

IEC 62243
Edition 2.0 2012-06

INTERNATIONAL
STANDARD

Artificial Intelligence Exchange and Service Tie to All Test Environments
(AI-ESTATE)

IE
C

 6
22

43
:2

01
2(

E
)

 IE
E

E
 S

td
 1

23
2-

20
10

IEEE Std 1232™

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 THIS PUBLICATION IS COPYRIGHT PROTECTED
 Copyright © 2010 IEEE

All rights reserved. IEEE is a registered trademark in the U.S. Patent & Trademark Office, owned by the Institute of
Electrical and Electronics Engineers, Inc.

Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from the IEC Central
Office.

Any questions about IEEE copyright should be addressed to the IEEE. Enquiries about obtaining additional rights to
this publication and other information requests should be addressed to the IEC or your local IEC member National
Committee.

IEC Central Office Institute of Electrical and Electronics Engineers, Inc.
3, rue de Varembé 3 Park Avenue
CH-1211 Geneva 20 New York, NY 10016-5997
Switzerland United States of America
Tel.: +41 22 919 02 11 stds.info@ieee.org
Fax: +41 22 919 03 00 www.ieee.org
info@iec.ch
www.iec.ch

About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigenda or an amendment might have been published.

Useful links:

IEC publications search - www.iec.ch/searchpub
The advanced search enables you to find IEC publications
by a variety of criteria (reference number, text, technical
committee,…).
It also gives information on projects, replaced and
withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished
Stay up to date on all new IEC publications. Just Published
details all new publications released. Available on-line and
also once a month by email.

Electropedia - www.electropedia.org
The world's leading online dictionary of electronic and
electrical terms containing more than 30 000 terms and
definitions in English and French, with equivalent terms in
additional languages. Also known as the International
Electrotechnical Vocabulary (IEV) on-line.

Customer Service Centre - webstore.iec.ch/csc
If you wish to give us your feedback on this publication
or need further assistance, please contact the
Customer Service Centre: csc@iec.ch.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

mailto:stds.info@ieee.org
mailto:info@iec.ch
http://www.iec.ch/
http://www.iec.ch/searchpub
http://webstore.iec.ch/justpublished
http://www.electropedia.org/
http://webstore.iec.ch/csc
mailto:csc@iec.ch

IEC 62243
Edition 2.0 2012-06

INTERNATIONAL
STANDARD

Artificial Intelligence Exchange and Service Tie to All Test Environments
(AI-ESTATE)

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION XG
ICS 25.040; 35.060

PRICE CODE

ISBN 978-2-83220-102-2

 Warning! Make sure that you obtained this publication from an authorized distributor.

IEEE Std 1232™

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – ii – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Contents

1. Overview .. 1
1.1 Scope ... 2
1.2 Purpose .. 2
1.3 Conventions used in this document ... 3
1.4 IEEE download site ... 3

2. Normative references .. 3

3. Definitions, acronyms, and abbreviations... 4
3.1 Definitions ... 4
3.2 Acronyms and abbreviations ... 5

4. Description of AI-ESTATE .. 5
4.1 AI-ESTATE architecture ... 5
4.2 Binding strategy ... 8

5. AI-ESTATE usage .. 9
5.1 Interchange format ... 9
5.2 Extensibility ... 11
5.3 Conformance ... 11

6. Models .. 12
6.1 AI_ESTATE_CEM.. 12
6.2 AI_ESTATE_BNM ... 55
6.3 AI_ESTATE_DIM .. 64
6.4 AI_ESTATE_DLM ... 68
6.5 AI_ESTATE_FTM .. 72
6.6 AI_ESTATE_DCM ... 77

7. Reasoner manipulation services ... 92
7.1 Service order dependence .. 92
7.2 Status codes ... 95
7.3 Data types for the reasoner manipulation services ... 95
7.4 Required services ... 110
7.5 Optional services ... 132

Annex A (informative) Bibliography ... 136

Annex B (informative) Overview of EXPRESS ... 138

Annex C (informative) Overview of ISO 10303-28:2007 .. 145

Annex D (informative) Overview of ISO 10303-21:1994 .. 152

Annex E (normative) Information object registration .. 157

Annex F (normative) Universal resource names for derived XML schemas .. 158

Annex G (informative) IEEE List of Participants... 159

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – iii –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Artificial Intelligence Exchange and Service
Tie to All Test Environments (AI-ESTATE)

FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization

comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to
promote international co-operation on all questions concerning standardization in the electrical and
electronic fields. To this end and in addition to other activities, IEC publishes International Standards,
Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides
(hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any
IEC National Committee interested in the subject dealt with may participate in this preparatory work.
International, governmental and non-governmental organizations liaising with the IEC also participate in
this preparation.

IEEE Standards documents are developed within IEEE Societies and Standards Coordinating Committees
of the IEEE Standards Association (IEEE-SA) Standards Board. IEEE develops its standards through a
consensus development process, which brings together volunteers representing varied viewpoints and
interests to achieve the final product. Volunteers are not necessarily members of IEEE and serve without
compensation. While IEEE administers the process and establishes rules to promote fairness in the
consensus development process, IEEE does not independently evaluate, test, or verify the accuracy of
any of the information contained in its standards. Use of IEEE Standards documents is wholly voluntary.
IEEE documents are made available for use subject to important notices and legal disclaimers (see
http://standards.ieee.org/IPR/disclaimers.html for more information).

IEC collaborates closely with IEEE in accordance with conditions determined by agreement between the
two organizations.

2) The formal decisions of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees. The formal decisions of IEEE on technical matters, once consensus
within IEEE Societies and Standards Coordinating Committees has been reached, is determined by a
balanced ballot of materially interested parties who indicate interest in reviewing the proposed standard.
Final approval of the IEEE standards document is given by the IEEE Standards Association (IEEE-SA)
Standards Board.

3) IEC/IEEE Publications have the form of recommendations for international use and are accepted by IEC
National Committees/IEEE Societies in that sense. While all reasonable efforts are made to ensure that
the technical content of IEC/IEEE Publications is accurate, IEC or IEEE cannot be held responsible for the
way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
(including IEC/IEEE Publications) transparently to the maximum extent possible in their national and
regional publications. Any divergence between any IEC/IEEE Publication and the corresponding national
or regional publication shall be clearly indicated in the latter.

5) IEC and IEEE do not provide any attestation of conformity. Independent certification bodies provide
conformity assessment services and, in some areas, access to IEC marks of conformity. IEC and IEEE are
not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or IEEE or their directors, employees, servants or agents including
individual experts and members of technical committees and IEC National Committees, or volunteers of
IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (IEEE-SA)
Standards Board, for any personal injury, property damage or other damage of any nature whatsoever,
whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication,
use of, or reliance upon, this IEC/IEEE Publication or any other IEC or IEEE Publications.

8) Attention is drawn to the normative references cited in this publication. Use of the referenced publications
is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that implementation of this IEC/IEEE Publication may require use of
material covered by patent rights. By publication of this standard, no position is taken with respect to the
existence or validity of any patent rights in connection therewith. IEC or IEEE shall not be held
responsible for identifying Essential Patent Claims for which a license may be required, for conducting
inquiries into the legal validity or scope of Patent Claims or determining whether any licensing terms or
conditions provided in connection with submission of a Letter of Assurance, if any, or in any licensing
agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that
determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely
their own responsibility.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

http://standards.ieee.org/IPR/disclaimers.html

 IEC 62243:2012
 – iv – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

International Standard IEC 62243/ IEEE Std 1232-2010 has been processed through IEC
technical committee 93: Design automation, under the IEC/IEEE Dual Logo Agreement.

This second edition cancels and replaces the first edition, published in 2005, and
constitutes a technical revision.

The text of this standard is based on the following documents:

IEEE Std FDIS Report on voting

IEEE Std 1232-2010 93/320/FDIS 93/327/RVD

Full information on the voting for the approval of this standard can be found in the report
on voting indicated in the above table.

The IEC Technical Committee and IEEE Technical Committee have decided that the
contents of this publication will remain unchanged until the stability date indicated on the
IEC web site under "http://webstore.iec.ch" in the data related to the specific publication.
At this date, the publication will be

� reconfirmed,

� withdrawn,

� replaced by a revised edition, or

� amended.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – v –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

IEEE Std 1232TM-2010
(Revision of

IEEE Std 1232-2002)

IEEE Standard for Artificial Intelligence
Exchange and Service Tie to All Test
Environments (AI-ESTATE)

Sponsor

IEEE Standards Coordinating Committee 20 on
Test and Diagnosis for Electronic Systems

Approved 8 December 2010

IEEE-SA Standards Board

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – vi – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Abstract: Data interchange and standard software services for test and diagnostic environments
are defined by Artificial Intelligence Exchange and Service Tie to All Test Environments (AI-
ESTATE). The purpose of AI-ESTATE is to standardize interfaces for functional elements of an
intelligent diagnostic reasoner and representations of diagnostic knowledge and data for use by
such diagnostic reasoners. Formal information models are defined to form the basis for a format
to facilitate exchange of persistent diagnostic information between two reasoners and also to
provide a formal typing system for diagnostic services. The services to control a diagnostic
reasoned are defined by this standard.

Keywords: AI-ESTATE, Bayesian Network, diagnosis, diagnostic inference, diagnostic model,
diagnostic services, D-matrix, fault tree, IEEE 1232, knowledge exchange, system test

��

IEEE is a registered trademark in the U.S. Patent & Trademark Office, owned by the Institute of Electrical and Electronics
Engineers, Incorporated.

W3C is a registered trademark of the W3C® (registered in numerous countries) World Wide Web Consortium. Marks of W3C are registered
and held by its host institutions MIT, ERCIM, and Keio.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – vii –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

IEEE Introduction

This introduction is not part of IEEE Std 1232-2010, IEEE Standard for Artificial Intelligence Exchange and Service
Tie to All Test Environments (AI-ESTATE).

The AI-ESTATE standard provides a formal framework for exchanging diagnostic knowledge and
communicating with diagnostic reasoners. The intent is to provide a standard framework for identifying
required information for diagnosis and defining the diagnostic information in a machine-processable way.
In addition, software interfaces are defined whereby applications can be developed to communicate with
diagnostic reasoners in a consistent and reliable way.

Notice to users

Laws and regulations

Users of these documents should consult all applicable laws and regulations. Compliance with the
provisions of this standard does not imply compliance to any applicable regulatory requirements.
Implementers of the standard are responsible for observing or referring to the applicable regulatory
requirements. IEEE does not, by the publication of its standards, intend to urge action that is not in
compliance with applicable laws, and these documents may not be construed as doing so.

Copyrights

This document is copyrighted by the IEEE. It is made available for a wide variety of both public and
private uses. These include both use, by reference, in laws and regulations, and use in private self-
regulation, standardization, and the promotion of engineering practices and methods. By making this
document available for use and adoption by public authorities and private users, the IEEE does not waive
any rights in copyright to this document.

Updating of IEEE documents

Users of IEEE standards should be aware that these documents may be superseded at any time by the
issuance of new editions or may be amended from time to time through the issuance of amendments,
corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the
document together with any amendments, corrigenda, or errata then in effect. In order to determine whether
a given document is the current edition and whether it has been amended through the issuance of
amendments, corrigenda, or errata, visit the IEEE Standards Association web site at
http://ieeexplore.ieee.org/xpl/standards.jsp, or contact the IEEE at the address listed previously.

For more information about the IEEE Standards Association or the IEEE standards development process,
visit the IEEE-SA web site at http://standards.ieee.org.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

http://ieeexplore.ieee.org/xpl/standards.jsp
http://standards.ieee.org/

 IEC 62243:2012
 – viii – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Errata

Errata, if any, for this and all other standards can be accessed at the following URL:
http://standards.ieee.org/reading/ieee/updates/errata/index.html. Users are encouraged to check this URL
for errata periodically.

Interpretations

Current interpretations can be accessed at the following URL: http://standards.ieee.org/reading/ieee/interp/
index.html.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken with respect to the existence
or validity of any patent rights in connection therewith. The IEEE is not responsible for identifying
Essential Patent Claims for which a license may be required, for conducting inquiries into the legal validity
or scope of Patents Claims or determining whether any licensing terms or conditions provided in
connection with submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable
or non-discriminatory. Users of this standard are expressly advised that determination of the validity of any
patent rights, and the risk of infringement of such rights, is entirely their own responsibility. Further
information may be obtained from the IEEE Standards Association.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

http://standards.ieee.org/reading/ieee/updates/errata/index.html
http://standards.ieee.org/reading/ieee/interp/index.html
http://standards.ieee.org/reading/ieee/interp/index.html

IEC 62243:2012
IEEE Std 1232-2010 – 1 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Artificial Intelligence Exchange and
Service Tie to All Test Environments
(AI-ESTATE)

IMPORTANT NOTICE: This standard is not intended to ensure safety, security, health, or
environmental protection. Implementers of the standard are responsible for determining appropriate
safety, security, environmental, and health practices or regulatory requirements.

This IEEE document is made available for use subject to important notices and legal disclaimers.
These notices and disclaimers appear in all publications containing this document and may
be found under the heading “Important Notice” or “Important Notices and Disclaimers
Concerning IEEE Documents.” They can also be obtained on request from IEEE or viewed at
http://standards.ieee.org/IPR/disclaimers.html.

1. Overview

The Artificial Intelligence Exchange and Service Tie to All Test Environments (AI-ESTATE) standard was
developed by the Diagnostic and Maintenance Control Subcommittee of the IEEE Standards Coordinating
Committee 20 (SCC20) on Test and Diagnosis for Electronic Systems to serve as a standard for defining
interfaces among diagnostic reasoners and users, test information knowledge bases, and more conventional
databases. In addition to interface standards, the AI-ESTATE standard includes a set of formal data
specifications to facilitate the exchange of system under test related diagnostic information.

One approach to defining the interfaces for a component of a larger system is to model, formally, the
information being passed across the system’s interfaces. Such a model is known as an “information model.”
The purpose of an information model is to identify clearly the objects in a domain of discourse (e.g.,
diagnostics) to enable precise communication about that domain. Such a model comprises objects or
entities, relationships between those objects, and constraints on the objects and their relationships. When
taken together, elements provide a complete, unambiguous, formal representation of the domain of
discourse. In other words, they provide a formal language for communicating about the domain.

Using information models, information exchange can be facilitated in two ways. The first is through a set
of exchange files. Specifically, information can be stored by one application in a file and read by a second
application. The file format is derived directly from the information model and defines the syntax of the
message contained within it. The semantics of the message (i.e., the legal content of the file) is defined by
the semantics of the model. The second means of information exchange is through a set of services defined
for a system component as accessed via the communications backbone. The interface definition for the
component is derived from the information model and defines the syntax of the message. Once again, the
legal content of the message is defined by the semantics of the model.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

http://standards.ieee.org/IPR/disclaimers.html

 IEC 62243:2012
 – 2 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

The semantics of information models are provided in two ways. First, the model itself defines a machine-
readable semantic structure and associated constraints that ensure consistent exchange and processing of
the concepts and relationships of the model elements. Second, human-readable definitions specify the
correct interpretation of the model elements.

This standard describes a set of formal data and knowledge specifications consisting of the logical
representation of devices, their constituents, the failure modes of those constituents, and tests of those
constituents. The data and knowledge specification provides a standard representation of the common data
elements required for system test and diagnosis. This will facilitate portability of test related knowledge
bases for intelligent system test and diagnosis.

The goals of this standard are summarized as follows:

� Incorporate domain specific terminology

� Facilitate portability of diagnostic knowledge

� Enable the consistent exchange and integration of diagnostic capabilities

AI-ESTATE defines key data and knowledge specification formats. No host computer dependence is
contained in the AI-ESTATE standard. Systems that use only these specification formats will be portable.
This does not preclude use of AI-ESTATE interfaces with nonconformant specification formats; however,
such systems may not be portable. A diagnostic model can be moved from one AI-ESTATE
implementation to another by translating it into one of two interchange formats described in the
specification. Another AI-ESTATE implementation can then utilize this information as a complete package
by translating the data and knowledge from the interchange format to its own internal form. The translation
step is not a requirement; an AI-ESTATE implementation may use the interchange format or its own
internal form.

Software specifications defined in this standard provide a consistent means of communicating with
diagnostic reasoners through a well-defined set of services. This supports interoperability of diagnostic
reasoner with other elements of a test environment with no effect on the other elements of the system.

This standard also provides an extension mechanism to allow the inclusion of new diagnostic technology
outside the scope of the Al-ESTATE specification.

An overview of EXPRESS can be found in Annex B. Overviews of the ISO 10303-28:20071 and
ISO 10303-21:1994 exchange formats can be found in Annex C and Annex D, respectively.

1.1 Scope

The AI-ESTATE standard defines formal specifications for supporting system diagnosis. These
specifications support the exchange and processing of diagnostic information and the control of diagnostic
processes. Diagnostic processes include, but are not limited to, testability analysis, diagnosability
assessment, diagnostic reasoning, maintenance support, and diagnostic maturation.

1.2 Purpose

The AI-ESTATE standard provides formal models of diagnostic information to ensure unambiguous access
to an understanding of the information supporting system testing and diagnosis. The standard defines
formal information models and software services specific to several different types of diagnostic reasoners.

1Information on references can be found in Clause 2.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 3 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

The purpose is to provide semantically sound definitions of diagnostic knowledge and to specify software
exchange and service interfaces that are consistent with the state of the practice in modern test and
diagnostic systems (e.g., the use of eXtensible Markup Language [XML] and web services).

1.3 Conventions used in this document

This standard specifies information models, exchange formats, and services using the EXPRESS language
and uses the following conventions in their presentation.

Information models are provided in the form of EXPRESS schemas. Exchange files provide the instances
of those schemas for a particular diagnostic model. Note that “information model” and “diagnostic model”
use the word “model” in subtly different ways. In an attempt to resolve this confusion, in this document,
information models will be referred to as EXPRESS schemas and instances of a schema corresponding to a
diagnostic model will be referred to as instances (e.g., Dynamic Context Part 21 instance).

All specifications in the EXPRESS and XML languages are given in the Courier New type font. The
EXPRESS schemas include comment delimiters “(*” and “*)”.

Each entity of each EXPRESS schema is presented in a separate subclause. Within a schema, subclauses
are listed in alphabetical order by constants, types, enumerated types, select types, entities, and then
functions. The subclause structure begins with the actual EXPRESS specification; then, each attribute of
the entity is described below the attribute definition heading. If any constraints have been specified, these
are described below the formal propositions heading.

This standard uses the vocabulary and definitions of relevant IEEE standards. In the event of conflict
between this standard and a related standard such as IEEE Std 1636TM-2009 [B5],2 the standard as it applies
to the information being produced shall take precedence. In the event of any conflict between the models
and AI-ESTATE definitions (Clause 3), the models’ lexical definitions shall take precedence

1.4 IEEE download site

The schemas and examples that accompany this standard are available on the Internet at
http://standards.ieee.org/downloads/1232/1232-2010.

2. Normative references

The following referenced documents are indispensable for the application of this document (i.e., they must
be understood and used, so each referenced document is cited in text and its relationship to this document is
explained). For dated references, only the edition cited applies. For undated references, the latest edition of
the referenced document (including any amendments or corrigenda) applies.

Internet Engineering Task Force (IETF) RFC 2396 (August 1998), Uniform Resource Identifiers (URI):
Generic Syntax. [cited 2004-03-15].3,4

2 The numbers in brackets correspond to those of the bibliography in Annex A.
3 IETF publications are available from the Internet Engineering Task Force, IETF Secretariat, c/o Association Management Solutions,
LLC (AMS), 48377 Fremont Boulevard, Suite 117, Fremont, CA 94538, USA (http://www.ietf.org).
4 This reference can be downloaded at http://www.ietf.org/rfc/rfc2396.txt.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

http://standards.ieee.org/downloads/1232/1232-2010

 IEC 62243:2012
 – 4 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

ISO 10303-11:1994 Industrial Automation Systems and Integration—Product Data Representation and
Exchange—Part 11: The EXPRESS Language Reference Manual.5

ISO 10303-21:1994 Industrial Automation Systems and Integration—Product Data Representation and
Exchange—Part 21: Clear Text Encoding of the Exchange Structure.

ISO 10303-21:1994 Technical Corrigendum 1.

ISO 10303-28:2007 Industrial Automation Systems and Integraion—Product Data Representation and
Exchange—Part 28: XML Representation of EXPRESS Schemas and Data using XML Schemas.

3. Definitions, acronyms, and abbreviations

3.1 Definitions

For the purposes of this document, the following terms and definitions apply. The IEEE Standards
Dictionary: Glossary of Terms & Definitions should be consulted for terms not defined in this clause.6

ambiguity group: A set of diagnoses that cannot be distinguished with the given set of test outcomes.

diagnostic reasoner: A system that uses a knowledge base to infer conclusions.

diagnostic strategy: (A) An approach taken to combine factors including constraints, goals and other
considerations to be applied to the localization of faults in a system. (B) The approach taken to evaluate a
system in order to obtain a diagnostic result.

EXPRESS schema: A specification of data types, structural constraints, and algorithmic rules
corresponding to some domain of interest.

eXtensible Markup Language (XML) schema: A specification of a type of XML document typically
expressed in terms of constraints of structure and content of documents of that type, above and beyond the
basic syntactical constraints imposed by XML itself.

fault isolation: The process of reducing the set of diagnoses in ambiguity to a degree sufficient to
undertake an appropriate corrective action.

information model: A specification of a set of objects in a domain of discourse to enable precise and
unambiguous communication about that domain. Such a model consists of one or more schemata, each of
which comprise objects or entities, relationships between those objects, and constraints on the objects and
their relationships.

instance: An occurrence of a realized schema or schema element.

interoperability: The ability of two or more systems or elements to exchange information and to use the
information that has been exchanged.

5ISO publications are available from the ISO Central Secretariat, Case Postale 56, 1 rue de Varembé, CH-1211, Genève 20,
Switzerland/Suisse (http://www.iso.ch/). ISO publications are also available in the United States from the Sales Department, American
National Standards Institute, 25 West 43rd Street, 4th Floor, New York, NY 10036, USA (http://www.ansi.org/).
6 The IEEE Standards Dictionary: Glossary of Terms & Definitions is available at http://shop.ieee.org/.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

http://shop.ieee.org/

IEC 62243:2012
IEEE Std 1232-2010 – 5 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

knowledge base: A set of data, data semantics and relationships, and functions used by diagnostic
reasoners.

native format: Data that exist in a format either produced or consumed by some non–AI-ESTATE
diagnostic reasoner.

UOS document: A document that conforms to a single governing EXPRESS schema and follows Part 28’s
default mapping from EXPRESS to eXtensible Markup Language (XML).

3.2 Acronyms and abbreviations

AI-ESTATE Artificial Intelligence Exchange and Service Tie to All Test Environments
BNM Bayesian Network Model
CDF cumulative distrubution function
CEM Common Element Model
DAG directed acyclic graph
DCM Dynamic Context Model
DIM Dmatrix Inference Model
DLM Diagnostic Logic Model
FTM Fault Tree Model
PDF probability distribution function
SCC20 Standards Coordinating Committee 20
UOS unit of serialization
UUT unit under test
W3C® World Wide Web Consortium
XML eXtensible Markup Language

4. Description of AI-ESTATE

4.1 AI-ESTATE architecture

This standard provides the following:

� An overview of the AI-ESTATE architecture

� A formal definition of diagnostic models for systems under test

� Formal definitions of interchange formats for exchange of diagnostic models

� A formal definition of software services for diagnostic reasoners

AI-ESTATE focuses on two distinct aspects of the stated purpose. The first aspect concerns the need to
exchange data and knowledge between conformant diagnostic reasoners. The approach taken to address this
need is by providing interchangeable files. The second aspect concerns the need for an AI-ESTATE
conformant diagnostic reasoner to interact and interoperate with other elements in a test environment (see
Figure 1).

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 6 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Communication
Services

System
Support

Application

Diagnostic
Reasoner

Test
Environment

Information
Management

System

Figure 1 —AI-ESTATE architectural concept

Services are provided by AI-ESTATE conformant systems to the other functional elements of a test
environment. Reasoners may include (but are not necessarily limited to) diagnostic systems, test
sequencers, maintenance data feedback analyzers, intelligent user interfaces, and intelligent test programs.
AI-ESTATE specifically focuses on diagnostic reasoners. Thus, services may be provided by a diagnostic
reasoner to the system support application, an information management system, and the test environment.
The reasoner will use services provided by these other systems as required. Note that services provided by
these other systems are not specified by the AI-ESTATE standard.

Data interchange formats are specified to provide a means for exchanging knowledge bases between
diagnostic reasoners without the need to apply an information management system. This standard facilitates
the use of standard representations of diagnostic data and knowledge within the context of an AI-ESTATE
conformant diagnostic reasoner. In specifying data and knowledge for these domains, a structure has been
constructed, as shown in Figure 2. At the top level is the Common Element Model (CEM) that specifies
elements common to the AI-ESTATE domain of equipment test and diagnosis in its entirety. Examples of
common element constructs are Diagnosis (diagnostic conclusions about the system under test), RepairItem
(the physical entity being repaired), Resource, and Test. These constructs are characterized by attributes
such as costs and failure rates, which are also specified in the Common Element Model.

Common
Element
Model

Dmatrix
Inference

Model

Diagnostic
Logic Model

Bayesian
Network
Model

Fault Tree
Model

Dynamic
Context
Model

Figure 2 —Hierarchical structure of the AI-ESTATE models

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 7 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Below the Common Element Model in Figure 2 is a set of data and knowledge models (i.e., the Bayesian
Network Model [BNM], the Diagnostics Logistic Model [DLM], the Dmatrix Inference Model [DIM], and
the Fault Tree Model [FTM]) that specialize the constructs in the Common Element Model and tailor the
constructs to the application’s particular reasoning requirements. The Common Element Model has been
specified such that other data and knowledge specification formats can also utilize its constructs as base
elements that are tailored to the particular application’s needs. As indicated by the dotted line in Figure 2,
the Dynamic Context Model (DCM) does not specialize but rather interacts with the CEM. The DCM
defines entities that represent the context and history of the reasoning process and defines the interface by
which that information can be exchanged.

The models and services for AI-ESTATE utilize four levels of abstraction related to the definition and use
of information in a diagnostic application. These four levels are described as follows:

a) A definition is the specification of some entity or concept within the AI-ESTATE domain. A
definition encapsulates all of the information that constitutes an entity or concept. For example,
AI-ESTATE defines the concept of a “Test” as an entity definition in the Common Element
Model.

b) An instance is the static realization of an entity or concept definition. For example, a specific
test used by a diagnostic application may be created in a diagnostic model and includes values
defining the test (e.g., name, description, and the set of available outcomes).

c) An occurrence is the dynamic realization of an instance against a timeline. The occurrence
maintains, within its scope, all of the information necessary to evaluate the instance at the time it
is valid. For example, when a sequence of tests has been specified to be performed, it is said that
the tests in that sequence “occur” in the scope of the corresponding timeline.

d) An execution is a historical trace of the information that has been collected by occurrences over
a period of time. An execution is recorded when the test is actually performed. At that time,
specific information related to the performance and results of the test can be captured.

Within the AI-ESTATE architecture, the information models specified in Clause 6 provide the definition of
the information. Diagnostic models that conform to the specifications in Clause 6 are the instances of these
information models. The instances of the model entities occurring in the application state flow specified in
7.1 correspond to the occurrence of the entities in a diagnostic process. Finally, the record of the occurrence
of these entities collected from services performed in the diagnostic process corresponds to the execution
(or execution trace) of the session. The structure for exporting this execution trace is defined by the DCM
in Clause 6.

As illustrated in Figure 3, this standard also defines the software services to be provided by an AI-ESTATE
conformant diagnostic reasoner. All of the services are defined relative to the entities and attributes of the
information models and comprise the diagnostic reasoner interface. As can be seen in Figure 2, each of the
elements that interface with the reasoner will provide its own set of services to the other system
components, but those service definitions are beyond the scope of this document.

Application Diagnostic
Reasoner

12
32

 In
te

rfa
ce

 (s
er

vi
ce

s)

Figure 3 —AI-ESTATE interface layer

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 8 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

The service definitions encapsulate the reasoner so that the underlying implementation details are hidden
from the diagnostic system clients. Such services encompass an abstraction of that behavior that is common
to all diagnostic reasoners, regardless of implementation details. Therefore, it is the mechanism of
encapsulation that provides for the interchangeability of AI ESTATE conformant diagnostic reasoners
within a system.

A reasoner implementation shall provide, at the least, a status indicator (see 7.2) as a response to any
service request defined by this specification. The Diagnostic Reasoner shall provide the required services
specified by this standard to a client. The diagnostic reasoner shall only utilize a single model during a
session.

4.2 Binding strategy

The intent of the binding strategy is to guide software developers in the creation of a binding layer that will
expose an interface that matches the interface of the AI-ESTATE services as they are specified in this
standard. The binding layer will thus insulate the application and the diagnostic reasoner from any non–AI-
ESTATE details such as connectivity technology, memory management, etc.

An AI-ESTATE software system will consist of at least two components: the application and a diagnostic
reasoner. The diagnostic reasoner will present an interface conformant to this standard; the application will
use AI-ESTATE services as needed by calls to this interface.

For each AI-ESTATE service, there will be a corresponding function in the binding layer that will be
written in the implementation language. The interfaces provided by the functions shall correspond exactly
to the interfaces of the services they implement (or as closely as possible given the constraints of the
implementation language). All other details shall be hidden from the client. This implies that the binding
layer provides data type definitions as specified in this standard. It is beyond the scope of this standard to
define bindings for each implementation language. However, in the interest of interoperability, the standard
provides the following guidance for services passing and returning data:

� Component implementations should use messages in their native format.

� Object-oriented implementations should use objects.

� Procedural implementations should use structures.

� Other implementations should use XML entities defined by Part 28 schemas.
The application and diagnostic reasoner programs may be written in different languages as long as the
translation is handled transparently by the two programs (i.e., in the binding layer or lower). When
publishing the interface, it is recommended that documentation of traceability of the elements of the
interface to the services specified in the standard be provided.

For example, consider the initializeDiagnosticProcess service as specified in EXPRESS:

FUNCTION initializeDiagnosticProcess(
itemID : Identifier,
repairItemName : NameType) : NameType;

END_FUNCTION

It has the name initializeDiagnosticProcess, accepts two arguments, one of type Identifier and one of
NameType, and returns a NameType. The declaration of a corresponding binding function written in C
would be:

NameType initializeDiagnosticProcess (Identifier itemID, NameType repairItemName);

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 9 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

This might exist in a C header file and would provide the client code with an interface corresponding
exactly to that of the EXPRESS form. For example,

NameType initializeDiagnosticProcess (Identifier itemID, NameType repairItemName)
{
 NameType name;
.
.
.
 name = . . .;

.
.
 return name;
}

The following C data types could be defined to correspond to the AI-ESTATE types:

typedef char* NameType;
typedef char* Identifier;

For pure object-oriented languages such as Java, the interface will have to be presented as methods in
objects. It is suggested that the information model be used to start building the class hierarchy.

5. AI-ESTATE usage

5.1 Interchange format

AI-ESTATE models are specified to facilitate data interchange in the context of test and diagnosis. The
interchange format permits exchange of diagnostic models using a neutral format, thus providing portability
of diagnostic knowledge across applications. The following two interchange formats are specified by AI-
ESTATE:

� ISO 10303-21:1994

� ISO 10303-28:2007

5.1.1 ISO 10303-21 Exchange Format

AI-ESTATE exchange files that use the ISO 10303-21 format shall adhere to ISO 10303-21:1994
Technical Corrigendum 1 (known as version “2”) and conformance class “1” (known as the internal
mapping). The ISO version of ISO 10303-21:1994 and the conformance class of the exchange file shall be
indicated in the exchange file header using the syntax prescribed by ISO 10303-21:1994.

AI-ESTATE exchange files in the ISO 10303-21 format shall meet the “schema conformance”
requirements specified in ISO 10303-21:1994. Schema conformance shall be with respect to one of the AI-
ESTATE exchange schemas listed in 5.3.2, referred to as the governing schema of the file. In addition, the
data in the exchange file shall adhere to the semantic definitions and requirements specified for the
governing schema in Clause 6.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 10 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Given this exchange format, an AI-ESTATE exchange file shall conform to exactly one AI-ESTATE
schema, the data in the exchange file shall exist in a single DATA section in the file, and the data in the file
shall constitute a “valid population” for the schema. That is, one cannot aggregate data that conforms to
different schemas into a single exchange file, nor can one split exchange data across multiple files.

The header of the exchange file shall also identify the unique object identifier of the governing AI-
ESTATE schema, using the syntax described in ISO 10303-21:1994. Annex E of this standard lists the
globally unique object identifiers assigned to exchange schemas in this version of AI-ESTATE. The object
identifier unambiguously identifies the governing AI-ESTATE schema including its version.

5.1.2 ISO 10303-28 exchange format

AI-ESTATE exchange files that use the ISO 10303-28 format shall use the version: ISO 10303-28:2007.
This version of ISO 10303-28:2007 provides a great deal of flexibility in how data is mapped to exchange
files. To preserve harmony with the ISO 10303-21 exchange format, exchange files that use the
ISO 10303-28 format shall adhere to the following constraints:

� AI-ESTATE exchange files in the ISO 10303-28 format shall meet the “iso-10303-28
document” conformance class requirements defined in ISO 10303-28:2007.

� Using the syntax prescribed in ISO 10303-28:2007, the exchange file shall specify exactly one
AI-ESTATE EXPRESS schema that governs all of the data in the file.

� Using the syntax prescribed in ISO 10303-28:2007, the exchange file shall indicate that the
entity of data in the file constitutes a “valid population” for the governing AI-ESTATE schema.
The file shall not contain data that is not in the population. No subset of the population shall be
external to the file.

� The exchange file shall contain exactly one “substitute unit of serialization (UOS) element” that
contains all the data that are being exchanged.

� The data in the substitute UOS element shall adhere to the “default mapping” from EXPRESS to
XML defined in iso-10303-28.

The data in the ISO 10303-28 formatted exchange file shall be governed by one of the AI-ESTATE
EXPRESS exchange schemas listed in Clause 6, referred to as the governing schema. In addition, the data
in the exchange file shall adhere to the semantic definitions and requirements specified for the governing
schema in Clause 6.

AI-ESTATE exchange files in the ISO 10303-28 format shall indicate the target namespace for the data in
the file using the syntax specified in ISO 10303-28:2007. The target namespace shall correspond to the
governing AI-ESTATE schema. Annex F lists the namespaces assigned to the AI-ESTATE schemas. The
namespace unambiguously identifies the governing AI-ESTATE schema and version.

In addition to validation with respect to the governing AI-ESTATE EXPRESS schema, ISO 10303-28:2007
requires XML validation with respect to a “derived XML schema,” which is an XML schema that is
derived from the governing EXPRESS schema according to rules specified in ISO 10303-28:2007. Derived
XML schemas for AI-ESTATE are available on the Internet at
http://standards.ieee.org/downloads/1232/1232-2010. Alternatively, users may generate a derived XML
schema using the default mapping rules in ISO 10303-28:2007. The derived XML schemas necessarily
import several XML schemas that are defined within the ISO 10303-28:2007 standard; these are not
available from the IEEE download site.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 11 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

5.2 Extensibility

Users of AI-ESTATE may utilize native formats that contain information beyond what is specified by this
standard and may recast their native model formats to standard AI-ESTATE format for purposes of
conformant exchange. Should extensions be exchanged, an EXPRESS schema shall define those
extensions. That schema shall extend an existing AI-ESTATE schema, but shall not redefine concepts that
have been defined in the standard EXPRESS schemas. Extensions to AI-ESTATE model entities and newly
defined entities will not be recognized as conforming to the standard.

Any application can provide services beyond those defined in this standard and should adhere to the status
codes defined in 7.2. These services will not be recognized as conforming to the standard.

Any implemented extensions shall be fully documented to include EXPRESS schemas. All documentation
and schemas shall be submitted to the recipient of the data and should also be submitted to the
IEEE SCC20 DMC subcommittee.

5.3 Conformance

This subclause defines the requirements for conformance with this standard for diagnostic reasoner
application services as well as exchange model instances.

5.3.1 Diagnostic reasoner application services

Diagnostic reasoner applications shall be conformant to all required services in Clause 7. Applications shall
also document any deviations from conformance for the benefit of interoperability.

