TECHNICAL REPORT

IEC TR 62064

First edition 1999-07

Radio-frequency cables – Relationship between surface transfer impedance and screening attenuation (A background to the recommended limits contained in IEC 61196-1, clause 14)

Câblages pour fréquences radioélectriques – Relation entre l'impédance de transfert en surface et l'affaiblissement d'écran

Reference number IEC/TR 62064:1999(E)

Numbering

As from 1 January 1997 all IEC publications are issued with a designation in the 60000 series.

Consolidated publications

Consolidated versions of some IEC publications including amendments are available. For example, edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the base publication incorporating amendment 1 and the base publication incorporating amendments 1 and 2.

Validity of this publication

The technical content of IEC publications is kept under constant review by the IEC, thus ensuring that the content reflects current technology.

Information relating to the date of the reconfirmation of the publication is available in the IEC catalogue.

Information on the subjects under consideration and work in progress undertaken by the technical committee which has prepared this publication, as well as the list of publications issued, is to be found at the following IEC sources:

- IEC web site*
- Catalogue of IEC publications Published yearly with regular updates (On-line catalogue)*
- IEC Bulletin Available both at the IEC web site* and as a printed periodical

Terminology, graphical and letter symbols

For general terminology, readers are referred to IEC 60050: International Electrotechnical Vocabulary (IEV).

For graphical symbols, and letter symbols and signs approved by the IEC for general use, readers are referred to publications IEC 60027: *Letter symbols to be used in electrical technology*, IEC 60417: *Graphical symbols for use on equipment. Index, survey and compilation of the single sheets* and IEC 60617: *Graphical symbols for diagrams.*

* See web site address on title page.

TECHNICAL REPORT

IEC TR 62064

First edition 1999-07

Radio-frequency cables – Relationship between surface transfer impedance and screening attenuation (A background to the recommended limits contained in IEC 61196-1, clause 14)

Câblages pour fréquences radioélectriques – Relation entre l'impédance de transfert en surface et l'affaiblissement d'écran

© IEC 1999 — Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission3, rue de Varembé Geneva, SwitzerlandTelefax: +41 22 919 0300e-mail: inmail@iec.chIEC web site http://www.iec.ch

Commission Electrotechnique Internationale International Electrotechnical Commission Международная Электротехническая Комиссия

For price, see current catalogue

Ν

CONTENTS

	Pa	ge
FO	REWORD	3
Clau	Ise	
1	Scope	4
2	General	4
3	Correlation between measured screening attenuation <i>a</i> _s and measured surface transfer impedances at 30 MHz and 300 MHz	6
4	Recommended limits for surface transfer impedance and screening attenuation	6
5	Reference documents 1	4

INTERNATIONAL ELECTROTECHNICAL COMMISSION

RADIO-FREQUENCY CABLES – RELATIONSHIP BETWEEN SURFACE TRANSFER IMPEDANCE AND SCREENING ATTENUATION (A background to the recommended limits contained in IEC 61196-1, clause 14)

FOREWORD

- 1) The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested National Committees.
- 3) The documents produced have the form of recommendations for international use and are published in the form of standards, technical reports, technical specifications or guides and they are accepted by the National Committees in that sense.
- 4) In order to promote international unification, IEC National Committees undertake to apply IEC International Standards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter.
- 5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with one of its standards.
- 6) Attention is drawn to the possibility that some of the elements of this technical report may be the subject of patent rights. The IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. However, a technical committee may propose the publication of a technical report when it has collected data of a different kind from that which is normally published as an International Standard, for example "state of the art".

Technical reports do not necessarily have to be reviewed until the data they provide are considered to be no longer valid or useful by the maintenance team.

IEC 62064, which is a technical report, has been prepared by subcommittee 46A: Coaxial cables, of IEC technical committee 46: Cables, wires, waveguides, R.F. connectors, and accessories for communication and signalling.

The text of this technical report is based on the following documents:

Enquiry draft	Report on voting
46A/330/CDV	46A/348/RVC

Full information on the voting for the approval of this technical report can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 3.

