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INTERNATIONAL ELECTROTECHNICAL COMMISSION 

____________ 

 
OPTICAL FIBRES – 

 
Reliability – Power law theory 

 
FOREWORD 

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising 
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote 
international co-operation on all questions concerning standardization in the electrical and electronic fields. To 
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, 
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC 
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested 
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely 
with the International Organization for Standardization (ISO) in accordance with conditions determined by 
agreement between the two organizations. 

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international 
consensus of opinion on the relevant subjects since each technical committee has representation from all 
interested IEC National Committees.  

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National 
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC 
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any 
misinterpretation by any end user. 

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications 
transparently to the maximum extent possible in their national and regional publications. Any divergence 
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in 
the latter. 

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity 
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any 
services carried out by independent certification bodies. 

6) All users should ensure that they have the latest edition of this publication. 

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and 
members of its technical committees and IEC National Committees for any personal injury, property damage or 
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and 
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC 
Publications.  

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is 
indispensable for the correct application of this publication. 

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of 
patent rights. IEC shall not be held responsible for identifying any or all such patent rights. 

The main task of IEC technical committees is to prepare International Standards. However, a 
technical committee may propose the publication of a technical report when it has collected 
data of a different kind from that which is normally published as an International Standard, for 
example "state of the art". 

IEC/TR 62048, which is a technical report, has been prepared by subcommittee 86A: Fibres 
and cables, of IEC technical committee 86: Fibre optics. 

This third edition cancels and replaces the second edition published in 2011, and constitutes 
a technical revision.  

The main changes with respect to the previous edition are listed below: 

– correction to the unit of failure rates in Table 1; 
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– correction to the FIT equation for instantaneous failure rate [19]1 in addition to all call-outs 
and derivations;  

– insertion of a new note about fibre length dependency of failure rates; 
– addition of informative Annex A and relevant reference; 
– editorial corrections of inconsistencies. 

The text of this technical report is based on the following documents: 

Enquiry draft Report on voting 

86A/1537/DTR 86A/1554/RVC 

 
Full information on the voting for the approval of this technical report can be found in the 
report on voting indicated in the above table. 

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2. 

The committee has decided that the contents of this publication will remain unchanged until 
the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data 
related to the specific publication. At this date, the publication will be  

• reconfirmed, 

• withdrawn, 

• replaced by a revised edition, or 

• amended. 

A bilingual version of this publication may be issued at a later date. 

 

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates 
that it contains colours which are considered to be useful for the correct 
understanding of its contents. Users should therefore print this document using a 
colour printer. 

 

  

___________ 

1 Numbers in square brackets refer to the Bibliography. 
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INTRODUCTION 

Reliability is expressed as an expected lifetime or as an expected failure rate. The results 
cannot be used for specifications or for the comparison of the quality of different fibres. This 
technical report develops the theory behind the experimental principles used in measuring the 
fibre parameters needed in the reliability formulae. Much of the theory is taken from the 
referenced literature and is presented here in a unified manner. The primary results are 
formulae for lifetime or for failure rate, given in terms of the measurable parameters. 
Conversely, an allowed maximum service stress or extreme value of another parameter may 
be calculated for an acceptable lifetime or failure rate.   

For readers interested only in the final results of this technical report – a summary of the 
formulae used and numerical examples in the calculation of fibre reliability – Clauses 6 and 7 
– are sufficient and self-contained. Readers wanting a detailed background with algebraic 
derivations will find this in Clauses 8 to 12. An attempt is made to unify the approach and the 
notation to make it easier for the reader to follow the theory. Also, it should ensure that the 
notation is consistent in all test procedures. The Bibliography has a limited set of mostly 
theoretical references, but it is not necessary to read them to follow the analytical 
development in this technical report. Annex A introduces a statistical strength degradation 
(SSD) map which gives intuitive understanding of the physical meaning of the formulae 
appearing in Clauses 10 and 11. 

NOTE Clauses 8 to 12 reference the B-value, and this is done for theoretical completeness only. There are as yet 
no agreed methods for measuring B, so the Bibliography gives only a brief analytical outline of some proposed 
methods and furthermore develops theoretical results for the special case in which B can be neglected. 
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OPTICAL FIBRES – 
 

Reliability – Power law theory 
 
 
 

1 Scope 

This technical report is a guideline that gives formulae to estimate the reliability of fibre under 
a constant service stress based on a power law for crack growth.  

NOTE Power law is derived empirically, but there are other laws which have a more physical basis (for example, 
the exponential law). All these laws generally fit short-term experimental data well but lead to different long-term 
predictions. The power law has been selected as a most reasonable representation of fatigue behaviour by the 
experts of several standard-formulating bodies. 

2 Normative references 

The following documents, in whole or in part, are normatively referenced in this document and 
are indispensable for its application. For dated references, only the edition cited applies. For 
undated references, the latest edition of the referenced document (including any 
amendments) applies. 

IEC 60793-1-30, Optical fibres –  Part 1-30: Measurement methods and test procedures – 
Fibre proof test 

IEC 60793-1-31, Optical fibres – Part 1-31: Measurement methods and test procedures – 
Tensile strength 

3 Symbols 

Table 1 provides a list of symbols found in this report. Each symbol appears in the 
subclause(s) indicated in the final column of the table. 

Table 1 – Symbols  

Symbol Unit Name Subclause 

a µm Flaw depth 8.1 

af µm Radius of glass fibre 11.3 

B GPa2×s Crack strength preservation parameter or B-value 8.1 

B0 GPa2×s Transitional B-value at the slow-unloading/fast-unloading 
boundary 

10.4 

c Dimensionless Non-linearity term for stress versus strain 8.4 

C Dimensionless Additive dimensionless proof test term or C-value 11.6 

C0 Dimensionless Transitional value of C at the slow-unloading/fast-unloading 
boundary 

11.6 

D Mm Fibre-axes separation in two-point bending 11.3.3 

E0 Gpa Zero-strain Young's modulus 8.4 

F Dimensionless Fibre failure probability 12.1 

KI(t) GPa×µm1/2 Stress intensity factor 8.1 

KIc GPa×µm1/2 Critical stress intensity factor 8.1 
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Symbol Unit Name Subclause 

L km Fibre effective length under uniform stress, or equivalent 
tensile length 

11.2.1 

Lb km Fibre length in uniform bend 11.3.2 

Lp km Mean survival length, or survival length, during proof-testing 11.6 

L0 km Gauge length, reference length 11.2.1 

m Dimensionless "Inert" Weibull parameter or m-value 11.2.1 

md Dimensionless m-value under dynamic fatigue 11.5 

ms Dimensionless m-value under static fatigue 11.4 

n Dimensionless Stress corrosion susceptibility parameter or n-value 6.3, 8.1 

Np km–1 Mean break rate per unit length during proof-testing 11.6 

N(S) km–1 Flaws per unit length not exceeding inert strength S 11.2.1 

P Dimensionless Fibre survival probability 11.2.1 

Pp Dimensionless Fibre survival probability after proof-testing 11.6 

R M Fibre bend radius 11.3.2 

S(t) GPa "Inert" strength of a crack 8.1 

Sp GPa Strength after proof-testing 10.3 

Spmin GPa Minimum strength after proof-testing 10.4 

S0 GPa Weibull gauge strength 11.2.1 

t s Variable of time 8.1 

td s Time to failure under dynamic fatigue 8.3.2 

Dwell time of proof test 6.3.2, 6.4.2, 
10.2, 10.3 

tf s Lifetime (time to failure) under constant stress or static fatigue 
testing 

8.2, 9.2 

tfp s Lifetime after proof-testing 11.8 

tfpmin s Minimum lifetime for certain survival after proof-testing 11.8 

tf(1) Dimensionless Intercept on a static fatigue plot 9.2 

tl ms Loading time of proof test 10.2 

tp ms Effective proof test time 10.3 

tu ms Unloading time of proof test 10.2 

t0 Dimensionless Static Weibull time-scaling parameter 11.4 

V µm/s Crack growth velocity 8.1 

VC µm/s Critical crack growth velocity 8.1 

x Dimensionless Factor relating bend length to equivalent tensile length 11.3.2 

Y Dimensionless Crack geometry shape parameter 8.1 

α Dimensionless Ratio of unloading parameters of proof test to crack 
parameters 

10.4 

β GPan×s×km(n-2)/m Weibull β-value 11.4, 11.5 

ε Dimensionless Strain corresponding to a particular stress 8.4 

λi s–1 Instantaneous failure rate 12.1 

λa s–1 Averaged failure rate 12.2 

σ(t) GPa Stress applied to a crack 8.1 

σa GPa Applied stress under static fatigue testing and service time 9.2, 12.2 

aσ  
GPa/s Applied stress rate under dynamic fatigue testing 8.3.2 
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Symbol Unit Name Subclause 

σf GPa Failure stress under dynamic fatigue testing, without proof-
testing 

8.3.2 

σfp GPa Failure stress after proof-testing 11.8 

σfpmin GPa Minimum failure stress after proof-testing 11.8 

σf(1) Dimensionless Intercept on a dynamic fatigue plot 8.3.2 

σp GPa Proof test stress 10.2 

σ0 GPa Dynamic Weibull stress-scaling parameter 11.5 

 

4 General approach 

First, the equivalence of the growth of an individual crack and its associated weakening is 
shown. This is related to applied stress or strain as an arbitrary function of time. Applied 
stress can be taken to fracture, from which the lifetime of the crack is calculated. Next, the 
destructive tests of static and dynamic fatigue are reviewed, along with their relationship to 
each other. These tests measure parameters useful in the theory. This also shows the 
difference between "inert" strength and "dynamic" strength. 

The above single-crack theory is then extended to a statistical distribution of many cracks. 
This is done in terms of a survival (or failure) Weibull probability distribution in strength. It can 
allow for several deployment geometries in testing and service. The inert distribution and the 
distributions obtained by static or dynamic fatigue testing are derived for before and after 
proof-testing. The latter is sometimes done with approximations that may not require knowing 
the B-value explicitly. Finally, the various parameters measured by the above testing are 
related to formulae for fibre reliability, that is, lifetime and failure rate. 

Some of the main assumptions in the development are as indicated below. 

– The relationship between the stress intensity factor, applied stress, and flaw size is given 
by Equation (29); while at fracture, the relationship between the critical stress intensity 
factor, strength, and flaw depth is given by Equation (30). 

– The crack growth velocity is related to the stress intensity factor by Equation (32). 
– The Weibull distribution of stress (before any proof-testing) is unimodal according to 

Equations (85) and (86), or bimodal according to Equation (91). The (m, S0) pair 
appropriate to the desired survival probability level and length shall be used. Deployment 
lengths will differ upon the application such as fibre on reels, in cable, splice trays, or 
within a connector or other component. Because of the low failure probabilities desired, 
however, the low-strength extrinsic mode must usually be used. 

– The values of the fatigue parameters, both static and dynamic, depend upon the fibre 
environment, fibre ageing and fibre preconditioning prior to testing. In theory, they are 
taken to be independent of time, so that some engineering judgement is needed to decide 
the practical values to be used in the calculations. This also implies that the corresponding 
static and dynamic fatigue parameters equal each other (for the same environment and 
time duration). 

– Zero-stress ageing is not accounted for. Since the above parameters are independent of 
time, the strength decreases due only to stress fatigue following the power law according 
to 8.1. 

5 Formula types 

The formulae utilize parameters obtained from fatigue testing-to-failure, and from proof-testing 
with potential random failures. In the service condition of interest, a fibre of effective length L 
(dependent upon deployment geometry) is subjected to a constant applied service stress that 
does not change with time. (This stress is tensile, including bending stress. Torsional or 
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compressive stresses are not covered.) The lifetime as a function of failure probability or 
failure rate as a function of time are given. 

The formulae assume a Weibull distribution with parameters that vary among fibre types and 
perhaps among fibres of the same type. Moreover, they change with environment and applied 
stress levels. The Weibull distribution may have several nominally linear terms depending 
upon several levels of flaw strength. It is important that the Weibull parameters for the term of 
interest be used in the formulae. These are obtained from fatigue measurements. Generally, 
the low-strength region near the proof test stress and below is of interest, and measurements 
shall be on long fibre gauge lengths and with many samples, so that the total fibre length 
tested is large. Parameters measured for a small number of short samples, characterizing the 
high-strength region, will differ from the preceding ones. They shall not be used in the 
formulae to extrapolate to lower-strength lower-probability regions. 

Within the above power law assumptions, the equations in Clauses 8 to 12 are algebraically 
"exact". However, in some applications, certain terms may be negligible, and more 
approximate and simpler algebraic equations are given in Clause 13. This has the advantage 
in that the B-value, for which there is yet no standard test method and which has been 
reported to span several orders of magnitude, is not required. 

Even with these formulae, there is no assured way of accurately predicting fibre reliability. 
Some fibres may break before the most conservative of predictions, while others may last 
longer than the most pessimistic of predictions. After fibre manufacture, fatigue or damage 
may occur due to cabling, installation, or operation; this usually cannot be accounted for in 
the theory. A start on estimating these effects could be made by measuring the parameters of 
fibres after each of these stages, but this is not commonly done. 