A conformant diagnostic reasoner shall consume conformant exchange model instances of at least one of
the BNM, DIM, DLM, and FTM in addition to the CEM. A conformant diagnostic reasoner shall also
produce and consume conformant exchange model instances of the DCM as specified in Clause 6. The
reasoner shall be able to consume all required and optional model elements. The reasoner shall also be able
to consume extended model instances that conform to 5.2. The reasoner may ignore any such extensions. A
conformant exchange model instance is defined in 5.3.2.

5.3.2 Exchange model instances

A file shall conform as an exchange model instance for this standard if it satisfies all the following
conditions:

� The data set encoded in the file conforms as specified in ISO 10303-11:1994 to one of the
EXPRESS information models defined within this standard, designated the governing schema
for the instance: BNM,DIM, DLM, FTM, or DCM (each of which includes the CEM).

� The data set in the file consists of a valid instantiation of a single governing schema (i.e., the
data set will validate against the governing schema).

� Any extensions represented in the file conform to 5.2.

� The data set in the file adheres to the semantic definitions of the governing schema.
The file is encoded in one of the exchange formats specified in 5.1 per the requirements specified Clause 5.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 12 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

6. Models

This clause contains the specifications for all of the information models used within an AI-ESTATE
framework. Each of the models is defined using EXPRESS. A brief overview of EXPRESS and EXPRESS-
G can be found in Annex B.

(* EXPRESS Specification starts here. *)

(*

6.1 AI_ESTATE_CEM

The AI-ESTATE Common Element Model information model permits the definition of the form and
relationships of systems under test and tests at their most basic level. The CEM defines data types and
relationships that are common to all static reasoner models within AI-ESTATE. The CEM itself is not an
exchange model schema. Rather, the other static model information models import and extend the CEM to
add the essential logic for generating diagnostic conclusions. The CEM schema is also interfaced into the
DCM information model. See 6.6 for a description how the CEM plays a role in the DCM.

NOTE—One may think of the CEM as the supertype of the static model information models.7

Principal components include system items (which are subtyped as repair items and function items), actions
(which are subtyped as tests and repairs), and diagnoses (which are subtyped as faults and failures). The
common element information model also permits the specification of cost and failure rate information. The
information specified in the common element information model is intended to provide the fundamental
elements for diagnostics models that are defined as additional information models.

The CEM does not act as an exchange mechanism by itself. However, the data types defined in the CEM
are used by the other EXPRESS schemas within this standard. The data types defined in the CEM are
common to multiple other EXPRESS schemas, thus resulting in their definition here. For example, the
CEM defines DiagnosticModel, which is a supertype to all of the technology-specific diagnostic models
(e.g., fault tree).

EXPRESS specification:

*)
SCHEMA AI_ESTATE_CEM;
(*

6.1.1 CONSTANT

EXPRESS specification:

*)
CONSTANT

NoFault : STRING := 'No Fault';
END_CONSTANT;

(*

A constant corresponding to a special diagnosis indicating there is no fault. This constant is used with the
associated name attribute of the no-fault diagnosis. With this diagnosis, associated outcomes have different
semantics from those specified with the outcome values themselves. Specifically, GOOD means the

7 Notes in text, tables, and figures of a standard are given for information only and do not contain requirements needed to implement
this standard.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 13 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

reasoner has conclusive evidence that there is no fault, BAD means the reasoner has evidence that at least
one fault is present, CANDIDATE means the reasoner has evidence that no fault is present but the evidence
is not conclusive, NOTKNOWN means the reasoner has negligble evidence or conflicting evidence about
whether or not any fault is present, and USERDEFINED is unspecified for this diagnosis.

6.1.2 ConfidenceValue

Type ConfidenceValue defines a type for specifying a numeric representation for the degree of certainty in
the validity of some value or relation between 0 and 1, where 0 is absolute uncertainty and 1 is absolute
certainty. The actual application of confidence values is implementation specific.

EXPRESS specification:

*)
TYPE ConfidenceValue = REAL;
WHERE

range : (0.0 <= SELF) AND (SELF <= 1.0);
END_TYPE;

(*

Formal propositions:

range Proposition range ensures the range of legal values for confidence is restricted, and the
actual value is restricted to lie within this legal range.

6.1.3 CostValue

Type CostValue defines a type for representing a numerical expense or penalty.

EXPRESS specification:

*)
TYPE CostValue = REAL;
END_TYPE;

(*

6.1.4 DescriptionType

Type DescriptionType defines a type used to provide descriptive text for an entity within the model.

EXPRESS specification:

*)
TYPE DescriptionType = STRING;
END_TYPE;

(*

6.1.5 DistributionPoint

Type DistributionPoint defines a real-valued data type for representing a specific value at a specific point in
time in a probability distribution.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 14 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

EXPRESS specification:

*)
TYPE DistributionPoint = REAL;
WHERE

nonNegative : (SELF >= 0.0);
END_TYPE;

(*

Formal propositions:

nonNegative Proposition nonNegative ensures that the distribution point is greater than or equal to
0.

6.1.6 FailureRate

Type FailureRate defines a single values corresponding to the static failure rate associated with a particular
fault or failure. The failure rate shall be specified “per million hours.”

EXPRESS specification:

*)
TYPE FailureRate = DistributionPoint;
END_TYPE;

(*

6.1.7 NameType

Type NameType defines a type used to provide an identifying name for an entity within the model. The
name is an identifier that is also human readable.

EXPRESS specification:

*)
TYPE NameType = STRING;
END_TYPE;

(*

6.1.8 ProbabilityValue

Type ProbabiltyValue defines a real-value constrained to be in the range 0 ... 1 that represents the
probability of occurrence of some event.

EXPRESS specification:

*)
TYPE ProbabilityValue = REAL;
WHERE

validRange : ((0.0 <= SELF) AND (SELF <= 1.0));
END_TYPE;

(*

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 15 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Formal propositions:

validRange Proposition validRange ensures the value is restricted to be in the range 0 ... 1.

6.1.9 QualifierType

Type QualifierType defines a string qualifier for providing a finer grained specification of test outcomes.
As a string, it permits application-specific labels to be used.

EXPRESS specification:

*)
TYPE QualifierType = STRING;
END_TYPE;

(*

6.1.10 TimeValue

Type TimeValue defines a real-valued data type for indicating the time at which some event occurs relative
to some initial or prior time.

EXPRESS specification:

*)
TYPE TimeValue = REAL;
WHERE

nonNegative : (SELF >= 0.0);
END_TYPE;

(*

Formal propositions:

nonNegative Proposition nonNegative ensures that the time value is not less than zero.

6.1.11 ActionCostType

Enumerated type ActionCostType defines a type for categorizing the expense or penalty associated with the
cost of an action in the diagnostic process. Current enumerated values include the following:

USER_DEFINED_COST : an unspecified application-specific cost

PERFORMANCE : the expense to execute the action

SETUP : the expense to prepare for the action

ACCESS : the expense associated with entry to the location where the action is to

be performed

REENTRY : the expense to access a location where the action is to be performed
given the same action was previously performed within the current
session

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 16 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

CONSUMABLE : the expense associated with replenishable material

ROTABLE : the expense associated with in-place repairs to equipment

REPAIRABLE : the expense associated with items that are repaired and returned to
inventory

EXPRESS specification:

*)
TYPE ActionCostType = ENUMERATION OF

(USER_DEFINED_COST,
PERFORMANCE,
SETUP,
ACCESS,
REENTRY);

END_TYPE;
(*

6.1.12 NonTimeUnit

Enumerated type NonTimeUnit defines legal units for costs other than time. Non-time costs are typically
incurred in terms of monetary amounts, skill level, training, or counts of some expendable; however, the
user-defined value allows for other types of non-time costs to be included.

EXPRESS specification:

*)
TYPE NonTimeUnit = ENUMERATION OF

(USER_DEFINED_NON_TIME,
COUNT,
CURRENCY,
SKILL,
TRAINING);

END_TYPE;
(*

6.1.13 OutcomeValues

Enumerated type OutcomeValues provides a list of legal outcomes for actions, tests, and diagnoses.

Aborted : Serves as a constant for action outcomes indicating an action was attempted but not
completed.

Bad : Serves as a constant for outcomes indicating a bad or negative state. Specifically, the
reasoner has test evidence indicating the associated diagnosis is present.

Candidate : Serves as a constant for outcomes indicating a candidate state. Specifically, there is no
test evidence indicating the associated diagnosis is not present, and there is test
evidence to suspect the associated diagonsis might be present. As a member of a set of
candidate diagnosis, the set should be interpreted as a disjoint group where any one or
more of the candidates is present. The distinction between Candidate and Bad is that
Candidate diagnoses form a disjoint set, where any one diagnosis being present would
explain the test results. Bad diagnoses do not form a disjoint set. Each Bad diagnosis is
believed to be present.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 17 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Completed : Serves as a constant for action outcomes indicating the action completed without error.

Fail : Serves as a constant for outcomes indicating a failed result.

Good : Serves as a constant for outcomes indicating a good or positive state. Specifically, the

reasoner has test evidence indicating the associated diagnosis is not present.

NotAvailable : Serves as a constant for outcomes indicating the associated outcome is not available.

NotKnown : Serves as a constant for outcomes indicating the associated outcome is not known.
Specifically, this corresponds to the situation where the reasoner has negligible or
conflicting evidence related to this diagnosis.

NotStarted : Serves as a constant for action states (i.e., outcomes) indicating the associated action

has not been initiated.

Pass : Serves as a constant for outcomes indicating a passed result.

UserDefined : Serves as a constant for outcomes indicating a user-defined result. The semantics for

this constant are application/model-specific.

EXPRESS specification:

*)
TYPE OutcomeValues = ENUMERATION OF

(ABORTED,
BAD,
CANDIDATE,
COMPLETED,
FAIL,
GOOD,
NOTAVAILABLE,
NOTKNOWN,
NOTSTARTED,
PASS,
USERDEFINED);

END_TYPE;
(*

6.1.14 ResourceCostType

Enumerated type ResourceCostType defines a type for categorizing the expense or penalty associated with
the cost of an action in the diagnostic process. Current enumerated values include the following:

USER_DEFINED_COST : an unspecified application-specific cost

PERFORMANCE : the expense to execute the action

SETUP : the expense to prepare for the action

ACCESS : the expense associated with entry to the location where the action is to be
performed

REENTRY : the expense to access a location a location where the action is to be
performed given the same action was previously performed within the
current session

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 18 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

CONSUMABL : the expense associated with replenishable material

ROTABLE : the expense associated with in-place repairs to equipment

REPAIRABLE : the expense associated with items that are repaired and returned to

inventory

EXPRESS specification:

*)
TYPE ResourceCostType = ENUMERATION OF

(USER_DEFINED_COST,
CONSUMABLE,
ROTABLE,
REPAIRABLE);

END_TYPE;
(*

6.1.15 Role

Enumerated type Role defines the objective of an operation, mission, or test scenario.

EXPRESS specification:

*)
TYPE Role = ENUMERATION OF

(TRAINING,
VERIFICATION,
SCHEDULED_MAINTENANCE,
MAINTENANCE_ACTION,
READY_FOR_ISSUE,
USER_DEFINED_ROLE);

END_TYPE;
(*

6.1.16 SeverityCategory

Enumerated type SeverityCategory is used to assign one of four standard values to the severity attribute.
Values assigned are one of CATASTROPHIC, CRITICAL, MARGINAL, or MINOR (in decreasing order
of severity). Note that this can be used in conjunction with failure probability information (derived from
failure rate) to determine the criticality of a diagnosis.

EXPRESS specification:

*)
TYPE SeverityCategory = ENUMERATION OF

(CATASTROPHIC,
CRITICAL,
MARGINAL,
MINOR);

END_TYPE;
(*

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 19 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

6.1.17 TimeBaseline

Enumerated type TimeBaseline identifies the reference point for determining usage time. Valid values
include the following:

INITIAL_OPERATION : indicates the time is determined relative to when the system item

was first placed into service

PRIOR_INSPECTION : indicates the time is determined relative to when the system item

last underwent an inspection or operational evaluation

PRIOR_MAINTENANCE : indicates the time is determined relative to when the system item

last underwent either scheduled or unscheduled maintenance

PRIOR_REVISION : indicates the time is determined relative to when the system item

last underwent a significant engineering modification

UNSPECIFIED : indicates the time basis is not known

EXPRESS specification:

*)
TYPE TimeBaseline = ENUMERATION OF

(INITIAL_OPERATION,
PRIOR_INSPECTION,
PRIOR_MAINTENANCE,
PRIOR_REVISION,
UNSPECIFIED);

END_TYPE;
(*

6.1.18 TimeUnit

Enumerated type TimeUnits specifies units of time. The user-defined value allows for other types of time
costs to be included.

EXPRESS specification:

*)
TYPE TimeUnit = ENUMERATION OF

(USER_DEFINED_TIME,
HOURS,
MINUTES,
SECONDS,
MSEC,
USEC,
NSEC,
PSEC);

END_TYPE;
(*

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 20 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

6.1.19 FailureDistribution

Select Type FailureDistribution enables selection between a simple failure rate designation and a full
probability distribution for determining probability of failure.

EXPRESS specification:

*)
TYPE FailureDistribution = SELECT

(FailureRate,
ProbabilityDistribution);

END_TYPE;
(*

6.1.20 Action

Entity Action represents a specific action taken in support of either testing or repairing an item. Actions are
the primary entities to which costs are assigned. Ultimately, the diagnosis and repair processes are
concerned with optimizing the sequence of actions required to return a unit to service. Test and repair are
both processes that are hierarchical in nature and composed of atomic actions. This relationship provides
the organizing structure for this assertion.

EXPRESS specification:

*)
ENTITY Action

SUPERTYPE OF (ONEOF(Repair, Test));
name : NameType;
description : DescriptionType;
subAction : OPTIONAL SET [1:?] OF Action;
allowedStatus : OPTIONAL LIST [2:?] OF UNIQUE ActionOutcome;
hasCost : OPTIONAL SET [1:?] OF Cost;
category : OPTIONAL ActionCostType;
requiredResource : OPTIONAL SET [1:?] OF Resource;
mustOccurIn : SET OF ContextState;

INVERSE
partOfModel : DiagnosticModel FOR modelAction;
partOf : SET OF Action FOR subAction;

UNIQUE
oneName : name;

WHERE
graphIsAcyclic : NOT(EXISTS(SELF.subAction)) OR

actionDag(SELF,subAction);
uniqueCostLabels : NOT(EXISTS(hasCost)) OR

costLabelUnique(hasCost);
END_ENTITY;

(*

Attribute definitions:

name : Attribute name provides a means for identifying the action.

description : Attribute description is used to provide an elaborated description of the action.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 21 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

subAction : Attribute subAction identifies the set of constituent actions of which this
Action is composed.

allowedStatus : Attribute allowedStatus identifies the list of possible states of the action.

hasCost : Attribute hasCost identifies a set of cost entities that represents the expenses
assumed to be incurred if the action is performed. This attribute is optional with
a minimum cardinality of one, should it exist.

category : Attribute category specifies what type of action this is to determine the
associated cost.

requiredResource : Attribute requiredResource identifies the resources required to perform a given
action. This attribute is optional with a minimum cardinality of one, should it
exist.

mustOccurIn : Attribute mustOccurIn identifies a disjoint set of ContextState items, where any
one of them must be fulfilled for an Action to be considered. This attribute is
defined to be a set. If the set is empty, then the corresponding Action is
available in all ContextStates.

partOfModel : Attribute partOfModel identifies the DiagnosticModel to which the Action
belongs.

partOf : Attribute partOf identifies the set of actions that have the current action as a
subAction.

Formal propositions:

graphIsAcyclic Proposition graphIsAcyclic ensures that the structure of Action corresponds to
a directed acyclic graph. In other words, traversing the member relationships
from an Action should not result in returning to the same Action. This
constraint is verified by using the function actionDag, which traverses the
Action structure.

uniqueCostLabels Proposition uniqueCostLabels requires that the cost categories be unique.

6.1.21 ActionOutcome

Entity ActionOutcome defines an outcome to be associated with some action in the model. Action
outcomes associate Boolean values to action states and form the basis for ordering actions in the diagnostic
process.

EXPRESS specification:

*)
ENTITY ActionOutcome

SUBTYPE OF(Outcome);
INVERSE

forAction : Action FOR allowedStatus;
UNIQUE

outcomeKey : allowedValue,
forAction;

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 22 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

WHERE
legalValues : SELF\Outcome.allowedValue IN

[NotStarted, Completed, Aborted, NotKnown,
NotAvailable, UserDefined];

END_ENTITY;
(*

Attribute definitions:

forAction : Attribute forAction links the outcome to the specific action with that outcome.

Formal propositions:

legalValues Proposal legalValues specifies that an outcome can only have one of the associated
values.

6.1.22 ContextState

Entity ContextState is a container for other user-defined conditions of a diagnostic problem, including
system state, operational state, and the particular reason for performing diagnosis. Only one ContextState
can be active at a given time during a diagnostic session. This influences how context is modeling in the
static model.

EXPRESS specification:

*)
ENTITY ContextState;

name : NameType;
description : DescriptionType;
occursIn : SET OF ModeOfOperation;
hasPurpose : Purpose;

UNIQUE
oneName : name;

END_ENTITY;
(*

Attribute definitions:

name : Attribute name provides a unique identifier for a particular ContextState within the
model.

description : Attribute description provides a means of associating descriptive text with the
ContextState.

occursIn : Attribute occursIn identifies the relevant operational mode within which the
particular maintenance actions are being performed.

hasPurpose : Attribute hasPurpose identifies the purpose of actions performed in the given
ContextState.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 23 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

6.1.23 Cost

Entity Cost specifies the expense or penalty that is expected to be incurred relative to the performance of
some action. It is typically used as a metric for optimization via some objective function. Costs are
categorized by the type of cost to which they relate. One dimension of Cost identifies whether the cost is a
measure of time or some other unit. The second dimension to Cost is based on the task to which the cost
pertains: for time costs, performance, setup, access, reentry, and for non-time costs, consumable, rotable,
and repairable. Each cost has an associated unit to enable consistent processing of included values.

EXPRESS specification:

*)
ENTITY Cost

ABSTRACT SUPERTYPE OF (ONEOF(TimeCost, NonTimeCost));
upperBound : OPTIONAL CostValue;
lowerBound : OPTIONAL CostValue;
predictedValue : OPTIONAL CostValue;
costLabel : CostCategory;

WHERE
validBound : NOT(EXISTS(upperBound)) OR

NOT(EXISTS(lowerBound)) OR
(lowerBound <= upperBound);

validUpperBound : NOT(EXISTS(predictedValue)) OR
NOT(EXISTS(upperBound)) OR
(predictedValue <= upperBound);

validLowerBound : NOT(EXISTS(predictedValue)) OR
NOT(EXISTS(lowerBound)) OR
(lowerBound <= predictedValue);

boundOrValue : (EXISTS(predictedValue)) OR
(EXISTS(upperBound) AND EXISTS(lowerBound));

END_ENTITY;
(*

Attribute definitions:

upperBound : Attribute upperBound provides the nominal upper limit for the value of the cost
entity.

lowerBound : Attribute lowerBound provides the nominal lower limit for the value of the cost
entity.

predictedValue : Attribute predictedValue provides the nominal, expected, or some other predicted
value for the cost entity.

costLabel : Attribute costLabel provides a name and description for an implementation to
label like costs to be used for optimizing the test or repair process (e.g., all of the
costs associated with the skill level required to perform a test).

Formal propositions:

validBound When they exist, proposition validBound ensures the lowerBound and
upperBound attributes are constrained to values such that the value of the
lowerBound attribute is less than or equal to the upperBound attribute.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 24 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

validUpperBound When they exist, proposition validUpperBound ensures the predictedValue and
upperBound attributes are constrained to values such that the value of the
predictedValue attribute is less than or equal to the upperBound attribute.

validLowerBound When they exist, proposition validLowerBound ensures the predictedValue and
lowerBound attributes are constrained to values such that the value of the
lowerBound attribute is less than or equal to the predictedValue attribute.

boundOrValue Proposition boundOrValue requires that either a predictedValue be provided or
both upper and lower bounds be provided. Because the constraint uses an
inclusive-OR, all three may be provided.

6.1.24 CostCategory

Entity CostCategory defines the type or category of cost element being defined for the model. This entity
provides identifying information (name and description) for the cost metric. This entity permits
identification of a class of cost metrics to be used when determining optimization criteria for the reasoner to
follow. This is used with an entity in the DCM to select the cost-based optimization criteria.

EXPRESS specification:

*)
ENTITY CostCategory;

name : NameType;
description : DescriptionType;

INVERSE
specifiedCost : SET [1:?] OF Cost FOR costLabel;

UNIQUE
oneName : name;

END_ENTITY;
(*

Attribute definitions:

name : Attribute name provides a means for identifying the cost category.

description : Attribute description is used to provide an elaborated description of the cost
category.

specifiedCost : Attribute specifiedCost identifies the set of costs defined within a diagnostic model
belonging to the give category (e.g., all of the skill-level costs).

6.1.25 Diagnosis

Entity Diagnosis corresponds to a conclusion or group of conclusions to be drawn about a system or unit
under test. Diagnosis is a directed acyclic graph (not just a tree); therefore, any particular diagnosis can
belong to one or more higher level groups of diagnoses (e.g., belonging to one or more higher order
functions) and contain one or more lower level diagnoses (e.g., containing multiple subfunctions). At run
time, the outcome of a particular diagnosis is logically consistent as a roll up of the outcomes of its child
diagnoses such that if the parent diagnosis is good, then all child diagnoses must also be good. Similarly, if
any child diagnosis is a candidate, then so is the parent diagnosis. Interoperability is not assured in the
presence of user-defined outcomes without prior agreement on the associated inference rules.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 25 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

A Diagnosis that is neither a Fault nor a Failure and has no children indicates that the Diagnosis has not
been modeled to the level of detail of a Fault or Failure. It simple represents a conclusion that can be
drawn.

Some forms of diagnostic reasoning require the specification of an explicit NoFault diagnosis entity;
however, others would not work properly if such an entity were included. If the model includes a diagnosis
for NoFault, then that model shall use the “NoFault” constant in the name of that entity.

EXPRESS specification:

*)
ENTITY Diagnosis

SUPERTYPE OF (ONEOF(Failure, Fault));
name : NameType;
description : DescriptionType;
subGroup : OPTIONAL SET [1:?] OF Diagnosis;
allowedOutcomes : OPTIONAL LIST [2:?] OF UNIQUE

DiagnosisOutcome;
hasDistribution : OPTIONAL FailureDistribution;
severity : OPTIONAL SeverityCategory;
atIndentureLevel : OPTIONAL Level;
mustOccurIn : SET OF ContextState;

INVERSE
partOfModel : DiagnosticModel FOR modelDiagnosis;
memberOf : SET OF Diagnosis FOR subGroup;

UNIQUE
oneName : name;

WHERE
outcomesRequiredForAtomicDiagnosis : (EXISTS(SELF.subGroup)) OR

EXISTS(allowedOutcomes);
minimalOutcomes : (NOT(EXISTS(allowedOutcomes))) OR

((SIZEOF(QUERY(tmp <* allowedOutcomes |
 tmp.allowedValue = Good)) = 1) AND
 (SIZEOF(QUERY(tmp <* allowedOutcomes |
 tmp.allowedValue = Candidate)) = 1));

allOrNone : NOT(EXISTS(SELF.subGroup)) OR
((SIZEOF(QUERY(tmp <* subGroup |
EXISTS(hasDistribution))) =
SIZEOF(subGroup)) XOR
 (SIZEOF(QUERY(tmp <* subGroup |
EXISTS(hasDistribution))) = 0));

graphIsAcyclic : NOT(EXISTS(SELF.subGroup)) OR
diagnosisDag(SELF,subGroup);

parentLevelConsistent : ((NOT(EXISTS(subGroup)) OR
(SIZEOF(subGroup) = 0)) OR
 (NOT(EXISTS(atIndentureLevel)) AND
 (SIZEOF(QUERY(tmp <* subGroup |
EXISTS(tmp.atIndentureLevel))) = 0))
OR
 (EXISTS(atIndentureLevel) AND
 (SIZEOF(QUERY(tmp <* subGroup |
NOT(EXISTS(tmp.atIndentureLevel)))) =
0) AND
 (SIZEOF(QUERY(tmp <* subGroup |
(SELF.atIndentureLevel =

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 26 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

tmp.atIndentureLevel) OR
(EXISTS(SELF.atIndentureLevel.successo
r) AND
(SELF.atIndentureLevel.successor =
tmp.atIndentureLevel)))) =
 SIZEOF(SELF.subGroup))));

forNoFault : NOT(SELF.name = NoFault) OR
((SIZEOF(SELF.subGroup) = 0) AND
 (SIZEOF(SELF.memberOf) = 0) AND
 (NOT('AI_ESTATE_CEM.FAULT' IN
typeof(SELF))) AND
 (NOT('AI_ESTATE_CEM.FAILURE' IN
typeof(SELF))));

END_ENTITY;
(*

Attribute definitions:

name : Attribute name is used to identify the particular Diagnosis uniquely.

description : Attribute description is used to provide an elaborated explanation of the
Diagnosis.

subGroup : Attribute subGroup identifies the set of constituent diagnoses of which this
Diagnosis is a logically consistent roll up.

allowedOutcomes : Attribute allowedOutcomes provides a list of two or more allowable outcomes
of the diagnosis. It is a list because some specific diagnostic models require an
order to be imposed on the available outcomes. This attribute is shown to be
optional; however, it is constrained such that it is required if the diagnosis has no
member diagnoses.

hasDistribution : Attribute hasDistribution provides the failure distribution associated with the
given diagnosis. Failure distributions at any hierarchical level above the lowest,
if they exist, represent user-implemented aggregates of subGroup failure
distributions.

severity : Attribute severity associates a level of severity for the given diagnosis. This
attribute is optional because not all models need to use this information.
Criticality can be derived by selecting all of the diagnoses at a particular severity
level and then ranking them by their failure probabilities, which are derived
from the failure rates.

atIndentureLevel : Attribute atIndentureLevel identifies the specific level of indenture for a
particular Diagnosis.

mustOccurIn : Attribute mustOccurIn provides a disjoint set of ContextState items, where any
one of them must be fulfilled for an Diagnosis to be considered. This attribute is
defined to be a set. If the set is empty, then the corresponding Diagnosis is
available in all ContextStates.

partOfModel : Attribute partOfModel identifies the DiagnosticModel to which the Diagnosis
belongs.

memberOf : Attribute memberOf identifies the set of diagnoses that have the current
Diagnosis as a parent group.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 27 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Formal propositions:

outcomesRequiredForAtomicDiagnosis Proposition outcomesRequiredForAtomicDiagnosis
determines whether or not outcomes are associated with a
diagnosis and requires that an atomic diagnosis (i.e., a
diagnosis for which there are no subdiagnoses) have
outcomes. The cardinality on the DiagnosisOutcome set
ensures that, should outcomes exist, there are at least two
of them. Note that nonatomic diagnoses are permitted, but
not required, to have diagnostic outcomes.

minimalOutcomes Proposition minimalOutcomes requires that either the set
of outcomes not be defined, or that the set of outcomes
include, at a minimum, exactly one outcome of value
GOOD and exactly one outcome of value CANDIDATE.

allOrNone Proposition allOrNone ensures that either all of the
children have a failure distribution associated or none of
the children have a failure distribution associated.

graphIsAcyclic Proposition graphIsAcyclic ensures the structure of
Diagnosis corresponds to a directed acyclic graph. In other
words, traversing the member relationships from a
Diagnosis should not result in returning to the same
Diagnosis. This constraint is verified by using the function
diagnosisDag, which traverses the Diagnosis structure.

parentLevelConsistent Proposition parentLevelConsistent ensures that one of the
following shall be true: 1) there are no child Diagnoses,
2) no indenture levels exist for this Diagnosis and its
children, or 3) the indenture levels are consistent for this
Diagnosis and its children. Specifically, the constraint is
imposed that the level of the child Diagnosis shall be the
same as the current Diagnosis or shall be successors to the
current level.

forNoFault Proposition forNoFault requires that if a NoFault diagnosis
is present, then that diagnosis has no parents, no children,
is not a fault, and is not a failure.

6.1.26 DiagnosisOutcome

Entity DiagnosisOutcome defines one possible discrete outcome associated with a diagnosis entity in the
model. For each diagnosis, a set of three outcomes are defined for use by the diagnostic reasoner. More
diagnosisOutcomes can be associated with a diagnosis if user-defined extensions are required (e.g., adding
suspect or bad).

EXPRESS specification:

*)
ENTITY DiagnosisOutcome

SUBTYPE OF(Outcome);
INVERSE

forDiagnosis : Diagnosis FOR allowedOutcomes;

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 28 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

UNIQUE
outcomeKey : allowedValue,

forDiagnosis;
WHERE

legalValues : SELF\Outcome.allowedValue IN
[Good, Candidate, Bad, NotKnown, UserDefined];

END_ENTITY;
(*

Attribute definitions:

forDiagnosis : Attribute forDiagnosis links the outcome to the specific diagnosis with that
outcome.

Formal propositions:

legalValues Proposition legalValues specifies that an outcome can only have one of the
associated values, where the semantics for the values are defined as follows:

GOOD : The reasoner has test evidence (i.e., at least one test
outcome supporting the diagnosis) indicating the
associated diagnosis is not present.

BAD : The reasoner has test evidence indicating the associated
diagnosis is present.

CANDIDATE : The reasoner has test evidence indicating the diagnosis
may be present, although the test evidence is also
consistent with either some other diagnosis being
present instead of this one or a conjoint set of multiple
diagnoses being present that does not include this one.

NOT_KNOWN : The reasoner has negligible test evidence related to this
diagnosis.

USER_DEFINED : Unspecified.

6.1.27 DiagnosticModel

Entity DiagnosticModel provides a container of the elements that provide information for diagnosing a
system under test. Diagnostic reasoning involves drawing conclusions from test outcomes. The
relationships between test outcomes and diagnoses are defined as subtypes of this entity in related schemas
within this standard.

EXPRESS specification:

*)
ENTITY DiagnosticModel;

name : NameType;
description : DescriptionType;
modelItem : SET [1:?] OF SystemItem;

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 29 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

modelAction : SET [1:?] OF Action;
modelDiagnosis : SET [2:?] OF Diagnosis;
systemUnderTest : SystemItem;

UNIQUE
oneName : name;

WHERE
elementIsRollup : itemRollup(SELF,SELF.modelItem) AND

actionRollup(SELF,SELF.modelAction) AND
diagnosisRollup(SELF,SELF.modelDiagnosis);

atLeastOneTest : (SIZEOF(QUERY(tmp <* modelAction |
'AI_ESTATE_CEM.TEST' in TYPEOF(tmp))) >= 1);

systemInModel : (systemUnderTest IN modelItem);
noParent : SIZEOF(SELF.systemUnderTest.partOf) = 0;

END_ENTITY;
(*

Attribute definitions:

name : Attribute name provides a means for identifying the DiagnosticModel.

description : Attribute description is used to provide an elaborated description of the
DiagnosticModel.

modelItem : Attribute modelItem identifies the various SystemItems in the diagnostic
model.

modelAction : Attribute modelAction identifies the various actions in a diagnostic model.
At least one action must exist corresponding to at least one Test.

modelDiagnosis : Attribute modelDiagnosis identifies the various diagnoses in a diagnostic
model. At least two diagnoses must exist; otherwise, diagnosis is trivial.

systemUnderTest : Attribute systemUnderTest identifies the top-level SystemItem that is the
object of diagnosis for the DiagnosticModel.

Formal propositions:

elementIsRollup Proposition elementIsRollup verifies that all of the SystemItem, Action, and
Diagnosis entities referenced at this level are defined as being part of this
model.

atLeastOneTest Proposition atLeastOneTest ensures that a diagnostic model has at least one
test entity.

systemInModel Proposition systemInModel ensures that the systemUnderTest is listed as a
SystemItem that is “partOf” the model.

noParent Proposition noParent ensures that the systemUnderTest for the
DiagnosticModel has no parent SystemItems.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 30 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

6.1.28 Failure

Entity Failure is a subtype of Diagnosis tied to a FunctionItem and corresponds to a manifestation of a fault
within a system. When considering a functional model, it is the failure of the system under test to perform
some intended function.

EXPRESS specification:

*)
ENTITY Failure

SUBTYPE OF(Diagnosis);
failedItem : OPTIONAL FunctionItem;

INVERSE
physicalCause : SET OF Fault FOR causedFailure;

END_ENTITY;
(*

Attribute definitions:

failedItem : Attribute failedItem identifies the specific FunctionItem that has failed.

physicalCause : Inverse attribute physicalCause identifies the physical fault leading to the given
failure. The minimum cardinality of zero indicates that the cause–effect
relationship between fault and failure may not be known.

6.1.29 FailureMechanism

Entity FailureMechanism is used to describe the underlying first principle cause for a fault or failure. It is
associated first with the diagnosis then (by way of the appropriate diagnosis subtype) to the RepairItem or
FunctionItem that has failed.

EXPRESS specification:

*)
ENTITY FailureMechanism;

name : NameType;
description : DescriptionType;

UNIQUE
oneName : name;

END_ENTITY;
(*

Attribute definitions:

name : Attribute name is used to identify uniquely the FailureMechanism.

description : Attribute description is used to provide an elaborated explanation of the
FailureMechanism.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 31 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

6.1.30 Fault

Entity Fault is a subtype of Diagnosis associated with a RepairItem and corresponds to a physical cause of
anomalous behavior within a system.

EXPRESS specification:

*)
ENTITY Fault

SUBTYPE OF(Diagnosis);
causedFailure : OPTIONAL SET OF Failure;
failedItem : OPTIONAL RepairItem;
rootCause : OPTIONAL SET [1:?] OF FailureMechanism;

WHERE
faultsAtRepairItemLeaf : NOT(EXISTS(failedItem)) OR

NOT(EXISTS(failedItem.subassembly));
faultAtFailureLeaf : NOT(EXISTS(causedFailure)) OR

(SIZEOF(causedFailure) = 0) OR
(SIZEOF(QUERY(tmp <* causedFailure |
 EXISTS(tmp.subGroup)))=0);

faultAtLeaf : NOT(EXISTS(subGroup));
END_ENTITY;

(*

Attribute definitions:

causedFailure : Attribute causedFailure identifies zero or more associated functional failures
caused by the presence of the given physical fault. The minimum cardinality of
zero indicates that the failure may not be observable or that the cause–effect
relationship may not be known.

failedItem : Attribute failedItem identifies the specific RepairItem that contains the associated
Fault.

rootCause : Attribute rootCause identifies the first principle failure mechanisms associated
with this diagnosis.

Formal propositions:

faultsAtRepairItemLeaf Proposition faultsAtRepairItemLeaf requires that faults occur only at the
bottom of the repair item hierarchy.

faultAtFailureLeaf Proposition faultAtFailureLeaf ensures that the caused failure is at the
bottom of the failure hierarchy.

faultAtLeaf Proposition faultAtLeaf ensures that faults only occur at the leaves of the
diagnosis directed acyclic graph.

6.1.31 FunctionItem

Entity FunctionItem represents a node in a functional/behavioral decomposition of a system. The
parent/child relationships of FunctionItem should represent the decomposition hierarchy.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 32 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

EXPRESS specification:

*)
ENTITY FunctionItem

SUBTYPE OF(SystemItem);
SELF\SystemItem.subAssembly : OPTIONAL SET [1:?] OF

FunctionItem;
INVERSE

implementedBy : SET OF RepairItem FOR includesFunction;
failsAs : SET [1:?] OF Failure FOR failedItem;

END_ENTITY;
(*

Attribute definitions:

subAssembly : Attribute subAssembly redeclares the inherited SELF\SystemItem.subAssembly
attribute to ensure that children are of the same type (i.e., children are also
FailureItems).

implementedBy : Inverse attribute implementedBy identifies the repair item or items used to
implement a particular function within a system.

failsAs : Inverse attribute failsAs identifies the specific set of Diagnoses for the
SystemItem.

6.1.32 Level

Entity Level provides a mechanism for grouping Actions, Diagnoses, and SystemItems at some common
slice of the hierarchy.The specification of levels is model-specific except that a level is constrained to be
related to at most one predecessor level and at most one successor level in a total order.