This document which is purely informative is not to be regarded as an International Standard.

A bilingual version of this technical report may be issued at a later date.

RADIO-FREQUENCY CABLES – RELATIONSHIP BETWEEN SURFACE TRANSFER IMPEDANCE AND SCREENING ATTENUATION (A background to the recommended limits contained in IEC 61196-1, clause 14)

1 Scope

This technical report describes the valuable background material used during the revision of IEC 61196-1, clause 14, guidance for surface transfer impedance and screening attenuation limits for flexible r.f. cables.

In this report the relationship between surface transfer impedance (Z_T) and screening attenuation (a_s) is given, also measurements of Z_T and a_s are provided to show the correlation of mean scanning attenuation between 200 MHz and 500 MHz and Z_T at both 30 MHz and 300 MHz.

The sensitivity of a_s and the relative velocity difference between the inner and outer system is shown, also the need for the cable data sheet to show the a_s values in a standardized form – $\Delta v/v = 10$ % and the characteristic impedance of the outer system is 150 Ω . It is also shown that a relative velocity difference change from 10 % to 40 % gives an improvement of 12 dB in screening attenuation.

2 General

At high frequencies when the surface transfer impedance Z_T and effective transfer impedance $Z_{TE_{n,f}} = |Z_F \pm Z_T|$, and increases 6 dB per octave, its relation to the screening attenuation a_s is frequency independent and can be written as (see also figure 1):

$$a_{s_{n}} = -20 \times \log_{10} \left| T_{n}_{f} \right|$$
(1)

$$= -20 \times \log_{10} \frac{Z_{\rm T}}{\sqrt{Z_1 Z_2} \omega \left| \frac{l}{v_2} \pm \frac{l}{v_1} \right|} = -20 \times \log_{10} \frac{Z_{\rm T} c_{\rm o}}{\sqrt{Z_1 Z_2} \omega \left| \sqrt{\varepsilon_{\rm r2}} \pm \sqrt{\varepsilon_{\rm r1}} \right|}$$
(2)

and
$$T_{n_{f}} = \frac{U_{2n}}{U_{1}} / \sqrt{Z_{2}}$$

where

- *I* is the length of the cable under test;
- $T_{n,f}$ are the coupling transfer functions;
- 'n' for the near end and 'f' for the far end;
- Z_1 is the characteristic impedance of the cable;
- Z_2 is the impedance of the outer circuit;
- ε_{r1} is the cable dielectric permittivity;
- ε_{r2} is the permittivity of the outer circuit;
- c_o is the velocity of light in vacuum;
- v_1 is the propagation velocity of the inner circuit;

- v_2 is the propagation velocity of the outer circuit;
- $Z_{\rm F}$ is the capacitive coupling impedance;
- $Z_{\rm T}$ is the surface transfer impedance;
- $Z_{\text{TE}_{nf}}$ is the effective transfer impedance.

- (1) The inner circuit, cable under test.
- (2) The outer circuit, formed by test line or cylinder or the outer environment as in the absorbing clamp method.

Figure 1 – Concept of screening measurement set-ups

When the capacitive coupling impedance Z_F is present (spaces in the outer conductor), Z_T shall be substituted by Z_{TE} .

"+" sign is for the near end and "-" sign for the far end. Z_1 and Z_2 are the impedances of the inner and outer system and v_1 and v_2 the corresponding velocities.

Screening attenuation a_s is a reliable measure of screening efficiency when the frequency is constant. This is true when Z_T or Z_{TE} increases 6 dB/octave and the following criterion is fulfilled:

$$I_{\rm f} \ge \frac{\lambda_{\rm o}}{\pi \left| \sqrt{\varepsilon_{\rm r1}} \pm \sqrt{\varepsilon_{\rm r2}} \right|} \tag{4}$$

where λ_0 is the wave length in free space.