For convenience in assisting the reader to find the derivations of equations, if desired, the 
formulae summarized in Clauses 6 and 7 include the indication in brackets of the equations 
listed in Clauses 8 to 13. However, it is not necessary to refer to the derivations to be able to 
follow Clauses 6 and 7. 

6 Measuring parameters for fibre reliability 

6.1 Overview 

This clause outlines how the parameters in the reliability (lifetime and failure rate) equations 
are obtained in the approximation of the small B-value. Proof test parameters are obtained 
from testing the full length of fibre to be deployed. By contrast, both static and dynamic 
fatigue procedures use many short-length test samples. These are used to obtain "linear" 

Weibull plots of the cumulative failure probability F scaled as ln-ln
P
1  (where P = 1 – F is the 

survival probability) versus the ln of a suitable variable (failure time or failure stress). For 
situations in which the plot may be fitted to two or more straight line parts, that part closest to 
the anticipated service stress should be used in obtaining the needed parameters. 

6.2 Length and equivalent length 

The testing and service geometries may differ from each other. The symbol L0 is the gauge 
length in static or dynamic fatigue testing, whereas L is the in-service length subjected to 
constant applied service stress. The gauge length equals the actual length only for the case 
of longitudinal tension. Other geometries require equivalent lengths. 

For uniform bending (for example, mandrel wrap), the in-service bend length Lb is replaced by 
an approximate equivalent in-service tensile length L given by Equation (97). 
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 x
L

L b4,0≈
 (1) 

The same relationship holds between the gauge bend length Lb0 and the equivalent gauge 
length L0. In this equation there is the factor of Equation (98), i.e. 

 12 +
==

−
=

n
nm

nm
n
mnx d

s
 (2) 

using inert, static fatigue, and dynamic fatigue parameters, respectively, as obtained below. 

For two-point bending, the equivalent length depends upon the applied stress in a complex 
way. Computation of the equivalent in-service length for an arbitrary applied service stress is 
difficult. The equivalent gauge length is approximately 10 µm to 30 µm, depending upon the 
failure stress.  

6.3 Reliability parameters 

 Overview 6.3.1

This subclause outlines methods that are commonly used to derive reliability parameters. 

 Proof-testing 6.3.2

– Obtain the composite proof test parameter p
n
ptσ , where σp is the actual proof test stress 

during dwell, and n is the stress-corrosion susceptibility parameter (or n-value). The 
effective proof test time is given by Equation (64), i.e. 

 1+
+

+=
n

tt
tt ul
dp

 (3) 

obtained from the loading time tl, the dwell time td, and the unloading time tu. 

– (Optional) If from proof-testing the mean number of breaks Np per length or the mean 
survival length Lp during proof-testing is known, calculate Equations (172) and (173), i.e. 
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−
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== σ

σ
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 (4) 

 where 
12 +

==
− n

m
m

n
m d

s  (5) 

If this is not possible, obtain β as a fitting parameter in 6.3.3, 6.3.4, or 6.4. 

 Static fatigue 6.3.3

– Obtain the static Weibull plot of scaled probability versus the natural logarithm of failure 
times tf for any particular constant applied stress σa [Equation (174)] 

 
( ) ( )
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ss
m

mn
pp

mn
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n
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fp

Lttt
tP β

σσσ 



 −+=

)(
1ln

 (6) 

– Determine parameters ms and β from the characteristics of the plot.  
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– Obtain the best-fit straight line to the logarithm of failure times versus the logarithm of 
applied stresses (see Equation (48)) 

 afaf ntt σσ lg1lglg −≈ )()(
 (7) 

Measure the static stress-corrosion susceptibility parameter as the negative slope –n of this 
line. The term tf(1) is the "intercept" of this line on the ordinate axis, that is, the value of 
failure time where the applied stress is unity. (This value will depend on the units used, and 
may require a straight-line extrapolation beyond the data points. It does not have the 
dimension of time.) 

 Dynamic fatigue 6.3.4

IEC 60793-1-31 describes how to measure both short-length and long-length strength 
distributions of optical fibres. 

– Obtain the dynamic Weibull plot of scaled probability versus the natural logarithm of failure 
stresses σf for any particular constant applied stress rate aσ  (see Equation (175)) 
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 (8) 

Determine parameters md and β from the characteristics of the plot. 

– Obtain the best-fit straight line to the logarithm of failure stresses versus the logarithm of 
applied stress rates, as given in Equation (53): 

 1
lg1lglg
+

+≈
n

a
faf

σσσσ


 )()(
 (9) 

Measure the dynamic stress-corrosion susceptibility parameter from the slope 
1

1
+n

 of this 

line. 

The term σf (1) is the "intercept" of this line on the ordinate axis, that is, the value of failure 
stress where the applied stress rate is unity. (This value will depend on the units used, and 
may require a straight-line extrapolation beyond the data points. It does not have the 
dimension of stress.) 

6.4 Parameters for the low-strength region 

 Overview 6.4.1

This subclause describes the way to measure the strength distribution at sufficiently low 
probability to represent the distribution of failure strengths near the proof test stress level for 
the second mode of the Weibull distribution (shown as the extrinsic region in Figure 14). 
Normally, the fibre population has been proof-tested once according to Clause 10.  

NOTE These implementations are used only for characterization and not for specification. 

 Variable proof test stress 6.4.2

This method (briefly mentioned in 10.5) subjects a full length of fibre to a certain proof test 
stress, another length to a higher proof test stress, and so on for several increasing levels of 
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proof test stress. The mean survival length Lp (or number of breaks Np per unit length) is 
counted for each length and stress level. This resembles a static fatigue test in which the 
failure stress (the proof test stress σp) varies. However, the failure time does not exceed the 
fixed proof test time tp. The n-values are obtained by the fatigue measurements of 6.3. 

First, consider the case in which there is no initial proof test at manufacture. From 
Equations (171) and (173) one has  

 ln Lp + ms(n ln σp + ln tp – ln β) = 0 (10) 

so a logarithmic plot of mean survival length versus proof test stress should be close to a 

straight line. The slope is –nms, while the stress and length “intercepts” are ( )pt
n

lnln1
−β  and 

ms(ln tp – ln β), respectively. 

In Reference [11], fibres with a 400 µm jacket and initial lengths of 10 km to 15 km were used, 
with five proof test strains of 0,8 % to 3,5 %. There was no other initial proof test. 

Equation (10) is equivalent to Equations (18) to (20) of Reference [11] with smC −= β . With a 
dwell time td of 1 s, it was found that nms = 2,07, so that with n = 20, one has ms = 0,1035. 

Also, ms ln tp + ln C = –2,09, so that 085,8=smβ  snmGPa ⋅ sms ⋅km. 

More common is the case in which there is an initial proof test at manufacture. If the second 
proof test stress is significantly above the first, then Equation (10) can still be used. 

In Reference [12], the proof test stress level at manufacture was not stated. A minimum 
sample length of 10 km or 20 km was used, and each sample was subjected to a different one 
of five proof test stress levels between 1 GPa and 4 GPa. The proof test speed was reduced 
to minimize breakage during the start-up acceleration period, so the dwell time td was 
normalized to 1 s using n = 23. The failure probabilities F per meter were calculated for each 
stress and plotted to fit the straight line of the form 

 
KM

F p lnln
1

1ln +=







−

σ
 (11) 

With another “ln” on the left (apparently missing), this is equivalent to Equation (101) for static 
fatigue (ignoring the initial proof-testing) if 

 snmM ≡  and 
sm

dt
K 








≡

β
 (12) 

From this it was determined that M = 1,69, so we find ms = 0,0735, and K = 0,000418, so that 

392,2=smβ  snmGPa ⋅ sms ⋅km. 

 Dynamic fatigue 6.4.3

6.4.3.1 Overview 

This is a form of dynamic fatigue testing with censoring, as mentioned in 9.3.3, and with more 
details on the apparatus given in Reference [5]. 
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6.4.3.2 Data acquisition of dynamic fatigue 

A specimen is a single gauge length L0 of fibre. (A recommended gauge length L0 is longer 
than 1 m; for example, 10 m to 20 m.) A sample is a group of specimens from a given 
population of fibres. 

Each specimen is loaded to a failure stress σf, or, with censoring, to a (non-failing) maximum 
stress σmax (for example, 2,4 GPa, about 3,2 % strain from Equation (44)). The recommended 
strain rate aσ  is fast (for example, greater than 200 %/min, about 2,6 GPa/s, from 
Equation (43)). The sample size should be large enough to provide an adequate 
representation of the second Weibull mode (for example, so that 1 km of the total specimens 
fail). 

The following data are recorded: 

– the total number of specimens tested: N, whether or not failure occurred; 

– the failure stress values of those specimens that failed: σfi in GPa. Here i is the rank 
order, sorted by increasing failure stress. 

– the stress rate (converted from strain rate): aσ  in GPa/s. 

– the gauge length of the specimens: L0 in km. 

A Weibull plot in the form of Figure 1 may also be presented (without the curve fittings). The 
points are measurements from about 0,8 GPa to 2,4 GPa, for an acrylate-coated fused silica 
fibre with a cladding diameter of 125 µm. 

6.4.3.3 Calculation of Weibull parameters 

Here the data of the measurement is analysed. According to Equation (86), the Weibull 
cumulative probability ordinate scale is of the form  

















− F1
1lnln

, 

where F = 1 – P is the cumulative failure probability.  

Hence compute 

 
















+

−−=
1

1lnln
N

iwi
 (13) 
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Figure 1 – Weibull dynamic fatigue plot near the proof test stress level 

Exponentiate this and use a rearranged form of an approximation (175) of Equation (138) 
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 (14) 

Here the length L becomes the testing gauge length L0. 

Two fittings are used on this equation. 

a) Linear regression fitting 
For large failure stresses, the term in Equation (14) that is enclosed in curled brackets { } 
approaches one. The equation approaches the "linear" form of the usual Equations (108) 
and (110) without proof-testing 

 wi = A + mdln σfi (15) 

where ( ) ( )[ ]a
d

nAL
m
n σβ 1lnln1ln 0 +−−
+

=  (16) 

Hence for failure stress greater than some selected value, find md and A such that the 
least squares error of wi is minimized. 

This procedure produces the linear regression fitting in Figure 1. Clearly, it would be 
better to have a closer fit at the left side of this data set, where the values are closer to 
the applications of interest. 

b) Non-linear regression fitting 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



TR 62048 © IEC:2014(E) – 17 – 

This uses lower-stress data, where the curvature is apparent. Given a value of md, a value 
of β is computed for each failure stress, and a value from the middle of the data of interest 
produces a curve that goes through that area. The result produces a sum of squared 
errors for the entire curve, and md is varied to minimize the sum. The steps are indicated 
below. 
– Define a range of data in which the fitting is to be forced. Here it is constructed using 

ln σfi values between 0 and 0,5. 
– Select a value of md. 
– Compute ln βi for each failure stress in the defined region using Equation (14). 
– Set ln β equal to the median of the computed ln βi values. 
– Compute wouti using Equation (14) and the above value of β. 

– Compute the squared errors (wi – wouti)2, and then compute the sum of squared 
errors. 

– Vary md as in the second step, and repeat the remaining steps to minimize the sum. 

The procedure produces the non-linear regression fitting in Figure 1. 

6.5 Measured numerical values 

In this subclause, experimental values resulting from the measurements of 6.4.3 are obtained. 
They will be used in the calculations of Clause 7. 

In 6.3.2, the composite proof test parameter is  108849,8 5−×=p
n
ptσ GPan⋅s, with a nominal 

proof-stress of σp = 0,69 GPa (ln σp = –0,37 in Figure 1). From 6.3.4 n = 20 is obtained, and 
in 6.4.3 the stress rate is aσ  = 4,59477 GPa/s for a gauge length L0 = 20 m. The non-linear 
fitting gives the values md = 2,359 and ln β = 25,499. Note that β has the unit 

d

1+

kmsGPa m
n

n ⋅⋅ . 

The static value will also be needed in the following subclause (see Equation (114)): 

 1+
=

n
m

m d
s

 (17) 

which according to the above subclause equals 0,11233. Note too that β now has the unit 

GPan⋅s⋅ sm
1

km  and that smβ  = 17,538 snmGPa ⋅ sms ⋅km.  

The two values are in reasonable agreement with those of 6.4.2. 

7 Examples of numerical calculations 

7.1 Overview 

The numerical values experimentally obtained in 5.5 are used in the calculations below. The 
results will be conservative since the explicit B-value is neglected; lower failure rates and 
longer lifetimes would be obtained if this value were included. (The degree of improvement 
increases as B increases.) The results of the calculations can be quite sensitive to the choice 
of parameter values. These values are related to each other, and a change in one parameter 
will affect the values of other parameters. Ideally, the parameter values should be obtained on 
the basis of experimentation.  
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If the failure probability F = 1 – P is 10–3 or less (generally the region of practical interest), the 
term P

1ln  in the formulae below may be replaced by F to an accuracy of 0,5 % or better, but 
this has not been done in the numerical results given here. See Equation (160) 

 tf(sec) = 31 557 600 ty(yr) (18) 

7.2 Failure rate calculations 

Compute the failure rates λ that would occur at various static stress levels σa as a function of 
service time ty in years. 

