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23.69 aCC_NEXE_NICONM() ..iiiiiiiiiiiiieeeiieeeiiee et ee ettt e et e et eeeateeeetaee e taeeesaseeeeasseeeatsseseasesenasseeesseeas 551
23.70 aCC_NEXL_INPUL() +euveenterrieientientietiente et ste et st et e ste et e sbeete s bt e be s bt e besbe et e ebeeteebeenbeeneenbeeneesaeenees 553
23.71 CC_NEXE_10AA() 1.ei et ettt e et et e e te e e e eareeeenns 555
23.72 aCC_NEXE_LOCONM() tuviriiieiiriiieeeeeiiiee ettt e ettt e e e ettt e e e e e tae e e e e eeetaaeeeeeeeasseeeeeensreeeeeeeensneens 557
23.73 acc_neXt_MOAPAN()..cciveeriiiiieiieeiie ettt sttt et et st sttt e e 558

[ Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT



IEC 61691-4:2004(E) 13
|EEE 1364-2001(E)

24.

25.

23.74 ACC_NEXE_INCL() ceeeeurrieeeeeeitieeeeeeeitteeeeeeetteeeeeeetareeeeeessreseeeeaassaaeaeseassaseeeeaassseaeeeassseseaeeannsraes 559
23.75 ACC_NEXE_OULPUL() weueveerteeiieeiteeteette st ettt et sat e e bt e st e et esab e e bt e sbeeeabeesbtesabeessaesateessaesaseenaee 560
23.76 ACC_NEXE_PATAIMELIET() ...vveeureerierieeiierteertesteestteeteesteesbeesutesateesseesateesstesaseesbeesseesseesaseesseesane 562
2377 ACC_NEXE_POTE() +ervreeureenrrerreenieesiteenttesteestesteesseesteenteesaseesseessseesseessseessaesssesnseessesnseesaseensnesnne 563
23.78 ACC_NEXL_POTTOUL() «uveveenrirnteteeitenteetenteete st et st et eebe et ebe et e ebteaesmeesaesseesbesstesbeeabesbeennesbeennens 565
23.79 aCC_NEXL_PIIMILIVE() -.euvrertiruietieiientieiterte ettt sttt st et sttt e st et e sbt e be et e bt eatenteeseenbeeneesaeenees 566
23.80 ACC_NEXL_SCOPE()--veeuverrrentermienteantanteetesteetesteetesteetesseesesseeseesteseeseeseeseeteeneenseeneesseensesaeenees 567
23.81 aCC_NEXE_SPECPATAIMN()...eeureeurierurerieeriteerieesiteerttesateebeessteebeesateebeesseeeabeesatesabeesaaesaseessnesaseenaee 568
23.82 aCC_NEXE_LCHK() ceuurriiieieeiieee ettt et e e et e et e e e e taa e e e e e e trraeeeeenaraeas 569
23.83 aCC_NEXE_tEIMUNAL() ..ieeiiirieiieieeiiiiee ettt eeere e eeetee e e e eear e e e e eesareeeeeeeeatreeeeeeentrareeeeeeanrees 571
23.84 aCC_NEXL_tOPIMIOA() c.veeuviiieiiiiieieeiteieeit ettt ettt st ettt et b et s be et ebe et et sae e 572
23.85 acC_0DbJeCt_IN_tYPEIISL() ceuveruretieuieiieiienieeteet ettt ettt ettt 573
23.86 2CC_ODJECE_OF_LYPE()-weureeuteemietiemienteeie st ettt ettt sttt ettt e b e st et st e bt e st ettt e bt et e saeenees 575
23.87 aCC_PrOAUCE_LYPE() «uvevreurieieerieieeiietente ettt ettt et et s e s et e e neeae e ae e e s ennes 577
23.88 aCC_PIOAUCE_VETSION() . .eeeureeuierieenieenteenitesieeriteeteesttesbeesttesabeesseesateenbeesaseebeessesnseesaseessnesane 579
23.89 ACC_1l@aSE_ODJECT().vrevrerrrerurerriieniieritesteeteesite et esttesbeesteesabeessaesateesstesaseebaessseenseesaseensnennee 580
23.90 aCC_t1ePlace_dlayS() ... eeovereeruerieniietenieetent ettt ettt ettt bbb 581
23.91 aCC_1ePlace_PUISEIE() «..eeveeueeiieieniieie ettt ettt sttt ettt et sb ettt et b et sttt et st 585
23.92 aCC_T€SEt_DULTEI() c..veiiieeie e e 588
23.93 aCC_Set_INTETACTIVE_SCOPE() cuvveruveerreerureeniierieeniteeteenteesteesteesateessaesateessaesaseebeessessseesaseesseesaee 589
23.94 ACC_SEL_PUISETE()..eeruveetreereeiieiieentte st et ste et e steebeesabeesbtesabeesbeesateebeesaaeenbaesaseeseesabeesseesane 590
23.05 ACC_SEE_SCOPE() c-veerurerurrerirerieerireerieeniteesteesitesteesstesseesssesseesaesssaesseesnsessssessseensaesssesnsessssesnsens 592
23.96 ACC_SCL_VAIUC()...eeiuieeieirieeeiieeeiie e ettt e ettt e eete e e ettt e e etteeeetreeesabeeeeasaeeetseeesseseeasseessseseaassesennseeas 594
23.97 ACC_VCI_AAA) ...tiiiieiiieeiee e e et e e e etaa e e eate e e eareeeaes 599
23.98 ACC_VCI_AEIELE() .eeceeeeeeeeeee ettt et e et e e e e e aae e e e e e e eareeeenns 601
23.99 ACC_VETSION() 1eeuvvieeeurrieeiireeesiieestteesereeestreeeasteeasseeassseeassseeeassseessseeessseessssseessssseesssesesssseesnsses 602
USING TF TOULINES ..vvieniieiiiieiieeieeite ettt ettt ettt et e st e e bt esat e ebeesateebeesabeenbeesaseenseesabeensnesnne 603
24.1 TF 10OUtINE defINItION ..euviiiiiieiieiieeieeete ettt ettt ettt ettt e st e esaeesebeesaeesateenbaessbesnbeesnseeneeas 603
24.2 TF routine system task/function argUments...........ccocceeererienierienienienenieneeteseeee e saeenees 603
24.3 Reading and writing system task/function argument values...........ccccccceevueneeiieneenieneeneneenne. 603

24.3.1 Reading and writing 2-state parameter argument Valles...........ccoceveereereeeruereenuennenns .603

24.3.2 Reading and writing 4-State ValUES ..........cceevuevuieiiniiiiiiniieienceie e .603

24.3.3 Reading and writing Strength ValUes........c.cevveiriiiniiiiiieniecieesieeieee et 604

24.3.4 Reading and WIiting tO MEMOTIES .....eevvirruierieiiiierieeieesreeieesteeteesieeereesieesbeesanesaseas 604

24.3.5 Reading and Writing String VAlUES........c.ccevuererrieniiniiniiiiniteieetetceeee et 604

24.3.6 Writing return values of user-defined functions ...........c.ccecceeoerenienennenienenieeen 604

24.3.7 Writing the correct C data [YPES ...c..eoververieeeiereeeieiirenteerestestestesteseeeeneseneeneeeenesnens 604
24.4 Value change deteCtiON ..........couieieriieieriieienieee ettt ettt e a e ae e e s ennes 605
24.5 SIMUIALON LIMNE ..uviiriiieiiieeieeitie ettt sttt ettt st et e st e et esateesbeesbtessbeesatesabeesatesateesasesnseenaes 605
24.6 Simulation SYNCRIONMIZALION ........eevveereieeriierieeitienie et esireeteesteesbeesteesebeesaaeseseesaesssesnseesnseensees 605
24.7 Instances of user-defined tasks Or fUNCHONS .......eecviiriiieiieerie et 606
24.8 Module and SCOPE INSLANCE NAMES .......ccueeueerueeierieeiertierieeteeteetteteetee e eseeneeeseesteeneesaeeneesaeenees 606
24.9 Saving information from one system TF call to the neXt........c..c.ccecevereneneneneneneenceenennenn 606
24.10 DiSplaying OULPUL MESSAZES ....eeuveereerureerterreeriterreenteesteesstesteesseesaseesseessessseesssessseessseesaesane 606
24.11 Stopping and fINISHING .......eovuiiiiiiiiiiieeece ettt et st st 606
TF 1OULINE AETINITIONS .uvveeivieiieeiieitieeiteste et e ste ettt e steeteesbeesteesabeesaesaseesaessseensaessseenseesaseessnennne 607
25.1 10_MCAPTINTE() c.eeuveiieiieiteteeitet ettt ettt b ettt et sb et sbe e e saeenbe st enaes 608
25.2 TO_PIINEE() ettt ettt ettt et h et bt e b et bbbt et ea e e bt eateeaeenteeaeeneas 609
25.3 MC_SCAN_PIUSATZS().euveerrerureeiieiieenitenteerite ettt et et st e st e st e bt e sat e e bt e sateebeesaaeeaeesaneenneenane 610
254 tf_add_LONZ() e uveeeeeeieetieeie ettt ettt et st e bt st e st e st e et e saee 611
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25.5 tf_asynchoff(), tf_1asSynchoff()........ccooirieriiie e 612
25.6 tf_asynchon(), tf_1aSYNCRON() ...cccuiruieiiiriieieeiee ettt 613
25.7 tf_clearalldelays(), tf_iclearalldelays() .......ccceevuerrueenieiiiienieeitete ettt 614
25.8 tf_COMPATE_TONZ().eeruvienrieriiiiieiieeite ettt ettt ettt et e st et e st e s bt e sabesabeesaaeebeesaneenaeenane 615
25.9 tf_copypvc_.ag(), tiCO PYPVC_.QZ( ) ceverreeririeeiirieerieetenieete ettt 616
25.10 tf_diVIde_LTONZ() «eveerereirtietiiteeteie ettt ettt ettt ettt ettt ettt ae e 617
2511 tf_dOISI ) ettt e et e e e et e e e eates eaeeeareeeeanes 618
25,12 tF_AOSTOP() cnvereeneeeteeteet ettt ettt ettt ettt et et e e s h et b et h et e e st et e eat et e ent e bt enteeneenteeneenees 619
B T G I =) (o) ) TSRS 620
25.14 tf_evaluatep(), tf_1evaluateP() ...c.eereerrieerieeiienieeeete ettt et st e 621
25.15 tf_exprinfo(), tf_ieXPrinfo() .....c.eereeriienierieeieeeie ettt s 622
25.16 tf_getestringp(), tf_igEtCSIIINZP()..veeuverreerueriieieniieieniteieeitete ettt ettt st 625
25.17 th_ZEUNSTANCE() .veveenteeieieetieteette ettt sttt ettt et bt et e bt et s bt et e ebe e beeb e et e eae e beeseenbeeneesaeenees 626
25.18 tf_getlongp(), tf_1ZEIONZP() wouveemrertieieeiieieee ettt ettt 627
25.19 tf_getlongtime(), tf_iZEtIONZHME() ....ceeruerrereririinienienieteteteeet ettt eae 628
25.20 tf_getNEXLIONGEIME() .eevreereeiieiieentieeieerte ettt ettt e st et e st e esbeesat e e bt e saseenbeesabesbeesaseensnesane 629
25.21 tf_getP(), tE_AZEEP() cvvvererereieesieeieee ettt nans 630
25.22 tf_getpchange(), tf_igetpChange()......c.ceevuerreerierieiienieieetet ettt 631
25.23 tf_getrealp(), tf_iZErealP() ...coveeueruieiiriieie ettt 632
25.24 tf_getrealtime(), tf_igetrealtime() .....ceeeeruerierieeierieeieste ettt 633
25.25 tf_gettime(), tf_IZELHIME() .eouverreeieetieieetiee ettt ettt ettt ettt ae et e et e et enaeeneeenas 634
25.26 tf_gettimeprecision(), tf_igettimepreciSION()........coceeevereeruereerrenierieniereeeere e nes 635
25.27 tf_gettimeunit(), tf_1ZEttiMEUNTL()....cooveeriueriiierieeiiieriie ettt ettt et s 636
25.28 tf_getworkarea(), tf_igetworkarea().......coccocvevuerienierieniinienieeeeeeecee e 637
25.29 tF_1ONZ_O_TEAL() weuveeutereieiieiteieeterte ettt sttt ettt ettt bt nbe st 638
25.30 tF_LONGEME_LOSLI() +eeuverrrenteetieteetienteete sttt ettt et e e st e e sb e e besb et e sbe e beebeeteeseenbeeneenbeeneesaeenees 639
25.31 th_MESSAZE() +.veeuvereeieetieteetiete et te st et e et e et e st ettt et e sh e e te bt et e e h e e teese ekt e st et e ent e bt et e eaeeteeneenees 640
25.32 tf_mipname(), tf_imipname() .....cooceerrreerieriieerieeieete ettt ettt ettt et st 642
25.33 tf_movepvc_.ag(), tf_im OVEPVC_.AZ( ) coveeriiiriieriieiieeieeite sttt ettt 643
25.34 tF_MUIPLY_1ONZ() cevevieeieiieiiiiieieee ettt te sttt et e et et e e b e seessessaensesseensesneeseeneennas 644
25.35 tf_nodeinfo(), tf_iNOdeinfO()........covuiiiiiiieeiiiieiee e e 645
25.36 tF_nump(), tfINUMP() c.evenreeiiiiieieteee ettt ettt ettt st sttt 649
25.37 tf_propagatep(), tf_ipropagateP()......cceeeerueeeererierieeiesie ettt 650
25.38 tf_putlongp(), tf_IPUtLONZP() ..eeuveuremeemiririiniieierientetetentet ettt ettt eae 651
25.39 tf pULP(), thAPULP() ceveenrieeteeiee ettt ettt st ettt ettt e st ae e s b et 652
25.40 tf_putrealp(), tf_IpUtTEAlP() .ovveereerieeiierieeie ettt sttt et sttt s e sane e 653
25471 tf_1€AA_TESTATT).uvvveieeieiieeieeeeeieee ettt eeeete e e e eete et e e eeetar e e e e eeraareeeeeesaraeeeeeeertareeeeeenrareeeeas 654
25.42 tf_1€a1_tO_LONZ() +eveentiinieiieiieteetete ettt ettt et st be s 655
25.43 tf_rosynchronize(), tf_iroSynchronize() .........cccoeeeruerierenienienieieeiesieee e 656
25.44 tf_scale_longAeLay()......ceceeierieeieeeeieeie ettt ettt ettt eneeneas 657
2545 tf_scale_reald@lay()......cueeeueeruieiiiinieeieete ettt sttt st 658
25.46 tf_setdelay(), tf_ISELAIAY() .oouveerreeriiriierieeieerite ettt sttt sttt st 659
25.47 tf_setlongdelay(), tf_iSetlongdelay()........ceceerrierieriiienieeieeie ettt 660
25.48 tf_setrealdelay(), tf_isetrealdelay() ........ccocerveereriienerienienieeetest et 661
25.49 tf_setworkarea(), tf_1SEtWOrKarea().......eceveeereerveerreerieesieenteesieesreeseesseeseessaeesseesseesseessnesnns 662
25.50 tf_S1ZEP(), th_ISIZEP() -vervvemveemeetienientieient ettt ettt sttt ettt ettt ettt ettt ettt ettt et ene e 663
25.51 tf_spname(), tf_iSPNameE()......c.eecueruieriirierieeiese ettt ettt et nae e enes 664
25.52 tf_strdelputp(), tf_ISTTAEIPULP() c.vevevviererererieieeeeeteteeeee ettt s e nas 665
25.53 tf_Strgetp(), th_ISTEEELP().veverererererererererereterereresesesesesesesesesesesesesesesesesesesesesesesesesesesesesesesesesesenas 667
25.54 tf SIIZELHIME() «ouveveenririeentietenteete sttt ettt ettt ettt ettt et e bt et s st e ae e st e st satesbeeabenbeebesbeennens 668
25.55 tf_strlongdelputp(), tf_istrlongdelputp() ......cccevveeeeriririniniiniesieieereeerereeeeee e 669
25.56 tf_strrealdelputp(), tf_iStrrealdelputPp() ..cco.eeeereeeierieeierieeeieee e 671
T A S o] ot (0 oV DTSSR 673
25.58 tf_synchronize(), tf_iSyNChronize().......coceevveerieiiieiniiiiiieie ettt 675
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26.

25.59 tf_testpve_.ag(), th_iteSIPVC_.aZ( )eeerverreereirierie ettt ettt sttt 676
25.00 H_LEXE() cuveveeuerrermertententert et st ettt ettt et ettt et b e sttt ettt ettt e ae et et aeeae e 677
25.61 tf_typep(), tE_ILYPEP() wvvrvrrreerriieisieeseieteisesesis sttt st nans 678
25.62 tf_unscale_loNZAEIay().....ceereerrreerieriierieeie ettt ettt ettt ettt st b e sane e 679
25.63 tf_unscale_realdelay()......ccoceoeeriereiiiniiieniieteetet ettt 680
25.64 tF_WAITINZ() +evvenverreeteeiieteeitet ettt ettt st s b et sttt e bt e bt e bt et e st bt et bt ettt enbeeaeenaes 681
25.65 tfWITEE_SAVE() weveeeenrieeeteeeeetteeeet et e ettt e ettt e e et e e eeae e e e eaaeeeeaeeeeaaeeeeaaeeeeateeeeeaeeeeessseeenteseenaeeeeennes 682
USING VP TOULINES. ...ttt ettt st ettt ettt b et sa e sb e s et sttt ettt e et ene 683
26.1 VPI system tasks and fUNCLIONS .......coooveerieriiiiniiiiiiiieeieete sttt et 683
26.2 The VPIINEITACE .....cc.eeiiiiriiiiieiiieescete ettt ettt s s 683
26.2.1 VP CAlIDACKS ...cutiiiiiiiiiiiiice ettt st s 683
26.2.2 VPI access to Verilog HDL objects and simulation objects ..........ccoccevereerienieniennnene 684
26.2.3 Error handling .........cooooiiiiiiiiiiieieeee ettt 684
26.2.4 Function availability .........ccccooeeirerinienieniiieieteee ettt 684
26.2.5 Traversing EXPIeSSIONS. ......cccerterrerrierreriietineeteeeertteeesteeaesaeesnesueenesanenesaneseeanenseenns 684
26.3 VPI 0bject ClasSifICAtIONS. .....c.uiirtterieriierieeiterite ettt sttt et sttt e sate e beesbeenbeesabeesanesane 685
26.3.1 Accessing object relationships and Properties ..........ceceeeerereererrienerneneerreneenieneenne 686
26.3.2 ODjJECE LYPE PIOPETLIES ....venveeueieienieniieieetienteettesteeetente et sbeestesetenbesbtenbesstenbeessesbeensesbeenee 687
26.3.3 Object file and 1iNe PrOPEITICS. ......ccueerueruiertirieniieiertiete ettt sbe e 687
26.3.4 Delays and VALUES .......ccccecereruiriirerienteieietet ettt sttt st ettt ene e saeas 688
26.4 List of VPI routines by functional category...........ccccocveverienieniieniinieneeieeeeeeeeeee e 688
26.5 Key to data model dIaZIamS ........coceerieerieriiieniieeieeiee ettt et st et e steebeesteesbeesareesaeesane 690
26.5.1 Diagram key for objects and ClaSSES .......cceevveerieirierriienieeiienteeieenireereeseesveesenesneees 691
26.5.2 Diagram key fOr acCesSING PrOPEILIES......cc.eevertieiiriieriiriieniertenieetenieetenteeresieeee e 691
26.5.3 Diagram key for traversing relationships .......c.cccceceeververiniincnenenencneieeeeeeeeeenns 692
26.6 Object data MOdel dIAZIAIMS. .......ccuerveruerieieieieietetetee ettt sttt 693
26.6.1 MOQUIL ...ttt ettt ettt ettt sttt ettt ebe e 694
26.6.2 TNSLANICE ATTAYS ..veeveeruiieiierieeiiesteestee sttt esieesteesbeesitesbeesabeebeesabeeseesaseebeesasesnbeesasessees 695
20.0.3 SCOPE ..veeeureerieeiieeitteete et e ste et e st e ebeestteebe e bte s bt ebee st e e ateea bt e hteenbeebaesabeeteesateeaaeeabeas 696
26.6.4 TO deCIATAtION .....evueeiiiiiiiiiiiiceteteet ettt ettt ettt sttt e st et e b i e b 696
260.0.5 POILS ettt sttt ettt ettt et ettt et eaee 697
26.6.6 Nets aNd NEL AITAYS ....c.ceueerererrirrirtertenteteteteeeteteteete sttt eresbesaessessessessennenteneeneesessessens 698
26.6.7 RegS aNd IEZ AITAYS .....eoueiiieiiiieieniieieeiiete ettt ettt ettt st esae st sane e eanesreesaesneenns 700
26.6.8 TO dECIATAtION .....ovueeiiriiiiieiiiietenieet ettt ettt ettt et st s e st e sne e 702
20.0.9 MEIMIOTY ...eevuvieiiieiieniieeiteste et e st e eteesiteebeesttesbeesbtesabeessbesaseessaessseenseesaseenseesaseenssesnsens 703
26.6.10 TO dECIaration ......ceceeeeevierieeiiiriieieniteie sttt ettt ettt ettt et sae et sbe e sbeeaesbeenaes 704
26.60.11 NAMEA BVENE  ..eiiuiiiiiieiiete ittt ettt ettt et st e b st esbe st e bt et e sbeeaeesbeenee 704
26.6.12 Parameter, SPECPATAIN .......cc.ceueerueruierteeeieteeueenteentesseeeesueensesneessesneessesnsesseensesseensesseenes 705
26.6.13 Primitive, Prilml tIMI......coueeitieeierteeiieteeiieteetestteteeeeeeeeseestesstesseeneesseensesseensesseensesneenes 706
26.6.14 UDP.....c.ooiiiiieteteteee ettt st sttt ettt ettt eae e 707
26.6.15 Model path, path teIM ........cccuiiiiiiiiiiriieiete ettt s esaeesaeees 708
26.6.16 Intermodule PAth ......cccccoceiviiiiiiiiiiiicicteee ettt 708
26.6.17 TimING ChECK ...coueiuiiiiiieiiiiiiteeceeeeeee ettt 709
26.6.18 Task, function deCIaration ...........ccceeieiiviieiieiiiiieieee et e e e e e e esaaeeeeeessaaaeeeeeeas 709
26.6.19 Task and function Call............cceierieiiiiieniieeeeee et 710
26.6.20 FrameS......ccuieiiiiiiiiieienieee ettt ettt ettt st st s 711
26.6.21 Delay termMINALS .....cceieruierieiiieiieeite sttt ettt ste et e st e beesabeebeesaaeenaees 712
26.6.22 Net drivers and 10ads ......c.ccoceeveriineriininieeeeeec e 712
26.6.23 Reg drivers and 10ads .........coocerieiiiiiiienieieeee et 712
26.6.24 CoNntinUOUS ASSIZNIMENE ....cc.eiiuietertieteetieteetterteetesteeteeteenteseeenbesseenbesstenbeeneenseeneesseenes 713
26.6.25 SIMPIE EXPIESSIONS. ...eoveerirtiriirtinterieteteteteiteteiteteetesbe st etesbesaessetesseseeneesteneesessesuesaeas 714
20.0.20 EXPIESSIONS .euvveevieuiieiienieriiesteetee sttt esttesuteesbeesatesbeesabesbeesateeseesaeeebeesssesabeesanesnsees 715
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26.6.27 Process, block, statement, €VENt STALEIMNENT ........eeeereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeeaas 716
26.6.28 ASSIZNIMENL ....cueouiiiriiriietirterteetentertent et etetest et ettt ebe sttt et esbesae st etesseeessesteneeneeuesuesaens 717
26.6.29 DAY CONLTOL ...cuviiiiiiiieiieiteeste ettt sttt ettt e sbe e st e e bt e sabeesaeesabees 717
26.6.30 EVENt CONLIOL .....oiiiiiiiiiiiieciis ettt ettt e e tr e etae e e sebeeeeseaeeetaeeesebeeeensseeennnes 717
26.6.31 REPEAL CONMIOL ...cveiniiiiiiiiiiiiiieieniteteettet ettt ettt sttt 717
26.6.32 WHhile, TePAL, WALl ....eeeiriiiiiiiieieitieieeiiet ettt ettt sttt b e sbe e 718
20.60.33 FOT ..ot e e e e et e e et e e e teeeeareeeans 718
26.60.34 FOTEVET ..o e e e e e e e aae e e e e e et e e eesaeeeeaaeeeeateeeeneeeeenns 718
20.0.35 T, f-@IS€ ..ecuriiieiieiiecie ettt ettt ettt e e ba e tb e e baesabe e teeenaeeaeas 719
20.60.30 CASC .oieeuviieeiiieeeiee ettt e ettt e ettt e e e et e e e b e e e taeaestbee e e taee e tateatbaeeabaeaataaeatbeeeanereeannres 719
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INTERNATIONAL ELECTROTECHNICAL COMMISSION

BEHAVIOURAL LANGUAGES -

Part 4: Verilog® hardware description language

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization
comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to
promote international co-operation on all questions concerning standardization in the electrical and
electronic fields. To this end and in addition to other activities, IEC publishes International Standards,
Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter
referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National
Committee interested in the subject dealt with may participate in this preparatory work. International,
governmental and non-governmental organizations liaising with the IEC also participate in this preparation.
IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with
conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an
international consensus of opinion on the relevant subjects since each technical committee has
representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly
indicated in the latter.

5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with an IEC Publication.

6) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC/IEEE 61691-4 has been processed through IEC technical
committee 93: Design automation.

The text of this standard is based on the following documents:

IEEE Std FDIS Report on voting
1364 (2001) 93/192/FDIS 93/197/RVD

Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives.

The committee has decided that the contents of this publication will remain unchanged until
2006.
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IEC 61691 consists of the following parts, under the general title Behavioural languages:

IEC/IEEE 61691-1-1, Part 1: VHDL language reference manual

IEC 61691-2, Part 2: VHDL multilogic system for model interoperability

IEC 61691-3-1, Part 3-1: Analog description in VHDL (under consideration)
IEC 61691-3-2, Part 3-2: Mathematical operation in VHDL

IEC 61691-3-3, Part 3-3: Synthesis in VHDL

IEC 61691-3-4, Part 3-4: Timing expressions in VHDL (under consideration)
IEC 61691-3-5, Part 3-5: Library utilities in VHDL (under consideration)
IEC/IEEE 61691-4, Part 4: Verilog® hardware description language

IEC/IEEE 61691-5, Part 5: VITAL ASIC (application specific integrated circuit) modeling
specification
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IEC/IEEE Dual Logo International Standards

This Dual Logo International Standard is the result of an agreement between the IEC and the Institute of
Electrical and Electronics Engineers, Inc. (IEEE). The original IEEE Standard was submitted to the IEC for
consideration under the agreement, and the resulting IEC/IEEE Dual Logo International Standard has been
published in accordance with the ISO/IEC Directives.

IEEE Standards documents are developed within the |EEE Societies and the Standards Coordinating
Committees of the IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards
through a consensus development process, approved by the American National Standards Institute, which
brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers
are not necessarily members of the Institute and serve without compensation. While the IEEE administers the
process and establishes rules to promote fairness in the consensus development process, the IEEE does not
independently evaluate, test, or verify the accuracy of any of the information contained in its standards.

Use of an IEC/IEEE Dual Logo International Standard is wholly voluntary. The IEC and IEEE disclaim liability for
any personal injury, property or other damage, of any nature whatsoever, whether special, indirect,
consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance upon
this, or any other IEC or IEEE Standard document.

The IEC and IEEE do not warrant or represent the accuracy or content of the material contained herein, and
expressly disclaim any express or implied warranty, including any implied warranty of merchantability or fitness
for a specific purpose, or that the use of the material contained herein is free from patent infringement.
IEC/IEEE Dual Logo International Standards documents are supplied “AS IS”.

The existence of an IEC/IEEE Dual Logo International Standard does not imply that there are no other ways to
produce, test, measure, purchase, market, or provide other goods and services related to the scope of the
IEC/IEEE Dual Logo International Standard. Furthermore, the viewpoint expressed at the time a standard is
approved and issued is subject to change brought about through developments in the state of the art and
comments received from users of the standard.

Every IEEE Standard is subjected to review at least every five years for revision or reaffirmation. When a
document is more than five years old and has not been reaffirmed, it is reasonable to conclude that its contents,
although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to
determine that they have the latest edition of any IEEE Standard.

In publishing and making this document available, the IEC and IEEE are not suggesting or rendering
professional or other services for, or on behalf of, any person or entity. Neither the IEC nor IEEE is undertaking
to perform any duty owed by any other person or entity to another. Any person utilizing this, and any other
IEC/IEEE Dual Logo International Standards or IEEE Standards document, should rely upon the advice of a
competent professional in determining the exercise of reasonable care in any given circumstances.

Interpretations — Occasionally questions may arise regarding the meaning of portions of standards as they relate
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Abstract: The Verilog® Hardware Description Language (HDL) is defined in this standard. Verilog
HDL is a formal notation intended for use in all phases of the creation of electronic systems. Be-
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I[EEE Introduction

The Verilog®* Hardware Description Language (Verilog HDL) became an IEEE standard in 1995 as IEEE
Std 1364-1995. It was designed to be simple, intuitive, and effective at multiple levels of abstraction in a
standard textual format for a variety of design tools, including verification simulation, timing analysis, test
analysis, and synthesis. It is because of these rich features that Verilog has been accepted to be the language
of choice by an overwhelming number of IC designers.

Verilog contains a rich set of built-in primitives, including logic gates, user-definable primitives, switches,
and wired logic. It also has device pin-to-pin delays and timing checks. The mixing of abstract levels is
essentially provided by the semantics of two data types: nets and variables. Continuous assignments, in
which expressions of both variables and nets can continuously drive values onto nets, provide the basic
structural construct. Procedural assignments, in which the results of calculations involving variable and net
values can be stored into variables, provide the basic behavioral construct. A design consists of a set of mod-
ules, each of which has an I/O interface, and a description of its function, which can be structural, behav-
ioral, or a mix. These modules are formed into a hierarchy and are interconnected with nets.

The Verilog language is extensible via the Programming Language Interface (PLI) and the Verilog Proce-
dural Interface (VPI) routines. The PLI/VPI is a collection of routines that allows foreign functions to access
information contained in a Verilog HDL description of the design and facilitates dynamic interaction with
simulation. Applications of PLI/VPI include connecting to a Verilog HDL simulator with other simulation
and CAD systems, customized debugging tasks, delay calculators, and annotators.

The language that influenced Verilog HDL the most was HILO-2, which was developed at Brunel Univer-
sity in England under a contract to produce a test generation system for the British Ministry of Defense.
HILO-2 successfully combined the gate and register transfer levels of abstraction and supported verification
simulation, timing analysis, fault simulation, and test generation.

In 1990, Cadence Design Systems placed the Verilog HDL into the public domain and the independent Open
Verilog International (OVI) was formed to manage and promote Verilog HDL. In 1992, the Board of Direc-
tors of OVI began an effort to establish Verilog HDL as an IEEE standard. In 1993, the first IEEE Working
Group was formed and after 18 months of focused efforts Verilog became an IEEE standard as IEEE Std
1364-1995.

After the standardization process was complete the 1364 Working Group started looking for feedback from
1364 users worldwide so the standard could be enhanced and modified accordingly. This led to a five year
effort to get a much better Verilog standard in IEEE Std 1364-2001.

Objective of the IEEE Std 1364-2001 effort

The starting point for the IEEE 1364 Working Group for this standard was the feedback received from the
IEEE Std 1364-1995 users worldwide. It was clear from the feedback that users wanted improvements in all
aspects of the language. Users at the higher levels wanted to expand and improve the language at the RTL
and behavioral levels, while users at the lower levels wanted improved capability for ASIC designs and
signoff. It was for this reason that the 1364 Working Group was organized into three task forces: Behavioral,
ASIC, and PLIL

* Verilog® is a registered trademark of Cadence Design Systems, Inc.
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The clear directive from the users for these three task forces was to start by solving some of the following
problems:

Consolidate existing IEEE Std 1364-1995
Verilog Generate statement
Multi-dimensional arrays

Enhanced Verilog file I/O

Re-entrant tasks

Standardize Verilog configurations
Enhance timing representation

Enhance the VPI routines

Achievements

Over a period of four years the 1364 Verilog Standards Group (VSG) has produced five drafts of the LRM.
The three task forces went through the IEEE Std 1364-1995 LRM very thoroughly and in the process of con-
solidating the existing LRM have been able to provide nearly three hundred clarifications and errata for the
Behavioral, ASIC, and PLI sections. In addition, the VSG has also been able to agree on all the enhance-
ments that were requested (including the ones stated above).

Three new sections have been added. Clause 13, Configuring the contents of a design, deals with configu-
ration management and has been added to facilitate both the sharing of Verilog designs between designers
and/or design groups and the repeatability of the exact contents of a given simulation session. Clause 15,
Timing checks, has been broken out of Clause 17, System tasks and functions, and details more fully
how timing checks are used in specify blocks. Clause 16, Backannotation using the Standard Delay Format
(SDF), addresses using back annotation (IEEE Std 1497-1999) within IEEE Std 1364-2001.

Extreme care has been taken to enhance the VPI routines to handle all the enhancements in the Behavioral
and other areas of the LRM. Minimum work has been done on the PLI routines and most of the work has
been concentrated on the VPI routines. Some of the enhancements in the VPI are the save and restart, simu-
lation control, work area access, error handling, assign/deassign and support for array of instances, generate,
and file I/O.

Work on this standard would not have been possible without funding from the CAS society of the IEEE and
Open Verilog International.

The IEEE Std 1364-2001 Verilog Standards Group organization

Many individuals from many different organizations participated directly or indirectly in the standardization
process. The main body of the IEEE Std 1364-2001 working group is located in the United States, with a
subgroup in Japan (EIAJ/1364HDL).

The members of the IEEE Std 1364-2001 working group had voting privileges and all motions had to be
approved by this group to be implemented. The three task forces focused on their specific areas and their
recommendations were eventually voted on by the IEEE Std 1364-2001 working group.

[ Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT



IEC 61691-4:2004(E) 25
|EEE 1364-2001(E)

BEHAVIOURAL LANGUAGES —

Part 4. Verilog® hardware
description language

1. Overview

1.1 Objectives of this standard

The intent of this standard is to serve as a complete specification of the Verilog® Hardware Description Lan-
guage (HDL). This document contains

The formal syntax and semantics of all Verilog HDL constructs

The formal syntax and semantics of Standard Delay Format (SDF) constructs

Simulation system tasks and functions, such as text output display commands

Compiler directives, such as text substitution macros and simulation time scaling

The Programming Language Interface (PLI) binding mechanism

The formal syntax and semantics of access routines, task/function routines, and Verilog procedural
interface routines

Informative usage examples

Informative delay model for SDF

Listings of header files for PLI

1.2 Conventions used in this standard

This standard is organized into clauses, each of which focuses on a specific area of the language. There are
subclauses within each clause to discuss individual constructs and concepts. The discussion begins with an
introduction and an optional rationale for the construct or the concept, followed by syntax and semantic
descriptions, followed by some examples and notes.

The term shall is used through out this standard to indicate mandatory requirements, whereas the term can is
used to indicate optional features. These terms denote different meanings to different readers of this
standard:

a)

b)

To the developers of tools that process the Verilog HDL, the term shall denotes a requirement that
the standard imposes. The resulting implementation is required to enforce the requirements and to
issue an error if the requirement is not met by the input.

To the Verilog HDL model developer, the term shall denotes that the characteristics of the Verilog
HDL are natural consequences of the language definition. The model developer is required to adhere
to the constraint implied by the characteristic. The term can denotes optional features that the model
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developer can exercise at discretion. If used, however, the model developer is required to follow the
requirements set forth by the language definition.
To the Verilog HDL model user, the term shall denotes that the characteristics of the models are nat-
ural consequences of the language definition. The model user can depend on the characteristics of
the model implied by its Verilog HDL source text.

1.3 Syntactic description

The formal syntax of the Verilog HDL is described using Backus-Naur Form (BNF). The following conven-
tions are used:

a)

b)

d)

Lowercase words, some containing embedded underscores, are used to denote syntactic categories.
For example:

module_declaration

Boldface words are used to denote reserved keywords, operators, and punctuation marks as a
required part of the syntax. These words appear in a larger font for distinction. For example:

module => ;

A vertical bar separates alternative items unless it appears in boldface, in which case it stands for
itself. For example:

unary_operator ::=
-~ & ~&] AN

Square brackets enclose optional items. For example:
input_declaration ::= input [range] list_of_variables ;

Braces enclose a repeated item unless it appears in boldface, in which case it stands for itself. The
item may appear zero or more times; the repetitions occur from left to right as with an equivalent
left-recursive rule. Thus, the following two rules are equivalent:

list_of_param_assignments ::= param_assignment { , param_assignment }
list_of_param_assignments ::=
param_assignment
| list_of_param_assignment , param_assignment

If the name of any category starts with an italicized part, it is equivalent to the category name
without the italicized part. The italicized part is intended to convey some semantic information. For
example, msb_constant_expression and  /sb_constant_expression are equivalent to
constant_expression.

The main text uses italicized font when a term is being defined, and constant-width font for examples,
file names, and while referring to constants, especially O, 1, X, and z values.

1.4 Contents of this standard

A synopsis of the clauses and annexes is presented as a quick reference. There are 27 clauses and 8 annexes.
All clauses, as well as Annex A, Annex B, Annex E, Annex F, and Annex G, are normative parts of this stan-
dard. Annex C, Annex D, and Annex H are included for informative purposes only.

Clause 1—Overview: This clause discusses the conventions used in this standard and its contents.
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Clause 2—This clause describes the lexical tokens used in Verilog HDL source text and their conven-
tions.: This clause describes how to specify and interpret the lexical tokens.

Clause 3—Data types: This clause describes net and variable data types. This clause also discusses the
parameter data type for constant values and describes drive and charge strength of the values on nets.

Clause 4 —Expressions: This clause describes the operators and operands that can be used in expressions.
Clause 5—Scheduling semantics: This clause describes the scheduling semantics of the Verilog HDL.
Clause 6— Assignments: This clause compares the two main types of assignment statements in the Verilog
HDL —continuous assignments and procedural assignments. It describes the continuous assignment state-

ment that drives values onto nets.

Clause 7—Gate and switch level modeling: This clause describes the gate and switch level primitives and
logic strength modeling.

Clause 8 —User-defined primitives (UDPs): This clause describes how a primitive can be defined in the
Verilog HDL and how these primitives are included in Verilog HDL models.

Clause 9—Behavioral modeling: This clause describes procedural assignments, procedural continuous
assignments, and behavioral language statements.

Clause 10— Tasks and functions: This clause describes tasks and functions—procedures that can be called
from more than one place in a behavioral model. It describes how tasks can be used like subroutines and

how functions can be used to define new operators.

Clause 11 —Disabling of named blocks and tasks: This clause describes how to disable the execution of a
task and a block of statements that has a specified name.

Clause 12— Hierarchical structures: This clause describes how hierarchies are created in the Verilog HDL
and how parameter values declared in a module can be overridden. It describes how generated instantiations

can be used to do conditional or multiple instantiations in a design.

Clause 13— Configuring the contents of a design: This clause describes how to configure the contents of a
design.

Clause 14— Specify blocks: This clause describes how to specify timing relationships between input and
output ports of a module.

Clause 15— Timing checks: This clause describes how timing checks are used in specify blocks to deter-
mine if signals obey the timing constraints.

Clause 16 —Backannotation using the Standard Delay Format (SDF): This clause describes syntax and
semantics of Standard Delay Format (SDF) constructs.

Clause 17—System tasks and functions: This clause describes the system tasks and functions.

Clause 18— Value change dump (VCD) files: This clause describes the system tasks associated with Value
Change Dump (VCD) file, and the format of the file.

Clause 19— Compiler directives: This clause describes the compiler directives.
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Clause 20—PLI overview: This clause previews the C language procedural interface standard (Program-
ming Language Interface or PLI) and interface mechanisms that are part of the Verilog HDL.

Clause 21 —PLI TF and ACC interface mechanism

This clause describes the interface mechanism that provides a means for users to link PLI task/function (TF)

routine and access (ACC) routine applications to Verilog software tools.

Clause 22— Using ACC routines: This clause describes the ACC routines in general, including how and
why to use them.

Clause 23—ACC routine definitions: This clause describes the specific ACC routines, explaining their
function, syntax, and usage.

Clause 24— Using TF routines: This clause provides an overview of the types of operations that are done
with the TF routines.

Clause 25—TF routine definitions: This clause describes the specific TF routines, explaining their func-
tion, syntax, and usage.

Clause 26 —Using VPI routines: This clause provides an overview of the types of operations that are done
with the Verilog Programming Interface (VPI) routines.

Clause 27— VPI routine definitions: This clause describes the VPI routines.

Annex A—Formal syntax definition: This normative annex describes, using BNF, the syntax of the Ver-
ilog HDL.

Annex B—List of keywords: This normative annex lists the Verilog HDL keywords.

Annex C—System tasks and functions: This informative annex describes system tasks and functions that
are frequently used, but that are not part of the standard.

Annex D—Compiler directives: This informative annex describes compiler directives that are frequently
used, but that are not part of the standard.

Annex E—acc_user.h: This normative annex provides a listing of the contents of the acc_user _h file.
Annex F—veriuser.h: This normative annex provides a listing of the contents of the vpi_user . h file.
Annex G—vpi_user.h: This normative annex provides a listing of the contents of the veriuser . h file.

Annex H—Bibliography: This informative annex contains bibliographic entries pertaining to this standard.

