

IEC 62055-52
Edition 1.0 2008-05

INTERNATIONAL
STANDARD

Electricity metering – Payment systems –
Part 52: Standard transfer specification (STS) – Physical layer protocol for a two-
way virtual token carrier for direct local connection

IE
C

 6
20

55
-5

2:
20

08
(E

)

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 THIS PUBLICATION IS COPYRIGHT PROTECTED
 Copyright © 2008 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester.
If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication,
please contact the address below or your local IEC member National Committee for further information.

IEC Central Office
3, rue de Varembé
CH-1211 Geneva 20
Switzerland
Email: inmail@iec.ch
Web: www.iec.ch

About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigenda or an amendment might have been published.
 Catalogue of IEC publications: www.iec.ch/searchpub

The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,…).
It also gives information on projects, withdrawn and replaced publications.
 IEC Just Published: www.iec.ch/online_news/justpub

Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available
on-line and also by email.
 Electropedia: www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions
in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical
Vocabulary online.
 Customer Service Centre: www.iec.ch/webstore/custserv

If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service
Centre FAQ or contact us:
Email: csc@iec.ch
Tel.: +41 22 919 02 11
Fax: +41 22 919 03 00

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

mailto:inmail@iec.ch
http://www.iec.ch/
http://www.iec.ch/searchpub
http://www.iec.ch/online_news/justpub
http://www.electropedia.org/
http://www.iec.ch/webstore/custserv
mailto:csc@iec.ch

IEC 62055-52
Edition 1.0 2008-05

INTERNATIONAL
STANDARD

Electricity metering – Payment systems –
Part 52: Standard transfer specification (STS) – Physical layer protocol for a
two-way virtual token carrier for direct local connection

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION XA
ICS 35.100.20; 17.220.20; 91.140.50

PRICE CODE

ISBN 2-8318-9747-5

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 2 – 62055-52 © IEC:2008(E)

CONTENTS

FOREWORD...5
INTRODUCTION...7

1 Scope...9
2 Normative references ...9
3 Terms, definitions and abbreviations .. 10

3.1 Terms and definitions ..10
3.2 Abbreviations ..10
3.3 Notation and terminology...11
3.4 Numbering conventions ... 12

4 STS protocol reference model .. 12
5 POSToTokenCarrierInterface: Physical layer protocol .. 13
6 TokenCarrierToMeterInterface: Physical layer protocol ... 13

6.1 TCDU ..13
6.1.1 General ...13
6.1.2 TokenData...13
6.1.3 AuthenticationResult.. 14
6.1.4 ValidationResult ..14
6.1.5 TokenResult ..14

6.2 Physical connection and signal interfaces ... 14
6.2.1 Interface options..14
6.2.2 Option 1: Optical interface ... 14
6.2.3 Option 2: Current loop interface... 14
6.2.4 Option 3: Voltage interface ..14

6.3 Character transmission..14
6.3.1 Transmission type ...14
6.3.2 Transmission format .. 15
6.3.3 Transmission speed...15
6.3.4 Character encoding ...15

6.4 Message syntax definitions ... 17
6.4.1 General ...17
6.4.2 IDRequest message ..17
6.4.3 IDResponse message..17
6.4.4 ReadCommand message... 17
6.4.5 WriteCommand message ...18
6.4.6 BreakCommand message .. 18
6.4.7 ACK: Acknowledge message ... 18
6.4.8 NAK: NegativeAcknowledge message ...18
6.4.9 Data message ...18

6.5 Message field definitions ...19
6.6 Physical layer protocol functions ... 21

6.6.1 Server protocol flow diagram ...21
6.6.2 IDRequestProcessing function ...22
6.6.3 ReadCommandProcessing function ... 23
6.6.4 WriteCommandProcessing function ... 24
6.6.5 BreakCommandProcessing function .. 25

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

62055-52 © IEC:2008(E) – 3 –

6.6.6 Undefined command processing .. 26
6.6.7 TokenLockout function...27

6.7 Server timing requirements.. 27
6.7.1 Inter-message and inter-character timing... 27
6.7.2 Transmission error timing .. 28
6.7.3 Message execution timing ...29

6.8 RegisterTable..30
6.8.1 RegisterTable interface class .. 30
6.8.2 Register interface class ... 31
6.8.3 Predefined Registers and registerID values ... 32

6.9 Companion specifications and RegisterTable instantiations 43
7 Maintenance of STS entities and related services... 43

7.1 General ...43
7.2 RegisterTable maintenance ...44
7.3 Register maintenance.. 44
7.4 tableID maintenance ...44
7.5 FOIN maintenance ..45
7.6 protocolVersion maintenance ..45
7.7 serverStatus maintenance ... 45
7.8 tokenStatus maintenance .. 45
7.9 softwareVersion maintenance..45

Annex A (normative) Server state diagrams for request message processing....................... 46

Bibliography.. 51

Figure 1 – Physical layers of the STS protocol stack... 12
Figure 2 – Character transmission format ... 15
Figure 3– Server protocol flow diagram... 21
Figure 4 – Inter-message timing responses...28
Figure 5 –Transmission error timing..29
Figure A.1 – Server state diagram for IDRequestProcessing function.................................... 46
Figure A.2 – Server state diagram for ReadCommandProcessing function 47
Figure A.3 – Server state diagram for WriteCommandProcessing function 48
Figure A.4 – Server state diagram for BreakCommandProcessing function 49
Figure A.5 – Server state diagram for undefined command ... 50

Table 1 – Data elements in the TCDU ...13
Table 2 – Bit-encoding of a 7-bit character code ... 15
Table 3 – Character encoding example of a 14-bit binary number ... 16
Table 4 – Character encoding example of a 4-digit hexadecimal number 16
Table 5 – Character encoding example of a 4-digit decimal number 17
Table 6 – Message field definitions ...19
Table 7 – Request messages supported by the server .. 22
Table 8 – Response messages supported by the server ... 22
Table 9 – Functions supported by the server...22

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 4 – 62055-52 © IEC:2008(E)

Table 10 – Server timing requirements to respond to a request message.............................. 28
Table 11 – Inter-character timing requirements ... 28
Table 12 – Transmission error recovery wait period .. 29
Table 13 – Generic format for RegisterTable... 30
Table 14 – Generic format for Register ... 31
Table 15 – Predefined Registers and registerID values ... 32
Table 16 – Instance format for ProtocolVersion register .. 33
Table 17 – Defined protocolVersion values ...34
Table 18 – Instance format for TableID register .. 34
Table 19 – Instance format for ServerStatus register .. 35
Table 20 – Defined serverStatus values .. 36
Table 21 – Instance format for SoftwareVersion register ... 37
Table 22 – Instance format for BinaryTokenEntry register ... 38
Table 23 – Instance format for TokenStatus register ... 39
Table 24 – Defined tokenStatus values ...40
Table 25 – Instance format for TokenLockoutTimeRemaining register 42
Table 26 – Entities/services requiring maintenance service .. 44

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

62055-52 © IEC:2008(E) – 5 –

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ELECTRICITY METERING –

PAYMENT SYSTEMS –

Part 52: Standard transfer specification (STS) –
Physical layer protocol for a two-way virtual token carrier

for direct local connection

FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising

all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.

5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with an IEC Publication.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The International Electrotechnical Commission (IEC) draws attention to the fact that it is claimed that compliance
with this International Standard may involve the use of a maintenance service concerning encryption key
management and the stack of protocols on which the present International Standard IEC 62055-41 is based. [See
Clause C.1 of IEC 62055-41.] The IEC takes no position concerning the evidence, validity and scope of this
maintenance service.

The provider of the maintenance service has assured the IEC that he is willing to provide services under
reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the
statement of the provider of the maintenance service is registered with the IEC. Information may be obtained from

Address: The STS Association, P.O. Box 868, Ferndale 2160, Republic of South Africa.
Tel: +27 11 789 1384
Fax: +27 11 789 1385
Email: email@sts.org.za
Website: http://www.sts.org.za

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

mailto:email@sts.org..co.za
http://www.sts.org.za/

 – 6 – 62055-52 © IEC:2008(E)

International Standard IEC 62055-52 has been prepared by working group 15, of IEC
technical committee 13: Electrical energy measurement, tariff and load control.

IEC 62055-52 is complementary to, and should be read in conjunction with, IEC 62055-41.

The text of this standard is based on the following documents:

FDIS Report on voting

13/1424/FDIS 13/1428/RVD

Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of IEC 62055 series, published under the general title Electricity metering –
Payment systems, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until
the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in
the data related to the specific publication. At this date, the publication will be

• reconfirmed,
• withdrawn,
• replaced by a revised edition, or
• amended.

A bilingual version of this publication may be issued at a later date.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

62055-52 © IEC:2008(E) – 7 –

INTRODUCTION

The IEC 62055 series covers payment systems, encompassing the customer information
systems, point of sales systems, token carriers, payment meters and the respective interfaces
that exist between these entities. At the time of preparation of this part, IEC 62055 comprised
the following parts, under the general title Electricity metering – Payment systems:

Part 21: Framework for standardization
Part 31: Particular requirements – Static payment meters for active energy (classes 1 and 2)
Part 41: Standard transfer specification(STS) – Application layer protocol for one-way token

carrier systems
Part 51: Standard transfer specification(STS) – Physical layer protocol for one-way numeric

and magnetic card token carriers
Part 52: Standard transfer specification(STS) – Physical layer protocol for a two-way virtual

token carrier for direct local connection
The Part 4x series specifies application layer protocols and the Part 5x series specifies
physical layer protocols.

The protocol in this International Standard is based on the IEC 62056-21 communication
protocol and has been simplified by removing features from the IEC 62056-21 protocol, which
are not required for the current requirements of data exchange between the VTC07 client
device and the payment meter server.

The main design objective in establishing the protocol has been the requirement to reduce the
complexity of the software that is needed to implement this protocol in the payment meter.
This directly relates to a smaller memory size that can be translated into a cost saving or the
ability to include additional software features for a given memory size.

The Standard Transfer Specification (STS) is a secure message protocol that allows
information to be carried between point of sale (POS) equipment and payment meters and it
caters for several message types such as credit, configuration control, display and test
instructions. It further specifies devices and Codes Of Practice that allows for the secure
management (generation, storage, retrieval and transportation) of cryptographic keys used
within the system.

The national electricity utility in South Africa (Eskom) first developed and published the STS
in 1993 and transferred ownership to the STS Association in 1998 for management and
further development.

Prior to the development of the STS, a variety of proprietary payment meters and POS
equipment had been developed, which were however not compatible with each other. This
gave rise to a definite need among the major users to move towards standardized solutions in
addressing operational problems experienced where various types of payment meter and POS
equipment had to be operated simultaneously. The Standard Transfer Specification was
developed that would allow for the application and inter-operability of payment meters and
POS equipment from multiple manufacturers in a payment metering installation.

The TokenCarrier is the physical medium used to transport information from a POS or the
management system to the payment meter, or from the payment meter to the POS or
management system. This part of IEC 62055 specifies a virtual token carrier as embodied in a
direct local connection between a management device client and a payment meter server. It
has been assigned identification code 07 by the STS Association and is also generally
referred to as VTC07. New token carriers can be proposed as new work items through the
National Committees or through the STS Association.

Although the main implementation of the STS is in the electricity supply industry, it inherently
provides for the management of other utility services like water and gas. Future revisions of

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 8 – 62055-52 © IEC:2008(E)

the STS may allow for other token carrier technologies like smart cards and memory keys with
two-way functionality.

