

IEC 6201 4-4

Edition 1 .0 201 5-03

INTERNATIONAL
STANDARD

IP-XACT, Standard Structure for Packaging, Integrating, and Reusing IP within

Tool Flows

IE
C
 6
2
0
1
4
-4

:2
0
1
5
-0

3
(e

n
)

IE

E
E
 S

td
 1
6
8
5
-2

0
0
9

IEEE Std 1 685™-2009

®

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

 THIS PUBLICATION IS COPYRIGHT PROTECTED

 Copyright © 2009 IEEE

Al l rights reserved. I EEE is a reg istered trademark i n the U .S. Patent & Trademark Office, owned by the I nsti tute of
E lectrical and Electronics Engineers, I nc. Un less otherwise speci fied, no part of th is publ ication may be reproduced
or uti l ized i n any form or by any means, electronic or mechanical , includ ing photocopying and microfi lm, wi thout
permission in writing from the IEC Central Office. Any questions about IEEE copyright should be addressed to the
IEEE. Enqui ries about obtain ing additional rights to th is publ ication and other in formation requests shou ld be
addressed to the IEC or your local IEC member National Committee.

IEC Central Office I nsti tute of Electrical and Electronics Engineers, I nc.
3, rue de Varembé 3 Park Avenue
CH-1 21 1 Geneva 20 New York, NY 1 001 6-5997
Swi tzerland Uni ted States of America
Tel . : +41 22 91 9 02 1 1 stds. info@ieee.org
Fax: +41 22 91 9 03 00 www. ieee.org
i nfo@iec.ch
www. iec.ch

About the IEC
The I nternational E lectrotechnical Commission (I EC) is the lead ing global organization that prepares and publ ishes
I nternational Standards for al l electrical , electronic and related technolog ies.

About IEC publ ications
The technical content of IEC publ ications is kept under constant review by the IEC. Please make sure that you have the
latest ed i tion, a corrigenda or an amendment might have been publ ished.

IEC Catalogue - webstore.iec.ch/catalogue
The stand-alone application for consulting the entire
bibl iographical information on IEC International Standards,
Technical Specifications, Technical Reports and other
documents. Available for PC, Mac OS, Android Tablets and
iPad.

IEC publications search - www.iec.ch/searchpub
The advanced search enables to find IEC publications by a
variety of criteria (reference number, text, technical
committee,…). I t also gives information on projects, replaced
and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished
Stay up to date on al l new IEC publications. Just Published
detai ls al l new publications released. Available onl ine and
also once a month by email.

Electropedia - www.electropedia.org
The world's leading onl ine dictionary of electronic and
electrical terms containing more than 30 000 terms and
definitions in Engl ish and French, with equivalent terms in 1 5
additional languages. Also known as the International
Electrotechnical Vocabulary (IEV) onl ine.

IEC Glossary - std.iec.ch/glossary
More than 60 000 electrotechnical terminology entries in
Engl ish and French extracted from the Terms and Definitions
clause of IEC publ ications issued since 2002. Some entries
have been col lected from earl ier publ ications of IEC TC 37,
77, 86 and CISPR.

IEC Customer Service Centre - webstore.iec.ch/csc
I f you wish to give us your feedback on this publication or
need further assistance, please contact the Customer Service
Centre: csc@iec.ch.

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEC 6201 4-4

Edition 1 .0 201 5-03

INTERNATIONAL
STANDARD

IP-XACT, Standard Structure for Packaging, Integrating, and Reusing IP within

Tool Flows

INTERNATIONAL

ELECTROTECHNICAL

COMMISSION
ICS 25.040

ISBN 978-2-8322-2265-2

 Warning! Make sure that you obtained this publication from an authorized distributor.

IEEE Std 1 685™-2009

®

® Registered trademark of the International Electrotechnical Commission

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

Copyright © 201 0 IEEE. Al l rights reserved. ix

Contents

1 . Overview... 1

1 .1 Scope. 1

1 .2 Purpose. 2

1 .3 Design environment . 2

1 .4 IP-XACT Enabled implementations . 6

1 .5 Conventions used .. 7

1 .6 Use of color in this standard .. 1 2

1 .7 Contents of this standard.. 1 2

2. Normative references . 1 3

3. Definitions, acronyms, and abbreviations. 1 5

3 .1 Definitions . 1 5

3 .2 Acronyms and abbreviations . 21

4. Interoperability use model . 23

4.1 Roles and responsibilities . 23

4.2 IP-XACT IP exchange flows . 24

5. Interface definition descriptions . 27

5.1 Definition descriptions .. 27

5.2 Bus definition.. 27

5.3 Abstraction definition .. 30

5.4 Ports .. 31

5.5 Wire ports .. 32

5.6 Qualifiers . 34

5.7 Wire port group.. 36

5.8 Wire port mode constraints . 38

5.9 Wire port mirrored-mode constraints . 39

5.1 0 Transactional ports . 41

5.1 1 Transactional port group .. 43

5.1 2 Extending bus and abstraction definitions . 44

5.1 3 Clock and reset handling.. 47

6. Component descriptions .. 49

6.1 Component. 49

6.2 Interfaces . 52

6.3 Interface interconnections . 52

6.4 Complex interface interconnections . 54

6.5 Bus interfaces . 56

6.6 Component channels .. 67

6.7 Address spaces . 69

6.8 Memory maps .. 81

6.9 Remapping .. 97

6.1 0 Registers. 1 02

6.1 1 Models . 1 20

6.1 2 Component generators .. 1 51

6.1 3 File sets . 1 53

6.1 4 Choices. 1 65

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������L

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

x Copyright © 201 0 IEEE. Al l rights reserved.

6.1 5 White box elements . 1 67

6.1 6 White box element reference .. 1 68

6.1 7 CPUs .. 1 70

7. Design descriptions . 1 71

7.1 Design .. 1 71

7.2 Design component instances . 1 73

7.3 Design interconnections. 1 75

7.4 Active, monitored, and monitor interfaces . 1 76

7.5 Design ad hoc connections . 1 78

7.6 Design hierarchical connections . 1 80

8. Abstractor descriptions . 1 83

8.1 Abstractor. 1 83

8.2 Abstractor interfaces . 1 85

8.3 Abstractor models . 1 87

8.4 Abstractor views .. 1 89

8.5 Abstractor ports.. 1 91

8.6 Abstractor wire ports . 1 93

8.7 Abstractor generators . 1 95

9. Generator chain descriptions . 1 99

9.1 generatorChain. 1 99

9.2 generatorChainSelector. 201

9.3 generatorChain component selector.. 202

9.4 generatorChain generator. 203

10. Design configuration descriptions . 207

10.1 Design configuration.. 207

10.2 designConfiguration. 207

10.3 generatorChainConfiguration . 209

10.4 interconnectionConfiguration .. 21 1

1 1 . Addressing and data visibility.. 21 3

1 1 .1 Calculating the bit address of a bit in a memory map . 21 3

1 1 .2 Calculating the bus address at the slave bus interface .. 21 4

1 1 .3 Address modifications of an interconnection .. 21 4

1 1 .4 Address modifications of a channel .. 21 5

1 1 .5 Addressing in the master. 21 6

1 1 .6 Visibility of bits . 21 6

1 1 .7 Address translation in a bridge . 21 8

Annex A (informative) Bibliography .. 21 9

Annex B (normative) Semantic consistency rules .. 221

Annex C (normative) Common elements and concepts . 245

Annex D (normative) Types.. 263

Annex E (normative) Dependency XPATH... 267

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� LL

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

Copyright © 201 0 IEEE. Al l rights reserved. xi

Annex F (informative) External bus with an internal/digital interface . 271

Annex G (normative) Tight generator interface.. 273

Annex H (informative) Bridges and channels . 351

$QQH[�,��LQIRUPDWLYH��,(((�/LVW�RI�3DUWLFLSDQWV� ���� � � � � � � � � � � � � � � � � � � �����

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������LL L

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� LY

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

 – 2 – I EC 6201 4-4
 I EEE Std 1 685-2009

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri g h ts reserved .

IP-XACT, STANDARD STRUCTURE FOR

PACKAGING, INTEGRATING, AND REUSING

IP WITHIN TOOL FLOWS

FOREWORD

1) The I n ternati onal E l ectrotechn i cal Commiss ion (I EC) i s a worl dwide organ ization for standard i zati on compri s i ng
a l l nati onal e l ectrotechn ical comm i ttees (I EC National Comm i ttees). The ob ject of I EC i s to promote
i n ternati ona l co-operati on on a l l questi ons concern i ng standard i zati on i n the e l ectri cal and e l ectron ic fi e l ds. To
th i s end and i n add i tion to other acti vi ti es, I EC publ i shes I n ternational S tandards, Techn ical Speci fi cati ons,
Techn ical Reports, Publ i cl y Avai l abl e Speci fi cati ons (PAS) and Gu i des (hereafter referred to as “ I EC
Publ i cati on(s)”) . Thei r preparati on i s en trusted to techn ical commi ttees; any I EC National Commi ttee i n terested
i n the subj ect deal t wi th may participate i n th i s preparatory work. I n ternational , governmental and non-
governmental organ i zati ons l i a i s ing wi th the I EC al so parti ci pate i n th i s preparati on .

I EEE Standards documents are devel oped wi th in I EEE Societies and S tandards Coord i nati ng Comm i ttees of the
I EEE Standards Association (I EEE-SA) Standards Board . I EEE devel ops i ts s tandards th rough a consensus
development process, wh ich bri ngs together vol un teers representi ng varied vi ewpoin ts and i n terests to ach ieve
the fi nal product. Volunteers are not n ecessari l y members of I EEE and serve wi thout compensation . Wh i l e I EEE
adm in i sters the process and establ i shes ru l es to promote fa i rness i n the consensus devel opment process, I EEE
does not i n dependentl y eva l uate, test, or veri fy the accuracy of any of the i n formation con tai ned i n i ts
s tandards. Use of I EEE Standards documents i s whol l y vol un tary. I EEE documents are made avai l abl e for use
subject to important noti ces and l egal d i sclaimers (see h ttp: //standards. i eee. org /I PR/d i scla imers. h tm l for more
i n formation).

I EC col l aborates cl osel y wi th I EEE i n accordance wi th cond i ti ons determ ined by agreement between the two
organ i zati ons.

2) The formal deci s ions of I EC on techn ical matters express, as nearl y as poss ib l e, an i n ternational consensus of
opi n ion on the re l evant subj ects s i nce each techn ical comm i ttee has representati on from a l l i n terested I EC
National Commi ttees. The formal deci s i ons of I EEE on techn ical matters, once consensus wi th i n I EEE Societi es
and S tandards Coord inating Commi ttees has been reached , i s determ ined by a bal anced bal l ot of material l y
i n terested parti es who i nd i cate i n terest i n revi ewi ng the proposed standard . F i nal approva l of the I EEE
standards document i s g i ven by the I EEE Standards Associati on (I EEE-SA) Standards Board .

3) I EC/I EEE Publ i cations have the form of recommendati ons for i n ternati onal use and are accepted by I EC
National Commi ttees/I EEE Societi es i n that sense. Wh i l e a l l reasonabl e efforts are made to ensu re that the
techn ical con tent of I EC/I EEE Publ i cations i s accurate, I EC or I EEE cannot be held respons ib le for the way i n
wh ich they are used or for any m is in terpretati on by any end u ser.

4) I n order to promote i n ternati onal u n i form i ty, I EC National Comm i ttees undertake to app ly I EC Publ i cations
(i ncl ud ing I EC/IEEE Publ i cati ons) transparen tl y to the maximum exten t possib l e i n thei r national and reg ional
publ i cati ons. Any d i vergence between any I EC/I EEE Publ i cati on and the correspond ing nati onal or reg i onal
publ i cati on shal l be cl earl y i nd i cated i n the l atter.

5) I EC and I EEE do not provide any attestati on of conform i ty. I ndependent certi fi cati on bod ies provi de conform i ty
assessment services and , i n some areas, access to I EC marks of conform i ty. I EC and I EEE are not responsib l e
for any services carri ed ou t by i ndependent certi fi cati on bod i es.

6) Al l users shou ld ensure that they have the l atest ed i ti on of th i s publ i cati on .

7) No l i abi l i ty shal l attach to I EC or I EEE or thei r d i rectors, employees, servants or agen ts i ncl ud i ng i nd ivi dual
experts and members of techn ical comm i ttees and I EC Nati onal Commi ttees, or vol un teers of I EEE Societies
and the S tandards Coord inati ng Commi ttees of the I EEE Standards Associati on (I EEE-SA) S tandards Board ,
for any personal i n j u ry, property d amage or other d amage of any nature whatsoever, whether d i rect or i nd i rect,
or for costs (i ncl ud ing l egal fees) and expenses ari s i ng ou t of the publ i cati on , use of, or rel i ance upon , th i s
I EC/IEEE Publ i cati on or any other I EC or I EEE Publ i cati ons.

8) Attenti on i s d rawn to the normati ve references ci ted i n th i s publ i cati on . Use of the referenced publ i cati ons i s
i nd ispensable for the correct appl i cati on of th i s publ i cati on .

9) Atten ti on i s d rawn to the poss ib i l i ty that implementati on of th i s I EC/I EEE Publ i cati on may requ i re use of
materia l covered by paten t ri gh ts . By publ i cati on of th i s s tandard , no posi ti on i s taken wi th respect to the
existence or val i d i ty of any patent ri gh ts i n connection therewi th . I EC or I EEE shal l not be held responsibl e for
i den ti fyi ng Essenti al Patent Cl a ims for wh ich a l i cense may be requ i red , for conducti ng i nqu i ri es i n to the l egal
va l i d i ty or scope of Patent Claims or determ in i ng whether any l i cens ing terms or cond i ti ons provided i n
connection wi th subm ission of a Letter of Assurance, i f any, or i n any l i censing agreements are reasonable or
non -d i scrim inatory. Users of th i s standard are expressly advi sed that determ ination of the val i d i ty of any paten t
ri gh ts, and the ri sk of i n fri ngement of such ri gh ts, i s en ti rel y thei r own respons ibi l i ty.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri g h ts reserved .

�,(&����� ����

,(((�6WG�� ��������Y

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

I EC 6201 4-4 – 3 –
I EEE Std 1 685-2009

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri g h ts reserved .

I n ternational Standard I EC 6201 4-4/ I EEE Std 1 685-2009 has been processed through I EC
techn ica l committee 91 : E lectron ics assembly technology, under the I EC/IEEE Dual Logo
Agreement.

The text of th is s tandard i s based on the fo l lowing documents:

I EEE Std FDIS Report on voti ng

1 685 (2009) 91 /1 207/FDIS 91 /1 226/RVD

Fu l l i n formation on the voting for the approval of th is standard can be found i n the report on
voti ng i nd icated in the above tab le.

The I EC Techn ical Committee and I EEE Techn ical Commi ttee have decided that the con tents
of th is publ ication wi l l remain unchanged unti l the stabi l i ty date ind icated on the I EC web s i te
under "h ttp: //webstore. iec.ch" i n the data re lated to the speci fic publ ication . At th is date, the
publ ication wi l l be

� reconfi rmed ,

� wi thdrawn ,

� replaced by a revised ed i tion , or

� amended .

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� YL

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1 685TM-2009

IEEE Standard for IP-XACT,
Standard Structure for Packaging,
Integrating, and Reusing IP within
Tool Flows

Sponsor

Design Automation Standards Committee

of the

IEEE Computer Society

and the

IEEE Standards Association Corporate Advisory Group

Approved 9 December 2009

IEEE SA-Standards Board

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������YLL

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

AMBA is a registered trademark of ARM Limited.

Design Compiler and VCS are registered trademarks of Synopsys, Inc.

SystemC is a registered trademarks of Open SystemC Initiative, Inc. in the United States and other countries.

Veri log is a registered trademark of Cadence Design Systems, Inc. in the United States and/or other jurisdictions.

W3C is a registered trademark of the World Wide Web Consortium.

XMLSpy is a registered trademark of Altova GmbH in the U.S. , the European Union and/or other countries.

Grateful acknowledgment is made to The SPIRIT Consortium, Inc. , for permission to use the

fol lowing source material :

IP-XACT 1 .2 and IP-XACT 1 .5

Abstract: Conformance checks for eXtensible Markup Language (XML) data designed to describe

electronic systems are formulated by this standard. The meta-data forms that are standardized

include: components, systems, bus interfaces and connections, abstractions of those buses, and

detai ls of the components including address maps, register and field descriptions, and fi le set

descriptions for use in automating design, verification, documentation, and use flows for electronic

systems. A set of XML schemas of the form described by the World Wide Web Consortium (W3C®)

and a set of semantic consistency rules (SCRs) are included. A generator interface that is portable

across tool environments is provided. The specified combination of methodology-independent

meta-data and the tool-independent mechanism for accessing that data provides for portabi l ity of

design data, design methodologies, and environment implementations.

Keywords: abstraction definitions, address space specification, bus definitions, design

environment, EDA, electronic design automation, electronic system level, ESL, implementation

constraints, IP-XACT, register transfer level , RTL, SCRs, semantic consistency rules, TGI , tight

generator interface, tool and data interoperabil i ty, use models, XML design meta-data, XML

schema

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� YLL L

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

iv Copyright © 201 0 IEEE. Al l rights reserved.

IEEE Introduction

The purpose of this standard is to provide the electronic design automation (EDA), semiconductor,

electronic design intellectual property (IP) provider, and system design communities with a well-defined

and unified specification for the meta-data that represents the components and designs within an electronic

system. The goal of this specification is to enable delivery of compatible IP descriptions from multiple IP

vendors; better enable importing and exporting complex IP bundles to, from, and between EDA tools for

system on chip (SoC) design environments (DEs); better express configurable IP by using IP meta-data; and

better enable provision of EDA vendor-neutral IP creation and configuration scripts (generators). The data

and data access specification is designed to coexist and enhance the hardware description languages (HDLs)

presently used by designers while providing capabilities lacking in those languages.

The SPIRIT Consortium is a consortium of electronic system, IP provider, semiconductor, and EDA

companies. IP-XACT enables a productivity boost in design, transfer, validation, documentation, and use of

electronic IP and covers components, designs, interfaces, and details thereof. The data specified by IP-

XACT is extensible in locations specified in the schema.

IP-XACT enables the use of a unified structure for the meta specification of a design, components,

interfaces, documentation, and interconnection of components. This structure can be used as the basis of

both manual and automatic methodologies. IP-XACT specifies the tight generator interface (TGI) for access

to the data in a vendor-independent manner.

This standardization project provides electronic design engineers with a well-defined standard that meets

their requirements in structured design and validation, and enables a step function increase in their

productivity. This standardization project will also provide the EDA industry with a standard to which they

can adhere and that they can support in order to deliver their solutions in this area.

The SPIRIT Consortium has prepared a set of bus and abstraction definitions for several common buses. It is

expected, over time, that those standards groups and manufacturers who define buses will include IP-XACT

eXtensible Markup Language (XML) bus and abstraction definitions in their set of deliverables. Until that

time, and to cover existing useful buses, a set of bus and abstraction definitions for common buses has been

created.

A set of reference bus and abstraction definitions allows many vendors who define IP using these buses to

easily interconnect IP together. The SPIRIT Consortium posts these for use by its members, with no

warranty of suitability, but in the hope that these will be useful. The SPIRIT Consortium will, from time-to-

time, update these files and if a Standards body wishes to take over the work of definition, will transfer that

work to that body.

These reference bus and abstraction definition templates (with comments and examples) are available from

the public area of The SPIRIT Consortium Web site.a

aAvailable at http: //www.spiritconsortium.org.

This introduction is not part of IEEE Std 1 685-2009, IEEE Standard for IP-XACT, Standard Structure for Packaging,
Integrating, and Reusing IP within Tool Flows.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������L[

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

Copyright © 201 0 IEEE. Al l rights reserved. v

Notice to users

Laws and regulations

Users of these documents should consult all applicable laws and regulations. Compliance with the

provisions of this standard does not imply compliance to any applicable regulatory requirements.

Implementers of the standard are responsible for observing or referring to the applicable regulatory

requirements. IEEE does not, by the publication of its standards, intend to urge action that is not in

compliance with applicable laws, and these documents may not be construed as doing so.

Copyrights

This document is copyrighted by the IEEE. It is made available for a wide variety of both public and private

uses. These include both use, by reference, in laws and regulations, and use in private self-regulation,

standardization, and the promotion of engineering practices and methods. By making this document

available for use and adoption by public authorities and private users, the IEEE does not waive any rights in

copyright to this document.

Updating of IEEE documents

Users of IEEE standards should be aware that these documents may be superseded at any time by the

issuance of new editions or may be amended from time to time through the issuance of amendments,

corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the

document together with any amendments, corrigenda, or errata then in effect. In order to determine whether

a given document is the current edition and whether it has been amended through the issuance

of amendments, corrigenda, or errata, visit the IEEE Standards Association website at http://

ieeexplore.ieee.org/xpl/standards.jsp, or contact the IEEE at the address listed previously.

For more information about the IEEE Standards Association or the IEEE standards development process,

visit the IEEE-SA website at http://standards.ieee.org.

Errata

Errata, if any, for this and all other standards can be accessed at the following URL: http://

standards.ieee.org/reading/ieee/updates/errata/index.html. Users are encouraged to check this URL for

errata periodically.

Interpretations

Current interpretations can be accessed at the following URL: http://standards.ieee.org/reading/ieee/interp/

index.html.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter

covered by patent rights. By publication of this standard, no position is taken with respect to the existence or

validity of any patent rights in connection therewith. The IEEE shall not be responsible for identifying

patents or patent applications for which a license may be required to implement an IEEE standard or for

conducting inquiries into the legal validity or scope of those patents that are brought to its attention.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� [

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IP-XACT,
Standard Structure for Packaging,
Integrating, and Reusing IP within
Tool Flows

IMPORTANT NOTICE: This standard is not intended to ensure safety, security, health, or

environmental protection in all circumstances. Implementers of the standard are responsible for

determining appropriate safety, security, environmental, and health practices or regulatory requirements.

This IEEE document is made available for use subject to important notices and legal disclaimers. These

notices and disclaimers appear in all publications containing this document and may be found under the

heading “Important Notice” or “Important Notices and Disclaimers Concerning IEEE Documents.” They

can also be obtained on request from IEEE or viewed at http://standards. ieee.org/IPR/disclaimers.html.

1 . Overview

This clause explains the scope and purpose of this standard; gives an overview of the basic concepts, major

semantic components, and conventions used in this standard; and summarizes its contents.

1 .1 Scope

This standard describes an eXtensible Markup Language (XML) schema1 for meta-data documenting

intellectual property (IP) used in the development, implementation, and verification of electronic systems

and an application programming interface (API) to provide tool access to the meta-data. This schema

provides a standard method to document IP that is compatible with automated integration techniques.The

API provides a standard method for linking tools into a system development framework, enabling a more

flexible, optimized development environment. Tools compliant with this standard will be able to interpret,

configure, integrate, and manipulate IP blocks that comply with the IP meta-data description. The standard

is based on version 1 .4 IP-XACT of The SPIRIT Consortium. The standard is independent of any specific

design processes. It does not cover those behavioral characteristics of the IP that are not relevant to

integration.

1 Information on references can be found in Clause 2.

Published by IEC under l icense from IEEE. © 2009 IEEE. Al l rights reserved.

1

IEC 6201 4-4

IEEE Std 1 685-2009

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

2 Copyright © 201 0 IEEE. Al l rights reserved.

1 .2 Purpose

This standard enables the creation and exchange of IP in a highly automated design environment.

1 .3 Design environment

The IP-XACT specification is a mechanism to express and exchange information about design IP and its

required configuration.2 While the IP-XACT description formats are the core of this standard, describing the

IP-XACT specification in the context of its basic use model, the design environment (DE), more readily

depicts the extent and limitations of the semantic intent of the data. The DE coordinates a set of tools and IP,

or expressions of that IP (e.g. , models), through the creation and maintenance of meta-data descriptions of

the system on chip (SoC) such that its system design and implementation flows are efficiently enabled and

reuse centric.

The use of the IP-XACT specified formats and interfaces are shown, in bold, in Figure 1 and described in

the following subclauses.

1 .3.1 IP-XACT design environment

A DE enables the designer to work with IP-XACT design IP through a coordinated front-end and IP design

database. These tools create and manage the top-level meta-description of system design and may provide

two basic types of services: design capture, which is the expression of design configuration by the IP

2IP-XACT uses the World Wide Web Consortium (W3C®) standard for the XML version 1 .0 data (http://www.w3.org/TR/2000/REC-
xml-20001006). The valid format of that XML data is described in a schema by using the Schema Description Language described
therein. W3C is a registered trademark of the World Wide Web Consortium.

Generator

TGI

protoco

l

PP

system_bus

Compone

nt IP

UART GPIO

mem

IP-XACT

IP-XACT Compliant

Generators

IP-XACT Compliant

Design Environment

addres

sinterface

IP-XACT IP

Import

Export

IP-XACT Compliant

Object Descriptions

protocol

buswidth

PPCompone

nt IP

UART GPIO

mem

PPComponent

IP

UART GPIO

mem

address

interface

registers

Generator

Bus

Definitions

Bus

Definitions
Bus

Definitions

Abstraction

Definitions

C
o
n
fig
u
re
d

IP

Design

XML

Design
Configuration

Component

XML

Component

IP

Abstractor

XML

Abstractor

IP

Bus

Definitions
Generator

Chains

P
o
in
t

T
o
o
ls

G
e
n
e
ra
te
d

O
u
tp
u
t

IP-XACT Compliant

Object Descriptions

Figure 1—IP-XACT design environment

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 3

provider and design intent by the IP user; and design build, which is the creation of a design (or design

model) to those intentions.

As part of design capture, a system design tool shall recognize the structure and configuration options of

imported IP. In the case of structure, this implies both the structure of the design [e.g., how specific pin-outs

refer to lines in the hardware description language (HDL) code] as well as the structure of the IP package

(e.g., where design descriptions and related generators are provided in the packaged IP data-structure). In the

case of configuration, this is the set of options for handling the imported IP (e.g. , setting the base address

and offset, bus width) that may be expressed as configurable parameters in the IP-XACT meta-data.

As part of design build, generators may be provided internally by a system design tool to achieve the

required IP integration or configuration, or provided externally (e.g., by an IP provider) and launched by the

system design tool as appropriate.

The system design tool set defines a DE where the support for conceptual context and management of IP-

XACT meta-data resides. However, the IP-XACT specifications make no requirements upon system design

tool architecture or a tool’s internal data structures. To be considered IP-XACT v1 .5 enabled, a system

design tool shall support the import/export of IP expressed with valid IP-XACT v1 .5 meta-data for both

component IP and designs, and it needs to support the tight generator interface (TGI) for interfacing with

external generators (to the DE).

1 .3.2 IP-XACT object descriptions

The IP-XACT schema is the core of the IP-XACT specification. There are seven top-level schema

definitions. Each schema definition can be used to create object descriptions of the corresponding type.

— A bus definition description defines the type attributes of an bus.

— An abstraction definition description defines the representation attributes of a bus.

— A component description defines an IP or interconnect structure.

— A design description defines the configuration of and interconnection between components.

— An abstractor description defines an adaptor between interfaces of two different abstractions.

— A generator chain description defines the grouping and ordering of generators.

— A design configuration description defines additional configuration information for a generator

chain or design description.

1 .3.3 Object interactions

An object description contains a unique identifier in the header. The identifier in IP-XACT terms is called a

VLNV after the four elements that define its value: vendor, library, name, and version. See C.6 for further

details on a VLNV. This VLNV is used to create a reference from one description to another. The links

between these objects are illustrated in Figure 2. The arrows (A Æ B) illustrate a reference of one object to

another (e.g. , reference of object B from object A).

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ���������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

4 Copyright © 201 0 IEEE. Al l rights reserved.

1 .3.4 IP-XACT generators

Generators are executable objects (e.g. , scripts or binary programs) that may be integrated within a DE

(referred to as internal) or provided separately as an executable (referred to as external). Generators may be

provided as part of an IP package (e.g., for configurable IP, such as a bus-matrix generator) or as a way of

wrapping point tools for interaction with a DE (e.g. , an external design netlister, external design checker).

An internal generator may perform a wide variety of tasks and may access IP-XACT compliant meta-data by

any method a DE supports. IP-XACT does not describe these protocols.

An external generator (often referred to as a TGI generator) is an executable program or script invoked

from within a DE to query or configure design descriptions and their related component and abstractor

descriptions. External generators can use the TGI to access their IP-XACT meta-data descriptions (as

currently loaded into the DE) and perform the various operations associated with those descriptions. In

addition, external generators shall only operate upon IP-XACT compliant meta-data through the defined

TGI, see 1 .3 .6.

Generators can be referenced from a component, abstractor, or generator chain description. Generators can

also be grouped and ordered in generator chain descriptions and those chain descriptions contained inside

other chain descriptions. This sequencing of generators is critical for providing script-based support for SoC

flow creation.

1 .3.5 IP-XACT design environment interfaces

There are two obvious interfaces expressed in Figure 1 : from the DE to the external IP libraries and from the

DE to the generators. In the former case, the IP-XACT specifications are neutral regarding the design tool

AbstractorAbstractorComponentComponent

DesignDesign

Component

GeneratorGenerator

Bus
Definition

Bus
Definition

Abstraction
Definition

Abstraction
Definition

ComponentComponent

Design
Configuration

Design
Configuration

Abstractor

Generator
Chain

Generator
Chain

Figure 2—IP-XACT object interactions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 5

interfaces to IP repositories. Being able to read and write IP with IP-XACT meta-data is required; however,

the formal interaction between an external IP repository and a DE is not specified.

1 .3.6 Tight generator interface

The tight generator interface (TGI) is the method a generator uses to efficiently access a design or

component description in a DE-independent and generator-language-independent manner. Therefore, a

generator running on two different DEs produces the same results. The DE and the generator communicate

with each other by sending messages utilizing the Simple Object Access Protocol (SOAP) standard version

1 .23 specified in the Web Services Description Language (WSDL) version 1 .1 .4 SOAP provides a simple

means for sending XML-format messages using the Hypertext Transfer Protocol (HTTP) or other transport

protocols. IP-XACT supports using an HTTP protocol or a file protocol.

The SOAP messages passed between the generator and the DE allow the generator to get all information

about the design interconnections (which contain components and abstractors), provide set information for

any configurable elements in a component or abstractor, and make simple modifications of the design

description. For additional details on the DE generator invocation and the SOAP messages passed between

the generator and the DE, see Annex G.

1 .3.7 Design intellectual property

IP-XACT is structured around the concept of IP reuse. Electronic design intellectual property, or IP, is a

term used in the ED community to refer to a reusable collection of design specifications that represent the

behavior, properties, and/or representation of the design in various media. The name IP is partially derived

from the common practice of considering a collection of this type to be the intellectual property of one party.

Both hardware and software collections are encompassed by this term.

These collections may include the following:

a) Design objects—This can include the following:

1) Transaction-level modeling (TLM) descriptions: SystemC® and SystemVerilog 5

2) Fixed HDL descriptions: Verilog®, VHDL6

3) Configurable HDL descriptions (e.g. , bus-fabric generators)

4) Design models for register transfer level (RTL) and transactional simulation (e.g., compiled

core models)

5) HDL-specified verification IP (VIP) (e.g. , basic stimulus generators and checkers)

b) IP views—This is a list of different views (levels of description and/or languages) to describe the IP

object. In IP-XACT v1 .5, these views include:

1) Design view: RTL Verilog or VHDL, flat or hierarchical components

2) Simulation view: model views, targets, simulation directives, etc.

3) Documentation view: standard, user guide, etc.

IP-XACT XML meta-data descriptions provide a standardized way of collecting much of the structural

information contained in the file sets. IP-XACT also can contain the information that identifies the

appropriate files included in a collection to be used for different parts of the design process.

3Available from the W3C Web site at http://www.w3.org/TR/2007/REC-soap12-part1 -20070427/.
4Available from the W3C Web site at http://www.w3.org/TR/wsdl.
5SystemC is a registered trademarks of Open SystemC Initiative, Inc. in the United States and other countries. Verilog is a registered
trademark of Cadence Design Systems, Inc. in the United States and/or other jurisdictions. This information is given for the
convenience of users of this standard and does not constitute an endorsement by the IEEE of these products. Equivalent products may
be used if they can be shown to lead to the same results.
6See Footnote 5.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ���������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

6 Copyright © 201 0 IEEE. Al l rights reserved.

1 .4 IP-XACT Enabled implementations

Complying with the rules outlined in this subclause allows the provider of tools, IP, or generators to class

their products as IP-XACT Enabled. Conversely, any violation of these rules removes that naming right.

This subclause first introduces the set of metrics for measuring the valid use of the specifications. It then

specifies when those validity checks are performed by the various classes of products and providers: DEs,

point tools, IPs, and generators.

a) Parse validity

1) Parsing correctness: Ability to read all IP-XACT descriptions.

2) Parsing completeness: Cannot require information that could be expressed in an IP-XACT

format to be specified in a non-IP-XACT format. Processing of all information present in an IP-

XACT document is not required.

b) Description validity

1) Schema correctness: IP is described using XML files that conform to the IP-XACT schema.

2) Usage completeness: Extensions to the IP-XACT schema shall only be used to express

information that cannot otherwise be described in IP-XACT.

c) Semantic validity

1) Semantic correctness: Adheres to the semantic interpretations of IP-XACT data described in

this standard.

2) Semantic completeness: Obeys all the semantic consistency rules (SCRs) described in

Annex B.

These validity rules can be combined with the product class specific rules to cover the full IP-XACT enabled

space. The following subclauses describe the rules a provider has to check to claim a product is IP-XACT

Enabled.

An IP-XACT Enabled DE or point tool may read descriptions based on multiple versions of the IP-XACT

schema. If the DE or point tool does provide this capability, the effect shall be as if all of the descriptions

had been translated by the XSL Transform (XSLT) version 1 .0,7 which is provided with the IP-XACT

release to convert descriptions from one version to the next. In addition, a DE or point tool may preserve

information in the initial description for use outside of the scope of the IP-XACT specification.

1 .4.1 Design environments

An IP-XACT Enabled DE:

a) Shall follow the parse validity requirements shown in 1 .4.

b) Shall only create IP that is IP-XACT Enabled.

c) When modifying any existing IP-XACT descriptions, shall do so without losing any preexisting

information. In particular, it shall preserve any vendor extension data included in the existing IP-

XACT description.

d) Shall support the IP-XACT generator interfaces fully for interaction with underlying database.

e) Shall be able to invoke all IP-XACT Enabled generators.

XPATH version 1 .08 support is required for DE-compliance.

7Available from the W3C Web site at http://www.w3.org/TR/1999/REC-xslt-1 9991 1 16.
8Available from the W3C Web site at http://www.w3.org/TR/1 999/REC-xpath-19991 1 16.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 7

1 .4.2 Point tools

A point tool is a tool that has a particular rather than a general set of capabilities. In contrast to IP-XACT

Enabled DE (see 1 .4.1), an IP-XACT Enabled point tool:

a) Shall follow the parse validity requirements shown in 1 .4.

b) Shall only create IP that is IP-XACT Enabled.

c) When modifying any existing IP-XACT descriptions, shall do so without losing any preexisting

information. In particular, it shall preserve any vendor extension data included in the existing IP-

XACT description.

1 .4.3 IPs

An IP-XACT Enabled IP:

a) Shall have an IP-XACT description that follows the description and semantic validity requirements

shown in 1 .4.

b) Shall only use IP-XACT Enabled generators for any generators associated with this IP.

XML descriptions compliant to IP-XACT shall provide a namespace reference to the index. xsd schema

file, not to any of the other files in the release.

1 .4.4 Generators

An IP-XACT Enabled generator:

a) Shall only create IP that is IP-XACT Enabled.

b) When modifying any existing IP-XACT descriptions, shall do so without losing any preexisting

information. In particular, it shall preserve any vendor extension data included in the existing IP-

XACT description.

c) Shall be callable though the IP-XACT TGI (see Annex G).

d) Shall only communicate with the DE that invoked it through the IP-XACT TGI (see Annex G).

1 .5 Conventions used

The conventions used throughout the document are included here.

IP-XACT is case-sensitive.

1 .5.1 Visual cues (meta-syntax)

Bold shows required keywords and/or special characters, e.g. , addressSpace. For the initial defini-

tional use (per element), keywords are shown in boldface-red text, e.g, bitsInLau (see also: 1 .6).

Bold italics shows group names or data types, e.g. , nameGroup or boolean. For definitions of types,

see Annex D.

Courier shows examples, external command names, directories and files, etc. , e.g. , address 0x0

is on D[31: 0] .

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ���������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

8 Copyright © 201 0 IEEE. Al l rights reserved.

1 .5.2 Notational conventions

The keywords required, shall, shall not, should, should not, recommended, may, and optional in this

document are to be interpreted as described in the IETF Best Practices Document 1 4, RFC-21 1 9 [B5] .9

1 .5.3 Syntax examples

Any syntax examples shown in this standard are for information only and are only intended to illustrate the

use of such syntax.

1 .5.4 Graphics used to document the schema

The W3C Web site1 0 specifies the XML schema language used to define the IP-XACT XML schemas.

Normative details for compliance to the IP-XACT standard are contained in the schema files. Within this

document, pictorial representations of the information in the schema files illustrate the structure of the

schema and define any constraints of the standard. With the exception of scope and visibility issues, the

information in the figures and the schema files is intended to be identical. Where the figures and schema are

in conflict, the XML schema file shall take precedence.1 1

1 .5.4.1 Elements and attributes

The element is the fundamental building block on which this standard is based. An element may be either a

leaf element, which is a container for information, or a branch element, which may contain further branch

elements or leaf elements.

A leaf or branch element may also contain attributes. Attributes are containers for information within the

containing element.

1 .5.4.2 Types

A type is a designation of the format for the contents of an element or attribute. There are two different styles

of types that can be defined. A type may be assigned to a leaf element or an attribute. This type is called a

simpleType and defines the format of data that may be stored in this container. A type may also be assigned

to a branch element. This type is called a complexType and defines further elements and attributes contained

in the branch element.

1 .5.4.3 Groups

A group is a collection of elements or attributes, which allow the same collection of items to be referenced

consistently in many places. There are two different types of groups that can be defined. A group is a

combination of leaf or branch elements; an attributeGroup, a simple list of attributes. The names assigned to

either group have no representation in the resulting description.

1 .5.4.4 Namespace

Each element, attribute, type, or group has a name, which is preceded by a namespace and separated from

the name by a colon (:). For the examples in 1 .5.4.5, xyz is used as the namespace for all of the items

9The number in brackets correspond to those of the bibliography in Annex A.
10Available from the W3C Web site at http://www.w3.org/TR/2004/REC-xmlschema-1 -20041028/.
1 1The graphics for this document have been generated by taking “screen-shots” of the various files as they are displayed in Altova’s
XML environment XMLSpy®. XMLSpy is a registered trademark of Altova GmbH. This information is given for the convenience of
users of this standard and does not constitute an endorsement by the IEEE of this product. Equivalent products may be used if they can
be shown to lead to the same results.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 9

whereas the standard uses spirit. Within the text of this standard, the namespace is not written when

describing an item; it is only shown in examples.

1 .5.4.5 Diagrams

The diagrams used throughout this standard graphically detail the organization the elements and attributes.

1 .5.4.5.1 Elements and sequences

Figure 3 shows the sequence-compositor. At the left is a branch element, element1 , with some descriptive

text below. element1 is connected to a sequence-compositor. The sequence-compositor defines the order the

subelements appear in the branch element. subElement1 shall appear first inside of element1 . This is

followed by subElement2, subElement3 , subElement4, and subElement5 before closing element1 .

a) subElement1 is a mandatory element, as indicated by the solid line of the containing box. The type

of the data contained in this element is set to string and it has a default value of ip-xact if the ele-

ment is present, but left empty.

b) subElement2 is an optional element, as indicated by the dashed-line of the containing box.

c) subElement3 is an mandatory element that may appear multiple times, indicated by the double-

solid line of the containing box. The number of times the element may appear is indicated by the

range of the numbers listed below the element.

d) subElement4 is an optional element that may appear multiple times, as indicated by the double-

dashed line of the containing box. The number of times the element may appear is indicated by the

range of the numbers listed below the element.

e) subElement5 is an mandatory branch element that contains further elements inside, as indicated by

the small plus sign (+) in the small box on the right.

Descriptiv e text here.

xyz:e lem ent1

sequence

xyz:subElem ent1

type xs:string

xyz:subElem ent2

xyz:subElem ent3

1 f. .

xyz:subElem ent4

0 f. .

xyz:subElem ent5

Figure 3—Sequence-compositor

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ���������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 0 Copyright © 201 0 IEEE. Al l rights reserved.

Figure 4 shows variations of a sequence-compositor. root1 is connected to an optional sequence-

compositor, as indicated by the symbol being drawn with a dashed line. element1 may appear first inside of

root1 ; if it does, it shall be followed by element2. Each subelement is connected to a sequence-compositor.

— element1 may contain one or more of the following sequences in the following order: subElement1

and subElement2 and subElement3 . The number of times the sequence-compositor may appear is

indicated by the range of the numbers listed below the symbol. If the range is greater than 1 , the

sequence-compositor symbol is drawn with double lines.

— element2 is optional and may contain one or more of the following sequences in the following order:

subElement1 and subElement2 and subElement3 . The number of times the sequence-compositor

may appear is indicated by the range of the numbers listed below the symbol. If the range starts at 0

and the maximum is greater then 1 , the sequence-compositor symbol is drawn with double-dashed

lines.

1 .5.4.5.2 Elements and choices

Figure 5 shows the variations of the choice-compositor. root is connected to a choice-compositor. The

choice-compositor specifies that one of the elements on the right side shall be chosen. root may contain one

of the following: element1 , element2, or element3 . Each subelement is connected to a choice-compositor.

a) element1 may contain one of the following: subElement1 , subElement2, or subElement3 , as indi-

cated by the symbol being drawn with a dashed line.

b) element2 may contain any (0 or more) of the following: subElement1 , subElement2, or

subElement3 in any order. The number of times the choice-compositor may appear is indicated by

xyz:root1

xyz:e lem ent1

1 f. .

xyz:subElem ent1

xyz:subElem ent2

xyz:subElem ent3

xyz:e lem ent2

0 f. .

xyz:subElem ent1

xyz:subElem ent2

xyz:subElem ent3

Figure 4—Sequence-compositor variations

xyz:root

choice

xyz:e lem ent1

choice

xyz:subElem ent1

xyz:subElem ent2

xyz:subElem ent3

xyz:e lem ent2

choice

0 f. .

xyz:subElem ent1

xyz:subElem ent2

xyz:subElem ent3

xyz:e lem ent3

1 f. .

xyz:subElem ent1

xyz:subElem ent2

xyz:subElem ent3

Figure 5—Choice-compositor variations

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 1 1

the range of the numbers listed below the symbol. If the range starts at 0 , the choice-compositor is

drawn with dashed lines.

c) element3 may contain one or more of the following: subElement1 , subElement2, or subElement3

in any order. The number of times the choice-compositor may appear is indicated by the range of the

numbers listed below the symbol. If the range is greater than 1 , the choice-compositor is drawn with

double lines.

1 .5.4.5.3 Elements, attributes, groups, and attributeGroups

Figure 6 shows the use of attributes, groups, and attributeGroups. element1 contains two attributes, shown

in the tab shaped box labeled attributes. attribute1 is optional, as indicated by the dashed containing box.

attribute1 also has a type defined of integer and a default value of 7 if the attribute is not present.

attribute2 is a required attribute, as indicated by the solid containing box, and is of type boolean with no

default. The ordering in which attribute1 and attribute2 appear inside element1 is irrelevant.

a) eGroup1 is an element group inside element1 . This group contains three subelements and the group

symbol can be replaced by a solid line. The name of the group has no representation in the resulting

output description. An element group can be optional, as indicated by a dashed outline (not shown)

and it can also have a range, as indicated by numbers below the group symbol (not shown).

b) aGroup1 is an attributeGroup inside element2 and element3 . This attributeGroup contains two

attributes, attribute7 and attribute8. Inside element2, the attributeGroup is shown in its collapsed

form, as indicated by the small plus sign (+) inside the small box. Inside element3 the attribute-

Group is shown in it expanded form, as indicated by the small minus sign (-) inside the small box.

element2 contains four attributes: attribute3 , attribute4, attribute7, and attribute8. element3

also contains four attributes: attribute5, attribute6, attribute7, and attribute8. The name of the

attributeGroup has no representation in the resulting description.

xyz:topElem ent

xyz:e lement1

attributes

xyz:attribute1

type xs: integer

default 7

xyz:attribute2

type xs:boolean

xyz:eGroup1

xyz:subElem ent1

xyz:subElem ent2

xyz:subElem ent3

xyz:e lement2

attributes

xyz:attribute3

xyz:attribute4

xyz:aGroup1grp

xyz:e lement3

attributes

xyz:attribute5

xyz:attribute6

xyz:aGroup1grp

xyz:attribute7

xyz:attribute8

Figure 6—Attributes, groups, and attributeGroups

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 2 Copyright © 201 0 IEEE. Al l rights reserved.

1 .5.4.5.4 Wildcards

Figure 7 shows the use of wildcards. A wildcard is depicted by the rounded box with the any ##any text.

Wildcards indicate that any well-formed attribute or element may be inserted into the containing element.

1 .6 Use of color in this standard

This standard uses a minimal amount of color to enhance readability. The coloring is not essential and does

not affect the accuracy of this standard when viewed in pure black and white. The places where color is used

are the following:

— Cross references that are hyperlinked to other portions of this standard are shown in underlined-blue

text (hyperlinking works when this standard is viewed interactively as a PDF file).

— Syntactic keywords and tokens in the formal language definitions are shown in boldface-red text.

1 .7 Contents of this standard

The organization of the remainder of this standard is as follows:

— Clause 2 provides references to other applicable standards that are assumed or required for this

standard.

— Clause 3 defines terms, acronyms, and abbreviations used throughout the different specifications

contained in this standard.

— Clause 4 defines the interoperability use model.

— Clause 5 defines the bus and abstraction definitions.

— Clause 6 defines the component and interconnect models.

— Clause 7 defines the designs and their connections.

— Clause 8 defines the abstractor model between abstraction definitions.

— Clause 9 defines the generator chain.

— Clause 10 defines the design and generator chain configuration.

— Clause 11 defines addressing and data visibility.

— Annexes. Following Clause 11 are a series of annexes.

xyz:e lem ent5

attributes

##anyany

xyz:subElem ent1

xyz:subElem ent2

##anyany

Figure 7—Wildcards

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 1 3

2. Normative references

The following referenced documents are indispensable for the application of this document (i.e. , they must

be understood and used, so each referenced document is cited in text and its relationship to this document is

explained). For dated references, only the edition cited applies. For undated references, the latest edition of

the referenced document (including any amendments or corrigenda) applies.

Simple Object Access Protocol (SOAP) version 1 .2 specification, available from the W3C Web site at

http://www.w3.org/TR/2007/REC-soap12-part1 -20070427/.

Web Services Description Language (WSDL) version 1 .1 specification, available from the W3C Web site at

http://www.w3.org/TR/wsdl.

XML schema specification, available from the W3C Web site at http://www.w3.org/TR/2004/REC-

xmlschema-0-20041028; http://www.w3.org/TR/2004/REC-xmlschema-1 -20041028; http://www.w3.org/

TR/2004/PER-xmlschema-2-20040318.

XML version 1 .0 specification, available from the W3C Web site at http://www.w3.org/TR/2000/REC-xml-

20001006.

XPATH version 1 .0 specification, available from the W3C Web site at http://www.w3.org/TR/1999/REC-

xpath-1 9991 1 16.

XSLT version 1 .0 specification, available from the W3C Web site at http: //www.w3.org/TR/1999/REC-xslt-

1 9991 1 16.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 1 5

3. Definitions, acronyms, and abbreviations

For the purposes of this document, the following terms and definitions apply. The IEEE Standards

Dictionary: Glossary of Terms & Definitions should be referenced for terms not defined in this clause.12

3.1 Definitions

abstraction definition: An object that describes a representation of bus interface, including details of the

ports this type of bus interface may have and the constraints that apply to these ports.

abstractor: A top level IP-XACT element used to convert between two bus interfaces having different

abstraction types and sharing the same bus type.

active interface: An interface that participates in the transactions.

ad hoc connection: Directly connects two ports without the use of bus interfaces or interconnections.

Wire ad hoc connections have a wire protocol and transactional connections have a transactional connection.

application programmers interface (API): A method for accessing design and meta-data in a procedural

way.

architectural rules: Generic rules that define how subsystems relate to platforms that relate to

components of system design.

bridge: A mechanism to model the internal relationship between master interfaces and slave interfaces

inside a component. Bridges explicitly describe the internal point-to-point connections between the

component interfaces. A bridge can have multiple address spaces, supports memory mapping and

remapping, and can only have direct interfaces. Syn: bus bridge.

bus: A collection of ports used to connect blocks connected to it involving both hardware and software

protocols. Within IP-XACT, buses are components.

bus definition: An object that describes the type properties for a bus, such as the maximum masters

allowed or if one bus expands upon the definition of another.

bus interface: The interface of an IP to a bus. Components are connected together by linking the bus

interfaces together. There are three different classes of bus interfaces: master, slave, and system with two

flavors: direct and mirrored.

channel: A special object that can be used to describe multi-point connections between regular components,

which may require some interface adaptation. A channel connects component master, slave, and system

interfaces on the same bus. A channel can also represent a simple wiring interconnection or a more

complex structure, such as a bus. A channel can only have one address space. Channel interfaces are always

mirrored interfaces. A channel supports memory mapping and remapping.

component: The central place holder for object meta-data and its bus and generator interfaces.

Components are used to describe cores, peripherals, and buses. Components may reference designs to create

hierarchy. Syn: component description.

configurable element: An element in an IP-XACT description that can be set to a new value by a user,

generator, or dependency equation. This includes all elements with a resolve attribute.

12The IEEE Standards Dictionary: Glossary of Terms & Definitions is available at http://shop.ieee.org/.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 6 Copyright © 201 0 IEEE. Al l rights reserved.

configurable IP: IP that contains configurable elements and an IP-specific generator capable of creating

new components from the configured component and updating the design with the new version of the

component. Syn: configurable component.

configuration manager: An object that creates and manages top-level meta-description of system on chip

(SoC) design. It can annotate SoC schema with details of a specific SoC design including: IP versions, IP

views, IP configuration, IP connectivity, and IP constraints. It manages the launching of IP generators and

tool plug-ins, and any meta-data updates occurring as a consequence of a launch. It also handles the

updating and retrieval of relevant IP meta-data from the IP repository.

connection: Generally describes a communication mechanism between one or more components.

constraint: Defines a limitation on a part of the system that needs to be satisfied for the system to be correct.

Timing constraints are often specified on ports, requiring that during a given clock cycle the value of the

port becomes stable in a certain time period and remains stable for a certain time period relative to a

particular clock edge.

constraint set: Constraints defined in groups to associate different constraints with different views of the

component.

design: An IP-XACT description of a system or subsystem listing its components, the connections

between these components, and the interfaces exported by the system or subsystem.

design configuration: This description contains non-essential ancillary information for generators, the

active or current view selected for instances in the design, and configurable information defined in vendor

extensions. It references a design description and can specify a view for the component instances and

abstractors for each interconnection, and configure generator chains. Syn: configuration.

design database: Working storage for both meta-data and component information that helps create and

verify systems and subsystems.

design environment (DE): The coordination of a set of tools and IP, or expressions of that IP (e.g. , models)

so the system-design and implementation flows of a SoC reuse-centric development flow is efficiently

enabled. This is managed by creating and maintaining a meta-data description of the SoC .

endianness: big endian is the most significant byte at the lowest memory address and little endian is the

least significant byte at the lowest memory address.

electronic design intellectual property (IP): Used in the electronic design community to refer to a reusable

collection of design specifications that represent the behavior, properties, and/or representation of the design

in various media. The name IP is partially derived from the common practice of considering a collection of

this type to be the intellectual property of one party. Both hardware and software collections are

encompassed by this term. IP utilized in the context of a SoC design or design flow may include

specifications; design models; design implementation descriptions; verification coordinators, stimulus

generators, checkers and assertion/constraint descriptions; soft design objects (such as embedded software

and real-time operating systems); design and verification flow information and scripts. IP-XACT

distinguishes between fixed IP and configurable IP.

electronic system level (ESL): A high level of design modeling typically done with, but not limited to,

SystemC or SystemVerilog design languages.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 17

eXtensible Markup Language (XML): A simple, very flexible text format derived from SGML.

NOTE—See ISO/IEC 8879 [B12] .1 3

external components: Components that do not end up on the SoC , but are needed for total system

verification.

fixed IP: IP that has no elements that are configured by the DE or set by industry de facto tools.

generator: Combines component meta-data with architectural rules to provide a consistent system

description that uses a specified tight generator interface (TGI) to generate specific design views or

configurations for the purposes of supporting a number of design styles. The generator may add/remove/

replace components, add/remove/replace interconnections, add/remove/replace project settings, and add/

remove/replace persistent data.

generator API: This API provides a common interface for algorithmic code in a generator or tool plug-in

to the SOAP interface of the TGI.

generator chain: A hierarchical list of generators used to define the order for executing generators. A

design flow can be represented by a generator chain.

generator group: A symbolic name assigned to a generator to enable generator selection.

generator invocation: A method of running an application at a defined phase in the generator group with a

given number of elements.

generator TGI: This SOAP messaging interface connects the generators and tool plug-ins to the design

environment (DE), allowing the execution of these scripts and code-elements against the SoC meta-

description. The DE enables the registration of new generators or plug-ins, exporting SoC meta-data and

updating that data following generator or plug-in execution, and handling generator or plug-in error

conditions that relate to the meta-data description.

hierarchical child bus interface: A bus interface IC of component CC is a hierarchical child of bus

interface IP of component CP if and only if CP contains a hierarchical view, the design description of which

contains a hierarchical connection with interface name IP , component ref CC , and interface ref IC . A

hierarchical child bus interface may be a hierarchical bus interface itself.

hierarchical child component: A hierarchical child of a component C is any component referenced in a

design of C .

hierarchical component: A component that has one or more views that reference IP-XACT design

descriptions.

hierarchical descendant bus interface: A bus interface DC is a hierarchical descendant of bus interface AC

if and only if DC is a hierarchical child of AC or a hierarchical child of a hierarchical descendant of AC .

hierarchical descendent component: A hierarchical descendent of a component is any hierarchical child of

that component or any hierarchical child of any hierarchical descendent of the component

hierarchical family of bus interfaces: A hierarchical family of bus interfaces is a set of bus interfaces

composed of a hierarchical bus interface and all its hierarchical descendants.

1 3Notes in text, tables, and figures are given for information only and do not contain requirements needed to implement the standard.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 8 Copyright © 201 0 IEEE. Al l rights reserved.

hierarchical family of components: A hierarchical family of components is a component and all its

hierarchical descendents.

initiative: An abstract description of port modes: requires, provides, both, or phantom. Used for

transactional level modeling (TLM).

interconnection: Defines the point-to-point connection between two bus interfaces.

interface connection: Bus interfaces with bus definitions and abstraction definitions can be listed in the

design as connected to another compatible interface on another component. The listing of the

interconnection creates a connection to that interface.

IP generators: Tools that create specific IP based upon SoC meta-data details entered into the

configuration manager. IP generators serve as interfaces to IP repository for placing and retrieval of IP

and can annotate completion details (e.g. , generated IP or failure of generation of IP) back into the

configuration manager.

IP integrator: A party in the design process who receives configured IP and subsystems and combines them

into a larger system.

IP platform architect: Creator of platform-based architectures.

IP provider: Creator and supplier of IP.

IP repository: Database of IP.

leaf component: Components that do not contain other IP-XACT descriptions.

legacy IP: IP that has no specific IP-XACT meta-data view.

master interface: The bus interface that initiates a transaction (like a read or write) on a bus.

memory map: A block of memory in a component (which may be accessible through a slave interface).

meta-data: A tool-interpretable way of describing the design history, locality, object association,

configuration options, constraints against, and integration requirements of an object.

meta IP: Meta-data description of an object.

mirror interface: Has the same (or similar) ports to its related direct bus interface, but the port directions

are reversed. So, a port that is an input on a direct bus interface would be an output in the matching mirror

interface.

monitor interface: An interface used in verification that is neither a master, slave, nor system interface.

multi-layer buses: Buses that have to be modeled as component bridges with direct interfaces or as a

hierarchical component.

objects: XML descriptions of the following types: components, designs, busDefinitions,

abstractionDefinitions, abstractors, designConfigurations, and generatorChains. To be able to be

uniquely referenced, each object has an unique identifier called its Vendor Library Name Version

(VLNV).

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 19

opaque bridge: A bus interconnect component that may modify the address space of a master bus interface

of one bus type to the memory map of a slave bus interface of another bus type and does not allow direct

access to any components residing on that address space. An opaque bridge has the opaque attribute equal

to true.

Open SystemC Initiative (OSCI): An independent non-profit organization composed of a broad range of

companies, universities and individuals dedicated to supporting and advancing SystemC as an open source

standard for system-level design.

NOTE—See Transaction-Level Model of SystemC [B1 3] .

phantom port: An initiative of a port that indicates this port does not have a true connection to the

implementation, e.g. , the port does not appear on the VHDL entity.

phase number: Defines the sequence in which generators should be fired.

platform: Architectural (sub)system framework.

platform consumer: User/group that builds a SoC based on a particular platform.

platform provider: User/group that develops and delivers platforms to platform consumers.

platform rules: Rules that define how components interface to a specific platform.

port: Specifies interface items of a component. These interface items allow dynamic exchange of

information. Connections between ports may be specified by using ad hoc connections or by including

them in bus interfaces connected together by interconnections.

schema: A means for defining the structure, content, and semantics of eXtensible Markup Language

(XML) documents.

segment: A portion of an addressSpace, defined with an address offset and range.

semantic consistency rules (SCRs): Additional rules applied to an XML description that cannot be

expressed in the schema. Typically, these are rules between elements in multiple XML descriptions.

slave interface: The bus interface that terminates or consumes a transaction initiated by a master

interface. Slave interfaces often contain information about the registers accessible through the slave

interface.

SoC platform: The top netlist containing all the instances and connections of the design.

style sheets: How documents are presented on screens and in print.

subsystem: A set of connected components that have dependencies on other IP.

system: A configured set of connected components.

system interface: An interface that is neither a master nor slave interface, and allows specialized (or non-

standard) connections to a bus (e.g. , clock).

system on chip (SoC): Also refers to a general system that may not be implemented on a chip, such as a

transaction-level modeling (TLM) design.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

20 Copyright © 201 0 IEEE. Al l rights reserved.

tight generator interface (TGI): Used to manipulate values of elements and attributes for IP-XACT

compliant XML.

tool plug-ins: Tools that integrate IP, based upon SoC meta-data details, and prep IP for animation (e.g.,

simulation or emulation), optimization (e.g., synthesis), and verification (e.g. , regression-suite generation).

They can also annotate completion details (e.g. , integrated SoC IP or failure of integration) back into the

configuration manager.

transactional port: A port that has a service name (which can specify the data type of the port) and a port

initiative. Used for high-level modeling.

transaction-level modeling (TLM): An abstraction level higher than register transfer level (RTL), used

for specifying, simulating, verifying, implementing, and evaluating SoC designs.

transparent bridge: A bus interconnect component that modifies the address space of a master bus

interface of one bus type to the memory map of a slave bus interface of another bus type with directly

addressable access to any components residing on that address space. A transparent bridge has the opaque

attribute equal to false.

use model: A process method of working with a tool.

user interface: Methods of interacting between a tool and its user.

validation: Proving the correctness of construction of a set of components.

Vendor Library Name Version (VLNV): Each IP-XACT object is assigned a unique identifier that is

defined in the header of each XML file.

verification: Proving the behavior of a set of connected components.

verification IP (VIP): Components included in a design for verification purposes.

view: An implementation of a component. A component may have multiple views, each with its own

function in the design flow.

white box interface (WBI): Internal points in the IP to be probed or driven by verification tools and/or test

benches.

wire connections: Connections that connect wire ports.

wire port: A port that describes binary values or an array of binary values. Wire ports can have a direction:

in, out, or inout.

XPATH: An expression language used by XSLT to access or refer to parts of an XML document.

XSLT: XSL Transform is a particular program written in the XSL language for performing a transformation

(from one version to the next).

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 21

3.2 Acronyms and abbreviations

AHB AMBA® high-speed bus14

APB AMBA peripheral bus

API application programmers interface

AXI Advanced eXtensible Interface

DE design environment

EDA electronic design automation

ESL electronic system level

HDL hardware description language

IP electronic design intellectual property

LAU least addressable unit (of memory)

OSCI Open SystemC Initiative

PV programmer’s view

PVT programmer’s view with timing

RAM random access memory

ROM read only memory

RTL register transfer level (design)

SCR semantic consistency rule

SoC system on chip

TGI tight generator interface

TLI task level interface

TLM transaction-level modeling

VIP verification IP

VLNV Vendor Library Name Version

WBI white box interface

XSLT XSL Transform

XML eXtensible Markup Language

3MD three levels of meta-data

14AMBA is an open specification on-chip backbone for interconnecting intellectual property (IP) blocks. AMBA is a registered
trademark of ARM Limited. This information is given for the convenience of users of this standard and does not constitute an
endorsement by the IEEE of this product. Equivalent products may be used if they can be shown to lead to the same results.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 23

4. Interoperability use model

To introduce the use model for the IP-XACT specifications, it is first necessary to identify specific roles and

responsibilities within the model, and then relate these to how the IP-XACT specifications impact their

interactions. All or some of the roles can be mixed within a single organization, e.g. , some electronic design

automation (EDA) providers are also providing IP, a component IP provider can also be a platform provider,

and an IP system design provider may also be a consumer.

4.1 Roles and responsibilities

For this standard, the roles and responsibilities are restricted to the scope of IP-XACT v1 .5 HDL and TLM

system design.

4.1 .1 Component IP provider

This is a person, group, or company creating IP components or subsystems for integration into a SoC design.

These IPs can be hardware components (processors, memories, buses, etc.), verification components, and/or

hardware-dependent software elements. They may be provided as source files or in a compiled form (i.e. ,

simulation model). An IP is usually provided with a functional description, a timing description, some

implementation or verification constraints, and some parameters to characterize (or configure) the IP. All

these types of characterization data may be described as meta-data compliant with the IP-XACT schema.

Those elements not already provided in the base schema can be provided using namespace extensibility

mechanisms of the specification.

The IP provider can use one or more EDA tools to create/refine/debug IP. During this process, the IP

provider may export and re-import his design from one environment to another. The IP-XACT IP

descriptions need to enable this exchange for component IP.

At some point, this IP can be transferred to customers, partners, and external EDA tool suppliers by using

IP-XACT compliant XML. IP can be characterized into the following different types.

— Fixed IP is IP that is straightforward to describe and exchange as there are no configurable parame-

ters. No generators need to be provided.

— Parameterized IP are those IP blocks that do not need IP specific generators, but have standard

customizations (where standard is defined as industry de facto tool support), i.e. , no generators need

be provided for SoC design tools that support these parameterizations. An example of a

parameterized IP is an AHB/APB bridge with configurable bus widths, done with VHDL generics or

Verilog parameters.

— Configurable IP is IP created or modified as a direct result of running an IP-specific generator to

build the IP to the user’s specified configuration. This IP usually requires generators to be provided

with it. An example of a configurable IP is an AHB bus fabric component that has a selectable

number of masters and slaves, and automatic generation of decode functionality.

4.1 .2 SoC design IP provider

This is a person, group, or company that integrates and validates IP provided by one or more IP providers to

build system platforms, which are complete and validated systems or subsystems. Like the IP provider, the

platform provider can use EDA tools to create/refine/debug its platform, but at some point the IP needs to be

exchanged with others (customers, partners, other EDA tools, etc.). To do so, the platform IP has to be

expressed in the IP-XACT specified format as a hierarchical component.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

24 Copyright © 201 0 IEEE. Al l rights reserved.

4.1 .3 SoC design IP consumer

This is a person, group, or company that configures and generates system applications based on platforms

supplied by SoC design IP providers. These platforms are complete system designs or subsystems. Like the

platform provider, the platform consumer can use EDA tools to create/refine/debug its system application

and/or configure the design architecture. To do so, the EDA tool needs to support any platform IP expressed

in the IP-XACT specified format.

4.1 .4 Design tool supplier

This is a group or company that provides tools to verify and/or implement an IP or platform IP. There are

three major tools (which could be combined) provided in a system flow:

— Platform builder (or system design environment) tools: these help to assemble a platform with some

automation (e.g., automatic generation of interconnect).

— Verification point tools: these handle functional and timing simulation, verification, analysis,

debugging, co-simulation, co-verification, and acceleration.

— Implementation point tools: these handle synthesizing, floor-planing, place, and routing, etc.

The EDA provider needs to be able to import IP-XACT component or system IP libraries from multiple

sources and export them in the same format.

Further, IP-XACT EDA tools need to recognize, associate, and launch generators that may be provided by a

Generator or IP provider in support of configurable IP bundles. The imported IP might need to be created

and/or modified by the tool and then exported back (e.g., to be exchanged with other EDA vendor tools) to

satisfy the customer design flow.

To further support any generators supplied with IP bundles, the IP-XACT DE tools need to be able to

recognize and interface with generator-wrapped point tools. These may be provided by another EDA

provider or by the IP designer/consumer as part of a company’s internal design and verification flow. In

general, these support specialized design-automation features, such as architectural-rule checking.

4.2 IP-XACT IP exchange flows

This subclause describes a typical IP exchange flow that the IP-XACT specifications technically support

between the roles defined in 4.1 . By way of example, the following specific exchange flow can benefit from

use of the IP-XACT specification:

The Component IP provider generates an IP-XACT XML package and sends it to a SoC design tool

(EDA tool supplier) or directly to a Platform (i.e. , SoC design IP) provider. The EDA tool supplier

imports IP-XACT XML IP and generates platform IP and/or updates (configures) the IP

components. The Platform provider generates a configurable platform IP and exports it in IP-XACT

XML format, which the end user imports to build system applications. The platform provider can

also generate its own platform IP into IP-XACT format and send it to the EDA provider.

Although many different possible IP exchange flows exist, from the user’s viewpoint, there are three main

use models, as follows:

— IP (component or SoC design) provider use model

— Generator (IP provider and design tool provider) use model

— SoC design tool provider use model

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 25

4.2.1 Component or SoC design IP provider use model

The IP provider (a hardware component IP designer or platform IP architect) can use IP-XACT to package

IP in a standard and reusable format. The first step consists in creating an IP-XACT XML package (XML

plus any IP views) to export the IP database in a valid format. To express this IP as an IP-XACT IP, the IP

provider needs to parse the entire design description tree (which is composed of files of different types: HDL

source files, data sheets, interfaces, parameters, etc.) and package it into an IP-XACT XML format. This can

be a manual step (by directly editing IP-XACT compliant XML) or an automated one (using scripts to

generate schema-compliant IP-XACT XML).

Once the IP has been packaged in an IP-XACT format, the IP provider can use a SoC design tool to write/

debug/simulate/implement the IP.

4.2.2 Generator provider use model

The author of a generator expects to interact with the SoC design tool through a fixed interface during well

defined times in the design life cycle: when components are instantiated or modified or when a generator

chain is started.

Generators are used within the SoC design tool to extend its capabilities: wrapping a point tool, e.g. a

simulator; wiring up IP within the design; or checking the design is correct or maybe modifying the design.

Many of these features may be supplied by the IP author and handled by generators embedded in the IP

itself.

Consequently, there are at least two groups of generator providers: the IP vendor who supplies generators

that are written specifically to support their IP, and generic generator authors who wish to extend the

features available within the SoC design tool. This latter group will be mainly SoC design tool vendors at

first, but will also come to include third-party generator vendors.

4.2.3 System design tool provider use model

The system design tool takes IP-XACT components and designs as input, configures them, and loads them

into its own database format. Then it can automate some tasks, such as creating the platform, generating the

component interconnect and bus fabric, and generating or updating the IP-XACT IP as an output (by

providing new or updated XML with the attached information: new source files, parameters, documentation,

etc.).

Customer design flows are usually composed of a chain of different tools from the same or different EDA

vendors (e.g. , when an EDA provider is not providing the entire tool chain to cover all the user flow or the

customer is selecting the best-in-class point tools). To address this requirement, the EDA vendor providing

an IP-XACT enabled tool needs to read and produce the IP-XACT specified format, and utilize and

implement the interfaces defined by IP-XACT documents. In this use model, each SoC design tool uses its

own generators (possibly utilizing the IP-XACT TGI) to build and update its internal meta-data state and

export to an IP-XACT format. Then the IP-XACT description can be imported by another IP-XACT enabled

EDA tool.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 27

5. Interface definition descriptions

5.1 Definition descriptions

In IP-XACT, a group of ports that together perform a function are described by a set of elements and

attributes split across two descriptions, a bus definition and an abstraction definition. These two descriptions

are referenced by components or abstractors in their bus or abstractor interfaces.

The bus definition description contains the high-level attributes of the interface, including items such as the

connection method and indication of addressing.

The abstraction definition contains the low-level attributes of the interface, including items such as the

name, direction, and width of the ports. This is a list of logical ports that may appear on a bus interface for

that bus type. See 6.5.

5.2 Bus definition

5.2.1 Schema

The following schema details the information contained in the busDefinition element, which is one of the

seven top-level elements in the IP-XACT specification used to describe the high-level aspects of a bus.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

28 Copyright © 201 0 IEEE. Al l rights reserved.

5.2.2 Description

The top-level busDefinition element describes the high-level aspects of a bus or interconnect. It contains the

following elements and attributes.

a) The versionedIdentifier group provides a unique identifier; it consists of four subelements for a top-

level IP-XACT element. See C.6

b) directConnection (mandatory) specifies what connections are allowed. The directConnection

element is of type boolean. A value of true specifies these interfaces may be connected in a direct

master to slave fashion. A value of false indicates only non-mirror to mirror type connections are

allowed (i.e. , master–mirroredMaster, slave–mirroredSlave, or system–mirroredSystem).

c) isAddressable (mandatory) specifies the bus has addressing information. The isAddressable

element is of type boolean (see 6.3). A value of true specifies these interfaces contain addressing

To define a ll elements and
attributes supported w hen

defining a bus.

spirit:busDefinition

This group of elements identifies

a top lev el item (e. g. a

component or a bus definition)

w ith v endor, l ibrary , name and

a v ersion number.

spirit:versionedIdentifier

This element indicates that a

master interface may be directly
connected to a slav e interface

(under certa in conditions) for

busses of this ty pe.

spirit:directConnection

type xs:boolean

I f true, indicates that this is an

addressable bus.

spirit:isAddressable

type xs:boolean

O ptional name of bus ty pe that

this bus definition is compatible
w ith. This bus definition may

change the definitions in the

existing bus definition

spirit:extends

type spirit: libraryRefType

Indicates the maximum number

of masters this bus supports. I f
this element is not present, the

number of masters a l low ed is
unbounded.

spirit:m axMasters

type xs:nonNegativeInteger

Indicates the maximum number

of slav es this bus supports. I f

the element is not present, the

number of slav es a l lowed is
unbounded.

spirit:m axSlaves

type xs:nonNegativeInteger

Indicates the l ist of sy stem group
names that are defined for this bus

definition.

spirit:sys temGroupNames

Indicates the name of a sy stem

group defined for this bus definition.

spirit:sys temGroupName

1 f. .

type xs:Name

F ull description string, ty pica lly

for documentation

spirit:description

type xs:string

C onta iner for v endor specific
extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 29

information and a memory map can be traced through this interface. A value of false indicates these

interfaces do not contain any traceable addressing information.

d) extends (optional) specifies if this definition is an extension from another bus definition. The

extends element is of type libraryRefType (see C.7), it contains four attributes to specify a unique

VLNV. See also: 5.1 2.

e) maxMasters specifies the maximum number of masters that are allowed on the bus. If the

maxMasters element is not present, the numbers of masters is unbounded. The maxMasters

elements is of type nonNegativeInteger.

f) maxSlaves specifies the maximum number of slaves that are allowed to appear on the bus. If the

maxSlaves element is not present, the numbers of slaves is unbounded. The maxSlaves elements is

of type nonNegativeInteger.

g) systemGroupNames (optional) defines an unbounded list of systemGroupName elements, which

in turn define the possible group names to be used under an onSystem element in an abstraction

definition. The definition of the group names in the bus definition allows multiple abstraction

definitions to indicate which system interfaces match each other. The systemGroupName shall be

unique with the containing systemGroupNames element. The systemGroupName element is of

type Name.

h) description (optional) allows a textual description of the interface. The type of this element is

string.

i) vendorExtensions (optional) contains any extra vendor-specific data related to the interface. See

C.10.

See also: SCR 1 .3, SCR 1 .9, SCR 1 .11 , and SCR 6.17.

5.2.3 Example

This is an example of an AHB busDefinition.

<?xml version="1. 0" encoding="UTF-8" ?>

<spirit: busDefinition

xmlns: spirit= http: //www. spiritconsortium. org/XMLSchema/SPIRIT/1. 5

xmlns: xsi=http: //www. w3. org/2001/XMLSchema-instance

xsi: schemaLocation="http: //www. spiritconsortium. org/XMLSchema/SPIRIT/1. 5

http: //www. spiritconsortium. org/XMLSchema/SPIRIT/1. 5/index. xsd">

<spirit: vendor>amba. com</spirit: vendor>

<spirit: library>AMBA</spirit: library>

<spirit: name>AHB</spirit: name>

<spirit: version>v1. 0</spirit: version>

<spirit: directConnection>false</spirit: directConnection>

<spirit: isAddressable>true</spirit: isAddressable>

<spirit: extends spirit: vendor="amba. com"

spirit: library="AMBA"

spirit: name="AHBlite"

spirit: name=”v1. 0” />

<spirit: maxMasters>16</spirit: maxMasters>

<spirit: maxSlaves>16</spirit: maxSlaves>

<spirit: systemGroupNames>

<spirit: systemGroupName>ahb_clk</spirit: systemGroupName>

<spirit: systemGroupName>ahb_reset</spirit: systemGroupName>

</spirit: systemGroupNames>

</spirit: busDefinition>

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

30 Copyright © 201 0 IEEE. Al l rights reserved.

5.3 Abstraction definition

5.3.1 Schema

The following schema details the information contained in the abstractionDefinition element, which is one

of the seven top-level elements in the IP-XACT specification used to describe the low-level aspects of a bus.

5.3.2 Description

The abstractionDefinition element describes the low-level aspects of a bus or interconnect. It contains the

following elements and attributes.

a) The versionedIdentifier group provides a unique identifier; it consists of four subelements for a top-

level IP-XACT element. See C.6.

b) busType (mandatory) specifies the bus definition that this abstraction defines. The busType element

is of type libraryRefType (see C.7); it contains four attributes to specify a unique VLNV. See also:

5.1 2.

c) extends (optional) specifies if this definition is an extension from another abstraction definition. The

extends element is of type libraryRefType (see C.7), it contains four attributes to specify a unique

Define the ports and other information

of a particular abstraction of the bus

spirit:abstractionDefin ition

This group of elements identifies

a top lev el item (e. g. a
component or a bus definition)

w ith v endor, l ibrary , name and

a v ersion number.

spirit:versionedIdentifier

Reference to the busDefinition
that this abstractionDefinition

implements.

spirit:busType

type spirit: libraryRefType

O ptiona l name of abstraction

ty pe that this abstraction

definition is compatible w ith.

This abstraction definition may

change the definitions of ports in
the existing abstraction definition

and add new ports, the ports in

the origina l abstraction are not

deleted but may be marked

il legal to disa llow their use.

This abstraction definition may

only extend another abstraction

definition if the bus ty pe of this

abstraction definition extends the

bus ty pe of the extended

abstraction definition

spirit:extends

type spirit: libraryRefType

This is a l ist of logica l ports

defined by the bus.

spirit:ports

F ull description string, ty pica lly

for documentation

spirit:description

type xs:string

C ontainer for v endor specific

extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 31

VLNV. The extending abstraction definition may change the definition of logical ports, add new

ports, or mark existing logical ports illegal (to disallow their use). See also: 5 .1 2.

d) ports (mandatory) is a list of logical ports, see 5.4.

e) description (optional) allows a textual description of the interface. The type of this element is

string.

f) vendorExtensions (optional) contains any extra vendor-specific data related to the interface. See

C.10.

The abstractionDefinition element contains a list of logical ports that define a representation of the bus

type to which it refers. A port can be a wire port (see 5.7) or a transactional port (see 5.1 0). A wire port

carries logic information or an array of logic information. A transactional port carries information that is

represented on a higher level of abstraction.

See also: SCR 1 .9, SCR 1 .11 , SCR 1 .1 3, SCR 3.1 , SCR 3.16, SCR 3.1 7, and SCR 6.11 .

5.3.3 Example

The following example shows an abstraction definition for the interrupt bus in the Leon2 TLM example.

<spirit: vendor>spiritconsortium. org</spirit: vendor>

<spirit: library>Leon</spirit: library>

<spirit: name>INT_PV</spirit: name>

<spirit: version>1. 5</spirit: version>

<spirit: busType spirit: vendor="spiritconsortium. org"

spirit: library="Leon" spirit: name="Int" spirit: version="v1. 0"/>

<spirit: ports>

<spirit: port>

<spirit: logicalName>INT_TRANSACTION</spirit: logicalName>

<spirit: wire>

<spirit: onMaster>

<spirit: presence>required</spirit: presence>

<spirit: direction>out</spirit: direction>

</spirit: onMaster>

<spirit: onSlave>

<spirit: presence>required</spirit: presence>

<spirit: direction>in</spirit: direction>

</spirit: onSlave>

</spirit: wire>

</spirit: port>

</spirit: ports>

5.4 Ports

5.4.1 Schema

The following schema details the information contained in the ports element, which appears as part of the

abstractionDefinition element within an abstraction definition. This is different from the ports element that

appears as part of the model element within components.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

32 Copyright © 201 0 IEEE. Al l rights reserved.

5.4.2 Description

The ports element is an unbounded list of port elements. Each port element defines the logical port

information for the containing abstraction definition. It contains the following elements.

a) logicalName (mandatory) gives a name to the logical port that can be used later in component

description when the mapping is done from a logical abstraction definition port to the components

physical port. The logicalName shall be unique within the abstractionDefinition. The type of this

element is Name.

b) displayName (optional) allows a short descriptive text to be associated with the port. The type of

this element is string.

c) description (optional) allows a textual description of the port. The type of this element is string.

d) Each port also requires a wire element or a transactional element to further describe the details

about this port. See 5.5 or 5.1 0, respectively. A wire style port is a port that carries logic values or an

array of logic values. A transactional style port is a port that carries any other type of information,

typically used for TLM.

e) vendorExtensions (optional) contains any extra vendor-specific data related to the port. See C.1 0.

5.4.3 Example

See 5.3 .3 for an example.

5.5 Wire ports

5.5.1 Schema

The following schema details the information contained in the wire element, which may appear as part of

the port element within an abstraction definition (abstractionDefinition/ports/port).

This is a l ist of logical ports

defined by the bus.

spirit:ports spirit:port

1 f. .

The assigned name of this port
in bus specifications.

spirit:logicalNam e

type xs:Name

E lement name for display

purposes. Ty pica lly a few w ords

prov iding a more detailed and/or

user-friendly name than the
spirit:name.

spirit:displayNam e

type xs:string

F ull description string, ty pica lly

for documentation

spirit:description

type xs:string

Port sty le.

A port that carries logic or an

array of logic v a lues

spirit:w ire

A port that carries complex
information modeled at a high

lev el of abstraction.

spirit:transactional

C ontainer for v endor specific

extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 33

5.5.2 Description

A wire element represents a port that carries logic values or an array of logic values. This logical wire port

may provide optional constraints for a wire port, to which it is mapped inside a component or abstractor’s

busInterface. It contains the following elements and attributes.

a) qualifier (optional) indicates which type of information this wire port carries. See 5.6.

b) onSystem (optional) defines constraints, e.g. , timing constraints, for this wire port if it is present in a

system bus interface with a matching group name.

1) The group (mandatory) attribute indicates the group name for the wire port. It distinguishes

between different sets of system interfaces. Usually, all the arbiter ports are processed together,

or all the clock or reset ports are processed together. So, this is really a mechanism to specify

any sort of non-standard bus interface capabilities for the interconnect. The type of this element

is Name.

2) The group wirePort specifies what elements are used in this port. See 5.7.

c) onMaster (optional) defines constraints for this wire port when present in a master bus interface.

The group wirePort specifies what elements are used in this port. See 5.7.

d) onSlave (optional) defines constraints for this wire port when present in a slave bus interface. The

group wirePort specifies what elements are used in this port. See 5.7.

A port that carries logic or an

array of logic v a lues

spirit:w ire

The ty pe of information this port

carries A w ire port can carry

both address and data, but may

not m ix this w ith a clock or reset

spirit:qualifier

Defines constra ints for this port

w hen present in a sy stem bus

interface w ith a matching group

name.

spirit:onSys tem

0 f. .

U sed to group sy stem ports into

different groups w ithin a

common bus.

spirit:group

type xs:Name

G roup of elements used in a

w ire port.

spirit:w irePort

Defines constra ints for this port
w hen present in a master bus

interface.

spirit:onMas ter

G roup of elements used in a
w ire port.

spirit:w irePort

Defines constra ints for this port

w hen present in a slav e bus

interface.

spirit:onSlave

G roup of elements used in a

w ire port.

spirit:w irePort

Indicates the default v a lue for this w ire

port.

spirit:defaultValue

type spirit:scaledNonNegativeInteger

Specifies if a port requires a

driv er. D efault is fa lse. The

attribute driv erTy pe can further

qualify w hat ty pe of driv er is

required. U ndefined behav iour if

d irection is not input or inout.

D riv er ty pe any indicates that

any unspecified ty pe of driv er

must be connected

spirit:requiresDriver

type xs:boolean

attributes

Defines the ty pe of driv er that is

required. The default is any ty pe

of driv er. The 2 other options

are a clock ty pe driv er or a

singleshot ty pe driv er.

spirit:driverType

type xs:token

default any

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

34 Copyright © 201 0 IEEE. Al l rights reserved.

e) Either of the following two elements are allowed, but not both.

1) defaultValue (optional) contains the default logic value for this wire port. This value is applied

when the busInterface is connected, this logical port is not connected, and there is not an ad

hoc connection to the corresponding physical port. The type of this element is

scaledNonNegativeInteger.

2) requiresDriver (optional) specifies whether the port requires a driver when used in a

completed design. The type of this element is boolean. If this element is not present, its

effective value is false, indicating this port does not require a driver. When set to true, the

attribute driverType further qualifies what driver type is required: any (meaning any logic

signal or value), clock (meaning a repeating type waveform), or singleshot (a non-repeating

type waveform). If this element is not present, its effective value is any.

NOTE—The onMaster, onSlave, and onSystem elements associated with each logical port provide optional
constraints. If any of these are missing, there are no constraints for how the port appears on interfaces with that mode
(master, system, or slave). A port may appear in any system interface group unless its presence is marked as illegal for
that group. The abstraction definition author has the choice of how far to constrain the definitions. Generally speaking,
more constraints in the definitions reduce implementation flexibility for whoever is creating IP with interface that
conforms to the abstraction definition.

See also: SCR 6.12 and SCR 6.1 5.

5.5.3 Example

See 5.3 .3 for an example.

5.6 Qualifiers

5.6.1 Schema

The following schema details the information contained in the qualifier element, which may appear as part

of the wire element within an abstraction definition (abstractionDefinition/ports/port/wire).

The ty pe of information this port

carries A w ire port can carry
both address and data, but may

not m ix this w ith a clock or reset

spirit:qualifier

I f this element is present, the

port conta ins address

information.

spirit:isAddress

type xs:boolean

I f this element is present, the

port contains data information.

spirit:isData

type xs:boolean

I f this element is present, the

port contains only clock

information.

spirit:isClock

type xs:boolean

I s this element is present, the
port contains only reset

information.

spirit:isReset

type xs:boolean

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 35

5.6.2 Description

The qualifier element indicates which type of information a wire port carries. It contains the following

elements.

a) isAddress (optional), when true, specifies the port contains address information. This qualifier

may be paired with the isData element (e.g. , used with serial protocols). The type of this element is

boolean. See also: Clause 11 .

b) isData (optional), when true, specifies the port contains data information. This data resides in regis-

ters defined in the memory map referenced by the interface. The width defined by the port on each

side of the two connected bus interfaces can be used to determine which portions of the data may be

lost or gained (tied off to defaults) during transfers if the two widths do not match. This qualifier

may be paired with the isAddress element (e.g. , used with serial protocols). The type of this element

is boolean. See also: Clause 11 .

c) isClock (optional), when true, specifies this port is a clock for this bus interface, i.e. , it provides a

repeating pattern that the interface uses to implement the protocol. No method of processing is

implied with this tag. This tag shall only be applied to pure clock ports. This qualifier shall not be

combined with other qualifiers. The type of this element is boolean.

d) isReset (optional), when true, specifies this port is a reset for this bus interface., i.e. , it provides the

necessary input to put the interface into a known state. No method of processing is implied with this

tag. This tag should only be applied to pure reset ports. This qualifier shall not be combined with

other qualifiers. The type of this element is boolean.

See also: SCR 6.1 7, SCR 9.1 , SCR 9.2, and SCR 12.8.

5.6.3 Example

<spirit: port>

<spirit: logicalName>Clock</spirit: logicalName>

<spirit: wire>

<spirit: qualifier>

<spirit: isClock>true</spirit: isClock>

</spirit: qualifier>

<spirit: onSystem>

<spirit: group>clk</spirit: group>

<spirit: width>1</spirit: width>

<spirit: direction>out</spirit: direction>

</spirit: onSystem>

<spirit: onMaster>

<spirit: direction>in</spirit: direction>

</spirit: onMaster>

<spirit: onSlave>

<spirit: direction>in</spirit: direction>

</spirit: onSlave>

</spirit: wire>

</spirit: port>

<spirit: port>

<spirit: logicalName>Resetn</spirit: logicalName>

<spirit: wire>

<spirit: qualifier>

<spirit: isReset>true</spirit: isReset>

</spirit: qualifier>

<spirit: onSystem>

<spirit: group>reset</spirit: group>

<spirit: width>1</spirit: width>

<spirit: direction>out</spirit: direction>

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

36 Copyright © 201 0 IEEE. Al l rights reserved.

</spirit: onSystem>

<spirit: onMaster>

<spirit: direction>in</spirit: direction>

</spirit: onMaster>

<spirit: onSlave>

<spirit: direction>in</spirit: direction>

</spirit: onSlave>

</spirit: wire>

</spirit: port>

<spirit: port>

<spirit: logicalName>Address</spirit: logicalName>

<spirit: wire>

<spirit: qualifier>

<spirit: isAddress>true</spirit: isAddress>

</spirit: qualifier>

<spirit: onMaster>

<spirit: direction>out</spirit: direction>

</spirit: onMaster>

<spirit: onSlave>

<spirit: direction>in</spirit: direction>

</spirit: onSlave>

</spirit: wire>

</spirit: port>

5.7 Wire port group

5.7.1 Schema

The following schema details the information contained in the wirePort group, which may appear as part of

the onSystem, onMaster, or onSlave element within a wire element within an abstraction definition

(abstractionDefinition/ports/port/wire/onmode).

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 37

5.7.2 Description

The wirePort group specifies what elements are used in a wire port. It contains the following elements.

a) presence (optional) provides the capability to require or forbid a port from appearing in a

busInterface. The three possible values are illegal, required, or optional. If this element is not

present, its effective value is optional.

b) width (optional) represents the number of logical bits that are required to represent this port. When

mapping to this logical port in a busInterface/portmap, the numbering shall start from 0 to

width-1 . If width is not specified, the component shall define the number of bits in this port, but

the logical portmap numbering shall still start at 0 . If necessary, logical bit 0 shall be the least

significant bit. The width element is of type positveInteger.

c) direction (optional) restricts the direction of the port relative to the non-mirrored interface (see 6.2).

The three possible values are in, out, or inout.

d) Each wirePort group can also have a sequence of modeConstraints and

mirroredModeConstraints specifying the default constraints of this interface during synthesis. The

modeConstraints apply to this port if it appears in a non-mirrored mode bus interface (see 5.8). Any

mirroredModeConstraints apply to this port if it appears in a mirrored-mode bus interface (see

5.9).

If mirroredModeConstraints are not specified, the modeConstraints also apply to this port in a

mirrored-mode bus interface.

See also: SCR 6.5, SCR 6.6, SCR 6.7, and SCR 6.1 8.

G roup of elements used in a

w ire port.

spirit:w irePort

I f this element is present, the

existance of the port is controlled

by the specified v a lue. v a lid

v a lues are ' i l lega l' , 'required' and

'optional' .

spirit:presence

type xs:string

N umber of bits required to

represent this port. A bsence of

this element indicates

unconstra ined number of bits,

i . e. the component w ill define

the number of bits in this port.

The logica l numbering of the port

starts at 0 to w idth-1 .

spirit:w idth

type xs:positiveInteger

I f this element is present, the

direction of this port is restricted

to the specified v a lue. The

direction is relativ e to the

non-mirrored interface.

spirit:d irection

type xs:token

Specifies default constra ints for the enclosing w ire ty pe

port. I f the m irroredM odeC onstra ints element is not

defined, then these constra ints applied to this port w hen

it appears in a 'mode' bus interface or a m irrored-'mode'

bus interface. O therw ise they only apply w hen the port

appears in a 'mode' bus interface.

spirit:m odeCons traints

type spirit:abstractionDefPortConstraintsType

Specifies default constra ints for the enclosing w ire ty pe

port w hen it appears in a m irrored-'mode' bus interface.

spirit:m irroredModeCons traints

type spirit:abstractionDefPortConstraintsType

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

38 Copyright © 201 0 IEEE. Al l rights reserved.

5.7.3 Example

See 5.3 .3 for an example.

5.8 Wire port mode constraints

5.8.1 Schema

The following schema defines the information contained in the modeConstraints element, which may

appear within an onMaster, onSlave, or onSystem element within an abstraction definition

(abstractionDefinition/ports/port/wire/onmode).

5.8.2 Description

The modeConstraints element defines any default implementation constraints associated with the

containing wire port of the abstraction definition. It contains one or more of the following elements.

a) timingConstraint (optional) element defines a technology-independent timing constraint associated

with the containing wire port. See 6.11 .1 3 .

b) driveConstraint (optional) element defines a technology-independent drive constraint associated

with the containing wire port. See 6.11 .1 2.

spirit:abs tractionDefPortCons traintsType

Specifies default constra ints for the enclosing w ire ty pe
port. I f the m irroredM odeC onstraints element is not

defined, then these constra ints applied to this port w hen

it appears in a 'mode' bus interface or a m irrored-'mode'

bus interface. O therw ise they only apply w hen the port

appears in a 'mode' bus interface.

spirit:m odeCons traints

type spirit:abstractionDefPortConstraintsType

Defines a tim ing constra int for the associated
port. The constra int is relativ e to the clock

specified by the clockN ame attribute. The

clockEdge indicates w hich clock edge the

constra int is associated w ith (default is rising

edge). The delay Ty pe attribute can be specified

to further refine the constra int.

spirit:tim ingConstraint

1 f. .

type spirit:delayPercentageType

min/maxIncl 0.0 1 00.0

Defines a constra int indicating how an input is

to be driv en. The preferred methodology is to

specify a l ibrary cel l in technology independent
fashion. The implemention tool should assume

that the associa ted port is driv en by the

specified cel l, or that the driv e strength of the

input port is indicated by the specified

resistance v a lue.

spirit:driveConstraint

Defines a constra int indicating the ty pe of load

on an output port.

spirit:loadConstraint

Defines a constra int indicating how an input is

to be driv en. The preferred methodology is to

specify a l ibrary cel l in technology independent

fashion. The implemention tool should assume

that the associa ted port is driv en by the
specified cel l, or that the driv e strength of the

input port is indicated by the specified

resistance v a lue.

spirit:driveConstraint

Defines a constra int indicating the ty pe of load

on an output port.

spirit:loadConstraint

Defines a constra int indicating the ty pe of load

on an output port.

spirit:loadCons traint

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 39

c) loadConstraint (optional) element defines a technology-independent load constraint associated

with the containing wire port. See 6.11 .11 .

The constraints contained within the modeConstraints element are only applied to the corresponding

physical ports in a component when the physical port does not have any constraints defined within its own

port element and there is no standard design constraint (SDC) file associated with the component. For

example, if it appears inside an onMaster element, the constraints apply when the port appears in a master

interface. If the modeConstraints element is immediately followed by a mirroredModeConstraints

element (see 5.9), the constraints defined in the modeConstraints element apply only when the port is used

in a non-mirrored mode interface. Otherwise, the constraints apply when the port appears in a mode interface

or a mirrored-mode interface.