 FIT rate formulae 7.2.1

The instantaneous failure rate in FIT is (see Equation (178)): 
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The averaged failure rate in FIT is [Equation (179)] 
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 (20) 

NOTE Instantaneous failure rate λi in equation (19) is proportional to effective fibre length L. From Equation (20) 
of average failure rate λa, failure probability F is expressed as λa tf/(3,6 × 1012), and F increases from zero and 
asymptotically approaches to 1 as L increases from zero to infinite. Normally the interest of discussion is a region 
where F << 1 holds, λa can be considered approximately proportional to L.  

 Long lengths in tension 7.2.2

Use several applied stresses, as a fraction of the nominal proof test stress, in the above 
equations for a fibre length L = 1 km. As a function of time out to 50 years, these give the 
instantaneous and averaged failure rate plots of Figures 2 and 3, respectively. The 
corresponding values are given in Table 2. (Zero time is avoided because of the singularity 
shown there of the averaged failure rate.) 

Two points are worth noting. First, all the failure rates are almost constant over time, 
especially at the lower stresses. This indicates an almost linear increase in total cumulative 
failures with time. Secondly, and because of this, there is little practical difference in the 
values between the instantaneous and averaged failure rates. 
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Figure 2 – Instantaneous FIT rates of 1 km fibre versus time for applied stress/proof 
test stress percentages 

(bottom to top): 10 %, 15 %, 20 %, 25 %, 30 % 
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Figure 3 – Averaged FIT rates of 1 km fibre versus time for applied stress/proof test 
stress percentages 

(bottom to top): 10 %, 15 %, 20 %, 25 %, 30 % 
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Table 2 –FIT rates of 1 km fibre in Figures 2 and 3 at various times 

Applied 
stress 
as a % 

of proof 
test 

stress 

Instantaneous FIT Averaged FIT 

1 
year 

10 
years 

20 
years 

30 
years 

40 
years 

50 
years 

1 
year 

10 
years 

20 
years 

30 
years 

40 
years 

50 
years 

10 5,45 × 
10–10 

5,45 × 
10–10 

5,45 × 
10–10 

5,45 × 
10–10 

5,45 × 
10–10 

5,45 × 
10–10 

5,45 × 
10–10 

5,45 × 
10–10 

5,45 × 
10–10 

5,45 × 
10–10 

5,45 × 
10–10 

5,45 
× 10–

10 

15 1,81 × 
10–6 

1,81 × 
10–6 

1,81 × 
10–6 

1,81 × 
10–6 

1,81 × 
10–6 

1,81 × 
10–6 

1,81 × 
10–6 

1,81 × 
10–6 

1,81 × 
10–6 

1,81 × 
10–6 

1,81 × 
10–6 

1,81 × 
10–6 

20 5,71 × 
10–4 

5,71 × 
10–4 

5,71 × 
10–4 

5,71 × 
10–4 

5,71 × 
10–4 

5,71 × 
10–4 

5,71 × 
10–4 

5,71 × 
10–4 

5,71 × 
10–4 

5,71 × 
10–4 

5,71 × 
10–4 

5,71 × 
10–4 

25 4,95 × 
10–2 

4,95 × 
10–2 

4,95 × 
10–2 

4,93 × 
10–2 

4,92 × 
10–2 

4,91 × 
10–2 

4,95 × 
10–2 

4,95 × 
10–2 

4,94 × 
10–2 

4,94 × 
10–2 

4,94 × 
10–2 

4,93 × 
10–2 

30 1,89 × 
100 

1,78 × 
100 

1,68 × 
100 

1,59 × 
100 

1,51 × 
100 

1,44 × 
100 

1,89 × 
100 

1,84 × 
100 

1,78 × 
100 

1,73 × 
100 

1,69 × 
100 

1,64 × 
100 

 

 Short lengths in uniform bending 7.2.3

From Equations (97) and (98), reduce the actual bend length LB by the bend-length factor 

 sB nmL
L 0,4

=
 (21) 

which equals 0,266 86 here. From the non-linear Equation (94), the maximum applied stress 
at the outside fibre surface under bend is 

 







 +=
DD

Da 32
91

8
33,70)(σ

 (22) 

where D is the bend diameter in millimetres. Use several bend diameters in the equations of 
7.2.1 for a bent fibre length of 1 m. As a function of time out to 50 years, these give the 
instantaneous and averaged failure rate plots of Figures 4 and 5, respectively. The 
corresponding values are given in Table 3. 

The "% of proof test stress" number is the percent that the maximum stress (at the outside of 
the bend) is of the 0,69 GPa proof test stress. Compared with the tensile case of the previous 
subclause, the constancy of the failure rate with time no longer holds at these higher 
stresses, especially at shorter times. Also, more significant differences between the 
instantaneous and averaged values appear, especially at shorter times and tighter bends. 

Finally, Table 4 gives results when the non-linear term is not included in Equation (22). As 
expected, the failure rates are smaller, since the applied stress is slightly underestimated. 
Moreover, the percentage deviation error from the more correct values of Table 3 increases 
as the bend diameter decreases and stress increases.  
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Figure 4 – Instantaneous FIT rates of bent fibre with 1 m effective length versus time 
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Figure 5 – Averaged FIT rates of bent fibre with 1 m effective length versus time for 
bend diameters 

(top to bottom): 10 mm, 20 mm, 30 mm, 40 mm, 50 mm
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Table 3 – FIT rates of 1 metre effective length bent fibre in Figures 4 and 5 at various 
times 

Bend 
diameter 

(mm), % of 
proof test 

stress 

Instantaneous FIT in bend Averaged FIT in bend 

1 year 10 
years 

20 
years 

30 
years 

40 
years 

50 
years 

1 year 10 
years 

20 
years 

30 
years 

40 
years 

50 
years 

10, 131,0 1,08 
×100 

1,40 
×10-1 

7,57 
×10-2 

5,28 
×10-2 

4,09 
×10-2 

3,35 
×10-2 

9,01 
×100 

1,19 
×10-1 

6,43 
×10-1 

4,50 
×10-1 

3,49 
×10-1 

2,86 
×10-1 

20, 64,6 2,21 
×10-1 

2,86 
×10-2 

1,55 
×10-2 

1,08 
×10-2 

8,35 
×10-3 

6,85 
×10-3 

1,36 
×100 

1,94 
×10-1 

1,07 
×10-1 

7,57 
×10-2 

5,92 
×10-2 

4,88 
×10-2 

30, 42,9 8,03 
×10-2 

1,13 
×10-2 

6,12 
×10-3 

4,28 
×10-3 

3,33 
×10-3 

2,72 
×10-3 

1,83 
×10-1 

4,06 
×10-2 

2,44 
×10-2 

1,79 
×10-2 

1,44 
×10-2 

1,21 
×10-2 

40, 32,1 1,88 
×10-3 

1,55 
×10-3 

1,30 
×10-3 

1,12 
×10-3 

9,87 
×10-4 

8,84 
×10-4 

1,91 
×10-3 

1,73 
×10-3 

1,57 
×10-3 

1,45 
×10-3 

1,35 
×10-3 

1,27 
×10-3 

50, 25,6 2,17 
×10-5 

2,16  
×10-5 

2,15 
×10-5 

2,15 
×10-5 

2,14 
×10-5 

2,14 
×10-5 

2,17 
×10-5 

2,16 
×10-5 

2,16 
×10-5 

2,16 
×10-5 

2,15 
×10-5 

2,15 
×10-5 

 

Table 4 – FIT rates of Table 3 neglecting stress versus strain non-linearity 

Bend 
diameter 

(mm), % of 
proof test 

stress 

Instantaneous FIT in bend Averaged FIT in bend 

1 year 10 
years 

20 
years 

30 
years 

40 
years 

50 
years 

1 year 10 
years 

20 
years 

30 
years 

40 
years 

50 
years 

10, 127,4 1,02 
×100 

1,32 
×10-1 

7,11 
×10-2 

4,96 
×10-2 

3,84 
×10-2 

3,15 
×10-2 

8,43 
×100 

1,11 
×10-1 

6,02 
×10-1 

4,21 
×10-1 

3,27 
×10-1 

2,68 
×10-1 

20, 63,7 2,14 
×10-1 

2,77 
×10-2 

1,50 
×10-2 

1,03 
×10-2 

8,10 
×10-3 

6,64 
×10-3 

1,30 
×100 

1,86 
×10-1 

1,03 
×10-1 

7,28 
×10-2 

5,69 
×10-2 

4,70 
×10-2 

30, 42,5 7,73 
×10-2 

1,10 
×10-2 

5,99 
×10-3 

4,19 
×10-3 

3,25 
×10-3 

2,66 
×10-3 

1,68 
×10-1 

3,85 
×10-2 

2,32 
×10-2 

1,71 
×10-2 

1,38 
×10-2 

1,16 
×10-2 

40, 31,9 1,64 
×10-3 

1,38 
×10-3 

1,18 
×10-3 

1,03 
×10-3 

9,15 
×10-4 

8,25 
×10-4 

1,66 
×10-3 

1,52 
×10-3 

1,40 
×10-3 

1,30 
×10-3 

1,22 
×10-3 

1,15 
×10-3 

50, 25,5 1,94 
×10-5 

1,93 
×10-5 

1,93 
×10-5 

1,92 
×10-5 

1,92 
×10-5 

1,91 
×10-5 

1,94 
×10-5 

1,93 
×10-5 

1,93 
×10-5 

1,93 
×10-5 

1,93 
×10-5 

1,92 
×10-5 

 

7.3 Lifetime calculations 

Compute the lifetimes that would occur at various static stress levels σa as a function of 
failure probability F. 

 Lifetime formulae 7.3.1

The lifetime is (see Equation (177)) 
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 Long lengths in tension 7.3.2

Use several applied stresses, as a fraction of the nominal proof test stress σp = 0,69 GPa, in 
the above equation for a fibre length L = 1 km. As a function of failure probability, this gives 
the lifetime plots of Figure 6. The corresponding values are given in Table 5. 
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For this example, it appears that an applied stress that is 30 % of the proof test stress is 
unacceptable at any failure probability level, whereas the 10 % and 15 % values are always 
acceptable. 
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Figure 6 – 1 km lifetime versus failure probability for applied stress/proof test stress 
percentages 

(top to bottom): 10 %, 15 %, 20 %, 25 %, 30 % 

Table 5 – 1 km lifetimes in years of Figure 6 for various failure probabilities 

Applied stress 
as a % of proof 
test stress 

Failure probability 

10-3 10-4 10-5 10-6 

10 2,56 × 1011 2,14 × 1010 2,10 × 109 2,10 × 108 

15 7,70 × 107 6,43 × 106 6,31 × 105 6,30 × 104 

20 2,44 × 105 2,04 × 104 2,00 × 103 2,00 × 102 

25 2,82 × 103 2,35 × 102 2,31 × 101 2,30 × 100 

30 7,35 × 101 6,13 × 100 6,02 × 10-1 6,01 × 10-2 

 

 Short lengths in uniform bending 7.3.3

Calculating failure probability for bent fibre can be accomplished using the length under bend. 
Use Equation (21) for the bend-length factor and Equation (22) for the maximum applied 
stress at the outside fibre surface under bend described in this subclause or using the 
numerical approach described in the bend with tension described in the next subclause. Both 
methods produce similar results for large diameter bends (greater than 15 mm). For the length 
under bend estimation use several bend diameters in Equation (177) for a bent fibre length of 
1 m. As a function of failure probability, this gives the lifetime plots of Figure 7. The 
corresponding values are given in Table 6. 
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Compared with the long length in tension of the previous part, at these higher stresses, there 
is a greater and non-linear variation in the lifetime with failure probability. It appears that the 
30 mm, 40 mm, and 50 mm bends are acceptable at almost all the failure probabilities. 

