  IEC:2014(E)

7.6.3 Node interface

7.6.3.1 Authentication service

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="MadesAuthenticationService"
targetNamespace="http://mades.entsoe.eu/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:ecp="http://mades.entsoe.eu/"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/">

 <wsdl:types>
 <xsd:schema targetNamespace="http://mades.entsoe.eu/">

 <xsd:element name="GetAuthenticationTokenRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="componentCode" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="GetAuthenticationTokenResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="authToken" type="xsd:string"/>
 <xsd:element name="expiration" type="xsd:long"/>
 <xsd:element minOccurs="0" name="serviceMversion" nillable="true"
type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="GetAuthenticationTokenError">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="errorCode" type="xsd:string"/>
 <xsd:element name="errorID" type="xsd:string"/>
 <xsd:element name="errorMessage" type="xsd:string"/>
 <xsd:element minOccurs="0" name="errorDetails" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
 </wsdl:types>

 <wsdl:message name="GetAuthenticationTokenResponse">
 <wsdl:part name="parameters" element="mades:GetAuthenticationTokenResponse"/>
 </wsdl:message>

 <wsdl:message name="GetAuthenticationTokenFault">
 <wsdl:part name="fault" element="mades:GetAuthenticationTokenError"/>
 </wsdl:message>

 <wsdl:message name="GetAuthenticationTokenRequest">
 <wsdl:part name="parameters" element="mades:GetAuthenticationTokenRequest"/>
 </wsdl:message>

 <wsdl:portType name="MadesAuthenticationService">
 <wsdl:operation name="GetAuthenticationToken">
 <wsdl:input message="mades:GetAuthenticationTokenRequest"/>
 <wsdl:output message="mades:GetAuthenticationTokenResponse"/>
 <wsdl:fault name="GetAuthenticationTokenError"
message="mades:GetAuthenticationTokenFault"/>
 </wsdl:operation>
 </wsdl:portType>

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 87 –

 <wsdl:binding name="MadesAuthenticationServiceSOAP12"
type="mades:MadesAuthenticationService">
 <soap12:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="GetAuthenticationToken">
 <soap12:operation soapAction="http://mades.entsoe.eu/GetAuthenticationToken"/>
 <wsdl:input> <soap12:body use="literal"/> </wsdl:input>
 <wsdl:output> <soap12:body use="literal"/> </wsdl:output>
 <wsdl:fault name="GetAuthenticationTokenError"> <soap12:fault
name="GetAuthenticationTokenError" use="literal"/> </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>

 <wsdl:binding name="MadesAuthenticationServiceSOAP11"
type="mades:MadesAuthenticationService">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="GetAuthenticationToken">
 <soap:operation soapAction="http://mades.entsoe.eu/GetAuthenticationToken"/>
 <wsdl:input> <soap:body use="literal"/> </wsdl:input>
 <wsdl:output> <soap:body use="literal"/> </wsdl:output>
 <wsdl:fault name="GetAuthenticationTokenError"> <soap:fault
name="GetAuthenticationTokenError" use="literal"/> </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>

 <wsdl:service name="MadesAuthenticationService">
 <wsdl:port name="MadesAuthenticationServiceSOAP12"
binding="mades:MadesAuthenticationServiceSOAP12">
 <soap12:address location="http://mades.entsoe.eu"/>
 </wsdl:port>
 <wsdl:port name="MadesAuthenticationServiceSOAP11"
binding="mades:MadesAuthenticationServiceSOAP11">
 <soap:address location="http://mades.entsoe.eu"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

7.6.3.2 Messaging services

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="MadesInternalMessaging"
targetNamespace="http://mades.entsoe.eu/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:ecp="http://mades.entsoe.eu/"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/">

 <wsdl:types>
 <xsd:schema targetNamespace="http://mades.entsoe.eu/">

 <xsd:element name="UploadMessagesRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" name="messages"
type="mades:InternalMessage"/>
 <xsd:element name="authToken" type="mades:AuthenticationToken"/>
 <xsd:element minOccurs="0" name="serviceMversion" nillable="true"
type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="UploadMessagesResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0" name="uploadedMessages"
type="xsd:string"/>

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 88 – TS 62325-503  IEC:2014(E)

 <xsd:element maxOccurs="unbounded" minOccurs="0"
name="notUploadedMessages" type="mades:NotUploadedMessageResponse"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="UploadMessagesError">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="errorCode" type="xsd:string"/>
 <xsd:element name="errorID" type="xsd:string"/>
 <xsd:element name="errorMessage" type="xsd:string"/>
 <xsd:element minOccurs="0" name="errorDetails" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="DownloadMessagesRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" name="endpoints"
type="mades:Endpoint">
 <xsd:element name="authToken" type="mades:AuthenticationToken"/>
 <xsd:element minOccurs="0" name="serviceMversion" nillable="true"
type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="DownloadMessagesResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0" name="messages"
type="mades:InternalMessage"/>
 <xsd:element name="waitingMessages" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="DownloadMessagesError">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="errorCode" type="xsd:string"/>
 <xsd:element name="errorID" type="xsd:string"/>
 <xsd:element name="errorMessage" type="xsd:string"/>
 <xsd:element minOccurs="0" name="errorDetails" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="ConfirmDownloadRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0" name="messageIDs"
type="xsd:string"/>
 <xsd:element name="authToken" type="mades:AuthenticationToken"/>
 <xsd:element minOccurs="0" name="serviceMversion" nillable="true"
type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="ConfirmDownloadResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0" name="confirmedMessages"
type="xsd:string"/>
 <xsd:element maxOccurs="unbounded" minOccurs="0"
name="notConfirmedMessages" type="mades:NotConfirmedMessageResponse"/>
 </xsd:sequence>

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 89 –

 </xsd:complexType>
 </xsd:element>

 <xsd:element name="ConfirmDownloadError">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="errorCode" type="xsd:string"/>
 <xsd:element name="errorID" type="xsd:string"/>
 <xsd:element name="errorMessage" type="xsd:string"/>
 <xsd:element minOccurs="0" name="errorDetails" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:complexType name="InternalMessage">
 <xsd:sequence>
 <xsd:element name="messageID" type="xsd:string"/>
 <xsd:element name="receiverCode" type="xsd:string"/>
 <xsd:element name="businessType" type="xsd:string"/>
 <xsd:element name="content" type="xsd:base64Binary"/>
 <xsd:element minOccurs="0" name="extension" nillable="true"
type="xsd:string"/>
 <xsd:element name="generated" type="xsd:dateTime"/>
 <xsd:element minOccurs="0" name="expirationTime" nillable="true"
type="xsd:long"/>
 <xsd:element name="senderCode" type="xsd:string"/>
 <xsd:element name="senderDescription" type="xsd:string"/>
 <xsd:element name="internalType" type="mades:InternalMessageType"/>
 <xsd:element minOccurs="0" name="relatedMessageID" nillable="true"
type="xsd:string"/>
 <xsd:element minOccurs="0" name="senderApplication" nillable="true"
type="xsd:string"/>
 <xsd:element minOccurs="0" name="baMessageID" nillable="true"
type="xsd:string"/>
 <xsd:element name="metadata" type="mades:MessageMetadata"/>
 <xsd:element minOccurs="0" name="messageMversion" nillable="true"
type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:simpleType name="InternalMessageType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="STANDARD_MESSAGE"/>
 <xsd:enumeration value="DELIVERY_ACKNOWLEDGEMENT"/>
 <xsd:enumeration value="RECEIVE_ACKNOWLEDGEMENT"/>
 <xsd:enumeration value="FAILURE_ACKNOWLEDGEMENT"/>
 <xsd:enumeration value="TRACING_MESSAGE"/>
 <xsd:enumeration value="TRACING_ACKNOWLEDGEMENT"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:complexType name="MessageMetadata">
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0" name="messageProcessors"
type="mades:MessageProcessor"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="MessageProcessor">
 <xsd:sequence>
 <xsd:element name="processorID" type="xsd:string"/>
 <xsd:element name="processorData" type="mades:Map"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="NotUploadedMessageResponse">
 <xsd:sequence>
 <xsd:element name="messageID" type="xsd:string"/>
 <xsd:element name="fatal" type="xsd:boolean"/>

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 90 – TS 62325-503  IEC:2014(E)

 <xsd:element minOccurs="0" name="businessErrorMessage" nillable="true"
type="xsd:string"/>
 <xsd:element name="errorCode" type="xsd:string"/>
 <xsd:element name="errorID" type="xsd:string"/>
 <xsd:element name="errorMessage" type="xsd:string"/>
 <xsd:element minOccurs="0" name="errorDetails" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="NotConfirmedMessageResponse">
 <xsd:sequence>
 <xsd:element name="messageID" type="xsd:string"/>
 <xsd:element name="errorCode" type="xsd:string"/>
 <xsd:element name="errorID" type="xsd:string"/>
 <xsd:element name="errorMessage" type="xsd:string"/>
 <xsd:element minOccurs="0" name="errorDetails" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="Endpoint">
 <xsd:sequence>
 <xsd:element name="code" type="xsd:string"/>
 <xsd:element name="signature" type="xsd:string"/>
 <xsd:element name="certificateID" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="AuthenticationToken">
 <xsd:sequence>
 <xsd:element name="token" type="xsd:string"/>
 <xsd:element name="signature" type="xsd:string"/>
 <xsd:element name="certificateID" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="Map">
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0" name="entries"
type="mades:MapEntry"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="MapEntry">
 <xsd:sequence>
 <xsd:element name="key" type="xsd:string"/>
 <xsd:element name="type" type="mades:ValueType"/>
 <xsd:element name="value" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:simpleType name="ValueType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="STRING"/>
 <xsd:enumeration value="LONG"/>
 <xsd:enumeration value="BYTE_ARRAY"/>
 <xsd:enumeration value="BOOLEAN"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:schema>
 </wsdl:types>

