

INTERNATIONAL
STANDARD

IEC
62056-62

 Second edition
2006-11

Electricity metering –
Data exchange for meter
reading, tariff and load control –

Part 62:
Interface classes

Reference number
IEC 62056-62:2006(E)

Publication numbering

As from 1 January 1997 all IEC publications are issued with a designation in the
60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.

Consolidated editions

The IEC is now publishing consolidated versions of its publications. For example,
edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the
base publication incorporating amendment 1 and the base publication incorporating
amendments 1 and 2.

Further information on IEC publications

The technical content of IEC publications is kept under constant review by the IEC,
thus ensuring that the content reflects current technology. Information relating to
this publication, including its validity, is available in the IEC Catalogue of
publications (see below) in addition to new editions, amendments and corrigenda.
Information on the subjects under consideration and work in progress undertaken
by the technical committee which has prepared this publication, as well as the list
of publications issued, is also available from the following:

• IEC Web Site (www.iec.ch)

• Catalogue of IEC publications

The on-line catalogue on the IEC web site (www.iec.ch/searchpub) enables you to
search by a variety of criteria including text searches, technical committees
and date of publication. On-line information is also available on recently issued
publications, withdrawn and replaced publications, as well as corrigenda.

• IEC Just Published

This summary of recently issued publications (www.iec.ch/online_news/ justpub)
is also available by email. Please contact the Customer Service Centre (see
below) for further information.

• Customer Service Centre

If you have any questions regarding this publication or need further assistance,
please contact the Customer Service Centre:

Email: custserv@iec.ch
Tel: +41 22 919 02 11
Fax: +41 22 919 03 00

http://www.iec.ch/
http://www.iec.ch/searchpub
http://www.iec.ch/online_news/ justpub
mailto:custserv@iec.ch

INTERNATIONAL
STANDARD

IEC
62056-62

 Second edition
2006-11

Electricity metering –
Data exchange for meter
reading, tariff and load control –

Part 62:
Interface classes

© IEC 2006 ⎯ Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland
Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch

XF

For price, see current catalogue

PRICE CODE

Commission Electrotechnique Internationale
International Electrotechnical Commission
Международная Электротехническая Комиссия

 – 2 – 62056-62 © IEC:2006(E)

CONTENTS

FOREWORD...4
INTRODUCTION...6
1 Scope...7
2 Normative references ...7
3 Terms, definitions and abbreviations ..8
4 Basic principles ..9

4.1 General ...9
4.2 Class description notation ... 10
4.3 Common data types .. 12
4.4 Data formats ... 13
4.5 The COSEM server model ... 17
4.6 COSEM logical device ... 18
4.7 Authentication procedures ... 19

5 The interface classes ... 20
5.1 Data (class_id: 1) .. 22
5.2 Register (class_id: 3) .. 22
5.3 Extended register (class_id: 4) .. 26
5.4 Demand register (class_id: 5) .. 27
5.5 Register activation (class_id: 6)... 30
5.6 Profile generic (class_id: 7) ... 32
5.7 Clock (class_id: 8) ... 37
5.8 Script table (class_id: 9) .. 40
5.9 Schedule (class_id: 10) ... 41
5.10 Special days table (class_id: 11) ... 44
5.11 Activity calendar (class_id: 20) .. 45
5.12 Association LN (class_id: 15) .. 48
5.13 Association SN (class_id: 12) .. 53
5.14 SAP assignment (class_id: 17) .. 56
5.15 Register monitor (class_id: 21) .. 56
5.16 Utility tables (class_id: 26) .. 57
5.17 Single action schedule (class_id: 22)... 59
5.18 Register table (class_id: 61) .. 60
5.19 Status mapping (class_id: 63) ... 62

6 Maintenance of the interface classes .. 63
6.1 New interface classes ... 63
6.2 New versions of interface classes.. 63
6.3 Removal of interface classes ... 63

Annex A (normative) Protocol related interface classes.. 64
Annex B (normative) Data model and protocol ... 84
Annex C (normative) Using short names for accessing attributes and methods 85
Annex D (normative) Relation to OBIS .. 94
Annex E (informative) Previous versions of interface classes .. 116

Bibliography.. 122

62056-62 © IEC:2006(E) – 3 –

Index .. 123

Figure 1 – An interface class and its instances ... 10
Figure 2 – The COSEM server model.. 17
Figure 3 – Combined metering device ... 17
Figure 4 – Overview of the interface classes ... 21
Figure 5 – The attributes when measuring sliding demand .. 27
Figure 6 – The attributes when measuring current_average_value if number of periods
is 1 ... 27
Figure 7 – The attributes if the number of periods is 3 .. 28
Figure 8 – The generalized time concept .. 38
Figure B.1 – The three step approach of COSEM.. 84

Table 1 – Common data types .. 12

 – 4 – 62056-62 © IEC:2006(E)

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ELECTRICITY METERING – DATA EXCHANGE

FOR METER READING, TARIFF AND LOAD CONTROL –

Part 62: Interface classes

FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising

all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.

5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with an IEC Publication.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The International Electrotechnical Commission (IEC) draws attention to the fact that it is claimed that compliance
with this International Standard may involve the use of a maintenance service concerning the stack of protocols on
which the present standard IEC 62056-62 is based.

The IEC takes no position concerning the evidence, validity and scope of this maintenance service.

The provider of the maintenance service has assured the IEC that he is willing to provide services under
reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the
statement of the provider of the maintenance service is registered with the IEC. Information (see also 4.6.2 and
 Annex E) may be obtained from:

DLMS1 User Association

Geneva / Switzerland

www.dlms.ch

———————
1 Device Language Message Specification.

62056-62 © IEC:2006(E) – 5 –

International Standard IEC 62056-62 Ed. 2 has been prepared by IEC technical committee 13:
Equipment for electrical energy measurement and load control.

This second edition cancels and replaces the first edition published in 2002 and constitutes a
technical revision.

This edition includes the following significant technical changes with respect to the previous
edition:

• the list of common data types has been amended, some new types have been added;

• formatting for floating point numbers has been added;

• new HLS mechanisms have been added;

• instance specific data types have been replaced with a well-defined set of applicable data
types;

• new units have been added;

• encoding of application_context_name and authentication_mechanism_name attributes of
the Association LN class has has been clarified;

• new interface classes “Register table” and “Status mapping” have been added;

• a new version of the “IEC local port setup”, “Modem configuration”, “Auto connect” and
“HDLC setup” interface classes have been added;

• new interface classes for setting up a TCP/IP based communication profile have been
added. References to related IETF RFCs and standards, as well as related definitions
have been added;

• several amendments in Annex D “Relation to OBIS” have been made.

The text of this standard is based on the following documents:

FDIS Report on voting

13/1389/FDIS 13/1400/RVD

Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this publication will remain unchanged until
the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in
the data related to the specific publication. At this date, the publication will be

• reconfirmed,
• withdrawn,
• replaced by a revised edition, or
• amended.

A bilingual version of the publication may be issued at a later date.

 – 6 – 62056-62 © IEC:2006(E)

INTRODUCTION

Driven by the need of the utilities to optimize their business processes, the meter becomes
more and more part of an integrated metering and billing system. Whereas in the past the
commercial value of a meter was mainly generated by its data acquisition and processing
capabilities, nowadays the critical issues are system integration and interoperability.

The Companion Specification for Energy Metering (COSEM) addresses these challenges by
looking at the meter as an integrated part of a commercial process, which starts with the
measurement of the delivered product (energy) and ends with the revenue collection.

The meter is specified by its “behaviour” as seen from the utility's business processes. The
formal specification of the behaviour is based on object modelling techniques (interface
classes and objects). The specification of these objects forms a major part of COSEM.

The COSEM server model (see 4.5) represents only the externally visible elements of the
meter. The client applications that support the business processes of the utilities, customers
and meter manufacturers make use of this server model. The meter offers means to retrieve
its structural model (the list of objects visible through the interface), and provides access to
the attributes and specific methods of these objects.

The set of different interface classes form a standardized library from which the manufacturer
can assemble (model) its individual products. The elements are designed so that with them
the entire range of products (from residential to commercial and industrial applications) can
be covered. The choice of the subset of interface classes used to build a meter, their
instantiation, and their implementation are part of the product design and therefore left to the
manufacturer. The concept of the standardized metering interface class library provides the
different users and manufacturers with a maximum of diversity without having to sacrifice
interoperability.

62056-62 © IEC:2006(E) – 7 –

ELECTRICITY METERING – DATA EXCHANGE
FOR METER READING, TARIFF AND LOAD CONTROL –

Part 62: Interface classes

1 Scope

This part of IEC 62056 specifies a model of a meter as it is seen through its communication
interface(s). Generic building blocks are defined using object-oriented methods, in the form of
interface classes to model meters from simple up to very complex functionality.

2 Normative references

The following referenced documents are indispensable for the application of this document.
For dated references, only the edition cited applies. For undated references, the latest edition
of the referenced document (including any amendments) applies.

IEC 60050-300:2001, International Electrotechnical Vocabulary – Electrical and electronic
measurements and measuring instruments – Chapter 311: General terms relating to
measurements – Chapter 312: General terms relating to electrical measurements – Chapter
313: Types of electrical measuring instruments – Chapter 314: Specific terms according to the
type of instrument

IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems

IEC 61334-4-41:1996, Distribution automation using distribution line carrier systems – Part 4:
Data communication protocols – Section 41: Application protocols – Distribution line message
specification

IEC 62051:1999, Electricity metering – Glossary of terms

IEC 62051-1:2004, Electricity metering – Data exchange for meter reading, tariff and load
control – Glossary of terms – Part 1: Terms related to data exchange with metering
equipment using DLMS/COSEM

IEC 62056-21:2002, Electricity metering – Data exchange for meter reading, tariff and load
control – Part 21: Direct local data exchange

IEC 62056-31:1999, Electricity metering – Data exchange for meter reading, tariff and load
control – Part 31: Using local area networks on twisted pair with carrier signalling

IEC 62056-46:2002, Electricity metering – Data exchange for meter reading, tariff and load
control – Part 46: Data link layer using HDLC-protocol
Amendment 12

IEC 62056-47:2006, Electricity metering – Data exchange for meter reading, tariff and load
control – Part 47: COSEM transport layers for IPv4 networks

IEC 62056-53:2006, Electricity metering – Data exchange for meter reading, tariff and load
control – Part 53: COSEM Application layer

———————
2 To be published.

 – 8 – 62056-62 © IEC:2006(E)

IEC 62056-61:2006, Electricity metering – Data exchange for meter reading, tariff and load
control – Part 61: Object identification system(OBIS)

ANSI C12.19:1997 / IEEE 1377:1997, Utility Industry End Device Data Tables

STD 0005: 1981, Internet Protocol (Also: IETF RFC 0791, RFC 0792, RFC 0919, RFC 0922,
RFC 0950, RFC 1112)

STD 0051: 1994, The Point-to-Point Protocol (PPP) (Also: IETF RFC 1661, RFC 1662)

3 Terms, definitions and abbreviations

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in IEC 60050-300,
IEC 62051, and IEC 62051-1 apply.

3.2 Abbreviations
AARE Application Association Response
AARQ Application Association ReQuest
ACSE Application Control Service Element
APDU Application Protocol Data Unit
ASE Application Service Element
A-XDR Adapted eXtended Data Representation
CHAP Challenge Handshake Authentication Protocol
COSEM Companion Specificationfor Energy Metering
CtoS Client to Server Challenge
DHCP Dynamic Host Control Protocol
DLMS Device Language Message Specification
DNS Domain Name Server
EAP Extensible Authentication Protocol
GMT Greenwich Mean Time
GPS Global Positioning System
HLS High Level Security
IANA Internet Assigned Numbers Authority
IC Interface Class
IETF Internet Engineering Task Force
IP Internet Protocol
IPCP Internet Protocol Control Protocol
LCP Link Control Protocol
LLS Low Level Security
LN Logical Name
LSB Least Significant Bit
m mandatory
MD5 Message Digest Algorithm 5
MSB Most Significant Bit
o Optional

62056-62 © IEC:2006(E) – 9 –

OBIS OBject Identification System
PAP Password Authentication Protocol
PDU Protocol Data Unit
PLMN Public Land Mobile Network
PPP Point-to-Point Protocol
PSTN Public Switched Telephone Network
ROHC Robust Header Compression
SAP Service Access Point
SHA-1 Secure Hash Algorithm
SMS Short Message Service
SMTP Simple Mail Transfer Protocol
SN Short Name
StoC Server to Client Challenge

4 Basic principles

4.1 General

This subclause describes the basic principles on which the COSEM interface classes are
built. It also gives a short overview on how interface objects (instantiations of the interface
classes) are used for communication purposes. Data collection systems and metering
equipment from different vendors, following these specifications can exchange data in an
interoperable way.

Object modelling: for specification purposes this standard uses the technique of object
modelling. An object is a collection of attributes and methods.

The information of an object is organized in attributes. They represent the characteristics of
an object by means of attribute values. The value of an attribute may affect the behaviour of
an object. The first attribute in any object is the “logical_name”. It is one part of the
identification of the object. An object may offer a number of methods to either examine or
modify the values of the attributes.

Objects that share common characteristics are generalized as an interface class with a
class_id. Within a specific class, the common characteristics (attributes and methods) are
described once for all objects. Instantiations of an interface class are called COSEM objects.

Manufacturers may add proprietary methods or attributes to any object, using negative
numbers.

Figure 1 illustrates these terms by means of an example:

 – 10 – 62056-62 © IEC:2006(E)

Register class_id=3
logical_name: octet-string
value: instance specific
...

value = 57
…

Total Positive
Reactive Energy: Register

logical_name = [1 1 1 8 0 255]
value = 1483
…

Total Positive
Active Energy: Register

Class Methods Object Attribute Values
 class identifier Attributes Instantiation

reset

logical_name = [1 1 3 8 0 255]

Figure 1 – An interface class and its instances

The interface class “Register” is formed by combining the features necessary to model the
behaviour of a generic register (containing measured or static information) as seen from the
client (central unit, hand-held terminal). The contents of the register are identified by the
attribute “logical_name”. The logical_name contains an OBIS identifier (see IEC 62056-61).
The actual (dynamic) content of the register is carried by its “value” attribute.

Defining a specific meter means defining several specific registers. In the example of
Figure 1, the meter contains two registers, i.e. two specific COSEM objects of the class
“Register” are instantiated. This means that specific values are assigned to the different
attributes. Through the instantiation, one COSEM object becomes a “total, positive, active
energy register” whereas the other becomes a “total, positive, reactive energy register”.

REMARK The COSEM objects (instances of interface classes) represent the behaviour of the meter as seen from
the “outside”. Therefore, modifying the value of an attribute must always be initiated from the outside (e.g.
resetting the value of a register). Internally initiated changes of the attributes are not described in this model (e.g.
updating the value of a register).

4.2 Class description notation

This subclause describes the notation used to define the interface classes.

A short text describes the functionality and application of the class. A table gives an overview
of the class including the class name, the attributes, and the methods (class description
template).

Class name Cardinality class_id, version
Attribute(s) Data type Min. Max. Def.
1. logical_name (static) octet-string
2. … (…) …
3. … (...) …
Specific method(s) (if required) m/o
1. … …
2. … …

Each attribute and method must be described in detail.

IEC 305/02

62056-62 © IEC:2006(E) – 11 –

Class name Describes the class (e.g. “Register”, “Clock”, “Profile generic”,...)
Cardinality Specifies the number of instances of the class within a logical device (see

 4.6).

 value The class shall be instantiated exactly “value”
times.

 min...max. The class shall be instantiated at least “min.” times
and at most “max.” times. If min. is zero (0) then the
class is optional, otherwise (min. > 0) "min."
instantiations of the class are mandatory.

class_id Identification code of the class (range 0 to 65 535). The class_id of each
object is retrieved together with the logical name by reading the object_list
attribute of an “Association LN” / ”Association SN” object.

The class_id-s from 0 to 8 191 are reserved to be specified by the DLMS
UA. Class_id-s from 8 192 to 32 767 are reserved for manufacturer
specific interface classes. Class_id-s from 32 768 to 65 535 are reserved
for user group specific interface classes. DLMS UA reserves the right to
assign ranges to individual manufacturers or user groups.

Version Identification code of the version of the class. The version of each object
is retrieved together with the logical name and the class_id by reading the
object_list attribute of an “Association LN” / ”Association SN” object.

Within one logical device, all instances of a certain class must be of
the same version.

Attribute(s) Specifies the attribute(s) that belong to the class.

 (dyn.) Classifies an attribute that carries a process value,
which is updated by the meter itself.

 (static) Classifies an attribute, which is not updated by the
meter itself (e.g. configuration data).

logical_name octet-string The logical name is always the first attribute of a class.
It identifies the instantiation (COSEM object) of this
class. The value of the logical_name conforms to
OBIS (see IEC 62056-61).

Data type Defines the data type of an attribute (see 4.3).

Min. Specifies if the attribute has a minimum value.

 x The attribute has a minimum value.

 <empty> The attribute has no minimum value.

Max. Defines if the attribute has a maximum value.

 x The attribute has a maximum value.

 <empty> The attribute has no maximum value.

Def. Specifies if the attribute has a default value. This is the value of the

attribute after reset.

 x The attribute has a default value.

 <empty> The default value is not defined by the class definition.

 – 12 – 62056-62 © IEC:2006(E)

Specific
method(s)

Provides a list of the specific methods that belong to the object.

 Method Name () The method has to be described in the subsection
"Method description".

m/o Defines if the method is mandatory or optional.

 m (mandatory) The method is mandatory.

 o (optional) The method is optional.

Attribute description

Describes each attribute with its data type (if the data type is not simple), its data format and
its properties (minimum, maximum and default values).

Method description

Describes each method and the invoked behaviour of the instantiated COSEM object(s).

NOTE Services for accessing attributes or methods by the protocol are described in IEC 62056-53.

Selective access

The xDLMS services Read, Write, UnconfirmedWrite (used with SN referencing) and GET,
SET (used with LN referencing) typically reference the entire attribute. However, for certain
attributes selective access to just a part of the attribute may be provided. The part of the
attribute is identified by specific selective access parameters. These are defined as part of the
attribute specification.

4.3 Common data types

The following table contains the list of data types usable for attributes of COSEM objects.

Table 1 – Common data types

Type description Tag a Definition Value range

--simple data types

null-data [0]

boolean [3] boolean TRUE or FALSE

bit-string [4] An ordered sequence of boolean values

double-long [5] Integer32 -2 147 483 648…
2 147 483 647

double-long-unsigned [6] Unsigned32 0…4 294 967 295

octet-string [9] An ordered sequence of octets (8 bit bytes)

visible-string [10] An ordered sequence of ASCII characters

bcd [13] binary coded decimal

integer [15] Integer8 -128…127

long [16] Integer16 -32 768…32 767

unsigned [17] Unsigned8 0…255

long-unsigned [18] Unsigned16 0…65 535

long64 [20] Integer64 - 263…263-1

long64-unsigned [21] Unsigned64 0…264-1

62056-62 © IEC:2006(E) – 13 –

Table 1 (continued)

Type description Tag a Definition Value range

enum [22] The elements of the enumeration type are
defined in the “Attribute description” section
of a COSEM interface class specification.

float32 [23] OCTET STRING (SIZE(4))

float64 [24] OCTET STRING (SIZE(8))

For formatting, see 4.4.2.

date_time [25] OCTET STRING (SIZE(12))

date [26] OCTET STRING (SIZE(5))

time [27] OCTET STRING (SIZE(4))

For formatting, see 4.4.1.

--complex data types

array [1] The elements of the array are defined in the
“Attribute description” section of a COSEM
interface class specification.

structure [2] The elements of the structure are defined in
the “Attribute description” section of a
COSEM interface class specification.

compact array [19] The elements of the compact array are
defined in the “Attribute description” section
of a COSEM interface class specification.

--CHOICE For some attributes of some COSEM inter-
face objects, the data type may be chosen at
COSEM object instantiation, in the
implementation phase of the COSEM server.
The Server always shall send back the data
type and the value of each attribute, so that
together with the logical name, an
unambiguous interpretation is ensured. The
list of possible data types is defined in the
“Attribute description” section of a COSEM
interface class specification.

a The tags are as defined in IEC 62056-53, 8.3.

4.4 Data formats

4.4.1 Date and time formats

Date and time information may be represented with data type octet-string, or using the data
types date, time and date_time, as defined in the relevant interface class definition.

NOTE 1 In future versions of interface classes and in newly defined interface classes, only the data types date,
time and date_time will be used.

NOTE 2 The (SIZE()) specifications do not apply if date, time or date_time are represented by data type octet-
string.

date OCTET STRING (SIZE(5))

{
year highbyte,
year lowbyte,
month,
day of month,
day of week
}
year: interpreted as long-unsigned
 range 0…big
 0xFFFF = not specified
year highbyte and year lowbyte reference the 2 bytes of the

 – 14 – 62056-62 © IEC:2006(E)

long-unsigned

month: interpreted as unsigned
 range 1…12, 0xFD, 0xFE, 0xFF
 1 is January
 0xFD = daylight_savings_end
 0xFE = daylight_savings_begin
 0xFF = not specified

dayOfMonth: interpreted as unsigned
 range 1…31, 0xFD, 0xFE, 0xFF
 0xFD = 2nd last day of month
 0xFE = last day of month
 0xE0 to 0xFC = reserved
 0xFF = not specified

dayOfWeek: interpreted as unsigned
 range 1…7, 0xFF
 1 is Monday
 0xFF = not specified

For repetitive dates, the unused parts must be set to “not
specified”.

The elements dayOfMonth and dayOfWeek have to be
interpreted together:

- if last day of month is specified (0xFE) and day of week
is wildcard, this specifies the last calendar day of the
month;

- if last day of month is specified (0xFE) and an explicit
day of week is specified (e.g. 7, Sunday) then it is the
last occurrence of the weekday specified in the month,
i.e. the last Sunday;

- if the dayOfMonth and dayOfWeek elements are both
explicitly defined and they are not consistent, (for
example 24th of the month is not Wednesday in the
given year and month) it shall be considered as an
error.

time OCTET STRING (SIZE(4))

{
hour,
minute,
second,
hundredths
}
hour: interpreted as unsigned
 range 0…23, 0xFF
 0xFF = not specified,
minute: interpreted as unsigned
 range 0…59, 0xFF
 0xFF = not specified,
second: interpreted as unsigned
 range 0…59, 0xFF
 0xFF = not specified,
hundredths: interpreted as unsigned
 range 0…99, 0xFF
 0xFF = not specified

For repetitive times the unused parts must be set to “not
specified”.

62056-62 © IEC:2006(E) – 15 –

deviation long –720…720:
 in minutes of local time to GMT
 0x8000 = not specified

clock_status unsigned interpreted as 8 bit string

The status bits are defined as follows:
bit 0 (LSB): invalid a value,
bit 1: doubtful b value,
bit 2: different clock base c,
bit 3: invalid clock status d,
bit 4: reserved,
bit 5: reserved,
bit 6: reserved,
bit 7 (MSB): daylight saving active e

date_time OCTET STRING (SIZE(12))
{
year highbyte,
year lowbyte,
month,
day of month,
day of week,
hour,
minute,
second,
hundredths of second,
deviation highbyte,
deviation lowbyte,
clock status
}
Individual fields of date_time are encoded as defined above.
Some may be set to “not specified“ as described above in date
and time.

a Time could not be recovered after an incident. Detailed conditions are manufacturer specific (e.g. after the
power to the clock has been interrupted).

b Time could be recovered after an incident but the value cannot be guaranteed. Detailed conditions are
manufacturer specific.

c Bit is set if the basic timing information for the clock is at the actual moment taken from a timing source
different from the source specified in clock_base.

d This bit indicates that at least one bit of the clock status is invalid. Some bits may be correct. The exact
meaning shall be explained in the manufacturer’s documentation.

e Flag set to true: the transmitted time contains the daylight saving deviation (summer time), Flag set to false:
the transmitted time does not contain daylight saving deviation (normal time).

4.4.2 Floating point number formats

Floating point number formats are defined in IEC 60559.

NOTE: For the following, IEC 60559 is equivalent to IEEE 754.

The single format is:

1 8 23 …widths
s e f
 msb lsb msb lsb …order

where:
- s is the sign bit;
- e is the exponent; it is 8 bits wide and the exponent bias is +127;
- f is the fraction, it is 23 bits.

 – 16 – 62056-62 © IEC:2006(E)

With this, the value is (if 0 < e < 255):

).1(2)1(127 fes ⋅⋅−= −υ

The double format is:

1 11 52 …widths
s e f
 msb lsb msb lsb …order

where
s is the sign bit;
e is the exponent; it is 11 bits wide and the exponent bias is +1 023;
f is the fraction, it is 52 bits.

With this, the value is (of 0 < e < 2 047):

).1(2)1(1023 fes ⋅⋅−= −υ

For more detail, see IEC 60559.

Floating-point numbers shall be represented as a fixed length octet-string, containing the 4
bytes (float32) of the single format or 8 the bytes (float64) of the double format floating-point
number as specified above, most significant byte first.

Example 1: The decimal value “1” represented in single floating-point format is:

Bit 31
Sign bit
0
0: +
1: -

Bits 30-23
Exponent field
01111111
Decimal value of
exponent field and
exponent:
127-127 = 0

Bits 22-0
Significand
1.00000000000000000000000
Decimal value of the significand: 1.0000000

NOTE The significand is the binary number 1 followed by the radix point followed by the binary bits of the
fraction.

The encoding, including the tag of the data type is (all values are hexadecimal): 17 3F 80 00 00.

Example 2: The decimal value “1” represented in double floating-point format is:

Bit 63
Sign
bit
0
0: +
1: -

Bits 62-52
Exponent field
01111111111
Decimal value of
exponent field and
exponent:
1023-1023 = 0

Bits 51-0
Significand
1.000
00000
Decimal value of the significand: 1.0000000000000000

The encoding, including the tag of the data type is (all values are hexadecimal): 18 3F F0 00
00 00 00 00 00.

Example 3: The decimal value “62056” represented in single floating-point format is:

Bit 31
Sign bit
0
0: +
1: -

Bits 30-23
Exponent field
10001110
Decimal value of
exponent field and
exponent:
142-127 = 15

Bits 22-0
Significand
1.11100100110100000000000
Decimal value of the significand: 1.8937988

62056-62 © IEC:2006(E) – 17 –

The encoding, including the tag of the data type is (all values are hexadecimal): 17 47 72 68 00.

Example 4: The decimal value “62056” represented in double floating-point format is:

Bit 63
Sign
bit
0
0: +
1: -

Bits 62-52
Exponent field
10000001110
Decimal value of
exponent field
and exponent:
1038-1023 = 15

Bits 51-0
Significand
1.11100100110100
Decimal value of the significand: 1.8937988281250000

The encoding, including the tag of the data type is (all values are hexadecimal): 18 40 EE 4D
00 00 00 00 00.