Finally, Table 7 gives results when the non-linear term is not included in Equation (22). As 
expected, the lifetimes are larger, since the applied stress is slightly underestimated. 
Moreover, the percentage deviation error from the more correct values of Table 6 increases 
as the bend diameter decreases and stress increases.  
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Figure 7 – Lifetimes of bent fibre with 1 m effective length versus failure probability for 
bend diameters 

(bottom-right to top-left): 10 mm, 20 mm, 30 mm, 40 mm, 50 mm 

Table 6 – Lifetimes of bent fibre with 1 m effective length in years of Figure 7 for 
various failure probabilities 

Bend 
diameter 

mm 

% of proof 
test stress 

Failure probability 

10-3 10-4 10-5 10-6 

10 131,0 3,83 × 109 7,23 × 100 2,57 × 10-7 7,69 × 1011 

20 64,6 5,28 × 1015 9,99 × 106 3,54 × 10-1 1,06 × 10-4 

30 42,9 1,93 × 1019 3,64 × 1010 1,29 × 103 3,87 × 10-1 

40 32,1 6,37 × 1021 1,20 × 1013 4,27 × 105 1,28 × 102 

50 25,6 5,68 × 1023 1,07 × 1015 3,81 × 107 1,14 × 104 
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Table 7 – Lifetimes in years of Table 6 neglecting stress versus strain non-linearity 

Bend diameter 
mm 

% of proof test 
stress 

Failure probability 

10-3 10-4 10-5 10-6 

10 127,4 6,66 × 109 1,26 × 101 4,47 × 10-7 1,34 × 10-10 

20 63,7 6,99 × 1015 1,32 × 107 4,69 × 10-1 1,40 × 10-4 

30 42,5 2,32 × 1019 4,39 × 1010 1,56 × 103 4,67 × 10-1 

40 31,9 7,33 × 1022 1,38 × 1013 4,91 × 105 1,47 × 102 

50 25,5 6,35 × 1023 1,20 × 1015 4,26 × 107 1,28 × 104 

 

 Short lengths with uniform bending and tension 7.3.4

Optical cables are traditionally designed to separate bending forces from axial tensions. This 
assumption is not valid for drop cables used in building applications as described in 
Reference [22]. These small diameter low fibre count cables may be routed through existing 
construction with practices similar to copper and may be subject to bends and tension 
simultaneously. Under these demanding conditions, the strain from all sources should be 
taken into account to accurately predict mechanical lifetime at the bend. 

The resulting failure probability when bends and tension are present can be calculated using 
the strip calculation.  The difference in the calculation is that instead of using Equation (21) 
for effective length, the calculation is done for a number of surface strips, each of which has a 
different static stress.  The probability of surviving the load period is calculated for each strip.  
The sum of these probabilities is the probability that all strips will survive. One minus 
probability of overall survival yields probability of failure. 

Equation (21) is derived from assumptions that include a uniform Weibull slope and which do 
not include the proof test.  Doing the strip calculation allows taking the actual distribution into 
account.  It also allows the introduction of tensile load to bending. 

The strip calculation 

Calculate the maximum bend stress, σb, as a function of bend diameter, D, as 

 






 +=

DD
Db 32

91
8

70,33)(σ
  (24) 

Define the number of strips as ns and designate the strips with index, i, ranging from 0 to ns1.  
It has been found that i should be at least 20 to get reasonable results. Define θ = i2π/ns.  A 
tensile load stress, σt, in addition to bend stress is also allowed.  Calculate the stress for each 
strip, σi, as: 

 ( )[ ]0,cosmax tibi σθσσ +=   (25) 

Calculate the natural logarithm of the probability of survival for each strip, ln(Pi), as: 
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Where L (km) is the length of fibre under bend and tension. Calculate the probability of failure, 
F, as: 
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  (27) 

Calculate average FIT as: 

 
F

t
FIT

f

12103.6×
=

  (28) 

This calculation can be used with no tension and will provide reasonable agreement with the 
failure rates described in the previous section. The tensile load option allows one to calculate 
the failure rate for the combination of bend and tension. Table 8 shows the result for L = 1 m 
when 30 % proof test is added to each radii for a 30 year case. 

Table 8 – Calculated results in case of bend plus 30 % of proof test tension for 30 years 

Bend 
diameter 

mm 

Failure 
probability 
of 1 m fibre 

Average FIT 
of 1 m fibre 

Average 
FIT/turn 

10 1,87×10-4 7,10×10-1 2,23×10-2 

15 9,00×10-5 3,42×10-1 1,61×10-2 

20 5,53×10-5 2,10×10-1 1,32×10-2 

30 2,90×10-5 1,10×10-1 1,04×10-2 

40 1,88×10-5 7,15×10-2 8,99×10-3 

 

Except for the purpose of comparison, it would probably be better to calculate failure 
probability in a configuration similar to deployment such as 1 ¼ or ½ turn.  For 10 mm 
diameter full turn, this works out to around 6 × 10-6. 

8 Fibre weakening and failure 

NOTE Individual cracks in the glass are considered first. Their statistical nature is treated in Clause 11. 

8.1 Crack growth and weakening 

The theory of fibre strength, as shown in Reference [1], follows the theory of brittle materials. 
It assumes that very small imperfections or cracks are distributed along the length of glass. 
For a silica-based fibre, the critical cracks are mostly at the surface where they are vulnerable 
to attack and weakening by moisture, dust, chemicals, etc. For silica-based optical fibres, 
polymer coatings around the glass or a hermetic film (for example, amorphous carbon film, 
plus coating) on the glass are intended to slow these effects. 

The stress intensity factor at a crack tip is defined as a function of time t to be 

 )()()( 2
1

tatYtK I σ=  (29) 

assumed to hold in any environment of interest.  

Here  

Y   is a dimensionless crack geometry shape parameter (assumed to be constant),  
σ   is the positive applied stress, and  
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a  is the flaw "depth", that is, the flaw size normal to the direction of applied stress. The 
distribution of crack sizes is statistical, as will be discussed in Clause 11. 

In the ideal inert environmental condition of low temperature (for example, liquid N2), or zero 
humidity, or high vacuum, cracks will grow only at the critical velocity and will then fracture. 
For a crack of constant size, the applied-stress intensity factor in Equation (29) varies 
proportionally to the time-varying stress applied to the crack. The factor has a maximum value 
KIc, called the "critical stress intensity factor or fracture toughness". This occurs when the 
applied stress increases to its allowable maximum given by the inert strength S of the crack 
(typically above 15 GPa for a short length of pristine fibre), so at this instant the time-varying 
Equation (29) becomes 

 
2
1

YSaK Ic =  (30) 

At this point, catastrophic failure occurs. Because of the required environment, inert strength 
is difficult to measure, and this has led to non-unique values obtained experimentally. We 
typically will use the term "strength" rather than "inert strength" to mean the limiting value of 
failure stress that would be measured for "instant fracture" under static or dynamic fatigue. 
(This is described mathematically in 9.4.3.) The value may have a dependence on the 
environment in which this measurement would occur. 

For the fibre in a non-inert or active (ambient or hostile) environment, such as at higher 
temperatures and with humidity, water, or chemical species, any applied stress will cause 
crack growth to occur. This is called stress corrosion, since hydrolysis of silica bonds occurs. 
The values of the shape parameter Y and the fracture toughness KIc are uncertain to at least 
10 %, but are assumed constant for that type of crack over a wide range of environments. 

Then Equation (30) establishes a one-to-one relationship between the increasing crack size in 
the active environment with the decreasing strength that could be approximately measured in 
an inert environment, or for instant fracture. Numerically, with assumed values of 24,1≈Y  for 
an elliptical crack under tension and 8,0≈IcK  MPa⋅m1/2, Equation (30) is 

 a(µm) = 0,42[S(GPa)]–2  (31) 

A strength of 0,7 GPa in the proof test stress region corresponds to a crack size of about 
0,88 µm. In the high-strength region, 7 GPa corresponds to a crack size of only 8,8 nm. The 
latter is not much larger than the tetrahedral structural units of the glass, so the concept of a 
"crack" may be more useful as a model rather than being physically significant in this region. 

In a non-inert environment, the rate of crack growth or crack growth velocity V is assumed to 
be related to the stress intensity factor by the empirical equation 

 

n

Ic

I
c

n
I K

tK
VtAKtV

dt
da









===

)(
)()(

 (32) 

This contains the critical crack growth velocity at the instant of failure 

 
n
Icc AKV =  (33) 

Here, A is a material scaling parameter that depends on the environment through the critical 
crack growth velocity. For example, Vc is expected to increase as the partial pressure of water 
increases. The dimensionless exponent n is the crack's stress corrosion susceptibility 
parameter, or n-value for short. The power law relationship of Equation (32) holds in the linear 
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region I of the IKa log versus  log   curve, where n is the slope of the line. This may have little 
physical basis, but is justified by the results it produces in approximating experimental results. 
Both n and A (which includes a dependence upon n) depend upon the particular environment. 

In the treatment below, "strength" rather than "crack size" will be referred to, although they 
are interchangeable via Equations (30) and (31). To calculate how a crack weakens (loses 
strength) as stress is applied, one substitutes the stress intensity factor of Equation (33) into 
Equation (32) for crack growth and eliminates crack size via Equation (30). This gives the 
strength variation with applied stress  

 B
t

dt
tdS nn )()(2 σ

−=
−

 (34) 

Here one defines the crack's strength preservation parameter or B-value (for short) 
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 (35) 

The parameter depends upon the environment through the earlier-defined parameters in this 
equation. It will not be necessary later in this standard to individually know them all to be able 
to calculate B. However, to measure it is difficult (see 13.4), and quoted values may range 
from 10–8 to 1 GPa2⋅s. 

Equation (34) can be integrated so that if the fibre is subjected to a stress history σ(t), a 
particular crack at an initial time 0 and of an initial strength S(0) will weaken to a strength S(t) 
given in 

 ∫ <−= −− t nnn tSttdt
B

StS
0
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 (36) 
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The flaw does not break so long as its remaining strength exceeds the applied stress. The last 
term on the right side accounts for the dynamic characteristics of the applied stress and the 
fibre's response to it via the environmentally dependent parameters n and B. Note that in 
Equations (36) and (37) crack weakening (and growth) occurs so long as n exceeds 2, though 
common values may range from 15 to 30 for typical fibres to over a hundred for hermetic 
fibres. Moreover, a particular applied stress history will have a smaller weakening effect on a 
fibre having a higher value of B (in keeping with its name). 

8.2 Crack fracture 

In the previous subclause, the crack grew and weakened but did not break. With fracture, 
the critical failure condition of Equation (30) occurs just when the final strength in 
Equations (36) and (37) equals the applied stress at the instant of failure tf, that is 

 t = tf and S(tf) = σ(tf) (38) 
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(In another interpretation the crack size has grown to the critical value given by Equations 
(30) and (31).) Using this condition and the strength degradation Equations (36) and (37), one 
obtains the general lifetime equation 

 ∫−= −− ft nn
f

n dtt
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 (39) 
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The ratio under the integral sign becomes unity at fracture. Either form of this equation 
implicitly gives the lifetime tf for any stress history σ(t) in a given fixed environment.  

Further simplification is useful for those cases in which the left side in Equation (39) is 
negligible, that is the fracture stress is somewhat less than the initial strength. For example, 
that fracture stress term is negligible (less than ~1 % of the other two terms) when  

 
)0(01,0)( 2

1
St n

f
−≤σ

 (41) 

For the examples n = 15 and 30, this holds if the applied fracture stress is less than 70 % and 
85 % of the initial strength, respectively. Hence if sufficient crack weakening (crack growth) 
has occurred, the general lifetime equation of Equation (39) is simply 

 ∫ −=ft nn BSdtt
0

2 )0()(σ
 (42) 

An advantage of this form is that now B and Sn-2(0) do not need to be known separately but 
only in a product. (Also, it results in the linearized plots below of Equation (46) for static 
fatigue and Equation (47) for dynamic fatigue, so this approximation is often used in the 
literature.) 

8.3 Features of the general results 
– Crack weakening in Equations (36) and (37) and crack failure in Equations (39) and (40) 

depend on the magnitude of the applied stress and upon the duration of the stress 
application, as well as the crack parameters n and B. 

– These general results can be applied to many different practical problems concerning fibre 
weakening or failure due to applied stress. Some of these problems will be treated below; 
they include proof-testing, which is intended to be non-destructive, the destructive tests of 
static fatigue and dynamic fatigue, and predicting service lifetime or failure rate. 

– Equations (40) and (41) for crack weakening may be applied repeatedly, for example, to 
the proof-testing during manufacture, to destructive fatigue testing, to a dormant shipping 
period of almost zero stress, to the cabling process, and to field deployment. The strength 
decrease during each period (from beginning to end) may thus be calculated. 

– All results assume that the strength decreases with time as a function of the applied stress 
alone. For a fixed environment, the fatigue parameters are assumed to remain unchanged 
with time. This is a limitation because they have been observed to change with 
temperature and humidity, and no mapping functions of these parameters versus 
environment have been agreed upon. 

– Strength can change in harsh environments, even when no stress is applied; this is called 
zero-stress ageing. In the intrinsic region, the small-flaw strength often decreases; 
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whereas in the proof test region, the strength of the larger flaws sometimes increases. 
Experiments may sometimes mix the two phenomena, and, if the effects are not 
separated, the analysis of results can produce incorrect estimates of the fatigue 
parameters. 

– For reliability estimates, careful engineering judgement is required concerning the stress 
history and the environmental conditions the fibre experienced before installation, the 
strength distribution, the fatigue parameters, the ageing characteristics, and the stresses 
and environments expected in the field application. 

8.4 Stress and strain 

Instead of using stress, one may speak of the associated fractional increase in length, the 
strain ε. The two are related in References [2], [3] by the quadratic relationship 

 σ(ε) = E0(1+cε)ε (43) 

Here E0 is the zero-strain Young's modulus which has values of 70,3 GPa to 73,8 GPa. The 
non-linearity term c has ranged from 3 to 3,3 for axial strain; we will use the former here. Due 
to asymmetric stress distributions, the value changes in other geometries are discussed in 
Reference [4] and briefly in 11.3. In this technical report, stress will be used rather than strain. 
Inverting Equation (43) gives strain in terms of stress 
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A stress of 0,7 GPa, typically used as a proof test stress, corresponds to a strain of 0,92 % to 
0,97 %. 