At lower frequencies when *l* is smaller than that found from (4) the coupling attenuation is:

$$A_{\text{s}_{\text{f}}} = -20 \times \log_{10} \left| T_{\text{f}} \right| = -20 \times \log_{10} \left| \frac{(Z_{\text{F}} \pm Z_{\text{T}}) \times I}{2\sqrt{Z_{1}Z_{2}}} \right|$$
(5)

More detailed information on the above equations is given in the IEC 61917.

3 Correlation between measured screening attenuation a_s and measured surface transfer impedances at 30 MHz and 300 MHz

 $Z_{\rm T}$ and $a_{\rm s}$ were measured using the same cable construction. Figures 2, 3 and 4 show the correlation between $a_{\rm s}$ (mean value between 200 MHz and 500 MHz) and the $Z_{\rm T}$ values correspondingly at 30 MHz and 300 MHz.

In figure 5, typical Z_T curves are shown. For single and double braided outer conductors the 6 dB/octave increase is reached at 30 MHz but for foil-braid constructions at 30 MHz the Z_T can still be decreasing. The effect of this can be clearly seen when comparing the test results in figures 2, 3 and 4 for the foil-braid cables. The correlation between a_s and Z_T (30 MHz) is poor, but much better between a_s and Z_T (300 MHz). For single and double braided cables the correlation is equally good for 30 MHz and 300 MHz. The increase in the values of Z_T which should have been 10 fold (20 dB) is somewhat lower. The full 6 dB/octave increase in Z_T between 30 MHz and 300 MHz has not been reached for all single and double braided cables.

The $Z_{T}(a_{s})$ correlation line slope from equations (1) and (2) is -20 dB/decade.

One reason for the spread in correlation is the strong effect of the velocity differences $v_2 - v_1$ on the a_s value. To demonstrate this, two lines are shown for 40 % and one for 10 % relative velocity difference ($|v_2 - v_1|/v_1$). Also, the outer circuit impedance has been altered from 300 Ω to 150 Ω .

Other reasons for the widespread of the correlation points are that only the cable construction has been kept the same, but the tested samples are different. It is impossible to use the same samples in Z_T and a_s measurements because of the required difference in length of the cable under test (CUT). Even if the samples had been the same, a difference of ±6 dB would exist when the CUT is removed from the test fixture and then remounted.

As shown above, the screening attenuation a_s is dependent on the outer circuit propagation velocity and to a lesser extent on the impedance, and decreases rapidly when the velocities v_2 and v_1 approach each other. For these reasons it has been recommended that a_s shall also be given in standardized conditions a_{sn} where the outer circuit velocity differs by 10 % from the inner circuit velocity, and the outer circuit impedance is 150 Ω .

It can be seen from figures 2 and 3 that the difference is about 10 dB. A drop in relative velocity difference from 40 % to 10 % causes a decrease of 12 dB in a_s . A decrease in impedance of 50 % causes an increase in a_s of 3 dB.

The values of the standardized condition 10 % relative velocity difference / 150 Ω have been shown to be that of a typical cable tray surrounding. Normally the measurement conditions of the absorbing clamp set-up gives approximately a 10 dB improvement value for a_s .

Figures 5 and 6 show typical test results for single braided, double braided and foil-braid outer conductor constructions.

4 Recommended limits for surface transfer impedance and screening attenuation

In clause 14 of IEC 61196-1, table 5 provides the recommended limits. To reach the limit of 100 m Ω /m at 30 MHz for single braided cables some optimization is needed, but even values below 50 m Ω /m are not difficult to obtain. A guide for optimization of single braided outer conductors is in preparation by the IEC. Some older cable design standards have requirements for too great a screen coverage, for example, too much copper in the braid. They are so heavily overbraided that a $Z_{\rm T}$ of 300 m Ω /m at 30 MHz is common.

To reach an a_s by an absorbing clamp measured screening attenuation of 90 dB for double braided cables some optimization is needed. In CATV networks an a_s higher than 85 dB is under discussion and an optimized double braided construction may fulfil the requirement.

When good screening is needed below 30 MHz the so-called superscreened construction is available, i.e. μ -metal tape sandwiched between two braids.