4.5 The COSEM server model

The COSEM server is structured into three hierarchical levels as shown in Figure 2:

Level 1: Physical device;
Level 2: Logical device;
Level 3: Accessible COSEM objects.

COSEM physical device A

COSEM
Logical device 2

COSEM Objects

COSEM
Management logical

device

COSEM Objects

Figure 2 – The COSEM server model

The following example (see Figure 3) shows how a combined metering device can be
structured using the COSEM server model.

Combined metering device

Management logical
device

Register
“total energy”

Register “tariff 1”

Logical device 2

Register
“total volume”

Logical device 3

Register
“total volume”

LDN

A

Physical device

Logical device

Objects

A: Association object

LDN LDN

A
A

LDN: COSEM logical device
name object

Figure 3 – Combined metering device

IEC 306/02

IEC 307/02

 – 18 – 62056-62 © IEC:2006(E)

4.6 COSEM logical device

4.6.1 General

The COSEM logical device is a set of COSEM objects. Each physical device shall contain a
“Management logical device”.

The addressing of COSEM logical devices shall be provided by the addressing scheme of the
lower layers of the protocol used.

4.6.2 COSEM logical device name

The COSEM logical device can be identified by its unique COSEM logical device name. This
name can be retrieved from an instance of IC “SAP assignment” (see 5.14), or of a COSEM
object “COSEM logical device name” (see D.2.1.24).

This name is defined as an octet-string of up to 16 octets. The first three octets uniquely
identify the manufacturer of the device 3. The manufacturer is responsible for guaranteeing
the uniqueness of the octets that follow (up to 13 octets).

4.6.3 The “association view” of the logical device

In order to access COSEM objects in the server, an application association shall first be
established. This characterizes the context within which the associated applications will
communicate. The major parts of this context are:

• the application context;

• the authentication context;

• the xDLMS context.

This information is contained in a special COSEM object, the “Association” object. There are
two types of this association object defined. One for associations using short name
referencing (“Association SN”) and one for using logical name referencing (“Association LN”).

Depending on the association established between the client and the server, different access
rights may be granted by the server. Access rights concern a set of COSEM objects – the
visible objects – that can be accessed (‘seen’) within the given association. In addition, access
to attributes and methods of these COSEM objects may also be restricted within the association
(e.g. a certain type of client can only read a particular attribute of a COSEM object).

The list of the visible COSEM objects – the “association view” – can be obtained by the client
by reading the “object_list” attribute of the appropriate association object. Additional
information about the access rights (read only, write only, read and write) to the attributes and
the availability of the methods (within the established association) can be found via specific
attributes (logical name referencing, see 5.12) or special methods (short name referencing,
see 5.13) provided by the association objects.

4.6.4 Mandatory contents of a COSEM logical device

The following objects shall be part of each COSEM logical device. They shall be accessible
for GET/READ in all application associations with this logical device:

• COSEM logical device name object;

• current association (LN or SN) object.

———————
3 Administered by the DLMS User Association

62056-62 © IEC:2006(E) – 19 –

4.6.5 Management logical device

As specified in 4.6.1, the management logical device is a mandatory element of any physical
device, and it has a reserved address. As defined in 6.3.4 of IEC 62056-53, it must support an
application association to a public client with the lowest security level. Its role is to support
revealing the internal structure of the physical device and to support notification of events in
the server.

In addition to the “Association” object modelling the association with the public client, the
management logical device shall contain a “SAP assignment” object, giving its SAP and the
SAP of all other logical devices within the physical device. The SAP assignment object must
be readable at least by the public client.

If there is only one logical device within the physical device, the “SAP assignment” object may
be omitted.

4.7 Authentication procedures

4.7.1 Low Level Security (LLS) authentication

As described in IEC 62056-53 the ACSE provides the authentication services for low level
security (LLS). Low level security authentication is typically used when the communication
channel offers adequate security to avoid eavesdropping and message (password) replay.

For LLS, all the authentication services are provided by the ACSE. The association objects
provide only the method/attribute (see 5.12, 5.13) to change the “secret” (e.g. password).

For LLS authentication the client transmits a “secret” (e.g. a password) to the server, by using
the “Calling_Authentication_Value” parameter of the COSEM-OPEN.request service primitive
of the client application layer. The server checks if the received “secret” corresponds to the
client identification. If yes, the client is authenticated and the association can be established.

4.7.2 High Level Security (HLS) authentication

As described in IEC 62056-53, the ACSE provides part of the authentication services for high
level security (HLS). High level security authentication is typically used when the
communication channel offers no intrinsic security and precautions have to be taken against
eavesdroppers and against message (password) replay. In this case, a 4-pass authentication
protocol is foreseen. The 4-pass authentication allows the authentication of the client as well
as of the server in the following way.

Pass1: The client transmits “challenge” CtoS (e.g. a random number) to the server.
Pass2: The server transmits “challenge” StoC (e.g. a random number) to the client.

 The length of the challenges shall be 8 to 64 octets.

Pass3: The client processes StoC according to the rules of the HLS authentication mechanism
negotiated. In case of HLS authentication_mechanism_id(2), the method of
processing the challenge is secret (e.g. encrypting with a secret key) which is the
HLS secret known by both the client and the server. In case of HLS
authentication_mechanism_id(3), the client appends the HLS secret to the challenge
StoC received during Pass2 and generates the digest using the MD5 algorithm (RFC
1321). In case of authentication_mechanism_id(4), the process is the same, but the
SHA_1 algorithm is used (FIPS 180-1). The result – f(StoC) – is sent back to the
server. The server checks if f(StoC) is the result of correct processing and – if
correct – accepts the authentication of the client.

Pass4: If the client is authenticated, the server processes CtoS in the same way as
described in Pass3. The result – f(CtoS) – is sent back to the client. The client
checks if f(CtoS) is the result of the correct processing and – if correct – accepts the
authentication of the server.

 – 20 – 62056-62 © IEC:2006(E)

The HLS authentication service, supporting Pass1 is provided by the COSEM-OPEN.request
service primitive of the client application layer. The parameter "Security_Mechanism_Name"
carries the identifier of the HLS mechanism, and the parameter "Calling_
Authentication_Value" carries the challenge CtoS.

The HLS authentication service, supporting Pass2 is provided by the COSEM-OPEN.response
service primitive of the server application layer. The parameter "Security_Mechanism_Name"
carries the identifier of the HLS mechanism, and the parameter "Responding_
Authentication_Value" carries the challenge StoC.

After Pass2, the association is formally established, but the access of the client is restricted
to the method "reply_to_HLS_authentication" of the current "association" object.

Pass3 and Pass4 are supported by the method reply_to_HLS_authentication of the
association object(s), (see 5.12, 5.13). If both passes are successfully executed, then full
access is granted according to the current association. Otherwise, either the client or the
server aborts the association.

In addition, the association object provides the method to change the HLS “secret” (e.g. the
encryption key): change_HLS_secret.

REMARK After the client has issued the change_HLS_secret () - or change_LLS_secret () - method, it expects a
response from the server acknowledging that the secret has been changed. It is possible that the server transmits
the acknowledgement, but due to communication problems, the acknowledgement is not received at the client-side.
Therefore, the client does not know if the secret has been changed or not. For simplicity reasons, the server does
not offer any special support for this case; i.e. it is left to the client to cope with this situation.

5 The interface classes

The currently defined interface classes for meters and the relations between them are
illustrated in Figure 4.

NOTE 1 The interface class “base” itself is not specified explicitly. It contains only one attribute "logical_name".

NOTE 2 In the description of the "Demand register", “Clock” and “Profile generic” interface classes, the 2nd
attributes are labelled differently from that of the 2nd attribute of the “Data” interface class, namely
"current_average_value", “time” and “buffer” vs. “value”. This is to emphasize the specific nature of the “value”.

62056-62 © IEC:2006(E) – 21 –

 Base

 Data, class_id: 1

 Register, class_id: 3

 Extended register, class_id: 4

 Demand register, class_id: 5

 Clock: class_id: 8

 Profile generic, class_id: 7

 Association LN, class_id: 15

 Association SN, class_id: 12

 Register activation, class_id: 6

 Single action schedule, class_id: 22

 Script table, class_id: 9

 Schedule, class_id: 10

 SAP assignment, class_id: 17

 IEC local port setup, class_id: 19

 Activity calendar, class_id: 20

 Special days table, class_id: 11

 Utility tables, class_id: 26

 IEC HDLC setup, class_id: 23

 Modem configuration, class_id: 27

 Auto answer, class_id: 28

 Auto connect, class_id: 29

 IEC twisted pair (1) setup, class_id: 24

 IPv4 setup, class_id: 42

 TCP-UDP setup, class_id: 41

 Ethernet setup, class_id: 43

 PPP setup, class_id: 44

 Register monitor: class_id: 21

 GPRS modem setup, class_id: 45

 SMTP setup, class_id: 46

 Register table, class_id: 61

 Status mapping, class_id: 63

Figure 4 – Overview of the interface classes

IEC 2111/06

 – 22 – 62056-62 © IEC:2006(E)

5.1 Data (class_id: 1)

A “Data” object stores data related to internal meter object(s). The meaning of the value is
identified by the logical_name. The data type of the value is CHOICE. “Data” is typically used
to store configuration data and parameters.

Data 0...n class_id = 1, version = 0
Attribute(s) Data type Min. Max. Def.
1. logical_name (static) octet-string
2. value CHOICE
Specific method(s) m/o

Attribute description

logical_name Identifies the “Data” object instance. Identifiers are specified in
Clause D.22 and in IEC 62056-61.

value Contains the data.

 CHOICE
{
--simple data types
null-data [0],
boolean [3],
bit-string [4],
double-long [5],
double-long-unsigned [6],
octet-string [9],
visible-string [10],
bcd [13],
integer [15],
long [16],
unsigned [17],
long-unsigned [18],
long64 [20],
long64-unsigned [21],
enum [22],
float32 [23],
float64 [24],
date-time [25],
date [26],
time [27],
--complex data types
array [1],
structure [2],
compact-array [19]
}

The data type depends on the
instantiation defined by the “logical
name” and possibly from the
manufacturer. It has to be chosen so,
that together with the logical name, an
unambiguous interpretation is
possible. Any simple and complex
data types listed in 4.3 can be used,
unless the choice is restricted in
 Annex D.

5.2 Register (class_id: 3)

A “Register” object stores a process value or a status value with its associated unit. The
register object knows the nature of the process value or of the status value. The nature of the
value is described by the attribute “logical name” using the OBIS identification system (see
Clause D.2 and IEC 62056-61).

62056-62 © IEC:2006(E) – 23 –

Register 0...n class_id = 3, version = 0
Attribute(s) Data type Min. Max. Def.
1. logical_name (static) octet-string
2. value (dyn.) CHOICE
3. scaler_unit (static) scal_unit_type
Specific method(s) m/o
1. reset (data) o

Attribute description

logical_name Identifies the “Register” object instance. Identifiers are specified in
Clause D.2 and in IEC 62056-61.

value Contains the current process or status value.

 CHOICE
{
--simple data types
null-data [0],
bit-string [4],
double-long [5],
double-long-unsigned [6],
octet-string [9],
visible-string [10],
integer [15],
long [16],
unsigned [17],
long-unsigned [18],
long64 [20]
long64-unsigned [21],
float32 [23],
float64 [24]
}

When instead of a “Data”
object a “Register” object is
used, (with the scaler_unit
attribute not used or with
scaler = 0, unit = 255) then
the data types allowed for
the value attribute of the
“Data” interface class are
allowed.

The data type of the value depends on
the instantiation defined by
“logical_name” and possibly on the
choice of the manufacturer. It has to
be chosen so that, together with the
logical_name, an unambiguous
interpretation of the value is possible.

scaler_unit Provides information on the unit and the scaler of the value.

 scal_unit_type: structure
{
scaler,
unit
}

 scaler: integer

unit: enum

This is the exponent (to the base of
10) of the multiplication factor.
REMARK If the value is not numerical, then
the scaler shall be set to 0.

Enumeration defining the physical unit;
for details see below.

 – 24 – 62056-62 © IEC:2006(E)

Method description
reset (data) This method forces a reset of the object. By invoking this method, the

value is set to the default value. The default value is an instance
specific constant.
data ::= integer(0)

unit ::= enum
 Code // Unit Quantity Unit

name
SI definition
(comment)

 (1) a // time year
 (2) mo // time month
 (3) wk // time week 7*24*60*60 s
 (4) d // time day 24*60*60 s
 (5) h // time hour 60*60 s
 (6) min. // time min 60 s
 (7) s // time (t) second s
 (8) ° // (phase) angle degree rad*180/π
 (9) °C // temperature (T) degree

celsius
K-273.15

 (10) currency // (local) currency
 (11) m // length (l) metre m
 (12) m/s // speed (v) metre per

second
m/s

 (13) m3 // volume (V)
rV , meter constant or pulse
value (volume)

cubic metre m3

 (14) m3 // corrected volume cubic metre m3
 (15) m3/h // volume flux cubic metre

per hour
m3/(60*60s)

 (16) m3/h // corrected volume flux cubic metre
per hour

m3/(60*60s)

 (17) m3/d // volume flux m3/(24*60*60s)
 (18) m3/d // corrected volume flux m3/(24*60*60s)
 (19) l // volume litre 10-3 m3
 (20) kg // mass (m) kilogram
 (21) N // force (F) newton
 (22) Nm // energy newtonmeter J = Nm = Ws
 (23) Pa // pressure (p) pascal N/m2
 (24) bar // pressure (p) bar 105 N/m2
 (25) J // energy joule J = Nm = Ws
 (26) J/h // thermal power joule per

hour
J/(60*60s)

 (27) W // active power (P) watt W = J/s
 (28) VA // apparent power (S) volt-ampere
 (29) var // reactive power (Q) var
 (30) Wh

// active energy
rW , active energy meter
constant or pulse value

watt-hour W*(60*60s)

 (31) VAh

// apparent energy
rS , apparent energy meter
constant or pulse value

volt-ampere-
hour

VA*(60*60s)

 (32) varh

// reactive energy
rB , reactive energy meter
constant or pulse value

var-hour var*(60*60s)

 (33) A // current (I) ampere A
 (34) C // electrical charge (Q) coulomb C = As
 (35) V // voltage (U) volt V
 (36) V/m // electric field strength (E) volt per

metre
V/m

62056-62 © IEC:2006(E) – 25 –

 Code // Unit Quantity Unit
name

SI definition
(comment)

 (37) F // capacitance (C) farad C/V = As/V
 (38) Ω // resistance (R) ohm Ω = V/A
 (39) Ωm2/m // resistivity (ρ) Ωm
 (40) Wb // magnetic flux (Φ) weber Wb = Vs
 (41) T // Magnetic flux density (B) tesla Wb/m2
 (42) A/m // magnetic field strength (H) ampere per

metre
A/m

 (43) H // inductance (L) henry H = Wb/A
 (44) Hz // frequency (f, ω) hertz 1/s
 (45) 1/(Wh) // RW , active energy meter

constant or pulse value

 (46) 1/(varh) // RB , reactive energy meter
constant or pulse value

 (47) 1/(VAh) // RS , apparent energy meter
constant or pulse value

 (48) V2h

// volt-squared hour
rU2h , volt-squared hour
meter constant or pulse
value

volt-squared-
hours

V2(60*60s)

 (49) A2h

// ampere-squared hour
rI2h , ampere-squared hour
meter constant or pulse
value

ampere-
squared-
hours

A2(60*60s)

 (50) kg/s // mass flux kilogram per
second

kg/s

 (51) S, mho // conductance siemens 1/Ω

 (52) K // temperature (T) kelvin
 (53) 1/(V2h) // RU2h , volt-squared hour

meter constant or pulse
value

 (54) 1/(A2h) // RI2h , ampere-squared hour
meter constant or pulse
value

 (55) 1/m3 // RV , meter constant or
pulse value (volume)

 (56) // percentage %
 (57) Ah // ampere-hours Ampere-hour
 (60) Wh/m3

 // energy per volume 3,6*103 J/m3
 (61) J/m3 // calorific value, wobbe
 (62) Mol % // molar fraction of gas

composition
mole percent (Basic gas

composition unit)
 (63) g/m3 // mass density, quantity of

material

 (Gas analysis,
accompanying
elements)

 (64) Pa s // dynamic viscosity pascal
second

(Characteristic of
gas stream)

 ….
 (253) // reserved
 (254) other // other unit
 (255) count // no unit, unitless, count

 – 26 – 62056-62 © IEC:2006(E)

Examples of values:

Value Scaler Unit Data

263788 -3 m3 263,788 m3

593 3 Wh 593 kWh

3467 0 V 3467 V

5.3 Extended register (class_id: 4)
Instances of an “Extended register” class store a process value with its associated status,
unit, and time information. The extended register object knows the nature of the process
value. The nature of the value is described by the attribute “logical name” using the OBIS
identification system.

Extended register 0...n class_id = 4, version = 0
Attribute(s) Data type Min. Max. Def.
1. logical_name (static) octet-string
2. value (dyn.) CHOICE
3. scaler_unit (static) scal_unit_type
4. status (dyn.) CHOICE
5. capture_time (dyn.) octet-string
Specific method(s) m/o
1. reset (data) o

Attribute description

For the definition of the attributes value and scaler_unit, see description of class "Register".

logical_name Identifies the “Extended register” object instance. See D.2.2.1.
status Provides “Extended register” specific status information. The meaning

of the elements of the status shall be provided for each “Extended
register” object instance.

 CHOICE
{
--simple data types
null-data [0],
bit-string [4],
double-long-unsigned [6],
octet-string [9],
visible-string [10],
unsigned [17],
long-unsigned [18],
long64-unsigned [21]
}

The data type and the encoding depend
on the instantiation and possibly on the
choice of the manufacturer. For the
interpretation, extra information from the
manufacturer may be necessary.

 Def. Depending on the status type definition.

capture_time Provides an “Extended register” specific date and time information
showing when the value of the attribute "value" has been captured.

 octet-string, formatted as set in 4.4.1 for date_time

62056-62 © IEC:2006(E) – 27 –

Method description

reset (data) This method forces a reset of the object. By invoking this method, the
attribute value is set to the default value. The default value is an
instance specific constant.

The attribute capture_time is set to the time of the reset execution.

data ::= integer(0)

5.4 Demand register (class_id: 5)

Instances of a “Demand register” class store a demand value with its associated status, unit,
and time information. The demand register measures and computes its
current_average_value periodically. The time interval T over which the demand is measured
or computed is defined by specifying “number_of_periods” and “period”.

1 2 N

period

T = number_of_periods * period

now capture_time start_time_current
t

T is the time interval
used for calculation
of the current_value
of a sliding demand
register

Figure 5 – The attributes when measuring sliding demand

The demand register delivers two types of demand: the current_average_value and the
last_average_value (see Figure 6 and Figure 7).

The demand register knows its type of process value, which is described in “logical name"
using the OBIS identification system.

period

now start_time+periodstart_time_current
t

current_average_value

energy/period

0

 last_average_value

Figure 6 – The attributes when measuring current_average_value
if number of periods is 1

IEC 309/02

IEC 310/02

 – 28 – 62056-62 © IEC:2006(E)

number_of_periods
last_average_value:
current_average_value:
energy accumulated
during period k:

= 3
lav
cav

ak

time
a0

3*period
energy

0 t1 t2 t3 t4 t5 t6

lav3

lav4
lav5

lav6

sliding window (t3)

sliding window (t4)

sliding window (t5)

sliding window (t6)

period

now

cav

a1

a2

-a0 a3

-a1 a4

-a2 a5
-a3

Figure 7 – The attributes if the number of periods is 3

Demand register 0...n class_id = 5,

version = 0
Attribute(s) Data type Min. Max. Def.
1. logical_name (static) octet-string
2. current_average_value (dyn.) CHOICE 0
3. last_average_value (dyn.) CHOICE 0
4. scaler_unit (static) scal_unit_type
5. status (dyn.) CHOICE
6. capture_time (dyn.) octet-string
7. start_time_current (dyn.) octet-string
8. period (static) double-long-unsigned 1
9. number_of_periods (static) long-unsigned 1 1
Specific method(s) m/o
1. reset (data) o
2. next_period (data) o

Attribute description

For the attribute scaler_unit, see description of class “Register”.

IEC 311/02

62056-62 © IEC:2006(E) – 29 –

logical_name Identifies the “Demand register” object instance. See D.2.2.1.
current_average_
value

Provides the current value
(running demand) of the energy
accumulated since start_time
divided by
number_of_periods*period.

NOTE If another quantity than energy
is measured, other calculation methods
may apply (for example for calculating
average values of voltage or current).

The data type of the value
depends on the instantiation
defined by “logical_name” and
possibly on the choice of the
manufacturer. The type has to
be chosen so that, together with
the logical_name, unambiguous
interpretation of the value is
possible.

 CHOICE For data types, see “Register”
class, value attribute.

last_average_value Provides the value of the
accumulated energy (over the
last number_of_periods*period)
divided by
number_of_periods*period. The
energy of the current (not
terminated) period is not
considered by the calculation.

NOTE If another quantity than energy
is measured, other calculation methods
may apply (for example for calculating
average values of voltage or current).

 CHOICE For data types, see “Register”
class, value attribute.

status Provides “Demand register” specific status information. The data
type and the encoding depend on the instantiation and possibly on
the choice of the manufacturer. For the interpretation, extra
information from the manufacturer may be necessary.

 CHOICE For data types, see “Extended
register” class, status attribute.

 Def. Depending on the status type
definition.

capture_time Provides the date and time when the last_average_value has been
calculated.

 octet-string, formatted as set in 4.4.1 for date_time

start_time_current Provides the date and time when the measurement of the
current_average_value has been started.

 octet-string, formatted as set in 4.4.1 for date_time

period Period is the interval between two successive updates of the
last_average_value. (number_of_periods*period is the denominator
for the calculation of the demand).

 double-long-unsigned

Measuring period in seconds

 The behaviour of the meter after writing a new value to this attribute
shall be specified by the manufacturer.

 – 30 – 62056-62 © IEC:2006(E)

number_of_periods The number of periods used to calculate the last_average_value.
number_of_periods >= 1

 long-unsigned number_of_periods > 1 indicates
that the last_average_value
represents “sliding demand”.
number_of_periods = 1 indicates
that the last_average_value
represents "block demand".

 The behaviour of the meter after writing a new value to this attribute
shall be specified by the manufacturer.

Method description

reset (data) This method forces a reset of the object. Activating this method
provokes the following actions:

- the current period is terminated;
- the current_average_value and the last_average_value are

set to their default values;
- the capture_time and the start_time_current are set to the

time of the execution of reset(data).

data ::= integer(0)

next_period (data) This method is used to trigger the regular termination (and restart)
of a period. Closes (terminates) the current measuring period.
Updates capture_time and start_time and copies
current_average_value to last_average_value, sets
current_average_value to its default value. Starts the next
measuring period.

REMARK The old last_average_value (and capture_time) can be read during the
time “period”. The old current_average_value is not available any more at the
interface.

data ::= integer(0)

5.5 Register activation (class_id: 6)

Instances of the “Register activation” class are used to handle different tariffication structures.
To each “Register activation” object, groups of “Register”, “Extended register” or “Demand
register” objects, modelling different kind of quantities (for example active energy, active
demand, reactive energy, etc.) are assigned. Subgroups of these registers, defined by the
activation_masks define different tariff structures (for example day tariff, night tariff). One of
these activation masks, the active_mask, defines which subset of the registers, assigned to
the “Register activation” object instance is active. Registers, which are not defined in the
register_assignment attribute of any “Register activation” object, are always enabled by
default.

Register activation 0...n class_id = 6, version = 0
Attribute(s) Data type Min. Max. Def.
1. logical_name (static) octet-string
2. register_assignment (static) array
3. mask_list (static) array
4. active_mask (dyn.) octet-string
Specific method(s) m/o
1. add_register (data) o
2. add_mask (data) o
3. delete_mask (data) o

62056-62 © IEC:2006(E) – 31 –

Attribute description

logical_name Identifies the “Register activation” object instance. See D.2.1.9.
register_assignment Specifies an ordered list of COSEM objects assigned to the

“Register activation” object. The list may contain different kinds of
COSEM objects, for example “Register”, “Extended register” or
“Demand register”.

array object_definition

object_definition ::= structure

{
 class_id: long-unsigned,
 logical_name: octet-string
}

mask_list Specifies a list of register activation masks. Each entry (mask) is
identified by its mask_name and contains an array of indices
referring to the registers assigned to the mask (the first object in
register_assignment is referenced by index 1, the second object
by index 2, …,).

array register_act_mask

register_act_mask ::= structure
{
 mask_name: octet-string,
 index_list: index_array
}

index_array ::= array unsigned
mask_name has to be uniquely defined within the object.

active_mask Defines the currently active mask. The mask is defined by its
mask_name (see mask_list).

octet-string This is a mask_name from the mask_list.

The active_mask defines the registers currently enabled; all other
registers listed in the register_assignment are disabled.

Method description

add_register (data) Adds one more register to the attribute register_assignment. The
new register is added at the end of the array; i.e. the newly added
register has the highest index. The indices of the existing registers
are not modified.
data ::= structure
{
 class_id: long-unsigned,
 logical_name: octet-string
}

 – 32 – 62056-62 © IEC:2006(E)

add_mask (data) Adds another mask to the attribute mask_list. If there exists
already a mask with the same name, the existing mask will be
overwritten by the new mask.

data ::= register_act_mask (see above)

delete_mask (data) Deletes a mask from the attribute mask_list. The mask is defined
by its mask name.

data ::= octet-string (mask_name)

5.6 Profile generic (class_id: 7)

The “Profile generic” class defines a generalized concept to store dynamic process values of
capture objects. Capture objects are appropriate attributes or element of (an) attribute(s) of
COSEM objects. The capture objects are collected periodically or occasionally.

A profile has a buffer to store the captured data. To retrieve only a part of the buffer, either a
value range or an entry range may be specified, asking to retrieve all entries whose values or
entry numbers fall within the given range.

The list of capture objects defines the values to be stored in the buffer (using the method
capture). The list is defined statically to ensure homogenous buffer entries (all entries have
the same size and structure). If the list of capture objects is modified, the buffer is cleared. If
the buffer is captured by other “Profile generic” objects, their buffer is cleared as well, to
guarantee the homogeneity of their buffer entries.

The buffer may be defined as sorted by one of the registers or by a clock, or the entries are
stacked in a “last in first out” order. So for example, it is very easy to build a “maximum
demand register” with a one entry deep sorted profile capturing and sorted by a demand
register. It is just as simple to define a profile retaining the three largest values of some
period.

The size of profile data is determined by three parameters:

a) the number of entries filled. This will be zero after clearing the profile;
b) the maximum number of entries to retain. If all entries are filled and a capture () request

occurs, the least important entry (according to the requested sorting method) will get lost.
This maximum number of entries may be specified. Upon changing it, the buffer will be
adjusted;

c) the physical limit for the buffer. This limit typically depends on the objects to capture. The
object will reject an attempt of setting the maximum number of entries that is larger than
physically possible.