 <wsdl:message name="ConfirmDownloadResponse">
 <wsdl:part name="parameters" element="mades:ConfirmDownloadResponse"/>
 </wsdl:message>

 <wsdl:message name="UploadMessagesFault">
 <wsdl:part name="fault" element="mades:UploadMessagesError"/>
 </wsdl:message>

 <wsdl:message name="UploadMessagesRequest">

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 91 –

 <wsdl:part name="parameters" element="mades:UploadMessagesRequest"/>
 </wsdl:message>

 <wsdl:message name="DownloadMessagesFault">
 <wsdl:part name="fault" element="mades:DownloadMessagesError"/>
 </wsdl:message>

 <wsdl:message name="UploadMessagesResponse">
 <wsdl:part name="parameters" element="mades:UploadMessagesResponse"/>
 </wsdl:message>

 <wsdl:message name="DownloadMessagesRequest">
 <wsdl:part name="parameters" element="mades:DownloadMessagesRequest"/>
 </wsdl:message>

 <wsdl:message name="ConfirmDownloadFault">
 <wsdl:part name="fault" element="mades:ConfirmDownloadError"/>
 </wsdl:message>

 <wsdl:message name="DownloadMessagesResponse">
 <wsdl:part name="parameters" element="mades:DownloadMessagesResponse"/>
 </wsdl:message>

 <wsdl:message name="ConfirmDownloadRequest">
 <wsdl:part name="parameters" element="mades:ConfirmDownloadRequest"/>
 </wsdl:message>

 <wsdl:portType name="MadesInternalMessaging">
 <wsdl:operation name="UploadMessages">
 <wsdl:input message="mades:UploadMessagesRequest"/>
 <wsdl:output message="mades:UploadMessagesResponse"/>
 <wsdl:fault name="UploadMessagesError" message="mades:UploadMessagesFault"/>
 </wsdl:operation>
 <wsdl:operation name="DownloadMessages">
 <wsdl:input message="mades:DownloadMessagesRequest"/>
 <wsdl:output message="mades:DownloadMessagesResponse"/>
 <wsdl:fault name="DownloadMessagesError"
message="mades:DownloadMessagesFault"/>
 </wsdl:operation>
 <wsdl:operation name="ConfirmDownload">
 <wsdl:input message="mades:ConfirmDownloadRequest"/>
 <wsdl:output message="mades:ConfirmDownloadResponse"/>
 <wsdl:fault name="ConfirmDownloadError" message="mades:ConfirmDownloadFault"/>
 </wsdl:operation>
 </wsdl:portType>

 <wsdl:binding name="MadesInternalMessagingSOAP11"
type="mades:MadesInternalMessaging">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="UploadMessages">
 <soap:operation soapAction="http://mades.entsoe.eu/UploadMessages"/>
 <wsdl:input> <soap:body use="literal"/> </wsdl:input>
 <wsdl:output> <soap:body use="literal"/> </wsdl:output>
 <wsdl:fault name="UploadMessagesError"> <soap:fault name="UploadMessagesError"
use="literal"/> </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="DownloadMessages">
 <soap:operation soapAction="http://mades.entsoe.eu/DownloadMessages"/>
 <wsdl:input> <soap:body use="literal"/> </wsdl:input>
 <wsdl:output> <soap:body use="literal"/> </wsdl:output>
 <wsdl:fault name="DownloadMessagesError"> <soap:fault
name="DownloadMessagesError" use="literal"/> </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="ConfirmDownload">
 <soap:operation soapAction="http://mades.entsoe.eu/ConfirmDownload"/>
 <wsdl:input> <soap:body use="literal"/> </wsdl:input>
 <wsdl:output> <soap:body use="literal"/> </wsdl:output>
 <wsdl:fault name="ConfirmDownloadError"> <soap:fault
name="ConfirmDownloadError" use="literal"/> </wsdl:fault>
 </wsdl:operation>

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 92 – TS 62325-503  IEC:2014(E)

 </wsdl:binding>

 <wsdl:binding name="MadesInternalMessagingSOAP12"
type="mades:MadesInternalMessaging">
 <soap12:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="UploadMessages">
 <soap12:operation soapAction="http://mades.entsoe.eu/UploadMessages"/>
 <wsdl:input> <soap12:body use="literal"/> </wsdl:input>
 <wsdl:output> <soap12:body use="literal"/> </wsdl:output>
 <wsdl:fault name="UploadMessagesError"> <soap12:fault
name="UploadMessagesError" use="literal"/> </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="DownloadMessages">
 <soap12:operation soapAction="http://mades.entsoe.eu/DownloadMessages"/>
 <wsdl:input> <soap12:body use="literal"/> </wsdl:input>
 <wsdl:output> <soap12:body use="literal"/> </wsdl:output>
 <wsdl:fault name="DownloadMessagesError"> <soap12:fault
name="DownloadMessagesError" use="literal"/> </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="ConfirmDownload">
 <soap12:operation soapAction="http://mades.entsoe.eu/ConfirmDownload"/>
 <wsdl:input> <soap12:body use="literal"/> </wsdl:input>
 <wsdl:output> <soap12:body use="literal"/> </wsdl:output>
 <wsdl:fault name="ConfirmDownloadError"> <soap12:fault
name="ConfirmDownloadError" use="literal"/> </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>

 <wsdl:service name="MadesInternalMessagingService">
 <wsdl:port name="MadesInternalMessagingSOAP11"
binding="mades:MadesInternalMessagingSOAP11">
 <soap:address location="http://mades.entsoe.eu"/>
 </wsdl:port>
 <wsdl:port name="MadesInternalMessagingSOAP12"
binding="mades:MadesInternalMessagingSOAP12">
 <soap12:address location="http://mades.entsoe.eu"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

7.6.3.3 Directory services

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="MadesDirectoryService"
targetNamespace="http://mades.entsoe.eu/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:ecp="http://mades.entsoe.eu/"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/">

 <wsdl:types>
 <xsd:schema targetNamespace="http://mades.entsoe.eu/">

 <xsd:element name="GetCertificateRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="componentCode" type="xsd:string"/>
 <xsd:element name="type" type="mades:CertificateType"/>
 <xsd:element minOccurs="0" name="certificateID" nillable="true"
type="xsd:string"/>
 <xsd:element name="authToken" type="mades:AuthenticationToken"/>
 <xsd:element minOccurs="0" name="serviceMversion" nillable="true"
type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 93 –

 <xsd:element name="GetCertificateResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element minOccurs="0" name="certificate" nillable="true"
type="mades:Certificate"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="GetCertificateError">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="errorCode" type="xsd:string"/>
 <xsd:element name="errorID" type="xsd:string"/>
 <xsd:element name="errorMessage" type="xsd:string"/>
 <xsd:element minOccurs="0" name="errorDetails" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="GetComponentRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="componentCode" type="xsd:string"/>
 <xsd:element name="authToken" type="mades:AuthenticationToken"/>
 <xsd:element minOccurs="0" name="serviceMversion" nillable="true"
type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="GetComponentResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element minOccurs="0" name="component" nillable="true"
type="mades:ComponentInformation"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="GetComponentError">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="errorCode" type="xsd:string"/>
 <xsd:element name="errorID" type="xsd:string"/>
 <xsd:element name="errorMessage" type="xsd:string"/>
 <xsd:element minOccurs="0" name="errorDetails" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="SetComponentMversionRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="componentCode" type="xsd:string"/>
 <xsd:element name="signature" type="xsd:string"/>
 <xsd:element name="certificateID" type="xsd:string"/>
 <xsd:element name="componentMVersion" type="xsd:int"/>
 <xsd:element name="authToken" type="mades:AuthenticationToken"/>
 <xsd:element minOccurs="0" name="serviceMversion" nillable="true"
type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="SetComponentMversionResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="nodeMversion" type="xsd:int"/>
 <xsd:element name="acceptance" type="xsd:boolean"/>

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 94 – TS 62325-503  IEC:2014(E)