The STS Association has established D-type liaison with working group 15 of IEC TC 13 for
the development of standards within the scope of the STS, and is thus responsible for the
maintenance of any such IEC standards that might be developed as a result of this liaison.

The STS Association is also registered with the IEC as a Registration Authority for providing
maintenance services in support of the STS (see Clause C.1 of IEC 62055-41 for more
information).

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

62055-52 © IEC:2008(E) – 9 –

ELECTRICITY METERING –
PAYMENT SYSTEMS –

Part 52: Standard transfer specification (STS) –

Physical layer protocol for a two-way virtual token carrier
for direct local connection

1 Scope

This part of IEC 62055 specifies a physical layer protocol of the STS for transferring units of
credit and other management information between a client (typically a HHU) and a server (an
STS-compliant electricity payment meter), typically over a direct local connection. It is
complementary to the application layer protocol specified in IEC 62055-41 and should be
used in conjunction with that standard.

This standard is not applicable to payment metering systems employing monetary-based
tokens, complex tariffs and currency-mode accounting functions. It is only intended to support
the STS functionality as defined in IEC 62055-41 and it does not support the additional
functionality required for extended use that includes monetary-based tokens and complex
meter functions such as tariffs, real time clocks and currency-mode accounting. If such
extended use were required in the future, then it would need new work on this part of
IEC 62055 as well as on IEC 62055-41.

It is intended for use across a range of payment meters developed by different manufacturers
and to ensure compatibility between these products and other client devices.

It specifies a client/server communications protocol that:

• transfers STS-compliant tokens from a client device to a payment meter server;

• reads the result from the payment meter after transfer and execution of the token;

• transfers management data from the client device to the payment meter server;

• reads management data from the payment meter server and transfers same to the client
device.

NOTE Although developed for payment systems for electricity, this standard can also be applied to other utility
services, such as water and gas.

2 Normative references

The following referenced documents are indispensable for the application of this document.
For dated references, only the edition cited applies. For undated references, the latest edition
of the referenced document (including any amendments) applies.

IEC 60050-300, International Electrotechnical Vocabulary – Electrical and electronic
measurements and measuring instruments – Part 311: General terms relating to
measurements – Part 312: General terms relating to electrical measurements – Part 313:
Types of electrical measuring instruments – Part 314: Specific terms according to the type of
instrument

IEC 62051:1999, Electricity metering – Glossary of terms

IEC TR 62055-21:2005, Electricity metering – Payment systems – Part 21: Framework for
standardization

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 10 – 62055-52 © IEC:2008(E)

IEC 62055-31:2005, Electricity metering – Payment systems – Part 31: Particular
requirements – Static payment meters for active energy (classes 1 and 2)

IEC 62055-41, Electricity metering – Payment systems – Part 41: Standard transfer
specification – Application layer protocol for one-way token carrier systems

IEC 62055-51, Electricity metering – Payment systems Part 51: Standard transfer
specification – Physical layer protocol for one-way numeric and magnetic card token carriers

IEC 62056-21:2002, Electricity metering – Data exchange for meter reading, tariff and load
control – Part 21: Direct local data exchange

ISO/IEC 646:1991, Information technology – ISO 7-bit coded character set for information
interchange

STS 101-1, Standard transfer specification (STS) – Interface specification – Physical layer
mechanical and electrical interface for virtual token carriers1

3 Terms, definitions and abbreviations

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in IEC 60050-300,
IEC 62051, IEC 62055-31, IEC 62055-41 apply.

The term ASCII is used throughout the standard, which shall mean the 7-bit coded character
set as defined in ISO/IEC 646.

3.2 Abbreviations

ACK Acknowledge (ASCII code)

APDU ApplicationProtocolDataUnit

ASCII American Standard Code for Information Interchange

BCC Block Check Character

Char Character

CR Carriage Return (ASCII code)

DL Data Length

ETX End Of Text (ASCII code)

FOIN FunctionObjectIdentificationNumber

GPRS General Packet Radio Service

GSM Global System For Mobile Communication

hex hexadecimal

HHU Hand Held Unit

—————————
1 To be published

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

62055-52 © IEC:2008(E) – 11 –

ID Identification, Identifier

ISDN Integrated Services Digital Network

ISO International Standards Organisation

LAN Local Area Network

LF Line Feed (ASCII code)

ms milli-second

NAK Negative AcKnowledge (ASCII code)

OSI Open Systems Interconnect

PLC Power Line Carrier

POS PointOfSale

PSTN Public Switched Telephone Network

Ref Reference clause

RID Register IDentifier code

SOH Start Of Header (ASCII code)

STS Standard Transfer Specification

STX Start Of Text (ASCII code)

TCDU TokenCarrierDataUnit

VTC07 VirtualTokenCarrierType07

WAN Wide Area Network

3.3 Notation and terminology

Throughout this standard, the following rules are observed regarding the naming of terms:

• entity names, data element names, function names and process names are treated as
generic object classes and are given names in terms of phrases in which the words are
capitalized and joined without spaces. Examples are: SupplyGroupCode as a data element
name, TokenLockout as a function name and TransferCredit as a process name (see
Note);

• direct (specific) reference to a named class of object uses the capitalized form, while
general (non-specific) reference uses the conventional text, i.e. lower case form with
spaces. An example of a direct reference is: “The SupplyGroupCode is linked to a group of
meters”, while an example of a general reference is: “A supply group code links to a
vending key”;

• attribute names of an object class uses the same convention as for the name of an object
class, except that the first letter is in lower case format;

• object class names are capitalized, while names of attributes of a object class start with
lower case;

• other terms use the generally accepted abbreviated forms like PSTN for Public Switched
Telephone Network.

NOTE The notation used for naming of objects has been aligned with the so called “camel-notation” used in the
common information model (CIM) standards prepared by TC 57, in order to facilitate future harmonization and
integration of payment system standards with the CIM standards.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 12 – 62055-52 © IEC:2008(E)

3.4 Numbering conventions

In this standard, the representation of numbers in binary strings uses the convention that the
least significant bit is to the right, and the most significant bit is to the left.

Numbering of bit positions start with bit position 0, which corresponds to the least significant
bit of a binary number.

Numbers are generally in decimal format, unless otherwise indicated. Any digit without an
indicator signifies decimal format.

Binary digit values range from 0-1.

Decimal digit values range from 0-9.

Hexadecimal digit values range from 0-9, A-F and are indicated by “hex”.

4 STS protocol reference model

Key:

APDU ApplicationLayerDataUnit; data interface to the application layer protocol

TCDU TokenCarrierDataUnit; data interface to the physical layer protocol

Relevant clause number references in this standard are indicated adjacent to each box

Figure 1 – Physical layers of the STS protocol stack

The STS is a secure data transfer protocol between a POS and a payment meter using a
token carrier as the transfer medium. The application layer protocol deals with tokens,
encryption processes and functions and is specified in IEC 62055-41, while the physical layer
protocol deals with the actual encoding of the token data onto various types of token carriers.

Token Carrier

Physical Layer
Protocol

Application Layer
Protocol

TCDU

Physical Layer
Protocol

Application Layer
Protocol

TCDU

METER
Application

Process

POS
Application

Process

APDU APDU

6.1

6.2
to
6.8

Key Management

POS to Token
Carrier Interface

Companion
Specifications

Token Carrier to
Meter Interface

IE
C

 6
20

55
-4

1

IE
C

 6
20

55
-5

2

Meter Function
Objects

5

IE
C

 6
20

55
-5

2

IE
C

 6
20

55
-4

1

IEC 594/08

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

62055-52 © IEC:2008(E) – 13 –

This part of IEC 62055 specifies a physical layer protocol that deals with the actual encoding
of the token data onto a virtual token carrier comprising of a direct local connection between a
client and a server (payment meter) using a serial communications protocol, and operates in
conjunction with the application layer protocol specified in IEC 62055-41(see Figure 1).

Examples of other types of virtual token carriers are: PSTN modem, ISDN modem, GSM
modem, GPRS modem, Radio modem, PLC modem, Infra-red, LAN and WAN connections
and direct local connection, which might be specified in the future in other parts of the
IEC 62055-5x series.

A more complete description of the STS reference model and data flows from the
POSApplicationProcess to the MeterApplicationProcess may be found in Clause 5 of
IEC 62055-41.

The protocol defines a generic write and read message structure that allows for a client to
read data from or write data to a payment meter by reference to a virtual register table as a
logical interface to actual registers or functions. This standard defines a RegisterTable
interface class (see 6.8.1) and a Register interface class (see 6.8.2) for a
MeterFunctionObject, which gets defined in a companion specification. Companion
specifications are not normative to IEC 62055-52 and are administered by the STS
Association (see 6.9).

5 POSToTokenCarrierInterface: Physical layer protocol

The client interface to the virtual token carrier is not defined in detail in this standard, but it
shall generally complement the requirements given in the relevant parts of Clause 6.

In practice, the client device is typically a mobile HHU that connects to the payment meter by
means of a direct local connection, but it is also possible for the connection to be extended to
a remote management system by means of suitable interposing modem devices linked over
any appropriate communications medium. Such extended remote connection is not
specifically covered in this standard, but in essence it simply means an extension of the
physical medium.

6 TokenCarrierToMeterInterface: Physical layer protocol

6.1 TCDU

6.1.1 General

The TCDU is the data interface between the physical layer protocol and the application layer
protocol and comprises the following data elements as given in Table 1.

Table 1 – Data elements in the TCDU

Element Format Reference

TokenData 66-bit binary 6.1.2

AuthenticationResult Boolean 6.1.3

ValidationResult Boolean 6.1.4

TokenResult Boolean 6.1.5

6.1.2 TokenData

This is the 66-bit binary format of the token data as decoded from the TokenCarrier. It is the
same data element as is presented to the TCDU at the POSToTokenCarrierInterface (see
6.4.3 to 6.4.5 of IEC 62055-41).

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 14 – 62055-52 © IEC:2008(E)

6.1.3 AuthenticationResult

This is a status indicator to the physical layer protocol to convey the result from the initial
authentication checks. See also 7.1.3 of IEC 62055-41 for definition of the
AuthenticationResult values.

These data elements are also included in the TokenStatus register (see 6.8.3.7) for access by
the client.

6.1.4 ValidationResult

This is a status indicator to the physical layer protocol to convey the result from the initial
validation checks. See also 7.1.4 of IEC 62055-41 for definition of the ValidationResult
values.

These data elements are also included in the TokenStatus register (see 6.8.3.7) for access by
the client.

6.1.5 TokenResult

This is a status indicator from the MeterApplicationProcess to convey the result after
processing the Token so that the physical layer protocol can take the appropriate action. See
also 7.1.5 of IEC 62055-41 for the definition of the TokenResult values.

These data elements are also included in the TokenStatus register (see 6.8.3.7) for access by
the client.

6.2 Physical connection and signal interfaces

6.2.1 Interface options

The payment meter manufacturer may implement any of the options given in 6.2.2 to 6.2.4,
but the actual implementation shall be agreed between the manufacturer and the utility.

Further options may be given in future revisions to this standard.

6.2.2 Option 1: Optical interface

The physical connection and signal interfaces shall comply with the requirements given in 4.3
of IEC 62056-21.

6.2.3 Option 2: Current loop interface

The physical connection and signal interfaces shall comply with the requirements given in 4.1
of IEC 62056-21.