62056-62 © IEC:2006(E) – 33 –

Profile generic 0...n class_id = 7,
version = 1

Attribute(s) Data type Min. Max. Def.
1. logical_name (static) octet-string
2. buffer (dyn.) compact array or array x
3. capture_objects (static) array
4. capture_period (static) double-long-unsigned x
5. sort_method (static) enum x
6. sort_object (static) object_definition x
7. entries_in_use (dyn.) double-long-unsigned 0 0
8. profile_entries (static) double-long-unsigned 1 1
Specific method(s) m/o
1. reset (data) o
2. capture (data) o
3. reserved from previous versions o
4. reserved from previous versions o

Attribute description

logical_name Identifies the “Profile generic” object instance. For examples, see
 D.2.1.13, D.2.1.26, D.2.1.29, D.2.1.30, D.2.1.36, D.2.2.3.

buffer The buffer attribute contains a sequence of entries. Each entry
contains values of the captured objects (as they would be returned
to a GET or READ.request).

 compact-array or array entry

 entry ::=
 structure
{
 CHOICE

 {
 --simple data types
 null-data [0],
 boolean [3],
 bit-string [4],
 double-long [5],
 double-long-unsigned [6],
 octet-string [9],
 visible-string [10],
 bcd [13],
 integer [15],
 long [16],
 unsigned [17],
 long-unsigned [18],
 long64 [20],
 long64-unsigned [21],
 enum [22],
 float32 [23],
 float64 [24],
 date-time [25],
 date [26],
 time [27],
 --complex data types
 array [1],
 structure [2],
 compact-array [19]
}

 – 34 – 62056-62 © IEC:2006(E)

 The number and the order of the elements of the structure holding
the entries is the same as in the definition of the capture_objects.
The buffer is filled by auto captures or by subsequent calls of the
method (capture). The sequence of the entries within the array is
ordered according to the sort method specified.

Default: The buffer is empty after reset.

REMARK 1 Reading the entire buffer delivers only those entries, which are “in
use”.

REMARK 2 The value of a captured object may be replaced by “null-data” if it
can be unambiguously recovered from the previous value (e.g. for time: if it can
be calculated from the previous value and capture_period; or for a value: if it is
equal to the previous value).

selective access (see 4.2) to the attribute buffer may be available
(optional). The selective access parameters are as defined below.

capture_objects Specifies the list of capture objects that are assigned to the object
instance. Upon a call of the capture (data) method or automatically
in defined intervals, the selected attributes are copied into the
buffer of the profile.

array capture_object_definition
capture_object_definition ::= structure
{
 class_id: long-unsigned,
 logical_name: octet-string,
 attribute_index: integer,
 data_index: long-unsigned
}

- where attribute_index is a pointer to the attribute within the
object. attribute_index 1 refers to the first attribute (i.e. the
logical_name), attribute_index 2 to the 2nd, etc.);
attribute_index 0 refers to all public attributes;

- where data_index is a pointer selecting a specific element
of the attribute. The first element in the attribute structure
is identified by data_index 1. If the attribute is not a
structure, then the data_index has no meaning. If the
capture object is the buffer of a profile, then the data_index
identifies the captured object of the buffer (i.e. the column)
of the inner profile.

data_index 0: references the whole attribute

capture_period >= 1: Automatic capturing assumed. Specifies the capturing
period in seconds.

0: No automatic capturing; capturing is triggered externally or
capture events occur asynchronously.

sort_method If the profile is unsorted, it works as a “first in first out” buffer (it is
hence sorted by capturing, and not necessarily by the time
maintained in the clock object). If the buffer is full, the next call to
capture () will push out the first (oldest) entry of the buffer to make
space for the new entry.

If the profile is sorted, a call to capture () will store the new entry
at the appropriate position in the buffer, moving all following
entries and probably losing the least interesting entry. If the new
entry would enter the buffer after the last entry and if the buffer is
already full, the new entry will not be retained at all.

62056-62 © IEC:2006(E) – 35 –

 enum (1) fifo (first in first out),
(2) lifo (last in first out),
(3) largest,
(4) smallest,
(5) nearest_to_zero,
(6) farest_from_zero

 Def. fifo

sort_object If the profile is sorted, this attribute specifies the register or clock
that the ordering is based upon.

 capture_object_definition See above.

Def.

no object to sort by (only
possible with sort_method fifo
or lifo)

entries_in_use Counts the number of entries stored in the buffer. After a call of
reset (), the buffer does not contain any entries, and this value is
zero. Upon each subsequent call of capture (), this value will be
incremented up to the maximum number of entries that will get
stored (see profile_entries).

 double-long-unsigned 0…profile_entries

 Def. 0
profile_entries Specifies how many entries shall be retained in the buffer.

 double-long-unsigned 1…(limited by physical size)

 Def. 1

Parameters for selective access to the buffer attribute

Access
selector value

Parameter Comment

1 range_descriptor Only buffer elements corresponding to the range_descriptor shall
be returned in the response.

2 entry_descriptor Only buffer elements corresponding to the entry_descriptor shall
be returned in the response.

 – 36 – 62056-62 © IEC:2006(E)

range_descriptor ::= structure
{

 restricting_object capture_object_
definition

Defines the capture_object restricting
the range of entries to be retrieved.
Only simple data types are allowed.

 from_value Oldest or smallest entry to retrieve
 CHOICE

{--simple data types
double-long [5],
double-long-unsigned [6],
octet-string [9],
visible-string [10],
integer [15],
long [16],
unsigned [17],
long-unsigned [18],
long64 [20],
long64-unsigned [21],
float32 [23],
float64 [24],
date-time [25],
date [26],
time [27]
}

 to_value CHOICE
{ see above }

Newest or largest entry to retrieve

 selected_values array
capture_object_
definition

List of columns to retrieve. If the
array is empty (has no entries), all
captured data are returned.
Otherwise, only the columns
specified in the array are returned.
The type capture_object_definition is
specified above (capture_objects)

}
entry_descriptor ::= structure
{
 from_entry double-long-

unsigned

first entry to retrieve,

 to_entry double-long-
unsigned

last entry to retrieve
to_entry == 0: highest possible entry,

 from_selected_value long-unsigned index of first value to retrieve,

 to_selected_value long-unsigned index of last value to retrieve
to_selected_value == 0: highest
possible selected_value

}
NOTE from_entry and to_entry identify the lines, from_selected_value to_selected_value identify the columns
of the buffer to be retrieved.

62056-62 © IEC:2006(E) – 37 –

Method description

reset (data) Clears the buffer. The buffer has no valid entries
afterwards; entries_in_use is zero after this call. This call
does not trigger any additional operations of the capture
objects. Specifically, it does not reset any captured
buffers or registers.

data ::= integer(0)

capture (data) Copies the values of the objects to capture into the buffer
by reading each capture object. Depending on the
sort_method and the actual state of the buffer this
produces a new entry or a replacement for the less
significant entry. As long as not all entries are already
used, the entries_in_use attribute will be incremented.

This call does not trigger any additional operations within
the capture objects such as capture () or reset ().

Note, that if more than one attributes of an object need to
be captured, they have to be defined one by one on the
list of capture objects. If the attribute_index = 0, all
attributes are captured.

data ::= integer(0)

Behaviour of the object after modification of certain attributes

 Any modification of one of the capture_objects describing
the static structure of the buffer will automatically call a
reset () and this call will propagate to all other profiles
capturing this profile.

If writing to profile_entries is attempted with a value too
large for the buffer, it will be rejected.

Restrictions

When defining the capture objects, circular reference to the profile shall be avoided.

Profile used to define a subset of preferred readout values

By setting profile_entries to 1, a “Profile generic” object can be used to define a set of
preferred readout values. See also D.2.1.13.

Setting capture_period to 1 ensures that the values are updated every second.

5.7 Clock (class_id: 8)

An instance of the “Clock” interface class handles all information that is related to date and
time, including leap years and the deviation of the local time to a generalized time reference
(Greenwich Mean Time, GMT). The deviation from the local time to the generalized time
reference can change depending on the season (e.g. summertime vs. wintertime). The
interface to an external client is based on date information specified in day, month and year,
time information given in hundredths of seconds, seconds, minutes and hours and the
deviation from the local time to the generalized time reference.

 – 38 – 62056-62 © IEC:2006(E)

It also handles the daylight saving function in that way; i.e. it modifies the deviation of local
time to GMT depending on the attributes. The start and end point of that function is normally
set once. An internal algorithm calculates the real switch point depending on these settings.

Figure 8 – The generalized time concept

Clock 0…1 class_id = 8, version = 0
Attribute(s) Data type Min. Max. Def.
1. logical_name (static) octet-string
2. time (dyn.) octet-string
3. time_zone (static) long
4. status (dyn.) unsigned
5. daylight_savings_begin (static) octet-string
6. daylight_savings_end (static) octet-string
7. daylight_savings_deviation (static) integer
8. daylight_savings_enabled (static) boolean
9. clock_base (static) enum
Specific method(s) m/o
1. adjust_to_quarter (data) o
2. adjust_to_measuring_period (data) o
3. adjust_to_minute (data) o
4. adjust_to_preset_time (data) o
5. preset_adjusting_time (data) o
6. shift_time (data) o

Attribute description

logical_name Identifies the “Clock” object instance. See D.2.1.1.
time Contains the meter’s local date and time, its deviation to GMT and the

status. See 4.4.1.

When this value is set, only specified fields of the date_time are
changed. For example for setting the date without changing the time,
all time relevant octets of the date_time shall be set to “not specified”.
The clock_status shall always be set when writing the time.

 octet-string, formatted as set in 4.4.1 for date_time

time_zone The deviation of local, normal time to GMT in minutes.

 long

status The status is equal to the status read in time. See 4.4.1.

 unsigned, formatted as set in 4.4.1 for clock_status

IEC 312/02

local time

daylight_savings_enddaylight_savings_begin

deviation

62056-62 © IEC:2006(E) – 39 –

daylight_savings_
begin

Defines the local switch date and time when the local time has to be
deviated from the normal time.
For generic definitions, wildcards are allowed.

 octet-string, formatted as set in 4.4.1 for date_time

daylight_savings_
end

See above.

 octet-string, formatted as set in 4.4.1 for date_time

daylight_savings_
deviation

Contains the number of minutes by which the deviation in generalized
time must be corrected at daylight savings begin.

 integer Deviation range of up to ± 120 min

daylight_savings_
enabled

TRUE enables daylight savings function.

 boolean

clock_base Defines where the basic timing information comes from.

 enum (0) not defined,
(1) internal crystal,
(2) mains frequency 50 Hz,
(3) mains frequency 60 Hz,
(4) GPS (global positioning system),
(5) radio controlled

Method description

adjust_to_quarter
(data)

Sets the meter’s time to the nearest (+/-) quarter of an hour value
(*:00, *:15, *:30, *:45).

data ::= integer (0)

adjust_to_measuring
_period (data)

Sets the meter’s time to the nearest (+/-) starting point of a
measuring period.

data ::= integer (0)

adjust_to_minute
(data)

Sets the meter’s time to the nearest minute.

If second_counter < 30 s, so second_counter is set to 0.
If second_counter ≥ 30 s, so second_counter is set to 0, and
minute_counter and all depending clock values are incremented if
necessary.

data ::= integer(0)

adjust_to_preset_
time (data)

This method is used in conjunction with the preset_adjusting_time
method. If the meter’s time lies between validity_interval_start and
validity_interval_end, then time is set to preset_time.

data ::= integer(0)

 – 40 – 62056-62 © IEC:2006(E)

preset_adjusting_
time (data)

Presets the time to a new value (preset_time) and defines a
validity_interval within which the new time can be activated.
data ::= structure
{
 preset_time: octet-string,
 validity_interval_start: octet-string,
 validity_interval_end: octet-string
}
all octet-strings formatted as set in 4.4.1 for date_time

shift_time (data) Shifts the time by n (-900 <= n <= 900) s.

data ::= long

5.8 Script table (class_id: 9)

The IC script table provides the possibility to trigger a series of actions by executing scripts
using the execute (data) method.

For that purpose, script table contains a table of script entries. Each table entry (script)
consists of a script_identifier and a series of action_specifications. An action_specification
activates a method of a COSEM object or modifies attributes of a COSEM object within the
logical device.

A specific script may be activated by other COSEM objects within the same logical device or
from the outside.

If two scripts have to be executed at the same time instance, then the one with the smaller
index is executed first.

Script table 0...n class_id = 9, version = 0
Attribute(s) Data type Min. Max. Def.
1. logical_name (static) octet-string
2. scripts (static) array
Specific method(s) m/o
1. execute (data) m

Attribute description

logical_name Identifies the “Script table” object instance. See D.2.1.5.
scripts Specifies the different scripts, i.e. the lists of actions.

 array script

 script structure

{
 script_identifier: long-unsigned,
 actions: array action_specification
}
The script_identifier 0 is reserved. If
specified with an execute method, it results
in a null script (no actions to perform).

62056-62 © IEC:2006(E) – 41 –

 action_specification structure

{
 service_id: enum,
 class_id: long-unsigned,
 logical_name: octet-string,
 index: integer,
 parameter: service specific
}
where
service_id: defines which action to be
applied to the referenced object

(1) write attribute,
(2) execute specific method

index: defines (with service_id 1) which
attribute of the selected object is affected or
(with service_id 2) which specific method is
to be executed.

The first attribute (logical_name) has index
1, the first specific method has index 1 as
well.

 NOTE The action_specification is limited to activate methods that do not produce

any response (from the server to the client).

Method description

execute (data) Executes the script specified in parameter data.

 data long-unsigned

If data matches one of the script_identifiers
in the script table, then the corresponding
action_specification is executed.

5.9 Schedule (class_id: 10)

The IC “Schedule” together with an object of the IC “Special days” table handles time and
date driven activities within a device. The following picture gives an overview and shows the
interactions between them:

Schedule:

exec_weekdays exec_specdays date range
Index enable action

(script)
Switch
_time

validity_
window Mo Tu We Th Fr Sa Su S1 S2 ... S8 S9 begin_

date
end_
date

120 Yes xxxx:yy 06:00 0xFFFF x x x x x x xx-04-01 xx-09-30

121 Yes xxxx:yy 22:00 15 x x x x x xx-04-01 xx-09-30

122 Yes xxxx:yy 12:00 0 x xx-04-01 xx-09-30

200 No xxxx:yy 06:30 x x x x x x xx-04-01 xx-09-30

201 No xxxx:yy 21:30 x x x x x xx-04-01 xx-09-30

202 No xxxx:yy 11:00 x xx-04-01 xx-09-30

 – 42 – 62056-62 © IEC:2006(E)

Special days table:

Index special_day_date day_id

12 xx-12-24 S1

33 xx-12-25 S3

77 97-03-31 S3

Schedule 0...n class_id = 10, version = 0
Attribute(s) Data type Min. Max. Def.
1. logical_name (static) octet-string
2. entries (static) array
Specific method(s) m/o
1. enable/disable (data) o
2. insert (data) o
3. delete (data) o

Attribute description

logical_name Identifies the “Schedule” object instance. See D.2.1.7.
entries Specifies the scripts to be executed at given times. There is only

one script that can be executed per entry.
 array schedule_table_entry
 schedule_table_entry structure

{
 index: long-unsigned
 (1..9999),
 enable: boolean,
 script_logical_name: octet-string,
 script_selector: long-unsigned,
 switch_time: octet-string,
 validity_window: long-unsigned,
 exec_weekdays: bit-string,
 exec_specdays: bit-string
 begin_date: octet-string,
 end_date: octet-string
}
where:
- script_logical_name: defines the logical

name of the “Script table” object;
- script_selector: defines the script_identifier

of the script to be executed;
- switch_time accepts wildcards to define

repetitive entries. The format of the octet-
string follows the rules set in 4.4.1 for
time;

- validity_window defines a period in
minutes, in which an entry must be
processed after power fail. (time between
defined switch_time and actual power_up)
0xFFFF: the script must be processed any
time;

- exec_weekdays defines the days of the
week on which the entry is valid;

- exec_specdays perform the link to the IC
“Special days table”, day_ID;

- begin_date and end_date define the date
period in which the entry is valid
(wildcards are allowed). The format follows
the rules set in 4.4.1 for date.

62056-62 © IEC:2006(E) – 43 –

Method description

enable/disable
(data)

Sets the disabled bit of range A entries to true and then enables the
entries of range B.

 data ::= structure
{
 firstIndexA,
 lastIndexA,
 firstIndexB,
 lastIndexB
}

 firstIndexA first index of the range that is disabled
long-unsigned,

 lastIndexA last index of the range that is disabled

long-unsigned,

 firstIndexB first index of the range that is enabled
long-unsigned,

 lastIndexB last index of the range that is enabled
long-unsigned

 firstIndexA/B < lastIndexA/B: all entries of the range A/B are
 disabled/enabled

firstIndexA/B == lastIndexA/B: one entry is disabled/enabled,

firstIndexA/B > lastIndexA/B: nothing disabled/enabled,

firstIndexA/B and lastIndexA/B > 9999: no entry is disabled/enabled

insert (data) Inserts a new entry in the table. If the index of the entry exists
already, the existing entry is overwritten by the new entry.

 entry schedule_table_entry

 data: corresponding to entry

delete (data) Deletes a range of entries in the table.

 data ::= structure
{
firstIndex,
lastIndex
}

 firstIndex first index of the range that is deleted
long-unsigned,

 lastIndex last index of the range that is deleted
long-unsigned

 firstIndex < lastIndex: all entries of the range A/B are deleted,
firstIndex ::= lastIndex: one entry is deleted,
firstIndex > lastIndex: nothing deleted

Remarks concerning “inconsistencies” in the table entries

- If the same script should be executed several times at a specific time instance, then it is executed only
once.

- If different scripts should be executed at the same time instance, then the execution order is according
to the “index”. The script with the lowest “index” is executed first.

 – 44 – 62056-62 © IEC:2006(E)

Recovery after power failure

After a power failure, the whole schedule is processed to execute all the necessary scripts
that would get lost during a power failure. For this, the entries that were not executed during
the power failure must be detected. Depending on the validity window attribute they are
executed in the correct order (as they would have been executed in normal operation).

Handling of time changes

There are four different "actions" of time changes:

a) time setting forward;
b) time setting backwards;
c) time synchronization;
d) daylight saving action.

All these four actions need a different handling executed by the schedule in interaction with
the time setting activity.

Time setting forward*

This is handled the same way as a power failure. All entries missed are executed depending
on the validity window attribute. A (manufacturer specific defined) short time setting can be
handled like time synchronization.

* Writing to the attribute “time” of the “Clock” object.

Time setting backward*

This results in a repetition of those entries that are activated during the repeated time. A
(manufacturer specific defined) short time setting can be handled like time synchronization.

* Writing to the attribute “time” of the “Clock” object.

Time synchronization*

Time synchronization is used to correct small deviations between a master clock and the local
clock. The algorithm is manufacturer specific. It shall guarantee that no entry of the schedule
gets lost, or is executed twice. The validity window attribute has no effect, because all entries
must be executed in normal operation.

* Using the method “adjust_to_quarter” of the “Clock” object.

Daylight saving

If the clock is put forward, then all scripts, which fall into the forwarding interval (and would
therefore get lost) are executed.

If the clock is put back, re-execution of the scripts, which fall into the backwarding interval is
suppressed.

5.10 Special days table (class_id: 11)

The interface class allows defining dates, which will override normal switching behaviour for
special days. The interface class works in conjunction with the class "Schedule" or "Activity
calendar" and the linking data item is day_id.

62056-62 © IEC:2006(E) – 45 –

Special days table 0…1 class_id = 11, version = 0
Attribute(s) Data type Min. Max. Def.
1. logical_name (static) octet-string
2. entries (static) array
Specific method(s) m/o
1. insert (data) o
2. delete (data) o

Attribute description

logical_name Identifies the “Special days table” object instance. See D.2.1.6.
entries Specifies a special day identifier for a given date.

The date may have wildcards for repeating special days like
Christmas.

 array spec_day_entry

 spec_day_entry structure
{
 index: long-unsigned,
 specialday_date: octet-string,
 day_id: unsigned
}
where:
- specialday_date formatting follows the rules

set in 4.4.1 for date;
- the range of the day_id must match the

length of the bitstring exec_specdays in the
related object of interface class “Schedule”.

Method description

insert (data) Inserts a new entry in the table.

 entry spec_day_entry

 If a special day with the same index or with the same date as an
already defined day is inserted, the old entry will be overwritten.

delete (data) Deletes an entry in the table.

 index Index of the entry that shall be deleted.
long-unsigned

 data ::= long-unsigned

5.11 Activity calendar (class_id: 20)

An instance of the “Activity calendar” class is typically used to handle different tariff
structures. It is a definition of scheduled actions inside the meter, which follow the classical
way of calendar based schedules by defining seasons, weeks… It can coexist with the more
general object “Schedule” and can even overlap with it. If actions are scheduled for the same
activation time in an object “Schedule” and in the object “Activity calendar”, the actions
triggered by the “Schedule” object are executed first.

After a power failure, only the “last action” missed from the object “Activity calendar” is
executed (delayed). This is to ensure proper tariffication after power up. If a “Schedule” object
is present, then the missed “last action” of the “Activity calendar” must be executed at the
correct time within the sequence of actions requested by the “Schedule” object.

 – 46 – 62056-62 © IEC:2006(E)

The “Activity calendar” defines the activation of certain scripts, which can perform different
activities inside the logical device. The interface to the object “Script table” is the same as for
the object “Schedule” (see 5.9).

If an instance of the interface class “Special days table” (see 5.10) is available, relevant
entries there take precedence over the “Activity calendar” object driven selection of a day
profile. The day profile referenced in the “Special days table” activates the day_schedule of
the day_profile_table in the “Activity calendar” object by referencing through the day_id.

Activity calendar 0…1 class_id = 20, version = 0
Attribute(s) Data type Min. Max. Def.
1. logical_name (static) octet-string
2. calendar_name_active (static) octet-string
3. season_profile_active (static) array
4. week_profile_table_active (static) array
5. day_profile_table_active (static) array
6. calendar_name_passive (static) octet-string
7. season_profile_passive (static) array
8. week_profile_table_passive (static) array
9. day_profile_table_passive (static) array
10. activate_passive_calendar_

time
(static) octet-string

Specific method(s) m/o
1. activate_passive_calendar (data) o

Attribute description

Attributes called …_active are currently active, attributes called …_passive will be activated
by the specific method activate_passive_calendar.

logical_name Identifies the “Activity calendar” object instance. See D.2.1.8.
calendar_name Typically contains an identifier, which is descriptive to the set of

scripts, which are activated by the object.
season_profile Contains a list of seasons defined by their starting date and a

specific week_profile to be executed. The list is sorted according to
season_start.

 array season

 season ::= structure
{
 season_profile_name: octet-string,
 season_start: octet-string,
 week_name: octet-string
}
where:
- season_profile_name is a user defined name

identifying the current seson_profile;
- season_start defines the starting time of the

season, formatted as set in 4.4.1 for
date_time.

REMARK The current season is terminated by the
season_start of the next season.

- week_name defines the week_profile active
in this season

62056-62 © IEC:2006(E) – 47 –

week_profile_table Contains an array of week_profiles to be used in the different

seasons. For each week_profile, the day_profile for every day of a
week is identified.

 array week_profile

 week_profile ::= structure
{
 week_profile_name: octet-string,
 monday: day_id,
 tuesday: day_id,
 wednesday: day_id,
 thursday: day_id,
 friday: day_id,
 saturday: day_id,
 sunday: day_id
}
day_id: unsigned

where:
- week_profile_name is a user defined name

identifying the current week_profile;
- Monday defines the day_profile valid on

Monday;
- …
- Sunday defines the day_profile valid on

Sunday.

day_profile_table Contains an array of day_profiles, identified by their day_id. For each
day_profile, a list of scheduled actions is defined by a script to be
executed and the corresponding activation time (start_time). The list is
sorted according to start_time.

 array day_profile

 day_profile ::= structure
{
 day_id: unsigned,
 day_schedule: array day_profile_action
}

day_profile_action ::= structure
{
 start_time: octet-string,
 script_logical_name: octet-string,
 script_selector: long-unsigned
}

where:
- day_id is a user defined identifier, identifying

the current day_profile;
- start_time: defines the time when the script is

to be executed (no wildcards); the format
follows the rules set in 4.4.1for time;

- script_logical_name: defines the logical name
of the “Script table” object;

- script_selector: defines the script_identifier of
the script to be executed.

 – 48 – 62056-62 © IEC:2006(E)

activate_passive_
calendar_time

Defines the time when the object itself calls the specific method
activate_passive_calendar. A definition with "not specified" notation in
all fields of the attribute will deactivate this automatism. Partial "not
specified" notation in just some fields of date and time are not allowed.

octet-string, formatted as set in 4.4.1 for date_time

Method description

activate_passive_
calendar(data)

This method copies all attributes called …_passive to the corresponding
attributes called …_active,

data ::= integer(0)

5.12 Association LN (class_id: 15)

COSEM logical devices able to establish application associations within a COSEM context
using logical name referencing, model the associations through instances of the “Association
LN” class. A COSEM logical device has one instance of this IC for each association the
device is able to support.

Association LN 0…MaxNbofAss. class_id = 15,
version = 0

Attribute(s) Data type Min. Max. Def.
1. logical_name (static) octet-string
2. object_list (static) object_list_type
3. associated_partners_id associated_partners_type
4. application_context_name application-context-name
5. xDLMS_context_info xDLMS-context-type
6. authentication_mechanism

_name
 mechanism-name

7. LLS_secret octet-string
8. association_status enum
Specific method(s) m/o
1. reply_to_HLS_authentication (data) o
2. change_HLS_secret (data) o
3. add_object (data) o
4. remove_object (data) o

62056-62 © IEC:2006(E) – 49 –

Attribute description

logical_name Identifies the “Association LN” object instance. See D.2.1.22.
object_list Contains the list of visible COSEM objects with their class_id,

version, logical name and the access rights to their attributes and
methods within the given application association.

object_list_type ::= array object_list_element

object_list_element ::= structure
{
 class_id: long-unsigned,
 version: unsigned,
 logical_name: octet-string,
 access_rights: access_right
}

access_right ::= structure
{
 attribute_access: attribute_access_descriptor,
 method_access: method_access_descriptor
}
attribute_access_descriptor ::= array attribute_access_item

attribute_access_item ::= structure
{
 attribute_id: integer,
 access_mode: enum
 {
 no_access (0),
 read_only (1),
 write_only (2),
 read_and_write (3)
 },
 access_selectors ::= CHOICE
 {
 null-data,
 array of integer8
 }
}

method_access_descriptor ::= array method_access_item

method_access_item ::= structure
{
 method_id: integer,
 access_mode: boolean
}
where:
- the attribute_access_descriptor and the method_access_

descriptor always contain all implemented attributes or
methods;

- access_selectors contain a list of the supported selector
values.

selective access (see 4.2) to the attribute object_list may be
available (optional). The selective access parameters are as
defined below.