A  perfectly circular glass fibre is assumed with a diameter of 125 µm and the coating 
contribution to load is ignored. Then 1 GPa stress is equivalent to a force of 12,272 N or a 
load of 1 251,4 g. 

9 Fatigue testing 

9.1 Overview 

The means by which the crack parameters mentioned in 8 may be measured are then 
examined. One method is by fatigue testing applied destructively to numerous fibre 
specimens of a fixed gauge length. This allows for the measurement of n and the product BSn–
2. There are two types of fatigue testing, and the subscripts s and d refer to parameters 
measured under static and dynamic conditions, respectively. 

9.2 Static fatigue 

In static fatigue, a fibre specimen is subjected to a constant applied stress σa until the 
weakest crack of initial strength S breaks at an observed failure time tf. This stress history is 
shown schematically in Figure 8. From Equations (39) and (40) the failure time is 

 
( )22)( −−− −= sss n

a
nn

asaf SBt σσσ
 (45) 

If the stress-to-strength ratio is sufficiently small, such as in Equation (41), or if the 
approximate lifetime in Equation (42) is used, then this has the reduced form 
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 (46) 

This has the unit-stress "intercept" value 

 
2)1( −= sn

sf SBt
 (47) 

which depends upon the units used. Note that this intercept does not have the dimension of 
time. 

 
Applied stress   σ(t) 

Time   t 
tf 

σa 

Failure time 

IEC   0008/14  

Figure 8 – Static fatigue – Applied stress versus time for a particular applied stress 

In static fatigue testing, different stresses are applied to different sets of specimens. From 
Equation (46), a double-logarithmic plot of failure times versus applied stresses gives 

 asfaf ntt σσ lg1lglg −≈ )()(
 (48) 

The data should lead to a best-fit straight line with a negative slope of –ns and a vertical 
intercept of lgtf(1). (This value will depend on the units used, and may require a straight-line 
extrapolation beyond the data points.) This data is shown schematically in Figure 9. According 
to Equation (45), non-linearities are expected for large applied stress or weak flaws. As 
discussed in 9.4.4, this can lead to errors in measuring ns. 
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Applied stress log σa 0 

Failure time log tf 

Slope ns 
Intercept log tf (1) 

Approximate equation (46) 

Exact equation (45) 

IEC   0009/14  

Figure 9 – Static fatigue – Schematic data of failure time versus applied stress 

9.3 Dynamic fatigue 

 Overview 9.3.1

This test is performed in either of two ways. In one, the stress is applied until the fibre breaks. 
In the other, the stress is applied to a maximum value or until the fibre breaks, whichever 
occurs first. 

 
Applied stress σ(t) 

Time t td 

σf 

Failure 
stress 

Failure 
time 

Applied stress rate, 

d

f
a t

σ
σ =  

IEC   0010/14  

Figure 10 – Dynamic fatigue – Applied stress versus time for a particular  
applied stress rate 

 Fatigue to breakage 9.3.2

In the more common dynamic fatigue a fibre specimen is subjected to a constant applied 
stress rate aσ  until the weakest crack of initial strength S breaks at an observed failure time 
td, or dynamic fatigue failure stress  
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 daf tσσ =
 (49) 

This stress history is shown schematically in Figure 10. (Do not confuse td with proof-testing 
dwell time defined in 10.2.) From Equations (39) and (40), the failure stress is 

 
1

1
22)1()( +−−




 





 −+= ddd nn

f
n

addaf SBn σσσσ 

 (50) 

If the stress-to-strength ratio is sufficiently small according to Equation (41), or if the 
approximate lifetime of Equation (42) is used, then this has the reduced form 

 
[ ] 1

1

1
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 (51) 

This has the unit-stress-rate "intercept" value 

 
[ ] 1

1
2)1()1( +−+= dd nn

ddf SBnσ
 (52) 

which depends upon the units used. Note that this intercept does not have the dimension of 
stress. One can also work with afdt σσ  or  versus , but these formats are less common. 

In dynamic fatigue testing, different stress rates are applied to different sets of specimens. 
From Equation (51), a double-logarithmic plot of failure stresses versus stress rates gives 

 1
lg1lglg
+

+≈
d

a
faf n

σσσσ


 )()(
 (53) 

The data should lead to a best-fit straight line with a slope of (nd + 1)–1 and a vertical 
intercept of lgσf(1). This value will depend on the units used and may require a straight-line 
extrapolation beyond the data points. This data is shown schematically in Figure 11. 
According to Equation (50), non-linearities are expected for large failure stresses or weak 
flaws. As discussed in 9.4.4, this can lead to errors in measuring nd. 
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Intercept log σf (1) 

Applied stress rate log
aσ  

Failure stress log σf 

Slope (nd + 1) –1 

0 

Approximate Equation (52) 

‘Exact’ Equation (51) 

IEC   0011/14  

Figure 11 – Dynamic fatigue – Schematic data of failure time versus applied stress rate 

 Fatigue to a maximum stress 9.3.3

For long-term reliability prediction, it is useful to obtain data in the low-strength low-fracture-
probability portion of the Weibull distribution discussed in 11.2.2, 11.5, and 11.8. Except for 
fibre deployments that involve very high stresses, very tight bends, or rather high allowable 
failure probabilities, it is these cracks that are more important. One method of characterizing 
these cracks is dynamic fatigue testing with censoring. 

According to Reference [5], the method differs in several ways from the usual dynamic fatigue 
testing. The gauge length is longer, and more samples are used. Both these factors mean that 
a very long length of fibre is tested. Only one high strain rate is applied, and the resulting 
applied stress is limited to a maximum value σmax within the lower mode of the Weibull 
strength distribution. The stress history is similar to that of Figure 10 with a constant stress 
rate, but with the highest stress being either σf with breakage or σmax without breakage. The 
latter is more common, and this means that a smaller fraction of fibre from a longer sampled 
length is broken. 

More details of the measurements and calculations are given in 9.4.2 and 9.4.3. 

9.4 Comparisons of static and dynamic fatigue 

 Intercepts and parameters obtained 9.4.1

The parameters n and B obtained statically or dynamically should, in principle, be equal for 
the same environment. With a few exceptions for the n-value, we will drop the subscripts s 
and d from this point forward. Then Equations (47) and (52) relate the intercepts as 

 1

)1(
)1(

1
2

+
==

+
−

n
tBS

n
f

f
n

σ

 (54) 

 Time duration 9.4.2

Static fatigue experiments are usually carried out over longer periods of time (days to months) 
and may be conducted in a hostile environment (elevated temperature, humidity, and possible 
chemical species). Dynamic fatigue is usually carried out over shorter periods of time 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



TR 62048 © IEC:2014(E) – 35 – 

(seconds to hours), often (but not always) in an inert or ambient environment. For many 
applications, it is necessary to assess the strength distribution in the neighbourhood of the 
proof test stress, usually by dynamic fatigue testing. 

Solving Equation (46) for tf(1) and Equation (51) for σf(1), and using Equation (54) gives 

 a

n
f

f
n
a n

t
σ

σ
σ

)1(

1

+
=

+

  (55) 

This suggests that if the static applied stress is taken equivalent to the dynamic fatigue failure 
stress, then as in Reference [6] 

 1)1( +
=

+
=

n
t

n
t d
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f
f σ

σ


      (56) 

where Equation (49) has been used. This means that an "effective" static fatigue failure time 
results from dividing the dynamic fatigue failure time by n + 1.  

In an extended approach, two flaws of different initial inert strengths S1, S2 prior to static and 
dynamic fatigue are equivalent, if from the "exact" static lifetime Equation (45)  
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22
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−

 (57) 

and from the "exact" dynamic fatigue failure stress Equation (50) 
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Equating the left sides leaves 
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n
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)1(2
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=

 (59) 

Equation (55) was applied to dynamic and static fatigue results taken at several laboratories 
on the same fibre measured in various deployment geometries in Reference [6]. When the 
non-linear corrections of Equation (43) and the area corrections of 11.3 were incorporated, 
the static and dynamic n-values in a static fatigue type plot fell on the same line. But the slope 
of the line varied to give n-values ranging from 17 at high stress/short time to 40 at low 
stress/long time. 

 Dynamic and inert strengths 9.4.3

From Equations (49) and (50), the ratio of inert strength to failure stress (or "dynamic 
strength") is 
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which approaches unity as the stress rate (or B-value) increases. This explains why high 
stress rates are sometimes used to experimentally estimate inert strength. 

 Plot non-linearities 9.4.4

In static fatigue, the failure time decreases as the constant applied stress increases, 
according to Equation (45). The applied stress approaches the "inert" strength as the failure 
time vanishes. For the plot of ln tf versus ln σa according to Equation (48), the more exact 
Equation (45) leads to a  

 static fatigue logarithmic slope 
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 (61) 

As the applied stress increases, the plot of Figure 9 will curve downwards such that the 
absolute value of the slope increases from ns to higher values, so that the apparent ns is 
larger. 

In dynamic fatigue, the failure stress or dynamic strength increases with stress rate, according 
to Equation (50). For example, if nd = 15 and 30, increasing the stress rate by a factor of 1 
000 (which is often done in dynamic fatigue testing) increases the dynamic strength by 54 % 
and 25 %, respectively. Moreover, the proportionality factors relating the two strengths 
depend upon the environment (through B and n). These factors impact the manner in which 
vendors or users can specify "strength". 

For the plot of ln σf versus ln aσ  according to Equation (53), the more exact Equation (50) 
leads to a  

dynamic fatigue logarithmic slope 
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As the applied stress rate increases, the plot of Figure 11 will somewhat flatten such that the 
value of the slope decreases from (nd + 1)–1 to smaller values, so that the apparent nd is 
larger. 

Because n increases with longer duration tests, as discussed in the last paragraph of 9.4.2, 
increased steepness of the static fatigue curve at very low stresses and decreased steepness 
of the dynamic fatigue curve at very low stress rates are observed. In these cases, the static 
and dynamic n-values converge.  

 Environments 9.4.5

The dependence of crack parameters on environment is under continuing investigation. An 
understanding of the effects of temperature, humidity, and other environments on crack 
growth would permit the "mapping" from one environment to another. It would also permit the 
use of shorter-term "accelerated ageing" in harsh environments to predict reliability for longer-
term service in more benign environments.  
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In a truly inert environment, the failure stress is independent of the stress rate. This is 
equivalent to putting either n or B equal to infinity in Equations (51) through (53). 

10 Proof-testing 

10.1 Overview 

This clause shows how proof-testing reduces "infant mortalities" and determines important 
reliability features.  

NOTE This clause references the B-value, and this is done for theoretical completeness only. There are as yet no 
agreed methods for measuring B, and Clause 10 develops theoretical results for the special case in which B can be 
neglected. 

10.2 The proof test cycle 

Proof-testing requires that a nominally constant proof test stress σp be applied sequentially 
along the full length of the fibre. Unlike fatigue testing, it is not performed necessarily to 
failure, although, as discussed in 11.6, a break rate (failures per unit length) Np is statistically 
expected. This is done during fibre manufacturing, on-line as part of the fibre drawing and 
coating process, or off-line as part of the testing process. 

The stress history of proof test stressing, shown schematically in Figure 12, is 

– stress loading from near-zero to the proof test stress, during a loading time tl, 

– constant proof test stress σp during a dwell time td (symbol not to be confused with the 
dynamic fatigue failure time defined in 9.3), 

– stress unloading from the proof test stress back down to near-zero, during an unloading 
time tu. 

Consider a fibre proof-tested at a fibre speed s. The loading/unloading time across a quarter 

turn of a wheel of diameter D is then 
s
Dt ul 4,

π
= . The fibre dwell-length is std. 

As shown in Figure 12 and References [7] to [10], it is assumed that the load and unload 
processes are essentially linear. The load and unload portions are similar to dynamic fatigue, 
and the dwell is somewhat similar to static fatigue. The differences are that the maximum 
applied stress (the proof test stress) is limited and that breakage does not necessarily occur. 
Since this topic is particularly complex, equivalence to equations in the references (often with 
varying approaches and notations) are given in the development below. 
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Applied stress σ (t) 

Time t 

Proof stress σp 

Dwell time, td 

Unload time tu Load time tl 
IEC   0012/14  

Figure 12 – Proof-testing – Applied stress versus time 

10.3 Crack weakening during proof-testing 

Equations (36) and (37) for weakening show that for a crack that does not break, its initial 
"inert" strength S before proof-testing has reduced to an "inert" strength Sp after proof-testing, 
where 

 B
t

SS p
n
pnn

p
σ

−= −− 22

 (63) 

Here the effective proof test time is given by 

 1+
+

+=
n

tt
tt ul
dp

 (64) 

This is equivalent to Equation (7) of Reference [7]. In this equation, the loading time tl and 
unloading time tu in the fraction contribute little to the effective proof test time. As an example, 
if n ≥ 20, and neither the loading time nor unloading time exceeds 10 % of the dwell time, the 
fraction in Equation (64) constitutes less than 1 % of the effective proof test time. This shows 
that the dwell time td should be kept small so as to minimize the fatigue of the surviving 
cracks. 