6.2.4 Option 3: Voltage interface

The physical connection and signal interfaces shall comply with the requirements given in
STS 101-1.

6.3 Character transmission

6.3.1 Transmission type

Asynchronous serial transmission - half duplex.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

62055-52 © IEC:2008(E) – 15 –

6.3.2 Transmission format

Figure 2 – Character transmission format

The character transmission format comprises 1 start bit, 7 data bits, 1 even parity bit, and 1
stop bit, as shown in Figure 2.

The bit-encoding of the 7-bit ASCII character is given in Table 2.

Table 2 – Bit-encoding of a 7-bit character code

Bit Value Context

Start bit 0 Signifies the start of a character serial bit stream

Data bit 0 0 – 1 Least significant bit of the character code

Data bit 1 0 – 1 Character code

Data bit 2 0 – 1 Character code

Data bit 3 0 – 1 Character code

Data bit 4 0 – 1 Character code

Data bit 5 0 – 1 Character code

Data bit 6 0 – 1 Most significant bit of the character code

Parity bit 0

1

If data bits 0 to 6 contain an even number of binary 1’s

If data bits 0 to 6 contain an odd number of binary 1’s

Stop bit 1 Signifies the end of a character serial bit stream

6.3.3 Transmission speed

Baud rate = 2 400 bits per second.

The server shall not support Baud rate negotiation or switchover.

6.3.4 Character encoding

The format of application data is defined in specifications applicable to the particular data
element. For the purposes of this standard, all application data elements that are to be
transported over the VTC07 virtual token carrier shall be presented in binary, hexadecimal or
decimal format before character encoding.

Start
bit

Data
bit
0

Parity
bit

Stop
bit

data
bit
1

Data
bit
2

Data
bit
3

Data
bit
4

Data
bit
5

Data
bit
6

Bit transmission sequence
Time

IEC 595/08

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 16 – 62055-52 © IEC:2008(E)

Binary format data shall be encoded as follows:

Binary format data is split into 4-bit nibbles and each nibble is converted into its 7-bit ASCII
representation before transmission. The most significant nibble is transmitted first. During
reception by the client the inverse process is applied to reconstruct the data into its original
format. In the case where the data format is not a whole number of 4-bit nibbles, then the
binary number shall be right justified and padded on the left with leading binary zeros to make
a whole number of nibbles. An example is given in Table 3.

Table 3 – Character encoding example of a 14-bit binary number

Operation Result 7-bit ASCII

Binary number starting value 11001011011110

Split into 4-bit nibbles 11 0010 1101 1110

Padded on the left with zeros to make a
whole number of nibbles

0011 0010 1101 1110

1st nibble to convert and transmit 0011 0110011

2nd nibble to convert and transmit 0010 0110010

3rd nibble to convert and transmit 1101 1000100

4th nibble to convert and transmit 1110 1000101

Hexadecimal format data shall be encoded as follows:

Hexadecimal format data is split into hexadecimal digits and each digit is converted into its 7-
bit ASCII representation before transmission. The most significant digit is transmitted first.
During reception by the client the inverse process is applied to reconstruct the data into its
original format. An example is given in Table 4.

Table 4 – Character encoding example of a 4-digit hexadecimal number

Operation Result 7-bit ASCII

Hexadecimal number starting value 12AF

Split into 4 hexadecimal digits 1 2 A F

1st digit to convert and transmit 1 0110001

2nd digit to convert and transmit 2 0110010

3rd digit to convert and transmit A 1000001

4th digit to convert and transmit F 1000110

Decimal format data shall be encoded as follows:

Decimal format data is split into decimal digits and each digit is converted into its 7-bit ASCII
representation before transmission. The most significant digit is transmitted first. During
reception by the client the inverse process is applied to reconstruct the data into its original
format. An example is given in Table 5.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

62055-52 © IEC:2008(E) – 17 –

Table 5 – Character encoding example of a 4-digit decimal number

Operation Result 7-bit ASCII

Decimal number starting value 3059

Split into 4 decimal digits 3 0 5 9

1st digit to convert and transmit 3 0110011

2nd digit to convert and transmit 0 0110000

3rd digit to convert and transmit 5 0110101

4th digit to convert and transmit 9 0111001

6.4 Message syntax definitions

6.4.1 General

The various messages supported are given below. Reference numbers below each field refer
to the listing in 6.5, defining the detailed definition for each field.

Each field represents one or more 7-bit ASCII characters after encoding of the data
(see 6.3.4).

6.4.2 IDRequest message

The client sends the IDRequest message to request the server to produce identification
information that will help the client determine which server type it is dealing with. This is
normally the first message the server receives in a communication session.

/ ? ! CR LF

(1) (2) (3) (4) (5)

See also 6.6.2 for more information on the processing of this message.

6.4.3 IDResponse message

The server sends the IDResponse message to the client in response to receiving the
IDRequest message from the client. The server identifies its payment meter type by sending
the manufacturer code and software version code of the server.

/ M X V CR LF

(1) (22) (6) (7) (4) (5)

See also 6.6.2 for more information on the processing of this message.

6.4.4 ReadCommand message

The client reads a dataset from a particular Register (see 6.8.2) in the payment meter by
sending a ReadCommand to the server.

SOH R STX RID DL ETX BCC

(8) (9) (10) (11) (12) (13) (14)

NOTE BCC is calculated on fields (9) to (13).

See also 6.6.3 for more information on the processing of this message.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 18 – 62055-52 © IEC:2008(E)

6.4.5 WriteCommand message

The client writes a dataset to a particular Register (see 6.8.2) in the payment meter by
sending a WriteCommand to the server.

SOH W STX RID (D) ETX BCC

(8) (15) (10) (11) (16) (17) (18) (13) (14)

NOTE BCC is calculated on fields (15) to (13)

See also 6.6.4 for more information on the processing of this message.

6.4.6 BreakCommand message

The client cancels all previous messages that have not yet been executed by the server by
sending a BreakCommand to the server.

SOH B ETX BCC

(8) (19) (13) (14)

NOTE BCC is calculated on fields (19) to (13)

See also 6.6.5 for more information on the processing of this message.

6.4.7 ACK: Acknowledge message

The server returns a positive response by sending the Acknowledge message.

ACK

(20)

See also 6.6.4 and 6.6.5 for more information on the processing of this message.

6.4.8 NAK: NegativeAcknowledge message

The server returns a negative response by sending the NegativeAcknowledge message.

NAK

(21)

See also 6.6.1 to 6.6.5 and 6.7.2 for more information on the processing of this message.

6.4.9 Data message

The server sends a Data message in response to a ReadCommand from the client.

STX (D) ETX BCC

(10) (16) (17) (18) (13) (14)

NOTE BCC is calculated on fields (16) to (13)

See also 6.6.3 for more information on the processing of this message.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

62055-52 © IEC:2008(E) – 19 –

6.5 Message field definitions

Each message field comprises one or more 7-bit ASCII characters. The possible value for
each character in a field is given in Table 6 below.

NOTE Although this standard is based on IEC 62056-21, the character values in Table 6 are given in decimal
format, whereas the equivalent values in IEC 62056-21 are given in hexadecimal format.

Table 6 – Message field definitions

Field Field

number

No.

characters

Character

value

Context Reference

/ (1) 1 47 Start character

ASCII “/“ ; Right-slash

6.4.2

6.4.3

? (2) 1 63 IDRequest command character

ASCII “?“ ; Question mark

6.4.2

! (3) 1 33 End character

ASCII “! “ ; Exclamation mark

6.4.2

CR (4) 1 13 Completion character

ASCII CR ; Carriage return

6.4.2

6.4.3

LF (5) 1 10 Completion character

ASCII LF ; Line feed

6.4.2

6.4.3

X (6) 2 48-57 Manufacturer code

ASCII “0” – “9”

Range 00 – 99

2-digit decimal representation of the
manufacturer code as defined in 6.1.2.3.2 of
IEC 62055-41

6.4.3

V (7) 4 48-57

and

65-70

SoftwareVersion

ASCII “0” – “9” and “A” – “F”

4-digit representation of the payment meter
software version. Interpretation of the digits
are manufacturer-specific (see also 6.8.3.5)

6.4.3

SOH (8) 1 1 Header character

ASCII SOH ; Start of header

6.4.4

6.4.5

6.4.6

R (9) 1 82 ReadCommand character

ASCII “R” ;

6.4.4

STX (10) 1 2 Frame start character

ASCII STX ; Start of text

6.4.4

6.4.5

6.4.9

RID (11) 4 48-57

and

65-70

registerID

ASCII “0” – “9” and “A” – “F”

4-digit register identifier field in hexadecimal
format. It is the identifier of the register from
which data must be read, or to which data
must be written. See also 6.8 for definition of
the RegisterTable

6.4.4

6.4.5

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 20 – 62055-52 © IEC:2008(E)

Field Field

number

No.

characters

Character

value

Context Reference

DL (12) 1 48-57

and

65-70

Data length

ASCII “0” – “9” and “A” – “F”

The server shall interpret the value of this field
in accordance with the particular definition for
each Register (see 6.8.2) in a RegisterTable
(see 6.8.1) instance.

NOTE In legacy payment meters, this control
data element was used to specify the number
of bytes to be read from a register during
execution of a ReadCommand message. It
was also constrained to a maximum value of
10

6.4.4

ETX (13) 1 3 Frame end character

ASCII ETX ; End of text

6.4.4

6.4.5

6.4.6

6.4.9

BCC (14) 1 0-127 Block check character

This is a calculated value and may result in
any one of the values within the complete 7-bit
ASCII range.

The BCC is calculated from the first character
immediately following the first SOH or STX
character in the message up to and including
the ETX character, which terminates the
message frame. The BCC is calculated by
performing a 7-bit character-wise logical XOR
and is placed immediately following the ETX
character

6.4.4

6.4.5

6.4.6

6.4.9

W (15) 1 87 WriteCommand character

ASCII “W“ ;

6.4.5

((16) 1 40 Open data block character

ASCII “(“ ; Left-parenthesis

6.4.5

6.4.9

D (17) x 48-57

and

65-70

Dataset

ASCII “0” – “9” and “A” – “F”

Data field representing the data to be written
(WriteCommand message) or read (Data
message)

NOTE In legacy payment meters, the dataset
was limited to 10 bytes maximum (20
characters)

6.4.5

6.4.9

) (18) 1 41 Close data block character

ASCII “)“ ; Right-parenthesis

6.4.5

6.4.9

B (19) 1 66 BreakCommand character

ASCII “B“ ;

6.4.6

ACK (20) 1 6 Acknowledge character

ASCII ACK ; Acknowledge

6.4.7

NAK (21) 1 21 Negative acknowledge character

ASCII NAK ; Negative acknowledge

6.4.8

M (22) 1 77 Manufacturer information follows

ASCII “M” ;

Indicates that manufacturer details are
contained in the next 6 characters of the
message

6.4.3

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

62055-52 © IEC:2008(E) – 21 –

The D field (17) and the DL field (12) for each Register instance shall be defined in a
companion specification (see 6.8.1 and 6.9).

6.6 Physical layer protocol functions

6.6.1 Server protocol flow diagram

The server protocol flow diagram is shown in Figure 3.

Figure 3– Server protocol flow diagram

The client may send messages in any sequence and the server shall process each message
in the order that they are received, except for the BreakCommand message (see 6.6.5).

A communication session shall constitute one message pair, initiated as a request from the
client and ending with a response from the server.