 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="SetComponentMversionError">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="errorCode" type="xsd:string"/>
 <xsd:element name="errorID" type="xsd:string"/>
 <xsd:element name="errorMessage" type="xsd:string"/>
 <xsd:element minOccurs="0" name="errorDetails" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:complexType name="Certificate">
 <xsd:sequence>
 <xsd:element name="certificateID" type="xsd:string"/>
 <xsd:element name="certificate" type="xsd:base64Binary"/>
 <xsd:element name="expiration" type="xsd:long"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:simpleType name="CertificateType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="AUTHENTICATION"/>
 <xsd:enumeration value="ENCRYPTION"/>
 <xsd:enumeration value="SIGNING"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:complexType name="ComponentInformation">
 <xsd:sequence>
 <xsd:element name="code" type="xsd:string"/>
 <xsd:element name="type" type="mades:ComponentType"/>
 <xsd:element name="organization" type="xsd:string"/>
 <xsd:element name="person" type="xsd:string"/>
 <xsd:element name="email" type="xsd:string"/>
 <xsd:element name="phone" type="xsd:string"/>
 <xsd:element name="routing" type="mades:RoutingInformation"/>
 <xsd:element minOccurs="0" name="expiration" nillable="true"
type="xsd:long"/>
 <xsd:element minOccurs="0" name="codeMversion" nillable="true"
type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="RoutingInformation">
 <xsd:sequence>
 <xsd:element name="node" type="xsd:string"/>
 <xsd:element name="primaryURL" type="xsd:string"/>
 <xsd:element minOccurs="0" name="secondaryURL" nillable="true"
type="xsd:string"/>
 <xsd:element minOccurs="0" name="nodeMversion" nillable="true"
type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:simpleType name="ComponentType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="NODE"/>
 <xsd:enumeration value="ENDPOINT"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:complexType name="AuthenticationToken">
 <xsd:sequence>
 <xsd:element name="token" type="xsd:string"/>
 <xsd:element name="signature" type="xsd:string"/>
 <xsd:element name="certificateID" type="xsd:string"/>

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 95 –

 </xsd:sequence>
 </xsd:complexType>
 </xsd:schema>
 </wsdl:types>

 <wsdl:message name="GetComponentRequest">
 <wsdl:part name="parameters" element="mades:GetComponentRequest"/>
 </wsdl:message>

 <wsdl:message name="GetCertificateResponse">
 <wsdl:part name="parameters" element="mades:GetCertificateResponse"/>
 </wsdl:message>

 <wsdl:message name="GetComponentResponse">
 <wsdl:part name="parameters" element="mades:GetComponentResponse"/>
 </wsdl:message>

 <wsdl:message name="GetCertificateRequest">
 <wsdl:part name="parameters" element="mades:GetCertificateRequest"/>
 </wsdl:message>

 <wsdl:message name="GetCertificateFault">
 <wsdl:part name="fault" element="mades:GetCertificateError"/>
 </wsdl:message>

 <wsdl:message name="GetComponentFault">
 <wsdl:part name="fault" element="mades:GetComponentError"/>
 </wsdl:message>

 <wsdl:message name="SetComponentMversionRequest">
 <wsdl:part name="parameters" element="mades:SetComponentMversionRequest"/>
 </wsdl:message>

 <wsdl:message name="SetComponentMversionResponse">
 <wsdl:part name="parameters" element="mades:SetComponentMversionResponse"/>
 </wsdl:message>

 <wsdl:message name="SetComponentMversionFault">
 <wsdl:part name="fault" element="mades:SetComponentMversionError"/>
 </wsdl:message>

 <wsdl:portType name="MadesDirectoryService">
 <wsdl:operation name="GetCertificate">
 <wsdl:input message="mades:GetCertificateRequest"/>
 <wsdl:output message="mades:GetCertificateResponse"/>
 <wsdl:fault name="GetCertificateError" message="mades:GetCertificateFault"/>
 </wsdl:operation>
 <wsdl:operation name="GetComponent">
 <wsdl:input message="mades:GetComponentRequest"/>
 <wsdl:output message="mades:GetComponentResponse"/>
 <wsdl:fault name="GetComponentError" message="mades:GetComponentFault"/>
 </wsdl:operation>
 <wsdl:operation name="SetComponentMversion">
 <wsdl:input message="mades:SetComponentMversionRequest"/>
 <wsdl:output message="mades:SetComponentMversionResponse"/>
 <wsdl:fault name="SetComponentMversionError"
message="mades:SetComponentMversionFault"/>
 </wsdl:operation>
 </wsdl:portType>

 <wsdl:binding name="MadesDirectoryServiceSOAP11"
type="mades:MadesDirectoryService">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="GetCertificate">
 <soap:operation soapAction="http://mades.entsoe.eu/GetCertificate"/>
 <wsdl:input> <soap:body use="literal"/> </wsdl:input>
 <wsdl:output> <soap:body use="literal"/> </wsdl:output>
 <wsdl:fault name="GetCertificateError"> <soap:fault name="GetCertificateError"
use="literal"/> </wsdl:fault>
 </wsdl:operation>

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 96 – TS 62325-503  IEC:2014(E)

 <wsdl:operation name="GetComponent">
 <soap:operation soapAction="http://mades.entsoe.eu/GetComponent"/>
 <wsdl:input> <soap:body use="literal"/> </wsdl:input>
 <wsdl:output> <soap:body use="literal"/> </wsdl:output>
 <wsdl:fault name="GetComponentError"> <soap:fault name="GetComponentError"
use="literal"/> </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="SetComponentMversion">
 <soap:operation soapAction="http://mades.entsoe.eu/SetComponentMversion"/>
 <wsdl:input> <soap:body use="literal"/> </wsdl:input>
 <wsdl:output> <soap:body use="literal"/> </wsdl:output>
 <wsdl:fault name="SetComponentMversionError"> <soap:fault
name="SetComponentMversionError" use="literal"/> </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>

 <wsdl:binding name="MadesDirectoryServiceSOAP12"
type="mades:MadesDirectoryService">
 <soap12:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="GetCertificate">
 <soap12:operation soapAction="http://mades.entsoe.eu/GetCertificate"/>
 <wsdl:input> <soap12:body use="literal"/> </wsdl:input>
 <wsdl:output> <soap12:body use="literal"/> </wsdl:output>
 <wsdl:fault name="GetCertificateError"> <soap12:fault
name="GetCertificateError" use="literal"/> </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="GetComponent">
 <soap12:operation soapAction="http://mades.entsoe.eu/GetComponent"/>
 <wsdl:input> <soap12:body use="literal"/> </wsdl:input>
 <wsdl:output> <soap12:body use="literal"/> </wsdl:output>
 <wsdl:fault name="GetComponentError"> <soap12:fault name="GetComponentError"
use="literal"/> </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="SetComponentMversion">
 <soap12:operation soapAction="http://mades.entsoe.eu/SetComponentMversion"/>
 <wsdl:input> <soap:body use="literal"/> </wsdl:input>
 <wsdl:output> <soap:body use="literal"/> </wsdl:output>
 <wsdl:fault name="SetComponentMversionError"> <soap12:fault
name="SetComponentMversionError" use="literal"/> </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>

 <wsdl:service name="MadesDirectoryService">
 <wsdl:port name="MadesDirectoryServiceSOAP11"
binding="mades:MadesDirectoryServiceSOAP11">
 <soap:address location="http://mades.entsoe.eu"/>
 </wsdl:port>
 <wsdl:port name="MadesDirectoryServiceSOAP12"
binding="mades:MadesDirectoryServiceSOAP12">
 <soap12:address location="http://mades.entsoe.eu"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

7.6.3.4 Node synchronization interface

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="MadesNodeSynchronizationService"
targetNamespace="http://mades.entsoe.eu/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:ecp="http://mades.entsoe.eu/"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/">

 <wsdl:types>
 <xsd:schema targetNamespace="http://mades.entsoe.eu/">

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 97 –

 <xsd:element name="GetAllDirectoryDataRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element minOccurs="0" name="dversion" nillable="true"
type="xsd:int"/>
 <xsd:element minOccurs="0" name="serviceMversion" nillable="true"
type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="GetAllDirectoryDataResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="dversion" type="xsd:int"/>
 <xsd:element name="nodeCode" type="xsd:string"/>
 <xsd:element maxOccurs="unbounded" minOccurs="0" name="components"
nillable="true" type="mades:ComponentDescription"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="GetAllDirectoryDataError">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="errorCode" type="xsd:string"/>
 <xsd:element name="errorID" type="xsd:string"/>
 <xsd:element name="errorMessage" type="xsd:string"/>
 <xsd:element minOccurs="0" name="errorDetails" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="GetNodeMversionRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="mversion" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="GetNodeMversionResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="mversion" type="xsd:int"/>
 <xsd:element name="nodeCode" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="GetNodeMversionError">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="errorCode" type="xsd:string"/>
 <xsd:element name="errorID" type="xsd:string"/>
 <xsd:element name="errorMessage" type="xsd:string"/>
 <xsd:element minOccurs="0" name="errorDetails" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:complexType name="ComponentDescription">
 <xsd:sequence>
 <xsd:element name="information" type="mades:ComponentInformation"/>
 <xsd:element maxOccurs="unbounded" minOccurs="0" name="certificates"
type="mades:ComponentCertificate"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="ComponentCertificate">

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 98 – TS 62325-503  IEC:2014(E)