1.5 Header file listings

The header file listings included in the annexes E, F, and G for acc_user.h, veriuser.h, and
vpi_user .h are a normative part of this standard. All compliant software tools should use the same func-
tion declarations, constant definitions, and structure definitions contained in these header file listings.
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1.6 Examples

Several small examples in the Verilog HDL and the C programming language are shown throughout this
standard. These examples are informative—they are intended to illustrate the usage of Verilog HDL con-
structs and PLI functions in a simple context and do not define the full syntax.

1.7 Prerequisites

Clauses 20 through 27 and Annexes E through G presuppose a working knowledge of the C programming
language.
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2. Lexical conventions

This clause describes the lexical tokens used in Verilog HDL source text and their conventions.

2.1 Lexical tokens

Verilog HDL source text files shall be a stream of lexical tokens. A lexical token shall consist of one or more
characters. The layout of tokens in a source file shall be free format—that is, spaces and newlines shall not
be syntactically significant other than being token separators, except for escaped identifiers (see 2.7.1).

The types of lexical tokens in the language are as follows:

—  White space
— Comment
— Operator

— Number

— String

— Identifier

— Keyword

2.2 White space
White space shall contain the characters for spaces, tabs, newlines, and formfeeds. These characters shall be

ignored except when they serve to separate other lexical tokens. However, blanks and tabs shall be consid-
ered significant characters in strings (see 2.6).

2.3 Comments
The Verilog HDL has two forms to introduce comments. A one-line comment shall start with the two charac-

ters // and end with a new line. A block comment shall start with /* and end with */. Block comments
shall not be nested. The one-line comment token // shall not have any special meaning in a block comment.

2.4 Operators

Operators are single-, double-, or triple-character sequences and are used in expressions. Clause 4 discusses
the use of operators in expressions.

Unary operators shall appear to the left of their operand. Binary operators shall appear between their oper-
ands. A conditional operator shall have two operator characters that separate three operands.

2.5 Numbers

Constant numbers can be specified as integer constants (defined in 2.5.1) or real constants.
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number ::= (From Annex A - A.8.7)
decimal_number
| octal_number
| binary_number
| hex_number
| real_number
real_number* =
unsigned_number . unsigned_number
| unsigned_number [ . unsigned_number ] exp [ sign ] unsigned_number
exp:=e|E
decimal_number ::=
unsigned_number
| [ size ] decimal_base unsigned_number
| [ size ] decimal_base x_digit { _ }
| [ size ] decimal_base z_digit { _ }
binary_number ::=
[ size ] binary_base binary_value

octal_number ::=
[ size ] octal_base octal_value

hex_number ::=
[ size ] hex_base hex_value

sign =+ -
size ::= non_zero_unsigned_number
non_zero_unsigned_number* ::=non_zero_decimal_digit { _ | decimal_digit}
unsigned_number* ::= decimal_digit { _ | decimal_digit }
binary_value* ::= binary_digit { _ | binary_digit }
octal_value” ::= octal_digit { _ | octal_digit }
hex_value” ::= hex_digit { _ | hex_digit }
decimal_base” ::=°[s[S]d | °[s|S]D
binary_base ::=[s|S]b | °[s|S]B
octal_base"::="[s|S]o | ’[s|S]O
hex_base” ::="[s|STh | °[s|S]H
non_zero_decimal_digit::=1|2[3|4|5|6|7|8|9
decimal_digit::=0]1]2]3[4(5/6|7|8]9
binary_digit ::= x_digit | z_digit | 0| 1
octal_digit ::=x_digit | z_digit |0 |1|2|3|4|5|6|7
hex_digit ::=
x_digit |z digit|0]1]2[3[4(5/6|7|8]|9

|a[bfc|d|e|[f[A|B|C[D|E|F
x_digit :==x | X
z_digit:=z|Z|?

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

*Embedded spaces are illegal.

Syntax 2-1— Syntax for integer and real numbers

2.5.1 Integer constants

Integer constants can be specified in decimal, hexadecimal, octal, or binary format.
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There are two forms to express integer constants. The first form is a simple decimal number, which shall be
specified as a sequence of digits O through 9, optionally starting with a plus or minus unary operator. The
second form specifies a size constant, which shall be composed of up to three tokens—an optional size con-
stant, a single quote followed by a base format character, and the digits representing the value of the number.

The first token, a size constant, shall specify the size of the constant in terms of its exact number of bits. It
shall be specified as a non-zero unsigned decimal number. For example, the size specification for two hexa-
decimal digits is 8, because one hexadecimal digit requires 4 bits. Unsized unsigned constants where the
high order bit is unknown (X or X) or three-state (Z or z) are extended to the size of the expression contain-
ing the constant.

NOTE—In IEEE Std 1364-1995, unsized constants where the high order bit is unknown or three-state, the X or z was
only extended to 32 bits.

The second token, a base_Format, shall consist of a case-insensitive letter specifying the base for the
number, optionally preceded by the single character S (or S) to indicate a signed quantity, preceded by the
single quote character (”). Legal base specifications are d, D, h, H, 0, O, b, or B, for the bases decimal, hexa-
decimal, octal, and binary respectively.

The use of X and z in defining the value of a number is case insensitive.
The single quote and the base format character shall not be separated by any white space.

The third token, an unsigned number, shall consist of digits that are legal for the specified base format. The
unsigned number token shall immediately follow the base format, optionally preceded by white space. The
hexadecimal digits a to F shall be case insensitive.

Simple decimal numbers without the size and the base format shall be treated as signed integers, whereas the
numbers specified with the base format shall be treated as signed integers if the S designator is included or
as unsigned integers if the base format only is used. The S designator does not affect the bit pattern speci-
fied, only its interpretation.

A plus or minus operator preceding the size constant is a unary plus or minus operator. A plus or minus oper-
ator between the base format and the number is an illegal syntax.

Negative numbers shall be represented in 2 s complement form.

An X represents the unknown value in hexadecimal, octal, and binary constants. A z represents the high-
impedance value. See 3.1 for a discussion of the Verilog HDL value set. An X shall set 4 bits to unknown in
the hexadecimal base, 3 bits in the octal base, and 1 bit in the binary base. Similarly, a z shall set 4 bits, 3
bits, and 1 bit, respectively, to the high-impedance value.

If the size of the unsigned number is smaller than the size specified for the constant, the unsigned number
shall be padded to the left with zeros. If the leftmost bit in the unsigned number is an X or a Z, then an X or a
Z shall be used to pad to the left respectively.

When used in a number, the question-mark (?) character is a Verilog HDL alternative for the z character. It
sets 4 bits to the high-impedance value in hexadecimal numbers, 3 bits in octal, and 1 bit in binary. The
question mark can be used to enhance readability in cases where the high-impedance value is a don t-care
condition. See the discussion of casez and casex in 9.5.1. The question-mark character is also used in user-
defined primitive state table. See 8.1.6, Table 8-1.

The underscore character (_) shall be legal anywhere in a number except as the first character. The under-
score character is ignored. This feature can be used to break up long numbers for readability purposes.
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Examples:

Example 1—Unsized constant numbers

659 // is a decimal number

*h 837FF // is a hexadecimal number

07460 // is an octal number

4af // is illegal (hexadecimal format requires ’h)

n n

Example 2—Sized constant numbers

4°b1001 // is a 4-bit binary number

5°D 3 // is a 5-bit decimal number

37b01x // is a 3-bit number with the least
// significant bit unknown

127 hx // is a 12-bit unknown number

16°hz // is a 16-bit high-impedance number

Example 3—Using sign with constant numbers

8 °d -6 // this is illegal syntax

-8 °d 6 // this defines the two’s complement of 6,
// held in 8 bits—equivalent to -(8°d 6)

4 >shf // this denotes the 4-bit number “1111°, to
// be interpreted as a 2’s complement number,
// or “-17_ This is equivalent to -4°h 1

-4 ”sd15 // this is equivalent to -(-4°d 1), or “0001~.

Example 4— Automatic left padding

reg [11:0] a, b, c, d;
initial begin

a = "h x; // yields xxx
b = ”h 3x; // yields 03x
c = h z3; // yields zz3
d = ’h 0z3; // yields 0z3
end
reg [84:0] e, ¥, g;
e = "h5; // yields {82{1"b0},3"b101}
f = "hx; // yields {85{1"hx}}
g = "hz; // yields {85{1"hz}}

Example 5—Using underscore character in numbers

27_195_000
167b0011_0101_0001_1111
32 “h 12ab_f001
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NOTES:

1) Sized negative constant numbers and sized signed constant numbers are sign-extended when assigned to a reg data
type, regardless of whether the reg itself is signed or not.

2) Each of the three tokens for specifying a number may be macro substituted.

3) The number of bits that make up an unsized number (which is a simple decimal number or a number without the size
specification) shall be at least 32.

2.5.2 Real constants

The real constant numbers shall be represented as described by IEEE Std 754-1985 [B1],! an IEEE standard
for double-precision floating-point numbers.

Real numbers can be specified in either decimal notation (for example, 14.72) or in scientific notation (for
example, 39e8, which indicates 39 multiplied by 10 to the eighth power). Real numbers expressed with a
decimal point shall have at least one digit on each side of the decimal point.

Examples:

1.2

0.1

2394 .26331

1.2E12 (the exponent symbol can be e or E)
1.30e-2

0.1le-0

23E10

29E-2

236.123_763_e-12 (underscores are ignored)

The following are invalid forms of real numbers because they do not have at least one digit on each side of
the decimal point:

.12
9.
4_E3
.2e-7

2.5.3 Conversion

Real numbers shall be converted to integers by rounding the real number to the nearest integer, rather than
by truncating it. Implicit conversion shall take place when a real number is assigned to an integer. The ties
shall be rounded away from zero. For example:

— The real numbers 35.7 and 35.5 both become 36 when converted to an integer and 35.2 becomes 35.
— Converting -1.5 to integer yields -2, converting 1.5 to integer yields 2.

2.6 Strings

A string is a sequence of characters enclosed by double quotes (****) and contained on a single line. Strings
used as operands in expressions and assignments shall be treated as unsigned integer constants represented

by a sequence of 8-bit ASCII values, with one 8-bit ASCII value representing one character.

IThe numbers in brackets correspond to those of the bibliography in Annex H.
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2.6.1 String variable declaration

String variables are variables of reg type (see 3.2) with width equal to the number of characters in the string
multiplied by 8.

Example:

To store the twelve-character string ""Hel lo world!"* requires a reg 8 * 12, or 96 bits wide

reg [8*12:1] stringvar;
initial begin

stringvar = "Hello world!";
end

2.6.2 String manipulation

Strings can be manipulated using the Verilog HDL operators. The value being manipulated by the operator is
the sequence of 8-bit ASCII values.

Example:

module string_test;
reg [8*14:1] stringvar;
initial begin
stringvar = "Hello world";
$display("'%s 1s stored as %h', stringvar,stringvar);
stringvar = {stringvar,"!111"};
$display("'%s is stored as %h', stringvar,stringvar);
end
endmodule

The output is:

Hello world is stored as 00000048656c6¢c6f20776F726c64
Hello world!!! is stored as 48656c6c6f20776F726c64212121

NOTE —When a variable is larger than required to hold a value being assigned, the contents on the left are padded with
zeros after the assignment. This is consistent with the padding that occurs during assignment of nonstring values. If a
string is larger than the destination string variable, the string is truncated to the left, and the leftmost characters will be
lost.

2.6.3 Special characters in strings

Certain characters can only be used in strings when preceded by an introductory character called an escape
character. Table 1 lists these characters in the right-hand column, with the escape sequence that represents
the character in the left-hand column.
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Table 1—Specifying special characters in string

Escape Character produced by
string escape string

\n New line character

\t Tab character

\ \ character

\" " character

\ddd A character specified in 1—3 octal digits

(0=<d=<7)

2.7 ldentifiers, keywords, and system names

An identifier is used to give an object a unique name so it can be referenced. An identifier is either a simple
identifier or an escaped identifier (see 2.7.1). A simple identifier shall be any sequence of letters, digits, dol-
lar signs ($), and underscore characters ().

The first character of a simple identifier shall not be a digit or $; it can be a letter or an underscore. Identifi-
ers shall be case sensitive.

Example:

shiftreg_a
busa_index
error_condition
merge_ab

_bus3

n$657

NOTE —Implementations may set a limit on the maximum length of identifiers, but they shall at least be 1024 charac-
ters. If an identifier exceeds the implementation-specified length limit, an error shall be reported.

2.7.1 Escaped identifiers

Escaped identifiers shall start with the backslash character (\) and end with white space (space, tab, new-
line). They provide a means of including any of the printable ASCII characters in an identifier (the decimal
values 33 through 126, or 21 through 7E in hexadecimal).

Neither the leading backslash character nor the terminating white space is considered to be part of the iden-
tifier. Therefore, an escaped identifier \cpu3 is treated the same as a nonescaped identifier cpu3.

Example:

\busa+index

\-clock
\***error-condition***
\netl/\net2

\{a,b}

\a*(b+c)
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2.7.2 Generated identifiers

Generated identifiers are created by generate loops (see 12.1.3.2); and are a special case of identifiers in that
they can be used in hierarchical names (see 12.4). A generated identifier is the named generate block identi-

fier terminated with a ([digit(s)]) string. This identifier is used as a node name in hierarchical names (see
12.4).

2.7.3 Keywords

Keywords are predefined nonescaped identifiers that are used to define the language constructs. A Verilog
HDL keyword preceded by an escape character is not interpreted as a keyword.

All keywords are defined in lowercase only. Annex B gives a list of all defined keywords.

2.7.4 System tasks and functions

The $ character introduces a language construct that enables development of user-defined tasks and func-
tions. System constructs are not design semantics, but refer to simulator functionality. A name following the

$ is interpreted as a system task or a system function.

The syntax for a system task or function is given in Syntax 2-2.

system_task_enable ::= (From Annex A - A.6.9)
system_task_identifier [ ( expression { , expression } )] ;
system_function_call ::= (From Annex A - A.8.2)
system_function_identifier [ ( expression { , expression } ) ]
system_function_identiﬁer* 2= (From Annex A - A.9.3)
$[ a-zA-Z0-9_$ 1{ [ a-zA-Z0-9_$ ] }
system_task_identiﬁer* =
$[ a-zA-Z0-9_$ 1{ [ a-zA-Z0-9_$ ] }

“The $ character in a System_function_identifier or system_task_identifier shall
not be followed by white spacee. A sSystem Ffunction_identifier or
system_task identifier shall not be escaped.

Syntax 2-2— Syntax for system tasks and functions

The $identifier system task or function can be defined in three places

— A standard set of $identifier system tasks and functions, as defined in Clauses 17 and 19.
— Additional $identifier system tasks and functions defined using the PLI, as described in Clause 20.
— Additional $identifier system tasks and functions defined by software implementations.

Any valid identifier, including keywords already in use in contexts other than this construct, can be used as a
system task or function name. The system tasks and functions described in Clause 17 are part of this stan-
dard. Additional system tasks and functions with the $identifier construct are not part of this standard.

Example:

$display (“'display a message™);
$finish ;
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2.7.5 Compiler directives

The ¢ character (the ASCII value 60, called open quote or accent grave) introduces a language construct used
to implement compiler directives. The compiler behavior dictated by a compiler directive shall take effect as
soon as the compiler reads the directive. The directive shall remain in effect for the rest of the compilation
unless a different compiler directive specifies otherwise. A compiler directive in one description file can
therefore control compilation behavior in multiple description files.

The ‘identifier compiler directive construct can be defined in two places

— A standard set of “identifier compiler directives defined in Clause 19.
— Additional “identifier compiler directives defined by software implementations.

Any valid identifier, including keywords already in use in contexts other than this construct, can be used as a
compiler directive name. The compiler directives described in Clause 19 are part of this standard. Additional
compiler directives with the ‘identifier construct are not part of this standard.

Example:

‘define wordsize 8

2.8 Attributes

With the proliferation of tools other than simulators that use Verilog HDL as their source, a mechanism is
included for specifying properties about objects, statements and groups of statements in the HDL source that
may be used by various tools, including simulators, to control the operation or behavior of the tool. These
properties shall be referred to as "attributes". This subclause specifies the syntactic mechanism that shall be
used for specifying attributes, without standardizing on any particular attributes.

The syntax for specifying an attribute is shown in Syntax 2-3.

attribute_instance ::= (From Annex A - A.9.1)
(* attr_spec { , attr_spec } *)
attr_spec ::=
attr_name = constant_expression
| attr_name
attr_name ::=
identifier

Syntax 2-3— Syntax for attributes

An attribute_instance can appear in the Verilog description as a prefix attached to a declaration, a
module item, a statement, or a port connection. It can appear as a suffix to an operator or a Verilog function
name in an expression.

If a value is not specifically assigned to the attribute, then its value shall be 1. If the same attribute name is
defined more than once for the same language element, the last attribute value shall be used and a tool can
give a warning that a duplicate attribute specification has occurred.

[ Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od



IEC 61691-4:2004(E) 39
|EEE 1364-2001(E)

2.8.1 Examples

Example 1—The following example shows how to attach attributes to a case statement:

or

or

Example 2—To attach the Ful I _case attribute, but NOT the paral lel_case attribute:

or

(* full _case, parallel _case *)
case (foo)
<rest_of_case_statement>

(* full _case=1, parallel_case=1 *)
case (foo)
<rest_of _case_statement>

(* full_case, // no value assigned
parallel _case=1 *)

case (foo)

<rest_of_case_statement>

(* full_case *) // parallel_case not specified
case (foo)
<rest_of case statement>

(* full_case=1, parallel_case = 0 *)
case (foo)
<rest_of_case_statement>

Example 3—To attach an attribute to a module definition:

or

(* optimize_power *)
module modl (<port list>);

(* optimize_power=1 *)
module modl (<port_list>);

Example 4—To attach an attribute to a module instantiation:

(* optimize_power=0 *)
modl synthl (<port_list>);

Example 5—To attach an attribute to a reg declaration:

(* fsm_state *) reg [7:0] statel;

(* fsm_state=1 *) reg [3:0] state2, state3;

reg [3:0] regl; // this reg does NOT have fsm_state set
(* fsm_state=0 *) reg [3:0] reg2; // nor does this one
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Example 6—To attach an attribute to an operator:
a=>b + (* mode = "cla"™ *) c;
This sets the value for the attribute mode to be the string cla.
Example 7—To attach an attribute to a Verilog function call:
a = add (* mode = "cla™ *) (b, ©);
Example §—To attach an attribute to a conditional operator:
a=>b? (* noglitch *) c : d;

2.8.2 Syntax

The syntax for legal statements with attributes is shown in Syntax 2-4— Syntax 2-11.

The syntax for module declaration attributes is given in Syntax 2-4.

IEC 61691-4:2004(E)
|EEE 1364-2001(E)

module_declaration ::= (From Annex A - A.1.3)
{ attribute_instance } module_keyword module_identifier
[ module_parameter_port_list ] [ list_of_ports ] 3
{ module_item }
endmodule

| { attribute_instance } module_keyword module_identifier
[ module_parameter_port_list ] [ list_of_port_declarations ] ;
{ non_port_module_item }
endmodule

Syntax 2-4— Syntax for module declaration attributes

The syntax for port declaration attributes is given in Syntax 2-5.

port_declaration ::= (From Annex A - A.1.4)
{attribute_instance} inout_declaration
| {attribute_instance} input_declaration
| {attribute_instance} output_declaration

Syntax 2-5— Syntax for port declaration attributes
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The syntax for module item attributes is given in Syntax 2-6.

module_item ::= (From Annex A - A.1.5)

module_or_generate_item
| port_declaration ;
| { attribute_instance } generated_instantiation
| { attribute_instance } local_parameter_declaration
| { attribute_instance } parameter_declaration
| { attribute_instance } specify_block
| { attribute_instance } specparam_declaration

module_or_generate_item ::=
{ attribute_instance } module_or_generate_item_declaration

| { attribute_instance } parameter_override

| { attribute_instance } continuous_assign

| { attribute_instance } gate_instantiation

| { attribute_instance } udp_instantiation

| { attribute_instance } module_instantiation
| { attribute_instance } initial_construct

| { attribute_instance } always_construct

non_port_module_item ::=

{ attribute_instance } generated_instantiation
| { attribute_instance } local_parameter_declaration
| { attribute_instance } module_or_generate_item
| { attribute_instance } parameter_declaration
| { attribute_instance } specify_block
| { attribute_instance } specparam_declaration

Syntax 2-6— Syntax for module item attributes
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The syntax for function port, task, and block attributes is given in Syntax 2-7.

function_port_list ::= (From Annex A - A.2.6)
{attribute_instance} input_declaration { , {attribute_instance } input_declaration}
task_item_declaration ::= (From Annex A - A.2.7)
block_item_declaration
| { attribute_instance } input_declaration ;
| { attribute_instance } output_declaration ;
| { attribute_instance } inout_declaration ;
task_port_item ::=
{ attribute_instance } input_declaration
| { attribute_instance } output_declaration
| { attribute_instance } inout_declaration
block_item_declaration ::= (From Annex A - A.2.8)
{ attribute_instance } block_reg_declaration
| { attribute_instance } event_declaration
| { attribute_instance } integer_declaration
| { attribute_instance } local_parameter_declaration
| { attribute_instance } parameter_declaration
| { attribute_instance } real_declaration
| { attribute_instance } realtime_declaration
| { attribute_instance } time_declaration

Syntax 2-7— Syntax for function port, task, and block afttributes

The syntax for port connection attributes is given in Syntax 2-8.

ordered_port_connection ::= (From Annex A - A.4.1)

{ attribute_instance } [ expression ]
named_port_connection ::=

{ attribute_instance } .port_identifier ( [ expression ])

Syntax 2-8— Syntax for port connection attributes
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The syntax for udp attributes is given in Syntax 2-9.

udp_declaration ::= (From Annex A - A.5.1)
{ attribute_instance } primitive udp_identifier (udp_port_list) ;
udp_port_declaration { udp_port_declaration }
udp_body
endprimitive
| { attribute_instance } primitive udp_identifier (udp_declaration_port_list ) ;
udp_body
endprimitive
udp_output_declaration ::= (From Annex A - A.5.2)
{ attribute_instance } output port_identifier
| { attribute_instance } output reg port_identifier [ = constant_expression ]
udp_input_declaration ::=
{ attribute_instance } input list_of_port_identifiers
udp_reg_declaration ::=
{ attribute_instance } reg variable_identifier

Syntax 2-9— Syntax for udp attributes
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3. Data types

The set of Verilog HDL data types is designed to represent the data storage and transmission elements found
in digital hardware.

3.1 Value set

The Verilog HDL value set consists of four basic values:

- represents a logic zero, or a false condition
represents a logic one, or a true condition

- represents an unknown logic value

- represents a high-impedance state

N X — O
|

The values O and 1 are logical complements of one another.

When the z value is present at the input of a gate, or when it is encountered in an expression, the effect is
usually the same as an X value. Notable exceptions are the metal-oxide semiconductor (MOS) primitives,
which can pass the z value.

Almost all of the data types in the Verilog HDL store all four basic values. The exception is the event type
(see 9.7.3), which has no storage. All bits of vectors can be independently set to one of the four basic values.

The language includes strength information in addition to the basic value information for net variables. This
is described in detail in 7..

3.2 Nets and variables

There are two main groups of data types: the variable data types and the net data types. These two groups
differ in the way that they are assigned and hold values. They also represent different hardware structures.

3.2.1 Net declarations

The net data types shall represent physical connections between structural entities, such as gates. A net shall
not store a value (except for the trireg net). Instead, its value shall be determined by the values of its drivers,
such as a continuous assignment or a gate. See Section 6 and 7. for definitions of these constructs. If no
driver is connected to a net, its value shall be high-impedance (z) unless the net is a trireg, in which case it
shall hold the previously driven value. It is illegal to redeclare a name already declared by a net, parameter,
or variable declaration (see 3.12).
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The syntax for net declarations is given in Syntax 3-1.

drive_

net_declaration ::= (From Annex A - A.2.1.3)

net_type [ signed ]
[ delay3 ] list_of_net_identifiers ;

| net_type [ drive_strength ] [ signed ]
[ delay3 ] list_of_net_decl_assignments ;

| net_type [ vectored | scalared ] [ signed ]
range [ delay3 ] list_of_net_identifiers ;

| net_type [ drive_strength ] [ vectored | scalared ] [ signed ]
range [ delay3 ] list_of_net_decl_assignments ;

| trireg [ charge_strength ] [ signed ]
[ delay3 ] list_of_net_identifiers

| trireg [ drive_strength ] [ signed ]
[ delay3 ] list_of_net_decl_assignments ;

| trireg [ charge_strength ] [ vectored | scalared ] [ signed ]
range [ delay3 ] list_of net_identifiers ;

| trireg [ drive_strength ] [ vectored | scalared ] [ signed ]
range [ delay3 ] list_of_net_decl_assignments ;

net_type ::= (From Annex A - A.2.2.1)

supply0 | supplyl

tri | triand | trior | tri0 | tril
wire | wand | wor

strength ::= (From Annex A - A.2.2.2)
( strengthO , strengthl )

( strengthl , strengthO )

( strengthO , highz1 )

| ( strengthl , highz0 )

( highz0 , strength1 )

( highz1 , strength0 )

strength0 ::= supply0 | strong0 | pull0 | weak0
strengthl ::= supplyl | strongl | pulll | weakl
charge_strength ::= ( small ) | (medium ) | (large )
delay3 ::= (From Annex A - A.2.2.3)

# delay_value | # ( delay_value [ , delay_value [ , delay_value ]])

delay2 ::=

# delay_value | # ( delay_value [ , delay_value ])

delay_value ::=

unsigned_number
| parameter_identifier
| specparam_identifier
| mintypmax_expression

list_of_net_decl_assignments ::= (From Annex A - A.2.3)
net_decl_assignment { , net_decl_assignment }
list_of net_identifiers ::=
net_identifier [ dimension { dimension }]

{ , net_identifier [ dimension { dimension }] }

net_decl_assignment ::= (From Annex A - A.2.4)
net_identifier = expression

dimension ::= (From Annex A -A.2.5)

[ dimension_constant_expression : dimension_constant_expression |

range =

[ msb_constant_expression : Isb_constant_expression |
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The first two forms of net declaration are described in this section. The third form, called net assignment, is
described in Section 6.

3.2.2 Variable declarations

A variable is an abstraction of a data storage element. A variable shall store a value from one assignment to
the next. An assignment statement in a procedure acts as a trigger that changes the value in the data storage
element. The initialization value for reg, time, and integer data types shall be the unknown value, X. The
default initialization value for real and realtime variable datatypes shall be 0. 0. If a variable declaration
assignment is used (see 6.2.1), the variable shall take this value as if the assignment occurred in a blocking
assignment in an initial construct. It is illegal to redeclare a name already declared by a net, parameter, or
variable declaration.

NOTE In previous versions of the Verilog standard, the term register was used to encompass both the reg, integer,
time, real and realtime types; but that the term is no longer used as a Verilog data type.

The syntax for variable declarations is given in Syntax 3-2.

integer_declaration ::= (From Annex A - A.2.1.3)

integer list_of variable_identifiers ;
real_declaration ::=

real list_of real_identifiers ;
realtime_declaration ::=

realtime list_of_real_identifiers ;
reg_declaration ::=

reg [ signed | [ range ] list_of_variable_identifiers ;
time_declaration ::=

time list_of_variable_identifiers ;
real_type ::= (From Annex A - A.2.2.1)

real_identifier [ = constant_expression ]

| real_identifier dimension { dimension }

variable_type ::=
variable_identifier [ = constant_expression ]

| variable_identifier dimension { dimension }
list_of_real_identifiers ::= (From Annex A - A.2.3)

real_type { , real_type }
list_of variable_identifiers ::=

variable_type { , variable_type }
dimension ::= (From Annex A - A.2.5)

[ dimension_constant_expression : dimension_constant_expression |
range ::=

[ msb_constant_expression : Isb_constant_expression |

Syntax 3-2 Syntax for variable declaration

If a set of nets or variables share the same characteristics, they can be declared in the same declaration
statement.
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CAUTION

Variables can be assigned negative values, but only signed regs,
integer, real, and realtime variables shall retain the significance of the
sign. The unsigned reg and time variables shall treat the value
assigned to them as an unsigned value. Refer to 4.1.6 for a description
of how signed and unsigned variables are treated by certain Verilog
operators.

3.3 Vectors

A net or reg declaration without a range specification shall be considered 1 bit wide and is known as a
scalar. Multiple bit net and reg data types shall be declared by specifying a range, which is known as a
vector.

3.3.1 Specifying vectors

The range specification gives addresses to the individual bits in a multibit net or reg. The most significant bit
specified by the msb constant expression is the left-hand value in the range and the least significant bit spec-
ified by the Isb constant expression is the righthand value in the range.

Both msb constant expression and Isb constant expression shall be constant expressions. The msb and Isb
constant expressions can be any value—positive, negative, or zero. The Isb constant expression can be a
greater, equal, or lesser value than msb constant expression.

Vector nets and regs shall obey laws of arithmetic modulo 2 to the power n (2"%), where n is the number of
bits in the vector. Vector nets and regs shall be treated as unsigned quantities, unless the net or reg is declared
to be signed or is connected to a port that is declared to be signed (see 12.2.3).

Examples:
wand w; // a scalar net of type wand
tri [15:0] busa; // a three-state 16-bit bus
trireg (small) storeit; // a charge storage node of strength small
reg a; / a scalar reg
reg[3:0] v; // a 4-bit vector reg made up of (from most to

// least significant) v[3], v[2], v[1], and v[0]
reg signed [3:0] signed_reg; // a 4-bit vector in range -8 to 7

reg [-1:4] b; // a 6-bit vector reg

wire wl, w2; /I declares two wires

reg [4:0] x, y, z; /I declares three 5-bit regs
NOTES:

1) Implementations may set a limit on the maximum length of a vector, but they will at least be 65536 (219 bits.

2) Implementations do not have to detect overflow of integer operations.
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3.3.2 Vector net accessibility

Vectored and scalared shall be optional advisory keywords to be used in vector net or reg declaration. If
these keywords are implemented, certain operations on vectors may be restricted. If the keyword vectored is
used, bit and part selects and strength specifications may not be permitted, and the PLI may consider the
object unexpanded. 1f the keyword scalared is used, bit and part selects of the object shall be permitted, and
the PLI shall consider the object expanded.

Examples:

tril scalared [63:0] bus64; //a bus that will be expanded
tri vectored [31:0] data; //a bus that may or may not be expanded

3.4 Strengths
There are two types of strengths that can be specified in a net declaration. They are as follows:

charge strength shall only be used when declaring a net of type trireg

drive strength  shall only be used when placing a continuous assignment on a net in the same statement
that declares the net

Gate declarations can also specify a drive strength. See 7. for more information on gates and for information
on strengths.

3.4.1 Charge strength

The charge strength specification shall be used only with trireg nets. A trireg net shall be used to model
charge storage; charge strength shall specify the relative size of the capacitance indicated by one of the fol-
lowing keywords:

— small
—  medium
— large

The default charge strength of a trireg net shall be medium.

A trireg net can model a charge storage node whose charge decays over time. The simulation time of a
charge decay shall be specified in the delay specification for the trireg net (see 7.14.2).

Examples:

trireg a; // a trireg net of charge strength medium
trireg (large) #(0,0,50) capl ; // a trireg net of charge strength large
//with charge decay time 50 time units
trireg (small)signed [3:0] cap2 ; // a signed 4-bit trireg vector of
// charge strength small

3.4.2 Drive strength

The drive strength specification allows a continuous assignment to be placed on a net in the same statement
that declares that net. See Section 6 for more details. Net strength properties are described in detail in Clause
7.
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3.5 Implicit declarations

The syntax shown in 3.2 shall be used to declare nets and variables explicitly. In the absence of an explicit
declaration, an implicit net of default net type shall be assumed in the following circumstances:

— If an identifier is used in a port expression declaration, then an implicit net of type wire shall be
assumed, with the vector width of the port expression declaration. See 12.3.3 for a discussion of port
expression declarations.

— If an identifier is used in the terminal list of a primitive instance or a module instance, and that iden-
tifier has not been explicitly declared previously in one of the declaration statements of the instanti-
ating module, then an implicit scalar net of default net type shall be assumed. See Section 19 for a
discussion of control of the type for implicitly declared nets with the ~default_nettype compiler
directive.

If an identifier appears on the left-hand side of a continuous assignment statement, and that identifier has not
been declared previously, an implicit scalar net declaration of the default net type is assumed.

3.6 Net initialization

The default initialization value for a net shall be the value z. Nets with drivers shall assume the output value
of their drivers. The trireg net is an exception. The trireg net shall default to the value X, with the strength
specified in the net declaration (small, medium, or large).

3.7 Net types

There are several distinct types of nets, as shown in Table 2.

Table 2—Net types

wire tri tri0 supply0
wand triand tril supplyl
wor trior trireg

3.7.1 Wire and tri nets

The wire and tri nets connect elements. The net types wire and tri shall be identical in their syntax and func-
tions; two names are provided so that the name of a net can indicate the purpose of the net in that model. A
wire net can be used for nets that are driven by a single gate or continuous assignment. The tri net type can
be used where multiple drivers drive a net.

Logical conflicts from multiple sources of the same strength on a wire or a tri net result in x (unknown)
values.

Table 3 is a truth table for resolving multiple drivers on wire and tri nets. Note that it assumes equal
strengths for both drivers. Please refer to 7.9 for a discussion of logic strength modeling.

Table 3—Truth table for wire and tri nets

wire / 01| x| z
tri

0 0 [x |x |0

1 x |1 | x |1

X X [ X | X | X

z 0|1 |x |z
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3.7.2 Wired nets

Wired nets are of type wor, wand, trior, and triand, and are used to model wired logic configurations. Wired
nets use different truth tables to resolve the conflicts that result when multiple drivers drive the same net.
The wor and trior nets shall create wired or configurations, such that when any of the drivers is 1, the result-
ing value of the net is 1. The wand and triand nets shall create wired and configurations, such that if any
driver is O, the value of the net is O.

The net types wor and trior shall be identical in their syntax and functionality. The net types wand and triand

shall be identical in their syntax and functionality. Table 4 and Table 5 give the truth tables for wired nets.
Note that they assume equal strengths for both drivers. See 7.9 for a discussion of logic strength modeling.

Table 4—Truth table for wand and triand nets

wama |0 1] %2
0 00 0 ]O
1 0 1 X 1
e 0 | x [ x |x
z 0 1 X | z

Table 5—Truth table for wor and trior nets

w?r/ 0|1 | x|z
trior
0 0|1 |x |0
1 1 1 1 1
X x |1 | x |x
z 0|1 |x |z

3.7.3 Trireg net

The trireg net stores a value and is used to model charge storage nodes. A trireg net can be in one of two
states:

driven state When at least one driver of a trireg net has a value of 1, O, or X, the resolved value
propagates into the trireg net and is the driven value of the trireg net.

capacitive state When all the drivers of a trireg net are at the high-impedance value (z), the trireg net
retains its last driven value; the high-impedance value does not propagate from the driver
to the trireg.

The strength of the value on the trireg net in the capacitive state can be small, medium, or large, depending
on the size specified in the declaration of the trireg net. The strength of a trireg net in the driven state can be
supply, strong, pull, or weak, depending on the strength of the driver.
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Examples:

Figure 1 shows a schematic that includes a trireg net whose size is medium, its driver, and the simulation
results.

wire a wire b
|
— N\ wire c
R nmosl nmos?2
S B T trireg d

simulation time wire a wire b wire c trireg d

0 1 1 strong 1 strong 1
10 0 1 HiZ medium 1

Figure 1—Simulation values of a trireg and its driver

a) At simulation time 0, wire a and wire b have a value of 1. A value of 1 with a sStrong strength
propagates from the and gate through the nmos switches connected to each other by wire C into
trireg net d.

b) At simulation time 10, wire a changes value to O, disconnecting wire C from the and gate. When
wire C is no longer connected to the and gate, the value of wire € changes to HIZ. The value of wire
b remains 1 so wire C remains connected to trireg net d through the nmos2 switch. The HiZ value
does not propagate from wire C into trireg net d. Instead, trireg net d enters the capacitive state,
storing its last driven value of 1. It stores the 1 with a medium strength.

3.7.3.1 Capacitive networks

A capacitive network is a connection between two or more trireg nets. In a capacitive network whose trireg
nets are in the capacitive state, logic and strength values can propagate between trireg nets.

Examples:

Figure 2 shows a capacitive network in which the logic value of some trireg nets change the logic value of
other trireg nets of equal or smaller size.
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wire a
wire b
wire c _|__| |_—_|
nmos_1 [ tranifi_1 [
- T~ T
} d . 1 triTreg_Ia triFeg_sm
wire [ [
nmos_2 | tranifl 2 |
- T~ T
tri r?eg_mel tri :’eg_mez
sinlrrl]aetion wirea wireb wirec wired trireg_la trireg_sm trireg_me1 trireg_me2
0 1 1 1 1 1 1 1 1
10 1 [0 1 1 1 1 1 1
20 1 0 [0 1 [0] 1 1 1
30 1 0 0 [go O 1 [0 1
40 |§| 0 0 0 0 1 0 1
50 0 0 0 0 [0]

Figure 2—Simulation results of a capacitive network

In Figure 2, the capacitive strength of trireg_la net is large, trireg_mel and trireg_me2 are
medium, and trireg_sm is small. Simulation reports the following sequence of events:

a) At simulation time 0, wire a and wire b have a value of 1. The wire C drives a value of 1 into
trireg_laand trireg_sm; wire d drives a value of 1 into trireg_mel and trireg_me2.

b) At simulation time 10, the value of wire b changes to O, disconnecting trireg_sm and
trireg_me2 from their drivers. These trireg nets enter the capacitive state and store the value 1,
their last driven value.

¢) At simulation time 20, wire C drives a value of O into trireg_Jla.

d) At simulation time 30, wire d drives a value of O into trireg_mel.
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e) At simulation time 40, the value of wire a changes to O, disconnecting trireg_la and
trireg_mel from their drivers. These trireg nets enter the capacitive state and store the value O.

f) At simulation time 50, the value of wire b changes to 1.

This change of value in wire b connects trireg_sm to trireg_la; these trireg nets have
different sizes and stored different values. This connection causes the smaller trireg net to store the
value of the larger trireg net, and trireg_sm now stores a value of O.

This change of value in wire b also connects trireg_mel to trireg_me2; these trireg nets
have the same size and stored different values. The connection causes both trireg_mel and
trireg_me2 to change value to X.

In a capacitive network, charge strengths propagate from a larger trireg net to a smaller trireg net. Figure 3
shows a capacitive network and its simulation results.

tranifl_1 tranifl_2
e e A 1
T trireg_la I trireg_sm
simulation

time wire a wire b wire c trireg_la trireg_sm

0 strong strong 1 strong 1

10 strong large 1 large 1

large small 1

30 strong

O]l Ol O O Bk
oO|lr|O|Rr| PR

1

1
20 strong 1 1

1 large 1 large 1

1 1 small 1

40 strong large

Figure 3—Simulation results of charge sharing

In Figure 3, the capacitive strength of trireg_Jla is large and the capacitive strength of trireg_smis
small. Simulation reports the following results:

a) At simulation time 0, the values of wire @, wire b, and wire C are 1, and wire a drives a strong 1
into trireg_laand trireg_sm.
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At simulation time 10, the value of wire b changes to O, disconnecting trireg_Jla and
trireg_sm from wire a. The trireg_la and trireg_sm nets enter the capacitive state. Both
trireg nets share the large charge of trireg_la because they remain connected through
tranifl_2.

At simulation time 20, the value of wire C changes to O, disconnecting trireg_sm from
trireg_la. The trireg_sm no longer shares large charge of trireg_la and now stores a
small charge.

At simulation time 30, the value of wire € changes to 1, connecting the two trireg nets. These trireg
nets now share the same charge.

At simulation time 40, the value of wire C changes again to O, disconnecting trireg_sm from
trireg_la. Once again, trireg_sm no longer shares the large charge of trireg_la and
now stores a small charge.

3.7.3.2 Ideal capacitive state and charge decay

A trireg net can retain its value indefinitely or its charge can decay over time. The simulation time of charge
decay is specified in the delay specification of the trireg net. See 7.14.2 for charge decay explanation.

3.7.4Tri0 and tri1 nets

The #ri0 and tril nets model nets with resistive pulldown and resistive pullup devices on them. When no
driver drives a tri0 net, its value is O. When no driver drives a tril net, its value is 1. The strength of this
value is pull. See Clause 7. for a description of strength modeling.

A tri0 net is equivalent to a wire net with a continuous 0 value of pull strength driving it. A tril net is equiv-
alent to a wire net with a continuous 1 value of pull strength driving it.

A truth table for tri0 is shown in Table 6. A truth table for tril is shown in Table 7.

Table 6 —Truth table for tri0 net

trio 01| x|z
0 0 | x |x |0
1 X 1 X 1
X X | x | X | X
z 0|1 |x |0

Table 7—Truth table for tri1 net

tril 0| 1| x|z
0 0 |x |x |0
1 X 1 X 1
X X | x | X | X
z 0|1 |x |1
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3.7.5 Supply nets

The supply0 and supplyl nets may be used to model the power supplies in a circuit. These nets shall have
supply strengths.

3.8 regs

Assignments to a reg are made by procedural assignments (see 6.2 and 9.2). Since the reg holds a value
between assignments, it can be used to model hardware registers. Edge-sensitive (i.e., flip-flops) and level
sensitive (i.e., RS and transparent latches) storage elements can be modeled. A reg needs not represent a
hardware storage element since it can also be used to represent combinatorial logic.

3.9 Integers, reals, times, and realtimes

In addition to modeling hardware, there are other uses for variables in an HDL model. Although reg vari-
ables can be used for general purposes such as counting the number of times a particular net changes value,
the integer and time variable data types are provided for convenience and to make the description more self-
documenting.