The client may recover from a session error condition by means of time-out (see 6.6.2 to
6.6.7, and 6.7).

The server shall support the request messages given in Table 7.

AuthenticationResult

ValidationResult

APDUExtraction

Token

TokenResult

TokenCancellation

TokenErase

ACK/NAK

WriteCommand TokenData

Data/NAK

ReadCommand

TokenLockout

WriteCommandProcessing

ReadCommandProcessing

Client Connector TCDU APDU

Physical Layer Application Layer Meter
Application

Process(IEC 62055-41)(IEC 62055-52)

IDResponse/NAK

IDRequest

IDRequestProcessing

BreakCommand

BreakCommandProcessing

TokenStatus

ACK/NAK

TokenLockoutStatus

undefined command

Undefined command processingNAK
IEC 596/08

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 22 – 62055-52 © IEC:2008(E)

Table 7 – Request messages supported by the server

Request message Reference

IDRequest 6.4.2

ReadCommand 6.4.4

WriteCommand 6.4.5

BreakCommand 6.4.6

The server shall support the response messages given in Table 8.

Table 8 – Response messages supported by the server

Response message Reference

IDResponse 6.4.3

ACK 6.4.7

NAK 6.4.8

Data 6.4.9

The server shall support the functions given in Table 9.

Table 9 – Functions supported by the server

Function Reference

IDRequestProcessing function 6.6.2

ReadCommandProcessing function 6.6.3

WriteCommandProcessing function 6.6.4

BreakCommandProcessing function 6.6.5

TokenLockout function 6.6.7

6.6.2 IDRequestProcessing function

The IDRequestProcessing function locates in the physical layer protocol of the payment meter
server, which receives and processes IDRequest messages (see 6.4.2) from a client.

The server shall process an IDRequest message in accordance with the server state diagram
given in Figure A.1.

The server shall respond with a NAK under any one of the following conditions:

• the value of the parity bit in the transmission format is not in accordance with 6.3.2 in any
of the received characters; the server shall also set the ParityError code in the
ServerStatus register;

• the maximum time allowed between characters has been exceeded in accordance with the
values given in Table 11; the server shall also set the CharacterTimeoutError code in the
ServerStatus register;

• the client has sent more characters than the server could receive; the server shall also set
the CharacterOverflowError code in the ServerStatus register;

• the received message syntax and structure does not comply with the definition as given in
6.4.2; the server shall also set the MessageSyntaxError code in the ServerStatus register;

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

62055-52 © IEC:2008(E) – 23 –

• an error that is not defined in this standard has occurred during the receipt of the
message; the server shall also set the UndefinedTransmissionError code in the
ServerStatus register.

For each of the above conditions, the value of the ServerStatus register (see 6.8.3.4) shall be
set to the corresponding code given in Table 20.

If none of the above conditions are true, the server shall first execute the command, then
respond with an IDResponse message and then set the CommandExecuted code in the
ServerStatus register.

After execution of the command, the server shall respond with an IDResponse message to the
client (see 6.4.3).

6.6.3 ReadCommandProcessing function

The ReadCommandProcessing function locates in the physical layer protocol of the payment
meter server, which receives and processes ReadCommand messages (see 6.4.4) from a
client.

To “read” information from any defined Register in the payment meter, the client may send a
ReadCommand message with the appropriate registerID value in the RID field in accordance
with that defined in the RegisterTable (see 6.8).

The server shall process a ReadCommand message in accordance with the server state
diagram given in Figure A.2.

The server shall respond with a NAK under any one of the following conditions:

• the value of the parity bit in the transmission format is not in accordance with 6.3.2 in any
of the received characters; the server shall also set the ParityError code in the
ServerStatus register;

• the maximum time allowed between characters has been exceeded in accordance with the
values given in Table 11; the server shall also set the CharacterTimeoutError code in the
ServerStatus register;

• the client has sent more characters than the server could receive; the server shall also set
the CharacterOverflowError code in the ServerStatus register;

• the received message syntax and structure does not comply with the definition as given in
6.4.4; the server shall also set the MessageSyntaxError code in the ServerStatus register;

• the BCC field in the message (see 6.4.4) does not match the calculated value from the
received message; the server shall also set the BCCError code in the ServerStatus
register;

• an error that is not defined in this standard has occurred during the receiving phase of the
message; the server shall also set the UndefinedTransmissionError code in the
ServerStatus register.

For each of the above conditions, the value of the ServerStatus register (see 6.8.3.4) shall be
set to the corresponding code given in Table 20.

If none of the above conditions are true, then the server shall proceed to “read” the dataset
from the Register indicated in the RID field of the message.

During the “reading” from the Register, the server shall respond with a NAK under any one of
the following conditions:

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 24 – 62055-52 © IEC:2008(E)

• the registerID as received in the RID field of the message does not correspond to a
supported register in the server; the server shall also set the registerIDInvalid code in the
ServerStatus register:

• the Register is busy and cannot process the “read” request at this point in time; the server
shall also set the RegisterBusy code in the ServerStatus register;

• the Register does not have the R attribute defined as True (see 6.8.2), thus it cannot be
“read”; the server shall also set the RegisterReadProtected code in the ServerStatus
register;

• the Register is supported, but the function that it is associated with has been disabled in
the payment meter; the server shall also set the FunctionDisabled code in the
ServerStatus register;

• an error that is not defined in this standard has occurred during the “reading” phase of the
Register; the server shall also set the UndefinedReadingError code in the ServerStatus
register.

For each of the above conditions, the value of the ServerStatus register (see 6.8.3.4) shall be
set to the corresponding code given in Table 20.

If none of the above conditions are true, the server shall first execute the “read” from the
Register; then respond with the Data message and then set the CommandExecuted code in
the ServerStatus register.

After execution of the command, the server shall respond with the Data message to the client
(see 6.4.9).

Additional processing related to token entry is given in 6.8.3.7 for the TokenStatus register.

6.6.4 WriteCommandProcessing function

The WriteCommandProcessing function locates in the physical layer protocol of the payment
meter server, which receives and processes WriteCommand messages (see 6.4.5) from a
client.

To “write” information into any defined Register in the payment meter, the client may send a
WriteCommand message with the dataset in the D field and the appropriate registerID value
in the RID field in accordance with that defined in the RegisterTable (see 6.8).

The server shall process a WriteCommand message in accordance with the server state
diagram given in Figure A.3.

The server shall respond with a NAK under any one of the following conditions:

• the value of the parity bit in the transmission format is not in accordance with 6.3.2 in any
of the received characters; the server shall also set the ParityError code in the
ServerStatus register;

• the maximum time allowed between characters has been exceeded in accordance with the
values given in Table 11; the server shall also set the CharacterTimeoutError code in the
ServerStatus register;

• the client has sent more characters than the server could receive; the server shall also set
the CharacterOverflowError code in the ServerStatus register;

• the received message syntax and structure does not comply with the definition as given in
6.4.5; the server shall also set the MessageSyntaxError code in the ServerStatus register;

• the BCC field in the message (see 6.4.5) does not match the calculated value from the
received message; the server shall also set the BCCError code in the ServerStatus
register;

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

62055-52 © IEC:2008(E) – 25 –

• an error that is not defined in this standard has occurred during the receiving phase of the
message; the server shall also set the UndefinedTransmissionError code in the
ServerStatus register.

For each of the above conditions, the value of the ServerStatus register (see 6.8.3.4) shall be
set to the corresponding code given in Table 20.

If none of the above conditions are true, then the server shall proceed to “write” the dataset to
the Register indicated in the RID field of the message.

During the “writing” to the Register the server shall respond with a NAK under any one of the
following conditions:

• the registerID as received in the RID field of the message does not correspond to a
supported register in the server; the server shall also set the RegisterIDInvalid code in the
ServerStatus register;

• the Register is busy and cannot process the “write” command at this point in time; the
server shall also set the RegisterBusy code in the ServerStatus register;

• the Register does not have the W attribute defined as True (see 6.8.2), thus it cannot be
“written” to; the server shall also set the RegisterWriteProtected code in the ServerStatus
register;

• the Register is supported, but the function that it is associated with has been disabled in
the payment meter; the server shall also set the FunctionDisabled code in the
ServerStatus register;

• in the case of “writing” to the BinaryTokenEntry register (see 6.8.3.6), or any other
functionally equivalent register that may be defined in a companion specification, and the
TokenLockoutStatus indication (see 6.6.7) from the TokenLockout function is true; the
server shall also set the TokenLockout code in the ServerStatus register;

• an error that is not defined in this standard has occurred during the “writing” phase of the
Register; the server shall also set the UndefinedWritingError code in the ServerStatus
register.

If none of the above conditions are true, the server shall first respond with an ACK, then
proceed to execute the “write” to the Register and then set the CommandExecuted code in the
ServerStatus register.

The additional processing, specifically related to the loading of tokens into the payment
meter, is described in 6.8.3.6.

An ACK or NAK response shall not be conditioned on the outcome after execution of a
WriteCommand message, but shall merely indicate that the message was successfully
received.

Application-specific feedback to the client after execution of the WriteCommand message
shall be by means of setting of appropriate data elements in a suitably defined register, which
can be read by the client.

6.6.5 BreakCommandProcessing function

The BreakCommandProcessing function locates in the physical Layer Protocol of the payment
meter server, which receives and processes BreakCommand messages (see 6.4.6) from a
client.

The server shall process a BreakCommand message in accordance with the server state
diagram given in Figure A.4.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 26 – 62055-52 © IEC:2008(E)

The server shall respond with a NAK under any one of the following conditions:

• the value of the parity bit in the transmission format is not in accordance with 6.3.2 in any
of the received characters; the server shall also set the ParityError code in the
ServerStatus register;

• the maximum time allowed between characters has been exceeded in accordance with the
values given in Table 11; the server shall also set the CharacterTimeoutError code in the
ServerStatus register;

• the client has sent more characters than the server could receive; the server shall also set
the CharacterOverflowError code in the ServerStatus register;

• the received message syntax and structure does not comply with the definition as given in
6.4.6; the server shall also set the MessageSyntaxError code in the ServerStatus register,

• the BCC field in the message (see 6.4.6) does not match the calculated value from the
received message; the server shall also set the BCCError code in the ServerStatus
register;

• an error that is not defined in this standard has occurred during the receiving phase of the
message; the server shall also set the UndefinedTransmissionError code in the
ServerStatus register.

For each of the above conditions, the value of the ServerStatus register (see 6.8.3.4) shall be
set to the corresponding code given in Table 20.

If none of the above conditions are true, the server shall first respond with an ACK, then
proceed to execute the “break” command and then set the CommandExecuted code in the
ServerStatus register.

An ACK or NAK response shall not be conditioned on the outcome after execution of a
BreakCommand message, but shall merely indicate that the message was successfully
received.

A BreakCommand message shall always have the highest priority and become the next in line
to be executed by the server, irrespective of any other messages that may be waiting in a
queue, pending execution.

Upon execution of a BreakCommand message, the server shall terminate all pending
messages and wait for the completion of any currently active processes, which were initiated
by previous command messages from the client. See also 6.7.1 to 6.7.3 for handling of error
conditions.

6.6.6 Undefined command processing

In the case where the server receives a command that is not defined in this standard, it shall
process such command in accordance with the requirements of this subclause.