5.8.3 Example

The following example shows a port within an abstraction definition, containing a single timing constraint.

Since there is no mirroredModeConstraint element, this timing constraint applies when the HRDATA port

appears in either a master interface or a mirrored-master interface. On a master interface the port gets 40%

of the cycle time and on a mirrored master interface it gets 60% of the cycle time.

<spirit: port>

<spirit: logicalName>HRDATA</spirit: logicalName>

<spirit: wire>

<spirit: onMaster>

<spirit: modeConstraints>

<spirit: timingConstraint spirit: clockName=”HCLK”>40

</spirit: timingConstraint>

</spirit: modeConstraints>

</spirit: onMaster>

</spirit: wire>

</spirit: port>

5.9 Wire port mirrored-mode constraints

5.9.1 Schema

The following schema defines the information contained in the mirroredModeConstraints element, which

may appear within an onMaster, onSlave, or onSystem element within an abstraction definition

(abstractionDefinition/ports/port/wire/onmode).

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

40 Copyright © 201 0 IEEE. Al l rights reserved.

5.9.2 Description

The mirroredModeConstraints element also defines any default implementation constraints associated

with the containing wire port of the abstraction definition. It contains one or more of the following elements.

a) timingConstraint (optional) element defines a technology-independent timing constraint associated

with the containing wire port. See 6.11 .1 3 .

b) driveConstraint (optional) element defines a technology-independent drive constraint associated

with the containing wire port. See 6.11 .1 2.

c) loadConstraint (optional) element defines a technology-independent load constraint associated

with the containing wire port. See 6.11 .11 .

The constraints contained within the mirroredModeConstraints element are only applied to the

corresponding physical port in a component when the physical port does not have any constraints defined

within its own port element and there is no SDC file associated with the component. For example, if it

appears inside an onMaster element, the constraints only apply when the port appears in a mirrored-master

interface.

spirit:abs tractionDefPortConstraintsType

Specifies default constra ints for the enclosing w ire ty pe
port w hen it appears in a m irrored-'mode' bus interface.

spirit:m irroredModeCons traints

type spirit:abstractionDefPortConstraintsType

Defines a tim ing constra int for the associated

port. The constra int is relativ e to the clock

specified by the clockN ame attribute. The
clockEdge indicates w hich clock edge the

constra int is associated w ith (default is rising

edge). The delay Ty pe attribute can be specified
to further refine the constra int.

spirit:tim ingConstraint

1 f. .

type spirit:delayPercentageType

min/maxIncl 0.0 1 00.0

Defines a constra int indicating how an input is

to be driv en. The preferred methodology is to
specify a l ibrary cell in technology independent

fashion. The implemention tool should assume

that the associated port is driv en by the
specified cel l, or that the driv e strength of the

input port is indicated by the specified

resistance v a lue.

spirit:driveCons traint

Defines a constra int indicating the ty pe of load

on an output port.

spirit:loadConstraint

Defines a constra int indicating how an input is

to be driv en. The preferred methodology is to

specify a l ibrary cell in technology independent
fashion. The implemention tool should assume

that the associated port is driv en by the

specified cel l, or that the driv e strength of the
input port is indicated by the specified

resistance v a lue.

spirit:driveCons traint

Defines a constra int indicating the ty pe of load
on an output port.

spirit:loadConstraint

Defines a constra int indica ting the ty pe of load
on an output port.

spirit:loadConstraint

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 41

5.9.3 Example

The following example shows a port within an abstraction definition, containing a single timing constraint.

On a master interface the port gets 40% of the cycle time and on a mirrored master interface it gets 50% of

the cycle time.

<spirit: port>

<spirit: logicalName>HRDATA</spirit: logicalName>

<spirit: wire>

<spirit: onMaster>

<spirit: modeConstraints>

<spirit: timingConstraint spirit: clockName=”HCLK”>40

</spirit: timingConstraint>

</spirit: modeConstraints>

<spirit: mirroredModeConstraints>

<spirit: timingConstraint spirit: clockName=”HCLK”>50

</spirit: timingConstraint>

</spirit: mirroredModeConstraints>

</spirit: onMaster>

/spirit: wire>

</spirit: port>

5.1 0 Transactional ports

5.1 0.1 Schema

The following schema defines the information contained in the transactional element, which may appear

within a port within an abstraction definition (abstractionDefinition/ports/port).

A port that carries complex information

modeled at a high lev el of abstraction.

spirit:transactional

The ty pe of information this port carries A

transactional port can carry both address and
data information.

spirit:qualifier
I f this element is present, the port conta ins

address information.

spirit:isAddress

type xs:boolean

I f this element is present, the port conta ins

data information.

spirit:isData

type xs:boolean

Defines constra ints for this port w hen present

in a sy stem bus interface w ith a matching

group name.

spirit:onSys tem

0 f. .

U sed to group sy stem ports into different

groups w ithin a common bus.

spirit:group

type xs:Name

G roup of elements used in a transactional port.

spirit: transactionalPort

Defines constra ints for this port w hen present
in a master bus interface.

spirit:onMas ter

G roup of elements used in a transactiona l port.

spirit: transactionalPort

Defines constra ints for this port w hen present

in a slav e bus interface.

spirit:onSlave

G roup of elements used in a transactiona l port.

spirit: transactionalPort

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

42 Copyright © 201 0 IEEE. Al l rights reserved.

5.1 0.2 Description

The transactional element defines a logical transactional port of the abstraction definition. This logical

transactional port may provide optional constraints for a transactional port, to which it is mapped inside a

component or abstractor’s busInterface. The transactional element also contains the following elements

and attributes.

a) The qualifier (optional) element indicates which type of information this transactional port carries.

It contains either or both of the following elements.

1) isAddress (optional) specifies the port contains address information.

2) isData (optional) specifies the port contains data information.

b) onSystem (optional) defines constraints for this transactional port if it is present in a system bus

interface with a matching group name.

1) The group attribute indicates the group name for the transactional port. It distinguishes

between different sets of system interfaces. Usually, all the arbiter ports are processed together,

or all the clock or reset ports are processed together. So, this is really a mechanism to specify

any sort of non-standard bus interface capabilities for the interconnect. The group name shall

match the one specified in the bus definition systemGroupName.

2) The group transactionalPort specifies what elements are used in this port. See 5.11 .

c) onMaster (optional) defines constraints for this transactional port when present in a master bus

interface. The group transactionalPort specifies what elements are used in this port. See 5.11 .

d) onSlave (optional) defines constraints for this transactional port when present in a slave bus inter-

face. The group transactionalPort specifies what elements are used in this port. See 5.11 .

NOTE—The onMaster, onSlave, and onSystem elements associated with each logical port provide optional
constraints. If any of these are missing, there are no constraints for how the port appears on interfaces with that mode
(master, system, or slave). If no onSystem constraint is specified with a particular group, there are no constraints for
system interfaces in that group. The abstraction definition author has the choice of how far to constrain the definitions.
Generally speaking, more constraints in the definitions reduce implementation flexibility for whoever is creating IP with
interface that conform to the abstraction definition.

See also: SCR 6.1 3, SCR 6.14, SCR 6.1 5, and SCR 6.17.

5.1 0.3 Example

The following example shows a transactional port within an abstraction definition, carrying data

information.

<spirit: port>

<spirit: logicalName>pv_data</spirit: logicalName>

<spirit: transactional>

<spirit: qualifier>

<spirit: isData>true</spirit: isData>

</spirit: qualifier>

<spirit: onMaster>

<spirit: presence>required</spirit: presence>

<spirit: service>

spirit: initiative>requires</spirit: initiative>

<spirit: typeName>pv_basic_type</spirit: typeName>

</spirit: service>

</spirit: onMaster>

</spirit: transactional>

</spirit: port>

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 43

5.1 1 Transactional port group

5.1 1 .1 Schema

The following schema defines the information contained in the transactionalPort group, which may appear

within an onMaster, onSlave, or onSystem element within an abstraction definition (abstractionDefinition/

ports/port/transactional/onmode).

5.1 1 .2 Description

A transactionalPort group contains elements defining constraints associated with a transactional logical

port within an abstractionDefinition. It contains the following elements.

a) presence (optional) provides the capability to require or forbid a port to appear in a busInterface.

Its three possible values are illegal, required, or optional. If this element is not present, its effective

value is optional.

b) service (mandatory) defines constraints on the service type, which the component transactional port

can provide or require. It also contains the following elements or attributes.

1) initiative (mandatory) defines the type of access: requires, provides, or both. For example, a

SystemC sc_port is defined using requires, since it requires a SystemC interface.

2) typeName (mandatory) is an unbounded list that defines the names of the transactional inter-

face types. The typeName element is of type anyURI. The implicit (optional) attribute may be

be used here to indicate this element is implicit and a netlister shall not declare this service in a

language-specific top-level netlist.

3) vendorExtensions contains any extra vendor-specific data related to the interface. See C.1 0.

See also: SCR 6.2, SCR 6.3, SCR 6.4, SCR 6.8, and SCR 6.1 8.

5.1 1 .3 Example

The following example shows a custom transactional port within an abstraction definition. Constraints are

defined for transactional port used in master or slave interfaces.

<spirit: port>

<spirit: logicalName>custom_tlm_port</spirit: logicalName>

G roup of elements used in a transactional port.

spirit: transactionalPort

I f this element is present, the existance of the

port is controlled by the specified v a lue. v a lid
v a lues are ' i l lega l', 'required' and 'optiona l'.

spirit:presence

type xs:string

spirit:serviceType

The serv ice that this transactiona l port can
prov ide or requires.

spirit:service

type spirit:serviceType

I f this element is present, the ty pe of access is

restricted to the specified v a lue.

spirit:initiative

type xs:string

Defines the name of the transactiona l interface

ty pe.

spirit:typeName

1 f. .

type xs:string

C ontainer for v endor specific extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

44 Copyright © 201 0 IEEE. Al l rights reserved.

<spirit: transactional>

<spirit: onMaster>

<spirit: service>

<spirit: initiative>provides</spirit: initiative>

<spirit: typeName implicit=”true”>TLM

</spirit: typeName>

</spirit: service>

</spirit: onMaster>

<spirit: onSlave>

<spirit: service>

<spirit: initiative>requires</spirit: initiative>

<spirit: typeName implicit=”true”>TLM

</spirit: typeName>

</spirit: service>

</spirit: onSlave>

</spirit: transactional>

</spirit: port>

5.1 2 Extending bus and abstraction definitions

5.1 2.1 Extending bus definitions

Bus definitions may use the extends element to create a family of compatible interconnectable bus

definitions. A bus definition (B) extends another existing bus definition (A) by specifying the extends

element in the B bus definition’s element list. Bus definition B is referred to as the extending bus definition

and bus definition A is referred to as the extended bus definition. For two bus definitions related by the

extends relation to be interconnectable, they need to be in a direct line of descent in the hierarchical

extension tree, as illustrated in Figure 8.

In Figure 8, bus definition B extends bus definition A. Bus interfaces of bus definition E shall only be

connected with bus interfaces of bus definitions E , B, and A. By the same token, bus interfaces of bus

definition F shall only be connected with bus interfaces of bus definitions F, B, and A.

5.1 2.2 Extending abstraction definitions

The abstractionDefinition that references the extended busDefinition via the busType element is referred

to as the extended abstractionDefinition. The bus definition writer shall supply an abstractionDefinition

that references the extending busDefinition, and it is referred to as the extending abstractionDefinition.

The extending abstractionDefinition shall reference the extended abstractionDefinition via its extends

element. An example of extending is shown in Figure 9.

AA

CC DDBB

FFEE

extended

extending

Figure 8—Extends relation hierarchy tree

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 45

The extending bus definition and abstraction definition pair shall be able to stand on its own independent of

the extended bus definition and abstraction definition pair; therefore, all the elements and attributes of the

extended bus definition and abstraction definition pair shall be specified in the extending bus definition and

abstraction definition pair. Also, all the ports in the extended abstraction definition shall be explicitly

defined in the extending abstraction definition. Some of the elements and attributes of the extending bus

definition and abstraction definition pair may be modified from the extended bus definition and abstraction

definition pair, while others may not.

See also: SCR 3.1 7.

5.1 2.3 Modifying definitions

Table 1 specifies which elements and attributes may be modified in a bus definition.

Table 1—Elements of extending bus definition

Item Modified Comment

directConnection No

isAddressable No

maxMasters Yes Smaller number applies when connecting
interfaces of extended bus definitions.

maxSlaves Yes Smaller number applies when connecting
interfaces of extended bus definitions.

systemGroupNames Yes New group names may be added; group names
not specified are not allowed by this bus
definition.

description Yes

vendorExtensions Yes

busDefinition

AHBLite

busDefinition

AHBLite

abstractionDefinition

AHBLite_rtl

abstractionDefinition

AHBLite_rtl

busDefinition

AHB

busDefinition

AHB

abstractionDefinition

AHB_rtl

abstractionDefinition

AHB_rtl

extends

extends

busType

busType

Figure 9—Example of extending

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

46 Copyright © 201 0 IEEE. Al l rights reserved.

Table 2 specifies which elements and attributes may be modified in an abstraction definition.

The extending abstraction definition may add new ports and the extending abstraction definition may mark

certain ports as illegal to disallow their use. Table 3 specifies which port elements may be modified when

extending bus definitions.

Table 2—Elements of extending abstraction definition

Item Modified Comment

ports Yes See Table 3 and SCR 6.11 .

description Yes

vendorExtensions Yes

Table 3—Elements of a port in an extending abstraction definition

Item Modified Comment

logicalName No Changing this name implies a port that is different from
the one in the extended abstractionDefinition.

requiresDriver Yes

isAddress No

isData No

isClock No

isReset No

onSystem/group Yes

presence Yes

width Yes

direction No

modeConstraints Yes

mirroredModeConstraints Yes

defaultValue Yes This default can be used to set a value for the extended
abstraction definition logical port, if this port is not
mapped or its presence is marked as illegal.

service/initiative No

service/typeName No

service/vendorExtensions Yes

vendorExtensions Yes

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 47

5.1 2.4 Interface connections

When a bus interface of the extended bus definition and abstraction definition pair is connected with a bus

interface of the extending bus definition and abstraction definition pair, it is possible either interface may

have unconnected ports due to the previous modifications of the port list (i.e. , adding or removing ports).

The abstraction definition writer needs to be aware of these scenarios and specify default values where

necessary. Following are the possible connections between two extended interfaces (A and B):

master(A) connecting to slave(B) (if directConnection = true)

master(A) connecting to mirror-master(B)

slave(A) connecting to mirror-slave(B)

system(A) connecting to mirrored-system(B)

master(B) connecting to slave(A) (if directConnection = true)

master(B) connecting to mirror-master(A)

slave(B) connecting to mirror-slave(A)

system(B) connecting to mirrored-system(A)

5.1 3 Clock and reset handling

Abstraction definitions shall include all the logical ports that can participate in the protocol of the bus; bus

interfaces also need to map to the component all the logical ports that participate in the protocol of that bus

at that interface. For example, on an AXI bus, the ports of the write channel can participate in the protocol of

the bus, so they shall be included in the AXI abstraction definition. These ports participate in the protocol at

any AXI bus interface that supports writes, so they need to be included in all such bus interfaces, but not

included in any AXI bus interfaces that only support reads.

This requirement applies to clock and reset ports as much as it does to other ports. If the protocol of a bus is

dependent on a clock or reset port, the bus definition for that bus shall include that clock or reset port.

Similarly if the bus protocol at a bus interface is dependent on a particular clock or reset port, the port map

of that bus interface shall include that port. The clock or reset port, however, does not need to exist as a port

of the component implementation, since it may be mapped to a phantom port of the component (see

6.11 .1 8.2). Also, since multiple bus ports may be mapped to a single component port (and component ports

may also participate in ad hoc connections), the clock routing is not required to match or be defined by the

bus infrastructure.

In some cases, a component may have clock or reset ports that are not associated with and do not participate

in the protocol of any bus interface, but do provide a clock or reset to the internal logic of the component

instead, e.g. , a processor clock. In such cases, the clock port should be included in a special purpose clock or

reset bus interface, with an appropriate special purpose bus type, or not be mapped into any interface and

connected using ad hoc connections instead.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 49

6. Component descriptions

6.1 Component

An IP-XACT component is the central placeholder for the objects meta-data. Components are used to

describe cores (processors, co-processors, DSPs, etc.), peripherals (memories, DMA controllers, timers,

UART, etc.), and buses (simple buses, multi-layer buses, cross bars, network on chip, etc.). An IP-XACT

component can be of two kinds: static or configurable. A DE cannot change a static component. A

configurable (or parameterized) component has configurable elements (such as parameters) that can be

configured by the DE and these elements may also configure the RTL or TLM model.

An IP-XACT component can be a hierarchical object or a leaf object. Leaf components do not contain other

IP-XACT components, while hierarchical components contain other IP-XACT sub-components. This can

be recursive by having hierarchical components that contain hierarchical components, etc.—leading to the

concept of hierarchy depth. The IP being described may have a completely different hierarchical

arrangement in terms of its implementation in RTL or TLM to that of its IP-XACT description. So, a

description of a large IP component may be made up of many levels of hierarchy, but its IP-XACT

description need only be a leaf object as that completely describes the IP. On the other hand, some IP can

only be described in terms of a hierarchical IP-XACT description, no matter what the arrangement of the

implementation hierarchy.

An IP-XACT component may contain a channel or a bridge. A channel is a special IP-XACT object that can

be used to describe multi-point connections between regular components that may require some interface

adaptation. A bridge is a point-to-point reference of slave to master interfaces. Both of these concepts are

used to describe the interconnect between components.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

50 Copyright © 201 0 IEEE. Al l rights reserved.

6.1 .1 Schema

The following schema details the information contained in the component element, which is one of the

seven top-level elements in the IP-XACT specification used to describe a component.

6.1 .2 Description

Each element of a component is detailed in the rest of this subclause; the main sections of a component are

as follows:

a) versionedIdentifier group provides a unique identifier; it consists of four subelements for a top-level

IP-XACT element. See C.6.

b) busInterfaces (optional) specifies all the interfaces for this component. A busInterface is a

grouping of ports related to a function, typically a bus, defined by a bus definition and abstraction

definition. See 6.5.

c) channels (optional) specifies the interconnection between interfaces inside of the component. See

6.6.

d) remapStates (optional) specifies the combination of logic states on the component ports and

translates them into a logical name for use by logic that controls the defined address map. See 6.9.2.

e) addressSpaces (optional) specifies the addressable area as seen from busInterfaces with an

interface mode of master or from cpus. See 6.7.

f) memoryMaps (optional) specifies the addressable area as seen from busInterfaces with an

interface mode of slave. See 6.8.

g) model (optional) specifies all the different views, ports, and model configuration parameters of the

component. See 6.11 .

h) componentGenerators (optional) specifies a list of generator programs attached to this component.

See 6.1 2.

spirit:componentType

To define a ll elements and attributes supported
when defining a component.

spirit:component

type spirit:componentType

This group of elements identifies a top lev el

item (e. g. a component or a bus definition)
w ith v endor, l ibrary , name and a v ersion

number.

spirit:versionedIdentifier

A l ist of bus interfaces supported by this

component.

spirit:bus Interfaces

Lists a l l channel connections betw een m irror

interfaces of this component.

spirit:channe ls

C onta ins a l ist of remap state names and

associated port v a lues

spirit:rem apStates

I f this component is a bus master, this l ists a l l
the address spaces

defined by the component.

spirit:addressSpaces

Lists a l l the slav e memory maps defined by

the component.

spirit:m emoryMaps

M odel information.

spirit:mode l

type spirit:modelType

G enerator l ist is tools-specific.

spirit:componentGenerators

C hoices used by elements w ith an attribute

spirit:choiceRef.

spirit:choices

List of fi le sets associated w ith component.

spirit:fileSe ts

A l ist of w hiteboxE lements

spirit:whiteboxElem ents

cpu's in the component

spirit:cpus

Defines a set of clock driv ers that are not

directly associated w ith an input port of the

component.

spirit:otherClockDrivers

type spirit:otherClocks

F ull description string, ty pica l ly for
documentation

spirit:description

type xs:string

A collection of parameters.

spirit:param eters

C ontainer for v endor specific extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 51

i) choices (optional) specifies multiple enumerated lists. These lists are referenced by other sections of

this component description. See 6.1 4.

j) fileSets (optional) specifies groups of files and possibly their function for reference by other

sections of this component description. See 6.1 3 .

k) whiteboxElements (optional) specifies all the different locations in the component that can be

accessed for verification purposes. See 6.1 5.

l) cpus (optional) indicates this component contains programmable processors. See 6.1 7.

m) otherClockDrivers (optional) specifies any clock signals that are referenced by implementation

constraints, but are not external ports of the component. See 6.11 .1 5.

n) description (optional) allows a textual description of the component. The description element is of

type string.

o) parameters (optional) describes any parameter that can be used to configure or hold information

related to this component. See C.11 .

p) vendorExtensions (optional) contains any extra vendor-specific data related to the component. See

C.10.

See also: SCR 1 .9.

6.1 .3 Example

This is an example of a component (a timers peripheral in a Leon2 library).

<?xml version="1. 0" encoding="UTF-8" ?>

<spirit: component

xmlns: spirit="http: //www. spiritconsortium. org/XMLSchema/SPIRIT/1. 5"

xmlns: xsi="http: //www. w3. org/2001/XMLSchema-instance"

xsi: schemaLocation="http: //www. spiritconsortium. org/XMLSchema/SPIRIT/1. 5

http: //www. spiritconsortium. org/XMLSchema/SPIRIT/1. 5/index. xsd">

<spirit: vendor>spiritconsortium. org</spirit: vendor>

<spirit: library>Leon2</spirit: library>

<spirit: name>timers</spirit: name>

<spirit: version>1. 00</spirit: version>

<spirit: busInterfaces>

. . .

 <spirit: memoryMaps>

. . .

 <spirit: model>

. . .

 <spirit: choices>

. . .

 <spirit: fileSets>

. . .

</spirit: component>

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

52 Copyright © 201 0 IEEE. Al l rights reserved.

6.2 Interfaces

Each IP component normally identifies one or more bus interfaces. Bus interfaces are groups of ports that

belong to an identified bus type [i.e. , a reference to a busDefinition (see 5.2)] and an abstraction type [i.e. , a

reference to an abstractionDefinition (see 5.3)] . The purpose of the bus interface is to map the physical

ports of the component to the logical ports of the abstraction definition. This mapping provides more

information about the interface.

There are seven possible modes for a bus interface: a bus interface may be a master, slave, or system

interface, and may be direct or mirrored. The seventh interface mode is the monitor mode. A monitor

interface can be used to connect IP into the design for verification.

6.2.1 Direct interface modes

A master interface is the interface mode that initiates a transaction (like a read or write) on a bus. Master

interfaces tend to have associated address spaces [address spaces with programmer’s view (PV)] .

A slave interface is the interface mode that terminates or consumes a transaction initiated by a master

interface. Slave interfaces often contain information about the registers that are accessible through the slave

interface.

A system interface is neither a master nor slave interface; this interface mode allows specialized (or non-

standard) connections to a bus, such as external arbiters. System interfaces can be used to handle situations

not covered by the bus specification or deviations from the bus specification standard.

The following guidelines also apply to the direct interface modes.

— If a port participates in the protocol of the master or slave interfaces, it shall be included in master

and slave interfaces. System interfaces often contain some of the same ports as master or slave

interfaces.

— Some buses have specialized sideband ports. If these are tied or related to the standard ports in the

bus (as opposed to being completely stand-alone), these ports should have some sort of system

element designator in the bus definition.

6.2.2 Mirrored interface modes

As the name suggests, a mirrored interface has the same (or similar) ports to its related direct bus interface,

but each port’s direction or initiative is reversed. So a port that is an input on a direct bus interface would be

an output in the matching mirrored interface. A mirrored bus interface (like its direct counterpart) supports

the master, slave, and system interface modes.

6.2.3 Monitor interface modes

A monitor interface connects to a master, slave, system, mirrored-master, mirrored-slave, or mirrored-

system for observation. The connection shall not modify the connected interfaces. A monitor interface is

identified by using the monitor element in the interface definition and specifying the type of active interface

being monitored (master, slave, etc.).

6.3 Interface interconnections

IP-XACT provides for three different types of connections between interfaces. A direct connection is a

connection between a master interface and a slave interface. A direct-mirrored connection is a connection

between a direct interface and its corresponding mirrored interface (i.e. , slave and mirrored-slave). A

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 53

monitor connection is a connection between any interface type (other than monitor) and a monitor interface.

It is not possible to connect two mirrored interfaces.

All interconnections are described in a top-level design object. See 7.1 .

6.3.1 Direct connection

A direct connection is a connection between a master interface and a slave interface. This connection is a

single point-to-point connection. More complex connection schemes with direct connections are possible

with the use of a component containing a bridge element(s).

See also: SCR 2.2, SCR 2.10, SCR 2.11 , SCR 2.12, SCR 2.1 3, and SCR 2.14.

6.3.2 Mirrored-non-mirrored connection

A mirrored-non-mirrored connection is a connection between a master interface and a mirrored-master

interface, a slave interface and a mirrored-slave interface, or a system interface and a mirrored-system

interface. These connections are all single point-to-point connections. More complex connection schemes

with mirrored-non-mirrored connections are possible with the use of a component containing a channel

element.

See also: SCR 2.2, SCR 2.12, and SCR 2.1 4.

6.3.3 Monitor connection

A monitor connection is a connection between a monitor interface and any other interface mode: master,

mirrored-master, slave, mirrored-slave, system, or mirrored-system interface. The monitor interface is

defined for only one mode and can only be used with that specific mode. Monitor connections are purely for

non-intrusive observation of an interface. These connections are single-point to multi-point connections: the

single point being the interface to be monitored and the multi-point being the monitor interface. More than

one monitor may be attached to the same interface. The monitor connection shall meet the following.

a) The connection of a monitor interface shall not count as a connected interface in the determination

of the maximum master or maximum slave calculations.

b) The direction or initiative of ports in a monitor interface cannot be specified in an abstraction

definition. All wire ports on a monitor interface shall be treated as having a logical direction of in. A

monitor interface connected to any active interface shall see the values on the wire ports of the

active interface as inputs on its ports regardless of the direction they have on the active interface. All

transactional ports on a monitor interface shall be treated as having a logical initiative of requires.

See also: SCR 2.2, SCR 4.6, and the SCRs in Table B.4.

6.3.4 Interface logical to physical port mapping

An interface on a component contains a port map to associate the physical ports on the component with the

logical ports in the abstraction definition. This mapping is what provides the extra information needed to

enable a higher level of design.

A physical port defined in a component is assigned a physical port name and optionally can be assigned a

left and a right element to represent a vector. The left element indicates the first boundary, the right

element, the second boundary. left may be larger than right and that left may be the MSB or LSB (the right

being the opposite). The left and right elements are the (bit) rank of the left-most and right-most bits of the

port.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

54 Copyright © 201 0 IEEE. Al l rights reserved.

A logical port defined in an abstraction definition is assigned a logical port name and, optionally, a width.

The logical port is assigned a numbering from width-1 down to 0 if the width is present. If the width is

not present, the logical port number shall have a lower bound of 0 and does not have an upper bound.

6.3.4.1 Mapping rules

Mapping rules describe the assignment of logical bit numbers to physical bit numbers.

a) First, apply all the rules defined in B.1 .8 to determine the logical and physical ranges.

b) The mapping is logical.left-> physical.left down to logical.right-> physical.right.

6.3.4.2 Physical interconnections

With all logical bits having been assigned from the abstraction definition to physical port, it is a simple

matter to describe the physical connections that result from an interface connection. All connections are

made purely based on the logical bit assignment. Like logical bit numbers from each interface are connected.

The alignment is always such that logical bit 0 from interface A connects to logical bit 0 from interface B,

logical bit 1 from interface A connects to logical bit 1 from interface B, and so on.

6.4 Complex interface interconnections

There are two constructs used to connect interfaces of standard components together (traditional

components, usually with master and slave interfaces), a channel and a bridge. These constructs are

encapsulated into components. Not only does the channel or bridge component provide a connection

between standard components, but it also provides information on the addressing and data flow. With this

information, it is possible to construct things such as a memory map for the system.

A channel identifies interfaces in a component that connect a component’s master, slave, and system

interfaces on the same bus. All masters connected to a channel see each slave at the same physical address.

On a channel, only one master may initiate transactions at a time. This does not preclude bus protocols that

utilize pipelining or out-of-order completion. A bus that has addresses that are simultaneously seen

differently from different masters or a bus that allows transactions from different masters to be

simultaneously initiated may only be represented using bus bridges, not channels.

A bridge is an interface between two separate buses, which may be of the same or different types. Such a

component has at least one master interface (onto the peripheral bus) and one slave interface (onto the main

system bus). Crossbar bus infrastructure (e.g. , an ARM Multilayer AMBA) is also treated as a component

containing bus bridges—such examples might have multiple master and multiple slave interfaces.

6.4.1 Channel

A channel is a general name that denotes the collection of connections between multiple internal bus

interfaces. The memory map between these connections is restricted so that, for example, a generator can be

called to automatically compute all the address maps for the complete design. A channel can represent a

simple wiring interconnect or a more complex structure such as a bus.

A channel also encapsulates the connection between master and slave components. A channel is the

construct, which represents the bus infrastructure and allows transactions initiated by a master interface to

be completed by a slave interface.

The following rules apply for using channels.

a) A slave connected to a channel has the same address as seen from all masters connected to this

channel. This guarantees the slave addresses (as seen by each master) are consistent for the system.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 55

As a consequence, all slave interfaces connected to a channel see the same address (if they do not,

they are connected to different channels).

b) A channel supports memory mapping and remapping (see 6.8, 6.9, Clause 10, and H.3).

See also: SCR 3.2.

6.4.2 Bridge

Some buses can be modeled using a component as a bridge. A bridge is a component that physically links

one or more master bus interfaces to a slave bus interface and logically connects the master address space(s)

to a slave memory map having two bus types on each side. This component has at least one master bus

interface and at least one slave bus interface, each for different protocols, and the bridge translates any

signals between them. The slave bus’s interface definition contains a bridge element (or a set of them) to

designate the corresponding master bus interface(s). There are two different types of bridges defined in IP-

XACT: transparent and opaque. See also: Annex H.

The bridge relationship is transparent (opaque attribute is false) when the address space on the bridged

master bus interface is a decoded subset of the main address space, as seen through the bus bridge’s slave

bus interface. In this case, a slave component connected on the bridged master side shall reserve an address

block on the main memory map seen on the bridging slave side. If nothing is attached to the bridged master

bus interface, then no address block is reserved on the main memory map.

The bridge relationship is opaque (opaque attribute is true) when the address space on the bridged master

bus interface is not directly accessible to the main address space, as seen from the channel to which the slave

bus interface is connected. In this case, the bridging component occupies a single address block, which is the

size of its slave bus interface, reserved on the memory map of the masters attached to the main bus channel.

The following rules apply for using bridges.

a) A slave interface can bridge to multiple address spaces. Specifically, a bridge shall have one or more

master interfaces and each master interface may have an address space associated with that

interface.

b) A bridge can only have direct interfaces. As a consequence, a bridge can directly connect to another

component (e.g. , master interface to slave interface connection) under the conditions defined in

6.3 .1 . Or it can connect to a channel (e.g. , master interface to mirrored-master interface).

c) A bridge supports memory mapping and remapping (see 6.8, 6.9, Clause 10, and H.3).

The transfer of addressing information from the slave interface to the master interface of a bridge is done

through the address space assigned to the master interface. This address space defines the visible address

range from this master interface.

6.4.3 Combining channels and bridges

It is possible to combine channels and bridges together each in separate components to form a new

hierarchical component for the purpose of modeling more complex interconnects. A multi-layer bus is a

more complex interconnect that supports multiple memory maps. As such, it cannot be modeled as a channel

and, if the interfaces are asymmetric (they do not allow direct connections), then the bus also cannot be

modeled as a bridge.

The solution is to use a combination of channel and bridge components. The bridge component in the center

forms the main crossbar for the communications between components. It decides which interfaces may

bridge to other interfaces. The smaller channels then come in to convert the direct interface of the bridge

(which could not connect to the master’s or slave’s because of the asymmetric bus) into a mirrored interface

that can now connect with a direct-mirrored connection to the master or slave, as shown in Figure 10.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

56 Copyright © 201 0 IEEE. Al l rights reserved.

6.5 Bus interfaces

6.5.1 busInterface

6.5.1 .1 Schema

The following schema details the information contained in the busInterfaces element, which may appear as

an element inside the top-level component element.

Processor Channel

MemoryBridge Channel

MemoryChannel

Figure 1 0—Asymmetric multi-layer bus connection using channels

A list of bus interfaces supported by this

component.

spirit:bus Interfaces

spirit:bus Inte rfaceType

Describes one of the bus interfaces supported by

this component.

spirit:bus Interface

1 f. .

type spirit:busInterfaceType

attributes

##anyany

A group of elements for name (xs:name),

display N ame and description

spirit:nameGroup

The bus ty pe of this interface. Refers to bus

definition using v endor, l ibrary , name, v ersion
attributes.

spirit:busType

type spirit: libraryRefType

The abstraction ty pe/lev el of this interface. Refers

to abstraction definition using v endor, l ibrary ,

name, v ersion attributes. Bus definition can be

found through a reference in this file.

spirit:abs tractionType

type spirit: libraryRefType

Indicates the usage mode of this instance of the
bus interface.

spirit: interfaceMode

Indicates w hether a connection to this interface is

required for proper component functional ity .

spirit:connectionRequired

type xs:boolean

Listing of maps betw een component ports and bus

ports.

spirit:portMaps

The number of bits in the least addressable unit.

The default is by te addressable (8 bits).

spirit:bits InLau

type xs:positiveInteger

Indicates whether bit steering should be used to
map this interface onto a bus of d ifferent data

w idth.

V alues a re "on" , "off" (defaults to "off").

spirit:bitSteering

type spirit:bitSteeringType

attributes

U se this attribute group on string elements.

spirit:s tring.prompt.attgrp

'big': means the most significant element of any

multi-element data field is stored at the low est

memory address. ' l ittle' means the least significant

element of any multi-element data field is stored

at the low est memory address. I f this element is

not present the default is ' l ittle' endian.

spirit:endianness

type spirit:endianessType

A collection of parameters.

spirit:param eters

C ontainer for v endor specific extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 57

6.5.1 .2 Description

Bus interfaces enable individual ports that appear on the component to be grouped together into a

meaningful, known protocol. When the protocol is known, a lot of additional information can be written

down about the characteristics of that interface.

The busInterfaces element contains an unbounded list of busInterface elements; therefore, a component

may have multiple bus interfaces of the same or different types. Each busInterface element defines

properties of this specific interface in a component. The busInterface element also allows for vendor

attributes to be applied. It contains the following elements and attributes.

a) nameGroup group is defined in C.1 . The name element shall be unique within the containing

component element.

b) busType (mandatory) specifies the bus definition that this bus interface is referenced. A bus

definition (see 5.2) describes the high-level attributes of a bus description. The busType element is

of type libraryRefType (see C.7); it contains four attributes to specify a unique VLNV.

c) abstractionType (optional) specifies the abstraction definition where this bus interface is

referenced. An abstraction definition describes the low-level attributes of a bus description (see 5.3).

The abstractionType element is of type libraryRefType (see C.7); it contains four attributes to

specify a unique VLNV.

d) interfaceMode group describes further information on the mode for this interface. There are seven

possible modes for an interface: master, slave, mirroredMaster, mirroredSlave, system, mirrored-

System and monitor. See 6.5.2.

e) connectionRequired (optional), if true, specifies when this component is integrated; this interface

shall be connected to another interface for the integration to be valid. If false, this interface may be

left unconnected. If this element is not present, its effective value is false. The connectionRequired

element is of type boolean.

f) portMaps (optional) describes the mapping between the abstraction definition’s logical ports and

the component’s physical ports. See 6.5.6.

g) bitsInLau (optional) describes the number of data bits that are addressable by the least significant

address bit in the bus interface. It is only appropriate to specify this element for interfaces that are

addressable. The bitsInLau element is of type positiveInteger. The default value is 8.

h) bitSteering (optional) designates if this interface has the ability to dynamically align data on

different byte channels on a data bus. This element shall only be specified for interfaces that are

addressable. The bitSteering element is a choice of two values: on indicating this interface uses data

steering logic and off that this interface does not use data steering logic. The bitSteering element is

configurable using attributes from string.prompt.att, see C.1 2.

i) endianness (optional) indicates the endianness of the bus interface. The two choices are big for big-

endian and little for little-endian. If this element is not present, its effective value is little. See also

6.5.1 .2.1 .

j) parameters (optional) specifies any parameter data value(s) for this bus interface. See C.11 .

k) vendorExtensions (optional) holds any vendor-specific data from other namespaces, which is

applicable to this bus interface. See C.1 0.

See also: SCR 1 .4, SCR 2.14, SCR 2.1 5, SCR 9.4, SCR 9.5, and SCR 9.6.

6.5.1 .2.1 Endianness

Endianness is defined under the busInterface element of the component. There are (only) two legal values

(big and little) to specify the endianness.

— Big endian (big) means the most significant byte of any multi-byte data field is stored at the lowest

memory address, which is also the address of the larger field.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

58 Copyright © 201 0 IEEE. Al l rights reserved.

— Little endian (little) means the least significant byte of any multi-byte data field is stored at the low-

est memory address, which is also the address of the larger field.

NOTE—The description of endianness is byte-centric as that is the most common least addressable unit (LAU).
However, this description generally applies to any size LAU.

6.5.1 .2.2 Big-endianness

There are at least two ways for big-endianness to manifest itself, byte-invariant and word-invariant (also

known as middle-endian); the difference being if data is stored as word-invariant, the data is stored

differently for transfers larger than a byte, for example,

a) Byte invariant: A word access to address 0x0 is on D[31: 0] . The MSB is D[7: 0] , the LSB is

D[31: 24] .

b) Word invariant: A word access to address 0x0 is on D[31: 0] . The MSB is D[31: 24] , the LSB

byte is D[7: 0] .

c) In IP-XACT, the interpretation of big-endian is the byte-invariant style.

6.5.1 .3 Example

The following example shows a simple bus interface for a clock port. The interface references a bus

definition and an abstraction definition.

<spirit: busInterface>

<spirit: name>APBClk</spirit: name>

<spirit: busType spirit: vendor="spiritconsortium. org"

spirit: library="busdef. clock" spirit: name="clock" spirit: version="1. 0"/>

<spirit: abstractionType spirit: vendor="spiritconsortium. org"

spirit: library="busdef. clock" spirit: name="clock_rtl"

spirit: version="1. 0"/>

<spirit: slave/>

<spirit: portMaps>

<spirit: portMap>

<spirit: logicalPort>

<spirit: name>CLK</spirit: name>

</spirit: logicalPort>

<spirit: physicalPort>

<spirit: name>clk</spirit: name>

</spirit: physicalPort>

</spirit: portMap>

</spirit: portMaps>

</spirit: busInterface>

6.5.2 Interface modes

The following schema details the information contained in the interfaceMode group, which appears as a

group inside the busInterface element.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 59

6.5.2.1 Schema

6.5.2.2 Description

The busInterface’ s mode designates the purpose of the busInterface on this component. There are seven

possible modes: three pairs of standard functional interfaces and their mirrored counterparts, and a monitor

interface for VIP.

The interfaceMode group shall contain one of the following seven elements.

a) A master interface mode (sometimes also known as an initiator) is one that initiates transactions.

See 6.5.3 .

b) A slave interface mode (sometimes also known as a target) is one that responds to transactions. See

6.5.4.

c) A system interface mode is used for some classes of interfaces that are standard on different bus

types, but do not fit into the master or slave category.

The group (mandatory) attribute for the system element defines the name of the group to

which this system interface belongs. The type of the group attribute is Name.

d) A mirroredSlave interface mode is the mirrored version of a slave interface and can provide

addition address offsets to the connected slave interface. See 6.5.5.

e) A mirroredMaster interface mode is the mirrored version of a master interface.

Indicates the usage mode of this instance of the

bus interface.

spirit: interfaceMode

I f this element is present, the bus interface can
serv e as a master. This element encapsulates

additiona l information related to its role as master.

spirit:m as ter

I f this element is present, the bus interface can

serv e as a slav e.

spirit:s lave

I f this element is present, the bus interface is a

sy stem interface, neither master nor slav e, w ith a

specific function on the bus.

spirit:sys tem

Indicates w hich sy stem interface is being
m irrored. N ame must match a group name

present on one or more ports in the corresonding

bus definition.

spirit:group

type xs:Name

I f this element is present, the bus interface
represents a m irrored slav e interface. A ll

directional constra ints on ports are rev ersed

relativ e to the specification in the bus definition.

spirit:m irroredSlave

I f this element is present, the bus interface
represents a m irrored master interface. A ll

directional constra ints on ports are rev ersed

relativ e to the specification in the bus definition.

spirit:m irroredMaster

I f this element is present, the bus interface

represents a m irrored sy stem interface. A ll

directional constra ints on ports are rev ersed
relativ e to the specification in the bus definition.

spirit:m irroredSys tem

I ndicates w hich sy stem interface is being
m irrored. N ame must match a group name

present on one or more ports in the corresonding

bus definition.

spirit:group

type xs:Name

Indicates that this is a (passiv e) monitor interface.

A ll of the ports in the interface must be inputs.
The ty pe of interface to be monitored is specified

w ith the required interfaceTy pe attribute. The

spirit:group element must be specified if

monitoring a sy stem interface.

spirit:m onitor

attributes

spirit:interfaceMode

type xs:token

Indicates w hich sy stem interface is being
monitored. N ame must match a group name

present on one or more ports in the corresonding

bus definition.

spirit:group

type xs:Name

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

60 Copyright © 201 0 IEEE. Al l rights reserved.

f) A mirroredSystem interface mode is the mirrored version of a system interface.

The group (mandatory) attribute for the mirroredSystem element defines the name of the

group to which this mirroredSystem interface belongs. The type of the group attribute is

Name.

g) A monitor interface mode is a special interface that can be used for verification. This monitor

interface mode is used to gather data from other interfaces. See 6.3 .3 .

1) The interfaceMode (mandatory) attribute defines the interface mode for which this monitor

interface can be connected: master, slave, system, mirroredMaster, mirroredSlave, or

mirroredSystem.

2) The group (optional) element is required if the interfaceMode attribute is set to system or

mirroredSystem. This element defines the name of the system group for this monitor interface.

The type of the group element is Name.

See also: SCR 2.12, SCR 4.3, SCR 4.4, and SCR 6.1 6.

6.5.2.3 Example

The following example shows a portion of a bus interface for an AHB bus interface. The interface mode is

defined as monitor for a slave.

<spirit: busInterface>

<spirit: name>ambaAHBSlaveMonitor</spirit: name>

<spirit: busType spirit: vendor="amba. com" spirit: library="AMBA2"

spirit: name="AHB" spirit: version="r2p0_5"/>

<spirit: abstractionType spirit: vendor="amba. com" spirit: library="AMBA2"

spirit: name="AHB_rtl" spirit: version="r2p0_5"/>

<spirit: monitor spirit: interfaceMode="slave"/>

<spirit: portMaps>

<spirit: portMap>

<spirit: logicalPort>

<spirit: name>HRESP</spirit: name>

</spirit: logicalPort>

<spirit: physicalPort>

<spirit: name>hresp</spirit: name>

</spirit: physicalPort>

</spirit: portMap>

. . .

</spirit: busInterface>

6.5.3 Master interface

The following schema details the information contained in the master element, which appears as an element

inside the interfaceMode group inside busInterface element.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 61

6.5.3.1 Schema

6.5.3.2 Description

A master interface (also known as an initiator) is one that initiates transactions. The master element

contains the following elements and attributes.

a) addressSpaceRef (optional) element contains attributes and subelements to describe information

about the range of addresses with which this master interface can generate transactions.

1) addressSpaceRef (mandatory) attribute references a name of an address space defined in the

containing description. The address space shall define the range and width for transaction on

this interface. See 6.7.

2) baseAddress (optional) specifies the starting address of the address space. The address space

numbering normally starts at 0 . Some address spaces may use offset addressing (starting at a

number other than 0) so the base address element can be used to designate this information.

The type of this element is set to scaledInteger, see D.1 5. The baseAddress element is

configurable with attributes from long.att, see C.1 2. The prompt (optional) attribute allows the

setting of a string for the configuration and has a default value of “Base Address:”. See also:

Clause 11 .

See also: SCR 9.1 .

6.5.3.3 Example

The following example shows a portion of a bus interface for an AHB master bus interface. The interface

contains a reference to an address space called main that has its base address starting at 0 .

<spirit: busInterface>

<spirit: name>AHBmaster</spirit: name>

<spirit: busType spirit: vendor="amba. com" spirit: library="AMBA2"

spirit: name="AHB" spirit: version="r2p0_5"/>

<spirit: abstractionType spirit: vendor="amba. com" spirit: library="AMBA2"

spirit: name="AHB_rtl" spirit: version="r2p0_5"/>

<spirit: master>

<spirit: addressSpaceRef spirit: addressSpaceRef="main"/>

</spirit: master>

<spirit: connectionRequired>true</spirit: connectionRequired>

<spirit: portMaps>

<spirit: portMap>

<spirit: logicalPort>

<spirit: name>HRDATA</spirit: name>

I f this element is present, the bus

interface can serv e as a master. This

element encapsulates additional

information related to its role as master.

spirit:m as ter

spirit:addrSpaceRefType

I f this master connects to an addressable

bus, this element references the address

space it maps to.

spirit:addressSpaceRef

(extension)

type spirit:addrSpaceRefType

attributes

A reference to a unique address space.

spirit:addressSpaceRef

type xs:Name

I f the master's mapping to the phy sica l

address space is not zero based, the

baseA ddress element may be used to

indicate the offset. I f not specified the

offset is 0. The baseA ddress is in units

of the addressSpace addressU nitB its

Base of an address space.

spirit:baseAddress

type spirit:scaledInteger

attributes

U se this attribute group on long integer

elements for w hich the schema supplies

a default prompt a ttribute.

spirit:long.attgrp

P rov ides a string used to prompt the

user for user-resolv ed property v a lues.

spirit:prompt

type xs:string

default Base Address:

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

62 Copyright © 201 0 IEEE. Al l rights reserved.

</spirit: logicalPort>

<spirit: physicalPort>

<spirit: name>hrdata</spirit: name>

</spirit: physicalPort>

</spirit: portMap>

. . .

</spirit: busInterface>

6.5.4 Slave interface

The following schema details the information contained in the slave element, which appears as an element

inside the interfaceMode group inside busInterface element.

6.5.4.1 Schema

6.5.4.2 Description

A slave interface (sometimes also known as a target) is one that responds to transactions. The memory map

reference points to information about the range of registers, memory, or other address blocks accessible

through this slave interface. This slave interface can also be used in a bridge application to “bridge” a

transaction from a slave interface to a master interface.

a) memoryMapRef (optional) element contains an attribute that references a memory map.

The memoryMapRef (mandatory) attribute references a name of a memory map defined in the

containing description. The memory map contains information about the range of registers,

memory, or other address blocks. See 6.8.

I f this element is present, the bus

interface can serv e as a slav e.

spirit:s lave

spirit:m emoryMapRefType

References the memory map. The name

of the memory map is kept in its

memoryM apRef attribute.

spirit:m emoryMapRef

type spirit:memoryMapRefType

attributes

A reference to a unique memory map.

spirit:m emoryMapRef

type xs:Name

I f this element is present, it indicates

that the bus interface prov ides a bridge
to another master bus interface on the

same component. I t has a masterRef

attribute w hich conta ins the name of the
other bus interface. I t a lso has an

opaque attribute to indicate that the bus

bridge is opaque.

A ny slav e interface can bridge to
multiple master interfaces, and multiple

slav e interfaces can bridge to the same

master interface.

spirit:bridge

0 f. .

attributes

The name of the master bus interface to
which this interface bridges.

spirit:m as terRef

type xs:Name

I f true, then this bridge is opaque; the

w hole of the address range is mappeed
by the bridge and there are no gaps.

spirit:opaque

type xs:boolean

This reference is used to point the

filesets that are associated w ith this
slav e port.

Depending on the slav e port function,
there may be completely different

softw are driv ers associated w ith the

different ports.

spirit:fi leSetRefGroup

0 f. .

A britray name assigned to the

collections of fi leSets.

spirit:group

type xs:Name

A reference to a fi leSet.

spirit:fileSetRef

0 f. .
Refers to a fi leS et defined w ithin this
description.

spirit:localNam e

type xs:Name

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 63

b) bridge (optional) element is an unbounded list of references to master interfaces. If the interface is

of a bus definition that is addressable, a bridge element may be included.

1) The masterRef (mandatory) attribute shall reference a master interface (see 6.5.3) in the

containing description. Under some conditions, transactions from the slave interface may be

bridged to the referenced master interface, as defined by opaque (see also 6.4.2).

2) The opaque (mandatory) attribute defines the type of bridging. The opaque attribute is of type

boolean. true means the addressing entering into the slave interface shall have the subspace

maps baseAddress added and, if non-negative, the result shall exit on the subspace maps’

referenced master interface’s referenced address space (see 6.4.2 and Clause 11). false means

all addressing entering the slave interface shall exit the above referenced master interface

without any modifications, this type of bridge is sometimes called transparent.

c) fileSetRefGroup (optional) element is an unbounded list of the references to file sets contained in

this component. These file set references are associated with this slave interface. This element may

seem out of place, but it allows each slave port to reference a unique fileSet element (see 6.1 3). This

element can further be used to reference a software driver, which can be made different for each

slave port.

group (optional) element allows the definition of a group name for the fileSetRefGroup. The

group element is of type Name.

d) fileSetRef (optional) is an unbounded list of references to a fileSet by name within the containing

document or another document referenced by the VLNV. See C.8.

See also: SCR 3.6 and SCR 9.2.

6.5.4.3 Example

The following example shows a portion of an opaque bridge from and AHB slave bus interface to an APB

master bus interface.

<spirit: busInterface>

<spirit: name>ambaAPB</spirit: name>

<spirit: busType spirit: vendor="amba. com" spirit: library="AMBA2"

spirit: name="APB" spirit: version="r2p0_3"/>

<spirit: abstractionType spirit: vendor="amba. com" spirit: library="AMBA2"

spirit: name="APB_rtl" spirit: version="r2p0_3"/>

<spirit: master>

<spirit: addressSpaceRef spirit: addressSpaceRef="apb"/>

</spirit: master>

. . .

<spirit: busInterface>

<spirit: name>ambaAHB</spirit: name>

<spirit: busType spirit: vendor="amba. com" spirit: library="AMBA2"

spirit: name="AHB" spirit: version="r2p0_5"/>

<spirit: abstractionType spirit: vendor="amba. com" spirit: library="AMBA2"

spirit: name="AHB_rtl" spirit: version="r2p0_5"/>

<spirit: slave>

<spirit: memoryMapRef spirit: memoryMapRef="ambaAHB"/>

<spirit: bridge spirit: masterRef="ambaAPB" spirit: opaque="true"/>

</spirit: slave>

. . .

<spirit: addressSpaces>

<spirit: addressSpace>

<spirit: name>apb</spirit: name>

<spirit: range spirit: choiceRef="addressWidthChoice"

spirit: format="choice" spirit: id="masterRange" spirit: prompt="Master Port

Size : " spirit: resolve="user">1M</spirit: range>

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

64 Copyright © 201 0 IEEE. Al l rights reserved.

<spirit: width spirit: format="long">32</spirit: width>

</spirit: addressSpace>

</spirit: addressSpaces>

<spirit: memoryMaps>

<spirit: memoryMap>

<spirit: name>ambaAHB</spirit: name>

<spirit: subspaceMap spirit: masterRef="ambaAPB">

<spirit: name>bridgemap</spirit: name>

<spirit: baseAddress>0x10000000</spirit: baseAddress>

</spirit: subspaceMap>

</spirit: memoryMap>

</spirit: memoryMaps>

6.5.5 Mirrored slave interface

The following schema details the information contained in the mirroredSlave element, which appears as an

element inside the interfaceMode group inside busInterface element.

6.5.5.1 Schema

6.5.5.2 Description

A mirroredSlave interface is used to connect to a slave interface. The mirroredSlave interface may contain

additional address information in the baseAddresses (optional) element.

a) remapAddress (mandatory) element is an unbounded list that specifies the address offset to apply

to the connected slave interface. The remapAddress is expressed as the number of addressable units

based on the size of an addressable unit as defined inside the containing busInterface/bitsInLau

element. The type of this element is set to scaledNonNegativeInteger, see D.1 5. The

remapAddress element is configurable with attributes from long.att, see C.1 2. The prompt

(optional) attribute allows the setting of a string for the configuration and has a default value of

“Base Address:”. The state (optional) attribute references a defined state in the component and

identifies the remapState/name for which the remapAddress and range apply. See 6.9.2.

b) range (mandatory) specifies the address range to apply to the connected slave interface. The range

is expressed as the number of addressable units based on the size of an addressable unit as defined

inside the containing busInterface/bitsInLau element. See 6.5.1 . The type of this element is set to

I f this element is present, the bus

interface represents a m irrored slav e
interface. A ll directiona l constra ints on

ports are rev ersed relativ e to the

specification in the bus definition.

spirit:m irroredSlave

Represents a set of remap base

addresses.

spirit:baseAddresses

Base of an address block, expressed as the

number of bitsInLA U from the containing

busI nterface. The state attribute indicates the

name of the remap state for w hich this

address is v a lid.

spirit:rem apAddress

1 f. .

type spirit:scaledNonNegativeInteger

attributes

U se this attribute group on long integer
elements for w hich the schema supplies

a default prompt attribute.

spirit:long.attgrp

P rov ides a string used to prompt the

user for user-resolv ed property v a lues.

spirit:prompt

type xs:string

default Base Address:

N ame of the state in w hich this

remapped address range is v a l id

spirit:s tate

type xs:string

The address range of mirrored slav e,

expressed as the number of bitsInLA U

from the conta ining busInterface.

spirit:range

type spirit:scaledPositiveInteger

attributes

U se this attribute group on long integer

elements.

spirit:long.prompt.attgrp

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 65

scaledPositiveInteger. The range element is configurable with attributes from long.prompt.att, see

C.1 2.

6.5.5.3 Example

This example shows a portion of a bus interface for an AHB mirroredSlave bus interface. The interface

contains two remap addresses. The first does not have a state attribute and is always active unless a named

state is active; in this case, the base address of the connected slave is offset by 0x00000000 . The second

remap address is active when state=remapped is selected; in this case the base address of the slave is offset

by 0x10000000 .

<spirit: busInterface>

<spirit: name>MirroredSlave0</spirit: name>

<spirit: busType spirit: vendor="amba. com" spirit: library="AMBA2"

spirit: name="AHB" spirit: version="r2p0_5"/>

<spirit: abstractionType spirit: vendor="amba. com" spirit: library="AMBA2"

spirit: name="AHB_rtl" spirit: version="r2p0_5"/>

<spirit: mirroredSlave>

<spirit: baseAddresses>

<spirit: remapAddress spirit: resolve="user"

spirit: id="start_addr_slv0_mirror" spirit: choiceRef="BaseAddressChoices"

spirit: format="choice" spirit: prompt="Slave 0 Starting

Address: ">0x00000000</spirit: remapAddress>

<spirit: remapAddress spirit: resolve="user"

spirit: id="restart_addr_slv0_mirror"

spirit: choiceRef="BaseAddressChoices" spirit: format="choice"

spirit: prompt="Remap Slave 0 Starting Address: "

spirit: state="remapped">0x10000000</spirit: remapAddress>

<spirit: range spirit: resolve="user" spirit: id="range_slv0_mirror"

spirit: prompt="Slave 0 Range: ">0x00010000</spirit: range>

</spirit: baseAddresses>

</spirit: mirroredSlave>

. . .

</spirit: busInterface>

6.5.6 Port map

The following schema details the information contained in the portMaps element, which appears as an

element inside busInterface element.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

66 Copyright © 201 0 IEEE. Al l rights reserved.

6.5.6.1 Schema

6.5.6.2 Description

The portMaps (optional) element contains an unbounded list of portMap elements. Each portMap

element describes the mapping between the logical ports, defined in the referenced abstraction definition, to

the physical ports, defined in the containing component description.

a) logicalPort (mandatory) contains the information on the logical port from the abstraction definition.

1) name (mandatory) specifies the logical port name. The name shall be a name of a logical port

in the referenced abstraction definition that is defined as legal for this interface mode. The

name element is of type Name.

2) vector (optional) is used for a vectored logical port to specify the indices of the logical port

mapping. The vector element contains two subelements: left and right. The values of left and

right shall be less than the width if specified for the logical port from the abstraction

definition. The left and right elements are both of type nonNegativeInteger. The left and right

elements are configurable with attributes from long.prompt.att, see C.1 2.

b) physicalPort (mandatory) contains information on the physical port contained in the component.

1) name (mandatory) specifies the physical port name. The name shall be a name of a port in the

containing component. The name element is of type Name.

2) vector (optional) is used for a vectored physical port to specify the indices of the physical port

mapping. The vector element contains two subelements: left and right. The values of left and

right shall be within the left and right values specified for the physical port. The left and right

elements are both of type nonNegativeInteger. The left and right elements are configurable

with attributes from long.prompt.att, see C.1 2.

The same physical port may be mapped to a number of different logical ports on the same or different bus

interfaces, and the same logical port may be mapped to a number of different physical ports. For port

mapping rules, see 6.3 .4.1 .

See also: SCR 6.1 , SCR 6.2, SCR 6.3, SCR 6.4, SCR 6.5, SCR 6.6, SCR 6.7, SCR 6.12, SCR 6.1 3,

SCR 6.1 9, SCR 6.20, SCR 6.21 , SCR 6.22, SCR 6.23, SCR 6.24, and SCR 6.25.

Listing of maps betw een component

ports and bus ports.

spirit:portMaps

M aps a component's port to a port in

a bus description. This is the logica l

to phy sica l mapping. The logica l pin

comes from the bus interface and the

phy sica l pin from the component.

spirit:portMap

1 f. .

Logica l port from abstraction

definition

spirit:logicalPort

Bus port name as specified inside the

abstraction definition

spirit:nam e

type xs:Name

Definition of the logica l indecies for a

v ectored port.

spirit:vector

Defines w hich logica l bit maps to the

phy sica l left bit below

spirit:le ft

type xs:nonNegativeInteger

attributes

U se this attribute group on long integer

elements.

spirit:long.prom pt.attgrp

Defines w hich logica l bit maps to the

phy sica l right bit below

spirit:right

type xs:nonNegativeInteger

attributes

U se this attribute group on long integer

elements.

spirit:long.prom pt.attgrp

Phy sica l port from this component

spirit:phys icalPort

C omponent port name as specified

inside the model port section

spirit:nam e

type spirit:portName

Definition of the indecies for a

v ectored port.

spirit:vector

The optiona l elements left and right

can be used to select a bit-slice of a
port v ector to map to the bus

interface.

spirit:le ft

type xs:nonNegativeInteger

attributes

U se this a ttribute group on long integer

elements.

spirit:long.prompt.attgrp

The optiona l elements left and right
can be used to select a bit-slice of a

port v ector to map to the bus

interface.

spirit:right

type xs:nonNegativeInteger

attributes

U se this a ttribute group on long integer

elements.

spirit:long.prompt.attgrp

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 67

6.5.6.3 Example

The following example shows a portion of a bus interface for an APB bus interface. The logical port PADDR

is mapped to the lower 1 2 bits of the physical port paddr, and the logical port PWRITE is mapped to the

physical port pwrite .

<spirit: portMap>

<spirit: logicalPort>

<spirit: name>PADDR</spirit: name>

</spirit: logicalPort>

<spirit: physicalPort>

<spirit: name>paddr</spirit: name>

<spirit: vector>

<spirit: left>11</spirit: left>

<spirit: right>11</spirit: right>

</spirit: vector>

</spirit: physicalPort>

</spirit: portMap>

<spirit: portMap>

<spirit: logicalPort>

<spirit: name>PWRITE</spirit: name>

</spirit: logicalPort>

<spirit: physicalPort>

<spirit: name>pwrite</spirit: name>

</spirit: physicalPort>

</spirit: portMap>

6.6 Component channels

6.6.1 Schema

The following schema details the information contained in the channels element, which may appear as an

element inside the top-level component element.

6.6.2 Description

The channels element contains an unbounded list of channel elements. Each channel element contains a

list of all the mirrored bus interfaces in the containing component that belong to the same channel.

a) nameGroup group is defined in C.1 . The name element shall be unique within the containing

channels element.

Lists a l l channel connections betw een mirror

interfaces of this component.

spirit:channels

Defines a set of m irrored interfaces of this
component that a re connected to one another.

spirit:channel

1 f. .

A group of elements for name (xs:name),

d isplay N ame and description

spirit:nameGroup

U nique name

spirit:nam e

type xs:Name

E lement name for display purposes. Ty pica l ly a

few w ords prov iding a more detailed and/or

user-friendly name than the spirit:name.

spirit:d isplayNam e

type xs:string

F ull description string, ty pica lly for documentation

spirit:description

type xs:string

C ontains the name of one of the bus interfaces

that is part of this channel. The ordering of the

references may be important to the design

env ironment.

spirit:bus InterfaceRef

2 f. .

type xs :Name

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

68 Copyright © 201 0 IEEE. Al l rights reserved.

b) busInterfaceRef (mandatory) is an unbound list of references (a minimum of two) to mirrored bus

interfaces in the containing component. Each mirrored bus interface in a component may be refer-

enced in any channel at most once. The order of this list may be used by the DE in some way and

shall be maintained. The busInterfaceRef element is of type Name. See 6.5.1 .

See also: SCR 3.1 , SCR 3.2, SCR 3.3, SCR 3.4, and SCR 3.5.

6.6.3 Example

The following example shows a channel with two connected busInterfaces.

<spirit: busInterfaces>

 <spirit: busInterface>

 <spirit: name>InterfaceA</spirit: name>

 <spirit: busType>. . . </spirit: busType>

 <spirit: mirroredMaster>. . . </spirit: mirroredMaster>

 </spirit: busInterface>

 <spirit: busInterface>

 <spirit: name>InterfaceB</spirit: name>

 <spirit: busType>. . . </spirit: busType>

 <spirit: mirroredSlave>. . . </spirit: mirroredSlave>

 </spirit: busInterface>

</spirit: busInterfaces>

<spirit: channels>

 <spirit: channel>

 <spirit: name>masterChannel</spirit: name>

 <spirit: displayName>Channel for Master communication</spirit: displayName>

 <spirit: description>This channel includes all transaction calls used by

the master component of the system</spirit: description>

 <spirit: busInterfaceRef>InterfaceA</spirit: busInterfaceRef>

 <spirit: busInterfaceRef>InterfaceB</spirit: busInterfaceRef>

 </spirit: channel>

</spirit: channels>

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 69

6.7 Address spaces

An address space is defined as a logical addressable space of memory. Each master interface can be assigned

a logical address space. Address spaces are effectively the programmer’s view looking out from a master

interface. Some components may have one address space associated with more than one master interface

(for instance, a processor that has a system bus and a fast memory bus). Other components (for instance,

Harvard architecture processors) may have multiple address spaces associated with multiple master

interfaces—one for instruction and the other for data.

6.7.1 addressSpaces

6.7.1 .1 Schema

The following schema details the information contained in the addressSpaces element, which may appear

as an element inside the top-level component element.

I f this component is a bus master,
this l ists a ll the address spaces

defined by the component.

spirit:addressSpaces

This defines a logica l space,

referenced by a bus master.

spirit:addressSpace

1 f. .

A group of elements for name

(xs:name), d isplay N ame and

description

spirit:nameGroup

This group of elements describes the

number of addressable units and the

w idth of a row of an address block in
a memory map.

N ote that this is a group, not an
element. I t does not appear in the

XM L, but its contents may .

spirit:blockSize

The address range of an address block.

E xpressed as the number of

addressable units accessible to the

block. The range and the w idth are
related by the follow ing formulas:

number_of_bits_in_block =
spirit:addressU nitB its * spirit: range

number_of_row s_in_block =
number_of_bits_in_block / spirit:w idth

spirit:range

type spirit:scaledPositiveInteger

attributes

U se this attribute group on long integer
elements.

spirit:long.prompt.attgrp

The bit w idth of a row in the address

block. The range and the w idth are

related by the follow ing formulas:

number_of_bits_in_block =

spirit:addressU nitB its * spirit: range

number_of_row s_in_block

= number_of_bits_in_block /

spirit:w idth

spirit:w idth

type xs:nonNegativeInteger

attributes

U se this a ttribute group on long integer

elements.

spirit:long.prompt.attgrp

Address segments w ithing an

addressSpace

spirit:segm ents

The number of data bits in an

addressable unit. The default is by te

addressable (8 bits).

spirit:addressUnitBits

type xs:positiveInteger

Specifies an executable softw are

image to be loaded into a processors

address space. The format of the

image is not specified. I t could, for

example, be an ELF loadfile, or it

could be raw binary or asci i hex data

for loading d irectly into a memory

model instance.

spirit:executable Im age

0 f. .

P rov ides the loca l memory map of an

address space. B locks in this memory

map are accessable to master interfaces

on this component that reference this

address space. They are not

accessable to any external master

interface.

spirit:localMemoryMap

type spirit: localMemoryMapType

Data specific to this address space.

spirit:param eters

C onta iner for v endor specific

extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

70 Copyright © 201 0 IEEE. Al l rights reserved.

6.7.1 .2 Description

The addressSpaces element contains an unbounded list of addressSpace elements. Each addressSpace

element defines a logical address space seen by a master bus interface. It contains the following elements.

a) nameGroup group is defined in C.1 . The name element shall be unique within the containing

addressSpaces element.

b) blockSize group includes the following.

1) range (mandatory) gives the address range of an address space. This is expressed as the

number of addressable units of the address space. The size of an addressable unit is defined

inside the addressUnitBits element. The type of the range element is set to

scaledPositiveInteger. The range element is configurable with attributes from

long.prompt.att, see C.1 2.

2) width (mandatory) is the bit width of a row in the address space. The type of this element is set

to nonNegativeInteger. The width element is configurable with attributes from

long.prompt.att, see C.1 2.

c) segments (optional) describes a portion of the address space starting at an address offset and

continuing for a given range. A segment can be referenced by a subspaceMap. See 6.7.7.

d) addressUnitBits (optional) defines the number of data bits in each address increment of the address

space. If this element is not present, it is presumed to be 8 .

e) executableImage (optional) describes the details of an executable image that can be loaded and

executed in this address space on the processor to which this master bus interface belongs. See 6.7.3 .

f) localMemoryMap (optional) describes a local memory map that is seen exclusively by this master

bus interface viewing this address space. See 6.7.7.

g) parameters (optional) specifies any parameter data value(s) for this address space. See C.11 .

h) vendorExtensions (optional) holds any vendor-specific data from other namespaces, which is

applicable to this address space. See C.1 0.

The range and width elements are related by the following formulas.

number_of_bits_in_block = addressUnitBits u range
number_of_rows_in_block = number_of_bits_in_block / width

See also: SCR 9.3 and SCR 9.8.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 71

6.7.1 .3 Example

The following example shows the definition of an address space with a range (length) of 4 GB and a width

of 32 bits.

<spirit: addressSpaces>

<spirit: addressSpace>

<spirit: name>main</spirit: name>

<spirit: range>4G</spirit: range>

<spirit: width>32</spirit: width>

<spirit: addressUnitBits>8</spirit: addressUnitBits>

</spirit: addressSpace>

</spirit: addressSpaces>

6.7.2 Segments

6.7.2.1 Schema

The following schema details the information contained in the segments element, which may appear inside

an addressSpace element.

6.7.2.2 Description

The segments element contains an unbounded list of segment elements. Each segment describes the

location and size of an area in the containing addressSpace.The segment element contains the following

elements.

a) nameGroup group is defined in C.1 . The name element shall be unique within the containing

segments element.

b) addressOffset (mandatory) describes, in addressing units from the containing addressSpace/

addressUnitBits element, the offset from the start of the addressSpace. The addressOffset element

is of type scaledNonNegativeInteger. The addressOffset element is configurable with attributes

from long.prompt.att, see C.1 2.

A ddress segments w ithing an
addressSpace

spirit:segm ents

A ddress segment w ithing an

addressSpace

spirit:segm ent

1 f. .

A group of elements for name (xs:name),
display N ame and description

spirit:nameGroup

U nique name

spirit:name

type xs:Name

E lement name for display purposes.

Ty pica lly a few w ords prov iding a more
detailed and/or user-friendly name than

the spirit:name.

spirit:displayNam e

type xs:string

F ull description string, ty pica lly for
documentation

spirit:description

type xs:string

A ddress offset of the segment w ithin the

containing address space.

spirit:addressOffse t

type spirit:scaledNonNegativeInteger

attributes

U se this attribute group on long integer

elements.

spirit:long.prompt.attgrp

The address range of asegment.

E xpressed as the number of addressable

units accessible to the segment.

spirit:range

type spirit:scaledPositiveInteger

attributes

U se this attribute group on long integer
elements.

spirit:long.prompt.attgrp

C onta iner for v endor specific extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

72 Copyright © 201 0 IEEE. Al l rights reserved.

c) range (mandatory) gives the address range of an address space segment. This is expressed as the

number of addressable units of the address space segment. The size of an addressable unit is defined

inside the addressUnitBits element. The type of the range element is set to scaledPositiveInteger.

The range element is configurable with attributes from long.prompt.att, see C.1 2.

d) vendorExtensions (optional) holds any vendor-specific data from other namespaces, which is

applicable to this address space. See C.1 0.

See also: SCR 9.8.

6.7.2.3 Example

The following example shows the definition of an address space with a range (length) of 4 GB and a width

of 32 bits. The address space contains two segments, one starting at 0x10000000 with a range of 32 MB,

the second segment starts at 0x80000000 with a range of 1 GB.

<spirit: addressSpaces>

<spirit: addressSpace>

<spirit: name>main</spirit: name>

<spirit: range>4G</spirit: range>

<spirit: width>32</spirit: width>

<spirit: segments>

<spirit: segment>

<spirit: name>segment1</spirit: name>

<spirit: addressOffset>0x10000000</spirit: addressOffset>

<spirit: range>32M</spirit: range>

</spirit: segment>

<spirit: segment>

<spirit: name>segment2</spirit: name>

<spirit: addressOffset>0x80000000</spirit: addressOffset>

<spirit: range>1G</spirit: range>

</spirit: segment>

</spirit: segments>

<spirit: addressUnitBits>8</spirit: addressUnitBits>

</spirit: addressSpace>

</spirit: addressSpaces>

6.7.3 executableImage

6.7.3.1 Schema

The following schema details the information contained in the executableImage element, which may appear

inside an addressSpace element.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 73

6.7.3.2 Description

The executableImage element describes the details of an executable image that can be loaded and executed

in this address space on the processor to which this master bus interface belongs and contains the following

elements.

a) id (mandatory) attribute uniquely identifies the executableImage for reference in a fileSet/

function/fileRef. The id attribute is of type ID.

b) imageType (optional) attribute can describe the binary executable format (e.g. , raw binary). The list

of possible values is user-defined. The imageType attribute is of type Name.

c) name (mandatory) identifies the location of the executable object. The name element is of type

spiritURI.

d) description (optional) allows a textual description of the address space. The description element is

of type string.

e) parameters (optional) specifies any parameter data value(s) for this executable object. See C.11 .

f) languageTools (optional) contains further elements to describe the information needed to build the

executable image. See 6.7.4.

g) fileSetRefGroup (optional) element contains a list of fileSetRef subelements, each one containing

the name of a file set associated with this executableImage. See 6.1 3 .

h) vendorExtensions (optional) holds any vendor-specific data from other namespaces, which is

applicable to this address space. See C.1 0.

See also: SCR 9.3.

Specifies an executable softw are image

to be loaded into a processors address
space. The format of the image is not

specified. I t could, for example, be an

E LF loadfile, or it could be raw binary or
ascii hex data for loading directly into a

memory model instance.

spirit:executable Im age

0 f. .

attributes

U nique ID for the executableImage,

referenced in fi leS et/function/fileRef

spirit:id

type xs: ID

O pen element to describe the ty pe of

image. The contents is model and/or
generator specific.

spirit:im ageType

type xs:Name

N ame of the executable image file.

spirit:name

type spirit:spiritURI

S tring for describing this executable image

to users

spirit:description

type xs:string

A dditiona l information about the load

module, e. g. stack base addresses, table
addresses, etc.

spirit:param eters

Default commands and flags for softw are
language tools needed to build the

executable image.

spirit:languageTools

C ontains a group of fi le set references
that indicates the set of fi le sets

comply ing w ith the tool set of the current
executable image.

spirit:fileSetRefGroup

A reference to a fi leSet.

spirit:fi leSetRef

1 f. .
Refers to a fileSet defined w ithin this

description.

spirit:localName

type xs:Name

C ontainer for v endor specific extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

74 Copyright © 201 0 IEEE. Al l rights reserved.

6.7.3.3 Example

The following example shows the definition of a binary executable produced using the Gnu C Compiler

(GCC) software tools.

<spirit: executableImage spirit: id="gnu" spirit: imageType="bin">

<spirit: name>calculator. x</spirit: name>

<spirit: description>Calculator function</spirit: name>

<spirit: languageTools>

<spirit: fileBuilder>

<spirit: fileType>cSource</spirit: fileType>

<spirit: command spirit: id="gccCompilerDefault"> gcc</

spirit: command>

<spirit: flags spirit: id="gccCFlags">-c -g -I${ INCLUDES_LOCATION} /

software/include -I${ GCC_LIBRARY} /common/include</spirit: flags>

</spirit: fileBuilder>

<spirit: fileBuilder>

<spirit: fileType>asmSource</spirit: fileType>

<spirit: command spirit: id="gccAssemblerDefault">gcc</

spirit: command>

<spirit: flags spirit: id="gccAsmFlags">-c -Wa, --gdwarf2 -

I${ INCLUDES_LOCATION} /software/include -I${ GCC _LIBRARY} /common/include</

spirit: flags>

</spirit: fileBuilder>

<spirit: linker spirit: id="gccLinker">gcc</spirit: linker>

<spirit: linkerFlags spirit: id="gccLnkFlags">-g -nostdlib -static -

mcpu=arm9</spirit: linkerFlags>

<spirit: linkerCommandFile>

<spirit: name spirit: id="lnkCmdFile">linker. ld</spirit: name>

<spirit: commandLineSwitch spirit: id="lnkCmSwitch">-T</

spirit: commandLineSwitch>

<spirit: enable spirit: id="lnkCmdEnable">true</spirit: enable>

<spirit: generatorRef>org. spiritconsortium. tool</spirit: generatorRef>

</spirit: linkerCommandFile>

</spirit: languageTools>

<spirit: fileSetRefGroup>

<spirit: fileSetRef>

<spirit: localName>calculatorAppC</spirit: localName>

</spirit: fileSetRef>

<spirit: fileSetRef>

<spirit: localName>mathFunctions</spirit: localName>

</spirit: fileSetRef>

<spirit: fileSetRef>

<spirit: localName>coreLib-gnu</spirit: localName>

</spirit: fileSetRef>

</spirit: fileSetRefGroup>

</spirit: executableImage>

6.7.4 languageTools

6.7.4.1 Schema

The following schema details the information contained in the languageTools element, which may appear as

an element inside the executableImage element.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 75

6.7.4.2 Description

The languageTools element contains the following list of optional elements to document a set of software

tools used to create an executable binary documented by the parent executableImage element. Multiple

languageTools information can be created to reflect various software tool sets that can create this executable

binary file.

a) fileBuilder (optional) contains the information details of a compiler or assembler for software

source code. See 6.7.5.

b) linker (optional) documents the link editor associated with the software tools described in file-

Builder. The linker element is of type string. The linker element is configurable with attributes

from string.prompt.att, see C.1 2.

c) linkerFlags (optional) can also be associated with any linker information. The linkerFlags element

is of type string. The linkerFlags element is configurable with attributes from string.prompt.att, see

C.1 2.

d) linkerCommandFile (optional) documents a file containing commands the linker follows. See

6.7.6.

See also: SCR 9.7.

6.7.4.3 Example

The following example shows the definition of GCC software tools used together to produce an executable

binary code file.

<spirit: languageTools>

<spirit: fileBuilder>

<spirit: fileType>cSource</spirit: fileType>

<spirit: command spirit: id="gccCompilerDefault"> gcc</spirit: command>

<spirit: flags spirit: id="gccCFlags">-c -g -I${ INCLUDES_LOCATION} /

software/include -I${ GCC_LIBRARY} /common/include</spirit: flags>

</spirit: fileBuilder>

<spirit: fileBuilder>

<spirit: fileType>asmSource</spirit: fileType>

Default commands and flags for softw are

language tools needed to build the

executable image.

spirit:languageTools

A generic placeholder for any fi le builder

l ike compilers and assemblers. I t

conta ins the file ty pes to w hich the

command should be applied, and the

flags to be used w ith that command.

spirit:fileBuilder

0 f. .

spirit:linker

type xs:string

attributes

U se this attribute group on string

elements.

spirit:s tring.prompt.attgrp

spirit:linkerFlags

type xs:string

attributes

U se this attribute group on string

elements.

spirit:s tring.prompt.attgrp

Specifies a l inker command fi le.

spirit:linkerCommandFile

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

76 Copyright © 201 0 IEEE. Al l rights reserved.

<spirit: command spirit: id="gccAssemblerDefault">gcc</spirit: command>

<spirit: flags spirit: id="gccAsmFlags">-c -Wa, --gdwarf2 -

I${ INCLUDES_LOCATION} /software/include -I${ GCC _LIBRARY} /common/include</

spirit: flags>

</spirit: fileBuilder>

<spirit: linker spirit: id="gccLinker">gcc</spirit: linker>

<spirit: linkerFlags spirit: id="gccLnkFlags">-g -nostdlib -static -

mcpu=arm9</spirit: linkerFlags>

<spirit: linkerCommandFile>

<spirit: name spirit: id="lnkCmdFile">linker. ld</spirit: name>

<spirit: commandLineSwitch spirit: id="lnkCmSwitch">-T</

spirit: commandLineSwitch>

<spirit: enable spirit: id="lnkCmdEnable">true</spirit: enable>

spirit: generatorRef>org. spiritconsortium. tool</spirit: generatorRef>

</spirit: linkerCommandFile>

</spirit: languageTools>

6.7.5 fileBuilder

6.7.5.1 Schema

The following schema details the information contained in the fileBuilder element, which may appear as an

element inside a languageTools element within the executableImage element.

A generic placeholder for any file builder

l ike compilers and assemblers. I t

conta ins the file ty pes to w hich the

command should be applied, and the

flags to be used w ith that command.

spirit:fileBuilder

0 f. .

The ty pe of a fi le refenced by IP -XA C T.

E ither: fi leTy pe - a known IP -XA C T file

ty pe, or userF ileTy pe - a file ty pe not

y et known by I P -XA C T. I f multiple

ty pes are specified, the order is
important. The first ty pe is the primary
ty pe of the file and the la tter ty pes are

ty pes that may be embedded in the fi le.

F or example a V erilog file conta ining P SL

assertions.

spirit:fileType
Enumerated file ty pes know n by

IP -XA C T.

spirit:fi leType

type xs:string

F ree form file ty pe, not - y et - known by
IP -XA C T .

spirit:userFileType

type xs:string

Default command used to build files of

the specified fileTy pe.

spirit:command

type xs:string

attributes

U se this a ttribute group on string

elements.

spirit:s tring.prompt.attgrp

F lags giv en to the build command w hen

building files of this ty pe.

spirit:flags

type xs:string

attributes

U se this attribute group on string

elements.

spirit:s tring.prom pt.attgrp

I f true, replace any default flags v a lue

w ith the v a lue in the sibling flags
element. O therw ise, append the contents

of the sibling flags element to any default

flags v a lue.

I f the v a lue is true and the "flags"

element is empty or missing, this w ill

hav e the result of clearing any default

flags v a lue.

spirit:replaceDefaultFlags

type xs:boolean

attributes

U se this attribute group on boolean

elements.

spirit:bool.prompt.attgrp

C ontainer for v endor specific extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 77

6.7.5.2 Description

The fileBuilder element contains the following elements.

a) fileType (mandatory) group contains one or more of the elements defined in C.9.

b) command (optional) element defines a compiler or assembler tool that processes the software of

this type. The command element is of type string. The command element is configurable with

attributes from string.prompt.att, see C.1 2.

c) flags (optional) documents any flags to be passed along with the software tool command. The flags

element is of type string. The flags element is configurable with attributes from string.prompt.att,

see C.1 2.

d) replaceDefaultFlags (optional) documents, when true, flags that replace any of the default flags

from a build script generator. If false, the flags contained in the flags element are appended to the

current command. If the value is true and the flags element is empty or does not exist, this has the

effect of clearing all the flags in build script generator. The replaceDefaultFlags element is of type

boolean. The replaceDefaultFlags element is configurable with attributes from bool.prompt.att, see

C.12.

e) vendorExtensions (optional) holds vendor-specific data from other namespaces applicable to build-

ing this software source code file into an executable object file. See C.1 0.

6.7.5.3 Example

The following example shows the specification for compiling a C language file using GCC.

<spirit: fileBuilder>

<spirit: fileType>cSource</spirit: fileType>

<spirit: command spirit: id="gccCompilerDefault"> gcc</spirit: command>

<spirit: flags spirit: id="gccCFlags">-c -g -I${ INCLUDES_LOCATION} /software/

include -I${ GCC_LIBRARY} /common/include</spirit: flags>

</spirit: fileBuilder>

6.7.6 l inkerCommandFile

6.7.6.1 Schema

The following schema details the information contained in the linkerCommandFile element, which may

appear as an element inside a languageTools element within the executableImage element.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

78 Copyright © 201 0 IEEE. Al l rights reserved.

6.7.6.2 Description

The linkerCommandFile element contains information related to contents of the linker and linkerFlags

elements, specifically about a file containing linker commands. It contains the following elements.

a) name (mandatory) documents the location and name of the file containing commands for the linker.

The name element is of type spiritURI. The name element is configurable with attributes from

string.prompt.att, see C.1 2.

b) commandLineSwitch (mandatory) documents the flag on the command line specifying the linker

command file. The commandLineSwitch element is of type spiritURI. The commandLineSwitch

element is configurable with attributes from string.prompt.att, see C.1 2.

c) enable (mandatory) indicates whether to use this linker command file in the default scenario. The

enable element is of type boolean. The enable element is configurable with attributes from

bool.prompt.att, see C.1 2. The following also apply. For:

1) enable=true and a generatorRef, run the generator to link the executableImage; it may use

the other elements to link the executableImage.

2) enable=true and no generatorRef, run the linker with the -commandLineSwitch name (the

command file).

3) enable=false, run the linker with linkerFlags.

d) generatorRef (optional) references the generator (in the containing component) that creates and

launches the linker command. There may be any number of these elements present. The generator-

Ref element is of type string. See 6.1 2.

e) vendorExtensions (optional) holds any vendor-specific data from other namespaces applicable to

using this linker. See C.1 0.

6.7.6.3 Example

The following example shows the definition of a status register which can be accessed within a component

during verification.

Specifies a l inker command file.

spirit:linkerCommandFile

Linker command file name.

spirit:nam e

type spirit:spiritURI

attributes

U se this attribute group on string

elements.

spirit:s tring.prompt.attgrp

The command l ine sw itch to specify the

l inker command file.

spirit:commandLineSwitch

type xs:string

attributes

U se this attribute group on string

elements.

spirit:s tring.prompt.attgrp

Specifies w hether to generate and enable

the l inker command fi le.

spirit:enable

type xs:boolean

attributes

U se this a ttribute group on boolean

elements.

spirit:bool.prompt.attgrp

A reference to a generator element.

spirit:generatorRef

0 f. .

type xs:string

C onta iner for v endor specific extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 79

<spirit: linkerCommandFile>

<spirit: name spirit: id="linkerCommandFileName2">linker. ld</spirit: name>

<spirit: commandLineSwitch spirit: id="lnkCmSwitch">-T</

spirit: commandLineSwitch>

<spirit: enable spirit: id="lnkCmdEnable">true</spirit: enable>

<spirit: generatorRef>org. spiritconsortium. tool. gccLinkerLauncher</

spirit: generatorRef>

</spirit: linkerCommandFile>

6.7.7 Local memory map

6.7.7.1 Schema

The following schema details the information contained in the localMemoryMap element, which may

appear inside an addressSpace element.

spirit:localMemoryMapType

Prov ides the loca l memory map of an

address space. B locks in this memory
map are accessable to master interfaces

on this component that reference this

address space. They are not accessable

to any externa l master interface.

spirit:localMemoryMap

type spirit: localMemoryMapType

attributes

ID attribute for uniquely identify ing an
element w ithin its document. O n

elements w ith spirit: resolv e attribute is
used to refer to this element and

otherw ise can be used as a
documentation ID .

spirit:id

type xs: ID

A group of elements for name (xs:name),

display N ame and description

spirit:nameGroup

U nique name

spirit:nam e

type xs:Name

E lement name for display purposes.

Ty pica lly a few w ords prov iding a more

deta iled and/or user-friendly name than
the spirit:name.

spirit:d isplayNam e

type xs:string

F ull description string, ty pica l ly for

documentation

spirit:description

type xs:string

A group elements for a memoryM ap

spirit:memoryMap

0 f. .

This is a single contiguous block of
memory inside a memory map.

spirit:addressBlock

type spirit:addressBlockType

Represents a bank of memory made up

of address blocks or other banks. I t has

a bankA lignment attribute indicating
w hether its blocks are a l igned in 'para llel'

(occupy ing adj acent bit fields) or 'seria l '

(occupy ing contiguous addresses). I ts

child blocks do not conta in addresses or
bit offsets.

spirit:bank

type spirit:addressBankType

M aps in an address subspace from across

a bus bridge. I ts masterRef attribute

refers by name to the master bus
interface on the other side of the bridge.

I t must match the masterRef attribute of

a bridge element on the slav e interface,

and that bridge element must be
designated as opaque.

spirit:subspaceMap

type spirit:subspaceRefType

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

80 Copyright © 201 0 IEEE. Al l rights reserved.

6.7.7.2 Description

Some processor components require specifying a memory map that is local to the component. Local memory

maps (the localMemoryMap element in the addressSpace element of the component) are blocks of

memory within a component that can only be accessed by the master interfaces of that component. If the

master interface containing a local memory map is bridged from a slave interface (see 6.4.2), the local

memory map is visible from this slave interface. The localMemoryMap element contains an id (optional)

attribute that assigns a unique identifier to the containing element for reference throughout the containing

description. localMemoryMap contains the following mandatory and optional elements.

a) nameGroup group is describe in C.1 .

b) memoryMap group (optional) is any number of the following.

1) addressBlock describes a single block. See 6.8.2.

2) bank represents a collection of address blocks, banks, or subspace maps. See 6.8.5.

3) subspaceMap maps the address subspaces of master interfaces into the slave’s memory map.

See 6.8.9.

6.7.7.3 Example

The following example shows a secure register space with limited access to the master bus interface as the

definition of a local memory map for an address space.

<spirit: localMemoryMap>

<spirit: name>secureRegs</spirit: name>

<spirit: displayName>Secure Registers</spirit: displayName>

<spirit: description>Secure registers area</spirit: description>

<spirit: addressBlock>

<spirit: baseAddress spirit: id="secureRegs">0x50000000</

spirit: baseAddress>

<spirit: range>64</spirit: range>

<spirit: width>32</spirit: width>

<spirit: usage>register</spirit: usage>

<spirit: access>read-write</spirit: access>

</spirit: addressBlock>

</spirit: localMemoryMap>

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 81

6.8 Memory maps

6.8.1 memoryMaps

6.8.1 .1 Schema

The following schema details the information contained in the memoryMaps element, which may appear as

an element inside the component element.

6.8.1 .2 Description

A memory map can be defined for each slave interface of a component. The memoryMaps element

contains an unbounded list of memoryMap elements. The memoryMap elements are referenced by the

component’s slave interface. The memoryMap element contains an id (optional) attribute that assigns a

unique identifier to the containing element for reference throughout the containing description.

memoryMap contains the following mandatory and optional elements.

a) nameGroup group is defined in C.1 . The name element shall be unique within the containing

memoryMaps element.

b) memoryMap group (optional) is any number of the following.

1) addressBlock describes a single block. See 6.8.2.

Lists a l l the slav e memory maps defined
by the component.

spirit:m emoryMaps

spirit:m emoryMapType

The set of address blocks a bus slav e
contributes to the bus' address space.

spirit:m emoryMap

1 f. .

type spirit:memoryMapType

attributes

ID attribute for uniquely identify ing an
element w ithin its document. O n

elements w ith spirit:resolv e a ttribute is
used to refer to this element and

otherw ise can be used as a
documentation ID .

spirit:id

type xs: ID

A group of elements for name (xs:name),

display N ame and description

spirit:nameGroup

A group elements for a memoryM ap

spirit:memoryMap

0 f. .

This is a single contiguous block of

memory inside a memory map.

spirit:addressBlock

type spirit:addressBlockType

Represents a bank of memory made up

of address blocks or other banks. I t has
a bankA lignment attribute indicating

w hether its blocks are a l igned in 'parallel '
(occupy ing adj acent bit fields) or 'seria l'

(occupy ing contiguous addresses). I ts
child blocks do not contain addresses or

bit offsets.

spirit:bank

type spirit:addressBankType

M aps in an address subspace from across

a bus bridge. I ts masterRef attribute
refers by name to the master bus

interface on the other side of the bridge.

I t must match the masterRef attribute of

a bridge element on the slav e interface,
and that bridge element must be

designated as opaque.

spirit:s ubspaceMap

type spirit:subspaceRefType

Additiona l memory map elements that

are dependent on the component state.

spirit:m emoryRemap

0 f. .

type spirit:memoryRemapType

The number of data bits in an

addressable unit. The default is by te
addressable (8 bits).

spirit:addressUnitBits

type xs:positiveInteger

C onta iner for v endor specific extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

82 Copyright © 201 0 IEEE. Al l rights reserved.

2) bank represents a collections of address blocks, banks, or subspace maps. See 6.8.5.

3) subspaceMap maps the address subspaces of master interfaces into the slave’s memory map.

See 6.8.9.

c) The optional memoryRemap element describes additional address blocks, banks, and subspace

maps of a slave bus interface in a specific remap state.

d) The optional addressUnitBits element defines the number of data bits in each address increment of

the memory map. This is required to allow the elements in the memory map to define items such as

register offsets. The addressUnitBits element is of type positiveInteger.

e) vendorExtensions (optional) adds any extra vendor-specific data related to the memory map. See

C.1 0.

6.8.2 Address block

6.8.2.1 Schema

The following schema details the information contained in the addressBlock element, which may appear in

a memoryMap element. It is of type addressBlockType.

spirit:addressBlockType

This is a single contiguous block of

memory inside a memory map.

spirit:addressBlock

type spirit:addressBlockType

attributes

ID attribute for uniquely identify ing an
element w ithin its document. O n

elements w ith spirit: resolv e attribute is

used to refer to this element and

otherw ise can be used as a
documentation ID .

spirit:id

type xs: ID

A group of elements for name (xs:name),

display N ame and description

spirit:nameGroup

U nique name

spirit:name

type xs:Name

E lement name for display purposes.

Ty pica lly a few w ords prov iding a more

deta iled and/or user-friendly name than

the spirit:name.

spirit:displayNam e

type xs:string

F ull description string, ty pically for

documentation

spirit:description

type xs:string

This group of elements describes an
absolute or relativ e address of an address

block in a memory map.

N ote that this is a group, not an element.
 I t does not appear in the XM L, but its

contents may .

spirit:addressSpecifier

Base of an address block, bank, subspace

map or address space. E xpressed as the

number of addressable units from the
containing memoryM ap or loca lM emoryM ap.

spirit:baseAddress

type spirit:scaledNonNegativeInteger

attributes

U se this attribute group on long integer

elements for w hich the schema supplies a

default prompt attribute.

spirit:long.attgrp

P rov ides a string used to prompt the user

for user-resolv ed property v a lues.

spirit:prompt

type xs:string

default Base Address:

Address block definition specific

information

spirit:addressBlockDefinitionGroup

C ontainer for v endor specific extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 83

6.8.2.2 Description

The addressBlock element describes a single, contiguous block of memory that is part of a memory map.

The addressBlock element contains an id (optional) attribute that assigns a unique identifier to the

containing element for reference throughout the containing description. addressBlock contains the

following mandatory and optional elements.

a) nameGroup is defined in C.1 . The name of the addressBlock, subspaceMap, bank, and

memoryRemap shall be unique within the containing memoryMap, localMemoryMap, or

memoryRemap element.

b) addressSpecifier group includes the following.

baseAddress (mandatory) specifies the starting address of the block. The baseAddress is expressed

in addressing units from the containing memoryMap/addressUnitBits or localMemoryMap/

addressUnitBits element. The baseAddress element is of type scaledNonNegativeInteger. The

baseAddress element is configurable with attributes from long.att, see C.1 2. The prompt (optional)

attribute allows the setting of a string for the configuration and has a default value of “Base

Address:”.

c) addressBlockDefinitionGroup group contains definition information about address blocks. See

6.8.3 .

d) vendorExtensions (optional) adds any extra vendor-specific data related to the address block. See

C.1 0.