The syntax for declaring integer, time, real, and realtime variables is given in Syntax 3-3 (from
Syntax 3-2).

integer_declaration ::= (From Annex A - A.2.1.3)

integer list_of_variable_identifiers ;
real_declaration ::=

real list_of real_identifiers ;
realtime_declaration ::=

realtime list_of_real_identifiers ;
time_declaration ::=

time list_of_variable_identifiers ;
real_type ::= (From Annex A - A.2.2.1)

real_identifier [ = constant_expression ]

| real_identifier dimension { dimension }

variable_type ::=
variable_identifier [ = constant_expression |

| variable_identifier dimension { dimension }
list_of_real_identifiers ::= (From Annex A- A.2.3)

real_type { , real_type }
list_of variable_identifiers ::=

variable_type { , variable_type }
dimension ::= (From Annex A - A.2.5)

[ dimension_constant_expression : dimension_constant_expression ]

Syntax 3-3 Syntax for integer, time, real, and realtime declarations

The syntax for list of reg variables is defined in 3.2.2.

An integer is a general-purpose variable used for manipulating quantities that are not regarded as hardware
registers.
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A time variable is used for storing and manipulating simulation time quantities in situations where timing
checks are required and for diagnostics and debugging purposes. This data type is typically used in conjunc-
tion with the $time system function (see 17.).

The integer and time variables shall be assigned values in the same manner as reg. Procedural assignments
shall be used to trigger their value changes.

The time variables shall behave the same as a reg of at least 64 bits, with the least significant bit being bit 0.
They shall be unsigned quantities, and unsigned arithmetic shall be performed on them. In contrast, integer
variables shall be treated as signed regs with the least significant bit being zero. Arithmetic operations per-
formed on integer variables shall produce 2 s complement results.

NOTE Implementations may limit the maximum size of an  integer variable, but they shall at least be 32 bits.

The Verilog HDL supports real number constants and rea/ variable data types in addition to integer and time
variable data types. Except for the following restrictions, variables declared as real can be used in the same
places that integer and time variables are used:

— Not all Verilog HDL operators can be used with real number values. See Table 17 for lists of valid
and invalid operators for real numbers and real variables.

— Real variables shall not use range in the declaration

— Real variables shall default to an initial value of zero.

The realtime declarations shall be treated synonymously with real declarations and can be used interchange-
ably.

Examples:
integer a; // integer value
time last_chng; // time value
real float ; // a variable to store real value
realtime rtime ; // a variable to store time as a real
value

3.9.1 Operators and real numbers

The result of using logical or relational operators on real numbers and real variables is a single-bit scalar
value. Not all Verilog HDL operators can be used with expressions involving real numbers and real vari-
ables. Table 4-9 lists the valid operators for use with real numbers and real variables. Real number constants
and real variables are also prohibited in the following cases:

— Edge descriptors (posedge, negedge) applied to real variables
— Bit-select or part-select references of variables declared as real
— Real number index expressions of bit-select or part-select references of vectors

3.9.2 Conversion
Real numbers shall be converted to integers by rounding the real number to the nearest integer, rather than
by truncating it. Implicit conversion shall take place when a real number is assigned to an integer. If the frac-

tional part of the real number is exactly 0.5, it shall be rounded away from zero.

Implicit conversion shall take place when an expression is assigned to a real. Individual bits that are X or z
in the net or the variable shall be treated as zero upon conversion.

See Clause 17 for a discussion of system tasks that perform explicit conversion.
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3.10 Arrays

An array declaration for a net or a variable declares an element type which is either scalar or vector (see 3.3).
For example:

Declaration Element Type

reg x[11:0]; scalar reg

wire [0:7] y[5:0]; eight-bit-wide vector wire indexed from 0 to 7
reg [31:0] x [127:0]; thirty-two-bit-wide reg

NOTE — Array size does not affect the element size..

Arrays can be used to group elements of the declared element type into multi-dimensional objects. Arrays
shall be declared by specifying the element address range(s) after the declared identifier. Each dimension
shall be represented by an address range. See 3.2.1 and 3.2.2 for net and variable declarations. The expres-
sion(s) that specify the indices of the array shall be constant expressions. The value of the constant expres-
sion can be a positive integer, a negative integer, or zero.

One declaration statement can be used for declaring both arrays and elements of the declared data type. This
ability makes it convenient to declare both arrays and elements that match the element vector width in the
same declaration statement.

An element can be assigned a value in a single assignment, but complete or partial array dimensions cannot.
Nor can complete or partial array dimensions be used to provide a value to an expression. To assign a value
to an element of an array, an index for every dimension shall be specified. The index can be an expression.
This option provides a mechanism to reference different array elements depending on the value of other
variables and nets in the circuit. For example, a program counter reg can be used to index into a RAM.

Implementations may limit the maximum size of an array, but they shall at least be 16777216 (224).
3.10.1 Net arrays

Arrays of nets can be used to connect ports of generated instances. Each element of the array can be used in
the same fashion as a scalar or vector net.

3.10.2 reg and variable arrays
Arrays for all variables types (reg, integer, time, real, realtime) shall be possible.

3.10.3 Memories

A one dimensional array with elements of type reg is also called a memory. These memories can be used to
model read-only memories (ROMs), random access memories (RAMs), and reg files. Each reg in the array
is known as an element or word and is addressed by a single array index.

An n-bit reg can be assigned a value in a single assignment, but a complete memory cannot. To assign a
value to a memory word, an index shall be specified. The index can be an expression. This option provides a
mechanism to reference different memory words, depending on the value of other variables and nets in the
circuit. For example, a program counter reg could be used to index into a RAM.
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3.10.3.1 Array examples

3.10.3.1.1 Array declarations

reg [7:0] mema[0:255]; // declares a memory mema of 256 8-bit
// registers. The indices are 0 to 255

reg arrayb[7:0][0:255]; // declare a two dimensional array of
// one bit registers

wire w_array[7:0][5:0]; // declare array of wires

integer inta[l:64]; // an array of 64 integer values

time chng_hist[1:1000] // an array of 1000 time values

integer t_index;

3.10.3.1.2 Assignment to array elements

The assignment statements in this section assume the presence of the declarations in 3.10.3.1.1.

mema = 0; // Illegal syntax- Attempt to write to entire array
arrayb[1] = 0; // lllegal Syntax - Attempt to write to elements
// [1]110]..[1]1[255]
arrayb[1][12:31] = 0; // l1llegal Syntax - Attempt to write to
// elements [1][12]-.-[1]1[31]
mema[1] = 0; //Assigns 0 to the second element of mema
arrayb[1][0] = 0; // Assigns 0 to the bit referenced by indices
// [1][0]
inta[4] = 33559; // Assign decimal number to integer in array
chng_hist[t_index] = $time; // Assign current simulation time to
// element addressed by integer index

3.10.3.1.3 Memory differences

A memory of n 1-bit regs is different from an n-bit vector reg

reg [1:n] rega; // An n-bit register is not the same
reg mema [1:n]; // as a memory of n 1-bit registers

3.11 Parameters

Verilog HDL parameters do not belong to either the variable or the net group. Parameters are not variables,
they are constants. There are two types of parameters: module parameters and specify parameters. It is ille-
gal to redeclare a name already declared by a net, parameter or variable declaration.

Both types of parameters accept a range specification. By default, parameters and specparams shall be as
wide as necessary to contain the value of the constant, except when a range specification is present.
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3.11.1 Module parameters

The syntax for module parameter declarations is given in Syntax 3-4.

local_parameter_declaration ::= (From Annex A - A.2.1.1)
localparam [ signed ] [ range ] list_of_param_assignments ;
| localparam integer list_of_param_assignments ;
localparam real list_of_param_assignments ;
localparam realtime list_of_param_assignments ;
localparam time list_of_param_assignments ;

parameter_declaration ::=
parameter [ signed ] [ range ] list_of_param_assignments ;
parameter integer list_of _param_assignments ;
parameter real list_of_param_assignments ;
| parameter realtime list_of_param_assignments ;
| parameter time list_of param_assignments ;
list_of param_assignments ::= (From Annex A - A.2.3)
param_assignment { , param_assignment }
param_assignment ::= (From Annex A - A.2.4)
parameter_identifier = constant_expression
range ::= (From Annex A - A.2.5)
[ msb_constant_expression : Isb_constant_expression ]

Syntax 3-4 Syntax for module parameter declaration

The list_of_param_assignments shall be a comma-separated list of assignments, where the right hand side of
the assignment shall be a constant expression; that is, an expression containing only constant numbers and
previously defined parameters. (See 4.)

The list_of _param_assignments can appear in a module as a set of module_items or in the module declara-
tion in the module_parameter_port list. (See 12.1). If any param_assignments appear in a
module_parameter_port_list, then any param_assignments that appear in the module become local parame-
ters and shall not be overridden by any method.

Parameters represent constants; hence, it is illegal to modify their value at runtime. However, module
parameters can be modified at compilation time to have values that are different from those specified in the
declaration assignment. This allows customization of module instances. A parameter can be modified with
the defparam statement or in the module instance statement. Typical uses of parameters are to specify
delays and width of variables. See Section 12 for details on parameter value assignment.

A module parameter can have a #ype specification and a range specification. The type and range of module
parameters shall be in accordance with the following rules:

— A parameter declaration with no type or range specification shall default to the type and range of the
final value assigned to the parameter, after any value overrides have been applied.

— A parameter with a range specification, but with no type specification, shall be the range of the
parameter declaration and shall be unsigned. The sign and range shall not be affected by value over-
rides.

— A parameter with a type specification, but with no range specification, shall be of the type specified.
A signed parameter shall default to the range of the final value assigned to the parameter, after any
value overrides have been applied.
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— A parameter with a signed type specification and with a range specification shall be signed, and shall
be the range of its declaration. The sign and range shall not be affected by value overrides.

— A parameter with no range specification, and with either a signed type specification or no type speci-
fication, shall have an implied range with an Isb equal to O and an msb equal to one less than the size
of the final value assigned to the parameter.

— A parameter with no range specification, and with either a signed type specification or no type speci-
fication, and for which the final value assigned to it is unsized, shall have an implied range with an
Isb equal to O and an msb equal to an implementation-dependent value of at least 31.

The conversion rules between real and integer values described in 3.9.2 apply to parameters as well.

Examples:

parameter
parameter
parameter
parameter

parameter

msb = 7; // defines msb as a constant value 7
e =25, f=09; // defines two constant numbers

r =5.7; // declares r as a real parameter
byte size = 8,

byte mask = byte size - 1;

average_delay = (r + ) / 2;

parameter signed [3:0] mux_selector = 0O;
parameter real rl = 3.5el7;

parameter
parameter
parameter
parameter

pl = 13”h7e;

[31:0] dec_const = 1°bl; // value converted to 32 bits
newconst = 3°h4; // implied range of [2:0]

newconst = 4; // implied range of at least [31:0]

3.11.2 Local parameters - localparam

Verilog HDL localparam - local parameter(s) are identical to parameters except that they can not directly be
modified with the defparam statement or by the ordered or named parameter value assignment. Local
parameters can be assigned to a constant expression containing a parameter which can be modified with the
defparam statement or by the ordered or named parameter value assignment. See 12.1.3 for details.

The syntax for local parameter declarations is given in Syntax 3-4.
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3.11.3 Specify parameters

The syntax for declaring specify parameters is shown in Syntax 3-5.

specparam_declaration ::= (From Annex A - A.2.2.1)
specparam [ range ] list_of specparam_assignments ;
list_of_specparam_assignments ::= (From Annex A- A.2.3)
specparam_assignment { , specparam_assignment }
specparam_assignment ::= (From Annex A - A.2.4)
specparam_identifier = constant_mintypmax_expression
| pulse_control_specparam
pulse_control_specparam ::=
PATHPULSES = ( reject_limit_value [ , error_limit_value ] ) ;
| PATHPULSES$specify_input_terminal_descriptor$specify_output_terminal_descriptor
= (reject_limit_value [ , error_limit_value ]) ;
error_limit_value ::=
limit_value
reject_limit_value ::=
limit_value
limit_value ::=
constant_mintypmax_expression
range ::= (From Annex A - A.2.5)
[ msb_constant_expression : 1sb_constant_expression |

Syntax 3-5 Syntax of the specparam declaration

The keyword specparam declares a special type of parameter which is intended only for providing timing
and delay values, but can appear in any expression that is not assigned to a parameter and is not part of the
range specification of a declaration. Originally permitted only in specify blocks (see Section 14), with this
revision specify parameters (also called specparams) are now permitted both within the specify block and in
the main module body.

A specify parameter declared outside a specify block shall be declared before it is referenced. The value
assigned to a specify parameter can be any constant expression. A specify parameter can be used as part of a
constant expression for a subsequent specify parameter declaration. Unlike a module parameter, a specify
parameter cannot be modified from within the language, but it may be modified through SDF annotation
(see Clause 16).

The specify parameters and module parameters shall not be interchangeable. In addition, module parameters
shall not be assigned a constant expression that includes any specify parameters. Table 8 summarizes the dif-
ferences between the two types of parameter declarations.

Table 8 —Differences between specparams and parameters

Specparams Parameters
(specify parameter) (module parameter)
Use keyword specparam Use keyword parameter

Shall be declared inside a module or specify block Shall be declared outside specify blocks
May only be used inside a module or specify block May not be used inside specify blocks
May be assigned specparams and parameters May not be assigned specparams

Use SDF annotation to override values Use defparam or instance declaration
parameter value passing to override values
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A specify parameter can have a range specification. The range of specify parameters shall be in accordance
with the following rules:

— A specparam declaration with no range specification shall default to the range of the final value
assigned to the parameter, after any value overrides have been applied.

— A specparam with a range specification shall be the range of the parameter declaration. The range
shall not be affected by value overrides.

Examples:

specify
specparam tRise _clk g = 150, tFall_clk _q = 200;
specparam tRise_control = 40, tFall_control = 50;
endspecify

The lines between the keywords specify and endspecify declare four specify parameters. The first line
declares specify parameters called tRise_clk_g and tFall_clk_q with values 150 and 200 respec-
tively; the second line declares tRise_control and tFall_control specify parameters with values
40 and 50 respectively.

Examples:

module RAM16GEN (DOUT, DIN, ADR, WE, CE)

specparam dhold = 1.0;

specparam ddly = 1.0;

parameter width = 1;

parameter regsize = dhold + 1.0; // Illegal - can’t assign
// specparams to parameters

endmodule

3.12 Name spaces

In Verilog HDL, there are seven name spaces; two are global and five are local. The global name spaces are
definitions and text macros. The definitions name space unifies all the module (see 12.1), macromodule
(see 12.1), and primitive (see 8.1) definitions. Once a name is used to define a module, macromodule, or
primitive, the name shall not be used again to declare another module, macromodule, or primitive.

The text macro name space is global. Since text macro names are introduced and used with a leading ¢ char-
acter, they remain unambiguous with any other name space (see 19.3). The text macro names are defined in
the linear order of appearance in the set of input files that make up the description of the design unit. Subse-
quent definitions of the same name override the previous definitions for the balance of the input files.

There are five local name spaces: block, module, port, specify block, and attribute. Once a name is defined
within one of the five name spaces, it shall not be defined again in that space (with the same or a different

type).

The block name space is introduced by the named block (see 9.8), function (see 10.3), and task (see 10.2)
constructs. It unifies the definitions of the named blocks, functions, tasks, parameters, named events and the
variable type of declaration (see 3.2.2). The variable type of declaration includes the reg, integer, time,
real, and realtime declarations.

The module name space is introduced by the module, macromodule, and primitive constructs. It unifies
the definition of functions, tasks, named blocks, instance names, parameters, named events, net type of dec-
laration, and variable type of declaration. The net type of declaration includes wire, wor, wand, tri, trior,
triand, tri0, tril, trireg, supply0, and supplyl (see 3.7).
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The port name space is introduced by the module, macromodule, primitive, function, and task constructs.
It provides a means of structurally defining connections between two objects that are in two different name
spaces. The connection can be unidirectional (either input or output) or bidirectional (inout). The port
name space overlaps the module and the block name spaces. Essentially, the port name space specifies the
type of connection between names in different name spaces. The port type of declarations include input,
output, and inout (see 12.3). A port name introduced in the port name space may be reintroduced in the
module name space by declaring a variable or a wire with the same name as the port name.

The specify block name space is introduced by the specify construct (see 14.2).
The attribute name space is enclosed by the (* and *) constructs attached to a language element (see 2.8). An

attribute name can be defined and used only in the attribute name space. Any other type of name cannot be
defined in this name space.

[ Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od



64 IEC 61691-4:2004(E)
IEEE 1364-2001(E)

4. Expressions

This clause describes the operators and operands available in the Verilog HDL and how to use them to form
expressions.

An expression is a construct that combines operands with operators to produce a result that is a function of
the values of the operands and the semantic meaning of the operator. Any legal operand, such as a net bit-
select, without any operator is considered an expression. Wherever a value is needed in a Verilog HDL state-
ment, an expression can be used.

Some statement constructs require an expression to be a constant expression. The operands of a constant
expression consist of constant numbers, parameter names, constant bit-selects of parameters, constant part-
selects of parameters, and constant function calls (see 10.3.5) only, but they can use any of the operators
defined in Table 9.

A scalar expression is an expression that evaluates to a scalar (single-bit) result. If the expression evaluates
to a vector (multibit) result, then the least significant bit of the result is used as the scalar result.

The data types reg, integer, time, real, and realtime are all variable data types. Descriptions pertaining to
variable usage apply to all of these data types.

An operand can be one of the following:

—  Constant number (including real)

— Net

— Variables of type reg, integer, time, real, and realtime

— Net bit-select

— Bit-select of type reg, integer, and time

— Net part-select

— Part-select of type reg, integer, and time

— Array element

— A call to a user-defined function or system-defined function that returns any of the above

4.1 Operators

The symbols for the Verilog HDL operators are similar to those in the C programming language. Table 9
lists these operators.

Table 9—Operators in the Verilog HDL

{} {{}} Concatenation, replication
+ - F ) kX Arithmetic

% Modulus

> >= < <= Relational

! Logical negation

&& Logical and

I Logical or

== Logical equality

1= Logical inequality
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4.1.1 Operators with

The operators shown in Table 10 shall be legal when applied to real operands. All other operators shall be

Table 9—Operators in the Verilog HDL (continued)

65

== Case equality

= Case inequality

~ Bit-wise negation

& Bit-wise and

| Bit-wise inclusive or
" Bit-wise exclusive or
A~ or ~N Bit-wise equivalence
& Reduction and

~& Reduction nand

| Reduction or

~| Reduction nor

" Reduction xor

~Nor M~ Reduction xnor

<< Logical left shift

>> Logical right shift
<< Arithmetic left shift
>>> Arithmetic right shift
?: Conditional

or Event or

real operands

considered illegal when used with real operands.

Table 10—Legal operators for use in real expressions

The result of using logical or relational operators on real numbers is a single-bit scalar value.

unary + unary - | Unary operators
4+ ook k% Arithmetic

> >= < <= Relational

I && || Logical

== 1= Logical equality
7 Conditional

or Event or
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Table 11—Operators not allowed for real expressions

{0

Concatenate, replicate

%

Modulus

Case equality

~ & | Bit-wise
A A A

A A A Reduction
& ~& | ~|

<< S>> << >>> Shift

See 3.9.1 for more information on use of real numbers.

4.1.2 Binary operator precedence

The precedence order of binary operators and the conditional operator (? ) is shown in Table 12. The Ver-
ilog HDL has two equality operators. They are discussed in 4.1.8.

Table 12—Precedence rules for operators

<< > <L >>>

<<= > >=
& ~&

A A~ ~A

| ~

&&

+ - ! ~ (unary) Highest precedence
sk

*1 %

+ - (binary)

?: (conditional operator)

Lowest precedence

Operators shown on the same row in Table 12 shall have the same precedence. Rows are arranged in order of
decreasing precedence for the operators. For example, *,/, and % all have the same precedence, which is

higher than that of the binary + and - operators.

All operators shall associate left to right with the exception of the conditional operator, which shall associate
right to left. Associativity refers to the order in which the operators having the same precedence are evalu-
ated. Thus, in the following example B is added to A and then C is subtracted from the result of A+B.

A+B-C
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When operators differ in precedence, the operators with higher precedence shall associate first. In the fol-
lowing example, B is divided by C (division has higher precedence than addition) and then the result is
added to A.

A+B/C
Parentheses can be used to change the operator precedence.
(A+B)/C // not the same as A+ B/ C
4.1.3 Using integer numbers in expressions
Integer numbers can be used as operands in expressions. An integer number can be expressed as
— An unsized, unbased integer (e.g., 12)
— An unsized, based integer (e.g., >d12, ~sd12)
— A sized, based integer (e.g.,16”d12, 167sd12)
A negative value for an integer with no base specifier shall be interpreted differently than for an integer with
a base specifier. An integer with no base specifier shall be interpreted as a signed value in 2 s complement
form. An integer with an unsigned base specifier shall be interpreted as an unsigned value.
Example:
This example shows four ways to write the expression minus 12 divided by 3. Note that -12 and ->d12

both evaluate to the same 2 s complement bit pattern, but, in an expression, the —”d12 loses its identity as a
signed negative number.

integer INtA;

IntA = -12 / 3; // The result is -4.

IntA = -°d 12 / 3; // The result is 1431655761.
IntA = -’sd 12 / 3; // The result is -4.

IntA =

-4%sd 12 / 3; // -47sd12 is the negative of the 4-bit
// quantity 1100, which is -4. -(-4) =
// The result is 1.

4.

4.1.4 Expression evaluation order

The operators shall follow the associativity rules while evaluating an expression as described in 4.1.2. How-
ever, if the final result of an expression can be determined early, the entire expression need not be evaluated.
This is called short-circuiting an expression evaluation.

Example:

reg regA, regB, regC, result ;
result = regA & (regB | regC) ;

If regA is known to be zero, the result of the expression can be determined as zero without evaluating the
sub-expression regB | regC.
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The binary arithmetic operators are given in Table 13.

Table 13— Arithmetic operators defined

athb aplusb

a-b a minus b

a*b a multiplied by b
(or a times b)

al/b a divided by b

a%b amodulo b

a**b a to the power of b

The integer division shall truncate any fractional part toward zero. For the division or modulus operators, if
the second operand is a zero, then the entire result value shall be X. The modulus operator, for example y %
z, gives the remainder when the first operand is divided by the second, and thus is zero when z divides y
exactly. The result of a modulus operation shall take the sign of the first operand.

The result of the power operator shall be real if either operand is a real, integer, or signed. If both operands
are unsigned then the result shall be unsigned. The result of the power operator is unspecified if the first
operand is zero and the second operand is non-positive, or if the first operand is negative and the second

operand is not an integral value.

The unary arithmetic operators shall take precedence over the binary operators. The unary operators are

given in Table 14.

Table 14—Unary operators defined

+m

Unary plus m (same as m)

-m

Unary minus m

For the arithmetic operators, if any operand bit value is the unknown value X or the high-impedance value z,
then the entire result value shall be X.

Example:

Table 15 gives examples of modulus operations.

Table 15— Examples of modulus operators

Modulus expression Result Comments
10% 3 1 10/3 yields a remainder of 1
11%3 11/3 yields a remainder of 2
12%3 12/3 yields no remainder
-10% 3 -1 The result takes the sign of the first operand
11%-3 2 The result takes the sign of the first operand
-4d12% 3 1 -4 d12 is seen as a large, positive number that leaves a remain-
der of 1 when divided by 3
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4.1.6 Arithmetic expressions with regs and integers

A reg data type shall be treated as an unsigned value unless explicitly declared to be signed. An integer vari-
able shall be treated as signed. Signed values shall use a 2’s complement representation. Conversions
between signed and unsigned values shall keep the same bit representation; only the interpretation changes.

Table 16 lists how arithmetic operators interpret each data type.

Example:

Table 16 —Data type interpretation by arithmetic operators

Data type Interpretation

unsigned net | Unsigned

signed net Signed, 2 s complement

unsigned reg | Unsigned

signed reg Signed, 2 s complement
integer Signed, 2 s complement
time Unsigned

real, realtime | Signed, floating point

The following example shows various ways to divide minus twelve by three using integer and reg data
types in expressions.

integer INtA;
reg [15:0] regA;

reg signed [15:0]

intA
regA

regA
intA

intA

regA

regS

regS

regsS;
-47d12;
intA / 3; // expression result is -4,
// IntA 1s an integer data type, regA is 65532
-47d12; // regA is 65524
regA / 3; // expression result is 21841,

//

-4°d12 / 3;//
//

-12 / 3; //
//

-12 / 3; //
//

regA is a reg data type

expression result is 1431655761.
-47d12 is effectively a 32-bit reg data type

expression result is -4, -12 is effectively
an integer data type. regA is 65532

expression result is -4. regS is a signed
reg

-47sd12 / 3;// expression result is 1. -4’sdl2 is actually

//

4. The rules for integer division yield 4/3==1
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4.1.7 Relational operators

Table 17 lists and defines the relational operators.

Table 17—Definitions of the relational operators

a<b aless than b

a>b a greater than b

a<=b a less than or equal to b
a>=b a greater than or equal to b

An expression using these relational operators shall yield the scalar value O if the specified relation is false
or the value 1 if it is true. If either operand of a relational operator contains an unknown (X) or high imped-
ance (z) value, then the result shall be a 1-bit unknown value (X).

When two operands of unequal bit lengths are used and one or both of the operands is unsigned, the smaller
operand shall be zero filled on the most significant bit side to extend to the size of the larger operand.

All the relational operators shall have the same precedence. Relational operators shall have lower prece-
dence than arithmetic operators.

Examples:

The following examples illustrate the implications of this precedence rule:

a< foo -1 // this expression is the same as
a < (foo - 1) // this expression, but . . .
foo - (1 < a) // this one is not the same as
foo - 1 < a // this expression
When foo - (1 < a) evaluates, the relational expression evaluates first and then either zero or one is

subtracted from F00. When foo - 1 < aevaluates, the value of T00 operand is reduced by one and then
compared with a.

When both operands of a relational expression are signed integral operands (an integer, a signed reg data
type, or an unsized, unbased integer) then the expression shall be interpreted as a comparison between
signed values. When either operand of a relational expression is a real operand then the other operand shall
be converted to an equivalent real value, and the expression shall be interpreted as a comparison between
two real values.

Otherwise the expression shall be interpreted as a comparison between unsigned values.
4.1.8 Equality operators

The equality operators shall rank lower in precedence than the relational operators. Table 18 lists and
defines the equality operators.

Table 18 —Definitions of the equality operators

a=== a equal to b, including x and z

al== a not equal to b, including x and z

a == a equal to b, result may be unknown
al= a not equal to b, result may be unknown
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All four equality operators shall have the same precedence. These four operators compare operands bit for
bit, with zero filling if the two operands are of unequal bit length. As with the relational operators, the result
shall be O if comparison fails, 1 if it succeeds.

For the logical equality and logical inequality operators (== and =), if, due to unknown or high-impedance
bits in the operands, the relation is ambiguous, then the result shall be a one bit unknown value (X).

For the case equality and case inequality operators (=== and !==), the comparison shall be done just as it is
in the procedural case statement (see 9.5). Bits that are X or z shall be included in the comparison and shall
match for the result to be considered equal. The result of these operators shall always be a known value,
either 1 or O.

4.1.9 Logical operators

The operators logical and (&&) and logical or (||) are logical connectives. The result of the evaluation of a
logical comparison shall be 1 (defined as true), O (defined as false), or, if the result is ambiguous, the
unknown value (X). The precedence of && is greater than that of | |, and both are lower than relational and
equality operators.

A third logical operator is the unary logical negation operator (1). The negation operator converts a non-
zero or true operand into O and a zero or false operand into 1. An ambiguous truth value remains as X.

Examples:

Example 1 1If reg alpha holds the integer value 237 and beta holds the value zero, then the following
examples perform as described:

regA
regB

alpha && beta; // regA is set to O
alpha || beta; // regB is set to 1

Example 2 The following expression performs a logical and of three subexpressions without needing any
parentheses:

a < size-1 & b = c && index != lastone

However, it is recommended for readability purposes that parentheses be used to show very clearly the pre-
cedence intended, as in the following rewrite of this example:

(a < size-1) && (b = c¢) && (index != lastone)
Example 3 A common use of ! is in constructions like the following:
if ('inword)

In some cases, the preceding construct makes more sense to someone reading the code than this equivalent
construct:

if (inword == 0)
4.1.10 Bit-wise operators
The bit-wise operators shall perform bit-wise manipulations on the operands that is, the operator shall

combine a bit in one operand with its corresponding bit in the other operand to calculate one bit for the
result. Logic Tables 19 through 23 show the results for each possible calculation.

[ Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT



Table 19—Bit-wise binary and

operator
& 0|1
0 0 10
1 0 1
X 0 | x
z 0 | x

Table 20— Bit-wise binary or

operator
| 0|1
0 0 |1
1 1 1
x x |1
z x |1

Table 23 —Bit-wise unary negation operator

72
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Table 21 —Bit-wise binary
exclusive or operator

A 0|1 z
0 0 |1 X
1 1 |0 X
X X | x X
z X | X X

Table 22— Bit-wise binary
exclusive nor operator

:: 0|1 z
0 1 [0 X
1 0 |1 X
X X | X X

X | X X

When the operands are of unequal bit length, the shorter operand is zero-filled in the most significant bit

positions.

4.1.11 Reduction operators

The unary reduction operators shall perform a bit-wise operation on a single operand to produce a single bit
result. For reduction and, reduction or, and reduction xor operators, the first step of the operation shall apply
the operator between the first bit of the operand and the second using logic Tables 24 through 26. The second
and subsequent steps shall apply the operator between the 1-bit result of the prior step and the next bit of the
operand using the same logic table. For reduction nand, reduction nor, and reduction xnor operators, the
result shall be computed by inverting the result of the reduction and, reduction or, and reduction xor opera-

tion respectively.
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Table 24—Reduction unary and Table 25—Reduction unary or
operator operator
& 0| 1| x|z | 0| 1| x|z
0 010 01O 0 0|1 | x |x
1 0 |1 |x |x 1 1 1 1 1
X 0 | x | x |[X X x [ 1 | x | x
z 0 | x | x | x z x |1 | x | x

Table 26 —Reduction unary exclusive or operator

" 0|1 | x|z
0 0|1 |x |x
1 I |0 | x |x
X X | X | X | X
z X | X | X | X

Example:

Table 27 shows the results of applying reduction operators on different operands.

Table 27 —Results of unary reduction operations

Operand | & | ~& I ~ A ~A Comments

4 b0000 0 1 0 1 0 1 No bits set

4bl1111 1 0 1 0 0 1 All bits set

4b0110 0 1 1 0 0 1 Even number of bits
set

4b1000 0 1 1 0 1 0 Odd number of bits set

4.1.12 Shift operators

There are two types of shift operators, the logical shift operators, << and >>, and the arithmetic shift opera-
tors, <<< and >>>. The left shift operators, << and <<<, shall shift their left operand to the left by the num-
ber by the number of bit positions given by the right operand. In both cases, the vacated bit positions shall be
filled with zeroes. The right shift operators, >> and >>>, shall shift their left operand to the right by the num-
ber of bit positions given by the right operand. The logical right shift shall fill the vacated bit positions with
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zeroes. The arithmetic right shift shall fill the vacated bit positions with zeroes if the result type is unsigned.
It shall fill the vacated bit positions with the value of the most-significant (i.e., sign) bit of the left operand if
the result type is signed. If the right operand has an unknown or high impedence value, then the result shall
be unknown. The right operand is always treated as an unsigned number and has no effect on the signedness
of the result. The result signedness is determined by the left-hand operand and the remainder of the expres-
sion, as outlined in 4.5.1.

Examples:

Example 1 1In this example, the reg resul t is assigned the binary value 0100, which is 0001 shifted to
the left two positions and zero-filled.

module shift;
reg [3:0] start, result;
initial begin

start = 1;

result = (start << 2);
end
endmodule

Example 2 In this example, the reg  result is assigned the binary value 1110, which is 1000 shifted to
the right two positions and sign-filled.

module ashift;
reg signed [3:0] start, result;
initial begin

start = 47b1000;

result = (start >>> 2);
end
endmodule

4.1.13 Conditional operator

The conditional operator, also known as ternary operator, shall be right associative and shall be constructed
using three operands separated by two operators in the format given in Syntax 4-1.

conditional_expression ::= (From Annex A - A.8.3)
expressionl ? { attribute_instance } expression2 : expression3
expressionl ::=
expression
expression2 ::=
expression
expression3 ::=
expression

Syntax 4-1 Syntax for conditional operator

The evaluation of a conditional operator shall begin with the evaluation of expressionl. If expressionl eval-
uates to false (0), then expression3 shall be evaluated and used as the result of the conditional expression. If
expressionl evaluates to true (known value other than 0), then expression2 is evaluated and used as the
result. If expression]l evaluates to ambiguous value (X or z), then both expression2 and expression3 shall be
evaluated and their results shall be combined, bit by bit, using Table 28 to calculate the final result unless
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expression2 or expression3 is real, in which case the result shall be O. If the lengths of expression2 and
expression3 are different, the shorter operand shall be lengthened to match the longer and zero-filled from
the left (the high-order end).

Table 28 — Ambiguous condition results for conditional operator

EH 0| 1| x|z
0 0 | x | x |Xx
1 x |1 | x |[x
X X | X | X | X
z X [ x | x |x

Example:
The following example of a three-state output bus illustrates a common use of the conditional operator.
wire [15:0] busa = drive_busa ? data : 167bz;

The bus called data is driven onto busa when drive_busa is 1. If drive_busa is unknown, then an
unknown value is driven onto busa. Otherwise, busa is not driven.

4.1.14 Concatenations

A concatenation is the joining together of bits resulting from two or more expressions. The concatenation
shall be expressed using the brace characters { and }, with commas separating the expressions within.

Unsized constant numbers shall not be allowed in concatenations. This is because the size of each operand in
the concatenation is needed to calculate the complete size of the concatenation.

Examples:
This example concatenates four expressions:
{a, b[3:0], w, 3°b101}
and it is equivalent to the following example:
{a, b[3], b[2], b[1], b[O], w, 1°b1, 1°b0, 1’°b1}
Another form of concatenation is the replication operation. The first expression shall be a non-zero, non-X
and non-Z constant expression, the second expression follows the rules for concatenations. This example

replicates "w" 4 times.

{4{w}} // This is equivalent to {w, w, w, w}

a[31:0] = {1°b1, {0{1°b0}} }; //illegal. RHS becomes {1°b1l,;
a[31:0] = {1°b1, {1°bz{1”b0}} }; //illegal. RHS becomes {1°b1,;
a[31:0] = {1°b1, {1’bx{1”b0}} }; //illegal. RHS becomes {1°b1,;
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If the replication operator is used on a function call operand, the function need not be evaluated multiple
times. For example:
result = {4{func(w)}}
may be computed as
result = {func(w), Ffunc(w), func(w), Func(w)}
or

y = func(w) ;
result = {y, v, vV, Y}

This is another form of expression evaluation short-circuiting.
The next example illustrates nested concatenations:

{b, {3{a, b}}} // This is equivalent to {b, a, b, a, b, a, b}
4.1.15 Event or

The event or operator shall perform an or of events. The , operator does the same thing. See 9.7 for events
and triggering of events.

Example:

The following example shows both ways to make an assignment to rega when an event (change) occurs on
trig or enable.

@(trig or enable) rega = regb ;
@(trig , enable) rega = regb ;

4.2 Operands

There are several types of operands that can be specified in expressions. The simplest type is a reference to a
net or variable in its complete form that is, just the name of the net or variable is given. In this case, all of
the bits making up the net or variable value shall be used as the operand.

If a single bit of a vector net, reg variable, integer variable, or time variable is required, then a bit-select
operand shall be used. A part-select operand shall be used to reference a group of adjacent bits in a vector
net, vector reg, integer variable, or time variable.

A memory word can be referenced as an operand. A concatenation of other operands (including nested con-
catenations) can be specified as an operand. A function call is an operand.

4.2.1 Vector bit-select and part-select addressing

Bit-selects extract a particular bit from a vector net, vector reg, integer variable, or time variable. The bit can
be addressed using an expression. If the bit-select is out of the address bounds or the bit-select is X or z, then
the value returned by the reference shall be X. The bit-select or part-select of a variable declared as real or
realtime shall be considered illegal.

Several contiguous bits in a vector net, vector reg, integer variable, or time variable can be addressed and are
known as part-selects. There are two types of part-selects, a constant part-select and an indexed part-select.
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A constant part-select of a vector reg or net is given with the following syntax:
vect[msb_expr:Isb_expr]
Both expressions shall be constant expressions. The first expression has to address a more significant bit

than the second expression. If the part-select is out of the address bounds or the part-select is X or z, then the
value returned by the reference shall be X.

An indexed part select of a vector net, vector reg, integer variable, or time variable is given with the follow-
ing syntax:

reg [15:0] big_vect;
reg [0:15] little_vect;

big vect[lIsb_base expr +: width_expr]
little_vect[msb_base_expr +: width_expr]

big vect[msb_base expr -
little vect[lIsb_base expr -

width_expr]
width_expr]

The width_expr shall be a constant expression. It also shall not be affected by run-time parameter assign-
ments. The 1sb_base_expr and msb_base_expr can vary at run-time. The first two examples select
bits starting at the base and ascending the bit range. The number of bits selected is equal to the width expres-
sion. The second two examples select bits starting at the base and descending the bit range. Part-selects that
address a range of bits that are completely out of the address bounds of the net, reg, integer, or time,
or when the part-select is X or z, shall yield the value X when read, and shall have no effect on the data
stored when written. Part-selects that are partially out of range shall when read return X for the bits that are
out of range, and when written shall only affect the bits that are in range.

Examples:
reg [31:0] big_vect;
reg [0:31] little vect;
reg [63:0] dword;
integer sel;

The first four 1T statements show the identity between the two part select constructs. The last one shows an
indexable nature.

initial begin

if ( big_vect[0 +:8] == big _vect[7 : 0]) begin end
if (Iittle_vect[0O +:8] == little_vect[0O : 7]) begin end
if ( big_vect[15 -:8] == big_vect[15 : 8]) begin end
if (Iittle_vect[15 -:8] == little_vect[8 :15]) begin end

if (sel >0 && sel < 8)
dword[8*sel +:8] = big _vect[7:0]; // Replace the byte selected.

Examples:

Example 1 The following example specifies the single bit of acc vector that is addressed by the operand
index.

acc[index]
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The actual bit that is accessed by an address is, in part, determined by the declaration of acc. For instance,
each of the declarations of acc shown in the next example causes a particular value of index to access a
different bit:

reg [15:0] acc;
reg [2:17] acc

Example 2 The next example and the bullet items that follow it illustrate the principles of bit addressing.
The code declares an 8-bit reg called vect and initializes it to a value of 4. The list describes how the sepa-
rate bits of that vector can be addressed.

reg [7:0] vect;
vect = 4;// fills vect with the pattern 00000100
// msb is bit 7, Isb is bit 0

— If the value of addr is 2, then vect[addr] returns 1.

— If the value of addr is out of bounds, then vect[addr] returns X .
— Ifaddris0, 1, or 3 through 7, vect[addr] returns O.

— vect[3:0] returns the bits 0100.

— vect[5:1] returns the bits 00010.

— vect[expression that returns x] returns X .

— vect[expression that returns 7] returns X .

— If any bit of addr is X or z, then the value of addr is X .

NOTES:
1) Part-select indices that evaluate to x or z may be flagged as a compile time error.
2) Bit-select or part-select indices that are outside of the declared range may be flagged as a compile time error.

4.2.2 Array and memory addressing

Declaration of arrays and memories (one dimensional arrays of reg) are discussed in 3.10. This subclause
discusses array addressing.

Examples:
The next example declares a memory of 1024 8-bit words:
reg [7:0] mem_name[0:1023];

The syntax for a memory address shall consist of the name of the memory and an expression for the address,
specified with the following format:

mem_name[addr_expr]

The addr_expr can be any expression; therefore, memory indirections can be specified in a single expres-
sion. The next example illustrates memory indirection:

mem_name[mem_name[3]]

In this example, mem_name [[3]addresses word three of the memory called mem_name. The value at word
three is the index into mem_name that is used by the memory address mem_name[mem_name[3]]. As
with bit-selects, the address bounds given in the declaration of the memory determine the effect of the
address expression. If the index is out of the address bounds or if any bit in the address is X or z, then the
value of the reference shall be X.
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Examples:

The next example declares an array of 256 by 256 8-bit elements and an array 256 by 256 by 8 1-bit
elements:

reg [7:0] twod_array[0:255][0:255];
wire threed_array[0:255][0:255][0:7];

The syntax for access to the array shall consist of the name of the memory or array and an expression for
each addressed dimension:

twod_array[addr_expr][addr_expr]
threed_array[addr_expr][addr_expr][addr_expr]

As before, the addr_expr can be any expression. The array twod_array accesses a whole 8-bit vector,
while the array threed_array accesses a single bit of the three dimensional array.

To express bit selects or part selects of array elements, the desired word shall first be selected by supplying
an address for each dimension. Once selected, bit and part selects shall be addressed in the same manner as
net and reg bit and part selects (see 4.2.1).

Examples:
twod_array[14][1][3:0] // access lower 4 bits of word
twod_array[1][3]1[6] // access bit 6 of word
twod_array[1][3][sel] // use variable bit select

threed_array[14][1][3:0] // 1llegal
4.2.3 Strings

String operands shall be treated as constant numbers consisting of a sequence of 8-bit ASCII codes, one per
character. Any Verilog HDL operator can manipulate string operands. The operator shall behave as though
the entire string were a single numeric value.

When a variable is larger than required to hold the value being assigned, the contents after the assignment
shall be padded on the left with zeros. This is consistent with the padding that occurs during assignment of
nonstring values.