The server shall respond with a NAK under any one of the following conditions:

• the value of the parity bit in the transmission format is not in accordance with 6.3.2 in any
of the received characters; the server shall also set the ParityError code in the
ServerStatus register;

• the maximum time allowed between characters has been exceeded in accordance with the
values given in Table 11; the server shall also set the CharacterTimeoutError code in the
ServerStatus register;

• the client has sent more characters than the server could receive; the server shall also set
the CharacterOverflowError code in the ServerStatus register;

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

62055-52 © IEC:2008(E) – 27 –

• the received message syntax and structure does not comply with the definition as given in
6.4.2, 6.4.4, 6.4.5 or 6.4.6; the server shall also set the MessageSyntaxError code in the
ServerStatus register,

For each of the above conditions, the value of the ServerStatus register (see 6.8.3.4) shall be
set to the corresponding code given in Table 20.

The server shall only respond with a NAK message to the client.

6.6.7 TokenLockout function

The TokenLockout function locates in the physical layer protocol of the payment meter server
and monitors, the results of token processing in the application layer protocol or the
MeterApplicationProcess by means of the ValidationResult, AuthenticationResult and
TokenResult fields in the TCDU (see Figure 3). The monitoring result is indicated by
TokenLockoutStatus.

The TokenLockout function defined in this protocol shall only affect the processing of tokens
being entered by means of the virtual token carrier interface as defined in this standard and
shall not influence the processing of tokens being entered by means of other token carrier
interfaces that may also be present in the payment meter.

For the purpose of this function, short-codes shall not be treated the same as tokens. Short-
codes shall not influence the TokenLockout function and valid short-codes shall not be
affected by a lockout condition.

NOTE A short-code is a code that, when presented to a payment meter, may invoke the same action as that of a
Class 1 token as defined in IEC 62055-41, except that it may comprise fewer numerical digits than that of the
token. Maintenance personnel generally use short-codes to invoke test or display sequences in the payment meter.

In the event where any tokens are rejected in succession under any one of the token rejection
conditions given in 8.2 of IEC 62055-41, further entry of any subsequent token shall be locked
out for a period of time after each such rejection.

A maximum lockout time of approximately 60s to 120 s shall be reached within at least 10
successive rejections.

A recommended method is for the lockout time to start with a small value and then
progressively increase with each successive rejection. This approach is preferred, as it is
more tolerant to clients that experience difficulty with token entry under poor communications
conditions.

Other methods may be implemented, but the maximum lockout time shall be approximately 60
s to 120 s.

The lockout condition shall be cleared and the token entry process shall restore to normal
operation upon the first acceptance of a Class 0 or a Class 2 token in terms of the conditions
given in 8.2 of IEC 62055-41.

The remaining lockout time value in seconds shall be made available in the
TokenLockoutTimeRemaining register (see 6.8.3.8) that may be read by means of a
ReadCommand message with the appropriate registerID value set in the RID field.

6.7 Server timing requirements

6.7.1 Inter-message and inter-character timing

The inter-message timing responses are shown in Figure 4.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 28 – 62055-52 © IEC:2008(E)

Figure 4 – Inter-message timing responses

The server shall respond to a request message within the time constraints given for tr1 in
Table 10.

The server shall be ready to receive a request message after sending the last response
message within the time constraints given for tr2 in Table 10.

Table 10 – Server timing requirements to respond to a request message

tr1 tr2

20 ms ≤ tr1 ≤ 1 500 ms 20 ms ≤ tr2 ≤ 1 500 ms

If the server does not respond to a request within the inter-message timing requirements as
given in Table 10, then the client may assume that an error has occurred.

The time between two characters in any character sequence shall be within the time
constraints given for ta in Table 11.

Table 11 – Inter-character timing requirements

ta

ta ≤ 1 500 ms

If the server detects that the inter-character timing exceeds the limits given in Table 11, then
this shall constitute a transmission error as defined in 6.7.2.

6.7.2 Transmission error timing

A transmission error occurs at the server when it detects an error in the message while it is
still busy receiving it from the client and constitutes any one of the following conditions:

• the value of the parity bit in the transmission format is not in accordance with 6.3.2 in any
of the received characters; this condition results in the ParityError code being set in the
ServerStatus register;

• the maximum time allowed between characters has been exceeded in accordance with the
values given in Table 11; this condition results in the CharacterTimeoutError code being
set in the ServerStatus register;

• the client has sent more characters than the server could receive; this condition results in
the CharacterOverflowError code being set in the ServerStatus register;

Request
message

tr1

Response
message

Request
message

tr2

Client Server Client

Time
IEC 597/08

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

62055-52 © IEC:2008(E) – 29 –

• the received message syntax and structure does not comply with the definitions as given
in 6.4; this condition results in the MessageSyntaxError code being set in the ServerStatus
register;

• the BCC field in the message (see 6.4) does not match the calculated value from the
received message; this condition results in the BCCError code being set in the
ServerStatus register;

• an error that is not defined in this standard has occurred during the receiving phase of the
message; this condition results in the UndefinedTransmissionError code being set in the
ServerStatus register.

The values for the error codes in the ServerStatus register are given in Table 20.

The timing requirements for the detection of a transmission error are given in Figure 5.

Figure 5 –Transmission error timing

If the server detects a transmission error during receipt of a request message, it shall ignore
the rest of the message.

The server shall then wait for a period equal to tg given in Table 12, during which no
characters are received before transmitting a NAK response.

Table 12 – Transmission error recovery wait period

tg

1500 ms

6.7.3 Message execution timing

The message execution timing is not specified in this standard, but the server shall be ready
to receive a new request message within the timing constraints imposed by 6.7.1 and 6.7.2.

In the case where the server needs to exceed the constraints imposed by 6.7.1 and 6.7.2 in
order to execute the message, it may make use of the RegisterBusy code in the ServerStatus
register (see 6.8.3.4). See also 6.6.3 to 6.6.4 for an example of how the RegisterBusy status
code may be utilized.

These characters are ignored tg

Error detected here

Response
message

Request
message char char char char

NAK

Time

char

IEC 598/08

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 30 – 62055-52 © IEC:2008(E)

6.8 RegisterTable

6.8.1 RegisterTable interface class

The generic format for RegisterTable is given in Table 13.

Table 13 – Generic format for RegisterTable

Attributes Range Context

name {RegisterTableName} The registered name of this FunctionObject in
the companion specification.

tableID FOIN FunctionObjectIdentificationNumber as
registered in the companion specification

Data elements External data interface to the
FunctionObject instance

(from the TokenCarrier perspective)

registerArray Array of simple or complex registers;
quantity between 1 – 65536

Data elements are defined per
Register instance (see 6.8.2)

Array of Register instances defined in the
companion specification. There may be up to
65536 entries in the table. Each Register
instance may have a simple or complex
dataset structure

Methods External service interface to the
FunctionObject instance

(from the TokenCarrier perspective)

none Methods are defined per Register
instance (see 6.8.2)

The RegisterTable has no operational
methods

The table is virtual and cannot be accessed

Operation Internal functionality of the RegisterTable

none Operations are defined per Register
instance (see 6.8.2)

The RegisterTable has no operational
functionality

The table merely defines a list of Register
definitions, each of which provides a logical
interface to the actual payment meter
registers

Association Support services provided by other
FunctionObjects

none Associations are defined per Register
instance (see 6.8.2)

The RegisterTable does not make use of
other specified services for it’s functioning

This interface class provides the generic format for defining a RegisterTable as an instance of
a MeterFunctionObject as defined in a companion specification (see 6.9).

Each instance of a RegisterTable, together with each Register, is defined in a companion
specification.

Each RegisterTable is uniquely identified by means of its FOIN as allocated by the STS
Association and as registered in a companion specification.

Each Register instance (see 6.8.2) defined in the RegisterTable provides a logical interface to
an actual register or a function in the payment meter.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

62055-52 © IEC:2008(E) – 31 –

6.8.2 Register interface class

The generic format for Register is given in Table 14.

Table 14 – Generic format for Register

Attributes Range Context

registerName {RegisterName} The name of the Register instance

registerID 0000 – FFFF hex Identification number of the Register instance
as entered into the RegisterTable

format Register instance-specific Presentation format of the Data Element to
the Register interface

readWrite R, W Read and Write permission granted to a client
accessing the Register at the interface

confidentiality True, False If = True, the dataset passing across the n
interface is to be treated as confidential and
may not be publicly displayed. See also
Table 7 of IEC 62055-21.

authentication True, False If = True, the client must authenticate itself to
the server before permission is granted to
access the register

Data elements External data interface to the Register
instance

(from the TokenCarrier perspective)

dataset Register instance-specific; simple or
complex structure

Actual data that is passed across the
Register interface and that a client may
access by means of a ReadCommand or a
WriteCommand

Methods External service interface to the Register
instance

(from the TokenCarrier perspective)

ReadCommand (RID,
DL)

Returns the value of the dataset data
element

RID is the registerID of the Register
from which the dataset must be read

DL dictates which part of the dataset
should be returned (this is Register
instance –specific)

The client may retrieve data from the
payment meter via the Register interface by
sending a ReadCommand message to the
Register.

WriteCommand (RID,
D)

Loads the D value into the dataset
data element

RID is the registerID of the Register to
which the dataset must be written

D is the dataset to be written

The client may load data into the payment
meter via the Register interface by sending a
WriteCommand message to the Register

Operation

Virtual recording Keeps virtual record of the dataset
data element

This object defines a virtual Register, which
provides a logical interface to the actual
payment meter register or function

Association Internal functionality of the Register Support services provided by other
FunctionObjects

x Register instance-specific The register may make use of other specified
services for it’s functioning

This interface class provides the generic format for defining a Register instance within a
RegisterTable (see 6.8.1).

Each instance of a Register is defined within a RegisterTable instance (see 6.8.1) and
provides a logical interface to an actual register or a function in the payment meter.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 32 – 62055-52 © IEC:2008(E)

Each Register instance is uniquely identified by means of its registerID within a RegisterTable
instance and in this way each Register instance definition can be globally identified by a
combination of the FOIN plus the registerID.

Each such Register instance definition is specified together with the RegisterTable instance
definition in a companion specification (see 6.9).

Proprietary Register definitions are allowed in a RegisterTable, but such defined registerID
values shall remain entirely under the management and control of the payment meter
manufacturer.

A client may use a ReadCommand message (see 6.4.4) addressed to a particular registerID
to retrieve a dataset from the payment meter via the Register interface.

A client may use a WriteCommand message (see 6.4.5) addressed to a particular registerID
to load a dataset into the payment meter via the Register interface.

Reading of DispenserKey values in any form or by any means from the payment meter shall
not be permitted.

Changing the values of STS-defined data elements in the payment meter by any means other
than STS-defined processes shall not be permitted.

6.8.3 Predefined Registers and registerID values

6.8.3.1 General requirements

Where the confidentiality attribute of a Register instance is defined as = True, then the
content passing over such Register interface shall be protected against unauthorised access
by appropriate techniques (see also Table 7 of IEC 62055-21).

All RegisterTable instances shall, as a minimum, provide for the specific Register instances
and registerID values as given in Table 15.

All Register instances shall update the ServerStatus register (see Annex A), except for the
ServerStatus register, which shall not update itself.

The processing of the BinaryTokenEntry register, or any other functionally equivalent register
defined in a companion specification, shall also update the TokenStatus register.