EXPRESS specification:

*)
ENTITY Level;

name : NameType;
description : DescriptionType;
successor : OPTIONAL Level;

INVERSE
predecessor : SET [0:1] OF Level FOR successor;

UNIQUE
oneName : name;

WHERE
noRepeats : levelsAcyclic(SELF);

END_ENTITY;
(*

Attribute definitions:

name : Attribute name specifies a unique name for the Level of the SystemItem and
Diagnosis entities. This attribute is intended to provide a means of identifying Levels
for purposes of determining applicability of tests, diagnoses, etc. within the model.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 33 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

description : Attribute description is used to provide an elaborated explanation of the Level.

successor : Attribute successor identifies the next Level in the total order of Levels. This is
optional in that the final Level will not have a successor.

predecessor : Inverse attribute predecessor identifies the previous Level in the total order of Levels
when the previous Level exists.

Formal propositions:

noRepeats Proposition noRepeats tests to see whether the current entity has the same Level
appearing in the successor chain. If so, it creates a cycle in the Levels, which is illegal.

6.1.33 ModeOfOperation

Entity ModeOfOperation is a named representation of system state or operational state that contributes to
some ContextState that is relevant to the diagnostic process.

EXPRESS specification:

*)
ENTITY ModeOfOperation;

name : NameType;
description : DescriptionType;

UNIQUE
oneMode : name;

END_ENTITY;
(*

Attribute definitions:

name : Attribute name is a unique attribute used to identify the mode of operation.

description : Attribute description provides a textual description of the specific mode of
operation within which the system is being diagnosed.

6.1.34 NonTimeCost

Entity NonTimeCost is an expense that is represented in terms of currency or some nontemporal metric that
supports an objective function.

EXPRESS specification:

*)
ENTITY NonTimeCost

SUBTYPE OF(Cost);
nonTimeCostUnit : NonTimeUnit;
costRate : OPTIONAL Rate;

END_ENTITY;
(*

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 34 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Attribute definitions:

nonTimeCostUnit : Attribute nonTimeCostUnit defines the non-time units associated with the non–
time-related cost.

costRate : Attribute costRate provides a rate of expenditure for the specific non-time cost.
In other words, this attribute will provide the cost unit part of cost-per-unit-
time. If this attribute is present, this entity represents a cost rate. If absent, it
represents a fixed cost.

6.1.35 Outcome

Entity Outcome represents a legal discrete value to be associated with tests, diagnoses, or actions. These
values form the basis for directing the diagnostic process.

EXPRESS specification:

*)
ENTITY Outcome

ABSTRACT SUPERTYPE OF (ONEOF(DiagnosisOutcome, TestOutcome,
ActionOutcome));

maxConfidence : OPTIONAL ConfidenceValue;
allowedValue : OutcomeValues;

END_ENTITY;
(*

Attribute definitions:

maxConfidence : Attribute maxConfidence sets an inclusive upper bound on actual confidence
values for the outcome that can be observed or inferred during a session. The
upper bound constraint is in addition to constraints built into the type used for
actual confidence values: ConfidenceValue. The value of the bound is based
on the domain-specific characteristics of the outcome.

allowedValue : Attribute allowedValue defines a value that can belong to the specific
outcome based on the subtype instantiating the Outcome entity.

6.1.36 ProbabilityDistribution

Entity ProbabilityDistribution defines the key parameters for a generalized failure distribution. The intent is
to provide the means for representing the shape of any distribution and is constructed using a group of
synchronized lists. The synchronization is achieved using the timeStep attribute that specifies a relative
delta-t from the start of the sequence. The distribution definition includes a probability distribution function
(PDF) and a cumulative distribution function (CDF); however, the CDF can be derived from the PDF. To
support variable failure rates, a list of failure rates can be specified as well.

EXPRESS specification:

*)
ENTITY ProbabilityDistribution;

cdf : LIST [2:?] OF ProbabilityValue;
timeStep : LIST [2:?] OF TimeValue;

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 35 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

basis : TimeBaseline;
usageUnit : TimeUnit;
pdf : LIST [2:?] OF DistributionPoint;

WHERE
synchronizedLists : (SIZEOF(timeStep)=SIZEOF(pdf))

AND (SIZEOF(timeStep)=SIZEOF(cdf));
validStartTime : (timeStep[1]=0.0);
validStartCDF : (cdf[1]=1.0);
increasingTime : increasingTimeCheck(timeStep);
decreasingCDF : decreasingCdfCheck(cdf);
validCDFIntegration : cdfIntCheck(timeStep,pdf,cdf);

END_ENTITY;
(*

Attribute definitions:

cdf : Attribute cdf provides a list of values corresponding to an approximation of one minus
the cumulative density function for the associated distribution.

timeStep : Attribute timeStep identifies the point in time at which the corresponding distribution
value is associated.

basis : Attribute basis provides the basis or foundation upon which the usage time is
determined.

usageUnit : Attribute usageUnit specifies the units for the time step of the probability distribution.
Specifically, the units are per usageUnit.

pdf : Attribute pdf defines a list of values in order of increasing time providing an
approximation of the probability density function for the associated failure distribution.

Formal propositions:

synchronizedLists Proposition synchronizedLists verifies that cdf, pdf, failureRate, and timeStep
lists are of equal size.

validStartTime Proposition validStartTime verifies that the first value in the timeStep list is 0.

validStartCDF Proposition validStartCDF verifies that the first value in the cdf list is 1.

increasingTime Proposition increasingTime verifies that the timeStep list is monotonically
increasing.

decreasingCDF Proposition decreasingCDF verifies that the cdf list is monotonically
nonincreasing.

validCDFIntegration Proposition validCDFIntegration verifies that the cdf list is plausibly an
integral of the pdf.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 36 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

6.1.37 Purpose

Entity Purpose specifies the reason for an associated action.

EXPRESS specification:

*)
ENTITY Purpose;

hasRole : SET [1:?] OF Role;
description : DescriptionType;

END_ENTITY;
(*

Attribute definitions:

hasRole : Attribute hasRole identifies the associated role of the ContextState within which
test/diagnosis is occurring. For example, the role may be a maintenance test or a
verification test.

description : Attribute description provides a textual description of the purpose of the
ContextState.

6.1.38 Rate

Entity Rate defines a ratio of notTimeCost to some timeUnit. It can be used, for example, to specify labor
rates, rental rates, or other costs per time unit (e.g., dollars per 100 h).

EXPRESS specification:

*)
ENTITY Rate;

timeCostUnit : TimeUnit;
unitMultiplier : CostValue;

END_ENTITY;
(*

Attribute definitions:

timeCostUnit : Attribute timeCostUnit provides the time units for computing the cost rate. In
other words, this attribute will provide the time part of cost-per-unit-time.

unitMultiplier : Attribute unitMultiplier provides a divisor for the Rate, thus permitting values
other than unity.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 37 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

6.1.39 Repair

Entity Repair is an action required to restore a RepairItem.

EXPRESS specification:

*)
ENTITY Repair

SUBTYPE OF(Action);
SELF\Action.subAction : OPTIONAL SET [1:?] OF Repair;

END_ENTITY;
(*

Attribute definitions:

subAction : Attribute subAction redeclares the inherited SELF\Action.subAction attribute to
ensure that children are of the same type (i.e., children are also Repairs).

6.1.40 RepairItem

Entity RepairItem refers to a part of the system under test on which a maintenance action can be performed
as the result of a diagnosis.

EXPRESS specification:

*)
ENTITY RepairItem

SUBTYPE OF(SystemItem);
includesFunction : OPTIONAL SET [1:?] OF FunctionItem;
repairedBy : SET OF Repair;
SELF\SystemItem.subAssembly : OPTIONAL SET [1:?] OF RepairItem;

INVERSE
failsAs : SET [1:?] OF Fault FOR failedItem;

END_ENTITY;
(*

Attribute definitions:

includesFunction : Attribute includesFunction identifies the FunctionItems that the RepairItem
plays a role in implementing. Each RepairItem may implement multiple
FunctionItems, and multiple RepairItems may play a role in implementing a
FunctionItem.

repairedBy : Attribute repairedBy identifies a (possibly empty) set of repairs available to
repair a given repair item.

subAssembly : Attribute subAssembly redeclares the inherited
SELF\SystemItem.subAssembly attribute to ensure that children are of the
same type (i.e., children are also RepairItems).

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 38 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

failsAs : Inverse attribute failsAs identifies the set of specific Faults for the
RepairItem. A rule is defined on Fault to forbid RepairItems anywhere but at
leaves.

6.1.41 Resource

Entity Resource refers to an asset required to perform some action in the maintenance process (e.g., a piece
of equipment or personnel).

EXPRESS specification:

*)
ENTITY Resource;

name : NameType;
hasCost : OPTIONAL SET [1:?] OF Cost;
category : ResourceCostType;

UNIQUE
oneName : name;

END_ENTITY;
(*

Attribute definitions:

name : Attribute name provides a unique, identifying name for the resources.

hasCost : Attribute hasCost associates a set of costs with this particular resource.

category : Attribute category specifies what type of resource this is to determine the associated cost.

6.1.42 SystemItem

Entity SystemItem is an abstract supertype corresponding to a system RepairItem or FunctionItem that is
the object of the diagnostic process.

EXPRESS specification:

*)
ENTITY SystemItem

ABSTRACT SUPERTYPE OF (ONEOF(RepairItem, FunctionItem));
name : NameType;
description : DescriptionType;
subAssembly : OPTIONAL SET [1:?] OF SystemItem;
hasDistribution : OPTIONAL FailureDistribution;
atIndentureLevel : OPTIONAL Level;
mustOccurIn : SET OF ContextState;
testedBy : SET OF Test;

INVERSE
modelForSystem : SET [0:1] OF DiagnosticModel FOR

systemUnderTest;
partOfModel : DiagnosticModel FOR modelItem;
partOf : SET OF SystemItem FOR subAssembly;

UNIQUE

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 39 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

oneName : name;
WHERE

allOrNone : NOT(EXISTS(SELF.subassembly)) OR
((SIZEOF(QUERY(tmp <* subAssembly |
EXISTS(hasDistribution))) = SIZEOF(subAssembly))
XOR
 (SIZEOF(QUERY(tmp <* subAssembly |
EXISTS(hasDistribution))) = 0));

graphIsAcyclic : NOT(EXISTS(SELF.subAssembly)) OR
itemDag(SELF,subAssembly);

parentLevelConsistent : ((NOT(EXISTS(subAssembly)) OR
(SIZEOF(subAssembly) = 0)) OR
 (NOT(EXISTS(atIndentureLevel)) AND
 (SIZEOF(QUERY(tmp <* subAssembly |
EXISTS(tmp.atIndentureLevel))) = 0)) OR
 (EXISTS(atIndentureLevel) AND
 (SIZEOF(QUERY(tmp <* subAssembly |
NOT(EXISTS(tmp.atIndentureLevel)))) = 0)
AND
 (SIZEOF(QUERY(tmp <* subAssembly |
 (SELF.atIndentureLevel =
tmp.atIndentureLevel) OR
(EXISTS(SELF.atIndentureLevel.successor)
AND (SELF.atIndentureLevel.successor =
tmp.atIndentureLevel)))) =
 SIZEOF(SELF.subAssembly))));

END_ENTITY;
(*

Attribute definitions:

name : Attribute name is used to uniquely identify the particular SystemItem.

description : Attribute description is used to provide an elaborated explanation of the
SystemItem.

subAssembly : Attribute subAssembly identifies the set of constituent SystemItems of which
this SystemItem is composed.

hasDistribution : Attribute hasDistribution identifies the specific failure distribution for the
system item. Failure distributions at any hierarchical level above the lowest, if
they exist, represent user-implemented aggregates of subAssembly failure
distributions.

atIndentureLevel : Attribute atIndentureLevel identifies the specific level of indenture for a
particular SystemItem.

mustOccurIn : Attribute mustOccurIn provides a disjoint set of ContextState items, where
any one of them must be fulfilled for an SystemItem to be considered. This
attribute is defined to be a set. If the set is empty, then the corresponding
SystemItem is available in all ContextStates.

testedBy : Attribute testedBy identifies a set (possibly empty) of tests available to test a
particular repair item.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 40 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

modelForSystem : Inverse attribute modelForSystem identifies the diagnostic model representing
the specific systemUnderTest.

partOfModel : Inverse attribute partOfModel identifies the DiagnosticModel to which the
SystemItem belongs.

partOf : Inverse attribute partOf identifies the set of SystemItems that have the current
SystemItem as a subAssembly.

Formal propositions:

allOrNone Proposition allOrNone ensures that either all of the children have a failure
distribution associated or none of the children have a failure distribution
associated.

graphIsAcyclic Proposition graphIsAcyclic ensures the structure of SystemItem corresponds
to a directed acyclic graph. In other words, traversing the member
relationships from a SystemItem should not result in returning to the same
SystemItem. This constraint is verified by using the function itemDag, which
traverses the SystemItem structure.

parentLevelConsistent Proposition parentLevelConsistent ensures that one of the following shall be
true: 1) there are no child SystemItems, 2) no indenture levels exist for this
SystemItem and its children, or 3) the indenture levels are consistent for this
SystemItems and its children. Specifically, the constraint is imposed that the
level of the child SystemItem shall be the same as the current SystemItem or
shall be successors to the current level.

6.1.43 Test

Entity Test is a discrete information source whose output is one of a set of enumerated values that can
indicate the health of some portion of the system.

EXPRESS specification:

*)
ENTITY Test

SUBTYPE OF(Action);
allowedOutcomes : OPTIONAL LIST [2:?] OF UNIQUE

TestOutcome;
SELF\Action.subAction : OPTIONAL SET [1:?] OF Test;

WHERE
outcomesRequiredForAtomicTest : (SIZEOF(SELF\Action.subAction) >

0) OR EXISTS(allowedOutcomes);
minimalOutcomes : (NOT(EXISTS(allowedOutcomes))) XOR

((SIZEOF(QUERY(tmp <* allowedOutcomes |
 tmp.allowedValue = Pass)) = 1)
AND(SIZEOF(QUERY(tmp <* allowedOutcomes |
 tmp.allowedValue = Fail)) >= 1));

uniqueUnqualifiedOutcomes : (NOT(EXISTS(allowedOutcomes))) XOR
((SIZEOF(QUERY(tmp <* allowedOutcomes
|
 (tmp.allowedValue = FAIL) AND
 (NOT(EXISTS(tmp.qualifier))))) <=

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 41 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

1));
END_ENTITY;

(*

Attribute definitions:

allowedOutcomes : Attribute allowedOutcomes provides a list of two or more test outcomes that
are the expected outcomes of the test. A test outcome is a characterization of
the observed response to the stimulus of a test. This attribute is shown to be
optional; however, it is constrained such that it is required if the test has no
member tests.

subAction : Attribute subAction redeclares the inherited SELF\Action.subAction attribute
to ensure that children are of the same type (i.e., children are also Tests).

Formal propositions:

outcomesRequiredForAtomicTest Proposition outcomesRequiredForAtomicTest determines
whether TestOutcomes are associated with a test and requires
that an atomic test (i.e., a test for which there are no subtests)
have TestOutcomes. The cardinality on the TestOutcome set
ensures that, should TestOutcomes exist, there are at least two of
them. Note that nonatomic tests are permitted, but not required,
to have TestOutcomes.

minimalOutcomes Proposition minimalOutcomes requires either that the set of
TestOutcomes not be defined or that the set of TestOutcomes
include, at a minimum, exactly one outcome of value PASS and
at least one outcome of value FAIL.

uniqueUnqualifiedOutcomes Proposition uniqueUnqualifiedOutcomes requires that if the
qualifier is present, then only one FAIL TestOutcome with a
given qualifier can be used.

6.1.44 TestOutcome

Entity TestOutcome identifies one of a set of enumerated values to be associated with a test. The value is
based on a specification of how to implement that test and the criteria for the success or failure of that test.

EXPRESS specification:

*)
ENTITY TestOutcome

SUBTYPE OF(Outcome);
qualifier : OPTIONAL QualifierType;

INVERSE
forTest : Test FOR allowedOutcomes;

UNIQUE
outcomeKey : allowedValue,

qualifier,
forTest;

WHERE
legalValues : SELF\Outcome.allowedValue IN

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 42 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

[Pass, Fail, NotKnown, UserDefined];
END_ENTITY;

(*

Attribute definitions:

qualifier : Attribute qualifier provides a method for specifying a distinct way that a test can
fail that may lead to differing diagnosis. The qualifier is not simply descriptive, nor
is it intended to represent degrees of confidence or measurement values/ranges for
their own sake. Examples include Lo and Hi to indicate whether the test failed as a
result of a measurement below the lower limit or above the higher limit,
respectively.

forTest : Inverse attribute forTest links the outcome to the specific test with that outcome.

Formal propositions:

legalValues Specifies that an outcome can only have one of the associated values.

6.1.45 TimeCost

Entity TimeCost defines a time-related cost as a measure of the time it takes to perform a task.

EXPRESS specification:

*)
ENTITY TimeCost

SUBTYPE OF(Cost);
timeCostUnit : TimeUnit;

END_ENTITY;
(*

Attribute definitions:

timeCostUnit : Attribute timeCostUnit defines the time units associated with the time-related cost.

6.1.46 actionDag

EXPRESS specification:

Function actionDag examines the set of Actions in a model and ensures that it is a directed acyclic graph
(DAG). In other words, when traversing the child relations, it ensures that no cycles exist in the model.

*)
FUNCTION actionDag

(target : Action;
 descendents : SET OF Action) : LOGICAL;
LOCAL
 i : INTEGER;

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 43 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

END_LOCAL;
IF ((NOT EXISTS(descendents)) OR (SIZEOF(descendents) = 0)) THEN
 RETURN (TRUE);
END_IF;
IF target IN descendents THEN
 RETURN (FALSE);
END_IF;
REPEAT i := LOINDEX(descendents) TO HIINDEX(descendents);

IF (EXISTS(descendents[i].subAction) AND
(actionDag(target,descendents[i].subAction)=FALSE))

THEN
 RETURN(FALSE);
END_IF;

END_REPEAT;
RETURN(TRUE);

END_FUNCTION;
(*

6.1.47 actionRollup

EXPRESS specification:

Function actionRollup examines the set of Actions in a model and ensures that, when considering each of
the “parts” (i.e., children) of an Action, these children are represented in the top-level set. Thus, this
function ensures that the set of Actions listed with a model is a “rollup” of all of the Actions in the model.

*)
FUNCTION actionRollup

 (mdl:DiagnosticModel;elem:SET [1:?] OF Action):BOOLEAN;

 LOCAL
 i : INTEGER;
 j : INTEGER;
 tmp : Action;
 END_LOCAL;

 REPEAT i := LOINDEX(elem) TO HIINDEX(elem);
 IF EXISTS(elem[i].subAction) THEN
 REPEAT j := LOINDEX(elem[i].subAction) TO

HIINDEX(elem[i].subAction);
 tmp := elem[i].subAction[j];
 IF NOT(tmp.partOfModel :=: mdl) THEN
 RETURN(FALSE);
 END_IF;
 END_REPEAT;
 END_IF;
 END_REPEAT;
 RETURN(TRUE);

END_FUNCTION;
(*

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 44 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

6.1.48 cdfIntCheck

EXPRESS specification:

Function cdfIntCheck verfifes that the cdf is plausibly an integral of the pdf with respect to time. It is not
possible to check that the cdf is an exact integral of the pdf. Instead, the function checks that between any
two consecutive points, the cdf changes by an amount that is bounded by the maximum and minimum
values of pdf at the two points.

*)
FUNCTION cdfIntCheck

(t : LIST OF TimeValue;
 pdf : LIST OF DistributionPoint;
 cdf : LIST OF ProbabilityValue):BOOLEAN;

 LOCAL
 result : BOOLEAN := TRUE;
 j : INTEGER;

 maxPdf,minPdf,dCdf,dt : REAL;
 END_LOCAL;

 (* Return false immediately if the lists are not the same length.

*)
 IF ((SIZEOF(t)<>SIZEOF(pdf)) OR (SIZEOF(t)<>SIZEOF(cdf))) THEN
 result := FALSE;
 RETURN(result);
 END_IF;
 (* Return true immediately if the lists have size<=1 *)
 IF (SIZEOF(t)<=1) THEN
 RETURN(result);
 END_IF;

 (* Perform the detailed check at each pair of points *)
 REPEAT j := 2 TO SIZEOF(t);
 IF (pdf[j]>pdf[j-1]) THEN (* get the max and min values of the

pdf at the two points*)
 minPdf:=pdf[j-1];
 maxPdf:=pdf[j];
 ELSE
 minPdf:=pdf[j];
 maxPdf:=pdf[j-1];
 END_IF;
 dCdf := cdf[j-1]-cdf[j]; (* Compute the change in the cdf *)
 dt := t[j]-t[j-1]; (* Compute the change in t *)

 (* Verify that the change in cdf is bounded by the max and min

of pdf integrated over the change in time *)
 IF ((dCdf>dt*maxPdf) OR (dCdf<dt*minPdf)) THEN
 result := FALSE;
 END_IF;
 END_REPEAT;

 RETURN(result);

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 45 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

END_FUNCTION;
(*

6.1.49 costLabelUnique

EXPRESS specification:

Function costLabelUnique verifies that an aggregation of cost entities has unique cost labels. It returns
FALSE if two elements of c have the same costLabel attribute. It returns UNKNOWN if any element
comparison is unknown. Otherwise, it returns TRUE.

*)
FUNCTION costLabelUnique

(c: AGGREGATE OF Cost) : LOGICAL;

LOCAL
 result : LOGICAL;
 unknownp : BOOLEAN := FALSE;
 i : INTEGER;
 j : INTEGER;
END_LOCAL;

IF (SIZEOF(c) = 0) THEN
 RETURN(TRUE);
END_IF;
REPEAT i := LOINDEX(c) TO (HIINDEX(c) - i);
 REPEAT j := (i+1) TO HIINDEX(c);
 result := (c[i].costLabel :=: c[j].costLabel);
 IF (result = TRUE) THEN
 RETURN(FALSE);
 END_IF;
 IF (result = UNKNOWN) THEN
 unknownp := TRUE;
 END_IF;
 END_REPEAT;
END_REPEAT;
IF unknownp THEN
 RETURN(UNKNOWN);
ELSE
 RETURN(TRUE);
END_IF;

END_FUNCTION;
(*

6.1.50 decreasingCdfCheck

EXPRESS specification:

Function decreasingcdfCheck returns false if any value in cdf is increasing. It returns true if “cdf” is
monotonically nonincreasing, or SIZEOF(cdf) is 0 or 1.

*)
FUNCTION decreasingCdfCheck

(cdf : LIST OF ProbabilityValue):BOOLEAN;

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 46 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

 LOCAL
 result : BOOLEAN := TRUE; (* default result is true *)
 j : INTEGER;
 END_LOCAL;

 IF (SIZEOF(cdf)>1) THEN (* perform detailed check if sizeof cdf>1

*)
 REPEAT j := 2 TO SIZEOF(cdf);
 IF (cdf[j] > cdf[j-1]) THEN
 result := FALSE; (* return false if any point increases *)
 END_IF;
 END_REPEAT;
 END_IF;
 RETURN(result);

END_FUNCTION;
(*

6.1.51 diagnosisDag

EXPRESS specification:

Function diagnosisDag examines the set of Diagnoses in a model and ensures that it is a DAG. In other
words, when traversing the child relations, it ensures that no cycles exist in the model.

*)
FUNCTION diagnosisDag

(target : Diagnosis;
 descendents : SET OF Diagnosis) : LOGICAL;

 LOCAL
 i : INTEGER;
 END_LOCAL;

 IF ((NOT EXISTS(descendents)) OR (SIZEOF(descendents) = 0)) THEN
 RETURN (TRUE);
 END_IF;
 IF target IN descendents THEN
 RETURN (FALSE);
 END_IF;
 REPEAT i := LOINDEX(descendents) TO HIINDEX(descendents);
 IF (EXISTS(descendents[i].subGroup) AND
 (diagnosisDag(target,descendents[i].subGroup)=FALSE)) THEN
 RETURN(FALSE);
 END_IF;
 END_REPEAT;
 RETURN(TRUE);

END_FUNCTION;
(*

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 47 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

6.1.52 diagnosisRollup

EXPRESS specification:

Function diagnosisRollup examines the set of Diagnoses in a model and ensures that, when considering
each of the “parts” (i.e., children) of a Diagnosis, these children are represented in the top-level set. Thus,
this function ensures that the set of Diagnoses listed with a model is a “rollup” of all of the Diagnoses in the
model.

*)
FUNCTION diagnosisRollup

 (mdl:DiagnosticModel; elem:SET [1:?] OF Diagnosis):BOOLEAN;

 LOCAL
 i : INTEGER;
 j : INTEGER;
 tmp : Diagnosis;
 END_LOCAL;

 REPEAT i := LOINDEX(elem) TO HIINDEX(elem);
 IF EXISTS(elem[i].subGroup) THEN
 REPEAT j := LOINDEX(elem[i].subGroup) TO

HIINDEX(elem[i].subGroup);
 tmp := elem[i].subGroup[j];
 IF NOT(tmp.partOfModel :=: mdl) THEN
 RETURN(FALSE);
 END_IF;
 END_REPEAT;
 END_IF;
 END_REPEAT;
 RETURN(TRUE);

END_FUNCTION;
(*

6.1.53 increasingTimeCheck

EXPRESS specification:

Function increasingTimeCheck returns false if any value in t is non-increasing. It returns true if t is
monotonically increasing, or SIZEOF(t) is 0 or 1.

*)
FUNCTION increasingTimeCheck

(t : LIST OF TimeValue):BOOLEAN;

 LOCAL
 result : BOOLEAN := TRUE; (* default result is true *)
 j : INTEGER;
 END_LOCAL;

 IF (SIZEOF(t)>1) THEN (*perform detailed check if sizeof t>1*)
 REPEAT j := 2 TO SIZEOF(t);
 IF (t[j] <= t[j-1]) THEN

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 48 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

 result := FALSE; (* return false if any point non-
increasing *)

 END_IF;
 END_REPEAT;
 END_IF;
 RETURN(result);

END_FUNCTION;
(*

6.1.54 itemDag

EXPRESS specification:

Function itemDag examines the set of SystemItems in a model and ensures that it is a DAG. In other words,
when traversing the child relations, it ensures that no cycles exist in the model.

*)
FUNCTION itemDag

(target : SystemItem;
 descendents : SET OF SystemItem) : LOGICAL;

 LOCAL
 i : INTEGER;
 END_LOCAL;

 IF ((NOT EXISTS(descendents)) OR (SIZEOF(descendents) = 0)) THEN
 RETURN (TRUE);
 END_IF;
 IF target IN descendents THEN
 RETURN (FALSE);
 END_IF;
 REPEAT i := LOINDEX(descendents) TO HIINDEX(descendents);
 IF (EXISTS(descendents[i].subAssembly) AND
 (itemDag(target,descendents[i].subAssembly)=FALSE)) THEN
 RETURN(FALSE);
 END_IF;
 END_REPEAT;
 RETURN(TRUE);

END_FUNCTION;
(*

6.1.55 itemRollup

EXPRESS specification:

Function itemRollup examines the set of SystemItems in a model and ensures that, when considering each
of the parts (i.e., children) of a SystemItem, these children are represented in the top-level set. Thus, this
function ensures that the set of SystemItems listed with a model is a rollup of all of the SystemItems in the
model.

*)
FUNCTION itemRollup

 (mdl:DiagnosticModel; elem:SET [1:?] OF SystemItem):BOOLEAN;

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 49 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

 LOCAL
 i : INTEGER;
 j : INTEGER;
 tmp : SystemItem;
 END_LOCAL;

 REPEAT i := LOINDEX(elem) TO HIINDEX(elem);
 IF EXISTS(elem[i].subAssembly) THEN
 REPEAT j := LOINDEX(elem[i].subAssembly) TO
HIINDEX(elem[i].subAssembly);
 tmp := elem[i].subAssembly[j];
 IF NOT(tmp.partOfModel :=: mdl) THEN
 RETURN(FALSE);
 END_IF;
 END_REPEAT;
 END_IF;
 END_REPEAT;
 RETURN(TRUE);

END_FUNCTION;
(*

6.1.56 levelsAcyclic

EXPRESS specification:

Function levelsAcyclic ensures that, for a particular entity occuring at a Level, the chain of Levels does not
cycle back on itself.

*)
FUNCTION levelsAcyclic

 (lvl:level):BOOLEAN;
 LOCAL
 target : level := lvl;
 END_LOCAL;

 REPEAT WHILE (EXISTS(lvl.successor));
 IF (target = lvl.successor) THEN
 return(FALSE);
 END_IF;
 lvl := lvl.successor;
 END_REPEAT;
 RETURN(TRUE);

END_FUNCTION;
END_SCHEMA;
(*

6.1.57 Common Element Model EXPRESS-G diagrams

The EXPRESS-G definition of the CEM is represented by Figure 4 through Figure 8.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 50 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

1

NameType

1,2(2,3)

STRING

1,1(1,2,3,4,5)

1,4(3)

1,1 NameType

1,1 NameType

*DiagnosticModel

3,2 Diagnosis

3,1 Failure

DescriptionType

1,5(3)

1,3(1,2,3,4,5)

3,3 Fault

1,3 DescriptionType

1,3 DescriptionType

2,3 Repair

4,4 ContextState

(ABS)
*SystemItem

1,6(3)
2,2 Action

RepairItem

2,1 Test

5,2 FailureDistribution

FunctionItem

*Level

*name

description

modelItem S[1:?]
(INV) partOfModel

includesFunction S[1:?]

(INV) implementedBy S[0:?]

(RT) subAssembly S[1:?]

subAssembly S[1:?]
(INV) partOf S[0:?]

(Failure.failedItem)
(INV) failsAs S[1:?]

(Fault.failedItem)
(INV) failsAs S[1:?]

modelAction S[1:?]

*name

description

successor

(INV) predecessor S[0:1]

modelDiagnosis S[2:?]

repairedBy S[0:?]

(RT) subAssembly S[1:?]

*name

description

hasDistribution

atIndentureLevel

mustOccurIn S[0:?]

testedBy S[0:?]

(INV) modelForSystem S[0:1]
systemUnderTest

Figure 4 —AI_ESTATE_CEM EXPRESS-G diagram 1 of 5

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 51 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

1

1,1 NameType

1,1 NameType

1,3 DescriptionType

2,1(1,4)4,2 TestOutcome

*Test

*Action

4,3 ActionOutcome

1,2 DiagnosticModel

Repair

5,1 Cost

5,1 Cost

ResourceCostType

2,3(1)

ActionCostType

2,2(1,4)

Resource

4,4 ContextState

allowedOutcomes *L[2:?]

(RT) subAction S[1:?]

subAction S[1:?]
(INV) partOf S[0:?]

*name

description

allowedStatus *L[2:?]

hasCost S[1:?]

category
requiredResource S[1:?]

*name

hasCost S[1:?]

category

mustOccurIn S[0:?]
(DiagnosticModel.modelAction)

(INV) partOfModel

(RT) subAction S[1:?]

Figure 5 —AI_ESTATE_CEM EXPRESS-G diagram 2 of 5

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 52 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

1

1,1 NameType

1,1 NameType

1,3 DescriptionType

1,3 DescriptionType

4,4 ContextState

1,5 FunctionItem

Failure

*Diagnosis

3,3(1)

3,2(1,4)

5,2 FailureDistribution

*Fault

3,1(1)

SeverityCategory

1,2 DiagnosticModel

1,4 RepairItem

1,6 Level

FailureMechanism

4,1 DiagnosisOutcome

failedItem

causedFailure S[0:?]

(INV) physicalCause S[0:?]

failedItem

rootCause S[1:?]

*name

description

*name

description

subGroup S[1:?]
(INV) memberOf S[0:?]

allowedOutcomes *L[2:?]

hasDistribution

severity

atIndentureLevel

mustOccurIn S[0:?]

(DiagnosticModel.modelDiagnosis)
(INV) partOfModel

Figure 6 —AI_ESTATE_CEM EXPRESS-G diagram 3 of 5

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 53 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

1

1,1 NameType

1,1 NameType

1,3 DescriptionType

1,3 DescriptionType

1,3 DescriptionType

Purpose

3,2 Diagnosis

*DiagnosisOutcome

(ABS)
Outcome

ContextState

*ConfidenceValue

Role

*TestOutcome

4,1(3)

QualifierType

ModeOfOperation

STRING

4,4(1,2,3)

2,1 Test

REAL

2,2 Action

*ActionOutcome

4,2(2)

OutcomeValues

4,3(2)

(Diagnosis.allowedOutcomes)
*(INV) forDiagnosis

*qualifier

(Test.allowedOutcomes)
*(INV) forTest (Action.allowedStatus)

*(INV) forAction

*allowedValue

*name

description
occursIn S[0:?]

*name

description

hasPurpose

hasRole S[1:?]

description

maxConfidence

Figure 7 —AI_ESTATE_CEM EXPRESS-G diagram 4 of 5

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 54 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

1

1,1 NameType

1,3 DescriptionType

(ABS)
*Cost

*DistributionPoint

REAL

TimeCost

CostCategory

TimeUnit

REAL

NonTimeCost

5,2(1,3)

NonTimeUnit

5,1(2)

Rate

*ProbabilityDistribution

FailureDistribution

CostValue

*TimeValue

REAL

*ProbabilityValue

FailureRate

TimeBaseline

timeCostUnit nonTimeCostUnit

costRate
timeCostUnit

unitMultiplier

upperBound

lowerBound

predictedValue

costLabel

(INV) specifiedCost S[1:?]

*name

description

cdf L[2:?]
timeStep L[2:?]

basis

usageUnit

pdf L[2:?]

Figure 8 —AI_ESTATE_CEM EXPRESS-G diagram 5 of 5

*)

(*

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 55 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

6.2 AI_ESTATE_BNM

Recent applications of artificial intelligence to fault diagnosis have involved using Bayesian inference to
drive the diagnosis. The AI_ESTATE_BAYES_NETWORK_MODEL captures information necessary for
creating diagnostic Bayesian networks. Assumptions made with this model include that random variables
corresponding to diagnosis can only depend on test variables. In addition, the probability tables are to be
fully explicated (including closure, i.e., summing to one across dependent joints) and array position in the
probability array corresponds to array position in the dependence array. All probability distributions
encoded in the network probability tables shall be multinomial distributions (i.e., distributions over a
discrete set of outcomes).

EXPRESS specification:

*)
SCHEMA AI_ESTATE_BNM;

REFERENCE FROM AI_ESTATE_CEM;

(*

6.2.1 DependentElement

Select type DependentElement corresponds to a dependent random variable in the Bayesian model. As a
select type, this enables specification of a dependent random variable as a test, a diagnosis, a fault, or a
failure.

EXPRESS specification:

*)
TYPE DependentElement = SELECT

(BayesTest,
BayesDiagnosis,
BayesFault,
BayesFailure);

END_TYPE;
(*

6.2.2 BayesDiagnosis

Entity BayesDiagnosis corresponds to an individual diagnosis within the Bayes net model. Because
BayesDiagnosis is a subtype of diagnosis, it inherits all of the characteristics of a diagnosis. Note, however,
that diagnostic outcomes are required in this case.

EXPRESS specification:

*)
ENTITY BayesDiagnosis

SUPERTYPE OF (ONEOF(BayesFault, BayesFailure))
SUBTYPE OF(Diagnosis);

SELF\Diagnosis.allowedOutcomes : LIST [2:?] OF UNIQUE
BayesDiagnosisOutcome;

WHERE
sumToOne : checkDiagnosisProbabilities(allowedOutcomes);

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 56 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

END_ENTITY;
(*

Attribute definitions:

allowedOutcomes : Attribute allowedOutcomes identifies the set of outcomes associated with this
particular diagnosis. Note that the corresponding probability tables can be
found on the outcome definition.

 The order of outcomes in the list is significant to align the probabilities
specified in BayesDiagnosisOutcome.probability. The outcomes shall
correspond to the order Good, Candidate, Bad, NotKnown, and UserDefined,
respectively. Skipping an outcome is permitted; however, the order must be
maintained.

Formal propositions:

sumToOne Proposition sumToOne ensures that summing the probabilities in the associated
probability table for a given dependent configuration results in a value of 1.0.
Otherwise, the probability tables are not legal tables.

6.2.3 BayesDiagnosisOutcome

Entity BayesDiagnosisOutcome is a subtype of DiagnosisOutcome and associates legal outcomes to a
BayesDiagnosis.