 <xsd:sequence>
 <xsd:element name="certificate" type="mades:Certificate"/>
 <xsd:element minOccurs="0" name="revoked" nillable="true"
type="xsd:boolean"/>
 <xsd:element name="type" type="mades:CertificateType"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="Certificate">
 <xsd:sequence>
 <xsd:element name="certificateID" type="xsd:string"/>
 <xsd:element name="certificate" type="xsd:base64Binary"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:simpleType name="CertificateType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="AUTHENTICATION"/>
 <xsd:enumeration value="ENCRYPTION"/>
 <xsd:enumeration value="SIGNING"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:complexType name="ComponentInformation">
 <xsd:sequence>
 <xsd:element name="code" type="xsd:string"/>
 <xsd:element name="type" type="mades:ComponentType"/>
 <xsd:element name="organization" type="xsd:string"/>
 <xsd:element name="person" type="xsd:string"/>
 <xsd:element name="email" type="xsd:string"/>
 <xsd:element name="phone" type="xsd:string"/>
 <xsd:element name="routing" type="mades:RoutingInformation"/>
 <xsd:element minOccurs="0" name="expiration" nillable="true"
type="xsd:long"/>
 <xsd:element minOccurs="0" name="codeMversion" nillable="true"
type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="RoutingInformation">
 <xsd:sequence>
 <xsd:element name="node" type="xsd:string"/>
 <xsd:element name="primaryURL" type="xsd:string"/>
 <xsd:element minOccurs="0" name="secondaryURL" nillable="true"
type="xsd:string"/>
 <xsd:element minOccurs="0" name="nodeMversion" nillable="true"
type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:simpleType name="ComponentType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="NODE"/>
 <xsd:enumeration value="ENDPOINT"/>
 </xsd:restriction>
 </xsd:simpleType>

 </xsd:schema>
 </wsdl:types>

 <wsdl:message name="GetAllDirectoryDataResponse">
 <wsdl:part name="parameters" element="mades:GetAllDirectoryDataResponse"/>
 </wsdl:message>

 <wsdl:message name="GetAllDirectoryDataFault">
 <wsdl:part name="fault" element="mades:GetAllDirectoryDataError"/>
 </wsdl:message>

 <wsdl:message name="GetAllDirectoryDataRequest">
 <wsdl:part name="parameters" element="mades:GetAllDirectoryDataRequest"/>

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

TS 62325-503  IEC:2014(E) – 99 –

 </wsdl:message>

 <wsdl:message name="GetNodeMversionResponse">
 <wsdl:part name="parameters" element="mades:GetNodeMversionResponse"/>
 </wsdl:message>

 <wsdl:message name="GetNodeMversionFault">
 <wsdl:part name="fault" element="mades:GetNodeMversionError"/>
 </wsdl:message>

 <wsdl:message name="GetNodeMversionRequest">
 <wsdl:part name="parameters" element="mades:GetNodeMversionRequest"/>
 </wsdl:message>

 <wsdl:portType name="MadesNodeSynchronizationService">
 <wsdl:operation name="GetAllDirectoryData">
 <wsdl:input message="mades:GetAllDirectoryDataRequest"/>
 <wsdl:output message="mades:GetAllDirectoryDataResponse"/>
 <wsdl:fault name="GetAllDirectoryDataError"
message="mades:GetAllDirectoryDataFault"/>
 </wsdl:operation>
 <wsdl:operation name="GetNodeMversion">
 <wsdl:input message="mades:GetNodeMversionRequest"/>
 <wsdl:output message="mades:GetNodeMversionResponse"/>
 <wsdl:fault name="GetNodeMversionError" message="mades:GetNodeMversionFault"/>
 </wsdl:operation>
 </wsdl:portType>

 <wsdl:binding name="MadesNodeSynchronizationServiceSOAP12"
type="mades:MadesNodeSynchronizationService">
 <soap12:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="GetAllDirectoryData">
 <soap12:operation soapAction="http://mades.entsoe.eu/GetAllDirectoryData"/>
 <wsdl:input> <soap12:body use="literal"/> </wsdl:input>
 <wsdl:output> <soap12:body use="literal"/> </wsdl:output>
 <wsdl:fault name="GetAllDirectoryDataError"> <soap12:fault
name="GetAllDirectoryDataError" use="literal"/> </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="GetNodeMversion">
 <soap12:operation soapAction="http://mades.entsoe.eu/GetNodeMversion"/>
 <wsdl:input> <soap12:body use="literal"/> </wsdl:input>
 <wsdl:output> <soap12:body use="literal"/> </wsdl:output>
 <wsdl:fault name="GetNodeMversionError"> <soap12:fault
name="GetNodeMversionError" use="literal"/> </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>

 <wsdl:binding name="MadesNodeSynchronizationServiceSOAP11"
type="mades:MadesNodeSynchronizationService">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="GetAllDirectoryData">
 <soap:operation soapAction="http://mades.entsoe.eu/GetAllDirectoryData"/>
 <wsdl:input> <soap:body use="literal"/> </wsdl:input>
 <wsdl:output> <soap:body use="literal"/> </wsdl:output>
 <wsdl:fault name="GetAllDirectoryDataError"> <soap:fault
name="GetAllDirectoryDataError" use="literal"/> </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="GetNodeMversion">
 <soap:operation soapAction="http://mades.entsoe.eu/GetNodeMversion"/>
 <wsdl:input> <soap:body use="literal"/> </wsdl:input>
 <wsdl:output> <soap:body use="literal"/> </wsdl:output>
 <wsdl:fault name="GetNodeMversionError"> <soap:fault
name="GetNodeMversionError" use="literal"/> </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>

 <wsdl:service name="MadesNodeSynchronizationService">
 <wsdl:port name="MadesNodeSynchronizationServiceSOAP12"
binding="mades:MadesNodeSynchronizationServiceSOAP12">

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 100 – TS 62325-503  IEC:2014(E)

 <soap12:address location="http://mades.entsoe.eu"/>
 </wsdl:port>
 <wsdl:port name="MadesNodeSynchronizationServiceSOAP11"
binding="mades:MadesNodeSynchronizationServiceSOAP11">
 <soap:address location="http://mades.entsoe.eu"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

7.6.4 XML signature example

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
 <SignedInfo>
 <CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-
20010315"/>
 <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha512"/>
 <Reference URI="">
 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha512"/>
 <DigestValue>eVpInNsCIWzEjdrxxvongO2rnQ4=</DigestValue>
 </Reference>
 </SignedInfo>
 <SignatureValue>aD9HNiTmVxW+HnDOpSjzwDB+MypGTC7yb3/HUpAZKmEhRwQC0eBwYcZSRTqF8VdzmneH6abq2P+m
vHNXPC53i3mF58XDR5JFHHWLHq8B9HZm6/IYxcNy2cGW9yAVyQKe3uJXeV/95u9qMEwJhbOjvPIx
ZdbXqcCSorWqih7hdB86Nv2SIBfXMvWdIinwZfU/44RUptNyxQpP/Pw91Dd8YnMTNVwm2ax5oL1W
akIGKToS/yYid/Cgyb1xhGdfXEp30bqLusaLMYkbctpZ2WDn2w5I4mmOO78jndPUnaMT5gyFaonz
+K84xD+1/tZbTQ0adc9LE7XgAkpiiNjf2LW9tw==</SignatureValue>
 <KeyInfo>
 <KeyName>yyyyyyyyyyyyyyy</KeyName>
 </KeyInfo>
</Signature>

Where:

• DigestValue is the non encoded hash of the message.

• SignatureValue is the encoded hash of the message.

• KeyName is the ID of the signer component.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

3, rue de Varembé
PO Box 131
CH-1211 Geneva 20
Switzerland

Tel: + 41 22 919 02 11
Fax: + 41 22 919 03 00
info@iec.ch
www.iec.ch

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

	\376\377�C�O�N�T�E�N�T�S
	\376\377�F�O�R�E�W�O�R�D
	\376\377�I�N�T�R�O�D�U�C�T�I�O�N
	\376\377�1� �S�c�o�p�e
	\376\377�2� �N�o�r�m�a�t�i�v�e� �r�e�f�e�r�e�n�c�e�s
	\376\377�3� �T�e�r�m�s� �a�n�d� �d�e�f�i�n�i�t�i�o�n�s
	\376\377�4� �H�i�g�h� �l�e�v�e�l� �c�o�n�c�e�p�t�s
	\376\377�4�.�1� �W�h�a�t� �i�s� �M�A�D�E�S� �i�n�t�e�n�d�e�d� �f�o�r�?
	\376\377�4�.�2� �G�e�n�e�r�a�l� �o�v�e�r�v�i�e�w
	\376\377�4�.�3� �M�e�s�s�a�g�e� �d�e�l�i�v�e�r�y� �a�n�d� �t�r�a�n�s�p�a�r�e�n�c�y
	\376\377�4�.�3�.�1� �M�e�s�s�a�g�e� �d�e�l�i�v�e�r�y
	\376\377�4�.�3�.�2� �T�r�a�n�s�p�a�r�e�n�c�y

	\376\377�4�.�4� �S�e�c�u�r�i�t�y� �a�n�d� �r�e�l�i�a�b�i�l�i�t�y
	\376\377�4�.�5� �M�a�i�n� �c�o�m�p�o�n�e�n�t�s
	\376\377�4�.�6� �D�i�s�t�r�i�b�u�t�e�d� �a�r�c�h�i�t�e�c�t�u�r�e
	\376\377�4�.�7� �C�o�m�p�o�n�e�n�t�s ˇ� �e�x�p�o�s�e�d� �i�n�t�e�r�f�a�c�e�s
	\376\377�4�.�8� �S�e�c�u�r�i�t�y� �f�e�a�t�u�r�e�s
	\376\377�4�.�8�.�1� �O�v�e�r�v�i�e�w
	\376\377�4�.�8�.�2� �T�r�a�n�s�p�o�r�t�-�l�a�y�e�r� �s�e�c�u�r�i�t�y
	\376\377�4�.�8�.�3� �M�e�s�s�a�g�e�-�l�e�v�e�l� �s�e�c�u�r�i�t�y
	\376\377�4�.�8�.�4� �N�o�n� �r�e�p�u�d�i�a�t�i�o�n