Table 15 – Predefined Registers and registerID values

registerID registerName Reference

2000 hex ProtocolVersion 6.8.3.2

2001 hex TableID 6.8.3.3

2002 hex ServerStatus 6.8.3.4

(see NOTE) SoftwareVersion 6.8.3.5

(see NOTE) BinaryTokenEntry 6.8.3.6

(see NOTE) TokenStatus 6.8.3.7

(see NOTE) TokenLockoutTimeRemaining 6.8.3.8

NOTE The registerID values for these registers are defined in the corresponding companion specification for a
RegisterTable instance.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

62055-52 © IEC:2008(E) – 33 –

6.8.3.2 ProtocolVersion register

The instance format for ProtocolVersion register is given in Table 16.

Table 16 – Instance format for ProtocolVersion register

Attributes Range Context

name ProtocolVersion Register name in this table

registerID 2000 hex Register identifier in this table

format 8-bit binary Presentation format to the interface

readWrite R Read only

confidentiality False The content of this register is not
confidential.

authentication False Client authentication not required

Data elements External data interface to the Register
instance (from the TokenCarrier
perspective)

protocolVersion 8-bit binary value; range 0 – 255

As defined in Table 17

Actual data that is passed across the
Register interface and that a client may
access by means of a ReadCommand

Methods External service interface to the Register
instance (from the TokenCarrier
perspective)

ReadCommand (RID,
DL)

Returns the value of the
protocolVersion data element

RID = registerID of Register to be
read

DL = ignored by server

The data may be retrieved from the payment
meter via the Register interface by sending a
ReadCommand message to the Register with
the registerID value in the RID field. The DL
field is ignored

Operation Internal functionality of the Register

Virtual recording Keeps virtual record of the value of
the protocolVersion data element

This object defines a virtual Register, which
provides a logical interface to the actual
payment meter register or function

Association Support services provided by other
FunctionObjects

none x The register does not make use of other
specified services for its functioning

This Register serves to maintain compatibility between publications of IEC 62055-52 and
publications of companion specifications for RegisterTable instances and shall always be
assigned to a registerID value as given in Table 15.

All companion specifications for RegisterTable instances shall include a ProtocolVersion
register instance as given here and allocate one of the defined values given in Table 17.

A new value shall be added to Table 17 with every revised publication of IEC 62055-52 if it
introduces a change in functionality or specification to the physical layer protocol.

Any protocol change in IEC 62055-52 shall ensure that backward compatibility is maintained,
so that a client is always capable of reading from this register in exactly the same way as
before. This will ensure that a client is always able to determine which protocol version the
payment meter is capable of supporting.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 34 – 62055-52 © IEC:2008(E)

Table 17 – Defined protocolVersion values

Value Context

0 Reserved for future assignment

1 For legacy payment meters that have not implemented the version 2 or higher server
protocol. A client that wants to exchange data with these payment meters requires a
proprietary manufacturer-specific RegisterTable

2 For payment meters that implement the server protocol specified in this version of
IEC 62055-52. A client that wants to exchange data with these payment meters
requires the relevant companion specification

3 – 255 Reserved for future assignment

NOTE Legacy payment meters that have implemented the version 1 protocol, will return a NAK to a client if it
tries to read data from the ProtocolVersion register. By that response, the client is able to determine that it is
dealing with a legacy payment meter.

If the server responds with a NAK then it is an implied value of 1, in which case the client may
then assume that it requires a proprietary manufacturer-specific RegisterTable and that it
should use the version 1 protocol.

If the server responds with a value in the range 2 to 255, the client uses the relevant protocol
version and RegisterTable instance defined in a companion specification. The server shall
never respond with a value of 0 or 1.

6.8.3.3 TableID register

The instance format for TableID register is given in Table 18.

Table 18 – Instance format for TableID register

Attributes Range Context

name TableID Register name in this table

registerID 2001 hex Register identifier in this table

format 22-bit binary Presentation format to the interface

readWrite R Read only

confidentiality False The content of this register is not
confidential.

authentication False Client authentication not required

Data elements External data interface to the Register
instance (from the TokenCarrier
perspective)

tableID 22-bit binary FOIN

as defined by the STS Association

Actual data that is passed across the
Register interface and that a client may
access by means of a ReadCommand

Methods External service interface to the Register
instance (from the TokenCarrier
perspective)

ReadCommand (RID,
DL)

Returns the value of the tableID data
element

RID = registerID of Register to be
read

DL = ignored by server

The data may be retrieved from the payment
meter via the Register interface by sending a
ReadCommand message to the Register with
the registerID value in the RID field. The DL
field is ignored

Operation Internal functionality of the Register

Virtual recording Keeps virtual record of the value of
the tableID data element

This object defines a virtual Register, which
provides a logical interface to the actual
payment meter register or function

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

62055-52 © IEC:2008(E) – 35 –

Attributes Range Context

Association Support services provided by other
FunctionObjects

none x The register does not make use of other
specified services for its functioning

NOTE Legacy payment meters that have not implemented this IEC 62055-52 standard, will return a NAK to a
client if it tries to read data from the TableID register. By that response, the client is able to determine that it is
dealing with a legacy payment meter and thus a proprietary RegisterTable is required from the manufacturer.

This Register serves to maintain compatibility between publications of IEC 62055-52 and
publications of companion specifications for RegisterTable instances and shall always be
assigned a fixed registerID value as given in Table 15.

All companion specifications for RegisterTable instances shall include a TableID register
instance as given here and shall define a value equal to the FOIN as allocated by the STS
Association in the companion specification for the RegisterTable instance that is implemented
in the particular payment meter. See also Clause 7 for more information on the maintenance
of the FOIN values.

The value of the TableID register shall always be set to the FOIN.

If new registers are added to a RegisterTable, then the FOIN shall also change.

Any protocol change in IEC 62055-52 shall ensure that backward compatibility is maintained,
so that a client is always capable of reading from this register in exactly the same way as
before. This will ensure that a client is always able to determine which RegisterTable version
the payment meter has implemented.

If the server responds with a NAK then it is an implied invalid FOIN value, in which case the
client may then assume that it requires a proprietary manufacturer-specific RegisterTable.

If the server responds with a valid FOIN value, the client may use the relevant RegisterTable
instance defined in a companion specification. The server shall never respond with an invalid
FOIN value.

6.8.3.4 ServerStatus register

The instance format for ServerStatus register is given in Table 19.

Table 19 – Instance format for ServerStatus register

Attributes Range Context

registerName ServerStatus Register name in this table

registerID 2002 hex Register identifier in this table

format 8-bit binary Presentation format to the interface

readWrite R Read only

confidentiality False The content of this register is not
confidential.

authentication False Client authentication not required

Data elements External data interface to the Register
instance

(from the TokenCarrier perspective)

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 36 – 62055-52 © IEC:2008(E)

Attributes Range Context

serverStatus 8-bit binary value; range 0 -255

as defined in Table 20

Actual data that is passed across the
Register interface and that a client may
access by means of a ReadCommand

Indicates the state of the server with respect
to processing of a message in the physical
layer protocol

Methods External service interface to the Register
instance

(from the TokenCarrier perspective)

ReadCommand (RID,
DL)

Returns the value of the serverStatus
data element

RID = registerID of Register to be
read

DL = ignored by server

The data may be retrieved from the payment
meter via the Register interface by sending a
ReadCommand message to the Register with
the registerID value in the RID field. The DL
field is ignored

Operation Internal functionality of the Register

Virtual recording Keeps virtual record of the value of
the serverStatus data element

This object defines a virtual Register, which
provides a logical interface to the actual
payment meter register or function.

Keeps virtual record of the state of the server
physical layer protocol of the payment meter

Association Support services provided by other
FunctionObjects

none x The register does not make use of other
specified services for its functioning

Table 20 – Defined serverStatus values

Value Status name Context Reference

0 Reserved Reserved for future assignment

1 ParityError A parity error was detected in a received character 6.7.2

2 CharacterTimeoutError The client is sending characters too slowly 6.7.2

3 CharacterOverflowError The client is sending more characters than the server
can receive

6.7.2

4 MessageSyntaxError The structure of the message is not in accordance with
one of the defined request messages (see 6.4.2, 6.4.4,
6.4.5 and 6.4.6)

6.7.2

5 BCCError The BCC field does not match the calculated value from
the message received

6.7.2

6 UndefinedTransmissionError Any other error condition that is not defined in this
RegisterTable, which relates to the receiving of the
message

6.7.2

7 RegisterIDInvalid The value of the RID field in the message contains a
registerID that is not supported in the payment meter

6.6.3

6.6.4

8 RegisterBusy The Register that is being written to of being read from
is currently busy and cannot respond to the request
message at this point in time. The client should wait and
try later

6.6.3

6.6.4

9 RegisterWriteProtected The Register W attribute is not defined as = True. A
value cannot be written to it

6.6.4

10 RegisterReadProtected The Register R attribute is not defined as = True. A
value cannot be read from it

6.6.3

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

62055-52 © IEC:2008(E) – 37 –

Value Status name Context Reference

11 FunctionDisabled The Register is supported, but the function that it
interfaces to has been disabled.

For example: the MaximumPowerLimit function in the
payment meter might be present, but it may be in a
disabled state. In this case, a read command to the
register will return the value as set in the payment
meter, but will also indicate the status value = 11 in the
ServerStatus register

6.6.3

6.6.4

12 TokenLockout Token lockout is active.

This only applies in the case of a write command to
BinaryTokenEntry register or a write command to any
other functionally equivalent register defined in a
companion specification

6.6.7

13 UndefinedReadingError Any other error condition that is not defined in this
table, which relates to the execution of the
ReadCommand message

6.6.3

14 UndefinedWritingError Any other error condition that is not defined in this
table, which relates to the execution of the
WriteCommand message

6.6.4

15 CommandExecuted The message has been successfully delivered to the
destination Register, where it will be further processed

6.6.2 to
6.6.5

16 –
255

Reserved Reserved for future assignment

6.8.3.5 SoftwareVersion register

The instance format for SoftwareVersion register is given in Table 21.

Table 21 – Instance format for SoftwareVersion register

Attributes Range Context

registerName SoftwareVersion Register name in this table

registerID 0000 – 1FFF and 2003 – FFFF hex Register identifier in this table

format 4 hex digits; 0 – 9 and A – F Presentation format to the interface

readWrite R Read only

confidentiality False The content of this register is not
confidential.

authentication False Client authentication not required

Data elements External data interface to the Register
instance

(from the TokenCarrier perspective)

softwareVersion 4-digit software version

as defined by the manufacturer

Actual data that is passed across the
Register interface and that a client may
access by means of a ReadCommand

Methods External service interface to the Register
instance

(from the TokenCarrier perspective)

ReadCommand (RID,
DL)

Returns the value of the
softwareVersion data element

RID = registerID of Register to be
read

DL = ignored by server

The data may be retrieved from the payment
meter via the Register interface by sending a
ReadCommand message to the Register with
the registerID value in the RID field. The DL
field is ignored

Operation Internal functionality of the Register

Virtual recording Keeps virtual record of the value of
the softwareVersion data element

This object defines a virtual Register, which
provides a logical interface to the actual
payment meter register or function

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 38 – 62055-52 © IEC:2008(E)

Attributes Range Context

Association Support services provided by other
FunctionObjects

none x The register does not make use of other
specified services for its functioning

This Register serves to identify the version of software that is implemented in the payment
meter and shall be assigned to a registerID value as given in a particular RegisterTable
instance defined in a companion specification.

All companion specifications for RegisterTable instances shall include a softwareVersion
register instance as given here.

Administration of softwareVersion register values and interpretation of the application data is
manufacturer-specific and may be formatted as decimal or hexadecimal digits.