Example:

The following example declares a string variable large enough to hold 14 characters and assigns a value to it.
The example then manipulates the string using the concatenation operator.

module string_test;
reg [8*14:1] stringvar;

initial begin
stringvar = "Hello world";
$display("'%s is stored as %h'", stringvar, stringvar);
stringvar = {stringvar,"!111"};
$display("'%s s stored as %h'", stringvar, stringvar);
end
endmodule
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The result of simulating the above description is

Hello world is stored as 00000048656c6¢c6120776F726c64
Hello world!!! is stored as 48656c6c6f20776F726c64212121

4.2.3.1 String operations

The common string operations copy, concatenate, and compare are supported by Verilog HDL operators.
Copy is provided by simple assignment. Concatenation is provided by the concatenation operator. Compari-
son is provided by the equality operators.

When manipulating string values in vector regs, the regs should be at least 8*n bits (where n is the number
of ASCII characters) in order to preserve the 8-bit ASCII code.

4.2.3.2 String value padding and potential problems

When strings are assigned to variables, the values stored shall be padded on the left with zeros. Padding can
affect the results of comparison and concatenation operations. The comparison and concatenation operators
shall not distinguish between zeros resulting from padding and the original string characters (\O, ASCII
NULL).

Examples:

The following example illustrates the potential problem.

reg [8*10:1] sl1, s2;
initial begin
sl = "Hello";
s2 = " world!";
if ({sl1,s2} == "Hello world!)
$display("'strings are equal'™);
end

The comparison in this example fails because during the assignment the string variables are padded as illus-
trated in the next example:

sl
s2

000000000048656¢c6¢6T
00000020776F726c6421

The concatenation of S1 and S2 includes the zero padding, resulting in the following value:

000000000048656c6c6T00000020776F726c6421
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Since the string Hello world! contains no zero padding, the comparison fails, as shown in the following
example:

r sl A s2 N
000000000048656c6c6F00000020776F726c6421

48656C6C6f80776f7260642J1

"Hello" " world!"

This comparison yields a result of zero, which is equivalent to false.
4.2.3.3 Null string handling

The null string (*"*") shall be considered equivalent to the ASCII NULL ("*\0"") which has a value zero (0),
which is different from a string ""0"".

4.3 Minimum, typical, and maximum delay expressions

Verilog HDL delay expressions can be specified as three expressions separated by colons and enclosed by
parentheses. This is intended to represent minimum, typical, and maximum values in that order. The syn-
tax is given in Syntax 4-2.
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constant_expression ::= (From Annex A - A.8.3)
constant_primary
| unary_operator { attribute_instance } constant_primary
| constant_expression binary_operator { attribute_instance } constant_expression
| constant_expression ? { attribute_instance } constant_expression
constant_expression
| string
constant_mintypmax_expression ::=
constant_expression
| constant_expression : constant_expression : constant_expression
expression ::=
primary
| unary_operator { attribute_instance } primary
| expression binary_operator { attribute_instance } expression
| conditional_expression
| string
mintypmax_expression ::=
expression
| expression : expression : expression
constant_primary ::= (From Annex A - A.8.4)
constant_concatenation
| constant_function_call
| ( constant_mintypmax_expression )
| constant_multiple_concatenation
| genvar_identifier
| number
| parameter_identifier
| specparam_identifier
primary ::=
number
hierarchical_identifier
hierarchical_identifier [ expression ] { [ expression | }
hierarchical_identifier [ expression ] { [ expression ] } [ range_expression ]
hierarchical_identifier [ range_expression |
concatenation
| multiple_concatenation
function_call
system_function_call
constant_function_call
( mintypmax_expression )

Syntax 4-2 Syntax for mintypmax expression

Verilog HDL models typically specify three values for delay expressions. The three values allow a design to
be tested with minimum, typical, or maximum delay values.

Values expressed in min:typ:max format can be used in expressions. The min:typ:max format can be used
wherever expressions can appear.
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Examples:

Example 1 This example shows an expression that defines a single triplet of delay values. The minimum
value is the sum of a+d; the typical value is b+e; the maximum value is c+¥, as follows:

(a:b:c) + (d:e:f)

Example 2 The next example shows a typical expression that is used to specify min:typ:max format
values:

val - (32”d 50: 32°d 75: 32°d 100)

4.4 Expression bit lengths

Controlling the number of bits that are used in expression evaluations is important if consistent results are to
be achieved. Some situations have a simple solution; for example, if a bit-wise and operation is specified on
two 16-bit regs, then the result is a 16-bit value. However, in some situations it is not obvious how many bits
are used to evaluate an expression, or what size the result should be.

For example, should an arithmetic add of two 16-bit values perform the evaluation using 16 bits, or should
the evaluation use 17 bits in order to allow for a possible carry overflow? The answer depends on the type of
device being modeled, and whether that device handles carry overflow. The Verilog HDL uses the bit length
of the operands to determine how many bits to use while evaluating an expression. The bit length rules are
given in 4.4.1. In the case of the addition operator, the bit length of the largest operand, including the left-
hand side of an assignment, shall be used.

Examples:

reg [15:0] a, b; // 16-bit regs
reg [15:0] sumA; // 16-bit reg
reg [16:0] sumB; // 17-bit reg

SuUmA
sumB

a + b; // expression evaluates using 16 bits
a + b; // expression evaluates using 17 bits

4.4.1 Rules for expression bit lengths

The rules governing the expression bit lengths have been formulated so that most practical situations have a
natural solution.

The number of bits of an expression (known as the size of the expression) shall be determined by the oper-
ands involved in the expression and the context in which the expression is given.

A self-determined expression is one where the bit length of the expression is solely determined by the
expression itself for example, an expression representing a delay value.

A context-determined expression is one where the bit length of the expression is determined by the bit length
of the expression and by the fact that it is part of another expression. For example, the bit size of the right-
hand side expression of an assignment depends on itself and the size of the left-hand side.

Table 29 shows how the form of an expression shall determine the bit lengths of the results of the expres-
sion. In Table 29, 1, J, and K represent expressions of an operand, and L (1) represents the bit length of the
operand represented by 1.
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Table 29— Bit lengths resulting from self-determined expressions

Expression Bit length Comments
Unsized constant number” Same as integer
Sized constant number As given
iop j, where op is: max(L(i),L(j))
+_*/%&‘/\/\~~/\
op i, where op is: L(i)
+ -~
iop j, where op is: 1 bit Operands are sized to max(L(i),L(j))

==l==I=&& || >>= <<=

op i, where op is: 1 bit All operands are self-determined
& ~& | ~| N AN A~

iop j, where op is: L) j is self-determined
>> << OFE >SS <<<

i?j:k max(L(j),L(k)) i is self-determined
{1, } L@)+..+LG) All operands are self-determined
{i{j,...k}} i* (LG)+..+L(k)) All operands are self-determined

*If an unsized constant is part of an expression that is longer than 32 bits, then if the most significant bit
is unknown (X or X) or three-state (Z or z) the most significant bit is extended up to the size of the ex-
pression, otherwise signed constants are sign extended and unsigned constants are zero extended.

NOTE Multiplication without losing any overflow bits is still possible simply by assigning the result to
something wide enough to hold it.

4.4.2 An example of an expression bit-length problem

During the evaluation of an expression, interim results shall take the size of the largest operand (in case of an
assignment, this also includes the left-hand side). Care has to be taken to prevent loss of a significant bit dur-
ing expression evaluation. The example below describes how the bit lengths of the operands could result in
the loss of a significant bit.

Given the following declarations
reg [15:0] a, b, answer; // 16-bit regs
The intent is to evaluate the expression
answer = (a + b) >> 1; //will not work properly

where a and b are to be added, which may result in an overflow, and then shifted right by 1 bit to preserve
the carry bit in the 16-bit answer.

A problem arises, however, because all operands in the expression are of a 16-bit width. Therefore, the
expression

(a + b) produces an interim result that is only 16 bits wide, thus losing the carry bit before the evaluation
performs the 1-bit right shift operation.
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The solution is to force the expression (a + b) to evaluate using at least 17 bits. For example, adding an
integer value of 0 to the expression will cause the evaluation to be performed using the bit size of integers.
The following example will produce the intended result:

answer = (a + b + 0) >> 1; //will work correctly

In the following example:

module bitlength();
reg [3:0] a,b,c;
reg [4:0] d;

initial begin
a 9;
b 8;
c 1;
$display("'answer = %b', ¢ ? (a&b) : d);
end
endmodule

the $display statement will display:
answer = 01000

By itself, the expression a&b would have the bit length 4, but since it is in the context of the conditional
expression, which uses the maximum bit-length, the expression a&b actually has length 5, the length of d.

4.4.3 Example of self-determined expressions
reg [3:0] a;
reg [5:0] b;
reg [15:0] c;

initial begin

a = 47hF;
b = 6”ha;
$display(""a*b=%x"",
a*b); // expression size is self determined
c = {a**b}; // expression a**b is self determined
$display("'a**b=%x"", c); // due to {}
c = a**b; // expression size is determined by c
$display("'c=%x"", c);
end

Simulator output for this example:

a*b=16 // 96 was truncated since expression size
is 6

a**b=1 // expression size is 4 bits (size of a)

c=21 // example size is 16 bits (size of ¢)
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4.5 Signed expressions

Controlling the sign of an expression is important if consistent results are to be achieved. In addition to the
rules outlined in the following sections, two system functions shall be used to handle type casting on expres-
sions: $signed() and $unsigned(). These functions shall evaluate the input expression and return a value with
the same size and value of the input expression and the type defined by the function:

$signed - returned value is signed
$unsigned - returned value is unsigned

Example:

reg [7:0] regA;
reg signed [7:0] regS;

regA = Sunsigned(-4); // regA = 4"b1100
regS = $signed(4"b1100); // regS = -4

4.5.1 Rules for expression types
The following are the rules for determining the resulting type of an expression:

— Expression type depends only on the operands. It does not depend on the LHS (if any).

— Decimal numbers are signed.

— Based_numbers are unsigned, except where the S notation is used in the base specifier (as in
"4"sd12").

— Bit-select results are unsigned, regardless of the operands.

— Part-select results are unsigned, regardless of the operands.

NOTE—This is true even if the part-select specifies the entire vector.

reg [15:0] a;
reg signed [7:0] b;

initial
a = b[7:0]; // b[7:0] is unsigned and therefore zero-extended

— Concatenate results are unsigned, regardless of the operands.
—  Comparison results (1, 0) are unsigned, regardless of the operands.
— Reals converted to integers by type coercion are signed
— The sign and size of any self-determined operand is determined by the operand itself and indepen-
dent of the remainder of the expression.
—  For non-self-determined operands the following rules apply:
if any operand is real, the result is real;
if any operand is unsigned, the result is unsigned, regardless of the operator;
if all operands are signed, the result will be signed, regardless of operator, except as noted.

4.5.2 Steps for evaluating an expression

— Determine the expression size based upon the standard rules of expression size determination.

— Determine the sign of the expression using the rules outlined in 4.5.1.

— Coerce the type of each operand of the expression (excepting those which are self-determined) to the
type of the expression.
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— Extend the size of each operand (excepting those which are self-determined) to the size of the
expression. Perform sign extension if and only if the operand type (after type coercion) is signed.

4.5.3 Steps for evaluating an assignment

— Determine the size of the RHS by the standard assignment size determination rules (see 4.4)
— If needed, extend the size of the RHS, performing sign extension if and only if the type of the RHS is
signed.

4.5.4 Handling X and Z in signed expressions

If a signed operand is to be resized to a larger signed width and the value of the sign bit is X, the resulting
value shall be bit-filled with Xs. If the sign bit of the value is Z, then the resulting value shall be bit-filled
with Zs. If any bit of a signed value is X or Z, then any non logical operation involving the value shall result
in the entire resultant value being an X and the type consistent with the expression’s type.
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5. Scheduling semantics

5.1 Execution of a model

The balance of the sections of this standard describe the behavior of each of the elements of the language.
This section gives an overview of the interactions between these elements, especially with respect to the
scheduling and execution of events.

The elements that make up the Verilog HDL can be used to describe the behavior, at varying levels of
abstraction, of electronic hardware. An HDL has to be a parallel programming language. The execution of
certain language constructs is defined by parallel execution of blocks or processes. It is important to under-
stand what execution order is guaranteed to the user, and what execution order is indeterminate.

Although the Verilog HDL is used for more than simulation, the semantics of the language are defined for
simulation, and everything else is abstracted from this base definition.

5.2 Event simulation

The Verilog HDL is defined in terms of a discrete event execution model. The discrete event simulation is
described in more detail in this section to provide a context to describe the meaning and valid interpretation
of Verilog HDL constructs. These resulting definitions provide the standard Verilog reference model for sim-
ulation, which all compliant simulators shall implement. Note, though, that there is a great deal of choice in
the definitions that follow, and differences in some details of execution are to be expected between different
simulators. In addition, Verilog HDL simulators are free to use different algorithms than those described in
this section, provided the user-visible effect is consistent with the reference model.

A design consists of connected threads of execution or processes. Processes are objects that can be evalu-
ated, that may have state, and that can respond to changes on their inputs to produce outputs. Processes
include primitives, modules, initial and always procedural blocks, continuous assignments, asynchronous
tasks, and procedural assignment statements.

Every change in value of a net or variable in the circuit being simulated, as well as the named event, is con-
sidered an update event.

Processes are sensitive to update events. When an update event is executed, all the processes that are sensi-
tive to that event are evaluated in an arbitrary order. The evaluation of a process is also an event, known as
an evaluation event.

In addition to events, another key aspect of a simulator is time. The term simulation time is used to refer to
the time value maintained by the simulator to model the actual time it would take for the circuit being simu-
lated. The term time is used interchangeably with simulation time in this section.

Events can occur at different times. In order to keep track of the events and to make sure they are processed
in the correct order, the events are kept on an event queue, ordered by simulation time. Putting an event on
the queue is called scheduling an event.

5.3 The stratified event queue

The Verilog event queue is logically segmented into five different regions. Events are added to any of the
five regions but are only removed from the active region.

1) Events that occur at the current simulation time and can be processed in any order. These are the
active events.

2)  Events that occur at the current simulation time, but that shall be processed after all the active events
are processed. These are the inactive events.
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3) Events that have been evaluated during some previous simulation time, but that shall be assigned at
this simulation time after all the active and inactive events are processed. These are the nonblocking
assign update events.

4)  Events that shall be processed after all the active, inactive, and nonblocking assign update events are
processed. These are the monitor events.

5) Events that occur at some future simulation time. These are the future events. Future events are
divided into future inactive events, and future nonblocking assignment update events.

The processing of all the active events is called a simulation cycle.

The freedom to choose any active event for immediate processing is an essential source of nondeterminism
in the Verilog HDL.

An explicit zero delay (#0) requires that the process be suspended and added as an inactive event for the cur-
rent time so that the process is resumed in the next simulation cycle in the current time.

A nonblocking assignment (see 9.2.2) creates a nonblocking assign update event, scheduled for current or a
later simulation time.

The $Smonitor and $strobe system tasks (see 17.1) create monitor events for their arguments. These events
are continuously re-enabled in every successive time step. The monitor events are unique in that they cannot
create any other events.

The call back procedures scheduled with PLI routines such as tFf_synchronize() (see 25.58) or
vpi_register_cb(cb_readwrite) (see 27.33) shall be treated as inactive events.

5.4 The Verilog simulation reference model

In all the examples that follow, T refers to the current simulation time, and all events are held in the event
queue, ordered by simulation time.

while (there are events) {
if (no active events) {
if (there are inactive events) {
activate all inactive events;
} else if (there are nonblocking assign update events) {
activate all nonblocking assign update events;
} else if (there are monitor events) {
activate all monitor events;
} else {
advance T to the next event time;
activate all inactive events for time T;
}
}
E = any active event;
if (E is an update event) {
update the modified object;
add evaluation events for sensitive processes to event queue;

} else { /* shall be an evaluation event */
evaluate the process;
add update events to the event queue;
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5.4.1 Determinism

This standard guarantees a certain scheduling order.

1)

2)

Statements within a begin-end block shall be executed in the order in which they appear in that
begin-end block. Execution of statements in a particular begin-end block can be suspended in
favor of other processes in the model; however, in no case shall the statements in a begin-end
block be executed in any order other than that in which they appear in the source.

Nonblocking assignments shall be performed in the order the statements were executed. Consider
the following example:

initial begin
a <= 0;
a <= 1;
end

When this block is executed, there will be two events added to the nonblocking assign update queue.
The previous rule requires that they be entered on the queue in source order; this rule requires that
they be taken from the queue and performed in source order as well. Hence, at the end of time step
1, the variable a will be assigned O and then 1.

5.4.2 Nondeterminism

One source of nondeterminism is the fact that active events can be taken off the queue and processed in any
order. Another source of nondeterminism is that statements without time-control constructs in behavioral
blocks do not have to be executed as one event. Time control statements are the # expression and @ expres-
sion constructs (see 9.7). At any time while evaluating a behavioral statement, the simulator may suspend
execution and place the partially completed event as a pending active event on the event queue. The effect of
this is to allow the interleaving of process execution. Note that the order of interleaved execution is nonde-
terministic and not under control of the user.

5.5 Race conditions

Because the execution of expression evaluation and net update events may be intermingled, race conditions
are possible:

assign p = q;
initial begin
q=1;
#1 q = O;
$display(p);
end

The simulator is correct in displaying either a 1 or a 0. The assignment of O to g enables an update event for
p. The simulator may either continue and execute the $display task or execute the update for p, followed by
the $display task.

5.6 Scheduling implication of assignments

Assignments are translated into processes and events as follows.
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5.6.1 Continuous assignment

A continuous assignment statement (Section 6) corresponds to a process, sensitive to the source elements in
the expression. When the value of the expression changes, it causes an active update event to be added to the
event queue, using current values to determine the target.

5.6.2 Procedural continuous assignment

A procedural continuous assignment (which are the assign or force statement; see 9.3) corresponds to a pro-
cess that is sensitive to the source elements in the expression. When the value of the expression changes, it
causes an active update event to be added to the event queue, using current values to determine the target.

A deassign or a release statement deactivates any corresponding assign or force statement(s).
5.6.3 Blocking assignment

A blocking assignment statement (see 9.2.1) with a delay computes the right-hand side value using the cur-
rent values, then causes the executing process to be suspended and scheduled as a future event. If the delay
is 0, the process is scheduled as an inactive event for the current time.

When the process is returned (or if it returns immediately if no delay is specified), the process performs the
assignment to the left-hand side and enables any events based upon the update of the left-hand side. The val-
ues at the time the process resumes are used to determine the target(s). Execution may then continue with the
next sequential statement or with other active events.

5.6.4 Nonblocking assignment

A nonblocking assignment statement (see 9.2.2) always computes the updated value and schedules the
update as a nonblocking assign update event, either in this time step if the delay is zero or as a future event if
the delay is nonzero. The values in effect when the update is placed on the event queue are used to compute
both the right-hand value and the left-hand target.

5.6.5 Switch (transistor) processing

The event-driven simulation algorithm described in 5.4 depends on unidirectional signal flow and can pro-
cess each event independently. The inputs are read, the result is computed, and the update is scheduled.

The Verilog HDL provides switch-level modeling in addition to behavioral and gate-level modeling.
Switches provide bi-directional signal flow and require coordinated processing of nodes connected by
switches.

The Verilog HDL source elements that model switches are various forms of transistors, called tran, tranif0,
tranifl, rtran, rtranif0, and rtranifl.

Switch processing shall consider all the devices in a bidirectional switch-connected net before it can deter-
mine the appropriate value for any node on the net, because the inputs and outputs interact. A simulator can
do this using a relaxation technique. The simulator can process tran at any time. It can process a subset of
tran-connected events at a particular time, intermingled with the execution of other active events.

Further refinement is required when some transistors have gate value X. A conceptually simple technique is
to solve the network repeatedly with these transistors set to all possible combinations of fully conducting
and nonconducting transistors. Any node that has a unique logic level in all cases has steady-state response
equal to this level. All other nodes have steady-state response X.
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5.6.6 Port connections
Ports connect processes through implicit continuous assignment statements or implicit bidirectional connec-
tions. Bidirectional connections are analogous to an always-enabled tran connection between the two nets,
but without any strength reduction. Port connection rules require that a value receiver be a net or a structural
net expression.
Ports can always be represented as declared objects connected as follows:

— If an input port, then a continuous assignment from an outside expression to a local (input) net

— If an output port, then a continuous assignment from a local output expression to an outside net

— If an inout, then a nonstrength-reducing transistor connecting the local net to an outside net

5.6.7 Functions and tasks

Task and function parameter passing is by value, and it copies in on invocation and copies out on return. The
copy out on the return function behaves in the same manner as does any blocking assignment.
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6. Assignments

The assignment is the basic mechanism for placing values into nets and variables. There are two basic forms
of assignments:

—  The continuous assignment, which assigns values to nets
—  The procedural assignment, which assigns values to variables

There are two additional forms of assignments, assign / deassign and force / release which are called proce-
dural continuous assignments, described in 9.3.

An assignment consists of two parts, a left-hand side and a right-hand side, separated by the equals ( =)
character; or, in the case of nonblocking procedural assignment, the less-than-equals ( <= ) character pair.
The right-hand side can be any expression that evaluates to a value. The left-hand side indicates the variable
to which the right-hand side value is to be assigned. The left-hand side can take one of the forms given in
Table 30, depending on whether the assignment is a continuous assignment or a procedural assignment.

Table 30—Legal left-hand side forms in assignment statements

Statement type Left-hand side (LHS)

Continuous assignment Net (vector or scalar)

Constant bit select of a vector net

Constant part select of a vector net

Constant indexed part select of a vector net
Concatenation of any of the above four LHS

Procedural assignment Variables (vector or scalar)

Bit-select of a vector reg, integer, or time variable
Constant part select of a vector reg, integer, or time
variable

Memory word

Indexed part select of a vector reg, integer, or time
variable

Concatenation of regs; bit or part selects of regs

6.1 Continuous assignments

Continuous assignments shall drive values onto nets, both vector and scalar. This assignment shall occur
whenever the value of the right-hand side changes. Continuous assignments provide a way to model combi-
national logic without specifying an interconnection of gates. Instead, the model specifies the logical expres-
sion that drives the net.
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The syntax for continuous assignments is given in Syntax 6-1.

net_declaration ::= (From Annex A - A.2.1.3)
net_type [ signed ]
[ delay3 ] list_of_net_identifiers ;
| net_type [ drive_strength ] [ signed ]
[ delay3 ] list_of_net_decl_assignments ;
| net_type [ vectored | scalared ] [ signed ]
range [ delay3 ] list_of_net_identifiers ;
| net_type [ drive_strength ] [ vectored | scalared ] [ signed ]
range [ delay3 ] list_of_net_decl_assignments ;
| trireg [ charge_strength ] [ signed ]
[ delay3 ] list_of_net_identifiers
| trireg [ drive_strength ] [ signed ]
[ delay3 ] list_of_net_decl_assignments ;
| trireg [ charge_strength ] [ vectored | scalared ] [ signed ]
range [ delay3 ] list_of net_identifiers ;
| trireg [ drive_strength ] [ vectored | scalared ] [ signed ]
range [ delay3 ] list_of_net_decl_assignments ;
list_of_net_decl_assignments ::= (From Annex A - A.2.3)
net_decl_assignment { , net_decl_assignment }
net_decl_assignment ::= (From Annex 4 - A.2.4)
net_identifier = expression
continuous_assign ::= (From Annex A - A.6.1)
assign [ drive_strength ] [ delay3 ] list_of_net_assignments ;
list_of_net_assignments ::=
net_assignment { , net_assignment }
net_assignment ::=
net_lvalue = expression

Syntax 6-1 Syntax for continuous assignment

6.1.1 The net declaration assignment

The first two alternatives in the net declaration are discussed in see 3.2. The third alternative, the net decla-
ration assignment, allows a continuous assignment to be placed on a net in the same statement that declares
the net.

Example:

The following is an example of the net declaration form of a continuous assignment:

wire (strongl, pull)) mynet = enable ;

NOTE Because a net can be declared only once, only one net declaration assignment can be made for a particular net.
This contrasts with the continuous assignment statement; one net can receive multiple assignments of the continuous
assignment form.

6.1.2 The continuous assignment statement

The continuous assignment statement shall place a continuous assignment on a net data type. The net may be
explicitly declared, or may inherit an implicit declaration in accordance with the implicit declarations rules
defined in 3.5.
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Assignments on nets shall be continuous and automatic. This means that whenever an operand in the right-
hand side expression changes value, the whole right-hand side shall be evaluated and if the new value is dif-
ferent from the previous value, then the new value shall be assigned to the left-hand side.

Examples:

Example 1 The following is an example of a continuous assignment to a net that has been previously
declared:

wire mynet ;
assign (strongl, pull)) mynet = enable ;

Example 2 The following is an example of the use of a continuous assignment to model a 4-bit adder with
carry. The assignment could not be specified directly in the declaration of the nets because it requires a con-
catenation on the left-hand side.

module adder (sum_out, carry out, carry_in, ina, inb);
output [3:0] sum_out;

output carry_out;

input [3:0] ina, inb;

input carry_in;

wire carry_out, carry_in;

wire [3:0] sum _out, ina, inb;

assign {carry_out, sum_out} = ina + inb + carry_in;
endmodule

Example 3 The following example describes a module with one 16-bit output bus. It selects between one of
four input busses and connects the selected bus to the output bus.

module select_bus(busout, busO, busl, bus2, bus3, enable, s);
parameter N = 16;

parameter Zee = 167bz;

output [1:n] busout;

input [1:n] busO, busl, bus2, bus3;

input enable;

input [1:2] s;

tri [1:n] data; // net declaration

// net declaration with continuous assignment

tri [1:n] busout = enable ? data : Zee;

// assignment statement with four continuous assignments

assign
data = (s == 0) ? busO : Zee,
data = (s == 1) ? busl : Zee,
data = (s == 2) ? bus2 : Zee,
data = (s == 3) ? bus3 : Zee;
endmodule

The following sequence of events is experienced during simulation of this example:

a) The value of S, a bus selector input variable, is checked in the assign statement. Based on the value
of s, the net data receives the data from one of the four input buses.

b) The setting of data net triggers the continuous assignment in the net declaration for busout. If
enabl e is set, the contents of data are assigned to busout; if enable is O, the contents of Zee
are assigned to busout.
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6.1.3 Delays

A delay given to a continuous assignment shall specify the time duration between a right-hand side operand
value change and the assignment made to the left-hand side. If the left-hand side references a scalar net, then
the delay shall be treated in the same way as for gate delays that is, different delays can be given for the
output rising, falling, and changing to high impedance (see 7.).

If the left-hand side references a vector net, then up to three delays can be applied. The following rules deter-
mine which delay controls the assignment:

—  If the right-hand side makes a transition from nonzero to zero, then the falling delay shall be used.
—  If the right-hand side makes a transition to z, then the turn-off delay shall be used.
— For all other cases, the rising delay shall be used.

Specifying the delay in a continuous assignment that is part of the net declaration shall be treated differently
from specifying a net delay and then making a continuous assignment to the net. A delay value can be
applied to a net in a net declaration, as in the following example:

wire #10 wireA;

This syntax, called a net delay, means that any value change that is to be applied to wireA by some other
statement shall be delayed for ten time units before it takes effect. When there is a continuous assignment in
a declaration, the delay is part of the continuous assignment and is not a net delay. Thus, it shall not be added
to the delay of other drivers on the net. Furthermore, if the assignment is to a vector net, then the rising and
falling delays shall not be applied to the individual bits if the assignment is included in the declaration.

In situations where a right-hand side operand changes before a previous change has had time to propagate to
the left-hand side, then the following steps are taken:

a)  The value of the right-hand side expression is evaluated.

b) If this RHS value differs from the value currently scheduled to propagate to the left-hand side, then
the currently scheduled propagation event is descheduled.

c) Ifthe new RHS value equals the current left-hand side value, no event is scheduled.

d) If the new RHS value differs from the current LHS value, a delay is calculated in the standard way
using the current value of the left-hand side, the newly calculated value of the right-hand side, and
the delays indicated on the statement; a new propagation event is then scheduled to occur delay time
units in the future.

6.1.4 Strength

The driving strength of a continuous assignment can be specified by the user. This applies only to assign-
ments to scalar nets of the following types:

wire tri trireg
wand triand tri0
wor trior tril

Continuous assignments driving strengths can be specified in either a net declaration or in a stand-alone
assignment, using the assign keyword. The strength specification, if provided, shall immediately follow the
keyword (either the keyword for the net type or assign) and precede any delay specified. Whenever the
continuous assignment drives the net, the strength of the value shall be simulated as specified.
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A drive strength specification shall contain one strength value that applies when the value being assigned to
the net is 1 and a second strength value that applies when the assigned value is O. The following keywords
shall specify the strength value for an assignment of 1:

supply1l strongl pulll weakl highz1
The following keywords shall specify the strength value for an assignment of O:
supply0 strong( pullo weak( highz0

The order of the two strength specifications shall be arbitrary. The following two rules shall constrain the
use of drive strength specifications:

— The strength specifications (highzl, highz0) and (highz0, highz1l) shall be treated as illegal
constructs.
— If drive strength is not specified, it shall default to (strongl, strong0).

6.2 Procedural assignments

The primary discussion of procedural assignments is in 9.2. However, a description of the basic ideas in this
clause highlights the differences between continuous assignments and procedural assignments.

As stated in 6.1, continuous assignments drive nets in a manner similar to the way gates drive nets. The
expression on the right-hand side can be thought of as a combinatorial circuit that drives the net continu-
ously. In contrast, procedural assignments put values in variables. The assignment does not have duration;
instead, the variable holds the value of the assignment until the next procedural assignment to that variable.

Procedural assignments occur within procedures such as always, initial (see Clause 9), task, and function
(see Clause 10) and can be thought of as triggered assignments. The trigger occurs when the flow of exe-
cution in the simulation reaches an assignment within a procedure. Reaching the assignment can be con-
trolled by conditional statements. Event controls, delay controls, if statements, case statements, and looping
statements can all be used to control whether assignments are evaluated. Clause 9 gives details and
examples.

6.2.1 Variable declaration assignment
The variable declaration assignment is a special case of procedural assignment as it assigns a value to a vari-
able. It allows an initial value to be placed in a variable in the same statement that declares the variable. The
assignment shall be to a constant expression. The assignment does not have duration; instead, the variable
holds the value until the next assignment to that variable. Variable declaration assignments to an array are
not allowed. Variable declaration assignments are only allowed at the module level.
Examples:
Example 1 Declare a 4 bit reg and assign it the value 4.

reg[3:0] a = 4"h4;

This is equivalent to writing:

reg[3:0] a;
initial a = 4"h4;

Example 2 The following example is not legal.

reg [3:0] array [3:0] = O;
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Example 3 Declare two integers, the first is assigned the value of 0.
integer i = 0, j;

Example 4 Declare two real variables, assigned to the values 2.5 and 300,000.
real r1 = 2.5, n300k = 3E6;

Example 5 Declare a time variable and realtime variable with initial values.

time tl = 25;
realtime rtl = 2.5;

NOTE —If the same variable is assigned different values both in an initial block and in a variable declaration assignment,
the order of the evaluation is undefined.

6.2.2 Variable declaration syntax

The syntax for variable declaration assignments is given in Syntax 6-2.

integer_declaration ::= (From Annex A - A.2.1.3)

integer list_of_variable_identifiers ;
real_declaration ::=

real list_of real_identifiers ;
realtime_declaration ::=

realtime list_of real_identifiers ;
reg_declaration ::=

reg [ signed | [ range ] list_of_variable_identifiers ;
time_declaration ::=

time list_of_variable_identifiers ;
real_type ::= (From Annex A - A.2.2.1)

real_identifier [ = constant_expression ]

| real_identifier dimension { dimension }

variable_type ::=
variable_identifier [ = constant_expression |

| variable_identifier dimension { dimension }
list_of_real_identifiers ::= (From Annex A - A.2.3)

real_type { , real_type }
list_of variable_identifiers ::=

variable_type { , variable_type }

Syntax 6-2 Syntax for reg declaration assignment
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7. Gate and switch level modeling

This clause describes the syntax and semantics of these built-in primitives and how a hardware design can
be described using these primitives.

There are 14 logic gates and 12 switches predefined in the Verilog HDL to provide the gate and switch level
modeling facility. Modeling with logic gates and switches has the following advantages:

— Gates provide a much closer one-to-one mapping between the actual circuit and the model.
— There is no continuous assignment equivalent to the bidirectional transfer gate.

7.1 Gate and switch declaration syntax

Syntax 7-1 shows the gate and switch declaration syntax.
A gate or a switch instance declaration shall have the following specifications:

— The keyword that names the type of gate or switch primitive
— An optional drive strength

— An optional propagation delay

— An optional identifier that names each gate or switch instance
— An optional range for array of instances

—  The terminal connection list

Multiple instances of the one type of gate or switch primitive can be declared as a comma-separated list. All
such instances shall have the same drive strength and delay specification.
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gate_instantiation ::= (From Annex A - A.3.1)
cmos_switchtype [delay3] cmos_switch_instance { , cmos_switch_instance }
enable_gatetype [drive_strength] [delay3] enable_gate_instance { , enable_gate_instance } ;
mos_switchtype [delay3] mos_switch_instance { , mos_switch_instance } ;
n_input_gatetype [drive_strength] [delay2] n_input_gate_instance {, n_input_gate_instance };
n_output_gatetype [drive_strength] [delay2] n_output_gate_instance

{ , n_output_gate_instance } ;
pass_en_switchtype [delay2] pass_enable_switch_instance {, pass_enable_switch_instance } ;
pass_switchtype pass_switch_instance { , pass_switch_instance } ;
pulldown [pulldown_strength] pull_gate_instance { , pull_gate_instance } ;
pullup [pullup_strength] pull_gate_instance { , pull_gate_instance } ;

cmos_switch_instance ::= [ name_of_gate_instance ]
( output_terminal , input_terminal , ncontrol_terminal , pcontrol_terminal )

enable_gate_instance ::= [ name_of_gate_instance ]
( output_terminal , input_terminal , enable_terminal )

mos_switch_instance ::= [ name_of_gate_instance ]
( output_terminal , input_terminal , enable_terminal )
n_input_gate_instance ::= [ name_of_gate_instance |
( output_terminal , input_terminal { , input_terminal } )
n_output_gate_instance ::= [ name_of_gate_instance ]
( output_terminal { , output_terminal } , input_terminal )
pass_switch_instance ::= [ name_of_gate_instance ] ( inout_terminal , inout_terminal )

pass_enable_switch_instance ::= [ name_of_gate_instance ]

( inout_terminal , inout_terminal , enable_terminal )
pull_gate_instance ::= [ name_of_gate_instance ] ( output_terminal )
name_of_gate_instance ::= gate_instance_identifier [ range ]
pulldown_strength ::= (From Annex A - A.3.2)

( strengthO , strengthl )
| ( strengthl , strength0 )
| (strength0 )

pullup_strength ::= ( strengthO , strengthl )
| ( strengthl , strength0 )
| ( strengthl )

enable_terminal ::= (From Annex A - A.3.3)
expression

inout_terminal ::= net_lvalue
input_terminal ::= expression
ncontrol_terminal ::= expression
output_terminal ::= net_lvalue
pcontrol_terminal ::= expression

cmos_switchtype ::= (From Annex A - A.3.4)
cmos | rcmos

enable_gatetype ::= bufif0 | bufifl | notif0 | notifl
mos_switchtype ::= nmos | pmos | rnmos | rpmos
n_input_gatetype ::= and | nand | or | nor | xor | xnor
n_output_gatetype ::= buf | not

pass_en_switchtype ::= tranif0 | tranifl | rtranifl | rtranif0
pass_switchtype ::= tran | rtran

Syntax 7-1 Syntax for gate instantiation
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7.1.1 The gate type specification

A gate or switch instance declaration shall begin with the keyword that specifies the gate or switch primitive
being used by the instances that follow in the declaration. Table 31 lists the keywords that shall begin a gate

or a switch instance declaration.

101

Table 31 —Built-in gates and switches

n_input gates n_output gates thrge;:gate pull gates MOS switches bi(sii:'ietcctli(;:al
and buf bufifd pulldown cmos rtran
nand not bufifl pullup nmos rtranif0
nor notif0 pmos rtranifl
or notifl rcmos tran
Xnor rnmos tranif0
Xor rpmos tranifl

Explanations of the built-in gates and switches shown in Table 31 begin in 7.2.
7.1.2 The drive strength specification

An optional drive strength specification shall specify the strength of the logic values on the output terminals
of the gate instance. Only the instances of the gate primitives shown in Table 32 can have the drive strength
specification.

Table 32— Valid gate types for strength specifications

and nand buf not pulldown
or nor bufif0 notif0 pullup
Xor Xnor bufifl notifl

The drive strength specification for a gate instance, with the exception of pullup and pulldown, shall have a
strengthl specification and a strength0 specification. The strengthl specification shall specify the strength of
signals with a logic value 1, and the strength0 specification shall specify the strength of signals with a logic
value 0. The strength specification shall follow the gate type keyword and precede any delay specification.
The strength0 specification can precede or follow the strengthl specification. The strengthl and strength0
specifications shall be separated by a comma and enclosed within a pair of parentheses.

The pullup gate can have only strengthl specification; strength(O specification shall be optional. The pull-
down gate can have only strength( specification; strengthl specification shall be optional.

The strengthl specification shall be one of the following keywords:
supplyl strongl pulll weakl

The strengthO specification shall be one of the following keywords:
supply0 strong( pull0 weak(

Specifying highz1 as strengthl shall cause the gate or switch to output a logic value z in place of a 1. Spec-
ifying highz0 shall cause the gate to output a logic value z in place of a 0. The strength specifications
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(highz0, highz1) and (highz1, highz0) shall be considered invalid.

In the absence of a strength specification, the instances shall have the default strengths strongl and strong0.

Example:

The following example shows a drive strength specification in a declaration of an open collector nor gate:
nor (highzl,strong0) nl1(outl,inl,in2);

In this example, the nor gate outputs a Z in place ofa 1.

Logic strength modeling is discussed in more detail in 7.9 through 7.13.

7.1.3 The delay specification

An optional delay specification shall specify the propagation delay through the gates and switches in a dec-

laration. Gates and switches in declarations with no delay specification shall have no propagation delay. A

delay specification can contain up to three delay values, depending on the gate type. The pullup and pull-

down instance declarations shall not include delay specifications. Delays are discussed in more detail in
7.14.

7.1.4 The primitive instance identifier

An optional name can be given to a gate or switch instance. If multiple instances are declared as an array of
instances, an identifier shall be used to name the instances.

7.1.5 The range specification

There are many situations when repetitive instances are required. These instances shall differ from each
other only by the index of the vector to which they are connected.

In order to specify an array of instances, the instance name shall be followed by the range specification. The
range shall be specified by two constant expressions, left-hand index (Ihi) and right-hand index (rhi),
separated by a colon and enclosed within a pair of square brackets. A [1hi - rhi] range specification shall
represent an array of abs(lhi-rhi)+1 instances. Neither of the two constant expressions are required to
be zero, and Ihi is not required to be larger than rhi. If both constant expressions are equal, only one
instance shall be generated.

An array of instances shall have a continuous range. One instance identifier shall be associated with only
one range to declare an array of instances.

The range specification shall be optional. If no range specification is given, a single instance shall be cre-
ated.

Example:
A declaration shown below is illegal:
nand #2 t nand[0:3] ( ... ), t nand[4:7] ( --- );

It could be declared correctly as one array of eight instances, or two arrays with unique names of four ele-
ments each:

nand #2 t _nand[0:7](C ... );
nand #2 x_nand[0:3] ( ... ), y_nand[4:7] ( --- );
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7.1.6 Primitive instance connection list

The terminal list describes how the gate or switch connects to the rest of the model. The gate or switch type
can limit these expressions. The connection list shall be enclosed in a pair of parentheses, and the terminals
shall be separated by commas. The output or bidirectional terminals shall always come first in the terminal
list, followed by the input terminals.

The terminal connections for an array of instances shall follow these rules:

— The bit length of each port expression in the declared instance-array shall be compared with the bit
length of each single-instance port or terminal in the instantiated module or primitive.

—  For each port or terminal where the bit length of the instance-array port expression is the same as the
bit length of the single-instance port, the instance-array port expression shall be connected to each
single-instance port.

— If bit lengths are different, each instance shall get a part-select of the port expression as specified in
the range, starting with the right-hand index.

— Too many or too few bits to connect to all the instances shall be considered an error.

An individual instance from an array of instances shall be referenced in the same manner as referencing an
element of an array of regs.