EXPRESS specification:

*)
ENTITY BayesDiagnosisOutcome

SUBTYPE OF(DiagnosisOutcome);
probability : LIST [1:?] OF ConfidenceValue;

INVERSE
SELF\DiagnosisOutcome.forDiagnosis : BayesDiagnosis FOR

allowedOutcomes;
WHERE

probabilityTable : SIZEOF(probability) = 1;
noConfidence : NOT(EXISTS(SELF\Outcome.maxConfidence));

END_ENTITY;
(*

Attribute definitions:

probability : Attribute probability associates the portion of the probability table to a random
variable corresponding to this particular state of the variable. Because outcomes are
unique, the list of probabilities is uniquely associated with a particular random
variable, thus permitting alignment of the arrays to interpret the tables properly.

forDiagnosis : Inverse attribute forDiagnosis identifies the Bayes diagnosis to which this particular
outcome is associated.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 57 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Formal propositions:

probabilityTable Proposition probabilityTable ensures that the size of the probability table
associated with this outcome is of the correct size. In particular, it ensures that
a probability entry exists for every dependent configuration possible.

In the case of a diagnosis outcome, it is assumed that the probabilities represent
the priors in the model (i.e., diagnosis outcomes are not dependent on any other
random variables in the network). Thus, it is sufficient that only one probability
be stored for each outcome value.

noConfidence Proposition noConfidence pecifies that confidence values are not used in the
Bayesian model; therefore, attribute maxConfidence shall be omitted.

6.2.4 BayesFailure

Entity BayesFailure corresponds to an individual failure diagnosis within the Bayes net model. Because
BayesFault is a subtype of Failure and BayesDiagnosis, it inherits all of the characteristics of
BayesDiagnosis and Failure. Note, however, that diagnostic outcomes are required in this case, as required
by the BayesDiagnosis supertype.

EXPRESS specification:

*)
ENTITY BayesFailure

SUBTYPE OF(BayesDiagnosis, Failure);
WHERE

sumToOne : checkDiagnosisProbabilities
(SELF\BayesDiagnosis.allowedOutcomes);

END_ENTITY;
(*

Formal propositions:

sumToOne Proposition sumToOne ensures that summing the probabilities in the associated
probability table for a given dependent configuration results in a value of 1.0.
Otherwise, the probability tables are not legal tables.

6.2.5 BayesFault

Entity BayesFault corresponds to an individual fault diagnosis within the Bayes net model. Because
BayesFault is a subtype of BayesDiagnosis and Fault, it inherits all of the characteristics of BayesDiagnosis
and Fault. Note, however, that diagnostic outcomes are required in this case, as required by the
BayesDiagnosis supertype.

EXPRESS specification:

*)
ENTITY BayesFault

SUBTYPE OF(BayesDiagnosis, Fault);

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 58 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

WHERE
sumToOne : checkDiagnosisProbabilities

(SELF\BayesDiagnosis.allowedOutcomes);
END_ENTITY;

(*

Formal propositions:

sumToOne Proposition sumToOne ensures that summing the probabilities in the associated
probability table for a given dependent configuration results in a value of 1.0.
Otherwise, the probability tables are not legal tables.

6.2.6 BayesNetworkModel

Entity BayesNetworkModel is the starting point of the Bayes network. It provides the rollup of the random
variables (i.e., tests and diagnosis) used in diagnosis. Because this is a subtype of diagnostic_model, the
BayesNetworkModel inherits all other characteristics of a diagnostic model from the AI_ESTATE_CEM.

EXPRESS specification:

*)
ENTITY BayesNetworkModel

SUBTYPE OF(DiagnosticModel);
SELF\DiagnosticModel.modelAction : SET [2:?] OF BayesTest;
SELF\DiagnosticModel.modelDiagnosis : SET [2:?] OF BayesDiagnosis;

END_ENTITY;
(*

Attribute definitions:

modelAction : Attribute modelAction identifies the set of Bayes tests included in the diagnostic
model. Because the Bayes network focuses on random variables, it is assumed
that these tests are to be treated as leaves in the test hierarchy.

modelDiagnosis : Attribute modelDiagnosis identifies the set of Bayes diagnosis included in the
diagnostic model. Because the Bayes network focuses on random variables, it is
assumed that these tests are to be treated as leaves in the diagnosis hierarchy.

6.2.7 BayesTest

Entity BayesTest corresponds to an individual test within the Bayes net model. Because Bayes_test is a
subtype of test, it inherits all of the characteristics of a diagnostic test. Note, however, that test outcomes
are required in this case.

EXPRESS specification:

*)
ENTITY BayesTest

SUBTYPE OF(Test);
dependsOnElement : LIST OF UNIQUE DependentElement;
SELF\Test.allowedOutcomes : LIST [2:?] OF UNIQUE BayesTestOutcome;

WHERE
sumToOne : checkTestProbabilities(allowedOutcomes);

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 59 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

END_ENTITY;
(*

Attribute definitions:

dependsOnElement : Attribute dependsOnElement identifies the set of elements (either tests or
diagnoses) upon which this particular test depends. Note that dependence, in
this context, refers to conditional dependence as defined for Bayesian
networks.

allowedOutcomes : Attribute allowedOutcomes identifies the set of outcomes associated with this
particular test. Note that the corresponding probability tables can be found on
the outcome definition.

 The order of outcomes in the list is significant to align the probabilities
specified in BayesTestOutcome.probability. The outcomes shall correspond to
the order Pass, Fail, NotKnown, and UserDefined, respectively. Skipping an
outcome is permitted; however, the order must be maintained.

Formal propositions:

sumToOne Proposition sumToOne ensures that summing the probabilities in the associated
probability table for a given dependent configuration results in a value of 1.0.
Otherwise, the probability tables are not legal tables.

6.2.8 BayesTestOutcome

Entity BayesTestOutcome is a subtype of “TestOutcome” and associates legal outcomes to a BayesTest.

EXPRESS specification:

*)
ENTITY BayesTestOutcome

SUBTYPE OF(TestOutcome);
probability : LIST [1:?] OF ConfidenceValue;

INVERSE
SELF\TestOutcome.forTest : BayesTest FOR allowedOutcomes;

WHERE
probabilityTable : SIZEOF(probability) =

variableSize(SELF\TestOutcome.forTest.dependsOn
Element);

noConfidence : NOT(EXISTS(SELF\Outcome.maxConfidence)) ;
END_ENTITY;

(*

Attribute definitions:

probability : Attribute probability associates the portion of the probability table to a random
variable corresponding to this particular state of the variable. Because outcomes are
unique, the list of probabilities is uniquely associated with a particular random
variable, thus permitting alignment of the arrays to properly interpret the tables. To
ensure proper ordering, the list of values follows the order specified by the
dependsOnElement attribute with associated outcomes corresponding to the order,

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 60 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Good, Candidate, Bad, NotKnown, and UserDefined for diagnoses and Pass, Fail,
NotKnown, and UserDefined for tests. Outcomes may be skipped, but the order must
be maintained.

forTest : Inverse attribute forTest identifies the BayesTest to which this particular outcome is
associated.

Formal propositions:

probabilityTable Proposition probabilityTable ensures that the size of the probability table
associated with this outcome is of the correct size. In particular, it ensures that
a probability entry exists for every dependent configuration possible.

For test outcomes, each outcome is conditioned on the combination of parent
random variables (test outcomes or diagnosis outcomes). Therefore, the
number of conditional probabilities for each outcome is the product of the
number of outcomes for each of the parents.

noConfidence Proposition noConfidence pecifies that confidence values are not used in the
Bayesian model; therefore, attribute maxConfidence shall be omitted.

6.2.9 ModelRule

Rule ModelRule shall apply to the population of DiagnosticModel entities in a BNM exchange file.

EXPRESS specification:

*)
RULE ModelRule FOR

(DiagnosticModel);
WHERE

oneModel : SIZEOF(DiagnosticModel) = 1;
onlySubtype : SIZEOF(QUERY(tmp <* DiagnosticModel |

NOT('AI_ESTATE_BNM.BAYESNETWORKMODEL' IN
TYPEOF(tmp)))) = 0;

END_RULE;
(*

6.2.10 checkDiagnosisProbabilities

Function checkDiagnosisProbabilities takes a dependent configuration for an entry in the conditional
probability table and ensures that the probabilities over that configuration sum to one. If they do not sum to
one, the corresponding probability table is not a legal table.

EXPRESS specification:

*)
FUNCTION checkDiagnosisProbabilities

 (out : LIST [2:?] OF BayesDiagnosisOutcome) : BOOLEAN;
 LOCAL
 legal : BOOLEAN := TRUE;
 sum : LIST [1:?] OF REAL;
 END_LOCAL;

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 61 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

 REPEAT y := LOINDEX(out[1].probability) TO

HIINDEX(out[1].probability);
 sum[y] := 0;
 END_REPEAT;
 REPEAT x := LOINDEX(out) TO HIINDEX(out);
 REPEAT y := LOINDEX(out[x].probability) TO
HIINDEX(out[x].probability);
 sum[y] := sum[y] + out[x].probability[y];
 END_REPEAT;
 END_REPEAT;
 REPEAT y := LOINDEX(out[1].probability) TO

HIINDEX(out[1].probability);
 IF (sum[y] <> 1.0) THEN
 legal := FALSE;
 END_IF;
 END_REPEAT;
 RETURN (legal);

END_FUNCTION;
(*

6.2.11 checkTestProbabilities

Function checkTestProbabilities takes a dependent configuration for an entry in the conditional probability
table and ensures that the probabilities over that configuration sum to one. If they do not sum to one, the
corresponding probability table is not a legal table.

EXPRESS specification:

*)
FUNCTION checkTestProbabilities

 (out : LIST [2:?] OF BayesTestOutcome) : BOOLEAN;
 LOCAL
 legal : BOOLEAN := TRUE;
 sum : LIST [1:?] OF REAL;
 END_LOCAL;

 REPEAT y := LOINDEX(out[1].probability) TO

HIINDEX(out[1].probability);
 sum[y] := 0;
 END_REPEAT;
 REPEAT x := LOINDEX(out) TO HIINDEX(out);
 REPEAT y := LOINDEX(out[x].probability) TO

HIINDEX(out[x].probability);
 sum[y] := sum[y] + out[x].probability[y];
 END_REPEAT;
 END_REPEAT;
 REPEAT y := LOINDEX(out[1].probability) TO

HIINDEX(out[1].probability);
 IF (sum[y] <> 1.0) THEN
 legal := FALSE;
 END_IF;
 END_REPEAT;

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 62 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

 RETURN (legal);

END_FUNCTION;
(*

6.2.12 variableSize

Function variableSize computes the product of the sizes of the dependent variable configurations. In other
words, it multiplies the number of outcomes associated with each dependent variable together to determine
how large the corresponding probability table must be.

EXPRESS specification:

*)
FUNCTION variableSize

 (elem : LIST [1:?] OF dependentElement) : NUMBER;
 LOCAL
 size : NUMBER := 1;
 END_LOCAL;

 IF (SIZEOF(elem) > 0) THEN
 REPEAT x := LOINDEX(elem) TO HIINDEX(elem);
 IF ('AI_ESTATE_BNM.BAYESTEST' IN typeof(elem[x])) THEN
 size := size * SIZEOF(elem[x]\bayesTest.allowedOutcomes);
 ELSE
 size := size *

SIZEOF(elem[x]\bayesDiagnosis.allowedOutcomes);
 END_IF;
 END_REPEAT;
 END_IF;
 RETURN(size);

END_FUNCTION;
END_SCHEMA;
(*

6.2.13 Bayesian Network Model EXPRESS-G diagrams

The EXPRESS-G definition of the BNM is represented by Figure 9.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 63 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

1

AI_ESTATE_CEM.DiagnosticModel

AI_ESTATE_CEM.Fault

AI_ESTATE_CEM.DiagnosisOutcome

*BayesFault

*BayesDiagnosis

AI_ESTATE_CEM.Diagnosis

DependentElement

BayesNetworkModel

AI_ESTATE_CEM.ConfidenceValue

AI_ESTATE_CEM.Test

*BayesFailure

AI_ESTATE_CEM.Failure

*BayesTestOutcome

*BayesTest

AI_ESTATE_CEM.TestOutcome

*BayesDiagnosisOutcome

(RT) allowedOutcomes *L[2:?]
(RT) (INV) forDiagnosis

probability L[1:?]

dependsOnElement *L[0:?]

(RT) allowedOutcomes *L[2:?]
(RT) (INV) forTest

probability L[1:?]

(RT) modelAction S[2:?] (RT) modelDiagnosis S[2:?]

Figure 9 —AI_ESTATE_BNM EXPRESS-G diagram 1 of 1

*)

(*

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 64 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

6.3 AI_ESTATE_DIM

The AI-ESTATE D-Matrix Inference Model information model is defined in 6.3.1 through 6.3.6. The
expectation is that this model represents a “canonical” D (i.e., dependency) matrix from the perspective of
what can be inferred from test outcomes. Specifically, in a canonical D-matrix, test outcomes are limited to
Pass or Fail outcomes and diagnosis outcomes are limited to Good and Candidate outcomes. The columns
of the matrix correspond to tests and rows can be either tests or diagnoses. It is required that, if a test
passes, then all of the “column” inferences drawn in the matrix for that test be logically ANDed together,
and all of the “row” inferences drawn for that test must be “ORed” together. Conversely, if a test fails, it is
required that all of the “column” inferences drawn in the matrix for that test be “ORed” together, and all of
the “row” inferences for that test must be “ANDed” together. It is also required that inferences be of like
type (i.e., Pass => Pass/Good or Fail => Fail/Candidate).

The set of inferences associated with a particular test outcome are limited either to a list of conjuncted
inferences or a list of disjuncted inferences (not both). Determining conjuncted versus disjuncted depends
on the outcome of the test. Specifically, only inferences from passing tests are conjuncted and can only lead
to pass/good outcomes on tests and diagnoses, respectively. In addition, inference from failing tests are
disjuncted and can only lead to fail/candidate outcomes on tests or diagnoses, respectively.

All test inferences are required to be symmetric. In other words, the set of outcomes arising from a test
passing complement the inferences arising from a test failing.

EXPRESS specification:

*)
SCHEMA AI_ESTATE_DIM;

REFERENCE FROM AI_ESTATE_CEM;

(*

6.3.1 CellOutcome

Select type CellOutcome identifies a specific outcome that is being inferred as a result of a test outcome.
As a select type, the value corresponds to either a test outcome or a diagnosis outcome.

EXPRESS specification:

*)
TYPE CellOutcome = SELECT

(DiagnosisOutcome,
TestOutcome);

END_TYPE;
(*

6.3.2 DmatrixInferenceModel

Entity DmatrixInferenceModel represents the constituents of the DIM. The model shall represent a
“canonical” D (i.e., dependency) matrix from the perspective of what can be inferred from test outcomes.
Specifically, in a canonical D-matrix, the columns correspond to tests. Rows of the matrix can be either
tests or diagnoses. It is required that, if a test passes, then all of the “column” inferences drawn in the
matrix be logically ANDed together. Conversely, if a test fails, it is required that all of the “column”
inferences drawn in the matrix be “ORed” together. It is also required that inferences be of like type (i.e.,
Pass => Pass/Good or Fail => Fail/Candidate).

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 65 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

EXPRESS specification:

*)
ENTITY DmatrixInferenceModel

SUBTYPE OF(DiagnosticModel);
testColumn : SET [2:?] OF OutcomeInference;

END_ENTITY;
(*

Attribute definitions:

testColumn : Attribute testColumn identifies the set of outcome_inference that comprise the model
of the system under test. To be useful, a model shall consist of at least two inferences,
corresponding to inferences from the minimum number of outcomes for the minimum
number of tests in the model.

6.3.3 Inference

Entity Infrence identifies an Outcome to be inferred as a result of some other Outcome in the model being
asserted. Only TestOutcomes or DiagnosisOutcomes can be inferred.

EXPRESS specification:

*)
ENTITY Inference;

cell : CellOutcome;
INVERSE

assertion : OutcomeInference FOR andOrRows;
WHERE

consistentOutcome : ((SELF.assertion.preconditionTestOutcome
.allowedValue = Pass) AND
 (SELF.cell\Outcome.allowedValue = Pass)) OR
((SELF.assertion.preconditionTestOutcome
.allowedValue = Pass) AND
 (SELF.cell\Outcome.allowedValue = Good)) OR
((SELF.assertion.preconditionTestOutcome
.allowedValue = Fail) AND
 (SELF.cell\Outcome.allowedValue = Fail)) OR
((SELF.assertion.preconditionTestOutcome
.allowedValue = Fail) AND
 (SELF.cell\Outcome.allowedValue =
Candidate));

END_ENTITY;
(*

Attribute definitions:

cell : Attribute cell identifies a specific inference in the current logical expression based on its
location in the Dmatrix.

assertion : Attribute assertion identifies the top level of the logical expression being inferred from
some test outcome.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 66 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Formal propositions:

consistentOutcome Proposition consistentOutcome specifies that the outcomes be of like type. In
other words, Pass implies Pass and Fail implies Fail.

6.3.4 OutcomeInference

Entity OutcomeInference identifies an outcome to be inferred as a result of some other outcome in the
model being asserted. Only TestOutcomes and DiagnosisOutcomes can be inferrred.

EXPRESS specification:

*)
ENTITY OutcomeInference;

andOrRows : SET [1:?] OF Inference;
preconditionTestOutcome : TestOutcome;
confidence : OPTIONAL ConfidenceValue;
andOrRelation : BOOLEAN;

UNIQUE
oneOutcome : preconditionTestOutcome;

WHERE
conjunctOrDisjunct : ((SELF.preconditionTestOutcome.allowedValue =

Pass) AND
 (SELF.andOrRelation = TRUE)) XOR
((SELF.preconditionTestOutcome.allowedValue =
Fail) AND
 (SELF.andOrRelation = FALSE));

noUserDefined : preconditionTestOutcome.allowedValue <>
UserDefined;

END_ENTITY;
(*

Attribute definitions:

andOrRows : Attribute andOrRows identifies a set of simple terms that are either
ANDed or ORed together, depending on the value of the
andOrRelation attribute. If andOrRelation = TRUE, then the set of
terms identified here is ANDed. If andOrRelation = FALSE, then the
set of terms identified here is ORed.

preconditionTestOutcome : Attribute preconditionTestOutcome identifies a particular outcome of
the value of the TestOutcome.forTest attribute to which the value of
this attribute applies, where the TestOutcome.forTest attribute
identifies a particular test.

confidence : Attribute confidence identifies the statistical confidence in the logical
expression from the outcome in outcome_inference.

andOrRelation : Attribute andOrRelation determines if SELF.conjunctDisjunct is
ANDed or ORed. If andOrRelation = TRUE, then
SELF.conjunctDisjunct is the conjunction of the members of the set. If
andOrRelation = FALSE, then SELF.conjunctDisjunct is the
disjunction of the members of the set.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 67 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Formal propositions:

conjunctOrDisjunct Proposition conjunctOrDisjunct constrains the outcome inference list to be a
set of conjuncts or a set of disjuncts, but not both based on whether the
preconditionTestOutcome is Pass or Fail. If it is Pass, then the list must be a
conjunct list (i.e., andOrRelation = TRUE). If it is Fail, then the list must be a
disjunct list (i.e., andOrRelation = FALSE).

noUserDefined Proposition noUserDefined requires that the test outcome be one of the basic
standard values as defined in the Common Element Model.

6.3.5 ModelRule

Rule ModelRule shall apply to the population of DiagnosticModel entities in a DIM exchange file.

EXPRESS specification:

*)
RULE ModelRule FOR

(DiagnosticModel);
WHERE

oneModel : SIZEOF(DiagnosticModel) = 1;
onlySubtype : SIZEOF(QUERY(tmp <* DiagnosticModel |

NOT('AI_ESTATE_DIM.DMATRIXINFERENCEMODEL' IN
TYPEOF(tmp)))) = 0;

END_RULE;
END_SCHEMA;
(*

6.3.6 D-Matrix Inference Model EXPRESS-G diagrams

The EXPRESS-G definition of the DIM is represented by Figure 10.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 68 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

DmatrixInferenceModel

AI_ESTATE_CEM.DiagnosticModel

AI_ESTATE_CEM.TestOutcome

AI_ESTATE_CEM.ConfidenceValue AI_ESTATE_CEM.DiagnosisOutcome

CellOutcome*Inference

*OutcomeInference

BOOLEAN

testColumn S[2:?]

andOrRows S[1:?]
(INV) assertion

cell

*preconditionTestOutcome confidence
andOrRelation

Figure 10 —AI_ESTATE_DIM EXPRESS-G diagram 1 of 1

*)

(*

6.4 AI_ESTATE_DLM

The AI-ESTATE Diagnostic Logic Model information model is defined below. The constructs of this
model were derived with the intent of providing a means for representing arbitrary logical expressions. The
model utilizes many of the constructs defined in the AI-ESTATE Common Element Model.

An inference is drawn using a logical relationship between two or more outcomes. The set of possible
inferences associated with a particular outcome are represented as expressions of the form Outcome =>
AND(OR(outcomes)) or Outcome => OR(AND(outcomes)).

EXPRESS specification:

*)
SCHEMA AI_ESTATE_DLM;

REFERENCE FROM AI_ESTATE_CEM;

(*

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 69 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

6.4.1 DiagnosticLogicModel

Entity DiagnosticLogicModel represents the constituents of a generic Diagnostic Logic Model.

EXPRESS specification:

*)
ENTITY DiagnosticLogicModel

SUBTYPE OF(DiagnosticModel);
inferences : SET [2:?] OF OutcomeInference;

END_ENTITY;
(*

Attribute definitions:

inferences : Attribute inferences identify the set of outcome_inference that comprise the model of
the system under test. To be useful, a model shall consist of at least two inferences,
corresponding to inferences from the minimum number of outcomes for the minimum
number of tests in the model.

6.4.2 Inference

Entity Inference identifies a set of outcome inferences to be drawn as a result of some other outcome in the
model being asserted. The set of outcomes is either ANDed or ORed, as specified by the andOrRelation
attribute. Only test outcomes or diagnosis outcomes can be inferred.

EXPRESS specification:

*)
ENTITY Inference;

term : SET [1:?] OF Outcome;
andOrRelation : BOOLEAN;

INVERSE
assertion : OutcomeInference FOR andOrTerms;

WHERE
noActionOutcome : SIZEOF(QUERY(tmp <* SELF.term |

'AI_ESTATE_DLM.ACTIONOUTCOME' IN TYPEOF(tmp))) =
0;

END_ENTITY;
(*

Attribute definitions:

term : Attribute term identifies a set of specific outcomes to be inferred in the current
logical expression.

andOrRelation : Attribute andOrRelation determines if SELF.term is ANDed or ORed. If
andOrRelation = TRUE, then SELF.term is the conjunction of the members of the
set. If andOrRelation = FALSE, then SELF.term is the disjunction of the members
of the set.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 70 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

assertion : Inverse attribute assertion identifies the top level of the logical expression being
inferred from some outcome.

Formal propositions:

noActionOutcome Proposition noActionOutcome ensures that there are no action outcomes used
in inference within this model.

6.4.3 OutcomeInference

Entity OutcomeInference pairs a particular outcome of a particular test with a set of inferences represented
in a conjunct/disjunct form. Each inference entity of the set is a set of outcomes that are ANDed or ORed
together. The OutcomeInference entity then ANDs or ORs the set of inferences.

EXPRESS specification:

*)
ENTITY OutcomeInference;

andOrTerms : SET [1:?] OF Inference;
preconditionOutcome : Outcome;
confidence : OPTIONAL confidenceValue;
andOrRelation : BOOLEAN;

UNIQUE
one_outcome : preconditionOutcome;

END_ENTITY;
(*

Attribute definitions:

andOrTerms : Attribute andOrTerms identifies a set of composite terms that are either
ANDed or ORed together, depending on the value of the andOrTerms
attribute.

preconditionOutcome : Attribute preconditionOutcome identifies a particular outcome of an action,
test, repair (which is a type of action), or diagnosis to which the value of this
attribute applies, where the xxxOutcome.forXxx attribute (where xxx =
action, test, or diagnosis) identifies a particular action, test, or diagnosis.

confidence : Attribute confidence identifies the statistical confidence in the logical
expression from the outcome in outcome_inference.

andOrRelation : Attribute andOrRelation determines if SELF.conjunctDisjunct is ANDed or
ORed. If andOrRelation = TRUE, then SELF.conjunctDisjunct is the
conjunction of the members of the set. If andOrRelation = FALSE, then
SELF.conjunctDisjunct is the disjunction of the members of the set.

6.4.4 ModelRule

Rule ModelRule shall apply to the population of DiagnosticModel entities in a DLM exchange file.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 71 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

EXPRESS specification:

*)
RULE ModelRule FOR

(DiagnosticModel);
WHERE

oneModel : SIZEOF(DiagnosticModel) = 1;
onlySubtype : SIZEOF(QUERY(tmp <* DiagnosticModel |

NOT('AI_ESTATE_DLM.DIAGNOSTICLOGICMODEL' IN
TYPEOF(tmp)))) = 0;

END_RULE;
END_SCHEMA;
(*

6.4.5 Diagnostic Logic Model EXPRESS-G diagrams

The EXPRESS-G definition of the DLM is represented by Figure 11.

AI_ESTATE_CEM.DiagnosticModel

AI_ESTATE_CEM.confidenceValue

AI_ESTATE_CEM.Outcome

*Inference

DiagnosticLogicModel

BOOLEAN

OutcomeInference

inferences S[2:?]

andOrTerms S[1:?]
(INV) assertion

term S[1:?]

andOrRelation

*preconditionOutcome

confidence
andOrRelation

Figure 11 —AI_ESTATE_DLM EXPRESS-G diagram 1 of 1

*)

(*

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 72 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

6.5 AI_ESTATE_FTM

This subclause defines the AI-ESTATE Fault Tree Model information model. The constructs defined here
are specific to the Fault Tree approach to system test and diagnosis. In this diagnostic method, a decision
tree with fixed fault isolation strategies is constructed a priori and remains static during the diagnosis. The
Fault Tree provides a test strategy that can be used without the aid of a reasoning system. This specification
is included in the AI-ESTATE standard because it is frequently used as the primary diagnostic strategy or
in conjunction with other test generation strategies.

The structure of a fault tree can be viewed as a decision tree. The interior nodes of the tree correspond to
the different tests to be run during the fault isolation procedure. Each branch from a node corresponds to
one of the possible outcomes for that test. The branch is taken that corresponds to the outcome that occurs
as the result of executing the test. TestResult identifies the next test node in the tree to which to proceed,
identifies the diagnostic conclusion that is drawn, or simply provides information on the status of fault
isolation.

The Fault Tree Model draws on elements of the AI_ESTATE_CEM. The Test entity corresponds to a node
or step such as that described previously. Each branch points to the TestResult entity in the model. A
reasoner utilizes a fault tree by recommending an entry point (action) to the client application. Upon
acknowledgment from the client, the fault tree is processed by starting at that entry point, executing the test
associated with that step and proceeding with the actions prescribed for the outcome that results. When
another step of the fault tree appears for the resulting test outcome, execution of the fault tree proceeds to
that fault tree step. Eventually, the result for the test outcome should identify the diagnosis; at this point
(when no other fault tree steps appear), processing of the fault tree is complete. The current diagnosis
should be included at all steps of the fault tree.

EXPRESS specification:

*)
SCHEMA AI_ESTATE_FTM;

REFERENCE FROM AI_ESTATE_CEM;

(*

6.5.1 FaultTreeModel

Entity FaultTreeModel represents the fault tree at the highest level of abstraction. Thus, it defines an entry
point into the fault tree by identifying the first step (i.e., the root) of the tree. Multiple entry points can be
defined, but to maintain acceptable form, they should be treated as separate models.

EXPRESS specification:

*)
ENTITY FaultTreeModel

SUBTYPE OF(DiagnosticModel);
entryPoints : LIST [1:?] OF UNIQUE StartingPoint;

END_ENTITY;
(*

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 73 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Attribute definitions:

entryPoints : Attribute entryPoints defines one or more starting points for a fault tree. As a list,
entry points can be specified in sequential order based on implementation-specific
needs. Should ordering not be required, the list can still be scanned to find the
appropriate entry point.

6.5.2 FaultTreeStep

Entity FaultTreeStep represents a decision node in the fault tree table. Its entries identify the test to be run
at this step in the fault tree and which test result/action pairs to follow. The testStep attribute uses the test
entity of the AI-ESTATE Common Element Model.

EXPRESS specification:

*)
ENTITY FaultTreeStep;

result : SET [2:?] OF TestResult;
testStep : Test;
preActions : LIST OF Action;
postActions : LIST OF Action;

INVERSE
startedBy : SET [0:1] OF StartingPoint FOR firstStep;
previousResult : SET [0:1] OF TestResult FOR nextStep;

WHERE
outcomesAreValid : EXISTS(testStep.allowedOutcomes) AND

(resultOutcomes(result) =
testStep.allowedOutcomes);

oneInverse : (SIZEOF(startedBy) = 1) OR
(SIZEOF(previousResult) = 1);

END_ENTITY;
(*

Attribute definitions:

result : Attribute result is a set of at least two TestResult entities that comprise the
outcome/action pairs for the test identified in the testStep attribute. There should be
a TestResult entity in the result set for each possible outcome of the test in testStep.

testStep : Attribute testStep identifies the test that is to be run for this step of the fault tree.

preActions : Attribute preActions provides a list of actions that must be performed immediately
prior to the Test specified by testStep.

postActions : Attribute postActions provides a list of actions that must be performed immediately
after completing the Test specified by testStep.

startedBy : Inverse attribute startBy identifies the action corresponding to the entry point to the
fault tree. If the FaultTreeStep is not an entry point, this attribute is empty.

previousResult : Attribute previousResult identifies the result in the fault tree that leads to the new
step in the fault tree.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 74 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Formal propositions:

outcomesAreValid Proposition outcomesAreValid verifies that there exists a legal outcome for the
test for every TestResult specified at this step in the fault tree. The rule is
satisfied when the set of outcomes equals the set returned by the function
resultOutcomes.

oneInverse Proposition oneInverse ensures that at least one of the two inverse attributes is
instantiated.

6.5.3 StartingPoint

Entity StartingPoint is a subtype of Action corresponding to an entry point for fault tree-based diagnosis.
As an Action, a diagnostic reasoner can recommend one or more entry points, and the entry point taken can
be recorded in a Session of the DCM.

EXPRESS specification:

*)
ENTITY StartingPoint

SUBTYPE OF(Action);
firstStep : FaultTreeStep;

WHERE
actionOnly : NOT('AI_ESTATE_CEM.TEST' IN typeof(SELF)) AND

NOT('AI_ESTATE_CEM.REPAIR' IN typeof(SELF));
END_ENTITY;

(*

Attribute definitions:

firstStep : Attribute firstStep points to the root of the fault tree or subtree.

Formal propositions:

actionOnly Proposition actionOnly prevents a StartingPoint from being instantiated as either a
Repair or a Test.

6.5.4 TestResult

Entity TestResult provides the outcome associated with a test. That outcome is then paired with the
corresponding test result, indicating the next step in the tree by pointing to that step. If appropriate, the next
step of the fault tree to which execution should proceed is identified in the nextStep attribute.

EXPRESS specification:

*)
ENTITY TestResult;

nextStep : OPTIONAL FaultTreeStep;
testOut : TestOutcome;

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 75 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

currentDiagnosisOutcome : SET OF DiagnosisOutcome;
INVERSE

associatedStep : FaultTreeStep FOR result;
WHERE

leavesHaveDiagnoses : (EXISTS(nextStep)) OR
(SIZEOF(currentDiagnosisOutcome) > 0);

END_ENTITY;
(*

Attribute definitions:

nextStep : Attribute nextStep identifies which FaultTreeStep to execute next when
the outcome in TestOutcome results from the execution of the test of
this FaultTreeStep. This attribute is optional. When no FaultTreeStep is
identified, the TestResult entity is a leaf of the fault tree.

testOut : Attribute testOut identifies the outcome of the test of this FaultTreeStep
to which this construct applies.

currentDiagnosisOutcome : Attribute currentDiagnosisOutcome identifies the diagnosis elements in
the model that are indicted (i.e., accused) by the sequence of tests
leading up to this point in the fault tree. This attribute is used to report
the diagnosis resulting from traversing the tree.

associatedStep : Attribute associatedStep identifies the step with which the current result
is associated. Because this is not a set, it enforces the tree structure of
the fault tree (i.e., it is not a decision graph).

Formal propositions:

leavesHaveDiagnoses Proposition leavesHaveDiagnoses constrains the currentDiagnosisOutcomes
attribute that is a required attribute such that the associated list can be empty
if associated with an internal node of the tree, but if the node is a leaf (i.e., a
terminal step in the tree), then the currentDiagnosisOutcomes list cannot be
empty.

6.5.5 ModelRules

Rule ModelRule shall apply to the population of DiagnosticModel entities in a FTM exchange file.

EXPRESS specification:

*)
RULE ModelRules FOR

(DiagnosticModel);
WHERE

oneModel : SIZEOF(DiagnosticModel) = 1;
onlySubtype : SIZEOF(QUERY(tmp <* DiagnosticModel |

NOT('AI_ESTATE_FTM.FAULTTREEMODEL' IN TYPEOF(tmp))))
= 0;

END_RULE;
(*

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 76 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

6.5.6 resultOutcomes

EXPRESS specification:

Function resultOutcomes takes a set of test results and returns the corresponding set of test outcomes to
ensure that the outcomes listed correspond to the outcomes available at the step in the tree.

*)
FUNCTION resultOutcomes

 (results:SET [0:?] OF testResult) : LIST [0:?] OF testOutcome;
 LOCAL
 tOut: LIST [0:?] OF testOutcome := [];
 END_LOCAL;

 REPEAT i := LOINDEX(results) TO HIINDEX(results);
 tOut := tOut + results[i].testOut;
 END_REPEAT;
 RETURN(tOut);

END_FUNCTION;
END_SCHEMA;
(*

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 77 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

6.5.7 Fault Tree Model EXPRESS-G diagrams

The EXPRESS-G definition of the FTM is represented by Figure 12.

FaultTreeModel AI_ESTATE_CEM.DiagnosticModel

AI_ESTATE_CEM.Test

AI_ESTATE_CEM.TestOutcome

AI_ESTATE_CEM.DiagnosisOutcome

AI_ESTATE_CEM.Action

*TestResult

*StartingPoint

*FaultTreeStep

firstStep

(INV) startedBy S[0:1]

result S[2:?]
(INV) associatedStep

nextStep
(INV) previousResult S[0:1]

testOut

currentDiagnosisOutcome S[0:?]

testStep

preActions L[0:?]

postActions L[0:?]

entryPoints *L[1:?]

Figure 12 —AI_ESTATE_FTM EXPRESS-G diagram 1 of 1

*)

(*

6.6 AI_ESTATE_DCM

The AI-ESTATE Dynamic Context Model information model captures a record of a reasoning session. The
DCM enables the development of information interfaces to the historical results of AI-ESTATE reasoning

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 78 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

sessions, including the state of the reasoner and each step in the reasoning process. The DCM data and
knowledge are developed during a diagnostic session, unlike those of the CEM, FTM, D-Matrix Inference
Model, Diagnostic Logic Model, and Bayesian Network Model (BNM) (which consist of static diagnostic
data and knowledge).

A diagnostic session is initiated by identifying the model to be used for determining the existence of a fault
in the unit undergoing test and for isolating to a sufficient level to effect a maintenance action that will
restore the system to a known functioning condition. The session proceeds in a series of steps. At each step,
one or more tests are performed. The DCM is used to record the state existing prior to performing any test
at each step as well as the results after performing the test. At each step, the following are recorded:

� The status of all actions, diagnoses, and resources at the start of the step.

� The actions that are performed.

� The outcomes of those actions.

� Optionally, the current fault hypothesis

The DCM schema references types from the CEM schema to enable DCM instances to record what
transpired during a diagnostic session. The CEM entities in a DCM instance are copies of entities from the
diagnostic model used during the session. For example, certain DCM entities point to the CEM entities to
indicate “that Action was performed,” and “that Outcome was observed,” and “that DiagnosisOutcome was
inferred.”