 – 50 – 62056-62 © IEC:2006(E)

associated_partners
_id

Contains the identifiers of the COSEM client and the COSEM
server (logical device) application processes within the physical
devices hosting these processes, which belong to the application
association modelled by the “Association LN” object.

associated_partners_type ::= structure
{
 client_SAP: integer,
 server_SAP long-unsigned:
}
The range for the client_SAP is 0…0x7F.
The range for the server_SAP is 0x000…0x3FFF.

application_context
_name

In the COSEM environment, it is intended that an application
context pre-exists and is referenced by its name during the
establishment of an application association. This attribute contains
the name of the application context for that association.

The application context name is specified as OBJECT IDENTIFIER
in 7.3.7.1 of IEC 62056-53.

The application_context_name attribute includes the arc labels of
the OBJECT IDENTIFIER.

application_context_name ::= structure
 {
 joint-iso-ctt-element: unsigned,
 country-element: unsigned,
 country-name-element: long-unsigned,
 identified-organization-element: unsigned,
 DLMS-UA-element: unsigned,
 application-context-element: unsigned,
 context-id-element: unsigned
 }

For existing implementations, the attribute may hold the value of
the OBJECT IDENTIFIER encoded in BER, as an octet string. See
Clause C.2 of IEC 62056-53.

application_context_name ::= octet-string
// holds the value of the OBJECT identifier encoded in BER

Example:

In case of context_id(1) the A-XDR encoding as a structure (all values are hexadecimal):

02 07 11 02 11 10 12 02 F4 11 05 11 08 11 01 11 01

The A-XDR encoding as an octet-string, holding the value of the OBJECT
IDENTIFIER encoded in BER (all values are hexadecimal):

09 07 60 85 74 05 08 01 01

62056-62 © IEC:2006(E) – 51 –

xDLMS_context_info Contains all the necessary information on the xDLMS context for

the given association.

xDLMS-context-type::= structure
{
 conformance: bitstring(24),
 max_receive_pdu_size: long-unsigned,
 max_send_pdu_size: long-unsigned,
 dlms_version_number: unsigned,
 quality_of_service: integer,
 cyphering_info: octet-string
}
where
- the conformance element contains the xDLMS conformance

block supported by the server;

- the max_receive_pdu_size element contains the maximum
length for an xDLMS APDU, expressed in bytes that the client
may send. This is the same as the server-max-receive-pdu-size
parameter of the DLMS-Initiate.response pdu (see IEC 62056-
53);

- the max_send_pdu_size, in an active association contains the
maximum length for an xDLMS APDU, expressed in bytes that
the server may send. This is the same as the client-max-
receive-pdu-size parameter of the DLMS-Initiate.request pdu
(see IEC 62056-53);

- the dlms_version_number element contains the DLMS version
number supported by the server;

- the quality_of _service element is not used;

- the cyphering_info, in an active association, contains the
dedicated key parameter of the DLMS-Initiate.request pdu (See
IEC 62056-53).

authentication_
mechanism_name

Contains the name of the authentication mechaism for the association
(see IEC 62056-53).

The authentication mechanism name is specified as an OBJECT
IDENTIFIER in 7.3.7.2 of IEC 62056-53.

The authentication_mechanism_name attribute includes the arc
labels of the OBJECT IDENTIFIER.

authentication_mechanism_name ::= structure
 {
 joint-iso-ctt-element: unsigned,
 country-element: unsigned,
 country-name-element: long-unsigned,
 identified-organization-element: unsigned,
 DLMS-UA-element: unsigned,
 authentication-mechanism-name-element: unsigned,
 mechanism-id-element: unsigned
 }

For existing implementations, the attribute may hold the value of
the OBJECT IDENTIFIER encoded in BER, as an octet string. See
Clause C.2 of IEC 62056-53.

 – 52 – 62056-62 © IEC:2006(E)

authentication_mechanism_name ::= octet-string
// holds the value of the OBJECT identifier encoded in BER

Example:

In case of mechanism_id(1) the A-XDR encoding as a structure (all values are
hexadecimal):

02 07 11 02 11 10 12 02 F4 11 05 11 08 11 02 11 01

The A-XDR encoding as an octet-string, holding the value of the OBJECT
IDENTIFIER encoded in BER (all values are hexadecimal):

09 07 60 85 74 05 08 02 01

LLS_secret Contains the authentication value for the LLS authentication process.
association_status Indicates the current status of the association, which is modelled by

the object.

association-status: enum
{

(0) non-associated,
(1) association-pending,
(2) associated

}

A SET operation on an attribute of an association LN object becomes effective when this
association object is used to establish a new association.

Parameters for selective access to the object_list attribute

• If no selective access is requested, (no Access_Selection_Parameters parameter is
present in the GET.request (.indication) service invocation for the object_list attribute) the
corresponding .response (.confirmation) service shall contain all object_list_elements of
the object_list attribute.

• When selective access is requested to the object_list attribute (the
Access_Selection_Parameters parameter is present), the response shall contain a
‘filtered’ list of object_list_elements, as follows:

Access
selector

value
Service parameters Comment

1 NULL All information excluding the access_rights shall be included in the
response.

2 class_list Access by class. In this case, only those object_list_elements of
the object_list shall be included in the response, which have a
class_id equal to one of the class_id-s of the class-list.

No access_right information is included.

class_list ::= array class_id

class_id ::= long-unsigned

3 object_Id_list Access by object. The full information record of object instances on
the object_Id_list shall be returned.

object_Id_list ::= array object_Id

4 object_Id The full information record of the required COSEM object instance
shall be returned.

object_Id ::= structure

{
 class_id: long-unsigned,
 logical_name: octet-string
}

62056-62 © IEC:2006(E) – 53 –

Method description

reply_to_HLS_
authentication
(data)

The remote invocation of this method delivers the client's “secretly”
processed “challenge StoC” (f(StoC)) back to the server as the data
service parameter of the invoked ACTION.request service. See 4.7.2.

data ::= octet-string client’s response to the challenge

If the authentication is accepted, then the response (ACTION.confirm)
contains Result == OK and the server’s "secretly" processed
"challenge CtoS" (f(CtoS)) back to the client in the data service
parameter of the response service.

data ::= octet-string server's response to the challenge

If the authentication is not accepted, then the result parameter in the
response shall contain a non-OK value, and no data shall be sent
back.

change_HLS_secret
(data)

Changes the HLS secret (e.g. encryption key).

data ::= octet-stringa new HLS secret

add_object (data) Adds the referenced object to the object_list.

data ::= object_list_element (see above)

remove_object
(data)

Removes the referenced object from the object_list.

data ::= object_list_element (see above)

a The structure of the “new secret” depends on the security mechanism implemented. The “new secret” may contain
additional check bits and it may be encrypted.

5.13 Association SN (class_id: 12)

COSEM logical devices able to establish application associations within a COSEM context
using short name references, model the associations through instances of the “Association
SN” class. A COSEM logical device may have one instance of this IC for each association the
device is able to support.

The short_name of the “Association SN object itself is fixed within the COSEM context. It is
given in Clause C.3 as 0xFA00.

Association SN 0...n class_id = 12, version = 1
Attribute(s) Data type Min. Max. Def.
1. logical_name (static) octet-string
2. object_list (static) objlist_type
Specific method(s) m/o
1. reserved from previous versions o
2. reserved from previous versions o
3. read_by_logicalname (data) o
4. get_attributes&methods (data) o
5. change_LLS_secret (data) o
6. change_HLS_secret (data) o
7. reserved from previous versions
8. reply_to_HLS_authentication (data) o

 – 54 – 62056-62 © IEC:2006(E)

Attribute description

logical_name Identifies the “Association SN” object instance. See D.2.1.22.
object_list Contains the list of all objects with their base_names (short_name),

class_id, version and logical_name. The base_name is the DLMS
objectName of the first attribute (logical_name).

objlist_type ::= array objlist_element
objlist_element ::= structure
{
 base_name: long,
 class_id: long-unsigned,
 version: unsigned,
 logical_name: octet-string
}

selective access (see 4.2) to the attribute object_list may be
available (optional). The selective access parameters are as defined
below.

Parameters for selective access to the object_list attribute

Access
selector

value

Parameter Comment

1 class_id: long-unsigned Delivers the subset of the object_list for a specific class_id.

For the response: data ::= objlist_type

2 structure

{
 class_id: long-unsigned,
 logical_name: octet-string
}

Delivers the entry of the object_list for a specific class_id and
logical_name.

For the response: data ::= objlist_element

Method description

read_by_
logicalname (data)

Reads attributes for selected objects. The objects are specified by their
class_id and their logical_name.

data ::= array attribute_identification

attribute_identification ::= structure
{
 class_id: long-unsigned,
 logical_name: octet-string,
 attribute_index: integer
}
where attribute_index is a pointer (i.e. offset) to the attribute within the
object.

attribute_index 0 delivers all attributesa, attribute_index 1 delivers the
first attribute (i.e. logical_name), etc.).

For the response: data is according to the type of the attribute.

62056-62 © IEC:2006(E) – 55 –

get_attributes&
methods(data)

Delivers information about the access rights to the attributes and
methods within the actual association. The objects are specified by
their class_id and their logical_name.

data ::= array object_identification

object_identification ::= structure
{
 class_id: long-unsigned,
 logical_name: octet-string
}

For the response
data ::= array access_description

access_description ::= structure

{
 read_attributes: bit-string,
 write_attributes: bit-string,
 methods: bit-string
}
The position in the bit-string identifies the attribute/method (first
position ↔ first attribute, first position ↔ first method) and the value of
the bit specifies whether the attribute/method is available (bit set) or
not available (bit clear).

NOTE Depending on the implementation, some attributes or methods of some
objects may not be needed. In this case, such attributes or methods may not be
accessible (neither read access, nor write access to attributes, no access to methods).

change_LLS_secret
(data)

Changes the LLS secret (e.g. password).

data ::= octet-string new LLS secret

change_HLS_secret
(data)

Changes the HLS secret (e.g. encryption key).

data ::= octet-stringb new HLS secret

reply_to_HLS_
authentication
(data)

The remote invocation of this method delivers the client's “secretly”
processed “challenge StoC” (f(StoC)) back to the server as the data
service parameter of the invoked Write.request service (see 4.7.2).

data ::= octet-string client’s response to the challenge

If the authentication is accepted, then the response (Write.confirm)
contains Result == OK and the server’s "secretly" processed
"challenge CtoS" (f(CtoS)) back to the client in the data service
parameter of the response service.

data ::= octet-string server's response to the challenge

If the authentication is not accepted, then the result parameter in the
response shall contain a non-OK value, and no data shall be sent
back.

a If at least one attribute has no read access right under the current association, then a read_by_logicalname() to
attribute index 0 reveals the error message “scope of access violation” (see IEC 61334-4-41, p. 221).
b The structure of the “new secret” depends on the security mechanism implemented. The “new secret” may contain
additional check bits and it may be encrypted.

 – 56 – 62056-62 © IEC:2006(E)

5.14 SAP assignment (class_id: 17)

The interface class “SAP assignment” contains the information on the assignment of the
logical devices to their SAP-s (see IEC 62056-53).

SAP assignment 0…1 class_id = 17, version = 0
Attribute(s) Data type Min. Max. Def.
1. logical_name (static) octet-string
2. SAP_assignment_list (static) asslist_type 0
Specific method(s) m/o
1. connect_logical_device (data) o

Attribute description

logical_name Identifies the “SAP assignment” objects instance. See D.2.1.23.
SAP_assignment_
list

Contains the list of all logical devices and their SAP addresses
within the physical device.

asslist_type ::= array asslist_element
asslist_element ::= structure
{
 SAP: long-unsigned,
 logical_device_name: octet-string
}

REMARKS

- The actual addressing is performed by the supporting communication layers.

- For the 3-layer, connection-oriented, HDLC based profile, see IEC 62056-46
and IEC 62056-53, Clause B.2.

- For the TCP-UDP/IP based profile, see IEC 62056-47 and IEC 62056-53,
Clause B.3.

Method description

connect_logical_
device (data)

Connects a logical device to a SAP. Connecting to SAP 0 will
disconnect the device. More than one device cannot be connected
to one SAP (exception SAP 0)

data ::= asslist_element

5.15 Register monitor (class_id: 21)

This interface class allows defining a set of scripts (see 5.8) that are executed when the value
of an attribute of a monitored register type object “Data”, “Register”, “Extended register”,
Demand register, etc. crosses a set of threshold values.

The IC “Register monitor” requires an instantiation of the IC “Script table” in the same logical
device.

Register monitor 0...n class_id = 21, version = 0
Attribute(s) Data type Min. Max. Def.
1. logical_name (static) octet-string
2. thresholds (static) array
3. monitored_value (static) value_definition
4. actions (static) array
Specific method(s) m/o

62056-62 © IEC:2006(E) – 57 –

Attribute description

logical_name Identifies the “Register monitor” object instance. See D.2.1.11 and
 D.2.2.20.

thresholds Provides the threshold values to which the attribute of the referenced
register is compared.

 array threshold

 threshold: The threshold is of the same type as
the monitored attribute of the
referenced object.

monitored_value Defines which attribute of an object is to be monitored. Only values
with simple data types are allowed.

 value_definition ::= structure
{
 class_id: long-unsigned,
 logical_name: octet-string,
 attribute_index: integer
}

actions Defines the scripts to be executed when the monitored attribute of the
referenced object crosses the corresponding threshold. The attribute
“actions” has exactly the same number of elements as the attribute
“thresholds”. The ordering of the action_items corresponds to the
ordering of the thresholds (see above).

 array action_set

 action_set ::= structure
{
 action_up: action_item,
 action_down: action_item
}
where:
- action_up defines the action when the attribute value of the

monitored register crosses the threshold in the upwards direction;
- action_down defines the action when the attribute value of the

monitored register crosses the threshold in the downwards
direction

 action_item ::= structure

{
 script_logical_name: octet-string,
 script_selector: long-unsigned
}

5.16 Utility tables (class_id: 26)

An instance of the “Utility tables” class encapsulates ANSI C12.19 table data.

With this interface class definition, each “table” is represented as an instance. The specific
instance is identified by its logical_name.

 – 58 – 62056-62 © IEC:2006(E)

Utility tables 0...n class_id = 26, version = 0
Attribute(s) Data type Min. Max. Def.
1. logical_name (static) octet-string
2. table_ID (static) long-unsigned
3. length double-long-unsigned
4. buffer octet-string
Specific method(s) m/o

Attribute description

logical_name Identifies the “Utility tables” object instance. See D.2.1.25.
table_ID Table number. This table number is as specified in the ANSI

standard and may be either a standard table or a manufacturer’s
table.

length Number of octets in table buffer.

buffer Contents of table.
Selective access (see 4.2) to the attribute buffer may be available
(optional). The selective access parameters are as defined below.

Parameters for selective access to the buffer attribute

Access
selector

Parameter Comment

1 offset_access Access to table by offset and count using offset_selector for parameter
data.

2 index_access Access to table by element id and number of elements using
index_selector for parameter data.

offset_selector ::= structure
{

 Offset double-long-
unsigned

offset in octets to the start of
access area, relative to the start
of the table

 Count long-unsigned number of octets requested or
transferred

}
index_selector ::= structure
{

 Index array of
long-unsigned

sequence of indices to identify
elements within the table’s
hierarchy

 Count long-unsigned number of elements requested or
transferred. Values of count
greater than 1 return up to that
many elements. A value of zero,
when given in the context of a
request, refers to the entire sub-
tree of the hierarchy starting at
the selection point

}

62056-62 © IEC:2006(E) – 59 –

5.17 Single action schedule (class_id: 22)

Many applications request periodic actions within a meter. These actions are not necessarily
linked to tariffication (activity calendar or schedule). The IC “Single action schedule “ models
such actions.

Single action schedule 0...n class_id = 22, version = 0
Attribute(s) Data type Min. Max. Def.
1. logical_name (static) octet-string
2. executed_script (static) script
3. type (static) enum
4. execution_time (static) array
Specific method(s) m/o

Attribute description

logical_name Identifies the “Single action schedule” object instance. See D.2.1.10.
executed_script Contains the logical name of the “Script table” object and the script

selector of the script to be executed.

 script structure
{

script_logical_name octet-string,
script_selector long-unsigned

}

Script_logical_name and script_selector define the script to be
executed.

type enum
(1) size of execution_time = 1; wildcard in date allowed,
(2) size of execution_time = n; all time values are the same,

wildcards in date not allowed,
(3) size of execution_time = n; all time values are the same,

wildcards in date are allowed,
(4) size of execution_time = n; time values may be different,

wildcards in date not allowed,
(5) size of execution_time = n; time values may be different,
 wildcards in date are allowed

execution_time Specifies the time of day the script is executed.

array {octet-string, octet-string}

The two octet-strings contain time and date, in this
order.

structure
{
 time: octet-string,
 date: octet-string
}
time and date are formatted as defined in 4.4.1.

WILDCARDS in “time” are not allowed; seconds and
hundredths of seconds must be zero.

 – 60 – 62056-62 © IEC:2006(E)

5.18 Register table (class_id: 61)

Instances of the “Register table” interface class store homogenous entries, identical attributes
of multiple objects, which are all instances of the same interface class, and the value in value
groups A to D and F of their logical name (OBIS code) is identical. The possible values in
value group E are defined in IEC 62056-61 in a tabular form: the table header defines the
common part of the OBIS code and each table cell defines one possible value of value group
E. A “Register table” object may capture attributes of some or all of those objects.

NOTE 1 Some examples are the “UNIPEDE voltage dip quantities” table, see IEC 62056-61, Table 13, or the
“Extended phase angle measurement” table, see IEC 62056-61, Table 11.

NOTE 2 If more complex functionality is needed, the “Profile generic” interface class can be used.

Register table 0...n class_id = 61, version = 0
Attribute(s) Data type Min. Max. Def.
1. logical_name (static) octet-string
2. table_cell_values (dyn.) array
3. table_cell_definition (static) structure
4. scaler_unit (static) scaler_unit_type
Specific method(s) m/o

o 1. reset (data)
2. capture (data) o

Attribute description

logical_name Identifies the “Register table” object instance.

When the format of the logical name is A.B.C.D.255.F; the values
A to D and F define the common part of the logical name of the
objects, the attributes of which are captured. Only one attribute of
the objects concerned can be captured (for example the value
attribute).

When the format of the logical name is A.B.98.10.x.255, several
instances of the “Register table” class can be used to capture
different attributes of the objects concerned. The value group E
numbers the instances.

table_cell_values Holds the value of the attributes captured, as they would be
returned to a GET or Read .request to the individual attributes.

 table_cell_values ::= compact array or array of table_cell_entry

 table_cell_entry

CHOICE
{
--simple data types
null-data [0],
bit-string [4],
double-long [5],
double-long-unsigned [6],
octet-string [9],
visible-string [10],
bcd [13],
integer [15],
long [16],
unsigned [17],
long-unsigned [18],
long64 [20],
long64-unsigned [21],
float32 [23],

62056-62 © IEC:2006(E) – 61 –

float64 [24],
--complex data types
structure [2]
}

If the captured attribute is attribute_0, redundant values may be
replaced by “null_data”, if their value can be unambiguously
recovered (for example scaler_unit).

table_cell_definition Specifies the list of attributes captured in the register table.

table_cell_definition ::= structure
{
class_id: long-unsigned,
logical_name: octet_string,
group_E_values: array of cell_identifier,
 {
 cell_identifier: unsigned
 }
attribute_index integer
}

where:
- class_id defines the common class_id of the objects the

attributes of which are captured;
- logical_name contains the common logical name of the

objects, with E = 255 (wildcard);
- group_E_values contain the list of cell identifiers, as defined in

the respective table of IEC 62056-61;
- attribute_index is a pointer to the attribute within the object.

attribute_index 0 refers to all public attributes.

If the logical name of the “Register table” object is in the format
A.B.C.D.255.F and the defined attribute of all objects identified in
the respective table in IEC 62056-61 are captured, then attribute 3
may not be accessible. In this case:
- the class_id shall be 1 “Data”, 3 “Register” or 4 “Extended

register”;
- the logical name of the objects to be captured is defined by the

logical name of the “Register table” object and the respective
table in IEC 62056-61;

- the attribute index shall be 2 (value).

scaler_unit See the description of class “Register”.

In the case when “value” attributes of “Register” or “Extended
register” objects are captured, the scaler_unit shall be common for
all objects and this attribute shall hold a copy.

If other attributes or interface classes are captured, the scaler_unit
attribute has no meaning and shall be inaccessible.

Method description

reset (data) Clears the table_cell_values.
It has no effect on the attributes captured.

data ::= integer(0)

capture (data) Copies the values of the attributes into the table_cell_values.
If the attribute_index = 0, all attributes are captured.

 – 62 – 62056-62 © IEC:2006(E)

Behaviour of the object after modification of the table_cell_definition attribute

Any modification to this attribute will automatically call the reset(data) method and this will
propagate to all other profiles capturing this object.

If writing to table_cell_definition is attempted with a value too large the buffer holding the
table_cell_values attribute, it will be rejected.

5.19 Status mapping (class_id: 63)

Instances of the “Status mapping” class store status words together with the mapping of each
bit in the status word to positions in a reference status table.

Status mapping 0…n class_id = 63, version = 0
Attribute(s) Data type Min. Max. Def.
1. logical_name (static) octet-string
2. status word (dynamic) CHOICE
3. mapping_table (static) structure

Specific method(s) m/o

Attribute description

logical_name Identifies the “Status word” object instances. See D.2.1.29,
 D.2.1.30, D.2.1.34 and D.2.2.17.

status_word Contains the current value of the status word.

CHOICE
{
[4] bit-string,
[6] double-long-unsigned,
[9] octet-string,
[10] visible-string,
[17] unsigned,
[18] long-unsigned,
[21] long64-unsigned
}
The size of the status_word is n*8 bits, the maximum size is 65 536
bits.

NOTE Manufacturers may choose any of the types listed above. However, the
status word shall be always interpreted as a bit-string.

62056-62 © IEC:2006(E) – 63 –

mapping_table Contains the mapping of the status word to the positions in the
reference table.

mapping_table::= structure
{ ref_table_id: unsigned,
 CHOICE
 {
 first_entry long-unsigned,
 array of table_entries
 }
}

 table_entry long-unsigned

where:
- ref_table_id is the identifier of the reference status table

NOTE Reference status tables are maintained by the DLMS UA.

- first_entry is the entry in the reference table corresponding to
bit 0 of the status word. Bit 1 corresponds to the next entry and
so on, the last entry is defined by the length of the status word;

- if the “array” choice is taken, the array of table entries maps
the bits of the status word to the entries in the reference status
table. The position in the array defines the position in the
status word (the first position corresponds to bit 0).

6 Maintenance of the interface classes

Any modification of interface classes as described below in 6.2 will be recorded by moving the
old or obsolete version of an interface class into Annex E.

Versions of interface classes prior to the establishment of this standard are kept by the DLMS
UA only.

6.1 New interface classes

The DLMS UA reserves the right to be the exclusive administrator of interface classes.

6.2 New versions of interface classes

Any modification of an existing interface class affecting the transmission of service requests
or responses results in a new version (version ::= version+1) and shall be documented
accordingly. The following rules shall be followed:

a) new attributes and methods may be added;
b) existing attributes and methods may be invalidated BUT the indices of the invalidated

attributes and methods shall not be re-used by other attributes and methods;
c) if these rules cannot be met, then a new interface class shall be created;
d) new versions of COSEM interface classes are administered by the DLMS UA.

6.3 Removal of interface classes

Besides one association object and the logical device name object no instantiation of an
interface class is mandatory within a meter. Therefore, even unused interface classes will not
be removed from the standard. They will be kept to ensure compatibility with possibly existing
implementations.

 – 64 – 62056-62 © IEC:2006(E)

Annex A
(normative)

Protocol related interface classes

A.1 General

Each communication device and/or communication profile needs some setup parameters to
be defined for proper operation.

A.2 IEC local port setup (class_id: 19)

Instances of this interface class define the operational parameters for communication using
IEC 62056-21. Several ports can be configured.

IEC local port setup 0...n class_id = 19, version = 1
Attribute(s) Data type Min. Max. Def.
1. logical_name (static) octet-string
2. default_mode (static) enum
3. default_baud (static) enum
4. prop_baud (static) enum
5. response_time (static) enum
6. device_addr (static) octet-string
7. pass_p1 (static) octet-string
8. pass_p2 (static) octet-string
9. pass_w5 (static) octet-string
Specific method(s) m/o

Attribute description

logical_name Identifies the “IEC local port setup” object instance. See D.2.1.12.
default_mode Defines the protocol used by the meter on the port.

 enum (0) protocol according to IEC 62056-21 (modes

A…E),
(1) protocol according to IEC 62056-46. Using

this enumeration value all other attributes of
this class are not applicable,

(2) protocol not specified. Using this enumeration
value, attribute 4), prop_baud is used for
setting the communication speed on the port.
All other attributes are not applicable.

default_baud Defines the baud rate for the opening sequence.

 enum (0) 300 baud,

(1) 600 baud,
(2) 1 200 baud,
(3) 2 400 baud,
(4) 4 800 baud,
(5) 9 600 baud,
(6) 19 200 baud,
(7) 38 400 baud,
(8) 57 600 baud,
(9) 115 200 baud

62056-62 © IEC:2006(E) – 65 –

prop_baud Defines the baud rate to be proposed by the meter.

 enum (0) 300 baud,

(1) 600 baud,
(2) 1 200 baud,
(3) 2 400 baud,
(4) 4 800 baud,
(5) 9 600 baud,
(6) 19 200 baud,
(7) 38 400 baud,
(8) 57 600 baud,
(9) 115 200 baud

response_time Defines the minimum time between the reception of a request (end
of request telegram) and the transmission of the response (begin of
response telegram).

enum (0) 20 ms,

(1) 200 ms

device_addr Device address according to IEC 62056-21.

 octet-string

pass_p1 Password 1 according to IEC 62056-21.

 octet-string

pass_p2 Password 2 according to IEC 62056-21.

 octet-string

pass_w5 Password W5 reserved for national applications.

 octet-string

A.3 Modem configuration (class_id: 27)

NOTE The name of this interface class has been changed from “PSTN modem configuration” to “Modem
configuration”, as it can be used not only for configuring PSTN modems, but modems of other networks, for
example GSM. Otherwise, the definition remains unchanged.

An instance of the “Modem configuration” class stores data related to the initialization of
modems, which are used for data transfer from/to a device. Several modems can be
configured.