See also: SCR 8.1 and SCR 8.1 6.

6.8.2.3 Example

The following example shows an address block starting at address 0x1000 in memory map map1 ,

containing 64 addressable 8-bit units, organized into larger 32-bit units.

<spirit: memoryMap>

<spirit: name>map1</spirit: name>

<spirit: addressBlock>

<spirit: name>AB1</spirit: name>

<spirit: baseAddress>0x1000</spirit: baseAddress>

<spirit: range>64</spirit: range>

<spirit: width>32</spirit: width>

</spirit: addressBlock>

<spirit: addressUnitBits>8</spirit: addressUnitBits>

</spirit: memoryMap>

6.8.3 Address block definition group

6.8.3.1 Schema

The following schema details the information contained in the addressBlockDefinitionGroup group, which

may appear in an addressBlock element.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

84 Copyright © 201 0 IEEE. Al l rights reserved.

6.8.3.2 Description

The addressBlockDefinitionGroup group describes the definition information about address blocks. It

contains the following mandatory and optional elements.

a) typeIdentifier (optional) indicates multiple address block elements with the same typeIdentifier in

the same description contain the exact same information for the elements in the

addressBlockDefinitionsGroup . The typeIdentifier element is of type Name.

b) blockSize group includes the following.

1) range (mandatory) gives the address range of an address block. This is expressed as the

number of addressable units. The size of an addressable unit is defined inside the containing

memoryMap/addressUnitBits or memoryMap/addressUnitBits element. The range

element is of type scaledPositiveInteger. The range element is configurable with attributes

from long.prompt.att, see C.1 2.

2) width (mandatory) is the bit width of a row in the address block. A row in an address block sets

the maximum single transfer size into the memory map allowed by the referencing bus

interface and also defines the maximum size that a single register can be defined across an

interconnection. The width element is of type nonNegativeInteger. The width element is

configurable with attributes from long.prompt.att, see C.1 2.

c) memoryBlockData group contains information about usage, access, volatility, and other parameters.

See 6.8.4.

d) registerData group contains information about the grouping of bits into registers and fields. See

6.1 0.1 .

A ddress block definition specific
information

spirit:addressBlockDefinitionGroup

Identifier name used to indicate that
multiple addressB lock elements conta in

the exact same information except for the

elements in the

addressB lockInstanceG roup.

spirit:type Identifie r

type xs:Name

This group of elements describes the

number of addressable units and the

w idth of a row of an address block in a

memory map.

N ote that this is a group, not an element.

 I t does not appear in the XM L, but its

contents may .

spirit:blockSize

The address range of an address block.

E xpressed as the number of addressable

units accessible to the block. The range

and the w idth are related by the

follow ing formulas:

number_of_bits_in_block =

spirit:addressU nitB its * spirit:range

number_of_row s_in_block =

number_of_bits_in_block / spirit:w idth

spirit:range

type spirit:scaledPositiveInteger

attributes

U se this a ttribute group on long integer

elements.

spirit:long.prompt.attgrp

The bit w idth of a row in the address

block. The range and the w idth are

related by the follow ing formulas:

number_of_bits_in_block =

spirit:addressU nitB its * spirit:range

number_of_row s_in_block =
number_of_bits_in_block / spirit:w idth

spirit:w idth

type xs:nonNegativeInteger

attributes

U se this attribute group on long integer

elements.

spirit:long.prompt.attgrp

This group of optional elements can be
used to prov ide additiona l descriptions to

an address block or bank.

N ote that this is a group, not an element.
 I t does not appear in the XM L, but its

contents may .

spirit:memoryBlockData

This group of optional elements describes
the memory mapped registers of an

address block

spirit: registerData

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 85

The range and width elements are related by the following formulas.

number_of_bits_in_block = addressUnitBits u range
number_of_rows_in_block = number_of_bits_in_block / width

See also: SCR 8.1 and SCR 7.1 5.

6.8.3.3 Example

The following example shows an address block starting at address 0 in memory map map1 , containing 1 024

addressable 8-bit units, organized into larger 32-bit units.

<spirit: memoryMap>

<spirit: name>map1</spirit: name>

<spirit: addressBlock>

<spirit: name>AB1</spirit: name>

<spirit: baseAddress>0</spirit: baseAddress>

<spirit: range>1K</spirit: range>

<spirit: width>32</spirit: width>

</spirit: addressBlock>

<spirit: addressUnitBits>8</spirit: addressUnitBits>

</spirit: memoryMap>

6.8.4 memoryBlockData group

6.8.4.1 Schema

The following schema details the information contained in the memoryBlockData group, an optional part of

both addressBlock and bank.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

86 Copyright © 201 0 IEEE. Al l rights reserved.

6.8.4.2 Description

The memoryBlockData group is a collection of elements that contains further specification of addressBlock

or bank elements. It contains the following elements.

a) usage (optional) specifies the type of usage for the address block or bank to which it belongs.

1) For an addressBlock:

i) memory defines, when the access element is set to read-only, the entire range of the

addressBlock as a ROM. If the access element is set to read-write, the entire range of the

addressBlock is a RAM. If the access element is set to write-only, the entire range of the

addressBlock is a write-only memory. This usage type shall not contain registers.

ii) register defines the entire range of the addressBlock as possible locations for registers.

iii) reserved defines the entire range of the addressBlock as reserved or for unknown usage

to IP-XACT. This type shall not contain registers.

iv) If unspecified, the presumed value for usage shall be register if the addressBlock

contains register elements; otherwise it is reserved.

2) For a bank:

i) memory defines all containing addressBlock elements are of this access type.

ii) register defines all containing addressBlock elements are of this access type.

iii) reserved defines all containing addressBlock elements are of this access type.

iv) Unspecified usage means the bank may contain a mixture of memory, register, and

reserved addressBlock elements.

b) volatile (optional) when true indicates the case of a write followed by read, or in the case of two

consecutive reads, there is no guarantee what is returned by the read on the second transaction or

that this return value is consistent with the write or read of the first transaction. The element implies

there is some additional mechanism by which these registers can acquire new values other than

reads/writes/resets and other access methods known to IP-XACT. If this element is not present, it is

presumed to be false for a field and unspecified for bank, addressBlock, or register. The volatile

element is of type boolean.

This group of optiona l elements can be

used to prov ide additional descriptions to

an address block or bank.

N ote that this is a group, not an element.

 I t does not appear in the XM L, but its

contents may .

spirit:memoryBlockData

Indicates the usage of this block.

P ossible v a lues are 'memory ', 'register'

and 'reserv ed'.

spirit:usage

type spirit:usageType

Indicates w hether the data is v olatile.

spirit:volatile

type xs:boolean

Indicates the accessibility of the data in
the address bank, address block, register

or field. P ossible v a lues are 'read-w rite',

'read-only ', 'w rite-only ', 'w riteO nce' and

'read-w riteO nce' . I f not specified the

v a lue is inherited from the containing

object.

spirit:access

type spirit:accessType

A ny additiona l parameters needed to

describe this address block to the

generators.

spirit:param eters

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 87

c) access (optional) specifies the accessibility of the data in the address block. If the usage element is

reserved, this element has no meaning. If the access is not specified, the value shall be inherited

from the containing bank or default to read-write if this element is contained in a memoryMap.

i) read-write defines, when the usage element is memory, the entire range is a RAM. If the

usage element is register, then any access type for a register or alternate register is

allowed.

ii) read-only defines, when the usage element is memory, the entire range is a ROM. If the

usage element is register, then an access type shall be read-only for a register or alternate

register.

iii) write-only defines, when the usage element is memory, the entire range is a write-only

memory. If the usage element is register, then an access type shall be write-only or

writeOnce for a register or alternate register.

iv) read-writeOnce defines, when the usage element is memory, the entire range is a RAM

that is writable once after power up. If the usage element is register, then the access type

for a register or alternate register shall be read-only, read-writeOnce, write-only, or

writeOnce.

v) writeOnce defines, when the usage element is memory, the entire range is a write-only

memory that is writable once after power up. If the usage element is register, then the

access type for a register or alternate register shall be writeOnce.

d) parameters (optional) details any additional parameters that describe the address block for genera-

tor usage. See C.11 .

See also: SCR 8.3, SCR 8.4, SCR 8.6, SCR 8.7, SCR 8.9, SCR 8.10, SCR 8.11 , SCR 8.1 3 , and SCR 8.14.

6.8.4.3 Example

The following example shows an address block starting at address 0x0 containing 64 addressable memory

locations of 8 bits, organized into larger 32-bit units.

<spirit: memoryMap>

<spirit: addressBlock>

<spirit: name>AB1</spirit: name>

<spirit: baseAddress>0</spirit: baseAddress>

<spirit: range>64</spirit: range>

<spirit: width>32</spirit: width>

<spirit: usage>memory</spirit: width>

<spirit: volatile>false</spirit: volatile>

<spirit: access>read-write</spirit: access>

</spirit: addressBlock>

<spirit: addressUnitBits>8</spirit: addressUnitBits>

</spirit: memoryMap>

6.8.5 Bank

6.8.5.1 Schema

The following schema details the information contained in the bank element, which can appear in a

memoryMap element. It is of type addressBankType.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

88 Copyright © 201 0 IEEE. Al l rights reserved.

6.8.5.2 Description

The bank element allows multiple addressBlocks, banks, or subspaceMaps to be concatenated together

horizontally or vertically as a single entity. It contains the following attributes and elements.

a) bankAlignment (mandatory) attribute organizes the bank:

1) parallel specifies each item is located at the same base address with different bit offsets. The

bit offset of the first item in the bank always starts at 0, the offset of the next items in the bank

is equal to the widths of all the previous items.

2) serial specifies the first item is located at the bank’s base address. Each subsequent item is

located at the previous item’s address, plus the range of that item (adjusted for LAU and bus

width considerations, rounded up to the next whole multiple). This allows the user to specify

only a single base address for the bank and have each item assigned an address in sequence.

b) nameGroup is defined in C.1 . The name of the addressBlock, subspaceMap, bank, and

memoryRemap shall be unique within the containing memoryMap, localMemoryMap, or

memoryRemap element.

spirit:addressBankType

Represents a bank of memory made up

of address blocks or other banks. I t has

a bankA lignment attribute indicating

w hether its blocks are a l igned in 'para l lel'

(occupy ing adjacent bit fields) or 'seria l'

(occupy ing contiguous addresses). I ts

child blocks do not conta in addresses or

bit offsets.

spirit:bank

type spirit:addressBankType

attributes

Describes w hether this bank's blocks a re

a ligned in 'para l lel ' or 'seria l' .

spirit:bankAlignm ent

type spirit:bankAlignmentType

A group of elements for name (xs:name),

display N ame and description

spirit:nameGroup

U nique name

spirit:nam e

type xs:Name

E lement name for display purposes.

Ty pica l ly a few w ords prov iding a more
detailed and/or user-friendly name than

the spirit:name.

spirit:displayName

type xs:string

F ull description string, ty pica lly for

documentation

spirit:description

type xs:string

This group of elements describes an

absolute or relativ e address of an address

block in a memory map.

N ote that this is a group, not an element.

 I t does not appear in the XM L, but its

contents may .

spirit:addressSpecifier

Base of an address block, bank, subspace

map or address space. E xpressed as the

number of addressable units from the

conta ining memoryM ap or loca lM emory M ap.

spirit:baseAddress

type spirit:scaledNonNegativeInteger

attributes

U se this attribute group on long integer

elements for which the schema supplies a

default prompt attribute.

spirit:long.attgrp

P rov ides a string used to prompt the user
for user-resolv ed property v a lues.

spirit:prompt

type xs:string

default Base Address:

This group of elements is common to top

lev el banks and banked banks.

spirit:bankBase

1 f. .

An address block w ithin the bank. N o

address information is supplied.

spirit:addressBlock

type spirit:bankedBlockType

A nested bank of blocks w ithin a bank.

N o address information is supplied.

spirit:bank

type spirit:bankedBankType

A subspace map w ithin the bank. N o

address information is supplied.

spirit:subspaceMap

type spirit:bankedSubspaceType

This group of optional elements can be

used to prov ide additional descriptions to

an address block or bank.

N ote that this is a group, not an element.

 I t does not appear in the XM L, but its

contents may .

spirit:memoryBlockData

C onta iner for v endor specific extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 89

c) addressSpecifier group includes the following.

baseAddress (mandatory) specifies the starting address of the block. The baseAddress is expressed

in addressing units from the containing memoryMap/addressUnitBits or localMemoryMap/

addressUnitBits element. The type of this element is set to scaledNonNegativeInteger. The

baseAddress element is configurable with attributes from bool.prompt.att, see C.1 2. The prompt

attribute allows the setting of a string for the configuration and has a default value of “Base

Address:”.

d) bankBase group includes the following. This group is later used inside the bankedBaseType type to

create recursion.

1) addressBlock (multiple usage allowed) is an address block that makes up part of the bank. See

6.8.6.

2) bank (multiple usage allowed) is a bank within the bank. This allows for complex

configurations with nested banks. See 6.8.7.

3) subspaceMap (multiple usage allowed) is a reference to the master’s address map for inclusion

in the bank. See 6.8.9.

4) memoryBlockData group contains information about usage, access, volatility, and other

parameters. See 6.8.4.

5) vendorExtensions adds any extra vendor-specific data related to this bank. See C.1 0.

See also: SCR 8.2.

6.8.5.3 Example

The following example shows a serial bank with four memory blocks of 1 k units of 32-bit data. The only

address specified is 0x10000 , but this causes address block ram0 , ram1 , ram2 , and ram3 to be mapped

to addresses 0x10000 , 0x11000 , 0x11000 0x12000 , and 0x13000 respectively.

<spirit: memoryMap>

<spirit: bank bankAlignment="serial">

<spirit: name>bank1</spirit: name>

<spirit: baseAddress>0x10000</spirit: baseAddress>

<spirit: addressBlock>

<spirit: name>ram0</spirit: name>

<spirit: range>0x1000</spirit: range>

<spirit: width>32</spirit: width>

</spirit: addressBlock>

<spirit: addressBlock>

<spirit: name>ram1</spirit: name>

<spirit: range>0x1000</spirit: range>

<spirit: width>32</spirit: width>

</spirit: addressBlock>

<spirit: addressBlock>

<spirit: name>ram2</spirit: name>

<spirit: range>0x1000</spirit: range>

<spirit: width>32</spirit: width>

</spirit: addressBlock>

<spirit: addressBlock>

<spirit: name>ram3</spirit: name>

<spirit: range>0x1000</spirit: range>

<spirit: width>32</spirit: width>

</spirit: addressBlock>

</spirit: bank>

<spirit: addressUnitBits>8</spirit: addressUnitBits>

</spirit: memoryMap>

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

90 Copyright © 201 0 IEEE. Al l rights reserved.

6.8.6 Banked address block

6.8.6.1 Schema

The following schema details the information contained in the addressBlock element, which can appear in a

bank element. It is of type bankedBlockType.

spirit:bankedBlockType

A n address block w ithin the bank. N o
address information is supplied.

spirit:addressBlock

type spirit:bankedBlockType

attributes

ID attribute for uniquely identify ing an
element w ithin its document. O n

elements w ith spirit: resolv e attribute is

used to refer to this element and
otherw ise can be used as a

documentation ID .

spirit:id

type xs: ID

A group of elements for name (xs:name),

display N ame and description

spirit:nameGroup

U nique name

spirit:name

type xs:Name

E lement name for display purposes.
Ty pica l ly a few w ords prov iding a more

detailed and/or user-friendly name than

the spirit:name.

spirit:displayNam e

type xs:string

F ull description string, ty pica lly for

documentation

spirit:description

type xs:string

This group of elements describes the
number of addressable units and the

w idth of a row of an address block in a

memory map.

N ote that this is a group, not an element.

 I t does not appear in the XM L, but its

contents may .

spirit:blockSize

The address range of an address block.

E xpressed as the number of addressable

units accessible to the block. The range

and the w idth are related by the
follow ing formulas:

number_of_bits_in_block =
spirit:addressU nitBits * spirit:range

number_of_row s_in_block =
number_of_bits_in_block / spirit:w idth

spirit:range

type spirit:scaledPositiveInteger

attributes

U se this a ttribute group on long integer
elements.

spirit:long.prompt.attgrp

The bit w idth of a row in the address
block. The range and the w idth are

related by the follow ing formulas:

number_of_bits_in_block =
spirit:addressU nitBits * spirit:range

number_of_row s_in_block =
number_of_bits_in_block / spirit:w idth

spirit:w idth

type xs:nonNegativeInteger

attributes

U se this attribute group on long integer
elements.

spirit:long.prompt.attgrp

This is a group of optional elements
commonly added to v arious ty pes of

address blocks in a memory map.

spirit:addressBlockExtensions

This group of optiona l elements can be

used to prov ide additional descriptions to

an address block or bank.

N ote that this is a group, not an element.

 I t does not appear in the XM L, but its
contents may .

spirit:memoryBlockData

This group of optional elements describes
the memory mapped registers of an

address block

spirit:registerData

C onta iner for v endor specific extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 91

6.8.6.2 Description

The addressBlock element inside a bank element describes a single, contiguous block of memory that is

part of a bank. The addressBlock element contains an id (optional) attribute that assigns a unique identifier

to the containing element for reference throughout the containing description. addressBlock contains the

following mandatory and optional elements.

a) nameGroup group is defined in C.1 . The name of the addressBlock, subspaceMap, and bank shall

be unique within the containing bank element.

b) blockSize group includes the following.

1) range (mandatory) gives the address range of an address block. This is expressed as the

number of addressable units of the memory map. The size of an addressable unit is defined

inside the containing memoryMap/addressUnitBits or localMemoryMap/addressUnitBits

element. The type of this element is set to scaledPositiveInteger. The range element is

configurable with attributes from long.prompt.att, see C.1 2.

2) width (mandatory) is the bit width of a row in the address block. The type of this element is set

to nonNegativeInteger. The width element is configurable with attributes from

long.prompt.att, see C.1 2.

c) memoryBlockData group contains information about usage, access, volatility, and other parameters.

See 6.8.4.

d) registerData group contains information about the grouping of bits into registers and fields. See

6.1 0.2.

e) vendorExtensions (optional) adds any extra vendor-specific data related to the address block. See

C.1 0.

NOTE—The bankedBlockType of an addressBlock element is almost identical to the addressBlockType of an address-
Block element (see 6.8.2); the only difference is there is no baseAddress and typeIdentifier in the bankedBlockType
version.

See also: SCR 7.5.

6.8.6.3 Example

See the example in 6.8.5.3 .

6.8.7 Banked bank

6.8.7.1 Schema

The following schema details the information contained in the nested bank element, which can appear in

another bank element. It is of type bankBankType.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

92 Copyright © 201 0 IEEE. Al l rights reserved.

6.8.7.2 Description

The bank element allows multiple address blocks, banks, or subspaceMaps to be to be concatenated

together horizontally or vertically as a single entity. It contains the following attributes and elements.

a) bankAlignment (mandatory) attribute organizes the bank:

1) parallel specifies each item is located at the same base address with different bit offsets. The bit

offset of the first item in the bank always starts at 0, the offset of the next items in the bank is

equal to the widths of all the previous items.

2) serial specifies the first item is located at the bank’s base address. Each subsequent item is

located at the previous item’s address, plus the range of that item (adjusted for LAU and bus

width considerations, rounded up to the next whole multiple). This allows the user to specify

only a single base address for the bank and have each item assigned an address in sequence.

b) nameGroup group is defined in C.1 . The name of the addressBlock, subspaceMap, and bank shall

be unique within the containing bank element.

c) The bank element of type bankedBankType contains the bankBase group. This group is defined

inside the bank element of type addressBankType. See 6.8.5. The effect of its inclusion here creates

recursion, whereby banks maybe included inside banks included inside banks.

NOTE—A banked bank is similar to a bank in a memory map (see 6.8.5); the only difference is there is no baseAddress
element in a bank of type bankedBankType.

See also: SCR 8.2.

6.8.7.3 Example

The following example shows a serial bank with two memory blocks of 1 k units of 32-bit data. The only

address specified is 0x10000 , but this causes address block ram0 and bankRam1 to be mapped to

addresses 0x10000 and 0x11000 , respectively. The memory bank bankRam1 is made up of two parallel

memory blocks each with 1 6 bits of data.

spirit:bankedBankType

A nested bank of blocks w ithin a bank.
N o address information is suppl ied.

spirit:bank

type spirit:bankedBankType

attributes

Describes w hether this bank's blocks are

a ligned in 'para llel ' or 'seria l ' .

spirit:bankAlignm ent

type spirit:bankAlignmentType

A group of elements for name (xs:name),
display N ame and description

spirit:nameGroup

U nique name

spirit:nam e

type xs:Name

E lement name for display purposes.
Ty pica lly a few w ords prov iding a more

deta iled and/or user-friendly name than
the spirit:name.

spirit:displayNam e

type xs:string

F ull description string, ty pica lly for

documentation

spirit:description

type xs:string

This group of elements is common to top

lev el banks and banked banks.

spirit:bankBase

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 93

<spirit: memoryMap>

<spirit: bank bankAlignment="serial">

<spirit: name>bank1</spirit: name>

<spirit: baseAddress>0x10000</spirit: baseAddress>

<spirit: addressBlock>

<spirit: name>ram0</spirit: name>

<spirit: range>0x1000</spirit: range>

<spirit: width>32</spirit: width>

</spirit: addressBlock>

<spirit: bank bankAlignment="parallel">

<spirit: name>bankRam1</spirit: name>

<spirit: addressBlock>

<spirit: name>ram1. 0</spirit: name>

<spirit: range>0x1000</spirit: range>

<spirit: width>16</spirit: width>

</spirit: addressBlock>

<spirit: addressBlock>

<spirit: name>ram1. 1</spirit: name>

<spirit: range>0x1000</spirit: range>

<spirit: width>16</spirit: width>

</spirit: addressBlock>

</spirit: bank>

</spirit: bank>

<spirit: addressUnitBits>8</spirit: addressUnitBits>

</spirit: memoryMap>

6.8.8 Banked subspace

6.8.8.1 Schema

The following schema details the information contained in the subspaceMap element, which can appear in

a bank element. It is of type bankSubspaceType.

spirit:bankedSubspaceType

A subspace map w ithin the bank. N o

address information is supplied.

spirit:subspaceMap

type spirit:bankedSubspaceType

attributes

F or subspaceM ap elements, this attribute

identifies the master that contains the
address space to be mapped.

spirit:m as terRef

type xs:Name

A group of elements for name (xs:name),

display N ame and description w here the

name is optiona l

spirit:nameGroupOptional

U nique name

spirit:name

type xs:Name

E lement name for display purposes.
Ty pica lly a few w ords prov iding a more

detailed and/or user-friendly name than

the spirit:name.

spirit:displayNam e

type xs:string

F ull description string, ty pica lly for
documentation

spirit:description

type xs:string

A ny parameters that may apply to the

subspace reference.

spirit:param eters

C ontainer for v endor specific extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

94 Copyright © 201 0 IEEE. Al l rights reserved.

6.8.8.2 Description

The subspaceMap element allows a bank to map the address space of a master interface into the bank. It

contains the following elements.

a) masterRef attribute contains the name of the master interface whose address space needs to be

mapped. This shall reference a bus interface name with an interface mode of master (see 6.5.3). The

master interface shall also be referenced by a second interface through a slave/bridge/masterRef

element, and the bridge element shall also have the opaque attribute set to true.

b) nameGroupOptional group is defined in C.2. The name of the addressBlock, subspaceMap, and

bank shall be unique within the containing bank element.

c) parameters details any additional parameters that apply to the subspaceMap. See C.11 .

d) vendorExtensions adds any extra vendor-specific data related to the subspaceMap. See C.1 0.

See also: SCR 8.2.

6.8.8.3 Example

The following example shows an address space from master M1 mapped into the slave interface S memory

map starting at address 0x0000 . An address space from master M2 is mapped into the slave interface S

memory map starting at address 0x1000 .

<spirit: component>…

<spirit: busInterfaces>

<spirit: busInterface>

<spirit: name>M1</spirit: name>

<spirit: master>

<spirit: addressSpaceRef spirit: addressSpaceRef=”memAS1”\>

</spirit: master>

</spirit: busInterface>

<spirit: busInterface>

<spirit: name>M2</spirit: name>

<spirit: master>

<spirit: addressSpaceRef spirit: addressSpaceRef=”memAS2”\>

</spirit: master>

</spirit: busInterface>

<spirit: busInterface>

<spirit: name>S</spirit: name>

<spirit: slave>

<spirit: memoryMapRef spirit: memoryMapRef="memMap"/>

<spirit: bridge spirit: masterRef="M1" spirit: opaque="true"/>

<spirit: bridge spirit: masterRef="M2" spirit: opaque="true"/>

</spirit: slave>

</spirit: busInterface>

</spirit: busInterfaces>

<spirit: addressSpaces>

<spirit: addressSpace>

<spirit: name>memAS1</spirit: name>

<spirit: range>0x1000</spirit: range>

<spirit: width>32</spirit: width>

</spirit: addressSpace>

<spirit: addressSpace>

<spirit: name>memAS2</spirit: name>

<spirit: range>0x1000</spirit: range>

<spirit: width>32</spirit: width>

</spirit: addressSpace>

</spirit: addressSpaces>

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 95

<spirit: memoryMaps>

<spirit: memoryMap>

<spirit: name>memMap</spirit: name>

<spirit: bank bankAlignment="serial">

<spirit: name>memBank</spirit: name>

<spirit: baseAddr baseAddress>0x0000</spirit: baseAddress>

<spirit: subspaceMap spirit: masterRef="M1">

<spirit: name>submap1</spirit: name>

</spirit: subspaceMap>

<spirit: subspaceMap spirit: masterRef="M2">

<spirit: name>submap2</spirit: name>

</spirit: subspaceMap>

</spirit: bank>

</spirit: memoryMap>

</spirit: memoryMaps>

</spirit: component>

6.8.9 Subspace map

6.8.9.1 Schema

The following schema details the information contained in the subspaceMap element, which can appear in

a memoryMap element. It is of type subspaceRefType.

6.8.9.2 Description

The subspaceMap element maps the address space of a master interface from an opaque bus bridge into the

memory map. It contains the following elements.

spirit:subspaceRefType

M aps in an address subspace from across

a bus bridge. I ts masterRef attribute

refers by name to the master bus

interface on the other side of the bridge.

I t must match the masterRef attribute of

a bridge element on the slav e interface,

and that bridge element must be

designated as opaque.

spirit:s ubspaceMap

type spirit:subspaceRefType

attributes

F or subspaceM ap elements, this attribute

identifies the master that contains the

address space to be mapped.

spirit:m as terRef

type xs:Name

Refernce to a segment of the

addressSpace of the masterRef attribute.

spirit:segm entRef

type xs:Name

Any parameters that may apply to the

subspace reference.

A group of elements for name (xs:name),

display N ame and description

spirit:nameGroup

U nique name

spirit:nam e

type xs:Name

E lement name for display purposes.

Ty pica lly a few w ords prov iding a more

detailed and/or user-friendly name than

the spirit:name.

spirit:displayNam e

type xs:string

Full description string, ty pica l ly for

documentation

spirit:description

type xs:string

This group of elements describes an

absolute or relativ e address of an address

block in a memory map.

N ote that this is a group, not an element.

 I t does not appear in the XM L, but its

contents may .

spirit:addressSpecifier

Base of an address block, bank, subspace

map or address space. E xpressed as the

number of addressable units from the

conta ining memoryM ap or localM emoryM ap.

spirit:baseAddress

type spirit:scaledNonNegativeInteger

attributes

U se this a ttribute group on long integer

elements for w hich the schema supplies a

default prompt attribute.

spirit:long.attgrp

P rov ides a string used to prompt the user

for user-resolv ed property v a lues.

spirit:prompt

type xs:string

default Base Address:

A ny parameters that may apply to the

subspace reference.

spirit:param eters

C onta iner for v endor specific extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

96 Copyright © 201 0 IEEE. Al l rights reserved.

a) masterRef (mandatory) attribute contains the name of the master interface whose address space

needs to be mapped. This shall reference a bus interface name with an interface mode of master (see

6.5.3). The master interface shall also be referenced by a second interface through an slave/bridge/

masterRef element, and the bridge element shall also have the opaque attribute set to true.

b) segmentRef (optional) references a segment in the addressSpace referred by the masterRef

attribute. If the segmentRef attribute is not present, the entire addressSpace is presumed to be

referenced.

c) nameGroup group is defined in C.1 . The name of the addressBlock, subspaceMap, bank, and

memoryRemap shall be unique within the containing memoryMap, localMemoryMap, or

memoryRemap element.

d) addressSpecifier group includes the following.

baseAddress (mandatory) specifies the starting address of the block. The baseAddress is expressed

in addressing units from the containing memoryMap/addressUnitBits or localMemoryMap/

addressUnitBits element. The type of this element is set to scaledNonNegativeInteger. The

baseAddress element is configurable with attributes from long.att, see C.1 2. The prompt attribute

allows the setting of a string for the configuration and has a default value of “Base Address:”.

e) parameters (optional) details any additional parameters that apply to the subspaceMap. See C.11 .

f) vendorExtensions (optional) adds any extra vendor-specific data related to the subspaceMap. See

C.1 0.

See also: SCR 9.9 and SCR 3.1 8.

6.8.9.3 Example

The following example shows an address space from master M1 mapped into the slave interface S memory

map starting at address 0x0000 . An address space from master M2 is mapped into the slave interface S

memory map starting at address 0x1000 .

<spirit: component>…

<spirit: busInterfaces>

<spirit: busInterface>

<spirit: name>M1</spirit: name>

<spirit: master>

<spirit: addressSpaceRef spirit: addressSpaceRef=”memAS1”\>

</spirit: master>

</spirit: busInterface>

<spirit: busInterface>

<spirit: name>M2</spirit: name>

<spirit: master>

<spirit: addressSpaceRef spirit: addressSpaceRef=”memAS2”\>

</spirit: master>

</spirit: busInterface>

<spirit: busInterface>

<spirit: name>S</spirit: name>

<spirit: slave>

<spirit: memoryMapRef spirit: memoryMapRef="memMap"/>

<spirit: bridge spirit: masterRef="M1" spirit: opaque="true"/>

<spirit: bridge spirit: masterRef="M2" spirit: opaque="true"/>

</spirit: slave>

</spirit: busInterface>

</spirit: busInterfaces>

<spirit: addressSpaces>

<spirit: addressSpace>

<spirit: name>memAS1</spirit: name>

<spirit: range>0x1000</spirit: range>

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 97

<spirit: width>32</spirit: width>

</spirit: addressSpace>

<spirit: addressSpace>

<spirit: name>memAS2</spirit: name>

<spirit: range>0x1000</spirit: range>

<spirit: width>32</spirit: width>

</spirit: addressSpace>

</spirit: addressSpaces>

<spirit: memoryMaps>

<spirit: memoryMap>

<spirit: name>memMap</spirit: name>

<spirit: subspaceMap spirit: masterRef="M1">

<spirit: name>submap1</spirit: name>

<spirit: baseAddr baseAddress>0x0000</spirit: baseAddress>

</spirit: subspaceMap>

<spirit: subspaceMap spirit: masterRef="M2">

<spirit: name>submap2</spirit: name>

<spirit: baseAddress>0x1000</spirit: baseAddress>

</spirit: subspaceMap>

</spirit: memoryMap>

</spirit: memoryMaps>

</spirit: component>

6.9 Remapping

6.9.1 Memory remap

6.9.1 .1 Schema

The following schema details the information contained in the memoryRemap element, which can appear

in a memoryMap element. It is of type memoryRemapType.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

98 Copyright © 201 0 IEEE. Al l rights reserved.

6.9.1 .2 Description

The memoryRemap element describes additional addressBlocks, banks, and subspaceMaps that are

mapped on the referencing slave bus interface in a specific remap state. If multiple memoryRemap/state

attributes are active, then the first memoryRemap listed shall be selected. The memoryRemap element

contains an id (optional) attribute that assigns a unique identifier to the containing element for reference

throughout the containing description. This element contains the following elements, attributes, and groups.

a) state attribute (mandatory) identifies the remap state name for which the optional memory map

element are active. The state attribute shall reference a remapState/name in the containing

description. The state attribute of all memoryRemap elements contained in a single memoryMap

element shall be unique. The state attribute is of type string. See 6.9.2.

b) nameGroup group is defined in C.1 . The name of the addressBlock, subspaceMap, bank, and

memoryRemap shall be unique within the containing memoryMap element.

c) memoryMap group (optional) is any number of the following.

spirit:m emoryRem apType

Additional memory map elements that
are dependent on the component state.

spirit:m emoryRemap

0 f. .

type spirit:memoryRemapType

attributes

S tate of the component in w hich the
memory map is activ e.

spirit:s tate

type xs:string

ID attribute for uniquely identify ing an

element w ithin its document. O n

elements w ith spirit:resolv e attribute is
used to refer to this element and

otherw ise can be used as a

documentation ID .

spirit:id

type xs: ID

A group of elements for name (xs:name),
display N ame and description

spirit:nameGroup

U nique name

spirit:nam e

type xs:Name

E lement name for display purposes.

Ty pica lly a few words prov iding a more
detailed and/or user-friendly name than

the spirit:name.

spirit:displayNam e

type xs:string

F ull description string, ty pica lly for

documentation

spirit:description

type xs:string

A group elements for a memoryM ap

spirit:memoryMap

0 f. .

This is a single contiguous block of

memory inside a memory map.

spirit:addressBlock

type spirit:addressBlockType

Represents a bank of memory made up
of address blocks or other banks. I t has

a bankA lignment attribute indicating

w hether its blocks are a ligned in 'para llel '
(occupy ing adj acent bit fields) or 'seria l '

(occupy ing contiguous addresses). I ts

child blocks do not conta in addresses or
bit offsets.

spirit:bank

type spirit:addressBankType

M aps in an address subspace from across

a bus bridge. I ts masterRef attribute
refers by name to the master bus

interface on the other side of the bridge.

I t must match the masterRef attribute of
a bridge element on the slav e interface,

and that bridge element must be

designated as opaque.

spirit:subspaceMap

type spirit:subspaceRefType

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 99

1) addressBlock describes a single block. See 6.8.2.

2) bank represents a collections of address blocks, banks, or subspace maps. See 6.8.5.

3) subspaceMap maps the address subspaces of master interfaces into the slave’s memory map.

See 6.8.9.

6.9.1 .3 Example

This is an example of a memory that is read-write in the normal state, but in state lock is remapped to be a

read-only memory.

<spirit: memoryMaps>

<spirit: memoryMap>

<spirit: name>mmap1</spirit: name>

<spirit: memoryReMap spirit: state="normal">

<spirit: addressBlock>

<spirit: name>ab1</spirit: name>

<spirit: baseAddress>0x0000</spirit: baseAddress>

<spirit: range>4096</spirit: range>

<spirit: usage>memory</spirit: usage>

<spirit: access>read-write</spirit: access>

</spirit: addressBlock>

</spirit: memoryRemap >

<spirit: memoryReMap spirit: state="lock">

<spirit: addressBlock>

<spirit: name>ab1readonly</spirit: name>

<spirit: baseAddress>0x0000</spirit: baseAddress>

<spirit: range>4096</spirit: range>

<spirit: usage>memory</spirit: usage>

<spirit: access>read-only</spirit: access>

</spirit: addressBlock>

</spirit: memoryRemap >

</spirit: memoryMap>

</spirit: memoryMaps>

6.9.2 Remap states

6.9.2.1 Schema

The following schema details the information contained in the remapStates element, which may appear as

an element inside a component element. This element may contain one or more remapState elements.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 00 Copyright © 201 0 IEEE. Al l rights reserved.

6.9.2.2 Description

A remapStates element describes a set of one or more remapState elements. Each remapState element

defines a conditional remap state where each state is conditioned by a remap port specified with a

remapPort element. A remapState element does not specify remapping addresses. The remapping

addresses are defined by the memoryRemap element (of a memoryMap element) and its state attribute

refers to the remapState element’s name explained in this subclause.

remapState contains the following elements and attributes.

a) nameGroup group is defined in C.1 . The name element shall be unique within the containing

remapStates element.

b) remapPorts (optional) contains a list of remapPort elements. remapPort (mandatory) specifies

when the remap state gets effective. A collection of remapPort elements make up the condition for

this remap state. All elements shall be true for the remap state to be enabled. The type of this ele-

ment is of scaledNonNegativeInteger. This element contains the logical value of the single port bit

specified by the following two attributes.

1) portNameRef (mandatory) attribute is the name of the port in the containing description for

which this logic value comparison is assigned. The portNameRef attribute is of type

portName. See 6.11 .3 .

2) portIndex (optional) attribute references the index of a port in the containing description, when

the port being referenced is vectored. The portIndex attribute is of type nonNegativeInteger.

6.9.2.3 Example

This is an example of the remapState element with the state name of boot . The example specifies a remap

state called boot is in effect when the port named doRemap gets the logic value of 0x01 , while another

remap state called normal is in effect when the port gets the logic value of 0x00 .

<spirit: component>

<spirit: remapStates>

<spirit: remapState>

<spirit: name>boot</spirit: name>

<spirit: remapPorts>

<spirit: remapPort spirit: portNameRef="doRemap">0x01

</spirit: remapPort>

</spirit: remapPorts>

</spirit: remapState>

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 101

<spirit: remapState>

<spirit: name>normal</spirit: name>

<spirit: remapPorts>

<spirit: remapPort spirit: portNameRef="doRemap">0x00

</spirit: remapPort>

</spirit: remapPorts>

</spirit: remapState>

</spirit: remapStates >

</spirit: component>

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 02 Copyright © 201 0 IEEE. Al l rights reserved.

6.1 0 Registers

6.1 0.1 Register data

6.1 0.1 .1 Schema

The following schema details the information contained in the registerData group that may appear as an

element inside the addressBlock element.

6.1 0.1 .2 Description

The registerData group describes registers and register files. The containing register/name elements, the

register/alternateRegister/name elements and the registerFile/name elements shall be unique within the

containing addressBlock element. The registerData group contains these elements.

a) register (optional) defines a list of registers contained in this addressBlock. See 6.1 0.2.

b) registerFile (optional) defines a list of register files contained in this addressBlock. See 6.1 0.2.

6.1 0.2 Register

6.1 0.2.1 Schema

The following schema details the information contained in the register element, which is contained in the

registerData group that may appear as an element inside the addressBlock element. This element describes

a register.

This group of optional elements describes

the memory mapped registers of an

address block

spirit:registerData
A single register

spirit:regis ter

0 f. .

A structure of registers and register files

spirit:regis terFile

0 f. .

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 103

6.1 0.2.2 Description

A register element describes a register in an address block or register file. The bits in the register are

numbered from size–1 down to 0 , with bit zero (0) being the least significant bit. The register element

contains an id (optional) attribute that assigns a unique identifier to the containing element for reference

throughout the containing description. register contains the following elements.

a) nameGroup group is defined in C.1 . The register/name, registerFile/name, and register/

alternateRegisters/alternateRegister/name element shall be unique within the containing

addressBlock or registerFile element.

b) dim (optional) assigns an unbounded dimension to the register, so it is repeated as many times as the

value of the dim elements. For multi-dimensional register arrays, the memory layout is presumed to

follow the IEEE Std 1 666�-2005 [B4] (SystemC) language rules. The dim element is of type

nonNegativeInteger.

c) addressOffset (mandatory) describes the offset from the start of the containing addressBlock or

registerFile element. The addressOffset is expressed in addressing units from the containing

A single register

spirit:regis ter

0 f. .

attributes

ID attribute for uniquely identify ing an

element w ithin its document. O n

elements w ith spirit: resolv e attribute is

used to refer to this element and

otherw ise can be used as a
documentation ID .

spirit:id

type xs: ID

A group of elements for name (xs:name),
display N ame and description

spirit:nameGroup

U nique name

spirit:nam e

type xs:Name

E lement name for display purposes.

Ty pica lly a few w ords prov iding a more
deta iled and/or user-friendly name than

the spirit:name.

spirit:d isplayNam e

type xs:string

F ull description string, ty pica l ly for
documentation

spirit:description

type xs:string

D imensions a register array , the

semantics for dim elements are the same

as the C language standard for the

lay out of memory in multidimensiona l

a rray s.

spirit:dim

0 f. .

type xs:nonNegativeInteger

O ffset from the address block's baseA ddress
or the containing register file's

addressO ffset, expressed as the number of

addressU nitB its from the containing

memoryM ap or localM emoryM ap.

spirit:addressOffset

type spirit:scaledNonNegativeInteger

Register definition specific information

spirit: registerDefinitionGroup

A lternate definitions for the current
register

spirit:alternateRegis ters

A collection of parameters.

spirit:param eters

C ontainer for v endor specific extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 04 Copyright © 201 0 IEEE. Al l rights reserved.

memoryMap/addressUnitBits or localMemoryMap/addressUnitBits element. The

addressOffset element is of type scaledNonNegativeInteger.

d) registerDefinitionGroup group describes additional elements for a register. See 6.1 0.3

e) alternateRegisters (optional) describes alternate description for the containing register. See 6.1 0.4

f) parameters (optional) describes any parameter names and types when the register width can be

parameterized. See C.11 .

g) vendorExtensions (optional) adds any extra vendor-specific data related to this register. See C.1 0.

See also: SCR 7.1 , SCR 7.2, SCR 7.3 , SCR 7.4, SCR 7.5, SCR 7.7, SCR 7.8, SCR 7.9, SCR 7.1 3, SCR 8.3,

SCR 8.4, SCR 8.5, SCR 8.7, SCR 8.8, and SCR 8.9.

6.1 0.2.3 Example

The following example shows a register with its subelements.

<spirit: register>

<spirit: name>control</spirit: name>

<spirit: description>Control register</spirit: description>

<spirit: addressOffset>0x8</spirit: addressOffset>

<spirit: size>32</spirit: size>

<spirit: access>read-write</spirit: access>

<spirit: field>

<spirit: name>enable</spirit: name>

<spirit: description>Enables the receiver</spirit: description>

<spirit: bitOffset>0</spirit: bitOffset>

<spirit: bitWidth>1</spirit: bitWidth>

</spirit: field>

<spirit: field>

<! -- … -->

</spirit: field>

</spirit: register>

6.1 0.3 Register definition group

6.1 0.3.1 Schema

The following schema details the information contained in the registerDefinitionGroup group, which is

contained in the register element. This group describes register definition information.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 105

6.1 0.3.2 Description

A registerDefinitionGroup group contains the following elements.

a) typeIdentifier (optional) indicates multiple register elements with the same typeIdentifier in the

same description contain the exact same information for the elements in the

registerDefinitionsGroup.

b) size (mandatory) is the width of the register, counting in bits. The type of this element is set to

positiveInteger. The size element is configurable with attributes from long.prompt.att, see C.1 2.

c) volatile (optional) when true indicates in the case of a write followed by read, or in the case of two

consecutive reads, there is no guarantee as to what is returned by the read on the second transaction

or that this return value is consistent with the write or read of the first transaction. The element

implies there is some additional mechanism by which this register can acquire new values other than

by reads/writes/resets and other access methods known to IP-XACT. If this element is not present,

no presumptions can be made about its value. The volatile element is of type boolean.

d) access (optional) indicates the accessibility of the register. If this is not present, the access is

inherited from the containing addressBlock. There are several choices.

1) read-write: Both read and write transactions may have an effect on this register. Write

transactions may affect the contents of the register and read transactions return a value related

to the values in the register.

2) read-only: A read transaction to this address returns a value related to the values in the register.

A write transaction to this register has undefined results.

3) write-only: A write transaction to this address affects the contents of the register. A read

transaction to this register has undefined results.

Register definition specific information

spirit: registerDefinitionGroup

Identifier name used to indicate that

multiple register elements conta in the

exact same information for the elements

in the registerDefinitionG roup.

spirit:type Identifie r

type xs:Name

Width of the register in bits.

spirit:s ize

type xs:positiveInteger

attributes

U se this a ttribute group on long integer

elements.

spirit:long.prompt.attgrp

Indicates w hether the data is v olatile.

spirit:volatile

type xs:boolean

Indicates the accessibility of the data in

the address bank, address block, register

or field. P ossible v a lues are 'read-w rite' ,

'read-only ', 'w rite-only ', 'w riteO nce' and

'read-w riteO nce'. I f not specified the

v a lue is inherited from the containing

object.

spirit:access

type spirit:accessType

Register v a lue at reset.

spirit:reset

Describes indiv idua l bit fields w ithin the

register.

spirit:fie ld

0 f. .

type spirit: fieldType

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 06 Copyright © 201 0 IEEE. Al l rights reserved.

4) read-writeOnce: Both read and write transactions may have an effect on this register. Only the

first write transaction, after an event that caused the reset value of the register to be loaded, may

affect the contents of the register and read transactions return a value related to the values in the

register.

5) writeOnce: Only the first write transaction, after an event that caused the reset value of the reg-

ister to be loaded, affects the contents of the register. A read transaction to this register has

undefined results.

e) reset (optional) indicates the value of the register’s contents when the device is reset. See 6.1 0.7.

f) field (optional) describes any bit fields in a register. See 6.1 0.8.

See also: SCR 7.1 , SCR 7.2, SCR 7.3 , SCR 7.4, SCR 7.5, SCR 7.7, SCR 7.8, SCR 7.9, SCR 7.1 3, SCR 8.3,

SCR 8.4, SCR 8.5, SCR 8.7, SCR 8.8, SCR 8.9, SCR 8.11 , SCR 8.1 2, SCR 8.14, and SCR 8.1 5.

6.1 0.3.3 Example

The following example shows a register with its subelements. The register contains a one bit field.

<spirit: register>

<spirit: name>status</spirit: name>

<spirit: description>Status register</spirit: description>

<spirit: addressOffset>0x4</spirit: addressOffset>

<spirit: size>32</spirit: size>

<spirit: access>read-only</spirit: access>

<spirit: field>

<spirit: name>dataReady</spirit: name>

<spirit: description>Indicates that new data is available in the

receiver holding register</spirit: description>

<spirit: bitOffset>0</spirit: bitOffset>

<spirit: bitWidth>1</spirit: bitWidth>

<spirit: volatile>true</spirit: volatile>

</spirit: field>

</spirit: register>

6.1 0.4 Alternate registers

6.1 0.4.1 Schema

The following schema details the information contained in the alternateRegisters element, which is

contained in the register element that may appear as an element inside the addressBlock element. This

element describes a list of alternate registers.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 107

6.1 0.4.2 Description

The alternateRegisters (optional) element contains an unbounded list of alternateRegister elements. An

alternateRegister element contains an alternate definition for the containing register. The

alternateRegister element contains an id (optional) attribute that assigns a unique identifier to the

containing element for reference throughout the containing description. alternateRegister contains the

following elements.

a) nameGroup group is defined in C.1 . The register/name, registerFile/name, and register/alterna-

teRegisters/alternateRegister/name element shall be unique within the containing addressBlock

or registerFile element.

b) alternateGroups (mandatory) defines an unbounded list of grouping names for which this alternate

description belongs. alternateGroup (mandatory) defines a grouping name for this alternate regis-

ter description. All alternateGroup elements shall be unique for each containing register. The

alternateGroup element is of type Name.

c) alternateRegisterDefinitionGroup group describes additional elements for an alternate register. See

6.1 0.3

d) parameters (optional) describes any parameter names and types when the register width can be

parameterized. See C.11 .

e) vendorExtensions (optional) adds any extra vendor-specific data related to this register. See C.10.

See also: SCR 7.1 , SCR 7.2, SCR 7.3 , SCR 7.4, SCR 7.7, SCR 7.8, SCR 7.9, SCR 7.1 3, SCR 8.3, SCR 8.4,

SCR 8.5, SCR 8.7, SCR 8.8, SCR 8.9, SCR 8.11 , SCR 8.1 2, SCR 8.1 4, and SCR 8.1 5.

6.1 0.4.3 Example

The following example shows a register with an alternate register definition that is a group called transmit.

A lternate definitions for the current

register

spirit:alternateRegis ters

A lternate definition for the current register

spirit:alternateRegis ter

1 f. .

attributes

ID attribute for uniquely identify ing an

element w ithin its document. O n

elements w ith spirit: resolv e attribute is

used to refer to this element and

otherw ise can be used as a
documentation ID .

spirit:id

type xs: ID

A group of elements for name (xs:name),

display N ame and description

spirit:nameGroup

U nique name

spirit:nam e

type xs:Name

E lement name for display purposes.

Ty pically a few w ords prov iding a more

detailed and/or user-friendly name than
the spirit:name.

spirit:displayNam e

type xs:string

F ul l description string, ty pica lly for
documentation

spirit:description

type xs:string

Defines a l ist of grouping names that this

register description belongs.

spirit:alternateGroups

Defines a grouping name that this register
description belongs.

spirit:alternateGroup

1 f. .

type xs:Name

A lternate register file defnition specific
information

spirit:alternateRegisterDefinitionGroup

A collection of parameters.

spirit:param eters

C ontainer for v endor specific extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 08 Copyright © 201 0 IEEE. Al l rights reserved.

<spirit: register>

<spirit: name>control</spirit: name>

<spirit: addressOffset>0x8</spirit: addressOffset>

<spirit: size>32</spirit: size>

<spirit: access>read-write</spirit: access>

<spirit: field>

<spirit: name>enable</spirit: name>

<spirit: description>Enables the receiver</spirit: description>

<spirit: bitOffset>0</spirit: bitOffset>

<spirit: bitWidth>1</spirit: bitWidth>

</spirit: field>

<spirit: alternateRegisters>

<spirit: alternateRegister>

<spirit: name>control</spirit: name>

<spirit: access>read-only</spirit: access>

<spirit: field>

<spirit: name>enable</spirit: name>

<spirit: description>Enables the transmitter</

spirit: description>

<spirit: alternateGroups>

<spirit: alternateGroup>transmit</spirit: alternateGroup>

</spirit: alternateGroups>

</spirit: field>

</spirit: alternateRegister>

</spirit: alternateRegisters>

</spirit: register>

6.1 0.5 Alternate register definition group

6.1 0.5.1 Schema

The following schema details the information contained in the alternateRegisterDefinitionGroup group,

which is contained in the alternateRegister element. This group describes alternate register definition

information.

A lternate register file defnition specific

information

spirit:alternateRegisterDefinitionGroup

Identifier name used to indicate that

multiple register elements conta in the

exact same information for the elements

in the a lternateRegisterDefinitionG roup.

spirit:typeIdentifie r

type xs:Name

Indicates w hether the data is v olatile.

spirit:volatile

type xs:boolean

Indicates the accessibility of the data in

the address bank, address block, register

or field. P ossible v a lues are 'read-w rite',

'read-only ', 'w rite-only ', 'w riteO nce' and

'read-w riteO nce'. I f not specified the

v a lue is inherited from the conta ining

object.

spirit:access

type spirit:accessType

Register v a lue at reset.

spirit:reset

Describes indiv idual bit fields w ithin the

register.

spirit:fie ld

0 f. .

type spirit: fieldType

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 109

6.1 0.5.2 Description

A alternateRegisterDefinitionGroup group contains the following elements.

a) typeIdentifier (optional) indicates multiple register elements with the same typeIdentifier in the

same description contain the exact same information for the elements in the

alternateRegisterDefinitionsGroup.

b) volatile (optional) when true indicates in the case of a write followed by read, or in the case of two

consecutive reads, there is no guarantee as to what is returned by the read on the second transaction

or that this return value is consistent with the write or read of the first transaction. The element

implies there is some additional mechanism by which this register can acquire new values other than

by reads/writes/resets and other access methods known to IP-XACT. If this element is not present,

no presumptions can be made about its value. The volatile element is of type boolean.

c) access (optional) indicates the accessibility of the register. If this is not present, the access is

inherited from the containing addressBlock. There are several choices.

1) read-write: Both read and write transactions may have an effect on this register. Write

transactions may affect the contents of the register and read transactions return a value related

to the values in the register.

2) read-only: A read transaction to this address returns a value related to the values in the register.

A write transaction to this register has undefined results.

3) write-only: A write transaction to this address affects the contents of the register. A read

transaction to this register has undefined results.

4) read-writeOnce: Both read and write transactions may have an effect on this register. Only the

first write transaction, after power up, may affect the contents of the register and read

transactions return a value related to the values in the register.

5) writeOnce: Only the first write transaction, after power up, to this address affects the contents

of the register. A read transaction to this register has undefined results.

d) reset (optional) indicates the value of the register’s contents when the device is reset. See 6.1 0.7.

e) field (optional) describes any bit fields in a register. See 6.1 0.8.

See also: SCR 7.1 , SCR 7.2, SCR 7.3 , SCR 7.4, SCR 7.7, SCR 7.8, SCR 7.9, SCR 7.1 3, SCR 8.3, SCR 8.4,

SCR 8.5, SCR 8.7, SCR 8.8, and SCR 8.9.

6.1 0.6 Register fi le

6.1 0.6.1 Schema

The following schema details the information contained in the registerFile element, which is contained in

the registerData group that may appear as an element inside the addressBlock element. This element

describes a register file.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 10 Copyright © 201 0 IEEE. Al l rights reserved.

6.1 0.6.2 Description

A registerFile element describes a grouping of registers in an address block or register file. The registerFile

element contains an id (optional) attribute that assigns a unique identifier to the containing element for

reference throughout the containing description. registerFile contains the following elements.

a) nameGroup group is defined in C.1 . The register/name, registerFile/name, and register/

alternateRegisters/alternateRegister/name element shall be unique within the containing

addressBlock or registerFile element.

b) dim (optional) assigns an unbounded dimension to the register, so it is repeated as many times as the

value of the dim elements. For multi-dimensional register arrays, the memory layout is presumed to

follow the IEEE Std 1 666-2005 [B4] (SystemC) language rules. The dim element is of type

nonNegativeInteger.

A structure of registers and register files

spirit:regis terFile

0 f. .

attributes

ID attribute for uniquely identify ing an
element w ithin its document. O n

elements w ith spirit: resolv e attribute is
used to refer to this element and

otherw ise can be used as a

documentation ID .

spirit:id

type xs: ID

A group of elements for name (xs:name),

display N ame and description

spirit:nameGroup

U nique name

spirit:nam e

type xs:Name

E lement name for display purposes.
Ty pica lly a few w ords prov iding a more

deta iled and/or user-friendly name than
the spirit:name.

spirit:displayNam e

type xs:string

F ull description string, ty pica lly for
documentation

spirit:description

type xs:string

D imensions a register array , the

semantics for dim elements are the same
as the C language standard for the

lay out of memory in multidimensional

array s.

spirit:dim

0 f. .

type xs:nonNegativeInteger

O ffset from the address block's baseA ddress

or the containing register file's

addressO ffset, expressed as the number of

addressU nitB its from the containing
memoryM ap or localM emory M ap.

spirit:addressOffset

type spirit:scaledNonNegativeInteger

Register file defnition specific information

spirit: registerFileDefinitionGroup

Identifier name used to indicate that

multiple registerF ile elements contain the
exact same information except for the

elements in the
registerF ileInstanceG roup.

spirit:type Identifier

type xs:Name

The range of a register file. E xpressed as
the number of addressable units

accessible to the block. Specified in units
of addressU nitB its.

spirit:range

type spirit:scaledPositiveInteger

attributes

U se this a ttribute group on long integer
elements.

spirit:long.prompt.attgrp

This group of optional elements describes

the memory mapped registers of an
address block

spirit:registerData

A collection of parameters.

spirit:param eters

C ontainer for v endor specific extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � � �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 1 1 1

c) addressOffset (mandatory) describes the offset from the start of the containing addressBlock or

registerFile element. The addressOffset is expressed in addressing units from the containing

memoryMap/addressUnitBits or localMemoryMap/addressUnitBits element. The

addressOffset element is of type scaledNonNegativeInteger.

d) registerFileDefinitionGroup group describes additional elements for a register file.

1) typeIdentifier (optional) indicates multiple register elements with the same typeIdentifier in

the same description contain the exact same information for the elements in the

registerDefinitionsGroup .

2) range (mandatory) gives the range of a register file. This is expressed as the number of

addressable units of the register file. The size of an addressable unit is defined inside the

containing memoryMap/addressUnitBits element. The type of this element is set to

scaledPositiveInteger. The range element is configurable with attributes from long.prompt.att,

see C.1 2.

3) registerData group contains information about the grouping of bits into registers and fields.

See 6.1 0.2.

e) parameters (optional) describes any parameter names and types when the register width can be

parameterized. See C.11 .

f) vendorExtensions (optional) adds any extra vendor-specific data related to this register. See C.10.

See also: SCR 7.6, SCR 7.7, and SCR 7.14.

6.1 0.6.3 Example

The following example shows a register file within an address block starting at address 0x200 . The register

file is 32 bytes in length and contains two registers at an absolute address of 0x200 and 0x204 within the

address block.

<spirit: addressBlock>

<spirit: name>abname</spirit: name>

<spirit: baseAddress>0x0</spirit: baseAddress>

<spirit: range>0x1000</spirit: range>

<spirit: width>32</spirit: width>

<spirit: registerFile>

<spirit: name>status</spirit: name>

<spirit: description>Status register</spirit: description>

<spirit: addressOffset>0x200</spirit: addressOffset>

<spirit: range>32</spirit: range>

<spirit: register>

<spirit: name>control</spirit: name>

<spirit: addressOffset>0x0</spirit: addressOffset>

<spirit: size>32</spirit: size>

<spirit: access>read-write</spirit: access>

<spirit: field>

<! -- . . . -->

</spirit: field>

</spirit: register>

<spirit: register>

<spirit: name>status</spirit: name>

<spirit: addressOffset>0x4</spirit: addressOffset>

<spirit: size>32</spirit: size>

<spirit: access>read-only</spirit: access>

<spirit: field>

<! -- . . . -->

</spirit: field>

</spirit: register>

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� � �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 12 Copyright © 201 0 IEEE. Al l rights reserved.

</spirit: registerFile>

<spirit: addressUnitBits>8</spirit: addressUnitBits>

</spirit: addressBlock>

6.1 0.7 Register reset value

6.1 0.7.1 Schema

The following schema details the information contained in the reset element, which may appear as an

element inside the register element. This element describes the reset value of the register.

6.1 0.7.2 Description

The reset element describes the value of a register at reset. It has the following subelements.

a) value (mandatory) contains the actual reset value. The value element is of type

scaledNonNegativeInteger. The value element is configurable with attributes from long.prompt.att,

see C.1 2.

b) mask (optional) defines which bits of the register have a known reset value. The mask element is of

type scaledNonNegativeInteger. The mask element is configurable with attributes from

long.prompt.att, see C.1 2.

A 1 bit in the mask means the corresponding bit of the register has a known reset value; a 0 bit

means it does not. All bits of the value that correspond to 0 bits of the mask are ignored. The

absence of a mask element is equivalent to a mask of the same size as the register consisting of all

1 bits.

6.1 0.7.3 Example

The following example shows a reset value. Any register with this reset value has bit 7 and bits 5 down to 1

set to logic 0 , and bits 6 and 0 set to a logic 1 on reset.

<spirit: reset>

<spirit: value>0x41</spirit: value>

<spirit: mask>0xFF</spirit: mask>

</spirit: reset>

6.1 0.8 Register bit fields

6.1 0.8.1 Schema

The following schema details the information contained in the field element, which may appear as an

element inside the register element. This element describes a bit field of a register.

Register v a lue at reset.

spirit:reset

The v a lue itself.

spirit:value

type spirit:scaledNonNegativeInteger

attributes

U se this a ttribute group on long integer

elements.

spirit:long.prompt.attgrp

M ask to be anded w ith the v a lue before

comparing to the reset v a lue.

spirit:m ask

type spirit:scaledNonNegativeInteger

attributes

U se this a ttribute group on long integer

elements.

spirit:long.prompt.attgrp

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � � �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 1 1 3

6.1 0.8.2 Description

A field element of a register describes a smaller bit field of a register. The field element contains an id

(optional) attribute that assigns a unique identifier to the containing element for reference throughout the

containing description. field contains the following elements.

a) nameGroup group is defined in C.1 . The name element shall be unique within the containing

register or alternateRegister element.

b) bitOffset (mandatory) describes the offset (from bit 0 of the register) where this bit field starts. The

bitOffset element is of type nonNegativeInteger.

c) fieldDefinitionGroup group describes additional elements for a field.

1) typeIdentifier (optional) indicates multiple fields elements with the same typeIdentifier in the

same description contain the exact same information for the elements in

fieldDefinitionsGroup.

2) bitWidth (mandatory) is the width of the field, counting in bits. The bitWidth element is of

type postiveInteger. The bitWidth element is configurable with attributes from

long.prompt.att, see C.1 2.

spirit:fie ldType

Describes indiv idual bit fields w ithin the

register.

spirit:fie ld

0 f. .

type spirit:fieldType

attributes

ID attribute for uniquely identify ing an
element w ithin its document. O n

elements w ith spirit: resolv e attribute is
used to refer to this element and

otherw ise can be used as a

documentation ID .

spirit:id

type xs: ID

A group of elements for name (xs:name),
display N ame and description

spirit:nameGroup

U nique name

spirit:nam e

type xs:Name

E lement name for display purposes.

Ty pica lly a few w ords prov iding a more

detailed and/or user-friendly name than

the spirit:name.

spirit:displayNam e

type xs:string

F ul l description string, ty pica lly for

documentation

spirit:description

type xs:string

O ffset of this field's bit 0 from bit 0 of the
register.

spirit:bitOffse t

type xs:nonNegativeInteger

F ield definition specific information

spirit:fieldDefinitionGroup

Identifier name used to indicate that

multiple field elements conta in the exact
same information for the elements in the

fieldDefinitionG roup.

spirit:type Identifier

type xs:Name

Width of the field in bits.

spirit:bitWidth

type xs:positiveInteger

attributes

U se this attribute group on long integer

elements.

spirit:long.prompt.attgrp

A dditional field data

spirit: fieldData

A collection of parameters.

spirit:param eters

C onta iner for v endor specific extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� � �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 14 Copyright © 201 0 IEEE. Al l rights reserved.

3) fieldData group describes additional elements for a field. See 6.1 0.1 0.

d) parameters (optional) details any additional parameters that describe the field for generator usage.

See C.11 .

e) vendorExtensions (optional) adds any extra vendor-specific data related to this field. See C.1 0.

See also: SCR 7.2, SCR 7.4, SCR 7.9, SCR 7.1 0, SCR 7.11 , and SCR 7.12.

6.1 0.8.3 Example

The following example shows a 1 -bit field with its subelements.

<spirit: field>

<spirit: name>paritySelect</spirit: name>

<spirit: displayName>Parity Select</spirit: displayName>

<spirit: description>Selects parity polarity (0=odd parity, 1=even

parity) </spirit: description>

<spirit: bitOffset>2</spirit: bitOffset>

<spirit: bitWidth>1</spirit: bitWidth>

</spirit: field>

6.1 0.9 Field data group

6.1 0.9.1 Schema

The following schema details the information contained in the fieldData group, which is contained inside

the field element. This group describes the optional properties of a field.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � � �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 1 1 5

6.1 0.9.2 Description

The fieldData group contains the following elements.

a) volatile (optional) when true indicates in the case of a write followed by read, or in the case of two

consecutive reads, there is no guarantee as to what is returned by the read on the second transaction

or that this return value is consistent with the write or read of the first transaction. The element

implies there is some additional mechanism by which this field can acquire new values other than by

reads/writes/resets and other access methods known to IP-XACT. If this element is not present, it is

presumed to be false. The volatile element is of type boolean.

b) access (optional) indicates the accessibility of the field. If this is not present, the access is inherited

from the containing register. There are several choices.

1) read-write: Both read and write transactions may have an effect on this field. Write

transactions may affect the contents of the field and read transactions return a value related to

the values in the field.

Additiona l field data

spirit:fieldData

Indicates w hether the data is v olatile. The presumed v a lue

is 'fa lse' if not present.

spirit:volatile

type xs:boolean

Indicates the accessibil ity of the data in the address bank,
address block, register or field. P ossible v a lues are

'read-w rite', 'read-only ', 'w rite-only ', 'w riteO nce' and
'read-w riteO nce'. I f not specified the v a lue is inherited from

the conta ining object.

spirit:access

type spirit:accessType

Enumerates specific v a lues that can be assigned to the bit
field.

spirit:enumeratedValues

I f present this element describes the modification of field
data caused by a w rite operation. 'oneToC lear' means that

in a bitw ise fashion each w rite data bit of a one w il l clear
the corresponding bit in the field. 'oneToSet' means that in

a bitw ise fashion each w rite data bit of a one w ill set the

corresponding bit in the field. 'oneToToggle' means that in
a bitw ise fashion each w rite data bit of a one w ill toggle the

corresponding bit in the field. 'zeroToC lear' means that in a

bitw ise fashion each w rite data bit of a zero w il l clear the

corresponding bit in the field. 'zeroToSet' means that in a
bitw ise fashion each w rite data bit of a zero w il l set the

corresponding bit in the field. 'zeroToToggle' means that in

a bitw ise fashion each w rite data bit of a zero w il l toggle

the corresponding bit in the field. 'clear' means any w rite to
this field clears the field. 'set' means any w rite to the field

sets the field. 'modify ' means any w rite to this field may

modify that data. I f this element is not present the w rite

operation data is w ritten.

spirit:modifiedWriteValue

type xs:Name

The lega l v a lues that may be w ritten to a field. I f not

specified the legal v a lues are not specified.

spirit:writeValueCons traint

type spirit:w riteValueConstraintType

A l ist of possible actions for a read to set the field after the

read. 'clear' means that after a read the field is cleared. 'set'
means that after a read the field is set. 'modify ' means

after a read the field is modified. I f not present the field
v a lue is not modified after a read.

spirit:readAction

type xs:Name

C an the field be tested w ith an automated register test

routine. The presumed v a lue is true if not specified.

spirit:tes table

type xs:boolean

attributes

C onstraint for an automated register test routine.

'unconstra ined' (default) means may read and w rite a ll legal
v a lues. 'restore' means may read and w rite legal v a lues

but the v a lue must be restored to the initia l ly read v a lue

before accessing another register. 'w riteA sRead' has

l im itations on testabil ity w here only the v a lue read before a
w rite may be w ritten to the field. 'readO nly ' has lim itations

on testabil ity w here v a lues may only be read from the

field.

spirit:tes tCons traint

type xs:string

default unconstrained

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� � �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 16 Copyright © 201 0 IEEE. Al l rights reserved.

2) read-only: A read transaction to this address returns a value related to the values in the field. A

write transaction to this field has undefined results.

3) write-only: A write transaction to this address affects the contents of the field. A read

transaction to this field has undefined results.

4) read-writeOnce: Both read and write transactions may have an effect on this field. Only the

first write transaction, after power up, may affect the contents of the field and read transactions

return a value related to the values in the field.

5) writeOnce: Only the first write transaction, after power up, to this address affects the contents

of the field. A read transaction to this field has undefined results.

c) enumeratedValues (optional) describes a name for different values of a field. See 6.1 0.1 0.

d) modifiedWriteValue (optional) element to describe the manipulation of data written to a field. The

value shall be one of oneToClear, oneToSet, oneToToggle, zeroToClear, zeroToSet,

zeroToToggle, clear, set, or modify. If the modifiedWriteValue element is not specified, the value

written to the field is the value stored in the field.

oneToClear means in a bitwise fashion each write data bit of a one shall clear (set to zero) the

corresponding bit in the field.

oneToSet means in a bitwise fashion each write data bit of a one shall set (set to one) the

corresponding bit in the field.

oneToToggle means in a bitwise fashion each write data bit of a one shall toggle the corresponding

bit in the field.

zeroToClear means in a bitwise fashion each write data bit of a zero shall clear (set to zero) the

corresponding bit in the field.

zeroToSet means in a bitwise fashion each write data bit of a zero shall set (set to one) the

corresponding bit in the field.

zeroToToggle means in a bitwise fashion each write data bit of a zero shall toggle the corresponding

bit in the field.

clear means after a write operation all bits in the field are cleared (set to zero).

set means that after a write operation all bits in the field are set (set to one).

modify means that after a write operation all bits in the field may be modified.

e) writeValueConstraint (optional) describes a set of constraint values that are the only values that

can be written to this field. If writeValueConstraint is not present, no constraint values are defined

for this field. See 6.1 0.11 .

f) readAction (optional) describes an action that happens to a field after a read operation happens.

clear indicates the field is cleared after a read operation. set indicates the field is set after a read

operation. modify indicates the field is modified in some way after a read operation. If readAction

not specified, the field is not modified after a read operation.

g) testable (optional) defines if the field is testable by a simple automated register test. If this is not

present, testable is presumed to be true. The testable element is of type boolean.

testConstraint (optional) attribute defines the constraint for the field during a simple automated

register test.

unConstrained (default) indicates there are no restrictions on the data that may be written or

read from the field. restore indicates the field’s value shall be restored to the original value

before accessing another register. writeAsRead indicates the field shall only be written to a

value just previously read from the field. readOnly indicates the field shall only be read.

6.1 0.9.3 Example

The following example describes a field with a write behavior that sets a field bit if the value written is a 1

and a read behavior that reads the written value and afterwards clears the register.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � � �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 1 17

<spirit: field>

<spirit: name>interrupt</spirit: name>

<spirit: bitOffset>0</spirit: bitOffset>

<spirit: bitWidth>1</spirit: bitWidth>

<spirit: modifiedWriteValue>oneToSet</spirit: modifiedWriteValue>

<spirit: readAction>clear</spirit: readAction>

</spirit: field>

See also: SCR 7.2, SCR 7.4, SCR 7.9, SCR 7.10, SCR 7.11 , and SCR 7.1 2.

6.1 0.1 0 Enumeration values

6.1 0.1 0.1 Schema

The following schema details the information contained in the enumeratedValues element, which may

appear as an element inside the field element.

6.1 0.1 0.2 Description

The enumeratedValues element describes a list of name and values pairs for the given field.

a) usage (optional) attribute defines the software access condition under which this name value pair is

valid. Possible values are read, write, and read-write (default).

b) nameGroup group is defined in C.1 . All name elements shall be unique within the containing

enumeratedValues element.

c) value (mandatory) defines the value to assign to the specified name. The value element is of type

scaledInteger.

d) vendorExtensions (optional) adds any extra vendor-specific data related to this enumeration. See

C.10.

6.1 0.1 0.3 Example

The following example shows two enumerated values for a 1 -bit field: 0 for oddParity and 1 for

evenParity.

<spirit: enumeratedValues>

<spirit: enumeratedValue>

<spirit: name>oddParity</spirit: name>

<spirit: description>oddParity</spirit: description>

Enumerates specific v a lues that can be assigned to the bit

field.

spirit:enum eratedValues

Enumerates specific v a lues that can be assigned to the bit

field. The name of this enumerated v a lue. This may be

used as a token in generating code.

spirit:enum eratedValue

1 f. .

attributes

U sage for the enumeration. 'read' for a softw are read

access. 'w rite' for a softw are w rite access. 'read-w rite' for a

softw are read or w rite access.

spirit:usage

type xs:string

default read-w rite

A group of elements for name (xs:name), display N ame and

description

spirit:nameGroup

U nique name

spirit:nam e

type xs:Name

E lement name for display purposes. Ty pica l ly a few w ords

prov iding a more deta iled and/or user-friendly name than

the spirit:name.

spirit:displayNam e

type xs:string

F ull description string, ty pica lly for documentation

spirit:description

type xs:string

Enumerated bit field v a lue.

spirit:value

type spirit:scaledInteger

C ontainer for v endor specific extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� � �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 18 Copyright © 201 0 IEEE. Al l rights reserved.

<spirit: value>0</spirit: value>

</spirit: enumeratedValue>

<spirit: enumeratedValue>

<spirit: name>evenParity</spirit: name>

<spirit: description>evenParity</spirit: description>

<spirit: value>1</spirit: value>

</spirit: enumeratedValue>

</spirit: enumeratedValues>

See also: SCR 7.10 and SCR 7.11 .

6.1 0.1 1 Write value constraint

6.1 0.1 1 .1 Schema

The following schema details the information contained in the writeValueConstraint element, which may

appear as an element inside the field element.

6.1 0.1 1 .2 Description

The writeValueConstraint element describes a set of constraint values that are the only values that can be

written to this field. If writeValueConstraint is not present, the legal values for this field are not defined.

a) writeAsRead (mandatory) if true implies the only legal value to write to this field is a value

previously read from this field. If writeAsRead is not present, it is presumed to be false. The

writeAsRead element is of type boolean.

b) useEnumeratedValues (mandatory) if true implies the only legal values to write to this field are the

values specified in the useEnumeratedValues element for this field. If useEnumeratedValues is

not present, it is presumed to be false. The useEnumeratedValues element is of type boolean.

c) minimum (mandatory) contains the minimum value that may be written to this field. The minimum

element is of type scaledNonNegativeInteger. The minimum element is configurable with

attributes from long.prompt.att, see C.1 2.

d) maximum (mandatory) contains the maximum value that may be written to this field. The

maximum element is of type scaledNonNegativeInteger. The maximum element is configurable

with attributes from long.prompt.att, see C.1 2.

See also: SCR 7.10 and SCR 7.11 .

spirit:writeValueConstraintType

The lega l v a lues that may be w ritten to a field. I f not
specified the legal v a lues are not specified.

spirit:writeValueConstraint

type spirit:w riteValueConstraintType

writeA sRead indicates that only a v a lue immediately read
before a w rite is a legal v a lue to be w ritten.

spirit:w riteAsRead

type xs:boolean

useEnumeratedV alues indicates that only w rite
enumeration v a lue shall be legal v a lues to be w ritten.

spirit:useEnum eratedValues

type xs:boolean

The m inimum legal v a lue that may be w ritten to a field

spirit:m in im um

type spirit:scaledNonNegativeInteger

attributes

U se this attribute group on long integer elements.

spirit:long.prom pt.attgrp

The maximum legal v a lue that may be w ritten to a field

spirit:m axim um

type spirit:scaledNonNegativeInteger

attributes

U se this attribute group on long integer elements.

spirit:long.prompt.attgrp

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � � �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 1 19

6.1 0.1 1 .3 Example

The following example is for a two-bit field that only allows the values 0 , 1 , and 2 to be written.

<spirit: writeValueConstraint>

<spirit: minimum>0x0</spirit: minimum>

<spirit: maximum>0x2</spirit: maximum>

<spirit: writeValueConstraint>

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� � �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 20 Copyright © 201 0 IEEE. Al l rights reserved.

6.1 1 Models

6.1 1 .1 Model

6.1 1 .1 .1 Schema

The following schema details the information contained in the model element, which may appear as an

element inside the component element.

6.1 1 .1 .2 Description

The model element describes the views, ports, and model-related parameters of a component. A model

element may contain the following.

a) views (optional) contains a list of all the views for this object. An object may have many different

views. An RTL view may describe the source hardware module/entity with its pin interface; a soft-

ware view may define the source device driver C file with its . h interface; a documentation view

may define the written specification of this IP. See 6.11 .2.

b) ports (optional) contains the list of ports for this object. A ports is an external connection from the

object. An object may only have one set of ports that shall be valid for all views. See 6.11 .3 .

c) modelParameters (optional) contains a list of parameters that are needed to configure a model

implementation specified in a view. An object shall only have one set of model parameters that are

valid for all views. See 6.11 .20.

6.1 1 .2 Views

6.1 1 .2.1 Schema

The following schema details the information contained in the views element, which may appear as an

element inside a model element. This element may contain one or more view elements.

spirit:m ode lType

M odel information.

spirit:m ode l

type spirit:modelType

V iew conta iner

spirit:views

Port conta iner

spirit:ports

M odel parameter name v a lue pa irs

conta iner

spirit:m ode lParam eters

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 121

6.1 1 .2.2 Description

A views element describes an unbounded set of view elements. Each view element specifies a representation

level of a component. It contains the following elements.

a) nameGroupNMToken group is detailed in C.4. The name elements shall be unique within the

containing views element.

b) envIdentifier (mandatory) designates and qualifies information about how this model view is

deployed in a particular tool environment. The format of the element is a string with three fields

separated by colons [:] in the format of Language:Tool:VendorSpecific. The regular expression that

V iew container

spirit:views

spirit:viewType

S ingle v iew of a component

spirit:view

1 f. .

type spirit:view Type

A group of elements for

name(xs:N M TO KEN), display N ame and
description

spirit:nameGroupNMTOKEN

 D efines the hardware env ironment in

w hich this v iew applies. The format of

the string is
language:tool:v endor_extension, w ith

each piece being optional. The language
must be one of the ty pes from
spirit:fileTy pe. The tool v a lues are

defined by the SP IRIT C onsortium, and
include generic v a lues "* S imulation" and

"* Sy nthesis" to imply any tool of the

indicated ty pe. H av ing more than one
env Identifier ind icates that the v iew

applies to multiple env ironments.

spirit:envIdentifier

1 f. .

type xs:string

 References an I P -XA C T design or
configuration document (by V LN V) that

prov ides a design for the component

spirit:hierarchyRef

type spirit: libraryRefType

 The hardware description language used

such as "v erilog" or "v hdl" . I f the

attribute "strict" is " true" , this v a lue must
match the language being generated for

the design.

spirit:language

type xs:token

attributes

A v a lue of 'true' indicates that this v a lue
must match the language being
generated for the design.

spirit:s trict

type xs:boolean

default false

Language specific name to identity the
model. V erilog or S y stemV erilog this is

the module name. F or V H DL this is, w ith

()’s, the entity (architecture) name pa ir or

w ithout, a single configuration name. F or
Sy stemC this is the class name.

spirit:m ode lNam e

type xs:string

Default command and flags used to build
deriv ed files from the sourceN ame files in

the referenced file sets.

spirit:defaultFileBuilder

0 f. .

type spirit:fileBuilderType

A reference to a fi leS et.

spirit:fileSetRef

0 f. .
Refers to a fi leS et defined w ithin this

description.

spirit:localName

type xs:Name

A reference to a set of port constra ints.

spirit:cons traintSetRef

0 f. .

type xs:NMTOKEN

 C onta iner for w hite box element
references.

spirit:whiteboxElementRefs

A collection of parameters.

spirit:param eters

C onta iner for v endor specific extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 22 Copyright © 201 0 IEEE. Al l rights reserved.

is used to check the string is [A-Za-z0-9_+*\.]*:[A-Za-z0-9_+*\.]*:[A-Za-z0-9_+*\.]* The

sections are:

1) Language indicates this view may be compatible with a particular tool, but only if that

language is supported in that tool, e.g. , different versions of some simulators may support two

or more languages. In some cases, knowing the tool compatibility is not enough and may be

further qualified by language compatibility, e.g. , a compiled HDL model may work in a

VHDL-enabled version of a simulator, but not in a SystemC-enabled version of the same

simulator.

2) Tool indicates this view contains information that is suitable for the named tool. This might be

used if this view references data that is tool-specific and would not work generically, e.g. , HDL

models that use simulator-specific extensions.

Vendors shall publish lists of approved tool identification strings. These strings shall contain

the tool name, as well as the company’s domain name, separated by dots. Some examples of

well-formed tool entries are:

designcompiler. synopsys. com

ncsim. cadence. com

modelsim. mentor. com

This field can alternatively indicate generic tool family compatibility, including

*Simulation and *Synthesis . To support transportability of created data files, it is

important to use the published, generally recognized, tool designation when referencing a tool.

See IP-XACT standard tool names for envIdentifier [B14] .

3) VendorSpecific can be used to further qualify tool and language compatibility. This can be used

to indicate additional processing information may be required to use this model in a particular

environment. For instance, if the model is a SWIFT simulation model, the appropriate

simulator interface may need to be enabled and activated.

Any or all of the envIdentifier fields may be used. Where there are multiple environments for which

a particular view is applicable, multiple envIdentifier elements can be listed.

c) All of the information for a view shall be in the containing component. Specifically, the fileSets

that are referenced in a view shall contain entries for all of the required files. If a view in the

component contains a hierarchyRef, other views shall not assume the inclusion of files in a fileSet

referenced through that hierarchyRef. The implementation details for this view has two

possibilities.

The first possibility is a hierarchical view that uses the hierarchyRef element. In this case:

hierarchyRef (mandatory) references a hierarchical design from a view of a component. This

element is required only if the view is used to reference a hierarchical design. The

hierarchyRef element is of type libraryRefType, it contains four attributes to specify a unique

VLNV. See C.7.

d) The second possibility is a non-hierarchical view that references a file set. In this case:

1) language (optional) specifies the HDL used for a specific view, for example, verilog or

vhdl . The language element is of type token. This may have an attribute strict (optional) of

type boolean; if true the language shall be strictly enforced. If this attribute is not present, its

effective value is false.

2) modelName (optional) is a language-specific identifier of the model. For Verilog or System-

Verilog, this is the module name. For VHDL, this is, with () ’ s, the entity (architecture) name

pair or, without () ’ s, a configuration name. For SystemC, this is the sc_module class name.

The modelName element is of type string.

3) defaultFileBuilder (optional) is an unbounded list of default file builder options for the

fileSets referenced in this view. This contains all the same elements as the element fileBuilder.

See 6.1 3 .5.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 123

4) fileSetRef (optional) is an unbounded list of references to fileSet names within the containing

document or another document referenced by the VLNV. See C.8.

5) constraintSetRef (optional) is an unbounded list of references to constraint sets, valid timing

constraints for a view. constraintsSets are only defined for wire style ports. The

constraintSetRef element is of type NMTOKEN. See 6.11 .9.

6) whiteboxElementRefs (optional) contains references to white box elements of a component

that are valid for this view. If the view contains an implementation of any of the white box

elements for the component, the view section shall include a reference to that whitebox

element, with a string providing a language-dependent path to enable the DE to access the

whitebox element. See 6.1 5.

7) parameters (optional) details any additional parameters that describe the view. See C.11 .

e) vendorExtensions (optional) adds any extra vendor-specific data related to the view. See C.1 0.

See also: SCR 14.3 .

6.1 1 .2.3 Example

The following is an example of a non-hierarchical view element with the name of vhdlsource .

<spirit: views>

<spirit: view>

<spirit: name>vhdlsource</spirit: name>

<spirit: envIdentifier>: modelsim. mentor. com: </spirit: envIdentifier>

<spirit: envIdentifier>: ncsim. cadence. com: </spirit: envIdentifier>

<spirit: envIdentifier>: vcs. synopsys. com: </spirit: envIdentifier>

<spirit: envIdentifier>: designcompiler. synopsys. com:

</spirit: envIdentifier>

<spirit: language>vhdl</spirit: language>

<spirit: modelName>leon2_Uart(struct) </spirit: modelName>

<spirit: fileSetRef>

<spirit: localName>fs-vhdlSource</spirit: localName>

</spirit: fileSetRef>

<spirit: constraintSetRef>normal</spirit: constraintSetRef>

</spirit: view>

</spirit: views>

6.1 1 .3 Component ports

6.1 1 .3.1 Schema

The following schema defines the information contained in the ports element, which may appear within a

component.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 24 Copyright © 201 0 IEEE. Al l rights reserved.

6.1 1 .3.2 Description

The ports element defines an unbounded list of port elements. Each port element describes a single

external port on the component.

a) nameGroupPort group is defined in C.4. The name elements shall be unique within the containing

ports element.

b) Each port shall be described as a wire or transactional port.

1) wire (mandatory) defines ports that transport purely binary values or vectors of binary values.

See 6.11 .4.2.

2) transactional (mandatory) defines all other styles of ports, typically used for TLM. See

6.11 .1 6.

c) access (optional) defines the access for a port.

1) portAccessType (optional) indicates to a netlister how to access the port. The portAccessType

has one of two possible values ref or ptr. If ref (the default), a netlister should access the port

directly and, if ptr, it should access the port with a pointer.

2) portAccessHandle (optional) indicates to a netlister the method to be used to access the object

representing the port. This is typically a function call or array element reference in

IEEE Std 1666-2005 [B4] (SystemC). The portAccessHandle is of type string.

d) vendorExtensions (optional) adds any extra vendor-specific data related to the port. See C.1 0.

Port conta iner

spirit:ports

spirit:portType

Describes port characteristics.

spirit:port

1 f. .

type spirit:portType

A group of elements for

name(portN ame), display N ame and

description

spirit:nameGroupPort

U nique name

spirit:nam e

type spirit:portName

E lement name for display purposes.
Ty pica lly a few w ords prov iding a more

deta iled and/or user-friendly name than
the spirit:name.

spirit:displayNam e

type xs:string

Full description string, ty pica lly for

documentation

spirit:description

type xs:string

Port sty le

Defines a port w hose ty pe resolv es to
simple bits.

spirit:w ire

type spirit:portWireType

Defines a port that implements or uses a

serv ice that can be implemented w ith
functions or methods.

spirit:transactional

type spirit:portTransactionalType

spirit:portAccessType

Port access characteristics.

spirit:access

type spirit:portAccessType

Indicates how a netlister accesses a port.

'ref' means accessed by reference

(default) and 'ptr' means accessed

through a pointer.

spirit:portAccessType

type xs:string

I f present, is a method to be used to get
hold of the obj ect representing the port.

This is ty pica lly a function ca ll or array
element reference in sy stemC .

spirit:portAccessHandle

type xs:string

C ontainer for v endor specific extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 125

6.1 1 .3.3 Example

This example shows a component with a wire port (clk) and two transactional ports (initiator and

target).

<spirit: ports>

<spirit: port>

<spirit: name>clk</spirit: name>

<spirit: wire>

<spirit: direction>in</spirit: direction>

</spirit: wire>

</spirit: port>

<spirit: port>

<spirit: name>initiator</spirit: name>

<spirit: transactional>

<spirit: service>

<spirit: initiative>requires</spirit: initiative>

<spirit: serviceTypeDefs>

<spirit: serviceTypeDef>

<spirit: typeName>read_write_if</spirit: typeName>

</spirit: serviceTypeDef>

/spirit: serviceTypeDefs>

</spirit: service>

</spirit: transactional>

</spirit: port>

<spirit: port>

<spirit: name>initiator</spirit: name>

<spirit: transactional>

<spirit: service>

<spirit: initiative>provides</spirit: initiative>

<spirit: serviceTypeDefs>

<spirit: serviceTypeDef>

<spirit: typeName>read_write_if

</spirit: typeName>

</spirit: serviceTypeDef>

</spirit: serviceTypeDefs>

</spirit: service>

</spirit: transactional>

</spirit: port>

</spirit: ports>

6.1 1 .4 Component wire ports

6.1 1 .4.1 Schema

The following schema details the information contained in the wire element, which may appear as an

element inside the top-level component/model/port element.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 26 Copyright © 201 0 IEEE. Al l rights reserved.

6.1 1 .4.2 Description

The wire element describes the properties for ports that are of a wire style. A port can come in two different

styles, wire or transactional. A wire port applies for all scalar types (e.g. , VHDL std_logic and Verilog

wire) and vectors of scalars. Scalar types in VHDL also include integer and enumeration values; however,

scalars in IP-XACT only include binary values that relate to a single wire in a hardware implementation.

A wire port transports purely binary values or vectors of binary values; IP-XACT does not support tri-state

or multiple strength values.

The wire element contains the following elements.

a) allLogicalDirectionsAllowed (optional) attribute defines whether the port may be mapped to a port

in an abstractionDefinition with a different direction. The default value is false. The allLogical-
DirectionsAllowed attribute is of type boolean. See 5.3 .

b) direction (mandatory) specifies the direction of this port: in for input ports, out for output ports, and

inout for bidirectional and tri-state ports. phantom can also be used to define a port that only exists

on the IP-XACT component, but not on the implementation referenced from the view.

c) vector (optional) determines if this port is a scalar port or a vectored port. The left and right vector

bounds elements inside the vector element are those specified in the implementation source. The

port width is max (left,right) – min (left,right) +1 . The left and right elements are of type

spirit:portWireType

Defines a port w hose ty pe resolv es to

simple bits.

spirit:w ire

type spirit:portWireType

attributes

True if logica l ports w ith different directions
from the phy sica l port d irection may be

mapped onto this port. F orbidden for phantom

ports, w hich a lw ay s a llow logica l ports w ith a l l

d irection v a lue to be mapped onto the phy sica l
port. A lso ignored for inout ports, since any

logica l port may be mapped to a phy sica l inout

port.

spirit:allLogicalDirectionsAllowed

type xs:boolean

default false

The direction of a w ire sty le port. The basic

directions for a port are ' in' for input ports, 'out'
for output port and ' inout' for bidirectiona l and

tristate ports.

A v a lue of 'phantom' is a lso a l low ed and

define a port that exist on the I P -XA C T
component but not on the H DL model.

spirit:direction

type spirit:componentPortDirectionType

Specific left and right v ector bounds.
S igna l w idth is

max(left, right)-m in(left,right)+1 When the

bounds are not present, a sca lar port is

assumed.

spirit:vector

The optiona l elements left and right can

be used to select a bit-slice of a port

v ector to map to the bus interface.

spirit:le ft

type xs:nonNegativeInteger

attributes

U se this a ttribute group on long integer
elements.

spirit:long.prompt.attgrp

The optiona l elements left and right can

be used to select a bit-slice of a port

v ector to map to the bus interface.

spirit:right

type xs:nonNegativeInteger

attributes

U se this a ttribute group on long integer
elements.

spirit:long.prompt.attgrp

The group of w ire ty pe definitions. I f no

match to a v iewN ame is found then the
default language ty pes are to be used.

S ee the U ser G uide for these default

ty pes.

spirit:w ireTypeDefs

Wire port driv er element.

spirit:driver

type spirit:driverType

List of constra intSet elements for a

component port.

spirit:cons traintSets

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 127

nonNegativeInteger. The left and right elements are configurable with attributes from

long.prompt.att, see C.1 2.

The left element means first boundary, the right element, the second boundary. left may be larger

than right and left may be the MSB or LSB (right being the opposite). The left and right elements

are the (bit) rank of the left-most and right-most bits of the port.

When the vector element is present and the left and right elements are not equal, the port is defined

as a multi-bit vector port. When the vector element is present and the left and right elements are

equal, the port is defined as a single-bit vector port. When the vector element and the left and right

elements are not present, the port is defined as a scalar port.

d) wireTypeDefs (optional) describes the ports type as defined by the implementation, see 6.11 .5.

e) driver (optional) defines a driver that may be attached to this port if no other object is connected to

this port. This allows the IP to define the default state of unconnected inputs. A wire style port may

only define a driver element for a port if the direction of the port is in or inout. See also 6.11 .6

f) constraintSets (optional) defines multiple set of constraints on a port used for synthesis or other

operations. See 6.11 .11 .

See also: SCR 6.5, SCR 6.6, SCR 6.7, and SCR 6.12.

6.1 1 .4.3 Example

The following examples show how the vector elements are used when mapping to an HDL language.

reset: in std_logic; -- VHDL

would be defined with no left or right elements under the vector element.

<spirit: wire>

<spirit: direction>in</spirit: direction>

</spirit: wire>

Whereas

data: out std_logic_vector(29 downto 3) ; -- VHDL

would be defined in IP-XACT as left=29 and right=3 with all bits in descending order.

<spirit: wire>

<spirit: direction>out</spirit: direction>

<spirit: vector>

<spirit: left>29</spirit: left>

<spirit: right>3</spirit: right>

</spirit: vector>

</spirit: wire>

6.1 1 .5 Component wireTypeDef

6.1 1 .5.1 Schema

The following schema details the information contained in the wireTypeDef element, which may appear as

an element inside the wire element of a top-level wire style port element. These elements define the

definition type name, where the type is defined, and which views of a component or an abstractor use this

type.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 28 Copyright © 201 0 IEEE. Al l rights reserved.

6.1 1 .5.2 Description

The wireTypeDefs element describes the type properties for a port per view of a component or abstractor.

There can be an unbounded series of wireTypeDefs defined for each port, allowing the type properties to be

defined differently for each view. wireTypeDef contains the following elements.

a) typeName (mandatory) defines the name of the type for the port. For VHDL, some typical values

would be std_logic and std_ulogic . The typeName element is of type string.

constrained (optional) attribute indicates whether or not the number of bits in the type declaration is

fixed or not. The constrained attribute is of type boolean. If the number of bits is fixed (con-

strained == true) the bit indices are not required when referencing the type. When constrained is

false (the default), bit indices are required on all references to the type definition. See 6.11 .5.2.1 and

6.11 .5.2.2.

b) typeDefinition (optional) contains a language-specific reference to where the given type is actually

defined. Table 4 shows some examples. There can be multiple typeDefinitions for each port. The

typeDefinition element is of type string.

c) viewNameRef (mandatory) indicates the view or views in which this type definition applies.

Multiple views can use the same set of type properties by specifying multiple viewNameRef

elements. The viewNameRef shall match a view/name in the containing object. The viewNameRef

element is of type NMTOKEN. See 6.11 .2.