A DCM instance contains an abridged copy of the diagnostic model instance that was used during the
session, not a full copy. Since the DCM schema only references the CEM, a DCM instance can not contain
instances of types declared in the BNM, DIM DLM or FTM even if one of those models types were used.
In addition, a DCM instance can omit CEM entities that played no role in the session, or recast a subtype as
a supertype as a way of pruning unnecessary diagnostic model information, and even omit or null
unimportant attribute values from the static model. There is no need for a DCM instance to retain details of
a static model that are not required for recording the session.

EXPRESS specification:

*)
SCHEMA AI_ESTATE_DCM;

REFERENCE FROM AI_ESTATE_CEM;

(*

6.6.1 HypothesisDirected

Type HypothesisDirected defines a type by which a step can determine whether the search is focused on a
provided user hypothesis or on a search process applied by the reasoner.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 79 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

EXPRESS specification:

*)
TYPE HypothesisDirected = BOOLEAN;
END_TYPE;

(*

6.6.2 Identifier

Type Identifier defines a string type for specifying identification information.

EXPRESS specification:

*)
TYPE Identifier = STRING;
END_TYPE;

(*

6.6.3 ReliabilityDirected

Type ReliabilityDirected defines a type by which a step can determine whether or not the optimization
process depends on failure distributions.

EXPRESS specification:

*)
TYPE ReliabilityDirected = BOOLEAN;
END_TYPE;

(*

6.6.4 TimeStamp

Type TimeStamp defines a string for representing date and time information in accordance with World
Wide Web Consortium (W3C) XML Schema Part 2 [B4] Par. 3.2.7 dateTime definition.

EXPRESS specification:

*)
TYPE TimeStamp = STRING;
END_TYPE;

(*

6.6.5 URI

Type URI defines a string for specifying a uniform resource identifier in accordance with
IETF RFC 2396-1998.

EXPRESS specification:

*)

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 80 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

TYPE URI = STRING;
END_TYPE;

(*

6.6.6 StatusCode

Enumerated type StatusCode specifies legal status codes to be returned by a service specified by this
standard.

EXPRESS specification:

*)
TYPE StatusCode = ENUMERATION OF

(OPERATION_COMPLETED_SUCCESSFULLY,
NONEXISTENT_DATA_ELEMENT_REQUESTED,
MISSING_OR_INVALID_ARGUMENT,
OPERATION_OUT_OF_SEQUENCE,
INVALID_MODEL_SCHEMA,
SERVICE_NOT_AVAILABLE,
UNKNOWN_EXCEPTION_RAISED);

END_TYPE;
(*

6.6.7 ActiveAction

Entity ActiveAction corresponds to an action that has been taken in the session. Active actions have actual
costs that are tied back to the associated tests and resources.

EXPRESS specification:

*)
ENTITY ActiveAction;

actionType : Action;
costIncurred : SET OF ActualCost;

INVERSE
stepPerformed : Step FOR actionsPerformed;

END_ENTITY;
(*

Attribute definitions:

actionType : Attribute actionType identifies the type of action performed as specified within the
Common Element Model.

costIncurred : Attribute costIncurred provides the set of actual costs associated with taking this
action in the current step of the session trace.

stepPerformed : Inverse attribute stepPerformed identifies the specific step within the session where
the action was performed.

6.6.8 ActualCost

Entity ActualCost provides the cost information collected when an associated action is performed.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 81 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

EXPRESS specification:

*)
ENTITY ActualCost;

actualValue : CostValue;
costType : Cost;

INVERSE
actionCost : ActiveAction FOR costIncurred;

WHERE
valueIsValid : (NOT(EXISTS(costType.lowerBound)) OR

 (costType.lowerBound <= actualValue)) AND
(NOT(EXISTS(costType.upperBound)) OR
 (costType.upperBound >= actualValue));

validCostType : EXISTS(actionCost.actionType.hasCost) AND
(costType IN actionCost.actionType.hasCost);

END_ENTITY;
(*

Attribute definitions:

actualValue : Attribute actualValue records the incurred cost value.

costType : Attribute costType identifies the type of cost incurred as specified within the Common
Element Model.

actionCost : Inverse attribute actionCost identifies the specific action to which this cost belongs.

Formal propositions:

valueIsValid Proposition valueIsValid ensures that actualValue lies between legal bounds,
given the bounds have been defined.

validCostType Proposition validCostType ensures that the type of cost associated with the
ActualCost corresponds to one of the expected cost types from the diagnostic
model.

6.6.9 ActualOutcome

Entity ActualOutcome provides information on specific outcomes in the diagnostic process.

EXPRESS specification:

*)
ENTITY ActualOutcome;

actualConfidence : OPTIONAL ConfidenceValue;
outcomeType : Outcome;

INVERSE
stepInferred : SET [0:?] OF Step FOR outcomesInferred;
stepRecorded : SET [0:1] OF Step FOR outcomesObserved;
stepHypothesized : SET [0:1] OF Step FOR userHypothesis;

WHERE
boundConfidence : NOT(EXISTS(SELF.actualConfidence)) OR

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 82 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

(SELF.actualConfidence <=
SELF.outcomeType.maxConfidence);

associatedStep : (SIZEOF(stepInferred)>=1) XOR
(SIZEOF(stepRecorded)=1) XOR
(SIZEOF(stepHypothesized)=1);

END_ENTITY;
 (*

Attribute definitions:

actualConfidence : Attribute actualConfidence provides the specific confidence value associated
with the actual outcome.

outcomeType : Attribute outcomeType identifies the corresponding Outcome defined in the
Common Element Model.

stepInferred : Inverse attribute stepInferred identifies the step in the diagnostic session where
the given inferred outcomes were recorded.

stepRecorded : Inverse attribute stepRecorded identifies the step in the diagnostic session
where the current ActualOutcome was recorded.

Formal propositions:

boundConfidence Proposition boundConfidence specifies that the actual confidence must be no
more than the maximum confidence recorded in the Common Element Model
for this outcome.

associatedStep Proposition associatedStep specifies that the ActualOutcome must play a role
as either an inferred outcome, an observed outcome, or a user hypothesis, but
not more than one of these roles. An ActualOutcome that is an inference can be
used in that role by multiple Steps to represent that the inference is unchanging
from Step to Step in Session.trace. An ActualOutcome that is an observation or
user hypothesis can only have that role in the one Step where the observation
or hypothesis was asserted.

6.6.10 ActualSystemItem

Entity ActualSystemItem identifies the specific SystemUnderTest that is the focus of diagnosis in the
current diagnostic session. It also provides a reference to any diagnostic history information on the unit or
system under test in terms of previous test/diagnosis/repair sessions.

EXPRESS specification:

*)
ENTITY ActualSystemItem;

diagnosedItemID : Identifier;
history : SET OF URI;
itemUnderTest : SystemItem;

INVERSE
diagnosedIn : Session FOR diagnosedItem;

UNIQUE
oneId : diagnosedItemID;

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 83 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

END_ENTITY;
(*

Attribute definitions:

diagnosedItemID : Attribute diagnosedItemID provides a specific unique identifier for the system
or unit being diagnosed.

history : Attribute history identifies a set of diagnostic sessions capturing historical
diagnostic information.

itemUnderTest : Attribute itemUnderTest identifies the type of RepairItem that is the subject of
diagnosis

diagnosedIn : Attribute diagnosedIn identifies the Session where the system was diagnosed.

6.6.11 ActualUsage

Entity ActualUsage provides information on time of use by a SystemItem. The purpose of the entity is to
capture life cycle information for the purposes of determining where the unit lies within its reliability
distribution. This information is associated with a specific SystemItem under the assumption that the
information “flows down” to child SystemItems.

EXPRESS specification:

*)
ENTITY ActualUsage;

topLevel : SystemItem;
units : TimeUnit;
timeIndex : TimeValue;

INVERSE
stepRecorded : Step FOR lifeCycleStatus;

END_ENTITY;
(*

Attribute definitions:

topLevel : Attribute topLevel identifies the top-most SystemItem to which the usage
information applies.

units : Attribute units specifies the time units applied to the operational time of the system
item.

timeIndex : Attribute timeIndex provides a value indicating the usage or operational time of the
system item relative to the time baseline.

stepRecorded : Inverse attribute stepRecorded identifies the step in the diagnostic session where the
usage data is recorded.

6.6.12 Discrepancy

Entity Discrepancy captures information on source events that initiated the current diagnostic session.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 84 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

EXPRESS specification:

*)
ENTITY Discrepancy;

name : NameType;
description : DescriptionType;

INVERSE
sessionInitiated : SET [0:1] OF Session FOR cause;

END_ENTITY;
(*

Attribute definitions:

name : Attribute name provides a unique name for identifying the trigger.

description : Attribute description provides a means for associating descriptive text to
characterize the trigger.

sessionInitiated : Inverse attribute sessionInitiated identifies the diagnostic session that was
initiated by the given discrepancy.

6.6.13 ServiceState

Entity ServiceState provides information on the status of a completed AI-ESTATE service request.

EXPRESS specification:

*)
ENTITY ServiceState;

associatedService : DescriptionType;
description : DescriptionType;
status : StatusCode;

INVERSE
stepRecorded : SET [0:1] OF Step FOR serviceLog;

END_ENTITY;
(*

Attribute definitions:

associatedService : Attribute associatedService identifies the AI-ESTATE service called.

description : Attribute description provides a textual description for the AI-ESTATE service
state.

status : Attribute status identifies the status code returned by an AI-ESTATE service.

stepRecorded : Inverse attribute stepRecorded identifies the step in the diagnostic session
where the AI-ESTATE service state was recorded.

6.6.14 Session

Entity Session is the collector for the trace of steps performed in the current diagnostic session.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 85 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

EXPRESS specification:

*)
ENTITY Session;

name : NameType;
cause : OPTIONAL SET [1:?] OF Discrepancy;
modelForDiagnosis : DiagnosticModel;
timeInitiated : TimeStamp;
trace : LIST OF Step;
diagnosedItem : ActualSystemItem;

UNIQUE
oneName : name;

WHERE
noTestsLast : (SIZEOF(SELF.trace) = 0) OR

(SIZEOF(trace[SIZEOF(trace)].outcomesObser
ved) = 0);

firstStepHasResources : NOT(SIZEOF(SELF.trace) > 0) OR
EXISTS(SELF.trace[1].availableResources);

commonSystem : SELF.modelForDiagnosis.systemUnderTest =
SELF.diagnosedItem.itemUnderTest;

END_ENTITY;
(*

Attribute definitions:

name : Attribute name provides a unique, identifying name for the session.

cause : Attribute cause identifies one or more discrepancies that initiated the
diagnostic session.

modelForDiagnosis : Attribute modelForDiagnosis identifies the diagnostic model that was used in
the current diagnostic session.

timeInitiated : Attribute timeInitiated identifies the specific time at which the diagnostic
session was started.

trace : Attribute trace provides an ordered list of steps that the diagnostic reasoner
performs during a session. It is expected that actions such as backing up
would be recorded as a new step in the trace rather than having a step deleted
from the trace.

diagnosedItem : Inverse attribute diagnosedItem identifies the specific unit or system being
diagnosed in the session.

Formal propositions:

noTestsLast Proposition noTestsLast ensures that the last step in the traces has no
associated outcomes or tests that have just been observed. To have observed
this information indicates the state must be updated, and a new step must be
created.

firstStepHasResources Proposition firstStepHasResources requires that the first step in the session
trace shall instantiate the availableResources attribute.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 86 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

commonSystem Proposition commonSystem ensures that the itemUnderTest identified as the
ActualSystemItem corresponds to the systemUnderTest of the
DiagnosticModel being used for diagnosis.

6.6.15 Step

Entity Step is the collector for the information recorded at each step in the current diagnostic session.

EXPRESS specification:

*)
ENTITY Step;

name : OPTIONAL NameType;
actionsPerformed : LIST OF ActiveAction;
optimizedByCost : SET OF CostCategory;
optimizedByDistribution : ReliabilityDirected;
optimizedByUser : HypothesisDirected;
outcomesInferred : SET OF ActualOutcome;
outcomesObserved : SET OF ActualOutcome;
serviceLog : OPTIONAL LIST OF ServiceState;
stepContext : OPTIONAL ContextState;
timeOccurred : OPTIONAL TimeStamp;
userHypothesis : OPTIONAL SET [1:?] OF ActualOutcome;
lifeCycleStatus : LIST OF ActualUsage;
reverted : OPTIONAL Step;
availableResources : OPTIONAL SET [1:?] OF Resource;
INVERSE
owningSession : Session FOR trace;

UNIQUE
oneName : name;

WHERE
hypothesisWithUserDirected : (NOT(SELF.optimizedByUser) OR

 EXISTS(SELF.userHypothesis));
END_ENTITY;

(*

Attribute definitions:

name : Attribute name provides an optional, unique name to be used when
setting or restoring waypoints in a diagnostic session.

actionsPerformed : Attribute actionsPerformed identifies the ordered list of actions (e.g.,
tests, repairs, or other general actions) that have been performed at this
step in the process.

optimizedByCost : Attribute optimizedByCost identifies the set of cost criteria (if any)
used to optimize test selection at a given step in the diagnostic
process.

optimizedByDistribution : Attribute optimizedByDistribution specifies that test selection is
dependent on failure distribution when this Boolean attribute is
TRUE.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 87 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

optimizedByUser : Attribute optimizedByUser is set to TRUE when reasoning at a
particular step was based on a user hypothesis and FALSE when based
on the reasoner's hypothesis.

outcomesInferred : Attribute outcomesInferred identifies the inferred outcome values and
confidences for all model outcomes, whether new or not, at this step.

outcomesObserved : Attribute outcomesObserved provides the set of test, diagnosis, and
action outcomes observed at this step in the process, along with their
associated confidence values.

serviceLog : Attribute serviceLog provides the list of status values returned as a
result of executing an AI-ESTATE service.

stepContext : Attribute stepContext provides context information from the Common
Element Model such as the system and operational state, as well as the
reason for diagnosis at this step. The context may change as diagnosis
proceeds, and once a context is set for a given step, that context will
persist through subsequent steps in a session until changed.

timeOccurred : Attribute timeOccurred records a time stamp at which the step began.

userHypothesis : Attribute userHypothesis identifies a set of user-provided outcomes
taken from the diagnostic model to be used as a working hypothesis
by the reasoner. Note this is an optional attribute because a user may
not have a hypothesis at all steps in the process (if ever).

lifeCycleStatus : Attribute lifeCycleStatus provides usage information for the system
items within the system being diagnosed. The attribute is defined as a
list to impose an order of precedence in the event a specific system
item has multiple parents. Should this occur, later parents in the list
will take precedence (i.e., will override) earlier parents.

reverted : Attribute reverted identifies the step returned to either through
backtrack or restoreWaypoint. This attribute is populated when
restoring the current Step. Otherwise, the attribute is not populated.

availableResources : Attribute availableResources identifies the resources that are available
at a particular Step in the diagnostic session. If this attribute does not
exist on a particular Step, then the resources from the last Step that
instantiates the attribute are still available; however, if the attribute
exists, then it shall enumerate all available resources at that Step. The
first Step in the session shall instantiate this attribute.

owningSession : Inverse attribute owningSession identifies the specific session trace to
which this step belongs.

Formal propositions:

hypothesisWithUserDirected Proposition hypothesisWithUserDirected specifies that if hypothesis-
directed search is used at a step in the diagnosis (optimizedByUser =
TRUE), then userHypothesis must exist.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 88 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

6.6.16 ModelRule

Rule ModelRule shall apply to the population of ActualSystemItem entities in a DCM exchange file.

EXPRESS specification:

*)
RULE ModelRule FOR

(ActualSystemItem);
WHERE

oneModel : SIZEOF(ActualSystemItem) = 1;
END_RULE;

END_SCHEMA;
(*

6.6.17 Dynamic Context Model EXPRESS-G diagrams

The EXPRESS-G definition of the DCM is represented by Figure 13 through Figure 15.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 89 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

*Session

Identifier

3,1 NameType

AI_ESTATE_CEM.SystemItem

1,2(2)

BOOLEAN

AI_ESTATE_CEM.DiagnosticModel

AI_ESTATE_CEM.ConfidenceValue

AI_ESTATE_CEM.CostCategory

AI_ESTATE_CEM.Outcome

3,2
ContextState

3,4 Resource

3,1 NameType

1,3(2,3)

3,5
Discrepancy

HypothesisDirected

1,1(3)

TimeStamp

3,6 ServiceState

STRING

STRING

*ActualOutcome

*Step

STRING

*ActualSystemItem

2,1 ActiveAction

2,2 ActualUsage

URI

ReliabilityDirected

*name

cause S[1:?] modelForDiagnosis

timeInitiated

trace L[0:?]

(INV) owningSession

*name

actionsPerformed L[0:?]

optimizedByCost S[0:?]

optimizedByDistribution

optimizedByUser

outcomesInferred S[0:?]

(INV) stepInferred S[0:?]

actualConfidence

outcomeType

(INV) stepHypothesized S[0:1]
userHypothesis S[1:?]

(INV) stepRecorded S[0:1]
outcomesObserved S[0:?]

serviceLog L[0:?]

stepContext

timeOccurred

lifeCycleStatus L[0:?]

reverted

availableResources S[1:?]

diagnosedItem
(INV) diagnosedIn

*diagnosedItemID

history S[0:?]

itemUnderTest

Figure 13 —AI_ESTATE_DCM EXPRESS-G diagram 1 of 3

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 90 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

1,2 SystemItem

AI_ESTATE_CEM.Action

AI_ESTATE_CEM.CostValueAI_ESTATE_CEM.Cost

AI_ESTATE_CEM.TimeValue AI_ESTATE_CEM.TimeUnit

2,2(1)

1,3 StepActiveAction

1,3 Step

2,1(1)

ActualUsage

*ActualCost

(Step.actionsPerformed)
(INV) stepPerformed actionType

costIncurred S[0:?]

(INV) actionCost

actualValue costType

(Step.lifeCycleStatus)
(INV) stepRecorded

topLevel

units

timeIndex

Figure 14 —AI_ESTATE_DCM EXPRESS-G diagram 2 of 3

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 91 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

AI_ESTATE_CEM.NameType

AI_ESTATE_CEM.ContextState

3,2(1)

1,3 Step

AI_ESTATE_CEM.DescriptionType

3,3(3)
ServiceState

3,3 DescriptionType

AI_ESTATE_CEM.Resource

3,4(1)

3,5(1)
3,1(1)

3,6(1)

StatusCode

1,1 Session

Discrepancy

(Session.cause)
(INV) sessionInitiated S[0:1]

name description

(Step.serviceLog)
(INV) stepRecorded S[0:1]

associatedService

description

status

Figure 15 —AI_ESTATE_DCM EXPRESS-G diagram 3 of 3

*)

(*

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 92 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

7. Reasoner manipulation services

This clause specifies a set of reasoner manipulation services for interacting with a diagnostic reasoner
application during a diagnostic session. A conformant diagnostic reasoner shall expose these services for a
client application to call. The services provide an interface that allows the reasoner to receive test
information from the client, provide diagnostic conclusions and other analysis to the client, recommend
actions to the client, and create a record of the session. The role of the client application is to control the
diagnostic process, provide test information to the reasoner, request diagnostic conclusions, and perform
test and repair actions. Within a diagnostic session, the client application will typically call the services in
this clause to do the following:

� Tell the reasoner to start a new diagnostic session

� Tell the reasoner which static model to use

� Get diagnostic conclusions and recommended actions from the reasoner

� Tell the reasoner the outcomes of actions the client performed

� Tell the reasoner to save a record of the session

� End the session

The reasoner manipulation services in this clause are designed to be sufficient for a typical diagnostic
session. Any extensions to the reasoner manipulation services shall adhere to 5.2.

This clause specifies services using EXPRESS notation; this in no way restricts the software language one
uses for implementing the services. In addition, several services input or output service-specific EXPRESS
entities that are defined within the service specification. Where an EXPRESS entity is defined as part of a
service specification, the entity definition specifies the information content of the input or output; not the
implementation format. The implementation format is user defined and should adhere to the description in
4.2. For simplicity, the entities are defined such that there are no explicit entity-to-entity relationships
within a service call or between services calls. That is, no entity defined in this clause has another entity as
an attribute.

The reasoner manipulation services in this clause make frequent use of “NameType” attributes on entities
in the static diagnostic model. Names are permanent identifiers for items understood on both sides of the
reasoner-client interface. For example, when the reasoner recommends that a test be performed, it does so
by passing the test name to the client. The client application should recognize that test name and be able to
execute the corresponding test procedure. Similarly, the client informs the reasoner that it has performed a
test by passing the test name, and the reasoner recognizes the test name.

7.1 Service order dependence

This subclause specifies the order dependencies for Reasoner Manipulation Services by defining a set of
states for the reasoner application, the services available during each state, and the state transitions that
result from certain services. The basic execution model for an AI-ESTATE conformant diagnostic reasoner
shall manipulate an instance of the DCM to maintain reasoner state and follows the high-level state diagram
shown in Figure 16. The five states defined in the state diagram are described in Table 1.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 93 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Figure 16 —Execution model for an AI-ESTATE conformant diagnostic reasoner

Table 1 —State descriptions

State State descriptions

A. No Session

“No Session” is where the reasoner application can start a new session for a particular
unit under test (UUT). A reasoner’s state shall be state A at startup. The reasoner shall
successfully transition to state A from any state when the service
closeDiagnosticProcess is called.

B. No Models Loaded
“No Models Loaded” is the state where no DiagnosticModels are yet loaded and where
they are loaded. This state also permits informing the reasoner of any historical data for
the UUT and the discrepancy that initiated the current session.

C. Models Loaded “Models Loaded” exists to ensure that at least one DiagnosticModel has been loaded
before transitioning to state D and supports services that require models be present.

D. Valid Session

“Valid Session” supports client requests for information from the reasoner. The
reasoner is in state D after it instantiates a new step in the session trace. The reasoner
stays in state D so long as the client only asks for information. The reasoner transitions
out of state D if the client asserts new information to the reasoner.

E. Pending Assertions

“Pending Assertions” supports asserting information to the reasoner. The reasoner
transitions to state E after the client asserts information. The reasoner stays in state E so
long as the client only asserts information. The reasoner transitions out of state E if the
client asks for information from the reasoner.

States D and E are essentially indistinguishable from the client’s perspective, as the same services are
available in both states. The distinction between states D and E relates to the DCM, particularly whether the
service instantiates a new step in the session trace.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 94 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Each state is represented by a corresponding “state column” in the following table. Transitions between
states (e.g., A to B, C to D) are accomplished by executing the services associated with the relevant
columns (labeled AB, CD, etc.) The rules for remaining in the current step, instantiating a new step, or
reverting to an earlier step are specified by the numbered cell entries in the table and the numbered list of
rules below the table. The rules also specify services’ effects on the current step as recorded in the DCM.

Each service has a row in the table. Grayed out cells indicate that the service is unavailable in that state,
such that the reasoner shall raise an “OPERATION_OUT_OF_SEQUENCE” exception if the service is
called from that state. Each state column has several minor columns denoting state transitions. The heading
at the top of the minor column defines an initial and final state. For example, DE indicates a transition from
state D to E, whereas DD indicates the reasoner stays in state D. An entry in a cell in the minor column
indicates that a call to the service will result in the corresponding state transition if the call completes
successfully. The reasoner shall not make the state transition if the service completed unsuccessfully.

Table 2 defines the state transitions for the Reasoner Manipulation Services. A conformant diagnostic
reasoner shall support sequences of calls to Reasoner Manipulation Services in any order allowed by the
table. The reasoner shall raise a “OPERATION_OUT_OF_SEQUENCE” exception when the client calls a
service that is out of sequence according to the table.

Table 2 —Reasoner manipulation services state transitions

AA AB AD BA BB BC CA CC CD DA DD DE EA ED EE Clause Service
X 7.4.7 initializeDiagnosticProcess

X 7.4.14 restoreCheckpoint
X 7.4.16 resumeDiagnosticProcess

X X X X X 7.4.4 closeDiagnosticProcess
X X X 2 2 7.4.5 describeReasoner

X X 7.4.10 loadHistoryFromLocation
X X 7.4.23 setDiscrepancies

X X 7.4.8 loadDiagnosticModel
X X 7.4.9 loadDiagnosticModelFromLocation

X 7.4.19 setActiveModel
1 1 7.4.27 updateState
1 1 7.4.22 setContext
2 4 7.5.1 estimatedCostsToStage
2 4 7.5.2 estimatedResourcesToStage
2 4 7.4.6 getDiagnosticResults
2 4 7.5.3 getTestOutcomesFromDiagnosisOutcome
2 4 7.4.12 recommendActions
2 4 7.4.13 requestResourcesNeeded
2 2 7.4.26 showSessionTrace
2 4 7.4.21 setCheckpoint
2 4 7.4.24 setWaypoint
3 3 7.4.15 restoreWaypoint
X X 7.4.3 backtrack

2 2 7.4.2 applyDiagnosticOutcomes
2 2 7.4.1 applyActions
2 2 7.4.25 setUsage
2 2 7.4.20 setAvailableResources

State E
Pending

assertions
State D

Valid session

State B
No model

loaded
State A

No session

State C
Model
loaded

NOTE—Rules for states D and E:
a) Record service call. Close current step. Append new step and populate attributes. Any service input

parameters apply to the attributes of the new step per the service specification.
b) Stay in current step. Record service call. Any service input parameters apply to the attributes of the

current step per the service specification.
c) Record service call in the current step. Append a new step that duplicates the specified the Step

(possibly the current step) as it was in its intial state before the first service call occurred in that Step.
d) Equivalent to calling updateState() followed by this service.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 95 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

7.2 Status codes

An AI-ESTATE diagnostic reasoner shall provide a means for its clients to determine the success or failure
of service requests. This shall be recorded by means of the ServiceState entity within the Dynamic Context
Model. This entity will record one of the following status codes:

� OPERATION_COMPLETED_SUCCESSFULLY

� NONEXISTENT_DATA_ELEMENT_REQUESTED

� MISSING_OR_INVALID_ARGUMENT

� OPERATION_OUT_OF_SEQUENCE

� INVALID_MODEL_SCHEMA

� SERVICE_NOT_AVAILABLE

� UNKNOWN_EXCEPTION_RAISED

The status code usage is described in the service definitions.

7.3 Data types for the reasoner manipulation services

The AI-ESTATE Reasoner Service Model information model specifies information elements and their
types for use by the services defined within the AI-ESTATE standard. The entities and types specified in
this model are intended to be used by the services and not as a means of data exchange through either the
ISO 10303-21:1994 or the ISO 10303-28:2007 interfaces.

EXPRESS specification:

*)
SCHEMA AI_ESTATE_RSM;

REFERENCE FROM AI_ESTATE_CEM;

REFERENCE FROM AI_ESTATE_DCM;

(*

7.3.1 ActionOutcomeValue

Type ActionOutcomeValue defines the subset of OutcomeValues that are valid for an ActionOutcome.

EXPRESS specification:

*)
TYPE ActionOutcomeValue = OutcomeValues;
WHERE

valid : SELF IN [NOTSTARTED, COMPLETED, ABORTED, NOTKNOWN,
NOTAVAILABLE, USERDEFINED];

END_TYPE;
(*

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 96 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Formal propositions:

valid Proposition valid ensures the value corresponds to a legal ActionOutcome value.

7.3.2 DiagnosisOutcomeValue

Type DiagnosisOutcomeValue defines the subset of OutcomeValues that are valid for a
DiagnosticOutcome.

EXPRESS specification:

*)
TYPE DiagnosisOutcomeValue = OutcomeValues;
WHERE

valid : SELF IN [GOOD, BAD, CANDIDATE, NOTKNOWN, USERDEFINED];
END_TYPE;

(*

Formal propositions:

valid Proposition valid ensures the outcome value is one of the legal values given by
DiagnosisOutcome.

7.3.3 TestOutcomeValue

Type TestOutcomeValue defines the subset of OutcomeValues that are valid for a TestOutcome.

EXPRESS specification:

*)
TYPE TestOutcomeValue = OutcomeValues;
WHERE

valid : SELF IN [PASS, FAIL, NOTKNOWN, USERDEFINED];
END_TYPE;

(*

Formal propositions:

valid Proposition valid ensures the value is a legal TestOutcome value.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 97 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

7.3.4 ExchangeFormat

Enumerated type ExchangeFormat enumerates the exchange file formats for diagnostic models and
dynamic context model instances.

P21 : The ISO 10303-21 exchange format specified in 5.1.1.

P28 : The ISO 10303-28 exchange format specified in 5.1.2.

NATIVE : An implementation-specific format.

EXPRESS specification:

*)
TYPE ExchangeFormat = ENUMERATION OF

(P21,
P28,
NATIVE);

END_TYPE;
(*

7.3.5 OutputType

Enumerated type OutputType enumerates the types of diagnostic conclusions that the calling application
can request from the reasoner. The reasoner shall be capable of returning each of these types, provided the
requisite information is present in the active diagnostic model.

NO_FAULT_RESULT : The inferred state of the NoFault Diagnosis. The reasoner shall be

capable of returning this result regardless of whether a Diagnosis
with the name NoFault is literally instantiated in the active diagnostic
model.

DIAGNOSIS_RESULT : The inferred state of Diagnosis instances in the active diagnostic

model, excluding subtypes of Diagnosis, and excluding the special
Diagnosis with the name "No Fault".

FAULT_RESULT : The inferred state of Fault instances in the active diagnostic model.

FAILURE_RESULT : The inferred state of Failure instances in the active diagnostic model.

REPAIR_ITEM_RESULT : The inferred state of RepairItem instances in the active diagnostic

model.

FUNCTION_ITEM_RESULT : The inferred state of FunctionItem instances in the active diagnostic

model.

EXPRESS specification:

*)
TYPE OutputType = ENUMERATION OF

(NO_FAULT_RESULT,
DIAGNOSIS_RESULT,

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 98 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

FAULT_RESULT,
FAILURE_RESULT,
REPAIR_ITEM_RESULT,
FUNCTION_ITEM_RESULT,
ALL);

END_TYPE;
(*

7.3.6 StageType

Enumerated type StageType enumerates the stages of a diagnostic session in the order that they occur. The
thresholds for meeting these stages are implementation specific. Some implementations may not distinguish
between some of these stages, but they shall preserve the order.

DETECTED : The initial determination that there must be a fault/failure (e.g., the first test to fail).

ISOLATED : The point in the process where repair becomes a reasonable action.

REPAIRED : The point in the process where the proper repair action(s) have been taken.

VERIFIED : The point in the process where any problems are confirmed to be corrected. For the no-

fault-found case, the point in the process where no-fault-found is confirmed.

FINISHED : The point in the process where the last reasoner-directed action is complete.

EXPRESS specification:

*)
TYPE StageType = ENUMERATION OF

(DETECTED,
ISOLATED,
REPAIRED,
VERIFIED,
FINISHED);

END_TYPE;
(*

7.3.7 CostUnit

Select type CostUnit combines the TimeUnit and NonTimeUnit types to form a generalized unit of cost.

EXPRESS specification:

*)
TYPE CostUnit = SELECT

(TimeUnit,
NonTimeUnit);

END_TYPE;
(*

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 99 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

7.3.8 ActionRecommendation

Entity ActionRecommendation represents a single action or a sequence of actions that the reasoner
recommends taking.

EXPRESS specification:

*)
ENTITY ActionRecommendation;

actionNames : LIST [1:?] OF NameType;
actionDescriptions : LIST [1:?] OF DescriptionType;
sequenceDescription : DescriptionType;
costCategories : LIST OF NameType;
categoryDescriptions : LIST OF DescriptionType;
estimates : LIST OF CostValue;
uppers : LIST OF CostValue;
lowers : LIST OF CostValue;
units : LIST OF CostUnit;
contextNames : LIST OF SET OF NameType;
contextDescriptions : LIST OF SET OF DescriptionType;

WHERE
actionTable : SIZEOF(actionNames)=SIZEOF(actionDescriptions);
costTable : (SIZEOF(costCategories) =

SIZEOF(categoryDescriptions)) AND
(SIZEOF(costCategories) = SIZEOF(estimates)) AND
(SIZEOF(costCategories) = SIZEOF(uppers)) AND
(SIZEOF(costCategories) = SIZEOF(lowers)) AND
(SIZEOF(costCategories) = SIZEOF(units));

alignedContext : SIZEOF(contextNames) IN [0, SIZEOF(actionNames)];
validContext : (SIZEOF(contextNames)=

SIZEOF(contextDescriptions));
END_ENTITY;

(*

Attribute definitions:

actionNames : Attribute actionNames lists the Action or sequence of Actions by name.

actionDescriptions : Attribute actionDescriptions lists the description attribute of each Action in
actionNames. The list actionDescriptions is aligned with actionNames.

sequenceDescription : Attribute sequenceDescription provides a description for a sequence of
actions. Omit sequenceDescription if only one action is in the actionNames
list.

costCategories : Attribute costCategories provides a list of names of the CEM CostCategory
that are associated with the Actions specified by actionNames.

categoryDescriptions : Attribute categoryDescriptions lists the description attribute value of each
CostCategory in costCategories. The list categoryDescriptions is aligned with
costCategories.

estimates : Attribute estimates lists the reasoner estimates of each cost in costCategories.
The list estimates is aligned with costCategories.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 100 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

uppers : Attribute uppers lists the upper bounds of the reasoner estimates of each cost
in costCategories. The list uppers is aligned with costCategories.

lowers : Attribute lowers lists the lower bounds of the reasoner estimates of each cost
in costCategories. The list lowers is aligned with costCategories.

units : Attribute units lists the unit designations used to characterize each cost value
in costCategories. The list units is aligned with costCategories.

contextNames : Attribute contextNames provides the names of the ContextStates under
which the client needs to perform each Action in actionNames. The outer list
of contextNames is aligned with actionNames. The inner list forms a disjoint
set, any single ContextState is acceptable for performing the Action. The
inner list shall be a subset of Action.mustOccurIn. If the inner set is empty,
the Action can be performed under any ContextState.

contextDescriptions : Attribute contextDescriptions provides the description attribute of each
ContextState in contextNames. The outer list and inner set of
contextDescriptions are aligned with contextNames.

Formal propositions:

actionTable Proposition actionTable ensures that the lists actionNames and
actionDescriptions are the same length.

costTable Proposition costTable ensures that the lists costCategories,
categoryDescriptions, estimates, uppers, lowers, and units are all the same
length.

alignedContext Proposition alignedContext ensures that the outer list of contextNames is the
same length as actionNames, or that contextNames is empty.

validContext Attribute validContext ensures that the outer list of contextDescriptions is the
same length as the outer list of contextNames. The lengths of the inner lists
shall also be equal, but this is not checked by the schema.

7.3.9 ActualAction

Entity ActualAction provides information on an action that was performed or attempted, any outcome, and
any costs incurred.

EXPRESS specification:

*)
ENTITY ActualAction;

actionName : NameType;
statusValue : OPTIONAL ActionOutcomeValue;
statusConfidence : OPTIONAL ConfidenceValue;
costLabels : OPTIONAL LIST OF NameType;
costValues : OPTIONAL LIST OF CostValue;

WHERE
costAligned : (NOT(EXISTS(costLabels)) AND

NOT(EXISTS(costValues))) OR (SIZEOF(costLabels)
= SIZEOF(costValues));

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 101 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

validConfidence : NOT(EXISTS(statusConfidence)) OR
EXISTS(statusValue);

END_ENTITY;
(*

Attribute definitions:

actionName : Attribute actionName indicates the Action by name.

statusValue : Attribute statusValue is the status of the action, as specified by type
ActionOutcomeValue. actionName combined with statusValue point to a
ActionOutcome in the diagnostic model.

statusConfidence : Attribute statusConfidence is the confidence in the status value.

costLabels : Attribute costLabels provides a list of the names of the Costs incurred
performing the Action. The costLabels point to CostCategory entities by name.

costValues : Attribute costValues provides the corresponding numerical values of the costs
in costLabels. The list costValues is aligned with costLabels.

Formal propositions:

costAligned Proposition costAligned ensures that the sizes of costLabels and costValues
matches so the values can be aligned.

validConfidence Proposition validConfidence ensures that a statusConfidence is only present if
statusValue is present. statusValue can be present with or without
statusConfidence.

7.3.10 ActualDiagnosisOutcome

Entity ActualDiagnosisOutcome reports data for a diagnostic outcome that was determined through some
means other than via the current reasoned being used in the current diagnostic session.