	\376\377�5� �C�o�m�p�o�n�e�n�t�s ˇ� �f�u�n�c�t�i�o�n�s
	\376\377�5�.�1� �R�o�u�t�i�n�g� �m�e�s�s�a�g�e�s
	\376\377�5�.�2� �C�o�m�p�o�n�e�n�t� �a�n�d� �m�e�s�s�a�g�e� �u�n�i�q�u�e� �i�d�e�n�t�i�f�i�c�a�t�i�o�n� �(�I�D�)
	\376\377�5�.�3� �B�u�s�i�n�e�s�s�-�t�y�p�e� �o�f� �a� �b�u�s�i�n�e�s�s�-�m�e�s�s�a�g�e
	\376\377�5�.�4� �D�e�l�i�v�e�r�y�-�s�t�a�t�u�s� �o�f� �a� �b�u�s�i�n�e�s�s�-�m�e�s�s�a�g�e
	\376\377�5�.�5� �C�o�m�m�u�n�i�c�a�t�i�o�n� �b�e�t�w�e�e�n� �c�o�m�p�o�n�e�n�t�s
	\376\377�5�.�5�.�1� �P�r�i�n�c�i�p�l�e
	\376\377�5�.�5�.�2� �E�s�t�a�b�l�i�s�h�i�n�g� �a� �s�e�c�u�r�e�d� �c�o�m�m�u�n�i�c�a�t�i�o�n� �c�h�a�n�n�e�l� �b�e�t�w�e�e�n� �t�w�o� �c�o�m�p�o�n�e�n�t�s
	\376\377�5�.�5�.�3� �T�o�k�e�n� �a�u�t�h�e�n�t�i�c�a�t�i�o�n� �o�f� �t�h�e� �c�l�i�e�n�t� �c�o�m�p�o�n�e�n�t
	\376\377�5�.�5�.�4� �R�e�q�u�e�s�t� �a�u�t�h�o�r�i�s�a�t�i�o�n
	\376\377�5�.�5�.�5� �R�e�q�u�e�s�t�/�R�e�p�l�y� �v�a�l�i�d�a�t�i�o�n

	\376\377�5�.�6� �S�t�o�r�i�n�g� �m�e�s�s�a�g�e�s� �i�n� �c�o�m�p�o�n�e�n�t�s
	\376\377�5�.�7� �L�i�f�e�c�y�c�l�e� �o�f� �a� �m�e�s�s�a�g�e� �s�t�a�t�e� �w�i�t�h�i�n� �a� �c�o�m�p�o�n�e�n�t
	\376\377�5�.�8� �T�r�a�n�s�f�e�r�r�i�n�g� �a� �m�e�s�s�a�g�e� �b�e�t�w�e�e�n� �t�w�o� �c�o�m�p�o�n�e�n�t�s� �(�H�a�n�d�s�h�a�k�e�)
	\376\377�5�.�9� �A�c�c�e�p�t�i�n�g� �a� �m�e�s�s�a�g�e
	\376\377�5�.�1�0� �E�v�e�n�t� �m�a�n�a�g�e�m�e�n�t
	\376\377�5�.�1�0�.�1� �A�c�k�n�o�w�l�e�d�g�e�m�e�n�t�s
	\376\377�5�.�1�0�.�2� �N�o�t�i�f�y�i�n�g� �e�v�e�n�t�s
	\376\377�5�.�1�0�.�3� �L�i�f�e�c�y�c�l�e� �o�f� �a�n� �a�c�k�n�o�w�l�e�d�g�e�m�e�n�t
	\376\377�5�.�1�0�.�4� �P�r�o�c�e�s�s�i�n�g� �a� �t�r�a�n�s�f�e�r�r�e�d� �a�c�k�n�o�w�l�e�d�g�e�m�e�n�t

	\376\377�5�.�1�1� �M�e�s�s�a�g�e� �e�x�p�i�r�a�t�i�o�n
	\376\377�5�.�1�1�.�1� �P�r�i�n�c�i�p�l�e
	\376\377�5�.�1�1�.�2� �S�e�t�t�i�n�g� �t�h�e� �e�x�p�i�r�a�t�i�o�n� �t�i�m�e� �o�f� �a� �m�e�s�s�a�g�e�:
	\376\377�5�.�1�1�.�3� �L�o�o�k�i�n�g� �f�o�r� �t�h�e� �e�x�p�i�r�e�d� �m�e�s�s�a�g�e�s�:

	\376\377�5�.�1�2� �C�h�e�c�k�i�n�g� �t�h�e� �c�o�n�n�e�c�t�i�v�i�t�y� �b�e�t�w�e�e�n� �t�w�o� �e�n�d�p�o�i�n�t�s� �(�T�r�a�c�i�n�g�-�m�e�s�s�a�g�e�s�)
	\376\377�5�.�1�3� �O�r�d�e�r�i�n�g� �t�h�e� �m�e�s�s�a�g�e�s� �(�P�r�i�o�r�i�t�y�)
	\376\377�5�.�1�4� �E�n�d�p�o�i�n�t
	\376\377�5�.�1�4�.�1� �E�n�d�p�o�i�n�t� �f�u�n�c�t�i�o�n�s
	\376\377�5�.�1�4�.�2� �C�o�m�p�r�e�s�s�i�o�n
	\376\377�5�.�1�4�.�3� �S�i�g�n�i�n�g
	\376\377�5�.�1�4�.�4� �E�n�c�r�y�p�t�i�o�n

	\376\377�5�.�1�5� �N�o�d�e
	\376\377�5�.�1�5�.�1� �N�o�d�e� �f�u�n�c�t�i�o�n�s
	\376\377�5�.�1�5�.�2� �S�y�n�c�h�r�o�n�i�z�i�n�g� �d�i�r�e�c�t�o�r�y� �w�i�t�h� �o�t�h�e�r� �n�o�d�e�s
	\376\377�5�.�1�5�.�3� �U�p�d�a�t�i�n�g� �t�h�e� �s�y�n�c�h�r�o�n�i�z�a�t�i�o�n� �n�o�d�e�s ˇ� �l�i�s�t

	\376\377�5�.�1�6� �C�e�r�t�i�f�i�c�a�t�e�s� �a�n�d� �d�i�r�e�c�t�o�r�y� �m�a�n�a�g�e�m�e�n�t
	\376\377�5�.�1�6�.�1� �D�e�f�i�n�i�t�i�o�n�s� �a�n�d� �p�r�i�n�c�i�p�l�e�s
	\376\377�5�.�1�6�.�2� �C�e�r�t�i�f�i�c�a�t�e�s�:� �F�o�r�m�a�t� �a�n�d� �u�n�i�q�u�e� �I�D
	\376\377�5�.�1�6�.�3� �U�s�e�d� �c�e�r�t�i�f�i�c�a�t�e�s� �a�n�d� �i�s�s�u�e�r�s� �(�C�A�s�)
	\376\377�5�.�1�6�.�4� �D�i�r�e�c�t�o�r�y� �s�e�r�v�i�c�e�s
	\376\377�5�.�1�6�.�5� �C�a�c�h�i�n�g� �d�i�r�e�c�t�o�r�y� �d�a�t�a
	\376\377�5�.�1�6�.�6� �T�r�u�s�t�i�n�g� �t�h�e� �c�e�r�t�i�f�i�c�a�t�e�s� �o�f� �o�t�h�e�r�s� �c�o�m�p�o�n�e�n�t�s
	\376\377�5�.�1�6�.�7� �R�e�n�e�w�i�n�g� �t�h�e� �e�x�p�i�r�e�d� �c�e�r�t�i�f�i�c�a�t�e�s
	\376\377�5�.�1�6�.�8� �R�e�v�o�k�i�n�g� �a� �c�e�r�t�i�f�i�c�a�t�e

	\376\377�6� �M�a�n�a�g�i�n�g� �t�h�e� �v�e�r�s�i�o�n� �o�f� �t�h�e� �M�A�D�E�S� �s�p�e�c�i�f�i�c�a�t�i�o�n
	\376\377�6�.�1� �I�s�s�u�e�s� �a�n�d� �p�r�i�n�c�i�p�l�e�s
	\376\377�6�.�1�.�1� �G�e�n�e�r�a�l
	\376\377�6�.�1�.�2� �R�o�l�l�i�n�g� �o�u�t� �a� �n�e�w� �v�e�r�s�i�o�n� �(�M�v�e�r�s�i�o�n� �a�n�d� �N�-�c�o�m�p�l�i�a�n�c�e�)
	\376\377�6�.�1�.�3� �S�e�r�v�i�c�e� �c�o�m�p�a�t�i�b�i�l�i�t�y
	\376\377�6�.�1�.�4� �M�e�s�s�a�g�e� �c�o�m�p�a�t�i�b�i�l�i�t�y
	\376\377�6�.�1�.�5� �I�n�t�e�r�f�a�c�e� �w�i�t�h� �B�A�s

	\376\377�6�.�2� �U�s�i�n�g� �t�h�e� �c�o�r�r�e�c�t� �v�e�r�s�i�o�n� �f�o�r� �s�e�r�v�i�c�e�s� �a�n�d� �m�e�s�s�a�g�e�s
	\376\377�6�.�2�.�1� �N�o�d�e� �s�y�n�c�h�r�o�n�i�z�a�t�i�o�n� �a�n�d� �a�u�t�h�e�n�t�i�c�a�t�i�o�n
	\376\377�6�.�2�.�2� �D�i�r�e�c�t�o�r�y� �s�e�r�v�i�c�e�s� �a�n�d� �N�e�t�w�o�r�k� �a�c�c�e�p�t�a�n�c�e
	\376\377�6�.�2�.�3� �M�e�s�s�a�g�i�n�g� �s�e�r�v�i�c�e�s
	\376\377�6�.�2�.�4� �W�h�i�c�h� �v�e�r�s�i�o�n� �t�o� �u�s�e� �t�o� �s�e�n�d� �a� �m�e�s�s�a�g�e�?