Table 4—typeDefinition examples

Language Meaning

VHDL “Use” statement text (IEEE. std_logic_1164. all).

Verilog Nothing needed, no meaning.

SystemC Include file name (systemc. h).

SystemVerilog Include file name (if the name does not contain a :); import package name (if the
name contains a :).

The group of w ire ty pe definitions. I f no
match to a v iewN ame is found then the

default language ty pes are to be used.
S ee the U ser G uide for these default

ty pes.

spirit:w ireTypeDefs

Definition of a single w ire ty pe defintion

that can relate to multiple v iew s.

spirit:w ireTypeDef

1 f. .

The name of the logic ty pe. E xamples

could be std_logic, std_ulogic,
std_logic_v ector, sc_logic, . . .

spirit:typeNam e

type xs:string

attributes

Defines that the ty pe for the port has
constra inted the number of bits in the

v ector

spirit:constrained

type xs:boolean

default false

Where the definition of the ty pe is

conta ined. F or std_logic, this is conta ined
in I E EE . std_logic_1164. a l l. F or sc_logic,

this is contained in sy stemc.h. F or V H DL

this is the l ibrary and package as defined
by the "used" statement. F or S y stemC

and S y stemV erilog it is the include file
required. F or v erilog this is not needed.

spirit:typeDefinition

0 f. .

type xs:string

A reference to a v iew name in the file for
w hich this ty pe applies.

spirit:viewNameRef

1 f. .

type xs:NMTOKEN

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 129

6.1 1 .5.2.1 Constrained array type

A constrained array type is a type for which the indices of the array have been specified in the definition.

type BYTE is array (7 downto 0) of std_logic;

entity example is

 port(

 A: out BYTE;

 B: in BYTE

) ;

end example;

Also, the definition of port A in an IP-XACT description contains the indices in XML to designate the width

so the following types can be mixed in the same component.

<spirit: port>

<spirit: name>A</spirit: name>

<spirit: wire>

<spirit: vector>

<spirit: left>7</spirit: left>

<spirit: right>0</spirit: right>

</spirit: vector>

<spirit: typeDefs>

<spirit: typeDef>

<spirit: typeName spirit: constrained="true">BYTE

</spirit: typeName>

<spirit: typeDefinition>MYLIB. MYPKG. all</spirit: typeDefinition>

<spirit: viewNameRef>VHDLsimView</spirit: viewNameRef>

</spirit: typeDef>

</spirit: typeDefs>

</spirit: wire>

<spirit: port>

6.1 1 .5.2.2 Unconstrained array type

An unconstrained array type is a type for which the indices of the array have not been specified in the

definition, for example,

type std_logic_vector is array (NATURAL RANGE <>) of std_logic;

entity example is

 port(

 A: out std_logic_vector (7 downto 0) ;

 B: in std_logic_vector (7 downto 0)

) ;

end example;

could be described in IP-XACT as

<spirit: port>

<spirit: name>A</spirit: name>

<spirit: wire>

<spirit: vector>

<spirit: left>7</spirit: left>

<spirit: right>0</spirit: right>

</spirit: vector>

<spirit: typeDefs>

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 30 Copyright © 201 0 IEEE. Al l rights reserved.

<spirit: typeDef>

<spirit: typeName spirit: constrained=”false”>BYTE

</spirit: typeName>

<spirit: typeDefinition>MYLIB. MYPKG. all</spirit: typeDefinition>

<spirit: viewNameRef>VHDLsimView</spirit: viewNameRef>

</spirit: typeDef>

</spirit: wire>

<spirit: port>

6.1 1 .5.2.3 Defaults

wireTypeDefs do not need to be defined for every view of a port. IP-XACT provides for these defaults

based on the language of the view, as shown in Table 5. For those languages not shown here, no defaults can

be presumed.

6.1 1 .5.2.4 Rules

— A view name may only appear once in all the ports viewNameRef elements.

— If the view name is not found in a viewNameRef, the default type properties apply (see Table 5).

6.1 1 .5.3 Example

See the examples in 6.11 .5.2.2.

6.1 1 .6 Component driver

6.1 1 .6.1 Schema

The following schema details the information contained in the driver element, which may appear as an

element inside the wire element of a top-level wire style port element. This element defines the type and

value(s) to drive on this port when it is not connected in a design; it is only allowed on ports with the

direction in or inout.

Table 5—View defaults

Language Single bit Vectors

VHDL std_logic std_logic_vector

Verilog wire wire

SystemC sc_logic sc_lv

SystemVerilog logic logic

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 1 31

6.1 1 .6.2 Description

The driver element shall contain one of three different types of drivers that can be applied to a wire port of

a component or abstractor.

a) defaultValue (optional) specifies a static logic value for this port. The defaultValue can specify a

simple 1 -bit wire port or a vectored wire port. The value shall be applied to this port when it is left

unconnected, independent of being part of a busInterface. This value shall be over-ridden by the

default value from the abstraction definition if the interface is connected. The defaultValue element

is of type scaledNonNegativeInteger. The defaultValue element is configurable with attributes

from long.prompt.att, see C.1 2.

b) clockDriver (optional) specifies a repeating waveform for this port. See 6.11 .7.

c) singleShotDriver (optional) specifies a non-repeating waveform for this port. See 6.11 .8.

See also: SCR 6.26 and SCR 12.1 3.

6.1 1 .6.3 Example

This example shows a default value of 0x0F set for a vectored wire port named scaler .

<spirit: port>

<spirit: name>scaler</spirit: name>

<spirit: wire>

<spirit: direction>in</spirit: direction>

<spirit: vector>

<spirit: left>7</spirit: left>

<spirit: right>0</spirit: right>

</spirit: vector>

<spirit: driver>

<spirit: defaultValue>0x0F</spirit: defaultValue>

</spirit: driver>

</spirit: wire>

</spirit: port>

spirit:driverType

Wire port driv er element.

spirit:driver

type spirit:driverType

Default v a lue for a w ire port.

spirit:defaultValue

type spirit:scaledNonNegativeInteger

attributes

U se this a ttribute group on long integer

elements.

spirit:long.prompt.attgrp

Describes a driv en clock port.

spirit:clockDriver

type spirit:clockDriverType

Describes a driv en one-shot port.

spirit:s ingleShotDriver

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 32 Copyright © 201 0 IEEE. Al l rights reserved.

6.1 1 .7 Component driver/clockDriver

6.1 1 .7.1 Schema

The following schema details the information contained in the clockDriver element, which may appear as

an element inside the top-level wire style port/wire/driver element. This element defines the properties of a

clock waveform. When this element is contained within a non-scalar wire port, the clock waveform shall

apply to all bits of this port.

6.1 1 .7.2 Description

The clockDriver element contains four elements that describe the properties of a clock waveform. These are

also depicted in Figure 11 .

a) clockPeriod (mandatory) specifies the overall length (in time) of one cycle of the waveform. The

clockPeriod element is of type configurableDouble. The clockPeriod element is configurable with

attributes from float.prompt.att, see C.1 2. This element also contains a units (optional) attribute for

specifying the units of the time values: ns (the default) and ps.

ns stands for nanosecond and is equal to 1 0–9 seconds. ps stands for picosecond and is equal to

10 –12 seconds.

b) clockPulseOffset (mandatory) specifies the time delay from the start of the waveform to the first

transition. The clockPulseOffset element is of type configurableDouble. The clockPulseOffset

element is configurable with attributes from float.prompt.att, see C.1 2. This element also contains a

units (optional) attribute for specifying the units of the time values: ns (the default) and ps.

spirit:clockDriverType

Describes a driv en clock port.

spirit:clockDriver

(extension)

type spirit:clockDriverType

C lock period in units defined by the units

a ttribute. Default is nanoseconds.

spirit:clockPeriod

type spirit:configurableDouble

attributes

spirit:units

type spirit:delayValueUnitType

default ns

U se this a ttribute group on float

elements.

spirit:float.prom pt.attgrp

Time until first pulse. U nits are defined

by the units a ttribute. Default is

nanoseconds.

spirit:clockPulseOffse t

type spirit:configurableDouble

attributes

spirit:units

type spirit:delayValueUnitType

default ns

U se this a ttribute group on float
elements.

spirit:float.prompt.attgrp

V alue of port after first clock edge.

spirit:clockPulseValue

type spirit:scaledNonNegativeInteger

attributes

U se this attribute group on long integer

elements.

spirit:long.prom pt.attgrp

Duration of first state in cy cle. U nits are
defined by the units a ttribute. D efault is

nanoseconds.

spirit:clockPulseDuration

type spirit:configurableDouble

attributes

spirit:units

type spirit:delayValueUnitType

default ns

U se this a ttribute group on float

elements.

spirit:float.prompt.attgrp

attributes

Indicates the name of the cllock. I f not

specified the name is assumed to be the

name of the conta ining port.

spirit:clockName

type xs:string

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 1 33

c) clockPulseValue (mandatory) specifies the logic value to which the port transitions. This value is

also the opposite of the value from which the waveform starts. The value of this element shall be 0

or 1 . The clockPulseValue element is of type scaledNonNegativeInteger. The clockPulseValue

element is configurable with attributes from long.prompt.att, see C.1 2.

d) clockPulseDuration (mandatory) specifies how long the waveform remains at the value specified

by clockPulseValue. The clockPulseDuration element is of type configurableDouble. The clock-

PulseDuration element is configurable with attributes from float.prompt.att, see C.1 2. This element

also contains a units (optional) attribute for specifying the units of the time values: ns (the default)

and ps.

e) clockName (optional) attribute specifies a name for the clock driver. If this is not defined, the name

of the port to which this clockDriver is applied shall be used. The clockName element is of type

string.

See also: SCR 12.9 and SCR 12.1 0.

6.1 1 .7.3 Example

This is an example of a clock driver set on the wire port named clk. The clock starts off in the logic 0

state for 4 ns , then transitions to the logic 1 state for 4 ns . This cycle is repeated forever.

<spirit: port>

<spirit: name>clk</spirit: name>

<spirit: wire>

<spirit: direction>in</spirit: direction>

<spirit: driver>

<spirit: clockDriver spirit: clockName="clk">

<spirit: clockPeriod>8</spirit: clockPeriod>

<spirit: clockPulseOffset>4</spirit: clockPulseOffset>

<spirit: clockPulseValue>1</spirit: clockPulseValue>

<spirit: clockPulseDuration>4</spirit: clockPulseDuration>

</spirit: clockDriver>

</spirit: driver>

</spirit: wire>

</spirit: port>

Figure 1 1—clockDriver elements

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 34 Copyright © 201 0 IEEE. Al l rights reserved.

6.1 1 .8 Component driver/singleShotDriver

6.1 1 .8.1 Schema

The following schema details the information contained in the singleShotDriver element, which may

appear as an element inside the top-level wire style port/wire/driver element. This element defines the

properties of a single-shot waveform. When this element is contained within a non-scalar wire port, the

single-shot waveform shall apply to all bits of this port.

6.1 1 .8.2 Description

The singleShotDriver element contains three elements that describe the properties of the waveform. These

are also depicted in Figure 12.

a) singleShotOffset (mandatory) specifies the time delay from the start of the waveform to the

transition. The singleShotOffset element is of type configurableDouble. The singleShotOffset

element is configurable with attributes from float.prompt.att, see C.1 2. This element also contains a

units (optional) attribute for specifying the units of the time values: ns (the default) and ps.

ns stands for nanosecond and is equal to 1 0–9 seconds. ps stands for picosecond and is equal to

10 –12 seconds.

b) singleShotValue (mandatory) specifies the logic value to which the port transitions. This value is

also the opposite of the value from which the waveform starts. The value of this element shall be 0

or 1 . The singleShotValue element is of type scaledNonNegativeInteger. The singleShotValue

element is configurable with attributes from long.prompt.att, see C.1 2.

c) singleShotDuration (mandatory) specifies how long the waveform remains at the value specified

by singleShotValue. The singleShotDuration element is of type configurableDouble. The single-

ShotDuration element is configurable with attributes from float.prompt.att, see C.1 2. This element

also contains a units (optional) attribute for specifying the units of the time values: ns (the default)

and ps.

See also: SCR 12.11 and SCR 12.1 2.

Describes a driv en one-shot port.

spirit:s ingleShotDriver

Time in nanoseconds until start of

one-shot.

spirit:s ingleShotOffse t

type spirit:configurableDouble

attributes

U se this attribute group on float
elements.

spirit:float.prompt.attgrp

V alue of port after first edge of one-shot.

spirit:s ingleShotValue

type spirit:scaledNonNegativeInteger

attributes

U se this a ttribute group on long integer

elements.

spirit:long.prom pt.attgrp

Duration in nanoseconds of the one shot.

spirit:s ingleShotDuration

type spirit:configurableDouble

attributes

U se this a ttribute group on float

elements.

spirit:float.prompt.attgrp

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 1 35

6.1 1 .8.3 Example

This is an example of a single-shot driver set on the wire port named reset . The waveform starts off in the

logic 0 state for 100 ns and then transitions to the logic 1 state for 100 ns .

<spirit: port>

<spirit: name>reset</spirit: name>

<spirit: wire>

<spirit: direction>in</spirit: direction>

<spirit: driver>

<spirit: singleShotDriver>

<spirit: singleShotOffset>100</spirit: singleShotOffset>

<spirit: singleShotValue>1</spirit: singleShotValue>

<spirit: singleShotDuration>100</spirit: singleShotDuration>

</spirit: singleShotDriver>

</spirit: driver>

</spirit: wire>

</spirit: port>

6.1 1 .9 Implementation constraints

Implementation constraints can be defined to document requirements that need to be met by an

implementation of the component. Constraints are defined in groups called constraint sets (in the IP-XACT

element port/wire/constraintSets/constraintSet) so different constraints can be associated with different

views of the component. A particular set of constraints is tied to a component view by the constraintSetId

attribute in the constraint set and the matching constraintSetRef element in the view.

6.1 1 .1 0 Component wire port constraints

6.1 1 .1 0.1 Schema

The following schema defines the information contained in the constraintSets element, which may appear

within a wire element within a component port element (component/model/ports/port/wire).

Figure 1 2—singleShotDriver elements

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 36 Copyright © 201 0 IEEE. Al l rights reserved.

6.1 1 .1 0.2 Description

The constraintSets element is used to define technology independent implementation constraints associated

with the containing wire port of the component. The constraintSets element contains one or more

constraintSet elements that define a set of constraints for the port. If more than one constraintSet element

is present, each shall have a unique value for the constraintSetId attribute so each constraintSet can be

uniquely referenced from a view. constraintSet contains the following elements.

a) nameGroupOptional is defined in C.2.

b) vector (optional) determines to which bits of a vectored port the constraint applies. The left and

right vector bounds elements inside the vector element specify the bounds of the vector. The left

and right elements are of type nonNegativeInteger.

c) driveConstraint (optional) defines a drive constraint for this port. See 6.11 .11 for details.

d) loadConstraint (optional) defines a load constraint for this port. See 6.11 .1 2 for details.

e) timingConstraint (optional) defines a timing constraint relative to a clock for this port. See 6.11 .1 3

for details.

List of constra intSet elements for a
component port.

spirit:cons traintSets

Defines constra ints that apply to a
component port. I f multiple constra intSet

elements are used, each must hav e a

unique v a lue for the constra intSetId

attribute.

spirit:constraintSet

1 f. .

attributes

Indicates a name for this set of
constra ints. C onstra ints are tied to a v iew

using this name in the constra intS etRef
element.

spirit:cons traintSetId

type xs:NMTOKEN

default default

A group of elements for name (xs:name),
display N ame and description w here the

name is optional

spirit:nameGroupOptional

U nique name

spirit:nam e

type xs:Name

E lement name for display purposes.

Ty pica lly a few words prov iding a more

detailed and/or user-friendly name than

the spirit:name.

spirit:displayNam e

type xs:string

F ull description string, ty pica lly for

documentation

spirit:description

type xs:string

The optional element v ector specify the
bits of a v ector for w hich the constra ints

apply . The v aules of left and right must
be w ithin the range of the port. I f the

v ector is not specified then the constra ints
apply to a l l the bits of the port.

spirit:vector
The optiona l elements left and right can

be used to select a bit-slice of a v ector.

spirit:le ft

type xs:nonNegativeInteger

The optiona l elements left and right can
be used to select a bit-slice of a v ector.

spirit:right

type xs:nonNegativeInteger

Defines a constra int indicating how an

input is to be driv en. The preferred
methodology is to specify a l ibrary cell in

technology independent fashion. The
implemention tool should assume that the

associated port is driv en by the specified
cell, or that the driv e strength of the input

port is indicated by the specified

resistance v a lue.

spirit:driveCons traint

Defines a constra int indicating the ty pe of
load on an output port.

spirit:loadConstraint

Defines a timing constra int for the associated

port. The constra int is relativ e to the clock
specified by the clockN ame attribute. The

clockEdge indicates w hich clock edge the
constra int is associated w ith (default is rising

edge). The delay Ty pe attribute can be specified
to further refine the constra int.

spirit:tim ingConstraint

0 f. .

type spirit:delayPercentageType

min/maxIncl 0.0 1 00.0

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 1 37

NOTE—To specify technology-dependent constraints (which is not represented in the schema), use an SDC file and
reference the file via fileSet.

6.1 1 .1 0.3 Example

This example shows a port containing a single timing constraint appearing in two different constraint sets.

<spirit: port>

<spirit: name>hgrant</spirit: name>

<spirit: wire>

<spirit: direction>in</spirit: direction>

<spirit: constraintSets>

<spirit: constraintSet spirit: constraintSetId=”timing”>

<spirit: timingConstraint spirit: clockName=”hclk”>40

</spirit: timingConstraint>

</spirit: constraintSet>

<spirit: constraintSet spirit: constraintSetId=”area”>

<spirit: timingConstraint spirit: clockName=”hclk”>50

</spirit: timingConstraint>

</spirit: constraintSet>

</spirit: constraintSets>

</spirit: wire>

</spirit: port>

6.1 1 .1 1 Port drive constraints

6.1 1 .1 1 .1 Schema

The following schema defines the information contained in the driveConstraint element, which may appear

within a modeConstraints or mirroredModeConstraints element within a wire type port in an abstraction

definition or within a constraintSet element within a wire type port in a component.

6.1 1 .1 1 .2 Description

The driveConstraint element defines a technology-independent drive constraint associated with the

containing wire port of a component or the component port associated with the logical port within an

abstraction definition if the driveConstraint element is contained within an abstraction definition. The

actual constraint consists of a technology-independent specification of a library cell presumed to drive the

input port. The cellSpecification element defines the cell (see 6.11 .1 4).

The driveConstraint element is not valid on an output port.

See also: SCR 12.1 , SCR 12.3 , and SCR 12.6.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 38 Copyright © 201 0 IEEE. Al l rights reserved.

6.1 1 .1 1 .3 Example

This example shows two different drive constraints. The first represents a median-strength D flop and the

second a low-strength sequential cell.

<spirit: driveConstraint>

<spirit: cellSpecification>

<spirit: cellFunction>dff</spirit: cellFunction>

</spirit: cellSpecification>

</spirit: driveConstraint>

<spirit: driveConstraint>

<spirit: cellSpecification>

<spirit: cellClass spirit: strength=”low”>sequential

</spirit: cellClass>

</spirit: cellSpecification>

</spirit: driveConstraint>

6.1 1 .1 2 Port load constraints

6.1 1 .1 2.1 Schema

The following schema element defines the information contained in the loadConstraint element, which

may appear within a modeConstraints or mirroredModeConstraints element within a wire type port in an

abstraction definition or within a constraintSet element within a wire type port in a component.

6.1 1 .1 2.2 Description

The loadConstraint element defines a technology-independent load constraint associated with the

containing wire port of a component or the component port associated with the logical port within an

abstraction definition if the loadConstraint element is contained within an abstraction definition. The actual

constraint consists of two parts, the technology-independent specification of a library cell and a count.

loadConstraint also contains the following elements.

a) cellSpecification (mandatory) defines the library cell (see 6.11 .1 4).

b) count (optional) indicates how many loads of the indicated type are modeled as if attached to the

output port. The default is three loads. The count element is of type positiveInteger.

The loadConstraint element is not valid on input ports.

See also: SCR 12.2, SCR 12.4, and SCR 12.5.

6.1 1 .1 2.3 Example

This example shows two different load constraints. The first is load consisting of three D flops of median

strength and the second is a load consisting of four low-strength sequential cells.

Defines a constra int indicating the ty pe of

load on an output port.

spirit:loadConstraint
U sed to prov ide a generic description of a

technology l ibrary cel l.

spirit:ce llSpecification

Indicates how many loads of the

specified cell a re connected. I f not

present, 3 is assumed.

spirit:count

type xs:positiveInteger

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 1 39

<spirit: loadConstraint>

<spirit: cellSpecification>

<spirit: cellFunction>dff</spirit: cellFunction>

</spirit: cellSpecification>

</spirit: loadConstraint>

<spirit: loadConstraint>

<spirit: cellSpecification>

<spirit: cellClass spirit: strength=”low”>sequential</spirit: cellClass>

</spirit: cellSpecification>

<spirit: count>4</spirit: count>

</spirit: loadConstraint>

6.1 1 .1 3 Port timing constraints

6.1 1 .1 3.1 Schema

The following schema defines the information contained in the timingConstraint element, which may

appear within a modeConstraints or mirroredModeConstraints element within a wire type port in an

abstraction definition or within a constraintSet element within a wire type port in a component.

6.1 1 .1 3.2 Description

The timingConstraint element defines a technology-independent timing constraint associated with the

containing wire port of a component or abstraction definition. It is of type delayPercentageType; the value

is a floating point number between 0 and 100 , which represents the percentage of the cycle time to be

allocated to the timing constraint on the port. If the component port is an input (or the port in an abstraction

definition ends up mapping to a physical port with direction in), the timing constraint represents an input

delay constraint; otherwise, it represents an output delay constraint. timingConstraint also contains the

following attributes.

a) clockEdge (optional) specifies to which edge of the clock the constraint is relative. The default

behavior is that the constraint is relative to the rising edge of the clock. The clockEdge attribute may

have two values rise (the default) or fall.

b) delayType (optional) restricts the constraint to applying to only best-case (minimum) or worst-case

(maximum) timing analysis. By default, the constraint is applied to both. The delayType attribute

may have two values min or max.

c) clockName (mandatory) specifies the delay constraint relative to the clock. clockName shall be a

valid port name or another clock name in the containing description. The cycle time of the

referenced clock is what actually determines the actual magnitude of the delay constraint (<clock

Defines a tim ing constra int for the associated

port. The constra int is relativ e to the clock

specified by the clockN ame attribute. The

clockEdge indicates w hich clock edge the

constra int is associated w ith (default is rising

edge). The delay Ty pe attribute can be specified

to further refine the constra int.

spirit:tim ingConstraint

0 f. .

type spirit:delayPercentageType

min/maxIncl 0.0 1 00.0

attributes

Indicates the clock edge that a tim ing

constra int is relativ e to.

spirit:clockEdge

type spirit:edgeValueType

default rise

Indicates the ty pe of delay in a tim ing

constra int - m inimum or maximum.

spirit:de layType

type spirit:delayValueType

Indicates the name of the clock to w hich

this constra int applies.

spirit:clockName

type spirit:portName

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 40 Copyright © 201 0 IEEE. Al l rights reserved.

cycle time> u 1 00 / <timing constraint element value>). The clockName element is of type

portName.

See also: SCR 12.7 and SCR 12.8.

6.1 1 .1 3.3 Example

This example shows three basic timing constraints. The first indicates a delay of 40% of the clock hclk,

relative to the rising edge of hclk, and applicable to both best- and worst-case timing analysis. The second

indicates a delay of 30% of the clock hclk, relative to the falling edge of hclk, and applicable to best-case

timing. The third indicates a delay of 50% of the clock hclk, relative to the falling edge of hclk, and

applicable to worst-case timing.

<spirit: timingConstraint

spirit: clockName=”hclk”>40</spirit: timingConstraint>

<spirit: timingConstraint spirit: clockName=”hclk”spirit: clockEdge=”fall”

spirit: delayType=”min”>30</spirit: timingConstraint>

<spirit: timingConstraint spirit: clockName=”hclk” spirit: clockEdge=”fall”

spirit: delayType=”max”>50</spirit: timingConstraint>

6.1 1 .1 4 Load and drive constraint cell specification

6.1 1 .1 4.1 Schema

The following schema defines the information contained in the cellSpecification element, which may

appear within a loadConstraint or driveConstraint element indicating the type of cell to use in the

constraint.

6.1 1 .1 4.2 Description

The cellSpecification element defines a cell in a technology-independent fashion such that drive and load

constraints can be defined without referencing a specific technology library. The cell is defined so a DE can

map it to an appropriate cell in a specific library when the actual constraint is generated. The

cellSpecification element shall contain one of the following two elements.

a) cellFunction (mandatory) specifies a cell function from the user-defined library. The cellFunction

element shall be one of the following values: nd2, buf, inv, mux21 , dff, latch or xor2. The

cellFunction element contains a cellStrength (optional) attribute that provides the cell strength

specification. The value shall be one of low, median (the default), or high. median implies the

middle cell of all the cells that match the desired function, sorted by drive or load strength (as

appropriate for the given constraint), is used.

b) cellClass (mandatory) specifies a cell class from the user-defined library. The cellClass element

shall be one of the following values: combinational or sequential. The cellClass element contains a

U sed to prov ide a generic description of a

technology l ibrary cell.

spirit:ce llSpecification

Defines a technology l ibrary cell in l ibrary

independent fashion, based on

specification of a cell function and

strength.

spirit:ce llFunction

type spirit:cellFunctionValueType

attributes

Indicates the desired strength of the
specified cell .

spirit:ce llStrength

type spirit:cellStrengthValueType

Defines a technology l ibrary cell in l ibrary

independent fashion, based on

specification of a cell class and strength.

spirit:ce llClass

type spirit:cellClassValueType

attributes

Indicates the desired strength of the
specified cell .

spirit:ce llStrength

type spirit:cellStrengthValueType

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 141

cellStrength (optional) attribute that provides the cell strength specification. The value shall be one

of low, median (the default), or high. median implies the middle cell of all the cells that match the

desired class, sorted by drive or load strength (as appropriate for the given constraint), is used.

6.1 1 .1 4.3 Example

This example shows two different variations of cell specifications. The first indicates a median-strength D

flop cell and the latter a low-strength sequential cell.

<spirit: cellSpecification>

<spirit: cellFunction>dff</spirit: cellFunction>

</spirit: cellSpecification>

<spirit: cellSpecification>

<spirit: cellClass spirit: strength=”low”>sequential</spirit: cellClass>

</spirit: cellSpecification>

6.1 1 .1 5 Other clock drivers

6.1 1 .1 5.1 Schema

The following schema defines the information contained in the otherClockDrivers element, which may

appear within a component element.

spirit:otherClocks

Defines a set of clock driv ers that are not

directly associated w ith an input port of

the component.

spirit:otherClockDrivers

type spirit:otherClocks

spirit:clockDriverType

Describes a clock not d irectly associated

w ith an input port. The clockSource

attribute can be used on these clocks to

indicate the actual clock source (e. g. an

output port of a clock generator cell).

spirit:otherClockDriver

1 f. .

(extension)

type spirit:clockDriverType

C lock period in units defined by the units

attribute. D efault is nanoseconds.

spirit:clockPeriod

type spirit:configurableDouble

attributes

spirit:un its

type spirit:delayValueUnitType

default ns

U se this attribute group on float

elements.

spirit:float.prompt.attgrp

Time until first pulse. U nits a re defined

by the units a ttribute. Default is

nanoseconds.

spirit:clockPulseOffset

type spirit:configurableDouble

attributes

spirit:units

type spirit:delayValueUnitType

default ns

U se this a ttribute group on float

elements.

spirit:float.prom pt.attgrp

V a lue of port after first clock edge.

spirit:clockPulseValue

type spirit:scaledNonNegativeInteger

attributes

U se this a ttribute group on long integer

elements.

spirit:long.prompt.attgrp

Duration of first state in cy cle. U nits a re

defined by the units a ttribute. D efault is

nanoseconds.

spirit:clockPulseDuration

type spirit:configurableDouble

attributes

spirit:units

type spirit:delayValueUnitType

default ns

U se this attribute group on float

elements.

spirit:float.prompt.attgrp

attributes

Indicates the name of the clock.

spirit:clockName

type xs:Name

Indicates the name of the actua l clock

source (e. g. an output pin of a clock

generator cel l).

spirit:clockSource

type xs:string

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 42 Copyright © 201 0 IEEE. Al l rights reserved.

6.1 1 .1 5.2 Description

The otherClockDrivers element defines clocks within a component that are not directly associated with a

top-level port, e.g. , virtual clocks and generated clocks. The otherClockDrivers element contains one or

more otherClockDriver elements, each of which represents a single clock. The otherClockDriver element

consists of a number of subelements that define the format of the clock waveform.

a) clockPeriod, clockPulseOffset, clockPulseValue, and clockPulseDuration (all required) are all

detailed in the description of the element clockDriver. See 6.11 .7.

b) clockName (mandatory) attribute indicating the name of the clock for reference by a constraint. The

clockName element is of type Name.

c) clockSource (optional) attribute defines the physical path and name of the clock generation cell.

The clockSource element is of type string.

6.1 1 .1 5.3 Example

This example shows a virtual and a generated clock within the otherClockDrivers element.

<spirit: otherClockDrivers>

<spirit: otherClockDriver spirit: clockName=”virtClock”>

<spirit: clockPeriod>5</spirit: clockPeriod>

<spirit: clockPulsOffset>0</spirit: clockPulseOffset>

<spirit: clockPulseValue>1</spirit: clockPulseValue>

<spirit: clockPulseDuration>2. 5</spirit: clockPulseDuration>

</spirit: otherClockDriver>

<spirit: otherClockDriver spirit: clockName=”genClock”

spirit: clockSource=”i_clkGen/clk1”>

<spirit: clockPeriod spirit: units=”ps”>10</spirit: clockPeriod>

<spirit: clockPulsOffset spirit: units=”ps”>2</spirit: clockPulseOffset>

<spirit: clockPulseValue>0</spirit: clockPulseValue>

<spirit: clockPulseDuration spirit: units=”ps”>5

</spirit: clockPulseDuration>

</spirit: otherClockDriver>

<spirit: otherClockDrivers>

6.1 1 .1 6 Component transactional port type

6.1 1 .1 6.1 Schema

The following schema defines the information contained in the transactional element (in a component/

model/ports/port element).

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 143

6.1 1 .1 6.2 Description

A transactional element in a component model port defines a physical transactional port of the component,

which implements or uses a service. A service can be implemented with functions or methods. It contains

the following elements.

a) allLogicalInitiativesAllowed (optional) attribute defines whether the port may be mapped to a port

in an abstractionDefinition with a different initiative. The default value is false. The allLogical-
InitiativesAllowed attribute is of type boolean. See 5.3 .

b) transTypeDef (optional) defines the port type expressed in the default language for this port. See

6.11 .1 7.

c) service (mandatory) describes the interface protocol associated with the transactional port. See

6.11 .1 8.

d) connection (optional) defines the number of legal connections for a port.

1) maxConnections (optional) indicating the maximum number of connections that this port

supports. Its default value is 0, which indicates an unbounded number of legal connections. The

maxConnections element is of type nonNegativeInteger.

2) minConnections (optional) indicating the minimum number of connections that this ports

supports. Its default value is 1 . The minConnections element is of type nonNegativeInteger.

See also: SCR 6.2, SCR 6.3, SCR 6.4, SCR 6.1 3, SCR 6.24, and SCR 6.25.

6.1 1 .1 6.3 Example

This example shows a transactional port requiring a service of type tlm_interface and allowing only a

point-to-point connection.

spirit:portTransactionalType

Defines a port that implements or uses a
serv ice that can be implemented w ith

functions or methods.

spirit:transactional

type spirit:portTransactionalType

attributes

True if logica l ports w ith different initiativ es
from the phy sica l port initiativ e may be

mapped onto this port. F orbidden for phantom
ports, w hich a lw ay s a l low logica l ports w ith a l l

initiativ es v a lue to be mapped onto the
phy sica l port. A lso ignored for "both" ports,
since any logical port may be mapped to a

phy sica l "both" port.

spirit:allLogicalIn itiativesAllowed

type xs:boolean

default false

Definition of the port ty pe expressed in

the default language for this port (i. e.

S y stemC or S y stemV).

spirit:transTypeDef

Describes the interface protocol.

spirit:service

Bounds number of legal connections.

spirit:connection

Indicates the maximum number of

connections this port supports. I f this

element is not present or set to 0 it
implies an unbounded number of a l low ed

connections.

spirit:m axConnections

type xs:nonNegativeInteger

Indicates the m inimum number of

connections this port supports. I f this

element is not present, the m inimum

number of a llow ed connections is 1 .

spirit:m inConnections

type xs:nonNegativeInteger

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 44 Copyright © 201 0 IEEE. Al l rights reserved.

<spirit: port> <spirit: name>tlm_initiator_port</spirit: name>

<spirit: transactional>

<spirit: transTypeDef>

<spirit: typeName>sc_port</spirit: typeName>

</spirit: transTypeDef>

<spirit: service>

<spirit: initiative>requires</spirit: initiative>

<spirit: serviceTypeDefs>

<spirit: serviceTypeDef>

<spirit: typeName>tlm_interface</spirit: typeName>

</spirit: serviceTypeDef>

</spirit: serviceTypeDefs>

</spirit: service>

<spirit: connection>

<spirit: maxConnections>1</spirit: maxConnections>

</spirit: connection>

</spirit: transactional>

</spirit: port>

6.1 1 .1 7 Component transactional port type definition

6.1 1 .1 7.1 Schema

The following schema defines the information contained in the transTypeDef element (in a component/

model/ports/port/transactional element).

6.1 1 .1 7.2 Description

A transTypeDef element defines the port type expressed in the default language for this port (e.g. , SystemC

or SystemVerilog). It contains the following elements.

a) typeName (mandatory) defines the port type (such as sc_port/sc_export in SystemC or any

user-defined type, such as tlm_port). The typeName element may be associated with an optional

boolean constrained attribute (the default value is false). If true this indicates that the port type def-

inition has constrained the number of bits in the vector.

b) typeDefinition (optional) contains a language-specific reference to where the given type is actually

defined. Table 4 shows some examples. There can be multiple typeDefinitions for each port. The

typeDefinition element is of type string.

Definition of the port ty pe expressed in

the default language for this port (i. e.

S y stemC or Sy stemV).

spirit:transTypeDef

The name of the port ty pe. C an be any

predefined ty pe such sc_port or sc_export

in S y stemC or any user-defined ty pe

such as tlm_port.

spirit:typeName

type xs:string

attributes

Defines that the ty pe for the port has
constra inted the number of bits in the

v ector

spirit:cons trained

type xs:boolean

default false

Where the definition of the ty pe is

conta ined. F or Sy stemC and
S y stemV erilog it is the include fi le

conta ining the ty pe definition.

spirit:typeDefinition

0 f. .

type xs:string

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 145

6.1 1 .1 7.3 Example

The following example shows the transactional type definition of a custom specific tlm_port , defined in

the include file tlm_port. h.

<spirit: transTypeDef>

<spirit: typeName>tlm_port</spirit: typeName>

<spirit: typeDefinition>tlm_port. h</spirit: typeDefinition>

</spirit: transTypeDef>

6.1 1 .1 8 Component transactional port service

6.1 1 .1 8.1 Schema

The following schema defines the information contained in the service element (in a component/model/

ports/port/transactional element).

6.1 1 .1 8.2 Description

A service element describes the interface protocol associated with the transactional port. It contains the

following elements and attributes.

a) initiative (mandatory) defines the type of access: requires, provides, both, or phantom.

1) For example, a SystemC sc_port should be defined with the requires initiative, since it

requires a SystemC interface. A SystemC sc_export should be defined with the provides

initiative, since it provides a SystemC interface.

2) both indicates the type of access is both requires and provides.

3) phantom indicates a phantom port is being defined. See 6.11 .1 9.

b) serviceTypeDefs (optional) contains one or more serviceTypeDef elements. This serviceTypeDef

element defines a single service type definition.

1) typeName (mandatory) defines the name of the service type (can be any predefined type, such

as boolean or any user-defined type, such as addr_type). The typeName element may be

defined with two optional attributes: constrained (a boolean indicating if the port type has

Describes the interface protocol.

spirit:service

Defines how the port accesses this

serv ice.

spirit:in itiative

type xs:string

The group of serv ice ty pe definitions.

spirit:serviceTypeDefs

Definition of a single serv ice ty pe

defintion

spirit:serviceTypeDef

1 f. .

The name of the serv ice ty pe. C an be

any predefined ty pe such as booean or

integer or any user-defined ty pe such as

addr_ty pe or data_ty pe.

spirit:typeName

type xs:string

attributes

Defines that the ty pe for the port has

constra inted the number of bits in the

v ector

spirit:cons trained

type xs:boolean

default false

Defines that the ty peN ame supplied for

this serv ice is implicit and a netlister

should not declare this serv ice in

a language specific top-lev el netlist

spirit:im plicit

type xs:boolean

default false

Where the definition of the ty pe is

contained if the ty pe if not part of the

language. F or S y stemC and

S y stemV erilog it is the include file

containing the ty pe definition.

spirit:typeDefinition

0 f. .

type xs:string

l ist serv ice parameters (e. g. parameters

for a sy stemV erilog interface)

spirit:parameters

C ontainer for v endor specific extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 46 Copyright © 201 0 IEEE. Al l rights reserved.

constrained the number of bits in the vector) and implicit (a boolean indicating a netlister

should not declare this service in a language-specific, top-level netlist).

2) typeDefinition (optional) indicates a location where the type is defined, e.g. , in SystemC and

SystemVerilog, this is the include file containing the type definition.

3) parameters (optional) specifies any service type parameters. See C.11 .

c) vendorExtensions (optional) adds any extra vendor-specific data related to the service. See C.1 0.

6.1 1 .1 8.3 Example

The following example shows the definition of the service provided by a SystemC port.

sc_export< pvt_if<ADDR, DATA> > pvt_port

<spirit: service>

<spirit: initiative>provides</spirit: initiative>

<spirit: serviceTypeDefs>

<spirit: serviceTypeDef>

<spirit: typeName>pvt_if</spirit: typeName>

<spirit: parameters>

<spirit: parameter spirit: name=”addr” spirit: resolve=”user”>ADDR

</spirit: parameter>

<spirit: parameter spirit: name=”data” spirit: resolve=”user”>DATA

</spirit: parameter>

</spirit: parameters>

</spirit: serviceTypeDef>

</spirit: serviceTypeDefs>

</spirit: service>

6.1 1 .1 9 Phantom ports

In some components, the RTL or TLM implementation of the component does not fully implement the

functionality of the component described by IP-XACT. In RTL components, this is typically because the

component has to work in design flows that only allow a signal to be routed though an RTL component if

there is some logic within the RTL component associated with that signal. This is particularly a problem for

components containing channels.

An IP-XACT channel is supposed to represent the complete bus infrastructure between the master, slave,

and system bus interfaces connected to the bus. As such, the component containing the channel should

contain everything that is needed to create this infrastructure. In many buses, however, some signals are

directly connected between the components attached to the bus, with no intervening logic. This is most often

the case with clock and reset signals. If the component is to be usable in a wide range of design flows, these

signals cannot be included in the RTL of the component.

To fully describe such a channel component and allow netlisters that have no special knowledge of that bus

type to netlist designs containing it, IP-XACT describes these additional connections as phantom ports. Phan-

tom ports are additional ports included in the component’s port list, but marked as phantom. As with real

component ports, the mapping of a set of logical bus ports to that phantom port implies any design using that

component needs to connect those logical ports with no intervening logic. The difference is a real component

port needs to have a corresponding port in any RTL, TLM, or hierarchical IP-XACT implementation of the

component; whereas, for phantom ports there is no corresponding port in the implementation.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 147

6.1 1 .20 modelParameters

6.1 1 .20.1 Schema

The following schema details the information contained in the modelParameters element, which may

appear as an element inside the top-level component/model or abstractor/model element.

6.1 1 .20.2 Description

Model parameters are most often used in HDL languages to specify information that is passed to the model

to configure it for a process. The modelParameters element may contain any number of modelParameter

elements. The modelParameter elements describe the properties for a single parameter that is applied to all

the models specified under the model/views element. It contains the following elements.

a) dataType (optional) attribute specifies the data type as it pertains to the language of the model. This

definition is used to define the type for component declaration and as such has no IP-XACT

semantic meaning. For example, SystemC could be int , double , char* , etc. For VHDL, this

could be std_logic , std_logic_vector , integer, etc. The dataType attribute is of type

string.

b) usageType (optional) attribute specifies how this parameter is used in different modeling languages:

nontyped (the default) and typed. See 6.11 .20.2.1 .

c) nameGroup group is defined in C.1 .

d) value (mandatory) contains the actual value of the modelParameter. The value element is of type

string. The value element is configurable with attributes from string.prompt.att, see C.1 2.

e) vendorExtensions (optional) adds any extra vendor-specific data related to the modelParameter.

See C.1 0.

M odel parameter name v a lue pa irs

conta iner

spirit:m ode lParam eters

spirit:nam eValueTypeType

A model parameter name v a lue pa ir. The

name is g iv en in an a ttribute. The v alue

is the element v a lue. The dataTy pe

(applicable to high lev el modeling) is

g iv en in the dataTy pe a ttribute. F or

hardw are based models, the name should

be identica l to the RTL (V H DL generic or

V erilog parameter). The usageTy pe

a ttribute indicates how the model

parameter is to be used.

spirit:m ode lParam eter

1 f. .

type spirit:nameValueTypeType

attributes

##anyany

The data ty pe of the argument as

perta ins to the language. E xample: " int" ,

"double" , "char * " .

spirit:dataType

type xs :string

Indicates the ty pe of the model

parameter. Legal v a lues a re defined in

the attribute enumeration l ist. D efault

v a lue is 'nonty ped'.

spirit:usageType

type xs:s tring

default nontyped

A group of elements for name(xs:string),

display N ame and description

spirit:nameGroupString

U nique name

spirit:nam e

type xs:string

E lement name for display purposes.

Ty pica lly a few w ords prov iding a more

deta iled and/or user-friendly name than

the spirit:name.

spirit:displayNam e

type xs:string

F ull description string, ty pica lly for

documentation

spirit:description

type xs:string

The v a lue of the parameter.

spirit:value

type xs :string

attributes

U se this attribute group on string

elements.

spirit:s tring.prompt.attgrp

C ontainer for v endor specific extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 48 Copyright © 201 0 IEEE. Al l rights reserved.

6.1 1 .20.2.1 Typed and non-typed parameters classification

There are two categories of parameters: typed and non-typed.

The typed parameters (or declaration parameters) appear in object-oriented (OO) languages such a C++/

SystemC or SystemVerilog.

In C++/SystemC, these are named Class template parameters. Templates can be used to develop a generic

class prototype (specification), which can be instantiated with different data types. This is very useful when

the same kind of class is used with different data types for individual members of the class. Parameterized

types are used as data types and then a class can be instantiated, i.e. , constructed and used by providing

arguments for the parameters of the class template. A class template is a specification of how a class should

be built (i.e. , instantiated) given the data type or values of its parameters.

Class template parameters can have default arguments, which are used during class template instantiation

when arguments are not provided. Because the provided arguments are used starting from the far left

parameter, default arguments should be provided for the right-most parameters.

Example 1

template <typename T>

class FIFO {

FIFO() ;

T pull() ;

void push(T &x) ;

} ;

In SystemVerilog, typed parameters are named type parameters. Type parameters can be used in

SystemVerilog classes, interfaces, or modules to provide the basic function of C++ templates.

Example 2

typedef bit[32] DataT;

interface FIFO #(type T) ;

Method T pull() ;

Method push (T x) ;

endinterface: FIFO

The generic non-typed parameters (or initialization parameters) appear in all languages (procedural or OO)

and in particular in VHDL, Verilog, SystemC, and SystemVerilog. A non-typed parameter is like an

ordinary (function-parameter) declaration. In SystemC, it represents a constant in a class template definition

or a parameter in a class constructor, i.e. , this can be determined at compilation time. In VHDL, it is

represented by generics. In Verilog or SystemVerilog, it is represented by parameters.

Example 3

Here is an example of non-typed parameters usage on a simple GCD model expressed in various languages.

VHDL

entity GCD is

generic (Width: natural) ;

port (

Clock, Reset, Load: in std_logic;

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 149

A, B: in unsigned(Width-1 downto 0) ;

Done: out std_logic;

Y: out unsigned(Width-1 downto 0)) ;

end entity GCD;

(System)Verilog

module GCD (Clock, Reset, Load, A, B, Done, Y) ;

parameter Width = 8 ;

input Clock, Reset, Load;

input [Width-1: 0] A, B;

output Done;

output [Width-1: 0] Y;

…

endmodule

SystemC

template <unsigned int Width = 8>

SC_MODULE (GCD) {

sc_in<bool> Clock, Reset, Load;

sc_in<sc_uint<Width> >a, b;

sc_out<bool> Done;

sc_out<sc_uint<Width> > y;

…

}

These two kinds of parameters (typed and non-typed) can be combined to model complex IP modules.

Example 4

In SystemC:

template <typename T> // type parameter

class testModule : public sc_module {

public:

testModule(sc_module_name modnamemodname, string

portname) :

// non type parameters

sc_module(modname) ,

testport(portname) { …}

sc_port<T> testport;

} ;

In a top SC netlist design, such a class is instantiated as follows.

testModule<bool> test(“myModuleName”, “port1”) ;

In IP-XACT, the testModule parameters are represented as follows.

<spirit: modelParameters>

<! -- template parameter -->

<spirit: modelParameter spirit: usageType="typed">

<spirit: name>T</spirit: name>

<spirit: value

spirit: choiceRef="typenameChoice"

spirit: configGroups="requiredConfig"

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 50 Copyright © 201 0 IEEE. Al l rights reserved.

spirit: id="Tid"

spirit: prompt="T: "

spirit: resolve="user">boolean</spirit: value>

</spirit: modelParameter>

<! -- constructor parameters -->

<spirit: modelParameter spirit: usageType="nontyped">

<spirit: name>modname</spirit: name>

<spirit: value

spirit: choiceRef="modulenameChoice"

spirit: configGroups="requiredConfig"

spirit: id="modnameId"

spirit: prompt="moduleName: "

spirit: resolve="user">myModuleName</spirit: value>

</spirit: modelParameter>

<spirit: modelParameter spirit: usageType="nontyped">

<spirit: name>portname</spirit: name>

<spirit: value

spirit: choiceRef="portnameChoice"

spirit: configGroups="requiredConfig"

spirit: id="portnameid"

spirit: prompt="portName: "

spirit: resolve="user">port1</spirit: value>

</spirit: modelParameter>

</spirit: modelParameters>

6.1 1 .20.2.2 Generic parameters mapping in different languages

Table 6 summarizes the two kinds of parameters (initialization and declaration) expressed in the four most

commonly used hardware languages.

A declaration parameter (e.g. , int) shall be used when declaring an IP instance in a top netlist (e.g. , myIP

int myIntIP;). An initialization parameter (e.g., myName) shall be used when initializing the instance

of that IP (e.g. , myIntIP(“myName”) ;).

Table 6—Parameter mappings

Language
Non-typed parameters

(initialization)
Typed parameters (declaration)

VHDL generics NA

Verilog parameter NA

SystemC constructor template (constant or variable type)

SystemVerilog parameter parameter

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 1 51

6.1 2 Component generators

6.1 2.1 Schema

The following schema details the information contained in the componentGenerators element, which may

appear as an element inside the top-level component element.

6.1 2.2 Description

The componentGenerators element contains an unbounded list of componentGenerator elements. Each

componentGenerator element defines a generator that is assigned and may be run on this component.

componentGenerator contains two attributes: hidden and scope. The hidden (optional) attribute specifies,

when true, this generator shall not be run as a stand-alone generator and is required to be run as part of a

chain. This generator should not be presented to the user for direct invocation. If false (the default), this

generator may be run as a stand-alone generator or in a generator chain. This attribute is of type boolean.

The scope (optional) attribute is an enumerated list of instance and entity. instance indicates this generator

Generator l ist is tools-specific.

spirit:componentGenerators

spirit:ins tanceGeneratorType

Specifies a set of component generators.
The scope a ttribute applies to component

generators and specifies w hether the

generator should be run for each instance
of the entity (or module) or j ust once for

a l l instances of the entity .

spirit:componentGenerator

1 f. .

(extension)

type spirit: instanceGeneratorType

attributes

I f this attribute is true then the generator

should not be presented to the user, it

may be part of a chain and has no
useful meaning w hen inv oked

standa lone.

spirit:h idden

type xs:boolean

default false

The scope attribute applies to

component generators and specifies

whether the generator should be run for

each instance of the entity (or module)

or j ust once for a ll instances of the

entity .

spirit:scope

type xs:s tring

default instance

A group of elements for name

(xs:name), d isplay N ame and description

spirit:nameGroup

This is an non-negativ e floating point

number that is used to sequence w hen a
generator is run. The generators are run

in order starting w ith zero. There may

be multiple generators w ith the same
phase number. I n this case, the order

should not matter w ith respect to other

generators at the same phase. I f no
phase number is giv en the generator w il l

be considered in the " last" phase and

these generators w ill be run in the order
in w hich they are encountered w hile

processing generator elements.

spirit:phase

type xs:float

A collection of parameters.

spirit:parameters

Indicates the ty pe of A P I used by the

generator. V a l id v a lue are TG I , and
none. I f this element is not present, TG I

is assumed.

spirit:apiType

type xs:token

spirit:transportMethods

Defines a SO AP transport protocol other

than H TTP w hich is supported by this

generator. The only other currently

supported protocol is 'fi le'.

spirit:transportMethod

type xs:token

The pathname to the executable file that

implements the generator

spirit:generatorExe

type spirit:spiritURI

C ontainer for v endor specific extensions.

spirit:vendorExtens ions

An identifier to specify the generator

group. This is used by generator chains
for selecting which generators to run.

spirit:group

0 f. .

type xs:Name

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 52 Copyright © 201 0 IEEE. Al l rights reserved.

shall be run once for all instances of this component. entity indicates this generator shall be run once for

each instance of this component.

componentGenerator contains the following elements.

a) nameGroup group is defined in C.1 . The name elements shall be unique within the containing

componentGenerators element.

b) phase (optional) determines the sequence in which generators are run. Generators are run in order

starting with zero (0). If two generators have the same phase number, the order shall be interpreted

as not important and the generators can be run in any order. If no phase number is given, the

generator is considered in the “last” phase and these generators are run in any order after the last

generator with a phase number. The phase element is of type float and shall also be a positive

number.

c) parameters (optional) specifies any componentGenerator parameters. See C.11 .

d) apiType (optional) indicates the type of API used by the generator: an enumerated list of TGI or

none. TGI indicates the generator communicates with the DE using SOAP as defined by the IP-

XACT TGI. none indicates the generator does not communicate with the DE.

e) transportMethods (optional) defines alternate SOAP transport protocols that this generator can

support. The default SOAP transport protocol is HTTP if this element is not present.

1) transportMethod specifies an alternate transport protocol. This element is an enumerated list

of only one element file.

2) file indicates the SOAP transport protocol is transported to the DE via a file or file handle.

f) generatorExe (mandatory) contains an absolute or relative (to the location of the containing

document) path to the generator executable. The path may also contain environment variables from

the host system, which are used to abstract the location of the generator. The generatorExe element

is of type spiritURI.

g) vendorExtensions (optional) adds any extra vendor-specific data related to the component-

Generator. See C.11 .

h) group (optional) is an unbounded list of names used to assign this generator to a group with other

generators. These group names are then referenced by a generator chain selector to forming a chain

of generators. See 9.1 . The group element is of type Name.

6.1 2.3 Example

This example shows a component generator used to validate the connections to a component.

<spirit: componentGenerator>

<spirit: name>connectionRuleChecker<spirit: name>

<spirit: phase>100. 0</spirit: phase>

<spirit: parameters>

<spirit: parameter>

<spirit: name>language<spirit: name>

<spirit: value spirit: id=”checker” spirit: resolve=”user”>strict</

spirit: value>

</spirit: parameter>

</spirit: parameters>

<spirit: apiType>TGI</spirit: apiType>

<spirit: generatorExe>. . /TGI/checker. tcl</spirit: generatorExe>

<spirit: group>checker</spirit: group>

</spirit: componentGenerator>

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 1 53

6.1 3 File sets

6.1 3.1 fi leSets

6.1 3.1 .1 Schema

The following schema details the information contained in the fileSets element, which may appear in a

component or an abstractor.

6.1 3.1 .2 Description

The fileSets element contains one or more fileSet elements. A fileSet contains a list of files and directories

associated with a component and/or instructions for further processing. If compilation order is important

(e.g. , for VHDL files), the files shall be listed in the order needed for compilation (the files to compile first

are listed first). fileSet has the following mandatory and optional elements.

a) nameGroup group is defined in C.1 . The name elements shall be unique within the containing

fileSets element.

b) group (optional) describes the function or purpose of the file set with a single unbounded word

group name (e.g. , diagnostics , interrupt , etc.). The group element is of type Name.

c) file (optional) references a single unbounded file or directory associated with the file set. If

compilation order is important (e.g. , for VHDL files), the files shall be listed in the order needed for

compilation (see 6.1 3 .2).

List of file sets associated w ith

component.

spirit:fileSets

spirit:fileSe tType

This element specifies a l ist of unique

pathnames to fi les and d irectories. I t

may a lso include bui ld instructions for

the files. I f compilation order is

important, e. g. for V H DL files, the fi les

hav e to be prov ided in compi lation

order.

spirit:fileSet

1 f. .

type spirit: fileSetType

A group of elements for name

(xs:name), display N ame and description

spirit:nameGroup

U nique name

spirit:nam e

type xs:Name

E lement name for d isplay purposes.

Ty pica l ly a few w ords prov iding a more

detailed and/or user-friendly name than

the spirit: name.

spirit:displayNam e

type xs:string

F ull description string, ty pica l ly for

documentation

spirit:description

type xs:string

Identifies this fi l leSet as belonging to a

particular group or hav ing a particular

purpose. E xamples m ight be

"diagnostics" , "boot", "application",

" interrupt" , "dev iceD riv er", etc.

spirit:group

0 f. .

type xs:Name

IP -XAC T reference to a file or directory .

spirit:file

0 f. .

Default command and flags used to build

deriv ed files from the sourceN ame files

in this fi le set.

spirit:defaultFileBuilder

0 f. .

type spirit:fileBuilderType

Specifies a location on w hich files or

fileSets may be dependent. Ty pica lly ,

this w ould be a directory that w ould

contain included files.

spirit:dependency

0 f. .

type spirit:spiritURI

Generator information if this file set

describes a function. F or example, th is

file set may describe diagnostics for

w hich the DE can generate a d iagnostics

driv er.

spirit:function

0 f. .

C ontainer for v endor specific extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 54 Copyright © 201 0 IEEE. Al l rights reserved.

d) defaultFileBuilder (optional) specifies the unbounded default build commands for the files within

this file set. See 6.1 3 .5.

e) dependency (optional) is the path to a directory containing (include) files on which the file set

depends. The dependency element is of type spiritURI.

f) function (optional) specifies the unbounded information about a software function for a generator

(see 6.1 3 .6).

g) vendorExtensions (optional) provides a place for any vendor-specific extensions. See C.1 0.

6.1 3.1 .3 Example

The following is an example of a fileSet with two VHDL files.

<spirit: fileSets>

<spirit: fileSet

<spirit: name>fs-vhdlSource</spirit: name>

<spirit: file>

<spirit: name>hdlsrc/timers. vhd</spirit: name>

<spirit: fileType>vhdlSource</spirit: fileType>

<spirit: logicalName>leon2_timers</spirit: logicalName>

</spirit: file>

<spirit: file>

<spirit: name>hdlsrc/leon2_Timers. vhd</spirit: name>

<spirit: fileType>vhdlSource</spirit: fileType>

<spirit: logicalName>leon2_timers</spirit: logicalName>

</spirit: file>

</spirit: fileSet>

</spirit: fileSets>

6.1 3.2 fi le

6.1 3.2.1 Schema

The following schema details the information contained in the file element, which may appear as an element

inside the fileSet element.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 1 55

IP -XA C T reference to a fi le or d irectory .

spirit:file

0 f. .

attributes

U nique ID for this fi le, referenced in
fi leSet/function/fileRef

spirit:file Id

type xs:ID

##anyany

Path to the file or directory . I f this path

is a relativ e path, then it is relativ e to
the containing XM L file.

spirit:nam e

type spirit:spiritURI

attributes

U se this attribute group on string

elements.

spirit:s tring.prompt.attgrp

The ty pe of a fi le refenced by I P -XA C T.
E ither: fi leTy pe - a know n IP -XAC T file

ty pe, or userF ileTy pe - a fi le ty pe not
y et know n by I P -XA C T. I f multiple
ty pes are specified, the order is

important. The first ty pe is the primary

ty pe of the file and the latter ty pes are
ty pes that may be embedded in the file.
F or example a V erilog file conta ining

PS L assertions.

spirit: fileType

1 f. .

Enumerated file ty pes know n by

IP -XA C T.

spirit:fi leType

type xs:string

F ree form file ty pe, not - y et - know n
by IP -XA C T .

spirit:userFileType

type xs:string

Indicate that the file is include file.

spirit:is IncludeFile

type xs:boolean

attributes

the F ile conta ins some declarations that
are needed in top file

spirit:exte rnalDeclarations

type xs:boolean

default false

Logica l name for this fi le or directory e.g.

V HDL l ibrary name.

spirit:logicalNam e

type xs:Name

attributes

The logica l name sha ll only be used as a

default and another process may
ov erride this name.

spirit:default

type xs:boolean

default false

Defines exported names that can be
accessed externally , e. g. exported

function names from a C source file.

spirit:exportedNam e

0 f. .

type xs:Name

C ommand and flags used to build

deriv ed files from the sourceN ame files.

I f this element is present, the command
and/or flags used to to build the file w ill

ov erride or augment any default builders
at a higher lev el.

spirit:buildCommand

Specifies a location on w hich fi les or

fi leSets may be dependent. Ty pica lly ,

this w ould be a directory that w ould
contain included files.

spirit:dependency

0 f. .

type spirit:spiritURI

Specifies define symbols that are used in
the source file. The spirit: name element

giv es the name to be defined and the

text content of the spirit:v a lue element

holds the v a lue. This element supports
full configurabil ity .

spirit:define

0 f. .

type spirit:nameValuePairType

Relates the current file to a certa in
executable image ty pe in the design.

spirit:im ageType

0 f. .

type xs:string

S tring for describing this fi le to users

spirit:description

type xs:string

C ontainer for v endor specific extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 56 Copyright © 201 0 IEEE. Al l rights reserved.

6.1 3.2.2 Description

A file is a reference to a file or directory. It is an optional element of a fileSet. If compilation order is

important (e.g. , for VHDL files), the files shall be listed in the order needed for compilation (the files to

compile first are listed first). The file element contains an attribute fileId (optional) that is used for

references to this file from inside the fileSet/function/fileRef element. The file element also allows for

vendor attributes to be applied. file contains the following elements.

a) name (mandatory) contains an absolute or relative (to the location of the containing document) path

to a file name or directory. The path may also contain environment variables from the host system,

used to abstract the location of files (see D.1 7). The name element is of type spiritURI. The name

element is configurable with attributes from string.prompt.att, see C.1 2.

b) fileType (mandatory) group contains one or more of the elements defined in C.9.

c) includeFile (optional), when true, declares the file as an include file. If this element is not present

the default value is false. includeFile is of type boolean. includeFile has an attribute external-

Declarations (optional); when true, this indicates the include file is needed by users of any files in

this file set.

d) logicalName (optional) is the logical name for the file or directory, such as a VHDL library. The

logicalName element is of type Name. logicalName includes an attribute default (optional) that

means (when true) the logical name shall only be used as a default and another process may over-

ride this name. If false (the default), this logical name shall always be used. The default attribute is

of type boolean.

e) exportedName (optional, unbounded) defines any names that can be referenced externally.

exportedName is of type Name.

f) buildCommand (optional) contains flags or commands for building the containing source file.

These flags or commands override any flags or commands present in higher-level defaultFile-

Builder elements. See 6.1 3 .3 .

g) dependency (optional, unbounded) is the path to a directory containing (include) files on which the

file depends. The dependency element is of type spiritURI.

h) define (optional) specifies the define symbols to use in the source file. See 6.1 3 .4.

i) imageType (optional, unbounded) relates the current file to an executable image type in the design.

The imageType element is of type string.

j) description (optional) details the file for the user. The description element is of type string.

k) vendorExtensions (optional) provides a place for any vendor-specific extensions. See C.1 0.

See also SCR 14.1 .

6.1 3.2.3 Example

The following is an example of two file sets: one with a Verilog file with a dependency on a directory and

one with a VHDL file.

<spirit: fileSets>

<spirit: fileSet>

<spirit: name>fs-verilogSource</spirit: name>

<spirit: file>

<spirit: name>data/i2c/RTL/i2c. v</spirit: name>

<spirit: fileType>verilogSource</spirit: fileType>

<spirit: logicalName>i2c_lib</spirit: logicalName>

</spirit: file>

<spirit: dependency>data/i2c/RTL</spirit: dependency>

</spirit: fileSet>

<spirit: fileSet>

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 1 57

<spirit: name>fs-vhdlWrapper</spirit: name>

<spirit: file>

<spirit: name>data/i2c/RTL/i2c. vhd</spirit: name>

<spirit: fileType>vhdlSource</spirit: fileType>

<spirit: logicalName>i2c_lib</spirit: logicalName>

</spirit: file>

</spirit: fileSet>

</spirit: fileSets>

6.1 3.3 buildCommand

6.1 3.3.1 Schema

The following schema details the information contained in the buildCommand element, which may appear

as an element inside the file element.

6.1 3.3.2 Description

A buildCommand contains flags or commands for building the containing source file. These flags or

commands override any flags or commands present in higher-level defaultFileBuilder elements.

a) command (optional) element defines a compiler or assembler tool that processes files of this type.

The command element is of type string. The command element is configurable with attributes

from string.prompt.att, see C.1 2.

b) flags (optional) documents any flags to be passed along with the software tool command. The flag

element is of type string. The flags element is configurable with attributes from string.prompt.att,

see C.1 2. The flags element contains an attribute append (optional), which when true, indicates the

flags shall be appended to the current flags from the defaultFileBuilder (see 6.1 3 .5), fileBuilder

(see 6.7.5), or the build script generator. If false, the flags shall replace the existing flags.

c) replaceDefaultFlags (optional), when true, documents flags that replace any of the default flags

from the build script generator. If false, the flags are appended. If true and the flags element is

C ommand and flags used to build

deriv ed files from the sourceN ame files.

I f this element is present, the command

and/or flags used to to build the fi le w ill
ov erride or augment any default builders

at a higher lev el.

spirit:buildCommand

C ommand used to build this fi le.

spirit:command

type xs:string

attributes

U se this attribute group on string

elements.

spirit:s tring.prompt.attgrp

F lags giv en to the build command w hen

building this fi le. I f the optiona l attribute
"append" is " true" , this string w il l be

appended to any existing flags,

otherw ise these flags w ill replace any

existing default flags.

spirit:flags

type xs:string

attributes

"true" indicates that the flags shal l be
appended to any existing flags,

" fa lse" indicates these flags w ill replace

any existing default flags.

spirit:append

type xs:boolean

U se this a ttribute group on string

elements.

spirit:s tring.prompt.attgrp

I f true, the v a lue of the sibling element

" flags" should replace any default flags

specified at a more global lev el. I f this is

true and the sibling element " flags" is
empty or m issing, this has the effect of

clearing any default flags.

spirit:replaceDefaultFlags

type xs:boolean

attributes

U se this a ttribute group on boolean

elements.

spirit:bool.prompt.attgrp

Pathname to the file that is deriv ed

(built) from the source fi le.

spirit:targetNam e

type spirit:spiritURI

attributes

U se this attribute group on string
elements.

spirit:s tring.prompt.attgrp

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 58 Copyright © 201 0 IEEE. Al l rights reserved.

empty or not present, this has the effect of clearing all the flags. If this element is not present, its

effective value is false. The replaceDefaultFlags element is of type boolean. The replaceDefault-

Flags element is configurable with attributes from bool.prompt.att, see C.1 2.

d) targetName (optional) defines the path to the file derived from the source file. The targetName

element is of type spiritURI. The targetName element is configurable with attributes from

string.prompt.att, see C.1 2.

6.1 3.3.3 Example

The following example specifies the build command for the containing file.

<spirit: buildCommand>

<spirit: command>g++</spirit: command>

<spirit: flags>-O</spirit: flags>

<spirit: targetName>compiled/model. o<spirit: targetName>

</spirit: buildCommand>

6.1 3.4 define

6.1 3.4.1 Schema

The following schema details the information contained in the define element, which may appear as an

element inside the file element.

6.1 3.4.2 Description

The define element specifies the define symbols to use in the source file. This define element allows for

vendor attributes to be applied.

a) nameGroupString group is defined in C.5.

spirit:nam eValuePairType

Specifies define sy mbols that are used in

the source file. The spirit:name element
giv es the name to be defined and the

text content of the spirit:v a lue element

holds the v a lue. This element supports

full configurabil ity .

spirit:define

0 f. .

type spirit:nameValuePairType

attributes

##anyany

A group of elements for name(xs:string),

display N ame and description

spirit:nameGroupString

U nique name

spirit:nam e

type xs:string

E lement name for display purposes.

Ty pica lly a few words prov iding a more
detailed and/or user-friendly name than

the spirit: name.

spirit:displayNam e

type xs:string

F ull description string, ty pica lly for
documentation

spirit:description

type xs:string

The v a lue of the parameter.

spirit:value

type xs:string

attributes

U se this attribute group on string
elements.

spirit:s tring.prom pt.attgrp

C onta iner for v endor specific extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 1 59

b) value (mandatory) contains the value of the define symbol. The value element is of type string. The

value element is configurable with attributes from string.prompt.att, see C.1 2.

c) vendorExtensions (optional) provides a place for any vendor-specific extensions. See C.1 0.

6.1 3.4.3 Example

This example defines a symbol called PROCESSOR_ARCH to be equal to amrV5 .

<spirit: define>

<spirit: name>PROCESSOR_ARCH</spirit: name>

<spirit: value>armV5</spirit: value>

</spirit: define>

6.1 3.5 defaultFileBuilder

6.1 3.5.1 Schema

The following schema details the information contained in the defaultFileBuilder element, which may

appear as an element inside the fileSet or view element.

spirit:fileBuilderType

Default command and flags used to build

deriv ed files from the sourceN ame files

in this fi le set.

spirit:defaultFileBuilder

0 f. .

type spirit: fileBuilderType

The ty pe of a fi le refenced by IP -XA C T.
E ither: fi leTy pe - a known IP -XA C T file

ty pe, or userF ileTy pe - a fi le ty pe not

y et known by IP -XA C T. I f multiple

ty pes are specified, the order is
important. The first ty pe is the primary

ty pe of the file and the latter ty pes are

ty pes that may be embedded in the file.

F or example a V erilog file containing

PSL assertions.

spirit:fileType
Enumerated file ty pes known by

IP -XA C T.

spirit:fileType

type xs:string

F ree form file ty pe, not - y et - known
by I P -XA C T .

spirit:userFileType

type xs:string

Default command used to build fi les of
the specified fileTy pe.

spirit:command

type xs:string

attributes

U se this a ttribute group on string
elements.

spirit:s tring.prompt.attgrp

F lags giv en to the build command w hen

building files of this ty pe.

spirit:flags

type xs:string

attributes

U se this attribute group on string
elements.

spirit:s tring.prompt.attgrp

I f true, replace any default flags v a lue

w ith the v a lue in the sibling flags
element. O therw ise, append the

contents of the sibling flags element to

any default flags v a lue.

I f the v a lue is true and the "flags"

element is empty or m issing, this w il l

hav e the result of clearing any default

flags v a lue.

spirit:replaceDefaultFlags

type xs:boolean

attributes

U se this a ttribute group on boolean

elements.

spirit:bool.prompt.attgrp

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 60 Copyright © 201 0 IEEE. Al l rights reserved.

6.1 3.5.2 Description

A defaultFileBuilder contains default flags or commands for building the containing source file types.

These flags or commands may be overridden by flags or commands present in lower-level

defaultFileBuilder or buildCommand elements.

a) fileType (mandatory) group contains one or more of the elements defined in C.9.

b) command (optional) element defines a compiler or assembler tool that processes files of this type.

The command element is of type string. The command element is configurable with attributes

from string.prompt.att, see C.1 2.

c) flags (optional) documents any flags to be passed along with the software tool command. The flag

element is of type string. The flags element is configurable with attributes from string.prompt.att,

see C.1 2.

d) replaceDefaultFlags (optional) when true indicates the flags shall be appended to the current flags.

If false, the flags shall replace the existing flags. The replaceDefaultFlags element is of type

boolean. The replaceDefaultFlags element is configurable with attributes from bool.prompt.att, see

C.1 2.

6.1 3.5.3 Example

The following is an example that specifies the default compiler command to use.

<spirit: defaultFileBuilder>

<spirit: fileType>cSource</spirit: fileType>

<spirit: command>g++</spirit: command>

</spirit: defaultFileBuilder>

6.1 3.6 function

6.1 3.6.1 Schema

The following schema details the information contained in the function element, which may appear as an

element inside the fileSet element.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 161

6.1 3.6.2 Description

A function specifies information about a software function. function contains an attribute replicate

(optional), when set to true, the generator compiles a separate object module for each instance of the

component in the design. This allows the function to be called with different attributes for each instance

within the design (e.g., base address). The replicate attribute is of type boolean and the default value is

false. function has the following elements.

a) entryPoint (optional) is the entry point name for the function or subroutine. The entryPoint ele-

ment is of type Name.

b) fileRef (mandatory) reference to the file that contains the entry point for the function. The value of

this element shall match an attribute in file/fileId. The fileRef element is of type IDREF. See

6.1 3 .2.

c) returnType (optional) is an enumerated string type that indicates the return type for the function.

The two possible values are int and void.

d) argument (optional) lists any arguments passed when this function is called. All arguments shall be

passed in the order presented in this description. See 6.1 3 .7.

Generator information if this fi le set

describes a function. F or example, this

file set may describe diagnostics for

w hich the DE can generate a diagnostics

driv er.

spirit:function

0 f. .

attributes

I f true directs the generator to compile a

separate object module for each instance

of the component in the design. I f fa lse

(default) the function w il l be ca l led w ith

different arguments for each instance.

spirit:replicate

type xs:boolean

default false

O ptional name for the function.

spirit:entryPoint

type xs:Name

A reference to the fi le that conta ins the

entry point function.

spirit:fileRef

type xs: IDREF

F unction return ty pe. P ossible v a lues

are v oid and int.

spirit:re turnType

type xs:string

A rguments passed in w hen the function

is ca l led. A rguments are passed in order.

This is an extension of the name-v a lue

pair w hich includes the data ty pe in the

spirit:dataTy pe attribute. The argument

name is in the spirit:name element and

its v a lue is in the spirit:v alue element.

spirit:argum ent

0 f. .

type spirit:nameValuePairType

Specifies if the SW function is enabled.

I f not present the function is a lw ay s

enabled.

spirit:disabled

type xs:boolean

attributes

U se this a ttribute group on boolean

elements.

spirit:bool.prompt.attgrp

Location information for the source fi le of

this function.

spirit:sourceFile

0 f. .

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 62 Copyright © 201 0 IEEE. Al l rights reserved.

e) disabled (optional) disables the software function. The disabled element is of type boolean. When

true, the software function is not available for use. When false, the function is available. If this ele-

ment is not present, its effective value is false. The disabled element is configurable with attributes

from bool.prompt.att, see C.1 2.

f) sourceFile (optional) references any source files. The order of the source files may be important, as

this could indicate a compile order. See 6.1 3 .8.

6.1 3.6.3 Example

The following example includes a file with a fileId and a function referencing that file.

<spirit: fileSets>

<spirit: fileSet spirit: fileSetId="fs-systemcSource">

<spirit: name>sourceFiles</spirit: name>

<spirit: file spirit: fileId="source">

<spirit: name>src/source. cc</spirit: name>

<spirit: fileType>systemCSource-2. 1</spirit: fileType>

</spirit: file>

<spirit: function>

<spirit: fileRef>source</spirit: fileRef>

<spirit: returnType>void</spirit: returnType>

<spirit: argument spirit: dataType="int">

<spirit: name>argument_1</spirit: name>

<spirit: value>0</spirit: value>

</spirit: argument>

</spirit: function>

</spirit: fileSet>

</spirit: fileSets>

6.1 3.7 argument

6.1 3.7.1 Schema

The following schema details the information contained in the argument element, which may appear as an

element inside the function element.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 163

6.1 3.7.2 Description

The argument element specifies the arguments passed to the function when making a call. All arguments

shall be passed in the order presented in this description. The dataType (mandatory) attribute specifies the

type for this argument, e.g. , an int or boolean . The argument element also allows for vendor attributes

to be applied.

a) nameGroupString group is defined in C.5.

b) value (mandatory) contains the value of the argument. The value element is of type string. The

value element is configurable with attributes from string.prompt.att, see C.1 2.

c) vendorExtensions (optional) provides a place for any vendor-specific extensions. See C.1 0.

6.1 3.7.3 Example

The following example includes a file with a fileId and a function referencing that file.

<spirit: fileSets>

<spirit: fileSet spirit: fileSetId="fs-systemcSource">

<spirit: name>sourceFiles</spirit: name>

<spirit: file spirit: fileId="source">

<spirit: name>src/source. cc</spirit: name>

<spirit: fileType>systemCSource-2. 1</spirit: fileType>

</spirit: file>

<spirit: function>

<spirit: fileRef>source</spirit: fileRef>

<spirit: returnType>void</spirit: returnType>

<spirit: argument spirit: dataType="int">

spirit:nam eValuePairType

A rguments passed in w hen the function
is ca lled. A rguments are passed in order.

This is an extension of the name-v alue
pa ir w hich includes the data ty pe in the

spirit:dataTy pe attribute. The argument

name is in the spirit: name element and
its v a lue is in the spirit:v a lue element.

spirit:argum ent

0 f. .

(extension)

type spirit:nameValuePairType

attributes

##anyany

A group of elements for name(xs:string),

display N ame and description

spirit:nameGroupString

U nique name

spirit:name

type xs:string

E lement name for display purposes.

Ty pica lly a few w ords prov iding a more

deta iled and/or user-friendly name than

the spirit:name.

spirit:displayNam e

type xs:string

F ull description string, ty pica lly for

documentation

spirit:description

type xs:string

The v a lue of the parameter.

spirit:value

type xs:string

attributes

U se this attribute group on string

elements.

spirit:s tring.prompt.attgrp

C onta iner for v endor specific extensions.

spirit:vendorExtens ions

attributes

The data ty pe of the argument as
perta ins to the language. E xample: " int" ,

"double", "char * " .

spirit:dataType

type spirit:dataTypeType

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 64 Copyright © 201 0 IEEE. Al l rights reserved.

<spirit: name>argument_1</spirit: name>

<spirit: value>0</spirit: value>

</spirit: argument>

</spirit: function>

</spirit: fileSet>

</spirit: fileSets>

6.1 3.8 sourceFile

6.1 3.8.1 Schema

The following schema details the information contained in the sourceFile element, which may appear as an

element inside the function element.

6.1 3.8.2 Description

The sourceFile element specifies the location of the source files for this function. All source files shall be

processed in the order presented in this description.

a) sourceName (mandatory) contains an absolute or relative (to the location of the containing

document) path to a file name or directory. The path may also contain environment variables from

the host system, used to abstract the location of files. The sourceName element is of type spiritURI.

b) fileType (mandatory) group contains one or more of the elements defined in C.9.

6.1 3.8.3 Example

The following example specifies the type and location of a source file.

<spirit: source spirit: fileId="source">

<spirit: sourceName>src/source. cc</spirit: sourceName>

<spirit: fileType>systemCSource-2. 1</spirit: fileType>

</spirit: source>

Location information for the source file of

this function.

spirit:sourceFile

0 f. .

Source file for the boot load. Relativ e
names are searched for in the project

directory and the source of the

component directory .

spirit:sourceName

type spirit:spiritURI

The ty pe of a fi le refenced by I P -XA C T.

E ither: fileTy pe - a known IP -XA C T file
ty pe, or userF ileTy pe - a fi le ty pe not

y et known by IP -XAC T. I f multiple
ty pes are specified, the order is

important. The first ty pe is the primary

ty pe of the file and the latter ty pes are
ty pes that may be embedded in the file.

F or example a V erilog file containing

PSL assertions.

spirit:fileType
Enumerated file ty pes known by

IP -XA C T.

spirit:fileType

type xs:string

F ree form fi le ty pe, not - y et - known
by I P -XA C T .

spirit:userFileType

type xs:string

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 165

6.1 4 Choices

6.1 4.1 Schema

The following schema details the information contained in the choices element, which may appear as an

element inside the top-level component, abstractor, or generatorChain element.

6.1 4.2 Description

The choices element contains an unbounded list of choice elements. Each choice element is a list of items

used by a modelParameter element, parameter element, or any other configurable element with a

choiceRef attribute. These elements indicate they are using a choice element by setting the attribute

choiceRef. This choiceRef attribute shall reference a valid choice/name element in the containing

description.

The choice definition contains the following elements.

a) name (mandatory) specifies the name of this list and is used by other elements for reference. The

name elements shall be unique within the containing choices element. The name element is of type

Name.

b) enumeration (mandatory) is an unbounded list of elements, where each holds a possible value that

the referencing element may contain. The enumeration element is of type string.

1) text (optional) attribute causes optional text to be displayed when choosing the choice value.

The resulting value stored in the configurable element corresponds to the enumeration value for

the choice. If the text attribute is not present, the enumeration value may be displayed. The

text element is of type string.

2) help (optional) attribute gives any additional information about this enumeration element. The

help element is of type string.

See also: SCR 5.11 .

6.1 4.3 Example

This example shows the addressable size (width) and the word size (Dwidth) of a memory component.

<spirit: model>

 <spirit: modelparameters>

<spirit: modelparameter>

<spirit: name>width</spirit: name>

C hoices used by elements w ith an

attribute spirit:choiceRef.

spirit:choices

N on-empty set of lega l v a lues for a

elements w ith an a ttribute
spirit:choiceRef.

spirit:choice

1 f. .

C hoice key , av ailable for reference by

the spirit:choiceRef attribute.

spirit:nam e

type xs:Name

O ne possible v a lue of spirit:choice

spirit:enumeration

1 f. .

type xs:string

attributes

When specified, display ed in place of the

spirit:enumeration v a lue

spirit:text

type xs:string

Text that may be display ed if the user

requests help about the meaning of an

element

spirit:he lp

type xs:string

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 66 Copyright © 201 0 IEEE. Al l rights reserved.

<spirit: value spirit: format=”choice”

spirit: choiceRef="widthOptions">1</spirit: value>

</spirit: modelparameter>

<spirit: modelparameter>

<spirit: name>Dwidth</spirit: name>

<spirit: value spirit: format=”choice”

spirit: choiceRef="DwidthOptions">4</spirit: value>

</spirit: modelparameter>

</spirit: modelparameters>

</spirit: model>

<spirit: choices>

 <spirit: choice>

 <spirit: name>widthOptions</spirit: name>

 <spirit: enumeration spirit: text="8K">1</spirit: enumeration>

 <spirit: enumeration spirit: text="64K">2</spirit: enumeration>

 <spirit: enumeration spirit: text="256K">3</spirit: enumeration>

 </spirit: choice>

 <spirit: choice>

 <spirit: name>DwidthOptions</spirit: name>

 <spirit: enumeration spirit: text="2Bytes">4</spirit: enumeration>

 <spirit: enumeration spirit: text="4Bytes">5</spirit: enumeration>

 <spirit: enumeration spirit: text="8Bytes">6</spirit: enumeration>

 </spirit: choice>

</spirit: choices>

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 167

6.1 5 White box elements

Verification IP (VIP), with monitor bus interfaces, connect to an active bus interface to monitor only that

interface’s protocol for a variety of uses. Other verification tools may require access to component IP in a

design, at a level deeper than the interfaces defined for the component. A white box element provides such

access. This can be used in situations where internal registers, pins, signals, or whole IP-XACT interfaces

need to be monitored or driven by VIP.

6.1 5.1 Schema

The following schema details the information contained in the whiteboxElements element, which may

appear as an element inside the top-level component element.

6.1 5.2 Description

The whiteboxElements element contains a list of one or more whiteboxElement elements. Each

whiteboxElement element contains the following elements.

a) nameGroup group is defined in C.1 . The name element shall be unique within the containing

whiteboxElements element.

b) whiteboxType (mandatory) documents this white box element’s referent: a register, pin, signal, or

interface within the component. register indicates a register definition (referenced by the

registerRef element) in this component can be mapped to physical signals. pin indicates a port on

an internal instance in this component can be mapped to physical signals. signal indicates a signal

between two internal instances in this component can be mapped to physical signals. interface

indicates a group of signals that can be addressed as a single name.

A list of w hiteboxE lements

spirit:whiteboxElem ents

spirit:whiteboxElem entType

A w hiteboxE lement is a useful w ay to

identify elements of a component that

can not be identified through other

means such as interna l signa ls and

non-softw are accessible registers.

spirit:whiteboxElement

1 f. .

type spirit:w hiteboxElementType

A group of elements for name

(xs:name), display N ame and description

spirit:nameGroup

U nique name

spirit:nam e

type xs:Name

E lement name for display purposes.

Ty pica l ly a few w ords prov iding a more

detailed and/or user-friendly name than

the spirit:name.

spirit:displayNam e

type xs:string

Full description string, ty pica l ly for

documentation

spirit:description

type xs:string

Indicates the ty pe of the element. The

pin and signal ty pes refer to elements

w ithin the H DL description. The register

ty pe refers to a register in the memory

map. The interface ty pe refers to a

group of signa ls addressed as a single

unit.

spirit:whiteboxType

type xs:token

I f true, indicates that the w hite box

element can be driv en (e. g. hav e a new

v alue forced into it).

spirit:driveable

type xs:boolean

Indicates the name of the register

associated w ith this w hite box element.

The name should be a full h ierarchica l

path from the memory map to the

register, using '/' as a hierarchy

separator. When specified, the

w hiteboxTy pe must be 'register'.

spirit:regis terRef

type xs:string

A collection of parameters.

spirit:param eters

C ontainer for v endor specific extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 68 Copyright © 201 0 IEEE. Al l rights reserved.

In each case, the view-specific path is contained in the matching model/view/whiteboxElementRef

element.

c) drivable (optional), when true, indicates the white box describes a point within the IP that can be

driven, i.e. , forced to a new value. If false, the white box references a point that cannot be driven. If

this element is not present, its effective value is false. The drivable element is of type boolean.

d) registerRef (optional) names the register indicated by this white box when the whiteboxType is

register. The registerRef is the full hierarchical path from the component’s top-level memory map

to the register, using/as a hierarchy separator. The registerRef element is of type string.

e) parameters (optional) specifies any parameter names and types for a white box that can be

parameterized. See C.11 .

f) vendorExtensions (optional) provides a space for any vendor-specific extensions. See C.1 0.

6.1 5.3 Example

The following example shows the definition of a register (status) that can be accessed (i.e. , during

verification) within a component.

<spirit: whiteboxElements>

<spirit: whiteboxElement>

<spirit: name>Status</spirit: name>

<spirit: whiteboxType>register</spirit: whiteboxType>

<spirit: driveable>false</spirit: driveable>

<spirit: registerRef>mmname/abname/status</spirit: registerRef>

</spirit: whiteboxElement>

</spirit: whiteboxElements>

6.1 6 White box element reference

6.1 6.1 Schema

The following schema details the information contained in the whiteboxElementRefs element, which may

appear as an element inside the component/model/views/view element.

6.1 6.2 Description

The whiteboxElementRefs element contains a list of one or more whiteboxElementRef elements. The

whiteboxElementRef makes a reference to a whiteboxElement of the component and defines the view

specific path to the element. name (mandatory) attribute identifies the whiteboxElement in the containing

p

 C onta iner for w hite box element

references.

spirit:whiteboxElem entRefs

spirit:whiteboxElementRefType

 Reference to a w hite box element w hich is

v isible w ithin this v iew .

spirit:whiteboxElem entRef

0 f. .

type spirit:w hiteboxElementRefType

attributes

Reference to a w hiteboxE lement defined

w ithin this component.

spirit:nam e

type xs:Name

 The w hiteboxPath elements (as a set)

define the name(s) needed to define the

entire w hite box element in this v iew .

spirit:whiteboxPath

1 f. .

 The v iew specific name for a portion of

the w hite box element.

spirit:pathName

type xs:string

 O ptional bound on the path name. I f

not specified, the size of the element

referred to by pathN ame must be
determined from the referenced

element.

 I ndicates the left bound v a lue for the

associated path name.

spirit:le ft

type xs:nonNegativeInteger

 I ndicates the right bound v alues for the

associated path name.

spirit:right

type xs:nonNegativeInteger

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 169

component for which the following whiteboxPath applies. The name attribute is of type Name.

whiteboxElement element contains the following elements.

whiteboxPath (mandatory) contains unbounded elements to define the path in this view to the

above referenced whiteboxElement.

1) pathName (mandatory) is the language and view specific path to the location of the whitebox-

Element. The pathName is of type string.

2) left (optional, paired with right) sets the element bounds of the pathName if required by the

language. The left element is of type nonNegativeInteger.

3) right (optional, paired with left) sets the element bounds of the pathName if required by the

language. The right element is of type nonNegativeInteger.

See also SCR 12.1 4 and SCR 12.1 5.

6.1 6.3 Example

The following example shows the definition of a white box path to the status register bits in a component.

<spirit: whiteboxElementRefs>

<spirit: whiteboxElementRef spirit: name=”Status”>

<spirit: whiteboxPath>ucontrol/ureg/status</spirit: whiteboxPath>

<spirit: left>7</spirit: left>

<spirit: right>0</spirit: right>

</spirit: whiteboxElementRef>

</spirit: whiteboxElementRefs>

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 70 Copyright © 201 0 IEEE. Al l rights reserved.

6.1 7 CPUs

6.1 7.1 Schema

The following schema details the information contained in the CPUs element, which may appear as an

element inside the top-level component element.

6.1 7.2 Description

The cpus element contains an unbounded list of cpu elements for the containing component. The cpu

element describes a containing component with a programmable core that has some sized address space.

That same address space may also be referenced by a master interface and used to create a link for the

programmable core to know from which interface transaction the software departs.

a) nameGroup group is defined in C.1 . The name element shall be unique within the containing

component element.

b) addressSpaceRef (mandatory) contains an attribute to describe information about the range of

addresses with which the master interface related to this cpu can generate transactions.

addressSpaceRef (mandatory) attribute references a name of an address space defined in the

same component. The address space defines the range and width for transaction on this

interface. See 6.7.1 .

c) parameters (optional) specifies any cpu-type parameters. See C.11 .

d) vendorExtensions (optional) adds any extra vendor-specific data related to the cpu. See C.1 0.

6.1 7.3 Example

This example shows a simple cpu with a single addressMap reference.

<spirit: cpus>

 <spirit: cpu>

 <spirit: name>processor</spirit: name>

 <spirit: addressSpaceRef spirit: addressSpaceRef="main"/>

 </spirit: cpu>

 </spirit: cpus>

cpu's in the component

spirit:cpus

Describes a processor in this component.

spirit:cpu

1 f. .

The name of the cpu instance relativ e to

the platform core.

spirit:nameGroup

U nique name

spirit:nam e

type xs:Name

E lement name for display purposes.
Ty pica lly a few w ords prov iding a more

detailed and/or user-friendly name than

the spirit:name.

spirit:displayNam e

type xs:string

F ull description string, ty pica lly for
documentation

spirit:description

type xs:string

spirit:addrSpaceRefType

Indicates w hich address space maps into

this cpu.

spirit:addressSpaceRef

1 f. .

type spirit:addrSpaceRefType

attributes

A reference to a unique address space.

spirit:addressSpaceRef

type xs:Name

Data specific to the cpu.

spirit:param eters

C ontainer for v endor specific extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 171

7. Design descriptions

7.1 Design

An IP-XACT design is the central placeholder for the assembly of component objects meta-data. A design

describes a list of components referenced by this description, their configuration, and their interconnections

to each other. The interconnections may be between interfaces or between ports on a component. A design

description is analogous to a schematic of components.

While a design description, with referenced components and interconnections, describes most of the

information for a design, some information is missing, such as the exact port names used by a bus interface.

To resolve this a component description (referred to as a hierarchical component) is used. This component

description contains a view with a reference to the design description. Together, the component and

referenced design description form a complete single-level hierarchical description. From this point, it is

simple to create additional hierarchical descriptions by including hierarchical component description in

design descriptions.

7.1 .1 Schema

The following schema details the information contained in the design element, which is one of the seven

top-level elements of the schema.

To define a ll elements and attributes supported

when defining a design and its configured

components

spirit:des ign

This group of elements identifies a top lev el
item (e. g. a component or a bus definition)

w ith v endor, l ibrary , name and a v ersion

number.

spirit:vers ionedIdentif ier

N ame of the v endor w ho supplies this file.

spirit:vendor

type xs:Name

N ame of the logica l l ibrary this element

belongs to.

spirit:library

type xs:Name

The name of the object.

spirit:nam e

type xs:NMTOKEN

Indicates the v ersion of the named element.

spirit:vers ion

type xs:NMTOKEN

Sub instances of interna l components.

spirit:componentIns tances

C onnections betw een internal sub components.

spirit:interconnections

Defines the set of ad-hoc connections in a

design. A n ad-hoc connection represents a

connection betw een tw o component pins

w hich w ere not connected as a result of
interface connections (i. e. the pin to pin

connection w as made explicitly and is

represented explicitly).

spirit:adHocConnections

A list of hierarchy connections between bus

interfaces on component instances and the bus

interfaces on the encompassing component.

spirit:h ierConnections

F ul l description string, ty pical ly for

documentation

spirit:description

type xs:string

C onta iner for v endor specific extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 72 Copyright © 201 0 IEEE. Al l rights reserved.

7.1 .2 Description

The design element describes a list of referenced components, their configuration and interconnections to

each other. Each element of a design is detailed in the rest of this clause; the main sections of a design are:

a) versionedIdentifier group provides a unique identifier, made up of four subelements for a top level

IP-XACT element. See C.6.

b) componentInstances (optional) contains the list of components that are instantiated (referenced)

inside the design (see 7.2).

c) interconnections (optional) contains the list of connections between bus interfaces of components

listed inside the design (see 7.3).

d) adHocConnections (optional) contains a list of connections between component ports listed inside

this design (see 7.5).

e) hierConnections (optional) contains a list of connections between a component instance’s bus

interface and a bus interface inside the encompassing component (see 7.6). See also: 6.11 .2.

This element only allows making hierarchical reference between bus interfaces. Hierarchical refer-

ence between ports is made inside the adHocConnections element.

f) description (optional) allows a textual description of the design. The description element is of type

string.

g) vendorExtensions (optional) adds any extra vendor-specific data related to the design. See C.1 0.

See also: SCR 1 .9.

7.1 .3 Example

The following example shows as sample design with three components.

<spirit: design xmlns: spirit="http: //www. spiritconsortium. org/XMLSchema/

SPIRIT/1. 5" xmlns: xsi="http: //www. w3. org/2001/XMLSchema-instance"

xsi: schemaLocation="http: //www. spiritconsortium. org/XMLSchema/SPIRIT/1. 5

http: //www. spiritconsortium. org/XMLSchema/SPIRIT/1. 5/index. xsd">

<spirit: vendor>spiritconsortium. org</spirit: vendor>

<spirit: library>work</spirit: library>

<spirit: name>design_MCS</spirit: name>

<spirit: version>1. 0</spirit: version>

<spirit: componentInstances>

<spirit: componentInstance>

<spirit: instanceName>i_ahbMaster</spirit: instanceName>

<spirit: componentRef spirit: vendor="spiritconsortium. org"

spirit: library="Addressing" spirit: name="ahbMaster" spirit: version="1. 0"/>

<spirit: configurableElementValues>

<spirit: configurableElementValue

spirit: referenceId="asBase">0</spirit: configurableElementValue>

</spirit: configurableElementValues>

</spirit: componentInstance>

<spirit: componentInstance>

<spirit: instanceName>i_ahbChannel12</spirit: instanceName>

<spirit: componentRef spirit: vendor="spiritconsortium. org"

spirit: library="Addressing" spirit: name="ahbChannel12"

spirit: version="1. 0"/>

</spirit: componentInstance>

<spirit: componentInstance>

<spirit: instanceName>i_ahbSlave</spirit: instanceName>

<spirit: componentRef spirit: vendor="spiritconsortium. org"

spirit: library="Addressing" spirit: name="ahbSlave" spirit: version="1. 0"/>

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 173

</spirit: componentInstance>

</spirit: componentInstances>

<spirit: interconnections>

<spirit: interconnection>

<spirit: name>m2c</spirit: name>

<spirit: activeInterface spirit: componentRef="i_ahbMaster"

spirit: busRef="AHBMaster"/>

<spirit: activeInterface spirit: componentRef="i_ahbChannel12"

spirit: busRef="MirroredMaster0"/>

</spirit: interconnection>

<spirit: interconnection>

<spirit: name>c2s</spirit: name>

<spirit: activeInterface spirit: componentRef="i_ahbSlave"

spirit: busRef="AHBSlave"/>

<spirit: activeInterface spirit: componentRef="i_ahbChannel12"

spirit: busRef="MirroredSlave0"/>

</spirit: interconnection>

</spirit: interconnections>

<spirit: description>master-channel-slave</spirit: description>

</spirit: design>

7.2 Design component instances

7.2.1 Schema

The following schema details the information contained in the componentInstances element, which may

appear as an element inside the top-level design element.