The most commonly used cable construction, when good screening at relatively high frequencies is needed, is the foil-braid type. A minimum 40 µm Cu-foil is recommended.

At frequencies below 30 MHz the screening properties should be defined at an upper limit of the transfer impedance.

For foil-braid constructions a $Z_T \le 6 \text{ m}\Omega/\text{m}$ at 5 MHz and $\le 8 \text{ m}\Omega/\text{m}$ at d.c. is recommended.

As it is becoming more common to utilize the 5 MHz to 30 MHz return path of the CATV systems, it is important to specify the screening properties below 30 MHz. The relevant values should be calculated in cooperation between TC 46 and SC 100D.

- 8 -

Measured Z_T (30 MHz) versus absorbing clamp measured mean a_S (200 MHz to 500 MHz) value of same type of cable.

$$a_{\rm s} = -20 \times \log_{10} \frac{Z_{\rm T}}{\sqrt{Z_1 Z_2} \omega \left| \frac{1}{v_2} - \frac{1}{v_1} \right|} = -20 \times \log_{10} \frac{Z_{\rm T} c_{\rm o}}{\sqrt{Z_1 Z_2} \omega \left| \sqrt{\varepsilon_{\rm r2}} - \sqrt{\varepsilon_{\rm r1}} \right|} \tag{6}$$

when

 $Z_1 = 75 Ω;$

 $v_1 = 200$ Mm/s, assumed for the cable under test;

 $Z_2 = 300 \Omega \text{ or } 150 \Omega;$

 $v_2~$ = 220 Mm/s ($\Delta v/v_1$ = 10 %) or 280 Mm/s (ϵ_{r2} =1,15 ; $\Delta v/v_1$ = 40 %);

 $c_{\rm o} = 300 \, {\rm Mm/s}.$

Measured Z_{TEf} (30 MHz) line injection results versus absorbing clamp measured mean a_{s} (200 MHz to 500 MHz)

Figure 3 – Z_{TEf} (30 MHz) line-injection measurement versus absorption clamp-measurement of mean screening attenuation a_s from the same cable sample for different outer conductor constructions (sb = single braid; db = double braid; fb = foil + braid) and the calculated relation between Z_{TEf} and a_s when Z_{TEf} is directly proportional to frequency at high frequencies

$$a_{\rm s} = -20 \times \log_{10} \frac{Z_{\rm TEf}}{\sqrt{Z_1 Z_2} \omega \left| \frac{1}{v_2} - \frac{1}{v_1} \right|} = -20 \times \log_{10} \frac{Z_{\rm TEf} c_0}{\sqrt{Z_1 Z_2} \omega \left| \sqrt{\varepsilon_{\rm r2}} - \sqrt{\varepsilon_{\rm r1}} \right|}$$
(7)

when

 $Z_1 = 75 Ω;$

 $v_1 = 200 \text{ Mm/s}$ assumed for the cable under test;

 Z_2 = 300 Ω or 150 Ω;

 $v_2 = 220 \text{ Mm/s} (\Delta v/v_1 = 10 \%) \text{ or } 280 \text{ Mm/s} (\epsilon_{r2} = 1,15; \Delta v/v_1 = 40 \%);$

 $c_0 = 300 \text{ Mm/s}.$

- 10 -

Measured Z_{TEf} (300 MHz) line injection result versus absorbing clamp measured mean a_{s} (200 MHz to 500 MHz)

Figure 4 – Z_{TEf} (300 MHz) line-injection measurement versus absorption clamp-measurement of mean screening attenuation a_s from the same cable sample for different outer conductor constructions (sb = single braid; db = double braid; fb = foil + braid) and the calculated relation between Z_{TEf} and a_s when Z_{TEf} is directly proportional to frequency at high frequencies

$$a_{\rm s} = -20 \times \log_{10} \frac{Z_{\rm TEf}}{\sqrt{Z_1 Z_2} \omega \left| \frac{1}{v_2} - \frac{1}{v_1} \right|} = -20 \times \log_{10} \frac{Z_{\rm TEf} c_{\rm o}}{\sqrt{Z_1 Z_2} \omega \left| \sqrt{\varepsilon_{\rm r2}} - \sqrt{\varepsilon_{\rm r1}} \right|} \tag{8}$$

when

 $Z_1 = 75 \Omega;$ $v_1 = 200$ Mm/s assumed for the cable under test; $Z_2 = 300 \Omega$ or 150 $\Omega;$ $v_2 = 220$ Mm/s($\Delta v/v_1 = 10$ %) or 280 Mm/s ($\epsilon_{r2} = 1,15; \Delta v/v_1 = 40$ %); $c_0 = 300$ Mm/s.