Examples:

Example 1 The following declaration of nand_array declares four instances that can be referenced by
nand_array[1], nand_array[2], nand_array[3], and nand_array[4] respectively.

nand #2 nand_array[1:4](C ... ) ;

Example 2 The two module descriptions that follow are equivalent except for indexed instance names, and
they demonstrate the range specification and connection rules for declaring an array of instances:

module driver (in, out, en);
input [3:0] in;

output [3:0] out;

input en;

bufif0 ar[3:0] (out, in, en); // array of three-state buffers
endmodule

module driver_equiv (in, out, en);
input [3:0] in;

output [3:0] out;

input en;

bufif0 ar3 (out[3], in[3], en); // each buffer declared separately
bufif0 ar2 (out[2], in[2], en);
bufif0 arl (out[1], in[1], en);
bufifd arO (out[0], in[0], en);

endmodule
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Example 3 The two module descriptions that follow are equivalent except for indexed instance names, and
they demonstrate how different instances within an array of instances are connected when the port sizes do
not match.

module busdriver (busin, bushigh, buslow, enh, enl);
input [15:0] busin;

output [7:0] bushigh, buslow;

input enh, enl;

driver busar3 (busin[15:12], bushigh[7:4], enh);
driver busar2 (busin[11:8], bushigh[3:0], enh);
driver busarl (busin[7:4], buslow[7:4], enl);
driver busarO (busin[3:0], buslow[3:0], enl);

endmodule

module busdriver_equiv (busin, bushigh, buslow, enh, enl);
input [15:0] busin;

output [7:0] bushigh, buslow;

input enh, enl;

driver busar[3:0] (.out({bushigh, buslow}), -in(busin),
-en({enh, enh, enl, enl}));
endmodule

Example 4 This example demonstrates how a series of modules can be chained together. Figure 4 shows an
equivalent schematic interconnection of DFF instances.

module dffn (q, d, clk);
parameter bits = 1;

input [bits-1:0] d;
output [bits-1:0] q;
input clk ;

DFF dff[bits-1:0] (q, d, clk); // create a row of D flip-flops

endmodule

module MXN_pipeline (in, out, clk);

parameter M = 3, N = 4; // N=width,N=depth
input [M-1:0] 1in;

output [M-1:0] out;
input clk;
wire [M*(N-1):1] t;

// #(M) redefines the bits parameter for dffn
// create p[1:N] columns of dffn rows (pipeline)

dffn #(M) p[1:N] ({out, t}, {t, in}, clk);

endmodule
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Figure 4—Schematic diagram of interconnections in array of instances

7.2 and, nand, nor, or, xor, and xnor gates

The instance declaration of a multiple input logic gate shall begin with one of the following keywords:

and nand nor or xor

The delay specification shall be zero, one, or two delays. If the specification contains two delays, the first
delay shall determine the output rise delay, the second delay shall determine the output fall delay, and the
smaller of the two delays shall apply to output transitions to X. If only one delay is specified, it shall specify
both the rise delay and the fall delay. If there is no delay specification, there shall be no propagation delay

through the gate.

These six logic gates shall have one output and one or more inputs. The first terminal in the terminal list

xnor

shall connect to the output of the gate and all other terminals connect to its inputs.

The truth tables for these gates, showing the result of two input values, appear in Table 33.
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Table 33—Truth tables for multiple input logic gates

and || 0 | 1 | x | z or 0|1 ]|x]|z xor | 0| 1] x|z
0 0]1]0]071]6O0 0 011 |x]|x 0 011 |x]|x
1 011 |x]|x 1 11 |1]1 1 110 x|x
x 0]x|x|[x x x |1 ]x|]x x x | x| x|x
z 0]x|x|[x z x |1 ]x|]x z x | x| x|x
nand || 0 | 1 | x| z nor || 0 |1 | x|z xnor [ 0| 1] x|z
0 I j1rj|1j]1 0 110 |x|x 0 110 ]x]|x
1 110 x|x 1 0101010 1 011 |x|x
x 1 1x|x]x x x |0 |x|x x x | x| x|x
z I | x|x|x z x |0 |x|x z x | x| x|x

Versions of these six logic gates having more than two inputs shall have a natural extension, but the number
of inputs shall not alter propagation delays.

Example:
The following example declares a two input and gate:
and al (out, inl, in2);

The inputs are In1 and In2. The output is out. The instance name is al.

7.3 buf and not gates
The instance declaration of a multiple output logic gate shall begin with one of the following keywords:
buf not

The delay specification shall be zero, one, or two delays. If the specification contains two delays, the first
delay shall determine the output rise delay, the second delay shall determine the output fall delay, and the
smaller of the two delays shall apply to output transitions to X. If only one delay is specified, it shall specify
both the rise delay and the fall delay. If there is no delay specification, there shall be no propagation delay
through the gate.
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These two logic gates shall have one input and one or more outputs. The last terminal in the terminal list
shall connect to the input of the logic gate, and the other terminals shall connect to the outputs of the logic
gate.

Truth tables for these logic gates with one input and one output are shown in Table 34.

Table 34—Truth tables for multiple output logic gates

buf not
input output input output
0 0 0 1
1 1 1 0
X X X X
z X z X

Example:
The following example declares a two output buf:
buf bl (outl, out2, in);

The input is in. The outputs are outl and out2. The instance name is b1.

7.4 bufifl, bufifO, notifl, and notifO gates

The instance declaration of these three-state logic gates shall begin with one of the following keywords:
bufif( bufifl notifl notif(

These four logic gates model three-state drivers. In addition to logic values 1 and O, these gates can output
Z.

The delay specification shall be zero, one, two, or three delays. If the delay specification contains three
delays, the first delay shall determine the rise delay, the second delay shall determine the fall delay, the third
delay shall determine the delay of transitions to z, and the smallest of the three delays shall determine the
delay of transitions to X. If the specification contains two delays, the first delay shall determine the output
rise delay, the second delay shall determine the output fall delay, and the smaller of the two delays shall
apply to output transitions to X and z. If only one delay is specified, it shall specify the delay for all output
transitions. If there is no delay specification, there shall be no propagation delay through the gate.

Some combinations of data input values and control input values can cause these gates to output either of
two values, without a preference for either value (see 7.10.2). These logic tables for these gates include two
symbols representing such unknown results. The symbol L shall represent a result that has a value O or z.
The symbol H shall represent a result that has a value 1 or z. Delays on transitions to H or L shall be treated
the same as delays on transitions to X.
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These four logic gates shall have one output, one data input, and one control input. The first terminal in the
terminal list shall connect to the output, the second terminal shall connect to the data input, and the third ter-

minal shall connect to the control input.

Table 35 presents the logic tables for these gates.

Table 35—Truth tables for three-state logic gates

CONTROL CONTROL
bufif0 bufifl
0|1 | x|z 0 1| x|z
D 00z ]|L]|L D 0|z]|]O]|]L]|L
A 1 1|z ]|H|H A 1|z 1 |H|H
T x(x]z|x|x T x|z | x| x|x
A z x|z |x|x A z ||z | x| x|x

CONTROL CONTROL
notif( notifl
0 1| x|z 0 1| x]z
D 01|z ]|H|H D 0| z 1 |H|H
A 1 0]z A 1)z ]|J]0O]L]JL
T X [[x |z |x]|x T X[z |x|x|x
A z x|z |x]|x A z |z |x|x|x

Example:
The following example declares an instance of bufifl:

bufifl bfl (outw, inw, controlw);

The output is outw, the input is Inw, and the control is controlw. The instance name is bF1.

7.5 MOS switches
The instance declaration of a MOS switch shall begin with one of the following keywords:
cmos nmos pmos rcmos rnmos rpmos

The cmos and remos switches are described in 7.7.

The pmos keyword stands for the P-type metal-oxide semiconductor (PMOS) transistor and the nmos key-
word stands for the N-type metal-oxide semiconductor (NMOS) transistor. PMOS and NMOS transistors
have relatively low impedance between their sources and drains when they conduct. The rpmos keyword
stands for resistive PMOS transistor and the rnmos keyword stands for resistive NMOS transistor. Resistive
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PMOS and resistive NMOS transistors have significantly higher impedance between their sources and
drains when they conduct than PMOS and NMOS transistors have. The load devices in static MOS networks
are examples of rpmos and rnmos transistors. These four switches are unidirectional channels for data sim-
ilar to the bufif gates.

The delay specification shall be zero, one, two, or three delays. If the delay specification contains three
delays, the first delay shall determine the rise delay, the second delay shall determine the fall delay, the third
delay shall determine the delay of transitions to z, and the smallest of the three delays shall determine the
delay of transitions to X. If the specification contains two delays, the first delay shall determine the output
rise delay, the second delay shall determine the output fall delay, and the smaller of the two delays shall
apply to output transitions to X and z. If only one delay is specified, it shall specify the delay for all output
transitions. If there is no delay specification, there shall be no propagation delay through the switch.

Some combinations of data input values and control input values can cause these switches to output either of
two values, without a preference for either value. The logic tables for these switches include two symbols
representing such unknown results. The symbol L represents a result that has a value O or z. The symbol H
represents a result that has a value 1 or z. Delays on transitions to H and L shall be the same as delays on
transitions to X.

These four switches shall have one output, one data input, and one control input. The first terminal in the ter-
minal list shall connect to the output, the second terminal shall connect to the data input, and the third termi-
nal shall connect to the control input.

The nmos and pmeos switches shall pass signals from their inputs and through their outputs with a change in
the strength of the signal in only one case, as discussed in 7.11. The rnmos and rpmos switches shall reduce

the strength of signals that propagate through them, as discussed in 7.12.

Table 36 presents the logic tables for these switches.

Table 36 —Truth tables for MOS switches

CONTROL CONTROL
pmos nmos
rpmos o111, rnmos ol1l«l2
D 0o}z ]|L]|L D 0z]Oo
A 1|1 ]z ]|H|H A 1z]|1|H|H
T x|x |z |x]|x T x|z |x|x|x
A z |z |lz|lz |z A z |z |lz|lz ]|z

Example:
The following example declares a pmos switch:
pmos pl (out, data, control);

The output is out, the data input is data, and the control input is control. The instance name is p1.
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7.6 Bidirectional pass switches
The instance declaration of a bidirectional pass switch shall begin with one of the following keywords:

tran tranifl tranif(
rtran rtranifl rtranif(

The bidirectional pass switches shall not delay signals propagating through them. When tranif0, tranifl,
rtranif0, or rtranifl devices are turned off they shall block signals, and when they are turned on they shall
pass signals. The tran and rtran devices cannot be turned off, and they shall always pass signals.

The delay specifications for tranifl, tranif0, rtranifl, and rtranif0 devices shall be zero, one, or two
delays. If the specification contains two delays, the first delay shall determine the turn-on delay, and the sec-
ond delay shall determine the turn-off delay, and the smaller of the two delays shall apply to output transi-
tions to X and z. If only one delay is specified, it shall specify both the turn-on and the turn-off delays. If
there is no delay specification, there shall be no turn-on or turn-off delay for the bidirectional pass switch.

The bidirectional pass switches tran and rtran shall not accept delay specification.

The tranifl, tranif0, rtranifl, and rtranif0 devices shall have three items in their terminal lists. The first
two shall be bidirectional terminals that conduct signals to and from the devices, and the third terminal shall
connect to a control input. The tran and rtran devices shall have terminal lists containing two bidirectional
terminals. Both bidirectional terminals shall unconditionally conduct signals to and from the devices, allow-
ing signals to pass in either direction through the devices. The bidirectional terminals of all six devices shall
be connected only to scalar nets or bit-selects of vector nets.

The tran, tranif0, and tranifl devices shall pass signals with an alteration in their strength in only one case,
as discussed in 7.11. The rtran, rtranif0, and rtranifl devices shall reduce the strength of the signals pass-
ing through them according to rules discussed in 7.12.

Example:
The following example declares an instance of tranifl:
tranifl t1l (inoutl, inout2,control);

The bidirectional terminals are inoutl and inout2. The control input is control. The instance name is
tl.

7.7 CMOS switches

The instance declaration of a CMOS switch shall begin with one of the following keywords:
cmos rcmos

The delay specification shall be zero, one, two, or three delays. If the delay specification contains three
delays, the first delay shall determine the rise delay, the second delay shall determine the fall delay, the third
delay shall determine the delay of transitions to z, and the smallest of the three delays shall determine the
delay of transitions to X. Delays in transitions to H or L are the same as delays in transitions to X. If the spec-
ification contains two delays, the first delay shall determine the output rise delay, the second delay shall
determine the output fall delay, and the smaller of the two delays shall apply to output transitions to X and z.
If only one delay is specified, it shall specify the delay for all output transitions. If there is no delay specifi-
cation, there shall be no propagation delay through the switch.

The emos and remos switches shall have a data input, a data output, and two control inputs. In the terminal
list, the first terminal shall connect to the data output, the second terminal shall connect to the data input, the
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third terminal shall connect to the n-channel control input, and the last terminal shall connect to the p-chan-
nel control input.

The cmos gate shall pass signals with an alteration in their strength in only one case, as discussed in 7.11.
The remos gate shall reduce the strength of signals passing through it according to rules described in 7.12.

The cmos switch shall be treated as the combination of a pmos switch and an nmos switch. The rcmos
switch shall be treated as the combination of an rpmes switch and an rnmes switch. The combined switches
in these configurations shall share data input and data output terminals, but they shall have separate control
inputs.

Example:

The equivalence of the cmos gate to the pairing of an nmos gate and a pmos gate is shown in the following
example:

cmos (w, datain, ncontrol, pcontrol); ncontrol

J— nmos
is equivalent to: W | | d -
—| —— datain
L pmos
nmos (w, datain, ncontrol);
pmos (W, datain, pcontrol); pcontrol

7.8 pullup and pulldown sources
The instance declaration of a pullup or a pulldown source shall begin with one of the following keywords:
pullup pulldown

A pullup source shall place a logic value 1 on the nets connected in its terminal list. A pulldown source
shall place a logic value O on the nets connected in its terminal list. The signals that these sources place on
nets shall have pull strength in the absence of a strength specification. If conflicting strength specification is
declared, it shall be ignored. There shall be no delay specifications for these sources.

Example:
The following example declares two pullup instances:
pullup (strongl) pl (neta), p2 (netb);

In this example, the p1 instance drives neta and the p2 instance drives netb.

[ Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT



112 IEC 61691-4:2004(E)
IEEE 1364-2001(E)

7.9 Logic strength modeling

The Verilog HDL provides for accurate modeling of signal contention, bidirectional pass gates, resistive
MOS devices, dynamic MOS, charge sharing, and other technology-dependent network configurations by
allowing scalar net signal values to have a full range of unknown values and different levels of strength or
combinations of levels of strength. This multiple-level logic strength modeling resolves combinations of sig-
nals into known or unknown values to represent the behavior of hardware with improved accuracy.

A strength specification shall have two components
a)  The strength of the 0 portion of the net value, called strengthO, designated as one of the following:
supply0 strong( pullo weak0 highz0
b)  The strength of the 1 portion of the net value, called strength1, designated as one of the following:
supplyl strongl pulll weakl highz1

The combinations (highz0, highz1) and (highz1, highz0) shall be considered illegal.

Despite this division of the strength specification, it is helpful to consider strength as a property occupying
regions of a continuum in order to predict the results of combinations of signals.

Table 37 demonstrates the continuum of strengths. The left column lists the keywords used in specifying
strengths. The right column gives correlated strength levels.

Table 37 —Strength levels for scalar net signal values

Strength name | Strength level
supply0 7
strong0 6
pull0 5
large0 4
weak0 3
medium0 2
small0 1
highz0 0
highz1 0
smalll 1
medium1 2
weak1 3
largel 4
pulll 5
strong1 6
supply1 7
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In Table 37, there are four driving strengths:
supply strong pull weak
Signals with driving strengths shall propagate from gate outputs and continuous assignment outputs.
In Table 37, there are three charge storage strengths:
large medium small
Signals with the charge storage strengths shall originate in the trireg net type.

It is possible to think of the strengths of signals in the preceding table as locations on the scale in Figure 5.

strengthO strengthl

765|432 (1|0|0]|1|2|3|4|5|6]|7

SuO [ StO [ PuO | LaO |WeO |MeO|SmO [HiZO{HiZ1] Sm1| Mel| Wel| Lal| Pul| Stl1| Sul

Figure 5—Scale of strengths
Discussions of signal combinations later in this section employs graphics similar to those used in Figure 5.

If the signal value of a net is known, all of its strength levels shall be in either the strengthOQ part of the scale
represented by Figure 5, or all strength levels shall be in its strengthl part. If the signal value of a net is
unknown, it shall have strength levels in both the strength0 and the strengthl parts. A net with a signal value
z shall have a strength level only in one of the 0 subdivisions of the parts of the scale.

7.10 Strengths and values of combined signals

In addition to a signal value, a net shall have either a single unambiguous strength level or an ambiguous
strength consisting of more than one level. When signals combine, their strengths and values shall determine
the strength and value of the resulting signal in accordance with the principles in 7.10.1 through 7.10.4.

7.10.1 Combined signals of unambiguous strength

This subclause deals with combinations of signals in which each signal has a known value and a single
strength level.

If two or more signals of unequal strength combine in a wired net configuration, the stronger signal shall
dominate all the weaker drivers and determine the result. The combination of two or more signals of like
value shall result in the same value with the greater of all the strengths. The combination of signals identical
in strength and value shall result in the same signal.

The combination of signals with unlike values and the same strength can have three possible results. Two of
the results occur in the presence of wired logic and the third occurs in its absence. Wired logic is discussed in
7.10.4. The result in the absence of wired logic is the subject of Figure 7.
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Example:
Pul(b5)
Sto(6)
Sto(6)
Sul(7)
Sul(7)
Lal(4)

Figure 6—Combining unequal strengths

In Figure 6, the numbers in parentheses indicate the relative strengths of the signals. The combination of a
pull 1 and a strong O results in a strong O, which is the stronger of the two signals.

7.10.2 Ambiguous strengths: sources and combinations
There are several classifications of signals possessing ambiguous strengths

— Signals with known values and multiple strength levels

— Signals with a value X, which have strength levels consisting of subdivisions of both the strengthl
and the strengthO parts of the scale of strengths in Figure 5

— Signals with a value L, which have strength levels that consist of high impedance joined with
strength levels in the strengthO part of the scale of strengths in Figure 5

— Signals with a value H, which have strength levels that consist of high impedance joined with
strength levels in the strength1 part of the scale of strengths in Figure 5

Many configurations can produce signals of ambiguous strength. When two signals of equal strength and
opposite value combine, the result shall be a value X, along with the strength levels of both signals and all
the smaller strength levels.

Examples:

Figure 7 shows the combination of a weak signal with a value 1 and a weak signal with a value O yielding a
signal with weak strength and a value X.

Wel
WeX

WeO

Figure 7—Combination of signals of equal strength and opposite values

This output signal is described in Figure 8.
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strengthO strengthl
7/6|5|4|3|2(1|/0|0|1|2|3|4,5|6]|7
Su0 | StO | PuO | LaO | WeO | MeO | SmO [HiZO|HiZz1] Sm1| Mel| Wel| Lal| Pul| St1| Sul
- >

An ambiguous signal strength can be a range of possible values. An example is the strength of the output

Figure 8—Weak x signal strength

from the three-state drivers with unknown control inputs as shown in Figure 9.

St1

Wel

bufifl

bufif0

StH

StL

The output of the bufifl in Figure 9 is a strong H, composed of the range of values described in Figure 10.

Figure 9—Bufifs with control inputs of x

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

The output of the bufif0 in Figure 9 is a strong L, composed of the range of values described in Figure 11.

Figure 10—Strong H range of values
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strengthO strengthl

7165432100 1}2(3|4|5]|6|7
Su0 | StO | PuO | Lao | WeO | MeO | SmO HiZO|HiZ1| Sml| Mel| Wel| Lal| Pul| St1| Sul

- -

Figure 11—Strong L range of values

The combination of two signals of ambiguous strength shall result in a signal of ambiguous strength. The
resulting signal shall have a range of strength levels that includes the strength levels in its component sig-
nals. The combination of outputs from two three-state drivers with unknown control inputs, shown in
Figure 12, is an example.

PuH
Pul

35X

WeO

Figure 12— Combined signals of ambiguous strength

In Figure 12, the combination of signals of ambiguous strengths produces a range that includes the extremes
of the signals and all the strengths between them, as described in Figure 13.

strengthO strengthl

71654 |13(2]|1]|]0|0|1}|2|3|4|5|6]|7
SuO | StO | PuO | LaO | WeO | MeO | SmO [HiZO|HiZ1 Sm1| Mel| Wel| Lal| Pul| St1| Sul

-t L

Figure 13—Range of strengths for an unknown signal

The result is a value X because its range includes the values 1 and 0. The number 35, which precedes the X,
is a concatenation of two digits. The first is the digit 3, which corresponds to the highest strengthO level for
the result. The second digit, 5, corresponds to the highest strengthl level for the result.

Switch networks can produce a ranges of strengths of the same value, such as the signals from the upper and
lower configurations in Figure 14.
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regb =x Vce pullup
J_ Pu1 (5)
| 651
rega =1 (6) |
reg g =x
Pu0 (5) ]
530
regd =0 |
and Weo (3
rege =0 [ 0 ()

pulldown ground

In Figure 14, the upper combination of a reg, a gate controlled by a reg of unspecified value, and a pullup
produces a signal with a value of 1 and a range of strengths (651) described in Figure 15.

Figure 14— Ambiguous strengths from switch networks

In Figure 14, the lower combination of a pulldown, a gate controlled by a reg of unspecified value, and an

Figure 15—Range of two strengths of a defined value

strengthO strengthl
7/6 /543|210 |0|1}2|3|4|5|6]|7
Su0 | St0 | PuO | La0 | WeO | MeO | SmO [HiZO|Hiz1 Sml | Mel| Wel| Lal| Pul| St1 Sul
P

and gate produces a signal with a value O and a range of strengths (530) described in Figure 16.
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Figure 16 —Range of three strengths of a defined value
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When the signals from the upper and lower configurations in Figure 14 combine, the result is an unknown
with a range (56X) determined by the extremes of the two signals shown in Figure 17.

strengthO strengthl

7!6(5(4|13|2|11]0(0(1|2|3|4|5|6]|7
SuO | StO [ PuO | LaO | WeO | MeO | SmO |HiZO{H1Z1] Sm1| Mel| Wel| Lal| Pul| Stl1| Sul

Figure 17—Unknown value with a range of strengths

In Figure 14, replacing the pulldown in the lower configuration with a supply0 would change the range of
the result to the range (StX) described in Figure 18.

The range in Figure 18 is strong X, because it is unknown and the extremes of both its components are
strong. The extreme of the output of the lower configuration is strong because the lower pmos reduces the
strength of the supply0 signal. This modeling feature is discussed in 7.11.

strengthO strengthl

71654 |3|2|1]0(0|1|2|3|4|5]|6|7
SuO | StO [PuO | LaO |WeO|MeO|SmO |HiZO|HiZ1] Sm1| Mel| Wel| Lal| Pul| St1| Sul

Figure 18 —Strong X range

Logic gates produce results with ambiguous strengths as well as three-state drivers. Such a case appears in
Figure 19. The and gate N1 is declared with highz0 strength, and N2 is declared with weakO strength.

a=1 —— StH and (strongl,highz0) N1(a,b);
N1 and (strongl, weak0) N2(c,d);
b=X —
36X
=0 ——
N2
d=0 — We0

Figure 19— Ambiguous strength from gates

In Figure 19, reg b has an unspecified value, so input to the upper and gate is strong X. The upper and gate
has a strength specification including highz0. The signal from the upper and gate is a strong H composed of
the values as described in Figure 20.
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strengthO strengthl

716543210012 [3|4|5]|6]|7
Su0 | StO | PuO | Lao | WeO | MeO | SmO [HiZO|HiZ1 Sm1| Mel| Wel| Lal| Pul| St1| Sul

Figure 20— Ambiguous strength signal from a gate

HiZO is part of the result, because the strength specification for the gate in question specified that strength
for an output with a value O. A strength specification other than high impedance for the O value output
results in a gate output value X. The output of the lower and gate is a weak O as described in Figure 21.

strengthO strengthl

71654 |13(2]1]|]0|0|1}|2|3|4|5|6]|7
SuO | StO | PuO | LaO | WeO | MeO | SmO [HiZO|HiZ1 Sm1| Mel| Wel| Lal| Pul| St1| Sul

-

Figure 21—Weak 0

When the signals combine, the result is the range (36X) as described in Figure 22.

strengthO strengthl

71654 /3|2(1|]0,0|1},2[3|4|5]|6]|7
Su0 | StO | PuO | Lao | WeO | MeO | SmO [HiZO|HiZ1] Sm1|Mel| Wel| Lal| Pul| St1| Sul

Figure 22— Ambiguous strength in combined gate signals

Figure 22 presents the combination of an ambiguous signal and an unambiguous signal. Such combinations
are the topic of 7.10.3.

7.10.3 Ambiguous strength signals and unambiguous signals

The combination of a signal with unambiguous strength and known value with another signal of ambiguous
strength presents several possible cases. To understand a set of rules governing this type of combination, it is
necessary to consider the strength levels of the ambiguous strength signal separately from each other and rel-
ative to the unambiguous strength signal. When a signal of known value and unambiguous strength com-
bines with a component of a signal of ambiguous strength, these shall be the effects:

[ Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - 'Po1WT NOOIIN OL A3ISNIDIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od



120 IEC 61691-4:2004(E)
IEEE 1364-2001(E)

a) The strength levels of the ambiguous strength signal that are greater than the strength level of the
unambiguous signal shall remain in the result.

b) The strength levels of the ambiguous strength signal that are smaller than or equal to the strength
level of the unambiguous signal shall disappear from the result, subject to rule c.

¢) If the operation of rule a and rule b results in a gap in strength levels because the signals are of
opposite value, the signals in the gap shall be part of the result.

The following figures show some applications of the rules.

strengthO strengthl

716|543 (2|1(0|0(1]|2|3|4|5|6]|7
Su0 | StO | PuO | La0 | WeO | MeO | SmO [HiZO|HiZ1| Sm1| Mel| Wel| Lal| Pul| St1| Sul

strengthO strengthl

7/6|5(4/3|2|1|]0,0(1]|2|3|4|5|6]|7
Su0 | StO | PuO | La0 | WeO | MeO | SmO [HiZO|HiZ1| Sm1| Mel| Wel| Lal| Pul| St1| Sul

||

Combining the two signals above results in the following signal:

strengthO strengthl

716|514 |13|2|1|]0|0|1|2|3|4|5|6]|7
SuO | StO|PuO|LaO |WeO |MeO|SmO [HiZO|HiZ1 Sm1| Mel| Wel| Lal| Pul| St1| Sul

Figure 23 —Elimination of strength levels

In Figure 23, the strength levels in the ambiguous strength signal that are smaller than or equal to the
strength level of the unambiguous strength signal disappear from the result, demonstrating rule b.
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strengthO strengthl
7/6|51413}]2|1]{]0|0|1(2|3|4,5|6]|7
Su0 | StO | PuO | La0 | WeO | MeO | SmO [HiZO|HiZz1| Sm1| Mel| Wel| Lal| Pul| St1| Sul
| > |
strengthO strengthl
71651432 |1(0|0|212|2|3]4|5|6|7
SuO | StO | PuO| LaO [ WeO | MeO | SmO HiZO|HiZ1 Sm1| Mel| Wel| Lal| Pul| St1| Sul
]

Combining the two signhals above results in the following signal:

strengthO strengthl
7/6 |54 |13|2|12|0|]0|1]|2|3(4|5|6]|7
Su0 [ StO | PuO | LaO | WeO | MeO | SmO [HiZO|Hiz1 Sm1| Mel| Wel| Lal| Pul| St1| Sul
[—>]

In Figure 24, rules a, b, and c apply. The strength levels of the ambiguous strength signal that are of opposite
value and lesser strength than the unambiguous strength signal disappear from the result. The strength levels
in the ambiguous strength signal that are less than the strength level of the unambiguous strength signal, and
of the same value, disappear from the result. The strength level of the unambiguous strength signal and the

Figure 24—Result demonstrating a range and the

elimination of strength levels of two values

greater extreme of the ambiguous strength signal define a range in the result.
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strengthO strengthl

716|514 (3|2 |1|]0|]0|1}|2|3|4|5]|6]|7
SuO| StO | PuO| LaO |WeO| MeO |SmO [HiZO|HiZ1 Sm1| Mel| Wel| Lal| Pul| St1| Sul

- >

strengthO strengthl

716|514 |3]2|1|]0|0|1}2|3|4|5|6]|7
Su0| StO | PuO|Lao | WeO| MeO | SmO [HiZO|HiZ1| Sm1| Mel| Wel| Lal| Pul| Stl| Sul

]

Combining the two signals above results in the following signal:

strengthO strengthl

716|514 |3]2|1|]0|0|1}2|3|4|5|6]|7
Su0| StO | PuO | Lao | WeO| MeO | SmO [HiZO|HiZ1 Sm1| Mel| Wel| Lal| Pul| Stl| Sul

D~

Figure 25—Result demonstrating a range and the
elimination of strength levels of one value

In Figure 25, rules a and b apply. The strength levels in the ambiguous strength signal that are less than the
strength level of the unambiguous strength signal disappear from the result. The strength level of the unam-
biguous strength signal and the strength level at the greater extreme of the ambiguous strength signal define
a range in the result.
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strengthO strengthl
7/6|5|14|3|2|1|]0|0|1|2|3|4|5|6|7
Su0 | StO | PuO | La0 | WeO | MeO | SmO [HiZO|HiZ1 Sm1| Mel| Wel| Lal| Pul| St1| Sul
|- >
strengthO strengthl
7/6|5|14|3|2|1|]0|0|1|2|3|4|5|6|7
Su0 | StO | PuO | La0 | WeO | MeO | SmO [HiZO|HiZ1 Sm1| Mel| Wel| Lal| Pul| St1| Sul

-

Combining the two signals above results in the following signal:

strengthO strengthl
7116|5432 |1|]0]0|12|3|4|5]|6]|7
SuO |StO | PuO|LaO |WeO |MeO |SmO [HiZO|HiZ1 Sm1| Mel| Wel| Lal| Pul| St1| Sul
|- >

In Figure 26, rules a, b, and c apply. The greater extreme of the range of strengths for the ambiguous strength
signal is larger than the strength level of the unambiguous strength signal. The result is a range defined by
the greatest strength in the range of the ambiguous strength signal and by the strength level of the unambig-

uous strength signal.

Figure 26— A range of both values

7.10.4 Wired logic net types

The net types triand, wand, trior, and wor shall resolve conflicts when multiple drivers have the same

strength. These net types shall resolve signal values by treating signals as inputs of logic functions.

Examples:

Consider the combination of two signals of unambiguous strength in Figure 27.
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strengthO strengthl

716|514 |3]2|1|0]|0|1}2|3|4|5|6/|7
Su0 | StO | PuO| Lao | WeO | MeO | SmO [HiZO|HiZ1 Sm1| Mel| Wel| Lal| Pul| St1| Sul

|

strengthO strengthl

7/6|5)4|3]2|1|0|0|1}2|3|4|5|6/|7
Su0 | StO | PuO | Lao | WeO | MeO | SmO [HiZO|HiZ1 Sm1| Mel| Wel| Lal| Pul| St1| Sul

wired AND logic value result: 0O
wired OR logic value result: 1

Figure 27—Wired logic with unambiguous strength signals

The combination of the signals in Figure 27, using wired and logic, produces a result with the same value as
the result produced by an and gate with the value of the two signals as its inputs. The combination of signals
using wired or logic produces a result with the same value as the result produced by an or gate with the val-
ues of the two signals as its inputs. The strength of the result is the same as the strength of the combined sig-
nals in both cases. If the value of the upper signal changes so that both signals in Figure 27 possess a value
1, then the results of both types of logic have a value 1.

When ambiguous strength signals combine in wired logic, it is necessary to consider the results of all combi-
nations of each of the strength levels in the first signal with each of the strength levels in the second signal,
as shown in Figure 28.
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strengthO

strengthl

Su0

6
Sto

PuO

LaO | WeO

MeO

SmO

01.0
Hi1ZO|HiZ1

Sml

Mel

Wel| Lal

Pul

6
st1

Sul

——P

Signal 1

strengthO

strengthl

7
Su0

6
Sto

5
PuO

4| 3
LaO | WeO

2
MeO

1
SmO

0] 0
HiZO[HiZ1]

1
Sml

2
Mel

3| 4
Wel| Lal

5
Pul

6
stl

7
Sul

Signal 2

e

The combinations of strength levels for and logic appear in the
following chart:

The combinations
following chart:

signall signal2 result
strength | value strength | value strength value
5 0 5 1 5 0
6 0 5 1 6 0
The result is the following signal:
strengthO strengthl
6 Q10 6
Su0 | StO0 | PuO| LaO |WeO | MeO | SmO [HIZO[H1Z]1] Sm1| Mel| Wel| Lal| Pul| St1| Sul
-]

of strength levels for or logic appear in the

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

signall signal2 result
strength | value | strength | value strength value
5 0 5 1 5 1
6 0 5 1 6 0
The result is the following signal:
strengthO strengthl
716 |514(13]2]|1 112|314 |5|6]|7
Su0 | St0 | PuO| La0 | WeO| MeO | SmO|HiZO|HiZ1 Sm1| Mel| Wel| Lal| Pul| St1] Sul
- -

Figure 28 —Wired logic and ambiguous strengths
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7.11 Strength reduction by nonresistive devices

The nmos, pmos, and cmos switches shall pass the strength from the data input to the output, except that a
supply strength shall be reduced to a strong strength.

The tran, tranif0, and tranifl switches shall not affect signal strength across the bidirectional terminals,
except that a supply strength shall be reduced to a strong strength.

7.12 Strength reduction by resistive devices

The rnmos, rpmos, rcmos, rtran, rtranifl, and rtranif0 devices shall reduce the strength of signals that
pass through them according to Table 38.

Table 38 —Strength reduction rules

Input strength Reduced strength
Supply drive Pull drive
Strong drive Pull drive
Pull drive Weak drive
Large capacitor Medium capacitor
Weak drive Medium capacitor
Medium capacitor Small capacitor
Small capacitor Small capacitor
High impedance High impedance

7.13 Strengths of net types

The tri0, tril, supply0, and supply1 net types shall generate signals with specific strength levels. The trireg
declaration can specify either of two signal strength levels other than a default strength level.

7.13.1 tri0 and tril net strengths

The tri0 net type models a net connected to a resistive pulldown device. In the absence of an overriding
source, such a signal shall have a value O and a pull strength. The tril net type models a net connected to a
resistive pullup device. In the absence of an overriding source, such a signal shall have a value 1 and a pull
strength.

7.13.2 trireg strength

The trireg net type models charge storage nodes. The strength of the drive resulting from a trireg net that is
in the charge storage state (that is, a driver charged the net and then went to high impedance) shall be one of
these three strengths: large, medium, or small. The specific strength associated with a particular trireg net
shall be specified by the user in the net declaration. The default shall be medium. The syntax of this specifi-
cation is described in 3.4.1.

7.13.3 supply0 and supplyl net strengths

The supply0 net type models ground connections. The supplyl net type models connections to power sup-
plies. The supply0 and supplyl net types shall have supply driving strengths.
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7.14 Gate and net delays

Gate and net delays provide a means of more accurately describing delays through a circuit. The gate delays
specify the signal propagation delay from any gate input to the gate output. Up to three values per output
representing rise, fall, and turn-off delays can be specified (see 7.2 through 7.8).

Net delays refer to the time it takes from any driver on the net changing value to the time when the net value
is updated and propagated further. Up to three delay values per net can be specified.

For both gates and nets, the default delay shall be zero when no delay specification is given. When one delay
value is given, then this value shall be used for all propagation delays associated with the gate or the net.
When two delays are given, the first delay shall specify the rise delay and the second delay shall specify the
fall delay. The delay when the signal changes to high impedance or to unknown shall be the lesser of the two
delay values.

For a three-delay specification
— The first delay refers to the transition to the 1 value (rise delay).
— The second delay refers to the transition to the O value (fall delay).

— The third delay refers to the transition to the high-impedance value.

When a value changes to the unknown (X) value, the delay is the smallest of the three delays. The strength of
the input signal shall not affect the propagation delay from an input to an output.

Table 39 summarizes the from-to propagation delay choice for the two- and three-delay specifications.

Table 39—Rules for propagation delays

Delay used if there are
From value: To value: 2 delays 3 delays
0 1 dl dl
0 X min(d1, d2) min(d1, d2, d3)
0 z min(d1, d2) d3
1 0 d2 d2
1 X min(dl1, d2) min(dl1, d2, d3)
1 z min(dl1, d2) d3
X 0 d2 d2
X 1 dl dl
X z min(d1, d2) d3
z 0 d2 d2
z 1 dl dl
z X min(dl1, d2) min(dl1, d2, d3)
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Examples:
Example 1 The following is an example of a delay specification with one, two, and three delays:

and #(10) al (out, inl, in2); // only one delay
and #(10,12) a2 (out, inl, in2); // rise and fall delays
bufif0 #(10,12,11) b3 (out, in, ctrl);// rise, fall, and turn-off delays

Example 2 The following example specifies a simple latch module with three-state outputs, where individ-
ual delays are given to the gates. The propagation delay from the primary inputs to the outputs of the module
will be cumulative, and it depends on the signal path through the network.

module tri_latch (qout, nqout, clock, data, enable);
output qout, nqout;

input clock, data, enable;

tri qout, ngout;

not #5 nl (ndata, data);

nand #(3,5) n2 (wa, data, clock),
n3 (wb, ndata, clock);

nand #(12,15) n4 (q, ng, wa),
n5 (nq, g, wb);

bufifl #(3,7,13) q_drive (qout, g, enable),
ng_drive (nqout, ng, enable);

endmodule

7.14.1 min:typ:max delays

The syntax for delays on gate primitives (including user-defined primitives; see Clause 8), nets, and contin-
uous assignments shall allow three values each for the rising, falling, and turn-off delays. The minimum,
typical, and maximum values for each delay shall be specified as constant expressions separated by colons.
There shall be no required relation (e.g., min < typ < max) between the expressions for minimum, typical,
and maximum delays. These can be any three constant expressions.

Examples:

The following example shows min:typ:max values for rising, falling, and turn-off delays:

module Tobuf (iol, 102, dir);

bufif0 #(5:7:9, 8:10:12, 15:18:21) bl (iol, i02, dir);
bufifl #(6:8:10, 5:7:9, 13:17:19) b2 (102, iol, dir);

endmodule
The syntax for delay controls in procedural statements (see 9.7) also allows minimum, typical, and maxi-

mum values. These are specified by expressions separated by colons. The following example illustrates this
concept.
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parameter min_hi = 97, typ_hi
reg clk;

100, max_hi = 107;

always begin
#(95:100:105) clk = 1;
#(min_hi:-typ_hi:max_hi) clk = 0O;
end

7.14.2 trireg net charge decay

Like all nets, the delay specification in a trireg net declaration can contain up to three delays. The first two
delays shall specify the delay for transition to the 1 and O logic states when the trireg net is driven to these
states by a driver. The third delay shall specify the charge decay time instead of the delay in a transition to
the z logic state. The charge decay time specifies the delay between when the drivers of a trireg net turn off
and when its stored charge can no longer be determined.

A trireg net does not need a turn-off delay specification because a trireg net never makes a transition to the
Z logic state. When the drivers of a trireg net make transitions from the 1, O, or X logic states to off, the
trireg net shall retain the previous 1, O, or X logic state that was on its drivers. The z value shall not propa-
gate from the drivers of a trireg net to a trireg net. A trireg net can only hold a z logic state when z is the
initial logic state of the trireg net or when the trireg net is forced to the z state with a force statement (see
9.3.2).

A delay specification for charge decay models a charge storage node that is not ideal a charge storage node
whose charge leaks out through its surrounding devices and connections.

The following subclauses describe the charge decay process and the delay specification for charge decay.
7.14.2.1 The charge decay process

Charge decay is the cause of transition of a 1 or 0 that is stored in a trireg net to an unknown value (X) after
a specified delay. The charge decay process shall begin when the drivers of the trireg net turn off and the

trireg net starts to hold charge. The charge decay process shall end under the following two conditions:

a) The delay specified by charge decay time elapses and the trireg net makes a transition from 1 or O
to X.

b) The drivers of trireg net turn on and propagate a 1, O, or X into the trireg net.
7.14.2.2 The delay specification for charge decay time

The third delay in a trireg net declaration shall specify the charge decay time. A three-valued delay specifi-
cation in a trireg net declaration shall have the following form:

#(d1, d2, d3) // (rise_delay, fall_delay, charge decay_time)

The charge decay time specification in a trireg net declaration shall be preceded by a rise and a fall delay
specification.

Examples:

Example 1 The following example shows a specification of the charge decay time in a trireg net declara-
tion:

trireg (large) #(0,0,50) capl;
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This example declares a trireg net named capl. This trireg net stores a large charge. The delay specifica-
tions for the rise delay is 0, the fall delay is 0, and the charge decay time specification is 50 time units.

Example 2 The next example presents a source description file that contains a trireg net declaration with a
charge decay time specification. Figure 29 shows an equivalent schematic for the source description.

gate

data

nmos1 %ﬁ trireg

Figure 29—Trireg net with capacitance

module capacitor;
reg data, gate;

// trireg declaration with a charge decay time of 50 time units
trireg (large) #(0,0,50) capl;

nmos nmosl (capl, data, gate); // nmos that drives the trireg

initial begin
$monitor("'%0d data=%v gate=%v capl=%v'', $time, data, gate, capl);

data = 1;
// Toggle the driver of the control input to the nmos switch
gate = 1;
#10 gate = O;
#30 gate = 1;
#10 gate = O;
#100 $finish;
end
endmodule
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8. User-defined primitives (UDPs)

This clause describes a modeling technique to augment the set of predefined gate primitives by designing
and specifying new primitive elements called user-defined primitives (UDPs). Instances of these new UDPs
can be used in exactly the same manner as the gate primitives to represent the circuit being modeled.

The following two types of behavior can be represented in a user-defined primitive:

a) Combinational modeled by a combinational UDP
b) Sequential modeled by a sequential UDP

A combinational UDP uses the value of its inputs to determine the next value of its output. A sequential
UDP uses the value of its inputs and the current value of its output to determine the value of its output.
Sequential UDPs provide a way to model sequential circuits such as flip-flops and latches. A sequential
UDP can model both level-sensitive and edge-sensitive behavior.

Each UDP has exactly one output, which can be in one of three states: O, 1, or X. The three-state value z is
not supported. In sequential UDPs, the output always has the same value as the internal state.

The z values passed to UDP inputs shall be treated the same as X values.

8.1 UDP definition

UDP definitions are independent of modules; they are at the same level as module definitions in the syntax
hierarchy. They can appear anywhere in the source text, either before or after they are instantiated inside a
module. They shall not appear between the keywords module and endmodule.

NOTE Implementations may limit the maximum number of UDP definitions in a model, but they shall allow at least
256.