A crack that has an initial strength (before proof-testing) not exceeding the proof test stress 
will weaken and break during loading. A stronger crack will weaken and will break during the 
dwell if its strength degrades to the proof test stress. If it survives the dwell, it has a strength 
Su(0) just before unloading at least equal to the proof test stress; however, further weakening 
occurs during unloading. During a time t into the unloading, the applied stress is 

 
t

t
tt up
u

pu σσσσ −=







−= 1)(

 (65) 

where the (positive) unloading rate is 
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 u

p
u t

σ
σ =

  (66) 

Using Equations (65) and (66) in Equations (36) and (37), the monotonically decreasing crack 
strength during unloading is obtained as 
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 (67) 

This is equivalent to Equation (7) of Reference [8]. 

10.4 Minimum strength after proof-testing 

 Overview 10.4.1

For the weakest crack just surviving the proof test, the minimum final strength from 
Equation (63) equals the minimum strength after unloading from Equation (67), so that 

 Spmin = Sumin(tu) (68) 

There are two situations by which this strength is determined, depending upon whether the 
unloading process is "fast" or "slow." This relates to the dimensionless quantity 

 ( ) ( ) u

pup

nn
t

σ
σσ

α
BB 22

32

−
=

−
=

 (69) 

explicitly containing fibre and proof test unloading parameters. As shown below, it is important 
whether this quantity is larger or smaller than unity. 

 Fast unloading 10.4.2

Here the weakest crack just before unloading has its strength equal to the proof test stress, 
that is 

  Sumin(0) = σp  (70) 

During unloading, the decreasing strength from Equation (67) is larger than the rapidly 
decreasing unload stress of Equation (65), so that fracture does not occur. The rates of 
decrease for both strength and applied stress just before unloading shall satisfy 

 
u

t

u

dt
tdS σ≤

=0

)(

 (71) 

Applying Equation (66) to Equation (67) and using Equation (69) implies that 1≤α . Then 
Equations (67) and (70) give the minimum crack strength after proof-testing  
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for 
2

)2(  or  1
p

u
Bnt
σ

α −≤≤

 

This is equivalent to Equation (9) of Reference [8]. For fast unloading, 0BB ≥ . 

 Slow unloading 10.4.3

Here the weakest crack just before unloading has its strength exceeding the proof test stress, 
that is 

 puS σ≥)0(min  (73) 

For failure at some time t̂  during unloading, the decreasing strength of Equation (67) equals 
the decreasing unloading strength of Equation (65), that is, 

 puu ttS σσσ ≤== minmin )ˆ()ˆ(
 (74) 

where σmin is a minimum value of the failure stress. Then putting Equations (68) and (74) into 
Equation (67) gives the minimum crack strength after proof-testing 
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This is equivalent to Equation (9) of Reference [7]. The unknown minimum failure stress σmin 
can be determined by noting that at the critical survival time t̂ , the strength and stress curves 
are equal but do not quite intersect. They are tangential, so that at that point 
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Equations (76), (67) and (69) leave 
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This and Equation (74) imply that 1≥α , and Equation (75) gives  
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for 
2

)2(  or  1
p

u
Bnt
σ

α −≥≥

 

These are equivalent to Equations (10) and (11) of Reference [7], and to Equation (10) of 
Reference [8]. For slow unloading, 0BB ≤ . 

Note that here the unloading rate is the only proof test (non-crack) parameter determining the 
minimum surviving strength (which is now independent of the proof test stress itself). 
Equations (72) and (78) both show the importance of minimizing the unloading time tu as 
stated in IEC 60793-1-30. 

 Boundary condition 10.4.4

At the boundary between the fast-unloading and slow-unloading conditions, α =1. Then 
Equation (69) gives the transitional B-value. 

 2
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=

n
t

B upσ

 (79) 

which can also be solved for the unloading time. From Equations (72) and (78), the minimum 
surviving strength at the boundary is 
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 (80) 

10.5 Varying the proof test stress 

One effect of increasing (similar considerations apply for decreasing) the proof test stress is 
to increase the minimum surviving strength according to Equations (72) and (78). Another is 
to increase the fibre break rate (or decrease the survival length), as will be shown in 
Clause 11. This has been used in References [11] and [12] to probe the low-strength 
distribution over long fibre lengths, and is detailed in 6.4.2. 

11 Statistical description of strength by Weibull probability models 

11.1 Overview 

So far, single cracks with deterministic values of particular parameters have been considered. 
Now it is assumed that for a particular type of crack most parameters are constant but that 
strengths are statistically distributed in value. 

11.2 Strength statistics in uniform tension 

 Unimodal probability distribution 11.2.1

A fibre of circular geometry that is uniform along its length is assumed. When simple 
longitudinal tension is applied to it, there are two degrees of stress uniformity, both along the 
fibre length and in the fibre cross-part. (Fibre volume or surface area may instead be used as 
the prime dimension.) Call N(S) the cumulative number of flaws per unit length having an 
"inert" strength equal to or less than S. If a fibre length L is put under stress, call P(S, L) the 
cumulative survival probability up to the strength S. (A parallel derivation can be made in 
terms of the flaw size a.) In this "weakest link" model, the incremental probability that the fibre 
fails in the strength interval S to S + dS is 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



 – 42 – TR 62048 © IEC:2014(E) 

 [1 – P(S + dS, L)] – [1 – P(S, L)] (81) 

This equals the probability of survival to the failure strength times a quantity proportional to 
the number of flaws in that strength interval 

 P(S, L)hL[N(S + dS) – N(S)] (82) 

where h is a proportionality constant. Equating Equations (81) and (82), integrating and using 
the boundary condition of no flaws of zero strength, leads to the Weibull survival distribution 

 P(S,L) = e–hLN(S) (83) 

Usually, the literature speaks in terms of the cumulative failure probability F = 1 – P. Here P is 
used to simplify the notation. Often it is found (or assumed) that 

 
mSSN ∝)(  (84) 

where m is the Weibull parameter for the inert environment. 

Using Equations (83) and (84) leaves the cumulative survival probability, as in Reference [13] 
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The boundary conditions are such that survival is certain at zero strength or length, and 
failure is certain at infinite strength or length. Here S0 is the Weibull strength parameter 
measured at a "gauge" length L0, corresponding to a survival probability of e–1 or 36,8 %. The 
"inert" m-value is related to the variance or 'width' of the distribution with respect to strength 
and determines the variation of strength with fibre length. Furthermore, 
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so that for a fixed length, a scaled cumulative failure probability plot versus inert strength 
leaves a straight line of slope m. Increasing the length will increase the probability intercept. 
Proof-testing will distort the distribution, as discussed in 11.6. 

The probability distribution function, a continuous "histogram" of the survival population, is 
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This is related to the number of flaws per unit length having an "inert" strength S given by 
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Here Equations (83) through (85) and Equation (87) have been used. 

For a given survival probability, the strength can be predicted for another length in terms of 
the gauge values 
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Similarly, for a given strength, the survival probabilities of both lengths are related by 

 L0 ln P(S, L) = L ln P(S, L0) (90) 

Extrapolation to longer fibre lengths in the above equations is uncertain, since weaker flaws 
of a "different type" may appear. They will have a different set of values for the Weibull 
parameters as per the bimodal distribution below.  

 Bimodal probability distribution 11.2.2

If there are two flaw types, there are two main ways of statistically describing them according 
to Reference [14]. With concurrent flaw distributions, both flaw types are present in all 
specimens. This is the case with specimens from one manufacturer. Here, the survival 
probability distribution is the product of the individual survival probability distributions for each 
flaw type. With exclusive flaw distributions, a given specimen may contain only one flaw type. 
An example would be specimens from two manufacturers. In this case, the survival probability 
distribution is the sum of the individual survival probability distributions for each flaw type. 
Partially concurrent distributions can also be modelled. 

Fibre flaws are likely of the concurrent type so that the Weibull assumption of Equation (85) 
becomes 
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 (91) 

Here (m1, S01) and (m2, S02) characterize each flaw, while gauge lengths L01 and L02 provide a 
weighting factor for the two flaw types. This type of distribution can describe the “knee” found 
in plotting measured data. The steeper distribution of high-strength breaks is attributable to 
silica bonding, and this is the region of "intrinsic" flaws. The lower-slope distribution of low-
strength "extrinsic" flaws is introduced during the manufacturing process. Proof-testing will 
generally affect only the latter segment of the population distribution. 

Plots with negative curvature can be fit to exclusive or partially concurrent distributions. 

11.3 Strength statistics in other geometries 

 Stress non-uniformity 11.3.1

It is usually assumed that the glass fibre is perfectly circular, with a radius af constant with 
length L (although non-uniformities can be corrected for in principle). The effect of the coating 
on stress calculation is often neglected or only approximately accounted for. The treatment in 
the text until now has been for longitudinal tension in which the stress is uniformly applied 
along the fibre length. Stress then equals the fraction [tension/( 2

faπ )]. With non-uniform 

stress, the exponent in the survival probability in Equation (85) for unimodal distributions has 
SmL replaced by the integral over the sample surface (assuming interior flaws are negligible) 
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m dAASI )(

 (92) 

Two configurations have commonly been treated mathematically, as in References [15] and 
[16].  

 Uniform bending 11.3.2

Here, a bend of radius R (with respect to the fibre axis) is applied uniformly along a fibre 
length Lb, as around a mandrel. The resulting applied stress is uniform along the bent fibre 
length, but it varies on the fibre surface as 

 σa(θ) = σmaxsinθ (93) 

In the cross-part of the fibre, the angle θ is with the axis perpendicular to the bend plane and 
passing through the fibre axis. The maximum stress occurs along a line on the outside of the 
fibre bend and in the plane of the bend. It has the value 
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 (94) 

using the non-linear effect of Equation (43) with a geometrical correction from Reference [4]. 
For a fibre with a diameter 2af = 125 µm, the error in calculating stress while neglecting the 
non-linear term exceeds 1 % when the bend diameter 2R is less than about 28 mm. Also, a 
maximum stress of 0,7 GPa corresponds to a bend diameter of about 13 mm (depending upon 
the assumed value of Young's modulus). 

The incremental area at the above stress is 

 dA = Lbafdθ (95) 

Integration according to Equation (92) leaves the Weibull forms similar to Equation (85) and to 
the later Equations (100), and (107), but with the bend length replaced by the equivalent 
tensile length 

 
θθ

π

π

   sin2
0

d
L

L xb ∫=
 (96) 

This defines the length in uniform straight tension at the maximum stress σmax, giving the 
same probability distribution as for the real length under uniform bending. This result applies 
to the approximate static Weibull distribution of Equation (101) and to the approximate 
dynamic Weibull distribution of Equation (108). It does not apply to those distributions after 
proof-testing in Equations (122), (132), and (138). 

A better fit for Equation (96) is 

 x

L
L b4,0≈

 (97)  

a result independent of the bend radius. In this equation there is the factor 
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using inert, static fatigue, and dynamic fatigue parameters, respectively. The equivalent 
length is some fraction of the real bend length. 

 Two-point bending 11.3.3

Here the fibre is bent between parallel flat plates in a "U" fashion. The tension is non-uniform, 
both in the fibre cross-part and length, and reaches a maximum value at the mid-point of the 
outside of the bend. Similar to Equation (94) and as in Reference [4], that value is about 
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where D is the separation of the fibre axes in the straight portions of the "U". Moreover, the 
equivalent tensile length decreases as that stress increases, and the analysis becomes very 
complicated, as in Reference [15]. One calculates a length range of only 10 µm to 30 µm at 
typical failure strains, but the precise equivalent length is difficult to determine. 

Now consider how the fatigue testing of Clause 9, carried out in non-inert active (ambient or 
hostile) environments, affects the inert Weibull probability distribution introduced in 11.2. 
Then add the proof-testing of Clause 10, which affects mainly the low-strength extrinsic region 
of the bimodal distribution. We show how both static and dynamic fatigue testing preserve the 
linear nature of the distribution, but proof-testing distorts and truncates it.  

However, in fatigue testing, the applied stress and the failure stress are usually larger than 
the proof test stress. This is not so for most practical longer-term service conditions. The 
Weibull parameters obtained this way apply only to the high-strength segment of a bimodal 
distribution and cannot be extrapolated to lower failure probability values. To obtain values 
that apply to the lower-strength segment including the proof test stress region, longer fibre 
lengths must be tested. An example is given in 9.3.3.  