This is the same value that returns in the IDResponse message (see 6.4.3).

This value may also be used as authentication data for messages operating on proprietary
registers that are defined in a RegisterTable instance.

6.8.3.6 BinaryTokenEntry register

The instance format for BinaryTokenEntry register is given in Table 22.

Table 22 – Instance format for BinaryTokenEntry register

Attributes Range Context

registerName BinaryTokenEntry Register name in this table

registerID 0000 – 1FFF and 2003 – FFFF hex Register identifier in this table

format 66-bit binary Presentation format to the interface

readWrite W Write only

confidentiality False The content of this register is not
confidential.

authentication False Client authentication not required

Data elements External data interface to the Register
instance

(from the TokenCarrier perspective)

binaryTokenEntry 66-bit binary

Defined in 6.1.2 as TokenData in the
TCDU

Actual data that is passed across the
Register interface and that a client may
access by means of a WriteCommand

Methods External service interface to the Register
instance

(from the TokenCarrier perspective)

WriteCommand (RID,
D)

Loads the 66-bit binary number into
the binaryTokenEntry data element.

RID = registerID of Register to be
written

D = 66-bit binary number

The data may be loaded into the payment
meter via the Register interface by sending a
WriteCommand message to the Register with
the registerID value in the RID field and the
dataset in the D field

Operation Internal functionality of the Register

Virtual token entry Provides a virtual point of entry for a
token to the payment meter as
another token carrier interface

This object defines a virtual Register, which
provides a logical interface to the actual
payment meter register or function

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

62055-52 © IEC:2008(E) – 39 –

Attributes Range Context

Association Support services provided by other
FunctionObjects

none x The register does not make use of other
specified services for its functioning

This Register serves to provide a means of loading a token into the payment meter via the
virtual token carrier and shall be assigned to a registerID value as given in a particular
RegisterTable instance defined in a companion specification.

All companion specifications for RegisterTable instances shall include a binaryTokenEntry
register instance as given here.

The client may load a token into the payment meter by sending a WriteCommand message
(see 6.4.5) with the 66-bit binary TokenData (see 6.1.2) in the D field and the registerID value
for the BinaryTokenEntry register in the RID field of the message.

The received 66-bit value is then transferred to the TokenData field of the TCDU, which is
further processed by the application layer protocol (see 7.2 of IEC 62055-41) and also by the
MeterApplicationProcess (see Clause 8 of IEC 62055-41), where it is executed. The result is
then returned in the TokenResult field of the TCDU (see also 6.8.3.7 for the reading of the
result from the TokenStatus register).

At the same time when the 66-bit binary number is transferred to the TCDU, the
TokenStatusNotReady code (see Table 24) shall be set in the TokenStatus register.

The requirements for token acceptance and rejection are described in 8.2 of IEC 62055-41,
while the requirements for indication of token processing results are described in 8.3 of
IEC 62055-41.

6.8.3.7 TokenStatus register

The instance format for TokenStatus register is given in Table 23.

Table 23 – Instance format for TokenStatus register

Attributes Range Context

registerName TokenStatus Register name in this table

registerID 0000 – 1FFF and 2003 – FFFF hex Register identifier in this table

format 8-bit binary Presentation format to the interface

readWrite R Read only

confidentiality False The content of this register is not
confidential.

authentication False Client authentication not required

Data elements External data interface to the Register
instance

(from the TokenCarrier perspective)

tokenStatus 8-bit binary value; range 0 – 255

As defined in Table 24

Actual data that is passed across the
Register interface and that a client may
access by means of a ReadCommand.

Indicates the result after processing of a
token that was entered by a client via the
VTC07 interface

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 40 – 62055-52 © IEC:2008(E)

Attributes Range Context

Methods External service interface to the Register
instance

(from the TokenCarrier perspective)

ReadCommand (RID,
DL)

Returns the value of the tokenStatus
data element

RID = registerID of Register to be
read

DL = ignored by server

The data may be retrieved from the payment
meter via the Register interface by sending a
ReadCommand message to the Register with
the registerID value in the RID field. The DL
field is ignored

Operation Internal functionality of the Register

Virtual recording Keeps virtual record of the value of
the tokenStatus data element

This object defines a virtual Register, which
provides a logical interface to the actual
payment meter register or function.

Keeps virtual record of the result of the
processing of a token entered via the VTC07
connection

Association Support services provided by other
FunctionObjects

none x The register does not make use of other
specified services for its functioning

This Register serves to provide feedback to the client with respect to the status of a token that
is being processed by the payment meter after being entered via the virtual token carrier
VTC07 and shall be assigned to a registerID value as given in a particular RegisterTable
instance defined in a companion specification.

All companion specifications for RegisterTable instances shall include a TokenStatus register
instance as given here.

After the MeterApplicationProcess has executed the instruction on a token that was entered
by means of a WriteCommand message, the application layer protocol returns the result in the
TCDU.

The TokenStatus register shall be updated as soon as the result has been returned in the
TCDU.

The client may then read the result by sending a ReadCommand message with the registerID
value for the TokenStatus register in the RID field.

The tokenStatus value is calculated from the ValidationResult, AuthenticationResult,
TokenResult and TokenLockoutStatus data fields in the TCDU.

The defined values for tokenStatus are given in Table 24.

Table 24 – Defined tokenStatus values

Value Context Reference

0 Reserved for future assignment

1 Accept

Token is accepted

The Accept attribute in TokenResult in the TCDU is True

6.1.5

2 1stKCT

This is a Set1stSectionDecoderKey token that has been entered

The 1stKCT attribute in TokenResult in the TCDU is True

6.1.5

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

62055-52 © IEC:2008(E) – 41 –

Value Context Reference

3 2ndKCT

This is a Set2ndSectionDecoderKey token that has been entered.

The 2ndKCT attribute in TokenResult in the TCDU is True.

6.1.5

4 OverflowError

Acceptance of this token would cause a register in the payment meter to
overflow. For example: the available credit in the accounting register or
the power limit register.

The OverflowError attribute in TokenResult in the TCDU is True.

6.1.5

5 KeyTypeError

Indicates that an attempt is being made to change the DecoderKey from
one key type to another which is in violation of the key change rules.

The KeyTypeError attribute in TokenResult in the TCDU is True

6.1.5

6 FormatError

One or more data elements in the token does not comply with the
required format for that element

The FormatError attribute in TokenResult in the TCDU is True

7 RangeError

One or more data elements in the token have a value that is outside of
the defined range of values defined in the application for that element

For example

A data parameter value on the token is larger than the meter application
process function can handle

The RangeError attribute in TokenResult in the TCDU is True

6.1.5

8 FunctionError

Function is not implemented in the meter application process

For example:

ClearCredit token is being entered for a water register, but payment
meter has only implemented an electricity credit register.

Token has a SubClass value that is not supported by the meter
application process.

The FunctionError attribute in TokenResult in the TCDU is True

6.1.5

9 OldError

Token is old (expired)

The OldError attribute in ValidationResult in the TCDU is True

6.1.4

10 UsedError

Token has already been used (duplicate)

The UsedError attribute in ValidationResult in the TCDU is True

6.1.4

11 KeyExpiredError

Meter key has expired

The KeyExpiredError attribute in ValidationResult in the TCDU is True

6.1.4

12 DDTKError

The Decoder has a DDTK value in the DKR; a TransferCredit token may
not be processed by the MeterApplicationProcess in accordance with the
key type rules

The DDTKError attribute in ValidationResult in the TCDU is True

6.1.4

13 CRCError

The CRC value in the token is different to the CRC value as calculated
from the data in the token

The CRCError attribute in AuthenticationResult in the TCDU is True

6.1.3

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 42 – 62055-52 © IEC:2008(E)

Value Context Reference

14 MfrCodeError

The MfrCode value in the Class 1 token does not match the MfrCode
value for the Decoder

The MfrCodeError attribute in AuthenticationResult in the TCDU is True

6.1.3

15 TokenLockoutStatus

Token lockout is active

The TokenLockoutStatus in the TokenLockout function is True

6.6.7

16 TokenStatusNotReady

Indicates that processing of the last token entered via a virtual token
carrier VTC07 Register (see 6.8.3.6 for example) has not been
completed. The tokenStatus is only updated on completion and the client
should wait and try again later to read the TokenStatus register

6.8.3.6

17 – 255 Reserved for future assignment

NOTE The sequence in which the payment meter will perform the tests and will detect the errors are in the same
order as 6.1.3, 6.1.4 and then 6.1.5. From Figure 20 in 7.2.1 of IEC 62055-41, it can be seen that
AuthenticationResult appears first, then ValidationResult and lastly, TokenResult. Depending on the existing
status, the test for TokenLockoutStatus in 6.6.7 may appear first or last.

The requirements for token acceptance and rejection are described in 8.2 of IEC 62055-41,
while the requirements for indication of token processing results are described in 8.3 of
IEC 62055-41.

6.8.3.8 TokenLockoutTimeRemaining register

The instance format for TokenLockoutTimeRemaining register is given in Table 25.

Table 25 – Instance format for TokenLockoutTimeRemaining register

Attributes Range Context

registerName TokenLockoutTimeRemaining Register name in this table

registerID 0000 – 1FFF and 2003 – FFFF hex Register identifier in this table

format 16-bit binary Presentation format to the interface

readWrite R Read only

confidentiality False The content of this register is not
confidential.

authentication False Client authentication not required

Data elements External data interface to the Register
instance

(from the TokenCarrier perspective)

tokenLockoutTimeRe
maining

16-bit binary value; 0 – 65535

Number of seconds

Actual data that is passed across the
Register interface and that a client may
access by means of a ReadCommand

Indicates the number of seconds remaining
if the token lockout is active (see 6.6.7)

Methods External service interface to the Register
instance

(from the TokenCarrier perspective)

ReadCommand (RID,
DL)

Returns the value of the
tokenLockoutTimeRemaining Data
Element

RID = registerID of Register to be read

DL = ignored by server

The data may be retrieved from the
payment meter via the Register interface by
sending a ReadCommand message to the
Register with the registerID value in the
RID field. The DL field is ignored

Operation Internal functionality of the Register

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

62055-52 © IEC:2008(E) – 43 –

Attributes Range Context

Virtual recording Keeps virtual record of the value of the
tokenLockoutTimeRemaining data
element

This object defines a virtual Register, which
provides a logical interface to the actual
payment meter register or function.

Keeps virtual record of the time remaining
for which token entry will be locked out to
the client on the VTC07 server

Association Support services provided by other
FunctionObjects

none x The register does not make use of other
specified services for its functioning

This Register serves to provide feedback to the client as to the remaining duration of the
token lockout condition and shall be assigned to a registerID value as given in a particular
RegisterTable instance defined in a companion specification.

All companion specifications for RegisterTable instances shall include a
tokenLockoutTimeRemaining register instance as given here.

This register is dynamic and is maintained by the TokenLockout function.

While the TokenLockoutStatus is True (see 6.6.7) for this VirtualTokenCarrier, then the
remaining lockout time may be obtained from the server by sending a ReadCommand
message to this register.

The value returned is in seconds of remaining time before the lockout condition will clear to
and the token carrier interface will return to normal operation.

Reading of this Register shall not influence the working of the TokenLockout function.

While the TokenLockoutStatus is False, then the value returned shall be 0.

6.9 Companion specifications and RegisterTable instantiations

The STS Association reserves the right to exclusively administer the registration of
RegisterTable instances and the allocation of FOIN values in the form of companion
specifications.