EXPRESS specification:

*)
ENTITY ActualDiagnosisOutcome;

diagnosisName : NameType;
outcomeValue : DiagnosisOutcomeValue;
outcomeConfidence : OPTIONAL ConfidenceValue;

END_ENTITY;
(*

Attribute definitions:

diagnosisName : Attribute diagnosisName provides the name of the diagnosis whose outcome
is being applied.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 102 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

outcomeValue : Attribute outcomeValue provides the outcome of the diagnosis (GOOD,
BAD, etc.).

outcomeConfidence : Attribute testOutcomeConfidence is the confidence in the outcomeValue.

7.3.11 ActualTest

Entity ActualTest is a subtype of ActualAction. It provides information on a Test that was performed or
attempted.

EXPRESS specification:

*)
ENTITY ActualTest

SUBTYPE OF(ActualAction);
testOutcomeValue : TestOutcomeValue;
testOutcomeQualifier : OPTIONAL QualifierType;
testOutcomeConfidence : OPTIONAL ConfidenceValue;

END_ENTITY;
(*

Attribute definitions:

testOutcomeValue : Attribute testOutcomeValue provides the observed outcome of the Test
(PASS, FAIL, etc.).

testOutcomeQualifier : Attribute testOutcomeQualifier provides the optional qualifier of the
observed test outcome. The combination of testOutcomeValue and
testOutcomeQualifier identifies the particular TestOutcome entity that
was observed.

testOutcomeConfidence : Attribute testOutcomeConfidence is the confidence in the observation.

7.3.12 ActualUsageData

Entity ActualUsageData represents the actual usage of a SystemItem. ActualUsageData is similar to entity
ActualOutcome in the DCM, except it is tailored for use in the services.

EXPRESS specification:

*)
ENTITY ActualUsageData;

topLevelSystemItem : NameType;
units : TimeUnit;
timeIndex : TimeValue;

END_ENTITY;
(*

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 103 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Attribute definitions:

topLevelSystemItem : Attribute topLevelSystemItem provides the name of the top-most
SystemItem to which the usage information applies.

units : Attribute units specifies units of usage.

timeIndex : Attribute timeIndex provides the value of usage or operational time of the
RepairItem relative to the time baseline.

7.3.13 CostEstimate

Entity CostEstimate corresponds to a projected Cost.

EXPRESS specification:

*)
ENTITY CostEstimate;

name : NameType;
description : DescriptionType;
estimate : CostValue;
upper : CostValue;
lower : CostValue;
unit : CostUnit;

END_ENTITY;
(*

Attribute definitions:

name : Attribute name points to a CostCategory in the DiagnosticModel via its name.

description : Attribute description is a copy of that CostCategory description attribute.

estimate : Attribute estimate is the expectation value for the cost.

upper : Attribute upper is the nominal upper bound of the cost.

lower : Attribute lower is the nominal lower bound of the cost.

unit : Attribute unit is the unit of measure for the cost.

7.3.14 DiagnosticConclusion

Entity DiagnosticConclusion corresponds to an inferred diagnostic conclusion from the reasoner. It
supports any of the types of diagnostic conclusion defined by the type OutputType. It is similar to
ActualOutcome in the DCM.

EXPRESS specification:

*)
ENTITY DiagnosticConclusion;

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 104 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

resultType : OutputType;
name : NameType;
description : DescriptionType;
outcome : DiagnosisOutcomeValue;
confidence : ConfidenceValue;

WHERE
noFaultCase : NOT((resultType=NO_FAULT_RESULT) XOR

(name=NoFault));
END_ENTITY;

(*

Attribute definitions:

resultType : Attribute resultType indicates the type of the conclusion, as enurmerated by type
OutputType.

name : Attribute name provides the name of the SystemItem or Diagnosis to which this
conclusion applies.

description : Attribute description contains a copy of the description attribute of the SystemItem or
Diagnosis.

outcome : Attribute outcome is the inferred outcome value (GOOD, BAD, etc.) for the
SystemItem or Diagnosis.

confidence : Attribute confidence is as follows:

 For SystemItems and Diagnoses excluding NoFault, the following is true:

 If outcome=GOOD, confidence is the reasoner’s degree of certainty that the
SystemItem or Diagnosis is indeed GOOD. If outcome=BAD, confidence is the
reasoner's degree of certainty that the SystemItem or Diagnosis is indeed BAD.

If outcome=CANDIDATE, confidence is the reasoner’s degree of certainty that the
SystemItem or Diagnosis might be BAD.

 If outcome=NOTKNOWN, confidence is the reasoner’s degree of certainty that the
SystemItem or Diagnosis might be BAD.

 For the NoFault Diagnosis, the following is true:

 If outcome=GOOD, confidence is the reasoner’s degree of certainty that the
SystemItem or Diagnosis is indeed GOOD (i.e., the SUT is fault-free). If
outcome=BAD, confidence is the reasoner's degree of certainty that the SystemItem or
Diagnosis is indeed BAD. See 7.3.2 for the semantics of GOOD, BAD, CANDIDATE,
and NOTKNOWN for the NoFault.

 If outcome=CANDIDATE, confidence is the reasoner’s degree of certainty that the
SystemItem or Diagnosis might be GOOD.

 If outcome=NOTKNOWN, confidence is the reasoner’s degree of certainty that the
SystemItem or Diagnosis might be GOOD.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 105 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Formal propositions:

noFaultCase Proposition noFaultCase ensures that resultType=NO_FAULT_RESULT and name
= NoFault appear together.

7.3.15 DiscrepancyData

Entity DiscrepancyData reports information on source events that initiated the current diagnostic session. It
contains the information needed to instantiate a Discrepancy in the DCM.

EXPRESS specification:

*)
ENTITY DiscrepancyData;

name : NameType;
description : DescriptionType;

END_ENTITY;
(*

Attribute definitions:

name : Attribute name provides the name for the Discrepancy.

description : Attribute description provides the description for the Discrepancy.

7.3.16 ExpectedTestOutcome

Entity ExpectedTestOutcome provides the expected results of a Test if it were to be performed.

EXPRESS specification:

*)
ENTITY ExpectedTestOutcome;

name : NameType;
outcomeValue : TestOutcomeValue;
outcomeQualifier : OPTIONAL QualifierType;
outcomeConfidence : OPTIONAL ConfidenceValue;
actionStatusValue : OPTIONAL ActionOutcomeValue;
actionStatusConfidence : OPTIONAL ConfidenceValue;

END_ENTITY;
(*

Attribute definitions:

name : Attribute name indicates the test by name.

outcomeValue : Attribute outcomeValue provides the test outcome value of the test
(PASS, FAIL, etc.).

outcomeQualifier : Attribute outcomeQualifier provides the optional qualifier of the test
outcome. The combination of outcomeValue and outcomeQualifier

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 106 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

points to a particular TestOutcome in the active diagnostic model.

outcomeConfidence : Attribute outcomeConfidence is the confidence that the outcomeValue
and outcomeQualifier would be observed.

actionStatusValue : Attribute actionStatusValue provides the action outcome value of the
test action. Use “UNAVAILABLE” if the test would be unavailable.
Use completed if the test would PASS or FAIL.

actionStatusConfidence : Attribute actionStatusConfidence is the confidence that
actionStatusValue would occur.

7.3.17 ResourceNeeded

Entity ResourceNeeded identifies a resource that is required to support the diagnostic process.

EXPRESS specification:

*)
ENTITY ResourceNeeded;

resourceName : NameType;
description : DescriptionType;
confidence : ConfidenceValue;
neededQuantity : NUMBER;
availableQuantity : NUMBER;

END_ENTITY;
(*

Attribute definitions:

resourceName : Attribute resourceName points to a Resource in the DiagnosticModel via its
name.

description : Attribute description is a copy of that Resource’s description attribute.

confidence : Attribute confidence quantifies the probability/confidence that the resource will
be needed at the given neededQuanity.

neededQuantity : Attribute neededQuantity quantifies the amount of the resource that will be
needed. Implementations that do not track quantity should use the integer 1.

availableQuantity : Attribute availableQuantity quantifies the availability of the resource as the
reasoner knows it. Values>0 indicate the available quantity of the resource. The
value=0 indicates it is unavailable. The values<0 indicate unknown availability.
Implementations that do not track quantity should use the integer 1 to indicate
the resource is available.

7.3.18 Reasoner Service Model EXPRESS-G diagrams

The EXPRESS-G definition of the RSM is represented by Figure 17 through Figure 19.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 107 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

AI_ESTATE_CEM.NameType 1,1(1,2,3)

1,6(3)

1,1 NameType

1,1 NameType

1,1 NameType

AI_ESTATE_CEM.ConfidenceValue

1,2(2,3)

1,8(2)

AI_ESTATE_CEM.CostValue

1,3(1,3)

*ActionOutcomeValue

1,3 CostValue

1,3 CostValue

1,3 CostValue

AI_ESTATE_CEM.QualifierType 1,4(2)

*ActualAction

AI_ESTATE_CEM.DescriptionType

1,5(2,3)

1,7(2)

3,1 TimeUnit AI_ESTATE_CEM.NonTimeUnit

3,2 OutcomeValues

3,2 OutcomeValues

CostUnit

*ActionRecommendation

*TestOutcomeValueActualTest

actionNames L[1:?]

actionDescriptions L[1:?]

sequenceDescription

costCategories L[0:?]

categoryDescriptions L[0:?]

estimates L[0:?]

uppers L[0:?]

lowers L[0:?]

units L[0:?]

contextNames L[0:?] S[0:?]

contextDescriptions L[0:?] S[0:?]

testOutcomeValue

testOutcomeQualifier

testOutcomeConfidence

actionName

statusValue

statusConfidence

costLabels L[0:?]

costValues L[0:?]

Figure 17 —AI_ESTATE_RSM EXPRESS-G diagram 1 of 3

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 108 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

1,1 NameType

1,1 NameType

1,1 NameType

1,2 ConfidenceValue

1,2 ConfidenceValue1,2 ConfidenceValue

1,2 ConfidenceValue

1,4 QualifierType

1,5 DescriptionType

3,2 OutcomeValues*DiagnosisOutcomeValue

NUMBER

2,1(3)

ExpectedTestOutcome

1,7 ActionOutcomeValue

1,8 TestOutcomeValue

ActualDiagnosisOutcome

ResourceNeededNUMBER

diagnosisName

outcomeValue

outcomeConfidence

name

outcomeValue

outcomeQualifier

outcomeConfidence

actionStatusValue

actionStatusConfidence

resourceName
description

confidence

neededQuantity availableQuantity

Figure 18 —AI_ESTATE_RSM EXPRESS-G diagram 2 of 3

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 109 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

1,1 NameType

1,1 NameType

1,1 NameType

1,1 NameType

1,2 ConfidenceValue

1,3 CostValue1,3 CostValue

1,3 CostValue

1,5 DescriptionType

1,5 DescriptionType

1,5 DescriptionType

AI_ESTATE_CEM.TimeUnit

3,1(1)

DiscrepancyData

AI_ESTATE_CEM.TimeValue

AI_ESTATE_CEM.SeverityCategory

AI_ESTATE_CEM.OutcomeValues3,2(1,2)

2,1 DiagnosisOutcomeValue

AI_ESTATE_DCM.Identifier

OutputType

ExchangeFormat StageType

*DiagnosticConclusion

CostEstimate

1,6 CostUnit

ActualUsageData

resultType

name

description

outcome

confidence

topLevelSystemItem

units

timeIndex

name

description

estimate upper

lower unit

name description

Figure 19 —AI_ESTATE_RSM EXPRESS-G diagram 3 of 3

*)

(*

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 110 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

7.4 Required services

This subclause describes the subset of the Reasoner Manipulation Services that are required to claim
conformance to Reasoner Manipulation Services.

Some service descriptions in 7.4.1 through 7.4.28 have a subclause named “Effect on DCM” that defines
any effects on the DCM instance being generated during the session beyond what is described in the table
and rules in 7.1. The full effect on the DCM instance is defined by the table and rules in 7.1 combined with
the “Effect on DCM” subclause within each service description.

*)

(*

7.4.1 applyActions

Service “applyActions” informs the Reasoner of each action that is performed, any outcomes that were
observed, and any costs that were incurred.

EXPRESS specification:

*)
PROCEDURE applyActions

(actions : LIST [1:?] OF ActualAction);
END_PROCEDURE;

(*

Parameter name Type Description

actions LIST [1:?] OF
ActualAction

Structure that identifies the actions that were
performed in order, and any outcomes, and costs
incurred.

Exceptions:

� MISSING_OR_INVALID_ARGUMENT exception shall be raised if actionName is not present
or invalid.

� MISSING_OR_INVALID_ARGUMENT exception shall be raised if actionStatusConfidence is
present while actionStatusValue is missing.

� MISSING_OR_INVALID_ARGUMENT exception shall be raised if testOutcomeConfidence
or testOutcomeQualifier is present while testOutcomeValue is missing.

� MISSING_OR_INVALID_ARGUMENT exception shall be raised if the length of costLabels
and costValues are different.

� MISSING_OR_INVALID_ARGUMENT exception shall be raised if costLabels or costValues
contains a NULL item.

� MISSING_OR_INVALID_ARGUMENT exception shall be raised if statusValue and
testOutcomeValue are both NULL.

� OPERATION_OUT_OF_SEQUENCE exception shall be raised if the service is called out of
sequence.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 111 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Service details:

� The parameter “actions” contains ActualAction enties and/or subtypes of ActualAction.

Effect on DCM:

� For each ActualAction in the list, and in that order, a corresponding ActiveAction is instantiated
and added to the LIST Session.trace[end].actionsPerformed.

� If an ActualAction includes a statusValue, a corresponding ActualOutcome is added to the SET
Session.trace[end].Step.outcomesObserved. If the ActualAction includes a statusConfidence, the
ActualOutcome will also include an actual confidence with the value given by the
statusConfidence.

� If an ActualAction includes a testOutcomeValue, a corresponding ActualOutcome is added to
the SET Session.trace[end].Step.outcomesObserved. If the ActualAction includes a
testOutcomeConfidence, the ActualOutcome will also include an actual confidence with the
value testOutcomeConfidence.

� If an action is performed multiple times during a single Step, only the last outcome is recorded
in outcomesObserved.This is because the DCM records outcomesObserved as a SET and has no
means of recording the order of observations or cases of many repeated observations with
potentially conflicting outcomes.

� If an ActualAction includes costLabels and costValues, then for each item in costLabels, a
corresponding ActualCost is instantiated and added to ActiveAction.costIncurred. The value of
each ActualCost.actualValue is given by costValues.

7.4.2 applyDiagnosticOutcome

Service “applyDiagnosticOutcome” applies specific values of diagnostic outcomes to the current state of
the reasoner. Service “applyDiagnosticOutcome” shall only apply a diagnostic outcome at most one time at
a single step.

EXPRESS specification:

*)
PROCEDURE applyDiagnosticOutcome

(outcomes : LIST [1:?] OF ActualDiagnosisOutcome);
END_PROCEDURE;

(*

Parameter name Type Description

outcomes LIST [1:?] OF
ActualDiagnosisOutcome

Structure that identifies the list of diagnostic
outcomes that are known at this point of the
diagnostic process that have not been inferred by the
diagnostic reasoner.

Exceptions:

� MISSING_OR_INVALID_ARGUMENT exception shall be raised if diagnosisName is not
present or invalid.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 112 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

� MISSING_OR_INVALID_ARGUMENT exception shall be raised if statusConfidence is
present while statusValue is missing.

� MISSING_OR_INVALID_ARGUMENT exception shall be raised if
diagnosisOutcomeConfidence is present while diagnosisOutcomeValue is missing.

� MISSING_OR_INVALID_ARGUMENT exception shall be raised if statusValue and
diagnosisOutcomeValue are both NULL.

� OPERATION_OUT_OF_SEQUENCE exception shall be raised if the service is called out of
sequence.

Service details:

� None

Effect on DCM:

� For each ActualDiagnosisOutcome in parameter “outcomes,” an ActualOutcome for the
associated Diagnosis is added to the set Step.outcomesObserved for the current Step.

7.4.3 backtrack

Service “backtrack” reverts the Session to a previous Step.

EXPRESS specification:

*)
PROCEDURE backtrack

(numberOfSteps : INTEGER);
END_PROCEDURE;

(*

Parameter name Type Description
numberOfSteps INTEGER Number of steps to backtrack

Exceptions:

� MISSING_OR_INVALID_ARGUMENT exception shall be raised if numberOfSteps is less
than 0 or greater than the length of Session.trace[].

� OPERATION_OUT_OF_SEQUENCE exception shall be raised if the service is called out of
sequence.

Service details:

� Refer to 7.4.27 for notes on backtrack, waypoint, checkpoint, and resume.

� The service reverts to the initial state of the specified step before any services were called.

� numberOfSteps=0 reverts to the current step in its initial state.

� numberOfSteps=1 reverts to the previous step, etc.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 113 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

� Whereas the DCM records all steps instantiated during a diagnostic session, a backtrack behaves
as if steps are popped from a stack. The popped steps, although not removed from
Session.trace[], are no longer considered during subsequent backtracks.

Effect on DCM:

� Appends a new Step to Session.trace[] that equals the initial state of the Step that this service
reverts to, as specified above in Service details. This becomes the current Step.

� The value of Step.reverted for the new Step points back to the Step that this service reverted to.

7.4.4 closeDiagnosticProcess

Service “closeDiagnosticProcess” terminates the diagnostic session.

EXPRESS specification:

*)
PROCEDURE closeDiagnosticProcess

;
END_PROCEDURE;

(*

Exceptions:

None

Service details:

� This service does not automatically save the Session.

� The session cannot be resumed after calling this service.

Effect on DCM:

� The Session is no longer available to the reasoner.

7.4.5 describeReasoner

Service “describeReasoner” provides a description of the reasoner.

EXPRESS specification:

*)
FUNCTION describeReasoner

: STRING;
END_FUNCTION;

(*

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 114 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Returns:

String containing implementation-specific reasoner configuration and identification information.

Exceptions:

None

Service details:

� The format and content of the return string is implementation dependent.

7.4.6 getDiagnosticResults

Service “getDiagnosticResults” returns a list of inferred diagnoses. The input parameters define the subset
of diagnostic conclusions to return.

EXPRESS specification:

*)
FUNCTION getDiagnosticResults

(outcomeOfInterest : DiagnosisOutcomeValue;
minConfidence : ConfidenceValue;
maxNumber : INTEGER;
levelsOfInterest : SET [0:?] OF NameType;
outputOfInterest : OutputType): LIST OF DiagnosticConclusion;

END_FUNCTION;
(*

Parameter name Type Description

outcomeOfInterest DiagnosisOutcomeValue Directs the service to return only outcomes of this
value

minConfidence ConfidenceValue The minimum outcome confidence to return
maxNumber INTEGER Maximum number of conclusions to return

levelsOfInterest SET [0:?] OF NameType Defines a set of Levels used for filtering the
conclusions according to their associated Level

outputOfInterest OutputType Defines the type of diagnosis that will be returned

Returns:

List of DiagnosisConclusion. If confidence information is available, the list is sorted highest to
lowest based on the inferred confidences. Otherwise, sorting is unspecified.

Exceptions:

� MISSING_OR_INVALID_ARGUMENT exception shall be raised if outcomeOfInterest is not a
valid diagnosis outcome for any diagnoses.

� OPERATION_OUT_OF_SEQUENCE exception shall be raised if the service is called out of
sequence.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 115 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Service details:

� The service supports each of the types of diagnostic conclusion supported by the entity
DiagnosticConclusion.

� maxNumber<=0 directs the service to not limit the size of the return list. maxNumber>0 directs
the service to return no more than maxNumber entries.

� minConfidence=0 directs the service to not filter the conclusions by confidence.
minConfidence>0 directs the service to only return conclusions with confidence greater than or
equal to minConfidence.

� The service ignores the minConfidence parameter if confidence information is not included in
the active diagnostic model. In this case, conclusions are not filtered by confidence.

� The parameter levelsOfInterest directs the service to return only conclusions associated with
Level entities with the names listed within levelsOfInterest. If Level information is not included
in the active diagnostic model, then the service ignores this parameter and conclusions are not
filtered by Level. An empty set levelOfInterest parameter directs the service to return
conclusions associated with any Level. A null string in the set directs the service to include
items not associated with a Level.

7.4.7 initializeDiagnosticProcess

Service “initializeDiagnosticProcess” begins a diagnostic session for the specified system under test.

EXPRESS specification:

*)
FUNCTION initializeDiagnosticProcess

(itemID : Identifier;
repairItemName : NameType) : NameType;

END_FUNCTION;
(*

Parameter name Type Description

itemID Identifier The unique identifier for the system being diagnosed,
such as a serial number

systemItemName NameType Name attribute of the actual system item under test

Returns:

Returns the name of the session.

Exceptions:

� OPERATION_OUT_OF_SEQUENCE exception shall be raised if the service is called out of
sequence.

Effect on DCM:

� Creates the ActualSystemItem, and sets ActualSystemItem.diagnosedItemID to the value of the
itemID parameter.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 116 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

� The attribute ActualSystemItem.itemUnderTest will be set toDiagnosticModel.systemUnderTest
once a DiagnosticModel is loaded.

� Creates the Session and sets Session.diagnosedItem to the ActualSystemItem.

� Assigns an implementation-specific unique value to Session.name.

� Sets Session.timeInitiated to the current date and time.

7.4.8 loadDiagnosticModel

Service “loadDiagnosticModel” loads a DiagnosticModel and makes it available for reasoning.

EXPRESS specification:

*)
PROCEDURE loadDiagnosticModel

(name : NameType);
END_PROCEDURE;

(*

Parameter name Type Description
name NameType Name of the diagnostic model

Exceptions:

� NONEXISTENT_DATA_ELEMENT_REQUESTED exception shall be raised if there is no
DiagnosticModel whose name attribute matches the name specified.

� OPERATION_OUT_OF_SEQUENCE exception shall be raised if the service is called out of
sequence.

� MISSING_OR_INVALID_ARGUMENT exception shall be raised if the
DiagnosticModel.systemUnderTest.name does not match the systemItemName provided to
initializeDiagnosticProcess service.

Service details:

� The input parameter name must match the name attribute of a DiagnosticModel.

� The application exposing the service handles the details of how and where the DiagnosticModel
is stored and accessed.

Effect on DCM:

� Sets Session.modelForDiagnosis to equal the DiagnosticModel that was loaded.

� Sets ActualSystemItem.itemUnderTest to equal DiagnosticModel.systemUnderTest.

� The data in the loaded model become available for use in the DCM.

� This standard specifies that there be exactly one DiagnosticModel in
Session.modelForDiagnosis. As such, calling this service will replace any previously loaded
model data with the newly loaded model, and only the data in the most recently loaded model
are available for use in the DCM.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 117 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

7.4.9 loadDiagnosticModelFromLocation

Service “loadDiagnosticModelFromLocation” loads a DiagnosticModel from a client-specified location.

EXPRESS specification:

*)
FUNCTION loadDiagnosticModelFromLocation

(location : URI;
modelFormat : ExchangeFormat) : SET OF NameType;

END_FUNCTION;
(*

Parameter name Type Description
location URI A URI fully specifying the location of the model
format ExchangeFormat Format of the saved Model: P21, P28, or NATIVE

Returns:

Returns the name attribute of the DiagnosticModel that is loaded from the location.

Exceptions:

� NONEXISTENT_DATA_ELEMENT_REQUESTED exception shall be raised if the
DiagnosticModel does not exist at the location specified.

� MISSING_OR_INVALID_ARGUMENT exception shall be raised if the format specified is
invalid or is not supported by this reasoner.

� INVALID_MODEL_SCHEMA exception shall be raised if the model type is not supported by
the reasoner (e.g., a Dmatrix).

� INVALID_MODEL_SCHEMA exception shall be raised if the data is invalid.

� OPERATION_OUT_OF_SEQUENCE exception shall be raised if the service is called out of
sequence

� MISSING_OR_INVALID_ARGUMENT exception shall be raised if the
DiagnosticModel.systemUnderTest.name does not match the systemItemName provided to
initializeDiagnosticProcess service.

Service details:

� This service shall support at least one of the formats “ISO 10303-21” or “ISO 10303-28” as
defined in 5.1 and may also support “Native.”

� If the service supports loading a standard AI-ESTATE diagnostic model type (e.g., Dmatrix),
then it shall be capable of loading extended models of that type as well, including extensions
defined by other parties. For extensions defined by other parties, the reasoner shall at least
consume the portions of the model defined by standard AI-ESTATE.

� The service shall fully validate any standard AI-ESTATE exchange model that it loads. For an
extended model, the service must at least validate the portions defined by standard AI-ESTATE.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 118 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

� The BNM, DIM, DLM, and FTM specify there be exactly one DiagnosticModel per exchange
file. This service returns the DiagnosticModel name in a SET allowing for possible expansion to
multiple DiagnosticModels per file in the future.

Effect on DCM:

� Sets Session.modelForDiagnosis to equal the DiagnosticModel that was loaded.

� Sets ActualSystemItem.itemUnderTest to equal DiagnosticModel.systemUnderTest.

� The data in the loaded model become available for use in the DCM.

� This standard specifies that there be exactly one DiagnosticModel in
Session.modelForDiagnosis. As such, calling this service will replace any previously loaded
model data with the newly loaded model, and only the data in the most recently loaded model
are available for use in the DCM.

7.4.10 loadHistoryFromLocation

Service “loadHistoryFromLocation” loads a DCM instance from a client-specified location and includes it
in the history for the current system under test.

EXPRESS specification:

*)
FUNCTION loadHistoryFromLocation

(location : URI;
modelFormat : ExchangeFormat) : SET OF NameType;

END_FUNCTION;
(*

Parameter name Type Description
location URI A URI fully specifying the location of the model
format ExchangeFormat Format of the saved Model: P21, P28, or NATIVE

Returns:

Returns the name attribute of each session that was loaded from the location.

Exceptions:

� NONEXISTENT_DATA_ELEMENT_REQUESTED exception shall be raised if the DCM
instance does not exist at the location specified.

� MISSING_OR_INVALID_ARGUMENT exception shall be raised if the format specified is
invalid, or not supported by this reasoner.

� INVALID_MODEL_SCHEMA exception shall be raised if the data is invalid.

� OPERATION_OUT_OF_SEQUENCE exception shall be raised if the service is called out of
sequence.

� No error occurs if the same Session is loaded more than once during a session.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 119 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Service details:

� This service shall support at least one of the formats “ISO 10303-21” or “ISO 10303-28” as
defined in 5.1 and may also support “Native.”

� In this standard. the DCM allows exactly one Session per exchange file. As such, this service
will return a set constisting of one session name. This service returns a set allowing for possible
expansion to multiple Sessions per file in future versions of AI-ESTATE.

� The service shall support loading a standard AI-ESTATE DCM instance and shall be capable of
loading extended DCM instances as well, including extensions defined by other parties. For
extensions defined by other parties, the reasoner shall at least consume the portions of the model
defined by standard AI-ESTATE.

� The service shall fully validate any standard AI-ESTATE exchange instance that it loads. For an
extended instance, the service must at least validate the portions defined by standard AI-
ESTATE.

Effect on DCM:

� Adds the URI parameter to the SET ActualSystemItem.history if it is not already present.

7.4.11 pauseDiagnosticProcess

Service “pauseDiagnosticProcess” temporarily stops the diagnostic session so that it can be resumed at a
later time.

EXPRESS specification:

*)
PROCEDURE pauseDiagnosticProcess;
END_PROCEDURE;

(*

Exceptions:

� OPERATION_OUT_OF_SEQUENCE exception shall be raised if the service is called out of
sequence.

Service details:

� Refer to 7.4.28 for notes on backtrack, waypoint, checkpoint, and resume.

� This service does not automatically save the Session. Any data that an application may save as
the underlying mechanism for this service is implementation specific.

� After pausing the Session, the session can be resumed using the service
resumeDiagnosticSession.

Effect on DCM:

� The Session is not available to the reasoner until it is resumed.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 120 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

7.4.12 recommendActions

Service “recommendActions” returns a sorted list of recommended actions to perform.

EXPRESS specification:

*)
FUNCTION recommendActions

(maxNumber : INTEGER;
levelsOfInterest : SET OF NameType) : LIST OF ActionRecommendation;

END_FUNCTION;
(*

Parameter name Type Description
maxNumber INTEGER Maximum number of recommendations to return

levelsOfInterest SET [1:?] of
NameType

Defines a set of Levels used for filtering the
recommended actions according to their associated
Level

Returns:

Returns a list of ActionRecommendations, sorted best to worst. If optimization information is
available, sorting is based on that information otherwise sorting is unspecified. Each ActionOutput
is an alternative path forward from which the client may choose.

Exceptions:

� OPERATION_OUT_OF_SEQUENCE exception shall be raised if the service is called out of
sequence.

Service details:

� maxNumber<=0 directs the service to not limit the size of the return list. maxNumber>0 directs
the service to return no more than maxNumber entries.

� The parameter levelsOfInterest directs the service to return only Actions associated with Level
entities with the names listed within levelsOfInterest. A null string in the set directs the service
to include Actions not associated with a Level. If Level information is not included in the active
diagnostic model, then the service ignores this parameter and recommended actions are not
filtered by Level. An empty set levelOfInterest parameter directs the service to return Actions
associated with any Level.

7.4.13 requestResourcesNeeded

Returns the resources that are necessary to complete a given a set of Actions.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 121 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

EXPRESS specification:

*)
FUNCTION requestResourcesNeeded

(actionNames : SET [1:?] OF NameType) : SET [0:?] OF
ResourceNeeded;

END_FUNCTION;
(*

Parameter name Type Description

actionNames SET [1:?] OF
NameType A set of action names

Returns:

A set of ResourceNeeded entities that describes the resources needed for a specified set of actions.

Exceptions:

� NONEXISTENT_DATA_ELEMENT_REQUESTED exception shall be raised if name in
“actions” does not match an Action.name in an available diagnostic model.

� OPERATION_OUT_OF_SEQUENCE exception shall be raised if the service is called out of
sequence.

Service details:

� The names in “actionNames” refer to Actions in the active diagnostic model by their
Action.name attributes.

� The returned set of ResourcesNeeded will be empty if no resources are required or if the
application or diagnostic models do not support Resources.

7.4.14 restoreCheckpoint

Restores a Session to a state that was previously saved by calling setCheckpoint.

EXPRESS specification:

*)
FUNCTION restoreCheckpoint

(checkpointName : NameType) : NameType;
END_FUNCTION;

(*

Parameter name Type Description
checkpointName NameType Name of the checkpoint to retrieve

Returns:

Name of the session.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 122 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Exceptions:

� NONEXISTENT_DATA_ELEMENT_REQUESTED exception shall be raised if an attempt is
made to restore a checkpoint that does not exist.

� OPERATION_OUT_OF_SEQUENCE exception shall be raised if the service is called out of
sequence.

Service details:

� Refer to 7.4.28 for notes on backtrack, waypoint, checkpoint, and resume.

� The parameter checkpointName shall equal the name assigned to the checkpoint in the earlier
call to setCheckpoint.

� The application exposing the service handles the details of how and where the underlying
session data is managed to support this service.

Effect on DCM:

� Reverts the Session as it existed when the checkpoint of the given name was set.

7.4.15 restoreWaypoint

Reverts the Session to a previous Step.

EXPRESS specification:

*)
PROCEDURE restoreWaypoint

(waypointName : NameType);
END_PROCEDURE;

(*

Parameter name Type Description
waypointName NameType Name of the waypoint to revert to

Exceptions:

� NONEXISTENT_DATA_ELEMENT_REQUESTED exception shall be raised if an attempt is
made to restore a waypoint that does not exist.

� OPERATION_OUT_OF_SEQUENCE exception shall be raised if the service is called out of
sequence.

Service details:

� Refer to 7.4.28 for notes on backtrack, waypoint, checkpoint, and resume.

� Reverts back to the initial state of the Step which was previously designated as the waypoint
with this waypointName via a call to setWaypoint.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 123 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Effect on DCM:

� Appends a new Step to Session.trace[] that equals the initial state of the Step that this service
reverts to, as specified above in Service details. This becomes the current Step.

� The value of Step.reverted for the new Step points back to the Step that this service reverted to.

7.4.16 resumeDiagnosticProcess

Service “resumeDiagnosticProcess” restarts a diagnostic session that was stopped using
“pauseDiagnosticProcess.”

EXPRESS specification:

*)
PROCEDURE resumeDiagnosticProcess

(sessionName : NameType);
END_PROCEDURE;

(*

Parameter name Type Description
sessionName NameType Name of the session to resume

Exceptions:

� OPERATION_OUT_OF_SEQUENCE exception shall be raised if the service is called out of
sequence.

Service details:

� Refer to 7.4.28 for notes on backtrack, waypoint, checkpoint, and resume.

Effect on DCM:

� Resumes the session.

� The application exposing the service handles the details of how and where the underlying
session data is managed to support this service.

7.4.17 saveSession

Saves a Session.

EXPRESS specification:

*)
PROCEDURE saveSession

(modelFormat : ExchangeFormat);
END_PROCEDURE;

(*

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 124 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Parameter name Type Description
format ExchangeFormat Format of the saved Model: P21, P28, or NATIVE

Exceptions:

� MISSING_OR_INVALID_ARGUMENT exception shall be raised if the format specified is
invalid.

� OPERATION_OUT_OF_SEQUENCE exception shall be raised if the service is called out of
sequence.

Service details:

� If a saved Session with the same Session.name already exists, it will be overwritten.

� The application exposing the service handles the details of how and where the Session is stored.

� A Session entity saved by this service is usable as history for a future Session.

� The application exposing the service handles the details of how and where the underlying
session data is managed to support this service.

7.4.18 saveSessionToLocation

Saves a Session to a specified location.

EXPRESS specification:

*)
PROCEDURE saveSessionToLocation

(location : URI;
modelFormat : ExchangeFormat);

END_PROCEDURE;
(*

Parameter name Type Description

location URI A URI fully specifying the location where the session
should be saved

format ExchangeFormat Format of the saved Model: P21, P28, or NATIVE

Exceptions:

� NONEXISTENT_DATA_ELEMENT_REQUESTED exception shall be raised if the
application could not write to the specified location.

� MISSING_OR_INVALID_ARGUMENT exception shall be raised if the format specified is
invalid.

� OPERATION_OUT_OF_SEQUENCE exception shall be raised if the service is called out of
sequence.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 125 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Service details:

� If a Session at location already exists, it will be overwritten.

� A Session entity saved by this service is usable as history for a future Session.

7.4.19 setActiveModel

Service “setActiveModels” makes the specified DiagnosticModel active for reasoning from this point
forward.

EXPRESS specification:

*)
PROCEDURE setActiveModel

(diagnosticModelNames : SET [1:1] OF NameType);
END_PROCEDURE;

(*

Parameter name Type Description

diagnosticModelNames SET [1:1] OF
NameType

Name attribute of the DiagnosticModel to make the
active model

Exceptions:

� NONEXISTENT_DATA_ELEMENT_REQUESTED exception shall be raised if the named
model is not already loaded.

� OPERATION_OUT_OF_SEQUENCE exception shall be raised if the service is called out of
sequence.

Service details:

� The DiagnosticModel specified by diagnosticModelNames must already be loaded and
available.

� The specified DiagnosticModel and its associated data become the knowledge base used by the
reasoner for the remainder of the session.

� This standard specifies exactly one DiagnosticModel per session. The parameter
diagnosticModelNames is a set to support possible future expansion.

Effect on DCM:

� Instantiate a new Step with attributes set to their intial state, and make that Step the only Step in
Session.trace.

� The data associated with the DiagnosticModel become available for use in the DCM.

7.4.20 setAvailableResources

Tells the reasoner what resources are available.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 126 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

EXPRESS specification:

*)
PROCEDURE setAvailableResources

(resourceNames : LIST [1:?] OF NameType;
Quantities : LIST [1:?] OF NUMBER);

END_PROCEDURE;
(*

Parameter name Type Description

resourceNames LIST [1:?] OF
NameType Names of the available resources

quantities LIST [1:?] OF
NUMBER Corresponding quantity for each resource

Exceptions:

� OPERATION_OUT_OF_SEQUENCE exception shall be raised if the service is called out of
sequence.

Service details:

� There must be an active diagnostic model to call this procedure.

� This procedure may be called during any step in the session.

� The value of the of each resourceNames must match a Resource.name in an available diagnostic
model.

� All Resources are assumed available at the start of a session.

� Resource availability information remains in effect until the end of the session, or until it is
asserted by a call to this procedure.

� The length of quantities must equal the length of resourceNames.