	\376\377�7� �I�n�t�e�r�f�a�c�e�s� �a�n�d� �s�e�r�v�i�c�e�s
	\376\377�7�.�1� �O�v�e�r�v�i�e�w
	\376\377�7�.�1�.�1� �G�e�n�e�r�a�l
	\376\377�7�.�1�.�2� �E�r�r�o�r� �C�o�d�e�s
	\376\377�7�.�1�.�3� �T�y�p�e�s� �f�o�r� �T�i�m�e

	\376\377�7�.�2� �E�n�d�p�o�i�n�t� �i�n�t�e�r�f�a�c�e
	\376\377�7�.�2�.�1� �O�v�e�r�v�i�e�w
	\376\377�7�.�2�.�2� �S�e�r�v�i�c�e�s
	\376\377�7�.�2�.�3� �F�i�l�e� �S�y�s�t�e�m� �S�h�a�r�e�d� �F�o�l�d�e�r�s� �(�F�S�S�F�)

	\376\377�7�.�3� �N�o�d�e� �i�n�t�e�r�f�a�c�e
	\376\377�7�.�3�.�1� �O�v�e�r�v�i�e�w
	\376\377�7�.�3�.�2� �A�u�t�h�e�n�t�i�c�a�t�i�o�n� �s�e�r�v�i�c�e
	\376\377�7�.�3�.�3� �M�e�s�s�a�g�i�n�g� �S�e�r�v�i�c�e�s
	\376\377�7�.�3�.�4� �D�i�r�e�c�t�o�r�y� �s�e�r�v�i�c�e�s
	\376\377�7�.�3�.�5� �N�o�d�e� �S�y�n�c�h�r�o�n�i�z�a�t�i�o�n� �i�n�t�e�r�f�a�c�e

	\376\377�7�.�4� �F�o�r�m�a�t� �o�f� �t�h�e� �n�o�d�e�-�l�i�s�t� �f�i�l�e
	\376\377�7�.�5� �T�y�p�e�d� �E�l�e�m�e�n�t�s� �u�s�e�d� �b�y� �t�h�e� �i�n�t�e�r�f�a�c�e�s
	\376\377�7�.�6� �D�e�s�c�r�i�p�t�i�o�n� �o�f� �t�h�e� �s�e�r�v�i�c�e�s
	\376\377�7�.�6�.�1� �A�b�o�u�t� �W�S�D�L� �a�n�d� �S�O�A�P
	\376\377�7�.�6�.�2� �E�n�d�p�o�i�n�t� �i�n�t�e�r�f�a�c�e
	\376\377�7�.�6�.�3� �N�o�d�e� �i�n�t�e�r�f�a�c�e
	\376\377�7�.�6�.�4� �X�M�L� �s�i�g�n�a�t�u�r�e� �e�x�a�m�p�l�e

	Figures
	\376\377�F�i�g�u�r�e� �1� �� �M�A�D�E�S� �o�v�e�r�a�l�l� �v�i�e�w
	\376\377�F�i�g�u�r�e� �2� �� �M�A�D�E�S� �s�c�o�p�e
	\376\377�F�i�g�u�r�e� �3� �� �M�A�D�E�S� �k�e�y� �f�e�a�t�u�r�e�s
	\376\377�F�i�g�u�r�e� �4� �� �M�A�D�E�S� �m�e�s�s�a�g�e� �d�e�l�i�v�e�r�y� �o�v�e�r�v�i�e�w
	\376\377�F�i�g�u�r�e� �5� �� �M�A�D�E�S� �s�e�c�u�r�i�t�y� �a�n�d� �r�e�l�i�a�b�i�l�i�t�y
	\376\377�F�i�g�u�r�e� �6� �� �M�A�D�E�S� �c�o�m�p�o�n�e�n�t�s
	\376\377�F�i�g�u�r�e� �7� �� �M�A�D�E�S� �n�e�t�w�o�r�k� �d�i�s�t�r�i�b�u�t�e�d� �a�r�c�h�i�t�e�c�t�u�r�e
	\376\377�F�i�g�u�r�e� �8� �� �M�A�D�E�S� �i�n�t�e�r�f�a�c�e�s� �a�n�d� �s�e�r�v�i�c�e�s
	\376\377�F�i�g�u�r�e� �9� �� �M�A�D�E�S� �t�r�a�n�s�p�o�r�t� �s�e�c�u�r�i�t�y� �o�v�e�r�v�i�e�w
	\376\377�F�i�g�u�r�e� �1�0� �� �M�A�D�E�S� �s�e�c�u�r�e� �c�o�m�m�u�n�i�c�a�t�i�o�n� �i�n�i�t�i�a�t�i�o�n
	\376\377�F�i�g�u�r�e� �1�1� �� �M�e�s�s�a�g�e� �s�i�g�n�a�t�u�r�e
	\376\377�F�i�g�u�r�e� �1�2� �� �M�e�s�s�a�g�e� �e�n�c�r�y�p�t�i�o�n� �a�n�d� �d�e�c�r�y�p�t�i�o�n
	\376\377�F�i�g�u�r�e� �1�3� �� �N�o�n� �r�e�p�u�d�i�a�t�i�o�n
	\376\377�F�i�g�u�r�e� �1�4� �� �D�e�l�i�v�e�r�y� �r�o�u�t�e� �o�f� �a� �b�u�s�i�n�e�s�s�-�m�e�s�s�a�g�e
	\376\377�F�i�g�u�r�e� �1�5� �� �R�e�p�o�r�t�e�d� �e�v�e�n�t�s� �d�u�r�i�n�g� �t�h�e� �d�e�l�i�v�e�r�y� �o�f� �a� �b�u�s�i�n�e�s�s�-�m�e�s�s�a�g�e
	\376\377�F�i�g�u�r�e� �1�6� �� �L�i�f�e�c�y�c�l�e� �o�f� �t�h�e� �l�o�c�a�l� �s�t�a�t�e� �o�f� �a� �b�u�s�i�n�e�s�s�-�m�e�s�s�a�g�e� �w�i�t�h�i�n� �a� �c�o�m�p�o�n�e�n�t
	\376\377�F�i�g�u�r�e� �1�7� �� �T�r�a�n�s�f�e�r� �h�a�n�d�s�h�a�k�e� �w�h�e�n� �u�p�l�o�a�d�i�n�g� �o�f� �a� �m�e�s�s�a�g�e
	\376\377�F�i�g�u�r�e� �1�8� �� �T�r�a�n�s�f�e�r� �h�a�n�d�s�h�a�k�e� �w�h�e�n� �d�o�w�n�l�o�a�d�i�n�g� �o�f� �a� �m�e�s�s�a�g�e
	\376\377�F�i�g�u�r�e� �1�9� �� �A�c�k�n�o�w�l�e�d�g�e�m�e�n�t�s� �a�l�o�n�g� �t�h�e� �r�o�u�t�e� �o�f� �t�h�e� �b�u�s�i�n�e�s�s�-�m�e�s�s�a�g�e
	\376\377�F�i�g�u�r�e� �2�0� �� �E�n�c�r�y�p�t�i�o�n� �p�r�o�c�e�s�s�
	\376\377�F�i�g�u�r�e� �2�1� �� �A� �n�o�d�e� �s�y�n�c�h�r�o�n�i�z�e�s� �w�i�t�h� �t�w�o� �o�t�h�e�r� �n�o�d�e�s
	\376\377�F�i�g�u�r�e� �2�2� �� �C�e�r�t�i�f�i�c�a�t�e�s� �a�n�d� �c�e�r�t�i�f�i�c�a�t�e� �a�u�t�h�o�r�i�t�i�e�s� �(�C�A�s�)� �f�o�r� �a� �M�A�D�E�S� �n�e�t�w�o�r�k
	Figure 23 \205 Managing the specification version \205 node synchronization and authentication
	\376\377�F�i�g�u�r�e� �2�4� �� �M�a�n�a�g�i�n�g� �t�h�e� �s�p�e�c�i�f�i�c�a�t�i�o�n� �v�e�r�s�i�o�n� �� �D�i�r�e�c�t�o�r�y� �s�e�r�v�i�c�e�s
	\376\377�F�i�g�u�r�e� �2�5� �� �M�a�n�a�g�i�n�g� �t�h�e� �s�p�e�c�i�f�i�c�a�t�i�o�n� �v�e�r�s�i�o�n� �� �M�e�s�s�a�g�i�n�g� �s�e�r�v�i�c�e�s
	Figure 26 \205 Managing the specification version \205 Which version to use to send a message?
	\376\377�F�i�g�u�r�e� �2�7� �� �N�o�d�e� �i�n�t�e�r�f�a�c�e� �� �O�v�e�r�v�i�e�w
	\376\377�F�i�g�u�r�e� �2�8� �� �N�o�d�e� �i�n�t�e�r�f�a�c�e� �� �A�u�t�h�e�n�t�i�c�a�t�i�o�n� �s�e�r�v�i�c�e
	\376\377�F�i�g�u�r�e� �2�9� �� �N�o�d�e� �i�n�t�e�r�f�a�c�e� �� �M�e�s�s�a�g�i�n�g� �s�e�r�v�i�c�e�s� �� �U�p�l�o�a�d�M�e�s�s�a�g�e�s� �s�e�r�v�i�c�e
	\376\377�F�i�g�u�r�e� �3�0� �� �N�o�d�e� �i�n�t�e�r�f�a�c�e� �� �M�e�s�s�a�g�i�n�g� �s�e�r�v�i�c�e�s� �� �D�o�w�n�l�o�a�d�M�e�s�s�a�g�e�s� �s�e�r�v�i�c�e
	\376\377�F�i�g�u�r�e� �3�1� �� �N�o�d�e� �i�n�t�e�r�f�a�c�e� �� �M�e�s�s�a�g�i�n�g� �s�e�r�v�i�c�e�s� �� �C�o�n�f�i�r�m�D�o�w�n�l�o�a�d� �s�e�r�v�i�c�e
	\376\377�F�i�g�u�r�e� �3�2� �� �N�o�d�e� �i�n�t�e�r�f�a�c�e� �� �D�i�r�e�c�t�o�r�y� �s�e�r�v�i�c�e�s� �� �G�e�t�C�e�r�t�i�f�i�c�a�t�e� �s�e�r�v�i�c�e
	\376\377�F�i�g�u�r�e� �3�3� �� �N�o�d�e� �i�n�t�e�r�f�a�c�e� �� �D�i�r�e�c�t�o�r�y� �s�e�r�v�i�c�e�s� �� �G�e�t�C�o�m�p�o�n�e�n�t� �s�e�r�v�i�c�e
	\376\377�F�i�g�u�r�e� �3�4� �� �W�S�D�L� �1�.�1� �d�e�f�i�n�i�t�i�o�n�s