Sub instances of internal components.

spirit:componentIns tances

C omponent instance element. The

instance name is conta ined in the

unique-v alue instanceN ame attribute.

spirit:componentIns tance

1 f. .

A n instance name assigned to

subcomponent instances and

contained channels, that is

unique w ithin the parent

component.

spirit:ins tanceNam e

type xs:Name

E lement name for display

purposes. Ty pica lly a few w ords

prov iding a more deta iled and/or

user-friendly name than the

spirit:name.

spirit:displayNam e

type xs:string

F ull description string, ty pica lly

for documentation

spirit:description

type xs:string

spirit:libraryRefType

References a component to be

found in an externa l l ibrary . The

four attributes define the V LN V

of the referenced element.

spirit:componentRef

type spirit: libraryRefType

attributes

spirit:vendor

type xs :Name

spirit:l ibrary

type xs :Name

spirit:nam e

type xs :NMTOKEN

spirit:ve rs ion

type xs :NMTOKEN

A ll configuration information for a contained

component, generator, generator chain or

abstractor instance.

spirit:configurableElem entValues

Describes the content of a configurable

element. The required referenceI d attribute

refers to the ID attribute of the configurable

element.

spirit:configurableElem entValue

1 f. .

type xs:string

attributes

Refers to the ID attribute of the

configurable element.

spirit:re fe rence Id

type xs:Name

C ontainer for v endor specific

extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 74 Copyright © 201 0 IEEE. Al l rights reserved.

7.2.2 Description

The componentInstances element contains an unbounded list of component instances that are described

inside the componentInstance element. This element contains the following subelements.

a) instanceName (mandatory) assigns a unique name for this instance of the component in this design.

The value of this element shall be unique inside a design element. The instanceName element is of

type Name.

b) displayName (optional) allows a short descriptive text to be associated with the instance. The

displayName is of type string.

c) description (optional) allows a textual description of the instance. The description is of type string.

d) componentRef (mandatory) is a reference to a component description (see 6.1) for this component

instance. The componentRef element is of type libraryRefType (see C.7); it contains four attributes

to specify a unique VLNV.

e) configurableElementValues (optional) specifies the configuration for a specific component

instance by providing the value of a specific component parameter. The configurableElements-

Values is an unbounded list of configurableElementValue elements.

1) configurableElementValue (mandatory) is an unbounded list that specifies the value to apply

to a configurable element; in this instance, it is pointed to by the referenceId attribute. The

configurableElementValue is of type string.

2) The contained referenceId (mandatory) attribute is a reference to the id attribute of an element

in the component instance. The referenceId attribute is of type Name.

f) vendorExtensions (optional) adds any extra vendor-specific data related to the design. See C.1 0.

See also: SCR 1 .8 and SCR 5.1 4.

7.2.3 Example

The following example shows two component instances of a design. The first one, i_timers , has a

configurable element attached to it while the second one, i_irqctrl , is not configurable. The

configurable element with the id equal to TPRESC has its value set to 22 .

<spirit: componentInstances>

<spirit: componentInstance>

<spirit: instanceName>i_timers</spirit: instanceName>

<spirit: componentRef spirit: vendor="spiritconsortium. org"

 spirit: library="Leon2" spirit: name="timers"

spirit: version="1. 5"/>

<spirit: configurableElementValues>

<spirit: configurableElementValue spirit: referenceId="TPRESC">22

</spirit: configurableElementValue>

</spirit: configurableElementValues>

</spirit: componentInstance>

<spirit: componentInstance>

<spirit: instanceName>i_irqctrl</spirit: instanceName>

<spirit: componentRef spirit: vendor="spiritconsortium. org"

 spirit: library="Leon2" spirit: name="irqctrl"

spirit: version="1. 5"/>

</spirit: componentInstance>

</spirit: componentInstances>

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 175

7.3 Design interconnections

7.3.1 Schema

The following schema details the information contained in the interconnections element, which may appear

as an element inside the top-level design element.

7.3.2 Description

The interconnections element contains an unbounded list of interconnection and monitorInterconnection

elements. For further description on interface connections, see 6.3 .4.

a) interconnection (optional) specifies a connection between one bus interface of a component and

another bus interface of a component. Each interconnection contain the following elements.

1) nameGroup group is defined in C.1 . The name elements shall be unique within the containing

interconnections element.

2) activeInterface (mandatory) specifies the two bus interfaces that are part of the

interconnection. Only connections between two bus interfaces are allowed; broadcasting of

interconnections is not allowed. The activeInterface element is of type interface, see 7.4.

b) monitorInterconnection (optional) specifies the connection between a monitored active interface

on a component and a list of monitor interfaces on component instances.

1) nameGroup group is defined in C.1 . The name elements shall be unique within the containing

interconnections element.

2) monitoredActiveInterface (mandatory) specifies the component bus interface to monitor.

Only one monitored active interface is allowed. The monitoredActiveInterface element is of

type hierInterface, see 7.4.

C onnections betw een internal sub

components.

spirit:interconnections

Describes a connection betw een

tw o activ e (not monitor)

busInterfaces.

spirit:interconnection

0 f. .

A group of elements for name
(xs:name), display N ame and

description

spirit:nameGroup

Describes one interface of the
interconnection.

The componentRef and busRef

attributes indicate the instance
name and bus interface name of

one end of the connection.

spirit:active Interface

2

type spirit: interface

Describes a connection from the interface

of one component to any number of
monitor interfaces in the design.

A n activ e interface can be connected to

unlim ited number of monitor interfaces.

spirit:m onitorInterconnection

0 f. .

A group of elements for name

(xs:name), d isplay N ame and

description

spirit:nameGroup

Describes an activ e interface of the design

that a l l the monitors w il l be connected to.

The componentRef and busRef attributes
indicate the instance name and bus interface

name. The optional path attribute indicates

the hierarchica l instance name path to the

component.

spirit:m onitoredActive Interface

type spirit:hierInterface

Describes a l ist of monitor
interfaces that are connected to

the single activ e interface.

The componentRef and busRef
attributes indicate the instance

name and bus interface name.

The optiona l path attribute

indicates the hierarchica l instance

name path to the component.

spirit:m onitorInterface

1 f. .

type spirit:hierInterface

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 76 Copyright © 201 0 IEEE. Al l rights reserved.

3) monitorInterface (mandatory) specifies the component bus interface that will do the monitor-

ing. There may be one or more monitorInterface elements specified. The monitorInterface

element is of type hierInterface, see 7.4.

See also: SCR 6.9, SCR 6.10, and SCR 6.1 4 and the SCRs in Table B.2 and Table B.4.

7.3.3 Example

The following example shows two interconnections between three components: the interconnection

interco1 connects the interface ambaAPB on i_timers to the interface MirroredSlave0 on

i_apbbus while interco2 connects the interface ambaAPB on i_irqctrl to the interface

MirroredSlave1 on i_apbbus .

<spirit: interconnections>

<spirit: interconnection>

<spirit: name>interco1</spirit: name>

<spirit: activeInterface spirit: componentRef="i_timers"

 spirit: busRef="ambaAPB"/>

<spirit: activeInterface spirit: componentRef="i_apbbus"

spirit: busRef="MirroredSlave0"/>

</spirit: interconnection>

<spirit: interconnection>

<spirit: name>interco2</spirit: name>

<spirit: activeInterface spirit: componentRef="i_irqctrl"

spirit: busRef="ambaAPB"/>

<spirit: activeInterface spirit: componentRef="i_apbbus"

spirit: busRef="MirroredSlave1"/>

</spirit: interconnection>

</spirit: interconnections>

7.4 Active, monitored, and monitor interfaces

7.4.1 Schema

The following schema details the information contained in the activeInterface element, the

monitoredActiveInterface element, and the monitorInterface elements, which may appear as an element

inside the interconnection or monitorInterconnection element within the interconnections element.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 177

7.4.2 Description

The activeInterface, monitoredInterface, or monitorInterface element specifies the bus interface of a

design component instance that is part of an interconnection or a monitor interconnection. They all have the

following attributes.

a) componentRef (mandatory) references the instance name of a component present in the design if

the path attribute is not present. This component instance name needs to exist in the specified

design. The componentRef attribute is of type Name. See 6.1 .

b) busRef (mandatory) references one of the component bus interfaces. This specific bus interface

needs to exist on the specified component instance. The busRef attribute is of type Name. See 6.5.

The monitoredActiveInterface and monitorInterface elements have the following attribute.

path (optional) defines the hierarchical path of instance names to the design that contains the com-

ponent instance specified in the componentRef attribute. The path is a slash (/) separated list of

instance names. If the path attribute is not present, the component referenced by componentRef

needs to exist in the current design. The path attribute is of type instancePath . See D.5.

See also: SCR 2.1 , SCR 2.1 6, SCR 4.1 , and SCR 4.2.

7.4.3 Example

The following example shows a monitored interface referring to the ambaAPB bus interface on the

component instance i_timers in the design within the component with instance name apbsubsys/

group1 and a monitor interface referring to the ambaAPBMonitor bus interface on the monitor instance

i_monitor in the design within the component with instance name umon .

spirit:h ierInterface

Describes a l ist of monitor
interfaces that are connected to

the single activ e interface.

The componentRef and busRef
attributes indicate the instance

name and bus interface name.

The optiona l path attribute
indicates the hierarchica l instance

name path to the component.

spirit:m onitorInterface

1 f. .

type spirit:hierInterface

attributes

Reference to a component

instance name.

spirit:componentRef

type xs:Name

Reference to the components

bus interface

spirit:busRef

type xs:Name

A decending hierarchica l (slash
separated - example x/y /z) path

to the component instance

containing the specified

component instance in
componentRef. I f not specified

the componentRef instance shall

exist in the current design.

spirit:path

type spirit: instancePathspirit:h ierInterface

Describes an activ e interface of the design

that a l l the monitors w ill be connected to.

The componentRef and busRef attributes

indicate the instance name and bus interface

name. The optional path attribute indicates

the hierarchica l instance name path to the
component.

spirit:m onitoredActive Interface

type spirit:hierInterface

attributes

Reference to a component
instance name.

spirit:componentRef

type xs:Name

Reference to the components
bus interface

spirit:busRef

type xs:Name

A decending hierarchica l (slash

separated - example x/y /z) path

to the component instance
conta ining the specified

component instance in

componentRef. I f not specified

the componentRef instance sha ll
exist in the current design.

spirit:path

type spirit: instancePath

spirit:interface

Describes one interface of the

interconnection.

The componentRef and busRef

attributes indicate the instance

name and bus interface name of
one end of the connection.

spirit:active Interface

2

type spirit: interface

attributes

Reference to a component

instance name.

spirit:componentRef

type xs:Name

Reference to the components

bus interface

spirit:busRef

type xs:Name

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 78 Copyright © 201 0 IEEE. Al l rights reserved.

<spirit: monitoredInterface spirit: path="apbsubsys/group1"

spirit: componentRef="i_timers" spirit: busRef="ambaAPB"/>

<spirit: monitorInterface spirit: path="umon" spirit: componentRef="i_monitor"

spirit: busRef="ambaAPBMonitor"/>

7.5 Design ad hoc connections

The name ad hoc is used for connections that are made on a port-by-port basis and not done through the

higher-level bus interface. The same ports that make up a busInterface can be used in ad hoc connections.

IP-XACT supports two cases of ad hoc connections: the wire connection (between ports having a wire style)

and the transactional connection (between ports having a transactional style). The direct connection between

a wire-style port and a transactional-style port is not allowed; a specific adapter component needs to be

inserted in between them.

7.5.1 Schema

The following schema details the information contained in the adHocConnections element, which may

appear as an element inside the top-level design element.

Defines the set of ad-hoc

connections in a design. A n ad-hoc
connection represents a connection

betw een tw o component pins w hich

w ere not connected as a result of

interface connections (i . e. the pin to

pin connection w as made explicitly

and is represented explicitly).

spirit:adHocConnections

Represents an ad-hoc connection

betw een component ports.

spirit:adHocConnection

1 f. .

attributes

The logic v a lue of this connection. O nly

v a lid for ports of sty le w ire.

spirit:tiedValue

type spirit:scaledNonNegativeInteger

A group of elements for

name(portN ame), d isplay N ame

and description

spirit:nameGroupPort

U nique name

spirit:nam e

type spirit:portName

E lement name for display

purposes. Ty pica l ly a few w ords

prov iding a more detailed and/or
user-friendly name than the

spirit: name.

spirit:displayNam e

type xs:string

Full description string, ty pica l ly

for documentation

spirit:description

type xs:string

Defines a reference to a port on a

component contained w ithin the design.

spirit:inte rnalPortReference

1 f. .

attributes

A reference to the instanceN ame

element of a component in this

design.

spirit:componentRef

type xs:Name

A port on the on the referenced

component from componentRef.

spirit:portRef

type spirit:portName

Left index of a v ector.

spirit:le ft

type xs:nonNegativeInteger

Right index of a v ector.

spirit:right

type xs:nonNegativeInteger

Defines a reference to a port on the

component containing this design. The

portRef attribute indicates the name of

the port in the conta ining component.

spirit:externalPortReference

0 f. .

attributes

A port on the top lev el

component.

spirit:portRef

type spirit:portName

Left index of a v ector.

spirit:le ft

type xs:nonNegativeInteger

Right index of a v ector.

spirit:right

type xs:nonNegativeInteger

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 179

7.5.2 Description

The adHocConnections element contains an unbounded list of adHocConnection elements. An

adHocConnection specifies connections between component instance ports or between component instance

ports and ports of the encompassing component (in the case of a hierarchical component). Each

adHocConnection element has a tiedValue (optional) attribute that specifies a fixed logic (1 and 0) value

for this connection. The tiedValue attribute is of type scaledNonNegativeInteger. The adHocConnection

element contains the following subelements.

a) nameGroup group is defined in C.1 . The name elements shall be unique within the containing

adHocConnections element.

b) internalPortReference (mandatory) references the port of a component instance. This element has

four attributes.

1) componentRef (mandatory) references the component instance name for the port. The

componentRef attribute is of type Name. See 6.1 .

2) portRef (mandatory) references the port name on the specific component instance. The

portRef attribute is of type Name. See 6.11 .3 .

3) left and right (optional) specify a portion of the port range. The left and right attributes are of

type nonNegativeInteger.

c) externalPortReference (optional) references a port of the encompassing component where this

design is referred (for hierarchical ad hoc connections). This element has three attributes.

1) portRef (mandatory) references the port name on the encompassing component. The portRef

attribute is of type Name. See 6.11 .3 .

2) left and right (optional) specify a portion of the port range. The left and right attribute is of

type nonNegativeInteger.

See also: SCR 6.1 4.

7.5.3 Example

The following example shows two ad hoc connections. The first one, d1e1074 , connects port irlin on

component instance i_irqctrl and port irqvec on component instance i_leon2Proc . The second

one, i_leon2Proc_mresult , connects port mresult on component instance i_leon2Proc and

port i_leon2Proc_mresult of the encompassing component.

<spirit: adHocConnections>

<spirit: adHocConnection>

<spirit: name>d1e1074</spirit: name>

<spirit: internalPortReference spirit: componentRef="i_irqctrl"

spirit: portRef="irlin" spirit: left="3"

 spirit: right="0"/>

<spirit: internalPortReference spirit: componentRef="i_leon2Proc"

spirit: portRef="irqvec"

 spirit: left="3" spirit: right="0"/>

</spirit: adHocConnection>

<spirit: adHocConnection>

<spirit: name>i_leon2Proc_mresult</spirit: name>

<spirit: internalPortReference spirit: componentRef="i_leon2Proc"

spirit: portRef="mresult"

 spirit: left="31" spirit: right="0"/>

<spirit: externalPortReference spirit: portRef="i_leon2Proc_mresult"/>

</spirit: adHocConnection>

</spirit: adHocConnections>

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 80 Copyright © 201 0 IEEE. Al l rights reserved.

7.5.4 Ad hoc wire connection

For ad hoc connections between wire-style ports, IP-XACT requires:

— The style of each port be the same style (i.e. , wire).

— The bits of the ports are connected from left to right. In the internalPortReference element, left and

right define the actual bits to connect.

See also: SCR 6.9 and SCR 6.27.

Example

This is an example of these rules being applied.

<spirit: adHocConnection>

</spirit: internalPortReference componentRef="U1" portRef="A"

left="8" right="1">

</spirit: internalPortReferencenal componentRef="U2" portRef="B"

left="7" right="0">

</spirit: adHocConnection>

Implies these connections:

U1/A[8] = U2/B[7]

U1/A[7] = U2/B[6]

U1/A[6] = U2/B[5]

U1/A[5] = U2/B[4]

U1/A[4] = U2/B[3]

U1/A[3] = U2/B[2]

U1/A[2] = U2/B[1]

U1/A[1] = U2/B[0]

NOTE—The typeNames do not have to match between the two ports, it is up to the DE or simulator to potentially
resolve unmatching types, e.g. , it is possible to connect a VHDL std_logic port to a SystemC sc_logic port.

7.5.5 Ad hoc transactional connection

For ad hoc transactional connections, IP-XACT requires:

— The style of each port be the same style (i.e. , transactional).

— If defined, the transTypeDef/typeName name of each port are the same (e.g., sc_tlm_port).

— The service/serviceTypeDef/typeNames match.

Also, two ports with a requires initiative can be connected. This means they would both connect to a

mediated link (e.g., a wire, buffer, FIFO, or any complex link) in a top SystemC or SystemVerilog netlist.

This mediated link provides the protocol interfaces required by each port. The name, type, and parameters of

this mediated link are not defined by IP-XACT, but could be given as input to a netlister generator.

See also: SCR 6.1 0.

7.6 Design hierarchical connections

7.6.1 Schema

The following schema details the information contained in the hierConnections element, which may appear

as an element inside the top-level design element.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 181

7.6.2 Description

The hierConnections element contains an unbounded list of hierConnection elements. hierConnection

represents a hierarchical interface connection between a bus interface on the encompassing component and a

bus interface on a component instance of the design. hierConnection contains an interfaceRef (mandatory)

attribute that provides one end of the interconnection; it is the name of the bus interface on the encompassing

component (see 6.5.1). The interfaceRef attribute is of type Name. The name of the ports and the mapping

to this interface are defined in the referencing hierarchical component. The hierConnection element

contains the following elements and attributes.

a) interface (mandatory) specifies the component instance bus interface for connection to the

encompassing component; only one interface is allowed. The interface element may reference an

active interface or a monitor interface. The interface element is of type interface, see 7.4.

b) vendorExtensions (optional) adds any extra vendor-specific data related to the hierarchical

interface connection. See C.1 0.

See also: SCRs in Table B.1 0 and Table B.11 .

7.6.3 Example

The following example shows a hierarchical interconnection between the AHBReset_1 bus interface on

the encompassing component and the AHBReset bus interface on the i_ahbbus component instance.

<spirit: hierConnections>

<spirit: hierConnection spirit: interfaceRef="AHBReset_1">

<spirit: activeInterface spirit: componentRef="i_ahbbus"

spirit: busRef="AHBReset"/>

</spirit: hierConnection>

</spirit: hierConnections>

A l ist of hierarchy connections

betw een bus interfaces on
component instances and the bus

interfaces on the encompassing
component.

spirit:hierConnections

Represents a hierarchy

connection

spirit:hierConnection

1 f. .

attributes

This is the name of the bus
interface on the upper lev el

component.

spirit:interfaceRef

type xs:Name

spirit:interface

C omponent and bus reference to

export to the upper lev el

component.

The componentRef and busRef
attributes indicate the instance

name and bus interface name
(activ e or monitor) of the

hierachica l connection.

spirit:interface

type spirit: interface

attributes

Reference to a component
instance name.

spirit:componentRef

type xs:Name

Reference to the components
bus interface

spirit:busRef

type xs:Name

C ontainer for v endor specific

extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 183

8. Abstractor descriptions

Designs that incorporate IP models using different interface modeling styles (e.g. , TLM and RTL modeling

styles) may contain interconnections between such component interfaces using different abstractions of the

same bus type. An IP-XACT description may describe how such interconnections are to be made using a

special-purpose object called an abstractor. An abstractor is used to connect between two different

abstractions of the same bus type (e.g., an APB_RTL and an APB_TLM). An abstractor shall only contain

two interfaces, which shall be of the same bus definition and different abstraction definitions.

Unlike a component, an abstractor is not referenced from a design description, but instead is referenced from

a design configuration description. See Clause 10.

8.1 Abstractor

8.1 .1 Schema

The following schema details the information contained in the abstractor element, which is one of the

seven top-level elements in the IP-XACT specification used to describe an abstractor.

spirit:abs tractorType

This is the root element for abstractors

spirit:abs tractor

type spirit:abstractorType

This group of elements identifies a top lev el
item (e. g. a component or a bus definition)

w ith v endor, l ibrary , name and a v ersion

number.

spirit:vers ionedIdentifier

Define the mode for the interfaces on this

abstractor.

F or master the first interface connects to the
master, the second connects to the

m irroredM aster

F or slav e the first interface connects to the

m irroredS lav e the second connects to the
slav e

F or direct the first interface connects to the

master, the second connects to the slav e

F or sy stem the first interface connects to the

sy stem, the second connects to the
m irroredSy stem. F or sy stem the group

attribute is required

spirit:abs tractorMode

type spirit:abstractorModeType

attributes

Define the sy stem group if the mode is set to
sy stem

spirit:group

type xs:Name

The bus ty pe of both interfaces. Refers to bus
definition using v endor, l ibrary , name, v ersion

attributes.

spirit:busType

type spirit: libraryRefType

The interfaces supported by this abstractor

spirit:abs tractorInterfaces

M odel information.

spirit:mode l

type spirit:abstractorModelType

Generator l ist is tools-specific.

spirit:abs tractorGenerators

C hoices used by elements w ith an attribute

spirit:choiceRef.

spirit:choices

List of fi le sets associated w ith component.

spirit:fi leSets

F ul l description string, ty pica lly for
documentation

spirit:description

type xs:string

A collection of parameters.

spirit:param eters

C ontainer for v endor specific extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 84 Copyright © 201 0 IEEE. Al l rights reserved.

8.1 .2 Description

Each element of an abstractor is detailed in the rest of this clause; the main sections of an abstractor are:

a) versionedIdentifier group provides a unique identifier, made up of four subelements for a top-level

IP-XACT element. See C.6.

b) abstractorMode (mandatory) determines the mode of the two interfaces contained in abstrac-

torInterfaces. The abstractor can be inserted in a connection between two instances or between an

instance and an exported interface. The abstractorMode element can take one of the following four

values.

1) master specifies for

i) master to mirrored-master connection—the first interface connects to the master interface,

the second connects to the mirrored-master interface;

ii) exported master connection—the first interface connects to the master interface, the

second connects to the exported interface;

iii) exported mirrored-master connection—the first interface connects to the exported

interface, the second connects to the mirrored-master interface.

2) slave specifies for

i) mirrored-slave to slave connection—the first interface connects to the mirrored-slave

interface, the second connects to the slave interface;

ii) exported slave connection—the first interface connects to the exported interface, the

second connects to the slave interface;

iii) exported mirrored-slave connection—the first interface connects to the mirrored-slave

interface, the second connects to the exported interface.

3) direct specifies the first interface connects to the master interface, the second connects to the

slave interface. This option is not allowed for an exported interface.

4) system specifies for

i) system to mirrored-system connection—the first interface connects to the system

interface, the second connects to the mirrored-system interface;

ii) exported system connection—the first interface connects to the system interface, the

second connects to the exported interface;

iii) exported mirrored-system connection—the first interface connects to the exported

interface, the second connects to the mirrored-system interface.

The group (mandatory, when abstractorMode=“system”) attribute defines the name of the

group to which this system interface belongs. This attribute is of type Name, which indicates

the value of this group shall be unique inside the abstractor element. The specified value of

group needs to be a group defined in the referenced abstraction definition. A connection

between a system and mirroredSystem interfaces shall have matching group names.

c) busType (mandatory) specifies the bus definition this bus interface references. A bus definition (see

5.2) describes the high-level attributes of a bus description. The busType element is of type

libraryRefType (see C.7); it contains four attributes to specify the referenced VLNV.

d) abstractorInterfaces (mandatory) are interfaces having the same bus type, but differing abstraction

types. See 8.2.

e) model (optional) specifies all the different views, ports, and model configuration parameters of the

abstractor. See 8.3 .

f) abstractorGenerators (optional) specifies a list of generator programs attached to this abstractor.

See 8.7.

g) choices (optional) specifies multiple enumerated lists, which are referenced by other sections of this

abstractor description. See 6.1 4.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 185

h) fileSets (optional) specifies groups of files and possibly their function for reference by other

sections of this abstractor description. See 6.1 3 .

i) description (optional) allows a textual description of the abstractor. The description element is of

type string.

j) parameters (optional) describes any parameter that can be used to configure or hold information

related to this abstractor. See C.11 .

k) vendorExtensions (optional) contains any extra vendor-specific data related to the abstractor. See

C.10.

See also: SCR 1 .9, SCR 1 .1 0, and SCR 3.1 6.

8.1 .3 Example

The following example shows a simple slave abstractor having AHB UT and AHB LT interfaces.

<spirit: abstractor>

<spirit: vendor>spiritconsortium. org</spirit: vendor>

<spirit: library>Leon2</spirit: library>

<spirit: name>pv2rtl</spirit: name>

<spirit: version>1. 5</spirit: version>

<spirit: abstractorMode>slave</spirit: abstractorMode>

<spirit: busType spirit: vendor="amba. com" spirit: library="AMBA2"

spirit: name="AHB" spirit: version="r2p0_5"/>

<spirit: abstractorInterfaces>

<spirit: abstractorInterface>

<spirit: name>UTinterface</spirit: name>

<spirit: abstractionType

spirit: vendor="spiritconsortium. org"

spirit: library="Leon2"

spirit: name="AHB_UT"

spirit: version="1. 0"/>

</spirit: abstractorInterface>

<spirit: abstractorInterface>

<spirit: name>LTinterface</spirit: name>

<spirit: abstractionType

spirit: vendor="spiritconsortium. org"

spirit: library="Leon2"

spirit: name="AHB_LT"

spirit: version="1. 0"/>

</spirit: abstractorInterface>

</spirit: abstractorInterfaces>

</spirit: abstractor>

8.2 Abstractor interfaces

8.2.1 Schema

The following schema defines the information contained in the abstractorInterfaces element, which

appears within an abstractor description.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 86 Copyright © 201 0 IEEE. Al l rights reserved.

8.2.2 Description

The abstractorInterfaces element contains a list of two abstractorInterface elements. Each

abstractorInterface element defines properties of this specific interface in an abstractor. The

abstractorInterface element also allows for vendor attributes to be applied. Each abstractorInterface

contains the following elements.

a) nameGroup group is defined in C.1 . The name elements shall be unique within the containing

abstractor element.

b) abstractionType (mandatory) specifies the abstraction definition where this bus interface is

referenced. An abstraction definition describes the low-level attributes of a bus description (see 5.3).

The abstractionType element is of type libraryRefType (see C.7); it contains four attributes to

specify the referenced VLNV.

c) portMaps (optional) describes the mapping between the abstraction definition’s logical ports and

the abstractor’s physical ports. See 6.5.6.

d) parameters (optional) specifies any parameter data value(s) for this bus interface. See C.11 .

e) vendorExtensions (optional) holds any vendor-specific data from other namespaces, which is

applicable to this bus interface. See C.1 0.

8.2.3 Example

This example shows an abstractorInterface of type AHB_PV, which includes a single portMap between

the logical port PV_TRANS and the abstractor physical port ahb_slave_port .

The interfaces supported by this

abstractor

spirit:abs tractorInterfaces

spirit:abs tractorBus InterfaceType

An abstractor must hav e exactly 2 I nterfaces.

spirit:abs tractorInterface

2

type spirit:abstractorBusInterfaceType

attributes

##anyany

A group of elements for name

(xs:name), d isplay N ame and description

spirit:nameGroup

U nique name

spirit:nam e

type xs:Name

E lement name for display purposes.

Ty pica lly a few words prov iding a more

deta iled and/or user-friendly name than

the spirit: name.

spirit:displayNam e

type xs:string

F ull description string, ty pica lly for

documentation

spirit:description

type xs:string

spirit:libraryRefType

The abstraction ty pe/lev el of this

interface. Refers to abstraction definition

using v endor, l ibrary , name, v ersion

attributes. Bus definition can be found

through a reference in this file.

spirit:abs tractionType

type spirit: libraryRefType

attributes

spirit:vendor

type xs:Name

spirit:library

type xs:Name

spirit:nam e

type xs:NMTOKEN

spirit:vers ion

type xs:NMTOKEN

Listing of maps between logica l ports

and phy sica l ports.

spirit:portMaps

A col lection of parameters.

spirit:param eters

C onta iner for v endor specific extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 187

<spirit: abstractorInterface>

<spirit: name>PVinterface</spirit: name>

<spirit: abstractionType

spirit: vendor="spiritconsortium. org"

spirit: library="Leon2"

spirit: name="AHB_PV"

spirit: version="1. 0"/>

<spirit: portMaps>

<spirit: portMap>

<spirit: logicalPort>

<spirit: name>PV_TRANS</spirit: name>

</spirit: logicalPort>

<spirit: physicalPort>

<spirit: name>ahb_slave_port</spirit: name>

</spirit: physicalPort>

</spirit: portMap>

</spirit: portMaps>

</spirit: abstractorInterface>

8.3 Abstractor models

8.3.1 Schema

The following schema defines the information contained in the abstractor model element, which may appear

within an abstractor description.

8.3.2 Description

The model element describes the views, ports, and model related parameters of an abstractor. A model

element may contain the following.

a) views (optional) contains a list of all the views for this object. An object may have many different

views. An RTL view may describe the source hardware module/entity with its pin interface; a soft-

ware view may define the source device driver C file with its . h interface; a documentation view

may define the written specification of this IP. See 8.4.

b) ports (optional) contains the list of ports for this object. A ports is an external connection from the

object. An object may only have one set of ports that shall be valid for all views. See 8.5.

c) modelParameters (optional) contains a list of parameters that are needed to configure a model

implementation. The same set of model parameters shall be valid for all views. See 6.11 .20.

spirit:abs tractorMode lType

M odel information.

spirit:m odel

type spirit:abstractorModelType

V iew conta iner

spirit:views

Port container

spirit:ports

M odel parameter name v a lue pa irs

container

spirit:m ode lParam eters

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 88 Copyright © 201 0 IEEE. Al l rights reserved.

8.3.3 Example

The following example shows an abstractor model with a single SystemC view, two transactional ports, and

a constructor model parameter.

<spirit: model>

<spirit: views>

<spirit: view>

<spirit: name>systemCView</spirit: name>

<spirit: envIdentifier>: *Simulation: </spirit: envIdentifier>

<spirit: language>systemc2. 1</spirit: language>

<spirit: modelName>pv2pvt</spirit: modelName>

<spirit: fileSetRef>abstractorFileSetRef</spirit: fileSetRef>

</spirit: view>

</spirit: views>

<spirit: ports>

<spirit: port>

<spirit: name>pv_slave</spirit: name>

<spirit: transactional>

<spirit: service>

<spirit: initiative>provides</spirit: initiative>

<spirit: serviceTypeDefs>

<spirit: serviceTypeDef>

<spirit: typeName>trans_if</spirit: typeName>

</spirit: serviceTypeDef>

</spirit: serviceTypeDefs>

</spirit: service>

</spirit: transactional>

</spirit: port>

<spirit: port>

<spirit: name>pvt_master</spirit: name>

<spirit: transactional>

<spirit: service>

<spirit: initiative>requires</spirit: initiative>

<spirit: serviceTypeDefs>

<spirit: serviceTypeDef>

<spirit: typeName>req_rsp_if</spirit: typeName>

</spirit: serviceTypeDef>

</spirit: serviceTypeDefs>

</spirit: service>

</spirit: transactional>

</spirit: port>

</spirit: ports>

<spirit: modelParameters>

<spirit: modelParameter spirit: usageType="nontyped">

<spirit: name>moduleName</spirit: name>

<spirit: value spirit: id="moduleNameId"

spirit: resolve="user">ABSTRACTOR_PV2PVT</spirit: value>

</spirit: modelParameter>

</spirit: modelParameters>

</spirit: model>

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 189

8.4 Abstractor views

8.4.1 Schema

The following schema defines the information contained in the views element, which appears within the

model element of an abstractor description.

This schema is almost identical to the component/views/view element (see 6.11 .2), except:

— Abstractors have no hierarchyRef elements.

— Abstractors have no constraintSetRef elements.

— Abstractors have no whiteboxElementRefs elements.

8.4.2 Description

A views element describes an unbounded set of view elements. Each view element specifies a representation

level of an abstractor. It contains the following elements.

V iew conta iner

spirit:views

spirit:abs tractorViewType

S ingle v iew of an abstractor

spirit:view

0 f. .

type spirit:abstractorView Type

A group of elements for

name(xs:N M TO KEN), display N ame and

description

spirit:nameGroupNMTOKEN

 D efines the hardware env ironment in

w hich this v iew applies. The format of

the string is

language:tool:v endor_extension, w ith

each piece being optional. The language
must be one of the ty pes from

spirit: fi leTy pe. The tool v a lues are

defined by the SP IRIT C onsortium, and
include generic v a lues "* S imulation" and

"* Sy nthesis" to imply any tool of the

indicated ty pe. H av ing more than one
env Identifier indicates that the v iew

applies to multiple env ironments.

spirit:envIdentifie r

1 f. .

type xs:string

 The hardw are description language
used such as " v erilog" or "v hdl" . I f the

attribute "strict" is " true", this v a lue

must match the language being
generated for the design.

spirit:language

type xs:token

attributes

A v a lue of 'true' indicates that this v a lue

must match the language being

generated for the design.

spirit:s trict

type xs:boolean

Language specific name to identity the
model. V erilog or S y stemV erilog this is

the module name. F or V H DL this is,
w ith ()’s, the entity (architecture) name

pair or w ithout a single configuration

name. F or S y stemC this is the class
name.

spirit:m ode lNam e

type xs:string

Default command and flags used to build
deriv ed fi les from the sourceN ame files

in the referenced file sets.

spirit:defaultFileBuilder

0 f. .

type spirit:fileBuilderType

A reference to a fi leS et.

spirit:fi leSetRef

0 f. .

A collection of parameters.

spirit:param eters

C onta iner for v endor specific extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 90 Copyright © 201 0 IEEE. Al l rights reserved.

a) nameGroupNMToken group is defined in C.4. The name elements shall be unique within the

containing views element.

b) envIdentifier (mandatory) designates and qualifies information about how this model view is

deployed in a particular tool environment. The format of the element is a string with three fields sep-

arated by colons [:] in the format of Language:Tool:VendorSpecific. The regular expression that is

used to check the string is [A-Za-z0-9_+*\.]*:[A-Za-z0-9_+*\.]*:[A-Za-z0-9_+*\.]* The sections

are:

1) Language indicates this view may be compatible with a particular tool, but only if that

language is supported in that tool, e.g. , different versions of some simulators may support two

or more languages. In some cases, knowing the tool compatibility is not enough and may be

further qualified by language compatibility, e.g. , a compiled HDL model may work in a

VHDL-enabled version of a simulator, but not in a SystemC-enabled version of the same

simulator.

2) Tool indicates this view contains information that is suitable for the named tool. This might be

used if this view references data that is tool-specific and would not work generically, e.g. , HDL

models that use simulator-specific extensions.

Vendors shall publish lists of approved tool identification strings. These strings shall contain

the tool name, as well as the company’s domain name, separated by dots. Some examples of

well-formed tool entries are:

designcompiler. synopsys. com

ncsim. cadence. com

modelsim. mentor. com

This field can alternatively indicate generic tool family compatibility, such as *Simulation

or *Synthesis . To support transportability of created data files, it is important to use the

published, generally recognized, tool designation when referencing a tool. See IP-XACT

standard tool names for envIdentifier [B14] .

3) VendorSpecific can be used to further qualify tool and language compatibility. This can be used

to indicate additional processing information may be required to use this model in a particular

environment. For instance, if the model is a SWIFT simulation model, the appropriate

simulator interface may need to be enabled and activated.

Any or all of the envIdentifier fields may be used. Where there are multiple environments for which

a particular view is applicable, multiple envIdentifier elements can be listed.

c) language (optional) specifies the HDL used for a specific view, e.g. , verilog, vhdl , or

SystemC . The language element needs to support a mix of the two abstraction definitions

described in the abstractor (e.g. , a TLM to RTL abstractor would need a language, such as SystemC,

supporting both a transactional abstract level description and an RTL description). The language

element is of type token. This may have an attribute strict (optional) of type boolean; if true the

language shall be strictly enforced. The default is false.

d) modelName (optional) is a language-specific identifier of the model. For Verilog or SystemVerilog,

this is the module name. For VHDL, this is, with () ’ s, the entity (architecture) name pair or,

without() ’ s, a configuration name. For SystemC, this is the sc_module class name. The

modelName element is of type string.

e) defaultFileBuilder (optional) is an unbounded list of default file builder options for the fileSets

referenced in this view. See 6.1 3 .5.

f) fileSetRef (optional) is an unbounded list of references to a fileSet name within the containing

document or another document referenced by the VLNV. See C.8.

g) parameters (optional) details any additional parameters that describe the view for generator usage.

See C.11 .

h) vendorExtensions (optional) adds any extra vendor-specific data related to the view. See C.1 0.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 191

8.4.3 Example

This example shows two abstractor views: a SystemC view and a SystemVerilog view. Such a configuration

assumes the abstractor ports can be expressed with a generic typeDef that is supported in both languages.

<spirit: views>

<spirit: view>

<spirit: name>systemCView</spirit: name>

<spirit: envIdentifier>: *Simulation: </spirit: envIdentifier>

<spirit: language>systemc2. 1</spirit: language>

<spirit: modelName>pv2pvt</spirit: modelName>

<spirit: fileSetRef>

<spirit: localName>scFileSetRef</spirit: localName>

</spirit: fileSetRef>

</spirit: view>

<spirit: view>

<spirit: name>systemVView</spirit: name>

<spirit: envIdentifier>: *Simulation: </spirit: envIdentifier>

<spirit: language>systemVerilog</spirit: language>

<spirit: modelName>pv2pvt</spirit: modelName>

<spirit: fileSetRef>

<spirit: localName>svFileSetRef</spirit: localName>

</spirit: fileSetRef>

</spirit: view>

</spirit: views>

8.5 Abstractor ports

8.5.1 Schema

An abstractor’s ports are almost identical to a component’s ports; the abstractor transactional ports are

exactly the same as the component transactional ports. The access methods are the same for an abstractor

or component port. The abstractor wire ports defined here only differ from component wire ports by the

absence of the constraintSet element, because implementation constraints are not needed for abstractors.

The following schema defines the information contained in the ports element, which may appear within an

abstractor.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 92 Copyright © 201 0 IEEE. Al l rights reserved.

8.5.2 Description

The ports element defines an unbounded list of port elements. Each port element describe a single external

port on the abstractor.

a) nameGroupPort group is defined in C.4. The name elements shall be unique within the containing

ports element.

b) Each port shall be described as a wire or transactional port.

1) wire (mandatory) defines ports that transport purely binary values or vectors of binary values.

A wire port in an abstractor contains most of the same elements and attributes as a wire port in

a component, except for the contraintSet element. See 8.6.

2) transactional (mandatory) defines all other style ports, typically used for TLM. A

transactional port in an abstractor contains all the same elements and attributes as a

transactional port in a component. See 6.11 .1 6.

c) access (optional) defines the access for a port.

1) portAccessType (optional) indicates to a netlister how to access the port. The portAccessType

shall have one of two possible values ref or ptr. If ref (the default), a netlister should access the

port directly, and if ptr, it should access the port with a pointer.

2) portAccessHandle (optional) indicates to a netlister the method to be used to access the object

representing the port. This is typically a function call or array element reference in

IEEE Std 1666-2005 [B4] (SystemC). The portAccessHandle is of type string.

d) vendorExtensions (optional) adds any extra vendor-specific data related to the port. See C.1 0.

Port conta iner

spirit:ports

spirit:abstractorPortType

spirit:port

0 f. .

type spirit:abstractorPortType

A group of elements for

name(portN ame), display N ame and

description

spirit:nameGroupPort

U nique name

spirit:nam e

type spirit:portName

E lement name for display purposes.

Ty pica l ly a few w ords prov iding a more

detailed and/or user-friendly name than

the spirit:name.

spirit:displayNam e

0 1. .

type xs:string

F ull description string, ty pica lly for

documentation

spirit:description

0 1..

type xs:string

Port sty le

Defines a port w hose ty pe resolv es to

simple bits.

spirit:w ire

type
spirit:abstractorPortWireType

(spirit:portWireType)

Defines a port that implements or uses a

serv ice that can be implemented w ith

functions or methods.

spirit:transactional

type spirit:portTransactionalType

spirit:portAccessType

Port access characteristics.

spirit:access

0 1. .

type spirit:portAccessType

Indicates how a netlister accesses a

port. 'ref' means accessed by reference

(default) and 'ptr' means accessed

through a pointer.

spirit:portAccessType

type xs:s tring

I f present, is a method to be used to get

hold of the obj ect representing the port.

This is ty pica lly a function ca ll or a rray

element reference in sy stemC .

spirit:portAccessHandle

type xs:s tring

C onta iner for v endor specific extensions.

spirit:vendorExtens ions

0 1. .

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 193

8.5.3 Example

The following example shows a simple address port with a transactional interface.

<spirit: ports>

<spirit: port>

<spirit: name>paddr</spirit: name>

<spirit: transactional>

<spirit: service>

 <spirit: initiative>provides</spirit: initiative>

<spirit: serviceTypeDefs>

<spirit: serviceTypeDef>

<spirit: typeName>trans_if</spirit: typeName>

<spirit: parameters>

<spirit: parameter name=”addr” resolve=”user”>ADDR

</spirit: parameter>

</spirit: parameters>

</spirit: serviceTypeDef>

</spirit: serviceTypeDefs>

</spirit: service>

</spirit: transactional>

</spirit: port>

</spirit: ports>

8.6 Abstractor wire ports

8.6.1 Schema

The abstractor wire ports defined here only differ from component wire ports by the absence of the

constraintSet element, because implementation constraints are not needed for abstractors.

The following schema element defines the information contained in the wire element, which appears within

an abstractor port.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 94 Copyright © 201 0 IEEE. Al l rights reserved.

8.6.2 Description

The wire element describes the properties for ports that are of a wire style. A port can come in two different

styles, wire or transactional. A wire port applies for all scalar types (e.g. , VHDL std_logic and Verilog

wire) and vectors of scalars. A wire port transports purely binary values or vectors of binary values.

— Scalar types in VHDL also include integer and enumeration values. Scalars in IP-XACT only

include binary values that relate to a single wire in a hardware implementation.

— Since wire ports allow only binary values, IP-XACT does not support tri-state or multiple strength

values.

The wire element contains the following elements.

a) allLogicalDirectionsAllowed (optional) attribute defines whether the port may be mapped to a port

in an abstractionDefinition with a different direction. The default value is false. The allLogical-
DirectionsAllowed attribute is of type boolean. See 5.3 .

b) direction (mandatory) specifies the direction of this port: in for input ports, out for output ports, and

inout for bidirectional and tri-state ports. phantom can also be used to define a port that only exists

on the IP-XACT component, but not on the implementation referenced from the view.

c) vector (optional) determines if this port is a scalar port or a vectored port. The left and right vector

bounds elements inside the vector element are those specified in the implementation source. The

port width is max(left,right) – min(left,right) +1 . The left and right elements are of type

nonNegativeInteger. The left and right elements are configurable with attributes from

long.prompt.att, see C.1 2.

spirit:abs tractorPortWireType

Defines a port w hose ty pe resolv es to

simple bits.

spirit:w ire

type
spirit:abstractorPortWireType

(spirit:portWireType)

attributes

True if logical ports w ith d ifferent directions

from the phy sica l port direction may be

mapped onto this port. F orbidden for phantom

ports, w hich a lw ay s a llow logica l ports w ith a l l
direction v a lue to be mapped onto the phy sica l

port. A lso ignored for inout ports, since any

logica l port may be mapped to a phy sica l inout

port.

spirit:allLogicalDirectionsAllowed

type xs:boolean

default false

spirit:direction

type spirit:componentPortDirectionType

Specific left and right v ector bounds.

S ignal w idth is

max(left, right)-min(left,right)+1 When

the bounds are not present, a sca lar port

is assumed.

spirit:vector

0 1. .

The optional elements left and right can

be used to select a bit-sl ice of a port

v ector to map to the bus interface.

spirit:le ft

type xs:nonNegativeInteger

attributes

U se this a ttribute group on long integer

elements.

spirit:long.prompt.attgrp

The optional elements left and right can

be used to select a bit-sl ice of a port

v ector to map to the bus interface.

spirit:right

type xs:nonNegativeInteger

attributes

U se this a ttribute group on long integer

elements.

spirit:long.prompt.attgrp

The group of w ire ty pe definitions. I f no

match to a v iewN ame is found then the

default language ty pes are to be used.

S ee the U ser G uide for these default

ty pes.

spirit:w ireTypeDefs

0 1. .

Wire port driv er element.

spirit:driver

0 1. .

type spirit:driverType

List of constra intSet elements for a

component port.

spirit:cons traintSets

spirit:abs tractorPortWireType

Defines a port w hose ty pe resolv es to

simple bits.

spirit:w ire

type
spirit:abstractorPortWireType

(spirit:portWireType)

attributes

True if logical ports w ith d ifferent directions

from the phy sica l port direction may be

mapped onto this port. F orbidden for phantom

ports, w hich a lw ay s a llow logica l ports w ith a l l
direction v a lue to be mapped onto the phy sica l

port. A lso ignored for inout ports, since any

logica l port may be mapped to a phy sica l inout

port.

spirit:allLogicalDirectionsAllowed

type xs:boolean

default false

spirit:direction

type spirit:componentPortDirectionType

Specific left and right v ector bounds.

S ignal w idth is

max(left, right)-min(left,right)+1 When

the bounds are not present, a sca lar port

is assumed.

spirit:vector

0 1. .

The optional elements left and right can

be used to select a bit-sl ice of a port

v ector to map to the bus interface.

spirit:le ft

type xs:nonNegativeInteger

attributes

U se this a ttribute group on long integer

elements.

spirit:long.prompt.attgrp

The optional elements left and right can

be used to select a bit-sl ice of a port

v ector to map to the bus interface.

spirit:right

type xs:nonNegativeInteger

attributes

U se this a ttribute group on long integer

elements.

spirit:long.prompt.attgrp

The group of w ire ty pe definitions. I f no

match to a v iewN ame is found then the

default language ty pes are to be used.

S ee the U ser G uide for these default

ty pes.

spirit:w ireTypeDefs

0 1. .

Wire port driv er element.

spirit:driver

0 1. .

type spirit:driverType

List of constra intSet elements for a

component port.

spirit:cons traintSets

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 195

1) The left element means first boundary, the right element, the second boundary. left may be

larger than right and that left may be the MSB or LSB (right being the opposite). The left and

right elements are the (bit) rank of the left-most and right-most bits of the port.

2) When the vector element is present and the left and right elements are not equal, the port is

defined as a multi-bit vector port. When the vector element is present and the left and right

elements are equal, the port is defined as a single-bit vector port. When the vector element and

the left and right elements are not present, the port is defined as a scalar port.

d) wireTypeDefs (optional) describes the ports type as defined by the implementation, see 6.11 .5.

e) driver (optional) defines a driver that may be attached to this port if no other object is connected to

this port. This allows the IP to define the default state of unconnected inputs. A wire style port may

only define a driver element for a port if the direction of the port is in or inout. See also 6.11 .6.

See also: SCR 6.5, SCR 6.6, SCR 6.7, and SCR 6.12.

8.6.3 Example

The following example shows a simple address port of 32 bits.

<spirit: port>

<spirit: name>paddr</spirit: name>

<spirit: wire>

<spirit: direction>in</spirit: direction>

<spirit: vector>

<spirit: left>31</spirit: left>

<spirit: right>0</spirit: right>

</spirit: vector>

</spirit: wire>

</spirit: port>

8.7 Abstractor generators

8.7.1 Schema

The following schema defines the information contained in the abstractorGenerators element, which may

appear within an abstractor object.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

1 96 Copyright © 201 0 IEEE. Al l rights reserved.

8.7.2 Description

The abstractorGenerators element contains an unbounded list of abstractorGenerator elements. Each

abstractorGenerator element defines a generator that is assigned and may be run on this abstractor. The

abstractorGenerator has exactly the same schema definition as a componentGenerator. See 6.1 2.

8.7.3 Example

The following example shows a document generator attached to an abstractor. This generator is a Tcl script

that can be executed as tclsh . . /bin/absDocGen. tcl -url file (and useDefaultValues is

true). Here, the parameter is a configurable parameter named useDefaultValues , which can be

configured by the user. This generator uses the TGI API with a SOAP transport protocol based on file.

<spirit: abstractorGenerator>

<spirit: name>genAbstractorDoc</spirit: name>

<spirit: parameters>

<spirit: parameter>

<spirit: name>useDefaultValues</spirit: name>

Generator l ist is tools-specific.

spirit:abs tractorGenerators

spirit:ins tanceGeneratorType

Specifies a set of abstractor generators.

The scope attribute applies to abstractor

generators and specifies w hether the
generator should be run for each instance

of the entity (or module) or j ust once for

a ll instances of the entity .

spirit:abs tractorGenerator

1 f. .

type spirit: instanceGeneratorType

attributes

I f this attribute is true then the generator

should not be presented to the user, it

may be part of a chain and has no

useful meaning w hen inv oked

standalone.

spirit:h idden

type xs:boolean

default false

The scope attribute applies to

component generators and specifies

w hether the generator should be run for

each instance of the entity (or module)

or j ust once for a l l instances of the

entity .

spirit:scope

type xs:string

default instance

A group of elements for name

(xs:name), display N ame and description

spirit:nameGroup

This is an non-negativ e floating point

number that is used to sequence w hen a

generator is run. The generators are run

in order starting w ith zero. There may
be multiple generators w ith the same

phase number. I n this case, the order

should not matter w ith respect to other

generators a t the same phase. I f no

phase number is giv en the generator w ill

be considered in the " last" phase and

these generators w ill be run in the order

in w hich they are encountered w hile

processing generator elements.

spirit:phase

type xs:float

A collection of parameters.

spirit:param eters

Indicates the ty pe of A P I used by the

generator. V a lid v a lue are TG I , and

none. I f this element is not present, TG I
is assumed.

spirit:apiType

type xs:token

spirit:transportMethods

Defines a SO A P transport protocol other

than H TTP w hich is supported by this

generator. The only other currently
supported protocol is 'file' .

spirit:transportMethod

type xs:token

The pathname to the executable file that

implements the generator

spirit:generatorExe

type spirit:spiritURI

C ontainer for v endor specific extensions.

spirit:vendorExtens ions

A n identifier to specify the generator
group. This is used by generator chains

for selecting w hich generators to run.

spirit:group

0 f. .

type xs:Name

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 197

<spirit: value spirit: id="sdvId" spirit: resolve="user">true</

spirit: value>

</spirit: parameter>

</spirit: parameters>

<spirit: apiType>TGI</spirit: apiType>

<spirit: transportMethods>

<spirit: transportMethod>file</spirit: transportMethod>

</spirit: transportMethods>

<spirit: generatorExe>. . /bin/absDocGen. tcl</spirit: generatorExe>

<spirit: group>genDocs</spirit: group>

</spirit: abstractorGenerator>

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� � ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 199

9. Generator chain descriptions

9.1 generatorChain

In IP-XACT, a design flow can be represented as a generator chain. A generator chain is an ordered

sequence of named tasks. Each named task can be represented as a single generator or as another generator

chain. This way, design flow hierarchies can be constructed and executed from within a given DE. The DE

itself is responsible for understanding the semantics of the specified chain described in the generator chain

description.

9.1 .1 Schema

The following schema details the information contained in the generatorChain element, which is one of the

seven top-level elements in the IP-XACT specification.

To define a ll elements and attributes supported

for defining generator cha ins.

spirit:generatorChain

attributes

I f this a ttribute is true then the generator

should not be presented to the user, it may be

part of a cha in and has no useful meaning
w hen inv oked standalone.

spirit:h idden

type xs:boolean

default false

This group of elements identifies a top lev el

item (e. g. a component or a bus definition)

w ith v endor, l ibrary , name and a v ersion

number.

spirit:versionedIdentifier

1 f. .

Select other generator cha in files for inclusion

into this chain. The boolean attribute "unique"

(default fa lse) specifies that only a single

generator is v a lid in this context. I f more that

one generator is selected based on the

selection criteria , DE w il l prompt the user to

resolv e to a single generator.

spirit:generatorChainSe lector

Selects generators declared in components of the

current design for inclusion into this generator chain.

spirit:componentGeneratorSe lector

type spirit:generatorSelectorType

Specifies a set of generators.

spirit:generator

type spirit:generatorType

Identifies this generator chain as belonging to

the named group. This is used by other

generator chains to select this cha in for

programmatic inclusion.

spirit:chainGroup

0 f. .

type xs:Name

E lement name for display purposes. Ty pica lly

a few words prov iding a more detailed and/or

user-friendly name than the spirit:name.

spirit:displayNam e

type xs:string

F ull description string, ty pica lly for

documentation

spirit:description

type xs:string

C hoices used by elements w ith an a ttribute

spirit:choiceRef.

spirit:choices

C ontainer for v endor specific extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ��������� ��

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

200 Copyright © 201 0 IEEE. Al l rights reserved.

9.1 .2 Description

The generatorChain element describes a single generator chain. The generatorChain element contains a

hidden (optional) attribute that, when true, indicates this generator chain is not presented to the user of a

DE. This may be the case if the chain is part of another chain and has no useful meaning when invoked as

stand-alone. The default is false. The hidden attribute is of type boolean. The generatorChain element

contains the following elements.

a) versionedIdentifier group provides a unique identifier; it consists of four subelements for a top-level

IP-XACT element. See C.6.

b) One or more of the following three elements.

1) generatorChainSelector (optional) is a selection criteria for selecting one or more generator-

Chains or a reference to another generatorChain (see 9.2).

2) componentGeneratorSelector (optional) is a selection criteria for selecting one or more

component generators (see 9.3).

3) generator (optional) defines the generator (see 9.4).

c) chainGroup (optional) is an unbounded list of names to which this chain belongs. The group names

are referenced in the generatorChainSelector element and can be used to organize the inclusion of

generators. The chainGroup element is of type Name.

d) displayName (optional) allows a short descriptive text to be associated with the generator chain.

The displayName element is of type string.

e) description (optional) allows a textual description of the generator chain. The description element

is of type string.

f) choices (optional) specifies multiple enumerated lists, which are referenced by other sections of this

generator chain description. See 6.1 4.

g) vendorExtensions (optional) contains any extra vendor-specific data related to the generator-

Chain. See C.1 0.

See also: SCR 1 .9.

9.1 .3 Example

The following example defines a generator chain with a group name of

MY_HW_SW_COMPILATION_CHAIN, which is intended to specify a sequence of four simulation tasks

(e.g., INIT , CONFIG, BUILD, and COMPILE) for both hardware and software compilation.

<?xml version="1. 0" encoding="UTF-8"?>

<spirit: generatorChain

xmlns: xs=http: //www. w3. org/2001/XMLSchema

xmlns: spirit=http: //www. spiritconsortium. org/XMLSchema/SPIRIT/1. 5

xsi: schemaLocation="http: //www. spiritconsortium. org/XMLSchema/SPIRIT/1. 5

http: //www. spiritconsortium. org/XMLSchema/SPIRIT/1. 5/index. xsd">

<spirit: vendor>spiritconsortium. org</spirit: vendor>

<spirit: library>buildChain</spirit: library>

<spirit: name>CompleteBuild</spirit: name>

<spirit: version>1. 0</spirit: version>

<spirit: generatorChainSelector>

<spirit: groupSelector>

<spirit: name>INIT</spirit: name>

</spirit: groupSelector>

</spirit: generatorChainSelector>

<spirit: generatorChainSelector>

<spirit: groupSelector>

<spirit: name>CONFIG</spirit: name>

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 201

</spirit: groupSelector>

</spirit: generatorChainSelector>

<spirit: generatorChainSelector>

<spirit: groupSelector>

<spirit: name>BUILD</spirit: name>

</spirit: groupSelector>

</spirit: generatorChainSelector>

<spirit: generatorChainSelector>

<spirit: groupSelector>

<spirit: name>COMPILE</spirit: name>

</spirit: groupSelector>

</spirit: generatorChainSelector>

<spirit: chainGroup>MY_HW_SW_COMPILATION_CHAIN</spirit: chainGroup>

</spirit: generatorChain>

9.2 generatorChainSelector

9.2.1 Schema

The following schema defines the information contained in the generatorChainSelector element, which

may appear within a generatorChain.

9.2.2 Description

The generatorChainSelector element defines which generator(s) to invoke based on a selection criteria.

The generatorChainSelector element contains a unique (optional) attribute that, when true, indicates the

generatorChainSelector shall resolve to a single generator. If more than one generator is selected, the DE

Select other generator chain fi les for inclusion
into this chain. The boolean attribute "unique"

(default fa lse) specifies that only a single
generator is v a lid in this context. I f more that

one generator is selected based on the
selection criteria , DE w il l prompt the user to
resolv e to a single generator.

spirit:generatorChainSe lector

attributes

Specifies that only a single generator is v a l id in

this context. I f more that one generator is
selcted based on the selection criteria , D E w il l

prompt the user to resolv e to a single
generator.

spirit:unique

type xs:boolean

default false

Specifies a set of group names used to select

subsequent generators. The attribute

"multipleG roupO perator" specifies the O R or

A N D selection operator if there is more than
one group name (default=O R).

spirit:groupSe lector

attributes

Specifies the O R or A N D selection operator if there is
more than one group name.

spirit:m ultipleGroupSelectionOperator

type xs:Name

default or

Specifies a generator group name or a
generator chain group name to be selected for

inclusion in the generator cha in.

spirit:nam e

1 f. .

type xs:Name

spirit:libraryRefType

Select another generator cha in using the

unique identifier of this generator cha in.

spirit:generatorChainRef

type spirit: libraryRefType

attributes

spirit:vendor

type xs:Name

spirit:l ibrary

type xs:Name

spirit:nam e

type xs:NMTOKEN

spirit:vers ion

type xs:NMTOKEN

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

202 Copyright © 201 0 IEEE. Al l rights reserved.

shall resolve the selection to a single generator. The unique attribute default is false and is of type boolean.

The generatorChainSelector element can specify the selection criteria in one of two ways: as a selection

based on the chainGroup names via the groupSelector element or as a direct VLNV reference via the

generatorChainRef element. The generatorChainSelector element shall contain one of the groupSelector

or generatorChainRef elements.

a) groupSelector (mandatory) is a container for an unbounded list of chain group name elements.

1) When more than one name element is specified, the multipleGroupSelectorOperator

(optional) attribute can specify if the selection applies when one of the generator group names

matches (multipleGroupSelectorOperator equals or) or all the generator group names match

(multipleGroupSelectorOperator equals and).

2) name (mandatory) is an unbounded list of selection names. The names are compared to the

generatorChain/chainGroup elements within all generator chains visible to the DE. The

name element is of type Name.

b) generatorChainRef (mandatory) specifies a reference to another generator chain description for

inclusion in this generator chain. The generatorChainRef element is of type libraryRefType (see

C.7); it contains four attributes to specify a unique VLNV.

See also: SCR 1 .7.

9.2.3 Example

Assume three generatorChains X, Y, and Z have been created with the chainGroup names { A, B} , { A,

C} , and { B, C} , respectively. This example shows how a new generatorChain object can select Y.

<spirit: generatorChainSelector>

<spirit: groupSelector spirit: multipleGroupSelectionOperation=”and“>

<spirit: name>A</spirit: name>

<spirit: name>C</spirit: name>

</spirit: groupSelector>

</spirit: generatorChainSelector>

9.3 generatorChain component selector

9.3.1 Schema

The following schema defines the information contained in the componentGeneratorSelector element,

which may appear within a generatorChain.

spirit:generatorSe lectorType

Selects generators declared in components of the
current design for inclusion into this generator cha in.

spirit:componentGeneratorSe lector

type spirit:generatorSelectorType

Specifies a set of group names used to select
subsequent generators. The attribute

"multipleG roupO perator" specifies the O R or

A N D selection operator if there is more than

one group name (default=O R).

spirit:groupSe lector

attributes

Specifies the O R or A ND selection operator if there is
more than one group name.

spirit:m ultipleGroupSe lectionOperator

type xs:Name

default or

Specifies a generator group name or a
generator chain group name to be selected for

inclusion in the generator chain.

spirit:name

1 f. .

type xs:Name

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 203

9.3.2 Description

Similar to the generatorChainSelector, componentGeneratorSelector selects a component generator or a

list of component generators based on the assigned group name. The componentGeneratorSelector

contains the groupSelector element.

groupSelector (mandatory) is a container for an unbounded list of chain group name elements.

1) When more than one name element is specified, the multipleGroupSelectorOperator

(optional) attribute can specify if the selection applies when one of the generator group names

matches (multipleGroupSelectorOperator equals or) or all the generator group names match

(multipleGroupSelectorOperator equals and).

2) name (mandatory) is an unbounded list of selection names. The names are compared to the

componentGenerator/group elements within all components in the current design. The name

element is of type Name.

9.3.3 Example

The following example shows a generatorChain selecting all the component generators whose group

element matches the name docGen .

<spirit: componentGeneratorSelector>

<spirit: groupSelector>

<spirit: name>docGen</spirit: name>

</spirit: groupSelector>

</spirit: componentGeneratorSelector>

9.4 generatorChain generator

9.4.1 Schema

The following schema defines the information contained in the generator element, which may appear

within a generatorChain.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

204 Copyright © 201 0 IEEE. Al l rights reserved.

9.4.2 Description

The generator element defines a specific generator executable. The generator element contains a hidden

attribute. The hidden (optional) attribute specifies, when true, this generator shall not be run as a stand-

alone generator and is required to be run as part of a chain. This generator is not presented to the user. If

false (the default), this generator may be run as a stand-alone generator or in a generator chain. The hidden

attribute is of type boolean. generator contains the following elements.

a) nameGroup group is defined in C.1 .

b) phase (optional) determines the sequence in which a generators are run. Generators are run in order

starting with zero (0). If two generators have the same phase numbers, the order shall be interpreted

as not important and the generators can be run in any order. If no phase number is given the genera-

tor is considered in the “last” phase and these generators are run in any order after the last generator

with a phase number. The phase element is of type float and shall also be a positive number.

c) parameters (optional) specifies any generator type parameters. See C.11 .

spirit:generatorType

Specifies a set of generators.

spirit:generator

(extension)

type spirit:generatorType

attributes

I f this a ttribute is true then the generator

should not be presented to the user, it may be
part of a chain and has no useful meaning

w hen inv oked standa lone.

spirit:h idden

type xs:boolean

default false

A group of elements for name (xs:name),

display N ame and description

spirit:nameGroup

U nique name

spirit:nam e

type xs:Name

E lement name for display purposes. Ty pica lly

a few w ords prov iding a more deta iled and/or
user-friendly name than the spirit: name.

spirit:displayNam e

type xs:s tring

F ull description string, ty pica lly for

documentation

spirit:description

type xs:s tring

This is an non-negativ e floating point number

that is used to sequence w hen a generator is
run. The generators are run in order starting

w ith zero. There may be multiple generators
w ith the same phase number. I n this case, the

order should not matter w ith respect to other

generators at the same phase. I f no phase
number is giv en the generator w il l be

considered in the " last" phase and these

generators w il l be run in the order in w hich

they are encountered w hile processing

generator elements.

spirit:phase

type xs:float

A collection of parameters.

spirit:param eters

Indicates the ty pe of A P I used by the

generator. V a l id v a lue are TG I , and none. I f

this element is not present, TG I is assumed.

spirit:apiType

type xs:token

spirit:transportMe thods

Defines a SO A P transport protocol other than

H TTP w hich is supported by this generator.
The only other currently supported protocol is

'file'.

spirit:transportMethod

type xs :token

The pathname to the executable file that

implements the generator

spirit:generatorExe

type spirit:spiritURI

C onta iner for v endor specific extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 205

d) apiType (optional) indicates the type of API used by the generator: an enumerated list of TGI or

none. TGI indicates the generator uses communication to the DE compliant with the TGI. none

indicates the generator does not use any communication with the DE.

e) transportMethods (optional) defines alternate SOAP transport protocol that this generator can sup-

port. The default SOAP transport protocol is HTTP if this element is not present.

transportMethod specifies the alternate transport protocol. This element is an enumerated list

of only one element file. file indicates the SOAP transport protocol is transported to the DE via

a file or file handle.

f) generatorExe (mandatory) contains an absolute or relative (to the location of the containing

description) path to the generator executable. The path may also contain environment variables from

the host system, which are used to abstract the location of the generator. The generatorExe element

is of type spiritURI.

g) vendorExtensions (optional) adds any extra vendor-specific data related to the generator. See

C.10.

9.4.3 Example

The following example shows a netlist generator.

<spirit: generator>

<spirit: name>generateNetlist<spirit: name>

<spirit: phase>100. 0</spirit: phase>

<spirit: parameters>

<spirit: parameter>

<spirit: name>language<spirit: name>

<spirit: value

spirit: id=netlistGenLangId

spirit: resolve=user

spirit: choiceRef= netlistGenLangChoicesId>vhdl</spirit: value>

</spirit: parameter>

</spirit: parameters>

<spirit: apiType>TGI</spirit: apiType>

<spirit: generatorExe>tclsh . . /generic_netlister. tcl</spirit: generatorExe>

</spirit: generator>

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 207

1 0. Design configuration descriptions

1 0.1 Design configuration

An IP-XACT design configuration is a placeholder for additional configuration information of a design or

generator chain description. Design configuration information is useful when transporting designs between

design environments and automating generator chain execution for a design, by storing information that

would otherwise have to be re-entered by the designer.

The design configuration description contains the following configuration information:

— Configurable information for parameters defined in generators within generator chains; this

information is not referenced via the design description;

— Active view or current view selected for instances in the design description;

— Configuration information for interconnections between the same bus types with differing abstrac-

tion types (i.e. , abstractor reference, parameter configuration, and view selection). See also Clause 8.

A design configuration applies to a single design, but a design may have multiple design configuration

descriptions.

1 0.2 designConfiguration

1 0.2.1 Schema

The following schema details the information contained in the designConfiguration element, which is one

of the seven top-level elements of the schema.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

208 Copyright © 201 0 IEEE. Al l rights reserved.

1 0.2.2 Description

The designConfiguration element details the configuration for a design or generator chain description. The

designConfiguration element contains the following mandatory and optional elements.

a) The versionedIdentifier group provides a unique identifier, made up of four subelements for a top-

level IP-XACT element. See C.6.

b) designRef (mandatory) specifies the design description for this design configuration. The design-

Ref element is of type libraryRefType (see C.7); it contains four attributes to specify the referenced

VLNV.

c) generatorChainConfiguration (optional) is an unbounded list of configuration information

associated with a generatorChain or a generator defined within a generatorChain. See 1 0.3 .

d) interconnectionConfiguration (optional) is an unbounded list of information associated with

interface interconnections. Any abstractors required for the connection of two interfaces are

specified here. See 1 0.4.

e) viewConfiguration (optional) lists the active view for an instance of the design. It has the following

subelements.

1) instanceName (mandatory) specifies the component instance name for which the view is being

selected. This instance name shall be unique within the containing design configuration

description. The instanceName element is of type Name.

2) viewName (mandatory) defines the current valid view for the selected component instance.

The viewName element is of type NMTOKEN.

f) description (optional) allows a textual description of the design configuration. The description

element is of type string.

Top lev el element for describing the current

configuration of a design. Does not describe

instance parameterization

spirit:des ignConfiguration

This group of elements identifies a top lev el

item (e. g. a component or a bus definition)
w ith v endor, l ibrary , name and a v ersion
number.

spirit:vers ionedIdentifier

The design to w hich this configuration applies

spirit:des ignRef

type spirit: libraryRefType

C ontains the configurable information associated

w ith a generatorC ha in and its generators. N ote
that configurable information for generators

associated w ith components is stored in the design

file.

spirit:generatorChainConfiguration

0 f. .

C ontains the information about the abstractors

required to cross betw een tw o interfaces at w ith

different abstractionDefs.

spirit:interconnectionConfiguration

0 f. .

C ontains the activ e v iew for each instance in
the design

spirit:viewConfiguration

0 f. .

A n instance name assigned to subcomponent
instances and contained channels, that is
unique w ithin the parent component.

spirit:ins tanceNam e

type xs:Name

The name of the activ e v iew for this instance

spirit:viewName

type xs:NMTOKEN

F ul l description string, ty pica lly for

documentation

spirit:description

type xs:string

C ontainer for v endor specific extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 209

g) vendorExtensions (optional) adds any extra vendor-specific data related to the design

configuration. See C.1 0.

See also: SCR 1 .5, SCR 1 .9, SCR 13.1 , SCR 13.2, and SCR 13.4.

1 0.2.3 Example

The following example shows a designConfiguration containing a generator chain configuration: one

abstractor configuration in an interconnectionConfiguration and one instance view configuration.

<spirit: designConfiguration xmlns: spirit="http: //www. spiritconsortium. org/

XMLSchema/SPIRIT/1. 5" xmlns: xsi="http: //www. w3. org/2001/XMLSchema-

instance" xsi: schemaLocation="http: //www. spiritconsortium. org/XMLSchema/

SPIRIT/1. 5/index. xsd">

<spirit: vendor>spiritconsortium. org</spirit: vendor>

<spirit: library>Library</spirit: library>

<spirit: name>Configs</spirit: name>

<spirit: version>1. 0</spirit: version>

<spirit: designRef spirit: vendor="spiritconsortium. org"

spirit: library="DesignLibrary" spirit: name="Design1"

spirit: version="1. 0"/>

<spirit: generatorChainConfiguration>

<spirit: generatorChainRef spirit: vendor="spiritconsortium. org"

spirit: library="generatorLibrary" spirit: name="generator1"

spirit: version="1. 0"/>

<spirit: configurableElementValues>

<spirit: configurableElementValue spirit: referenceId="tmpDir">

my_temp_dir</spirit: configurableElementValue>

</spirit: configurableElementValues>

</spirit: generatorChainConfiguration>

<spirit: interconnectionConfiguration>

<spirit: interconnectionRef>connection1</spirit: interconnectionRef>

<spirit: abstractors>

<spirit: abstractor>

<spirit: instanceName>a1</spirit: instanceName>

<spirit: abstractorRef

 spirit: vendor="spiritconsortium. org"

 spirit: library="AbstractorLibrary"

 spirit: name="AHBPvToRtl"

 spirit: version="1. 0"/>

<spirit: viewName>verilog</spirit: viewName>

</spirit: abstractor>

</spirit: abstractors>

</spirit: interconnectionConfiguration>

<spirit: viewConfiguration>

<spirit: instanceName>instance_1</spirit: instanceName>

<spirit: viewName>verilog</spirit: viewName>

</spirit: viewConfiguration>

</spirit: designConfiguration>

1 0.3 generatorChainConfiguration

1 0.3.1 Schema

The following schema defines information contained in generatorChainConfiguration, which may appear

as an element inside the designConfiguration element.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

210 Copyright © 201 0 IEEE. Al l rights reserved.

1 0.3.2 Description

The generatorChainConfiguration element contains the configurable information associated with a

generatorChain and its generators. It is up to the DE to decide how and when this configuration

information is applied. Configurable information for any generators defined in a component or abstractor is

stored in the design description with the associated instance’s configuration. The generator-

ChainConfiguration element contains the following elements.

a) generatorChainRef (mandatory) specifies the generator chain description for this configuration

information. The generatorChainRef element is of type libraryRefType (see C.7); it contains four

attributes to specify the referenced VLNV.

b) configurableElementValues (optional) lists the generator chain’s configurable parameter values.

The configurableElementValues includes an unbounded list of configurableElementsValue

elements.

1) configurableElementValue (mandatory) is an unbounded list that specifies the value to apply

to a configurable element; in this instance, it is pointed to by the referenceId attribute. The

configurableElementValue is of type string.

2) The contained referenceId (mandatory) attribute is a reference to the id attribute of a config-

urable parameter value in the generator definition. The referenceId attribute is of type Name.

See also: SCR 1 .6, SCR 5.1 2, and SCR 13.6.

1 0.3.3 Example

The following example shows the configurable information for a generatorChain. Here parameters inside

the referenced generatorChain are configured.

<spirit: generatorChainConfiguration>

<spirit: generatorChainRef spirit: vendor="spiritconsortium. org"

spirit: library="generatorLibrary" spirit: name="generator1"

spirit: version="1. 0"/>

<spirit: configurableElementValues>

<spirit: configurableElementValue spirit: referenceId="tmpDir">

my_temp_dir</spirit: configurableElementValue>

<spirit: configurableElementValue

spirit: referenceId="verbose_level">1</spirit: configurableElementValue>

C ontains the configurable information associated
w ith a generatorC hain and its generators. N ote

that configurable information for generators
associated w ith components is stored in the design

file.

spirit:generatorChainConfiguration

0 f. .

spirit:libraryRefType

References a generatorC hain.

spirit:generatorChainRef

type spirit: libraryRefType

attributes

spirit:vendor

type xs:Name

spirit:library

type xs:Name

spirit:nam e

type xs:NMTOKEN

spirit:vers ion

type xs:NMTOKEN

A ll configuration information for a conta ined
component, generator, generator chain or

abstractor instance.

spirit:configurableElem entValues

Describes the content of a configurable

element. The required referenceId attribute

refers to the ID attribute of the configurable
element.

spirit:configurableElementValue

1 f. .

type xs:string

attributes

Refers to the ID attribute of the

configurable element.

spirit:re ference Id

type xs:Name

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� �� �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 21 1

<spirit: configurableElementValue spirit: referenceId="dump_log">

true</spirit: configurableElementValue>

</spirit: configurableElementValues>

</spirit: generatorChainConfiguration>

1 0.4 interconnectionConfiguration

1 0.4.1 Schema

The following schema defines information contained in interconnectionConfiguration element, which

may appear as an element inside the designConfiguration element.

1 0.4.2 Description

The interconnectionConfiguration element contains information about the abstractors used to connect

two interfaces having the same busDefinition types, but different abstractionDefinition types. The

interconnectonConfiguration element contains the following elements.

a) interconnectionRef (mandatory) contains a reference to a design interconnection/name name,

design monitorInterconnection/name name, or a design hierConnection/interfaceRef name. All

interconnectionRef elements shall be unique within the containing design configuration

description. The interconnectionRef element is of type Name.

b) abstractors (mandatory) contains an unbounded list of abstractor elements. The list of abstractor

elements is an ordered list for chaining the abstractors together to bridge from one abstraction to

another. This element has the following subelements.

1) instanceName (mandatory) assigns a unique name for this instance of the abstractor in this

design. The value of this element shall be unique inside the designConfiguration and the refer-

enced design element. The instanceName element is of type Name.

2) displayName (optional) allows a short descriptive text to be associated with the instance. The

displayName is of type string.

C ontains the information about the abstractors
required to cross betw een two interfaces a t w ith

different abstractionDefs.

spirit:interconnectionConfiguration

0 f. .

Reference to the interconnection

name, monitor interconnection name

or possibly a h ierC onnection

interfaceN ame in a design file.

spirit:inte rconnectionRef

type xs:Name

List of abstractors for this
interconnection

spirit:abs tractors

E lement to hold a the abstractor
reference, the configuration and

v iewN ame. I f multiple elements

are present then the order is the

order in w hich the abstractors

should be chained together.

spirit:abs tractor

1 f. .

Instance name for the abstractor

spirit:ins tanceNam e

type xs:Name

E lement name for display

purposes. Ty pica lly a few w ords

prov iding a more detailed and/or

user-friendly name than the

spirit:name.

spirit:displayNam e

type xs:string

F ull description string, ty pica lly

for documentation

spirit:description

type xs:string

spirit:l ibraryRefType

A bstractor reference

spirit:abs tractorRef

type spirit: libraryRefType

attributes

spirit:vendor

type xs:Name

spirit:l ibrary

type xs:Name

spirit:nam e

type xs:NMTOKEN

spirit:ve rs ion

type xs:NMTOKEN

A ll configuration information for a conta ined
component, generator, generator chain or

abstractor instance.

spirit:configurableElem entValues

Describes the content of a configurable

element. The required referenceId attribute
refers to the ID attribute of the configurable

element.

spirit:configurableElem entValue

1 f. .

type xs:string

attributes

Refers to the ID attribute of the
configurable element.

spirit:refe rence Id

type xs:Name

The name of the activ e v iew for

this abstractor instance.

spirit:viewNam e

type xs:NMTOKEN

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ���������� �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

212 Copyright © 201 0 IEEE. Al l rights reserved.

3) description (optional) allows a textual description of the instance. The description is of type

string.

4) abstractorRef (mandatory) is a reference to an abstractor description for this abstractor

instance. The abstractorRef element is of type libraryRefType (see C.7); it contains four

attributes to specify a unique VLNV.

5) configurableElementValues (optional) lists the abstractor instance’s configurable parameter

values. The configurableElementValues is an unbounded list of configurableElementsValue

elements.

i) configurableElementValue (mandatory) is an unbounded list that specifies the value to

apply to a configurable element; in this instance, it is pointed to by the referenceId

attribute. The configurableElementValue is of type string.

ii) The contained referenceId (mandatory) attribute is a reference to the id attribute of a con-

figurable parameter value in the abstractor instance. The referenceId attribute is of type

Name.

6) viewName (mandatory) defines the current valid view for the selected abstractor instance. The

viewName element is of type NMTOKEN.

See also: SCR 1 .1 2, SCR 3.7, SCR 3.8, SCR 3.9, SCR 3.10, SCR 3.11 , SCR 3.12, SCR 3.1 3, SCR 3.14,

SCR 3.1 5, SCR 5.1 3, SCR 13.3, and SCR 13.5.

1 0.4.3 Example

The following example shows the configuration of the connection1 interconnection, with the definition

of a chain of two abstractors to insert between the two component busInterfaces. The abstractor instances

are abstraction1 and abstraction2 , which convert from abstraction interface PV to PVT and PVT

to RTL, respectively. The active views of these abstractor instances are systemc and systemc_view,

respectively. The abstractor VLNVs are defined in the abstractorRef elements.

<spirit: interconnectionConfiguration>

<spirit: interconnectionRef>connection1</spirit: interconnectionRef>

<spirit: abstractors>

<spirit: abstractor>

<spirit: instanceName>abstractor1</spirit: instanceName>

<spirit: abstractorRef

 spirit: vendor="spiritconsortium. org"

 spirit: library="AbstractorLibrary"

 spirit: name="AHBPvToAHBPvt"

 spirit: version="1. 0" />

<spirit: viewName>systemc</spirit: viewName>

</spirit: abstractor>

<spirit: abstractor>

<spirit: instanceName>abstractor2</spirit: instanceName>

<spirit: abstractorRef

 spirit: vendor="spiritconsortium. org"

 spirit: library="AbstractorLibrary"

 spirit: name="AHBPvtToRtl"

 spirit: version="1. 0" />

<spirit: viewName>systemc_view</spirit: viewName>

</spirit: abstractor>

</spirit: abstractors>

</spirit: interconnectionConfiguration>

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� �� �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 213

1 1 . Addressing and data visibility

This clause describes how addresses are transformed between a slave’s memory map and a master’s address

space. It also describes how to determine which bits of the memory map are visible in the master’s address

space.

The addressing descriptions here presume each bus interface only maps a single logical address port (a port

with an isAddress qualifier) and a single logical data port (a port with an isData data qualifier). See also: 5 .6

and 5.1 0.

If a bus interface maps more than one address or data port, then each combination of address and data ports

implies a separate addressing and data visibility calculation. To calculate the address map for a particular

type of transaction, the data and address ports that transaction uses need to be known first.

The most common case for multiple data ports in a single bus interface is where there are separate read and

write data ports; however, their relevant properties of the read and write data ports are typically identical—

giving identical read and write address maps.

1 1 .1 Calculating the bit address of a bit in a memory map

A memory map consists of a set of address blocks, subspace maps, and banks containing further address

blocks, subspace maps, and banks (to any number of levels). To calculate the address of a bit within an

address block or subspace map relative to the containing memory map, its bit address needs to be calculated

relative to its parent. If that parent is a bank, how that bank modifies the address needs to be calculated first,

and then continue working up the bank structure until the memory map is reached. To do so, the following

formulas apply.

— For a bit in an address block directly in a memory map:

(1)

— For a bit in a subspace map:

(2)

For an address block or subspace map within a bank, the local bit address of a bit is simply its bit number.

However, the following formulas need to be used on any containing banks.

a) For an item (bank, subspace map, or address block) within a serial bank:

(3)

(4)

(i.e. , the effective range of an item is its range rounded up to the nearest complete row)

The item. range of an item is calculated depending on its type:

1) For an address block or subspace map, the range is the value of the range subelement;

2) For a serial bank, the range is the sum of the effective ranges of the sub-items;

3) For a parallel bank, the range is the (largest item. rows of all the sub-items) u (bank width/
addressUnitBits).

memory_map_bit_address bit_number_in_address_block addressBlock. baseAddress
memoryMap.addressUnitBits

u+=

memory_map_bit_address bit_number_in_subspace_map subspaceMap.baseAddress
memoryMap.addressUnitBits

u+=

item. rows item. range memoryMap.addressUnitBitsu� � item.widthy=

item. effective_range item. rows item.widthu=

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ���������� �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

214 Copyright © 201 0 IEEE. Al l rights reserved.

The item.width of an item is calculated depending on its type:

4) For an address block, the width is defined as the value of the width subelement;

5) For a subspace map, the width is the width of the address space of the referenced bus interface;

6) For a serial bank, the width is the width of the widest sub-item;

7) For a parallel bank, the width is the sum of the widths of the sub-items.

b) For a bit within item n in a serial bank:

(5)

c) For a bit within item n in a parallel bank containing m items:

(6)

(7)

(8)

Once the bit address within a top-level bank has been calculated, the bit address within the memory map can

be derived from the following formula:

(9)

1 1 .2 Calculating the bus address at the slave bus interface

The bus address of a bit at the slave bus interface can be derived from the following formulas:

(1 0)

(1 1)

On a bus, the bus address is the address carried by the address lines; the bit offset gives the offset within the

LAU of the bit using the following formula:

(1 2)

where slave_mapped_address_bits is a mask derived from the set of address bits mapped in the

slave.

1 1 .3 Address modifications of an interconnection

The bus address is carried between adjacent bus interfaces (slave and mirrored slave, master and mirrored

master, or master and slave) on the bus’s isAddress logical port. If this port is a wire port, the address is

parent_bit_address child_bit_address item i . effective_range

i 1=

n 1–

¦+ memoryMap.addressUnitBitsu=

bit_offset_in_row child_bit_address mod itemn . width item i . width

i 1=

n 1–

¦+=

row_offset item i .width child_bit_address itemn . width� �y� �u

i 1=

m

¦=

parent_bit_address bit_offset_in_row row_offset+=

memory_map_bit_address bank_bit_address bank. baseAddress
memoryMap.addressUnitBits

u+=

slave_bus_address memory_map_bit_address slave. bitsInLauy=

bus_bit_offset memory_map_bit_address mod slave. bitsInLau=

slave_bus_address memory_map_bit_address slave. bitsInLauy� �& slave_mapped_address_bits=

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� �� �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 215

always carried as parallel bits with the least significant bit of the address on logical bit 0 of the port.1 5 The

interconnection can modify the address in two ways:

a) If some address bits are not connected, addresses with those bits set are not accessible from the

master.

1) Examine the logical vectors in the port maps to determine which address bits are connected.

2) Transactional ports always carry all address bits across the interconnection.

b) If the value of bitsInLau differs on the two sides of the interconnection, the interpretation of the

address as a bit address can vary by the ratio of the interfaces’ bitsInLau. This, however, does not

alter the actual bus address.

1 1 .4 Address modifications of a channel

The address at the mirrored slave interface can be derived from the following formula:

(1 3)

where slave_interconnection_address_bits is a mask derived from the set of address bits connected

between the slave and the mirrored slave.

This is then modified by the remap address:

(1 4)

where remapAddress is the remap address for the current state of the channel.

How addresses are modified within a channel depends on the value of bitSteering in the mirrored slave

interface. It also depends on the relative width of the mirrored master and mirrored slave data ports, where

this width is defined to be the total number of bits of the logical data port that are mapped in the bus

interface. If bitSteering is true, or the slave is wider than or the same width as the master, the addresses are

simply modified to take into account any change in bitsInLau between the mirrored slave and the mirrored

master, as shown in the following formula:

(15)

If bitSteering is false and the mirrored slave is narrower than the mirrored master, the address is adapted so

all locations in the slave’s memory map are visible:

(1 6)

(1 7)

1 5 This gives a little-endian description of the address, which may differ from the address port description in the bus’s documentation.

mirrored_slave_bus_address slave_bus_address & slave_interconnection_address_bits=

mirrored_slave_row_address

mirrored_slave_bus_address
mirroredSlave. baseAddress. remapAddress

mirroredSlave. bitsInLau
+

=

mirrored_master_bus_address floor
mirrored_slave_row_address mirroredSlave. bitsInLauu

mirroredMaster. bitsInLau© ¹
§ ·

& mirrored_master_mapped_address_bits

=

mirrored_slave_bit_address mirrored_slave_row_address mirroredSlave. bitsInLauu=

mirrored_master_bit_address mirrored_slave_bit_address mod mirroredSlave.width

floor
mirrored_slave_bit_address

mirroredSlave.width© ¹
§ · mirroredMaster.widthu

+=

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ���������� �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

216 Copyright © 201 0 IEEE. Al l rights reserved.

(1 8)

where mirrored_master_mapped_address_bits is a mask derived from the set of address bits

mapped in the mirrored master port.

Finally, bitSteering has a different meaning in a mirrored slave interface than in a master or slave interface.

In a master or slave interface, it means the component shall modify which bit lanes are used for data when

accessing narrow devices. In a mirrored slave interface, it means the addresses from a mirrored master

interface are not modified for transfers to a narrower mirrored slave data port.

1 1 .5 Addressing in the master

The bus address at the master bus interface can be derived from the following formula:

(1 9)

where master_interconnection_address_bits is a mask derived from the set of address bits con-

nected between the master and the mirrored master.

This gives a bit address of

(20)

The bit address may then be converted to an addressing unit address and offset using the formulas:

(21)

(22)

1 1 .6 Visibility of bits

A bit in the slave’s memory map is visible in the master’s address space if:

— it is in an address range visible to the master;

— the master and slave agree on which bit lane the bit should appear and this bit lane is connected

between the master and the slave.

1 1 .6.1 Visible address ranges

Two conditions need to be fulfilled for an address in the slave to be visible to the master.

a) The address at the mirrored slave shall be within the range supported by the mirrored slave interface:

(23)

b) The address in the address space shall be within the range supported by the master address space for

that bus interface:

mirrored_master_bus_address floor
mirrored_master_bit_address

mirroredMaster. bitsInLau© ¹
§ ·

& mirrored_master_mapped_address_bits

=

master_bus_address mirrored_master_bus_address & master_interconnection_address_bits=

master_bit_address
mirroredMaster. addressSpaceRef. baseAddress addressSpace.addressUnitBitsu
master_bus_address master. bitsInLau bus_bit_offset+u

+
=

address master_bit_address addressSpace.addressUnitBitsy=

offset master_bit_address mod addressSpace.addressUnitBits=

mirrored_slave_bus_address mirroredSlave. baseAddress. range�

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� �� �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 217

(24)

1 1 .6.2 Bit lanes in memory maps

The local bit lane of a bit in an address block is:

(25)

Similarly, in a subspace map the bit lane is:

(26)

where the width of a subspace map is the width of the address space of the referenced master bus

interface.

If the address block or subspace map is at the top-level of the memory map or only within serial banks, the

bit lane in the memory map is the local bit lane.

If it is item n in a parallel bank, then:

(27)

If it is in multiple hierarchical parallel banks, this formula is applied at each higher level with the lower-level

bank_bit_lane replacing local_bit_lane.

The bit lane in the memory map is the top-level bank_bit_lane.

1 1 .6.3 Bit lanes in address spaces

The bit lane in an address space can be derived from the following formula:

(28)

1 1 .6.4 Bit lanes in bus interfaces

In a bus interface, the logical bit numbers of the data port carry the corresponding bit lanes. For example, if

a slave bus interface has a data port with a logical vector of [15: 8] , this port can access bit lanes 15 to 8

of the memory map and logical bit lanes 15 to 8 in the connected mirrored slave or master interface.

1 1 .6.5 Bit lanes in channels

All bus interfaces on a channel shall use the same logical numbering of data port bits. This means data bits

cannot be moved between bit lanes in a channel by giving the mirrored bus interfaces different logical to

physical mappings on their data ports.

1 1 .6.6 Bit steering in masters and slaves

Bit steering only takes effect when the master and the slave have data ports of different widths. If they do

and bit steering is enabled (i.e. , bitSteering is true in the master or slave interface) for the bus interface with

the wider data port, then this data port shall move its copy of output data to the correct bit lanes for the

narrower port and read its input data from the correct bit lanes for the narrower port.

0 master_bit_address addressSpace. range addressSpace.addressUnitBitsu�d

local_bit_lane bit_offset_in_address_block mod addressBlock.width=

local_bit_lane bit_offset_in_subspace_map mod subspaceMap.width=

bank_bit_lane item i .width local_bit_lane+

i 1=

n 1–

¦=

address_space_bit_lane address_space_bit_address mod addressSpace.width=

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ���������� �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

218 Copyright © 201 0 IEEE. Al l rights reserved.

If bit steering is disabled in the wider port, the master can only access data at a particular address when the

bit lane for that address in the address space is connected (through the bus interfaces and a channel) to the bit

lane for the corresponding address in the memory map.

The following also apply.

— The bitSteering value has a different meaning in mirrored slaves. See 11 .4.

— Some buses with bit steering may only support certain data port widths. Describing which widths are

supported is outside the scope of IP-XACT.

— Bit steering allows software or hardware away from the bus interface to work without knowing the

width of devices on the far side of the bus. To provide this functionality, a bus supporting bit steering

normally gives the same address bits to all devices, irrespective of their widths, and does not adapt

addresses to the width of the slave bus interfaces (i.e. , bitSteering is true in the mirrored slave bus

interfaces). Thus, a non-bit-steering master on such a bus only has access to some of the memory

rows of narrower slaves.

1 1 .7 Address translation in a bridge

The address at the master interface for a bridge can be derived from the following formulas:

a) The bus address at the master bus interface is:

(29)

where master_interconnection_address_bits is a mask derived from the set of address bits

connected between the master and the slave.

This gives a bit address of

(30)

The master bit address (also equal to the address space bit address) may be converted to an addressing unit

address and offset of the addressSpace using the formulas:

(31)

(32)

b) The bit address may also be converted to the address of the bridged slave interface by using the

following formulas.

1) For a transparent bridge:

(33)

2) For an opaque bridge:

(34)

master_bus_address slave_bus_address & master_interconnection_address_bits=

master_bit_address master_bus_address master. bitsInLauu
master. addressSpaceRef. baseAddress addressSpace.addressUnitBitsu

+=

address_space_address master_bit_address addressSpace.addressUnitBitsy=

address_space_offset master_bit_address mod addressSpace. addressUnitBits=

bridge_slave_address
address_space_address addressSpace. addressUnitBitsu bridged_slave. bitsInLauy� �
& bridged_slave_mapped_address_bits

=

bridge_slave_address address_space_address segmentAddressOffset–� �
addressSpace.addressUnitBits

u
bridged_slave. bitsInLau bridge_slave. baseAddress+� �y

�
�

& bridged_slave_mapped_address_bits

=

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� �� �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 219

Annex A

(informative)

Bibliography

[B1] IEC/IEEE 61 691 -1 -1 , Behavioral languages—Part 1 : VHDL language reference manual.1 6, 17

[B2] IEEE Std 754™-1 985, IEEE Standard for Binary Floating-Point Arithmetic.18

[B3] IEEE Std 1 364™, IEEE Standard for Verilog Hardware Description Language.