11.4 Weibull analysis for static fatigue before proof-testing 

For a particular value of stress σa applied to a fibre length L, there is some statistical variation 
in the measured failure times tf. The initial strength prior to static fatigue is given by 
Equation (57), which substituted into the Weibull probability Equation (85) leaves the static 
survival probability 
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The usual approximate form in Equation (101) is equivalent to Equation (5) of Reference [17]. 
Here the static Weibull parameter is related to the "inert" m-value (not usually known) via 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-27-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



 – 46 – TR 62048 © IEC:2014(E) 

 2−
=

n
mms

 (102) 

The Weibull time-scaling parameter is 
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where smn LBS

1

0
2

0
−=β  (104) 

These depend upon several crack and measurement parameters and can be calculated from 
static fatigue testing on gauge fibre lengths L0 at several applied stresses according to 9.2. 

From any probability value, one can calculate 
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A convenient point is the "intercept" for unity failure time; convenient probability values are  
e–1 (36,8 %) or ½ (corresponding to the median lifetime). Furthermore, from Equation (100) 
one obtains 
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 (106) 

so that a scaled cumulative failure probability plot versus failure time leaves a straight line of 
slope ms. This preserves the form of the inert Equation (85) and is shown schematically in 
Figure 13 for a bimodal distribution. 
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Figure 13 – Static fatigue schematic Weibull plot 

11.5 Weibull analysis for dynamic fatigue before proof-testing 

For a particular value of stress rate aσ  applied to a fibre length L, there is some statistical 
variation in the measured failure stresses σf. The initial strength prior to dynamic fatigue is 
given by Equation (58) which, substituted into the Weibull probability Equation (85), leaves 
the dynamic fatigue survival probability 
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The usual approximate form in Equation (108) is equivalent to Equation (6) of Reference [17]. 
Here the dynamic Weibull parameter is related to the "inert" m-value (not usually known) via 
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The Weibull stress-scaling parameter is 
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where  dm
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These depend upon several crack and measurement parameters and can be calculated from 
dynamic fatigue testing on a fibre length L0 at several applied stress rates, according to 9.3. 

From any probability value, one can calculate 
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A convenient point is the "intercept" for unity failure stress; convenient probability values are  
e–1 (36,8 %) or ½ (corresponding to the median failure stress). Furthermore, from 
Equation (107), one obtains 
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so that a scaled cumulative failure probability plot versus failure stress leaves a straight line 
of slope md. This preserves the form of the inert Equation (85) and is shown schematically in 
Figure 14 for a bimodal distribution. 
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 ln ln (1/P) 
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Figure 14 – Dynamic fatigue schematic Weibull plot 

From Equations (102) and (109), the static and dynamic Weibull parameters are related by 

 md = (n + 1)ms (114) 

Then comparing Equations (103) and (110), the static and dynamic Weibull parameters are 
related by 
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 (115) 

This is analogous to the relation of static and dynamic plot intercepts given by Equation (54). 

11.6 Weibull distribution after proof-testing 

Here it is shown how the "inert" strength distributions of 11.2 are modified by the proof test 
procedure. Fatigue testing probes fibre survival probability by breaking many samples of 
limited gauge length. On the other hand, proof-testing is applied to the whole fibre length with 
the intent of breaking only those cracks with strengths below some specified minimum value. 
As discussed below, this enhances the survival probability of the remaining usable fibre. 

As a function of final strength Sp after proof-testing, the enhanced survival probability Pp 
equals the survival probability as a function of initial strength S before proof-testing, divided 
by the survival probability as a function of the minimum initial strength Smin at the proof test 
stress 

 )(
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minSP
SPSP pp =

 (116) 

Now we use the inert Weibull Equation (85), though the bimodal Equation (91) usually applies. 
However, in the comparatively weak "extrinsic" flaw region around the proof test level, the first 
unimodal term there will predominate, and one has 
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 (117) 

For simplification, we will suppress the several variables implicit in Pp, and will use 
pP

1ln  to 

eliminate the exponential functions and reduce the number of brackets.  

The right side of such an equation is always non-negative, and zero for certain survival Pp = 
1. If the failure probability Fp = 1 – Pp < 10–3, which is generally the region of practical 

interest, the term 
pP

1ln  may be replaced by Fp to within an accuracy of 0,5 % or better. 

The minimum initial strength at the proof test stress level is related to the number of failures 
per unit length (break rate) during proof-testing, obtained by Equations (84) and (85) 
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Then Equation (117) becomes, assuming S >> Smin, 
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This form is equivalent to Equation (19) of Reference [8]. Taking the mean with respect to 
length shows that Np is the mean break rate, ideally a small number. It is convenient to define 
the mean survival length after proof-testing 
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using Equation (118), ideally a large number. 

For the above equations, Equation (63) relates strength before proof-testing to strength after 
proof-testing; it also relates their minimum values as 
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where the minimum strength for cracks just surviving the proof test stress is given by 
Equations (72) or (77), depending upon the value of α. By use of Equations (63) and (121), 
Equations (117) and (119) become the survival probability distribution after proof-testing 
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Equation (122) is equivalent to Equation (19) of Reference [8]. The additive dimensionless 
positive new term is defined as 
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 (This term is equivalent to Equation (20) of Reference [8].) For fast unloading this is 
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and for slow unloading this is 
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At the fast/slow unloading transition point, one has the transitional value 
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B0 is the transitional B-value of Equation (79). To obtain the above, Equation (69) for α and 
Equation (64) for tp have been used. 

By Equation (123), proof-testing ensures an inert strength exceeding 
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 (This agrees with Equations (72) and (78) for minimum surviving strength.) This, along with 
Equations (121), (118), and (120), gives the proof-testing mean break rate and reciprocal 
mean survival length as 
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The β-value can be obtained from proof test parameters as 
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Alternatively, the β-value can be obtained from fatigue testing, as in 11.7 and 11.8 below. 

Unlike the situation of Equation (90) for inert strength without proof-testing, a post-proof-test 
Weibull plot is not linear. From Equation (122) such a plot has the slope 
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 (130) 

The effect of proof-testing is such that as the inert strength increases from the truncated value 
of Equation (127), the slope rapidly decreases from infinity to n – 2 and then towards m, the 
slope without proof-testing. For bimodal distributions at lower strengths, usually m < n – 2; at 
higher strengths, usually m > n – 2, according to Reference [9]. 

Note that as the proof test stress and effective proof test time go to zero, so does the 
minimum strength. The probability distribution of Equation (122) reduces to the linear form of 
Equation (86) before proof-testing. 

11.7 Weibull analysis for static fatigue after proof-testing 

The post-proof-test stress strength similar to Equation (57) is given by 
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Substituting this into the survival probability of Equation (122) gives the static Weibull 
distribution after proof-testing 
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From Equations (104) and (129), 
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In Equation (132) the numerator is zero for certain survival Pp = 1, so that proof-testing 
ensures a static fatigue failure time 
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 (This result can be obtained also directly from Equations (127) and (131).) With 
Equation (124) for fast unloading this becomes 
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and with Equation (125) for slow unloading this becomes 

 
22

3
1

1

2

2

min )2(     when2
1

3

a
u

a

n

p

n

u

n

a

p
fp

BntBB
t

n
n

t
σσσσ

σ
−≥−






































 −











+
=

+−

 (136) 

Unlike the situation of Equation (106) for static fatigue without proof-testing, a post-proof-test 
Weibull plot is not linear. The effect of proof-testing is such that, as the static fatigue failure 
time increases from the truncated value of Equation (134), the slope rapidly decreases from 
infinity to unity and then towards ms (the slope without proof-testing). For bimodal 
distributions, at lower failure times, usually ms < 1; at higher failure times, usually ms > 1. As 
the proof test stress and effective proof test time go to zero, so does the minimum failure 
time. The probability distribution of Equation (132) reduces to the linear form of 
Equation (106) before proof-testing. 

With C << 1, the result of Equation (132) and a less exact Equation (131) would be 
approximately equivalent to a result [B] given in Reference [19]. 
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11.8 Weibull analysis for dynamic fatigue after proof-testing 

The post-proof-test stress strength similar to Equation (58) is given by 
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Substituting this into the survival probability of Equation (122) gives the dynamic Weibull 
distribution after proof-testing 
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From Equations (111) and (129), 

 

[ ] [ ] p
n
m

p
n
p

n
m

p

p
n
pn

m

LCt
N

Ct d

d
d

1
1

1 1
1

+
+

+ +=
+

= )(
)(

σ
σ

β
 (139) 

In Equation (138) the numerator is zero for certain survival Pp = 1, so that proof-testing 
ensures a dynamic fatigue failure stress contained in 
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 (This result can be obtained also directly from Equations (127) and (137).) 

If the minimum failure stress satisfies the inequality in Equation (108), then the approximate 
solution is 
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With Equation (140) and Equation (124) for fast unloading this becomes 
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and with Equation (125) for slow unloading this becomes 
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 (143) 

 
Unlike the situation of Equation (113) for dynamic fatigue without proof-testing, a post-proof-
test Weibull plot is not linear. The effect of proof-testing is such that as the failure stress 
increases from the truncated value of Equation (141), the slope rapidly decreases from infinity 
to n + 1 and then towards md (the slope without proof-testing). For bimodal distributions at 
lower failure stresses, usually md < n + 1; at higher failure stresses, usually md > n + 1. Note 
that as the proof test stress and effective proof test time go to zero, so does the minimum 
failure stress. The probability distribution of Equation (138) reduces to the linear form 
Equation (113) before proof-testing. 
With C << 1, the result of Equation (138) and a less exact Equation (137) would be 
approximately equivalent to a result [A] given in Reference [19]. 

12 Reliability prediction 

12.1 Reliability under general stress and constant stress 

The theory given in the previous subclauses assumes that fibre crack parameters n and B do 
not change with time, although crack size a and strength S do change. Estimates of these 
parameters are obtained from the fatigue testing described in Clause 11. In addition to the 
items in 8.3, these estimates depend upon experimental conditions such as test duration, 
stress level, flaw initial strength, and environmental conditions. Careful and informed 
engineering judgement is required for reliability design. 

In-service lifetime and in-service failure rate can be calculated for various fibre stress 
histories as follows. For a crack subjected to an arbitrary stress history to failure, the failure 
time is implicitly contained in the general lifetime Equations (39) and (40) or (42). In principle, 
Equation (45) or (46) could be used for lifetime prediction, since the intercept is directly 
obtained by static fatigue and Equation (47), or is indirectly obtained by dynamic fatigue and 
Equation (54). However, crack strengths are statistically distributed along the fibre length 
according to Equation (85). This means that the failure times or the equivalent failure rates 
must also be statistically distributed. 

Examples of stress histories and geometries are constant tension, as in a buried cable or in a 
bend within a splice housing, or variable tension, as due to temperature cycles, wind, or fibre 
payout from a bobbin or reel. However, a fibre that is subjected to a time-invariant constant 
applied service stress is the commonest situation for which reliability calculations are made. 

The preceding static fatigue probabilities explicitly contain failure time, so that lifetime may be 
extracted. As an alternative to lifetime, one may calculate the failure rate. The instantaneous 
value, derived from Equation (8) of Reference [20] and Equation (20) of Reference [21], is 
given by  

 ff
fi tP

P
tP

Ft
∂
∂

∂
∂λ −

==)(
 (144) 

where F = 1 – P is the failure probability. An important special case applicable to Weibull 
distributions is 
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 (145) 

The averaged value is given by 

 f
fa t

Ft =)(λ
 (146) 

In most practical cases the allowed failure probability of interest is small, so that 

 

310if 1ln −<≈ FF
P

   
 (147)  

may be used in the formulae to within 0,5 % accuracy. 

Reliability before proof-testing is of little interest, since virtually all commercial fibre has been 
proof-tested. If desired, results for the former may be obtained by letting the proof test stress 
and effective proof test time both go to zero. For simplicity, from this point on, we will drop the 
post-proof-test stress subscript p, except for the proof test stress σp and effective proof test 
time tp. 

Failure rate is a function of the lifetime and vice versa, and both can be expressed in terms of 
the survival probability. The most useful forms, given here, are lifetime as a function of failure 
probability and failure rate as a function of lifetime. 

12.2 Lifetime and failure rate from fatigue testing 

In terms of the static survival probability, the Weibull distribution of Equation (132) can be 
solved for the post-proof-test lifetime to give 
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 (148) 

 (When C << 1, Equation (148), without 2−
aBσ , is equivalent to Equation (9) of 

Reference [20].) 

Using Equation (132) gives the post-proof-test instantaneous failure rate of Equation (145) as  
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min  for  0 ff tt ≤=
 

When C << 1, Equation (149), without 2−
aBσ , is equivalent to Equation (3) of Reference [21]. 

The failure rate scales linearly with fibre length. The minimum value of lifetime is given by 
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Equations (135) and (140); before this time has elapsed the instantaneous failure rate is zero 
and the survival probability is one. Then from Equation (149), the instantaneous failure rate 
jumps to 
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 (150) 

and the survival probability begins to decrease. The fractional rate of change of instantaneous 
failure rate with failure time is 
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 (151) 

Hence after the minimum time, the failure rate decreases with failure time whenever static  
ms < 1 or inert m < n – 2 from Equation (102), or dynamic md < n + 1 from Equation (114). With 
the non-linear Weibull distributions described in 11.2.2, this is usually the case in the lower 
strength extrinsic flaw region in the vicinity of proof-testing. 