Modem configuration 0...n class_id = 27, version = 1
Attribute(s) Data type Min. Max. Def.
1. logical_name (static) octet-string
2. comm_speed (static) enum 0 9 5
3. initialization_string (static) array
4. modem_profile (static) array
Specific method(s) m/o

 – 66 – 62056-62 © IEC:2006(E)

Attribute description

logical_name Identifies the “Modem configuration” object instance. See D.2.1.2.
comm_speed The communication speed between the device and the modem, not

necessarily the communication speed on the WAN.
enum:

(0) 300 baud,
(1) 600 baud,
(2) 1 200 baud,
(3) 2 400 baud,
(4) 4 800 baud,
(5) 9 600 baud,
(6) 19 200 baud,
(7) 38 400 baud,
(8) 57 600 baud
(9) 115 200 baud

initialization_
string

Contains all the necessary initialization commands to be sent to the
modem in order to configure it properly. This may include the
configuration of special modem features.

initialization_string ::= array
initialization_string_element ::= structure
{
 request: octet-string,
 response: octet-string,
 delay_after_response: long-unsigned
}
If the array contains more than one initialization_string_element, the
requests are sent in a sequence. The next request is sent after the
expected response matching the previous request and waiting a
delay_after_response time [ms], to allow the modem to execute the
request.

REMARK: It is assumed that the modem is pre-configured so that it accepts the
initialization_string. If no initialization is needed, the initialization string is empty.

modem_profile Defines the mapping from Hayes standard commands/responses to
modem specific strings.

modem_profile::= array
{
 modem_profile_element: octet-string
}

The modem_profile array must contain the corresponding strings for
the modem used in the following order :

Element 0: OK,
Element 1: CONNECT,
Element 2: RING,
Element 3 NO CARRIER,
Element 4: ERROR,
Element 5: CONNECT 1 200,
Element 6 NO DIAL TONE,
Element 7: BUSY,
Element 8: NO ANSWER,
Element 9: CONNECT 600,

62056-62 © IEC:2006(E) – 67 –

 Element 10: CONNECT 2 400,
Element 11: CONNECT 4 800,
Element 12 CONNECT 9 600,
Element 13: CONNECT 14 400,
Element 14: CONNECT 28 800,
Element 15: CONNECT 36 600,
Element 16: CONNECT 56 000

A.4 Auto answer (class_id: 28)

NOTE The name of this interface class has been changed from “PSTN auto answer ” to “Auto answer”, as it can
be used not only for PSTN networks, but also for other networks, for example GSM. Otherwise, the definition
remains unchanged.

An instance of the “Auto answer” class stores data related to the management of data transfer
between a device and a modem, which is used to answer incoming calls. Several modems
can be configured.

Auto answer 0...n class_id = 28, version = 0
Attribute(s) Data type Min. Max. Def.
1. logical_name (static) octet-string
2. mode (static) enum
3. listening_window (static) array
4. status (dyn.) enum
5. number_of_calls (static) unsigned
6. number_of_rings (static) nr_rings_type
Specific method(s) m/o

Attribute description

logical_name Identifies the “Auto answer” object instance. See D.2.1.4.
mode Defines the working mode of the line when the device is auto answer.

mode ::= enum

(0) line dedicated to the device,
(1) shared line management with a limited number of calls

allowed. Once the number of calls is reached, the
window status becomes inactive until the next start
date, whatever the result of the call,

(2) shared line management with a limited number of
successful calls allowed. Once the number of
successful communications is reached, the window
status becomes inactive until the next start date,

(3) currently no modem connected,
(200...255) manufacturer specific modes

 – 68 – 62056-62 © IEC:2006(E)

listening_window Contains the start and end instant when the window becomes active
(for the start instant), and inactive (for the end instant). The
start_date defines implicitly the period.

Example: when the day of month is not specified (equal to 0xFF) this
means that we have a daily share line management. Daily, monthly
…window management can be defined.

listening_window ::= array window_element

window_element ::= structure
{
 start _time: octet-string,
 end_time: octet-string
}
start_time and end_time are formatted as set in 4.4.1 for date_time

status Here is defined the status of the window.

status ::= enum

(0) Inactive: the device will manage no new incoming call.
This status is automatically reset to Active when the
next listening window starts.

(1) Active: the device can answer to the next incoming
call.

(2) Locked: This value can be set automatically by the
device or by a specific client when this client has
completed its reading session and wants to give the
line back to the customer before the end of the
window duration. This status is automatically reset to
Active when the next listening window starts.

number_of_calls This number is the reference used in modes 1 and 2.

When set to 0, this means there is no limit.

number_of_rings Defines the number of rings before the meter connects the modem.
Two cases are distinguished: number of rings within the window
defined by attribute “listening_window” and number of rings outside
the “listening_window”.

nr_rings_type := structure
{
 nr_rings_in_window: unsigned,
 (0: no connect in window)
 nr_rings_out_of_window: unsigned
 (0: no connect out of window)
}

A.5 Auto connect (class_id: 29)

NOTE The name of this interface class has been changed from “PSTN auto dial” to “Auto connect”, as its use has
been generalized; it is not only suitable for the configuration of sending messages – generally protocol telegrams –
via PSTN modems, but also sending messages of various types over various communication infrastructures.

An instance of the “Auto connect” class controls and stores data related to the management
of the data transfer from the metering device to one or several destinations.

The messages to be sent, the conditions on which they shall be sent and the relation between
the various modes, the calling windows and destinations are not defined here.

Depending on the mode, one or more instances of this interface class may be necessary to
perform the function of sending out messages.

62056-62 © IEC:2006(E) – 69 –

Auto connect 0...n class_id = 29, version = 1
Attribute(s) Data type Min. Max. Def.
1. logical_name (static) octet-string
2. mode (static) enum
3. repetitions (static) unsigned
4. repetition_delay (static) long-unsigned
5. calling_window (static) array
6. destination_list (static) array
Specific method(s) m/o

Attribute description

logical_name Identifies the “Auto connect” object instance. See D.2.1.3.
mode Defines the mode controlling the auto dial functionality concerning

the timing, the message type to be sent and the infrastructure to be
used.

mode ::= enum

(0) no auto dialling,
(1) auto dialling allowed anytime,
(2) auto dialling allowed within the validity time of

the calling window,“regular”
(3) auto dialling allowed within the validity time of

the calling window; “alarm” initiated auto
dialling allowed anytime,

(4) SMS sending via Public Land Mobile Network
(PLMN),

(5) SMS sending via PSTN,
(6) email sending,
(200..255) manufacturer specific modes

repetitions The maximum number of trials in case of unsuccessful dialling
attempts.

repetition_delay The time delay, expressed in seconds until an unsuccessful dial
attempt can be repeated.

repetition_delay 0 means delay is not specified

calling_window Contains the start and end date/time stamp when the window
becomes active (for the start instant), or inactive (for the end instant).
The start_date defines implicitly the period.

Example: when day of month is not specified (equal to 0 x FF) this
means that we have a daily share line management. Daily, monthly
…window management can be defined.

calling_window ::= array window_element
window_element ::= structure
{
 start_time: octet-string,
 end_time: octet-string
}
start_time and end_time are formatted as set in 4.4.1 for date_time

 – 70 – 62056-62 © IEC:2006(E)

destination_list Contains the list of destinations (e.g. phone numbers, email

addresses or their combinations) where the message(s) has(have) to
be sent under certain conditions.

The conditions and their link to the elements of the array are not
defined here.

destination_list ::= array destination
{
 destination: octet_string
}

A.6 IEC HDLC setup class (class_id: 23)

An instance of the “HDLC setup class” contains all data necessary to set up a communication
channel according to IEC 62056-46. Several communication channels can be configured.

IEC HDLC setup 0...n class_id = 23, version = 1
Attribute(s) Data type Min. Max. Def.
1. logical_name (static) octet-string
2. comm_speed (static) enum 0 9 5
3. window_size_transmit (static) unsigned 1 7 1
4. window_size_receive (static) unsigned 1 7 1
5. max_info_field_length

_transmit
(static) long-unsigned 32 2030 128

6. max_info_field_length
_receive

(static) long-unsigned 32 2030 128

7. inter_octet_time_out (static) long-unsigned 20 6000 25
8. inactivity_time_out (static) long-unsigned 0 120
9. device_address (static) long-unsigned 0x0010 0x3FFD
Specific method(s) m/o

NOTE 1 The maximum value of the attributes max_info_field_length_transmit and max_info_field_length_receive
has been increased from 128 to 2030 for efficiency reasons.
NOTE 2 In order to ensure a minimal performance, the primary station should offer at least a
max_info_field_length_receive of 128 bytes.
NOTE 3 The maximum value of the inter-octet-time-out attribute has been increased from 1000 ms to 6000 ms in
order to allow using communication media, where long delays may occur. The default value has been changed to
25 ms to align with 6.4.4.3.3 of IEC 62056-46.

Attribute description

logical_name Identifies the “IEC HDLC setup” object instance. See D.2.1.14.
comm_speed The communication speed supported by the corresponding port

enum: (0) 300 baud,
(1) 600 baud,
(2) 1 200 baud,
(3) 2 400 baud,
(4) 4 800 baud,
(5) 9 600 baud,
(6) 19 200 baud,
(7) 38 400 baud,
(8) 57 600 baud,
(9) 115 200 baud

This communication speed can be overridden if the HDLC mode of
a device is entered through a special mode of another protocol.

62056-62 © IEC:2006(E) – 71 –

window_size_
transmit

The maximum number of frames that a device or system can
transmit before it needs to receive an acknowledgement from a
corresponding station. During logon, other values can be
negotiated.

window_size_
receive

The maximum number of frames that a device or system can
receive before it needs to transmit an acknowledgement to the
corresponding station. During logon, other values can be
negotiated.

max_info_length_
transmit

The maximum information field length that a device can transmit.
During logon, a smaller value can be negotiated.

max_info_length_
receive

The maximum information field length that a device can receive.
During logon, a smaller value can be negotiated.

inter_octet_time_out Defines the time, expressed in milliseconds, over which, when any
character is received from the primary station, the device will treat
the already received data as a complete frame.

inactivity_time_out Defines the time, expressed in seconds over which, when any
frame is received from the primary station, the device will process a
disconnection.

When this value is set to 0, this means that the inactivity_time_out
is not operational.

device_address Contains the physical device address of a device.

In the case of single byte addressing:

0x00 NO_STATION Address,
0x01…0x0F Reserved for future use,
0x10...0x7D Usable address space,
0x7E ‘CALLING’ device address,
0x7F Broadcast address

In the case of double byte addressing:

0x0000 NO_STATION address,
0x0001..0x000F Reserved for future use,
0x0010..0x3FFD Usable address space,
0x3FFE ‘CALLING’ physical device address,
0x3FFF Broadcast address

A.7 IEC twisted pair (1) setup (class_id: 24)

An instance of the “IEC twisted pair (1)” setup class contains all data which are necessary to
set up a communication channel according to IEC 62056-31. Several communication channels
can be configured.

 – 72 – 62056-62 © IEC:2006(E)

IEC twisted pair (1) setup 0...n class_id = 24, version = 0
Attribute(s) Data type Min. Max. Def.
1. logical_name (static) octet-string
2. secondary_address (static) octet-string
3. primary_address_list (static) primary_adress

_list_type

4. tabi_list (static) tabi_list_type
5. fatal_error (dynamic) enum
Specific method(s) m/o

Attribute description

logical_name Identifies the “IEC twisted pair setup” object instance. See
 D.2.1.15.

secondary_address Secondary_address memorizes the ADS of the secondary
station (see IEC 62056-31) that corresponds to the real
equipment.

 octet-string (SIZE(6))

primary_address_list Primary_address_list memorizes the list of ADP or primary
station physical addresses for which each logical device of
the real equipment (the secondary station) has been
programmed (see IEC 62056-31).

 primary_adress_list_type ::= array
{
 primary_address_element
}
primary_address_element ::= octet-string (SIZE(1))

tabi_list tabi_list represents the list of the TAB(i) for which the real
equipment (the secondary station) has been programmed in
case of forgotten station call (see IEC 62056-31).

tabi_list_type ::= array tabi_element

tabi_element ::= integer

fatal_error FatalError represents the last occurrence of one of the fatal
errors of the protocols described in IEC 62056-31.

The initial default value of this variable is "00"H. Then, each
fatal error is spotted.

 enum (0) No-error,
(1) t-EP-1F,
(2) t-EP-2F,
(3) t-EL-4F,
(4) t-EL-5F,
(5) eT-1F,
(6) eT-2F,
(7) e-EP-3F,
(8) e-EP-4F,
(9) e-EP-5F,
(10) e-EL-2F

62056-62 © IEC:2006(E) – 73 –

A.8 TCP-UDP setup (class_id: 41)

An instance of the TCP-UDP setup class contains all data necessary to set up the TCP or
UDP sub-layer of the COSEM TCP or UDP based transport layer of a TCP-UDP/IP based
communication profile.

In TCP-UDP/IP based communication profiles, all application associations between a physical
device hosting one or more COSEM client application processes and a physical device
hosting one or more COSEM server application processes rely on a single TCP or UDP
connection. The TCP or UDP entity is wrapped in the COSEM TCP-UDP based transport
layer. Within a physical device, each application process – client application process or server
logical device - is bound to a Wrapper Port (WPort). The binding is done with the help of the
SAP Assignment object.

On the other hand, a COSEM TCP or UDP based transport layer may be capable to support
more than one TCP or UDP connections, between a physical device and several peer physical
devices hosting COSEM application processes.

NOTE When a COSEM physical device supports various data link layers (e.g. Ethernet and PPP), then an
instance of the TCP-UDP setup object is necessary for each of them.

TCP-UDP setup 0...n class_id = 41, version = 0
Attribute(s) Data type Min. Max. Def
1. logical_name (static) octet-string
2. TCP-UDP_port (static) long-unsigned
3. IP_reference (static) octet-string
4. MSS (static) long-unsigned 40 65,535 576
5. nb_of_sim_conn (static) unsigned 1
6. inactivity_time_out long-unsigned 180
Specific method(s) m/o

Attribute description

logical_name Identifies the TCP-UDP setup object instance. See D.2.1.16.

TCP-UDP_port Holds the TCP-UDP port number on which the physical device is
listening for the DLMS/COSEM application.

IP_reference References an IP setup object by its logical name. The referenced
object contains information about the IP Address settings of the IP
layer supporting the TCP-UDP layer.

MSS With the help of the Maximum Segment Size (MSS) option, a TCP
can indicate the maximum receive segment size to its partner. Note,
that:

- this option must only be sent in the initial connection request
(i.e. in segments with the SYN control bit sent);

- if this option is not present, conventionally MSS is considered
as its default value, 576;

- MSS is not negotiable; its value is indicated by this attribute.

nb_of_sim_conn The maximum number of simultaneous connections the COSEM
TCP-UDP based transport layer is able to support.

 – 74 – 62056-62 © IEC:2006(E)

inactivity_time_out Defines the time, expressed in seconds over which, if no frame is

received from the COSEM client, the inactive TCP connection shall
be aborted.

When this value is set to 0, this means that the inactivity_time_out is
not operational. In other words, a TCP connection, once established,
in normal conditions – no power failure, etc. - will never be aborted
by the COSEM server.

Note, that all actions related to the management of the inactivity
time-out function – measuring the inactivity time, aborting the TCP
connection if the time-out is over, etc. – are managed inside the
TCP-UDP layer implementation.

A.9 IPv4 setup (class_id: 42)

An instance of the IPv4 setup class handles all information that is related to the IP Address
settings associated to a given device and to a lower layer connection on which these settings
are used.

There shall be an instance of this class in a device for each different network interface
implemented. For example, if a device has two serial interfaces (and is using the TCP/IP
profile on both of them), there shall be two instances of the IPv4 Setup class in that device:
one for each of these interfaces.

IPv4 setup 0...n class_id = 42, version = 0
Attribute(s) Data type Min. Max. Def
1. logical_name (static) octet-string
2. DL_reference (static) octet-string
3. IP_address double-long-

unsigned

4. multicast_IP_address array
5. IP_options array
6. subnet_mask double-long-

unsigned

7. gateway_IP_address double-long-
unsigned

8. use_DHCP_flag (static) boolean
9. primary_DNS_address double-long-

unsigned

10. secondary_DNS_address double-long-
unsigned

Specific method(s) m/o
1. add_mc_IP_address (data) o
2. delete_mc_IP_address (data) o
3. get_nbof_mc_IP_addresses (data) o

Attribute description

logical_name Identifies the IPv4 setup object instance. See D.2.1.17.

DL_reference References a Data link layer (Ethernet or PPP) setup object by its
logical name. The referenced object contains information about the
specific settings of the data link layer supporting the IP layer.

62056-62 © IEC:2006(E) – 75 –

IP_address Carries the value of the IP address (IPv4 address) of this physical
device on the network to which the device is connected via the
referenced lower layer interface.

It can be either (static) or (dynamic). In the latter case, dynamic IP
address assignment (e.g. DHCP) is used.

If no IP address is assigned, the value is 0.

multicast_IP_
address

Contains an array of IP addresses. IP addresses in this array must
fall into the multicast group address range (“Class D” addresses,
including IP addresses in the range of 224.0.0.0 to 239.255.255.255).

When a device receives an IP datagram with one of these IP
addresses in the destination IP address field, it shall consider that
this datagram is addressed to it.

multicast_IP_address ::= array double-long-unsigned

IP_options Contains the necessary parameters to support the selected IP
options, for example Datagram time-stamping or security services
(IPSec).
IP_options ::= array IP_options_element

IP_options_element ::= SEQUENCE
{
 IP-Option-Type unsigned,
 IP-Option-Length unsigned,
 IP-Option-Data octet-string
}

Allowed IP-Option-Types:

- Security - 0x82

If this option is present, the device shall be allowed to send security,
compartmentation, handling restrictions and TCC (closed user group)
parameters within its IP Datagrams. The value of the IP-Option-
Length Field must be 11, and the IP-Option-Data shall contain the
value of the Security, Compartments, Handling Restrictions and
Transmission Control Code values, as specified in STD 0005/RFC
791.

- Loose Source and Record Route - 0x83

If this option is present, the device shall supply routing information to
be used by the gateways in forwarding the datagram to the
destination, and to record the route information.

The IP-Option-length and IP-Option-Data values are specified in STD
0005/RFC 791.

- Strict Source and Record Route - 0x89

If this option is present, the device shall supply routing information to
be used by the gateways in forwarding the datagram to the
destination, and to record the route information.

The IP-Option-length and IP-Option-Data values are specified in STD
0005/RFC 791.

 – 76 – 62056-62 © IEC:2006(E)

- Record Route - 0x07

If this option is present, the device shall as well:
- send originated IP Datagrams with that option, providing means to

record the route of these Datagrams;
- as a router, send routed IP Datagrams with the route option

adjusted according to this option.

The IP-Option-length and IP-Option-Data values are specified in STD
0005/RFC 791.

- Internet Timestamp - 0x44

If this option is present, the device shall as well:
- send originated IP Datagrams with that option, providing means to

time-stamp the datagram in the route to its destination;
- as a router, send routed IP Datagrams with the time-stamp option

adjusted according to this option.

The IP-Option-length and IP-Option-Data values are specified in STD
0005/RFC 791.

subnet_mask Contains the subnet mask.

When sub-networking is used in a network segment, each device
concerned must behave conforming to the sub-networking rules. In
order to do that, the device, besides of its IP address, needs also to
know, how the IP address is structured within this sub-networked
segment. The subnet_mask attribute carries this information.

With IPv4, the subnet_mask is a 32 bits word, expressed exactly in
the same format as an IP Address (e.g. 255.255.255.0), but has
another meaning: the ‘0’ bits of the subnet_mask indicate the portion
of the IP Address which is still used as Device_ID on a sub-networked
IP Network

4
.

gateway_IP_address Contains the IP Address of the gateway device.

In most IP implementations, there is a code in the module that
handles outgoing datagrams to decide if a datagram can be sent
directly to the destination on the local network or if it must be sent to
a gateway. In order to be able to send non-local datagrams to the
gateway, the device must know the IP address of the gateway device
assigned to the given network segment.

If no IP address is assigned, the value is 0.

use_DHCP_flag When this flag is set to TRUE, the device uses DHCP (Dynamic Host
Configuration Protocol) to dynamically determine the IP_address,
subnet_mask and gateway_IP_address parameters.

On the other hand, when this flag is set to FALSE, the IP_address,
subnet_mask and gateway_IP_address parameters must be locally
set.

———————
4 See more about sub-networking in RFC 940 and RFC 950.

62056-62 © IEC:2006(E) – 77 –

primary_DNS_
address

The IP Address of the primary Domain Name Server (DNS).

If no IP address is assigned, the value is 0.

secondary_DNS_add
ress

The IP Address of the secondary Domain Name Server (DNS).

If no IP address is assigned, the value is 0.

Method description

add_mc_IP_address
(IP_Address)

Adds one multicast IP address to the multicast_IP_Address array.

IP_Address ::= double-long-unsigned

delete_mc_IP_
address
(IP_Address)

Deletes one IP Address from the multicast_IP_Address array. The
IP Address to be deleted is identified by its value.

IP_Address ::= double-long-unsigned

get_nbof_mc_IP_
addresses
(data)

Returns the number of IP Addresses contained in the
multicast_IP_Address array.

data ::= unsigned

A.10 Ethernet setup (class_id: 43)

An instance of the Ethernet setup class handles all information that is related to Ethernet
settings associated to a given physical device and to a lower layer connection on which these
settings are used.

There shall be an instance of this class for each network interface of a physical device, using
the Ethernet protocol.

Ethernet setup 0...n class_id = 43, version = 0
Attribute(s) Data type Min. Max. Def.
1. logical_name (static) octet-string
2. MAC_address octet-string
Specific method(s) m/o

Attribute description

logical_name Identifies the Ethernet setup object instance. See D.2.1.18.
MAC_address Holds the MAC address.

A.11 PPP setup (class_id: 44)

An instance of the PPP setup class handles all information that is related to PPP settings
associated to a given physical device and to a lower layer connection on which these settings
are used.

 – 78 – 62056-62 © IEC:2006(E)

There shall be an instance of this class for each network interface of a physical device, using
the PPP protocol.

PPP setup 0...n Class_id = 44, version = 0
Attribute(s) Data type Min. Max. Def.
1. logical_name (static) octet-string
2. PHY_reference (static) octet-string
3. LCP_options (static) LCP_options_type
4. IPCP_options (static) IPCP_options_type
5. PPP_authentication (static) PPP_auth_type
Specific method(s) m/o

Attribute description

logical_name Identifies the PPP setup object instance. See D.2.1.19.
PHY_reference References another object by its logical_name. The object referenced

contains information about the specific physical layer interface,
supporting the PPP layer.

LCP_options This attribute contains the parameters for the Link Control Protocol
options. These options include:

- Maximum-Receive-Unit (MRU, Type 1, STD 0051/RFC 1661). This

configuration option may be sent to inform the peer that the
implementation can receive larger packets, or to request that peer
send smaller packets. The default value is 1500 octets;

- Async-Control-Character_Map (ACCM, Type 2, STD 0051/RFC
1662): This configuration option provides a method to negotiate the
use of control character transparency on asynchronous links;

- Authentication-Protocol (Type 3, STD 0051/RFC 1661, PAP, CHAP
or EAP); This configuration option provides a method to negotiate
the use of a specific protocol for authentication. By default,
authentication is not required;

- Magic-Number (Type 5, STD 0051/RFC 1661). This configuration
option provides a method to detect looped-back links and other data
link layer anomalies;

- Protocol-Field-Compression (PFC, Type 7, STD 0051/RFC 1661).
This configuration option provides a method to negotiate the
compression of the PPP protocol field;

- Address-and-Control-Field-Compression (ACFC, Type 8, STD
0051/RFC 1661). This configuration option provides a method to
negotiate the compression of the data link layer address and control
fields;

- FCS-Alternatives (Type 9, RFC 1570). This configuration option
provides a method for an implementation to specify another FCSS
format to be sent by the peer, or to negotiate away the FCS
altogether;

- Call-back (Type 13, RFC 1570). This configuration option provides a
method for an implementation to request a dial-up peer to call back.
This provides enhanced security by ensuring that the remote site can
connect only from a single location as defined by the call-back
number.

The structure of this attribute is the following:

LCP_options ::= SEQUENCE OF LCP_options_element

LCP_options_element ::= SEQUENCE
{
 LCP-option-type unsigned,
 LCP-option-length unsigned,

62056-62 © IEC:2006(E) – 79 –

 LCP-option-data CHOICE

 {
 MRU [1] long-unsigned,
 ACCM [2] double-long-unsigned,
 Auth-Prot [3] long-unsigned,
 Mag-Num [5] double-long-unsigned,
 ProtF-Compr [7] boolean,
 AdCtr-Compr [8] boolean,
 FCS-Alter [9] unsigned,
 Callback [13] callback-data
 }
}

LCP_option_type ::= ENUMERATED
{
 Max-Rec-Unit (1),
 Async-Control-Char-Map (2),
 Auth-Protocol (3),
 Magic-Number (5),
 Protocol-Field-Compression (7),
 Address-and-Ctr-Compression (8),
 FCS-Alternatives (9),
 Callback (13)
}

For the LCP-option-data element, the following applies:

The default value of MRU is 1500.

The value of the Auth-Prot (Authentication Protocol) element indicates
the authentication protocol used on the given PPP link.

Possible values today are:

0x0000 - No authentication protocol is used,
0xc023 - The PAP protocol is used,
0xc223 - The CHAP protocol is used,
0xc227 - The EAP protocol is used.

The value of the FCS-Alter (FCS Alternatives) options field identifies the
FCS used. These are assigned as follows:

 bit 1 Null FCS,
 bit 2 CCITT 16-bit FCS,
 bit 3 CCITT 32-bit FCS

Callback-data ::= SEQUENCE
{
 callback-active boolean, // default: false,
 callback-data-length unsigned,
 callback-operation unsigned,
 callback-message octet-string
}

The callback-active member indicates whether the callback option is
active on this PPP link.

 – 80 – 62056-62 © IEC:2006(E)

callback-operation ::= ENUMERATED
{
 Location-is-determined-by-user-authentication (0),
 Dialling-string (1),
 Location-identifier (2),
 E.164-number (3),
 X500-distinguished-name (4),
 Location-is-determined-during-CBCP-negotiation (6)
}

The callback-message field is zero or more octets, and its general
contents are determined by the callback-operation field. The actual
format of the information is site or application specific (see in RFC
1570).

NOTE 1 For more details on Link Control Protocol, please refer to RFC 1661.
NOTE 2 For latest assigned numbers, see RFC 1700.

IPCP_options This attribute contains the parameters for the IP Control Protocol – the
Network Control Protocol module of the PPP for negotiating IP
parameters on the PPP link options. These options include:
- IP-Compression-Protocol (Type 2, RFC 1332). This parameter

indicates the IP compression protocol supported within the PPP link
described by this object;

- Preferred-Local-IP-Address (Type 3, RFC 1332). This configuration
option provides a way to negotiate the IP address to be used on the
local end of the link. It allows the sender of the Configure-Request to
state, which IP-address is desired, or to request that the peer
provide the information. The peer can provide this information by
NAK-ing the option, and returning a valid IP-Address;

- Preferred-Peer-IP-Addresses. This configuration option provides a
way to negotiate the IP Address to be used on the remote end of the
link. When the Grant-Access-Only-to-Pref-Peer-on-List parameter is
set to be TRUE, the device shall accept PPP connection only with a
remote device having one of the IP Addresses on this list. When the
Use-Static-IP-Pool parameter is set to TRUE, the COSEM Server
device shall try to assign one of these IP Addresses to the remote
device;

- Grant-Access-Only-to-Pref-Peer-on-List. (GAO) This parameter
indicates whether the device can accept PPP connection only with
peer devices with IP Address on the above list or not. Its default
value is FALSE;

- Use-Static-IP-Pool (USIP). This parameter indicates whether the
device should try to assign one of the IP Addresses of the Preferred-
Peer-IP-Addresses to the remote end device during the IP Address
negotiation phase or not.