� A quantity=0 indicates the resource is not available. A quantity>0 indicates the quantity of the
resource available. A quantity<0 indicates unknown availability.

Effect on DCM:

� For resources that are designated as available, adds the Resource of that name in the available
diagnostic model to the set Step.availableResouces in the current Step. The numerical quantity
of the available resource is not captured in the DCM.

� For resources that are designated as not available or unknown, removes the Resource of that
name in the available diagnostic model from the set Step.availableResouces in the current Step.

7.4.21 setCheckpoint

Saves the current state of the diagnostic session.

EXPRESS specification:

*)

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 127 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

FUNCTION setCheckpoint
(checkpointName : NameType) : NameType;

END_FUNCTION;
(*

Parameter name Type Description
checkpointName NameType Checkpoint name

Returns:

Checkpoint name.

Service details:

� Refer to 7.4.28 for notes on backtrack, waypoint, checkpoint, and resume.

� If checkpointName is not specified, the Reasoner will create one, and that name will be
returned. If a checkpointName is specified, that name will still be returned as an echo by the
service.

� If a checkpoint with checkpointName already exists, it will be overwritten.

� The format of the Session saved is implementation dependent.

� The application exposing the service handles the details of how and where the underlying
session data is managed to support this service.

7.4.22 setContext

Tells the reasoner the current context state.

EXPRESS specification:

*)
PROCEDURE setContext

(contextName : NameType);
END_PROCEDURE;

(*

Parameter name Type Description

contextName NameType Name of the ContextState in the static model that is
instantiated

Exceptions:

� OPERATION_OUT_OF_SEQUENCE exception shall be raised if the service is called out of
sequence.

Service details:

� There must be an active diagnostic model to call this procedure.

� This procedure may be called during any step in the session.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 128 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

� If nonempty, the value of the contextName must match a value of ContextState.name in a
currently active diagnostic model.

� From the start of the session until a context is asserted by a call to this service, the reasoner shall
assume there is no instantiated context.

� While there is no instantiated context, the reasoner shall only consider those Actions, Diagnoses
and SystemItems items in the static model whose “mustOccurIn” attributes are empty.

� While there is a instantiated context, the reasoner shall only consider those Actions, Diagnoses
and SystemItems in the static model whose “mustOccurIn” attributes contain that context, or are
empty.

� Calling this service with a nullstring for contextName asserts that there is no instantiated
context.

� The context remains in effect until the end of the session, or until it is asserted by a call to
setContext.

Effect on DCM:

� Until this service is called for the first time, all Step entities in the current session have the
OPTIONAL stepContext attribute omitted.

� A call to this procedure closes the current Step and instantiates a new Step to the end of
Session.trace as would occur with a call to updateState. If contextName is present, then the
stepContext attribute in the new Step points to the asserted ContextState. If contextName is
omitted then the stepContext attribute in the new Step is omitted.

7.4.23 setDiscrepancies

Indicates one or more discrepancies that initiated the diagnostic session.

EXPRESS specification:

*)
PROCEDURE setDiscrepancies

(discrepancies : SET [1:?] OF DiscrepancyData);
END_PROCEDURE;

(*

Parameter name Type Description

discrepancies SET [1:?] OF
DiscrepancyData

Structure that captures information on source events
that spawn a particular diagnostic session. Similar to
Discrepancy in the CEM.

Exceptions:

� MISSING_OR_INVALID_ARGUMENT exception shall be raised if the DiscrpancyData
results in a Discrepancy with a non-unique name.

Effect on DCM:

� Each instance of DescrepancyData in the parameter discrepancies results in the instantiation of a
Discrepancy instance, which is added to the Session.cause set.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 129 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

7.4.24 setWaypoint

Names the current Step in the Session.

EXPRESS specification:

*)
FUNCTION setWaypoint

(waypointName : NameType) : NameType;
END_FUNCTION;

(*

Parameter name Type Description
waypointName NameType Waypoint name

Returns:

The waypoint name.

Exceptions:

� MISSING_OR_INVALID_ARGUMENT exception shall be raised if there is already a
waypoint with the name provided.

Service details:

� Refer to 7.4.28 for notes on backtrack, waypoint, checkpoint, and resume.

� If waypointName is empty, the Reasoner will create a name, and that name will be returned. If a
waypointName is specified, that name will still be returned as an echo by the service.

� The waypoint can be restored by calling restoreWaypoint.

Effect on DCM:

� The attribute Step.name is set to waypointName for the current step.

7.4.25 setUsage

Tells reasoner the amount of cumulative usage for SystemItems and their descendants in the diagnostic
model.

EXPRESS specification:

*)
PROCEDURE setUsage

(usages : LIST OF ActualUsageData);
END_PROCEDURE;

(*

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 130 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Parameter name Type Description

usages LIST OF
ActualUsageData

Structure that captures the actual usage of system
items. ActualUsageData is similar to ActualUsage in
the DCM.

Exceptions:

� NONEXISTENT_DATA_ELEMENT_REQUESTED exception shall be raised if there is no
SystemItem whose name attribute matches the name specified.

� OPERATION_OUT_OF_SEQUENCE exception shall be raised if the service is called out of
sequence.

Service details:

� This service may be called during a session whenever a diagnostic model is active.

� The diagnostic reasoner uses the usage information provided by this service in conjunction with
the FailureDistributions associated with SystemItems to refine the confidence values of inferred
diagnostic conclusions.

� The value of ActualUsageData.unit need not agree with the usage unit of the FailureDistribution
it applies to. The reasoner performs unit conversion when needed. Unit conversion is
unspecified if either ActualUsageData.units or SystemItem.hasDistribution.usageUnit is user
defined.

Effect on DCM:

� For each ActualUsageData item in the service parameter “usages,” the service instantiates a new
ActualUsage entity and appends it to the list Step.lifeCycleStatus in the current step. Usages
shall be appended in the order provided to the service.

7.4.26 showSessionTrace

Returns a formatted string containing an instantiated Dynamic Context Model for the current session.

EXPRESS specification:

*)
FUNCTION showSessionTrace

(returnFormat : ExchangeFormat) : STRING;
END_FUNCTION;

(*

Parameter name Type Description
returnFormat ExchangeFormat Format of the returned data: P21, P28, or NATIVE

Returns:

A formatted string containing an instantiated Dynamic Context Model for the current session.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 131 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Exceptions:

� NONEXISTENT_DATA_ELEMENT_REQUESTED exception shall be raised if there is no
Session.

� OPERATION_OUT_OF_SEQUENCE exception shall be raised if the service is called out of
sequence.

Service details:

� If this service is called from state E, in which case the current DCM is not valid, the service will
produce a return string where the current Step has been closed and a valid final Step has been
appended to Session.trace. This is done for purposes of producing a valid return string and does
not impact the actual Sesstion.trace maintained within the reasoner.

Effect on DCM:

None

7.4.27 updateState

Triggers the reasoner’s inference process.

EXPRESS specification:

*)
PROCEDURE updateState

;
END_PROCEDURE;

(*

Service details:

� Inferred diagnostic outcomes are calculated here.

� Inferred test outcomes are calculated here.

� If applicable, hypothesis are calculated here.

Effect on DCM:

� If called from state D, there is no effect on the DCM.

� If called from state E, the reasoner adds a new step to Session.trace[] and populates the
attributes of the new step via reasoning and/or carry over from the previous step as follows:

� actionsPerformed (empty list)

� optimizedByCost (carried over)

� optimizedByDistribution (carried over)

� optimizedByUser (carried over)

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 132 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

� outcomesInferred (reasoned)

� outcomesObserved (empty set)

� serviceLog (not present)

� stepContext (carried over if present, otherwise not present)

� timeOccurred (set to the time the service was called if present, otherwise not present)

� userHypothesis (carried over if present, otherwise not present)

� owningSession (carried over)

� The new step becomes the current step.

7.4.28 Notes on backtrack, waypoint, checkpoint, and resume

The “backtrack” service returns the reasoner to the state it was in N steps earlier in the session. It is up to
the client to know the number of steps, N, it wants to backtrack.

The combination of “setWaypoint” and “restoreWaypoint” services also returns the reasoner to a previous
step, but instead of requiring the client to count steps, the client needs to assert named waypoints during the
course of the session on any step(s) that the client may want to return to.

The combination of “setCheckpoint” and “restoreCheckpoint” provides disaster recovery whereby the
client can restore a session that was interrupted due to some problem such as power loss. The reasoner need
not retain checkpoint restore capability for a session that ends properly with closeDiagnosticProcess or
pauseDiagnosticProcess.

The combination of “pauseDiagnosticProcess” and “resumeDiagnosticProcess” allows the client to pause
the diagnostic session and resume it at some later time, and to run any number of other diagnostic sessions
for other systems under test in the interim. Sessions that end with closeDiagnosticProcess cannot be
resumed.

The underlying mechanism for supporting backtrack, waypoint, checkpoint, and resume features is
implementation specific and could for example include saving a binary file or extended DCM file. There is
no expectation that a standard AI-ESTATE DCM exchange file would be sufficient for the underlying
mechanism. In addition, there is no expectation that the underlying mechanism would be part of an
exchange (e.g., one reasoner application is not expected to resume a session or restore a checkpoint from
another reasoner application).

The backtrack and waypoint services simply return the reasoner to a previous step, without regard for what
actions may be required by the client to return the system under test to the physical state it was in during
that step. If such actions are required during a real session, one possible approach is for the client to
perform the actions without notifying the reasoner. More sophisticated approaches are left to extensions.

The pause and resume services simply end the session and restart it, without regard for what actions may be
required by the client to bring the system under test to a safe state for stopping and then bringing it back up
for resuming. If such actions are required during a real session, one possible approach is for the client to
perform the actions without notifying the reasoner. More sophisticated approaches are left to extensions.

7.5 Optional services

This subclause describes the subset of the Reasoner Manipulation Services that are optional to claim
conformance to Reasoner Manipulation Services.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 133 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

7.5.1 estimatedCostsToStage

Service “estimatedCostsToStage” estimates the total cost to reach and complete the specified stage in the
diagnostic session, broken out by CostCategory.

EXPRESS specification:

*)
FUNCTION estimatedCostsToStage

(stage : StageType;
avoidUnknowns : BOOLEAN;
avoidUnavailable : BOOLEAN) : SET [0:?] OF CostEstimate;

END_FUNCTION;
(*

Parameter name Type Description

stage StageType Stage in the Diagnostic Session as defined by
StageType.

avoidUnknowns BOOLEAN

True—The service will avoid paths where some of the
required resources have unknown availability, taking
an alternative path if possible, and taking unknown
path if no alternative exists.
False—The service will estimate as if resources with
unknown availability were available.

avoidUnavailable BOOLEAN

True—The service will avoid paths where some of the
required resources are unavailable, taking an
alternative path if possible, and taking unavailable
path if no alternative exists.
False—The service will estimate as if unavailable
resources were available.

Returns:

Set of CostEstimates broken out by CostCategory of the total cost to reach and complete the
specified stage in the diagnostic session.

Exceptions:

� OPERATION_OUT_OF_SEQUENCE exception shall be raised if the service is called out of
sequence.

Service details:

� The estimate should consider the probability across alternate paths leading from the current step
to the specified stage, given the current optimization criterion if it exists and given the directive
to avoid paths with unknown/unavailable resources.

� Each CostCategory in the active diagnostic model shall be represented exactly once in the
returned set of CostEstimates.

7.5.2 estimatedResourcesToStage

Service “estimatedResourcesToStage” estimates set of required resources needed to reach and complete the
specified stage in the diagnostic session, along with a confidence that the resource will be needed.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 134 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

EXPRESS specification:

*)
FUNCTION estimatedResourcesToStage

(stage : StageType;
avoidUnknowns : BOOLEAN;
avoidUnavailable : BOOLEAN) : SET [0:?] OF ResourceNeeded;

END_FUNCTION;
(*

Parameter name Type Description

stage StageType Stage in the Diagnostic Session as defined by
StageType.

avoidUnknowns BOOLEAN

True—The service will avoid paths where some of the
required resources have unknown availability, taking
an alternative path if possible and taking unknown
path if no alternative exists.
False—The service will estimate as if resources with
unknown availability were available.

avoidUnavailable BOOLEAN

True—The service will avoid paths where some of the
required resources are unavailable, taking an
alternative path if possible and taking unavailable path
if no alternative exists.
False—The service will estimate as if unavailable
resources were available.

Returns:

The set of required resources needed to reach and complete the specified stage in the diagnostic
session, along with a confidence that the resource will be needed.

Exceptions:

� OPERATION_OUT_OF_SEQUENCE exception shall be raised if the service is called out of
sequence.

Service details:

� The estimate should consider the probability across alternate paths leading from the current step
to specified stage, given the current optimization criterion if it exists and given the directive to
avoid paths with unknown/unavailable resources.

� A resource that appears multiple times in the return set with different confidence and
neededQuantity values represents a probability density function for that resource.

� The calling application can determine if it is missing critical resources to reach the specified
stage by calling the service with avoidUnavailable=TRUE and avoidUnknowns=TRUE.
Resources with neededQuantity>availableQuantity with high confidence indicate a shortfall in
resources that the reasoner cannot overcome with alternate paths.

� The calling application can determine if any resources with unknown availability would be
useful to the reasoner by calling this service with avoidUnknowns=FALSE. The calling
application may then inform the reasoner of the availability of those resources and potentially
achieve a more optimal session.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 135 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

7.5.3 getTestOutcomesFromDiagnosisOutcome

Returns the list of test outcomes that would lead to a given set of hypothetical DiagnosisOutcomes being
drawn for a specified list of tests.

EXPRESS specification:

*)
FUNCTION getTestOutcomesFromDiagnosisOutcome

(assertedDiagnoses : LIST OF ActualDiagnosisOutcome;
testNames : LIST [1:?] OF NameType) : LIST [1:?] OF

ExpectedTestOutcome;
END_FUNCTION;

END_SCHEMA;
(*

Parameter name Type Description

assertedDiagnosis
LIST OF

ActualDiagnosisOutc
ome

The list of hypothetical DiagnosisOutcomes

testNames LIST [1:?] OF
NameType

Points to an instance(s) of a Test entity in the active
DiagnosticModel using its unique Test.name attribute

Returns:

List of expected test outcomes.

Exceptions:

� OPERATION_OUT_OF_SEQUENCE exception shall be raised if the service is called out of
sequence.

Service details:

� The list of outcomes returned is a one-to-one correspondence with the list of testNames
parameter.

� The parameter assertedDiagnosis is a list in order to establish precedence. In case of conflicting
diagnoses, later items in the list take precedence over earlier items.

*)

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 136 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Annex A

(informative)

Bibliography

[B1] Busch, D., “Validation of XML data against an EXPRESS schema using XSLT translation to part 21
format,” IEEE AUTOTESTCON 2007 Conference Record, New York: IEEE Press, pp. 64–71, Sept. 2007.

[B2] Extensible Markup Language (XML) 1.0. World Wide Web Consortium Recommendation 4
February 2004 [cited 2004-03-15].8, 9

[B3] eXtensible Markup Language (XML) Schema Part 1: Structures, 2d ed. W3C Recommendation 28
October 2004.10

[B4] eXtensible Markup Language (XML) Schema Part 2: Datatypes, 2d ed. W3C Recommendation.11

[B5] IEEE Std 1636-2009, IEEE Trial-Use Standard for Software Interface for Maintenance Information
Collection and Analysis (SIMICA).12,13

[B6] ISO 8601-2004, Data Elements and Interchange Formats—Information Interchange—Representation
of Dates and Times.

[B7] ISO 10303-21:2002, Industrial Automation Systems and Integration—Product Data Representation
and Exchange—Part 21: Implementation Methods: Clear Text Encoding of the Exchange Structure.

[B8] ISO/TS 10303-28:2003, Industrial Automation Systems and Integration—Product Data
Representation and Exchange—Part 28: Implementation Methods: XML Representations of EXPRESS
Schemas and Data.

[B9] Kaufman, M. A., Sheppard, J. W., and Wilmering, T. J., “Model-based standards for diagnostic and
maintenance information integration,” IEEE AUTOTESTCON 2007 Conference Record, Baltimore, MD,
Sept. 2007.

[B10] Keiner, W., “A Bavy approach to integrated diagnostics,” Proceedings of the IEEE
AUTOTESTCON, New York: IEEE Press, 1990, pp. 129–132.

[B11] Laffey, T. J., Perkins, W. A., and Nguyen, T. A., “Reasoning about fault diagnosis with LES,” IEEE
Expert, pp. 13–20, Spring 1986.

[B12] Maguire, R. J. and Sheppard, J. W., “Application scenarios for AI-ESTATE services,” Proceedings
of the IEEE AUTOTESTCON, New York: IEEE Press, 1996, pp. 68–72.

[B13] Namespaces in XML. World Wide Web Consortium Recommendation 14 January 1999 [cited 2004-
03-15].14

[B14] Pattipati, K. and Alexandridis, M., “Application of heuristic search and information theory to
sequential fault diagnosis,” IEEE Transactions on System, Man and Cybernetics, vol. 20, no. 4, pp. 872–
887, 1990.

8 This reference can be downloaded at http://www.w3.org/TR/REC-xml.
9 World Wide Web (W3) Consortium publications are available from the World Wide Web Consortium, Massachusetts Institute of
Technology, 32 Vassar Street, Room 32-G515, Cambridge, MA 02139 (http://www.w3.org/).
10 This reference can be downloaded at http://www.w3.org/TR/xmlschema-1/.
11 This reference can be downloaded at http://www.w3.org/TR/xmlschema-2/.
12 This publication is available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, Piscataway, NJ 08854, USA
(http://standards.ieee.org/).
13 The IEEE standards or products referred to in this annex are trademarks owned by the Institute of Electrical and Electronics
Engineers, Incorporated.
14 This reference can be downloaded at http://www.w3.org/TR/REC-xml-names/.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

http://standards.ieee.org/

IEC 62243:2012
IEEE Std 1232-2010 – 137 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

[B15] Peng, Y. and Reggia, J., Abductive Inference Models for Diagnostic Problem Solving. New York:
Springer-Verlag, 1990.

[B16] Preston H., Rondo, T., and Tennison, J., The Jen-X Tool for EXPRESS-to-Part 28 Conversion, v.
2.0. http://pdesinc.aticorp.org/vendor/Jen-X.html.

[B17] Reiter, R., “A theory of diagnosis from first principles,” Artificial Intelligence, vol. 32, pp. 57–95,
1987.

[B18] Russell, S. and Norvig, P., Artificial Intelligence: A Modern Approach, 2d ed. Upper Saddle River,
NJ: Prentice-Hall, 2002.

[B19] Schenk, D. A. and Wilson, P. R., Information Modeling: The EXPRESS Way. New York: Oxford
University Press, 1994.

[B20] Sheppard, J. W., Butcher, S. G. W., Donnelly, P. J., and Mitchell, B. R., “Demonstrating semantic
interoperability of diagnostic models via AI-ESTATE,” Proceedings of the IEEE Aerospace Conference,
Big Sky, MT, Mar. 2009.

[B21] Sheppard, J. W. and Kaufman, M. A., “Bayesian modeling: An amendment to the AI-ESTATE
standard,” IEEE AUTOTESTCON 2005 Conference Record, Orlando, FL, Sept. 2005.

[B22] Sheppard, J. W. and Simpson, W. R., Research Perspectives and Case Studies in System Test and
Diagnosis. Norwell, MA: Kluwer Academic, 1998.

[B23] Sheppard, J. W., Wilmering, T. J., and Kaufman, M. A., “IEEE standards for prognostics and health
management,” IEEE AUTOTESTCON 2008 Conference Record, Salt Lake City, UT, Sept. 2008.

[B24] Sheppard, J. W. and Wilmering, T. J., “Recent advances in IEEE standards for diagnosis and
diagnostic maturation,” Proceedings of the IEEE Aerospace Conference, Big Sky, MT, Mar. 2006.

[B25] Simpson, W. and Sheppard, J., System Test and Diagnosis. Norwell, MA: Kluwer Academic, 1994.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 138 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Annex B

(informative)

Overview of EXPRESS

The models defined in this standard use the ISO 10303-11:1994 EXPRESS language and the supporting
EXPRESS-G graphical notation for their specification. To quote from ISO 10303-11:1994, “EXPRESS is
the name of the formal information modeling language used to specify the information requirements of
other parts of this International Standard. The language focuses on the definition of entities, which are the
things of interest. The definition of entities is in terms of data and behavior. Data represents the properties
by which an entity is realized and behavior is represented by constraints.” Within EXPRESS, models are
defined using a simple hierarchy partitioned along schemata, entities, and attributes. Further, legal values of
attributes are defined through constraints on those attributes. The scope of the language is to define the
information to be used or generated by a system or process and is not intended to define database formats,
file formats, or exchange formats. Further, EXPRESS is not intended to be used as a programming
language, because it contains no facilities for input/output, exception handling, or information processing.
This standard is intended to define an exchange format for models used in diagnostic systems. The standard
uses EXPRESS to define the models, but these models are not the exchange format. Since EXPRESS is not
intended to define exchange formats, an alternative representation shall be used for the actual format.
ISO 10303-21:1994 defines an ASCII format for instantiations of EXPRESS models and can be used as an
exchange format. This format is directly derivable from the EXPRESS models; therefore, it provides a
natural exchange format to be specified by this standard. Since the actual format is derived from the
EXPRESS, only the EXPRESS needs to be specified in this standard. In B.1 through B.8, the major
elements of an EXPRESS model are described. When available, the corresponding representation of the
element in EXPRESS-G is also provided.

B.1 Schema

A schema is defined to be a collection of items forming part or all of a model. Within AI-ESTATE, a
schema has been defined for the Common Element Model and for each model used in a particular approach
to diagnosis (i.e., Fault Tree Model and Enhanced Diagnostic Inference Model).

The syntax of a schema definition consists of

SCHEMA schema_id ';' schema_body END_SCHEMA ';'

and a schema is represented in EXPRESS-G as

schema_id

B.2 Entity

An entity is defined to be a type that represents information for processing purposes, based on explicit or
implicit agreements about the meaning of the data. Within each schema of AI-ESTATE, the primary data
types are defined as entities, many of which have identifiers as indicated by the description in the entity
definition.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 139 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

The syntax of an entity definition consists of

ENTITY entity_id [supertype] [subtype] ';' entity_body END_ENTITY ';'

and an entity is represented in EXPRESS-G as

entity_id

B.3 Attribute

An attribute is defined to be a trait, quality, or property that is a characteristic of an entity. Attributes
provide the primary elements of the definition of the entity body. Because entities are type definitions,
attributes are frequently of types as defined by other entities.

Attributes can be optional or required. Frequently, attributes in AI-ESTATE are defined to be sets, and
many of these sets have minimum cardinality of zero. An attribute that is optional is intended to be
different from an attribute with cardinality of zero. For an optional attribute, an instantiated model may or
may not include that attribute. If an attribute is required but may have a cardinality of zero, then a
placeholder for that attribute shall be included in the instantiation even though no value is assigned.

The syntax of a simple attribute definition consists of

attribute_id ':' [OPTIONAL] base_type ';'

Required attributes are defined between entities or an entity and a type and are represented in EXPRESS-G
as

entity_id_1 entity_id_2
attribute_id

In this case, entity_id_1 has attribute attribute_id, which has type entity_id_2. The circle on the line can be
created as an “arrow-head,” which determines the direction of the relationship between the two entities.

Similarly, optional attributes are defined between entities or an entity and a type and are represented in
EXPRESS-G as

entity_id_1 entity_id_2
attribute_id

Finally, attributes can be defined to have an inverse relationship in which the named attribute (e.g.,
entity_id_2) is associated with the declared entity (e.g., entity_id_1). For example, within AI-ESTATE,
several entities of the Common Element Model are defined to provide a lattice structure among entities of
the same type. The attributes are defined to point to children in the lattice, and the parents are defined to be
the inverse. Within the EXPRESS specification, an inverse relationship is identified with the INVERSE
keyword, and attributes following INVERSE define the inverse attribute.

The syntax for an inverse attribute consists of

attribute_id ':' [SET ['[' bound_1 ':' bound_2 ']'] OF] entity_id
FOR attribute_id ';'

An example illustrating the use of inverse attributes can be represented in EXPRESS-G as

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 140 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

entity_id_1

attribute_id_1
(INV) attribute_id_2

B.4 Type definition

A type is defined to be a representation of a domain of valid values. As discussed in B.2, entities are types
corresponding to some collection of objects having common properties. At times, simpler types may need
to be defined that are not included in the set of EXPRESS base types. Such types can be defined using
existing base types or previously defined derived types.

The syntax of a type definition consists of

TYPE type_id '=' defined_type ';'

A base type is represented in EXPRESS-G as

type_id

A defined data type is represented in EXPRESS-G as

type_id

A select data type is a type consisting of a collection of other types in which an instantiation is of one of the
listed types.

The syntax of a select type is

TYPE type_id ‘=‘ SELECT ‘(‘ defined_type { ‘,’ defined_type } ‘)’ ‘;’

and is represented in EXPRESS-G as

type_id

An enumeration data type is a type consisting of an ordered set of values represented by names. An
instantiation of an enumeration type shall take on one of the specified values.

The syntax of an enumeration type is

TYPE type_id ‘=‘ ENUMERATION OF ‘(‘ enumeration_id { ‘,’
enumeration_id } ‘)’ ‘;’

and is represented in EXPRESS-G as

type_id

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 141 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

B.5 Subtypes/supertypes

Within EXPRESS, subtypes and supertypes can be specified to define a classification structure for types.
According to ISO 10303-11:1994, “A subtype is a more specific type than its supertype(s). A supertype is a
more general type than its subtype(s). Since the subtype is a more specific kind of its supertype, every
instance of a subtype is an instance of its supertype(s).” Because of this fact, all attributes of a supertype are
inherited by its subtype. EXPRESS concepts of supertype and subtype, taken together, allow a type lattice
to be constructed. A subtype/supertype relationship is typically called an “as-is” relationship in data
modeling terms (i.e., a subtype is a “kind” of its supertype).

In defining supertype/subtype relationships between types, the subtype shall declare itself to be a subtype of
some other type, but the supertype is not required to be declared as a supertype. Nevertheless, it is
preferable for the supertype to be declared as such.

The syntax for a subtype consists of

subtype = SUBTYPE OF '(' entity_id { ',' entity_id } ')'

The syntax for a supertype consists of

supertype = [ABSTRACT] SUPERTYPE OF '(' supertype_expression ')'
supertype_expression = supertype_factor { (AND | ANDOR)

supertype_factor }
supertype_factor = entity_id | one_of | '(' supertype_expression ')'
one_of=ONEOF '(' supertype_expression { ',' supertype_expression } ')'

Subtypes and supertypes are defined between entities and are represented in EXPRESS-G as

 entity_id_1

entity_id_2 entity_id_3

1

In this example, the supertype is defined to be associated with one of the underlying subtypes. In other
words, an instantiation of the supertype shall be either of subtype entity_id_2 or of entity_id_3 but not both.

A supertype can be defined to be ‘‘abstract’’ when instantiation of the supertype requires instantiation of a
subtype as well. If the supertype is not abstract, it can be instantiated without any of its subtypes.

In EXPRESS-G, an abstract supertype is identified as

 (ABS)
entity_id_1

entity_id_2 entity_id_3

1

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 142 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

B.6 External schema references

Entities declared in one schema can be referenced by another schema using schema interface specifications.
Two types of interface specifications are possible—the use clause and the reference clause. The use clause
identifies an entity in an external schema and treats that entity as if it is local to the current schema. The
reference clause identifies an entity in an external schema and treats the entity as an external entity in which
remote access is allowed. Currently, the AI-ESTATE standard only uses reference clauses.

The purpose of defining the Common Element Model was to provide a means for specifying common data
types across classes of diagnostic models. Each of these diagnostic models would then reference an
instantiation of the Common Element Model to obtain access to the required elements of this model.

The syntax for the reference clause consists of

REFERENCE FROM schema_id ['(' model_id { ',' model_id } ')'] ';'

and is represented in EXPRESS-G as

entity_id_1 schema_id.entity_id_2
attribute_id

where attribute_id of entity_id_1 references entity_id_2 within the external schema schema_id.

External references are also shown on a schema-level diagram as follows:

schema_id_1

entity_id

schema_id_2

where entity_id is referenced from schema_id_2 by schema_id_1.

B.7 Constraints and WHERE clauses

The attributes of an entity can be constrained to take on values within a defined domain. When such a
situation occurs, the entity definitions shall include local rules to specify the appropriate constraint. Within
AI-ESTATE, only uniqueness constraints and WHERE constraints are used.

A uniqueness constraint is identified in an entity definition with the keyword UNIQUE. Attribute
identifiers listed following the UNIQUE keyword are constrained to take on unique values within an
instantiation of the schema. In EXPRESS-G, uniqueness constraints are identified on lines corresponding to
unique attributes with an asterisk (‘*’).

WHERE clauses specify the conditions that constrain the values of attributes for every instance of the
entity. WHERE clauses are identified with the keyword WHERE, and the actual rules follow the keyword.

The syntax of a WHERE clause consists of

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 143 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

[label ':'] expression ';'

The WHERE clause evaluates to true or false and only references attributes of the entity within which the
WHERE clause appears. The constraints imposed on attributes of an entity within a WHERE clause shall
hold for all instances of that entity. WHERE clauses cannot be represented in EXPRESS-G.

A few examples should help clarify the intent of the WHERE clause.

Example: In the Outcome entity of the COMMON_ELEMENT_MODEL, the following WHERE clause is
defined:

WHERE
range : (0.0 <= SELF.confidence <= 1.0);

This WHERE clause constrains the confidence attribute of the outcome entity to be in the range 0.0 to 1.0.

Example: In the TestResult entity of the FAULT_TREE_MODEL, the following WHERE clause is
defined:

WHERE
leavesHaveDiagnoses : (EXISTS(nextStep)) OR

(SIZEOF(currentDiagnosisOutcome) > 0);

This rule determines whether or not another step in the fault tree is associated with this current TestResult,
as well as whether or not the set of currentDiagnosisOutcome tied to this TestResult is empty. The
constraint permits currentDiagnosisOutcome to be nonempty at a TestResult that is in the interior of the
tree, but requires currentDiagnosisOutcome to be nonempty if TestResult is at a leaf of the tree. If
(EXISTS(nextStep)) is false, then the TestResult is a leaf. If (SIZEOF(currentDiagnosisOutcome) > 0) is
false, then no diagnosis is associated with the tree. If both are false, then the constraint is violated.

B.8 Functions and procedures

As shown in B.7, EXPRESS provides a very rich language for defining constraints among entities in a
model. One tool to assist in defining constraints is the function. In EXPRESS, functions and procedures are
as robust as most programming languages, except that they do not provide facilities for input/output or
exception handling.

The syntax for a function definition consists of

function_block = function { statement } END_FUNCTION ';'
function = FUNCTION function_id ['(' parameter {';' parameter}

')']':' parameter_type';'
function_id = simple_id
parameter = simple_id { ',' simple_id } ':' parameter_type

The syntax for a procedure definition consists of

procedure_block = procedure { statement } END_PROCEDURE ';'
procedure = PROCEDURE procedure_id ['(' parameter {';' parameter} ')'

] ';'
procedure_id = simple_id
parameter = simple_id { ',' simple_id } ':' parameter_type

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 144 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

A function or procedure can define a local set of variables (i.e., variables visible only within the scope of
the function or procedure). The function shall return a value, and that value shall be of the type specified in
the function header. Functions and procedures have no representation in EXPRESS-G.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 145 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Annex C

(informative)

Overview of ISO 10303-28:2007

ISO 10303-28:2007 is a standard XML format [B2] for exchanging data governed by ISO 10303-11:1994
EXPRESS schemas, and a standard for mapping EXPRESS schemas to W3C XML Schemas. Throughout
this overview, we will refer to an exchange file conforming to ISO 10303-28:2007 as a “ISO 10303-
28:2007 exchange document” and refer to any EXPRESS schema mapped to W3C XML Schema as an
“ISO 10303-28:2007 XML schema.” This overview is most concerned with data exchange and will discuss
schema mapping only as needed. Mapping the governing EXPRESS schema to an ISO 10303-28:2007
schema is a prerequisite for validating an ISO 10303-28:2007 exchange document so some discussion of
ISO 10303-28:2007 XML schemas is unavoidable.

The following two editions of ISO 10303-28 were developed:

a) ISO/TS 10303-28:2003 [B8] is the first edition, intended for trial use.

b) ISO 10303-28:2007 is the second edition, a significant technical revision that is not upwardly
compatible with the first edition.

The second edition, ISO 10303-28:2007, is the proper version for exchanging AI-ESTATE data.

ISO 10303-28:2007 defines the following three conformance classes for ISO 10303-28:2007 exchange
documents:

� A “UOS document” (for unit of serialization) conforms to a single governing EXPRESS schema
and follows Part 28’s default mapping from EXPRESS to XML. Note that the single governing
schema may of course USE/REFERENCE additional EXPRESS schemas. The root element of a
UOS document is a <uos> element.

� A “configured document” is essentially a UOS document except it uses Part 28’s configuration
language to follow an alternate mapping to XML. The root element of a configured document is
a <uos> element. The configuration directives are in a separate configuration file. Each
configuration directive declares a deviation from the default mapping, so an empty
configuration file leads to the default mapping.

� An “ISO 10303-28:2007 document” contains one or more UOSs, where the different UOSs may
conform to different governing EXPRESS schemas. Each UOS may follow Part 28’s default
mapping to XML, or an alternate mapping defined by configuration directives. The root element
of an ISO 10303-28:2007 document is an <iso_10303_28> element, which contains <uos>
children elements.

Note that because a UOS document is limited to a single governing EXPRESS schema, a UOS document is
on par with the capabilities of the version of ISO 10303-21:1994 used by AI-ESTATE for the ISO 10303-
21:1994 exchange format. The more recent version of ISO 10303-21:1994 is on par with an ISO 10303-
28:2007 document.

NOTE—ISO 10303-28:2007 also defines conformance for an ISO 10303-28:2007 XML schema, a software application
that generates ISO 10303-28:2007 XML schemas, a software application that generates ISO 10303-28:2007 exchange
documents, and a software application that accepts and processes ISO 10303-28:2007 exchange documents.

In all three conformance classes for ISO 10303-28:2007 exchange documents, the exchange document must
conform to the governing EXPRESS schema(s) and the derived ISO 10303-28:2007 XML schema(s).

As a word of caution, validation with respect to the ISO 10303-28:2007 XML schemas using conventional
XML tools does not go far toward validating an ISO 10303-28:2007 exchange document. ISO 10303-
28:2007 exchange documents should be produced, consumed, and validated by ISO 10303-28:2007-aware

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 146 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

software. One obvious issue is the mismatched capabilities of EXPRESS versus W3C XML schema; many
constraints in the original governing EXPRESS schema are not mapped to the ISO 10303-28:2007 XML
schema (e.g., WHERE and RULE constraints) or are mapped to something relatively loose. A less obvious
issue is that the ISO 10303-28:2007 XML schemas contain a variety of optional attributes and elements
introduced by ISO 10303-28:2007 to control features. These attributes and elements must only be utilized
in certain ways specified in the text of ISO 10303-28:2007 but not enforced by the ISO 10303-28:2007
XML schema. Thus, there are many ways an ISO 10303-28:2007 exchange document can be invalid but
pass conventional XML schema validation.

ISO 10303-28:2007 includes the following three built-in XML schema files:

� cnf.xsd is the configuration language XML schema used by configuration files.

� exp.xsd is the base XML schema containing definitions for some basic EXPRESS types (e.g.,
LOGICAL and Entity) mapped to XML, and the <uos> element. An application’s ISO 10303-
28:2007 XML schema imports this file and defines subtypes of the <uos> element, <Entity>
element, etc. that are specific to the governing EXPRESS schema for the application.

� doc.xsd is the document XML schema containing definitions used by ISO 10303-28:2007
documents.

The following listing shows the top level structure of a UOS document for a Dmatrix. The root element is
the <dim:uos> element, which the Dmatrix ISO 10303-28:2007 XML schema declares as a member of the
substitution group of the <exp:uos> element found in exp.xsd. The <uos> element must declare the
namespace for the ISO 10303-28:2007 XML schema [B13] as shown. Target namespaces are defined in
Annex F. If the governing EXPRESS schema has implicit interfaces to data types in other EXPRESS
schemas, then those datatypes are mapped to a different namespace(s) corresponding to the other
EXPRESS schema(s) and other derived ISO 10303-28:2007 XML schema(s). Those other namespaces
must also be declared in the <uos>. The <uos> must also include the namespace for exp.xsd if any elements
from the base schema are used in the UOS (e.g., <exp:header>). The other attributes of <uos> are as
follows:

� The optional id attribute of the <uos> element should be omitted when <uos> is the root
element. It must be present when the <uos> is contained in an ISO 10303-28:2007 document.