[B4] IEEE Std 1 666™-2005, IEEE Standard for SystemC Language Reference Manual.

[B5] IETF RFC 21 19, “Key words for use in RFCs to Indicate Requirement Levels,” Bradner, S. , Best

Current Practice: 1 4.1 9

[B6] IP-XACT Leon Register Transfer Examples, v1 .5.20

[B7] IP-XACT Leon Transaction Level Examples, v1 .5.21

[B8] IP-XACT Schema, v1 .5.22

[B9] IP-XACT Schema on-line documentation, v1 .5.23

[B10] IP-XACT TGI WSDL, v1 .5.24

[B1 1] ISO/IEC 8859-1 , Information technology—8-bit single-byte coded graphic character sets—Part 1 :

Latin Alphabet No. 1 .25

[B12] ISO/IEC 8879, Information processing—Text and office systems—Standard Generalized Markup

Language (SGML).

16IEC publications are available from the Sales Department of the International Electrotechnical Commission, Case Postale 1 31 , 3 , rue
de Varembé, CH-1211 , Genève 20, Switzerland/Suisse (http://www.iec.ch/). IEC publications are also available in the United States
from the Sales Department, American National Standards Institute, 25 West 43rd Street, 4th Floor, New York, NY 1 0036, USA (http://
www.ansi.org/).
17IEEE publications are available from the Institute of Electrical and Electronics Engineers, Inc., 445 Hoes Lane, Piscataway, NJ
08854, USA (http://standards.ieee.org/).
18The IEEE standards or products referred to in this clause are trademarks of the Institute of Electrical and Electronics Engineers, Inc.
19 Available from http://www.ietf.org/rfc/rfc21 19.txt.
20Available from http://www.spiritconsortium.org/doc_downloads/.
21Available from http://www.spiritconsortium.org/XMLSchema/SPIRIT/1 .5/index.xsd.
22See Footnote 21 .
23See Footnote 21 .
24Available from http://www.spiritconsortium.org/XMLSchema/SPIRIT/1 .5/TGI/TGI.wsdl.
25ISO/IEC publications are available from the ISO Central Secretariat, Case Postale 56, 1 rue de Varembé, CH-1211 , Genève 20, Swit-
zerland/Suisse (http://www.iso.ch/). ISO/IEC publications are also available in the United States from Global Engineering Documents,
1 5 Inverness Way East, Englewood, CO 80112, USA (http://global.ihs.com/). Electronic copies are available in the United States from
the American National Standards Institute, 25 West 43rd Street, 4th Floor, New York, NY 1 0036, USA (http://www.ansi.org/).

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ���������� �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

220 Copyright © 201 0 IEEE. Al l rights reserved.

[B13] Transaction-Level Model of SystemC.26

[B14] IP-XACT standard tool names for envIdentifier.27

26Available at http://www.systemc.org.
27Available at http://www.spiritconsortium.org/tech/refs/toolnames.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 221

Annex B

(normative)

Semantic consistency rules

For an IP-XACT document or a set of IP-XACT documents to be valid, they shall, in addition to conforming

to the IP-XACT schema, obey certain semantic rules. While many of these are described informally in other

clauses of this document, this annex defines them formally. Tools generating IP-XACT documents shall

ensure these rules are obeyed. Tools reading IP-XACT documents shall report any breaches of these rules to

the user.

B.1 Semantic consistency rule definitions

The following definitions apply when determining a semantic consistency rule (SCR) interpretation.

B.1 .1 Compatibility of busDefinitions

a) A busDefinition A is an extension of busDefinition B if A contains an extension element that

references B or an extension of B .

b) A busDefinition is compatible with itself.

c) If A is an extension of B, then A and B are compatible.

d) No other pairs of busDefinitions are compatible.

e) A set of busDefinitions { A, B, C, . . . } is compatible if every possible pair of busDefinitions

from the set ({ A, B } , { A, C } , { B, C } . . .) is compatible.

B.1 .2 Interface mode of a bus interface

Specifies whether the bus interface is a master, slave, system, mirroredMaster, mirroredSlave,

mirroredSystem, or monitor interface.

B.1 .3 Compatibility of abstractionDefinitions

a) An abstractionDefinition A is an extension of abstractionDefinition B if A contains an extension

element that references B or an extension of B .

b) An abstractionDefinition is compatible with itself.

c) If A is an extension of B, then A and B are compatible.

d) No other pairs of abstractionDefinitions are compatible.

B.1 .4 Configurable element

Some elements in a component, abstractor, or generator chain description are defined as being configurable.

See C.1 2.

NOTE—This is different from a configurableElement element, which is an element that references and sets the value
of a configurable element.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

222 Copyright © 201 0 IEEE. Al l rights reserved.

B.1 .5 Element referenced by configurableElement element

Every configurableElement element references a component document and is contained within a

componentInstance element. The element referenced by a configurableElement element is the

configurable element in that component document with an id attribute matching the referenceId of the

configurableElement element.

B.1 .6 Memory mapping

If an access is not specified, the value defaults to the value from the level above. If the top level is not

specified, the access defaults to read-write.

B.1 .7 Port connection equivalence class

The port connection equivalence class of a (logical or component) port is the set of model and logical ports

that can be reached from that port through any sequence of the following:

a) Bus interfaces’ logical to physical port maps

b) Interconnections between logical ports implied by interconnections between bus interfaces using the

same abstraction of the bus

c) Ad hoc connections

B.1 .8 Logical and physical ports

a) If a wire port element in a component has a vector subelement, its range shall be [left:right] , where

left and right are the left and right values of the vector subelement. If it does not have a vector sub-

element, its range shall be [0: 0] .

b) If a physicalPort element has a vector subelement, its range shall be [left:right] , where left and

right are the left and right values of the vector subelement. If a physicalPort element does not have

a vector subelement and it references a wire port, then its range shall be the range of the referenced

model port.

c) If a logicalPort element has a vector subelement, its range shall be [left:right] , where left and right

are the left and right values of the vector subelement. If a logicalPort element does not have a vector

subelement and the physicalPort element in the same portMap references a wire port, then its

physical range shall be taken as [abs(physical. left – physical. right) : 0] , where

physical. left and physical. right are the left and right values of the physical port’s

range.

d) A logical bit of a port is mapped if it is included in the range of a logicalPort element referencing

that bus interface port.

B.1 .9 Addressable bus interface

A bus interface shall be addressable if the isAddressable element of the bus definition it references has the

value true.

B.2 Rule l istings

Most of the semantic rules listed here can be checked purely by manually examining a set of IP-XACT

documents. A few, listed in Table B.1 4, need some external knowledge, so they cannot be checked this way.

In Table B.1 through Table B.14, Single doc check indicates a rule can be checked purely by manually

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 223

examining a single IP-XACT document. Rules for which Single doc check is No require the examination of

the relationships between IP-XACT documents.

NOTE—Where these tables contain references to the values of elements and those elements are configurable in IP-
XACT, then the values used are the configured values (not the XML element values).

B.2.1 Cross-references and VLNVs

Table B.1—Cross-references and VLNVs

Rule
number

Rule
Single
doc
check

Notes

SCR 1 .1 Every IP-XACT document visible to a tool shall
have a unique VLNV.

No Only applies to those documents vis-
ible to a particular tool or DE at one
time. In particular, users are likely to
store multiple versions of the same
documents, with the same VLNVs,
in source control systems. See also:
C.6.2 and C.6.4.

SCR 1 .2 Any VLNV in an IP-XACT document used to
reference another IP-XACT document shall
precisely match the identifying VLNV of an
existing IP-XACT document.

No In the schema, such references
always use the attribute group
versionedIdentifier. See also: C.6.2
and C.6.4.

SCR 1 .3 The VLNV in an extends element in a bus defini-
tion shall be a reference to a bus definition.

No See also: 5.2.2.

SCR 1 .4 The VLNV in a busType element in a bus inter-
face or abstraction definition shall be a reference
to a bus definition.

No See also: 6.5.1 .

SCR 1 .5 The VLNV in a designRef element in a design
configuration shall be a reference to a design.

No See also: 1 0.2.2.

SCR 1 .6 The VLNV in a generatorChainRef element in a
design configuration shall be a reference to a gen-
erator chain.

No See also: 1 0.2.2 and 1 0.3 .2.

SCR 1 .7 The VLNV in a generatorChainRef subelement
of the element generatorChainSelector in a gen-
erator chain shall be a reference to a generator
chain.

No See also: 9.2.2.

SCR 1 .8 The VLNV in a componentRef element in a
design shall be a reference to a component.

No See also: 7.2.2.

SCR 1 .9 The XML document element of an IP-XACT
document shall be an abstractor,
abstractionDefinition, busDefinition,
component, design, designConfiguration or
generatorChain element.

Yes See also: 5.2.2, 5.3 , 6.1 .2, 7.1 .2,
8.1 .2, 9.1 .2, and 1 0.2.2.

SCR 1 .10 The VLNV in an abstractionType element in a
component or abstractor shall reference an
abstractionDefiniton.

No See also: 8.1 .2.

SCR 1 .11 If a bus interface contains an abstractionType
subelement, the abstraction definition’s busType
element and the bus interface’s busType element
shall reference the same bus definition.

No I.e. , the abstraction referenced shall
be an abstraction of the referenced
bus. See also: 5.2.2, 5.3 .2, and
6.5.1 .2.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

224 Copyright © 201 0 IEEE. Al l rights reserved.

B.2.2 Interconnections

SCR 1 .12 The VLNV in an abstractorRef in a design-
Configuration shall reference an abstractor.

No See also: 1 0.4.2.

SCR 1 .1 3 The VLNV in an extends element in an
abstraction definition shall be a reference to an
abstraction definition.

No See also: 5.3 .2.

Table B.2—Interconnections

Rule
number

Rule
Single
doc
check

Notes

SCR 2.1 In the attributes of an activeInterface,
monitoredActiveInterface or monitorInterface
element, the value of the busRef attribute shall be
the name of a busInterface in the component
description referenced by the VLNV of the
component instance named in componentRef and
optional path attributes.

No See also: 7.3 .2 and 7.4.2.

SCR 2.2 In the subelements of an interconnection, the bus
interfaces referenced by the two activeInterface
subelements shall be compatible, i.e. , the VLNVs
of the busType elements within the two
busInterface elements shall reference compatible
busDefinitions.

No See also: 6.3 .1 , 6.3 .2, 6.3 .3 , and
7.3 .2.

SCR 2.3 A particular component/bus interface combination
shall appear in only one interconnection element
in a design.

Yes See also: 7.3 .2.

SCR 2.4 An interconnection element shall only connect a
master interface to a slave interface or a mirrored-
master interface.

No See also: 7.3 .2.

SCR 2.5 An interconnection element shall only connect a
mirrored-master interface to a master interface.

No See also: 7.3 .2.

SCR 2.6 An interconnection element shall only connect a
slave interface to a master interface or a mirrored-
slave interface.

No See also: 7.3 .2.

SCR 2.7 An interconnection element shall only connect a
mirrored-slave interface to a slave interface.

No See also: 7.3 .2.

SCR 2.8 An interconnection element shall only connect a
direct system interface to a mirrored-system
interface.

No See also: 7.3 .2.

SCR 2.9 An interconnection element shall only connect a
mirrored-system interface to a direct system
interface.

No See also: 7.3 .2.

Table B.1—Cross-references and VLNVs (continued)

Rule
number

Rule
Single
doc
check

Notes

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 225

B.2.3 Channels, bridges, and abstractors

SCR 2.10 In a direct master to slave connection, the value of
bitsInLAU in the master’s bus interface shall
match the value of bitsInLAU in the slave’s bus
interface.

No See also: 6.3 .1 and 7.3 .2.

SCR 2.11 In a direct master to slave connection, the bus-
Definitions referenced by the busInterfaces shall
have a directConnection element with the value
true.

No See also: 6.3 .1 and 7.3 .2.

SCR 2.12 In a connection between a system interface and a
mirrored-system interface, the values of the group
elements of the two bus interfaces shall be
identical.

No See also: 6.3 .1 , 6.3 .2, 6.5.2.2, and
7.3 .2.

SCR 2.1 3 If the same logical port is mapped in the port maps
of both ends of a direct master to slave connection,
then both bus interfaces shall map the same set of
bits of that logical port.

No Logical ports can only be identified
with one another if the two bus inter-
faces reference the same abstraction
definition. See also: 6.3 .1 and 7.3 .2.

SCR 2.14 The endianess in the two bus interfaces shall
match for any interconnection using an address-
able bus. If the endianess is not specified at either
bus interface, it is presumed to be little endian.

No See also: 6.3 .1 , 6.3 .2, 6.5.1 .2, and
7.3 .2.

SCR 2.1 5 If a design contains a component with a busInter-
face that has a connectionRequired element with
the value true, that busInterface shall be
included in an interconnection of the design.

No See also: 6.5.1 .2 and 7.3 .2.

SCR 2.1 6 A monitorInterconnection with interfaces that
contain a path attribute with a componetRef and
busRef shall exist in all hierarchical views.

No See also: 7.4.

Table B.3—Channels, bridges, and abstractors

Rule
number

Rule
Single
doc
check

Notes

SCR 3.1 Within a channel element, all the
busInterfaceRef elements shall refer to
compatible abstraction definitions, i.e. , the
VLNVs of the abstractionType elements within
the busInterface elements shall reference
compatible abstractionDefinitions.

No Compatibility of the abstraction defi-
nitions implies compatibility of their
associated bus definitions. See also:
5.3 .2 and 6.6.2.

SCR 3.2 All bus interfaces referenced by a channel shall be
mirrored interfaces.

Yes See also: 6.4.1 and 6.6.2.

Table B.2—Interconnections (continued)

Rule
number

Rule
Single
doc
check

Notes

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

226 Copyright © 201 0 IEEE. Al l rights reserved.

SCR 3.3 A channel can be connected to no more mirrored-
master busInterfaces than the least value of
maxMasters in the bus definitions referenced by
the connected bus interfaces (whether these
interfaces are mirrored-master or mirrored-slave
interfaces).

No A channel may connect ports with
different bus definitions, and hence
different values of maxMasters, as
long as the bus definitions are com-
patible. See also: 6.6.2.

SCR 3.4 A channel can be connected to no more mirrored-
slave bus interfaces than the least value of
maxSlaves in the bus definitions referenced by the
connected bus interfaces (whether these interfaces
are mirrored-master or mirrored-slave interfaces).

No A channel may connect ports with
different bus definitions, and hence
different values of maxSlaves, as
long as the bus definitions are com-
patible. See also: 6.6.2.

SCR 3.5 Each bus interface on a component shall connect
to only one channel of that channel component.

Yes See also: 6.6.2.

SCR 3.6 The interface referenced by masterRef subele-
ment of a bridge element shall be a master.

Yes See also: 6.5.4.2.

SCR 3.7 The value of the interconnectionRef subelement
of an interconnectionConfiguration element
shall precisely match a design interconnection/
name, a design monitorInterconnection/name,
or a design hierConnection/interfaceRef of an
interconnection described in the design referenced
by the containing design configuration.

No See also: 1 0.4.2.

SCR 3.8 An interconnectionConfiguration element of a
design configuration document that references a
master to mirrored-master interconnection in the
corresponding design shall only reference abstrac-
tors with an abstractorMode of master.

No See also: 1 0.4.2.

SCR 3.9 An interconnectionConfiguration element of a
design configuration document that references a
slave to mirrored-slave interconnection in the cor-
responding design shall only reference abstractors
with an abstractorMode of slave.

No See also: 1 0.4.2.

SCR 3.10 An interconnectionConfiguration element of a
design configuration document that references a
system to mirrored-system interconnection in the
corresponding design shall only reference abstrac-
tors with an abstractorMode of system.

No See also: 1 0.4.2.

SCR 3.11 An interconnectionConfiguration element of a
design configuration document that references a
master to slave interconnection in the correspond-
ing design shall only reference abstractors with an
abstractorMode of direct.

No See also: 1 0.4.2.

SCR 3.12 An interconnectionConfiguration element shall
not reference an interconnection in which the
abstraction types referenced by the two endpoints
are identical.

No See also: 1 0.4.2.

Table B.3—Channels, bridges, and abstractors (continued)

Rule
number

Rule
Single
doc
check

Notes

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 227

SCR 3.1 3 In the list of abstractors referenced by an inter-
connectionConfiguration element, the first
abstractionType element of the first referenced
abstractor shall be compatible with the abstrac-
tionType element of the master, system, or
mirrored-slave endpoint of the interconnection.

No SCR 3.1 3 – SCR 3.1 5 mean the
abstractors associated with an inter-
connection need to form a non-
looping chain between the two ends.
See also: 1 0.4.2.

SCR 3.14 In the list of abstractors referenced by an
interconnectionConfiguration element, the
second abstractionType element of the last
referenced abstractor shall be compatible with the
abstractionType element of the mirrored-master,
mirrored-system, or slave endpoint of the
interconnection.

No See also: 1 0.4.2.

SCR 3.1 5 In the list of abstractors referenced by an inter-
connectionConfiguration element, the first
abstractionType element of every referenced
abstractor, except the first, shall be compatible
with the second abstractionType element of the
previous abstractor in the interconnection-
Configuration list.

No See also: 1 0.4.2.

SCR 3.16 The VLNVs in the busType elements of both
abstraction definitions referenced by an abstractor
shall exactly match the VLNV in the busType
element of the abstractor.

No See also: 5.3 .2 and 8.1 .2.

SCR 3.17 If abstraction definition AA is an abstraction of bus
definition A and abstraction definition AB is an
abstraction of bus definition B, then abstraction
definition AA shall only contain an extends
element referencing abstraction definition AB if
bus definition A contains an extends element
referencing bus definition B .

No If abstraction definition AA extends
abstraction definition AB, AA and AB
need to be abstractions of different
buses. See also: 5.3 .2.

SCR 3.1 8 The interface referenced by the masterRef
attribute of a subspaceMap element shall be a
master interface that is bridged from a slave inter-
face with a valid memory map referenced by its
memoryMapRef element.

Yes See also: 6.8.9.2.

Table B.3—Channels, bridges, and abstractors (continued)

Rule
number

Rule
Single
doc
check

Notes

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

228 Copyright © 201 0 IEEE. Al l rights reserved.

B.2.4 Monitor interfaces and monitor interconnections

Table B.4—Monitor interfaces and monitor interconnections

Rule
number

Rule
Single
doc
check

Notes

SCR 4.1 An activeInterface or monitoredActiveInterface
element shall reference a master, slave, system,
mirroredMaster, mirroredSlave, or mirrored-
System interface.

No See also: 6.3 .3 , 7.3 .2, 7.4.2, and
7.6.2.

SCR 4.2 The monitorInterface subelements of a moni-
torInterconnection element shall reference a
monitor bus interface.

No See also: 6.3 .3 and 7.3 .2.

SCR 4.3 In a monitorInterconnection element, the value
of the interfaceMode of the monitor interfaces
shall match the mode of the monitoredAc-
tiveInterface.

No This means all the monitor interfaces
shall have the same interface mode.
See also: 6.3 .3 , 6.5.2.2, and 7.3 .2.

SCR 4.4 A monitor interface shall only be connected to a
system or mirroredSystem interface if it has a
group subelement and the value of this element
matches the value of the group subelement of the
system or mirroredSystem interface.

No See also: 6.3 .3 , 6.5.2.2, and 7.3 .2.

SCR 4.5 A particular componentRef/busRef combination
shall only appear in one monitorInterconnection
element.

No This applies to both monitor and
active interfaces; however, a single
monitorInterconnection element
can connect an active interface to
many monitor interfaces. The same
active interface can also appear in at
most one interconnection element.
See also: 6.3 .3 and 7.3 .2.

SCR 4.6 All ports mapped in a busInterface with a mode
of monitor shall have a direction of in for wire
type ports or requires for transactional type
ports.

Yes See also: 6.3 .3 .

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 229

B.2.5 Configurable elements

Table B.5—Configurable elements

Rule
number

Rule
Single
doc
check

Notes

SCR 5.1 A configurable element shall have a dependency
attribute if and only if it has a resolve attribute
with the value dependent.

Yes See also: C.1 3 – C.1 7.

SCR 5.2 The value of a dependency attribute shall be an
XPATH expression. This XPATH expression shall
only reference items in the containing document.

Yes See also: C.1 3 – C.1 7.

SCR 5.3 The XPATH expression in a dependency attribute
shall not reference configurable elements having a
resolve attribute value of dependent or
generated.

Yes See also: C.1 3 – C.1 7.

SCR 5.4 Any parameters used within all dependent param-
eter’s XPATH id() calls shall exist.

Yes See also: C.1 3 – C.1 7.

SCR 5.5 All references to elements in dependency XPATH
expressions shall be by id. Dependency XPATH
expressions shall not use document navigation to
reference other elements.

Yes This rule allows XPATH expressions
to remain valid through schema or
design changes. DEs reading IP-
XACT documents should treat
breaches of this rule as minor errors
and attempt to interpret any XPATH
expressions in the document. See
also: C.1 3 – C.1 7.

SCR 5.6 An id attribute is required in any element with a
resolve attribute value of user or generated.

Yes See also: C.1 3 – C.1 7.

SCR 5.7 configurableElement elements within
componentInstance elements shall only reference
configurable elements that exist in the component
referenced by the enclosing componentInstance
element; the value of the referenceId attribute of
the configurableElement element shall match the
value of the id attribute of some configurable
element of the component.

No The schema guarantees uniqueness
of id values in a component. See
also: C.1 3 – C.1 7.

SCR 5.8 configurableElement elements shall only refer-
ence configurable elements with a resolve
attribute value of user or generated.

No See also: C.1 3 – C.1 7.

SCR 5.9 If a configurableElement element references an
element with a formatType attribute value of
float or long and contains a minimum attribute,
the value of the configurableElementValue ele-
ment shall be greater or equal to the specified
value of the minimum attribute.

No See also: C.1 3 – C.1 7.

SCR 5.10 If a configurableElement element references an
element with a format attribute value of float or
long and contains a maximum attribute, the value
of the configurableElementValue subelement
shall be less than or equal to the specified value of
the maximum attribute.

No See also: C.1 3 – C.1 7.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

230 Copyright © 201 0 IEEE. Al l rights reserved.

SCR 5.11 If a configurableElement element references an
element with a choiceRef attribute, the value for
configurableElementValue subelement shall be
one of the values listed in the choice element ref-
erenced by the choiceRef attribute.

No See also: 6.1 4.2 and C.1 3 – C.1 7.

SCR 5.12 configurableElement elements within
generatorChainConfiguration elements in
design configuration documents elements shall
only reference configurable elements that exist in
the generator chain referenced by the
generatorChainRef element; the value of the
referenceId attribute of the configurableElement
element shall match the value of the id attribute of
some configurable element of a generator in the
generator chain.

No The schema guarantees uniqueness
of id values in a generator chain. See
also: 1 0.3 .2.

SCR 5.1 3 configurableElement elements within abstractor
elements in design configuration documents ele-
ments shall only reference configurable elements
that exist in the abstractor referenced by the
enclosing abstractor element; the value of the
referenceId attribute of the configurableElement
element shall match the value of the id attribute of
some configurable element of the abstractor.

No The schema guarantees uniqueness
of id values in an abstractor. See
also: 1 0.4.2.

SCR 5.14 A parameter’s value or a configurable element’s
value shall match the element’s format attribute.

See
Note.

Yes for a parameter’s value and No
for a configurable element’s value.
See also: 7.2, C.1 3, C.1 4, C.1 5,
C.1 6, and C.1 7.

SCR 5.1 5 A configurable element shall have a bitString-
Length attribute if and only if it has a format
attribute with the value bitString.

Yes See also: C.1 3, C.1 4, C.1 5, C.1 6, and
C.1 7.

Table B.5—Configurable elements (continued)

Rule
number

Rule
Single
doc
check

Notes

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 231

B.2.6 Ports

Table B.6—Ports

Rule
number

Rule
Single
doc
check

Notes

SCR 6.1 The value of the name subelement of any
logicalPort element within a busInterface or
abstractorInterface element shall match the
value of a logicalName element of the abstraction
definition referenced by the busInterface
element.

No This implies a bus interface that does
not have an abstractionType ele-
ment shall not contain a portMaps
element, since there are no legal
names for the logicalPorts within it.
See also: 6.5.6.2.

SCR 6.2 If the abstraction definition referenced by a bus
interface or abstractor interface specifies an initia-
tive value for a logical transactional port of
requires for that interface mode of bus interface,
the port map shall only map that logical port to a
component port with an initiative value of
requires, both, or phantom, or to a component
port with an allLogicalInitiativesAllowed
attribute with the value true.
For system interfaces, the port initiative values
shall be looked up from the onSystem element
with the group name matching that of the bus
interfaces or abstractor interfaces.
For mirrored interfaces, the bus port initiative
values needs to be reversed before doing the
comparison.

No See also: 5 .11 .2, 6.5.6.2, and
6.11 .16.2.

SCR 6.3 If the abstraction bus definition referenced by a
bus or abstractor interface specifies an initiative
value for a logical transactional port of provides
for that interface mode of bus or abstractor inter-
face, the port map shall only map that logical port
to a component port with an initiative value of
provides, both, or phantom, or to a component
port with an allLogicalInitiativesAllowed
attribute with the value true.
For system interfaces, the port initiative values
shall be looked up from the onSystem element
with the group name matching that of the bus or
abstractor interfaces.
For mirrored interfaces, the bus port initiative val-
ues shall be reversed before doing the comparison.
Mirrored bus and abstractor interface shall be
looked up as if they were not mirrored.

No See also: 5.11 .2, 6.5.6.2, and
6.11 .16.2.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

232 Copyright © 201 0 IEEE. Al l rights reserved.

SCR 6.4 If the abstraction definition referenced by a bus or
abstraction interface specifies an initiative value
for a logical transactional port of both for that
interface mode of the bus or abstraction interface,
and the bus interface has a port map, the port map
shall only map that logical port to a component
port with an initiative value of both or phantom,
or to a component port with an allLogical-
InitiativesAllowed attribute with the value true.
For system interfaces, the port initiative values
shall be looked up from the onSystem element
with the group name matching that of the bus or
abstraction interfaces.
For mirrored interfaces, the bus port initiative val-
ues shall be reversed before doing the comparison.
Mirrored bus and abstraction interfaces shall be
looked up as if they were not mirrored.

No See also: 5.11 .2, 6.5.6.2, and
6.11 .16.2.

SCR 6.5 If the abstraction definition referenced by a bus or
abstraction interface specifies a direction for a log-
ical wire port of in for that interface mode of bus
interface, the port map shall only map that logical
port to a component port with a direction of in,
inout, or phantom, or to a component port with
an allLogicalDirectionsAllowed attribute with
the value true.
For system interfaces, the port directions shall be
looked up from the onSystem element with the
group name matching that of the bus interfaces.
For mirrored interfaces, the bus port directions
shall be reversed before doing the comparison.

No See also: 5.7.2, 6.5.6.2, 6.11 .4.2, and
and 8.6.2.

SCR 6.6 If the abstraction definition referenced by a bus or
abstraction interface specifies a direction for a log-
ical wire port of out for that interface mode of bus
interface, the port map shall only map that logical
port to a component port with a direction of out,
inout, or phantom, or to a component port with
an allLogicalDirectionsAllowed attribute with
the value true.
For system interfaces, the port directions shall be
looked up from the onSystem element with the
group name matching that of the bus or abstraction
interfaces.
For mirrored interfaces, the bus port directions
shall be reversed before doing the comparison.

No See also: 5.7.2, 6.5.6.2, 6.11 .4.2, and
and 8.6.2.

Table B.6—Ports (continued)

Rule
number

Rule
Single
doc
check

Notes

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 233

SCR 6.7 If the abstraction definition referenced by a bus or
abstraction interface specifies a direction for a
logical wire port of inout for that interface mode
of bus interface, the port map shall only map that
logical port to a component port with a direction
of inout or phantom, or to a component port with
an allLogicalDirectionsAllowed attribute with
the value true.
For system interfaces, the port directions shall be
looked up from the onSystem element with the
group name matching that of the bus or abstraction
interfaces.
For mirrored interfaces, the bus port directions
shall be reversed before doing the comparison.

No See also: 5.7.2, 6.5.6.2, 6.11 .4.2, and
and 8.6.2.

SCR 6.8 If the abstraction definition referenced by a bus or
abstraction interface specifies, for a port, a pres-
ence value of required for that interface mode of
bus interface, and the bus interface has a port map,
the port shall be in that port map.
For system interfaces, the port presence shall be
looked up from the onSystem element with the
group name matching that of the bus interfaces.
Mirrored bus interfaces shall be looked up as if
they were not mirrored.

No Port maps are optional, even on
buses with required ports. See also
SCR 6.1 8. The third possible pres-
ence value (optional) neither forces
nor forbids the inclusion of the port
in the port map. See also: 5.11 .2.

SCR 6.9 Only one component port in a port connection
equivalence class may have the direction out.

No See also: 7.3 .2 and 7.5.4.

SCR 6.10 Only one component port in a port connection
equivalence class may have the initiative
provides.

No See also: 7.3 .2 and 7.5.5.

SCR 6.11 If abstraction definition A extends abstraction
definition B, then abstraction definition A needs to
have port elements for every port declared in
abstraction definition B .

No If a port in abstraction definition B is
not used in bus interfaces using
abstraction definition A, then, in
abstraction definition A, that port
shall have a presence value of illegal
for all bus interface modes. See also:
5.3 .2 and Table 2.

SCR 6.12 If the abstraction definition referenced by a bus or
abstraction interface specifies a port is a wire port
(i.e. , the port element contains a wire
subelement), the port map shall only map that
logical port to a wire component port.

No See also: 5.5.2, 6.5.6.2, 6.11 .4.2, and
and 8.6.2.

SCR 6.1 3 If the abstraction definition referenced by a bus or
abstraction interface specifies a port is a
transactional port (i.e. , the port element contains a
transactional subelement), the port map shall
only map that logical port to a transactional
component port.

No See also: 5.1 0.2, 6.5.6.2, and
6.11 .16.2.

SCR 6.14 At most one logical port of a port equivalence
class shall be a port of a bus interface that partici-
pates in an interconnection to a bus interface using
a different abstraction.

No This rule prevents shared ports from
crossing abstraction boundaries,
since abstractors cannot describe the
handling of such ports. See also:
5.1 0.2, 7.3 .2, and 7.5.2.

Table B.6—Ports (continued)

Rule
number

Rule
Single
doc
check

Notes

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

234 Copyright © 201 0 IEEE. Al l rights reserved.

SCR 6.1 5 The value of the group subelement of an
onSystem element shall match the value of one of
the system group names referenced in the bus
definition referenced by the abstraction definition
containing the onSystem element.

No See also: 5.5.2 and 5.1 0.2.

SCR 6.1 6 The value of the group subelement of a system
element shall match the value of one of the system
group names referenced in the bus definition
referenced by the bus interface containing the
onSystem element.

No See also: 6.5.2.2.

SCR 6.17 If an abstraction definition’s busType element
references an addressable bus, the abstraction
definition shall contain at least one port element
with an isAddress subelement.

No See also: 5.2.2, 5.6.2, and 5.1 0.2.

SCR 6.1 8 If the abstraction definition referenced by a bus
interface specifies, for a port, a presence value of
illegal for that interface mode of bus or abstraction
interface, and the bus interface has a port map, the
port shall not be in that port map.
For system interfaces, the port presence shall be
looked up from the onSystem element with the
group name matching that of the bus or abstraction
interfaces.
Mirrored bus and abstraction interfaces shall be
looked up as if they were not mirrored.

No Port maps are optional, even on
buses with required ports. See also
SCR 6.8. The third possible presence
value (optional) neither forces nor
forbids the inclusion of the port in
the port map. See also: 5.7.2 and
5.11 .2.

SCR 6.19 The range of a physicalPort shall be a subset of
the range of the referenced port in the
component’s model element.

Yes See also: 6.5.6.2 and B.1 .7.

SCR 6.20 Within any portMap, the sizes of the ranges of the
physicalPort and the logicalPort shall be equal.

Yes See also: 6.5.6.2.

SCR 6.21 If the abstraction definition port referenced by a
logicalPort has a width defined, the upper limit of
the range of the logical port shall be less than the
width.

No See also: 6.5.6.2.

SCR 6.22 Within a single bus interface no logical bit may be
mapped more than once, i.e. , if two or more logi-
calPort elements for that bus interface reference
the same bus definition port, their ranges shall not
overlap.

Yes See also: 6.5.6.2.

SCR 6.23 If an abstraction definition port has a width
defined, any bus interface containing a port map
referencing that port needs to map all the bits of
that port, i.e. , every bit in the range [width-
1: 0] shall be mapped precisely once in the port
maps of that bus interface.

No This implies if there is only a single
logicalPort referencing that bus
port, its vector shall be
[width–1: 0] or [0: width-1] .
See also: 6.5.6.2.

Table B.6—Ports (continued)

Rule
number

Rule
Single
doc
check

Notes

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 235

B.2.7 Registers

SCR 6.24 If a transactional port in a component is mapped in
a bus interface to a transactional port in an
abstraction definition, then the set of names of
serviceTypeDef elements in component port shall
match the set of typeNames in the ServiceType
element of the abstraction definition’s port.

No See also: 6.5.6.2 and 6.11 .1 6.2.

SCR 6.25 Transactional ports shall only be connected
together (by an ad hoc connection or through an
interconnection) if neither of them contains a
serviceTypeDefs element or they both contain
identical serviceTypeDefs elements.

No See also: 6.5.6.2 and 6.11 .1 6.2.

SCR 6.26 A wire port with a direction of out shall not have a
driver element.

Yes See also: 6.11 .6.2.

SCR 6.27 All ports referenced in an ad hoc connection shall
have the same width, i.e. , the absolute sizes of
their ranges shall be identical.

No See also: 7.5.4.

Table B.7—Registers

Rule
number

Rule
Single
doc
check

Notes

SCR 7.1 No register shall have an addressOffset that falls
within the address range of another register in the
same address block, unless one of the registers and
their alternateRegisters have non-conflicting
access elements. Non-conflicting access elements
have a value of read-only, write-only, or
writeOnce.
The address range of a register is the range
[addressOffset, addressOffset+
((size + addressBitUnits–1) ÷
addressBitUnits-1) *dim[n-1. . . 0] ,
where dim is the maximum number of elements
for each of n dimensions.

Yes I.e. , registers shall not overlap,
unless one is only visible when read-
ing and the other is only visible
when writing. See also: 6.10.2.2.

SCR 7.2 No bit field shall have a bitOffset value that falls
within the bit range of another bit field, unless one
of the registers has an access element with the
value read-only and the other has an access ele-
ment with the value write-only or writeOnce. The
range of a bit field is the range [bitOffset,
bitOffset + width-1] .

Yes I.e. , bit fields shall not overlap,
unless one is only visible when read-
ing and the other is only visible
when writing. See also: 6.1 0.2.2 and
6.1 0.8.2.

Table B.6—Ports (continued)

Rule
number

Rule
Single
doc
check

Notes

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

236 Copyright © 201 0 IEEE. Al l rights reserved.

SCR 7.3 Any register in an address block shall fall entirely
within that address block, i.e. , for every
register 0 <= addressOffset <
addressBlockRange - registerSize ;
where addressBlockRange is the range of the
address block and registerSize is the size of the
register in LAUs. This is equal to (((size +
addressBitUnits-1) ÷
addressBitUnits)) * dim[n-1. . . 0] ,
where dim is the maximum number of elements
for each of n dimensions.

Yes See also: 6.1 0.2.2.

SCR 7.4 Any bit field in a register shall fall entirely within
that register, i.e. , for every bit field 0 <=
bitOffset <= RegisterSize –
bitFieldWidth; where RegisterSize is the
size (in bits) of the register, and bitFieldWidth is
the width of bit field.

Yes See also: 6.1 0.2.2 and 6.10.8.2.

SCR 7.5 The size of any register shall be no greater than the
width of the containing address block.

Yes See also: 6.8.6.2.

SCR 7.6 Any register in a register file shall fall entirely
within that register file, i.e. , for every register
0 <= register. addressOffset <
registerFileRange - registerSize ,
where registerFileRange is the range of the
register file and registerSize is the size of the
register in LAUs. This is equal to (((size +
addressBitUnits-1) ÷
addressBitUnits)) * dim[n-1. . . 0] ,
where dim is the maximum number of elements
for each of n dimensions.

Yes See also: 6.1 0.2, 6.1 0.3 , and 6.10.6.

SCR 7.7 Any register file in an address block shall fall
entirely within that address block, i.e. , for every
register file 0 <=
registerFile. addressOffset <
addressBlockRange -
registerFileSize , where
registerBlockRange is the range of the address
block and registerFileSize is the size of the
register in LAUs. This is equal to
registerFile. range * dim[n-1. . . 0] ,
where dim is the maximum number of elements
for each of n dimensions.

Yes See also: 6.8.2.

SCR 7.8 volatile cannot be set to false for an addressBlock
where any containing register or field already has
volatile set to true.

Yes See also:6.10.2, 6.1 0.3 , 6.1 0.8,
6.1 0.9, and 6.8.3 .

SCR 7.9 volatile can not be set to false for a register where
any containing field already has volatile set to
true.

Yes See also:6.10.2, 6.1 0.3 , 6.1 0.8, and
6.1 0.9

SCR 7.10 When a field has writeValueConstraint/
useEnumeratedValues set to true, it also needs
to have at least one enumeratedValue with the
attribute usage set to write or read-write.

Yes See also: 6.1 0.8, 6.1 0.9, and 6.10.1 0.

Table B.7—Registers (continued)

Rule
number

Rule
Single
doc
check

Notes

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 237

B.2.8 Memory maps

SCR 7.11 When a field has a writeValueConstraint/
minimum value and has a writeValueConstraint/
maximum value, the value of maximum shall be
greater than or equal to the value of minimum.

Yes See also: 6.1 0.8, 6.1 0.9, and 6.10.1 0.

SCR 7.12 When multiple field elements have the same
typeIdentifier, the field object shall contain the
same contents for the elements in
fieldDefinitionGroup.

Yes See also: 6.1 0.8 and 6.1 0.9.

SCR 7.1 3 When multiple register or alternateRegister
elements have the same typeIdentifier, the
register object shall contain the same contents for
the elements in the registerDefinitionGroup or
alternateRegisterDefinitionGroup .

Yes See also: 6.1 0.3 and 6.1 0.5.

SCR 7.14 When multiple registerFile elements have the
same typeIdentifier, the register file object shall
contain the same contents for the elements in the
registerFileDefinitionGroup.

Yes See also: 6.1 0.6.

SCR 7.1 5 When multiple addressBlock elements have the
same typeIdentifier, the address block object
shall contain the same contents for the elements in
the addressBlockDefinitionGroup.

Yes See also: 6.8.3 .

Table B.8—Memory maps

Rule
number

Rule
Single
doc
check

Notes

SCR 8.1 The width of an address block included in a mem-
ory map shall be a multiple of the memory map’s
addressUnitBits.

Yes See also: 6.8.2.2.

SCR 8.2 Neither a parallel bank, nor banks within a parallel
bank, shall contain subspace maps.

Yes See also: 6.8.5.2, 6.8.7.2, and
6.8.8.2.

SCR 8.3 A read-only bank shall only contain read-only
addressBlocks or banks.

Yes See also: 6.8.4.2 and 6.10.2.2.

SCR 8.4 A read-only addressBlock shall only contain
read-only registers.

Yes See also: 6.8.4.2 and 6.10.2.2.

SCR 8.5 A read-only register shall only contain read-only
fields.

Yes See also: 6.1 0.2.2.

SCR 8.6 A write-only bank shall only contain write-only
or writeOnce addressBlocks or banks.

Yes See also: 6.8.4.2 and 6.10.2.2.

SCR 8.7 A write-only addressBlock shall only contain
write-only or writeOnce registers.

Yes See also: 6.8.4.2 and 6.10.2.2.

Table B.7—Registers (continued)

Rule
number

Rule
Single
doc
check

Notes

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

238 Copyright © 201 0 IEEE. Al l rights reserved.

B.2.9 Addressing

SCR 8.8 A write-only register shall only contain write-
only or writeOnce fields.

Yes See also: 6.1 0.2.2.

SCR 8.9 A register shall only appear in an addressBlock
of usage register.

Yes See also: 6.8.4.2 and 6.10.2.2.

SCR 8.10 A read-writeOnce bank shall only contain read-
only, read-writeOnce, or writeOnce
addressBlocks or banks.

Yes See also: 6.8.4.2 and 6.10.2.2.

SCR 8.11 A read-writeOnce addressBlock shall only
contain read-only, read-writeOnce, or
writeOnce registers.

Yes See also: 6.8.4.2 and 6.10.2.2.

SCR 8.12 A read-writeOnce register shall only contain
read-only, read-writeOnce, or writeOnce fields.

Yes See also: 6.1 0.2.2.

SCR 8.1 3 A writeOnce bank shall only contain writeOnce
addressBlocks or banks.

Yes See also: 6.8.4.2 and 6.10.2.2.

SCR 8.14 A writeOnce addressBlock shall only contain
writeOnce registers.

Yes See also: 6.8.4.2 and 6.10.2.2.

SCR 8.1 5 A writeOnce register shall only contain
writeOnce fields.

Yes See also: 6.1 0.2.2.

SCR 8.16 Two addressBlock elements in the same
memoryMap shall not overlap.

Yes See also: 6.8.2.2.

Table B.9—Addressing

Rule
number

Rule
Single
doc
check

Notes

SCR 9.1 A non-hierarchical addressable master bus
interface shall have an addressSpaceRef
subelement.

No Since there are potentially useful
applications of IP-XACT that do not
require addressing information, fail-
ure to obey this rule should be
treated as a warning rather than an
error. See also: 5.6.2 and 6.5.3 .

SCR 9.2 A non-hierarchical addressable slave bus interface
shall have a memoryMapRef subelement or one
or more bridge subelements referencing
addressable master bus interfaces.

No Since there are potentially useful
applications of IP-XACT that do not
require addressing information, fail-
ure to obey this rule should be
treated as a warning rather than an
error. See also: 5.6.2 and 6.5.4.2.

SCR 9.3 Only an address space referenced by the
addressSpaceRef subelement of a cpu element
may contain an exectutableImage subelement.

No See also: 6.7.1 .2 and 6.7.3.2.

Table B.8—Memory maps (continued)

Rule
number

Rule
Single
doc
check

Notes

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 239

B.2.1 0 Hierarchy

SCR 9.4 bitSteering is not allowed in mirrored-masters,
system, or mirrored-system interface modes.

Yes See also: 6.5.1 .2.

SCR 9.5 Data widths in a channel shall all be a power 2
multiple of their bitsInLau.

Yes See also: 6.5.1 .2.

SCR 9.6 bitsInLau in a channel shall all be a power 2
multiple of the smallest bitsInLau.

Yes See also: 6.5.1 .2.

SCR 9.7 If a languageTools element contains a
linkerFlags element or a linkerCommandFile
element, it shall also contain a linker element.

Yes See also: 6.7.4.2.

SCR 9.8 For each segment within an addressSpace, every-
thing between offsetAddress and offsetAddress +
range shall be contained within the range of that
addressSpace.

Yes See also: 6.7.1 .2 and 6.7.2.2.

SCR 9.9 The segmentRef needs to reference an existing
segment of the addressSpace in the master
referenced by the masterRef.

Yes See also: 6.8.9.2.

Table B.1 0—Hierarchy

Rule
number

Rule
Single
doc
check

Notes

SCR 10.1 All members of a hierarchical family of bus inter-
faces shall reference the same busDefinition in
their busType subelements.

No They need not reference the same
abstraction definitions in their
abstractionType elements. See also:
7.6.2.

SCR 10.2 All members of a hierarchical family of bus inter-
faces shall have the same interface mode (master,
slave, system, etc.).

No See also: 7.6.2.

SCR 10.3 If any member of a hierarchical family of bus
interfaces has a connectionRequired element
with a value of true, they all shall have this value.

No See also: 7.6.2.

SCR 10.4 If any member of a hierarchical family of bus
interfaces has a bitSteering element with a value
of true, they all shall have this value.

No See also: 7.6.2.

SCR 10.5 If any member of a hierarchical family of bus
interfaces has a portMap subelement, they all
shall.

No See also: 7.6.2.

SCR 10.6 If any two bus interfaces in a hierarchical family
of bus interfaces reference the same abstraction
definitions, their portMaps shall also reference
the same set of logical ports.

No See also: 7.6.2.

Table B.9—Addressing (continued)

Rule
number

Rule
Single
doc
check

Notes

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

240 Copyright © 201 0 IEEE. Al l rights reserved.

SCR 10.7 In a hierarchical family of bus interfaces, all ports
in the portMaps referencing the same bus port
shall map the same set of bits from that logical
port.

No See also: 7.6.2.

SCR 10.8 In a hierarchical family of bus interfaces, the
physicalPort/name of all ports in the portMap
referencing the same logical port shall reference
ports with the same direction.

No See also: 7.6.2.

SCR 10.9 In a hierarchical family of bus interfaces, if the
component ports referenced by the physicalPort/
name of all ports in the portMaps referencing the
same logical port have default values, they shall
have identical default values.

No I.e. , it is legal for any descriptions of
a port to have default values, but
those that have default values shall
have identical default values. See
also: 7.6.2.

SCR 10.10 In a hierarchical family of bus interfaces, the
physicalPort/name of all ports in the portMap
referencing the logical bus port shall reference
ports with identical clockDriver subelements.

No See also: 7.6.2.

SCR 10.11 In a hierarchical family of bus interfaces, the
physicalPort/name of all ports in the portMap
referencing the same logical port shall reference
ports with identical singleShotDriver
subelements.

No See also: 7.6.2.

SCR 10.12 In a hierarchical family of bus interfaces, the
physicalPort/name of all ports in the portMap
referencing the same logical port shall reference
ports with identical portConstraintSets
subelements.

No See also: 7.6.2.

Table B.1 0—Hierarchy (continued)

Rule
number

Rule
Single
doc
check

Notes

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 241

B.2.1 1 Hierarchy and memory maps

B.2.1 2 Constraints

Table B.1 1—Hierarchy and memory maps

Rule
number

Rule
Single
doc
check

Notes

SCR 11 .1 In a hierarchical family of slave or mirrored-
master bus interfaces, all bus interfaces that define
addressing information shall define the same set of
addresses to be visible.

No I.e. , if one member of the family
defines an address as a valid address
accessible through that bus interface,
all members of the family that define
addressing information shall define
that same address as a valid address
accessible through that bus interface.
See also: 7.6.2.

SCR 11 .2 For any member of a hierarchical family of slave
or mirrored-master bus interfaces, if an address
resolves to reference a location outside the con-
taining hierarchical family of components, that
address shall reference the same location (i.e. , the
same address on the same bus) in every member of
the hierarchical family that defines addressing
information.

No I.e. , if C is a hierarchical component
and the IP-XACT description of C
itself or some design of C specifies
accessing address a of C on bus
interface I results in an access to
address b of some other bus inter-
face J of C , all designs of C that
specify addressing on I shall indi-
cate the same about this address. See
also: 7.6.2.

SCR 11 .3 If any bit address (i.e. , address plus bit offset) is
resolved to a bit within an address block by any
member of a hierarchical family of slave bus inter-
faces, all members of that family with addressing
information shall resolve that bit address to a bit
with identical behavioral properties.

No If an address resolves to a location
within the hierarchical family of
components, its only observable fea-
tures from outside the hierarchical
family are its behavioral properties
(except as defined in SCR 11 .4). See
also: 7.6.2.

SCR 11 .4 When any two addresses resolve to the same loca-
tion in the addressing information of any member
of a hierarchical family of bus interfaces, this shall
be true for all members of the hierarchical family
of bus interfaces that have addressing information.

No I.e. , aliasing of addresses shall be
preserved. Aliasing is observable
from outside the hierarchical family.
See also: 7.6.2.

Table B.1 2—Constraints

Rule
number

Rule
Single
doc
check

Notes

SCR 12.1 A component wire port with direction out shall
not have a drive constraint.

Yes See also: 6.11 .11 .2.

SCR 12.2 A component wire port with a direction in shall
not have a load constraint.

Yes See also: 6.11 .1 2.2.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

242 Copyright © 201 0 IEEE. Al l rights reserved.

SCR 12.3 An onMaster, onSlave, or onSystem element of a
wire port with direction out shall not contain a
drive constraint within its modeConstraint
element.

Yes See also: 6.11 .11 .2.

SCR 12.4 An onMaster, onSlave, or onSystem element of a
wire port with direction in shall not contain a load
constraint within its modeConstraint element.

Yes See also: 6.11 .1 2.2.

SCR 12.5 An onMaster, onSlave, or onSystem element of a
wire port with direction out shall not contain a
load constraint within its mirroredModeCon-
straint element.

Yes See also: 6.11 .1 2.2.

SCR 12.6 An onMaster, onSlave, or onSystem element of a
wire port with direction in shall not contain a drive
constraint with its mirroredModeConstraint
element.

Yes See also: 6.11 .11 .2.

SCR 12.7 The clockName in a timing constraint of a compo-
nent port shall be the name of another component
port of the component or an otherClockDriver of
the component.

Yes See also: 6.11 .1 3 .2.

SCR 12.8 The clockName in a timing constraint of a port
within an abstraction definition shall be the name
of another port of the abstraction definition; that
referenced port shall have an isClock subelement.

Yes See also: 5.6.2 and 6.11 .1 3 .2.

SCR 12.9 The value of any clockPeriod element shall be
greater than 0 .

Yes See also: 6.11 .7.2.

SCR 12.10 The value of any clockPulseValue element shall
be 0 or 1 .

Yes See also: 6.11 .7.2.

SCR 12.11 The value of any singleShotDuration element
shall be greater than 0 .

Yes See also: 6.11 .8.2.

SCR 12.12 The value of any singleShotValue element shall
be 0 or 1 .

Yes See also: 6.11 .8.2.

SCR 12.1 3 Only a scalar port (i.e. , a single-bit port) may have
a clockDriver or a singleShotDriver subelement.

Yes See also: 6.11 .6.2.

SCR 12.14 A whiteboxElementRef, which references a
whiteboxElement with a whiteboxType of pin,
shall have a pathName that is a port in the con-
taining description.

Yes See also: 6.1 6.

SCR 12.15 A whiteboxElementRef, which references a
whiteboxElement with a whiteboxType of
register, shall have a pathName that is a register
in the containing description.

Yes See also: 6.1 6.

Table B.1 2—Constraints (continued)

Rule
number

Rule
Single
doc
check

Notes

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 243

B.2.1 3 Design configurations

Table B.1 3—Design configurations

Rule
number

Rule
Single
doc
check

Notes

SCR 13.1 The value of an instanceName within a
viewConfiguration shall match the value of the
instanceName element of a componentInstance
of the design document referenced by the design
configuration document containing the
viewConfiguration element.

No See also: 1 0.2.2.

SCR 13.2 The value of an viewName within a
viewConfiguration shall match the value of the
name element of a view within the component
referenced by the component instance that is itself
referenced by the instanceName subelement of
the viewConfiguration element.

No See also: 1 0.2.2.

SCR 13.3 No two interconnectionConfiguration elements
within a design configuration shall have the same
interconnectionRef value.

Yes See also: 1 0.4.2.

SCR 13.4 No two viewConfiguration elements within a
design configuration shall reference the same
view. i.e. , no two viewConfiguration elements
may have the same instanceName.

Yes See also: 1 0.2.2.

SCR 13.5 No two abstractor elements within a design
configuration shall have the same instanceName
element values.

Yes Also unique to the component
instance names in the referenced
design. See also: 1 0.4.2.

SCR 13.6 No two generatorChainConfiguration elements
within the same design configuration shall
reference the same generator chain through their
generatorChainRef elements.

Yes See also: 1 0.3 .2.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

244 Copyright © 201 0 IEEE. Al l rights reserved.

B.2.1 4 Rules requiring external knowledge

Table B.1 4—Rules requiring external knowledge

Rule
number

Rule
Single
doc
check

Notes

SCR 14.1 The name subelement of a file element can con-
tain environment variables in the form of
${ ENV_VAR} that are meaningful to the host
operating system and, when expanded, shall result
in a string that is a valid URI.

Yes See also: 6.1 3 .2.2.

SCR 14.2 In VLNVs, the vendor name shall be specified as
the top-level Internet domain name for that
organization. The domain shall be ordered with
the top-level domain name at the end (as in HTTP
URLs), e.g. , mentor. com, arm. com.

Yes This is to guarantee uniqueness of
vendor names. See also: C.6.2 and
C.6.4.

SCR 14.3 The envIdentifier of a view shall be a text string
consisting of three fields delimited by colons (:).
The first two fields shall be a language name,
which shall be one of the languages available for
fileTypes, and a tool name. The tool name may be
generic (e.g., *Simulation or *Synthesis)
or a specific tool name, such as
DesignCompiler® or VCS®.a The third field
shall be an arbitrary vendor-specific text string.

aDesign Compiler and VCS are registered trademarks of Synopsys, Inc. This information is given for the convenience of users of this
standard and does not constitute an endorsement by the IEEE of these products. Equivalent products may be used if they can be shown
to lead to the same results.

Yes Tool vendors need to publish a list of
valid tool names in The SPIRIT
Consortium Web site. See also:
6.11 .2.2.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 245

Annex C

(normative)

Common elements and concepts

This annex details common elements and concepts that appear many times throughout the standard.

C.1 nameGroup group

C.1 .1 Schema

The following schema details the information contained in the nameGroup group.

C.1 .2 Description

The nameGroup group defines any descriptive text for the containing element. The nameGroup group

definition contains the following elements.

a) name (mandatory) identifies the containing element. The name element is of type Name.

b) displayName (optional) allows a short descriptive text to be associated with the containing element.

The displayName element is of type string.

c) description (optional) allows a textual description of the containing element. The description ele-

ment is of type string.

C.2 nameGroupOptional group

C.2.1 Schema

The following schema details the information contained in the nameGroupOptional group.

A group of elements for name (xs:name),

d isplay N ame and description

spirit:nameGroup

U nique name

spirit:nam e

type xs:Name

E lement name for display purposes.

Ty pica lly a few w ords prov iding a more
deta iled and/or user-friendly name than the

spirit:name.

spirit:displayName

type xs:string

F ull description string, ty pica lly for

documentation

spirit:description

type xs:string

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

246 Copyright © 201 0 IEEE. Al l rights reserved.

C.2.2 Description

The nameGroupOptional group defines any descriptive text for the containing element. The

nameGroupOptional group definition contains the following elements.

a) name (optional) identifies the containing element. The name element is of type Name.

b) displayName (optional) allows a short descriptive text to be associated with the containing element.

The displayName element is of type string.

c) description (optional) allows a textual description of the containing element. The description ele-

ment is of type string.

C.3 nameGroupPort group

C.3.1 Schema

The following schema details the information contained in the nameGroupPort group.

C.3.2 Description

The nameGroupPort group defines any descriptive text for the containing element. The nameGroupPort

group definition contains the following elements.

a) name (mandatory) identifies the containing element. The name element is of type portName.

b) displayName (optional) allows a short descriptive text to be associated with the containing element.

The displayName element is of type string.

c) description (optional) allows a textual description of the containing element. The description

element is of type string.

A group of elements for name (xs:name),

display N ame and description w here the

name is optional

spirit:nameGroupOptional

U nique name

spirit:name

type xs:Name

E lement name for display purposes.

Ty pica l ly a few w ords prov iding a more

deta iled and/or user-friendly name than the
spirit:name.

spirit:displayNam e

type xs:string

Full description string, ty pica lly for

documentation

spirit:description

type xs:string

A group of elements for name(portN ame),

display N ame and description

spirit:nameGroupPort

U nique name

spirit:name

type spirit:portName

E lement name for display purposes.

Ty pica lly a few w ords prov iding a more
deta iled and/or user-friendly name than the

spirit:name.

spirit:displayNam e

type xs:string

F ull description string, ty pica lly for

documentation

spirit:description

type xs:string

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 247

C.4 nameGroupNMTOKEN group

C.4.1 Schema

The following schema details the information contained in the nameGroupNMTOKEN group.

C.4.2 Description

The nameGroupNMTOKEN group defines any descriptive text for the containing element. The

nameGroupNMTOKEN group definition contains the following elements.

a) name (mandatory) identifies the containing element. The name used shall match the corresponding

port name found in any views of the containing component. The name element is of type

NMTOKEN.

b) displayName (optional) allows a short descriptive text to be associated with the containing element.

The displayName element is of type string.

c) description (optional) allows a textual description of the containing element. The description ele-

ment is of type string.

C.5 nameGroupString group

C.5.1 Schema

The following schema details the information contained in the nameGroupString group.

A group of elements for
name(xs:N M TO KEN), display N ame and

description

spirit:nameGroupNMTOKEN

U nique name

spirit:nam e

type xs:NMTOKEN

E lement name for display purposes.
Ty pica lly a few w ords prov iding a more

detai led and/or user-friendly name than the

spirit:name.

spirit:displayNam e

type xs:string

F ull description string, ty pica lly for
documentation

spirit:description

type xs:string

A group of elements for name(xs:string),
display N ame and description

spirit:nameGroupString

U nique name

spirit:nam e

type xs:string

E lement name for display purposes.
Ty pica lly a few w ords prov iding a more

detai led and/or user-friendly name than the

spirit:name.

spirit:displayName

type xs:string

F ull description string, ty pica lly for
documentation

spirit:description

type xs:string

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

248 Copyright © 201 0 IEEE. Al l rights reserved.

C.5.2 Description

The nameGroupString group defines any descriptive text for the containing element. The

nameGroupString group definition contains the following elements.

a) name (mandatory) identifies the containing element. The name element is of type string.

b) displayName (optional) allows a short descriptive text to be associated with the containing element.

The displayName element is of type string.

c) description (optional) allows a textual description of the containing element. The description ele-

ment is of type string.

C.6 versionedIdentifier group

C.6.1 Schema

The following schema details the information contained in the versionedIdentifier group.

C.6.2 Description

The versionedIdentifier group defines a unique reference of or from an IP-XACT description. Only one

object with a given VLNV may be present in a DE at any given time. The timing and way to change the

VLNV of an object is completely up to the user or developer. The versionedIdentifier group definition

contains the following four subelements.

a) vendor (mandatory) identifies the owner of this description. The format of the vendor element is

the company internet domain name in left-to-right order (e.g. , spiritconsortium. org not

org. spiritconsortium). The vendor element is of type Name.

b) library (mandatory) identifies the library of this description. This allows a vendor to group descrip-

tions. The library element is of type Name.

c) name (mandatory) identifies the name of this description within a library. The name element is of

type NMTOKEN.

d) version (mandatory) identifies the version of this description. This allows a vendor to provide many

descriptions that all have the same name, but are still uniquely identified. The version may appear as

an alphanumeric string and contain a set of substrings, with non-alphanumeric delimiters in-

between. Each IP supplier shall have their own cataloguing system for setting version numbers. The

version element is of type NMTOKEN.

See also: SCR 1 .1 , SCR 1 .2, and SCR 14.2.

This group of elements identifies a top lev el

item (e. g. a component or a bus definition)

w ith v endor, l ibrary , name and a v ersion

number.

spirit:versionedIdentifier

N ame of the v endor w ho supplies this file.

spirit:vendor

type xs:Name

N ame of the logica l l ibrary this element

belongs to.

spirit:library

type xs:Name

The name of the obj ect.

spirit:nam e

type xs:NMTOKEN

Indicates the v ersion of the named element.

spirit:vers ion

type xs:NMTOKEN

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 249

C.6.3 Sorting and comparing version elements

Sorting and comparing version elements determines whether:

— an IP is a component that has been previously imported;

— multiple versions of the same IP exist in a design;

— a newer version of an IP exists.

To sort and compare version elements, subdivide the version number into major fields and subfields. Major

fields may be separated by a non-alphanumeric delimiter such as : , . , - , _, etc. Each major field can be

compared to determine equivalence and broken down further into subfields if necessary.

C.6.3.1 Comparison rules

a) Each version element is broken into its major fields, which are separated using the appropriate

delimiter (e.g., : or .).

b) Major fields are compared against each other from left to right.

c) Subfields, within each major field, need to be examined if the major fields are alphanumeric. Each

major field shall have alphabetical and numerical subfields that are separated from right to left.

d) To summarize the rules for the comparison of each subfield in a major field:

1) Numeric—Compare the integer values of numeric subfields.

2) Alphabetic

i) String—Perform a simple string comparison.

ii) Case—Ignore alphabetic case (e.g. , a and A are the same).

It is possible for different representations of version numbers to be considered equal. For example, under

these rules, A1 and A01 are equal, since numerical subfields are compared numerically, and A. B equals

A_B, since delimiters are not compared.

C.6.3.2 Comparison examples

The following examples illustrate the sorting and comparing of a version elements.

Example 1

The first case uses: 205: 75WR16 and 215: 50HR15 .

a) Each of these version numbers break down into the following two major fields, separated by the :

delimiter: 205 75WR16 and 215 50HR15 .

b) Major fields are compared against each other from left to right. In this example, the first major fields

(205 and 215) differ between the VLNV strings and the comparison ends there. This case is also

simplified since the first major field is an integer (i.e. , numeric).

c) Subfields, within each major field, need to be examined if the major fields are alphanumeric. Each

major field shall have alphabetical and numerical subfields that are separated from right to left.

Example 2

In the next case, two VLNV have the same first major field, and their second major subfields need to be

compared: e.g. , 205: 45R16 and 205: 55R15 .

a) The first major field (205) is the same between these two VLNV, so the second major field is

checked. These second major fields are broken down into the following alphabetic and numeric

subfields: 45 R 16 and 55 R 15 .

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

250 Copyright © 201 0 IEEE. Al l rights reserved.

b) The subfields are compared from left to right. The first (and in this case only) comparison is 45

versus 55 , so these subfields are not equal. The major fields are not equivalent.

C.6.4 Version control

Each file conforming to the top-level schema has a set of VLNV elements that, when considered together,

form a unique identifier (a version control number) for the information contained in that XML document.

The VLNV of any IP-XACT information is not the same as the version of the file that might contain that

information.

NOTE—An XML file might be revised in a way that does not materially affect the IP-XACT information content. For
example, copyright notices are updated, comments are added, and environment variable names used as part of the
filenames might be changed (but still point to the same files). These changes may not necessitate changing the VLNV.

Many developers of IP libraries use a version control system to track updates and changes to the various files

that contribute to the overall design and IP package information. At any time, individual files may be

modified and updated as development of that design or IP progresses. At appropriate junctures, releases are

made, each consisting of a particular combination of files at different levels of a version.

An IP-XACT description is one of the files that can be very usefully tracked in this way and updated in line

with other design modifications. There is no direct link between the version number of the file and the

VLNV identifier contained in that description. In many cases, however, the VLNV can be coordinated with

the overall release package version.

See also: SCR 1 .1 , SCR 1 .2, and SCR 14.2.

C.7 l ibraryRefType

C.7.1 Schema

The following schema details the information contained in the libraryRefType type.

attributes

Base IP -XA C T document reference.

C ontains v endor, l ibrary , name and

v ersion attributes.

spirit:libraryRefGroupgrp

spirit:vendor

type xs:Name

spirit:library

type xs:Name

spirit:nam e

type xs:NMTOKEN

spirit:vers ion

type xs:NMTOKEN

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 251

C.7.2 Description

The libraryRefType type defines a set of four attributes that reference another IP-XACT description through

the unique VLNV identifier.

a) The vendor attribute (mandatory) identifies the owner of the referenced description. This attribute is

of type Name.

b) The library attribute (mandatory) identifies the library of the referenced description. This attribute

is of type Name.

c) The name attribute (mandatory) identifies the name of the referenced description. This attribute is of

type NMTOKEN.

d) The version attribute (mandatory) identifies the version of the referenced description. This attribute

is of type NMTOKEN.

C.8 fi leSetRef

C.8.1 Schema

The following schema details the information contained in the fileSetRef element.

C.8.2 Description

The fileSetRef element defines a reference to a fileSet contained in the containing document. The

fileSetRef element contains the following element.

localName (mandatory) shall contain a name of a fileSet/name within the local description.

localName is of type Name.

C.9 fi leType

C.9.1 Schema

The following schema details the information contained in the fileType type.

A reference to a fileSet.

spirit:fileSetRef

Refers to a fi leSet defined w ithin this

description.

spirit:localName

type xs:Name

The ty pe of a fi le refenced by IP -XA C T.
E ither: fi leTy pe - a know n IP -XA C T file

ty pe, or userF ileTy pe - a fi le ty pe not

y et known by I P -XA C T. I f multiple

ty pes are specified, the order is
important. The first ty pe is the primary

ty pe of the file and the latter ty pes are
ty pes that may be embedded in the file.

F or example a V eri log file containing
P SL assertions.

spirit:fileType
Enumerated file ty pes know n by

IP -XA C T.

spirit:fileType

type xs:string

F ree form file ty pe, not - y et - know n

by IP -XA C T .

spirit:userFileType

type xs:string

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

252 Copyright © 201 0 IEEE. Al l rights reserved.

C.9.2 Description

The fileType type defines the format of a referenced file. The fileType group contains one or more of the

following two elements.

a) fileType (mandatory) describes the type of file referenced from this enumerated list of industry stan-

dard files types.

1) unknown

2) asmSource, cSource, cppSource, eSource, OVASource, perlSource, pslSource,

SVASource, tclSource, veraSource,

systemCSource, systemCSource-2.0, systemCSource-2.0.1 , systemCSource-2.1 ,

systemCSource-2.2,

systemVerilogSource, systemVerilogSource-3.0, systemVerilogSource-3.1 ,

systemVerilogSource-3.1a,

verilogSource, verilogSource-95, verilogSource-2001 ,

vhdlSource, vhdlSource-87, and vhdlSource-93

3) swObject and swObjectLibrary

4) vhdlBinaryLibrary and verilogBinaryLibrary

5) executableHdl and unelaboratedHdl

6) SDC

b) userFileType (mandatory) describes any other file type that can not be described from the list for

fileType. The userFileType element is of type string.

C.1 0 vendorExtensions

C.1 0.1 Schema

The following schema details the information contained in the vendorExtensions element.

C.1 0.2 Description

The vendorExtensions element is a place in the description in which any vendor specific information can be

stored. The vendorExtensions element allows any well-formed description.

C.1 1 parameters

C.1 1 .1 Schema

The following schema details the information contained in the parameters element.

C onta iner for v endor specific extensions.

spirit:vendorExtens ions

A ccepts any element(s) the content prov ider

w ants to put here, including elements from
the spirit namespace.

##anyany

1 f. .

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 253

C.1 1 .2 Description

The parameters element contains an unbounded list of parameter elements. parameter (mandatory)

defines a configurable element related to the containing element. The parameter definition allows for the

assignment of a name and a value. The parameter element also allows for vendor attributes to be applied.

The parameter element definition contains the following elements.

a) nameGroupString is defined in C.1 .

b) value (mandatory) contains the actual value of the parameter. The value element is of type string.

The value element is configurable with attributes from string.prompt.att, see C.1 2.

c) vendorExtensions (optional) adds any extra vendor-specific data related to the parameter. See

C.10.

C.1 2 Configuration

Some elements in a component, abstractor, or generator chain description are defined as being configurable.

This means that the value of the element can be set differently for each use of the description, which allows

a single description to be used in many different ways.

The same method is used to configure elements in a component, abstractor, or generator chain. The

configuration is done via a reference to an id attribute in the configured element. Any element in a

component, abstractor, or generator chain description with an id attribute is configurable. The id attribute is

always contained inside an attribute group. This group provides other attributes that specify how the element

may be configured, e.g. , from a choice list or free-form text. This group also defines the type of values for

setting the element, e.g. , integer, float, or string. There are five different attribute groups defined for four

different types of configurable elements:

a) bool.prompt.att, see C.1 3 .

b) float.prompt.att, see C.1 4.

c) long.prompt.att or long.att, see C.1 5 or C.1 6, respectively.

d) string.prompt.att, see C.1 7.

The location of the configuration values differs based on the description being configured. A component

description is configured via the design description, see Clause 7. When the component instance is

A col lection of parameters.

spirit:param eters

spirit:nam eValuePairType

A name v a lue pa ir. The name is specified

by the name element. The v a lue is in the

text content of the v a lue element. This

v a lue element supports a ll configurabil ity

a ttributes.

spirit:param eter

1 f. .

type spirit:nameValuePairType

attributes

##anyany

A group of elements for name(xs:string),
display N ame and description

spirit:nameGroupString

U nique name

spirit:name

type xs:string

E lement name for d isplay purposes.
Ty pica lly a few w ords prov iding a more

detailed and/or user-friendly name than the

spirit:name.

spirit:displayName

type xs:string

F ull description string, ty pica l ly for

documentation

spirit:description

type xs:string

The v a lue of the parameter.

spirit:value

type xs:s tring

attributes

U se this a ttribute group on string elements.

spirit:s tring.prompt.attgrp

C onta iner for v endor specific extensions.

spirit:vendorExtens ions

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

254 Copyright © 201 0 IEEE. Al l rights reserved.

referenced in the design description, a configurableElementValue element may be specified to configure

any elements for this instance, see 7.2. An abstractor or generator chain description is configured via the

design configuration description, see 1 0.2. A design configuration description may contain an

interconnectionConfiguration element or a generatorChainConfiguration element, each of which may

contain a configurableElementValue element used to configure an abstractor or generator chain,

respectively.

C.1 3 bool.prompt.att

C.1 3.1 Schema

The following schema details the information contained in the bool.prompt.att attribute group.

C.1 3.2 Description

The bool.prompt.att attribute group defines a set of attributes to be applied to the containing element. The

bool.prompt.att attribute group contains the following attributes.

a) format (optional) is the input and storage type for the configurable elements and, optionally, the

output type for modelParameters. The value shall be one from of the following.

1) bitString indicates the input or storage shall be in the format of a double quoted string of 1 ’s

and 0 ’ s or a scaledInteger number. The output shall be a bit string in the format specified by

the language, e.g. , VHDL = “1010” or Verilog = 4 ’ b1010 .

2) bool (the default) indicates the input or storage shall be one of true or false. The output shall be

a boolean type as specified by the language.

attributes

spirit:bool.prompt.attgrp

This is an indication on the format of the

v alue for user defined properties.
bitS tring means a double quoted string

of 1 's an 0's, the input may be in this

format or a sca ledInteger number. A

bitS tringLength attribute is required for

bitS tring formats. bool means a boolean

(true, fa lse) is expected. float means a
decima l floating point number is

expected. long means an v a lue of
sca ledInteger is expected. S tring means

any text is acceptable.

spirit:form at

type spirit: formatType

default bool

Determines how a property v a lue is

resolv ed.

spirit:resolve

type spirit: resolveType

default immediate

ID attribute for uniquely identify ing an
element w ithin its document. O n

elements w ith spirit: resolv e attribute is
used to refer to this element and

otherw ise can be used as a

documentation ID .

spirit:id

type xs: ID

Required on properties w ith a resolv e =

"dependent" attribute. This is an XPath

expression supply ing the resultant v a lue

for the containing element in terms of
other properties in the conta ining file.

spirit:dependency

type xs:string

##anyany

F or user defined properties, refers the

choice element enumerating the v a lues

to choose from.

spirit:choiceRef

type xs:Name

F or components w ith auto-generated

configuration forms, the user-resolv ed

properties w ith order a ttibutes w il l be

presented in ascending order.

spirit:order

type xs:float

Tags configurable properties so that they

may be grouped together. C onfigurable
properties w ith matching v a lues for this

attribute are contained in the same

group. The format of this attribute is a

string. There is no semantic meaning to
this attribute.

spirit:configGroups

type xs:NMTOKENS

Length of the bit string, required if the
format is bitS tring

spirit:bitStringLength

type xs:nonNegativeInteger

U se this attribute group on boolean

elements.

F or user-resolv ed properties w ith

numeric v a lues, this indicates the

m inimum v a lue a llow ed. O nly v a lid for

formats long and float.

spirit:m inimum

type xs:string

F or user-resolv ed properties w ith
numeric v a lues, this indicates the

maximum v alue a l low ed. O nly v a lid for

formats long and float

spirit:m axim um

type xs:string

Indicates the data ty pe of the range

attributes (m inimum and maximum). F or

reasons of backw ard compatibility , this

attribute is assumed to hav e the v a lue

'float' if not present.

spirit:rangeType

type spirit:rangeTypeType

default int

Prov ides a string used to prompt the
user for user-resolv ed property v a lues.

spirit:prompt

type xs:string

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 255

3) float indicates the input or storage shall a decimal floating point number. The output shall be a

decimal floating point number.

4) long indicates the input shall be a scaledInteger number. The storage shall be in a format com-

patible with the containing element and the output shall be a decimal integer number.

5) string indicates the input and storage shall contain any characters. The output shall be a string

in the format as specified by the language.

b) resolve (optional) defines how the value for the containing element is configured. The value shall be

one of the following.

1) immediate (the default) indicates the value shall be specified in the containing element.

2) user indicates the value shall be specified by user input and the new value stored in a design or

design configuration description under the configurableElement element.

3) dependent indicates the value shall be defined by an XPATH equation (see Annex E) defined

in the dependency attribute. The dependency attribute requires the resolve attribute to be

equal to dependent.

4) generated indicates the value shall be set by a generator and the new value stored in a design or

design configuration description under the configurableElement element.

c) id (optional) assigns a unique identifier to the containing element for reference throughout the

containing description. The id attribute is required if the element has a resolve type equal to user,

generated, or is referenced in a dependency equation. This id is referenced in two ways. The first

reference is by the configurableElement in a design or design configuration description. The

second is in a dependency attribute XPATH equation. The id attribute if of type ID.

d) dependency (optional) is an XPATH 1 .0 equation (see Annex E) for the value of the containing ele-

ment. The resolve attribute shall be equal to dependent. The dependency attribute is of type string.

e) ##any (optional) indicates any additional attributes in any namespace are allowed in the containing

element. These additional attributes are called vendor attributes.

f) choiceRef (optional) indicates the value of the containing element is defined in the referenced

choice element. The choiceRef attribute is of type Name.

g) order (optional) indicates how elements are presented, when resolve equals user. The elements are

presented in ascending order. The order attribute is of type float.

h) configGroups (optional) indicates a name to group elements together; elements with matching val-

ues for this attribute are contained in the same group. There is no semantic meaning to this attribute.

The configGroups attribute is of type NMTOKENS.

i) bitStringLength (optional) indicates the length of the bit string. The format attribute shall be equal

to bitString. The bitStringLength attribute is of type nonNegativeInteger.

j) minimum (optional) indicates the lower bound for the value of the containing element. This check

is only valid for a format of bitString, float, or long. The rangeType attribute shall specify the type

of the minimum attribute. The minimum attribute is of type string.

k) maximum (optional) indicates the upper bound for the value of the containing element. This check

is only valid for a format of bitString, float, or long. The rangeType attribute shall specify the type

of the maximum attribute. The maximum attribute is of type string.

l) rangeType (optional) indicates the range for the minimum and maximum attributes. The value

shall be one from the enumerated list of float (the default), int, unsigned int, long, or unsigned

long. float indicates a floating point number, int or long indicates a scaledInteger, and unsigned int

or unsigned long indicates a scaledNonNegativeInteger.

m) prompt (optional) defines a prompt string that a DE can use if the resolve attribute is equal to user.

The prompt attribute is of type string.

See also: SCRs in Table B.5.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

256 Copyright © 201 0 IEEE. Al l rights reserved.

C.1 4 float.prompt.att

C.1 4.1 Schema

The following schema details the information contained in the float.prompt.att attribute group.

C.1 4.2 Description

The float.prompt.att attribute group defines a set of attributes to be applied to the containing element. The

float.prompt.att attribute group contains the following attributes.

a) format (optional) is the input and storage type for the configurable elements and, optionally, the

output type for modelParameters. The value shall be one from of the following.

1) bitString indicates the input or storage shall be in the format of a double quoted string of 1 ’s

and 0 ’ s or a scaledInteger number. The output shall be a bit string in the format specified by

the language, e.g. , VHDL = “1010” or Verilog = 4 ’ b1010 .

2) bool indicates the input or storage shall be one of true or false. The output shall be a boolean

type as specified by the language.

3) float (the default) indicates the input or storage shall a decimal floating point number. The

output shall be a decimal floating point number.

4) long indicates the input shall be a scaledInteger number. The storage shall be in a format

compatible with the containing element, and the output shall be a decimal integer number.

5) string indicates the input and storage shall contain any characters. The output shall be a string

in the format as specified by the language.

b) resolve (optional) defines how the value for the containing element is configured. The value shall be

one from the enumerated list of immediate, user, dependent, or generated.

attributes

spirit:float.prompt.attgrp

This is an indication on the format of the

v a lue for user defined properties.
bitS tring means a double quoted string

of 1 's an 0's, the input may be in this

format or a sca ledInteger number. A

bitS tringLength a ttribute is required for
bitS tring formats. bool means a boolean

(true, fa lse) is expected. float means a

decima l floating point number is

expected. long means an v a lue of

sca ledInteger is expected. S tring means
any text is acceptable.

spirit:format

type spirit:formatType

default float

Determ ines how a property v a lue is

resolv ed.

spirit:resolve

type spirit:resolveType

default immediate

ID attribute for uniquely identify ing an

element w ithin its document. O n

elements w ith spirit: resolv e attribute is

used to refer to this element and

otherw ise can be used as a
documentation ID .

spirit:id

type xs: ID

Required on properties w ith a resolv e =

"dependent" attribute. This is an XPath

expression supply ing the resultant v a lue

for the conta ining element in terms of

other properties in the containing fi le.

spirit:dependency

type xs:string

##anyany

For user defined properties, refers the
choice element enumerating the v a lues

to choose from.

spirit:choiceRef

type xs:Name

For components w ith auto-generated
configuration forms, the user-resolv ed

properties w ith order a ttibutes w il l be

presented in ascending order.

spirit:order

type xs:float

Tags configurable properties so that they
may be grouped together. C onfigurable

properties w ith matching v a lues for this

attribute are contained in the same

group. The format of this a ttribute is a

string. There is no semantic meaning to

this attribute.

spirit:configGroups

type xs:NMTOKENS

Length of the bit string, required if the

format is bitS tring

spirit:bitStringLength

type xs:nonNegativeInteger

U se this a ttribute group on float
elements.

F or user-resolv ed properties w ith

numeric v a lues, this indica tes the
m inimum v alue a llow ed. O nly v a l id for

formats long and float.

spirit:m inim um

type xs:string

F or user-resolv ed properties w ith

numeric v a lues, this indica tes the

maximum v a lue a l low ed. O nly v a lid for

formats long and floa t

spirit:m axim um

type xs:string

Indicates the data ty pe of the range

attributes (m inimum and maximum). F or

reasons of backw ard compatibil ity , this

a ttribute is assumed to hav e the v a lue
'floa t' if not present.

spirit:rangeType

type spirit: rangeTypeType

default float

Prov ides a string used to prompt the
user for user-resolv ed property v a lues.

spirit:prompt

type xs:string

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 257

1) immediate (the default) indicates the value shall be specified in the containing element.

2) user indicates the value shall be specified by user input and the new value stored in a design or

design configuration description under the configurableElement element.

3) dependent indicates the value shall be defined by an XPATH equation (see Annex E) defined

in the dependency attribute. The dependency attribute requires the resolve attribute to be

equal to dependent.

4) generated indicates the value shall be set by a generator and the new value stored in a design or

design configuration description under the configurableElement element.

c) id (optional) assigns a unique identifier to the containing element for reference throughout the

containing description. The id attribute is required if the element has a resolve type equal to user,

generated, or is referenced in a dependency equation. This id is referenced in two ways. The first

reference is by the configurableElement in a design or design configuration description. The

second is in a dependency attribute XPATH equation. The id attribute if of type ID.

d) dependency (optional) is an XPATH 1 .0 equation (see Annex E) for the value of the containing

element. The resolve attribute shall be equal to dependent. The dependency attribute is of type

string.

e) ##any (optional) indicates any additional attributes in any namespace are allowed in the containing

element. These additional attributes are called vendor attributes.

f) choiceRef (optional) indicates the value of the containing element is defined in the referenced

choice element. The choiceRef attribute is of type Name.

g) order (optional) indicates how elements are presented, when resolve equals user. The elements are

presented in ascending order. The order attribute is of type float.

h) configGroups (optional) indicates a name to group elements together; elements with matching

values for this attribute are contained in the same group. There is no semantic meaning to this

attribute. The configGroups attribute is of type NMTOKENS.

i) bitStringLength (optional) indicates the length of the bit string. This attribute is required if the

format attribute is equal to bitString. The bitStringLength attribute is of type

nonNegativeInteger.

j) minimum (optional) indicates the lower bound for the value of the containing element. This check

is only valid for a format of bitString, float, or long. The rangeType attribute shall specify the type

of the minimum attribute. The minimum attribute is of type string.

k) maximum (optional) indicates the upper bound for the value of the containing element. This check

is only valid for a format of bitString, float, or long. The rangeType attribute shall specify the type

of the maximum attribute. The maximum attribute is of type string.

l) rangeType (optional) indicates the range for the minimum and maximum attributes. The value

shall be one from the enumerated list of float (the default), int, unsigned int, long, or unsigned

long. float indicates a floating point number, int or long indicates a scaledInteger, and unsigned int

or unsigned long indicates a scaledNonNegativeInteger.

m) prompt (optional) defines a prompt string that a DE can use if the resolve attribute is equal to user.

The prompt attribute is of type string.

See also: SCRs in Table B.5.

C.1 5 long.prompt.att

C.1 5.1 Schema

The following schema details the information contained in the long.prompt.att attribute group.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

258 Copyright © 201 0 IEEE. Al l rights reserved.

C.1 5.2 Description

The long.prompt.att attribute group defines a set of attributes to be applied to the containing element. The

long.prompt.att attribute group contains the following attributes.

a) format (optional) is the input and storage type for the configurable elements and, optionally, the

output type for modelParameters. The value shall be one from of the following.

1) bitString indicates the input or storage shall be in the format of a double quoted string of 1 ’s

and 0 ’ s or a scaledInteger number. The output shall be a bit string in the format specified by

the language, e.g. , VHDL = “1010” or Verilog = 4 ’ b1010 .

2) bool indicates the input or storage shall be one of true or false. The output shall be a boolean

type as specified by the language.

3) float indicates the input or storage shall a decimal floating point number. The output shall be a

decimal floating point number.

4) long (the default) indicates the input shall be a scaledInteger number. The storage shall be in a

format compatible with the containing element and the output shall be a decimal integer

number.

5) string indicates the input and storage shall contain any characters. The output shall be a string

in the format as specified by the language.

b) resolve (optional) defines how the value for the containing element is configured. The value shall be

one from the enumerated list of immediate, user, dependent, or generated.

1) immediate (the default) indicates the value shall be specified in the containing element.

2) user indicates the value shall be specified by user input and the new value stored in a design or

design configuration description under the configurableElement element.

attributes

spirit:long.prom pt.attgrp

This is an indication on the format of the

v alue for user defined properties.
bitS tring means a double quoted string

of 1 's an 0's, the input may be in this

format or a sca ledInteger number. A

bitS tringLength attribute is required for

bitS tring formats. bool means a boolean

(true, fa lse) is expected. float means a

decima l floating point number is
expected. long means an v a lue of

sca ledInteger is expected. S tring means

any text is acceptable.

spirit:form at

type spirit: formatType

default long

Determ ines how a property v a lue is

resolv ed.

spirit:resolve

type spirit:resolveType

default immediate

ID attribute for uniquely identify ing an
element w ithin its document. O n

elements w ith spirit: resolv e attribute is

used to refer to this element and

otherw ise can be used as a

documentation ID .

spirit:id

type xs: ID

Required on properties w ith a resolv e =

"dependent" attribute. This is an XPath

expression supply ing the resultant v a lue
for the containing element in terms of

other properties in the conta ining file.

spirit:dependency

type xs:string

##anyany

For user defined properties, refers the

choice element enumerating the v a lues

to choose from.

spirit:choiceRef

type xs:Name

For components w ith auto-generated

configuration forms, the user-resolv ed

properties w ith order a ttibutes w il l be
presented in ascending order.

spirit:order

type xs:float

Tags configurable properties so that they

may be grouped together. C onfigurable
properties w ith matching v a lues for this

attribute are conta ined in the same

group. The format of this a ttribute is a
string. There is no semantic meaning to

this attribute.

spirit:configGroups

type xs:NMTOKENS

Length of the bit string, required if the
format is bitS tring

spirit:bitStringLength

type xs:nonNegativeInteger

U se this attribute group on long integer

elements.

format is bitS tring

F or user-resolv ed properties w ith

numeric v a lues, this indicates the

m inimum v alue a l low ed. O nly v a lid for
formats long and float.

spirit:m inim um

type xs:string

For user-resolv ed properties w ith

numeric v a lues, this indicates the

maximum v alue a llow ed. O nly v a lid for

formats long and float

spirit:m axim um

type xs:string

Indicates the data ty pe of the range

attributes (minimum and maximum). F or

reasons of backw ard compatibil ity , this

attribute is assumed to hav e the v a lue

'float' if not present.

spirit:rangeType

type spirit:rangeTypeType

default float

Prov ides a string used to prompt the

user for user-resolv ed property v a lues.

spirit:prom pt

type xs:string

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 259

3) dependent indicates the value shall be defined by an XPATH equation (see Annex E) defined

in the dependency attribute. The dependency attribute requires the resolve attribute to be

equal to dependent.

4) generated indicates the value shall be set by a generator and the new value stored in a design or

design configuration description under the configurableElement element.

c) id (optional) assigns a unique identifier to the containing element for reference throughout the

containing description. The id attribute is required if the element has a resolve type equal to user,

generated or is referenced in a dependency equation. This id is referenced in two ways. The first

reference is by the configurableElement in a design or design configuration description. The

second is in a dependency attribute XPATH equation. The id attribute if of type ID.

d) dependency (optional) is an XPATH 1 .0 equation (see Annex E) for the value of the containing

element. The resolve attribute shall be equal to dependent. The dependency attribute is of type

string.

e) ##any (optional) indicates any additional attributes in any namespace are allowed in the containing

element. These additional attributes are called vendor attributes.

f) choiceRef (optional) indicates the value of the containing element is defined in the referenced

choice element. The choiceRef attribute is of type Name.

g) order (optional) indicates how elements are presented, when resolve equals user. The elements are

presented in ascending order. The order attribute is of type float.

h) configGroups (optional) indicates a name to group elements together; elements with matching

values for this attribute are contained in the same group. There is no semantic meaning to this

attribute. The configGroups attribute is of type NMTOKENS.

i) bitStringLength (optional) indicates the length of the bit string. This attribute is required if the

format attribute is equal to bitString. The bitStringLength attribute is of type

nonNegativeInteger.

j) minimum (optional) indicates the lower bound for the value of the containing element. This check

is only valid for a format of bitString, float, or long. The rangeType attribute shall specify the type

of the minimum attribute. The minimum attribute is of type string.

k) maximum (optional) indicates the upper bound for the value of the containing element. This check

is only valid for a format of bitString, float, or long. The rangeType attribute shall specify the type

of the maximum attribute. The maximum attribute is of type string.

l) rangeType (optional) indicates the range for the minimum and maximum attributes. The value

shall be one from the enumerated list of float (the default), int, unsigned int, long, or unsigned

long. float indicates a floating point number, int or long indicates a scaledInteger, and unsigned int

or unsigned long indicates a scaledNonNegativeInteger.

m) prompt (optional) defines a prompt string that a DE can use if the resolve attribute is equal to user.

The prompt attribute is of type string.

See also: SCRs in Table B.5.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

260 Copyright © 201 0 IEEE. Al l rights reserved.

C.1 6 long.att

C.1 6.1 Schema

The following schema details the information contained in the long.att attribute group.

C.1 6.2 Description

The long.att attribute group defines a set of attributes to be applied to the containing element. The long.att

attribute group contains all the same attributes as the long.prompt.att attribute group, except for the prompt

attribute. See C.1 5.

See also: SCRs in Table B.5.

C.1 7 string.prompt.att

C.1 7.1 Schema

The following schema details the information contained in the string.prompt.att attribute group.

attributes

spirit:long.attgrp

This is an indication on the format of the

v alue for user defined properties.
bitS tring means a double quoted string

of 1 's an 0's, the input may be in this

format or a sca ledInteger number. A

bitS tringLength attribute is required for
bitS tring formats. bool means a boolean

(true, fa lse) is expected. float means a

decima l floating point number is

expected. long means an v a lue of

sca ledInteger is expected. S tring means
any text is acceptable.

spirit:form at

type spirit:formatType

default long

Determines how a property v a lue is

resolv ed.

spirit:resolve

type spirit:resolveType

default immediate

ID attribute for uniquely identify ing an

element w ithin its document. O n

elements w ith spirit: resolv e attribute is

used to refer to this element and

otherw ise can be used as a
documentation ID .

spirit:id

type xs: ID

Required on properties w ith a resolv e =

"dependent" attribute. This is an XPath

expression supply ing the resultant v a lue

for the conta ining element in terms of

other properties in the conta ining file.

spirit:dependency

type xs:string

##anyany

F or user defined properties, refers the

choice element enumerating the v a lues

to choose from.

spirit:choiceRef

type xs:Name

F or components w ith auto-generated

configuration forms, the user-resolv ed

properties w ith order attibutes w il l be
presented in ascending order.

spirit:order

type xs:float

Tags configurable properties so that they

may be grouped together. C onfigurable

properties w ith matching v a lues for this
attribute are contained in the same

group. The format of this attribute is a

string. There is no semantic meaning to

this attribute.

spirit:configGroups

type xs:NMTOKENS

Length of the bit string, required if the
format is bitS tring

spirit:bitStringLength

type xs:nonNegativeInteger U se this attribute group on long integer

elements for w hich the schema supplies

a default prompt attribute.

g

F or user-resolv ed properties w ith

numeric v a lues, this indicates the

m inimum v alue a l low ed. O nly v a lid for

formats long and float.

spirit:m inim um

type xs:string

For user-resolv ed properties w ith
numeric v a lues, this indicates the

maximum v alue a llow ed. O nly v a lid for

formats long and float

spirit:m axim um

type xs:string

Indicates the data ty pe of the range

attributes (minimum and maximum). F or

reasons of backw ard compatibil ity , this
attribute is assumed to hav e the v a lue

'float' if not present.

spirit:rangeType

type spirit:rangeTypeType

default float

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 261

C.1 7.2 Description

The string.prompt.att attribute group defines a set of attributes to be applied to the containing element. The

string.prompt.att attribute group contains the following attributes.

a) format (optional) is the input and storage type for the configurable elements and, optionally, the

output type for modelParameters. The value shall be one from of the following.

1) bitString indicates the input or storage shall be in the format of a double quoted string of 1 ’s

and 0 ’ s or a scaledInteger number. The output shall be a bit string in the format specified by

the language, e.g. , VHDL = “1010” or Verilog = 4 ’ b1010 .

2) bool indicates the input or storage shall be one of true or false. The output shall be a boolean

type as specified by the language.

3) float indicates the input or storage shall a decimal floating point number. The output shall be a

decimal floating point number.

4) long indicates the input shall be a scaledInteger number. The storage shall be in a format com-

patible with the containing element and the output shall be a decimal integer number.

5) string (the default) indicates the input and storage shall contain any characters. The output

shall be a string in the format as specified by the language.

b) resolve (optional) defines how the value for the containing element is configured. The value shall be

one from the enumerated list of immediate, user, dependent, or generated.

1) immediate (the default) indicates the value shall be specified in the containing element.

2) user indicates the value shall be specified by user input and the new value stored in a design or

design configuration description under the configurableElement element.

3) dependent indicates the value shall be defined by an XPATH equation (see Annex E) defined

in the dependency attribute. The dependency attribute requires the resolve attribute to be

equal to dependent.

attributes

spirit:s tring.prompt.attgrp

This is an indication on the format of the

v alue for user defined properties.

bitS tring means a double quoted string
of 1 's an 0's, the input may be in this

format or a sca ledInteger number. A

bitS tringLength attribute is required for
bitS tring formats. bool means a boolean

(true, fa lse) is expected. float means a

decima l floating point number is

expected. long means an v a lue of

sca ledInteger is expected. S tring means

any text is acceptable.

spirit:form at

type spirit:formatType

default string

Determ ines how a property v a lue is

resolv ed.

spirit:resolve

type spirit:resolveType

default immediate

ID attribute for uniquely identify ing an

element w ithin its document. O n

elements w ith spirit: resolv e attribute is

used to refer to this element and

otherw ise can be used as a
documentation ID .

spirit:id

type xs: ID

Required on properties w ith a resolv e =

"dependent" attribute. This is an XPath

expression supply ing the resultant v a lue

for the containing element in terms of

other properties in the conta ining file.

spirit:dependency

type xs:string

##anyany

For user defined properties, refers the

choice element enumerating the v a lues

to choose from.

spirit:choiceRef

type xs:Name

For components w ith auto-generated

configuration forms, the user-resolv ed

properties w ith order attibutes w il l be

presented in ascending order.

spirit:order

type xs:float

Tags configurable properties so that they

may be grouped together. C onfigurable

properties w ith matching v a lues for this

attribute are contained in the same

group. The format of this attribute is a

string. There is no semantic meaning to

this a ttribute.

spirit:configGroups

type xs:NMTOKENS

Length of the bit string, required if the

format is bitS tring

spirit:bitStringLength

type xs:nonNegativeInteger

U se this a ttribute group on string
elements.