Using Equation (132) gives the post-proof-test averaged failure rate of Equation (146) as  
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 (152) 

There is a singularity at zero time, and the rate is not exactly proportional to length. 

12.3 Certain survivability after proof-testing 

For "certain" survivability and the equations above, simplify. The lifetime of Equation (148) 
has its "guaranteed" minimum value of Equation (134). An alternate simple derivation may be 
used for this particular point in the Weibull distribution. From the "exact" static fatigue lifetime 
of Equation (45), the minimum lifetime is 
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minmin  (153) 

Then substitute Equations (72) and (78) for the minimum strength after proof-testing into this 
equation to obtain Equations (135) and (136). 

Note that the minimum service lifetime is independent of fibre length and any m-value, but it 
increases very rapidly as the ratio of proof test stress to applied service stress. If the 
unloading time in Equations (135) and (136) is sufficiently small, 
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Sometimes a "rule of thumb" is invoked in which a particular lifetime is thought to be assured 
if the proof test stress is three or four times the long-term applied service stress. In this case, 
Equation (154) becomes 
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 (155) 

If the B-value is too small, the concept of assured minimum lifetime is better replaced by 
lifetime as a function of some small failure probability. 

12.4 Failures in time 

The failure rate of a component in FIT is defined as the number of failures per billion 
component hours. Here, the number of components corresponds to a length L km of fibre. 
If f(h) is the cumulative number of failures as a function of the number of hours h, under either 
accelerated conditions in the laboratory or service conditions in the field, the instantaneous 
failure rate is  

 
   )()( FIT109

dh
hdfhi =λ

 (156) 

This is the slope of the curve at the point (h, f(h)), obtainable if data in the neighbourhood of 
the point is known. On the other hand, the averaged failure rate is 
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h
hfha =λ

 (157) 

This is the slope of the straight line from the origin to the point (h, f(h)), obtainable from the 
data point alone. 

Now relate these definitions to the formulae derived above, converting to failures per hour. 
Using Equation (149), the instantaneous failure rate in FIT is 
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Using Equation (152), the averaged failure rate in FIT is 
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In both of these equations, there is the time conversion 
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 tf(sec) = 60 × 60 × 24 × 365,25 × ty(yr) = 31 557 600 ty(yr) (160) 

For both failure rates, β must have the unit m
2n

n kmsGPa
−

⋅⋅ . The unit of FIT comes from the 
value of L used in Equation (159), except in the case of bending, where the unit is LB, from 
Equation (21). 

13 B-value – Elimination from formulae, and measurements 

13.1 Overview 

In the survival probability, lifetime, and failure rate formulae of the previous parts, the B-value 
appears frequently. In this part, an outline of how it is measured is given, but there are as yet 
no agreed-upon methods. Fortunately, we will show how B can be neglected in these formulae 
to give worst-case estimates. 

13.2 Approximate Weibull distribution after proof-testing 

 Overview 13.2.1

In this subclause, the "exact" results of Clause 10 and of 11.6 are related to approximations 
that have been used in the literature. 

 "Risky region" during proof-testing 13.2.2

As discussed in 10.4, the unloading time during proof-testing is important in determining the 
minimum surviving strength after proof-testing. In the slow-unloading region of 10.4.3, the 
strength can decrease indefinitely as the unloading time increases, but Reference [18] shows 
that the probability of this occurring is very small. 

As a subset of the slow-unloading region, the "risky region" is defined as the region for which 
the strength after proof-testing drops below the proof test stress without fracturing. Referring 
to Equation (67), consider the strength Su(0) of a crack just before unloading. Defining the 
upper bound of the risky region, the maximum value of this strength is such that the strength 
Su(tu) after proof-testing just equals the proof test stress σp. This gives the strength just before 
unloading to be  
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 (161) 

This is equivalent to Equation (23) of Reference [18]. Defining the lower bound of the risky 
region, the minimum value of the strength just before unloading is such that the strength Su(tu) 
after proof-testing just equals the minimum strength given by Equation (78). This gives the 
strength just before unloading to be given by 
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This is equivalent to Equation (20) of Reference [18]. 

With longer unloading times, both the above limiting strengths before unloading increase. 
However, it is then shown that for a range of B-values and unloading times, the probability of 
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finding a crack in the risky region is very small. This means that to a good approximation the 
minimum strength after proof-testing equals the proof test stress. Hence 

 pp
app

t
BCCS
2min   and  

σ
σ =≈≈

 (163) 

from Equation (123). (This approximation is equivalent to the expression after Equation (3) of 
Reference [18].) 

 Other approximations 13.2.3

Following after Equation (20) of Reference [8], simplification occurs if in Equation (122) 
the proof test stress and effective proof test time are large enough and the B-value is small 
enough that 

 
1  or  2

min
2

min <<≈<< −− CS
B
t

S np
n
pn

p
σ

 (164) 

using Equation (123). Note that with proof-testing, C may be small but never exactly zero. 
Then the results of 11.6 to 11.8 hold with C neglected. 

Now make the further approximation 
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 (165) 

 (This is equivalent to the limit on 2−≡ n
ps BSk  after Equation (20) in Reference [8].) Then, with 

this approximation and C neglected, Equations (122) and (128) give 
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Equation (167) is equivalent to Equation (21) of Reference [8]. 

This summarizes the three limits used above in the sequence in which they usually occur 

– characterizing the proof-testing 

 pptB 2σ<<
 (168) 

– characterizing the dynamic fatigue testing 
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– characterizing the service conditions 

 fa tB 2σ<<
 (170) 

When these limiting approximations apply, then both B (apart from where it appears implicitly 
in β) and C can be neglected in essentially all formulae. 

In the order of application, examine the numerical implications of these approximations using 
the parameter values of 6.5. Assume a << b is equivalent to a < 0,01b. 

– Equation (168): Taking the proof test stress to be between 0,35 GPa and 0,7 GPa, and the 
effective proof test time to be between 0,1 s and 1 s implies that B < 1,2 × 10–4 to 4,9 × 
10–3 GPa2⋅s. 

– Equation (169): Assume a failure stress equal to the nominal proof test stress and other 
values of 6.5. Then B < 3,4 × 10–5 GPa2⋅s is implied. (This value is lowered with smaller 
proof test stresses and raised, perhaps several orders of magnitude, for smaller stress 
rates.) 

– Equation (170): This limitation is usually less stringent than the one above, since the right 
side has a smaller applied stress (by perhaps a factor of 10 or more) but has a much 
longer desired lifetime. 

In practice, the smaller of the B-values obtained in the first and third items will apply. 

With the above approximations, the proof-testing mean break rate and reciprocal mean 
survival length of Equation (128) become 
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and, as in Equation (129) 
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This can be expressed in terms of static and dynamic Weibull parameters via 
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using Equations (102) and (109). The static Weibull distribution of Equation (132) is 
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The dynamic Weibull distribution of Equation (138) is 
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An alternative “simple” approach to one of these results is taken in Reference [22]. There 
Equation (7) (in the current notation) is 
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This is used to calculate the ratio ap σσ  of proof test stress to service stress as a function of 
fibre length L for several failure probabilities Fp and survival lengths Lp. Equation (166) is 
obtainable from Equations (174) and (172) with several approximations. First, the failure 
probability Fp is small as discussed at the beginning of Clause 7. Loading and unloading times 
of proof test are ignored, and the dwell time is 1 s, so that the failure time tf must be 
measured in seconds or as a ratio to the dwell time. Most significantly, the Weibull parameter 
ms does not appear in Equation (176), but is effectively replaced by n1 , so Weibull testing is 

not required in this approach. From Equation (173) this would imply that 
n

md
11+= , whereas 

in practice the dynamic Weibull parameter in the low-strength region is closer to 2,4 (see 6.5). 
Hence evaluations from Reference [22] and Equation (176) are questionable. 

13.3 Approximate lifetime and failure rate 

In this subclause, the approximations of Equations (168) and (169) are applied to the "exact" 
results of Clause 12. 

Now Equation (148) for lifetime as a function of probability becomes 
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This is equivalent to Equation (7) of Reference [18]. 

Similarly the failure rates in FIT as a function of time are 

 

1

12103,6
−




















+








×=

ss
mn

a

p
pf

mn
a

sfi ttLmt
σ
σ

β
σλ )(

 (178) 

for the instantaneous rate from Equation (158), and 
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for the averaged rate from Equation (159). 

The minimum lifetime tfmin of Equations (135) and (136) is zero in this approximation, so 
actual failure rate values will therefore be somewhat smaller than the values computed. From 
Equation (151), the instantaneous failure rate now decreases with time as  
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 (180) 

Note that this fractional rate of decrease gets smaller with each increasing item and with a 
larger ratio of proof test stress to applied stress. 

13.4 Estimation of the B-value 

 Overview 13.4.1

There are several methods of estimating B from measurements. They should be carried out 
with a sufficiently long fibre sample (long gauge length and many samples).  This subclause is 
incomplete and under further study. 

 Fatigue intercepts 13.4.2

The B-value appears in the static fatigue failure time of Equation (46) and in the dynamic 
fatigue failure stress of Equation (51). The influence of static and dynamic fatigue data is 
reflected in the vertical intercepts tf(1) for static fatigue in Equation (47) and σf (1) for dynamic 
fatigue in Equation (52). The intercepts are related by Equation (54), which gives the desired 
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The n-values are obtained from the linear slopes of the respective fatigue plots. 

 Dynamic fatigue failure stress 13.4.3

From a dynamic fatigue measurement of failure stress, Equation (60) gives 
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 (182) 

 Obtaining the strength 13.4.4

The "inert strength" S is required in the above equations. Because of the exponent n – 2, any 
error in measuring the strength is greatly magnified in solving for the B-value. One 
measurement method is to use an "inert" environment as defined in 8.1, along with dynamic 
fatigue given in 9.3. As stated in 9.4.3, the dynamic fracture stress approaches the inert 
strength as the applied stress rate increases. Unique strength values are difficult to obtain by 
either method. 
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 Stress pulse measurement 13.4.5

Suppose that a flaw is weakened (but not broken) according to Equations (36) and (37); call 
this a generalized proof test. Next, stress the flaw to failure according to Equations (39) and 
(40). 

As a particular case, apply a "triangular" pulse consisting of a proof test stress σp with no 
dwell time and with equal magnitude σ  of loading and unloading stress rates. From proof test 
Equations (63) and (64), a surviving flaw weakens from Sp(0) to Sp, where 

 σ
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 (183) 

Without pause, immediately subject the flaw to dynamic fatigue at the same stress rate. From 
dynamic fatigue Equation (50), the fracture stress σfp is given in 
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Both equations combine to give 
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If σf is the (greater) failure stress without proof-testing, a flaw of initial strength S(0) satisfies 
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If two cracks of the same initial strength Sp(0) = S(0) are fatigue-tested, one with and one 
without the stress pulse, one can solve for the B-value as 
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 (187) 

On the right side of this equation, all quantities are known from measurement. 

 Flaw growth measurement 13.4.6

Direct measurement of the crack velocity V at various levels of stress intensity KI can 
theoretically lead to an estimate of the critical velocity Vc according to Equation (32). This 
value, in conjunction with estimates of the other parameters in Equation (35), can provide an 
estimate of B. This method is under study.  
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 Annex A
(informative) 

 
Statistical strength degradation map 

The physical meaning of the formulae, which appears in Clauses 10 and 11, to predict the 
fibre reliability can be understood intuitively by introducing the statistical extension of the 
strength degradation map provided in [7]. A schematic diagram of the statistical strength 
degradation map is illustrated in Figure A.1 [23].  
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Figure A.1 – Schematic diagram of the statistical strength degradation map 

In Figure A.1, the probability distribution attached to the vertical axis represents the fibre 
strength before proof-testing which approximately obeys the Weibull distribution (85). To 
reduce the “infant mortalities”, the fibres require the proof-testing after drawing process under 
the nominally constant proof test stress σp. Note that, as shown in Clause 10, the loading and 
unloading condition of the test is restricted to avoid the unexpected crack weakening. The 
proof test stress generally degrades the fibre strength in accordance with the power law 
theory (Equation (34)) and some weaker fibres fail when the strength is equal or less than the 
proof test stress. The strength distribution of the surviving fibres Sp is calculated by using the 
conditional probability formula (116) and the minimum strength Spmin is obtained by Equation 
(72) or (75). The surviving fibres will be provided in the field and undergo the applied stress 
σa. The fibre strength under the static stress is fatigued also in accordance with the power law 
theory. When the strength will coincide with or be less than the σa, the fibre fails. The lifetime 
of the fibre tfp is derived by solving the Equation (131) after putting the Sp to σa. As shown in 
Figure A.1, since the lifetime tfp strongly depends on the initial value of the Sp, tfp is also 
statistically distributed and the survival probability is calculated as Equation (132). If σa ≥ σp 
holds, finite interval is necessary for occurring of the first failure of the weakest strength Spmin. 
The no failure time tfmin is calculated as shown in Equation (153). 

The above discussions can be applied similarly to the case of the dynamic stress in the field 
and the several formulae shown in 11.8. 
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