	Tables
	\376\377�T�a�b�l�e� �1� �� �M�e�s�s�a�g�e� �d�e�l�i�v�e�r�y� �s�t�a�t�u�s
	\376\377�T�a�b�l�e� �2� �� �B�u�s�i�n�e�s�s� �m�e�s�s�a�g�e� �s�t�a�t�u�s
	\376\377�T�a�b�l�e� �3� �� �A�c�c�e�p�t�i�n�g� �a� �m�e�s�s�a�g�e� �� �V�a�l�i�d�a�t�i�o�n� �c�h�e�c�k�s
	\376\377�T�a�b�l�e� �4� �� �C�h�a�r�a�c�t�e�r�i�s�t�i�c�s� �o�f� �n�o�t�i�f�i�e�d� �e�v�e�n�t�s
	\376\377�T�a�b�l�e� �5� �� �E�v�e�n�t� �c�h�a�r�a�c�t�e�r�i�s�t�i�c�s� �d�e�s�c�r�i�p�t�i�o�n
	\376\377�T�a�b�l�e� �6� �� �A�c�k�n�o�w�l�e�d�g�e�m�e�n�t� �s�t�a�t�e� �d�e�s�c�r�i�p�t�i�o�n
	\376\377�T�a�b�l�e� �7� �� �C�o�m�p�r�e�s�s�i�o�n� �� �m�e�t�a�d�a�t�a� �a�t�t�r�i�b�u�t�e�s
	\376\377�T�a�b�l�e� �8� �� �S�i�g�n�i�n�g� �� �m�e�t�a�d�a�t�a� �a�t�t�r�i�b�u�t�e�s
	\376\377�T�a�b�l�e� �9� �� �E�n�c�r�y�p�t�i�o�n� �� �m�e�t�a�d�a�t�a� �a�t�t�r�i�b�u�t�e�s
	\376\377�T�a�b�l�e� �1�0� �� �C�o�n�s�e�q�u�e�n�c�e�s� �o�f� �a� �c�e�r�t�i�f�i�c�a�t�e� �r�e�v�o�c�a�t�i�o�n
	\376\377�T�a�b�l�e� �1�1� �� �S�e�r�v�i�c�e� �c�o�m�p�a�t�i�b�i�l�i�t�y� �� �P�o�s�s�i�b�l�e� �c�h�a�n�g�e�s
	\376\377�T�a�b�l�e� �1�2� �� �W�h�i�c�h� �v�e�r�s�i�o�n� �t�o� �u�s�e� �t�o� �s�e�n�d� �a� �m�e�s�s�a�g�e�?
	\376\377�T�a�b�l�e� �1�3� �� �M�a�n�a�g�i�n�g� �t�h�e� �s�p�e�c�i�f�i�c�a�t�i�o�n� �v�e�r�s�i�o�n� �� �R�e�j�e�c�t�i�o�n� �c�o�n�d�i�t�i�o�n�s
	\376\377�T�a�b�l�e� �1�4� �� �I�n�t�e�r�f�a�c�e�s� �a�n�d� �s�e�r�v�i�c�e�s� �� �G�e�n�e�r�i�c� �e�r�r�o�r
	\376\377�T�a�b�l�e� �1�5� �� �I�n�t�e�r�f�a�c�e�s� �a�n�d� �s�e�r�v�i�c�e�s� �� �S�t�r�i�n�g� �v�a�l�u�e� �f�o�r� �e�r�r�o�r�C�o�d�e
	\376\377�T�a�b�l�e� �1�6� �� �S�e�n�d�M�e�s�s�a�g�e� �� �S�e�r�v�i�c�e� �r�e�q�u�e�s�t� �e�l�e�m�e�n�t�s
	\376\377�T�a�b�l�e� �1�7� �� �S�e�n�d�M�e�s�s�a�g�e� �� �S�e�r�v�i�c�e� �r�e�s�p�o�n�s�e� �e�l�e�m�e�n�t�s
	\376\377�T�a�b�l�e� �1�8� �� �S�e�n�d�M�e�s�s�a�g�e� �� �A�d�d�i�t�i�o�n�a�l� �e�r�r�o�r� �e�l�e�m�e�n�t�s
	\376\377�T�a�b�l�e� �1�9� �� �R�e�c�e�i�v�e�M�e�s�s�a�g�e� �� �S�e�r�v�i�c�e� �r�e�q�u�e�s�t� �e�l�e�m�e�n�t�s
	\376\377�T�a�b�l�e� �2�0� �� �R�e�c�e�i�v�e�M�e�s�s�a�g�e� �� �S�e�r�v�i�c�e� �r�e�s�p�o�n�s�e� �e�l�e�m�e�n�t�s
	\376\377�T�a�b�l�e� �2�1� �� �R�e�c�e�i�v�e�M�e�s�s�a�g�e� �� �A�d�d�i�t�i�o�n�a�l� �e�r�r�o�r� �e�l�e�m�e�n�t�s
	\376\377�T�a�b�l�e� �2�2� �� �C�h�e�c�k�M�e�s�s�a�g�e�S�t�a�t�u�s� �� �S�e�r�v�i�c�e� �r�e�q�u�e�s�t� �e�l�e�m�e�n�t�s
	\376\377�T�a�b�l�e� �2�3� �� �C�h�e�c�k�M�e�s�s�a�g�e�S�t�a�t�u�s� �� �S�e�r�v�i�c�e� �r�e�s�p�o�n�s�e� �e�l�e�m�e�n�t�s
	\376\377�T�a�b�l�e� �2�4� �� �C�h�e�c�k�M�e�s�s�a�g�e�S�t�a�t�u�s� �� �A�d�d�i�t�i�o�n�a�l� �e�r�r�o�r� �e�l�e�m�e�n�t�s
	\376\377�T�a�b�l�e� �2�5� �� �C�o�n�n�e�c�t�i�v�i�t�y�T�e�s�t� �� �S�e�r�v�i�c�e� �r�e�q�u�e�s�t� �e�l�e�m�e�n�t�s
	\376\377�T�a�b�l�e� �2�6� �� �C�o�n�n�e�c�t�i�v�i�t�y�T�e�s�t� �� �S�e�r�v�i�c�e� �r�e�s�p�o�n�s�e� �e�l�e�m�e�n�t�s
	\376\377�T�a�b�l�e� �2�7� �� �C�o�n�n�e�c�t�i�v�i�t�y�T�e�s�t� �� �A�d�d�i�t�i�o�n�a�l� �e�r�r�o�r� �e�l�e�m�e�n�t�s
	\376\377�T�a�b�l�e� �2�8� �� �C�o�n�f�i�r�m�R�e�c�e�i�v�e�M�e�s�s�a�g�e� �� �S�e�r�v�i�c�e� �r�e�q�u�e�s�t� �e�l�e�m�e�n�t�s
	\376\377�T�a�b�l�e� �2�9� �� �C�o�n�f�i�r�m�R�e�c�e�i�v�e�M�e�s�s�a�g�e� �� �S�e�r�v�i�c�e� �r�e�s�p�o�n�s�e� �e�l�e�m�e�n�t�s
	\376\377�T�a�b�l�e� �3�0� �� �C�o�n�f�i�r�m�R�e�c�e�i�v�e�M�e�s�s�a�g�e� �� �A�d�d�i�t�i�o�n�a�l� �e�r�r�o�r� �e�l�e�m�e�n�t�s
	\376\377�T�a�b�l�e� �3�1� �� �F�S�S�F� �� �D�e�s�c�r�i�p�t�i�o�n� �a�n�d� �f�i�l�e�n�a�m�e� �f�o�r�m�a�t
	\376\377�T�a�b�l�e� �3�2� �� �F�S�S�F� �� �F�i�l�e�n�a�m�e� �d�e�s�c�r�i�p�t�i�o�n
	\376\377�T�a�b�l�e� �3�3� �� �A�u�t�h�e�n�t�i�c�a�t�i�o�n� �� �S�e�r�v�i�c�e� �r�e�q�u�e�s�t� �e�l�e�m�e�n�t�s
	\376\377�T�a�b�l�e� �3�4� �� �A�u�t�h�e�n�t�i�c�a�t�i�o�n� �� �S�e�r�v�i�c�e� �r�e�s�p�o�n�s�e� �e�l�e�m�e�n�t�s