Key

f _r	typically	110	MHz
----------------	-----------	-----	-----

- sb single braid
- sbo single braid optimized
- sba single braid "irregular"
- db double braid
- ss superscreen
- fb foil+braid

Figure 5 – Surface transfer impedance of typical cables

Figure 6 – Typical effective transfer impedance values measured with the line-injection method, (sb = single braid, db = double braid and fb = foil + braid)

TR 62024 © IEC:1999(E)

Figure 7c - fb: foil + braid

Figure 7 – Measured screening attenuation (a_s / dB) of the cables in figure 6

5 Reference documents

IEC 61196-1:1995, Radio-frequency cables – Part 1: Generic specification – General, definitions, requirements and test methods

IEC 61917:1998, Cables, cable assemblies and connectors – Introduction to electromagnetic *(EMC)* screening measurements

The IEC would like to offer you the best quality standards possible. To make sure that we continue to meet your needs, your feedback is essential. Would you please take a minute to answer the questions overleaf and fax them to us at +41 22 919 03 00 or mail them to the address below. Thank you!

Customer Service Centre (CSC)

International Electrotechnical Commission 3, rue de Varembé 1211 Genève 20 Switzerland

or

Fax to: IEC/CSC at +41 22 919 03 00

Thank you for your contribution to the standards-making process.

Nicht frankieren Ne pas affranchir

Non affrancare No stamp required

RÉPONSE PAYÉE SUISSE

Customer Service Centre (CSC) International Electrotechnical Commission 3, rue de Varembé 1211 GENEVA 20 Switzerland

Q1	Please report on ONE STANDARD and ONE STANDARD ONLY . Enter the exact number of the standard: (e.g. 60601-1-1)		Q6	If you ticked NOT AT ALL in Question 5 the reason is: <i>(tick all that apply)</i>	
)		standard is out of date	
				standard is incomplete	
				standard is too academic	
Q2	Please tell us in what capacity(ies) yo	u		standard is too superficial	
	bought the standard (tick all that apply	y).		title is misleading	
				I made the wrong choice	
	purchasing agent			other	
	librarian				
	researcher				
	design engineer		07	Please assess the standard in the	
	safety engineer		u ,	following categories, using	
	testing engineer			the numbers:	
	marketing specialist			(1) unacceptable,	
	other			(2) below average, (3) average	
				(4) above average.	
03	Lwork for/in/ac a:			(5) exceptional,	
Q.)	(tick all that apply)			(6) not applicable	
				timolinoco	
	manufacturing			quality of writing	
	consultant			technical contents	
	government			logic of arrangement of contents	
	test/certification facility			tables, charts, graphs, figures	
	public utility			other	
	education				
	military				
	other		Q8	I read/use the: (tick one)	
04	This standard will be used for:			French text only	
44	(tick all that apply)			English text only	
				both English and French texts	
	general reference				_
	product research				
	product design/development				
	specifications		Q9	Please share any comment on any	
	tenders			aspect of the IEC that you would like	
	quality assessment			us to know.	
	certification				
	technical documentation				
	thesis				
	manufacturing				
	other				
Q5	This standard meets my needs:				•••••
	(tick one)				
	not at all				
	fairly well				
	exactly				
		-			

LICENSED TO MECON Limited. - RANCHI/BANGALORE FOR INTERNAL USE AT THIS LOCATION ONLY, SUPPLIED BY BOOK SUPPLY BUREAU.

ICS 33.120.10