The formal syntax of the UDP definition is given in Syntax 8-1.
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udp_declaration ::= (From Annex A - A.5.1)
{ attribute_instance } primitive udp_identifier ( udp_port_list) ;
udp_port_declaration { udp_port_declaration }
udp_body
endprimitive
| { attribute_instance } primitive udp_identifier (udp_declaration_port_list ) ;
udp_body
endprimitive
udp_port_list ::= (From Annex A - A.5.2)
output_port_identifier , input_port_identifier { , input_port_identifier }
udp_declaration_port_list ::=
udp_output_declaration , udp_input_declaration { , udp_input_declaration }
udp_port_declaration ::=
udp_output_declaration ;
| udp_input_declaration 3
| udp_reg_declaration
udp_output_declaration ::=
{ attribute_instance } output port_identifier
| { attribute_instance } output reg port_identifier [ = constant_expression ]
udp_input_declaration ::=
{ attribute_instance } input list_of_port_identifiers
udp_reg_declaration ::=
{ attribute_instance } reg variable_identifier
udp_body ::= (From Annex A - A.5.3)
combinational_body | sequential_body
combinational_body ::=
table combinational_entry { combinational_entry } endtable
combinational_entry ::=
level_input_list : output_symbol ;
sequential_body ::=
[ udp_initial_statement ] table sequential_entry { sequential_entry } endtable
udp_initial_statement ::=
initial output_port_identifier = init_val ;
init_val ::=1°b0 | 1°b1 | 1’bx | 1’bX | 1’B0| 1’B1 | 1’Bx | I’BX | 1| 0
sequential_entry ::=
seq_input_list : current_state : next_state ;
seq_input_list ::=
level_input_list | edge_input_list
level_input_list ::=
level_symbol { level_symbol }
edge_input_list ::=
{ level_symbol } edge_indicator { level_symbol }
edge_indicator ::=
(level_symbol level_symbol ) | edge_symbol
current_state ::= level_symbol
next_state ::=output_symbol | -
output_symbol :=0]1|x | X
level_symbol ::=0|1|x|X|?|b|B
edge_symbol ::==r |R|f|F|p|P|n|N|*

Syntax 8-1 Syntax for user-defined primitives
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8.1.1 UDP header

A UDP definition shall have one of two alternate forms. The first form shall begin with the keyword primi-
tive, followed by an identifier, which shall be the name of the UDP. This in turn shall be followed by a
comma-separated list of port names enclosed in parentheses, which shall be followed by a semicolon. The
UDP definition header shall be followed by port declarations and a state table. The UDP definition shall be
terminated by the keyword endprimitive.

The second form shall begin with the keyword primitive, followed by an identifier, which shall be the name
of the UDP. This in turn shall be followed by a comma separated list of port declarations enclosed in paren-
thesis, followed by a semicolon. The UDP definition header shall be followed by a state table. The UDP def-
inition shall be terminated by the keyword endprimitive.

UDPs have multiple input ports and exactly one output port; bidirectional inout ports are not permitted on
UDPs. All ports of a UDP shall be scalar; vector ports are not permitted.

The output port shall be the first port in the port list.
8.1.2 UDP port declarations

UDPs shall contain input and output port declarations. The output port declaration begins with the keyword
output, followed by one output port name. The input port declaration begins with the keyword input, fol-
lowed by one or more input port names.

Sequential UDPs shall contain a reg declaration for the output port, either in addition to the output declara-
tion, when the UDP is declared using the first form of a UDP Header, or as part of the output_declaration, in
either case. Combinational UDPs cannot contain a reg declaration. The initial value of the output port can be
specified in an initial statement in a sequential UDP (see 8.1.3).

NOTE —Implementations may limit the maximum number of inputs to a UDP, but they shall allow at least 9 inputs for
sequential UDPs and 10 inputs for combinational UDPs.

8.1.3 Sequential UDP initial statement

The sequential UDP initial statement specifies the value of the output port when simulation begins. This
statement begins with the keyword initial. The statement that follows shall be an assignment statement that
assigns a single-bit literal value to the output port.

8.1.4 UDP state table

The state table defines the behavior of a UDP. It begins with the keyword table and is terminated with the
keyword endtable. Each row of the table is terminated by a semicolon.

Each row of the table is created using a variety of characters (see Table 40), which indicate input values and
output state. Three states 0, 1, and X are supported. The z state is explicitly excluded from consideration
in user-defined primitives. A number of special characters are defined to represent certain combinations of
state possibilities. These are described in Table 40.

The order of the input state fields of each row of the state table is taken directly from the port list in the UDP
definition header. It is not related to the order of the input port declarations.

Combinational UDPs have one field per input and one field for the output. The input fields are separated
from the output field by a colon (:). Each row defines the output for a particular combination of the input
values (see 8.2).
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Sequential UDPs have an additional field inserted between the input fields and the output field. This addi-
tional field represents the current state of the UDP and is considered equivalent to the current output value. It
is delimited by colons. Each row defines the output based on the current state, particular combinations of
input values, and at most one input transition (see 8.4). A row such as the one shown below is illegal:

(01) (10) 0 - 0 - 1 ;

If all input values are specified as X, then the output state shall be specified as X.

It is not necessary to explicitly specify every possible input combination. All combinations of input values
that are not explicitly specified result in a default output state of X.

It is illegal to have the same combination of inputs, including edges, specified for different outputs.

8.1.5 Z values in UDP

The z value in a table entry is not supported and it is considered illegal. The z values passed to UDP inputs
shall be treated the same as X values.

8.1.6 Summary of symbols

To improve the readability and to ease writing of the state table, several special symbols are provided.
Table 40 summarizes the meaning of all the value symbols that are valid in the table part of a UDP defini-
tion.

Table 40— UDP table symbols

Symbol Interpretation Comments
0 Logic 0
1 Logic 1
X Unknown Permitted in the input fields of all

UDPs and in the current state field
of sequential UDPs.

? Iteration of 0, 1, and x Not permitted in output field.

b Iteration of 0 and 1 Permitted in the input fields of all
UDPs and in the current state field
of sequential UDPs. Not permitted
in the output field.

- No change Permitted only in the output field of
a sequential UDP.

(vw) Value change from v to w v and w can be any one of 0,

1, x, ?, or b, and are only permitted
in the input field.

Same as (??)

Any value change on input.

r Same as (01) Rising edge on input.
f Same as (10) Falling edge on input.
p Iteration of (01), (0 x) and (x1) Potential positive edge on the input.
n Iteration of (10), (1x)and (x0 Potential negative edge on the input.
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8.2 Combinational UDPs

In combinational UDPs, the output state is determined solely as a function of the current input states. When-
ever an input state changes, the UDP is evaluated and the output state is set to the value indicated by the row
in the state table that matches all the input states. All combinations of the inputs that are not explicitly speci-
fied will drive the output state to the unknown value X.

Examples:

The following example defines a multiplexer with two data inputs and a control input.

primitive multiplexer (mux, control, dataA, dataB);
output mux;

input control, dataA, dataB;

table

// control dataA dataB m

c

X

0 1 o : 1 ;
0 1 1 - 1 ;
0 1 x - 1 ;
0 0 O : O ;
0 0 1 - 0 ;
0 0 X - 0 ;
1 0 1 : 1;
1 1 1 :@: 1 ;
1 X 1 :©- 1 ;
1 0 0O - O ;
1 1 0 - 0 ;
1 X 0O - 0 ;
X 0 O - O ;
X 1 1 - 1 ;

endtable

endprimitive

The first entry in this example can be explained as follows: when control equals O, and dataA equals 1,
and dataB equals O, then output mux equals 1.

The input combination Oxx (control=0, dataA=x, dataB=Xx) is not specified. If this combination
occurs during simulation, the value of output port mux will become X.

Using ?, the description of a multiplexer can be abbreviated as

primitive multiplexer (mux, control, dataA, dataB);
output mux;
input control, dataA, dataB;

table
// control dataA dataB mux
0 1 ? - 1 ; // ? =01X%x
0 0 ? - 0 ;
1 ? 1 - 1;
1 ? O : O ;
X 0 O : O ;
X 1 1 - 1 ;
endtable
endprimitive
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8.3 Level-sensitive sequential UDPs

Level-sensitive sequential behavior is represented the same way as combinational behavior, except that the
output is declared to be of type reg, and there is an additional field in each table entry. This new field repre-
sents the current state of the UDP. The output field in a sequential UDP represents the next state.

Example:

Consider the example of a latch:

primitive latch (g, clock, data);
output q; reg (,
input clock, data;

table
// clock data q q+
0 1:7?: 1;
0 0:7?: 0;
1 ? 1?21 - // - = no change
endtable
endprimitive

This description differs from a combinational UDP model in two ways. First, the output identifier q has an
additional reg declaration to indicate that there is an internal state . The output value of the UDP is always
the same as the internal state. Second, a field for the current state, which is separated by colons from the
inputs and the output, has been added.

8.4 Edge-sensitive sequential UDPs
In level-sensitive behavior, the values of the inputs and the current state are sufficient to determine the out-
put value. Edge-sensitive behavior differs in that changes in the output are triggered by specific transitions
of the inputs. This makes the state table a transition table.
Each table entry can have a transition specification on at most one input. A transition is specified by a pair of
values in parenthesis such as (O1) or a transition symbol such as r. Entries such as the following are
illegal:

(01)(01)0 - 0 - 1 ;

All transitions that do not affect the output shall be explicitly specified. Otherwise, such transitions cause the
value of the output to change to X. All unspecified transitions default to the output value X.

If the behavior of the UDP is sensitive to edges of any input, the desired output state shall be specified for a//
edges of all inputs.

Example:

The following example describes a rising edge D flip-flop:
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primitive d_edge_ff (g, clock, data);
output q; reg (;
input clock, data;

table
// clock data q q+
// obtain output on rising edge of clock
(0D) 0 > ? - 0 ;
(0D 1 R
0?) 1 -1 - 1
0? 0 0 - 0 ;
// ignore negative edge of clock
(?0) ? 0?0 -
// ignore data changes on steady clock
? @ - 2?2 - -
endtable
endprimitive

The terms such as (01) represent transitions of the input values. Specifically, (O1) represents a transition
from O to 1. The first line in the table of the preceding UDP definition is interpreted as follows: when clock
changes value from O to 1, and data equals O, the output goes to O no matter what the current state.

The transition of clock from O to X with data equal to O and current state equal to 1 will result in the output
g going to X.

8.5 Sequential UDP initialization

The initial value on the output port of a sequential UDP can be specified with an initial statement that pro-
vides a procedural assignment. The initial statement is optional.

Like initial statements in modules, the initial statement in UDPs begin with the keyword initial. The valid
contents of initial statements in UDPs and the valid left-hand and right-hand sides of their procedural assign-
ment statements differ from initial statements in modules. A partial list of differences between these two
types of initial statements is described in Table 41.

Table 41 —Initial statements in UDPs and modules

Initial statements in UDPs Initial statements in modules

Contents limited to one procedural assignment | Contents can be one procedural statement of
statement any type or a block statement that contains
more than one procedural statement

The procedural assignment statement shall Procedural assignment statements in initial
assign a value to a reg whose identifier statements can assign values to a reg whose
matches the identifier of an output terminal identifier does not match the identifier of an

output terminal

The procedural assignment statement shall Procedural assignment statements can assign
assign one of the following values: 1 b1, 1 b0, values of any size, radix, and value
1bx,1,0
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Examples:

Example 1 The following example shows a sequential UDP that contains an initial statement.

primitive srff (q, s, r);
output g; reg (g,

input s, r;

initial g = 17b1;

table

// s r q q+
1 0:7?:1;
f 0:1: - ;
O r:-?:0;
0O £f:0:-;
1 1 :7?:0;

endtable

endprimitive

The output q has an initial value of 1 at the start of the simulation; a delay specification on an instantiated
UDP does not delay the simulation time of the assignment of this initial value to the output. When simula-
tion starts, this value is the current state in the state table. Delays are not permitted in a UDP initial state-
ment.

Example 2 The following example and figure show how values are applied in a module that instantiates a
sequential UDP with an initial statement.

primitive dffl (q, clk, d);
input clk, d;
output (; reg (.
initialq = 1°bl;
table
// clk d
r 0
r 1
T ?
’? *
endtable
endprimitive

g+
0
1

N ) ) VQ

module dff (q, gb, clk, d);
input clk, d;
output g, qb;
dffl gl (qi, clk, d);
buf #3 g2 (q, qi);
not #5 g3 (gb, qi);
endmodule

The UDP dff1 contains an initial statement that sets the initial value of its output to 1. The module dFF
contains an instance of UDP dff1.

Figure 30 shows the schematic of the preceding module and the simulation propagation times of the initial
value of the UDP output.
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module dff
buf g2
d | q
UDP dffl gi | #3
] not g3
clk [:>o gb
#5
_ 1
1 | .
a l ------------- e FToTTTTosmmsessoosoosoooooo 0
q ' L
: 'F -------- E ---------------------------- 0
gb - - - - - oo 1
, , , 0
0 3 5
simulation time

Figure 30—Module schematic and simulation times of initial value propagation

In Figure 30, the fanout from the UDP output qi includes nets q and gb. At simulation time 0, 1 changes
value to 1. That initial value of g1 does not propagate to net g until simulation time 3, and it does not prop-
agate to net gb until simulation time 5.

8.6 UDP instances

The syntax for creating a UDP instance is shown in Syntax §-2.

udp_instantiation ::= (From Annex A- A.5.4)
udp_identifier [ drive_strength ] [ delay2 ]
[attribute_instance] udp_instance { , udp_instance } ;
udp_instance ::=
[ name_of _udp_instance | (output_terminal , input_terminal
{, input_terminal } )
name_of_udp_instance ::=
udp_instance_identifier [ range ]

Syntax 8-2 Syntax for UDP instances
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Instances of user-defined primitives are specified inside modules in the same manner as gates (see 7.1). The
instance name is optional, just as for gates. The port connection order is as specified in the UDP definition.
Only two delays can be specified because z is not supported for UDPs. An optional range may be specified
for an array of UDP instances. The port connection rules remain the same as outlined in 7.1.

Example:

The following example creates an instance of the D-type flip-flop d_edge_TF (defined in 8.4).

module Flip;

reg clock, data;
parameter pl = 10;
parameter p2 = 33;
parameter p3 = 12;

d_edge_ff #p3 d_inst (q, clock, data);

initial begin

data = 1;

clock = 1;

#(20 * pl) $finish;
end
always #pl clock = ~clock;
always #p2 data = ~data;
endmodule

8.7 Mixing level-sensitive and edge-sensitive descriptions

UDP definitions allow a mixing of the level-sensitive and the edge-sensitive constructs in the same table.
When the input changes, the edge-sensitive cases are processed first, followed by level-sensitive cases.
Thus, when level-sensitive and edge-sensitive cases specify different output values, the result is specified by
the level-sensitive case.

Example:

primitive jk_edge ff (q, clock, j, k, preset, clear);
output ¢; reg (,;
input clock, j, k, preset, clear;
table
// clock jk pc state output/next state

? ?? 01 ; // preset logic
?? *1
?? 10
?? 1*
00 00
00 11
01 11
10 11
11 11
11 11
?? ??
*? 2?7
?* 2?7

)

; // clear logic

// normal clocking cases

Il OFRPFPOI POORER

; // J and k transition cases

ool e e B B B BEN IRV N
NV VPFPOVVVOO0OVR

endtable
endprimitive
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In this example, the preset and clear logic is level-sensitive. Whenever the preset and clear combination is
01, the output has value 1. Similarly, whenever the preset and clear combination has value 10, the output
has value O.

The remaining logic is sensitive to edges of the clock. In the normal clocking cases, the flip-flop is sensitive
to the rising clock edge, as indicated by an r in the clock field in those entries. The insensitivity to the fall-
ing edge of clock is indicated by a hyphen (-) in the output field (see Table 40) for the entry with an T as the
value of clock. Remember that the desired output for this input transition shall be specified to avoid
unwanted X values at the output. The last two entries show that the transitions in j and K inputs do not
change the output on a steady low or high clock.

8.8 Level-sensitive dominance

Table 42 shows level-sensitive and edge-sensitive entries in the example from 8.7, their level-sensitive or
edge-sensitive behavior, and a case of input values that each includes.

Table 42—Mixing of level-sensitive and edge-sensitive entries

Entry Included case Behavior
2 7201:?7:1; 0 0001:0:1; Level-sensitive
£ 2292 - £ 0001:0:0; Edge-sensitive

The included cases specify opposite next state values for the same input and current state combination. The
level-sensitive included case specifies that when the inputs clock, jk, and pc values are O, 00, and 01
and the current state is O, the output changes to 1. The edge-sensitive included case specifies that when
clock falls from 1 to O, the other inputs jK and pc are 00 and 01, and the current state is O, then the out-
put changes to O.

When the edge-sensitive case is processed first, followed by the level-sensitive case, the output changes to
1.
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9. Behavioral modeling

The language constructs introduced so far allow hardware to be described at a relatively detailed level. Mod-
eling a circuit with logic gates and continuous assignments reflects quite closely the logic structure of the
circuit being modeled; however, these constructs do not provide the power of abstraction necessary for
describing complex high-level aspects of a system. The procedural constructs described in this section are
well suited to tackling problems such as describing a microprocessor or implementing complex timing
checks.

This section starts with a brief overview of a behavioral model to provide a context for many types of behav-
ioral statements in the Verilog HDL.

9.1 Behavioral model overview

Verilog behavioral models contain procedural statements that control the simulation and manipulate vari-
ables of the data types previously described. These statements are contained within procedures. Each proce-
dure has an activity flow associated with it.

The activity starts at the control constructs initial and always. Each initial construct and each always con-
struct starts a separate activity flow. All of the activity flows are concurrent to model the inherent concur-

rence of hardware. These constructs are formally described in 9.9.

The following example shows a complete Verilog behavioral model.

module behave;
reg [1:0] a, b;

initial begin

a = 'bl;

b = 'b0;
end
always begin

#50 a = ~a;
end

always begin
#100 b = ~b;
end

endmodule

During simulation of this model, all of the flows defined by the initial and always constructs start together at
simulation time zero. The initial constructs execute once, and the always constructs execute repetitively.

In this model, the reg variables a and b initialize to 1 and 0 respectively at simulation time zero. The initial
construct is then complete and does not execute again during this simulation run. This initial construct con-
tains a begin-end block (also called a sequential block) of statements. In this begin-end block a is initialized
first, followed by b.

The always constructs also start at time zero, but the values of the variables do not change until the times
specified by the delay controls (introduced by #) have elapsed. Thus, reg a inverts after 50 time units and
reg b inverts after 100 time units. Since the always constructs repeat, this model will produce two square
waves. The reg a toggles with a period of 100 time units, and reg b toggles with a period of 200 time units.
The two always constructs proceed concurrently throughout the entire simulation run.
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9.2 Procedural assignments

As described in Clause 6, procedural assignments are used for updating reg, integer, time, real, realtime,
and memory data types. There is a significant difference between procedural assignments and continuous
assignments:

— Continuous assignments drive nets and are evaluated and updated whenever an input operand
changes value.

—  Procedural assignments update the value of variables under the control of the procedural flow con-
structs that surround them.

The right-hand side of a procedural assignment can be any expression that evaluates to a value. The left-
hand side shall be a variable that receives the assignment from the right-hand side. The left-hand side of a
procedural assignment can take one of the following forms:

reg, integer, real, realtime, or time data type: an assignment to the name reference of one of these
data types.

Bit-select of a reg, integer, or time data type: an assignment to a single bit that leaves the other bits
untouched.

Part-select of a reg, integer, or time data type: a part-select of one or more contiguous bits that
leaves the rest of the bits untouched.

Memory word: a single word of a memory.

Concatenation of any of the above: a concatenation of any of the previous four forms can be speci-
fied, which effectively partitions the result of the right-hand side expression and assigns the partition
parts, in order, to the various parts of the concatenation.

NOTE When the right-hand side evaluates to fewer bits than the left-hand side, then if the right-hand side is signed
(see 4.5), it shall be sign-extended to the size of the left-hand side.

The Verilog HDL contains two types of procedural assignment statements:

— Blocking procedural assignment statements
— Nonblocking procedural assignment statements

Blocking and nonblocking procedural assignment statements specify different procedural flows in sequen-
tial blocks.

9.2.1 Blocking procedural assignments
A blocking procedural assignment statement shall be executed before the execution of the statements that
follow it in a sequential block (see 9.8.1). A blocking procedural assignment statement shall not prevent the

execution of statements that follow it in a parallel block (see 9.8.2).

The syntax for a blocking procedural assignment is given in Syntax 9-1.
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blocking_assignment ::= (From Annex A - A.6.2)
variable_lvalue = [ delay_or_event_control | expression
delay_control ::= (From Annex A - A.6.5)
# delay_value
| # (mintypmax_expression )
delay_or_event_control ::=
delay_control
| event_control
| repeat (expression ) event_control
event_control ::=
@ event_identifier
| @ (‘event_expression )
| @*
| @ (%)
event_expression ::=
expression
| hierarchical_identifier
| posedge expression
| negedge expression
| event_expression or event_expression
| event_expression , event_expression
variable_lvalue ::= (From Annex A - A.8.5)
hierarchical_variable_identifier
| hierarchical_variable_identifier [ expression | { [ expression ] }
| hierarchical_variable_identifier [ expression ] { [ expression ] }
[ range_expression |
| hierarchical_variable_identifier [ range_expression |
| variable_concatenation

Syntax 9-1 Syntax for blocking assignments

In this syntax, reg_lvalue is a data type that is valid for a procedural assignment statement, = is the
assignment operator, and delay_or_event_control is the optional intra-assignment timing control. The con-
trol can be either a delay control (e.g., #6) or an event_control (e.g., @ (posedge clk)). The expression is
the right-hand side value that shall be assigned to the left-hand side. If reg 1lvalue requires an evalua-
tion, it shall be evaluated at the time specified by the intra-assignment timing control.

The = assignment operator used by blocking procedural assignments is also used by procedural continuous
assignments and continuous assignments.

Example:

The following examples show blocking procedural assignments.

rega = 0;

rega[3] = 1; // a bit-select

rega[3:5] = 7; // a part-select

mema[address] = 8'hff; // assignment to a mem element
{carry, acc} = rega + regb; // a concatenation
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9.2.2 The nonblocking procedural assignment

The nonblocking procedural assignment allows assignment scheduling without blocking the procedural
flow. The nonblocking procedural assignment statement can be used whenever several variable assignments

within the same time step can be made without regard to order or dependence upon each other.

The syntax for a nonblocking procedural assignment is given in Syntax 9-2.

nonblocking_assignment ::= (From Annex A - 4.6.2)
variable_lvalue <= [ delay_or_event_control ] expression

delay_control ::= (From Annex 4 - A.6.5)
# delay_value
| # ( mintypmax_expression )
delay_or_event_control ::=
delay_control
| event_control
| repeat (_expression ) event_control
event_control ::=
@ event_identifier
| @ ( event_expression )
*

@ (%)
event_expression ::=
expression
hierarchical_identifier
posedge expression
negedge expression
| event_expression or event_expression
| event_expression , event_expression
variable_lvalue ::= (From Annex 4 - A.8.5)
hierarchical_variable_identifier
| hierarchical_variable_identifier [ expression | { [ expression ] }
| hierarchical_variable_identifier [ expression | { [ expression ] }
[ range_expression |
| hierarchical_variable_identifier [ range_expression |
| variable_concatenation

Syntax 9-2 Syntax for nonblocking assignments

In this syntax, reg_lvalue is a data type that is valid for a procedural assignment statement, <= is the
nonblocking assignment operator, and delay or event control is the optional intra-assignment
timing control. If reg_1lvalue requires an evaluation, it shall be evaluated at the same time as the expres-
sion on the right-hand side. The order of evaluation of the reg_lvalue and the expression on the right-
hand side is undefined if timing control is not specified.

The nonblocking assignment operator is the same operator as the less-than-or-equal-to relational operator.
The interpretation shall be decided from the context in which <= appears. When <= is used in an expression,
it shall be interpreted as a relational operator, and when it is used in a nonblocking procedural assignment, it
shall be interpreted as an assignment operator.
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The nonblocking procedural assignments shall be evaluated in two steps as discussed in Clause 5. These two
steps are shown in the following example.

Example 1:
module evaluates2 (out); At posedge c, the simulator Nonblocking
output out; evaluates the right-hand sides assignment
reg a, b, c; Step 1:  of the nonblocking assign- schedules
ments and schedules the changes  at
initial begin assignments of the new values time 5
a=0; at the end of the nonblocking
b = 1; assign update events (see 5.4). a=0
c = 0; . . =
end When the simulator activates b=1
Step 2: the nonblocki(zg assign update Assignment
alwaysc = #5 ~c; events, the simulator updates values are:
! the left-hand side of each non- '
always @ (posedge c) begin blocking assignment statement. a=1
a <= b; // evaluates, schedules, b=0
b <= a; // and executes in two steps
end
endmodule

At the end of the time step means that the nonblocking assignments are the last assignments executed in a
time step with one exception. Nonblocking assignment events can create blocking assignment events.
These blocking assignment events shall be processed after the scheduled nonblocking events.

Unlike an event or delay control for blocking assignments, the nonblocking assignment does not block the
procedural flow. The nonblocking assignment evaluates and schedules the assignment, but it does not block
the execution of subsequent statements in a begin-end block.

Example 2:
//non_blockl.v
module non_blockl; scheduled
reg a, b, ¢, d, e, f; changes at
time 2
//blocking assignments
initial begin IIIIIIII
a=#10 1; // a w%ll be ass%gned 1 at t}me 10 scheduled
b =#2 0; // b will be assigned 0 at time 12 changes at
c =#4 1; // c will be assigned 1 at time 16 .
time 4
end
//non-blocking assignments —
initial begin IIIIIIII
d <= #10 1; // d will be assigned 1 at time 10 scheduled
e <= #2 0; // e will be assigned 0 at time 2 changes at
f <= #4 1; // £ will be assigned 1 at time 4 time 10
end
endmodule d=1

As shown in the previous example, the simulator evaluates and schedules assignments for the end of the cur-
rent time step and can perform swapping operations with the nonblocking procedural assignments.
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Example 3:
//non_blockl.v Step 1: The simulator evaluates the right-
module non blockl; hand side of the nonblocking
reg a, b; assignments and schedules the
initial begin assignments for the end of the cur-
a = 0; rent time step.
b =1;
a <= b; // evaluates, schedules, and Step 2:
b <= a; // executes in two steps
end At the end of the current time step,
initial begin the simulator updates the left-hand
$monitor ($time, ,"a = %b b = %b", a, b); side of each nonblocking assign-
#100 $finish; ment statement.
end
endmodule assignment values are: a=

The order of the execution of distinct nonblocking assignments to a given variable shall be preserved. This
means that if there is clear ordering of the execution of a set of nonblocking assigments, then the order of the
resulting updates of the destination of the nonblocking assignments shall be the same as the ordering of the
execution.

Example 4:
module multiple2;
reg a;
initial a = 1;

// The assigned value of the reg is determinate
initial begin
a <= #4 0; // schedules a = 0 at time 4
a <= #4 1; // schedules a = 1 at time 4
end // At time 4, a =1
endmodule

If the simulator executes two procedural blocks concurrently, and if these procedural blocks contain non-
blocking assignment operators to the same variable, the final value of that variable is indeterminate. For
example, the value of reg a is indeterminate in the following example.

Example 5:
module multiple3 ;
reg a;
initial a = 1;

initial a <= #4 0; // schedules 0 at time 4
initial a <= #4 1; // schedules 1 at time 4

// At time 4, a = ??
// The assigned value of the reg is indeterminate
endmodule
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NOTE—The fact that two nonblocking assignments targeting the same variable are in different blocks is not by itself
sufficient to make the order of assignments to a variable indeterminate. For example, the value of reg a at the end of time
cycle 16 is determinate in the following example:

module multiple2 ;
reg a;

initial #8 a <= #8 1;// executed at time 8; schedules
// an update of 1 at time 16
initial #12 a <= #4 0;// executed at time 12; schedules
// an update of 0 at time 16
// Because it is determinate that the update of a to
// the value 1 is scheduled before the update of a to
// the value 0, then it is determinate that a will have the
// value 0 at the end of time slot 16.endmodule
endmodule

The following example shows how the value of i [ 0] is assigned to r1 and how the assignments are sched-
uled to occur after each time delay.

Example 6.

module multiple;
reg rl;
reg [2:0] i;

initial begin
// starts at time 0, does not hold the block
rl = 0;
// makes assignments to rl without cancelling previous assignments
for (1 = 0; 1 <= 5; i = i+1)
rl <= # (i*10) 1i[0];
end
endmodule

9.3 Procedural continuous assignments

The procedural continuous assignments (using keywords assign and force) are procedural statements that
allow expressions to be driven continuously onto variables or nets. The syntax for these statements is given
in Syntax 9-3.

[ Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od



IEC 61691-4:2004(E) 149
|EEE 1364-2001(E)

net_assignment ::= (From Annex A - A.6.1)
net_lvalue = expression
procedural_continuous_assignments ::= (From Annex A - A.6.2)
assign variable_assignment
| deassign variable_lvalue
| force variable_assignment
| force net_assignment
| release variable_lvalue
| release net_lvalue
variable_assignment ::= (From Annex A - A.6.3)
variable_lvalue = expression
net_lvalue ::= (From Annex A - A.8.5)
hierarchical_net_identifier
| hierarchical_net_identifier [ constant_expression ] { [ constant_expression | }
| hierarchical_net_identifier [ constant_expression ] { [ constant_expression | }
[ constant_range_expression ]
| hierarchical_net_identifier [ constant_range_expression ]
| net_concatenation
variable_lvalue ::=
hierarchical_variable_identifier
| hierarchical_variable_identifier [ expression | { [ expression ] }
| hierarchical_variable_identifier [ expression | { [ expression ] }
[ range_expression |
| hierarchical_variable_identifier [ range_expression |
| variable_concatenation

Syntax 9-3 Syntax for procedural continuous assignments

The left-hand side of the assignment in the assign statement shall be a variable reference or a concatenation
of variables. It shall not be a memory word (array reference) or a bit-select or a part-select of a variable.

In contrast, the left-hand side of the assignment in the force statement can be a variable reference or a net
reference. It can be a concatenation of any of the above. Bit-selects and part-selects of vector variables are
not allowed.

9.3.1 The assign and deassign procedural statements

The assign procedural continuous assignment statement shall override all procedural assignments to a vari-
able. The deassign procedural statement shall end a procedural continuous assignment to a variable. The
value of the variable shall remain the same until the reg is assigned a new value through a procedural assign-
ment or a procedural continuous assignment. The assign and deassign procedural statements allow, for
example, modeling of asynchronous clear/preset on a D-type edge-triggered flip-flop, where the clock is
inhibited when the clear or preset is active.

If the keyword assign is applied to a variable for which there is already a procedural continuous assignment,
then this new procedural continuous assignment shall deassign the variable before making the new proce-
dural continuous assignment.
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Example:

The following example shows a use of the assign and deassign procedural statements in a behavioral
description of a D-type flip-flop with preset and clear inputs.

module dff (g, d, clear, preset, clock);
output g;

input d, clear, preset, clock;

reg q;

always @ (clear or preset)
if (!clear)
assign g = 0;
else if (!preset)
assign g = 1;
else
deassign q;

always @ (posedge clock)
q =dj
endmodule

If either clear or preset is low, then the output g will be held continuously to the appropriate constant
value and a positive edge on the clock will not affect g. When both the clear and preset are high, then
q is deassigned.

9.3.2 The force and release procedural statements

Another form of procedural continuous assignment is provided by the force and release procedural state-
ments. These statements have a similar effect to the assign-deassign pair, but a force can be applied to nets as
well as to variables. The left-hand side of the assignment can be a variable, a net, a constant bit-select of a
vector net, a part-select of a vector net, or a concatenation. It cannot be a memory word (array reference) or
a bit-select or a part-select of a vector variable.

A force statement to a variable shall override a procedural assignment or procedural continuous assignment
that takes place on the variable until a release procedural statement is executed on the variable. After the
release procedural statement is executed, the variable shall not immediately change value (as would a net
that is assigned with a procedural continuous assignment). The value specified in the force statement shall
be maintained in the variable until the next procedural assignment takes place, except in the case where a
procedural continuous assignment is active on the variable.

A force procedural statement on a net overrides all drivers of the net gate outputs, module outputs, and
continuous assignments until a release procedural statement is executed on the net.

Releasing a variable that currently has an active procedural continuous assignment shall re-establish that
assignment.
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Example:

module test;
reg a, b, ¢, d
wire e;

~e

and andl (e, a, b, c);

initial begin
$monitor ("%d d=%b,e=%b", $stime, d, e);
assign d = a & b & c;

a=1;

b = 0;

c = 1;

#10;

force d = (a | b | ¢);
force e = (a | b | ¢);

#10 Sstop;
release d;
release e;
#10 S$finish;
end
endmodule

Result

In this example, an and gate instance and1l is patched as an or gate by a force procedural statement that
forces its output to the value of its logical or inputs, and an assign procedural statement of logical and values
is patched as an assign procedural statement of logical or values.
The right-hand side of a procedural continuous assignment or a force statement can be an expression. This
shall be treated just as a continuous assignment; that is, if any variable on the right-hand side of the assign-
ment changes, the assignment shall be re-evaluated while the assign or force is in effect. For example:

force a = b + f(c) ;

Here, if b changes or ¢ changes, a will be forced to the new value of the expression b+f (c).

9.4 Conditional statement

The conditional statement (or if-else statement) is used to make a decision as to whether a statement is exe-
cuted or not. Formally, the syntax is given in Syntax 9-4.
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conditional_statement ::= (From Annex A - A.6.6)
if ( expression )
statement_or_null [ else statement_or_null ]
| if_else_if_statement
function_conditional_statement ::= (From Annex A - A.6.6)
if ( expression ) function_statement_or_null
[ else function_statement_or_null ]
| function_if_else_if statement

Syntax 9-4 Syntax of if statement

If the expression evaluates to true (that is, has a nonzero known value), the first statement shall be executed.
If it evaluates to false (has a zero value or the value is x or z), the first statement shall not execute. If there is
an else statement and expression is false, the else statement shall be executed.

Since the numeric value of the if expression is tested for being zero, certain shortcuts are possible. For
example, the following two statements express the same logic:

if (expression)
if (expression != 0)

Because the else part of an if-else is optional, there can be confusion when an else is omitted from a nested if
sequence. This is resolved by always associating the else with the closest previous if that lacks an else. In the
example below, the else goes with the inner if, as shown by indentation.

if (index > 0)
if (rega > regb)
result = rega;
else // else applies to preceding if
result = regb;

If that association is not desired, a begin-end block statement shall be used to force the proper association, as
shown below.

if (index > 0) begin
if (rega > regb)
result = rega;
end
else result = regb;

9.4.1 If-else-if construct

The following construction occurs so often that it is worth a brief separate discussion:
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if_else_if_statement ::= (From Annex A - 4.6.6)
if ( expression ) statement_or_null
{ else if ( expression ) statement_or_null }
[ else statement_or_null ]

function_if else_if statement ::= (From Annex A - A.6.6)
if ( expression ) function_statement_or_null
{ else if ( expression ) function_statement_or_null }
[ else function_statement_or_null ]

Syntax 9-5 Syntax of if-else-if construct

This sequence of if statements (known as an if-else-if construct) is the most general way of writing a multi-
way decision. The expressions shall be evaluated in order; if any expression is true, the statement associated
with it shall be executed, and this shall terminate the whole chain. Each statement is either a single statement
or a block of statements.

The last else part of the if-else-if construct handles the none-of-the-above or default case where none of the
other conditions were satisfied. Sometimes there is no explicit action for the default; in that case, the trailing
else statement can be omitted or it can be used for error checking to catch an impossible condition.
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Example:

The following module fragment uses the if-else statement to test the variable index to decide whether one
of three modify segn regs has to be added to the memory address, and which increment is to be added to
the index reg. The first ten lines declare the regs and parameters.

// declare regs and parameters
reg [31:0] instruction, segment area[255:0];
reg [7:0] index;
reg [5:0] modify segl,
modify seg2,
modify seg3;
parameter
segmentl = 0, inc_segl =1,
segment?2 20, inc_seg2 =
segment3 = 64, inc_seg3 =
data = 128;

I
=N
~ =

// test the index variable

if (index < segment2) begin
instruction = segment area [index + modify segl];
index = index + inc_segl;

end

else if (index < segment3) begin
instruction = segment area [index + modify seg2];
index = index + inc_seg2;

end

else if (index < data) begin
instruction = segment area [index + modify seg3];
index = index + inc_seg3;

end

else
instruction = segment area [index];

9.5 Case statement

The case statement is a multiway decision statement that tests whether an expression matches one of a num-
ber of other expressions and branches accordingly. The case statement has the syntax shown in Syntax 9-6.
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case_statement ::= (From Annex A - A.6.7)
case ( expression )
case_item { case_item } endcase
| casez ( expression )
case_item { case_item } endcase
| casex ( expression )
case_item { case_item } endcase
case_item ::=
expression { , expression } : statement_or_null
| default [ : ] statement_or_null
function_case_statement ::=
case ( expression )
function_case_item { function_case_item } endcase
| casez ( expression )
function_case_item { function_case_item } endcase
| casex ( expression )
function_case_item { function_case_item } endcase
function_case_item ::=
expression { , expression } : function_statement_or_null
| default [ : ] function_statement_or_null

Syntax 9-6 Syntax for case statement

The default statement shall be optional. Use of multiple default statements in one case statement shall be
illegal.

The case expression and the case item expression can be computed at runtime; neither expression is required
to be a constant expression.

Examples:

A simple example of the use of the case statement is the decoding of reg rega to produce a value for
result as follows:

reg [15:0] rega;
reg [9:0] result;

case (rega)
16'd0: result = 10'b0111111111;

16’'dl: result = 10'b1011111111;
16'd2: result = 10'b1101111111;
16'd3: result = 10'b1110111111;
16'd4: result = 10'b1111011111;
16'd5: result = 10'b1111101111;

16'd6: result = 10'b1111110111;
16'd7: result = 10'b1111111011;
16'd8: result = 10'b1111111101;
16'd9: result = 10'b1111111110;
default result = 'bx;

endcase
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The case item expressions shall be evaluated and compared in the exact order in which they are given. Dur-
ing the linear search, if one of the case item expressions matches the case expression given in parentheses,
then the statement associated with that case item shall be executed. If all comparisons fail and the default
item is given, then the default item statement shall be executed. If the default statement is not given and all
of the comparisons fail, then none of the case item statements shall be executed.

Apart from syntax, the case statement differs from the multiway if-else-if construct in two important ways:

a) The conditional expressions in the if-else-if construct are more general than comparing one
expression with several others, as in the case statement.

b) The case statement provides a definitive result when there are x and z values in an expression.

In a case expression comparison, the comparison only succeeds when each bit matches exactly with respect
to the values 0, 1, x, and z. As a consequence, care is needed in specifying the expressions in the case
statement. The bit length of all the expressions shall be equal so that exact bit-wise matching can be per-
formed. The length of all the case item expressions, as well as the case expression in the parentheses, shall
be made equal to the length of the longest case expression and case item expression.

NOTE The default length of x and z is same as the default length of an integer.

The reason for providing a case expression comparison that handles the x and z values is that it provides a
mechanism for detecting such values and reducing the pessimism that can be generated by their presence.

Examples:

Example 1 The following example illustrates the use of a case statement to handle x and z values properly.

case (select[1:2])

2'b00: result = 0;

2'b01: result = flaga;

2'b0x,

2'b0z: result = flaga ? 'bx : 0;
2'bl0: result = flagb;

2'bx0,

2'bz0: result = flagb ? 'bx : 0;

default result =

endcase

In this example, if select[1] is 0 and £laga is 0, then whether the value of select[2] is x or 2,
result should be 0 which is resolved by the third case.

Example 2 The following example shows another way to use a case statement to detect x and z values.

case (sig)

1'bz: S$display("signal is floating");
1'bx: S$display("signal is unknown");
default: $Sdisplay ("signal is %b", sig);

endcase

[ Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od



IEC 61691-4:2004(E) 157
|EEE 1364-2001(E)

9.5.1 Case statement with don t-cares

Two other types of case statements are provided to allow handling of don t-care conditions in the case com-
parisons. One of these treats high-impedance values (z) as dont-cares, and the other treats both
high-impedance and unknown (x) values as don t-cares.

These case statements can be used in the same way as the traditional case statement, but they begin with
keywords casez and casex respectively.

Don t-care values (z values for casez, z and x values for casex) in any bit of either the case expression or
the case items shall be treated as don t-care conditions during the comparison, and that bit position shall not
be considered. The don t-care conditions in case expression can be used to control dynamically which bits
should be compared at any time.

The syntax of literal numbers allows the use of the question mark ( ?) in place of z in these case statements.
This provides a convenient format for specification of don t-care bits in case statements.

Examples:
Example 1 The following is an example of the casez statement. It demonstrates an instruction decode,

where values of the most significant bits select which task should be called. If the most significant bit of ir
is a 1, then the task instructionl is called, regardless of the values of the other bits of ir.

reg [7:0] ir;

casez (ir)
8'bl??2??2?2??: instructionl(ir);
8'b01???2???: instruction2(ir);

8'b00010???: instruction3(ir);
8'b000001??: instructiond(ir);
endcase

Example 2 The following is an example of the casex statement. It demonstrates an extreme case of how
don t-care conditions can be dynamically controlled during simulation. In this case, if r =
8”°b01100110, then the task stat2 is called.

reg [7:0] r, mask;

mask = 8'bx0x0x0x0;
casex (r " mask)
8'b001100xx: statl;
8'b1100xx00: stat2;
8'b00xx0011: stat3;
8'bxx010100: stat4;
endcase

9.5.2 Constant expression in case statement

A constant expression can be used for case expression. The value of the constant expression shall be com-
pared against case item expressions.
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Example:

The following example demonstrates the usage by modeling a 3-bit priority encoder.

reg [2:0] encode ;

case (1)
encode[2] : S$display(“Select Line 2
encode[1l] : S$display(“Select Line 1
encode[0] : S$display(“Select Line 0
default Sdisplay(“Error: One of the bits expected ON”);
endcase

"
"
"

~ ~— ~—
~e ~eo ~e

Note that the case expression is a constant expression (1). The case items are expressions (bit-selects) and
are compared against the constant expression for a match.