The structure of this attribute is as follows:

IPCP_options ::= SEQUENCE OF IPCP_options_element

IPCP_options_element ::= SEQUENCE
{
 IPCP-option-type unsigned,
 IPCP-option-length unsigned,
 IPCP-option-data CHOICE
 {
 IP-Comp-Prot [2] long-unsigned,
 Pref-Local-IP [3] double-long-unsigned,
 Pref-Peer-IP [20] SEQUENCE OF double-long-unsigned,
 GAO [21] boolean,
 USIP [22] boolean
 }

62056-62 © IEC:2006(E) – 81 –

}
IPCP-option-type ::= ENUMERATED
{
 IP-Comp-Prot (2),
 Pref_Local-IP (3),
 Pref-Peer-IP (20),
 GAO (21),
 USIP (22)
}
Possible values for the IP-Compression-Protocol (IP-Comp-Prot)
parameter today are:

0x0000 – No IP Compression is used (default),
0x002d – Van Jacobson (RFC 1232),
0x0061 – IP Header Compression (RFC 2507, 3544)
0x0003 – Robust Header Compression (RFC 3241)

NOTE 1 For more details on IPCP, please refer to RFC 1332.
NOTE 2 For latest assigned numbers, see RFC 1700.

PPP_
authentication

Contains the parameters required by the PPP authentication procedure
used.

PPP_authentication ::= CHOICE {
 No-authentication: [0] NULL,
 PAP-login [1] structure,
 {
 user-name octet-string,
 PAP-password octet-string
 }
 CHAP-algorithm [2] structure,
 {
 user-name octet-string
 algorithm_id unsigned
 --default: 5 (MD5)
 }
 EAP-params: [3] supported-EAP-types
}

Possible values for CHAP-algorithm-id parameter today are as follows:
0x05 – CHAP with MD5 (default),
0x06 – SHA-1,
0x80 – MS-CHAP,
0x81 – MS-CHAP-2

 New values can be used as become assigned.

NOTE When CHAP is used, a “secret” is also required to verify the “challenge”5 sent
by the Client. This “secret” is not accessible in the PPP setup object.

supported-EAP-types ::= SEQENCE
{
 md5-challenge boolean,
 one-time-password boolean,
 generic-token-card boolean
}

———————
5 For more details about CHAP, please refer to RFC 1994.

 – 82 – 62056-62 © IEC:2006(E)

A.12 GPRS modem setup (class_id: 45)

A “GPRS modem setup” object stores all the necessary data for a GPRS modem
management.

GPRS modem setup 0…n class_id = 45, version = 0
Attribute(s) Data type Min. Max. Def.
1. logical_name (static) octet-string
2. APN (static) octet-string
3. PIN_code (static) long-unsigned
4. quality_of_service (static) structure

Specific method(s) m/o

Attribute description

logical_name Identifies the “GPRS modem setup” object instance. See D.2.1.20.
APN Defines the access point name of the network.

octet-string

PIN_code Holds the personal identification number.

long-unsigned

quality_of_service Specifies the quality of service parameters. It is a structure of 2
elements:
- the first one defines the default or minimum characteristics of

the concerned network. These parameters have to be set to best
effort value;

- the second element defines the requested parameters.
quality_of_service ::= structure
{
 default qos_element,
 requested qos_element
}

qos_element ::= structure
{
 precedence unsigned,
 delay unsigned,
 reliability unsigned,
 peak throughput unsigned,
 mean throughput unsigned
}

62056-62 © IEC:2006(E) – 83 –

A.13 SMTP setup (Class_id: 46)

An SMTP setup object allows defining the parameters for SMTP setup.

SMTP setup 0…n class_id = 46, version = 0
Attribute(s) Data type Min. Max. Def.
1. logical_name (static) octet-string
2. server_port (static) long-unsigned 25
3. user_name (static) octet-string
4. login_password (static) octet-string
5. server_address (static) octet-string
6. sender_address (static) octet-string
Specific method(s) m/o

Attribute description

logical_name Identifies the “SMTP setup” object instance. See D.2.1.21.

server_port Defines the value of the TCP-UDP port related to this protocol. By
default, this value is the SMTP port Id given by IETF: 25.

user_name Defines the user name to be used for the login to the SMTP server.

login_password Password to be used for login. When the string is void, this means
that there is no authentication.

server_address Defines the server address as an octet string. This server address
can be a name, which must be resolvable by the primary DNS or the
secondary DNS. In the case when it is directly the IP address of the
server, which is specified here, it shall be a string in dotted format.
Example: 163.187.45.87

sender_address Defines the sender address as an octet string. This server address
can be a name. In the case when it is directly the IP address of the
server, which is specified here, it will be a string in dotted format.

 – 84 – 62056-62 © IEC:2006(E)

Annex B
(normative)

Data model and protocol

The data model uses generic building blocks to define the complex functionality of the
metering equipment. It provides a view of this functionality of the meter, as it is available at its
interface(s). The model does not cover internal, implementation specific issues.

The communication protocol defines how the data can be accessed and exchanged.

This is illustrated in the figure below:

Figure B.1 – The three step approach of COSEM

• The COSEM specification specifies metering domain specific interface classes. The
functionality of the meter is defined by the instances of these interface classes, called
COSEM objects. This is defined in this standard. Logical names, (OBIS codes), identifying
the COSEM objects are defined in IEC 62056-61.

• The attributes and methods of these COSEM objects can be accessed and used via the
messaging services of the application layer.

• The lower layers of the protocol transport the information.

3. Transporting

C0 01 00 03 01 01 01 08 00 FF 02

2. Messaging

Protocol Services to access
attributes and methods

ISO, IE
C,...

Communication Protocol

Messages :
Service_Id(Class_Id, Instance_Id, Attribute_Id/Method_Id)

Encoding: (APDU)

1. Modeling COSEM Interface Objects

Register 0..n Class_id=3, Version=0
Attribute(s) Data Type Min Max Def
1. logical_name (static) octet-string
2. value (dyn.) instance specific
3. scaler-unit (static) scal_unit_type
Method(s) m/o
1. reset o

DLMS User A
ssociatio

n

IEC 313/02

62056-62 © IEC:2006(E) – 85 –

Annex C
(normative)

Using short names for accessing attributes and methods

C.1 Introduction – referencing methods

Attributes and methods of COSEM objects can be referenced in two different ways:

Using COSEM logical names: In this case, the attributes and methods of a COSEM object
are referenced via the identifier of the COSEM object instance to which they belong.

The reference for an attribute is:

• class_id, value of the ‘logical_name’ attribute, attribute_index;

The reference for a method is:

• class_id, value of the ‘logical_name’ attribute, method_index

where

• attribute_index is used as the identifier of the required attribute;

• method_index is used as the identifier of the required method.

Using short names: This kind of referencing is intended for use in simple devices. In this
case, each attribute and method of a COSEM object is identified with a 13-bit integer. The
syntax for the short name is the same as the syntax of the name of a DLMS named variable.

C.2 Guidelines for assigning short names

This clause gives guidelines for assigning short names for public attributes and methods.

Data
class_id = 1, version = 0 Short name Remarks

Attribute(s)
logical_name x x is the base_name of the object.
value x+8
Specific method(s)

Register
class_id = 3, version = 0 Short name Remarks

Attribute(s)
logical_name x x is the base_name of the object.
value x+8
scaler_unit x+16
Specific method(s)
reset (data) x+40

 – 86 – 62056-62 © IEC:2006(E)

Extended register
class_id = 4, version = 0 Short name Remarks

Attribute(s)
logical_name x x is the base_name of the object.
value x+8
scaler_unit x+16
status x+24
capture_time x+32
Specific method(s)
reset (data) x+56

Demand register
class_id = 5, version = 0 Short name Remarks

Attribute(s)
logical_name x x is the base_name of the object.
current_average_value x+8
last-average_value x+16
scaler_unit x+24
status x+32
capture_time x+40
start_time_current x+48
period x+56
number_of_periods x+64
Specific method(s)
reset (data) x+72
next_period (data) x+80

Register activation
class_id = 6, version = 0 Short name Remarks

Attribute(s)
logical_name x x is the base_name of the object.
register_assignment x+8
mask_list x+16
active_mask x+24
Specific method(s)
add_register (data) x+48
add_mask (data) x+56
delete_mask (data) x+64

62056-62 © IEC:2006(E) – 87 –

Profile generic
class_id = 7, version = 1 Short name Remarks

Attribute(s)
logical_name x x is the base_name of the object.
Buffer x+8 Selective access to the buffer is

provided using parameterized
access.

capture_objects x+16
capture_period x+24
sort_method x+32
sort_object x+40
entries_in_use x+48
profile_entries x+56
Specific method(s)
reset (data) x+88
capture (data) x+96

Clock
class_id = 8, version = 0 Short name Remarks

Attribute(s)
logical_name x x is the base_name of the object.
Time x+8
time_zone x+16
Status x+24
daylight_savings_begin x+32
daylight_savings_end x+40
daylight_savings_deviation x+48
daylight_savings_enabled x+56
clock_base x+64
Specific method(s)
adjust_to quarter (data) x+96
adjust_to_measuring_period
(data)

x+104

adjust_to_minute (data) x+112
adjust_to_preset_time (data) x+120
preset_adjusting_time (data) x+128
shift_time (data) x+136

Script table
class_id = 9, version = 0 Short name Remarks

Attribute(s)
logical_name x x is the base_name of the object.
Scripts x+8
Specific method(s)
execute (data) x+32

 – 88 – 62056-62 © IEC:2006(E)

Schedule
class_id = 10, version = 0 Short name Remarks

Attribute(s)
logical_name x x is the base_name of the object.
Entries x+8
Specific method(s)
enable/disable (data) x+32
insert (data) x+40
delete (data) x+48

Special days table
class_id = 11, version = 0 Short name Remarks

Attribute(s)
logical_name x x is the base_name of the object.
Entries x+8
Specific method(s)
insert (data) x+16
delete (data) x+24

Activity calendar
class_id = 20, version = 0 Short name Remarks

Attribute(s)
logical_name x x is the base_name of the object.
calendar_name_active x+8
season_profile_active x+16
week_profile_table_active x+24
day_profile_table_active x+32
calendar_name_passive x+40
season_profile_passive x+48
week_profile_table_passive x+56
day_profile_table_passive x+64
activate_passive_calendar_time x+72
Specific method(s)
activate_passive_calendar
(data)

x+80

62056-62 © IEC:2006(E) – 89 –

Association SN
class_id = 12, version = 1 Short name Remarks

Attribute(s)
logical_name x a x is the base name of the object.
object_list x+8 Selective access to the object_list

is provided using parameterized
access.

Specific method(s)
read_by_logicalname (data) x+48 With this method, the

parameterized access feature can
also be used.

get_attributes&methods (data) x+56 With this method, the
parameterized access feature can
also be used.

change_LLS_secret (data) x+64
change_HLS_secret (data) x+72
reply_to_HLS_authentication
(data)

x+88

a The base name of the object “Association SN” corresponding to the current association is 0xFA00.

SAP assignment
class_id = 17, version = 0 Short name Remarks

Attribute(s)
logical_name x x is the base_name of the object.
SAP_assignment_list x+8
Specific method(s)
connect_logical_device (data) x+32

Register monitor
class_id = 21, version = 0 Short name Remarks

Attribute(s)
logical_name x x is the base_name of the object.
Thresholds x+8
monitored_value x+16
Actions x+24
Specific method(s)

Utility tables
class_id = 26, version = 0 Short name Remarks

Attribute(s)
logical_name x x is the base_name of the object.
table_ID x+8
Length x+16
Buffer x+24
Specific method(s)

Single action schedule
class_id = 22, version = 0 Short name Remarks

Attribute(s)
logical_name x x is the base_name of the object.
executed_script x+8
Type x+16
execution_time x+24
Specific method(s)

 – 90 – 62056-62 © IEC:2006(E)

Register table
class_id = 61, version = 0 Short name Remarks

Attribute(s)
logical_name x x is the base_name of the object.
table_cell_values x+8
table_cell_definition x+16
scaler_unit x+24
Specific method(s)
Reset x+40
Capture x+48

Status mapping
class_id = 63, version = 0 Short name Remarks

Attribute(s)
logical_name x x is the base_name of the object.
status_word x+8
mapping_table x+16
Specific method(s)

IEC local port setup
class_id = 19, version = 0 or 1 Short name Remarks

Attribute(s)
logical_name x x is the base_name of the object.
default_mode x+8
default_baud x+16
prop_baud x+24
response_time x+32
device_addr x+40
pass_p1 x+48
pass_p2 x+56
pass_w5 x+64
Specific method(s)

Modem configuration
class_id = 27, version = 0 or 1 Short name Remarks

Attribute(s)
logical_name x x is the base_name of the object.
�niti_speed x+8
�nitialization_string x+16
modem_profile x+24
Specific method(s)

Auto answer
class_id = 28, version = 0 Short name Remarks

Attribute(s)
logical_name x x is the base_name of the object.
Mode x+8
listening_window x+16
Status x+24
number_of_calls x+32
number_of_rings x+40
Specific method(s)

62056-62 © IEC:2006(E) – 91 –

PSTN auto dial
class_id = 29, version = 0 Short name Remarks

Attribute(s)
logical_name x x is the base_name of the object.
Mode x+8
Repetitions x+16
repetition_delay x+24
calling_window x+32
phone_list x+40
Specific method(s)

Auto connect
class_id = 29, version = 1 Short name Remarks

Attribute(s)
logical_name x x is the base_name of the object.
Mode x+8
Repetitions x+16
repetition_delay x+24
calling_window x+32
destination_list x+40
Specific method(s)

IEC HDLC setup
class_id = 23, version = 0 or 1 Short name Remarks

Attribute(s)
logical_name x x is the base_name of the object.
comm_speed x+8
window_size_transmit x+16
window_size_receive x+24
max_info_length_transmit x+32
max_info_length_receive x+40
inter_octet_time_out x+48
inactivity_time_out x+56
device_address x+64
Specific method(s)

IEC twisted pair (1) setup
class_id = 24, version = 0 Short name Remarks

Attribute(s)
logical_name x x is the base_name of the object.
secondary_address x+8
primary_address_list x+16
tabi_list x+24
fatal_error x+32
Specific method(s)

 – 92 – 62056-62 © IEC:2006(E)

TCP-UDP setup
class_id = 41, version = 0 Short name Remarks

Attribute(s)
logical_name x x is the base_name of the object.
TCP-UDP_port x+8
IP_reference x+16
MSS x+24
nb_of_sim_conn x+32
inactivity_time_out x+40
Specific method(s)

IPv4 setup
class_id = 42, version = 0 Short name Remarks

Attribute(s)
logical_name x x is the base_name of the object.
DL_reference x+8
IP_address x+16
multicast_IP_address x+24
IP_options x+32
subnet_mask x+40
gateway_IP_address x+48
use_DHCP_flag x+56
primary_DNS_address x+64
secondary_DNS_address x+72
Specific method(s)
add_mc_IP_address x+96
delete_mc_IP_address x+104
get_nbof_mc_IP_addresses x+112

Ethernet setup
class_id = 43, version = 0 Short name Remarks

Attribute(s)
logical_name x x is the base_name of the object.
MAC_address x+8
Specific method(s)

PPP setup
class_id = 44, version = 0 Short name Remarks

Attribute(s)
logical_name x x is the base_name of the object.
PHY_reference x+8
LCP_options x+16
IPCP_options x+24
PPP authentication x+32
Specific method(s)

62056-62 © IEC:2006(E) – 93 –

GPRS modem setup
class_id = 45, version = 0 Short name Remarks

Attribute(s)
logical_name x x is the base_name of the object.
APN x+8
PIN_code x+16
quality_of_service x+24
Specific method(s)

SMTP setup
class_id = 46, version = 0 Short name Remarks

Attribute(s)
logical_name x x is the base_name of the object.
server_port x+8
user_name x+16
login_password x+24
server_address x+32
sender_address x+40
Specific method(s)

C.3 Reserved base_names for special COSEM objects

In order to grant access for devices offering accessing by short_names some short_names
are reserved as base_names for special COSEM objects. The reserved range of names is
from 0xFA00 to 0xFFF8.

The following specific base_names are defined:

Base_name
(objectName)

COSEM object

0x FA00 Association SN

0x FB00 Script table (instantiation:
“broadcast_receiver script”)

0x FC00 SAP assignment

0x FD00 “Data” or “Register” object containing the
“COSEM logical device name” in the attribute
"value"

 – 94 – 62056-62 © IEC:2006(E)

Annex D
(normative)

Relation to OBIS

D.1 General

The OBIS identification system serves as a basis for the COSEM logical names. The system
of naming COSEM objects is defined in the basic principles (see Clause 4), the identification
of real data items is specified in IEC 62056-61.

The following clauses define the usage of those definitions in the COSEM environment.

All codes, which are not explicitly listed, but outside the manufacturer specific range are
reserved for future use.

D.2 Mapping of data items to COSEM objects and attributes

This clause defines the usage of OBIS identifications and their mapping to COSEM objects of
certain interface classes and their attributes.

D.2.1 Abstract COSEM objects

This subclause contains definitions for data items not directly linked to an energy type.

Value group C

Abstract objects (A = 0)

0 General purpose COSEM objects

1 COSEM objects of IC "Clock"

2 COSEM objects IC “Modem configuration” and related ICs

10 COSEM objects of IC "Script table"

11 COSEM objects of IC "Special days table"

12 COSEM objects of IC "Schedule"

13 COSEM objects of IC "Activity calendar"

14 COSEM objects of IC “Register activation”

15 COSEM objects of IC "Single action schedule"

16 COSEM objects of IC “Register monitor”

20 COSEM objects of IC "IEC local port setup"

21 Standard readout definitions

22 COSEM objects of IC “IEC HDLC setup”

23 COSEM objects of IC "IEC twisted pair (1) setup"

25 COSEM objects of IC “TCP-UDP setup”, “IPv4 setup”, “Ethernet
setup”, “PPP setup”, “GPRS modem setup”, “SMTP setup”.

40 COSEM objects of IC “Association SN/LN”

41 COSEM objects of IC “SAP assignment”

62056-62 © IEC:2006(E) – 95 –

Value group C

Abstract objects (A = 0)

42 COSEM logical device name

65 COSEM objects of IC “Utility tables”

128 …199 Manufacturer specific COSEM related abstract objects

All other Reserved

D.2.1.1 Clock (class_id:8)

This COSEM object controls the system clock of the physical device. It is an instance of the
interface class "Clock".

OBIS identification
Clock IC

A B C D E F

Clock object Clock 0 x 1 0 x 255

The usage of value group E shall be:

• if just one object is instantiated, value E shall be 0;

• if more than one object is instantiated in the same physical device, the value group E shall
number the instantiations from zero to the needed maximum value.

D.2.1.2 Modem configuration (class_id: 27)

This COSEM object defines and controls the behaviour of the device regarding the
communication through a modem. It is an instance of the interface class “Modem
configuration".

OBIS identification
Modem configuration IC

A B C D E F

Modem configuration object Modem
configuration

0 x 2 0 0 255

The usage of value group B shall be:

• if more than one object is instantiated in the same physical device, the value group B shall
number the communication channel.

D.2.1.3 Auto connect (class_id: 29)

This COSEM object defines the necessary parameters for the management of sending
information from the metering device to one or more destinations. It is an instance of the
interface class “Auto connect".

OBIS identification
Auto connect IC

A B C D E F

Auto connect object Auto connect 0 x 2 1 0 255

 – 96 – 62056-62 © IEC:2006(E)

The usage of value group B shall be:

• if more than one object is instantiated in the same physical device, its value group B shall
number the communication channel.

D.2.1.4 Auto answer (class_id: 28)

This COSEM object defines and controls the behaviour of the device regarding the auto
answering function using a modem. It is an instance of the interface class “Auto answer".

OBIS identification
Auto answer IC

A B C D E F

Auto answer object Auto answer 0 x 2 2 0 255

The usage of value group B shall be:

• if more than one object is instantiated in the same physical device, its value group B shall
number the communication channel.

D.2.1.5 Script tables (class_id: 9)

These COSEM objects control the behaviour of the device.

Several instances of the interface class "Script table” are predefined and normally available
as hidden scripts only with access to the execute() method.

The following table contains only the identifiers for the “standard” instances of the listed
scripts. Implementation specific instances of these scripts should use values different from
zero in value group D.

OBIS identification
Script table objects IC

A B C D E F

Global meter reseta 0 x 10 0 0 255

MDI reset / end of billing period a 0 x 10 0 1 255

Tariffication script table 0 x 10 0 100 255

Activate test modea 0 x 10 0 101 255

Activate normal mode a 0 x 10 0 102 255

Set output signals 0 x 10 0 103 255

Switch optical test output b, c 0 x 10 0 104 255

Power quality measurement management 0 x 10 0 105 255

Broadcast script table

Script table

0 x 10 0 125 255
a The activation of these scripts is performed by calling the execute() method to the script identifier 1 of the
corresponding script object.
b The optical test output is switched to measuring quantity Y and the test mode is activated by calling the
execute method of the script table object 0.x.10.0.104.255 using Y as parameter; where Y is given by Table 5 of
IEC 62056-61 (OBIS). The default value of A is 1 (Electricity).

Example: In case of electricity meters, A = 1, default, execute (21) switches the test output to display the active
power + of phase 1.
c The optical test output is also switched back to its default value when this script is activated.

The tariffication script table defines the entry point into tariffication by standardizing utility-
wide how to invoke the activation of certain tariff conditions.

62056-62 © IEC:2006(E) – 97 –

The broadcast script table allows standardising utility wide the entry point into regularly
needed functionality.

D.2.1.6 Special days table (class_id: 11)

This COSEM object defines and controls the behaviour of the device regarding calendar
functions on special days for clock control. It is an instance of the interface class "Special
days table”.

OBIS identification
Special days table IC

A B C D E F

Special days table object Special days
table 0 x 11 0 0 255

D.2.1.7 Schedule (class_id: 10)

This COSEM object defines and controls the behaviour of the device in a sequenced way. It is
an instance of the interface class "Schedule”.

OBIS identification
Schedule IC

A B C D E F

Schedule object Schedule 0 x 12 0 x 255

The usage of value group E shall be:

• if just one object is instantiated, value E shall be 0;

• if more than one object is instantiated in the same physical device, the value group E shall
number the instantiations from zero to the needed maximum value.

D.2.1.8 Activity calendar (class_id: 20)

This COSEM object defines and controls the behaviour of the device in a calendar-based way.
It is an instance of the interface class "Activity calendar".

OBIS identification
Activity calendar IC

A B C D E F

Activity calendar object Activity
calendar 0 x 13 0 0 255

D.2.1.9 Register activation (class_id: 6)

This COSEM object is used to handle different tariffication structures. It is an instance of the
interface class "Register activation".

OBIS identification
Register activation IC

A B C D E F

Register activation object Register
activation 0 x 14 0 x 255

The usage of value group E shall be:

• if just one object is instantiated, value E shall be 0;

• if more than one object is instantiated in the same physical device, the value group E shall
number the instantiations from zero to the needed maximum value.

 – 98 – 62056-62 © IEC:2006(E)

D.2.1.10 Single action schedule (class_id: 22)

These COSEM objects control the behaviour of the device. One instance of the interface class
"Single action schedule" is predefined. Implementation specific instances of these interface
classes should use values different from zero in value group D.

OBIS identification
Single action schedule IC

A B C D E F

End of billing period Single action
schedule 0 x 15 0 0 255

D.2.1.11 Register monitor (class_id: 21)

These COSEM objects control the register monitoring function of the device. They define the
value to be monitored, the set of thresholds to which the value is compared, and the actions
to be performed when a threshold is crossed.

In general, the following logical name(s) shall be used:

OBIS identification
Register monitor IC

A B C D E F

Register monitor object Register
monitor 0 x 16 0 x 255

The use of value group E shall be:

• if just one “Register monitor” object is instantiated the value of E shall be 0;

• if more than one object is instantiated in the same logical device, the value group E shall
number the instantiations from zero to the needed maximum value.

See also D.2.2.19 and D.2.2.20.

D.2.1.12 IEC local port setup (class_id: 19)

These COSEM objects define and control the behaviour of the device regarding the
communication parameters on the local port according to IEC 62056-21. They are instances
of the interface class "IEC local port setup".

OBIS identification
IEC local port setup IC

A B C D E F

IEC optical port setup object 0 x 20 0 0 255

IEC electrical port setup object
IEC local
port setup 0 x 20 0 1 255

The usage of value group B shall be:

• if more than one object is instantiated in the same physical device, the value group B shall
number the communication channel.

D.2.1.13 Standard readout profile (class_id: 7)

A set of COSEM objects is defined to carry the standard readout as it would appear with
IEC 62056-21 (modes A to D).

62056-62 © IEC:2006(E) – 99 –

OBIS identification
Standard readout IC

A B C D E F

General local port readout 0 0 21 0 0 255

General display readout 0 0 21 0 1 255

Alternate display readout 0 0 21 0 2 255

Service display readout 0 0 21 0 3 255

List of configurable meter data 0 0 21 0 4 255

Additional readout profile 1 0 0 21 0 5 255

…………..

Additional readout profile n

Profile generic

0 0 21 0 N 255

For the parametrization of the standard readout “Data” objects can be used:

OBIS identification
Standard readout parametrization IC

A B C D E F

Standard readout parametrization
object

Data 0 0 21 0 x 255

The usage of value group E shall be:

• if just one object is instantiated, value E shall be 0;

• if more than one object is instantiated in the same physical device, the value group E shall
number the instantiations from zero to the needed maximum value.

Standard readout objects can also be related to an energy type and to a channel. See
IEC 62056-61.

D.2.1.14 IEC HDLC setup (class_id: 23)

These COSEM objects define and control the behaviour of the device at the association
negotiation instant using HDLC protocol. They are instances of the interface class “IEC HDLC
setup".

OBIS identification
IEC HDLC setup IC

A B C D E F

IEC HDLC setup object IEC HDLC
setup 0 x 22 0 0 255

The usage of value group B shall be:

• if more than one object is instantiated in the same physical device, the value group B shall
number the communication channel.

D.2.1.15 IEC twisted pair (1) setup (class_id: 24)

These COSEM objects define and control the behaviour of the device regarding the
communication parameters according to IEC 62056-31. They are instances of the interface
class "IEC twisted pair (1) setup".