F or user-resolv ed properties w ith
numeric v a lues, this indicates the

m inimum v alue a llow ed. O nly v a l id for

formats long and float.

spirit:m inimum

type xs:string

F or user-resolv ed properties w ith

numeric v a lues, this indicates the
maximum v a lue a l low ed. O nly v a lid for

formats long and float

spirit:m axim um

type xs:string

Indicates the data ty pe of the range

attributes (m inimum and maximum). F or

reasons of backw ard compatibil ity , this
attribute is a ssumed to hav e the v a lue
'float' if not present.

spirit:rangeType

type spirit: rangeTypeType

default float

Prov ides a string used to prompt the

user for user-resolv ed property v a lues.

spirit:prompt

type xs:string

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

262 Copyright © 201 0 IEEE. Al l rights reserved.

4) generated indicates the value shall be set by a generator and the new value stored in a design or

design configuration description under the configurableElement element.

c) id (optional) assigns a unique identifier to the containing element for reference throughout the

containing description. The id attribute is required if the element has a resolve type equal to user,

generated, or is referenced in a dependency equation. This id is referenced in two ways. The first

reference is by the configurableElement in a design or design configuration description. The

second is in a dependency attribute XPATH equation. The id attribute if of type ID.

d) dependency (optional) is an XPATH 1 .0 equation (see Annex E) for the value of the containing ele-

ment. The resolve attribute shall be equal to dependent. The dependency attribute is of type string.

e) ##any (optional) indicates any additional attributes in any namespace are allowed in the containing

element. These additional attributes are called vendor attributes.

f) choiceRef (optional) indicates the value of the containing element is defined in the referenced

choice element. The choiceRef attribute is of type Name.

g) order (optional) indicates how elements are presented, when resolve equals user. The elements are

presented in ascending order. The order attribute is of type float.

h) configGroups (optional) indicates a name to group elements together; elements with matching val-

ues for this attribute are contained in the same group. There is no semantic meaning to this attribute.

The configGroups attribute is of type NMTOKENS.

i) bitStringLength (optional) indicates the length of the bit string. This is required if the format

attribute is equal to bitString. The bitStringLength attribute is of type nonNegativeInteger.

j) minimum (optional) indicates the lower bound for the value of the containing element. This check

is only valid for a format of bitString, float, or long. The rangeType attribute shall specify the type

of the minimum attribute. The minimum attribute is of type string.

k) maximum (optional) indicates the upper bound for the value of the containing element. This check

is only valid for a format of bitString, float, or long. The rangeType attribute shall specify the type

of the maximum attribute. The maximum attribute is of type string.

l) rangeType (optional) indicates the range for the minimum and maximum attributes. The value

shall be one from the enumerated list of float (the default), int, unsigned int, long, or unsigned

long. float indicates a floating point number, int or long indicates a scaledInteger, and unsigned int

or unsigned long indicates a scaledNonNegativeInteger.

m) prompt (optional) defines a prompt string that a DE can use if the resolve attribute is equal to user.

The prompt attribute is of type string.

See also: SCRs in Table B.5.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 263

Annex D

(normative)

Types

Many elements and attributes defined in the standard have associated types. These types define the legal

values and ranges for input into these element and attributes.

D.1 boolean

The boolean type defines two possible values, true and false.

D.2 configurableDouble

The configurableDouble type defines a decimal floating point number based on the IEEE single-precision

64-bit floating point type (see IEEE Std 754-1985 [B2]).

D.3 float

The float type defines a decimal floating point number based on the IEEE single-precision 32-bit floating

point type (see IEEE Std 754-1985 [B2]).

D.4 ID or IDREF

The ID or IDREF type defines a unique identifier through the containing description. It needs to begin with

a letter or underscore (_). An ID or IDREF shall only contain letters, numbers, and the underscore (_), dash

(-), and dot (.) characters. Any leading or trailing spaces are removed.

D.5 instancePath

The instancePath type defines a series of Name type character strings, see D.8, separated by a slash (/).

Any leading or trailing space is removed.

D.6 integer

The integer type defines a decimal integer number of infinite precision, containing the numbers 0–9 .

D.7 l ibraryRefType

The libraryRefType type is an element type, not a data type. This type defines the four attributes of a

VLNV required for a reference from one description to another description. See C.7.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

264 Copyright © 201 0 IEEE. Al l rights reserved.

D.8 Name

The Name type defines a series of any characters, excluding embedded whitespace. It needs to begin with a

letter, colon (:), or underscore (_). A Name shall only contain letters, numbers, and the colon (:),

underscore (_), dash (-), and dot (.) characters. Any leading or trailing spaces are removed.

D.9 NMTOKEN

The NMTOKEN type defines a series of any characters, excluding embedded whitespace. It shall only

contain letters, numbers, and the colon (:), underscore (_), dash (-), and dot (.) characters. Any leading or

trailing spaces are removed.

D.1 0 NMTOKENS

The NMTOKENS type defines a series of any characters, including embedded whitespace. It shall only

contain letters, numbers, and the colon (:), underscore (_), dash (-), and dot (.) characters.

D.1 1 nonNegativeInteger

The nonNegativeInteger type is a subtype of integer; it follows all the same rules, except its value shall be

greater than or equal to 0 .

D.1 2 portName

The portName type defines a series of any characters, excluding embedded whitespace. It shall only contain

letters, numbers, and the colon (:), underscore (_), dash (-), and dot (.) characters. It also needs to begin

with a letter, colon (:), or underscore (_). Any leading or trailing spaces are removed.

D.1 3 positiveInteger

The positiveInteger type is a subtype of integer; it follows all the same rules, except its value shall be

greater than 0 .

D.1 4 scaledInteger

The scaledInteger type defines an integer of infinite precision. The number may be in any of the follow

formats with or without a leading +/– indication.

a) Decimal containing numbers 0–9 .

b) Hexadecimal representation starting with 0x or # , and containing the numbers 0–9 and letters A–F

(case-insensitive).

c) Optionally, the number may end with the following case-insensitive suffixes. Each suffix is a

multiplier of the resulting value.

1) K is a multiplier of 1 024.

2) M is a multiplier of 1 024u1024.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 265

3) G is a multiplier of 1 024u1024u1024.
4) T is a multiplier of 1 024u1024u1024u1 024.

Example: 4K evaluates to 4096 . 0x1000 evaluates to 4096 .

D.1 5 scaledNonNegativeInteger

The scaledNonNegativeInteger type is a subtype of scaledInteger; it follows all the same rules, except its

value shall be greater than or equal to 0 .

D.1 6 scaledPositiveInteger

The scaledPositiveInteger type is a subtype of scaledInteger; it follows all the same rules, except its value

shall be greater than 0 .

D.1 7 SpiritURI

The SpiritURI type defines a string of characters for an absolute or relative path to a file, a directory, or an

executable in URI format (xs: anyURI), except it can contain environment variables in the ${ ENV_VAR}

form, which are replaced by their value(s) to provide the underlying URI.

D.1 8 string

The string type defines a series of any characters and may include spaces.

D.1 9 token

The token type defines a series of any characters, excluding carriage-return, line-feed, and tab. Any leading

or trailing spaces are removed and all internal sequences of two or more spaces are reduced to one space.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 267

Annex E

(normative)

Dependency XPATH

This standard utilizes XPATH 1 .0 as a means to specify an equation for the contents of a resolvable element.

This is done by setting the resolve attribute to resolve=”dependent” . When the resolve attribute is set

to dependent, a dependency attribute is required.

The accuracy of the XPATH numeric functions shall be of infinite precision and are not limited to any fixed

number of bits. This is necessary to ensure all systems are interoperable and the large calculations required

by the configuration of IP-XACT components are successful.

In addition to the standard XPATH 1 .0 functions, IP-XACT also defines the following functions to aid

expressions calculations.

E.1 id

id(string)

The id function returns the value of the element with an attribute of id that matches the input string. This

function has been modified from the standard XPATH definition to return the value applied to the element at

the time of evaluation; this is the configured value of the element from the design description (see G.4).

E.2 spirit:containsToken

spirit: containsToken(string1, string2)

spirit: containsToken(node, stringx)

The containsToken function (boolean) returns true if string1 contains string2 as a token (or node contains

stringx as a token) and otherwise returns false. To be interpreted as a token, string2 needs to be found within

string1 (or stringx needs to be found within node) and be separated by whitespace from any other characters

in the string1 (or node) that are not whitespace characters.

containsToken only uses the configured value while executing its function.

Purpose: Some attributes in IP-XACT are a list of tokens separated by whitespace. This function allows

XPATH selection based on whether the attribute contains a specific token.

Example: spirit: containsToken(' default spine driver' , ' pin') evaluates to false,

whereas the standard XPATH function contains would evaluate to true with the same arguments.

E.3 spirit:decode

spirit: decode(string)

spirit: decode(node)

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

268 Copyright © 201 0 IEEE. Al l rights reserved.

The decode function (number) decodes the string (or node) argument to a number and returns the number or

NaN [if the string (or node) cannot be decoded] . If the string (or node) argument is a decimal formatted

number, it is returned unchanged. If it is a hexadecimal representation starting with 0x or # , it is converted

to a decimal number and returned. If it is in engineering notation ending in a k, m, g, or t suffix (case-

insensitive), the numeric part is multiplied by the appropriate power of two. K is a multiplier of 1 024. M is a

multiplier of 1 024u1024. G is a multiplier of 1 024u1024u1024. T is a multiplier of

1024u1024u1024u1024.

Purpose: IP-XACT allows numbers to be expressed in hexadecimal format and engineering format. When

setting up dependencies on configurable values, it is sometimes necessary to perform some arithmetic in the

dependency XPATH expression. However, XPATH only supports arithmetic on numbers and it only

recognizes decimal strings as numbers. This function allows the alternate formats to be converted to

numbers recognizable by XPATH.

Example: spirit: decode(' 0x4000') evaluates to 1 6384. spirit: decode(' 4G') evaluates to

4294967296.

E.4 spirit:pow

spirit: pow(number, number)

spirit: pow(number, node)

spirit: pow(node, number)

spirit: pow(node, node)

The pow function (number) returns a number (or node), which is the first argument raised to the power of

the second argument.

Purpose: It is common for a component to have a configurable number of address bits. When this happens,

the size of the address range it occupies on a memory map varies exponentially with the number of address

bits. This function gives XPATH the mathematical capabilities needed to describe this relationship in a

dependency expression.

Example: spirit: pow(2 , 10) evaluates to 1 024.

E.5 spirit: log

spirit: log(number, number)

spirit: log(number, node)

spirit: log(node, number)

spirit: log(node, node)

The log function (number) returns a number (or node), which is the log of the second argument in the base of

the first argument.

Purpose: This is the inverse of pow function. It is intended to express the reverse of the dependency

described for the pow function. In this case, the range of an address block might be configurable and the

number of address bits might be expressed as a dependency of the address range using the log function.

Example: spirit: log(2 , 1024) evaluates to 1 0.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 269

E.6 Dependency example

This is a example of using resolve=dependent.

<spirit: memoryMaps>

 <spirit: memoryMap>

 <spirit: name>mmap</spirit: name>

 <spirit: addressBlock>

 <spirit: name>ab1</spirit: name>

 <spirit: baseAddress spirit: resolve="user" spirit: id="baseAddr">0</

spirit: baseAddress>

<spirit: range spirit: id="range">786K</spirit: range>

 <spirit: width>32</spirit: width>

 <spirit: usage>memory</spirit: usage>

 <spirit: access>read-write</spirit: access>

 </spirit: addressBlock>

 </spirit: memoryMap>

 <spirit: memoryMap>

 <spirit: name>dependent_mmap</spirit: name>

 <spirit: addressBlock>

<! -- The baseAddress in this memoryMap is dependent on the previous memory map

and the formula to compute the baseAddress from the baseAddress of previous

map is expressed as an XPATH expression -->

 <spirit: baseAddress spirit: resolve="dependent"

spirit: dependency="spirit: pow(2, floor(spirit: log(2,

spirit: decode(id(' baseAddr')) + spirit: decode(id(' range'))) +1)) "

spirit: id="dependentBaseAddress">0</spirit: baseAddress>

<spirit: range>4096</spirit: range>

 <spirit: width>32</spirit: width>

 <spirit: usage>register</spirit: usage>

 <spirit: access>read-write</spirit: access>

 </spirit: addressBlock>

 </spirit: memoryMap>

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 271

Annex F

(informative)

External bus with an internal/digital interface

While the current use of IP-XACT schema may be viewed as describing single chip implementations, the

schemas works equally well at the package- and board-level. Often a PHY component exists that

interconnects the internal and external bus. Some interface standards define both of these interfaces, some

define only the internal, and some define only the external. A common point of confusion is to use an

external bus standard as an interface on an internal component. This is legal if the component caries the full

PHY implementation, but this often makes the component very technology- or implementation-dependant.

F.1 Example: ethernet interfaces

An Ethernet bus might be described as more than a single wire, and in a system that includes Ethernet buses,

it might also include all the interfaces shown in Figure F.1 .

XAUI: 1 0-gigabit Attachment Unit Interface

MII: Media Independent Interface

GMII: Gigabit Media Independent Interface

XGMII: 1 0-gigabit media-independent interface

RMII: Reduced MII, 7-pin interface

SSMII: Source Synchronous MII

SMII: Serial Media Independent Interface, this provides an interface to Ethernet MAC. The SMII

provides the same interface as the MII, but with a reduced pin-out. The reduction in ports is

MII : Media Independent
Interface
GMI I , XGMII , RMII , SSMI I ,
or SMI I ,

Physical Coding
Sublayer

Physical Media
Attachment

Physical Media
Dependant

MAC Control

Media Access Control

Reconciliation

XAUI : 1 0-gigabit
Attachment Unit Interface

MIIM

Figure F.1—Ethernet interface examples

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

272 Copyright © 201 0 IEEE. Al l rights reserved.

achieved by multiplexing data and control information to a port transmit port and a single receive

port.

F.2 Example: I2C bus

The I2C bus is a two-wire bus with a clock and data line. The standard described bus is the two-wire bus. IP-

XACT has defined an additional, related bus that is the internal digital interface. The internal digital

interface shown in Figure F.2 contains three pins for each external pin: for SDA (the data line), the internal

pins are defined as input, output, and enable as SDA_I , SDA_O, and SDA_E ; in a similar manner, for the

clock bus SCL, the internal pins are defined again for the functions of input, output, and enable as SCL_I ,

SCL_O, and SCL_E .

VDD

SDA

SCL

Standard Described I2C Bus

Non standard defined internal

d igital reference I2C bus

I2C
Device

I2C
Device

I2C
Device

S
D
A
_
I

S
D
A
_
O

S
D
A
_
E

S
C
L
_
I

S
C
L
_
O

S
C
L
_
E

SDA SCL

VDD

SDA

SCL

Standard Described I2C Bus

Non standard defined internal

d igital reference I2C bus

I2C
Device

I2C
Device

I2C
Device

S
D
A
_
I

S
D
A
_
O

S
D
A
_
E

S
C
L
_
I

S
C
L
_
O

S
C
L
_
E

SDA SCL

Figure F.2—I2C interface example

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 273

Annex G

(normative)

Tight generator interface

IP-XACT generators are tools that are invoked from within a DE to perform an operation required by the

user of the DE. For example, generators can be provided to verify the configuration of a subsystem, generate

an address map, or write a netlist representation of the subsystem in a target language such as Verilog or

SystemC. To perform their various operations, most generators need access to the IP-XACT meta-data

describing the subsystem, as currently loaded into the DE. Generators need both read- and write-access to

the IP-XACT meta-data. All generators are external applications running in a separate address space from

the DE.

The TGI defines how the DE and generator cooperate to achieve the desired end-goal of the user of the DE.

The TGI defines the method of communication between the DE and generator, the method for invoking the

generator, and the actual application programming interface (API) that can be used to read and write the IP-

XACT meta-data stored in the DE. G.1 , G.2, and G.3 describe each of these three aspects of the TGI,

respectively.

G.1 Method of communication

The DE and the generator communicate with each other by sending messages to each other utilizing the

SOAP standard. SOAP provides a simple means for sending XML-format messages using HTTP or other

transport protocols. The TGI restricts the set of allowed transport protocols to HTTP and a file-based

protocol. All generators are required to support the HTTP protocol, but support for the file-based protocol is

optional. The same rules apply to the DE—it shall support the use of the HTTP protocol, but is not required

to support the file-based protocol, even though a generator may allow it. The protocols supported by a

generator are specified using the transportMethod element within the componentGenerator element.

The information required to use a particular transport protocol shall be passed to the generator by the DE

when it is invoked, as described in G.2. For the HTTP protocol, the generator is passed a URL of the form

http://host_name:port_number. All SOAP messages sent to the DE shall be sent using the referenced URL.

For the file-based protocol, the generator is passed a URL of the form file://file_name. In this case, all SOAP

messages are written to the specified file.

Each DE and generator is responsible for setting itself up to communicate using SOAP with the appropriate

transport protocol. For example, a generator written in Tcl might include the Tcl SOAP package to enable

SOAP functionality. Once the communication channel is set up, the generator can read and write the IP-

XACT meta-data using any legal SOAP message. The set of legal SOAP messages defines the API portion

of the TGI (see G.7).

G.2 Generator invocation

All of the information known by the DE about a particular generator comes from an instance of the

componentGenerator (see 6.1 2), abstractorGenerator (see 8.7), or generator (see 9.4) elements. These

elements provides the following information.

a) name is the name of the generator as seen within the DE.

b) executable is the URL defining the location of the generator.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

274 Copyright © 201 0 IEEE. Al l rights reserved.

c) parameters is a list of name/value pairs defining information to be passed to the generator.

d) apiType indicates the generator type: TGI or none (no communication).

e) transportMethods show any transport mechanisms supported (in addition to HTTP).

f) phase (not relevant to the TGI).

g) vendorExtensions (not relevant to the TGI).

h) group (not relevant to the TGI).

G.2.1 Resolving the URL

The URL defining the generator executable shall resolve to one of the following forms.

— file:path_to_executable (e.g. , file: /usr/j doe/bin/mygen. pl or file: . . /bin/

mygen. pl) defines the path for invoking the generator on the machine from which the DE was

invoked.

— file://machine_name/path_to_executable (e.g. , file: //server1/tmp/othergen. pl)

defines the path for invoking a generator on the specified machine.

— http://web_address:port_number (e.g. , http: //www. acme. com/generator: 1500) defines

the URL of a generator implemented as a Web-based server.

All file references are relative to the location of the XML description in which the file reference is

contained.

For the file-based generators, the DE shall invoke the generator as a sub-process with a command line built

up as:

executable -url transport_URL generator_parameter_arguments

The generator_parameter_arguments are the parameters from the componentGenerator element with the

user-specified values. Each parameter causes two additional arguments to be passed to the generator with

the following format: -parameter_name parameter_value. The transport_URL is created by the DE, but is

guaranteed to specify a protocol supported by the generator as defined by the transport methods within the

componentGenerator. The DE is responsible for ensuring any passed parameters can be interpreted

correctly. This URL is to be used in the generator to set up the SOAP communication channel.

For Web-based generators, the DE shall send a message to the address and port defined as the executable.

The format of this message is

url=transport_URL&generator_parameter_arguments

In this case, the generator parameters are formatted using the standard HTTP parameter passing syntax. The

specified transport URL shall be used by the generator for any return messages to the DE.

The invocation syntax described above applies only to generators with an API type of TGI. Generators with

an API type of none are invoked as described above, excluding the transport_URL argument.

G.2.2 Example

This example shows file-based and Web-based componentGenerator elements.

<spirit: componentGenerator>

<spirit: name>myGenerator</spirit: name>

<spirit: parameter spirit: name="param1" spirit: resolve="user"

spirit: id="param1">default1</spirit: parameter>

<spirit: parameter spirit: name="param2">fixedValue</spirit: parameter>

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 275

<spirit: apiType>TGI</spirit: apiType>

<spirit: transportMethods>

<spirit: transportMethod>file</spirit: transportMethod>

</spirit: transportMethods>

<spirit: generatorExe>. . /bin/myGenerator. pl</spirit: generatorExe>

</spirit: componentGenerator>

produces the following output.

path_to _XML/. . /bin/myGenerator -url http: //host: port -param1 default1

-param2 fixedValue

Whereas:

<spirit: componentGenerator>

<spirit: name>myWebGenerator</spirit: name>

<spirit: parameter spirit: name="param" spirit: resolve="user"

spirit: id="myParamID">defaultValue</spirit: parameter>

<spirit: apiType>TGI</spirit: apiType>

<spirit: generatorExe>http: //www. acme. com: 1500</spirit: generatorExe>

</spirit: componentGenerator>

produces the following output.

http: //www. acme. com: 1500?url=http%3a%2f%2fhost%3aport¶m1=default1

¶m2=fixedValue

G.3 TGI API

The TGI API defines the set of legal SOAP messages that can be sent from a generator to a DE, along with

the format of the responses the generator can expect from a given request (message) to the DE. The API

shall provide the means of getting and setting values within the IP-XACT design currently represented in the

DE. The API commands can be classified as shown in Table G.1 .

Table G.1—TGI API classifications

Category Description Example

Get Commands which get attribute or element values. These
commands are available for getting all information from the
design and component schemas. If the attribute or element
does not exist, this may return a default value, an empty
string, or an empty array.

Get port width.

Set Commands which set element values. These commands are
available to set each element for which the resolve attribute
is legal. Setting the value of the element fails unless the
resolve value is user or generator. Set routines return a
Boolean value where a true return code implies a successful
operation. If false is returned, the SOAP fault code shall
provide additional information detailing the failure.

Get parameter value.

Traversal Commands that return a list of elements, which can then be
traversed for further manipulation.

Get components in a design.

Administrative Commands that do not deal directly with the IP-XACT
meta-data.

Terminate communication.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

276 Copyright © 201 0 IEEE. Al l rights reserved.

The complete set of API commands is defined using WSDL so that it can be defined in a language-

independent format.

G.3.1 TGI fault codes

The fault codes for TGI failures are as follows:

1 - Unknown (undefined) error

2 - Illegal element ID

3 - Illegal value(s)

4 - Element is not modifiable (incompatible resolve value)

5 - Operation not supported by the DE

6 - Operation not supported in this version of the schema

7 - Operation failed

G.3.2 Administrative commands

There are three administrative commands defined in the API.

a) Init is the required first message from the generator to the DE. It tells the DE that the generator has

properly connected via SOAP.

1) Input

i) apiVersion of type string—Indicates the API version for which the generator is defined to

work.

ii) failureMode of type apiFailureMode—Compatibility failure mode

fail indicates the DE shall return an error on the init call if its API version does not

match the one passed to the init call;

error indicates the DE shall return an error each time a potentially incompatible API call

is made;

warning indicates the DE shall increment a warning count each time a potentially

incompatible API call is made.

iii) message of type string—Message that the DE may display to the user.

2) Returns: status of type boolean.

b) End is the required last message from the generator to the DE. It tells the DE it is okay to stop

listening for messages from the generator. This includes a generator return status, although the

generator is not strictly required to terminate after sending the message.

c) Message indicates some form of generator status to pass to the user.

G.4 IDs and configurable values

Most TGI calls take an element identifier that acts as a handle or pointer to the element and are referred to as

IDs. These IDs allow a single TGI command to operate on many different ID types to produce a result. One

such example is getDescription(ID), which takes any ID type as input and returns its description if that ID

contains a description element. When an ID is passed to a TGI routine that returns an element’s value, the

configured value (component) is always returned. If the unconfigured value (design) is desired (the default),

getUnconfiguredID can be used to translate the ID into an unconfigured identifier, which is referred to as a

UID. The configured and unconfigured values may be the same. The only time the values are different is

when the unconfigured (default) value is overridden via a configureElementValue from the design file.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 277

The TGI API presumes the data stored in the design description to configure an element that has a resolve

attribute value of user or generated is applied to the component instance by the DE. This enables the TGI

author to simply ask for the value of an element on a given component instance and retrieve the correct

answer. The setting of an element works similarly. When an element is set on a component instance, the

value of this element is ultimately stored in the design description.

The design configuration description is handled in the same manner as the configurable elements as in the

design description. The settings in the design configuration description are applied to the elements in the

referenced design description or the containing component instances. Therefore, there are no TGI functions

to retrieve the design configuration information directly; the TGI author can find this information applied to

the correct element in the design or component instance. For example, the configured view of a component

instance is accessed using the normal getComponentViewIDs with a Boolean argument set to indicate the

configured view (specified in the design configuration description) should be returned.

IDs returned by TGI commands are guaranteed to be persistent for the duration of a single generator

invocation provided the element being referenced is not removed. For example, if an ID represents an

address space element, that ID can be utilized as often as is needed during a single generator invocation,

unless the component containing the address map is removed by calling removeComponentInstance().

G.5 TGI messages

The TGI is a set of messages used to query and modify an IP-XACT compliant database. The TGI messages

are composed of a SOAP envelope and a TGI body. The TGI services are specified in the TGI. wsdl file.

Each TGI body message is an XML element whose name is the name of the TGI command and whose

elements are the arguments of the TGI command. All TGI messages apply to IP-XACT XML elements,

identified by an ID, i.e. , a TGI server-defined constant uniquely identifying an IP-XACT XML element

throughout a TGI server session.

G.6 Vendor attributes

One case of special interest to a user may be the location of vendor attributes in the schema. These attributes

are allowed in more places in the schema than the TGI allows a user to retrieve them. This goes back to the

concept where one function uses many different ID types to return some data. In the case of vendor attributes,

these can only be accessed if the containing element has an ID.

G.7 TGI SOAP messages

G.7.1 TGI SOAP message index

Abstraction definition operations

— getAbstractionDefBusTypeVLNV - Get VLNV of the bus definition.

— getAbstractionDefExtends - VLNV of the abstraction definition being extended.

— getAbstractionDefID - ID for the abstraction definition with the given VLNV.

— getAbstractionDefPortDefaultValue - Default value for port when not connected.

— getAbstractionDefPortDriveConstraintIDs - List of drive constraint IDs of the port.

— getAbstractionDefPortIDs - List of abstraction definition port element IDs.

— getAbstractionDefPortIsAddress - Is this port an address port.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

278 Copyright © 201 0 IEEE. Al l rights reserved.

— getAbstractionDefPortIsClock - Is this port a clock port.

— getAbstractionDefPortIsData - Is this port a data port.

— getAbstractionDefPortIsReset - Is this port a reset port.

— getAbstractionDefPortLoadConstraintIDs - List of load constraint IDs of the port.

— getAbstractionDefPortLogicalName - Logical name of this abstraction definition port.

— getAbstractionDefPortMirroredConstraintIDs - List of constraint IDs for a mirrored port.

— getAbstractionDefPortModeBitWidth - Bit width constraint when present on an interface of the

given type.

— getAbstractionDefPortModeDirection - Port direction constraint when present on an interface of the

given type.

— getAbstractionDefPortModeGroup - Group name when present on a system interface.

— getAbstractionDefPortModeIDs - Returns an array of IDs for accessing the given port in the given

interface mode. The array shall only contain one element if the modeValue input is master or slave.

The array may contain multiple elements for modeValue system.

— getAbstractionDefPortModePresence - Existence requirement for this port on an interface of the

given type.

— getAbstractionDefPortModeServiceID - AbstractionDef service ID on a transactional port.

— getAbstractionDefPortNonMirroredConstraintIDs - List of constraint IDs for a non-mirrored port.

— getAbstractionDefPortRequiredDriverType - Required driver type for this port.

— getAbstractionDefPortRequiresDriver - Does this port require a driver.

— getAbstractionDefPortStyle - Returns wire or transactional to indicate the port style.

— getAbstractionDefPortTimingConstraintIDs - List of timing constraint IDs of the port.

— getAbstractionDefVLNV - VLNV of the abstraction definition.

Abstractor instance operations

— getAbstractorInstanceAbstractorID - ID for the abstractor associated with given instance (crossing

from design configuration to abstractor file).

— getAbstractorInstanceName - Instance name of the abstractor.

— getAbstractorInstanceVLNV - VLNV of the abstractor (from the design file).

— getAbstractorInstanceXML - Return the abstractor XML in text format. Schema version is DE

dependent.

Abstractor operations

— getAbstractorAbstractorInterfaceIDs - List of two interface IDs.

— getAbstractorAbstractorMode - Get the mode that the abstractor can be master, slave, direct, or

system.

— getAbstractorBusTypeVLNV - List of VLNV of the bus definition.

— getAbstractorChoiceIDs - List of choices IDs.

— getAbstractorFileSetIDs - List of file set IDs.

— getAbstractorGeneratorIDs - List of generator IDs of the abstractor.

— getAbstractorModelParameterIDs - A list of model parameter IDs.

— getAbstractorPortIDs - A list of abstractor model port IDs.

— getAbstractorViewIDs - A list of model view IDs.

Address map operations

— getAddressBlockAccess - The accessibility of the data in the local address block.

— getAddressBlockBaseAddress - The base address of an address block.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 279

— getAddressBlockRange - The address range of an address block expressed as the number of

accessible and addressable units.

— getAddressBlockRegisterFileIDs - The IDs of the available register files in the address block.

— getAddressBlockRegisterIDs - The IDs of the available registers in the address block.

— getAddressBlockUsage - Indicates the usage of this address block.

— getAddressBlockVolatility - Indicates whether or not the data is volatile.

— getAddressBlockWidth - The bit width of an address block in the local memory map.

— getAddressSpaceAddressUnitBits - The number bits in an addressable unit. If none exists, the default

8 bits is returned.

— getAddressSpaceLocalMemoryMapID - The ID for the local memory map of the address space.

— getAddressSpaceRange - The address range of an address block expressed as the number of

accessable and addressable units.

— getAddressSpaceSegmentIDs - List of IDs for address block segments for the address space.

— getAddressSpaceWidth - The bit width of an address block.

— getBankAccess - The accessibility of the data in the local address bank.

— getBankAlignment - The bank alignment value, serial or parallel.

— getBankBaseAddress - The base address of an address bank.

— getBankUsage - Indicates the usage of this address bank.

— getBankVolatility - Indicates whether or not the data is volatile.

— getExecutableImageFileBuilderIDs - List of default file builder IDs of the executable image.

— getExecutableImageFileSetIDs - The group of file set reference IDs complying with the tool set of

the current executable image.

— getExecutableImageIDs - The IDs of the executable images belonging to the specified address space.

— getExecutableImageLinkerCommand - The linker command for the current executable image.

— getExecutableImageLinkerCommandFileID - Element ID of linkerCommandFile associated with

given executable image.

— getExecutableImageLinkerFlags - The flags of the current executable image linker command.

— getExecutableImageType - The type of the executable image if existent.

— getLinkerCommandFileEnable - Indicates whether or not to generate and enable the linker command

file.

— getLinkerCommandFileLineSwitch - The command line switch to specify with the linker command

file.

— getLinkerCommandFileName - The name of the linker command file.

— getLinkerCommandGeneratorIDs - Reference IDs to the generator elements for generating the linker

command file.

— getMemoryMapAddressUnitBits - The number bits in an addressable unit for a memory map. If none

exists, the default 8 bits is returned.

— getMemoryMapElementIDs - List of element IDs (addressBlockID, bankID, subspaceMapID)

within a memory map, memory remap, local memory map, or bank.

— getMemoryMapElementType - Indicates type of memory map element: addressBlock, bank, or

subspaceMap.

— getMemoryMapRemapElementIDs - List of IDs for memory map remap elements of the given

memory map.

— getMemoryRemapStateID - Remap State ID for which this remap is applicable.

— getSegmentAddressOffset - The address offset of an address space segment in an address space.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

280 Copyright © 201 0 IEEE. Al l rights reserved.

— getSegmentRange - The address range of an address space segment expressed as the number of

accessable addressable units.

— getSubspaceMapBaseAddress - The base address of a memory subspace.

— getSubspaceMapMasterID - Master bus interface ID on the other side of a bus bridge.

— getSubspaceMapSegmentID - Address space segment ID on the other side of a bus bridge.

— getTypeIdentifier - Indicates the type identifier of an addressBlock, registerFile, register, or field.

— setAddressBlockBaseAddress - Set the base address of an address block.

— setAddressBlockRange - Set the address range of an address block expressed as the number of

accessable and addressable units.

— setAddressBlockWidth - Set the bit width of an address block.

— setAddressSpaceRange - Set the address range of an address block expressed as the number of

accessable and addressable units.

— setAddressSpaceWidth - Set the bit width of an address block.

— setBankBaseAddress - Set the base address of an address bank.

— setExecutableImageLinkerCommand - Set the linker command for the current executable image.

— setExecutableImageLinkerFlags - Set the flags of the current executable image linker command.

— setLinkerCommandFileEnable - Set whether or not to generate and enable the linker command file.

— setLinkerCommandFileLineSwitch - Set the command line switch to specify with the linker

command file.

— setLinkerCommandFileName - Set the name of the linker command file.

— setSegmentAddressOffset - Set the address offset of an address space segment expressed in the

number addressable units.

— setSegmentRange - Set the address range of an address space segment expressed as the number of

accessable addressable units.

— setSubspaceMapBaseAddress - Set the base address of a memory subspace.

Bus definition operations

— getBusDefinitionDirectConnection - Indicates whether or not the bus definition supports direct

connections.

— getBusDefinitionExtends - VLNV of the bus definition being extended.

— getBusDefinitionID - ID for the bus definition with the given VLNV.

— getBusDefinitionIsAddressable - Indicates whether or not the bus definition is an addressable bus.

— getBusDefinitionMaxMasters - Maximum # of masters supported by this bus definition.

— getBusDefinitionMaxSlaves - Maximum # of slaves supported by this bus definition.

— getBusDefinitionSystemGroupNames - List of system group names for this bus definition.

— getBusDefinitionVLNV - VLNV of the bus definition.

Bus interface operations

— getBridgeIsOpaque - Value of the opaque attribute.

— getBridgeMasterID - The slave interface or master interface reference ID.

— getBusInterfaceBitSteering - Bit steering description of the bus interface: on or off.

— getBusInterfaceBitsInLAU - The number bits in the least addressable unit. If none exists, the default

8 bits is returned.

— getBusInterfaceConnectionRequired - Connection required for this bus interface.

— getBusInterfaceEndianness - The endianess of the bus interface, big or little. The default is little.

— getBusInterfaceGroupName - Group name of a system, mirroredSystem, or monitor bus interface.

— getBusInterfaceMasterAddressSpaceID - ID of the master addressSpace.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 281

— getBusInterfaceMasterBaseAddress - Base address of the master addressSpace.

— getBusInterfaceMirroredSlaveRange - The address range of the mirrored slave interface.

— getBusInterfaceMirroredSlaveRemapAddressIDs - List of remap address IDs of the mirrored slave

interface.

— getBusInterfaceMonitorInterfaceMode - Indicates the mode of interface being monitored, slave,

master, system, mirrorslave, mirrormaster, or mirrorslave.

— getBusInterfaceSlaveBridgeIDs - List of slave bridge IDs.

— getBusInterfaceSlaveFileSetGroupIDs - List of fileSetGroup IDs.

— getBusInterfaceSlaveMemoryMapID - ID of the memoryMap referenced from a slave interface.

— getRemapAddressRemapStateID - Remap state ID of the given remap address element.

— getRemapAddressValue - Remap address of the given remap address element.

— setBusInterfaceBitSteering - Set bus interface bit steering value.

— setBusInterfaceMasterBaseAddress - Set base address of the master bus interface.

— setBusInterfaceMirroredSlaveRange - Set address range for the associated interface.

— setRemapAddressValue - Set remap address value for the associated interface.

Component instance operations

— getComponentInstanceComponentID - ID for the component associated with given instance

(crossing from design to component file).

— getComponentInstanceName - Instance name of the component.

— getComponentInstanceVLNV - VLNV of the component (from the design file).

— getComponentInstanceXML - Return the component XML in text format. Schema version is DE

dependent.

Component operations

— getChannelBusInterfaceIDs - List of busInterface IDs in this channel.

— getComponentAddressSpaceIDs - List of IDs for the logical address spaces in the component.

— getComponentBusInterfaceIDs - List of interface IDs.

— getComponentChannelIDs - A list of channel IDs.

— getComponentChoiceIDs - List of choices IDs.

— getComponentCpuIDs - List of cpu IDs of the component.

— getComponentElementType - Returns the type name of the XML element associated with the

component (currently only component). This call is being provided to cover a future scenario where

there can be different types of component elements instantiated in a design (e.g. , macroComponent

elements).

— getComponentFileSetIDs - List of file set IDs.

— getComponentGeneratorIDs - List of generator IDs of the component.

— getComponentMemoryMapIDs - List of IDs for memory map elements in the given component.

— getComponentModelParameterIDs - A list of model parameter IDs.

— getComponentOtherClockDriverIDs - List of clock driver IDs of the component.

— getComponentPortIDs - A list of component model port IDs.

— getComponentRemapStateIDs - A list of remap state IDs.

— getComponentVLNV - VLNV of the component (from the component file).

— getComponentViewIDs - A list of model view IDs.

— getComponentWhiteboxElementIDs - List of white box element IDs of the component.

— getCpuAddressSpaceIDs - List of address space reference IDs of the cpu.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

282 Copyright © 201 0 IEEE. Al l rights reserved.

Constraint operations

— getDriveConstraintType - Indicates the type of drive constraint: function class.

— getDriveConstraintValue - Returns the drive constraint. Format depends on the constraint type.

— getLoadConstraintCount - Returns the load constraint count, the number of loads.

— getLoadConstraintType - Indicates the type of load constraint: function class.

— getLoadConstraintValue - Returns the load constraint. Format is cell function and strength or cell

class and strength.

— getPortConstraintSetDriveConstraintIDs - List of drive constraint IDs of the port.

— getPortConstraintSetLoadConstraintIDs - List of load constraint IDs of the port.

— getPortConstraintSetRange - List of the left and right range of a port referenced by this constraint set.

— getPortConstraintSetReferenceName - Reference name of the given port constraint set.

— getPortConstraintSetTimingConstraintIDs - List of timing constraint IDs of the port.

— getTimingConstraintClockDetails - Indicates the clock name, clock edge, and delay type.

— getTimingConstraintValue - Returns the timing constraint value (cycle time percentage).

Design operations

— addAdHocConnection - Add new ad hoc connection.

— addAdHocExternalPortReference - Add an external port reference to an existing ad hoc connection.

— addAdHocInternalPortReference - Add an internal port reference to an existing ad hoc connection.

An identical port reference must not already exist in the ad hoc connection.

— addComponentInstance - Add new component instance.

— addHierConnection - Add new hierarchical connection.

— addHierarchicalMonitorInterconnection - Add new hierarchical interconnection between a

component and monitor. If there is already a monitorInterconnection for the given componentRef/

componentInterfaceRef, then the monitor connection is added to that element.

— addInterconnection - Add new interconnection between components.

— addMonitorInterconnection - Add new interconnection between a component and monitor. If there is

already a monitorInterconnection for the given componentRef/componentInterfaceRef, then the

monitor connection is added to that element.

— appendAbstractorInstance - Append a new abstractor instance to the interconnection.

— getAdHocConnectionExternalPortDetails - List for an external connection containing the portRef,

left, and right attribute values.

— getAdHocConnectionExternalPortReferenceIDs - List of external ad hoc port reference element IDs.

— getAdHocConnectionInternalPortReferenceDetails - List for an internal connection containing the

componentRef, portRef, left, and right attribute values.

— getAdHocConnectionInternalPortReferenceIDs - List of internal ad hoc port reference element IDs.

— getAdHocConnectionTiedValue - Get the tied value for an ad hoc connection.

— getComponentInstanceID - Return the component instance ID of the named component instance in

the given design.

— getDesignAdHocConnectionIDs - List of ad hoc connection element IDs.

— getDesignComponentInstanceIDs - Components instances IDs of the given design.

— getDesignHierConnectionIDs - List of hierarchical connection element IDs.

— getDesignID - Get ID of the current or top design.

— getDesignInterconnectionAbstractorInstanceIDs - List of abstractor instances IDs for this

interconnection.

— getDesignInterconnectionIDs - List of interconnection element IDs.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 283

— getDesignMonitorInterconnectionIDs - List of monitorInterconnection element IDs.

— getDesignVLNV - VLNV of the design.

— getHierConnectionDetails - List containing the interface name, component reference, and interface

reference.

— getInterconnectionActiveInterfaces - Returns the active interfaces as a list: componentRef

interfaceRef componentRef interfaceRef.

— getMonitorInterconnectionInterfaces - Returns the active interface and monitor interfaces as a list in

componentPathRef, componentRef, componentInterface, monitorPathRef, monitorRef,

monitorInterface format; the active interface comes first in the list.

— removeAbstractorInstance - Remove specified abstractor instance.

— removeAdHocExternalPortReference - Remove an external port reference from existing ad hoc

connection.

— removeAdHocInternalPortReference - Remove an internal port from existing ad hoc connection. The

ad hoc connection is removed when the last port reference is removed.

— removeComponentInstance - Remove specified component instance.

— removeHierConnection - Remove existing hierarchical connection.

— removeHierarchicalMonitorInterconnection - Remove a hierarchical interconnection between a

component and monitor. When the last monitor reference is removed, the entire

monitorInterconnection element will be removed.

— removeInterconnection - Remove interconnection between components, and any abstractors if

present.

— removeMonitorInterconnection - Remove interconnection between a component and monitor. When

the last monitor reference is removed, the entire monitorInterconnection element will be removed.

— replaceAbstractorInstance - Replace specified abstractor with new provided abstractor.

— replaceComponentInstance - Replace specified component with new provided component.

Field operations

— getRegisterFieldAccess - The accessibility of the data in the field.

— getRegisterFieldBitOffset - Bit offset of the fields LSB inside the register.

— getRegisterFieldBitWidth - Width of the field in bits.

— getRegisterFieldModifiedWriteValue - The modified write value for the field.

— getRegisterFieldReadAction - The read action for the field.

— getRegisterFieldTestConstraint - The test constraint required if the field can be tested with a simple

register test.

— getRegisterFieldTestable - True if the field can be tested with a simple register test.

— getRegisterFieldValue - Enumerated bit field value.

— getRegisterFieldValueIDs - List of IDs for field values for the given register field.

— getRegisterFieldValueName - Enumerated name for this register field value. Deprecated—use

getName.

— getRegisterFieldValueUsage - Enumerated bit field usage.

— getRegisterFieldVolatility - Indicates whether or not the data is volatile. The presumed value is false

if the element is not present.

— getRegisterFieldWriteValueConstraintMinMax - The value of a write constraint.

— getRegisterFieldWriteValueConstraintUseEnumeratedValues - The write value constraint shall use

the enumerated values.

— getRegisterFieldWriteValueConstraintWriteAsRead - The write value constraint is write as read.

— setRegisterFieldBitWidth - Set the width of the field in bits.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

284 Copyright © 201 0 IEEE. Al l rights reserved.

File and fileset operations

— getFileBuildCommandFlags - Flags of the file build command.

— getFileBuildCommandFlagsIsAppend - Value of append attribute on the flag element.

— getFileBuildCommandName - Name of the build command of the file.

— getFileBuildCommandReplaceDefaultFlags - Indicates whether or not to replace default flags.

— getFileBuildCommandTargetName - Target name of the file build command.

— getFileBuilderCommand - Command of the file builder.

— getFileBuilderFileType - FileType or userFileType of the file builder.

— getFileBuilderFlags - Flags of the file builder.

— getFileBuilderReplaceDefaultFlags - Value of the replaceDefaultFlags element of the file builder.

— getFileDefineSymbolIDs - List of define symbol IDs used in the file.

— getFileDependencies - List of dependent locations for the file, typically directories.

— getFileExportedNames - List of exported names of the file.

— getFileHasExternalDeclarations - Indicates that the file includes external declarations required by the

top-level netlist file.

— getFileImageTypes - List of image types of the file.

— getFileIsIncludeFile - Indicates that the given file is an include file.

— getFileLogicalName - Logical name of the file.

— getFileLogicalNameDefault - Default attribute of logical name of the file.

— getFileName - Get name of the given fileID.

— getFileSetDependencies - List of dependent locations for the fileSet, typically directories.

— getFileSetFileBuilderIDs - List of file builder IDs used for this fileSet.

— getFileSetFileIDs - List of file IDs of the fileSet.

— getFileSetFunctionIDs - List of function IDs.

— getFileSetGroupFileSetIDs - List of fileSet IDs in this file set group.

— getFileSetGroupName - Name of fileSet group.

— getFileSetGroups - List of group names of the fileSet.

— getFileType - FileType or userFileType of the file.

— getFunctionArgumentDataType - Data type of the argument.

— getFunctionArgumentIDs - List of argument IDs of the function of the fileSet.

— getFunctionDisabled - Indicates whether or not the function is disabled.

— getFunctionEntryPoint - Entry point of the function.

— getFunctionFileID - File ID containing the function entry point.

— getFunctionReplicate - Value of replicate attribute on function element.

— getFunctionReturnType - Return type of the function.

— getFunctionSourceFileIDs - List of source file IDs of the function of the fileSet.

— getFunctionSourceFileName - Name of the source file.

— getFunctionSourceFileType - FileType or userFileType of the source file.

— setFileBuildCommandFlags - Set command flags for the given file builder.

— setFileBuildCommandName - Set command name for the given file builder.

— setFileBuildCommandReplaceDefaultFlags - Set replace default flags for the given file builder.

— setFileBuildCommandTargetName - Set target name for build command for the given file.

— setFileBuilderCommand - Set command associated with file builder.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 285

— setFileBuilderFlags - Set flags associated with the given file builder.

— setFileBuilderReplaceDefaultFlags - Set value of replace default flags in file builder.

— setFileName - Set name of the given file.

— setFunctionDisabled - Set disable flag on function.

Generator operations

— getGeneratorApiType - Api type of the generator.

— getGeneratorExecutable - Executable name associated with the generator.

— getGeneratorGroups - List of group names of the generator.

— getGeneratorIsHidden - Value of hidden attribute on the generator.

— getGeneratorPhase - Phase number of the generator.

— getGeneratorScope - Scope of the generator.

— getGeneratorTransportMethods - List of transport methods of the generator.

Interface operations

— getInterfaceAbstractionTypeVLNV - List of VLNV of the abstraction definition.

— getInterfaceBusTypeVLNV - List of VLNV of the bus definition.

— getInterfaceMode - Mode of the interface: master, slave, system, mirroredMaster, mirroredSlave,

mirroredSystem, or monitor.

— getInterfacePortMapIDs - List of interface port map IDs.

— getLogicalPhysicalMapIDs - List of the logical and physical port map IDs.

— getPortMapRange - List of left and right range of the port map.

— setPortMapRange - Set left/right range of an interface port map.

Miscellaneous operations

— end - Terminate connection to the DE.

— getChoiceEnumerationHelp - Value of the enumeration help attribute.

— getChoiceEnumerationIDs - List of choice enumeration IDs of the choice.

— getChoiceEnumerationText - Value of the enumeration text attribute.

— getChoiceEnumerationValue - Value of the enumeration element.

— getChoiceName - Name of the choice.

— getDescription - Return the description of the specified element.

— getDisplayName - Return the displayName of the specified element.

— getErrorMessage - Get error message from prior callback.

— getGeneratorContextComponentInstanceID - ID for the component instance associated with the

currently invoked generator.

— getIdValue - Return the value of the spirit: id attribute on a ID.

— getModelParameterDataType - Data type of the model parameter.

— getModelParameterUsageType - Usage type of the model parameter.

— getName - Return the name of the specified element.

— getParameterIDs - List of parameter IDs from the given element (any of which contains

spirit:parameter elements).

— getUnconfiguredID - Return the unconfigured ID from a configured ID.

— getValue - Get the value of a parameterID, fileDefineIDs, or argumentIDs.

— getValueAttribute - Returns the value of the given attribute name on the elementID/value element.

— getVendorAttribute - Get vendor-defined attribute from the given element.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

286 Copyright © 201 0 IEEE. Al l rights reserved.

— getVendorExtensions - Returns the complete XML text of the vendor extension element including

the spirit:vendorExtension tag, as a well-formed XML document.

— getWarningCount - Return count of how many potentially incompatible API calls have been made.

— getXMLForVLNV - Return XML of the IP-XACT object identified by the given VLNV.

— init - API initialization function. Must be called before any other API call.

— message - Send message level and message text to DE.

— registerVLNV - Indicate to DE where the file resides for the IP-XACT element with the given

VLNV.

— setValue - Set the value of a parameterID, fileDefineIDs, or argumentIDs.

— setVendorAttribute - Set vendor-defined attribute on the given element.

— setVendorExtensions - Set vendor extensions. See NOTE.

Port operations

— getAllLogicalDirectionsAllowed - Get the value of the allLogicalDirectionAllowed attribute.

— getClockDriverName - Name of the clock driver.

— getClockDriverPeriod - Clock period of the given clock.

— getClockDriverPeriodUnits - Units of the clock period of the given clock.

— getClockDriverPulseDuration - Clock period of the given clock.

— getClockDriverPulseDurationUnits - Units of the clock pulse duration of the given clock.

— getClockDriverPulseOffset - Clock pulse offset of the given clock.

— getClockDriverPulseOffsetUnits - Units of the clock pulse offset of the given clock.

— getClockDriverPulseValue - Clock pulse value of the given clock.

— getClockDriverSource - Source name of the clock driver.

— getPortAccessHandle - Alternate name to be used when accessing this port.

— getPortAccessType - Indicates the access type for this port.

— getPortClockDriverID - Element ID of clock driver element, if present.

— getPortConstraintSetIDs - List of constraint sets IDs of the port.

— getPortDefaultValue - Default value of the port, if not set returns "".

— getPortDirection - Direction of the port.

— getPortMaxAllowedConnections - Maximum allowed connections for this transactional port.

— getPortMinAllowedConnections - Minimum allowed connections for this transactional port.

— getPortRange - List of the left and right range of the port.

— getPortServiceID - ID of element representing the service of a transactional port.

— getPortSingleShotDriverID - Element ID of single shot driver element, if present.

— getPortSingleShotPulseDuration - Clock period of the port.

— getPortSingleShotPulseOffset - Clock pulse offset of the port.

— getPortSingleShotPulseValue - Clock pulse value of the port.

— getPortStyle - Returns wire or transactional to indicate the port style.

— getPortTransactionalTypeDefID - The type definition for a transactional portID.

— getPortWireTypeDefIDs - List of typeDefs for a wire portID.

— setClockDriverPeriod - Set period of the given clock port.

— setClockDriverPulseDuration - Set pulse duration of the given clock port.

— setClockDriverPulseOffset - Set pulse offset value of the given clock port.

— setClockDriverPulseValue - Set pulse value of the given clock port.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 287

— setPortDefaultValue - Set default value of the given port.

— setPortRange - Set left/right range for the given port.

— setPortSingleShotPulseDuration - Set pulse duration of given single shot port.

— setPortSingleShotPulseOffset - Set pulse offset of given single shot port.

— setPortSingleShotPulseValue - Set pulse value of given single shot port.

Register file operations

— getRegisterFileAddressOffset - The offset from the base address.

— getRegisterFileDimensions - Dimensions of a register file array.

— getRegisterFileRange - The register file range in number of addressable units.

— getRegisterFileRegisterFileIDs - List of IDs for the register files of the given register file.

— getRegisterFileRegisterIDs - List of IDs for the registers of the given register file.

— setRegisterFileRange - Set the register file range in addressable units.

Register operations

— getRegisterAccess - The accessibility of the data in the register.

— getRegisterAddressOffset - The offset from the base address.

— getRegisterAlternateGroups - Indicates the group names for an alternate register.

— getRegisterAlternateRegisterIDs - List of IDs for the alternate registers of the given register.

— getRegisterDimensions - Dimensions of a register array.

— getRegisterFieldIDs - List of IDs for the fields of the given register.

— getRegisterResetMask - Mask to be ANDed with the value before comparing to reset value.

— getRegisterResetValue - Register value at reset.

— getRegisterSize - The register size in bits.

— getRegisterVolatility - Indicates whether or not the data is volatile.

— setRegisterResetMask - Set the mask to be ANDed with the value before comparing to reset value.

— setRegisterResetValue - Set register value at reset.

— setRegisterSize - Set the register size in bits.

Remap operations

— getRemapStatePortIDs - List of remap port IDs of a remap state.

— getRemapStatePortPortID - Port ID for the remap state.

— getRemapStatePortPortIndex - Index of the port if a vector for the remap state.

— getRemapStatePortPortValue - Value of the port for the remap state.

Service operations

— getAbstractionDefAbstractionServiceTypeDefIDs - List of type definitions for an

abstractionServiceID.

— getAbstractionDefServiceInitiative - Port service initiative from the abstraction definition.

— getServiceInitiative - Initiative of the service.

— getServiceTypeDefIDs - List of typeDefs for a serviceID.

Typedef operations

— getTypeDefConstrained - Is the type name constrained?

— getTypeDefImplicit - Is the type name implicit?

— getTypeDefTypeDefinitions - List of type definition for the given type.

— getTypeDefTypeName - Name of the type.

— getTypeDefTypeViewIDs - List of type viewIDs for the given type.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

288 Copyright © 201 0 IEEE. Al l rights reserved.

View operations

— getViewDefaultFileBuilderIDs - List of default file builder IDs of the view.

— getViewDesignID - ID of the design associated with a hierarchical view.

— getViewEnvIdentifiers - List of environment identifiers of the view.

— getViewFileSetIDs - List of fileSet IDs for fileSets referenced by the view.

— getViewLanguage - View Language.

— getViewLanguageIsStrict - Value of strict attribute on view language element.

— getViewModelName - Get the model name for this view.

— getViewPortConstraintSetIDs - Constraint set ID for the port referenced by the view.

— getViewWhiteboxElementRefIDs - List of white box element reference IDs of the view.

White box operations

— getWhiteboxElementDrivable - Indicates whether or not the white box element is drivable.

— getWhiteboxElementRefID - White box element reference ID.

— getWhiteboxElementRegisterIDs - Register reference IDs of the white box element.

— getWhiteboxElementType - Type of the white box element.

— getWhiteboxRefPathIDs - List of path IDs of the white box element reference.

— getWhiteboxRefPathName - Name of the white box reference path element.

— getWhiteboxRefPathRange - List of left and right range of the white box reference path element.

G.7.2 Abstraction definition operations

G.7.2.1 getAbstractionDefBusTypeVLNV

Description: Get VLNV of the bus definition.

— Input: abstractionDefID of type xsd:string.

— Returns: vlnvValue of type spirit:soapStringArrayType.

G.7.2.2 getAbstractionDefExtends

Description: VLNV of the abstraction definition being extended.

— Input: abstractionDefID of type xsd:string.

— Returns: vlnvValue of type spirit:soapStringArrayType.

G.7.2.3 getAbstractionDefID

Description: ID for the abstraction definition with the given VLNV.

— Input: vlnvValue of type spirit:soapStringArrayType.

— Returns: abstractionDefID of type xsd:string.

G.7.2.4 getAbstractionDefPortDefaultValue

Description: Default value for port when not connected.

— Input: abstractionDefPortID of type xsd:string.

— Returns: value of type xsd:string.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 289

G.7.2.5 getAbstractionDefPortDriveConstraintIDs

Description: List of drive constraint IDs of the port.

— Input: abstractionDefPortModeConstraintID of type xsd:string.

— Returns: driveConstraintIDs of type spirit:soapStringArrayType.

G.7.2.6 getAbstractionDefPortIDs

Description: List of abstraction definition port element IDs.

— Input: abstractionDefID of type xsd:string.

— Returns: abstractionDefPortIDs of type spirit:soapStringArrayType.

G.7.2.7 getAbstractionDefPortIsAddress

Description: Is this port an address port.

— Input: abstractionDefPortID of type xsd:string.

— Returns: booleanValue of type xsd:boolean.

G.7.2.8 getAbstractionDefPortIsClock

Description: Is this port a clock port.

— Input: abstractionDefPortID of type xsd:string.

— Returns: booleanValue of type xsd:boolean.

G.7.2.9 getAbstractionDefPortIsData

Description: Is this port a data port.

— Input: abstractionDefPortID of type xsd:string.

— Returns: booleanValue of type xsd:boolean.

G.7.2.1 0 getAbstractionDefPortIsReset

Description: Is this port a reset port.

— Input: abstractionDefPortID of type xsd:string.

— Returns: booleanValue of type xsd:boolean.

G.7.2.1 1 getAbstractionDefPortLoadConstraintIDs

Description: List of load constraint IDs of the port.

— Input: abstractionDefPortModeConstraintID of type xsd:string.

— Returns: loadConstraintIDs of type spirit:soapStringArrayType.

G.7.2.1 2 getAbstractionDefPortLogicalName

Description: Logical name of this abstraction definition port.

— Input: abstractionDefPortID of type xsd:string.

— Returns: value of type xsd:string.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

290 Copyright © 201 0 IEEE. Al l rights reserved.

G.7.2.1 3 getAbstractionDefPortMirroredConstraintIDs

Description: List of constraint IDs for a mirrored port.

— Input: abstractionDefPortModeID of type xsd:string.

— Returns: abstractionDefPortModeConstraintIDs of type spirit:soapStringArrayType.

G.7.2.1 4 getAbstractionDefPortModeBitWidth

Description: Bit width constraint when present on an interface of the given type.

— Input: abstractionDefPortModeID of type xsd:string.

— Returns: nonNegativeIntegerValue of type xsd:nonNegativeInteger. a return value of 0

indicates unbounded.

G.7.2.1 5 getAbstractionDefPortModeDirection

Description: Port direction constraint when present on an interface of the given type.

— Input: abstractionDefPortModeID of type xsd:string.

— Returns: direction of type xsd:string.

G.7.2.1 6 getAbstractionDefPortModeGroup

Description: Group name when present on a system interface.

— Input: abstractionDefPortModeID of type xsd:string.

— Returns: value of type xsd:string.

G.7.2.1 7 getAbstractionDefPortModeIDs

Description: Returns an array of IDs for accessing the given port in the given interface mode. The array shall

only contain one element if the modeValue input is master or slave. The array may contain multiple

elements for modeValue system.

— Input: modeValue of type xsd:string. modeValue should be one of master, slave or system.

— Input: abstractionDefPortID of type xsd:string.

— Returns: abstractionDefPortModeID of type spirit:soapStringArrayType.

G.7.2.1 8 getAbstractionDefPortModePresence

Description: Existence requirement for this port on an interface of the given type.

— Input: abstractionDefPortModeID of type xsd:string.

— Returns: presence of type xsd:string.

G.7.2.1 9 getAbstractionDefPortModeServiceID

Description: AbstractionDef service ID on a transactional port.

— Input: abstractionDefPortModeID of type xsd:string.

— Returns: abstractionServiceID of type xsd:string.

G.7.2.20 getAbstractionDefPortNonMirroredConstraintIDs

Description: List of constraint IDs for a non-mirrored port.

— Input: abstractionDefPortModeID of type xsd:string.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 291

— Returns: abstractionDefPortModeConstraintIDs of type spirit:soapStringArrayType.

G.7.2.21 getAbstractionDefPortRequiredDriverType

Description: Required driver type for this port.

— Input: abstractionDefPortID of type xsd:string.

— Returns: value of type xsd:string.

G.7.2.22 getAbstractionDefPortRequiresDriver

Description: Does this port require a driver.

— Input: abstractionDefPortID of type xsd:string.

— Returns: booleanValue of type xsd:boolean.

G.7.2.23 getAbstractionDefPortStyle

Description: Returns wire or transactional to indicate the port style.

— Input: abstractionDefPortID of type xsd:string.

— Returns: value of type xsd:string.

G.7.2.24 getAbstractionDefPortTimingConstraintIDs

Description: List of timing constraint IDs of the port.

— Input: abstractionDefPortModeConstraintID of type xsd:string.

— Returns: timingConstraintIDs of type spirit:soapStringArrayType.

G.7.2.25 getAbstractionDefVLNV

Description: VLNV of the abstraction definition.

— Input: abstractionDefID of type xsd:string.

— Returns: vlnvValue of type spirit:soapStringArrayType.

G.7.3 Abstractor instance operations

G.7.3.1 getAbstractorInstanceAbstractorID

Description: ID for the abstractor associated with given instance (crossing from design configuration to

abstractor file).

— Input: abstractorInstanceID of type xsd:string.

— Returns: abstractorID of type xsd:string.

G.7.3.2 getAbstractorInstanceName

Description: Instance name of the abstractor.

— Input: abstractorInstanceID of type xsd:string.

— Returns: value of type xsd:string.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

292 Copyright © 201 0 IEEE. Al l rights reserved.

G.7.3.3 getAbstractorInstanceVLNV

Description: VLNV of the abstractor (from the design file).

— Input: abstractorInstanceID of type xsd:string.

— Returns: vlnvValue of type spirit:soapStringArrayType.

G.7.3.4 getAbstractorInstanceXML

Description: Return the abstractor XML in text format. Schema version is DE dependent.

— Input: abstractorInstanceID of type xsd:string.

— Returns: xmlText of type xsd:string.

G.7.4 Abstractor operations

G.7.4.1 getAbstractorAbstractorInterfaceIDs

Description: List of two interface IDs.

— Input: abstractorID of type xsd:string.

— Returns: interfaceIDs of type spirit:soapStringArrayType.

G.7.4.2 getAbstractorAbstractorMode

Description: Get the mode that the abstractor can be master, slave, direct, or system.

— Input: abstractorID of type xsd:string.

— Returns: value of type xsd:string.

G.7.4.3 getAbstractorBusTypeVLNV

Description: List of VLNV of the bus definition.

— Input: interfaceID of type xsd:string.

— Returns: vlnvValue of type spirit:soapStringArrayType.

G.7.4.4 getAbstractorChoiceIDs

Description: List of choices IDs.

— Input: abstractorID of type xsd:string.

— Returns: choiceIDs of type spirit:soapStringArrayType.

G.7.4.5 getAbstractorFileSetIDs

Description: List of file set IDs.

— Input: abstractorID of type xsd:string.

— Returns: fileSetIDs of type spirit:soapStringArrayType.

G.7.4.6 getAbstractorGeneratorIDs

Description: List of generator IDs of the abstractor.

— Input: abstractorID of type xsd:string.

— Returns: generatorIDs of type spirit:soapStringArrayType.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 293

G.7.4.7 getAbstractorModelParameterIDs

Description: A list of model parameter IDs.

— Input: abstractorID of type xsd:string.

— Input: usageType of type xsd:string. Restrict returned parameters to those that match the given

usageType. nontyped or typed or all if not specified.

— Returns: parameterIDs of type spirit:soapStringArrayType.

G.7.4.8 getAbstractorPortIDs

Description: A list of abstractor model port IDs.

— Input: abstractorID of type xsd:string.

— Returns: portIDs of type spirit:soapStringArrayType.

G.7.4.9 getAbstractorViewIDs

Description: A list of model view IDs.

— Input: abstractorID of type xsd:string.

— Input: configured of type xsd:boolean. If true returns only the view configured by a

designConfiguration. If false returns all views.

— Returns: viewIDs of type spirit:soapStringArrayType.

G.7.5 Address map operations

G.7.5.1 getAddressBlockAccess

Description: The accessibility of the data in the local address block.

— Input: addressBlockID of type xsd:string.

— Returns: value of type xsd:string.

G.7.5.2 getAddressBlockBaseAddress

Description: The base address of an address block.

— Input: elementID of type xsd:string.

— Legal value: addressBlockID of type xsd:string.

— Legal value: addressBlockUID of type xsd:string.

— Returns: baseAddress of type spirit:spiritNumberType.

G.7.5.3 getAddressBlockRange

Description: The address range of an address block expressed as the number of accessible and addressable

units.

— Input: elementID of type xsd:string.

— Legal value: addressBlockID of type xsd:string.

— Legal value: addressBlockUID of type xsd:string.

— Returns: range of type spirit:spiritNumberType.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

294 Copyright © 201 0 IEEE. Al l rights reserved.

G.7.5.4 getAddressBlockRegisterFileIDs

Description: The IDs of the available register files in the address block.

— Input: addressBlockID of type xsd:string.

— Returns: registerFileIDs of type spirit:soapStringArrayType.

G.7.5.5 getAddressBlockRegisterIDs

Description: The IDs of the available registers in the address block.

— Input: addressBlockID of type xsd:string.

— Returns: registerIDs of type spirit:soapStringArrayType.

G.7.5.6 getAddressBlockUsage

Description: Indicates the usage of this address block.

— Input: addressBlockID of type xsd:string.

— Returns: usage of type xsd:string. One of memory, register, reserved or "" if not set.

G.7.5.7 getAddressBlockVolatility

Description: Indicates whether or not the data is volatile.

— Input: addressBlockID of type xsd:string.

— Returns: value of type xsd:string. Returns true, false or "".

G.7.5.8 getAddressBlockWidth

Description: The bit width of an address block in the local memory map.

— Input: elementID of type xsd:string.

— Legal value: addressBlockID of type xsd:string.

— Legal value: addressBlockUID of type xsd:string.

— Returns: width of type xsd:nonNegativeInteger.

G.7.5.9 getAddressSpaceAddressUnitBits

Description: The number bits in an addressable unit. If none exists, the default 8 bits is returned.

— Input: addressSpaceID of type xsd:string.

— Returns: addressUnitBits of type xsd:positiveInteger.

G.7.5.1 0 getAddressSpaceLocalMemoryMapID

Description: The ID for the local memory map of the address space.

— Input: addressSpaceID of type xsd:string.

— Returns: localMemoryMapID of type xsd:string.

G.7.5.1 1 getAddressSpaceRange

Description: The address range of an address block expressed as the number of accessable and addressable

units.

— Input: elementID of type xsd:string.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 295

— Legal value: addressSpaceID of type xsd:string.

— Legal value: addressSpaceUID of type xsd:string.

— Returns: range of type spirit:spiritNumberType.

G.7.5.1 2 getAddressSpaceSegmentIDs

Description: List of IDs for address block segments for the address space.

— Input: addressSpaceID of type xsd:string.

— Returns: segmentIDs of type spirit:soapStringArrayType.

G.7.5.1 3 getAddressSpaceWidth

Description: The bit width of an address block.

— Input: elementID of type xsd:string.

— Legal value: addressSpaceID of type xsd:string.

— Legal value: addressSpaceUID of type xsd:string.

— Returns: width of type xsd:nonNegativeInteger.

G.7.5.1 4 getBankAccess

Description: The accessibility of the data in the local address bank.

— Input: bankID of type xsd:string.

— Returns: value of type xsd:string.

G.7.5.1 5 getBankAlignment

Description: The bank alignment value, serial or parallel.

— Input: bankID of type xsd:string.

— Returns: value of type xsd:string.

G.7.5.1 6 getBankBaseAddress

Description: The base address of an address bank.

— Input: elementID of type xsd:string.

— Legal value: bankID of type xsd:string.

— Legal value: bankUID of type xsd:string.

— Returns: value of type spirit:spiritNumberType.

G.7.5.1 7 getBankUsage

Description: Indicates the usage of this address bank.

— Input: bankID of type xsd:string.

— Returns: usage of type xsd:string.

G.7.5.1 8 getBankVolatility

Description: Indicates whether or not the data is volatile.

— Input: bankID of type xsd:string.

— Returns: value of type xsd:string. Returns true, false, or "".

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

296 Copyright © 201 0 IEEE. Al l rights reserved.

G.7.5.1 9 getExecutableImageFileBuilderIDs

Description: List of default file builder IDs of the executable image.

— Input: executableImageID of type xsd:string.

— Returns: fileBuilderIDs of type spirit:soapStringArrayType.

G.7.5.20 getExecutableImageFileSetIDs

Description: The group of file set reference IDs complying with the tool set of the current executable image.

— Input: executableImageID of type xsd:string.

— Returns: fileSetIDs of type spirit:soapStringArrayType.

G.7.5.21 getExecutableImageIDs

Description: The IDs of the executable images belonging to the specified address space.

— Input: addressSpaceID of type xsd:string.

— Returns: executableImageIDs of type spirit:soapStringArrayType.

G.7.5.22 getExecutableImageLinkerCommand

Description: The linker command for the current executable image.

— Input: elementID of type xsd:string.

— Legal value: executableImageID of type xsd:string.

— Legal value: executableImageUID of type xsd:string.

— Returns: value of type xsd:string.

G.7.5.23 getExecutableImageLinkerCommandFileID

Description: Element ID of linkerCommandFile associated with given executable image.

— Input: executableImageID of type xsd:string.

— Returns: linkerCommandFileID of type xsd:string.

G.7.5.24 getExecutableImageLinkerFlags

Description: The flags of the current executable image linker command.

— Input: elementID of type xsd:string.

— Legal value: executableImageID of type xsd:string.

— Legal value: executableImageUID of type xsd:string.

— Returns: value of type xsd:string.

G.7.5.25 getExecutableImageType

Description: The type of the executable image if existent.

— Input: executableImageID of type xsd:string.

— Returns: value of type xsd:string.

G.7.5.26 getLinkerCommandFileEnable

Description: Indicates whether or not to generate and enable the linker command file.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 297

— Input: elementID of type xsd:string.

— Legal value: linkerCommandFileID of type xsd:string.

— Legal value: linkerCommandFileUID of type xsd:string.

— Returns: booleanValue of type xsd:boolean.

G.7.5.27 getLinkerCommandFileLineSwitch

Description: The command line switch to specify with the linker command file.

— Input: elementID of type xsd:string.

— Legal value: linkerCommandFileID of type xsd:string.

— Legal value: linkerCommandFileUID of type xsd:string.

— Returns: value of type xsd:string.

G.7.5.28 getLinkerCommandFileName

Description: The name of the linker command file.

— Input: elementID of type xsd:string.

— Legal value: linkerCommandFileID of type xsd:string.

— Legal value: linkerCommandFileUID of type xsd:string.

— Returns: fileName of type spirit:spiritURI.

G.7.5.29 getLinkerCommandGeneratorIDs

Description: Reference IDs to the generator elements for generating the linker command file.

— Input: linkerCommandFileID of type xsd:string.

— Returns: generatorIDs of type spirit:soapStringArrayType.

G.7.5.30 getMemoryMapAddressUnitBits

Description: The number bits in an addressable unit for a memory map. If none exists, the default 8 bits is

returned.

— Input: memoryMapID of type xsd:string.

— Returns: addressUnitBits of type xsd:positiveInteger.

G.7.5.31 getMemoryMapElementIDs

Description: List of element IDs (addressBlockID, bankID, subspaceMapID) within a memory map,

memory remap, local memory map, or bank.

— Input: elementID of type xsd:string.

— Legal value: localMemoryMapID of type xsd:string.

— Legal value: bankID of type xsd:string.

memoryMapID of type xsd:string.

— Legal value: memoryRemapID of type xsd:string.

— Returns: memoryMapElementIDs of type spirit:soapStringArrayType.

— Possible value(s): addressBlockID of type xsd:string.

— Possible value(s): bankID of type xsd:string.

— Possible value(s): subspaceMapID of type xsd:string.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

298 Copyright © 201 0 IEEE. Al l rights reserved.

G.7.5.32 getMemoryMapElementType

Description: Indicates type of memory map element: addressBlock, bank, or subspaceMap.

— Input: memoryMapElementID of type xsd:string.

— Legal value: addressBlockID of type xsd:string.

— Legal value: bankID of type xsd:string.

— Legal value: subspaceMapID of type xsd:string.

— Returns: type of type xsd:string. The return value is one of addressBlock, bank, subspaceMap or

"" for unknown.

G.7.5.33 getMemoryMapRemapElementIDs

Description: List of IDs for memory map remap elements of the given memory map.

— Input: memoryMapID of type xsd:string.

— Returns: memoryRemapIDs of type spirit:soapStringArrayType.

G.7.5.34 getMemoryRemapStateID

Description: Remap State ID for which this remap is applicable.

— Input: memoryRemapID of type xsd:string.

— Returns: remapStateID of type xsd:string.

G.7.5.35 getSegmentAddressOffset

Description: The address offset of an address space segment in an address space.

— Input: elementID of type xsd:string.

— Legal value: segmentID of type xsd:string.

— Legal value: segmentUID of type xsd:string.

— Returns: addressOffset of type spirit:spiritNumberType.

G.7.5.36 getSegmentRange

Description: The address range of an address space segment expressed as the number of accessable

addressable units.

— Input: elementID of type xsd:string.

— Legal value: segmentID of type xsd:string.

— Legal value: segmentUID of type xsd:string.

— Returns: range of type spirit:spiritNumberType.

G.7.5.37 getSubspaceMapBaseAddress

Description: The base address of a memory subspace.

— Input: elementID of type xsd:string.

— Legal value: subspaceMapID of type xsd:string.

— Legal value: subspaceMapUID of type xsd:string.

— Returns: value of type spirit:spiritNumberType.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 299

G.7.5.38 getSubspaceMapMasterID

Description: Master bus interface ID on the other side of a bus bridge.

— Input: subspaceMapID of type xsd:string.

— Returns: interfaceID of type xsd:string.

G.7.5.39 getSubspaceMapSegmentID

Description: Address space segment ID on the other side of a bus bridge.

— Input: subspaceMapID of type xsd:string.

— Returns: segmentID of type xsd:string.

G.7.5.40 getTypeIdentifier

Description: Indicates the type identifier of an addressBlock, registerFile, register, or field.

— Input: elementID of type xsd:string.

— Legal value: addressBlockID of type xsd:string.

— Legal value: registerFileID of type xsd:string.

— Legal value: registerID of type xsd:string.

— Legal value: alternateRegisterID of type xsd:string.

— Legal value: regFieldID of type xsd:string.

— Returns: identifier of type xsd:string.

G.7.5.41 setAddressBlockBaseAddress

Description: Set the base address of an address block.

— Input: addressBlockID of type xsd:string.

— Input: baseAddress of type spirit:spiritNumberType.

— Returns: status of type xsd:integer.

G.7.5.42 setAddressBlockRange

Description: Set the address range of an address block expressed as the number of accessable and

addressable units.

— Input: addressBlockID of type xsd:string.

— Input: spiritNumberTypeValue of type spirit:spiritNumberType.

— Returns: status of type xsd:integer.

G.7.5.43 setAddressBlockWidth

Description: Set the bit width of an address block.

— Input: addressBlockID of type xsd:string.

— Input: nonNegativeIntegerValue of type xsd:nonNegativeInteger.

— Returns: status of type xsd:integer.

G.7.5.44 setAddressSpaceRange

Description: Set the address range of an address block expressed as the number of accessable and

addressable units.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

300 Copyright © 201 0 IEEE. Al l rights reserved.

— Input: addressSpaceID of type xsd:string.

— Input: range of type spirit:spiritNumberType.

— Returns: status of type xsd:integer.

G.7.5.45 setAddressSpaceWidth

Description: Set the bit width of an address block.

— Input: addressSpaceID of type xsd:string.

— Input: width of type xsd:nonNegativeInteger.

— Returns: status of type xsd:integer.

G.7.5.46 setBankBaseAddress

Description: Set the base address of an address bank.

— Input: bankID of type xsd:string.

— Input: baseAddress of type spirit:spiritNumberType.

— Returns: status of type xsd:integer.

G.7.5.47 setExecutableImageLinkerCommand

Description: Set the linker command for the current executable image.

— Input: executableImageID of type xsd:string.

— Input: value of type xsd:string.

— Returns: status of type xsd:integer.

G.7.5.48 setExecutableImageLinkerFlags

Description: Set the flags of the current executable image linker command.

— Input: executableImageID of type xsd:string.

— Input: value of type xsd:string.

— Returns: status of type xsd:integer.

G.7.5.49 setLinkerCommandFileEnable

Description: Set whether or not to generate and enable the linker command file.

— Input: linkerCommandFileID of type xsd:string.

— Input: value of type xsd:boolean.

— Returns: status of type xsd:integer.

G.7.5.50 setLinkerCommandFileLineSwitch

Description: Set the command line switch to specify with the linker command file.

— Input: linkerCommandFileID of type xsd:string.

— Input: value of type xsd:string.

— Returns: status of type xsd:integer.

G.7.5.51 setLinkerCommandFileName

Description: Set the name of the linker command file.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 301

— Input: linkerCommandFileID of type xsd:string.

— Input: fileName of type spirit:spiritURI.

— Returns: status of type xsd:integer.

G.7.5.52 setSegmentAddressOffset

Description: Set the address offset of an address space segment expressed in the number addressable units.

— Input: segmentID of type xsd:string.

— Input: addressOffset of type spirit:spiritNumberType.

— Returns: status of type xsd:integer.

G.7.5.53 setSegmentRange

Description: Set the address range of an address space segment expressed as the number of accessable

addressable units.

— Input: segmentID of type xsd:string.

— Input: range of type spirit:spiritNumberType.

— Returns: status of type xsd:integer.

G.7.5.54 setSubspaceMapBaseAddress

Description: Set the base address of a memory subspace.

— Input: subspaceMapID of type xsd:string.

— Input: spiritNumberTypeValue of type spirit:spiritNumberType.

— Returns: status of type xsd:integer.

G.7.6 Bus definition operations

G.7.6.1 getBusDefinitionDirectConnection

Description: Indicates whether or not the bus definition supports direct connections.

— Input: busdefID of type xsd:string.

— Returns: booleanValue of type xsd:boolean.

G.7.6.2 getBusDefinitionExtends

Description: VLNV of the bus definition being extended.

— Input: busdefID of type xsd:string.

— Returns: vlnvValue of type spirit:soapStringArrayType.

G.7.6.3 getBusDefinitionID

Description: ID for the bus definition with the given VLNV.

— Input: vlnvValue of type spirit:soapStringArrayType.

— Returns: busdefID of type xsd:string.

G.7.6.4 getBusDefinitionIsAddressable

Description: Indicates whether or not the bus definition is an addressable bus.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

302 Copyright © 201 0 IEEE. Al l rights reserved.

— Input: busdefID of type xsd:string.

— Returns: booleanValue of type xsd:boolean.

G.7.6.5 getBusDefinitionMaxMasters

Description: Maximum # of masters supported by this bus definition.

— Input: busdefID of type xsd:string.

— Returns: value of type xsd:integer. –1 indicates unbounded.

G.7.6.6 getBusDefinitionMaxSlaves

Description: Maximum # of slaves supported by this bus definition.

— Input: busdefID of type xsd:string.

— Returns: value of type xsd:integer. –1 indicates unbounded.

G.7.6.7 getBusDefinitionSystemGroupNames

Description: List of system group names for this bus definition.

— Input: busdefID of type xsd:string.

— Returns: groupNames of type spirit:soapStringArrayType.

G.7.6.8 getBusDefinitionVLNV

Description: VLNV of the bus definition.

— Input: busdefID of type xsd:string.

— Returns: vlnvValue of type spirit:soapStringArrayType.

G.7.7 Bus interface operations

G.7.7.1 getBridgeIsOpaque

Description: Value of the opaque attribute.

— Input: bridgeID of type xsd:string.

— Returns: booleanValue of type xsd:boolean.

G.7.7.2 getBridgeMasterID

Description: The slave interface or master interface reference ID.

— Input: bridgeID of type xsd:string.

— Returns: interfaceID of type xsd:string.

G.7.7.3 getBusInterfaceBitSteering

Description: Bit steering description of the bus interface: on or off.

— Input: elementID of type xsd:string.

— Legal value: interfaceID of type xsd:string.

— Legal value: interfaceUID of type xsd:string.

— Returns: bitSteeringValue of type xsd:string.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 303

G.7.7.4 getBusInterfaceBitsInLAU

Description: The number bits in the least addressable unit. If none exists, the default 8 bits is returned.

— Input: interfaceID of type xsd:string.

— Returns: bitsInLau of type xsd:positiveInteger.

G.7.7.5 getBusInterfaceConnectionRequired

Description: Connection required for this bus interface.

— Input: interfaceID of type xsd:string.

— Returns: booleanValue of type xsd:boolean.

G.7.7.6 getBusInterfaceEndianness

Description: The endianess of the bus interface, big or little. The default is little.

— Input: interfaceID of type xsd:string.

— Returns: spiritEndianessValue of type xsd:string.

G.7.7.7 getBusInterfaceGroupName

Description: Group name of a system, mirroredSystem, or monitor bus interface.

— Input: interfaceID of type xsd:string.

— Returns: value of type xsd:string.

G.7.7.8 getBusInterfaceMasterAddressSpaceID

Description: ID of the master addressSpace.

— Input: interfaceID of type xsd:string.

— Returns: addressSpaceID of type xsd:string.

G.7.7.9 getBusInterfaceMasterBaseAddress

Description: Base address of the master addressSpace.

— Input: elementID of type xsd:string.

— Legal value: interfaceID of type xsd:string.

— Legal value: interfaceUID of type xsd:string.

— Returns: spiritNumberTypeValue of type spirit:spiritNumberType.

G.7.7.1 0 getBusInterfaceMirroredSlaveRange

Description: The address range of the mirrored slave interface.

— Input: interfaceID of type xsd:string.

— Returns: spiritNumberTypeValue of type spirit:spiritNumberType.

G.7.7.1 1 getBusInterfaceMirroredSlaveRemapAddressIDs

Description: List of remap address IDs of the mirrored slave interface.

— Input: interfaceID of type xsd:string.

— Returns: remapAddressIDs of type spirit:soapStringArrayType.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

304 Copyright © 201 0 IEEE. Al l rights reserved.

G.7.7.1 2 getBusInterfaceMonitorInterfaceMode

Description: Indicates the mode of interface being monitored, slave, master, system, mirrorslave,

mirrormaster, or mirrorslave.

— Input: interfaceID of type xsd:string.

— Returns: value of type xsd:string.

G.7.7.1 3 getBusInterfaceSlaveBridgeIDs

Description: List of slave bridge IDs.

— Input: interfaceID of type xsd:string.

— Returns: bridgeIDs of type spirit:soapStringArrayType.

G.7.7.1 4 getBusInterfaceSlaveFileSetGroupIDs

Description: List of fileSetGroup IDs.

— Input: interfaceID of type xsd:string.

— Returns: fileSetGroupIDs of type spirit:soapStringArrayType.

G.7.7.1 5 getBusInterfaceSlaveMemoryMapID

Description: ID of the memoryMap referenced from a slave interface.

— Input: interfaceID of type xsd:string.

— Returns: memoryMapID of type xsd:string.

G.7.7.1 6 getRemapAddressRemapStateID

Description: Remap state ID of the given remap address element.

— Input: remapAddressID of type xsd:string.

— Returns: remapStateID of type xsd:string.

G.7.7.1 7 getRemapAddressValue

Description: Remap address of the given remap address element.

— Input: remapAddressID of type xsd:string.

— Returns: spiritNumberTypeValue of type spirit:spiritNumberType.

G.7.7.1 8 setBusInterfaceBitSteering

Description: Set bus interface bit steering value.

— Input: interfaceID of type xsd:string.

— Input: bitSteeringValue of type xsd:string.

— Returns: status of type xsd:boolean.

G.7.7.1 9 setBusInterfaceMasterBaseAddress

Description: Set base address of the master bus interface.

— Input: interfaceID of type xsd:string.

— Input: baseAddressValue of type spirit:spiritNumberType.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 305

— Returns: status of type xsd:boolean.

G.7.7.20 setBusInterfaceMirroredSlaveRange

Description: Set address range for the associated interface.

— Input: interfaceID of type xsd:string.

— Input: spiritNumberTypeValue of type spirit:spiritNumberType.

— Returns: status of type xsd:boolean.

G.7.7.21 setRemapAddressValue

Description: Set remap address value for the associated interface.

— Input: remapAddressID of type xsd:string.

— Input: spiritNumberTypeValue of type spirit:spiritNumberType.

— Returns: status of type xsd:boolean.

G.7.8 Component instance operations

G.7.8.1 getComponentInstanceComponentID

Description: ID for the component associated with given instance (crossing from design to component file).

— Input: componentInstanceID of type xsd:string.

— Returns: componentID of type xsd:string.

G.7.8.2 getComponentInstanceName

Description: Instance name of the component.

— Input: componentInstanceID of type xsd:string.

— Returns: value of type xsd:string.

G.7.8.3 getComponentInstanceVLNV

Description: VLNV of the component (from the design file).

— Input: componentInstanceID of type xsd:string.

— Returns: vlnvValue of type spirit:soapStringArrayType.

G.7.8.4 getComponentInstanceXML

Description: Return the component XML in text format. Schema version is DE dependent.

— Input: componentInstanceID of type xsd:string.

— Returns: xmlText of type xsd:string.

G.7.9 Component operations

G.7.9.1 getChannelBusInterfaceIDs

Description: List of busInterface IDs in this channel.

— Input: channelID of type xsd:string.

— Returns: interfaceIDs of type spirit:soapStringArrayType.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

306 Copyright © 201 0 IEEE. Al l rights reserved.

G.7.9.2 getComponentAddressSpaceIDs

Description: List of IDs for the logical address spaces in the component.

— Input: componentID of type xsd:string.

— Returns: addressSpaceIDs of type spirit:soapStringArrayType.

G.7.9.3 getComponentBusInterfaceIDs

Description: List of interface IDs.

— Input: componentID of type xsd:string.

— Returns: interfaceIDs of type spirit:soapStringArrayType.

G.7.9.4 getComponentChannelIDs

Description: A list of channel IDs.

— Input: componentID of type xsd:string.

— Returns: channelIDs of type spirit:soapStringArrayType.

G.7.9.5 getComponentChoiceIDs

Description: List of choices IDs.

— Input: componentID of type xsd:string.

— Returns: choiceIDs of type spirit:soapStringArrayType.

G.7.9.6 getComponentCpuIDs

Description: List of cpu IDs of the component.

— Input: componentID of type xsd:string.

— Returns: cpuIDs of type spirit:soapStringArrayType.

G.7.9.7 getComponentElementType

Description: Returns the type name of the XML element associated with the component (currently only

component). This call is being provided to cover a future scenario where there can be different types of

component elements instantiated in a design (e.g., macroComponent elements).

— Input: componentID of type xsd:string.

— Returns: componentElementType of type xsd:string.

G.7.9.8 getComponentFileSetIDs

Description: List of file set IDs.

— Input: componentID of type xsd:string.

— Returns: fileSetIDs of type spirit:soapStringArrayType.

G.7.9.9 getComponentGeneratorIDs

Description: List of generator IDs of the component.

— Input: componentID of type xsd:string.

— Returns: generatorIDs of type spirit:soapStringArrayType.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 307

G.7.9.1 0 getComponentMemoryMapIDs

Description: List of IDs for memory map elements in the given component.

— Input: componentID of type xsd:string.

— Returns: memoryMapIDs of type spirit:soapStringArrayType.

G.7.9.1 1 getComponentModelParameterIDs

Description: A list of model parameter IDs.

— Input: componentID of type xsd:string.

— Input: usageType of type xsd:string. Restrict returned parameters to those that match the given

usageType. nontyped or typed or userdefined or all if not specified.

— Returns: parameterIDs of type spirit:soapStringArrayType.

G.7.9.1 2 getComponentOtherClockDriverIDs

Description: List of clock driver IDs of the component.

— Input: componentID of type xsd:string.

— Returns: clockDriverIDs of type spirit:soapStringArrayType.

G.7.9.1 3 getComponentPortIDs

Description: A list of component model port IDs.

— Input: componentID of type xsd:string.

— Returns: portIDs of type spirit:soapStringArrayType.

G.7.9.1 4 getComponentRemapStateIDs

Description: A list of remap state IDs.

— Input: componentID of type xsd:string.

— Returns: remapStateIDs of type spirit:soapStringArrayType.

G.7.9.1 5 getComponentVLNV

Description: VLNV of the component (from the component file).

— Input: componentID of type xsd:string.

— Returns: vlnvValue of type spirit:soapStringArrayType.

G.7.9.1 6 getComponentViewIDs

Description: A list of model view IDs.

— Input: componentID of type xsd:string.

— Input: configured of type xsd:boolean. If true returns only the view configured by a

designConfiguration or NULL if not configured. If false returns all views.

— Returns: viewIDs of type spirit:soapStringArrayType.

G.7.9.1 7 getComponentWhiteboxElementIDs

Description: List of white box element IDs of the component.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

308 Copyright © 201 0 IEEE. Al l rights reserved.

— Input: componentID of type xsd:string.

— Returns: whiteboxElementIDs of type spirit:soapStringArrayType.

G.7.9.1 8 getCpuAddressSpaceIDs

Description: List of address space reference IDs of the cpu.

— Input: cpuID of type xsd:string.

— Returns: addressSpaceIDs of type spirit:soapStringArrayType.

G.7.1 0 Constraint operations

G.7.1 0.1 getDriveConstraintType

Description: Indicates the type of drive constraint: function class.

— Input: driveConstraintID of type xsd:string.

— Returns: driveConstraintTypeValue of type spirit:soapStringArrayType.

G.7.1 0.2 getDriveConstraintValue

Description: Returns the drive constraint. Format depends on the constraint type.

— Input: driveConstraintID of type xsd:string.

— Returns: value of type xsd:string.

G.7.1 0.3 getLoadConstraintCount

Description: Returns the load constraint count, the number of loads.

— Input: loadConstraintID of type xsd:string.

— Returns: value of type xsd:integer.

G.7.1 0.4 getLoadConstraintType

Description: Indicates the type of load constraint: function class.

— Input: loadConstraintID of type xsd:string.

— Returns: loadConstraintTypeValue of type spirit:soapStringArrayType.

G.7.1 0.5 getLoadConstraintValue

Description: Returns the load constraint. Format is cell function and strength or cell class and strength.

— Input: loadConstraintID of type xsd:string.

— Returns: value of type spirit:soapStringArrayType.

G.7.1 0.6 getPortConstraintSetDriveConstraintIDs

Description: List of drive constraint IDs of the port.

— Input: portConstraintSetID of type xsd:string.

— Returns: driveConstraintIDs of type spirit:soapStringArrayType.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 309

G.7.1 0.7 getPortConstraintSetLoadConstraintIDs

Description: List of load constraint IDs of the port.

— Input: portConstraintSetID of type xsd:string.

— Returns: loadConstraintIDs of type spirit:soapStringArrayType.

G.7.1 0.8 getPortConstraintSetRange

Description: List of the left and right range of a port referenced by this constraint set.

— Input: portConstraintSetID of type xsd:string.

— Returns: integerArrayValue of type spirit:integerArrayType.

G.7.1 0.9 getPortConstraintSetReferenceName

Description: Reference name of the given port constraint set.

— Input: portConstraintSetID of type xsd:string.

— Returns: value of type xsd:string.

G.7.1 0.1 0 getPortConstraintSetTimingConstraintIDs

Description: List of timing constraint IDs of the port.

— Input: portConstraintSetID of type xsd:string.

— Returns: timingConstraintIDs of type spirit:soapStringArrayType.

G.7.1 0.1 1 getTimingConstraintClockDetails

Description: Indicates the clock name, clock edge, and delay type.

— Input: timingConstraintID of type xsd:string.

— Returns: clockDetailsValue of type spirit:soapStringArrayType.

G.7.1 0.1 2 getTimingConstraintValue

Description: Returns the timing constraint value (cycle time percentage).

— Input: timingConstraintID of type xsd:string.

— Returns: floatValue of type xsd:float.

G.7.1 1 Design operations

G.7.1 1 .1 addAdHocConnection

Description: Add new ad hoc connection.

— Input: designID of type xsd:string.

— Input: name of type xsd:string.

— Input: displayName of type xsd:string.

— Input: description of type xsd:string.

— Input: componentRef of type xsd:string.

— Input: portRef of type xsd:string.

— Input: left of type xsd:string.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

310 Copyright © 201 0 IEEE. Al l rights reserved.

— Input: right of type xsd:string.

— Input: tiedValue of type spirit:spiritNumberType. Tied value for this connection, if blank no

tied value.

— Returns: adHocConnectionID of type xsd:string. Element ID of the newly added ad hoc

connection.

G.7.1 1 .2 addAdHocExternalPortReference

Description: Add an external port reference to an existing ad hoc connection.

— Input: designID of type xsd:string.

— Input: adHocConnectionID of type xsd:string.

— Input: portRef of type xsd:string.

— Input: left of type xsd:string.

— Input: right of type xsd:string.

— Returns: adHocExternalPortReferenceID of type xsd:string. Element ID of the newly

added external port reference.

G.7.1 1 .3 addAdHocInternalPortReference

Description: Add an internal port reference to an existing ad hoc connection. An identical port reference

must not already exist in the ad hoc connection.