9.6 Looping statements

There are four types of looping statements. These statements provide a means of controlling the execution of
a statement zero, one, or more times.

forever Continuously executes a statement.

repeat Executes a statement a fixed number of times. If the expression evaluates to unknown or
high impedance, it shall be treated as zero, and no statement shall be executed.

while Executes a statement until an expression becomes false. If the expression starts out false,
the statement shall not be executed at all.

for Controls execution of its associated statement(s) by a three-step process, as follows:

a) Executes an assignment normally used to initialize a variable that controls the number
of loops executed.

b) Evaluates an expression if the result is zero, the for-loop shall exit, and if it is not
zero, the for-loop shall execute its associated statement(s) and then perform step c. If
the expression evaluates to an unknown or high-impedance value, it shall be treated
as zero.

c¢) Executes an assignment normally used to modify the value of the loop-control
variable, then repeats step b.
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Syntax 9-7 shows the syntax for various looping statements.

function_loop_statement ::= (From Annex A - A.6.8)
forever function_statement
| repeat ( expression ) function_statement
| while ( expression ) function_statement
| for ( variable_assignment ; expression ; variable_assignment )
function_statement
loop_statement ::=
forever statement
| repeat (expression ) statement
| while ( expression ) statement
| for ( variable_assignment ; expression ; variable_assignment )
statement

Syntax 9-7 Syntax for the looping statements

The rest of this clause presents examples for three of the looping statements. The forever loop should only
be used in conjunction with the timing controls or the disable statement, therefore, this example is presented

in9.7.2.

Examples:

Example I Repeat statement: In the following example of a repeat loop, add and shift operators implement

a multiplier.

parameter size = 8, longsize = 16;
reg [size:1] opa, opb;
reg [longsize:1l] result;

begin : mult
reg [longsize:1] shift opa, shift opb;
shift opa = opa;
shift opb = opb;
result = 0;
repeat (size) begin
if (shift opb[1])
result = result + shift opa;
shift opa = shift opa << 1;
shift opb shift opb >> 1;

end
end
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Example 2 While statement: The following example counts the number of logic 1 values in rega.

begin : countls
reg [7:0] tempreg;
count = 0;
tempreg = rega;
while (tempreg) begin
if (tempreg[0])
count = count + 1;
tempreg = tempreg >> 1;
end
end

Example 3 For statement: The for statement accomplishes the same results as the following pseudo-code
that is based on the while loop:

begin
initial assignment;
while (condition) begin
statement
step assignment;
end
end

The for loop implements this logic while using only two lines, as shown in the pseudo-code below.

for (initial assignment; condition; step assignment)
statement

9.7 Procedural timing controls

The Verilog HDL has two types of explicit timing control over when procedural statements can occur. The
first type is a delay control, in which an expression specifies the time duration between initially encounter-
ing the statement and when the statement actually executes. The delay expression can be a dynamic function
of the state of the circuit, but it can be a simple number that separates statement executions in time. The
delay control is an important feature when specifying stimulus waveform descriptions. It is described in
9.7.1 and 9.7.7.

The second type of timing control is the event expression, which allows statement execution to be delayed
until the occurrence of some simulation event occurring in a procedure executing concurrently with this pro-
cedure. A simulation event can be a change of value on a net or variable (an implicit event) or the occurrence
of an explicitly named event that is triggered from other procedures (an explicit event). Most often, an event
control is a positive or negative edge on a clock signal. Event control is discussed in 9.7.2 through 9.7.7.

The procedural statements encountered so far all execute without advancing simulation time. Simulation
time can advance by one of the following three methods:

— A delay control, which is introduced by the symbol #
— An event control, which is introduced by the symbol @

— The walt statement, which operates like a combination of the event control and the while loop

Syntax 9-8 describes timing control in procedural statements.
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delay_control ::= (From Annex A - A.6.5)
# delay_value
| # (mintypmax_expression )
delay_or_event_control ::=
delay_control
| event_control
| repeat ( expression ) event_control
event_control ::=
@ event_identifier
| @ (event_expression )
| @*
| @ (%)
event_expression ::=
expression
| hierarchical_identifier
| posedge expression
| negedge expression
| event_expression or event_expression
| event_expression , event_expression

Syntax 9-8 Syntax for procedural timing control

The gate and net delays also advance simulation time, as discussed in Clause 6. The next subclauses discuss
the three procedural timing control methods.

9.7.1 Delay control

A procedural statement following the delay control shall be delayed in its execution with respect to the pro-
cedural statement preceding the delay control by the specified delay. If the delay expression evaluates to an
unknown or high-impedance value, it shall be interpreted as zero delay. If the delay expression evaluates to
a negative value, it shall be interpreted as a 2 s complement unsigned integer of the same size as a time vari-
able. Specify parameters are permitted in the delay expression. They may be overridden by SDF annotation,
in which case the expression is reevaluated.

Examples:
Example 1 The following example delays the execution of the assignment by 10 time units:
#10 rega = regb;

Example 2 The next three examples provide an expression following the number sign (#). Execution of the
assignment is delayed by the amount of simulation time specified by the value of the expression.

#d rega = regb; // d is defined as a parameter
#((d+e)/2) rega = regb;// delay is average of d and e
#regr regr = regr + 1; // delay is the value in regr
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9.7.2 Event control

The execution of a procedural statement can be synchronized with a value change on a net or variable or the
occurrence of a declared event. The value changes on nets and variable can be used as events to trigger the
execution of a statement. This is known as detecting an implicit event. The event can also be based on the
direction of the change that is, towards the value 1 ( posedge) or towards the value 0 (negedge). The
behavior of posedge and negedge event is shown in Table 43 and can be described as follows:

— A negedge shall be detected on the transition from 1 to %, z, or 0, and from X or z to 0
— A posedge shall be detected on the transition from 0 to %, z,or 1, and from x or z to 1

Table 43—Detecting posedge and negedge

To 0 1 X z
From
0 No edge | posedge | posedge | posedge
1 negedge | Noedge | negedge | negedge
X negedge | posedge | Noedge | Noedge
z negedge | posedge | Noedge | Noedge

If the expression evaluates to more than a 1-bit result, the edge transition shall be detected on the least sig-
nificant bit of the result. The change of value in any of the operands without a change in the value of the
least significant bit of the expression result shall not be detected as an edge.

Example:

The following example shows illustrations of edge-controlled statements.

@r rega = regb; // controlled by any value change in the reg r
@ (posedge clock) rega = regb; // controlled by posedge on clock
forever @ (negedge clock) rega = regb; // controlled by negative edge

9.7.3 Named events

A new data type, in addition to nets and variables, called event can be declared. An identifier declared as
an event data type is called a named event. A named event can be triggered explicitly. It can be used in an
event expression to control the execution of procedural statements in the same manner as event control
described in 9.7.1. Named events can be made to occur from a procedure. This allows control over the
enabling of multiple actions in other procedures.

An event name shall be declared explicitly before it is used. Syntax 9-9 gives the syntax for declaring
events.
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event_declaration ::= (From Annex A - A.2.1.3)
event list_of event_identifiers ;
list_of_event_identifiers ::= (From Annex A - A.2.3)
event_identifier [ dimension { dimension }]
{ , event_identifier [ dimension { dimension }] }
dimension ::= (From Annex A - A.2.5)
[ dimension_constant_expression : dimension_constant_expression ]

Syntax 9-9 Syntax for event declaration

An event shall not hold any data. The following are the characteristics of a named event:

— It can be made to occur at any particular time
— It has no time duration
— Its occurrence can be recognized by using the event control syntax described in 9.7.2.

A declared event is made to occur by the activation of an event triggering statement with the syntax given in
Syntax 9-10. An event is not made to occur by changing the index of an event array in an event control
expression.

event_trigger ::= (From Annex A - A.6.5)
-> hierarchical_event_identifier ;

Syntax 9-10 Syntax for event trigger

An event-controlled statement (for example, @trig rega = regb;) shall cause simulation of its con-
taining procedure to wait until some other procedure executes the appropriate event-triggering statement (for
example,

-> trig).

Named events and event control give a powerful and efficient means of describing the communication
between, and synchronization of, two or more concurrently active processes. A basic example of this is a
small waveform clock generator that synchronizes control of a synchronous circuit by signalling the occur-
rence of an explicit event periodically while the circuit waits for the event to occur.

9.7.4 Event or operator

The logical or of any number of events can be expressed such that the occurrence of any one of the events
triggers the execution of the procedural statement that follows it. The keyword or or a comma character (,) is
used as an event logical or operator. A combination of these can be used in the same event expression.
Comma-separated sensitivity lists shall be synonymous to or-separated sensitivity lists.
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Examples:
The next two examples show the logical or of two and three events respectively.

@(trig or enable) rega = regb; // controlled by trig or
enable
@ (posedge clk a or posedge clk b or trig) rega = regb;

The following examples show the use of the comma (, ) as an event logical or operator.

always @(a, b, c, d, e)
always @ (posedge clk, negedge rstn)
always @(a or b, c, d or e)

9.7.5 Implicit event_expression list

The event_expression list of an event control is a common source of bugs in RTL simulations. Users
tend to forget to add some of the nets or variables read in the timing control statement. This is often found
when comparing RTL and gate level versions of a design. The implicit event expression, @*, is a
convenient shorthand that eliminates these problems by adding all nets and variables which are read by the
statement (which can be a statement group) of a procedural timing control statement to the
event expression.

All net and variable identifiers which appear in the statement will be automatically added to the event
expression with these exceptions:

— Identifiers which only appear in wait or event expressions.
— Identifiers which only appear as a hierarchical_reg_identifier in the reg lvalue of the left hand
side of assignments.

Nets and variables which appear on the right hand side of assignments, in function and task calls, in case and
conditional expressions, as an index variable on the left hand side of assignments or as variables in case item
expressions shall all be included by these rules.

Examples:
Example 1

always @(*) // equivalent to @(a or b or ¢ or d or f)
y = (a & b) | (¢ & d) | myfunction(£f);

Example 2

always @* begin // equivalent to @(a or b or ¢ or d or tmpl or tmp2)
tmpl = a & b;
tmp2 = ¢ & d;
y = tmpl | tmp2;

end

Example 3
always @* begin // equivalent to @(b)

@(i) kid = b; // i is not added to @*
end
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Example 4

always @* begin // equivalent to €@(a or b or c or d)
Xx = a " b;
@* // equivalent to @(c or d)
Xx =c¢ ~ d;
end

Example 5

always @* begin // same as @(a or en)
y = 8'hff;
yla] = l!en;

end

Example 6
always @* begin // same as @(state or go or ws)

next = 4'b0;
case (1'bl)

state[IDLE] : if (go) next[READ] = 1’bl;

else next[IDLE] = 1'bl;
state[READ] : next[DLY] = 1’bl;
state[DLY] : if (!ws) next[DONE] = 1’bl;

else next[READ] = 1'bl;

state[DONE] : next[IDLE] = 1'bl;
endcase
end

9.7.6 Level-sensitive event control

The execution of a procedural statement can also be delayed until a condition becomes true. This is accom-
plished using the wait statement, which is a special form of event control. The nature of the wait statement is
level-sensitive, as opposed to basic event control (specified by the @ character), which is edge-sensitive.

The wait statement shall evaluate a condition, and, if it is false, the procedural statements following the wait
statement shall remain blocked until that condition becomes true before continuing. The wait statement has
the form given in Syntax 9-11.

wait_statement ::= (From Annex A - A.6.5)
wait ( expression ) statement_or_null

Syntax 9-11 Syntax for wait statement

Example:

The following example shows the use of the wait statement to accomplish level-sensitive event control.

begin
wait (!enable) #10 a = b;
#10 c = d;

end

If the value of enable is 1 when the block is entered, the wait statement will delay the evaluation of the
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next statement (#10 a = b;) until the value of enable changes to 0. If enable is already 0 when the
begin-end block is entered, then the assignment a = b; is evaluated after a delay of 10 and no addi-
tional delay occurs.

9.7.7 Intra-assignment timing controls

The delay and event control constructs previously described precede a statement and delay its execution. In
contrast, the intra-assignment delay and event controls are contained within an assignment statement and
modify the flow of activity in a different way. This subclause describes the purpose of intra-assignment tim-
ing controls and the repeat timing control that can be used in intra-assignment delays.

An intra-assignment delay or event control shall delay the assignment of the new value to the left-hand side,
but the right-hand side expression shall be evaluated before the delay, instead of after the delay. The syntax
for intra-assignment delay and event control is given in Syntax 9-12.

blocking_assignment ::= (From Annex A - A.6.2)
variable_lvalue = [ delay_or_event_control ] expression

nonblocking_assignment ::=
variable_lvalue <= [ delay_or_event_control ] expression

delay_control ::= (From Annex A - A.6.5)
# delay_value
| # ( mintypmax_expression )
delay_or_event_control ::=
delay_control
| event_control
| repeat (_expression ) event_control
event_control ::=
@ event_identifier
| @ ( event_expression )
@*
@ (%)
event_expression ::=
expression
hierarchical_identifier
posedge expression
negedge expression
| event_expression or event_expression
| event_expression , event_expression

Syntax 9-12 Syntax for intra-assignment delay and event control

The intra-assignment delay and event control can be applied to both blocking assignments and nonblocking
assignments. The event expression shall be resolved to a 1-bit value. The repeat event control shall specify
an intra-assignment delay of a specified number of occurrences of an event. If the repeat count literal, or
signed reg holding the repeat count, is less than or equal to 0 at the time of evaluation, the assignment
occurs as if there is no repeat construct.

Examples:

repeat (-3) @ (event expression)
// will not execute event expression.
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repeat (a) @ (event expression)
// if a is assigned -3 it will execute the event expression
// if a is declared as an unsigned reg but not if it is
signed.

This construct is convenient when events have to be synchronized with counts of clock signals.
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Examples:

Table 44 illustrates the philosophy of intra-assignment timing controls by showing the code that could
accomplish the same timing effect without using intra-assignment.

Table 44—Intra-assignment timing control equivalence

Intra-assignment timing control
With intra-assignment construct Without intra-assignment construct
begin
a = #5 b; temp = b;
#5 a = temp;
end
begin
a = @(posedge clk) b; temp = b;
@(posedge clk) a = temp;
end
begin
a = repeat(3) temp = b;
@ (posedge clk) b; @ (posedge clk);
@(posedge clk);
@(posedge clk) a = temp;
end

The next three examples use the fork-join behavioral construct. All statements between the keywords fork
and join execute concurrently. This construct is described in more detail in 9.8.2.

The following example shows a race condition that could be prevented by using intra-assignment timing
control:

fork
#5 a =
#5 b =

o O

~e ~o

join

The code in this example samples and sets the values of both a and b at the same simulation time, thereby
creating a race condition. The intra-assignment form of timing control used in the next example prevents this
race condition.

fork // data swap
a = #5 b;
= #5 a;

g
|

join

Intra-assignment timing control works because the intra-assignment delay causes the values of a and b to be
evaluated before the delay, and the assignments to be made affer the delay. Some existing tools that imple-
ment intra-assignment timing control use temporary storage in evaluating each expression on the right-hand
side.

Intra-assignment waiting for events is also effective. In the following example, the right-hand side expres-
sions are evaluated when the assignment statements are encountered, but the assignments are delayed until
the rising edge of the clock signal.
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fork // data shift
a = @(posedge clk) b;
@ (posedge clk) c;

o
I

join

The following is an example of a repeat event control as the intra-assignment delay of a nonblocking assign-
ment:

a <= repeat(5) @ (posedge clk) data;

Figure 31 illustrates the activities that result from this repeat event control.

v data is evaluated

data
a

Figure 31—Repeat event control utilizing a clock edge

In this example, the value of data is evaluated when the assignment is encountered. After five occurrences
of posedge clk, a is assigned the value of data.

The following is an example of a repeat event control as the intra-assignment delay of a procedural assign-
ment:

a = repeat(num) @(clk) data;

In this example, the value of data is evaluated when the assignment is encountered. After the number of
transitions of c¢1k equals the value of num, a is assigned the value of data.

The following is an example of a repeat event control with expressions containing operations to specify both
the number of event occurrences and the event that is counted:

a <= repeat(at+b) @ (posedge phil or negedge phi2) data;

In this example, the value of data is evaluated when the assignment is encountered. After the sum of the
positive edges of phil and the negative edges of phi2 equals the sum of a and b, a is assigned the value
of data. Even if posedge phil and negedge phi2 occurred at the same simulation time, each will be
detected separately.
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9.8 Block statements

The block statements are a means of grouping two or more statements together so that they act syntactically
like a single statement. There are two types of blocks in the Verilog HDL:

— Sequential block, also called begin-end block
— Parallel block, also called fork-join block

The sequential block shall be delimited by the keywords begin and end. The procedural statements in
sequential block shall be executed sequentially in the given order.

The parallel block shall be delimited by the keywords fork and join. The procedural statements in parallel
block shall be executed concurrently.

9.8.1 Sequential blocks
A sequential block shall have the following characteristics:
— Statements shall be executed in sequence, one after another
— Delay values for each statement shall be treated relative to the simulation time of the execution of the
previous statement

— Control shall pass out of the block after the last statement executes

Syntax 9-13 gives the formal syntax for a sequential block.

function_seq_block ::= (From Annex A - A.6.3)
begin [ : block_identifier
{ block_item_declaration } ] { function_statement } end
seq_block ::=
begin [ : block_identifier
{ block_item_declaration } ] { statement } end
block_item_declaration ::= (From Annex A - A.2.8)
{ attribute_instance } block_reg_declaration
| { attribute_instance } event_declaration
| { attribute_instance } integer_declaration
| { attribute_instance } local_parameter_declaration
| { attribute_instance } parameter_declaration
| { attribute_instance } real_declaration
| { attribute_instance } realtime_declaration
| { attribute_instance } time_declaration

Syntax 9-13 Syntax for the sequential block

Examples:

Example 1 A sequential block enables the following two assignments to have a deterministic result:

begin

areg = breg;

creg = areg; // creg stores the value of breg
end

[ Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT



IEC 61691-4:2004(E) 171
|EEE 1364-2001(E)

The first assignment is performed and areq is updated before control passes to the second assignment.

Example 2 Delay control can be used in a sequential block to separate the two assignments in time.
begin
areg = breg;
@ (posedge clock) creg = areg; // assignment delayed until
end // posedge on clock

Example 3 The following example shows how the combination of the sequential block and delay control
can be used to specify a time-sequenced waveform.

parameter d = 50; // d declared as a parameter and

reg [7:0] r; // r declared as an 8-bit reg
begin // a waveform controlled by sequential delay

#d r = "h35;

#d r = 'hE2;

#d r = 'h00;

#d r = 'hF7;

#d -> end_wave;//trigger an event called end_wave
end

9.8.2 Parallel blocks
A parallel block shall have the following characteristics:

— Statements shall execute concurrently

— Delay values for each statement shall be considered relative to the simulation time of entering the
block

— Delay control can be used to provide time-ordering for assignments

— Control shall pass out of the block when the last time-ordered statement executes

Syntax 9-14 gives the formal syntax for a parallel block.

par_block ::= (From Annex A - A.6.3)
fork [ : block_identifier
{ block_item_declaration } ] { statement } join

block_item_declaration ::= (From Annex A - A.2.8)

{ attribute_instance } block_reg_declaration

{ attribute_instance } event_declaration

{ attribute_instance } integer_declaration

{ attribute_instance } local_parameter_declaration
| { attribute_instance } parameter_declaration

{ attribute_instance } real_declaration

{ attribute_instance } realtime_declaration

{ attribute_instance } time_declaration

Syntax 9-14 Syntax for the parallel block

The timing controls in a fork-join block do not have to be ordered sequentially in time.
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Example:

The following example codes the waveform description shown in example 3 of 9.8.1 by using a parallel
block instead of a sequential block. The waveform produced on the reg is exactly the same for both imple-
mentations.

fork
#50 r = 'h35;
#100 r = 'hE2;
#150 r = 'h00;

#200 r = 'hF7;
#250 -> end_wave;
join

9.8.3 Block names

Both sequential and parallel blocks can be named by adding : name of block after the keywords begin
or fork. The naming of blocks serves several purposes:

— It allows local variables, parameters, and named events to be declared for the block.
— It allows the block to be referenced in statements such as the disable statement (see Clause 11).

All variables shall be static that is, a unique location exists for all variables and leaving or entering blocks
shall not affect the values stored in them.

The block names give a means of uniquely identifying all variables at any simulation time.

9.8.4 Start and finish times

Both sequential and procedural blocks have the notion of a start and finish time. For sequential blocks, the
start time is when the first statement is executed, and the finish time is when the last statement has been exe-
cuted. For parallel blocks, the start time is the same for all the statements, and the finish time is when the last
time-ordered statement has been executed.

Sequential and parallel blocks can be embedded within each other, allowing complex control structures to be
expressed easily and with a high degree of structure. When blocks are embedded within each other, the tim-
ing of when a block starts and finishes is important. Execution shall not continue to the statement following
a block until the finish time for the block has been reached that is, until the block has completely finished
executing.

Examples:

Example 1 The following example shows the statements from the example in 9.8.2 written in the reverse
order and still producing the same waveform.

fork
#250 -> end_wave;
#200 r = 'hF7;
#150 r "h00;
#100 r "hE2;
#50 r = 'h35;

join
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Example 2 When an assignment is to be made after two separate events have occurred, known as the join-
ing of events, a fork-join block can be useful.

begin
fork
@Aevent;
@Bevent;
join
areg = breg;
end

The two events can occur in any order (or even at the same simulation time) and the fork-join block will
complete and the assignment will be made. In contrast to this, if the fork-join block was a begin-end
block and the Bevent occurred before the Aevent, then the block would be waiting for the next Bevent.

Example 3 This example shows two sequential blocks, each of which will execute when its controlling
event occurs. Because the event controls are within a fork-join block, they execute in parallel and the
sequential blocks can therefore also execute in parallel.

fork
@enable a
begin
#ta wa = 0;
#ta wa = 1;
#ta wa = 0;
end
@enable b
begin
#tb wb = 1;
#tb wb = 0;
#tb wb = 1;
end
join

9.9 Structured procedures

All procedures in the Verilog HDL are specified within one of the following four statements:

— initial construct
— always construct
— Task

— Function

The initial and always constructs are enabled at the beginning of a simulation. The initial construct shall exe-
cute only once and its activity shall cease when the statement has finished. In contrast, the always construct
shall execute repeatedly. Its activity shall cease only when the simulation is terminated. There shall be no
implied order of execution between initial and always constructs. The initial constructs need not be sched-
uled and executed before the always constructs. There shall be no limit to the number of initial and always
constructs that can be defined in a module.
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Tasks and functions are procedures that are enabled from one or more places in other procedures. Tasks and
functions are described in Section 10.

9.9.1 Initial construct

The syntax for the initial construct is given in Syntax 9-15.

initial_construct ::= (From Annex A - A.6.2)
initial statement

Syntax 9-15 Syntax for initial construct

Examples:

The following example illustrates use of the initial construct for initialization of variables at the start of sim-
ulation.

initial begin
areg = 0; // initialize a reg
for (index = 0; index < size; index = index + 1)
memory[index] = 0; //initialize memory word
end

Another typical usage of the initial construct is specification of waveform descriptions that execute once to
provide stimulus to the main part of the circuit being simulated.

initial begin
inputs = 'b000000; //initialize at time zero
#10 inputs = 'b011001; // first pattern
#10 inputs 'b011011; // second pattern
#10 inputs 'b011000; // third pattern
#10 inputs = 'b001000; // last pattern
end

9.9.2 Always construct

The always construct repeats continuously throughout the duration of the simulation. Syntax 9-16 shows the
syntax for the always construct.

always_construct ::= (From Annex A - A.6.2)
always statement

Syntax 9-16 Syntax for always construct

The always construct, because of its looping nature, is only useful when used in conjunction with some form
of timing control. If an always construct has no control for simulation time to advance, it will create a simu-
lation deadlock condition.
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The following code, for example, creates a zero-delay infinite loop.
always areg = ~areg;

Providing a timing control to the above code creates a potentially useful description as shown in the follow-
ing:

always #half period areg = ~areg;
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10. Tasks and functions

Tasks and functions provide the ability to execute common procedures from several different places in a
description. They also provide a means of breaking up large procedures into smaller ones to make it easier to
read and debug the source descriptions. This clause discusses the differences between tasks and functions,
describes how to define and invoke tasks and functions, and presents examples of each.

10.1 Distinctions between tasks and functions

The following rules distinguish tasks from functions:

— A function shall execute in one simulation time unit; a task can contain time-controlling statements.

— A function cannot enable a task; a task can enable other tasks and functions.

— A function shall have at least one input type argument and shall not have an output or inout type
argument; a task can have zero or more arguments of any type.

— A function shall return a single value; a task shall not return a value.

The purpose of a function is to respond to an input value by returning a single value. A task can support mul-
tiple goals and can calculate multiple result values. However, only the output or inout type arguments pass
result values back from the invocation of a task. A function is used as an operand in an expression; the value
of that operand is the value returned by the function.

Example:

Either a task or a function can be defined to switch bytes in a 16-bit word. The task would return the
switched word in an output argument, so the source code to enable a task called switch bytes could
look like the following example:

switch bytes (old word, new_word);

The task switch bytes would take the bytes in o1d_word, reverse their order, and place the reversed
bytes in new_word.

A word-switching function would return the switched word as the return value of the function. Thus, the
function call for the function switch_ bytes could look like the following example:

new _word = switch bytes (old word);

10.2 Tasks and task enabling

A task shall be enabled from a statement that defines the argument values to be passed to the task and the
variables that receive the results. Control shall be passed back to the enabling process after the task has com-
pleted. Thus, if a task has timing controls inside it, then the time of enabling a task can be different from the
time at which the control is returned. A task can enable other tasks, which in turn can enable still other
tasks with no limit on the number of tasks enabled. Regardless of how many tasks have been enabled, con-
trol shall not return until all enabled tasks have completed.
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10.2.1 Task declarations

The syntax for defining tasks is given in Syntax 10-1.

task_declaration ::= (From Annex A - A.2.7)
task [ automatic ] task_identifier ;
{ task_item_declaration }
statement
endtask
| task [ automatic ] task_identifier ( task_port_list ) ;
{ block_item_declaration }
statement
endtask
task_item_declaration ::=
block_item_declaration
| { attribute_instance } tf_input_declaration ;
| { attribute_instance } tf_output_declaration ;
| { attribute_instance } tf_inout_declaration ;
task_port_list ::=
task_port_item { , task_port_item }
task_port_item ::=
{ attribute_instance } tf_input_declaration
| { attribute_instance } tf_output_declaration
| { attribute_instance } tf_inout_declaration
tf_input_declaration ::=
input [ reg ] [ signed ] [ range ] list_of_port_identifiers
| input [ task_port_type ] list_of_port_identifiers
tf_output_declaration ::=
output [ reg ] [ signed ] [ range ] list_of_port_identifiers
| output [ task_port_type ] list_of port_identifiers
tf_inout_declaration ::=
inout [ reg | [ signed ] [ range ] list_of_port_identifiers
| inout [ task_port_type ] list_of_port_identifiers
task_port_type ::=
time | real | realtime | integer
block_item_declaration ::= (From Annex A - A.2.8)
{ attribute_instance } block_reg_declaration
{ attribute_instance } event_declaration
{ attribute_instance } integer_declaration
{ attribute_instance } local_parameter_declaration
{ attribute_instance } parameter_declaration
| { attribute_instance } real_declaration
{ attribute_instance } realtime_declaration
{ attribute_instance } time_declaration

block_reg_declaration ::=
reg [ signed ] [ range ]
list_of_block_variable_identifiers ;
list_of block_variable_identifiers ::=
block_variable_type { , block_variable_type }
block_variable_type ::=
variable_identifier
| variable_identifier dimension { dimension }

Syntax 10-1 Syntax for task declaration
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There are two alternate task declaration syntaxes.

The first syntax shall begin with the keyword task, followed by the optional keyword automatic, followed
by a name for the task and a semicolon, and ending with the keyword endtask. The keyword automatic
declares an automatic task that is reentrant with all the task declarations allocated dynamically for each con-
current task entry. Task item declarations can specify the following:

— Input arguments

—  Output arguments

— Inout arguments

— All data types that can be declared in a procedural block

The second syntax shall begin with the keyword task, followed by a name for the task and a parenthesis
enclosed task_port_list. The task_port_list shall consist of zero or more comma separated task_port_items.
There shall be a semicolon after the close parenthesis. The task body shall follow and then the keyword end-
task.

In both syntaxes, the port declarations shall have the same syntax as defined by the ¢/ _input_declaration,
tf_output_declaration and tf_inout_declaration, as detailed in Syntax 10-1 above.

Tasks without the optional keyword automatic are static tasks, with all declared items being statically allo-
cated. These items shall be shared across all uses of the task executing concurrently. Task with the optional
keyword automatic are automatic tasks. All items declared inside automatic tasks are allocated dynamically
for each invocation. Automatic task items can not be accessed by hierarchical references. Automatic tasks
can be invoked through use of their hierarchical name.

10.2.2 Task enabling and argument passing

The task enabling statement shall pass arguments as a comma-separated list of expressions enclosed in
parentheses. The formal syntax of the task enabling statement is given in Syntax 10-2.

task_enable ::= (From Annex A - A.6.9)
hierarchical_task_identifier [ ( expression { , expression } ) ] ;

Syntax 10-2 Syntax of the task enabling statement

The list of arguments for a task enabling statement shall be optional. If the list of arguments is provided, the
list shall be an ordered list of expressions that has to match the order of the list of arguments in the task def-
inition.

If an argument in the task is declared as an input, then the corresponding expression can be any expression.
The order of evaluation of the expressions in the argument list is undefined. If the argument is declared as an
output or an inout, then the expression shall be restricted to an expression that is valid on the left-hand side
of a procedural assignment (see 9.2). The following items satisfy this requirement:

— reg, integer, real, realtime, and time variables

— Memory references

— Concatenations of reg, integer, real, realtime and time variables
— Concatenations of memory references

— Bit-selects and part-selects of reg, integer, and time variables
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The execution of the task enabling statement shall pass input values from the expressions listed in the
enabling statement to the arguments specified within the task. Execution of the return from the task shall
pass values from the task output and inout type arguments to the corresponding variables in the task
enabling statement. All arguments to the task shall be passed by value rather than by reference (that is, a
pointer to the value).

Examples:

Example 1 The following example illustrates the basic structure of a task definition with five arguments.

task my task;
input a, b;

inout c;
output d, e;
begin
« o . // statements that perform the work of the task

c = fool; // the assignments that initialize result regs
d = foo2;

e = foo3;

end

endtask

Or using the second form of a task declaration, the task could be defined as:
task my task (input a, b, inout c, output d, e);
begin
.« o . // statements that perform the work of the task

c = fool; // the assignments that initialize result regs
d = foo2;
e

end
endtask

The following statement enables the task:
my task (v, w, X, ¥, 2);

The task enabling arguments (v, w, x, y, and z) correspond to the arguments (a, b, ¢, d, and e)
defined by the task. At task enabling time, the input and inout type arguments (a, b, and c) receive the
values passed in v, w, and x. Thus, execution of the task enabling call effectively causes the following
assignments:

a = v;
b = w;
c = X;

As part of the processing of the task, the task definition for my task shall place the computed result values
into ¢, d, and e. When the task completes, the following assignments to return the computed values to the
calling process are performed:

X = C;
y = d;
zZ = e;
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Example 2 The following example illustrates the use of tasks by describing a traffic light sequencer:

module traffic lights;

reg clock, red, amber, green;

parameter on = 1, off = 0, red tics = 350,
amber tics = 30, green tics = 200;

// initialize colors.
initial red = off;

initial amber = off;

initial green = off;

always begin // sequence to control the lights.
red = on; // turn red light on
light(red, red tics); // and wait.
green = on; // turn green light on
light(green, green tics); // and wait.
amber = on; // turn amber light on

light (amber, amber tics); // and wait.
end

// task to wait for ’'tics’ positive edge clocks
// before turning ‘color’ light off.

task light;

output color;

input [31:0] tics;

begin
repeat (tics) @ (posedge clock);
color = off; // turn light off.
end
endtask
always begin // waveform for the clock.
#100 clock = 0;
#100 clock = 1;
end

endmodule // traffic_lights.

10.2.3 Task memory usage and concurrent activation

A task may be enabled more than once concurrently. All variables of an automatic task shall be replicated on
each concurrent task invocation to store state specific to that invocation. All variables of a static task shall be
static in that there shall be a single variable corresponding to each declared local variable in a module
instance, regardless of the number of concurrent activations of the task. However, static tasks in different
instances of a module shall have separate storage from each other.

Variables declared in static tasks shall retain their values between invocations. They shall be initialized to
the default initialization value as described in 3.2.2. Variables declared in automatic tasks shall be initialized
to the default initialization value whenever execution enters their scope.

Because variables declared in automatic tasks are deallocated at the end of the task invocation, they shall not
be used in certain constructs that might refer to them after that point.
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— They shall not be assigned values using nonblocking assignments or procedural continuous assign-
ments.
—  They shall not be referenced by procedural continuous assignments or procedural force statements.

— They shall not be referenced in intra-assignment event controls of nonblocking assignments.
—  They shall not be traced with system tasks such as $monitor and $dumpvars.

10.3 Functions and function calling

The purpose of a function is to return a value that is to be used in an expression. The rest of this clause
explains how to define and use functions.
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10.3.1 Function declarations

The syntax for defining a function is given in Syntax 10-3.
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function_declaration ::= (From Annex A - A.2.6)
function [ automatic ] [ signed ] [ range_or_type ]
function_identifier ;

function_item_declaration { function_item_declaration }

function_statement
endfunction
| function [ automatic ] [ signed ] [ range_or_type ]
function_identifier ( function_port_list ) ;
block_item_declaration { block_item_declaration }
function_statement
endfunction
function_item_declaration ::=
block_item_declaration
| tf_input_declaration
function_port_list ::=
{ attribute_instance } tf_input_declaration
{, { attribute_instance }tf_input_declaration }
tf_input_declaration ::=
input [ reg ] [ signed ] [ range ] list_of_port_identifiers
| input [ task_port_type ] list_of_port_identifiers
range_or_type ::=
range | integer | real | realtime | time
block_item_declaration ::= (From Annex A - A.2.8)
{ attribute_instance } block_reg_declaration
| { attribute_instance } event_declaration
| { attribute_instance } integer_declaration
| { attribute_instance } local_parameter_declaration
| { attribute_instance } parameter_declaration
| { attribute_instance } real_declaration
| { attribute_instance } realtime_declaration
| { attribute_instance } time_declaration
block_reg_declaration ::=
reg [ signed ] [ range |
list_of block_variable_identifiers ;
list_of_block_variable_identifiers ::=
block_variable_type { , block_variable_type }
block_variable_type ::=
variable_identifier
| variable_identifier dimension { dimension }

Syntax 10-3 Syntax for function declaration

A function definition shall begin with the keyword function, followed by the optional keyword automatic,
followed by the optional signed designator, followed by the range or type of the return value from the func-
tion, followed by the name of the function, and then either a semicolon, or a function port list enclosed in
parenthesis, and then a semicolon, and then shall end with the keyword endfunction. The use of a
range_or_type shall be optional. A function specified without a range or type defaults to a one bit reg for the
return value. If used, range_or_type shall specify the return value of the function is a real, an integer, a
time, a realtime or a value with a range of [n:m] bits. A function shall have at least one input

declared.
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The keyword automatic declares a recursive function with all the function declarations allocated dynami-
cally for each recursive call. Automatic function items can not be accessed by hierarchical references. Auto-
matic functions can be invoked through the use of their hierarchical name.

Function inputs shall be declared one of two ways. The first method shall have the name of the function fol-
lowed by a semicolon. After the semicolon one or more input declarations optionally mixed with block item
declarations shall follow. After the function item declarations there shall be a behavioral statement and then
the endfunction keyword.

The second method shall have the name of the function, followed by an open parenthesis, and one or more
input declarations, separated by commas. After all the input declarations, there shall be a close parenthesis,
and a semicolon. After the semicolon, there shall be zero or more block item declarations, followed by a
behavioral statement, and then the endfunction keyword.

Example:

The following example defines a function called getbyte, using a range specification.

function [7:0] getbyte;

input [15:0] address;

begin
// code to extract low-order byte from addressed word
getbyte = result expression;

end

endfunction

Or using the second form of a function declaration, the function could be defined as:

function [7:0] getbyte (input [15:0] address);

begin
// code to extract low-order byte from addressed word
getbyte = result expression;

end

endfunction

10.3.2 Returning a value from a function

The function definition shall implicitly declare a variable, internal to the function, with the same name as the
function. This variable either defaults to a 1-bit reg or is the same type as the type specified in the function
declaration. The function definition initializes the return value from the function by assigning the function
result to the internal variable with the same name as the function.

It is illegal to declare another object with the same name as the function in the scope where the function is
declared. Inside a function, there is an implied variable with the name of the function, which may be used in
expressions within the function. It is, therefore, also illegal to declare another object with the same name as
the function inside the function scope.

The following line from the example in 10.3.1 illustrates this concept:

getbyte = result expression;

[ Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od



184 IEC 61691-4:2004(E)
IEEE 1364-2001(E)

10.3.3 Calling a function

A function call is an operand within an expression. The function call has the syntax given in Syntax 10-4.

function_call ::= (From Annex A - A.8.2)
hierarchical_function_identifier{ attribute_instance } ( expression { , expression } )

Syntax 10-4 Syntax for function call

The order of evaluation of the arguments to a function call is undefined.
Example:

The following example creates a word by concatenating the results of two calls to the function getbyte
(defined in 10.3.1):

word = control ? {getbyte(msbyte), getbyte(lsbyte)}:0;
10.3.4 Function rules
Functions are more limited than tasks. The following six rules govern their usage:

a) A function definition shall not contain any time-controlled statements that is, any statements
introduced with #, @, or wait.

b)  Functions shall not enable tasks.
¢) A function definition shall contain at least one input argument.
d) A function definition shall not have any argument declared as output or inout.

e) A function definition shall include an assignment of the function result value to the internal variable
that has the same name as the function name.

f) A function shall not have any nonblocking assignments.
Example:

This example defines a function called factorial that returns an integer value. The factorial func-
tion is called iteratively and the results are printed.
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module tryfact;

// define the function
function automatic integer factorial;
input [31:0] operand;
integer 1i;
if (operand >= 2)
factorial = factorial (operand - 1) * operand;
else
factorial = 1;
endfunction

// test the function
integer result;
integer n;
initial begin
for (n = 0; n <= 7; n = nt+l) begin
result = factorial(n);
$display ("%0d factorial=%0d", n, result);
end
end
endmodule // tryfact

The simulation results are as follows:

factorial=1l
factorial=1
factorial=2
factorial=6
factorial=24
factorial=120
factorial=720
factorial=5040

NoOOodbds WP O

10.3.5 Use of constant functions

Constant function calls are used to support the building of complex calculations of values at elaboration
time (see 12.1.3). A constant function call shall be a function invocation of a constant function local to the
calling module where the arguments to the function are constant expressions. Constant functions are a subset
of normal Verilog functions that shall meet the following constraints:

— They shall contain no hierarchical references.

— Any function invoked within a constant function shall be a constant function local to the current
module. System functions shall not be invoked.

— All system tasks within a constant function shall be ignored.

— All system functions within a constant function shall be illegal.

— The only system task that may be invoked is $display, and it shall be ignored when invoked at
elaboration time.
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— All parameter values used within the function shall be defined before the use of the invoking constant
Sfunction call (i.e. any parameter use in the evaluation of a constant function call constitutes a use of
that parameter at the site of the original constant function call).

— All identifiers which are not parameters or functions shall be declared locally to the current function.

— If they use any parameter value that is affected directly or indirectly by a defparam statement (see
12.2.1), the result is undefined. This can produce an error or the constant function can return an inde-
terminate value.

—  They shall not be declared inside a generate scope.

—  They shall not themselves use constant functions in any context requiring a constant expression.

Constant function calls are evaluated at elaboration time. Their execution has no effect on the initial values
of the variables used either at simulation time or among multiple invocations of a function at elaboration
time. In each of these cases, the variables are initialized as they would be for normal simulation.

Example:

This example defines a function called clogb2 that returns an integer which has the value of the ceiling of
the log base 2.

module ram model (address, write, chip select, data);
parameter data width = 8;
parameter ram depth = 256;
localparam adder width = clogb2(ram depth);
input [adder width - 1:0] address;
input write, chip select;
inout [data width - 1:0] data;

//define the clogb2 function
function integer clogb2;
input [31:0] value;
for (clogb2=0; value>0; clogb2=clogb2+1l;)
value = value>>1;
endfunction

reg [data_width - 1:0] data_store[0O:ram depth - 1];
//the rest to the ram model

An instance of this ram model with parameters assigned:

ram model #(32,421) ram alO(a_addr,a wr,a cs,a data);
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11. Disabling of named blocks and tasks

The disable statement provides the ability to terminate the activity associated with concurrently active pro-
cedures, while maintaining the structured nature of Verilog HDL procedural descriptions. The disable state-
ment gives a mechanism for terminating a task before it executes all its statements, breaking from a looping
statement, or skipping statements in order to continue with another iteration of a looping statement. It is use-
ful for handling exception conditions such as hardware interrupts and global resets.