A new version of a RegisterTable instance shall be defined in a new companion specification
and shall be allocated a new FOIN.

Previous versions shall remain valid under their own previously allocated FOIN values.

An example of a companion specification for a RegisterTable instance is STS 201-15.1.0 (see
Bibliography).

7 Maintenance of STS entities and related services

7.1 General

The STS Association is registered with the IEC as a Registration Authority and provides
maintenance and related services in support of the STS.

The maintenance activity on certain STS entities requires a revision/amendment of
IEC 62055-52. Where this is the case, it is explicitly indicated as such.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 44 – 62055-52 © IEC:2008(E)

The STS entities and services that require maintenance are given in Table 26 below.

Table 26 – Entities/services requiring maintenance service

Entity/service Definition

origin

Responsible

maintenance

body

Reference

RegisterTable: companion specification 6.8.1

6.9

STSA 7.2

Register: companion specification 6.8.2

6.9

STSA 7.3

tableID value definitions 6.8.1

6.8.3.3

STSA 7.4

FOIN value definitions 6.8.1 STSA 7.5

protocolVersion value definitions 6.8.3.2

Table 17

STSA/IEC 7.6

serverStatus value definitions 6.8.3.4

Table 20

STSA/IEC 7.7

tokenStatus value definitions 6.8.3.7

Table 24

STSA/IEC 7.8

softwareVersion value definitions 6.8.3.5 Mfr 7.9

7.2 RegisterTable maintenance

The STS Association exclusively administers the definition of RegisterTable instances in the
form of companion specifications following its own internal standard procedures for
submission of new work item proposals.

The STS Association in liaison partnership with working group 15 of IEC TC13 may in the
future propose these RegisterTable instances to the IEC for development into International
Standards, which shall follow the standard procedures for submission of new work item
proposals, as instituted by the IEC.

7.3 Register maintenance

Registers are defined in the same companion specification as the RegisterTable.

The STS Association exclusively administers the definition of Register instances in the form of
companion specifications following its own internal standard procedures for submission of
new work item proposals.

The STS Association in liaison partnership with working group 15 of IEC TC13 may in the
future propose these Register instances to the IEC for development into International
Standards, which shall follow the standard procedures for submission of new work item
proposals, as instituted by the IEC.

7.4 tableID maintenance

The STS Association exclusively administers the definition of tableID values allocated in
companion specifications following its own internal standard procedures for submission of
new work item proposals.

The STS Association in liaison partnership with working group 15 of IEC TC13 may in the
future propose these tableID values to the IEC for development into International Standards,

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

62055-52 © IEC:2008(E) – 45 –

which shall follow the standard procedures for submission of new work item proposals, as
instituted by the IEC.

7.5 FOIN maintenance

The STS Association exclusively administers the definition of FOIN values allocated in
companion specifications following its own internal standard procedures for submission of
new work item proposals.

The STS Association in liaison partnership with working group 15 of IEC TC13 may in the
future propose these FOIN values to the IEC for development into International Standards,
which shall follow the standard procedures for submission of new work item proposals, as
instituted by the IEC.

7.6 protocolVersion maintenance

The STS Association in liaison partnership with working group 15 of IEC TC13 shall
administer any further additions to the range of protocolVersion values given in Table 17.

The process shall follow the standard procedures for submission of new work item proposals,
as instituted by these organisations.

An additional entry to Table 17 shall require a revision/amendment of IEC 62055-52.

7.7 serverStatus maintenance

The STS Association in liaison partnership with working group 15 of IEC TC13 shall
administer any further additions to the range of serverStatus values given in Table 20.

The process shall follow the standard procedures for submission of new work item proposals,
as instituted by these organisations.

An additional entry to Table 20 shall require a revision/amendment of IEC 62055-52.

7.8 tokenStatus maintenance

The STS Association in liaison partnership with working group 15 of IEC TC13 shall
administer any further additions to the range of tokenStatus values given in Table 24.

The process shall follow the standard procedures for submission of new work item proposals,
as instituted by these organisations.

An additional entry to Table 24 shall require a revision/amendment of IEC 62055-52.

7.9 softwareVersion maintenance

The payment meter manufacturer is in complete control of his softwareVersion values and it
thus requires no further maintenance.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 46 – 62055-52 © IEC:2008(E)

Annex A
(normative)

Server state diagrams for request message processing

Figure A.1 gives a diagram of server states for the IDRequestProcessing function.

Figure A.1 – Server state diagram for IDRequestProcessing function

IDRequestProcessing ServerStatus registerClient

Done

ParityError

MessageSyntaxError

CharacterOverflowError

UndefinedTransmissionError

Execute command

IDRequest

setNAK

setNAK

setNAK

NAK set

IDResponse

CharacterTimeoutError
NAK set

Receive message

Start state

End state

Process state

Decision branch state

Data element

Key

CommandExecuted
set

IEC 599/08

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

62055-52 © IEC:2008(E) – 47 –

Figure A.2 gives a diagram of server states for the ReadCommandProcessing function.

Figure A.2 – Server state diagram for ReadCommandProcessing function

ReadCommand
Processing

ServerStatus
register

Register
Processing

Execute command

Client

Done

ParityError

MessageSyntaxError

CharacterOverflowError

BCCError

RegisterIDInvalid

RegisterReadProtected

RegisterBusy

FunctionDisabled

UndefinedReadingError

UndefinedTransmissionError

ReadCommand

setNAK

setNAK

setNAK

setNAK

setNAK

set

set

set

set

NAK

NAK

NAK

NAK

NAK

Data

set

Register is busy

Register is not busy

NAK set
CharacterTimeoutError

Receive message

“read” Register

Start state

End state

Process state

Decision branch state

Data element

Key

CommandExecuted
set

IEC 600/08

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 48 – 62055-52 © IEC:2008(E)

Figure A.3 gives a diagram of server states for the WriteCommandProcessing function.

Figure A.3 – Server state diagram for WriteCommandProcessing function

WriteCommand
Processing

ServerStatus
register

Register
Processing

Execute command

Client

Done

ParityError

MessageSyntaxError

CharacterOverflowError

BCCError

RegisterIDInvalid

RegisterWriteProtected

RegisterBusy

FunctionDisabled

TokenLockout

UndefinedWritingError

UndefinedTransmissionError

WriteCommand

setNAK

setNAK

setNAK

setNAK

set

set

set

set

set

NAK

NAK

NAK

NAK

NAK

NAK

ACK

set

setNAK

Register is busy

Register is not busy

NAK set
CharacterTimeoutError

Receive message

“write” Register

Start state

End state

Process state

Decision branch state

Data element

Key

CommandExecuted
set

IEC 601/08

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

62055-52 © IEC:2008(E) – 49 –

Figure A.4 gives a diagram of server states for the BreakCommandProcessing function.

Figure A.4 – Server state diagram for BreakCommandProcessing function

BreakCommand
Processing

ServerStatus
registerClient

Done

Parity_Error

MessageSyntaxError

CharacterOverflowError

BCCError

UndefinedTransmissionError

Execute command

BreakCommand

setNAK

setNAK

setNAK

setNAK

NAK set

ACK

NAK set
CharacterTimeoutError

Receive message

CommandExecuted
set

Start state

End state

Process state

Decision branch state

Data element

Key

IEC 602/08

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 50 – 62055-52 © IEC:2008(E)

Figure A.5 gives a diagram of server states for the case where a command is received, which
is undefined in this standard. Such an undefined command is essentially trapped under the
MessageSyntaxError state.

Figure A.5 – Server state diagram for undefined command

undefined
command

processing

ServerStatus
registerClient

Done

Parity_Error

MessageSyntaxError

CharacterOverflowError

Undefined command

setNAK

setNAK

setNAK

NAK set
CharacterTimeoutError

Receive message

Start state

End state

Process state

Decision branch state

Data element

Key

IEC 603/08

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

62055-52 © IEC:2008(E) – 51 –

Bibliography

ISO/IEC 7498-1:1994, Information technology – Open Systems Interconnection – Basic
Reference Model: The Basic Model

STS 201-15.1.0, Standard transfer specification (STS) – Companion specification – Meter
function object: RegisterTable for electricity payment meters2

—————————
2 To be published

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

3, rue de Varembé
P.O. Box 131
CH-1211 Geneva 20
Switzerland

Tel: + 41 22 919 02 11
Fax: + 41 22 919 03 00
info@iec.ch
www.iec.ch

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

	CONTENTS
	FOREWORD
	INTRODUCTION
	1 Scope
	2 Normative references
	3 Terms, definitions and abbreviations
	3.1 Terms and definitions
	3.2 Abbreviations
	3.3 Notation and terminology
	3.4 Numbering conventions

	4 STS protocol reference model
	5 POSToTokenCarrierInterface: Physical layer protocol
	6 TokenCarrierToMeterInterface: Physical layer protocol
	6.1 TCDU
	6.2 Physical connection and signal interfaces
	6.3 Character transmission
	6.4 Message syntax definitions
	6.5 Message field definitions
	6.6 Physical layer protocol functions
	6.7 Server timing requirements
	6.8 RegisterTable
	6.9 Companion specifications and RegisterTable instantiations

	7 Maintenance of STS entities and related services
	7.1 General
	7.2 RegisterTable maintenance
	7.3 Register maintenance
	7.4 tableID maintenance
	7.5 FOIN maintenance
	7.6 protocolVersion maintenance
	7.7 serverStatus maintenance
	7.8 tokenStatus maintenance
	7.9 softwareVersion maintenance

	Annex A (normative) Server state diagrams for request message processing
	Bibliography
	Figures
	Figure 1 – Physical layers of the STS protocol stack
	Figure 2 – Character transmission format
	Figure 3– Server protocol flow diagram
	Figure 4 – Inter-message timing responses
	Figure 5 –Transmission error timing
	Figure A.1 – Server state diagram for IDRequestProcessing function
	Figure A.2 – Server state diagram for ReadCommandProcessing function
	Figure A.3 – Server state diagram for WriteCommandProcessing function
	Figure A.4 – Server state diagram for BreakCommandProcessing function
	Figure A.5 – Server state diagram for undefined command

	Tables
	Table 1 – Data elements in the TCDU
	Table 2 – Bit-encoding of a 7-bit character code
	Table 3 – Character encoding example of a 14-bit binary number
	Table 4 – Character encoding example of a 4-digit hexadecimal number
	Table 5 – Character encoding example of a 4-digit decimal number
	Table 6 – Message field definitions
	Table 7 – Request messages supported by the server
	Table 8 – Response messages supported by the server
	Table 9 – Functions supported by the server
	Table 10 – Server timing requirements to respond to a request message
	Table 11 – Inter-character timing requirements
	Table 12 – Transmission error recovery wait period
	Table 13 – Generic format for RegisterTable
	Table 14 – Generic format for Register
	Table 15 – Predefined Registers and registerID values
	Table 16 – Instance format for ProtocolVersion register
	Table 17 – Defined protocolVersion values
	Table 18 – Instance format for TableID register
	Table 19 – Instance format for ServerStatus register
	Table 20 – Defined serverStatus values
	Table 21 – Instance format for SoftwareVersion register
	Table 22 – Instance format for BinaryTokenEntry register
	Table 23 – Instance format for TokenStatus register
	Table 24 – Defined tokenStatus values
	Table 25 – Instance format for TokenLockoutTimeRemaining register
	Table 26 – Entities/services requiring maintenance service