	\376\377�T�a�b�l�e� �3�5� �� �U�p�l�o�a�d�M�e�s�s�a�g�e�s� �� �S�e�r�v�i�c�e� �r�e�q�u�e�s�t� �e�l�e�m�e�n�t�s
	\376\377�T�a�b�l�e� �3�6� �� �U�p�l�o�a�d�M�e�s�s�a�g�e�s� �� �S�e�r�v�i�c�e� �r�e�s�p�o�n�s�e� �e�l�e�m�e�n�t�s
	\376\377�T�a�b�l�e� �3�7� �� �D�o�w�n�l�o�a�d�M�e�s�s�a�g�e�s� �� �S�e�r�v�i�c�e� �r�e�q�u�e�s�t� �e�l�e�m�e�n�t�s
	\376\377�T�a�b�l�e� �3�8� �� �D�o�w�n�l�o�a�d�M�e�s�s�a�g�e�s� �� �S�e�r�v�i�c�e� �r�e�s�p�o�n�s�e� �e�l�e�m�e�n�t�s
	\376\377�T�a�b�l�e� �3�9� �� �C�o�n�f�i�r�m�D�o�w�n�l�o�a�d� �� �S�e�r�v�i�c�e� �r�e�q�u�e�s�t� �e�l�e�m�e�n�t�s
	\376\377�T�a�b�l�e� �4�0� �� �C�o�n�f�i�r�m�D�o�w�n�l�o�a�d� �� �S�e�r�v�i�c�e� �r�e�s�p�o�n�s�e� �e�l�e�m�e�n�t�s
	\376\377�T�a�b�l�e� �4�1� �� �S�e�t�C�o�m�p�o�n�e�n�t�M�v�e�r�s�i�o�n� �� �S�e�r�v�i�c�e� �r�e�q�u�e�s�t� �e�l�e�m�e�n�t�s
	\376\377�T�a�b�l�e� �4�2� �� �S�e�t�C�o�m�p�o�n�e�n�t�M�v�e�r�s�i�o�n� �� �S�e�r�v�i�c�e� �r�e�s�p�o�n�s�e� �e�l�e�m�e�n�t�s
	\376\377�T�a�b�l�e� �4�3� �� �G�e�t�C�e�r�t�i�f�i�c�a�t�e� �� �S�e�r�v�i�c�e� �r�e�q�u�e�s�t� �e�l�e�m�e�n�t�s
	\376\377�T�a�b�l�e� �4�4� �� �G�e�t�C�e�r�t�i�f�i�c�a�t�e� �� �S�e�r�v�i�c�e� �r�e�s�p�o�n�s�e� �e�l�e�m�e�n�t�s
	\376\377�T�a�b�l�e� �4�5� �� �G�e�t�C�e�r�t�i�f�i�c�a�t�e� �� �A�d�d�i�t�i�o�n�a�l� �c�o�n�d�i�t�i�o�n�s
	\376\377�T�a�b�l�e� �4�6� �� �G�e�t�C�o�m�p�o�n�e�n�t� �� �S�e�r�v�i�c�e� �r�e�q�u�e�s�t� �e�l�e�m�e�n�t�s
	\376\377�T�a�b�l�e� �4�7� �� �G�e�t�C�o�m�p�o�n�e�n�t� �� �S�e�r�v�i�c�e� �r�e�s�p�o�n�s�e� �e�l�e�m�e�n�t�s
	\376\377�T�a�b�l�e� �4�8� �� �G�e�t�N�o�d�e�M�v�e�r�s�i�o�n� �� �S�e�r�v�i�c�e� �r�e�q�u�e�s�t� �e�l�e�m�e�n�t�s
	\376\377�T�a�b�l�e� �4�9� �� �G�e�t�N�o�d�e�M�v�e�r�s�i�o�n� �� �S�e�r�v�i�c�e� �r�e�s�p�o�n�s�e� �e�l�e�m�e�n�t�s
	\376\377�T�a�b�l�e� �5�0� �� �G�e�t�A�l�l�D�i�r�e�c�t�o�r�y�D�a�t�a� �� �S�e�r�v�i�c�e� �r�e�q�u�e�s�t� �e�l�e�m�e�n�t�s
	\376\377�T�a�b�l�e� �5�1� �� �G�e�t�A�l�l�D�i�r�e�c�t�o�r�y�D�a�t�a� �� �S�e�r�v�i�c�e� �r�e�s�p�o�n�s�e� �e�l�e�m�e�n�t�s
	\376\377�T�a�b�l�e� �5�2� �� �N�o�d�e� �a�t�t�r�i�b�u�t�e�s� �o�r�d�e�r�e�d� �l�i�s�t
	\376\377�T�a�b�l�e� �5�3� �� �A�u�t�h�e�n�t�i�c�a�t�i�o�n�T�o�k�e�n
	\376\377�T�a�b�l�e� �5�4� �� �C�e�r�t�i�f�i�c�a�t�e
	\376\377�T�a�b�l�e� �5�5� �� �C�e�r�t�i�f�i�c�a�t�e�T�y�p�e� �� �s�t�r�i�n�g� �e�n�u�m�e�r�a�t�i�o�n
	\376\377�T�a�b�l�e� �5�6� �� �C�o�m�p�o�n�e�n�t�C�e�r�t�i�f�i�c�a�t�e
	\376\377�T�a�b�l�e� �5�7� �� �C�o�m�p�o�n�e�n�t�D�e�s�c�r�i�p�t�i�o�n
	\376\377�T�a�b�l�e� �5�8� �� �C�o�m�p�o�n�e�n�t�I�n�f�o�r�m�a�t�i�o�n
	\376\377�T�a�b�l�e� �5�9� �� �C�o�m�p�o�n�e�n�t�T�y�p�e� �� �s�t�r�i�n�g� �e�n�u�m�e�r�a�t�i�o�n
	\376\377�T�a�b�l�e� �6�0� �� �E�n�d�p�o�i�n�t
	\376\377�T�a�b�l�e� �6�1� �� �I�n�t�e�r�n�a�l�M�e�s�s�a�g�e
	\376\377�T�a�b�l�e� �6�2� �� �I�n�t�e�r�n�a�l�M�e�s�s�a�g�e�T�y�p�e� �� �s�t�r�i�n�g� �e�n�u�m�e�r�a�t�i�o�n
	\376\377�T�a�b�l�e� �6�3� �� �M�e�s�s�a�g�e�M�e�t�a�d�a�t�a
	\376\377�T�a�b�l�e� �6�4� �� �M�e�s�s�a�g�e�P�r�o�c�e�s�s�o�r
	\376\377�T�a�b�l�e� �6�5� �� �M�a�p
	\376\377�T�a�b�l�e� �6�6� �� �M�a�p�E�n�t�r�y
	\376\377�T�a�b�l�e� �6�7� �� �V�a�l�u�e�T�y�p�e� �(�e�n�u�m�e�r�a�t�i�o�n�)
	\376\377�T�a�b�l�e� �6�8� �� �M�e�s�s�a�g�e�S�t�a�t�e� �(�s�t�r�i�n�g� �e�n�u�m�e�r�a�t�i�o�n�)
	\376\377�T�a�b�l�e� �6�9� �� �M�e�s�s�a�g�e�S�t�a�t�u�s
	\376\377�T�a�b�l�e� �7�0� �� �M�e�s�s�a�g�e�T�r�a�c�e�I�t�e�m
	\376\377�T�a�b�l�e� �7�1� �� �M�e�s�s�a�g�e�T�r�a�c�e�S�t�a�t�e� �(�s�t�r�i�n�g� �e�n�u�m�e�r�a�t�i�o�n�)
	\376\377�T�a�b�l�e� �7�2� �� �N�o�t�C�o�n�f�i�r�m�e�d�M�e�s�s�a�g�e�R�e�s�p�o�n�s�e
	\376\377�T�a�b�l�e� �7�3� �� �N�o�t�U�p�l�o�a�d�e�d�M�e�s�s�a�g�e�R�e�s�p�o�n�s�e
	\376\377�T�a�b�l�e� �7�4� �� �R�e�c�e�i�v�e�d�M�e�s�s�a�g�e
	\376\377�T�a�b�l�e� �7�5� �� �R�o�u�t�i�n�g�I�n�f�o�r�m�a�t�i�o�n
	\376\377�T�a�b�l�e� �7�6� �� �S�e�n�t�M�e�s�s�a�g�e