� The optional express attribute contains the location of the governing EXPRESS schema. If
omitted, then the EXPRESS schema is obtained from the configuration file (if applicable).

� The optional configuration attribute contains the location of the configuration file. Omit this
attribute if the default mapping applies. The combined express and configuration attributes must
be sufficient for a recipient to ascertain the governing EXPRESS schema and configuration
directives.

� The schemaLocation attribute provides the location of the ISO 10303-28:2007 XML schema. If
the schemaLocation attribute is omitted, the ISO 10303-28:2007 XML schema is that derived
from the specified EXPRESS schema and configuration file.

� The optional edo attribute contains a fixed global identifier for the UOS, indicating the data set
is an “enterprise data object” that may be referred to in other exchanges and transactions. Omit
the edo attribute otherwise.

� The defaultLanguage attribute identifies the default language for strings in the the UOS.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 147 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

<?xml version="1.0" encoding="ISO-8859-1"?>
<dim:uos xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:exp="urn:iso:std:iso:10303:-28:ed-2:tech:XMLschema:common"
 xmlns:dim="urn:iso10303-28:schema/Ai_estate_dmatrix_inference_model"
 targetNamespace="urn:oid:1.3.111.2.1232.100.2011.3"
 xsi:schemaLocation=
 "urn:iso10303-28:schema/Ai_estate_dmatrix_inference_model
 Ai_estate_dmatrix_inference_model.xsd"
 express="dim.exp">
 <exp:header>
 <name>...</name>
 <time_stamp>...</time_stamp>
 <author>
 <name>...</name>
 <address><address_line>...</address_line></address>
 </author>
 <organization>
 <name>...</name>
 <address><address_line>...</address_line></address>
 </organization>
 <preprocessor_version>...</preprocessor_version>
 <originating_system>...</originating_system>
 <authorization>...</authorization>
 <documentation>...</documentation>
 </exp:header>

<!-- sequence of entity instances omitted -->

</dim:uos>

The first child element of <uos> is an optional <exp:header> element intended for administrative
information that characterizes the entire UOS.

� The optional <name> element is a human readable identifier for the UOS.

� The optional <time_stamp> provides the data and time when the UOS was created.

� The optional <author> element provides the name and addresses of the person(s) who created
the UOS.

� The optional <organization> element provides the name and addresses of the organization that
created the UOS.

� The <originating_system> element provides the software system that captured the information
in the UOS.

� The <preprocessor_version> element provides the software system that created the UOS.

The remaining children of the <uos> element, not shown in the preceding example, are entity instances in
the UOS document.

The following example shows how entity instances are typically encoded in a UOS document with the
default mapping (no configuration file). The example shows one Test entity and its three associated
TestOutcome entities: PASS, FAIL, and NOT_KNOWN. Each entity instance in this data set is encoded as
a “by-value” entity element that is an immediate child of the <uos> element (“by-value” means its content
is populated). Each EXPRESS attribute of the entity is encoded as an accessor element that is an immediate
child of the entity element and named after the EXPRESS attribute. These accessor elements hold the
attribute content. The default mapping maps EXPRESS attributes to child XML elements, not to XML

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 148 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

attributes. Omitted optional EXPRESS attributes are omitted from the XML document. DERIVEd and
INVERSE EXPRESS attributes are not mapped.

To represent that an entity instance has another entity instance as an attribute, the accessor element contains
a “by-reference” entity element with xsi:nil=true, zero content, and a “ref” XML attribute that points to the
by-value instance. The XML-based mechanism for pointing is ID/IDREF. The id and ref attributes on by-
value and by-reference entity elements are of type xs:ID and xs:IDREF, respectively. As an xs:ID, XML
requires that it be unique within the document. As an xs:IDREF, XML requires that “ref” match a xs:ID
somewhere within the document. ISO 10303-28:2007 adds an additional requirement: A ref may not point
to an id in a different <uos>. Every by-value entity element must have an id attribute and must not have a
“ref” attribute. Furthermore, every entity element instance must be encoded only once as a by-value entity
element (i.e., no copies, not even with different or omitted id values). Every by-reference entity instance
must have a ‘ref’ attribute, it must have the attribute xsi:nil=true, zero content, no ‘id’ attribute, and must
not be an immediate child of the <uos> element.

NOTE—Conventional XML ID/IDREF has no ability to check that a ref matches the id on the proper type of element.
ID/IDREF allows a by-reference Test entity element to point to a by-value Cost entity element, although this is invalid
according to the governing EXPRESS schema.

The naming convention in the default mapping is that an EXPRESS entity name maps to an XML element
of the same name except for capitalization: The first letter in the element name becomes capitalized and the
rest become lowercase. Likewise, the EXPRESS attributes map to XML child elements with the same
name, with the first letter capitalized and the rest lowercase.

<?xml version="1.0" encoding="ISO-8859-1"?>
<dim:uos ... >

 <!-- Other entity instances omitted -->

 <!-- A TEST entity instance and its TestOutcomes -->
 <dim:Test id="i30">
 <Name>TRNBRK</Name>
 <Description>Transmitter Broken</Description>
 <Mustoccurin/>
 <Allowedoutcomes>
 <dim:Testoutcome ref="i31" xsi:nil="true"/>
 <dim:Testoutcome ref="i32" xsi:nil="true"/>
 <dim:Testoutcome ref="i33" xsi:nil="true"/>
 </Allowedoutcomes>
 </dim:Test>
 <dim:Testoutcome id="i31">
 <OutcomeValue>PASS</OutcomeValue>
 </dim:Testoutcome>
 <dim:Testoutcome id="i33">
 <OutcomeValue>NOT_KNOWN</OutcomeValue>
 </dim:Testoutcome>
 <dim:Testoutcome id="i32">
 <OutcomeValue>FAIL</OutcomeValue>
 </dim:Testoutcome>
</dim:uos>

Short-form EXPRESS schemas, like the AI-ESTATE schemas, map to ISO 10303-28:2007 XML schemas
and namespaces in an unexpected way. EXPRESS data types that are declared within the governing
EXPRESS schema or explicitly interfaced via USE/REFERENCE into the governing EXPRESS schema
from another EXPRESS schema(s) are all mapped to XML schema declarations in a single
ISO 10303-28:2007 XML schema under a single namespace appropriate for the governing EXPRESS
schema. Any EXPRESS data types that are implicitly interfaced into the governing schema from another

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 149 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

schema(s) are mapped to XML declarations in a different ISO 10303-28:2007 XML schema(s) with
different namespace(s) appropriate for the other EXPRESS schema(s). The main ISO 10303-28:2007 XML
schema imports the other ISO 10303-28:2007 XML schemas using XML’s import feature. In the preceding
example, Test and TestOutcome were explicitly interfaced into the DIM EXPRESS schema from the CEM,
so they become part of the DIM ISO 10303-28:2007 XML schema and DIM namespace. Entity types
implicitly mapped from the CEM, if any, would remain under the CEM namespace in a CEM ISO 10303-
28:2007 XML schema and be encoded as CEM namespace instances in the ISO 10303-28:2007 exchange
document.

In the previous example, the by-value entity instances were all immediate children of the <uos> element.
By-value entity instances may also occur within an accessor element of another entity instance, and a by-
reference entity element can point to it. This is similar to ISO 10303-21:1994’s SCOPE mechanism;
however, ISO 10303-28:2007 does not associate existence dependence with the descendent, nor does
ISO 10303-28:2007 provide the same mechanisms to encapsulate or expose entity instances for referencing.
The following listing shows an example of this approach:

<?xml version="1.0" encoding="ISO-8859-1"?>
<dim:uos ... >
 <!-- Other entity instances omitted -->

 <!-- A TEST entity instance and its TestOutcomes -->
 <dim:Test id="i30">
 <Name>TRNBRK</Name>
 <Description>Transmitter Broken</Description>
 <Mustoccurin/>
 <Allowedoutcomes>
 <dim:Testoutcome id="i31">
 <OutcomeValue>PASS</OutcomeValue>
 </dim:Testoutcome>
 <dim:Testoutcome id="i33">
 <OutcomeValue>NOT_KNOWN</OutcomeValue>
 </dim:Testoutcome>
 <dim:Testoutcome id="i32">
 <OutcomeValue>FAIL</OutcomeValue>
 </dim:Testoutcome>
 </Allowedoutcomes>
 </dim:Test>
</dim:uos>

The configuration directive ‘generate-keys’ has a significant impact on the use of id and ref and nesting by-
value entity instances. The intent of generate-keys is to add XML keys and keyrefs to the ISO 10303-
28:2007 XML schema so that XML parsers can check that by-reference entity elements only point to by-
value entity elements of the same type (e.g., a by-reference TestOutcome points to a by-value
TestOutcome, not a Repair). As the keys and keyrefs are defined in the <uos> element, they also ensure
that a reference cannot point into a different <uos>. A key based on the id attribute is defined for each
entity type, but only for entity elements that are immediate children of <uos>; entity elements that are
descendents of other entity elements are not part of the key. A corresponding keyref based on the ref
attribute is defined for each entity type appearing anywhere in the <uos>. A side effect is that refs may only
point to entity elements that are immediate children of the <uos>.

ISO 10303-28:2007 defines a exp:complexEntity element for encoding so-called “uncharacterized” entity
instances in an ISO 10303-28:2007 exchange document. Uncharacterized entity instances inherit from
several entity types using EXPRESS’s ANDOR inheritance feature and cannot be characterized by any
single entity type. Uncharacterized entity instances and ANDOR inheritance are not currently used in AI-
ESTATE but were used in a previous version. The exp:complexEntity element is analogous to the “external
mapping” feature of ISO 10303-21:1994, except it is invalid to use exp:complexEntity for anything except

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 150 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

an uncharacterized entity instance. The XML content model for exp:complexEntity is defined as #any in
the ISO 10303-28:2007 XML schema due to the difficulty of mapping ANDOR inheritance to W3C XML
schema. One should not interpret that as a license for placing arbitrary content within the
exp:complexEntity element. The text of ISO 10303-28:2007 defines what content is allowed.

An ISO 10303-28:2007 document is capable of containing multiple UOSs, as well as a copy of the
EXPRESS schema(s), and the configuration directives for each schema. The following listing shows the
top-level structure:

<?xml version="1.0" encoding="UTF-8"?>
<doc:iso_10303_28 version="2.0"
xmlns:dim="urn:iso10303-28:schema/Ai_estate_dmatrix_inference_model"
xmlns:exp="urn:iso:std:iso:10303:-28:ed-2:tech:XMLschema:common"
xmlns:cnf=
"urn:iso:std:iso:10303:-28:ed-2:tech:XMLschema:configuration_language"
xmlns:doc="urn:iso:std:iso:10303:-28:ed-2:tech:XMLschema:document"
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xsi:schemaLocation=
"urn:iso10303-28:schema/Ai_estate_dmatrix_inference_model
dim.xsd">

 <ex:header><!-- Header content omitted --></ex:header>
 <doc:express id="cemEXPRESS"
 schema_name="AI_ESTATE_COMMON_ELEMENT_MODEL">
 <![CDATA[SCHEMA AI_ESTATE_COMMON_ELEMENT_MODEL;
 ...
 END_SCHEMA;]]>
 </doc:express>

 <doc:express id="dimEXPRESS"
 schema_name="AI_ESTATE_DMATRIX_INFERENCE_MODEL"
 schemaLocation="dim.exp" xsi:nil="true"/>

 <doc:schema_population
 governing_schema="dimEXPRESS"
 governed_sections="u1"></doc:schema_population>

 <doc:schema id="dimXML"
 schemaLocation="dim.xsd"
 name="AI_ESTATE_DMATRIX_INFERENCE_MODEL"/>

 <dim:uos id="u1"> <!-- entity instances omitted --></dim:uos>

</doc:iso_10303_28>

The root element of an ISO 10303-28:2007 document is the <doc:iso_10303_28> element. It has a required
‘version’ attribute identifying the version of ISO 10303-28:2007 to which the ISO 10303-28:2007
exchange document conforms. Use version=”2.0” for ISO 10303-28:2007. It also has an optional edo
attriburte to identify it as an enterprise data object. The content model of <doc:iso_10303_28> consists of
zero or more <exp:header> elements followed by zero or more <doc:schema_population>, <*:uos>,
<doc:express>, <doc:schema>, and/or <cnf:configuration> elements in any order.

The <exp:header> element has the same content model as described in the context of the <uos> preceding
element, and here the header information applies to the entire ISO 10303-28:2007 document.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

http://www.w3.org/2001/XMLSchema-instance

IEC 62243:2012
IEEE Std 1232-2010 – 151 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Each <doc:express> element contains a single EXPRESS schema either by-value or by-reference. When
represented by-reference, the schemaLocation attribute contains the location of the EXPRESS schema file,
and the <doc:express> element content is nil. That file should only contain a single schema. When
represented by-value, the EXPRESS schema is provided as text content in the element and the
schemaLocation element is omitted. The required id attribute is of type xs:ID and allows other parts of the
document to point to this schema. The optional schema_name attribute contains the EXPRESS identifier
for the schema. The optional schema_version attribute contains the version identifier for the schema. The
optional schema_identifier attribute contains the ASN.1 identifier value for the schema.

The <doc:schema_population> element identifies a collection of entity instances encoded in the UOSs in
the document as forming a valid population for a governing EXPRESS schema. The collection may span
multiple UOSs in the document. While the entities within a UOS must conform to the governing schema
specified for a UOS, the collection of entities within a single UOS need not constitute a valid population.
There may zero or more valid populations in a document and they may have UOSs and entity instances in
common. The governing_schema attribute is of type xs:IDREF and identifies the governing EXPRESS
schema for the population by pointing to the id of the appropriate <doc:express> element within the
document. The optional governed_sections attribute is of type xs:IDREFS and identifies the one or more
<uos> elements that contain the population by pointing to their id attributes in a space separated list. If
omitted, all <uos> elements in the documents are assumed. The optional determination_method attribute
specifies the algorithm used to select the collection of entities from the UOSs specified by
governed_sections. Three algorithms are defined, and the default algorithm is “section_boundary” if the
attribute is omitted.

The <doc:schema> element provides the location of the ISO 10303-28:2007 XML schema. The name
attribute contains the EXPRESS identifier for the schema. The schemaLocation attribute contains the
location of the ISO 10303-28:2007 XML schema.

The <doc:configuration> element element contains configuration directives. The details of the
configuration language and configured ISO 10303-28:2007 XML schemas and ISO 10303-28:2007
exchange documents are beyond the scope of this overview.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 152 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Annex D

(informative)

Overview of ISO 10303-21:1994

ISO 10303-21:1994, is the traditional exchange format for the EXPRESS modeling language,
ISO 10303-11:1994, and is supported by various commercial tools. The format is easily read by humans
due to its ASCII text encoding and simple, concise structure. The format is sometimes referred to as
“ISO 10303-21:1994 format” and “STEP Physical File,” and commonly used file name extensions for these
file include “.p21” and “.stp”.

Several editions of ISO 10303-21 were developed, as follows:

a) ISO 10303-21:1994 is the first edition.

b) The Technical Corrigendum published in 1996 fixes bugs in the first edition.

c) ISO 10303-21:2002 [B7] is the second edition. It includes the bug fixes and some new features.
These are referred to as versions 1, 2, and 3, respectively. Version 2 is appropriate for exchange of AI-
ESTATE models per Clause 4 of the AI-ESTATE standard. This appendix focuses on version 2.

D.1 Structurally valid versus conforms to a schema

An ISO 10303-21:1994 file begins with the token “ISO-10303-21;” and ends with the token “END-ISO-
10303-21;”. Within the file, there is a single HEADER section followed by a single DATA section (later
versions of ISO 10303-21:1994 permit multiple DATA sections). The HEADER section begins and ends
with the tokens “HEADER;” and “ENDSEC;”, respectively and contains metadata for the file. The DATA
section begins and ends with the tokens “DATA;” and “ENDSEC;”, respectively and contains the actual
model exchange data. The tokens in an ISO 10303-21:1994 file are separated by zero or more whitespace
characters and/or zero or more comments. Each comment begins with the character sequence “/*” and ends
with “*/”. The following is an abbreviated listing.

Example

ISO-10303-21;
HEADER;
 /* HEADER content removed for simplicity */
ENDSEC;
DATA;
 /* DATA content removed for simplicity */
ENDSEC;
END-ISO-10303-21;

The HEADER section contains metadata for the file and follows a fixed structure that is defined in the
ISO 10303-21:1994 specification. The structure is independent of the specific schema for the application.
The following listing provides an example HEADER with comments and white-space formatting to assist
the reader.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 153 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

D.2 Example header

ISO-10303-21;
HEADER;
 FILE_DESCRIPTION(
 ('A simple file'), /* description */
 '2;1'); /* implementation_level */
 FILE_NAME(
 'my_file.stp', /* name */
 '2007-09-27T12:00:01', /* time_stamp */
 ('J Smith', 'Anytown USA'), /* author */
 (''), /* organization */
 '', /* preprocessor_version */
 '', /* originating_system */
 ''); /* authorization */
 FILE_SCHEMA(
 ('AI_ESTATE_DMATRIX_INFERENCE_MODEL')); /* schema_identifier */
 !MY_META_DATA('v1.01.01'); /* Example user defined header
entity */
ENDSEC;
DATA;
 /* DATA content removed for simplicity */
ENDSEC;
END-ISO-10303-21;

The HEADER section contains three required “header entities” that must appear in order:
FILE_DESCRIPTION, FILE_NAME, and FILE_SCHEMA. These three tokens indicate the “type” of the
header entity. Note that uppercase letters are required. Parentheses enclose the complete list of attributes for
each header entity, with the attributes separated by commas. A semicolon terminates each header entity.

The attribute structure for the three required header entities is fixed by ISO 10303-21:1994. The preceding
example puts each attribute on a new line to assist the reader, but this is not required. Some of the attributes
are specified as a single STRING and appear in the exchange file as a string of characters enclosed in single
quotes. The rest of the attributes are specified as a LIST of one or more STRINGs. A list is enclosed in
parentheses with the list items separated by commas. Most of the contents of the header entity attributes are
free-form human readable text and may be left as empty strings or empty lists. The three attributes that are
not free form are implementation_level, time_stamp, and schema_identifiers. These are required and must
be populated as follows:

� The implementation_level attribute consists of two integers separated by a semicolon. The first
integer indicates the version of ISO 10303 to which the exchange file conforms: 1, 2, or 3 as
defined previously. The second integer indicates the “conformance class” and must have a value
of 1 or 2. Conformance class 1 requires that entities in the DATA section use the default
mapping format as described subsequently. Conformance class 2 requires that all entities in the
DATA section use the “external-mapping” format described subsequently. A common value for
implementation_level is “2;1” indicating that the file conforms to version 2 and follows the
default mapping.

� The time_stamp attribute must contain the complete date and time and adhere to section 5.3.1.1
or 5.3.3 of ISO 8601-2004 [B6]. The alternate formats of 5.3.1.1 or 5.3.3 permit the optional
inclusion of a time zone.

� The schema_identifiers attribute is a list of strings indicating the EXPRESS schema(s) to which
this exchange file conforms. Each string contains the name of the schema in uppercase letters,
optionally followed by the object identifier assigned to that schema (not shown in the example).

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 154 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Versions 1 and 2 of ISO 10303-21 permit one and only one string in the list and, hence,
conformance to one and only one model schema.

Following the required header entities described above, the HEADER section may also contain zero or
more “user defined header entities.” A user-defined header entity follows the syntax of other header entities
except the entity type token of a user-defined header entity must begin with the exclamation point character
“!”. The presence, contents, and interpretation of user-defined header entities are implementation specific.
MY_META_DATA in the previous example is an example of a user-defined header entity.

The DATA section of an ISO 10303-21:1994 file contains the model exchange data that conform to the
particular EXPRESS model schema for the application, which is the schema named in the HEADER
section. The DATA section consists of a set of entity instances encoded in one of two styles: the internal
mapping or the external mapping. The following is an example set of internally mapped entities that could
appear in an AI-ESTATE exchange file (the whitespace and comments are optional):

DATA;
 …
 #2 = FAULT(’fault10’, /* “name” attribute */

’Faulty CCA 10’, /* “description” */
$, /* optional attributes omitted */
(#201,#202), /* hasOutcome */
$,$,$,
#300, /* “level” */
()); /* empty */

 #201 = DIAGNOSISOUTCOME(’GOOD’, 0.99);
 #202 = DIAGNOSISOUTCOME(’CANDIDATE’,0.99);
….
ENDSEC;

Each entity instance in the data section begins with a “#” character, followed by a positive integer-valued
identifier for the entity, followed by an “=” character. Entity instances may appear in any order and their
identifiers may appear in any order. The entity instance identifiers have no meaning outside of the
exchange file. Following the “=” character is an optional SCOPE section (omitted in this example)
followed by the type of the entity in all capital letters (e.g., FAULT), followed by the attribute list enclosed
in parentheses, and terminated with a “;” character.

The attribute list of an entity instance is a comma-separated list of attribute values. The attribute values
appear in the order that the attributes were declared in the schema. Attributes declared within a subtype
entity appear after the attributes that were declared in its supertype. Thus, unlike XML attributes,
ISO 10303-21:1994 attributes effectively have a fixed “slot” position in a fixed-length ordered list. If an
optional attribute is omitted, then a “$” character appears in the slot. Only the so-called “explicit” attributes
get a slot in the attribute list; the so-called implicit attributes (those declared in the schema as INVERSE or
DERIVEd attributes) are not in the list. Values for implicit attributes need to be derived by the receiver of
an ISO 10303-21:1994 file. If an attribute declared in a supertype is redeclared in a subtype, it does not get
a second slot or a new slot in the subtype instances, there is only one slot for the attribute in the subtype
instance and it is the slot from the supertype. If an attribute declared in a supertype is redeclared as a
DERIVED or INVERSE attribute in a subtype, effectively making it implicit in the subtype, a ‘*’ character
appears in the slot for that attribute in the subtype instances.

The attribute values are encoded according to their underyling type in the schema:

� STRING attribute values are enclosed in single quotes (e.g., ‘Faulty CCA 10’).

� ENUMERATION attribute values are in uppercase and enclosed in periods (e.g., .HOURS.,
.MINUTES).

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 155 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

� BOOLEAN and LOGICAL attribute values are enclosed in periods, where .T., .F. and .U.
represent true, false, and unknown, respectively.

� INTEGER attribute values consist of an optional leading plus or minus sign followed by one or
more digits (e.g., 10, +100, –50).

� REAL attribute values consist of a mantissa and optional exponent. The mantissa consists of an
optional leading plus or minus sign, followed by one or more digits, a mandatory decimal point,
and zero or more digits after the decimal. The exponent consists of the character “E” followed
by an optional leading plus or minus sign and one or more digits (e.g., –10., 0.99, 3.E-8).

� Entity-valued attributes are represented by the character “#” followed the entity instance
identifier (a positive integer). This points to an entity instance in the file (e.g., #201).

� Aggregate attribute values (SET/LIST/BAG/ARRAY) are enclosed in parentheses with items
separated by commas. Nested aggregates are represented by nested parentheses. “()” represents
an empty aggregate. The items in the list are each encoded according to their type as described
in the previous bullets [e.g., (#201,#202), (), ((10, 20, 30),())].

� OPTIONAL attribute values that are omitted are represented by the character “$”.

� If the schema defines an attribute in a supertype and redefines it as DERIVED or INVERSE in a
subtype, then instances of the subtype will fill the attribute slot (as mapped from the supertype)
with the character “*” instead of the actual value.

An entity instance may have an optional SCOPE section that contains other entity instances. A SCOPE
section conveys an “instance dependence” between entities; if for whatever reason an entity instance is later
deleted from the file, then the entity instances within its SCOPE should also be deleted for the file to
remain meaningful. SCOPE may be nested; an entity instance within a SCOPE section may itself have a
SCOPE section. There are no absolute rules that map entity relationships in the schema to instance-
dependence. ISO 10303-21:1994 leaves the use of SCOPE optional and at the discretion of the instance
creator.

The SCOPE section also controls the visibility of an entity instance for referencing by other entity
instances. Entity instances within a SCOPE section may be referenced by entities within that SCOPE
(including downward in SCOPE nesting) and by the entity that “owns” the SCOPE section. They cannot be
referenced by entity instances outside that SCOPE section unless they are explicitly “exported.” Exporting
the entity makes is accessible to the next higher level of SCOPE nesting. That SCOPE section may export it
to the next higher level of SCOPE nesting. Exporting from the highest level SCOPE section makes an
entity visible throughout the exchange structure.

An optional SCOPE section immediately follows the “=” character, and it begins and ends with the tokens
&SCOPE and ENDSCOPE, respectively. The SCOPE section must contain at least one entity instance. The
optional export list follows the ENDSCOPE token, and it begins and ends with a “/” character, and if
present, it must contain at least one entity identifier in a comma separated list.

Example—AI-ESTATE DiagnosisOutcomes, TestOutcomes, and ActionOutcomes are good candidates for
SCOPE use. The Outcomes should be exported so that they can be referenced from elsewhere.

DATA;
 …
 #2 = &SCOPE
 #201 = DIAGNOSISOUTCOME(’GOOD’, 0.99);
 #202 = DIAGNOSISOUTCOME(’CANDIDATE’,0.99);
 ENDSCOPE
 / #201, #202 / /* export two diagnosis outcomes */
 FAULT(’fault10’,’Faulty CCA 10’,$,(#201,#202),$,$,$,#300,());
 …
ENDSEC;

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 156 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

ISO 10303-21:1994 also defines a so-called external-mapping for entity instances. The external-mapping
presents all of the individual entity types that make up the entity instance and groups attributes with the
type where they were declared in the schema. The individual entity types are enclosed in parentheses. Like
internally mapped entities, an externally mapped entity instance may have an optional SCOPE section
following the “=” character and before opening “(” character. The following example uses the external-
mapping to show the same three entities as the previous examples:

DATA;
 …
 #2 = (DIAGNOSIS(’fault10’,’Faulty CCA 10’,$,(#201,#202),$,$,$,#300)
 FAULT(()));
 #201 = (OUTCOME(’GOOD’,0.99)
 DIAGNOSISOUTCOME());
 #202 = (OUTCOME(’CANDIDATE’,0.99)
 DIAGNOSISOUTCOME());
 …
ENDSEC;

The external mapping in the example makes it clear that entity #2 is composed of the Diagnosis and Fault
entity types. The eight explicit attributes declared for Diagnosis in the schema are grouped with
DIAGNOSIS, and the one explicit attribute declared for Fault are grouped with FAULT.

External mapping is important for several reasons. First, EXPRESS has inheritance mechanisms that allow
there to be entity instances that cannot be characterized by a single type name, such that there is no single
entity type name that could be used in the internal mapping. It is referred to in EXPRESS as ANDOR
inheritance, and it is in fact the default form of inheritance in EXPRESS. AI-ESTATE does not currently
make use of this EXPRESS feature, but it was used in previous versions. Second, the creator of the
exchange file can force all entity instances to be externally mapped whether they need to be or not. The
default mapping, indicated by using conformance class 1 in the HEADER section as mentioned previously,
requires that every entity instance be internally mapped if it can be, and externally mapped if that is the
only possible mapping. Conformance class 2 forces all entity instances to be externally mapped. A possible
rationale for forcing external mapping may be that the recipient of the exchange file may only recognize or
utilize some of the individual entity types that make up the entity instance. External mapping makes it
easier for the recipient to ignore the parts of each entity instance that it does not recognize.

ISO 10303-21:1994 defines two levels of conformance for an ISO 10303-21:1994 file. Syntactical
conformance is met if the file adheres to the syntax rules defined in ISO 10303-21:1994. This is
independent of the governing EXPRESS schema. Schema conformance is met if the file is syntactically
conformant and the product data in the file adheres to the schema listed in the header section.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 157 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Annex E

(normative)

Information object registration

To provide for unambiguous identification of information objects, the following object identifiers are
assigned in this annex:

The object identifier
{ iso (1) iso-identified-organization (3) ieee (111) standards-association-numbered-series-standards (2) std-
1232 (1232) version2011 (2011) }
is assigned to this standard.

The object identifier
{ iso (1) iso-identified-organization (3) ieee (111) standards-association-numbered-series-standards (2) std-
1232 (1232) part(100) version2011 (2011) cem(1) }
is assigned to the Common Element Model schema defined in 6.1.

The object identifier
{ iso (1) iso-identified-organization (3) ieee (111) standards-association-numbered-series-standards (2) std-
1232 (1232) part(100) version2011 (2011) bnm(2) }
is assigned to the Bayes Network Model schema defined in 6.2.

The object identifier
{ iso (1) iso-identified-organization (3) ieee (111) standards-association-numbered-series-standards (2) std-
1232 (1232) part(100) version2011 (2011) dim(3) }
is assigned to the D-Matrix Inference Model schema defined in 6.3.

The object identifier
{ iso (1) iso-identified-organization (3) ieee (111) standards-association-numbered-series-standards (2) std-
1232 (1232) part(100) version2011 (2011) dlm(4) }
is assigned to the Diagnostic Logic Model schema defined in 6.4.

The object identifier
{ iso (1) iso-identified-organization (3) ieee (111) standards-association-numbered-series-standards (2) std-
1232 (1232) part(100) version2011 (2011) ftm(5) }
is assigned to the Fault Tree Model schema defined in 6.5.

The object identifier
{ iso (1) iso-identified-organization (3) ieee (111) standards-association-numbered-series-standards (2) std-
1232 (1232) part(100) version2011 (2011) dcm(6) }
is assigned to the Dynamic Context Model schema defined in 6.6.

The object identifier
{ iso (1) iso-identified-organization (3) ieee (111) standards-association-numbered-series-standards (2) std-
1232 (1232) part(100) version2011 (2011) rsm(7) }
is assigned to the Reasoner Services Model schema defined in 7.3.1.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 158 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Annex F

(normative)

Universal resource names for derived XML schemas

This annex assigns namespaces to the derived XML schemas that are used for exchange in the
ISO 10303-28 format.

The XML element names, attribute names, and data type names declared in the derived XML schema for
the Bayes Network Model shall constitute the namespace designated:

urn:oid:1.3.111.2.1232.100.2011.2

The XML element names, attribute names and data type names declared in the derived XML schema for
the Dmatrix Inference Model shall constitute the namespace designated:

urn:oid:1.3.111.2.1232.100.2011.3

The XML element names, attribute names, and data type names declared in the derived XML schema for
the Diagnostic Logic Model shall constitute the namespace designated:

urn:oid:1.3.111.2.1232.100.2011.4

The XML element names, attribute names and data type names declared in the derived XML schema for
the Fault Tree Model shall constitute the namespace designated:

urn:oid:1.3.111.2.1232.100.2011.5

The XML element names, attribute names, and data type names declared in the derived XML schema for
the Dynamic Context Model shall constitute the namespace designated:

urn:oid:1.3.111.2.1232.100.2011.6

NOTE—There is no derived XML schema for the CEM. The entire CEM is explicitly interfaced into the EXPRESS
schemas for the BNM, DIM, DLM, FTM, and DCM. Per ISO 10303-28:2007, CEM data types map to XML
declarations within the namespace of the derived XML schemas for the BNM, DIM, DLM, FTM, and DCM,
respectively. The derived XML schemas for the BNM, DIM, DLM, FTM, and DCM do not “import” a derived XML
schema for the CEM.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 62243:2012
IEEE Std 1232-2010 – 159 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Annex G

(informative)

IEEE List of Participants

At the time this draft standard was submitted to the IEEE-SA Standards Board for approval, the
Diagnostics and Maintenance Control (DMC) Working Group had the following membership:

John Sheppard, Co-Chair
Timothy Wilmering, Co-Chair

Anthony Lee Alwardt
Michael Bodkin
Malcolm Brown
Darryl Busch
David Droste
Oscar Fandino
Jennifer Fetherman
Ken Fox
Robert Fox
Brit Frank
Chris Gorringe

Michelle Harris
Alicia Helton
Ashley Hulme
Anand Jain
Simon Jessop
Carey Jimmerson
Mark Kaufman
Dexter Kennedy
Teresa Lopes
Michael Malesich
David Mills
Scott Misha

Mukund Modi
Ion Neag
Matilde Olea
Leslie Orlidge
Duy-Huan Pham
William Ross
Mike Seavey
David Sharone
John Stabler
Joseph Stanco
Michael Stora

The following members of the individual balloting committee voted on this standard. Balloters may have
voted for approval, disapproval, or abstention.

Anthony Lee Alwardt
Ali Al Awazi
William Byrd
Keith Chow
David Droste
Heiko Ehrenberg
William Frank
Chris Gorringe
Randall Groves
Alicia Helton
Werner Hoelzl

Ashley M. Blackstock Hulme
Anand Jain
Piotr Karocki
Mark Kaufman
Rameshchandra Ketharaju
G. Luri
Wade Midkiff
Mukund Modi
Jeffrey Moore
Ion Neag
Leslie Orlidge
Ulrich Pohl

Robert Robinson
Bartien Sayogo
Mike Seavey
John Sheppard
Gil Shultz
James Smith
Joseph Stanco
Walter Struppler
Ronald Taylor
Thomas Tullia
Timothy Wilmering

When the IEEE-SA Standards Board approved this standard on 8 December 2010, it had the following
membership:

Robert M. Grow, Chair
Richard H. Hulett, Vice Chair

Steve M. Mills, Past Chair
Judith Gorman, Secretary

Karen Bartleson
Victor Berman
Ted Burse
Clint Chaplin
Andy Drozd
Alexander Gelman
Jim Hughes

Young Kyun Kim
Joseph L. Koepfinger*
John Kulick
David J. Law
Hung Ling
Oleg Logvinov
Ted Olsen

Ronald C. Petersen
Thomas Prevost
Jon Walter Rosdahl
Sam Sciacca
Mike Seavey
Curtis Siller
Don Wright

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 IEC 62243:2012
 – 160 – IEEE Std 1232-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

*Member Emeritus

Also included are the following nonvoting IEEE-SA Standards Board liaisons:

Satish Aggarwal, NRC Representative
Richard DeBlasio, DOE Representative
Michael Janezic, NIST Representative

Lisa Perry

IEEE Standards Program Manager, Document Development

Soo H. Kim
IEEE Standards Program Manager, Technical Program Development

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

3, rue de Varembé
PO Box 131
CH-1211 Geneva 20
Switzerland

Tel: + 41 22 919 02 11
Fax: + 41 22 919 03 00
info@iec.ch
www.iec.ch

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

	IEC 62243 (IEEE Std 1232) Front Cover
	CONTENTS
	IEC FOREWORD
	Title page
	IEEE Introduction
	Notice to users
	Laws and regulations
	Copyrights
	Updating of IEEE documents
	Errata
	Interpretations
	Patents

	Important Notice
	1. Overview
	1.1 Scope
	1.2 Purpose
	1.3 Conventions used in this document
	1.4 IEEE download site

	2. Normative references
	3. Definitions, acronyms, and abbreviations
	3.1 Definitions
	3.2 Acronyms and abbreviations

	4. Description of AI-ESTATE
	4.1 AI-ESTATE architecture
	4.2 Binding strategy

	5. AI-ESTATE usage
	5.1 Interchange format
	5.2 Extensibility
	5.3 Conformance

	6. Models
	6.1 AI_ESTATE_CEM
	6.2 AI_ESTATE_BNM
	6.3 AI_ESTATE_DIM
	6.4 AI_ESTATE_DLM
	6.5 AI_ESTATE_FTM
	6.6 AI_ESTATE_DCM

	7. Reasoner manipulation services
	7.1 Service order dependence
	7.2 Status codes
	7.3 Data types for the reasoner manipulation services
	7.4 Required services
	7.5 Optional services

	Annex A (informative) Bibliography
	Annex B (informative) Overview of EXPRESS
	Annex C (informative) Overview of ISO 10303-28:2007
	Annex D (informative) Overview of ISO 10303-21:1994
	Annex E (normative) Information object registration
	Annex F (normative) Universal resource names for derived XML schemas
	Annex G (informative) IEEE List of Participants