OBIS identification
IEC twisted pair (1) setup IC

A B C D E F

IEC twisted pair (1) setup object IEC twisted
pair (1) setup 0 x 23 0 0 255

 – 100 – 62056-62 © IEC:2006(E)

The usage of value group B shall be:

• if more than one object is instantiated in the same physical device, the value group B shall
number the communication channel.

D.2.1.16 TCP-UDP setup (class_id: 41)

COSEM objects of the IC “TCP-UDP setup” handle all information related to the setup of the
TCP and UDP layer of the Internet based communication profile(s) and point to the IPv4 setup
object(s) handling the setup of the IP layer on which the TCP-UDP connection(s) is (are)
used.

OBIS identification
TCP-UDP setup IC

A B C D E F

TCP-UDP setup object TCP-UDP
setup 0 x 25 0 0 255

The usage of value group B shall be:

• if more than one object is instantiated in the same physical device, the value group B shall
number the communication channels used for Internet based communication.

D.2.1.17 IPv4 setup (class_id: 42)

COSEM objects of the IC “IPv4 setup” handle all information related to the setup of the IP
layer of the Internet based communication profile(s) and point to the data link layer setup
object(s) handling the setup of the data link layer on which the IP connection(s) is (are) used.

OBIS identification
IPv4 setup IC

A B C D E F

IPv4 setup object IPv4 setup 0 x 25 1 0 255

The usage of value group B shall be:

• if more than one object is instantiated in the same physical device, the value group B shall
number the communication channels used for internet-based communication.

D.2.1.18 Ethernet setup (class_id: 43)

COSEM objects of the IC “Ethernet setup” handle all information related to the setup of the
Ethernet data link layer of the Internet based communication profile(s).

OBIS identification
Ethernet setup IC

A B C D E F

Ethernet setup object Ethernet
setup

0 x 25 2 0 255

The usage of value group B shall be:

• if more than one object is instantiated in the same physical device, the value group B shall
number the communication channels used for internet-based communication.

62056-62 © IEC:2006(E) – 101 –

D.2.1.19 PPP setup (class_id: 44)

COSEM object of the IC “PPP setup” handle all information related to the setup of the PPP
data link layer of the Internet based communication profiles.

OBIS identification
PPP setup IC

A B C D E F

PPP setup object PPP setup 0 x 25 3 0 255

The usage of value group B shall be:

• if more than one object is instantiated in the same physical device, the value group B shall
number the communication channels used for IP connection.

D.2.1.20 GPRS modem setup (class_id: 45)

COSEM objects of the “GPRS setup” class handle all information related to the setup of the
GPRS modem.

OBIS identification
GPRS setup IC

A B C D E F

GPRS modem setup object GPRS
modem setup 0 x 25 4 0 255

The usage of value group B shall be:

• if more than one object is instantiated in the same physical device, the value group B shall
number the communication channels used for IP connection.

D.2.1.21 SMTP setup (class_id: 46)

COSEM objects of the “SMTP setup” class handle all information related to the setup of the
SMTP service.

OBIS identification
SMTP setup IC

A B C D E F

SMTP setup object SMTP setup 0 x 25 5 0 255

The usage of value group B shall be:

• if more than one object is instantiated in the same physical device, the value group B shall
number the instances.

D.2.1.22 Association objects (class_id: 12, 15)

A series of COSEM objects are used to identify association objects within a physical device.

OBIS identification
Association objects IC

A B C D E F

Current association 0 0 40 0 0 255

Association, instance 1 0 0 40 0 1 255

…………..

Association, instance n

Association
LN/SN

0 0 40 0 n 255

 – 102 – 62056-62 © IEC:2006(E)

D.2.1.23 SAP assignment object (class_id: 17)

One COSEM object is used to inform about the SAP assignments within a physical device.

OBIS identification
SAP assignment object IC

A B C D E F

SAP assignment of current physical device SAP
assignment 0 0 41 0 0 255

D.2.1.24 COSEM logical device name

Each COSEM logical device can be identified worldwide by its logical device name.

The logical device name is held by the value attribute of a “Data” or “Register” object, with
data type octet-string. For short name referencing, the base_name of the object is fixed. See
Clause C.3.

OBIS identification
COSEM logical device name IC

A B C D E F

COSEM logical device name Data a 0 0 42 0 0 255
a In cases where the class “Data” is not available, the class “Register” (with scaler = 0, unit = 255) may be used.

D.2.1.25 Utility tables (class_id: 26)

The following summarizes the coding of ANSI utility tables instances using the OBIS coding of
logical names.

• Value group A: use value of 0 to specify abstract object;

• Value group B: instance of table set;

• Value group C: use value 65 – signifies utility tables specific definitions;

• Value group D: table group selector;

• Value group E: table number within group;

• Value group F: use value 0xFF for data of current billing period.

OBIS identification
Utility tables IC

A B C D E F
Standard tables 0-127 0 x 65 0 n 255

Standard tables 128-255 0 x 65 1 n 255

...

Standard tables 1920-2047 0 x 65 15 n 255

Manufacturer tables 0-127 0 x 65 16 n 255

Manufacturer tables 128-255 0 x 65 17 n 255

...

Manufacturer tables 1920-2047 0 x 65 31 n 255

Std pending tables 0-127 0 x 65 32 n 255

Std pending tables 128-255 0 x 65 33 n 255

...

Std pending tables 1920-2047 0 x 65 47 n 255

Mfg pending tables 0-127 0 x 65 48 n 255

Mfg pending tables 128-255 0 x 65 49 n 255

...

Mfg pending tables 1920-2047

Utility tables

0 x 65 63 n 255

62056-62 © IEC:2006(E) – 103 –

D.2.1.26 Device ID

A series of COSEM objects are used to communicate ID numbers of the device. These can be
numbers defined by the manufacturer (manufacturing number) or defined by the user.

The different ID numbers are instances of the interface class "Data", with data type octet-
string.

If more than one of those is used, it is also allowed to combine them into one instance of the
interface class "Profile generic". In this case, the captured objects are the device ID “Data”
objects, the capture period is 1 to have just actual values, the sort method is FIFO, the profile
entries are limited to 1.

Alternatively, an instance of the “Register table” interface class can be used.

OBIS identification
Device ID IC

A B C D E F

Device ID 1 object (manufacturing number) 0 x 96 1 0 255

……

Device ID 10 object

Data a

0 x 96 1 9 255

Device ID-s object Profile
generic 0 x 96 1 255 255

Device ID-s object Register
table 0 x 96 1 255 255

a In cases where the class “Data” is not available, the class “Register” (with scaler = 0, unit = 255) may be used.

D.2.1.27 Metering point ID

One COSEM object is available to store a media type independent metering point ID. It is held
by the value attribute of a “Data” interface class, with data type octet-string.

OBIS identification
Metering point ID IC

A B C D E F

Metering point ID Data a 0 x 96 1 10 255
a In cases where the class “Data” is not available, the class “Register” (with scaler = 0, unit = 255) may be used.

D.2.1.28 Parameter changes

A set of simple COSEM objects describes the history of the configuration of the device. All
values are modelled by instances of the interface class "Data".

 – 104 – 62056-62 © IEC:2006(E)

OBIS identification
Parameter changes IC

A B C D E F

Number of configuration program changes
object 0 x 96 2 0 255

Date of last configuration program change
object 0 x 96 2 1 255

Date of last time switch program change
object 0 x 96 2 2 255

Date of last ripple control receiver program
change object 0 x 96 2 3 255

Number of protected configuration program
changes b 0 x 96 2 10 255

Date of last protected configuration program
change b

Data a

0 x 96 2 11 255

a In cases where the class “Data” is not available, the class “Register” or “Extended register” (with scaler = 0,
unit = 255) may be used.
b Protected configuration is characterized by the need to open the main meter cover to modify it.

NOTE For a complete list, see IEC 62056-61, Table 14.

D.2.1.29 I/O control signals

These COSEM objects define and control the status of I/O lines of the physical metering
equipment.

The status is held by the value attribute of a “Data” object, with data type octet-string or bit-
string.

NOTE In cases where the class “Data” is not available, the class “Register” or “Extended register” (with scaler =
0, unit = 255) may be used.

Alternatively, the status is held by a “Status mapping” object, which holds both the status
word and the mapping of its bits to the reference table.

If there are several I/O control status objects used, it is allowed to combine them into an
instance of the interface class “Profile generic” or “Register table”, using the OBIS code of the
global status word.

For OBIS codes, see IEC 62056-61, Table 14.

D.2.1.30 Status of internal control signals and internal operating status

These COSEM objects define the status of internal control signals and the internal operating
status.

The status carries binary information from a bitmap, and it shall be held by the value attribute
of a “Data” object, with data-type octet-string or bit-string.

NOTE In cases where the class “Data” is not available, the class “Register” or “Extended register” (with scaler =
0, unit = 255) may be used.

Alternatively, the status is held by a “Status mapping” object, which holds both the status
word and the mapping of its bits to the reference table.

If there are several status of internal control signals or internal operating status objects used,
it is allowed to combine them into an instance of the interface class “Profile generic” or
“Register table”, using the OBIS code of the global status of internal control signals or internal
operating status respectively.

62056-62 © IEC:2006(E) – 105 –

For OBIS codes, see IEC 62056-61, Table 14.

Internal operating status objects can also be related to an energy type. See D.2.2.17.

D.2.1.31 Battery entries

A series of COSEM objects are available for holding information relative to the battery of the
device.

These objects are instances of “Data”, “Register” or “Extended register” as appropriate.

For OBIS codes, see IEC 62056-61, Table 14.

D.2.1.32 Power failure monitoring

A series of COSEM objects are available for power failure monitoring.

For simple power failure monitoring, it is possible to count the number of power failure events
affecting all three phases or one of the three phases.

Fo advanced power failure monitoring, it is possible to record the time of occurance of the
power failure events affecting all three phases, one of the phases or any of the phases.

Further, it is possible to define a time threshold to make a distinction between short and long
power failures.

If the power failure is longer than this time threshold, then the number of such long power
failure events affecting all three phases, one of the three phases or any of the phases can be
separately counted and their duration (time from power down to power up) can be recorded.

The number of power failure events objects are represented by instances of the IC “Data”,
“Register” or “Extended register” objects with data types unsigned, long-unsigned or double-
long-unsigned.

The power failure duration, time and time threshold data are represented by instances of the
IC “Data”, “Register” or “Extended register” with appropriate data types.

If power failure duration objects are represented by instances of the IC “Data”, then the
default scaler shall be 0 and the default unit shall be the second.

These objects may be collected in a “Power failure event log” object.

For OBIS codes, see IEC 62056-61, Table 14 and Table 21.

D.2.1.33 Operating time

A series of COSEM objects are available for holding the cumulated operating time and the
various tariff registers of the device.

These objects are instances of the interface class “Data”, ”Register” or “Extended register”.

The data type shall be unsigned, long-unsigned or double-long-unsigned with appropriate
units. If the interface class “Data” is used, the unit shall be the second by default.

For OBIS codes, see IEC 62056-61, Table 14.

 – 106 – 62056-62 © IEC:2006(E)

D.2.1.34 Status register objects

A number of objects are available to hold statuses to be captured in load profiles.

The status word carries binary information from a bitmap, and it shall be held by the value
attribute of a “Data” object, with data-type octet-string or bit-string.

NOTE In cases where the class “Data” is not available, the class “Register” or “Extended register” (with scaler =
0, unit = 255) may be used.

Alternatively, the status is held by a “Status mapping” object, which holds both the status
word and the mapping of its bits to the reference table.

For OBIS codes, see IEC 62056-61, Table 14.

D.2.1.35 Communication port log parameters

These COSEM objects hold various log parameters. They are represented by COSEM objects
of interface class “Register”, “Extended register” or “Profile generic”.

For OBIS codes, see IEC 62056-61, Table 14.

D.2.1.36 Error values

A series of COSEM objects are used to communicate error indications of the device.

The different error values are held by the value attribute of “Data” objects, with data type
octet-string or bit-string.

If more than one of those objects is used, it is also allowed to combine them into one instance
of the interface class "Profile generic". In this case, the captured objects are the “Data”
objects, the capture period is 1 to have just actual values, the sort method is FIFO, the profile
entries are limited to 1.

Alternatively, an instance of the “Register table” interface class can be used.

OBIS identification
Error values IC

A B C D E F

Error 1 object 0 0 97 97 0 255

…… …

Error 10 object

Data a

0 0 97 97 9 255

Error profile object Profile
generic 0 0 97 97 255 255

Error table object Register
table 0 0 97 97 255 255

a In cases where the class “Data” is not available, the class “Register” or “Extended register” (with scaler = 0,
unit = 255) may be used.

Error code objects can also be related to an energy type and to a channel. See IEC 62056-61.

D.2.1.37 General list objects (class_id: 7)

These COSEM objects are used to model lists of any kind of data, for example measurement
values, constants, statuses, events. They are modelled by “Profile generic” objects.

One standard object per billing period scheme is defined. See also IEC 62056-61.

62056-62 © IEC:2006(E) – 107 –

OBIS identification
General list objects IC

A B C D E F

Data of billing period (with billing period
scheme 1 if there are two schemes
available)

0 x 98 1 x 255 a

Data of billing period (with billing period
scheme 2)

Profile generic

0 x 98 2 x 255 a

a F = 255 means a wild card here. See IEC 62056-61, Clause A.3.

The use of value group E shall be:

• if just one “Data of billing period” object is instantiated the value of E shall be 0;

• if more than one object is instantiated in the same logical device, the value group E shall
number the instantiations from zero to the needed maximum value.

D.2.2 Electricity related COSEM objects

D.2.2.1 Value group D definitions

The different values as defined by value group D are modelled in the following way:

• cumulative values are represented by COSEM objects which are instances of interface
class "Register" or “Extended register”;

• maximum and minimum values are represented by COSEM objects which are instances
of interface class "Profile generic" with sorting method maximum or minimum, depth
according to implementation and captured objects according to implementation. A single
maximum value or minimum value can alternatively be represented by a COSEM object
which is an instance of the interface class “Register” or "Extended register";

• current and last average values are the respective attributes of COSEM objects which
are instances of interface class "Demand register", using the OBIS code of the current
value as logical name;

• instantaneous values are represented by COSEM objects, which are instances of
interface class "Register";

• time integral values are represented by COSEM objects, which are instances of interface
class "Register" or “Extended register”;

• occurrence counters are represented by COSEM objects, which are instances of
interface class “Data” or "Register.

D.2.2.2 Data of previous billing periods

COSEM provides three mechanisms to represent values of historical billing periods:

- a value of a single historical billing period may be represented using the same interface
class as used for representing the value of the current billing period. With F = 0…99, the
billing period is identified by the value of the billing period counter VZ. F = VZ identifies
the youngest value, F = VZ-1 identifies the second youngest value, etc. F = 101…125
identifies the last, second last, …25th last billing period. (F = 255 identifies the current
billing period). Simple objects can only be used to represent values of historical billing
periods, if “Profile generic” objects are not implemented;

- a value of a single historical billing period may also be represented by “Profile generic”
objects, which are one entry deep, and contain the historical value itself and the time
stamp of the storage. With F = 0…99 the billing period is identified by the value of the
billing period counter VZ. F = VZ identifies the youngest value, F = VZ-1 identifies the
second youngest value, etc. F = 101 identifies the most recent billing period;

 – 108 – 62056-62 © IEC:2006(E)

- values of multiple historical billing periods are represented with “Profile generic” objects,
with suitable controlling attributes. With F = 102…125 the two last, …25 last values can
be reached. F = 126 identifies an unspecified number of historical values;

- when values of historical billing periods are represented by “Profile generic” objects, two
different billing period schemes may be used. The billing period scheme is identified by
the billing period counter object captured in the profile.

D.2.2.3 Electricity ID numbers

The different electricity ID numbers are instances of the interface class "Data”, with data type
octet-string.

If more than one of those is used, it is also allowed to combine them into one instance of the
interface class "Profile generic". In this case, the captured objects are the electricity ID data
objects, the capture period is 1 to have just actual values, the sort method is FIFO, the profile
entries are limited to 1.

Alternatively, an instance of the “Register table” interface class can be used.

OBIS identification
Electricity ID IC

A B C D E F

Electricity ID 1 object 1 x 0 0 0 255

……

Electricity ID 10 object

Data a

1 x 0 0 9 255

Electricity ID-s object Profile
generic 1 x 0 0 255 255

Electricity ID-s object Register
table 1 x 0 0 255 255

a In cases where the class “Data” is not available, the class “Register” or “Extended register” (with scaler = 0,
unit = 255) may be used.

D.2.2.4 Entries related to billing periods

These values are represented by instances of the interface class "Data” with data type
unsigned resp. octet-string, formatted as date_time in 4.4.1.

OBIS identification
Historical data related entries IC

A B C D E F
First billing period scheme (if there are two)

Billing period counter object (1) 1 x 0 1 0 VZ…or
255

Number of available billing periods object (1) 1 x 0 1 1 255

Time stamp of the most recent billing period
(1) 1 x 0 1 2 255

Time stamp of the billing period objects (1) 1 x 0 1 2 VZ…VZ
-n

Second billing period scheme

Billing period counter object (2) 1 x 0 1 3 VZ…VZ
-n

Number of available billing periods object (2) 1 x 0 1 4 255

Time stamp of the most recent billing period
(2) 1 x 0 1 5 255

Time stamp of the billing period objects (2)

Data a

1 x 0 1 5 VZ…VZ
-n

a In cases where the class “Data” is not available, the class “Register” or “Extended register” (with scaler = 0, unit
= 255) may be used.

62056-62 © IEC:2006(E) – 109 –

When the values of historical periods are represented by “Profile generic” objects, the time
stamp of the billing period objects shall be part of the captured objects. The values can also
be related to a channel.

D.2.2.5 Program entries

Those values are represented by instances of the interface class "Data" with data type
unsigned, long-unsigned or octet-string. For “Meter connection diagram ID” objects data type
enumerated can be used as well.

OBIS identification
Program entries IC

A B C D E F

Configuration program version number object 1 x 0 2 0 255

Parameter record number object 1 x 0 2 1 1

Parameter record number object (reserved for
future use) 1 x 0 2 1 2…

127

Time switch program number object 1 x 0 2 2 255

RCR program number object 1 x 0 2 3 255

Meter connection diagram ID object 1 x 0 2 4 255

Passive calendar name object

Data a

1 x 0 2 7 255
a In cases where the class “Data” are not available, the class “Register” or “Extended register” (with scaler = 0,
unit = 255) may be used.

Program entries can also be related to a channel. See also IEC 62056-61, Table 16.

D.2.2.6 Input and output pulse constants, nominal values, coefficients

These values are represented by instances of the interface class “Data”, "Register" or
“Extended register” with simple data types for the value attribute.

For OBIS codes, see IEC 62056-61, Table 16.

D.2.2.7 Ratios

These values are represented by instances of the IC “Data”, “Register” or “Extended register”.
For the value attribute, only simple data types are allowed.

For OBIS codes, see IEC 62056-61, Table 16.

D.2.2.8 Measurement period duration – Recording interval – Billing period duration
values, time entries

Measurement period duration, Recording interval and Billing period duration values are
represented by instances of IC “Data” “Register” or “Extended register” with the data type of
the value attribute unsigned, long-unsigned or double-long unsigned.

Time entry values shall be represented by instances of IC “Data”, “Register” or “Extended
register” with the data type of the value attribute octet-string, formatted as date_time in 4.4.1.

For OBIS codes, see IEC 62056-61, Table 16.

The clock synchronization method shall be represented by an instance of an IC “Data” with
data type enum.

Time entries IC OBIS identification

 – 110 – 62056-62 © IEC:2006(E)

 A B C D E F

Clock synchronization method object 1 x 0 9 10 255

Data a

a In cases where the class “Data” is not available, the class “Register” (with scaler = 0, unit = 255) may be used.

Synchronization method: enum

(0) no synchronization,
(1) adjust to quarter,
(2) adjust to measuring period,
(3) adjust to minute,
(4) reserved,
(5) adjust to preset time,
(6) shift time

D.2.2.9 Measurement algorithm for active power

These values are represented by instances of the interface class “Data”.

OBIS identification
Measurement algorithm for active power IC

A B C D E F

Measuring algorithm Data a 1 x 0 11 1 255
a In cases where the class “Data” are not available, the class “Register” (with scaler = 0, unit = 255) may be used.

Measuring algorithm: enum

(0) not specified,
(1) only the fundamentals of voltage and current are used,
(2) all harmonics of voltage and current are used,
(3) only the DC part of voltage and current is used,
(4) all harmonics and the DC part of voltage and current are used

D.2.2.10 Measurement algorithm for active energy

These values are represented by instances of the interface class “Data”.

OBIS identification
Measurement algorithm for active energy IC

A B C D E F

Measuring algorithm Data a 1 x 0 11 2 255
a In cases where the class “Data” are not available, the class “Register” (with scaler = 0, unit = 255) may be used.

Measuring algorithm: enum

The same enumeration applies for integrated values of active power as described in D.2.2.9.

62056-62 © IEC:2006(E) – 111 –

D.2.2.11 Measurement algorithm for reactive power

These values are represented by instances of the interface class “data”.

OBIS identification
Measurement algorithm for reactive power IC

A B C D E F

Measuring algorithm Data a 1 x 0 11 3 255
a In cases where the class “Data” are not available, the class “Register” (with scaler = 0, unit = 255) may be used.

Measuring algorithm: enum

(0) not specified,
(1) (sum of) reactive power of each phase, calculated from the

fundamental of the per phase voltage and the per phase
current,

(2) polyphase reactive power calculated from polyphase apparent
power and polyphase active power,

(3) (sum of) reactive power calculated from per phase apparent
power and per phase active power.

D.2.2.12 Measurement algorithm for reactive energy

These values are represented by instances of the interface class “Data”.

OBIS identification
Measurement algorithm for reactive energy IC

A B C D E F

Measuring algorithm Data a 1 x 0 11 4 255
a In cases where the class “Data” are not available, the class “Register” (with scaler = 0, unit = 255) may be used.

Measuring algorithm: enum

The same enumeration applies for integrated values of reactive power as described in
 D.2.2.11.

D.2.2.13 Measurement algorithm for apparent power

These values are represented by instances of the interface class “Data”.

OBIS identification Measurement algorithm for apparent
power IC

A B C D E F

Measuring algorithm Data a 1 x 0 11 5 255
a In cases where the class “Data” are not available, the class “Register” (with scaler = 0, unit = 255) may be used.

Measuring algorithm: enum

(0) not specified,
(1) IUS ×= , with voltage: only fundamental, and current: only

fundamental;
(2) IUS ×= , with voltage: only fundamental, and current: all

harmonics,
(3) IUS ×= , with voltage: only fundamental, and current: all

harmonics and DC part,

 – 112 – 62056-62 © IEC:2006(E)

(4) IUS ×= , with voltage: all harmonics, and current: only
fundamental,

(5) IUS ×= , with voltage: all harmonics, and current: all
harmonics,

(6) IUS ×= , with voltage: all harmonics, and current: all
harmonics and DC part,

(7) IUS ×= , with voltage: all harmonics and DC part, and current:
only fundamental,

(8) IUS ×= , with voltage: all harmonics and DC part, and current:
all harmonics,

(9) IUS ×= , with voltage: all harmonics and DC part, and current:
all harmonics and DC part,

(10) 22 QPS += , with P: only fundamental in U and I, and Q: only
fundamental in U and I,
where P and Q are polyphase quantities,

(11) 22 QPS += , with P: all harmonics in U and I, and Q: only
fundamental in U and I
where P and Q are polyphase quantities,

(12) 22 QPS += , with P: all harmonics and DC part in U and
I, and Q: only fundamental in U and I
where P and Q are polyphase quantities;

(13) ∑ += 22 QPS , with P: only fundamental in U and I, and Q: only
fundamental in U and I
where P and Q are single phase quantities,

(14) ∑ += 22 QPS , with P: all harmonics in U and I, and Q: only
fundamental in U and I
where P and Q are single phase quantities,

(15) ∑ += 22 QPS , with P: all harmonics and DC part in U and I, and Q:
only fundamental in U and I
where P and Q are single-phase quantities.

D.2.2.14 Measurement algorithm for apparent energy

These values are represented by instances of the interface class “Data”.

OBIS identification Measurement algorithm for apparent
energy IC

A B C D E F

Measuring algorithm Data a 1 x 0 11 6 255
a In cases where the class “Data” are not available, the class “Register” (with scaler = 0, unit = 255) may be used.

Measuring algorithm: enum

The same enumeration applies for integrated values of apparent power as described in
 D.2.2.13.

D.2.2.15 Measurement algorithm for power factor calculation

These values are represented by instances of the interface class “Data”.

62056-62 © IEC:2006(E) – 113 –

OBIS identification Measurement algorithm for power factor
calculation IC

A B C D E F

Measuring algorithm Data a 1 x 0 11 7 255
a In cases where the class “Data” is not available, the class “Register” (with scaler = 0, unit = 255) may be used.

Measuring algorithm: enum

(0) not specified,
(1) displacement power factor: the displacement between

fundamental voltage and current vectors, which can be
calculated directly from fundamental active power and apparent
power, or another appropriate algorithm,

(2) true power factor, the power factor produced by the voltage and
current including their harmonics. It may be calculated from
apparent power and active power, including the harmonics.

D.2.2.16 Metering point ID (electricity related)

A series of COSEM objects are available to hold electricity related metering point IDs. They
are held by the value attribute of a “Data” interface class, with data type octet-string.

If more than one of those is used, it is also allowed to combine them into one instance of the
interface class "Profile generic". In this case, the captured objects are the electricity related
metering point ID data objects, the capture period is 1 to have just actual values, the sort
method is FIFO, the profile entries are limited to 1.

Alternatively, an instance of the “Register table” interface class can be used.

OBIS identification
Metering point ID IC

A B C D E F

Metering point ID 1 (electricity related) 1 x 96 1 0 255

….

Metering point ID 10 (electricity related)

Data a

1 x 96 1 9 255

Metering point ID-s object Profile
generic 1 x 96 1 255 255

Metering point ID-s object Register
table 1 x 96 1 255 255

a In cases where the class “Data” is not available, the class “Register” (with scaler = 0, unit = 255) may be used.

D.2.2.17 Electricity related internal operating status

A number of electricity related objects are available to hold information about the internal
operating status, the starting of the meter and the status of voltage and current circuits.

The status is held by the value attribute of a “Data” object, with data type octet-string or bit-
string.

NOTE In cases where the class “Data” is not available, the class “Register” or “Extended register” (with scaler =
0, unit = 255) may be used.

Alternatively, the status is held by a “Status mapping” object, which holds both the status
word and the mapping of its bits to the reference table.

 – 114 – 62056-62 © IEC:2006(E)

If there are several electricity related internal operating status objects used, it is allowed to
combine them into an instance of the interface class “Profile generic” or “Register table”,
using the OBIS code of the global internal operating status.

For OBIS codes, see IEC 62056-61, Table 16.

D.2.2.18 Electricity related list objects (class_id: 7)

These COSEM objects are used to model lists of any kind of data, for example measurement
values, constants, statuses, events. They are modelled by “Profile generic” objects.