— Input: designID of type xsd:string.

— Input: adHocConnectionID of type xsd:string.

— Input: componentRef of type xsd:string.

— Input: portRef of type xsd:string.

— Input: left of type xsd:string.

— Input: right of type xsd:string.

— Returns: adHocInternalPortReferenceID of type xsd:string. Element ID of the newly

added internal port reference.

G.7.1 1 .4 addComponentInstance

Description: Add new component instance.

— Input: designID of type xsd:string.

— Input: vlnvValue of type spirit:soapStringArrayType.

— Input: instanceName of type xsd:string.

— Input: displayName of type xsd:string.

— Input: description of type xsd:string.

— Returns: componentInstanceID of type xsd:string. Element ID of the newly added component

instance.

G.7.1 1 .5 addHierConnection

Description: Add new hierarchical connection.

— Input: designID of type xsd:string.

— Input: interfaceRef of type xsd:string.

— Input: componentRef of type xsd:string.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� �� �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 31 1

— Input: busRef of type xsd:string.

— Returns: hierConnectionID of type xsd:string. Element ID of the newly added hierarchical

connection.

G.7.1 1 .6 addHierarchicalMonitorInterconnection

Description: Add new hierarchical interconnection between a component and monitor. If there is already a

monitorInterconnection for the given componentRef/componentInterfaceRef, then the monitor connection is

added to that element.

— Input: designID of type xsd:string. The design that contains the interconnection.

— Input: componentPath of type xsd:string. The instance name path to the design that contains the

component instance.

— Input: componentRef of type xsd:string. The component instance name.

— Input: componentInterfaceRef of type xsd:string.

— Input: monitorPath of type xsd:string. The instance name path to the design that contains the

monitor instance.

— Input: monitorRef of type xsd:string. The component instance name with the monitor interface.

— Input: monitorInterfaceRef of type xsd:string.

— Input: name of type xsd:string.

— Input: displayName of type xsd:string.

— Input: description of type xsd:string.

— Returns: interconnectionID of type xsd:string. Element ID of the new/modified monitor

interconnection.

G.7.1 1 .7 addInterconnection

Description: Add new interconnection between components.

— Input: designID of type xsd:string.

— Input: component1Ref of type xsd:string. The component instance name.

— Input: interface1Ref of type xsd:string.

— Input: component2Ref of type xsd:string. The component instance name.

— Input: interface2Ref of type xsd:string.

— Input: name of type xsd:string.

— Input: displayName of type xsd:string.

— Input: description of type xsd:string.

— Returns: interconnectionID of type xsd:string. Element ID of the newly added

interconnection.

G.7.1 1 .8 addMonitorInterconnection

Description: Add new interconnection between a component and monitor. If there is already a

monitorInterconnection for the given componentRef/componentInterfaceRef, then the monitor connection is

added to that element.

— Input: designID of type xsd:string. The design that contains the interconnection.

— Input: componentRef of type xsd:string. The component instance name.

— Input: componentInterfaceRef of type xsd:string.

— Input: monitorRef of type xsd:string. The component instance name with the monitor interface.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ���������� �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

312 Copyright © 201 0 IEEE. Al l rights reserved.

— Input: monitorInterfaceRef of type xsd:string.

— Input: name of type xsd:string.

— Input: displayName of type xsd:string.

— Input: description of type xsd:string.

— Returns: interconnectionID of type xsd:string. Element ID of the new/modified monitor

interconnection.

G.7.1 1 .9 appendAbstractorInstance

Description: Append a new abstractor instance to the interconnection.

— Input: designID of type xsd:string.

— Input: interconnectionID of type xsd:string.

— Input: vlnvValue of type spirit:soapStringArrayType.

— Input: instanceName of type xsd:string.

— Input: displayName of type xsd:string.

— Input: description of type xsd:string.

— Returns: abstractorInstanceID of type xsd:string. Element ID of the newly added abstractor

instance.

G.7.1 1 .1 0 getAdHocConnectionExternalPortDetails

Description: List for an external connection containing the portRef, left, and right attribute values.

— Input: adHocExternalPortReferenceID of type xsd:string.

— Returns: details of type spirit:soapStringArrayType.

G.7.1 1 .1 1 getAdHocConnectionExternalPortReferenceIDs

Description: List of external ad hoc port reference element IDs.

— Input: adHocConnectionID of type xsd:string.

— Returns: adHocExternalPortReferenceIDs of type spirit:soapStringArrayType.

G.7.1 1 .1 2 getAdHocConnectionInternalPortReferenceDetails

Description: List for an internal connection containing the componentRef, portRef, left, and right attribute

values.

— Input: adHocInternalPortReferenceID of type xsd:string.

— Returns: details of type spirit:soapStringArrayType.

G.7.1 1 .1 3 getAdHocConnectionInternalPortReferenceIDs

Description: List of internal ad hoc port reference element IDs.

— Input: adHocConnectionID of type xsd:string.

— Returns: adHocInternalPortReferenceIDs of type spirit:soapStringArrayType.

G.7.1 1 .1 4 getAdHocConnectionTiedValue

Description: Get the tied value for an ad hoc connection.

— Input: adHocConnectionID of type xsd:string.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� �� �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 313

— Returns: value of type xsd:string.

G.7.1 1 .1 5 getComponentInstanceID

Description: Return the component instance ID of the named component instance in the given design.

— Input: designID of type xsd:string.

— Input: instanceName of type xsd:string.

— Returns: componentInstanceID of type xsd:string.

G.7.1 1 .1 6 getDesignAdHocConnectionIDs

Description: List of ad hoc connection element IDs.

— Input: designID of type xsd:string.

— Returns: adHocConnectionIDs of type spirit:soapStringArrayType.

G.7.1 1 .1 7 getDesignComponentInstanceIDs

Description: Components instances IDs of the given design.

— Input: designID of type xsd:string.

— Returns: componentInstanceIDs of type spirit:soapStringArrayType.

G.7.1 1 .1 8 getDesignHierConnectionIDs

Description: List of hierarchical connection element IDs.

— Input: designID of type xsd:string.

— Returns: hierConnectionIDs of type spirit:soapStringArrayType.

G.7.1 1 .1 9 getDesignID

Description: Get ID of the current or top design.

— Input: top of type xsd:boolean.

— Returns: designID of type xsd:string. The ID of the current design or the top design if the top

argument is true.

G.7.1 1 .20 getDesignInterconnectionAbstractorInstanceIDs

Description: List of abstractor instances IDs for this interconnection.

— Input: interconnectName of type xsd:string.

— Input: designID of type xsd:string.

— Returns: abstractorInstanceIDs of type spirit:soapStringArrayType.

G.7.1 1 .21 getDesignInterconnectionIDs

Description: List of interconnection element IDs.

— Input: designID of type xsd:string.

— Returns: interconnectionIDs of type spirit:soapStringArrayType.

G.7.1 1 .22 getDesignMonitorInterconnectionIDs

Description: List of monitorInterconnection element IDs.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ���������� �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

314 Copyright © 201 0 IEEE. Al l rights reserved.

— Input: designID of type xsd:string.

— Returns: monitorInterconnectionIDs of type spirit:soapStringArrayType.

G.7.1 1 .23 getDesignVLNV

Description: VLNV of the design.

— Input: designID of type xsd:string.

— Returns: vlnvValue of type spirit:soapStringArrayType.

G.7.1 1 .24 getHierConnectionDetails

Description: List containing the interface name, component reference, and interface reference.

— Input: hierConnectionID of type xsd:string.

— Returns: values of type spirit:soapStringArrayType.

G.7.1 1 .25 getInterconnectionActiveInterfaces

Description: Returns the active interfaces as a list: componentRef interfaceRef componentRef interfaceRef.

— Input: interconnectionID of type xsd:string.

— Returns: activeInterfaceValue of type spirit:soapStringArrayType.

G.7.1 1 .26 getMonitorInterconnectionInterfaces

Description: Returns the active interface and monitor interfaces as a list in componentPathRef,

componentRef, componentInterface, monitorPathRef, monitorRef, monitorInterface format; the active

interface comes first in the list.

— Input: monitorInterconnectionID of type xsd:string.

— Returns: interconnectInterfaceValue of type spirit:soapStringArrayType.

G.7.1 1 .27 removeAbstractorInstance

Description: Remove specified abstractor instance.

— Input: abstractorInstanceID of type xsd:string.

— Returns: status of type xsd:boolean.

G.7.1 1 .28 removeAdHocExternalPortReference

Description: Remove an external port reference from existing ad hoc connection.

— Input: designID of type xsd:string.

— Input: adHocConnectionID of type xsd:string.

— Input: portRef of type xsd:string.

— Returns: status of type xsd:boolean.

G.7.1 1 .29 removeAdHocInternalPortReference

Description: Remove an internal port from existing ad hoc connection. The ad hoc connection is removed

when the last port reference is removed.

— Input: designID of type xsd:string.

— Input: adHocConnectionID of type xsd:string.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� �� �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 315

— Input: componentRef of type xsd:string.

— Input: portRef of type xsd:string.

— Returns: status of type xsd:boolean.

G.7.1 1 .30 removeComponentInstance

Description: Remove specified component instance.

— Input: componentInstanceID of type xsd:string.

— Returns: status of type xsd:boolean.

G.7.1 1 .31 removeHierConnection

Description: Remove existing hierarchical connection.

— Input: designID of type xsd:string.

— Input: componentRef of type xsd:string.

— Input: busRef of type xsd:string.

— Returns: status of type xsd:boolean.

G.7.1 1 .32 removeHierarchicalMonitorInterconnection

Description: Remove a hierarchical interconnection between a component and monitor. When the last

monitor reference is removed, the entire monitorInterconnection element will be removed.

— Input: designID of type xsd:string.

— Input: componentPath of type xsd:string. The instance name path to the design that contains the

component instance.

— Input: componentRef of type xsd:string. The component instance name.

— Input: componentInterfaceRef of type xsd:string.

— Input: monitorPath of type xsd:string. The instance name path to the design that contains the

monitor instance.

— Input: monitorRef of type xsd:string. The component instance name with the monitor interface.

— Input: monitorInterfaceRef of type xsd:string.

— Returns: status of type xsd:boolean.

G.7.1 1 .33 removeInterconnection

Description: Remove interconnection between components, and any abstractors if present.

— Input: designID of type xsd:string.

— Input: component1Ref of type xsd:string. The component instance name.

— Input: interface1Ref of type xsd:string.

— Input: component2Ref of type xsd:string. The component instance name.

— Input: interface2Ref of type xsd:string.

— Returns: status of type xsd:boolean.

G.7.1 1 .34 removeMonitorInterconnection

Description: Remove interconnection between a component and monitor. When the last monitor reference is

removed, the entire monitorInterconnection element will be removed.

— Input: designID of type xsd:string.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ���������� �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

316 Copyright © 201 0 IEEE. Al l rights reserved.

— Input: componentRef of type xsd:string. The component instance name.

— Input: componentInterfaceRef of type xsd:string.

— Input: monitorRef of type xsd:string. The component instance name with the monitor interface.

— Input: monitorInterfaceRef of type xsd:string.

— Returns: status of type xsd:boolean.

G.7.1 1 .35 replaceAbstractorInstance

Description: Replace specified abstractor with new provided abstractor.

— Input: designID of type xsd:string.

— Input: abstractorInstanceID of type xsd:string.

— Input: vlnvValue of type spirit:soapStringArrayType.

— Returns: status of type xsd:boolean.

G.7.1 1 .36 replaceComponentInstance

Description: Replace specified component with new provided component.

— Input: designID of type xsd:string.

— Input: componentInstanceID of type xsd:string.

— Input: vlnvValue of type spirit:soapStringArrayType.

— Returns: status of type xsd:boolean.

G.7.1 2 Field operations

G.7.1 2.1 getRegisterFieldAccess

Description: The accessibility of the data in the field.

— Input: regFieldID of type xsd:string.

— Returns: value of type xsd:string.

G.7.1 2.2 getRegisterFieldBitOffset

Description: Bit offset of the fields LSB inside the register.

— Input: regFieldID of type xsd:string.

— Returns: value of type xsd:integer.

G.7.1 2.3 getRegisterFieldBitWidth

Description: Width of the field in bits.

— Input: elementID of type xsd:string.

— Legal value: regFieldID of type xsd:string.

— Legal value: regFieldUID of type xsd:string.

— Returns: width of type xsd:positiveInteger.

G.7.1 2.4 getRegisterFieldModifiedWriteValue

Description: The modified write value for the field.

— Input: regFieldID of type xsd:string.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� �� �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 317

— Returns: type of type xsd:string. One of "", onetoClear, oneToSet, oneToToggle, zeroToClear,

zeroToSet, zeroToToggle, clear, set, or modified.

G.7.1 2.5 getRegisterFieldReadAction

Description: The read action for the field.

— Input: regFieldID of type xsd:string.

— Returns: type of type xsd:string. One of "", clear, set, or modify.

G.7.1 2.6 getRegisterFieldTestConstraint

Description: The test constraint required if the field can be tested with a simple register test.

— Input: regFieldID of type xsd:string.

— Returns: value of type xsd:string.

G.7.1 2.7 getRegisterFieldTestable

Description: True if the field can be tested with a simple register test.

— Input: regFieldID of type xsd:string.

— Returns: booleanValue of type xsd:boolean.

G.7.1 2.8 getRegisterFieldValue

Description: Enumerated bit field value.

— Input: regFieldValueID of type xsd:string.

— Returns: value of type spirit:spiritNumberType.

G.7.1 2.9 getRegisterFieldValueIDs

Description: List of IDs for field values for the given register field.

— Input: regFieldID of type xsd:string.

— Returns: regFieldValueIDs of type spirit:soapStringArrayType.

G.7.1 2.1 0 getRegisterFieldValueName

Description: Enumerated name for this register field value. Deprecated—use getName.

— Input: regFieldValueID of type xsd:string.

— Returns: value of type xsd:string.

G.7.1 2.1 1 getRegisterFieldValueUsage

Description: Enumerated bit field usage.

— Input: regFieldValueID of type xsd:string.

— Returns: usage of type xsd:string.

G.7.1 2.1 2 getRegisterFieldVolatility

Description: Indicates whether or not the data is volatile. The presumed value is false if the element is not

present.

— Input: registerID of type xsd:string.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ���������� �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

318 Copyright © 201 0 IEEE. Al l rights reserved.

— Returns: value of type xsd:string. Returns true or false.

G.7.1 2.1 3 getRegisterFieldWriteValueConstraintMinMax

Description: The value of a write constraint.

— Input: regFieldID of type xsd:string.

— Returns: integerArrayValue of type spirit:integerArrayType. This is an array of minimum

and maximum or a zero element array if not specified.

G.7.1 2.1 4 getRegisterFieldWriteValueConstraintUseEnumeratedValues

Description: The write value constraint shall use the enumerated values.

— Input: regFieldID of type xsd:string.

— Returns: boolean of type xsd:boolean.

G.7.1 2.1 5 getRegisterFieldWriteValueConstraintWriteAsRead

Description: The write value constraint is write as read.

— Input: regFieldID of type xsd:string.

— Returns: boolean of type xsd:boolean.

G.7.1 2.1 6 setRegisterFieldBitWidth

Description: Set the width of the field in bits.

— Input: regFieldID of type xsd:string.

— Input: width of type xsd:positiveInteger.

— Returns: status of type xsd:integer.

G.7.1 3 File and fi leset operations

G.7.1 3.1 getFileBuildCommandFlags

Description: Flags of the file build command.

— Input: elementID of type xsd:string.

— Legal value: fileID of type xsd:string.

— Legal value: fileUID of type xsd:string.

— Returns: value of type xsd:string.

G.7.1 3.2 getFileBuildCommandFlagsIsAppend

Description: Value of append attribute on the flag element.

— Input: fileID of type xsd:string.

— Returns: booleanValue of type xsd:boolean.

G.7.1 3.3 getFileBuildCommandName

Description: Name of the build command of the file.

— Input: elementID of type xsd:string.

— Legal value: fileID of type xsd:string.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� �� �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 319

— Legal value: fileUID of type xsd:string.

— Returns: value of type xsd:string.

G.7.1 3.4 getFileBuildCommandReplaceDefaultFlags

Description: Indicates whether or not to replace default flags.

— Input: elementID of type xsd:string.

— Legal value: fileID of type xsd:string.

— Legal value: fileUID of type xsd:string.

— Returns: booleanValue of type xsd:boolean.

G.7.1 3.5 getFileBuildCommandTargetName

Description: Target name of the file build command.

— Input: elementID of type xsd:string.

— Legal value: fileID of type xsd:string.

— Legal value: fileUID of type xsd:string.

— Returns: value of type xsd:string.

G.7.1 3.6 getFileBuilderCommand

Description: Command of the file builder.

— Input: elementID of type xsd:string.

— Legal value: fileBuilderID of type xsd:string.

— Legal value: fileBuilderUID of type xsd:string.

— Returns: value of type xsd:string.

G.7.1 3.7 getFileBuilderFileType

Description: FileType or userFileType of the file builder.

— Input: fileBuilderID of type xsd:string.

— Returns: value of type xsd:string.

G.7.1 3.8 getFileBuilderFlags

Description: Flags of the file builder.

— Input: elementID of type xsd:string.

— Legal value: fileBuilderID of type xsd:string.

— Legal value: fileBuilderUID of type xsd:string.

— Returns: value of type xsd:string.

G.7.1 3.9 getFileBuilderReplaceDefaultFlags

Description: Value of the replaceDefaultFlags element of the file builder.

— Input: elementID of type xsd:string.

— Legal value: fileBuilderID of type xsd:string.

— Legal value: fileBuilderUID of type xsd:string.

— Returns: booleanValue of type xsd:boolean.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� ���������� �

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

320 Copyright © 201 0 IEEE. Al l rights reserved.

G.7.1 3.1 0 getFileDefineSymbolIDs

Description: List of define symbol IDs used in the file.

— Input: fileID of type xsd:string.

— Returns: fileDefineIDs of type spirit:soapStringArrayType.

G.7.1 3.1 1 getFileDependencies

Description: List of dependent locations for the file, typically directories.

— Input: fileID of type xsd:string.

— Returns: fileDependencyValue of type spirit:soapStringArrayType.

G.7.1 3.1 2 getFileExportedNames

Description: List of exported names of the file.

— Input: fileID of type xsd:string.

— Returns: exportedNamesValue of type spirit:soapStringArrayType.

G.7.1 3.1 3 getFileHasExternalDeclarations

Description: Indicates that the file includes external declarations required by the top-level netlist file.

— Input: fileID of type xsd:string.

— Returns: booleanValue of type xsd:boolean.

G.7.1 3.1 4 getFileImageTypes

Description: List of image types of the file.

— Input: fileID of type xsd:string.

— Returns: fileImageTypesValue of type spirit:soapStringArrayType.

G.7.1 3.1 5 getFileIsIncludeFile

Description: Indicates that the given file is an include file.

— Input: fileID of type xsd:string.

— Returns: booleanValue of type xsd:boolean.

G.7.1 3.1 6 getFileLogicalName

Description: Logical name of the file.

— Input: fileID of type xsd:string.

— Returns: value of type xsd:string.

G.7.1 3.1 7 getFileLogicalNameDefault

Description: Default attribute of logical name of the file.

— Input: fileID of type xsd:string.

— Returns: booleanValue of type xsd:boolean.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 321

G.7.1 3.1 8 getFileName

Description: Get name of the given fileID.

— Input: elementID of type xsd:string.

— Legal value: fileID of type xsd:string.

— Legal value: fileUID of type xsd:string.

— Input: resolve of type xsd:boolean. True = DE shall return an absolute file path, False = actual

XML text returned.

— Returns: name of type xsd:string.

G.7.1 3.1 9 getFileSetDependencies

Description: List of dependent locations for the fileSet, typically directories.

— Input: fileSetID of type xsd:string.

— Returns: fileDependencyValue of type spirit:soapStringArrayType.

G.7.1 3.20 getFileSetFileBuilderIDs

Description: List of file builder IDs used for this fileSet.

— Input: fileSetID of type xsd:string.

— Returns: fileBuilderIDs of type spirit:soapStringArrayType.

G.7.1 3.21 getFileSetFileIDs

Description: List of file IDs of the fileSet.

— Input: fileSetID of type xsd:string.

— Returns: fileIDs of type spirit:soapStringArrayType.

G.7.1 3.22 getFileSetFunctionIDs

Description: List of function IDs.

— Input: fileSetID of type xsd:string.

— Returns: functionIDs of type spirit:soapStringArrayType.

G.7.1 3.23 getFileSetGroupFileSetIDs

Description: List of fileSet IDs in this file set group.

— Input: fileSetGroupID of type xsd:string.

— Returns: fileSetIDs of type spirit:soapStringArrayType.

G.7.1 3.24 getFileSetGroupName

Description: Name of fileSet group.

— Input: fileSetGroupID of type xsd:string.

— Returns: value of type xsd:string.

G.7.1 3.25 getFileSetGroups

Description: List of group names of the fileSet.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

322 Copyright © 201 0 IEEE. Al l rights reserved.

— Input: fileSetID of type xsd:string.

— Returns: fileSetGroupsValue of type spirit:soapStringArrayType.

G.7.1 3.26 getFileType

Description: FileType or userFileType of the file.

— Input: fileID of type xsd:string.

— Returns: value of type spirit:soapStringArrayType.

G.7.1 3.27 getFunctionArgumentDataType

Description: Data type of the argument.

— Input: argumentID of type xsd:string.

— Returns: value of type xsd:string.

G.7.1 3.28 getFunctionArgumentIDs

Description: List of argument IDs of the function of the fileSet.

— Input: functionID of type xsd:string.

— Returns: argumentIDs of type spirit:soapStringArrayType.

G.7.1 3.29 getFunctionDisabled

Description: Indicates whether or not the function is disabled.

— Input: elementID of type xsd:string.

— Legal value: functionID of type xsd:string.

— Legal value: functionUID of type xsd:string.

— Returns: booleanValue of type xsd:boolean.

G.7.1 3.30 getFunctionEntryPoint

Description: Entry point of the function.

— Input: functionID of type xsd:string.

— Returns: value of type xsd:string.

G.7.1 3.31 getFunctionFileID

Description: File ID containing the function entry point.

— Input: functionID of type xsd:string.

— Returns: fileID of type xsd:string.

G.7.1 3.32 getFunctionReplicate

Description: Value of replicate attribute on function element.

— Input: functionID of type xsd:string.

— Returns: booleanValue of type xsd:boolean.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 323

G.7.1 3.33 getFunctionReturnType

Description: Return type of the function.

— Input: functionID of type xsd:string.

— Returns: value of type xsd:string.

G.7.1 3.34 getFunctionSourceFileIDs

Description: List of source file IDs of the function of the fileSet.

— Input: functionID of type xsd:string.

— Returns: functionSourceFileIDs of type spirit:soapStringArrayType.

G.7.1 3.35 getFunctionSourceFileName

Description: Name of the source file.

— Input: functionSourceFileID of type xsd:string.

— Returns: value of type xsd:string.

G.7.1 3.36 getFunctionSourceFileType

Description: FileType or userFileType of the source file.

— Input: functionSourceFileID of type xsd:string.

— Returns: value of type xsd:string.

G.7.1 3.37 setFileBuildCommandFlags

Description: Set command flags for the given file builder.

— Input: fileID of type xsd:string.

— Input: value of type xsd:string.

— Returns: status of type xsd:boolean.

G.7.1 3.38 setFileBuildCommandName

Description: Set command name for the given file builder.

— Input: fileID of type xsd:string.

— Input: value of type xsd:string.

— Returns: status of type xsd:boolean.

G.7.1 3.39 setFileBuildCommandReplaceDefaultFlags

Description: Set replace default flags for the given file builder.

— Input: fileID of type xsd:string.

— Input: booleanValue of type xsd:boolean.

— Returns: status of type xsd:boolean.

G.7.1 3.40 setFileBuildCommandTargetName

Description: Set target name for build command for the given file.

— Input: fileID of type xsd:string.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

324 Copyright © 201 0 IEEE. Al l rights reserved.

— Input: value of type xsd:string.

— Returns: status of type xsd:boolean.

G.7.1 3.41 setFileBuilderCommand

Description: Set command associated with file builder.

— Input: fileBuilderID of type xsd:string.

— Input: command of type xsd:string.

— Returns: status of type xsd:boolean.

G.7.1 3.42 setFileBuilderFlags

Description: Set flags associated with the given file builder.

— Input: fileBuilderID of type xsd:string.

— Input: flags of type xsd:string.

— Returns: status of type xsd:boolean.

G.7.1 3.43 setFileBuilderReplaceDefaultFlags

Description: Set value of replace default flags in file builder.

— Input: fileBuilderID of type xsd:string.

— Input: replaceDefaultFlags of type xsd:boolean.

— Returns: status of type xsd:boolean.

G.7.1 3.44 setFileName

Description: Set name of the given file.

— Input: fileID of type xsd:string.

— Input: value of type xsd:string. File name may be not be a relative path.

— Returns: status of type xsd:boolean.

G.7.1 3.45 setFunctionDisabled

Description: Set disable flag on function.

— Input: functionID of type xsd:string.

— Input: booleanValue of type xsd:boolean.

— Returns: status of type xsd:boolean.

G.7.1 4 Generator operations

G.7.1 4.1 getGeneratorApiType

Description: Api type of the generator.

— Input: generatorID of type xsd:string.

— Returns: value of type xsd:string.

G.7.1 4.2 getGeneratorExecutable

Description: Executable name associated with the generator.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 325

— Input: generatorID of type xsd:string.

— Returns: value of type xsd:string.

G.7.1 4.3 getGeneratorGroups

Description: List of group names of the generator.

— Input: generatorID of type xsd:string.

— Returns: generatorGroupValue of type spirit:soapStringArrayType.

G.7.1 4.4 getGeneratorIsHidden

Description: Value of hidden attribute on the generator.

— Input: generatorID of type xsd:string.

— Returns: booleanValue of type xsd:boolean.

G.7.1 4.5 getGeneratorPhase

Description: Phase number of the generator.

— Input: generatorID of type xsd:string.

— Returns: floatValue of type xsd:float.

G.7.1 4.6 getGeneratorScope

Description: Scope of the generator.

— Input: generatorID of type xsd:string.

— Returns: value of type xsd:string.

G.7.1 4.7 getGeneratorTransportMethods

Description: List of transport methods of the generator.

— Input: generatorID of type xsd:string.

— Returns: transportValue of type spirit:soapStringArrayType.

G.7.1 5 Interface operations

G.7.1 5.1 getInterfaceAbstractionTypeVLNV

Description: List of VLNV of the abstraction definition.

— Input: interfaceID of type xsd:string.

— Returns: vlnvValue of type spirit:soapStringArrayType.

G.7.1 5.2 getInterfaceBusTypeVLNV

Description: List of VLNV of the bus definition.

— Input: interfaceID of type xsd:string.

— Returns: vlnvValue of type spirit:soapStringArrayType.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

326 Copyright © 201 0 IEEE. Al l rights reserved.

G.7.1 5.3 getInterfaceMode

Description: Mode of the interface: master, slave, system, mirroredMaster, mirroredSlave, mirroredSystem,

or monitor.

— Input: interfaceID of type xsd:string.

— Returns: value of type xsd:string.

G.7.1 5.4 getInterfacePortMapIDs

Description: List of interface port map IDs.

— Input: interfaceID of type xsd:string.

— Returns: interfacePortMapIDs of type spirit:soapStringArrayType.

G.7.1 5.5 getLogicalPhysicalMapIDs

Description: List of the logical and physical port map IDs.

— Input: interfacePortMapID of type xsd:string.

— Returns: portMapIDs of type spirit:soapStringArrayType.

G.7.1 5.6 getPortMapRange

Description: List of left and right range of the port map.

— Input: elementID of type xsd:string.

— Legal value: portMapID of type xsd:string.

— Legal value: portMapUID of type xsd:string.

— Returns: nonNegativeIntegerArrayValue of type spirit:nonNegativeIntegerArrayType.

The return array value is in the format of logical vector left, right, physical vector left, right.

G.7.1 5.7 setPortMapRange

Description: Set left/right range of an interface port map.

— Input: portMapID of type xsd:string.

— Input: nonNegativeIntegerArrayMessage of type spirit:nonNegativeIntegerArrayType.

— Returns: status of type xsd:boolean.

G.7.1 6 Miscellaneous operations

G.7.1 6.1 end

Description: Terminate connection to the DE.

— Input: gen_status of type xsd:integer. Status indicator from the generator. Non-zero implies an

error.

— Input: message of type xsd:string. Message that the DE may display to the user.

— Returns: de_status of type xsd:integer. Status indicator from the DE. Non-zero implies an error.

G.7.1 6.2 getChoiceEnumerationHelp

Description: Value of the enumeration help attribute.

— Input: choiceEnumerationID of type xsd:string.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 327

— Returns: help of type xsd:string.

G.7.1 6.3 getChoiceEnumerationIDs

Description: List of choice enumeration IDs of the choice.

— Input: choiceID of type xsd:string.

— Returns: choiceEnumerationIDs of type spirit:soapStringArrayType.

G.7.1 6.4 getChoiceEnumerationText

Description: Value of the enumeration text attribute.

— Input: choiceEnumerationID of type xsd:string.

— Returns: text of type xsd:string.

G.7.1 6.5 getChoiceEnumerationValue

Description: Value of the enumeration element.

— Input: choiceEnumerationID of type xsd:string.

— Returns: value of type xsd:string.

G.7.1 6.6 getChoiceName

Description: Name of the choice.

— Input: choiceID of type xsd:string.

— Returns: value of type xsd:string.

G.7.1 6.7 getDescription

Description: Return the description of the specified element.

— Input: elementID of type xsd:string.

— Legal value: abstractionDefID of type xsd:string.

— Legal value: abstractorID of type xsd:string.

— Legal value: abstractorInstanceID of type xsd:string.

— Legal value: adHocConnectionID of type xsd:string.

— Legal value: addressBlockID of type xsd:string.

— Legal value: addressSpaceID of type xsd:string.

— Legal value: alternateRegisterID of type xsd:string.

— Legal value: argumentID of type xsd:string.

— Legal value: bankID of type xsd:string.

— Legal value: busdefID of type xsd:string.

— Legal value: channelID of type xsd:string.

— Legal value: componentID of type xsd:string.

— Legal value: componentInstanceID of type xsd:string.

— Legal value: cpuID of type xsd:string.

— Legal value: designID of type xsd:string.

— Legal value: executableImageID of type xsd:string.

— Legal value: fileDefineID of type xsd:string.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

328 Copyright © 201 0 IEEE. Al l rights reserved.

— Legal value: fileID of type xsd:string.

— Legal value: fileSetID of type xsd:string.

— Legal value: generatorID of type xsd:string.

— Legal value: interconnectionID of type xsd:string.

— Legal value: interfaceID of type xsd:string.

— Legal value: localMemoryMapID of type xsd:string.

— Legal value: memoryMapID of type xsd:string.

— Legal value: memoryRemapID of type xsd:string.

— Legal value: monitorInterconnectionID of type xsd:string.

— Legal value: parameterID of type xsd:string.

— Legal value: portConstraintSetID of type xsd:string.

— Legal value: portID of type xsd:string.

— Legal value: regFieldID of type xsd:string.

— Legal value: regFieldValueID of type xsd:string.

— Legal value: registerID of type xsd:string.

— Legal value: registerFileID of type xsd:string.

— Legal value: remapStateID of type xsd:string.

— Legal value: segmentID of type xsd:string.

— Legal value: subspaceMapID of type xsd:string.

— Legal value: viewID of type xsd:string.

— Legal value: whiteboxElementID of type xsd:string.

— Returns: description of type xsd:string.

G.7.1 6.8 getDisplayName

Description: Return the displayName of the specified element.

— Input: elementID of type xsd:string.

— Legal value: adHocConnectionID of type xsd:string.

— Legal value: addressBlockID of type xsd:string.

— Legal value: addressSpaceID of type xsd:string.

— Legal value: alternateRegisterID of type xsd:string.

— Legal value: argumentID of type xsd:string.

— Legal value: bankID of type xsd:string.

— Legal value: channelID of type xsd:string.

— Legal value: cpuID of type xsd:string.

— Legal value: fileDefineID of type xsd:string.

— Legal value: fileSetID of type xsd:string.

— Legal value: generatorID of type xsd:string.

— Legal value: interconnectionID of type xsd:string.

— Legal value: interfaceID of type xsd:string.

— Legal value: localMemoryMapID of type xsd:string.

— Legal value: memoryMapID of type xsd:string.

— Legal value: memoryRemapID of type xsd:string.

— Legal value: monitorInterconnectionID of type xsd:string.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 329

— Legal value: parameterID of type xsd:string.

— Legal value: portConstraintSetID of type xsd:string.

— Legal value: portID of type xsd:string.

— Legal value: regFieldID of type xsd:string.

— Legal value: regFieldValueID of type xsd:string.

— Legal value: registerID of type xsd:string.

— Legal value: registerFileID of type xsd:string.

— Legal value: remapStateID of type xsd:string.

— Legal value: segmentID of type xsd:string.

— Legal value: subspaceMapID of type xsd:string.

— Legal value: viewID of type xsd:string.

— Legal value: whiteboxElementID of type xsd:string.

— Returns: displayName of type xsd:string.

G.7.1 6.9 getErrorMessage

Description: Get error message from prior callback.

— Input: callerIdent of type xsd:string. ID string for debugging calls to this command within the

DE. Any value is okay.

— Returns: message of type xsd:string.

G.7.1 6.1 0 getGeneratorContextComponentInstanceID

Description: ID for the component instance associated with the currently invoked generator.

— Input: generatorName of type xsd:string. Generator name for use within DE in case of errors.

— Returns: componentInstanceID of type xsd:string.

G.7.1 6.1 1 getIdValue

Description: Return the value of the spirit: id attribute on a ID.

— Input: elementID of type xsd:string.

— Legal value: addressBlockID of type xsd:string.

— Legal value: alternateRegisterID of type xsd:string.

— Legal value: localMemoryMapID of type xsd:string.

— Legal value: memoryMapID of type xsd:string.

— Legal value: memoryRemapID of type xsd:string.

— Legal value: regFieldID of type xsd:string.

— Legal value: registerID of type xsd:string.

— Legal value: registerFileID of type xsd:string.

— Returns: id of type xsd:string.

G.7.1 6.1 2 getModelParameterDataType

Description: Data type of the model parameter.

— Input: parameterID of type xsd:string.

— Returns: value of type xsd:string.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

330 Copyright © 201 0 IEEE. Al l rights reserved.

G.7.1 6.1 3 getModelParameterUsageType

Description: Usage type of the model parameter.

— Input: parameterID of type xsd:string.

— Returns: value of type xsd:string. possible values are nontyped and typed.

G.7.1 6.1 4 getName

Description: Return the name of the specified element.

— Input: elementID of type xsd:string.

— Legal value: adHocConnectionID of type xsd:string.

— Legal value: addressBlockID of type xsd:string.

— Legal value: addressSpaceID of type xsd:string.

— Legal value: alternateRegisterID of type xsd:string.

— Legal value: argumentID of type xsd:string.

— Legal value: bankID of type xsd:string.

— Legal value: channelID of type xsd:string.

— Legal value: cpuID of type xsd:string.

— Legal value: executableImageID of type xsd:string.

— Legal value: fileDefineID of type xsd:string.

— Legal value: fileID of type xsd:string.

— Legal value: fileSetID of type xsd:string.

— Legal value: generatorID of type xsd:string.

— Legal value: interconnectionID of type xsd:string.

— Legal value: interfaceID of type xsd:string.

— Legal value: linkerCommandFileID of type xsd:string.

— Legal value: localMemoryMapID of type xsd:string.

— Legal value: memoryMapID of type xsd:string.

— Legal value: memoryRemapID of type xsd:string.

— Legal value: monitorInterconnectionID of type xsd:string.

— Legal value: parameterID of type xsd:string.

— Legal value: portConstraintSetID of type xsd:string.

— Legal value: portID of type xsd:string.

— Legal value: portMapID of type xsd:string.

— Legal value: regFieldID of type xsd:string.

— Legal value: regFieldValueID of type xsd:string.

— Legal value: registerID of type xsd:string.

— Legal value: registerFileID of type xsd:string.

— Legal value: remapStateID of type xsd:string.

— Legal value: segmentID of type xsd:string.

— Legal value: subspaceMapID of type xsd:string.

— Legal value: viewID of type xsd:string.

— Legal value: whiteboxElementID of type xsd:string.

— Returns: name of type xsd:string.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 331

G.7.1 6.1 5 getParameterIDs

Description: List of parameter IDs from the given element (any of which contains spirit:parameter

elements).

— Input: elementID of type xsd:string.

— Legal value: abstractorID of type xsd:string.

— Legal value: addressBlockID of type xsd:string.

— Legal value: addressSpaceID of type xsd:string.

— Legal value: alternateRegisterID of type xsd:string.

— Legal value: bankID of type xsd:string.

— Legal value: cpuID of type xsd:string.

— Legal value: componentID of type xsd:string.

— Legal value: executableImageID of type xsd:string.

— Legal value: generatorID of type xsd:string.

— Legal value: interfaceID of type xsd:string.

— Legal value: linkerCommandFileID of type xsd:string.

— Legal value: memoryMapID of type xsd:string.

— Legal value: regFieldID of type xsd:string.

— Legal value: registerID of type xsd:string.

— Legal value: registerFileID of type xsd:string.

— Legal value: subspaceMapID of type xsd:string.

— Legal value: serviceTypeDefID of type xsd:string.

— Legal value: viewID of type xsd:string.

— Legal value: whiteboxElementID of type xsd:string.

— Returns: parameterIDs of type spirit:soapStringArrayType.

G.7.1 6.1 6 getUnconfiguredID

Description: Return the unconfigured ID from a configured ID.

— Input: elementID of type xsd:string.

— Legal value: addressBlockID of type xsd:string.

— Legal value: addressSpaceID of type xsd:string.

— Legal value: alternateRegisterID of type xsd:string.

— Legal value: argumentID of type xsd:string.

— Legal value: bankID of type xsd:string.

— Legal value: clockDriverID of type xsd:string.

— Legal value: executableImageID of type xsd:string.

— Legal value: fileDefineID of type xsd:string.

— Legal value: fileBuilderID of type xsd:string.

— Legal value: fileID of type xsd:string.

— Legal value: functionID of type xsd:string.

— Legal value: interfaceID of type xsd:string.

— Legal value: linkerCommandFileID of type xsd:string.

— Legal value: parameterID of type xsd:string.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

332 Copyright © 201 0 IEEE. Al l rights reserved.

— Legal value: portID of type xsd:string.

— Legal value: portMapID of type xsd:string.

— Legal value: regFieldID of type xsd:string.

— Legal value: registerID of type xsd:string.

— Legal value: registerFileID of type xsd:string.

— Legal value: segmentID of type xsd:string.

— Legal value: singleShotDriverID of type xsd:string.

— Legal value: subspaceMapID of type xsd:string.

— Returns: elementID of type xsd:string. Unconfigured ID.

— Possible value(s): addressBlockUID of type xsd:string.

— Possible value(s): addressSpaceUID of type xsd:string.

— Possible value(s): alternateRegisterUID of type xsd:string.

— Possible value(s): argumentUID of type xsd:string.

— Possible value(s): bankUID of type xsd:string.

— Possible value(s): clockDriverUID of type xsd:string.

— Possible value(s): executableImageUID of type xsd:string.

— Possible value(s): fileBuilderUID of type xsd:string.

— Possible value(s): fileDefineUID of type xsd:string.

— Possible value(s): fileUID of type xsd:string.

— Possible value(s): functionUID of type xsd:string.

— Possible value(s): interfaceUID of type xsd:string.

— Possible value(s): linkerCommandFileUID of type xsd:string.

— Possible value(s): parameterUID of type xsd:string.

— Possible value(s): portUID of type xsd:string.

— Possible value(s): portMapUID of type xsd:string.

— Possible value(s): regFieldUID of type xsd:string.

— Possible value(s): registerUID of type xsd:string.

— Possible value(s): registerFileUID of type xsd:string.

— Possible value(s): segmentUID of type xsd:string.

— Possible value(s): singleShotDriverUID of type xsd:string.

— Possible value(s): subspaceMapUID of type xsd:string.

G.7.1 6.1 7 getValue

Description: Get the value of a parameterID, fileDefineIDs, or argumentIDs.

— Input: elementID of type xsd:string.

— Legal value: argumentID of type xsd:string.

— Legal value: argumentUID of type xsd:string.

— Legal value: fileDefineID of type xsd:string.

— Legal value: fileDefineUID of type xsd:string.

— Legal value: parameterID of type xsd:string.

— Legal value: parameterUID of type xsd:string.

— Returns: value of type xsd:string.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 333

G.7.1 6.1 8 getValueAttribute

Description: Returns the value of the given attribute name on the elementID/value element.

— Input: elementID of type xsd:string.

— Legal value: argumentID of type xsd:string.

— Legal value: fileDefineID of type xsd:string.

— Legal value: parameterID of type xsd:string.

— Input: attrName of type xsd:string. This is a namespace qualified attribute.

— Returns: value of type xsd:string.

G.7.1 6.1 9 getVendorAttribute

Description: Get vendor-defined attribute from the given element.

— Input: elementID of type xsd:string.

— Legal value: argumentID of type xsd:string.

— Legal value: fileDefineID of type xsd:string.

— Legal value: fileID of type xsd:string.

— Legal value: interfaceID of type xsd:string.

— Legal value: parameterID of type xsd:string.

— Input: attrName of type xsd:string.

— Returns: attrValue of type xsd:string.

G.7.1 6.20 getVendorExtensions

Description: Returns the complete XML text of the vendor extension element including the

spirit:vendorExtension tag, as a well-formed XML document.

— Input: elementID of type xsd:string.

— Legal value: abstractionDefID of type xsd:string.

— Legal value: abstractionDefPortID of type xsd:string.

— Legal value: abstractionServiceID of type xsd:string.

— Legal value: abstractorID of type xsd:string.

— Legal value: addressBlockID of type xsd:string.

— Legal value: addressSpaceID of type xsd:string.

— Legal value: alternateRegisterID of type xsd:string.

— Legal value: argumentID of type xsd:string.

— Legal value: bankID of type xsd:string.

— Legal value: busdefID of type xsd:string.

— Legal value: componentID of type xsd:string.

— Legal value: componentInstanceID of type xsd:string.

— Legal value: cpuID of type xsd:string.

— Legal value: designID of type xsd:string.

— Legal value: executableImageID of type xsd:string.

— Legal value: fileBuilderID of type xsd:string.

— Legal value: fileDefineID of type xsd:string.

— Legal value: fileID of type xsd:string.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

334 Copyright © 201 0 IEEE. Al l rights reserved.

— Legal value: fileSetID of type xsd:string.

— Legal value: generatorID of type xsd:string.

— Legal value: hierConnectionID of type xsd:string.

— Legal value: interfaceID of type xsd:string.

— Legal value: linkerCommandFileID of type xsd:string.

— Legal value: memoryMapID of type xsd:string.

— Legal value: parameterID of type xsd:string.

— Legal value: portID of type xsd:string.

— Legal value: regFieldID of type xsd:string.

— Legal value: registerID of type xsd:string.

— Legal value: registerFileID of type xsd:string.

— Legal value: segmentID of type xsd:string.

— Legal value: subspaceMapID of type xsd:string.

— Legal value: serviceID of type xsd:string.

— Legal value: viewID of type xsd:string.

— Legal value: whiteboxElementID of type xsd:string.

— Returns: value of type xsd:string.

G.7.1 6.21 getWarningCount

Description: Return count of how many potentially incompatible API calls have been made.

— Input: callerIdent of type xsd:string. ID string for debugging calls to this command within the

DE. Any value is okay.

— Returns: count of type xsd:integer.

G.7.1 6.22 getXMLForVLNV

Description: Return XML of the IP-XACT object identified by the given VLNV.

— Input: vlnvValue of type spirit:soapStringArrayType.

— Returns: xmlText of type xsd:string.

G.7.1 6.23 init

Description: API initialization function. Must be called before any other API call.

— Input: apiVersion of type xsd:string. Indicates the API version with which the generator is

defined to work.

— Input: failureMode of type spirit:apiFailureMode. Compatability failure mode: fail—DE

should return an error on the init call if its API version does not match the one passed to the init call;

error—DE should return an error each time a potentially incompatible API call is made; warning—

DE should increment a warning count each time a potentially incompatible API call is made.

— Input: message of type xsd:string. Message that the DE may display to the user.

— Returns: status of type xsd:boolean.

G.7.1 6.24 message

Description: Send message level and message text to DE.

— Input: severity of type xsd:string.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 335

— Input: message of type xsd:string.

— Returns: status of type xsd:boolean.

G.7.1 6.25 registerVLNV

Description: Indicate to DE where the file resides for the IP-XACT element with the given VLNV.

— Input: fileName of type xsd:string.

— Input: replace of type xsd:boolean. True = always register, False = do not register if the VLNV

already exists.

— Returns: status of type xsd:boolean. True = VLNV registered, False = VLNV not registered.

G.7.1 6.26 setValue

Description: Set the value of a parameterID, fileDefineIDs, or argumentIDs.

— Input: elementID of type xsd:string.

— Legal value: argumentID of type xsd:string.

— Legal value: fileDefineID of type xsd:string.

— Legal value: parameterID of type xsd:string.

— Input: value of type xsd:string.

— Returns: status of type xsd:boolean.

G.7.1 6.27 setVendorAttribute

Description: Set vendor-defined attribute on the given element.

— Input: elementID of type xsd:string.

— Legal value: argumentID of type xsd:string.

— Legal value: fileDefineID of type xsd:string.

— Legal value: fileID of type xsd:string.

— Legal value: interfaceID of type xsd:string.

— Legal value: parameterID of type xsd:string.

— Input: attrName of type xsd:string.

— Input: attrValue of type xsd:string.

— Returns: status of type xsd:integer.

G.7.1 6.28 setVendorExtensions

Description: Set vendor extensions. See NOTE.

NOTE—This call is only supported for elements within a spirit:design.

— Input: elementID of type xsd:string.

— Legal value: componentInstanceID of type xsd:string.

— Legal value: designID of type xsd:string.

— Legal value: hierConnectionID of type xsd:string.

— Input: extensionText of type xsd:string. Complete vendor extension text as a well-formed

XML document with top-level element of spirit:vendorExtensions.

— Returns: status of type xsd:boolean.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

336 Copyright © 201 0 IEEE. Al l rights reserved.

G.7.1 7 Port operations

G.7.1 7.1 getAllLogicalDirectionsAllowed

Description: Get the value of the allLogicalDirectionAllowed attribute.

— Input: portID of type xsd:string.

— Returns: booleanValue of type xsd:boolean.

G.7.1 7.2 getClockDriverName

Description: Name of the clock driver.

— Input: clockDriverID of type xsd:string.

— Returns: value of type xsd:string.

G.7.1 7.3 getClockDriverPeriod

Description: Clock period of the given clock.

— Input: elementID of type xsd:string.

— Legal value: clockDriverID of type xsd:string.

— Legal value: clockDriverUID of type xsd:string.

— Returns: floatValue of type xsd:float.

G.7.1 7.4 getClockDriverPeriodUnits

Description: Units of the clock period of the given clock.

— Input: clockDriverID of type xsd:string.

— Returns: units of type xsd:string.

G.7.1 7.5 getClockDriverPulseDuration

Description: Clock period of the given clock.

— Input: elementID of type xsd:string.

— Legal value: clockDriverID of type xsd:string.

— Legal value: clockDriverUID of type xsd:string.

— Returns: floatValue of type xsd:float.

G.7.1 7.6 getClockDriverPulseDurationUnits

Description: Units of the clock pulse duration of the given clock.

— Input: clockDriverID of type xsd:string.

— Returns: units of type xsd:string.

G.7.1 7.7 getClockDriverPulseOffset

Description: Clock pulse offset of the given clock.

— Input: elementID of type xsd:string.

— Legal value: clockDriverID of type xsd:string.

— Legal value: clockDriverUID of type xsd:string.

— Returns: floatValue of type xsd:float.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 337

G.7.1 7.8 getClockDriverPulseOffsetUnits

Description: Units of the clock pulse offset of the given clock.

— Input: clockDriverID of type xsd:string.

— Returns: units of type xsd:string.

G.7.1 7.9 getClockDriverPulseValue

Description: Clock pulse value of the given clock.

— Input: elementID of type xsd:string.

— Legal value: clockDriverID of type xsd:string.

— Legal value: clockDriverUID of type xsd:string.

— Returns: spiritNumberTypeValue of type spirit:spiritNumberType.

G.7.1 7.1 0 getClockDriverSource

Description: Source name of the clock driver.

— Input: clockDriverID of type xsd:string.

— Returns: value of type xsd:string.

G.7.1 7.1 1 getPortAccessHandle

Description: Alternate name to be used when accessing this port.

— Input: portID of type xsd:string.

— Returns: accessHandle of type xsd:string.

G.7.1 7.1 2 getPortAccessType

Description: Indicates the access type for this port.

— Input: portID of type xsd:string.

— Returns: accessType of type xsd:string.

G.7.1 7.1 3 getPortClockDriverID

Description: Element ID of clock driver element, if present.

— Input: portID of type xsd:string.

— Returns: clockDriverID of type xsd:string.

G.7.1 7.1 4 getPortConstraintSetIDs

Description: List of constraint sets IDs of the port.

— Input: portID of type xsd:string.

— Returns: portConstraintSetIDs of type spirit:soapStringArrayType.

G.7.1 7.1 5 getPortDefaultValue

Description: Default value of the port, if not set returns "".

— Input: elementID of type xsd:string.

— Legal value: portID of type xsd:string.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

338 Copyright © 201 0 IEEE. Al l rights reserved.

— Legal value: portUID of type xsd:string.

— Returns: value of type xsd:string.

G.7.1 7.1 6 getPortDirection

Description: Direction of the port.

— Input: portID of type xsd:string.

— Returns: value of type xsd:string.

G.7.1 7.1 7 getPortMaxAllowedConnections

Description: Maximum allowed connections for this transactional port.

— Input: portID of type xsd:string.

— Returns: value of type xsd:string.

G.7.1 7.1 8 getPortMinAllowedConnections

Description: Minimum allowed connections for this transactional port.

— Input: portID of type xsd:string.

— Returns: value of type xsd:string.

G.7.1 7.1 9 getPortRange

Description: List of the left and right range of the port.

— Input: portID of type xsd:string.

— Returns: integerArrayValue of type spirit:integerArrayType. array of left and right or zero

element array if not specified.

G.7.1 7.20 getPortServiceID

Description: ID of element representing the service of a transactional port.

— Input: portID of type xsd:string.

— Returns: serviceID of type xsd:string.

G.7.1 7.21 getPortSingleShotDriverID

Description: Element ID of single shot driver element, if present.

— Input: portID of type xsd:string.

— Returns: singleShotDriverID of type xsd:string.

G.7.1 7.22 getPortSingleShotPulseDuration

Description: Clock period of the port.

— Input: elementID of type xsd:string.

— Legal value: singleShotDriverID of type xsd:string.

— Legal value: singleShotDriverUID of type xsd:string.

— Returns: floatValue of type xsd:float.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 339

G.7.1 7.23 getPortSingleShotPulseOffset

Description: Clock pulse offset of the port.

— Input: singleShotDriverID of type xsd:string.

— Returns: floatValue of type xsd:float.

G.7.1 7.24 getPortSingleShotPulseValue

Description: Clock pulse value of the port.

— Input: singleShotDriverID of type xsd:string.

— Returns: spiritNumberTypeValue of type spirit:spiritNumberType.

G.7.1 7.25 getPortStyle

Description: Returns wire or transactional to indicate the port style.

— Input: portID of type xsd:string.

— Returns: value of type xsd:string.

G.7.1 7.26 getPortTransactionalTypeDefID

Description: The type definition for a transactional portID.

— Input: portID of type xsd:string.

— Returns: transactionalTypeDefID of type xsd:string.

G.7.1 7.27 getPortWireTypeDefIDs

Description: List of typeDefs for a wire portID.

— Input: portID of type xsd:string.

— Returns: wireTypeDefIDs of type spirit:soapStringArrayType.

G.7.1 7.28 setClockDriverPeriod

Description: Set period of the given clock port.

— Input: clockDriverID of type xsd:string.

— Input: floatValue of type xsd:float.

— Returns: status of type xsd:boolean.

G.7.1 7.29 setClockDriverPulseDuration

Description: Set pulse duration of the given clock port.

— Input: clockDriverID of type xsd:string.

— Input: floatValue of type xsd:float.

— Returns: status of type xsd:boolean.

G.7.1 7.30 setClockDriverPulseOffset

Description: Set pulse offset value of the given clock port.

— Input: clockDriverID of type xsd:string.

— Input: floatValue of type xsd:float.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

340 Copyright © 201 0 IEEE. Al l rights reserved.

— Returns: status of type xsd:boolean.

G.7.1 7.31 setClockDriverPulseValue

Description: Set pulse value of the given clock port.

— Input: clockDriverID of type xsd:string.

— Input: spiritNumberTypeValue of type spirit:spiritNumberType.

— Returns: status of type xsd:boolean.

G.7.1 7.32 setPortDefaultValue

Description: Set default value of the given port.

— Input: portID of type xsd:string.

— Input: value of type xsd:string.

— Returns: status of type xsd:boolean.

G.7.1 7.33 setPortRange

Description: Set left/right range for the given port.

— Input: portID of type xsd:string.

— Input: integerArrayMessage of type spirit:integerArrayType.

— Returns: status of type xsd:boolean.

G.7.1 7.34 setPortSingleShotPulseDuration

Description: Set pulse duration of given single shot port.

— Input: singleShotDriverID of type xsd:string.

— Input: floatValue of type xsd:float.

— Returns: status of type xsd:boolean.

G.7.1 7.35 setPortSingleShotPulseOffset

Description: Set pulse offset of given single shot port.

— Input: singleShotDriverID of type xsd:string.

— Input: floatValue of type xsd:float.

— Returns: status of type xsd:boolean.

G.7.1 7.36 setPortSingleShotPulseValue

Description: Set pulse value of given single shot port.

— Input: singleShotDriverID of type xsd:string.

— Input: spiritNumberTypeValue of type spirit:spiritNumberType.

— Returns: status of type xsd:boolean.

G.7.1 8 Register file operations

G.7.1 8.1 getRegisterFileAddressOffset

Description: The offset from the base address.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 341

— Input: registerFileID of type xsd:string.

— Returns: offset of type spirit:spiritNumberType.

G.7.1 8.2 getRegisterFileDimensions

Description: Dimensions of a register file array.

— Input: registerFileID of type xsd:string.

— Returns: dimensions of type spirit:nonNegativeIntegerArrayType.

G.7.1 8.3 getRegisterFileRange

Description: The register file range in number of addressable units.

— Input: elementID of type xsd:string.

— Legal value: registerFileID of type xsd:string.

— Legal value: registerFileUID of type xsd:string.

— Returns: range of type xsd:positiveInteger.

G.7.1 8.4 getRegisterFileRegisterFileIDs

Description: List of IDs for the register files of the given register file.

— Input: registerFileID of type xsd:string.

— Returns: registerFileIDs of type spirit:soapStringArrayType.

G.7.1 8.5 getRegisterFileRegisterIDs

Description: List of IDs for the registers of the given register file.

— Input: registerFileID of type xsd:string.

— Returns: registerIDs of type spirit:soapStringArrayType.

G.7.1 8.6 setRegisterFileRange

Description: Set the register file range in addressable units.

— Input: registerFileID of type xsd:string.

— Input: range of type xsd:positiveInteger.

— Returns: status of type xsd:boolean.

G.7.1 9 Register operations

G.7.1 9.1 getRegisterAccess

Description: The accessibility of the data in the register.

— Input: elementID of type xsd:string.

— Legal value: registerID of type xsd:string.

— Legal value: alternateRegisterID of type xsd:string.

— Returns: value of type xsd:string.

G.7.1 9.2 getRegisterAddressOffset

Description: The offset from the base address.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

342 Copyright © 201 0 IEEE. Al l rights reserved.

— Input: registerID of type xsd:string.

— Returns: offset of type spirit:spiritNumberType.

G.7.1 9.3 getRegisterAlternateGroups

Description: Indicates the group names for an alternate register.

— Input: alternateRegisterID of type xsd:string.

— Returns: groupNames of type spirit:soapStringArrayType.

G.7.1 9.4 getRegisterAlternateRegisterIDs

Description: List of IDs for the alternate registers of the given register.

— Input: registerID of type xsd:string.

— Returns: alternateRegisterIDs of type spirit:soapStringArrayType.

G.7.1 9.5 getRegisterDimensions

Description: Dimensions of a register array.

— Input: registerID of type xsd:string.

— Returns: dimensions of type spirit:nonNegativeIntegerArrayType.

G.7.1 9.6 getRegisterFieldIDs

Description: List of IDs for the fields of the given register.

— Input: elementID of type xsd:string.

— Legal value: registerID of type xsd:string.

— Legal value: alternateRegisterID of type xsd:string.

— Input: registerID of type xsd:string.

— Returns: regFieldIDs of type spirit:soapStringArrayType.

G.7.1 9.7 getRegisterResetMask

Description: Mask to be ANDed with the value before comparing to reset value.

— Input: elementID of type xsd:string.

— Legal value: registerID of type xsd:string.

— Legal value: registerUID of type xsd:string.

— Legal value: alternateRegisterID of type xsd:string.

— Legal value: alternateRegisterUID of type xsd:string.

— Returns: mask of type spirit:spiritNumberType.

G.7.1 9.8 getRegisterResetValue

Description: Register value at reset.

— Input: elementID of type xsd:string.

— Legal value: registerID of type xsd:string.

— Legal value: registerUID of type xsd:string.

— Legal value: alternateRegisterID of type xsd:string.

— Legal value: alternateRegisterUID of type xsd:string.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 343

— Returns: value of type spirit:spiritNumberType.

G.7.1 9.9 getRegisterSize

Description: The register size in bits.

— Input: elementID of type xsd:string.

— Legal value: registerID of type xsd:string.

— Legal value: registerUID of type xsd:string.

— Returns: size of type xsd:positiveInteger.

G.7.1 9.1 0 getRegisterVolatil ity

Description: Indicates whether or not the data is volatile.

— Input: elementID of type xsd:string.

— Legal value: registerID of type xsd:string.

— Legal value: alternateRegisterID of type xsd:string.

— Returns: value of type xsd:string. Returns true, false, or "".

G.7.1 9.1 1 setRegisterResetMask

Description: Set the mask to be ANDed with the value before comparing to reset value.

— Input: elementID of type xsd:string.

— Legal value: registerID of type xsd:string.

— Legal value: alternateRegisterID of type xsd:string.

— Input: mask of type spirit:spiritNumberType.

— Returns: status of type xsd:integer.

G.7.1 9.1 2 setRegisterResetValue

Description: Set register value at reset.

— Input: elementID of type xsd:string.

— Legal value: registerID of type xsd:string.

— Legal value: alternateRegisterID of type xsd:string.

— Input: value of type spirit:spiritNumberType.

— Returns: status of type xsd:integer.

G.7.1 9.1 3 setRegisterSize

Description: Set the register size in bits.

— Input: registerID of type xsd:string.

— Input: size of type xsd:positiveInteger.

— Returns: status of type xsd:boolean.

G.7.20 Remap operations

G.7.20.1 getRemapStatePortIDs

Description: List of remap port IDs of a remap state.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

344 Copyright © 201 0 IEEE. Al l rights reserved.

— Input: remapStateID of type xsd:string.

— Returns: remapStatePortIDs of type spirit:soapStringArrayType.

G.7.20.2 getRemapStatePortPortID

Description: Port ID for the remap state.

— Input: remapStatePortID of type xsd:string.

— Returns: portID of type xsd:string.

G.7.20.3 getRemapStatePortPortIndex

Description: Index of the port if a vector for the remap state.

— Input: remapStatePortID of type xsd:string.

— Returns: value of type xsd:string.

G.7.20.4 getRemapStatePortPortValue

Description: Value of the port for the remap state.

— Input: remapStatePortID of type xsd:string.

— Returns: spiritNumberTypeValue of type spirit:spiritNumberType.

G.7.21 Service operations

G.7.21 .1 getAbstractionDefAbstractionServiceTypeDefIDs

Description: List of type definitions for an abstractionServiceID.

— Input: abstractionServiceID of type xsd:string.

— Returns: abstractionServiceTypeDefIDs of type spirit:soapStringArrayType.

G.7.21 .2 getAbstractionDefServiceInitiative

Description: Port service initiative from the abstraction definition.

— Input: abstractionServiceID of type xsd:string.

— Returns: initiative of type xsd:string.

G.7.21 .3 getServiceInitiative

Description: Initiative of the service.

— Input: serviceID of type xsd:string.

— Returns: initiative of type xsd:string.

G.7.21 .4 getServiceTypeDefIDs

Description: List of typeDefs for a serviceID.

— Input: serviceID of type xsd:string.

— Returns: serviceTypeDefIDs of type spirit:soapStringArrayType.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 345

G.7.22 Typedef operations

G.7.22.1 getTypeDefConstrained

Description: Is the type name constrained?

— Input: elementID of type xsd:string.

— Legal value: wireTypeDefID of type xsd:string.

— Legal value: transactionalTypeDefID of type xsd:string.

— Legal value: serviceTypeDefID of type xsd:string.

— Returns: booleanValue of type xsd:boolean.

G.7.22.2 getTypeDefImplicit

Description: Is the type name implicit?

— Input: elementID of type xsd:string.

— Legal value: serviceTypeDefID of type xsd:string.

— Legal value: abstractionServiceTypeDefID of type xsd:string.

— Returns: booleanValue of type xsd:boolean.

G.7.22.3 getTypeDefTypeDefinitions

Description: List of type definition for the given type.

— Input: elementID of type xsd:string.

— Legal value: wireTypeDefID of type xsd:string.

— Legal value: transactionalTypeDefID of type xsd:string.

— Legal value: serviceTypeDefID of type xsd:string.

— Returns: typeDefinitions of type spirit:soapStringArrayType.

G.7.22.4 getTypeDefTypeName

Description: Name of the type.

— Input: elementID of type xsd:string.

— Legal value: wireTypeDefID of type xsd:string.

— Legal value: transactionalTypeDefID of type xsd:string.

— Legal value: serviceTypeDefID of type xsd:string.

— Legal value: abstractionServiceTypeDefID of type xsd:string.

— Returns: value of type xsd:string.

G.7.22.5 getTypeDefTypeViewIDs

Description: List of type viewIDs for the given type.

— Input: wireTypeDefID of type xsd:string.

— Returns: viewIDs of type spirit:soapStringArrayType.

G.7.23 View operations

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

346 Copyright © 201 0 IEEE. Al l rights reserved.

G.7.23.1 getViewDefaultFileBuilderIDs

Description: List of default file builder IDs of the view.

— Input: viewID of type xsd:string.

— Returns: fileBuilderIDs of type spirit:soapStringArrayType.

G.7.23.2 getViewDesignID

Description: ID of the design associated with a hierarchical view.

— Input: viewID of type xsd:string.

— Returns: designID of type xsd:string.

G.7.23.3 getViewEnvIdentifiers

Description: List of environment identifiers of the view.

— Input: viewID of type xsd:string.

— Returns: envIdentifiersValue of type spirit:soapStringArrayType.

G.7.23.4 getViewFileSetIDs

Description: List of fileSet IDs for fileSets referenced by the view.

— Input: viewID of type xsd:string.

— Returns: fileSetIDs of type spirit:soapStringArrayType.

G.7.23.5 getViewLanguage

Description: View Language.

— Input: viewID of type xsd:string.

— Returns: value of type xsd:string.

G.7.23.6 getViewLanguageIsStrict

Description: Value of strict attribute on view language element.

— Input: viewID of type xsd:string.

— Returns: booleanValue of type xsd:boolean.

G.7.23.7 getViewModelName

Description: Get the model name for this view.

— Input: viewID of type xsd:string.

— Returns: modelName of type xsd:string.

G.7.23.8 getViewPortConstraintSetIDs

Description: Constraint set ID for the port referenced by the view.

— Input: portID of type xsd:string.

— Input: viewID of type xsd:string.

— Returns: portConstraintSetIDs of type spirit:soapStringArrayType.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 347

G.7.23.9 getViewWhiteboxElementRefIDs

Description: List of white box element reference IDs of the view.

— Input: viewID of type xsd:string.

— Returns: whiteboxRefIDs of type spirit:soapStringArrayType.

G.7.24 White box operations

G.7.24.1 getWhiteboxElementDrivable

Description: Indicates whether or not the white box element is drivable.

— Input: whiteboxElementID of type xsd:string.

— Returns: booleanValue of type xsd:boolean.

G.7.24.2 getWhiteboxElementRefID

Description: White box element reference ID.

— Input: whiteboxRefID of type xsd:string.

— Returns: whiteboxElementID of type xsd:string.

G.7.24.3 getWhiteboxElementRegisterIDs

Description: Register reference IDs of the white box element.

— Input: whiteboxElementID of type xsd:string.

— Returns: registerIDs of type spirit:soapStringArrayType.

G.7.24.4 getWhiteboxElementType

Description: Type of the white box element.

— Input: whiteboxElementID of type xsd:string.

— Returns: value of type xsd:string.

G.7.24.5 getWhiteboxRefPathIDs

Description: List of path IDs of the white box element reference.

— Input: whiteboxRefID of type xsd:string.

— Returns: whiteboxRefPathIDs of type spirit:soapStringArrayType.

G.7.24.6 getWhiteboxRefPathName

Description: Name of the white box reference path element.

— Input: whiteboxRefPathID of type xsd:string.

— Returns: value of type xsd:string.

G.7.24.7 getWhiteboxRefPathRange

Description: List of left and right range of the white box reference path element.

— Input: whiteboxRefPathID of type xsd:string.

— Returns: nonNegativeIntegerArrayValue of type spirit:nonNegativeIntegerArrayType.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

348 Copyright © 201 0 IEEE. Al l rights reserved.

G.7.25 TGI ID types

Summary of defined TGI ID types.

— abstractionDefID

— abstractionDefPortID

— abstractionDefPortModeConstraintID

— abstractionDefPortModeID

— abstractionServiceID

— abstractionServiceTypeDefID

— abstractorID

— abstractorInstanceID

— adHocConnectionID

— adHocExternalPortReferenceID

— adHocInternalPortReferenceID

— addressBlockID

— addressBlockUID

— addressSpaceID

— addressSpaceUID

— alternateRegisterID

— alternateRegisterUID

— argumentID

— argumentUID

— bankID

— bankUID

— bridgeID

— busdefID

— channelID

— choiceEnumerationID

— choiceID

— clockDriverID

— clockDriverUID

— componentID

— componentInstanceID

— cpuID

— designID

— driveConstraintID

— elementID

— executableImageID

— executableImageUID

— fileBuilderID

— fileBuilderUID

— fileDefineID

— fileDefineUID

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 349

— fileID

— fileSetGroupID

— fileSetID

— fileUID

— functionID

— functionSourceFileID

— functionUID

— generatorID

— hierConnectionID

— interconnectionID

— interfaceID

— interfacePortMapID

— interfaceUID

— linkerCommandFileID

— linkerCommandFileUID

— loadConstraintID

— localMemoryMapID

— memoryMapElementID

— memoryMapID

— memoryRemapID

— monitorInterconnectionID

— parameterID

— parameterUID

— portConstraintSetID

— portID

— portMapID

— portMapUID

— portUID

— regFieldID

— regFieldUID

— regFieldValueID

— registerFileID

— registerFileUID

— registerID

— registerUID

— remapAddressID

— remapStateID

— remapStatePortID

— segmentID

— segmentUID

— serviceID

— serviceTypeDefID

— singleShotDriverID

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

350 Copyright © 201 0 IEEE. Al l rights reserved.

— singleShotDriverUID

— subspaceMapID

— subspaceMapUID

— timingConstraintID

— transactionalTypeDefID

— typeDefID

— viewID

— whiteboxElementID

— whiteboxRefID

— whiteboxRefPathID

— wireTypeDefID

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 351

Annex H

(informative)

Bridges and channels

This annex describes the basic address calculations of the two interconnect schemes contained inside an IP-

XACT component: a bridge statement that describes an interconnect between a slave interface and a master

interface, and a channel statement that describes an interconnect between a mirrored-master interface and a

mirrored-slave interface. Figure H.1 highlights bridge and channel components in IP-XACT. For precise

details on the addressing equations, see Clause 11 .

H.1 Transparent bridge

A transparent bridge locates the start of the master interface’s address space at the start of the address space

seen at the slave interface; thus, the address is not modified from the slave interface of the bridge into the

addressSpace of the master interface. In Figure H.2, the master interface address space range 0x0000 to

0x0FFF maps to the address range 0x0000 to 0x0FFF as seen in the address space at the slave interface.

Processor

MemoryBridge

Memory

master

master

master

slave

slave

slave

Processor

MemoryChannel

Memory

master

mSlave

mSlave

mMaster

slave

slave
component

component

component

component

component

component

component

component

Processor

MemoryBridge

Memory

master

master

master

slave

slave

slave

Processor

MemoryChannel

Memory

master

mSlave

mSlave

mMaster

slave

slave
component

component

component

component

component

component

component

component

Figure H.1—Bridge and channel components

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

352 Copyright © 201 0 IEEE. Al l rights reserved.

An address block from another component connected to the bridge’s master interface may appear in the

master’s address space. The base address of the connected address block is offset in the address space of the

master interface by the master/addressSpaceRef/baseAddress. This also offsets the address block by the

same amount in the address space at the slave interface. In Figure H.3 , the addressBlock from the connected

slave range 0x0000 to 0x07FF maps to the address range 0x0600 to 0x0DFF (offset by master/

addressSpaceRef/baseAddress = 0x0600) as seen in the address space of the master interface and to the

address range 0x0600 to 0x0DFF as seen in the address space at the slave interface.

Figure H.4 shows it is also possible to offset the addressBlock from the connected slave in the negative

direction. The addressBlock from the connected slave range 0x7000 to 0x77FF maps to the address

range 0x0000 to 0x07FF (offset by master/addressSpaceRef/baseAddress = –0x7000) as seen in the

address space of the master interface and to the address range 0x0000 to 0x07FF as seen in the address

space at the slave interface.

0x0000

0xFFFF
addressSpace

at the slave

0x0000

0x0FFF
addressSpace

of the master
0x0FFF

0x0000

0xFFFF
addressSpace

at the slave

0x0000

0x0FFF
addressSpace

of the master
0x0FFF

Figure H.2—Transparent bridge slave interface address range

memoryMap

In the slave

0x0000

0xFFFF
addressSpace

at the slave

0x0000

0x0FFF
addressSpace
of the master

0x0000

0x07FF
addressBlock

in the slave

master/addressSpaceRef/baseAddress = 0x0600master/addressSpaceRef/baseAddress = 0x0600

0x0FFF

0x0600 0x0600

memoryMap

In the slave

0x0000

0xFFFF
addressSpace

at the slave

0x0000

0x0FFF
addressSpace
of the master

0x0000

0x07FF
addressBlock

in the slave

master/addressSpaceRef/baseAddress = 0x0600master/addressSpaceRef/baseAddress = 0x0600

0x0FFF

0x0600 0x0600

Figure H.3—Offsetting an address block in a transparent bridge

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 353

Figure H.5 shows the references between the various elements and attributes in a transparent bridge.

H.2 Opaque bridge

H.2.1 Without an address space segment reference

An opaque bridge that only references a master interface locates the start of the master interface’s address

space at the base address specified in the subspace map referenced by the slave interface; thus, the address is

modified (offset by subspaceMap/baseAddress) from the slave interface into the addressSpace of the

master interface. In Figure H.6, the slave interface address range 0x1000 to 0x1FFF maps to address

range 0x0000 to 0x0FFF in the master interface’s address space. The range of the addresses mapped is

determined by the range of the addressSpace.

memoryMap

In the connected

slave

0x0000

0xFFFF
addressSpace

at the slave

0x0000

0x0FFF
addressSpace
of the master

0x7000

0x77FF
addressBlock

in the slave

master/addressSpaceRef/baseAddress = -0x7000master/addressSpaceRef/baseAddress = -0x7000

0x0FFF

0x0000

memoryMap

In the connected

slave

0x0000

0xFFFF
addressSpace

at the slave

0x0000

0x0FFF
addressSpace
of the master

0x7000

0x77FF
addressBlock

in the slave 0x7000

0x77FF
addressBlock

in the slave

addressBlock

in the slave

master/addressSpaceRef/baseAddress = -0x7000master/addressSpaceRef/baseAddress = -0x7000

0x0FFF

0x0000

Figure H.4—Negative offsetting of an address block in a transparent bridge

S

M

M

M

addressSpaceaddressSpace

slave/bridge/masterRef

Statement

slave/bridge/masterRef

Statement

ra
n
g
e

master/addressSpaceRef/addressSpaceRef

Statement

master/addressSpaceRef/addressSpaceRef

Statement

component

addressSpaceaddressSpace

addressSpaceaddressSpace

baseAddress

baseAddress

baseAddress

ra
n
g
e

ra
n
g
e

S

M

M

M

addressSpaceaddressSpace

slave/bridge/masterRef

Statement

slave/bridge/masterRef

Statement

ra
n
g
e

master/addressSpaceRef/addressSpaceRef

Statement

master/addressSpaceRef/addressSpaceRef

Statement

component

addressSpaceaddressSpace

addressSpaceaddressSpace

baseAddress

baseAddress

baseAddress

ra
n
g
e

ra
n
g
e

Figure H.5—Transparent bridge references

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

354 Copyright © 201 0 IEEE. Al l rights reserved.

H.2.2 With an address space segment reference

An opaque bridge with an addressSpace segment reference locates the start of the master interface’s

address space segment at the base address specified in the subspace map referenced by the slave interface;

thus, the address is modified (offset by subspaceMap/baseAddress) from the slave interface into the

addressSpace of the master interface. In Figure H.7, the slave interface address range 0x1000 to 0x17FF

maps to address range 0x2000 to 0x27FF in the master interface’s address space. The range of the

addresses mapped is determined by the range of the address space’s segment.

It is also possible to preserve the addressing across an opaque bridge. In Figure H.8, the slave interface

address range 0x1000 to 0x17FF maps to address range 0x1000 to 0x17FF in the master interface’s

address space. The range of the addresses mapped is determined by the range of the address space’s

segment.

0x0000

0xFFFF
addressSpace

at the slave

0x0000

0x0FFF
addressSpace

of the master

subspaceMap/baseAddress = 0x1 000subspaceMap/baseAddress = 0x1 000

0x1 000

0x0000

0xFFFF
addressSpace

at the slave

0x0000

0xFFFF
addressSpace

at the slave

0x0000

0x0FFF
addressSpace

of the master

subspaceMap/baseAddress = 0x1 000subspaceMap/baseAddress = 0x1 000

0x1 000

Figure H.6—Opaque bridge slave interface address range without segment reference

0x0000

0xFFFF
addressSpace

at the slave

0x0000

subspaceMap/baseAddress = 0x1 000subspaceMap/baseAddress = 0x1 000

0x1 000

addressSpace

of the master 0xFFFF

0x2000

segment/addressOffset = 0x2000segment/addressOffset = 0x2000

segment/range = 0x07FFsegment/range = 0x07FF

0x07FF

0x0000

0xFFFF
addressSpace

at the slave

0x0000

0xFFFF
addressSpace

at the slave

0x0000

subspaceMap/baseAddress = 0x1 000subspaceMap/baseAddress = 0x1 000

0x1 000

addressSpace

of the master 0xFFFF

0x2000

segment/addressOffset = 0x2000segment/addressOffset = 0x2000

segment/range = 0x07FFsegment/range = 0x07FF

0x07FF

Figure H.7—Opaque bridge slave interface address range with segment reference

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 355

H.2.3 Effect of a master interface address space base address

The effect of the master interface address space base address applies with or without a segment reference.

An address block from another component connected to the bridge’s master interface may appear in the

master’s address space. The base address of the connected address block is offset in the address space of the

master interface by the master/addressSpaceRef/baseAddress. This also offsets the address block by the

same amount in the address space at the slave interface. In Figure H.9, the addressBlock from the connected

slave range 0x0000 to 0x07FF maps to the address range 0x0500 to 0x0CFF (offset by master/

addressSpaceRef/baseAddress = 0x0500) as seen in the address space of the master interface, and to the

address range 0x1500 to 0x1CFF (offset by subspaceMap/baseAddress = 0x1000) as seen in the

address space at the slave interface.

memoryMap

In the connected

slave

0x1 500

0x1 5FFaddressBlock

in the slave

0x0000

0xFFFF
addressSpace

at the slave

subspaceMap/baseAddress = 0x1 000subspaceMap/baseAddress = 0x1 000

0x1 000

0x1 500

0x0000

addressSpace

of the master 0xFFFF

0x1 000

segment/addressOffset = 0x1 000segment/addressOffset = 0x1 000

segment/range = 0x07FFsegment/range = 0x07FF

0x07FF

memoryMap

In the connected

slave

0x1 500

0x1 5FFaddressBlock

in the slave

0x0000

0xFFFF
addressSpace

at the slave

0x0000

0xFFFF
addressSpace

at the slave

subspaceMap/baseAddress = 0x1 000subspaceMap/baseAddress = 0x1 000

0x1 000

0x1 500

0x0000

addressSpace

of the master 0xFFFF

0x1 000

segment/addressOffset = 0x1 000segment/addressOffset = 0x1 000

segment/range = 0x07FFsegment/range = 0x07FF

0x07FF

Figure H.8—Opaque bridge with transparent addressing

memoryMap

In the connected

slave

0x0000

0x07FFaddressBlock

in the slave

0x0000

0xFFFF
addressSpace

at the slave

0x0000

0x0FFF
addressSpace

of the master

subspaceMap/baseAddress = 0x1 000subspaceMap/baseAddress = 0x1 000 master/addressSpaceRef/baseAddress = 0x500master/addressSpaceRef/baseAddress = 0x500

0x1 000

0x1 500

0x0500

memoryMap

In the connected

slave

0x0000

0x07FFaddressBlock

in the slave

0x0000

0xFFFF
addressSpace

at the slave

0x0000

0xFFFF
addressSpace

at the slave

0x0000

0x0FFF
addressSpace

of the master

subspaceMap/baseAddress = 0x1 000subspaceMap/baseAddress = 0x1 000 master/addressSpaceRef/baseAddress = 0x500master/addressSpaceRef/baseAddress = 0x500

0x1 000

0x1 500

0x0500

Figure H.9—Offsetting an address block in an opaque bridge

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

356 Copyright © 201 0 IEEE. Al l rights reserved.

Figure H.1 0 shows it is also possible to offset the addressBlock from the connected slave in the negative

direction. The addressBlock from the connected slave range 0x7000 to 0x77FF maps to the address

range 0x0500 to 0x0CFF (offset by master/addressSpaceRef/baseAddress = -0x6B00) as seen in the

address space of the master interface, and to the address range 0x1500 to 0x1CFF (offset by

subspaceMap/baseAddress = 0x1000) as seen in the address space at the slave interface.

Figure H.11 shows the references between the various elements and attributes in an opaque bridge.

memoryMap

In the connected

slave

0x7000

0x77FFaddressBlock

in the slave

0x0000

0xFFFF
addressSpace

at the slave

0x0000

0x0FFF
addressSpace

of the master

subspaceMap/baseAddress = 0x1 000subspaceMap/baseAddress = 0x1 000 master/addressSpaceRef/baseAddress = -0x6B00master/addressSpaceRef/baseAddress = -0x6B00

0x1 000

0x1 500

0x0500

memoryMap

In the connected

slave

0x7000

0x77FFaddressBlock

in the slave

0x0000

0xFFFF
addressSpace

at the slave

0x0000

0xFFFF
addressSpace

at the slave

0x0000

0x0FFF
addressSpace

of the master

subspaceMap/baseAddress = 0x1 000subspaceMap/baseAddress = 0x1 000 master/addressSpaceRef/baseAddress = -0x6B00master/addressSpaceRef/baseAddress = -0x6B00

0x1 000

0x1 500

0x0500

Figure H.1 0—Negative offsetting of an address block in an opaque bridge

S

M

M

addressSpaceaddressSpace

addressSpaceaddressSpace

baseAddress

baseAddress

subspaceMap

baseAddress

subspaceMap

baseAddress

subspaceMap

baseAddress

subspaceMap

baseAddress

memoryMap

component

ra
n
g
e

ra
n
g
e

master/addressSpaceRef/addressSpaceRef

Statement

master/addressSpaceRef/addressSpaceRef

Statement

slave/bridge/masterRef

Statement

slave/bridge/masterRef

Statement

slave/memoryMapRef/memoryMapRef

Statement

slave/memoryMapRef/memoryMapRef

Statement

subspaceMap/masterRef

Statement

subspaceMap/masterRef

Statement

segment

subspaceMap/segmentRef

Statement

subspaceMap/segmentRef

Statement

S

M

M

addressSpaceaddressSpace

addressSpaceaddressSpace

baseAddress

baseAddress

subspaceMap

baseAddress

subspaceMap

baseAddress

subspaceMap

baseAddress

subspaceMap

baseAddress

memoryMap

component

ra
n
g
e

ra
n
g
e

master/addressSpaceRef/addressSpaceRef

Statement

master/addressSpaceRef/addressSpaceRef

Statement

slave/bridge/masterRef

Statement

slave/bridge/masterRef

Statement

slave/memoryMapRef/memoryMapRef

Statement

slave/memoryMapRef/memoryMapRef

Statement

subspaceMap/masterRef

Statement

subspaceMap/masterRef

Statement

segment

subspaceMap/segmentRef

Statement

subspaceMap/segmentRef

Statement

Figure H.1 1—Opaque bridge references

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 357

H.3 Channel with address remapping

A mirrored-slave interface that is part of a channel may provide a remap address for the connected slave

interface. This remap address is an offset of the base address of the address block in the connected slave

interface, as shown in Figure H.1 2. This offset is the addition the remapAddress element’s value (see 6.9)

to the base address of the memory map from the slave. The range element also modifies (and potentially

narrows) the range of the entire memory map of the connected slave. In Figure H.12, the slave interface

address range 0x0000 to 0x0FFF maps to the address range 0x1000 to 0x17FF (offset by mirrorSlave/

baseAddress/remapAddress = 0x1000 and narrowed by mirrorSlave/baseAddress/range = 0x0800) in

the address space as seen at the mirrored-slave interface.

Figure H.1 3 shows the references between the various elements and attributes in a channel with address

remapping.

0x0000

0xFFFF
addressSpace

at the mirrored

slave

0x0000

0x0FFF

addressBlock

in the slave

mirroredSlave/baseAddresses/remapAddress = 0x1 000mirroredSlave/baseAddresses/remapAddress = 0x1 000

memoryMap

In the connected

slave

0x1 000

0x0000

0xFFFF
addressSpace

at the mirrored

master

0x1 000

mirroredSlave/baseAddresses/range = 0x0800mirroredSlave/baseAddresses/range = 0x0800

0x0000

0xFFFF
addressSpace

at the mirrored

slave

0x0000

0x0FFF

addressBlock

in the slave

mirroredSlave/baseAddresses/remapAddress = 0x1 000mirroredSlave/baseAddresses/remapAddress = 0x1 000

memoryMap

In the connected

slave

0x1 000

0x0000

0xFFFF
addressSpace

at the mirrored

master

0x1 000

mirroredSlave/baseAddresses/range = 0x0800mirroredSlave/baseAddresses/range = 0x0800

Figure H.1 2—Address remapping in a channel

MM

MS

MS

MS

channel/busInterfaceRef

Statement

channel/busInterfaceRef

Statement

component

remapStateremapState

mirroredSlave/baseAddress/remapAddress

mirroredSlave/baseAddress/range

Statements

mirroredSlave/baseAddress/remapAddress

mirroredSlave/baseAddress/range

Statements

remapStateremapState

remapStateremapState

MM

MS

MS

MS

channel/busInterfaceRef

Statement

channel/busInterfaceRef

Statement

component

remapStateremapState

mirroredSlave/baseAddress/remapAddress

mirroredSlave/baseAddress/range

Statements

mirroredSlave/baseAddress/remapAddress

mirroredSlave/baseAddress/range

Statements

remapStateremapState

remapStateremapState

Figure H.1 3—Channel with remapping references

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

358 Copyright © 201 0 IEEE. Al l rights reserved.

H.4 Channel with bit steering

A mirrored-slave interface that is part of a channel may have a bitSteering element. If the bitSteering

element is on, the base address and range of an address block as seen across a channel is modified only by

the ratio of the bitsInLau of the mirrored-slave and the mirrored-master interfaces. In Figure H.1 4, the slave

interface address range 0x0000 to 0x07FF maps to the address range 0x1000 to 0x17FF (offset by

mirrorSlave/baseAddress/remapAddress = 0x1000) in the address space as seen at the mirrored-slave

interface, and maps to the address range 0x1000 to 0x17FF (multiplied by the ratio of the mirrored-slave

and mirrored-master bitsInLau 8/8 = 1 , and independent of the width of the logical data ports) in the

address space as seen at the mirrored-master interface.

In Figure H.1 5, the bitSteering element is on and there are differing bitsInLau across the channel. The

slave interface address range 0x0000 to 0x0FFF maps to the address range 0x1000 to 0x1FFF (offset

by mirrorSlave/baseAddress/remapAddress = 0x1000) in the address space as seen at the mirrored-

slave interface, and maps to the address range 0x0800 to 0x0FFF (multiplied by the ratio of the mirrored-

slave and mirrored-master bitsInLau 4/8 = 1/2 , and independent of the width of the logical data ports) in

the address space as seen at the mirrored-master interface.

0x0000

addressSpace

at the mirrored

slave

0x0000

0x07FFaddressBlock

in the slave

mirroredSlave/baseAddresses/remapAddress = 0x1 000mirroredSlave/baseAddresses/remapAddress = 0x1 000

memoryMap

In the connected

slave

0x1 000

0x0000

0xFFFF
addressSpace

at the mirrored

master

0x1 000

data width = 8

bitsInLau = 8

0x1 7FF

data width = 8

bitsInLau = 8

bitSteering = on

data width = 1 6

bitsInLau = 8

0x1 7FF

0x0000

addressSpace

at the mirrored

slave

0x0000

0x07FFaddressBlock

in the slave

mirroredSlave/baseAddresses/remapAddress = 0x1 000mirroredSlave/baseAddresses/remapAddress = 0x1 000

memoryMap

In the connected

slave

0x1 000

0x0000

0xFFFF
addressSpace

at the mirrored

master

0x1 000

data width = 8

bitsInLau = 8

0x1 7FF

data width = 8

bitsInLau = 8

bitSteering = on

data width = 1 6

bitsInLau = 8

0x1 7FF

Figure H.1 4—Channel with equal bitsInLau and bitSteering = on

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1 685-2009

Copyright © 201 0 IEEE. Al l rights reserved. 359

If bitSteering is off, the base address and range of an address block as seen across a channel is modified by

the ratio of the bitsInLau and the logical data-width of the mirrored-slave and mirrored-master interfaces.

In Figure H.16, the slave interface address range 0x0000 to 0x07FF maps to the address range 0x1000 to

0x17FF (offset by mirrorSlave/baseAddress/remapAddress = 0x1000) in the address space as seen at

the mirrored-slave interface, and maps to the address range 0x2000 to 0x2FFF (multiplied by the ratio of

mirrored-slave and mirrored-master bitsInLau 8/8 = 1 , and multiplied by the ratio mirrored-master logical

data-width divided by the mirrored-slave logical data-width 16/8 = 2) in the address space as seen at the

mirrored-master interface.

Figure H.1 7 shows the references between the various elements and attributes in a channel with bitSteering

references.

0x0000

addressSpace

at the mirrored

slave

0x0000

0x0FFFaddressBlock

in the slave

mirroredSlave/baseAddresses/remapAddress = 0x1 000mirroredSlave/baseAddresses/remapAddress = 0x1 000

memoryMap

In the connected

slave

0x1 000

0x0000

0xFFFF
addressSpace

at the mirrored

master

0x0800

data width = 8

bitsInLau = 4

0x0FFF

data width = 8

bitsInLau = 4

bitSteering = on

data width = 1 6

bitsInLau = 8

0x1 FFF

0x0000

addressSpace

at the mirrored

slave

0x0000

0x0FFFaddressBlock

in the slave

mirroredSlave/baseAddresses/remapAddress = 0x1 000mirroredSlave/baseAddresses/remapAddress = 0x1 000

memoryMap

In the connected

slave

0x1 000

0x0000

0xFFFF
addressSpace

at the mirrored

master

0x0800

data width = 8

bitsInLau = 4

0x0FFF

data width = 8

bitsInLau = 4

bitSteering = on

data width = 1 6

bitsInLau = 8

0x1 FFF

Figure H.1 5—Channel with non-equal bitsInLau and bitSteering = on

0x0000

addressSpace

at the mirrored

slave

0x0000

0x07FFaddressBlock

in the slave

mirroredSlave/baseAddresses/remapAddress = 0x1 000mirroredSlave/baseAddresses/remapAddress = 0x1 000

memoryMap

In the connected

slave

0x1 000

0x0000

0xFFFF
addressSpace

at the mirrored

master

0x2000

data width = 8

bitsInLau = 8

0x2FFF

data width = 8

bitsInLau = 8

bitSteering = off

data width = 1 6

bitsInLau = 8

0x1 7FF

Figure H.1 6—Channel with bitSteering = off

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1 685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

360 Copyright © 201 0 IEEE. Al l rights reserved.

MM

MS

MS

MS

channel/busInterfaceRef

Statement

channel/busInterfaceRef

Statement

component

bitSteeringbitSteering

bitSteeringbitSteering

bitSteeringbitSteering

busInterface/bitSteering

Statement

busInterface/bitSteering

Statement

MM

MS

MS

MS

channel/busInterfaceRef

Statement

channel/busInterfaceRef

Statement

component

bitSteeringbitSteering

bitSteeringbitSteering

bitSteeringbitSteering

busInterface/bitSteering

Statement

busInterface/bitSteering

Statement

Figure H.1 7—Channel with bitSteering references

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

vi Copyright © 201 0 IEEE. Al l rights reserved.

$QQH[�,

�LQIRUPDWLYH��

,(((�/LVW�RI�Participants

The SPIRIT Standardization Working Group is entity based. At the time this standard was submitted to the

IEEE-SA Standards Board for approval, the SPIRIT Standardization Working Group had the following

membership:

Greg Ehmann, Chair

Kathy Werner, Vice Chair

Joe Daniels, Technical Editor

The following members of the entity balloting committee voted on this standard. Balloters may have voted

for approval, disapproval, or abstention.

Victor Berman
Dennis Brophy
Bill Chown
Gary Delp
Jean-Michel Fernandez

Mark Gogolewski
Serge Hustin
Prabhu Krishnamurthy
Stan Krolikoski

Mark Noll
John Swanson
Yatin Trivedi
Ralph von Vignau
Richard Weber

Accellera Organization Inc.
Cadence Design Systems Inc.
Freescale Semiconductor Inc.

NXP Semiconductors
STMicroelectronics
Semifore, Inc.

The SPIRIT Consortium
Synopsys, Inc.
Texas Instruments Inc.

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

�,(&����� ����

,(((�6WG�� �����������

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

Copyright © 201 0 IEEE. Al l rights reserved. vii

When the IEEE-SA Standards Board approved this standard on 9 December 2009, it had the following

membership:

Robert M. Grow, Chair

Thomas Prevost, Vice Chair

Steve M. Mills, Past Chair

Judith Gorman, Secretary

*Member Emeritus

Also included are the following nonvoting IEEE-SA Standards Board liaisons:

Howard L. Wolfman, TAB Representative
Satish K. Aggarwal, NRC Representative
Michael Janezic, NIST Representative

Michelle Turner
IEEE Standards Program Manager, Document Development

Michael D. Kipness
IEEE Standards Program Manager, Technical Program Development

John Barr
Karen Bartleson
Victor Berman
Ted Burse
Richard DeBlasio
Andy Drozd
Mark Epstein

Alexander Gelman
Jim Hughes
Richard H. Hulett
Young Kyun Kim
Joseph L. Koepfinger*
John Kulick

David J. Law
Ted Olsen
Glenn Parsons
Ronald C. Petersen
Narayanan Ramachandran
Jon Walter Rosdahl
Sam Sciacca

Publ i shed by I EC under l i cense from I EEE. © 2009 I EEE. Al l ri gh ts reserved .

,(&����� ����

,(((�6WG�� �������� ���

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

INTERNATIONAL

ELECTROTECHNICAL

COMMISSION

3, rue de Varembé

PO Box 1 31

CH-1 21 1 Geneva 20

Switzerland

Tel: + 41 22 91 9 02 1 1

Fax: + 41 22 91 9 03 00

info@iec.ch

www. iec.ch

Authorized l icensed use l imited to: University of Waterloo. Downloaded on Apri l 08,201 6 at 00:42:55 UTC from IEEE Xplore. Restrictions apply.