One standard object per billing period scheme is defined. See also IEC 62056-61.

OBIS identification
General list objects IC

A B C D E F

Data of billing period (with billing period
scheme 1 if there are two schemes
available)

1 x 98 1 x 255a

Data of billing period (with billing period
scheme 2)

Profile generic

1 x 98 2 x 255a

a F = 255 means a wild card here. See IEC 62056-61, Clause A.3.

The use of value group E shall be:

• if just one “Data of billing period” object is instantiated, the value of E shall be 0;

• if more than one object is instantiated in the same logical device, the value group E shall
number the instantiations from zero to the needed maximum value.

D.2.2.19 Threshold values

A number of objects are available for representing thresholds for instantaneous quantities.
The thresholds may be “under limit”, “over limit” and “missing”. Several objects are available
to represent the number of occurrences when these thresholds are exceeded, the duration of
such events and the magnitude of the quantity during such events.

These values are represented by instances of IC “Data”, “Register” or “Extended register”.

For OBIS codes, see IEC 62056-61, Table 6.

All these quantities may be related to tariffs.

As defined in IEC 62056-61, 5.6.3, value group F may be used to identify multiple thresholds.

For monitoring the supply voltage, a more sophisticated functionality is also available,
allowing to count the number of occurrences classified by the duration of the event and the
depth of the voltage dip. For OBIS codes, see IEC 62056-61, Table 13.

D.2.2.20 Register monitor objects (class_id: 21)

Further to D.2.1.11, the following definitions apply:

For monitoring instantaneous values, the logical name of the “Register monitor” object may be
the OBIS identifier of the threshold.

62056-62 © IEC:2006(E) – 115 –

OBIS identification
Register monitor IC

A B C D E F

Register monitor object

Register
monitor

1 x 1-80,
82,
84-
89,

91, 92

31,
35,
39

x 0-99,
255

For monitoring current average and last average values, the logical name of the “Register
monitor” object may be the OBIS identifier of the demand value monitored.

OBIS identification
Register monitor IC

A B C D E F

Register monitor object

Register
monitor

1 x 1-80,
82,
84-
89,
91,
92

4, 5,
14,
15,
24,
25

x 255

• The use of value group E shall be to identify the tariff rate. If the total quantity (without

tarification) is monitored, then its value shall be 0.

D.3 Coding of OBIS identifications

To identify different instances of the same interface class, their logical_name must be
different. In COSEM, the logical_name is taken from the OBIS definition (see IEC 62056-61).

OBIS codes are used within the COSEM environment as an octet-string [6]. Each octet
contains the unsigned value of the corresponding OBIS value group, coded without tags.

If a data item is identified by less than six value groups, all unused value groups must be
filled with 255.

Octet 1 contains the binary coded value of A (A = 0, 1, 2, ...9) in the four rightmost bits. The
four leftmost bits contain the information on the identification system. The four leftmost bits
set to zero indicate that the OBIS identification system (version 1) is used as logical_name.

Identification system used Four leftmost bits of octet 1 (MSB left)

OBIS, see IEC 62056-61. 0 0 0 0

Reserved for future use
0 0 0 1
...
1 1 1 1

Within all value groups the usage of a certain selection is fully defined, others are reserved
for future use.

If in the value groups B to F a value belonging to the manufacturer specific range (see
IEC 62056-61, 4.8) is used, then the whole OBIS code shall be considered as manufacturer
specific, and the value of the other groups does not necessarily carry a meaning defined by
IEC 62056-61 nor this standard.

 – 116 – 62056-62 © IEC:2006(E)

Annex E
(informative)

Previous versions of interface classes

E.1 Interface class versions prior to the publication of the first edition of this
standard

Prior to the publication of the first edition of this standard, previous versions of the following
interface classes had been defined by and can be obtained from the DLMS User Association:

• “Profile generic” (class_id = 7, version = 0);

• “Association SN” (class_id = 12, version = 0).

E.2 IEC local port setup (class_id: 19, version 0)

Instances of this interface class define the operational parameters for communication using
IEC 62056-21. Several ports can be configured. The logical_names shall be as defined in
 D.2.1.12.

IEC local port setup 0...n class_id = 19, version = 0
Attribute(s) Data type Min. Max. Def.
1. logical_name (static) octet-string
2. default_mode (static) enum
3. default_baud (static) enum
4. prop_baud (static) enum
5. response_time (static) enum
6. device_addr (static) octet-string
7. pass_p1 (static) octet-string
8. pass_p2 (static) octet-string
9. pass_w5 (static) octet-string
Specific method(s) m/o

Attribute description

default_mode Defines the protocol used by the meter on the port.
 enum (0) protocol according to IEC 62056-21

(modes A…E)
(1) protocol according to IEC 62056-46.

Using this enumeration value, all
other attributes of this class are not
applicable.

default_baud Defines the baud rate for the opening sequence.

 enum (0) 300 baud,

(1) 600 baud,
(2) 1 200 baud,
(3) 2 400 baud,
(4) 4 800 baud,
(5) 9 600 baud,
(6) 19 200 baud,
(7) 38 400 baud,
(8) 57 600 baud,
(9) 115 200 baud

62056-62 © IEC:2006(E) – 117 –

prop_baud Defines the baud rate to be proposed by the meter.

 enum (0) 300 baud,
(1) 600 baud,
(2) 1 200 baud,
(3) 2 400 baud,
(4) 4 800 baud,
(5) 9 600 baud,
(6) 19 200 baud,
(7) 38 400 baud,
(8) 57 600 baud,
(9) 115 200 baud

response_time Defines the minimum time between the reception of a request
(end of request telegram) and the transmission of the response
(begin of response telegram).

enum (0) 20 ms
 (1) 200 ms

device_addr Device address according to IEC 62056-21.

 octet-string

pass_p1 Password 1 according to IEC 62056-21.

 octet-string

pass_p2 Password 2 according to IEC 62056-21.

octet-string

pass_w5 Password W5 reserved for national applications.

 octet-string

E.3 PSTN modem configuration (class_id: 27, version 0)

An instance of the “PSTN modem configuration” class stores data related to the initialization
of modems, which are used for data transfer from/to a device. Several modems can be
configured. The logical_names shall be as defined in D.2.1.2.

PSTN modem configuration 0...n class_id = 27, version = 0
Attribute(s) Data type Min. Max. Def.
1. logical_name (static) octet-string
2. comm_speed (static) enum 0 9 5
3. initialization_string (static) array
4. modem_profile (static) array
Specific method(s) m/o

 – 118 – 62056-62 © IEC:2006(E)

Attribute description

comm_speed The communication speed between the device and the modem, not
necessarily the communication speed on the WAN.

enum:
(0) 300 baud,
(1) 600 baud,
(2) 1 200 baud,
(3) 2 400 baud,
(4) 4 800 baud,
(5) 9 600 baud,
(6) 19 200 baud,
(7) 38 400 baud,
(8) 57 600 baud,
(9) 115 200 baud

initialization_string This data contains all the necessary initialization commands to be
sent to the modem in order to configure it properly. This may
include the configuration of special modem features.

initialization_string ::= array
initialization_string_element ::= structure
{
 request: octet-string,
 response: octet-string
}
If the array contains more than one initialization string element,
they are subsequently sent to the modem after receiving an answer
matching the defined response.

REMARK It is assumed that the modem is pre-configured so that it
accepts the initialization_string. If no initialization is needed, the initialization
string is empty.

modem_profile This data defines the mapping from Hayes standard
commands/responses to modem specific strings.

modem_profile::= array
{
 modem_profile_element: octet-string
}

 The modem_profile array must contain the corresponding strings
for the modem used in following order:
Element 0: OK,
Element 1: CONNECT,
Element 2: RING,
Element 3 NO CARRIER,
Element 4: ERROR,
Element 5: CONNECT 1 200,
Element 6 NO DIAL TONE,
Element 7: BUSY,
Element 8: NO ANSWER,
Element 9: CONNECT 600,
Element 10: CONNECT 2 400,
Element 11: CONNECT 4 800,
Element 12 CONNECT 9 600,
Element 13: CONNECT 14 400,
Element 14: CONNECT 28 800,
Element 15: CONNECT 36 600,
Element 16: CONNECT 56 000

62056-62 © IEC:2006(E) – 119 –

E.4 PSTN auto dial (class_id: 29, version 0)

An instance of the “PSTN auto dial” class stores data related to the management data transfer
between the device and the modem to perform auto dialling. Several modems can be
configured. The logical_names shall be as defined in D.2.1.3.

PSTN auto dial 0...n class_id = 29, version = 0
Attribute(s) Data type Min. Max. Def.
1. logical_name (static) octet-string
2. mode (static) enum
3. repetitions (static) unsigned
4. repetition_delay (static) long-unsigned
5. calling_window (static) array
6. phone_list (static) array
Specific method(s) m/o

Attribute description

logical_name Identifies the “PSTN auto dial” object instance.
mode Defines if the device can perform auto-dialling.

mode ::= enum

(0) no auto dialling,
(1) auto dialling allowed anytime,
(2) auto dialling allowed within the validity time of

the calling window,
(3) “regular” auto dialling allowed within the

validity time of the calling window; “alarm”
initiated auto dialling allowed anytime,

(200…255) manufacturer specific modes

repetitions The maximum number of trials in case of unsuccessful dialling
attempts.

repetition_delay The time delay, expressed in seconds until an unsuccessful dial
attempt can be repeated.

repetition_delay 0 means delay is not specified.

calling_window Contains the start and end date/time stamp when the window
becomes active (for the start instant), or inactive (for the end instant).
The start_date defines implicitly the period.

Example: when day of month is not specified (equal to 0 x FF) this
means that we have a daily share line management. Daily, monthly
…window management can be defined.

calling_window ::= array window_element
window_element ::= structure
{
 start _time: octet-string,
 end_time: octet-string
}
start_time and end_time are formatted as set in 4.4.1 for date_time

 – 120 – 62056-62 © IEC:2006(E)

phone_list Contains phone numbers, the device modem has to call under certain

conditions. The link between entries in the array and the conditions
are not contained in here.

phone_list ::= array
{
 phone_number: octet-string
}

E.5 IEC HDLC setup class, (class_id:23, version 0)

An instance of the “HDLC setup class” contains all data necessary to set up a communication
channel according to IEC 62056-46. Several communication channels can be configured. The
logical_names shall be as defined in D.2.1.14.

IEC HDLC setup 0...n class_id = 23, version = 0
Attribute(s) Data type Min. Max. Def.
1. logical_name (static) octet-string
2. comm_speed (static) enum 0 9 5
3. window_size_transmit (static) unsigned 1 7 1
4. window_size_receive (static) unsigned 1 7 1
5. max_info_field_

length_transmit
(static) unsigned 32 128 128

6. max_info_field_
length_receive

(static) unsigned 32 128 128

7. inter_octet_time_out (static) long-unsigned 20 1000 30
8. inactivity_time_ out (static) long-unsigned 0 120
9. device_address (static) long-unsigned 16 0x3FFD 0
Specific method(s) m/o

Attribute description

comm_speed The communication speed supported by the corresponding port:

enum:

(0) 300 baud,
(1) 600 baud,
(2) 1 200 baud,
(3) 2 400 baud,
(4) 4 800 baud,
(5) 9 600 baud,
(6) 19 200 baud,
(7) 38 400 baud,
(8) 57 600 baud,
(9) 115 200 baud

This communication speed can be overridden if the HDLC mode of
a device is entered through a special mode of another protocol.

window_size_
transmit

The maximum number of frames that a device or system can
transmit before it needs to receive an acknowledgement from a
corresponding station. During logon, other values can be
negotiated.

62056-62 © IEC:2006(E) – 121 –

window_size_
receive

The maximum number of frames that a device or system can
receive before it needs to transmit an acknowledgement to the
corresponding station. During logon, other values can be
negotiated.

max_info_length_
transmit

The maximum information field length that a device can transmit.
During logon, a smaller value can be negotiated.

max_info_length_
receive

The maximum information field length that a device can receive.
During logon, a smaller value can be negotiated.

Inter_octet_time_out Defines the time, expressed in milliseconds, over which, when any
character is received from the primary station, the device will treat
the already received data as a complete frame.

inactivity_time_out Defines the time, expressed in seconds over which, when any
frame is received from the primary station, the device will process a
disconnection.

When this value is set to 0, this means that the inactivity_time_out
is not operational.

device_address Contains the physical device address of a device:

In the case of single byte addressing:

0x00 NO_STATION Address,
0x01…0x0F Reserved for future use,
0x10...0x7D Usable address space,
0x7E ‘CALLING’ device address,
0x7F Broadcast address

In the case of double byte addressing:

0x0000 NO_STATION address,
0x0001...0x000F Reserved for future use,
0x0010…0x3FFD Usable address space,
0x3FFE ‘CALLING’ physical device address,
0x3FFF Broadcast address

 – 122 – 62056-62 © IEC:2006(E)

Bibliography

IEC 61334-6:2000, Distribution automation using distribution line carrier systems – Part 6:
A-XDR encoding rule

ISO/IEC 646:1991, Information technology – ISO 7-bit coded character set for information
interchange

ITU Recommendation X.217:1995, Information technology – Open Systems Interconnection –
Service definition for the Association Control Service Element

ITU Recommendation X.227,1995, Information technology – Open Systems Interconnection
Connection-oriented protocol for the Association Control Service Element: Protocol
specification

IEEE 754:1985, IEEE Standard for Binary Floating-Point Arithmetic

RFC 0768 – User Datagram Protocol (Also: IETF:STD 0006), 1980

RFC 0791 – Internet Protocol (Also: IETF STD 0005), 1981, Updated by: RFC 1349,
Obsoletes: RFC 760

RFC 0792 – Internet Control Message Protocol (Also: IETF STD 0005), 1981, Updated by:
RFC 0950, Obsoletes: RFC 0777

RFC 0793 – Transmission Control Protocol (Also: IETF STD 0007), 1981, Updated by: RFC
3168

RFC 0821 – Simple Mail Transfer Protocol (Also: IETF STD 0010), 1982

RFC 0940 – Toward an Internet standard scheme for subnetting, 1985

RFC 0950 – Internet Standard Subnetting Procedure, 1985, Updates: RFC 0792

RFC 1321 – The MD5 Message-Digest Algorithm, 1992

RFC 1332 – The PPP Internet Protocol Control Protocol (IPCP), 1992, Updated by: RFC
3241, Obsoletes: RFC 1172

RFC 1661 – The Point-to-Point Protocol (PPP) (Also: IETF STD 0051), 1994, Updated by:
RFC 2153, Obsoletes: RFC 1548

RFC 1662 – PPP in HDLC-like Framing, (Also: IETF STD 0051), 1994, Obsoletes: RFC 1549

RFC 1700 – Assigned numbers (Also: IETF: STD 0002), 1994, Obsoletes: RFC 1340

RFC 2507 – IP Header Compression, 1999

RFC 2821 – Simple Mail Transfer Protocol, 2001, Obsoletes: RFC0821, RFC0974, RFC1869

RFC 3241 – Robust Header Compression (ROHC) over PPP, 2002, Updates: RFC1332

RFC 3544 – IP Header Compression over PPP, 2003, Obsoletes: RFC 2509

FIPS PUB 180-1: 1995, Secure hash standard

FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION
U.S. DEPARTMENT OF COMMERCE/National Institute of Standards and Technology

62056-62 © IEC:2006(E) – 123 –

Index

4-pass authentication protocol, 22
Abstract object, 97, 105
Access rights, 21
ACSE, 22
Active energy, 113
Active power, 113
Activity calendar, 48, 49, 91, 97, 100
Algorithm, 113, 114, 115
Apparent energy, 115
Apparent power, 114
Application association, 10
Application Protocol Data Unit, 10
Association, 21, 97, 104, 119
Association LN, 13, 51
Association SN, 13, 56, 92, 96, 119
Association view, 21
association_status, 54
Attribute, 11, 13, 14
Authentication, 22
Auto answer, 70, 93, 99
Auto connect, 71, 94, 98
Auto dial, 122
A-XDR, 125
base_name, 56, 88, 96
Battery, 108
Billing period, 99, 110, 111, 117
Billing period counter, 111
Block demand, 33
Broadcast, 99
Broadcast address, 74, 124
Buffer, 36
Calendar, 48
Calling_Authentication_Value, 22
Capture period, 106, 109, 111, 116
capture_objects, 37
capture_period, 37
Captured object, 111, 116
Cardinality, 13
Challenge, 22, 55, 58
CHAP, 81
Class description template, 13
Class name, 13
class_id, 13, 51
client_SAP, 52
Clock, 23, 40, 41, 47, 90, 97, 98
Coefficients, 112
Communication port log, 109
Configuration, 106
Configuration data, 13
Configuration program, 112
Conformance block, 53
COSEM logical device name, 21
Cumulative value, 110
Current and last average values, 110
Current association, 21, 92
current_average_value, 30
Data, 23, 25, 59, 64, 88, 106, 108, 109,

110, 112, 113, 114, 115, 117
Data format, 14, 16
Data model, 87

Data of previous billing periods, 110
Data type, 13, 14, 15
Date and time, 16
Daylight saving, 40, 47
Default, 14
Demand register, 23, 30, 31, 33, 34, 59,

89, 110
Device ID, 106
DHCP, 79
DLMS User Association, 21
DLMS version, 53
EAP, 81
Eavesdropping, 22
Electrical port, 101
Electricity, 110
Encryption key, 23, 55, 58
Error values, 109
Ethernet setup, 80, 95, 103
Extended, 110
Extended register, 29, 32, 33, 34, 59, 64,

89, 107, 108, 109, 110, 112, 116, 117
Fundamental, 113, 114, 116
gateway_IP_address, 79
Global positioning system, 42
GMT, 17, 40, 41
GPRS modem setup, 85, 96, 104
Harmonics, 113, 116
Hayes standard, 69, 121
HDLC mode, 73, 123
HDLC setup, 97, 102
HDLC setup class, 73, 123
High Level Security, 22
HLS secret, 55, 58
I/O control signals, 107
ID numbers, 111
Identification system, 118
IEC HDLC setup, 94
IEC local port setup, 97
IEC twisted pair (1) setup, 74, 94, 102
Information, measured, 12
Information, static, 12
Instances, 13
Instantaneous value, 110
Instantiation, 8, 11, 12, 13, 25, 26, 59, 66
Interface class, 11, 23
Interface object, 11
Internal control signals, 107
internal operating status, 107
Intrinsic security, 22
IP_address, 78
IP_options, 78
IPv4 setup, 77, 95, 103
last_average_value, 30
Leap years, 40
Link Control Protocol, 81
List objects, 109, 117
listening_window, 71
LLS secret, 58
LLS_secret, 54
Local port setup, 67, 93, 101, 119

 – 124 – 62056-62 © IEC:2006(E)

Logical device, 20, 21, 51, 56, 59
Logical device name, 96, 97, 105
Logical name, 12, 13, 25, 88
Logical name referencing, 21, 51
logical_name, 11
Low Level Security, 22
Maintenance, 66
Management logical device, 21, 22
Mandatory, 13, 14
Mapping, 97
Maximum, 14
Maximum and minimum values, 110
MDI reset, 99
Message replay, 22
Meter reset, 99
Metering point ID, 106, 116
Method, 11, 13, 14
Minimum, 14
Modem, 68, 69, 70, 98, 120, 121, 122
Modem configuration, 68, 93, 97, 98, 120
Network Control Protocol, 83
Nominal value, 112
Normal mode, 99
Notation, 13
number_of_periods, 30
OBIS, 12, 13, 25, 29, 30, 97, 118
OBIS codes, 87
Object modelling, 11
object_list, 21, 51, 55, 56, 57
Occurrence counter, 110
Operating time, 108
Optical port, 101
Optical test output, 99
Optional, 13, 14
Output signals, 99
PAP, 81
Parameter changes, 106
Parameter record, 112
Passive calendar, 51
Password, 22, 58
Period, 30
Physical device, 20, 59, 104
Power factor, 115
Power factor, displacement, 116
Power factor, true, 116
Power fail, 45
Power failure, 47, 77
Power failure monitoring, 108
PPP setup, 80, 95, 103
PPP_authentication, 84
Preferred readout, 40
primary_DNS_address, 80
Process value, 13, 25
Profile entries, 106, 109, 111, 116
Profile generic, 23, 35, 36, 90, 106, 109,

110, 111, 112, 116, 119
Program entries, 112
Proprietary, 11
Public client, 22
Pulse constant, 112
Ratios, 112
RCR, 112

Reactive energy, 114
Reactive power, 114
Readout, 40, 97
Register, 12, 25, 26, 29, 33, 34, 59, 64, 88,

107, 108, 109, 110, 112, 116, 117
Register activation, 33, 89, 97, 100
Register monitor, 59, 92, 101, 117, 118
Register table, 62, 93
register_assignment, 33
Reserved base_names, 96
Reset, 27
SAP, 59
SAP assignment, 21, 22, 58, 92, 96, 97,

104
scaler_unit, 26
Schedule, 44, 45, 48, 91, 97, 100
Script, 43, 45, 47, 62, 92
Script table, 43, 49, 59, 62, 90, 96, 97, 99
Season, 40
secondary_DNS_address, 80
Secret, 22, 56, 58
Secret key, 22
Selective access, 14, 37, 38, 51, 55, 56,

61
Selective access parameters, 14
Server model, 20
server_SAP, 52
Shared line, 70
Short name, 88
Short name referencing, 21
Single action schedule, 61, 92, 97, 101
Sliding demand, 33
SMTP setup, 86, 96, 104
Sort method, 106, 109, 111, 116
sort_method, 37
sort_object, 38
Special days, 44, 48
Special days table, 48, 49, 91, 97, 100
Standard readout profile, 101
Status mapping, 65, 93
Status register, 109
Status value, 25
subnet_mask, 79
Tariffication, 33, 99, 100
TCP-UDP setup, 76, 95, 103
TCP-UDP_port, 76
Test mode, 99
Threshold values, 117
Threshold, missing, 117
Threshold, over limit, 117
Threshold, under limit, 117
Time changes, 47
Time integral values, 110
Time setting backward, 47
Time setting forward, 47
Time switch, 112
Time synchronization, 47
Twisted pair, 74
Twisted pair setup, 97
Unit, 27
Utility tables, 60, 92, 97, 105
Value, 12, 26

62056-62 © IEC:2006(E) – 125 –

Value group, 62
Value group B, 98
Value group C, 97
Value group D, 110

Value group E, 98
Value group F, 117
Version, 13, 51, 66, 118, 119

Standards Survey

The IEC would like to offer you the best quality standards possible. To make sure that we
continue to meet your needs, your feedback is essential. Would you please take a minute
to answer the questions overleaf and fax them to us at +41 22 919 03 00 or mail them to
the address below. Thank you!

Customer Service Centre (CSC)

International Electrotechnical Commission
3, rue de Varembé
1211 Genève 20
Switzerland

or

Fax to: IEC/CSC at +41 22 919 03 00

Thank you for your contribution to the standards-making process.

Non affrancare
No stamp required

Nicht frankieren
Ne pas affranchir

 A Prioritaire

RÉPONSE PAYÉE

SUISSE

Customer Service Centre (CSC)
International Electrotechnical Commission
3, rue de Varembé
1211 GENEVA 20
Switzerland

Q1 Please report on ONE STANDARD and
ONE STANDARD ONLY . Enter the exact
number of the standard: (e.g. 60601-1-1)

...

Q2 Please tell us in what capacity(ies) you
bought the standard (tick all that apply).
I am the/a:

purchasing agent R

librarian R

researcher R

design engineer R

safety engineer R

testing engineer R

marketing specialist R

other...

Q3 I work for/in/as a:
(tick all that apply)

manufacturing R

consultant R

government R

test/certification facility R

public utility R

education R

military R

other...

Q4 This standard will be used for:
(tick all that apply)

general reference R

product research R

product design/development R

specifications R

tenders R

quality assessment R

certification R

technical documentation R

thesis R

manufacturing R

other...

Q5 This standard meets my needs:
(tick one)

not at all R

nearly R

fairly well R

exactly R

Q6 If you ticked NOT AT ALL in Question 5
the reason is: (tick all that apply)

standard is out of date R

standard is incomplete R

standard is too academic R

standard is too superficial R

title is misleading R

I made the wrong choice R

other ..

Q7 Please assess the standard in the
following categories, using
the numbers:
(1) unacceptable,
(2) below average,
(3) average,
(4) above average,
(5) exceptional,
(6) not applicable

timeliness ...
quality of writing....................................
technical contents.................................
logic of arrangement of contents
tables, charts, graphs, figures
other ..

Q8 I read/use the: (tick one)

French text only R

English text only R

both English and French texts R

Q9 Please share any comment on any
aspect of the IEC that you would like
us to know:

..

..

..

..

..

..

..

..

..

..

..

..

 ISBN 2-8318-8895-6

-:HSMINB=]]]^Z]:
ICS 91.140.50; 35.200

Typeset and printed by the IEC Central Office
GENEVA, SWITZERLAND

	CONTENTS
	FOREWORD
	INTRODUCTION
	1 Scope
	2 Normative references
	3 Terms, definitions and abbreviations
	4 Basic principles
	4.1 General
	4.2 Class description notation
	4.3 Common data types
	4.4 Data formats
	4.5 The COSEM server model
	4.6 COSEM logical device
	4.7 Authentication procedures

	5 The interface classes
	5.1 Data (class_id:1)
	5.2 Register (class_id:3)
	5.3 Extended register (class_id:4)
	5.4 Demand register (class_id:5)
	5.5 Register activation (class_id:6)
	5.6 Profile generic (class_id:7)
	5.7 Clock (class_id:8)
	5.8 Script table (class_id:9)
	5.9 Schedule (class_id:10)
	5.10 Special days table (class_id:11)
	5.11 Activity calendar (class_id:20)
	5.12 Association LN (class_id:15)
	5.13 Association SN (class_id:12)
	5.14 SAP assignment (class_id:17)
	5.15 Register monitor (class_id:21)
	5.16 Utility tables (class_id:26)
	5.17 Single action schedule (class_id:22)
	5.18 Register table (class_id:61)
	5.19 Status mapping (class_id:63)

	6 Maintenance of the interface classes
	6.1 New interface classes
	6.2 New versions of interface classes
	6.3 Removal of interface classes

	Annex A (normative) Protocol related interface classes
	Annex B (normative) Data model and protocol
	Annex C (normative) Using short names for accessing attributes and methods
	Annex D (normative) Relation to OBIS
	Annex E (informative) Previous versions of interface classes
	Bibliography
	Index
	Figure 1 – An interface class and its instances
	Figure 2 – The COSEM server model
	Figure 3 – Combined metering device
	Figure 4 – Overview of the interface classes
	Figure 5 – The attributes when measuring sliding demand
	Figure 6 – The attributes when measuring current_average_value if number of periods is 1
	Figure 7 – The attributes if the number of periods is 3
	Figure 8 – The generalized time concept
	Figure B.1 – The three step approach of COSEM
	Table 1 – Common data types