The disable statement has the syntax form shown in Syntax 11-1.

disable_statement ::= (From Annex A - A.6.5)
disable hierarchical_task_identifier ;
| disable hierarchical_block_identifier ;

Syntax 11-1 Syntax of disable statement

Either form of disable statement shall terminate the activity of a task or a named block. Execution shall
resume at the statement following the block or following the task enabling statement. All activities enabled
within the named block or task shall be terminated as well. If task enable statements are nested that is, one
task enables another, and that one enables yet another then disabling a task within the chain shall disable
all tasks downward on the chain. If a task is enabled more than once, then disabling such a task shall disable
all activations of the task.

The results of the following activities that may be initiated by a task are not specified if the task is disabled:

— Results of output and inout arguments
— Scheduled, but not executed, nonblocking assignments
— Procedural continuous assignments (assign and force statements)

The disable statement can be used within blocks and tasks to disable the particular block or task containing
the disable statement. The disable statement can be used to disable named blocks within a function, but can-
not be used to disable functions. In cases where a disable statement within a function disables a block or a
task that called the function, the behavior is undefined. Disabling an automatic task or a block inside an
automatic task proceeds as for regular tasks for all concurrent executions of the task.

Examples:

Example 1 This example illustrates how a block disables itself.

begin - block name

rega = regb;

disable block name;

regc = rega; // this assignment will never execute
end

Example 2 This example shows the disable statement being used within a named block in a manner similar
to a forward goto. The next statement executed after the disable statement is the one following the named
block.
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begin - block name

if (a==0)
disable block name;
end---// end of named block
// continue with code following named block

Example 3 This example shows the disable statement being used as an early return from a task. However, a
task disabling itself using a disable statement is not a short-hand for the refurn statement found in program-
ming languages.

task proc_a;

begin
if (a == 0)
disable proc_a; // return if true
end
endtask

Example 4 This example shows the disable statement being used in an equivalent way to the two state-
ments continue and break in the C programming language. The example illustrates control code that would
allow a named block to execute until a loop counter reaches n iterations or until the variable a is set to the
value of b. The named block break contains the code that executes untila == b, at which point the dis-
able break; statement terminates execution of that block. The named block continue contains the
code that executes for each iteration of the For loop. Each time this code executes the disable con-
tinue; statement, the continue block terminates and execution passes to the next iteration of the For
loop. For each iteration of the continue block, a set of statements executes if (a "= 0). Another set of
statements executes i1 F(al=b).

begin - break
for (i = O; 1 < n; i = i+l) begin - continue
@clk
if (a == 0) // “continue"™ loop
disable continue;
Statements
Statements
@clk
if (a == b) // "break" from loop
disable break;
Statements
Statements
end
end
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Example 5 This example shows the disable statement being used to disable concurrently a sequence of tim-
ing controls and the task action, when the reset event occurs. The example shows a Fork/join block
within which is a named sequential block (event_expr) and a disable statement that waits for occurrence
of the event reset. The sequential block and the wait for reset execute in parallel. The event_expr
block waits for one occurrence of event ev1 and three occurrences of event trig. When these four events
have happened, plus a delay of d time units, the task action executes. When the event reset occurs,
regardless of events within the sequential block, the Fork/join block terminates including the task
action.

fork
begin - event_expr
@evl;
repeat (3) @trig;
#d action (areg, breg);
end
@reset disable event_expr;
join

Example 6 The next example is a behavioral description of a retriggerable monostable. The named event
retrig restarts the monostable time period. If retrig continues to occur within 250 time units, then g
will remain at 1.

always begin - monostable
#250 q = O;
end

always @retrig begin
disable monostable;
q=1;

end
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12. Hierarchical structures

The Verilog HDL supports a hierarchical hardware description structure by allowing modules to be embed-
ded within other modules. Higher-level modules create instances of lower-level modules and communicate
with them through input, output, and bidirectional ports. These module input/output ports can be scalar or
vector.

As an example of a module hierarchy, consider a system consisting of printed circuit boards (PCBs). The
system would be represented as the top-level module and would create instances of modules that represent
the boards. The board modules would, in turn, create instances of modules that represent ICs, and the ICs
could, in turn, create instances of modules such as flip-flops, mux s, and aluss.

To describe a hierarchy of modules, the user provides textual definitions of the various modules. Each mod-
ule definition stands alone; the definitions are not nested. Statements within the module definitions create
instances of other modules, thus describing the hierarchy.

12.1 Modules

This clause gives the formal syntax for a module definition and then gives the syntax for module instantia-
tion, along with an example of a module definition and a module instantiation.

A module definition shall be enclosed between the keywords module and endmodule. The identifier fol-
lowing the keyword module shall be the name of the module being defined. The optional list of parameter
definitions shall specify an ordered list of the parameters for the module. The optional list of ports or port
declarations shall specify an ordered list of the ports for the module. The order used used in defining the list
of parameters in the modulle_parameter_port_list and in the list of ports can be significant when
instantiating the module (see 12.2.2.1 and 12.3.5). The identifiers in this list shall be declared in input, out-
put, and inout statements within the module definition. Ports declared in the list of port declarations shall not
be redeclared within the body of the module. The module items define what constitutes a module and they
include many different types of declarations and definitions; many of which have already been introduced.

The keyword macromodule can be used interchangeably with the keyword module to define a module. An
implementation can choose to treat module definitions beginning with macromodule keyword differently.
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module_declaration ::= (From Annex A - A.1.3)
{ attribute_instance } module_keyword module_identifier [ module_parameter_port_list ]
[ list_of_ports ] 5 { module_item }
endmodule
| { attribute_instance } module_keyword module_identifier [ module_parameter_port_list ]
[ list_of_port_declarations ] ; { non_port_module_item }
endmodule
module_keyword ::= module | macromodule

module_parameter_port_list ::= (From Annex A -A.1.4
# ( parameter_declaration { , parameter_declaration } )
list_of_ports ::= (port { , port } )
list_of_port_declarations ::= ( port_declaration { , port_declaration } ) | ()
port ::= [ port_expression ] | . port_identifier ( [ port_expression ])
port_expression ::= port_reference | { port_reference { , port_reference } }
port_reference ::= port_identifier | port_identifier [ constant_expression ]
| port_identifier [ range_expression ]
port_declaration ::= {attribute_instance} inout_declaration
| {attribute_instance} input_declaration
| {attribute_instance} output_declaration
module_item ::= module_or_generate_item (From Annex A - A.1.5)
| port_declaration
| { attribute_instance } generated_instantiation
| { attribute_instance } local_parameter_declaration
| { attribute_instance } parameter_declaration
| { attribute_instance } specify_block
| { attribute_instance } specparam_declaration
module_or_generate_item ::= { attribute_instance } module_or_generate_item_declaration
| { attribute_instance } parameter_override
| { attribute_instance } continuous_assign
| { attribute_instance } gate_instantiation
| { attribute_instance } udp_instantiation
| { attribute_instance } module_instantiation
| { attribute_instance } initial_construct
| { attribute_instance } always_construct
module_or_generate_item_declaration ::= net_declaration
| reg_declaration
integer_declaration
real_declaration
time_declaration
realtime_declaration
event_declaration
| genvar_declaration
task_declaration
function_declaration

non_port_module_item ::= { attribute_instance } generated_instantiation
{ attribute_instance } local_parameter_declaration

{ attribute_instance } module_or_generate_item

{ attribute_instance } parameter_declaration

{ attribute_instance } specify_block

| { attribute_instance } specparam_declaration

parameter_override ::= defparam list_of_param_assignments ;

Syntax 12-1 Syntax for module
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See 12.3 for the definitions of ports.
12.1.1 Top-level modules

Top-level modules are modules that are included in the source text but are not instantiated, as described in
12.1.2.

12.1.2 Module instantiation

Instantiation allows one module to incorporate a copy of another module into itself. Module definitions do
not nest. That is, one module definition shall not contain the text of another module definition within its
module-endmodule keyword pair. A module definition nests another module by instantiating it. The mod-

ule instantiation statement creates one or more named instances of a defined module.

For example, a counter module might instantiate a D flip-flop module to create multiple instances of the flip-
flop.

Syntax 12-2 gives the syntax for specifying instantiations of modules.

module_instantiation ::= (From Annex A - A.4.1)

module_identifier [ parameter_value_assignment ]

module_instance { , module_instance } ;

parameter_value_assignment ::=

# (list_of_parameter_assignments )
list_of_parameter_assignments ::=

ordered_parameter_assignment { , ordered_parameter_assignment }

| named_parameter_assignment { , named_parameter_assignment }
ordered_parameter_assignment ::=

expression
named_parameter_assignment ::=

. parameter_identifier ( [ expression ])
module_instance ::=

name_of_instance ( [ list_of_port_connections ] )
name_of _instance ::=

module_instance_identifier [ range ]
list_of_port_connections ::=

ordered_port_connection { , ordered_port_connection }

| named_port_connection { , named_port_connection }
ordered_port_connection ::=

{ attribute_instance } [ expression ]
named_port_connection ::=

{ attribute_instance } .port_identifier ( [ expression ])

Syntax 12-2 Syntax for module instantiation

The instantiations of modules can contain a range specification. This allows an array of instances to be cre-
ated. The array of instances are described in 7.1. The syntax and semantics of arrays of instances defined for
gates and primitives apply for modules as well.

One or more module instances (identical copies of a module) can be specified in a single module instantia-
tion statement.
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The list of port connections shall be provided only for modules defined with ports. The parentheses, how-
ever, are always required. When a list of port connections is given using the ordered port connection method,
the first element in the list shall connect to the first port declared in the module, the second to the second
port, and so on. See 12.3 for a more detailed discussion of ports and port connection rules.

A connection can be a simple reference to a variable or a net identifier, an expression, or a blank. An expres-
sion can be used for supplying a value to a module input port. A blank port connection shall represent the sit-
uation where the port is not to be connected.

When connecting ports by name, an unconnected port can be indicated either by omitting it in the port list,
or by providing no expression in the parentheses [i.e., .port_name Q]

Examples:

Example 1 The following example illustrates a circuit (the lower-level module) being driven by a simple
waveform description (the higher-level module) where the circuit module is instantiated inside the wave-
form module.

// Lower level module:

// module description of a nand Fflip-flop circuit

module ffnand (g, gbar, preset, clear);

output ¢, gbar; //declares 2 circuit output nets
input preset, clear; //declares 2 circuit input nets

// declaration of two nand gates and their interconnections
nand g1 (q, gbar, preset),

g2 (gbar, g, clear);
endmodule

// Higher-level module:

// a waveform description for the nand Fflip-flop
module ffnand_wave;

wire outl, out2; //outputs from the circuit

reg inl, in2; //variables to drive the circuit
parameter d = 10;

// instantiate the circuit ffnand, name it “ff”,
// and specify the 10 port interconnections
ffnand fFf(outl, out2, inl, in2);

// define the waveform to stimulate the circuit
initial begin

#d inl = 0; in2 = 1;
#d inl = 1;
#d in2 = 0;
#d in2 = 1;
end
endmodule

Example 2 The following example creates two instances of the flip-flop module FFnand defined in exam-
ple 1. It connects only to the q output in one instance and only to the gbar output in the other instance.
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// a waveform description for testing
// the nand flip-flop, without the output ports
module Ffnand_wave;
reg inl, in2; //variables to drive the circuit
parameter d = 10;
// make two copies of the circuit ffnand
// Tfl has gbar unconnected, ff2 has g unconnected
ffnand ffl(outl, , inl, in2),
ff2(.gbar(out2), .clear(in2), .preset(inl), .qQ);
// fFf3(.q(outld), .clear(inl),,,); is illegal

// define the waveform to stimulate the circuit
initial begin

#d inl = 0; in2 = 1;
#d inl = 1;
#d in2 = 0;
#d in2 = 1;
end
endmodule

12.1.3 Generated instantiation

After a Verilog design has been parsed, but before simulation begins, the design must have the modules
being instantiated linked to the modules being defined, the parameters propagated among the various mod-
ules, and hierarchical references resolved. This phase in understanding a Verilog description is termed
elaboration.

Generate instantiations are resolved during elaboration because that is when the parameters associated with
a module become defined, hence, allowing the definition of the generated statements and declarations.
Genvars are only defined during the evaluation of the generate instantiations and do not exist during simula-
tion of a design.

Generate statements facilitate the creation of parameterized models. When used with constant functions (see
10.3.5), parameters can be used to constrain other parameter(s) or localparam(s) in a generated design.

All generate instantiations are coded within a module scope and require the keywords generate - endgener-
ate.

Generate statements allow control over the declaration of variables, functions and tasks, as well as control
over instantiations. Generated instantiations are one or more: modules, user defined primitives, Verilog gate
primitives, continuous assignments, initial blocks and always blocks. Generated declarations and instantia-
tions can be conditionally instantiated into a design. Generated variable declarations and instantiations can
be multiply instantiated into a design. Generated instances have unique identifier names and can be refer-
enced hierarchically as described in 12.4.

To support the interconnection between structural elements and/or procedural blocks, generate statements
permit the following Verilog data types to be declared within the generate scope: net, reg, integer, real,
time, realtime, and event. Generated data types have unique identifier names and can be referenced hierar-
chically as described in 12.4 .

Parameter redefinition using ordered or named parameter = value assignment or defparam state-
ments can also be declared within the generate scope. However, a defparam statement within the generate
scope or within a hierarchy instantiated within the generate scope shall only modify the value of a parameter
declared within the generate scope or within a hierarchy instantiated within the generate scope.
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Tasks and functions declarations shall also be permitted within the generate scope, however not in a generate
loop. Generated tasks and functions shall have unique identifier names and may be referenced hierarchically
as described in 12.4.

Module declarations and module items that shall not be permitted in a generate statement include: parame-
ters, local parameters, input declarations, output declarations, inout declarations and specify blocks.

Connections to generated module instances are handled the same way as they are handled with normal mod-
ule instances as described in 12.1.2.

Generated statements are created using one of the following three methods: generate-loop, generate-condi-
tional, or generate-case.

The syntax for generate instantiations is given in Syntax 12-3.
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module_item ::= (From Annex A - A.1.5)
module_or_generate_item
port_declaration ;
{ attribute_instance } generated_instantiation
{ attribute_instance } local_parameter_declaration
{ attribute_instance } parameter_declaration
{ attribute_instance } specify_block
{ attribute_instance } specparam_declaration
module_or_generate_item ::=
{ attribute_instance } module_or_generate_item_declaration
{ attribute_instance } parameter_override
{ attribute_instance } continuous_assign
{ attribute_instance } gate_instantiation
{ attribute_instance } udp_instantiation
{ attribute_instance } module_instantiation
{ attribute_instance } initial_construct
{ attribute_instance } always_construct
module_or_generate_item_declaration ::=
net_declaration
reg_declaration
integer_declaration
real_declaration
time_declaration
realtime_declaration
event_declaration
genvar_declaration
task_declaration
function_declaration
generated_instantiation ::= (From Annex A -A.4.2)
generate { generate_item } endgenerate
generate_item_or_null ::=
generate_item | ;
generate_item ::=
generate_conditional_statement
| generate_case_statement
| generate_loop_statement
| generate_block
| module_or_generate_item
generate_conditional_statement ::=
if ( constant_expression ) generate_item_or_null [ else generate_item_or_null ]
generate_case_statement ::= case ( constant_expression )
genvar_case_item { genvar_case_item } endcase
genvar_case_item ::= constant_expression { , constant_expression } :
generate_item_or_null | default [ : ] generate_item_or_null
generate_loop_statement u=
for ( genvar_assignment ; constant_expression ; genvar_assignment )
begin : generate_block_identifier { generate_item } end
genvar_assignment ::=
genvar_identifier = constant_expression
generate_block ::=
begin [ : generate_block_identifier | { generate_item } end

Syntax 12-3 Syntax for generate blocks
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12.1.3.1 genvar - generate statement index variable

An index variable that shall only be declared for use in generate statements shall be declared as a genvar and
is referred to as a genvar in the rest of this section.

The syntax for generate statement index variable declarations is given in Syntax 12-4.

genvar_declaration ::= (From Annex A - A.2.1.3)
genvar list_of genvar_identifiers ;

list_of_genvar_identifiers ::= (From Annex A - A.2.3)
genvar_identifier { , genvar_identifier }

Syntax 12-4 Syntax for generate statement index variable declaration

A genvar shall be declared within the module where the genvar is used. A genvar can be declared either
inside or outside of a generate scope. A genvar is an integer that is local to and shall only be used within a
generate loop that uses it as an index variable. If any bit of the genvar ever is set to an X or Z or if the genvar
is set to a negative value, this shall be an error.

Genvars are only defined during the evaluation of the generate blocks (see 12.1.3), and do not exist during
simulation of a Verilog design.

The value of a genvar shall only be defined by a generate loop. Two generate loops using the same genvar as
an index variable shall not be nested. The value of a genvar can be referenced in any context where the value
of a parameter could be referenced.

12.1.3.2 generate-loop

A generate-loop permits one or more variable declarations, modules, user defined primitives, gate primi-
tives, continuous assignments, initial blocks and always blocks to be instantiated multiple times using a for-
loop. The index loop variable used in a generate for-loop shall be declared as a genvar. Both genvar assign-
ments in the for-loop shall assign to the same genvar, which is the loop index variable. The first genvar
assignment in the for-loop shall not reference the loop index variable on the right hand side.

Examples:

Example 1 A parameterized gray-code to binary-code converter module using a loop to generate continu-
ous assignments

module gray2binl (bin, gray);
parameter SIZE = 8; // this module is parameterizable
output [SI1ZE-1:0] bin;
input [SI1ZE-1:0] gray;

genvar 1i;

I<SIZE; i=i+1) begin:bit
~gray[SIZE-1:i1];

generate for (i=0
assign bin[i]
end endgenerate
endmodule
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Example 2 The same gray-code to binary-code converter module in example 1 is built using a loop to gen-
erate always blocks

module gray2bin2 (bin, gray);
parameter SIZE = 8; // this module is parameterizable
output [SI1ZE-1:0] bin;
input [S1ZE-1:0] gray;
reg [SI1ZE-1:0] bin;

genvar 1;

generate for (i=0; I<SIZE; i=i+1) begin:bit
always @(gray[S1ZE-1:1]) // fixed part select
bin[i] = ~gray[SI1ZE-1:i];
end endgenerate
endmodule

The models in examples 3 and 4 are parameterized modules of ripple adders using a loop to generate Verilog
gate primitives. Example 3 uses a two dimensional net declaration outside of the generate loop to make the
connections between the gate primitives while example 4 makes the net declaration inside of the generate
loop to generate the wires needed to connect the gate primitives for each iteration of the loop.
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Example 3 Generated ripple adder with two-dimensional net declaration outside of the generate loop

module addergenl (co, sum, a, b, ci);
parameter SIZE = 4;
output [SIZE-1:0] sum;

output Cco;
input [SI1ZE-1:0] a, b;
input ci;

wire [SIZE :0] c;
wire [S1ZE-1:0] t [1:3];
genvar i;

assign c[0] = ci;

//
//
//
//
//
//
//
//
//

Generated instance names are:

xor gates: bit[0].-g1 bit[1]-gl bit[2]-91 bit[3]-
bit[0].g2 bit[1]-g2 bit[2].92 bit[3].-

and gates: bit[0]-g3 bit[1]-g3 bit[2].g3 bit[3].
bit[0].g4 bit[1]-g4 bit[2].g4 bit[3].-

or gates: bit[0]-g5 bit[1]-g5 bit[2]-g5 bit[3].-

Generated instances are connected with

gl
g2
g3
g4
ags

multi-dimensional nets t[1][3:0] t[2][3:0] t[3][3:0]

(12 multi-dimensional nets total)

generate
for(i=0; i<SIZE; i=i+1) begin:bit

xor g1 ( t[1][il, a[il, bLi]);
xor g2 ( sum[i], t[1][il, clil);
and g3 ( t[2][1i], a[il, bLi]);
and g4 ( t[3][i1], t[1][i], clil);
or g5 ( c[i+l], t[2][i], t[3]1[i]);

end
endgenerate

assign co = c[SIZE];
endmodule
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Example 4 Generated ripple adder with net declaration inside of the generate loop

module addergenl (co, sum, a, b, ci);
parameter SIZE = 4;
output [SIZE-1:0] sum;

output Cco;
input [SI1ZE-1:0] a, b;
input ci;

wire [SIZE :0] c;
genvar i;
assign c[0] = ci;

// Generated instance names are:
// xor gates: bit[0].g1 bit[1]-g1 bit[2].-gl bit[3]-gl

// bit[0]-92 bit[1]-92 bit[2]-g2 bit[3].g2
// and gates: bit[0].g3 bit[1]-g3 bit[2]-g3 bit[3]-g3
// bit[0].g4 bit[1].-g4 bit[2].g4 bit[3].g4

// or gates: bit[0]-g5 bit[1]-g5 bit[2]-g5 bit[3]-g5
// Generated instances are connected with
// generated nets: bit[0].-tl bit[1]-t1 bit[2]-t1l bit[3]-tl

// bit[0].t2 bit[1].t2 bit[2].t2 bit[3].t2
// bit[0].t3 bit[1].t3 bit[2].t3 bit[3].t3
generate

for(i=0; i<SIZE; i=i+1) begin:bit
wire tl, t2, t3; // generated net declaration

xor gl ( tl, a[i], b[i]);
xor g2 ( sum[i], ti1, c[i]);

and g3 ( t2, a[i], b[il);
and g4 ( t3, tl, c[i]);
or g5 ( c[i+1], t2, t3);
end
endgenerate

assign co = c[SIZE];
endmodule

The generated instance names in a multi-level generate loop are shown in example 5. The generated name
for the scope at each generate loop is created by adding the "[genvar s value]" string to the end of the gener-
ate block identifier for the loop. The generated names are now generated identifiers (see 2.7.2) which can be
used in hierarchical path names (see 12.4).
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Example 5 A multi-level generate loop

parameter SIZE = 2;
genvar i, j, k, m;
generate
for (i=0; i<SIZE+1; i=i+1) begin:Bl // scope Bl[i]
M1 N1Q); // instantiates B1[i]-N1[i]
for (J=0; J<SIZE; j=j+1) begin:B2 // scope B1[i]-B2[j]l
M2 N2(); // instantiates B1[i].B2[j]-N2
for (k=0; Kk<SIZE; k=k+1) begin:B3 // scope B1l[i]-B2[j]-B3[k]
M3 N3(); // instantiates B1[i].B2[j]-B3[k]-N3
end
end
if (i>0)
for (m=0; m<SIZE; m=m+1) begin:B4 // scope B1[i]-B4[m]
M4 N4Q; // instantiates B1[i].B4[m]-N4
end
end
endgenerate

// some of the generated instance names are:
// B1[0].N1 Bi[1]-N1

// B1[0].B2[0]-N2 B1[0]-B2[1]-N2

// B1[0].B2[0]-B3[0]-N3 B1[0]-B2[0]-B3[1]-N3
// B1[0]1.B2[1]-B3[0]-N3

// B1[1].B4[0]-N4 B1[1].B4[1]-N4

12.1.3.3 generate-conditional

A generate-conditional is an if-else-if generate construct that permits modules, user defined primitives, Ver-
ilog gate primitives, continuous assignments, initial blocks and always blocks to be conditionally instanti-
ated into another module based on an expression that is deterministic at the time the design is elaborated.

Example 6 shows the implementation of a parameterized module. If either of the multiplier s a_width or
b_width parameters are less than 8 (bits), a CLA multiplier is instantiated. If both of the multiplier s
a_width or b_width parameters are greater than or equal to 8 (bits), a Wallace tree multiplier is instanti-
ated.
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Example 6 An implementation of a parameterized multiplier module

module multiplier(a,b,product);

parameter a_width = 8, b _width = 8;

localparam product_width = a_width+b_width; // can not be modified
// directly with the defparam statement

// or the module instance statement #

input [a_width-1:0] a;

input [b_width-1:0] b;

output [product _width-1:0] product;

generate
if((a_width < 8) || (b_width < 8))
CLA multiplier #(a_width,b _width) ul(a, b, product);
// instance a CLA multiplier
else
WALLACE_multiplier #(a _width,b _width) ul(a, b, product);
// instance a Wallace-tree multiplier
endgenerate
// The generated instance name is ul

endmodule

12.1.3.4 generate-case

A generate case construct permits modules, user defined primitives, Verilog gate primitives, continuous
assignments, initial blocks and always blocks to be conditionally instantiated into another module based on a
select one-of-many case construct. The selecting case expression must be deterministic at the time the
design is elaborated.

Example 7 Generate with a case to handle widths less that 3

generate
case (WIDTH)
1: adder_1bit x1(co, sum, a, b, ci);
// 1-bit adder implementation
2: adder_2bit x1(co, sum, a, b, ci);
// 2-bit adder implementation
default: adder_cla #(WIDTH) x1(co, sum, a, b, ci);
// others - carry look-ahead adder
endcase
// The generated instance name is x1

endgenerate
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Example 8§ A module of memory dimm

module dimm (adr, ba, rasx, casx, csx, wex, dgm, cke, data, clk, dev_id);
parameter [31:0] MEM SIZE = 8, // in mbytes
MEM WIDTH = 16;
input [10:0] adr;
input ba;
input rasx, casx, csx, wex;
input [ 7:0] dagm;
input cke;
inout [63:0] data;
input clk;
input [ 4:0] dev_id;

genvar i;

generate
case ({MEM SIZE, MEM WIDTH})
{32'd8, 32'd1l6}: // 8Meg x 16 bits wide.
begin
// The generated instance names are word[3].p, word[2].p,
// word[1].p, word[0].p, and the task read mem
for (i=0; i<4; i=i+l) begin:word
sms_16b216t0 p (.clk(clk), .csb(csx), .cke(cke),
.ba(ba[0]), .addr(adr[10:0]), .rasb(rasx),
.casb(casx), .web(wex), .udgm(dgm[2*i+1]),
.ldagm(dgm[2*i]), .dgi(data[l5+16*i:16*i]),
.dev_id(dev_id[4:0]));
end
task read mem;
input [31:0] address;
output [63:0] data;
begin
word[3].p.read mem(address, data[63:48]);
word[2].p.read mem(address, data[47:32]);
word[1l].p.read mem(address, data[31:16]);
word[0].p.read mem(address, data[15:0]);
end
endtask
end
{32'd16, 32'd8}: // léMeg x 8 bits wide.
begin
// The generated instance names are byte[7].p, byte[6].p,
// byte[5].p, byte[4].p, byte[3].p, byte[2].p, byte[l].p,
// byte[0].p and the task read mem
for (i=0; i<8; i=i+l) begin:byte
sms_16b2080 p (.clk(clk), .csb(csx), .cke(cke),
.ba(ba[0]), .addr(adr[10:0]), .rasb(rasx),
.casb(casx), .web(wex), .dgm(dgm[i]),
.dgi(data[7+8*1:8*1i]),.dev_id(dev_id[4:0]));
end
task read mem;
input [31:0] address;
output [63:0] data;
begin
byte[7].p.read mem(address, data[63:56]);
byte[6].p.read mem(address, data[55:48]);

byte[5].p.read mem(address, data[47:40]);
byte[4].p.read mem(address, data[39:32]);
byte[3].p.read mem(address, data[31:24]);
byte[2].p.read mem(address, data[23:16]);
byte[l].p.read mem(address, data[15:8]);
byte[0].p.read mem(address, data[7:0]);
end
endtask
end
// Other memory cases ...
endcase
endgenerate

endmodule
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// The generated instance names are word[3].p, word[2]-.p,
// word[1].p, word[0].p, and the task read_mem
{32°d16, 32°d8}: // 16Meg 8 bits wide.

begin
for (i=0;i<4;i =1 + 1)
begin:-byte

sms_16b208t0 p
(-clk(clk), .csb(csx), -.cke(cke), -ba(ba[0]),
.addr(adr[10:0]),
...rasb(rasx), .casb(casx), -web(wex), .dgm{dgm[i]),
.dgi(data[8+8*i:8*i]), .. -dev_id(dev_id7[4:0])
E
end
task read_mem;
input [31:0] address;
output [63:0] data;
begin
byte[7]-p-read_mem(address, data[63:56]);
byte[6]-p-read_mem(address, data[55:48]);
byte[5].-p-read_mem(address, data[47:40]);
byte[4].p-read_mem(address, data[39:32]);
byte[3].p-read_mem(address, data[31:24]);
byte[2].p.read_mem(address, data[23:16]);
byte[1].p-read_mem(address, data[l15:8]);
byte[0].p-read_mem(address, data[7:0]);
end
endtask
endcase
endgenerate
// The generated instance names are byte[7]-p, byte[6]-p,
// byte[5].p, byte[4].p, byte[3].p, byte[2].p, byte[l].p,
// byte[0].p and the task read_mem

endmodule

12.2 Overriding module parameter values

There are two different ways that parameters can be defined. The first is the module_parameter_port_list
(see 12.1), and the second is as a module_item (see 3.11). A module declaration can contain parameter defi-
nitions of either or both types, or no parameter definitions.

A module parameter can have a type specification and a range specification. The effect of parameter over-
rides on a parameter s type and range shall be in accordance with the following rules:

— A parameter declaration with no type or range specification shall default to the type and range of the
final override value assigned to the parameter.

— A parameter with a range specification, but with no type specification, shall be the range of the
parameter declaration and shall be unsigned. An override value shall be converted to the type and
range of the parameter.

— A parameter with a type specification, but with no range specification, shall be of the type specified.
An override value shall be converted to the type of the parameter. A signed parameter shall default to
the range of the final override value assigned to the parameter.
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— A parameter with a signed type specification and with a range specification shall be a signed, and
shall be the range of its declaration. An override value shall be converted to the type and range of the
parameter.

Examples:

module generic_fifo

#(parameter MSB=3, LSB=0, DEPTH=4) // These parameters can be
overridden

(

input [MSB:LSB] in,

input clk, read, write, reset,

output [MSB:LSB] out,
output full, empty

)

localparam FIFO_MSB = DEPTH*MSB; // These parameters are local,
and

localparam FIFO_LSB = LSB; // cannot be overridden. They can

be
// affected by altering the public
// parameters above, and the module
// will work correctly.
reg [FIFO_MSB:FIFO_LSB] fifo;
reg [LOG2(DEPTH):0] depth;

always @(posedge clk or reset) begin
casex ({read,write,reset})
// implementation of fifo
endcase
end
endmodule

There are two ways to alter non-local parameter values: the defparam statement, which allows assignment to
parameters using their hierarchical names, and the module instance parameter value assignment, which
allows values to be assigned inline during module instantiation. If a defparam assignment conflicts with a
module instance parameter, the parameter in the module will take the value specified by the defparam. The
module instance parameter value assignment comes in two forms, by ordered list or by name. The next two
subclauses describe these two methods.

There are two kinds of parameter declarations. The first kind of parameter declaration has a type and or
range qualification, and second does not. When an untyped and unranged parameter s value is overridden,
the parameter takes on the size and type of the override.

When a typed and/or ranged parameter is overriden, the new value is converted to the type and size of the
destination, and assigned to that parameter.

Example:

module foo(a,b);
real rl,r2;
parameter [2:0] A = 37h2;
parameter B = 37h2;
initial begin
1=A;
r2 = B;
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$display("'r1 is %f r2 is %f’,rl,r2);
end
endmodule 7/ foo
module bar;
wire a,b;
defparam f1_A
defparam f1_B
foo fl(a,b);
endmodule // bar

3.1415;
3.1415;

Parameter A is a typed and/or ranged parameter, so when its value is redefined, the parameter retains its orig-
inal type and sign. Therefore, the defparam of ¥1.A with the value 3.1415 is performed by converting the
floating point number 3.1415 into a fixed point number 3 and then the low 3 bits of 3 are assigned to A.

Parameter B is not a typed and/or ranged parameter, so when its value is redefined, the parameter type and
range take on the type and range of the new value. Therefore, the defparam of ¥1.B with the value 3.1415
replaces B s current value of 3 h2 with the floating point number 3.1415.

12.2.1 defparam statement

Using the defparam statement, parameter values can be changed in any module instance throughout the
design using the hierarchical name of the parameter. However, a defparam statement in a hierarchy under a
generate scope or array of instances shall not change a parameter value outside that hierarchy. See 12.4 for
hierarchical names.

The expression on the right-hand side of the defparam assignments shall be a constant expression involving
only numbers and references to parameters. The referenced parameters (on the right-hand side of the def-
param) shall be declared in the same module as the defparam statement.

The defparam statement is particularly useful for grouping all of the parameter value override assignments
together in one module.

In the case of multiple defparams for a single parameter, the parameter takes the value of the last defparam
statement encountered in the source text. When defparams are encountered in multiple source files, e.g.,
found by library searching, the defparam from which the parameter takes it s value is undefined.
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Example:

module top;
reg clk;

reg [0:4] inl;
reg [0:9] in2;
wire [0:4] o1l;
wire [0:9] o02;

vdff ml (ol, inl, clk);
vdff m2 (02, in2, clk);
endmodule

module vdff (out, in, clk);
parameter size = 1, delay = 1;
input [O:size-1] in;

input clk;

output [O:size-1] out;

reg [O:size-1] out;

always @(posedge clk)
# delay out = in;
endmodule

module annotate;

defparam
top-ml.size = 5,
top-ml.delay = 10,
top.m2.size = 10,
top.m2.delay = 20;

endmodule

The module annotate has the defparam statement which overrides Size and delay parameter values
for instances m1 and M2 in the top-level module top. The modules top and annotate would both be
considered top-level modules.

12.2.2 Module instance parameter value assighment

An alternative method for assigning values to parameters within module instances is to use one of the two
forms of module instance parameter value assignment. They are assignment by ordered list and assignment
by name. The two types of module instance parameter value assignment shall not be mixed; parameter
assignments to a particular module instance shall be entirely by order or entirely by name.

Module instance parameter value assignment by ordered list is similar in appearance to the assignment of
delay values to gate instances and assignment by name is similar to connecting module ports by name. It
supplies values for particular instances of a module to any parameters that have been specified in the defini-
tion of that module.

12.2.2.1 Parameter value assignment by ordered list
The order of the assignments in the module instance parameter value assignment by ordered list shall follow

the order of declaration of the parameters within the module. It is not necessary to assign values to all of the
parameters within a module when using this method. However, it is not possible to skip over a parameter.
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Therefore, to assign values to a subset of the parameters declared within a module, the declarations of the
parameters that make up this subset shall precede the declarations of the remaining parameters. An alterna-
tive is to assign values to all of the parameters, but to use the default value (the same value assigned in the
declaration of the parameter within the module definition) for those parameters that do not need new values.

Example:

Consider the following example, where the parameters within module instance mod_a are changed during
instantiation.

module m;

reg clk;

wire [0:4] out c, in_c;
wire[1:10] out_a, a;

i
wire[1:5] out_b, in_b;
// create an instance and set parameters
vdff #(10,15) mod_a(out_a, in_a, clk);
// create an instance leaving default values
vdff mod_b(out_b, in_b, clk);
// create an instance and set one parameter
vdff #(.delay(12)) mod_c(out_c, in_c, clk);
endmodule

module vdff (out, in, clk);
parameter size = 5, delay = 1;
input [O:size-1] in;

input clk;

output [O:size-1] out;

reg [O:size-1] out;

always @(posedge clk)
# delay out = in;
endmodule

In this example, the name of the module being instantiated is VA FF. The construct #(10,15) assigns val-
ues to parameters used in the mod_a instance of vdTF. The parameter Size is assigned the value 10 and
the parameter delay is assigned the value 15 for the instance of module vd¥F called mod_a. The con-
struct #( . delay(12)) assigns the parameter de lay the value 12 in the instance of module vdfF called
mod_c

12.2.2.2 Parameter value assignment by name

Parameter assignment by name consists of explicitly linking the parameter name and it’s new value. The
name of the parameter shall be the name specified in the instantiated module.

It is not necessary to assign values to all of the parameters within a module when using this method. Only
those parameters that are assigned new values need to be specified.

The parameter expression is optional so that the instantiating module can document the existence of a
parameter without assigning anything to it. The parentheses are required and in this case the parameter
retains its default value. Once a parameter is assigned a value, there shall not be another assignment to this
parameter name.
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12.2.3 Parameter dependence

A parameter (for example, memory_size) can be defined with an expression containing another parame-
ter (for example, word_size). Since memory_size depends on the value of word_size, a modifica-
tion of word_size changes the value of memory_size. For example, in the following parameter
declaration, an update of word_size, whether by defparam statement or in an instantiation statement for
the module that defined these parameters, automatically updates memory_size.

parameter

word_size = 32,
memory_size = word_size * 4096;

12.3 Ports

Ports provide a means of interconnecting a hardware description consisting of modules, primitives, and mac-
romodules. For example, module A can instantiate module B, using port connections appropriate to module
A. These port names can differ from the names of the internal nets and variables specified in the definition of
module B.

12.3.1 Port definition

The syntax for ports and a list of ports is given in Syntax 12-5.

list_of_ports ::= (From Annex A - A.1.4)
(port { , port } )
list_of_port_declarations ::=
( port_declaration { , port_declaration } )

1O
port ::=
[ port_expression ]
. port_identifier ( [ port_expression ] )
port_expression ::=
port_reference
| { port_reference { , port_reference } }
port_reference ::=
port_identifier
| port_identifier [ constant_expression |
| port_identifier [ range_expression ]
port_declaration ::=
{attribute_instance} inout_declaration
| {attribute_instance} input_declaration
| {attribute_instance} output_declaration

Syntax 12-5 Syntax for port

12.3.2 List of ports

The port reference for each port in the list of ports at the top of each module declaration can be one of the
following:

— A simple identifier or escaped identifier

— A bit-select of a vector declared within the module
— A part-select of a vector declared within the module
— A concatenation of any of the above
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The port expression is optional because ports can be defined that do not connect to anything internal to the
module. Once a port has been defined, there shall not be another port definition with this same name.

The first type of module port with only a port_expression is an implicit port. The second type is the
explicit port. This explicitly specifies the port_identifier used for connecting module instance ports
by name (see 12.3.6) and the port_expression which contains identifiers declared inside the module as
described in 12.3.3. Use of named port connections shall not be used for implicit ports unless the
port_expression is a simple port_identifier.

12.3.3 Port declarations

Each port_expression in the list of ports for the module declaration shall also be declared in the body of the
module as one of the following port declarations: input, output, or inout (bidirectional). This is in addition
to any other data type declaration for a particular port for example, a reg or wire. The syntax for port dec-
larations is given in Syntax 12-6.

inout_declaration ::= (From Annex A - A.2.1.2)
inout [ net_type ] [ signed ] [ range ] list_of_port_identifiers
input_declaration ::=
input [ net_type ] [ signed ] [ range ] list_of_port_identifiers
output_declaration ::=
output [ net_type ] [ signed ] [ range ]
list_of_port_identifiers
| output [ reg ] [ signed ] [ range ]
list_of_port_identifiers
| output reg [ signed ] [ range ]
list_of_variable_port_identifiers
| output [ output_variable_type ]
list_of_port_identifiers
| output output_variable_type
list_of_variable_port_identifiers
list_of_port_identifiers ::= (From Annex A - A.2.3)
port_identifier { , port_identifier }

Syntax 12-6 Syntax for port declarations

If a port declaration includes a net or variable type, then the port is considered completely declared and it is
an error for the port to be declared again as a variable or net data type declaration. Because of this, all other
aspects of the port shall be declared in such a port declaration, including the signed and range definitions if
needed.

If a port declaration does not include a net or variable type, then the port can be again declared in a net or
variable declaration. If the net or variable is declared as a vector, the range specification between the two
declarations of a port shall be identical. Once a name is used in a port declaration it shall not be declared
again in another port declaration or in a data type declaration.

NOTE —Implementations may limit maximum number of ports in a module definition, but they will at least be 256.

Example:
input aport; // First declaration - okay.
input aport; // Error - multiple declaration, port declaration
output aport; // Error - multiple declaration, port declaration

The signed attribute can be attached either to a port declaration or to the corresponding net or reg declara-
tion, or to both. If either the port or the net/reg is declared as signed, then the other shall also be considered
signed.
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Implicit nets shall be considered unsigned. Nets connected to ports without an explicit net declaration shall
be considered unsigned, unless the port is declared as signed.

Example:

module test(a,b,c,d,e,f,g,h);

input [7:0] a; // no explicit declaration - net is unsigned
input [7:0] b;

input signed [7:0] c;

input signed [7:0] d; // no explicit net declaration - net is signed
output [7:0] e; // no explicit declaration - net is unsigned
output [7:0] f;

output signed [7:0] g;

output signed [7:0] h; // no explicit net declaration - net is signed

wire signed [7:0] b; // port b inherits signed attribute from net decl.

wire [7:0] c; // net c iInherits signed attribute from port
reg signed [7:0] f; // port T inherits signed attribute from reg decl.
reg [7:0] g; // reg g inherits signed attribute from port
endmodule

module complex_ports ({c,d}, .e(f)); // Nets {c,d} receive the First
// port bits. Name *f” is declared inside the module.
// Name ’e” is defined outside the module.
// Can’t use named port connections of first port.

module split_ports (a[7:4], a[3:01); // First port is upper 4 bits of
// a’.
// Second port is lower 4 bits of ’a’.
// Can’t use named port connections because
// of part-select port ’a’.

module same_port (.a(i), -b(i)); // Name “i” is declared inside the
// module as a inout port. Names ’a’ and b’ are
// defined for port connections.

module renamed_concat (.a({b,c}), f, -g(h[1D)):
// Names ’b”, ’c”, *f”, ”h” are defined inside the module.
// Names ’a’, ’f”, ”g” are defined for port connections.
// Can use named port connections.

module same_input (a,a);
input a; // This is legal. The inputs are tied together.
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12.3.4 List of ports declarations

An alternate syntax which minimizes the duplication of data can be used to specify the ports of a module.
Each module shall either be declared entirely with the list of ports syntax as described in 12.3.2 or entirely
using the list_of port_declarations as described in this section.

Each declared port provides the complete information about the port. The ports direction, width, net, or
variable type, and whether the port is signed or unsigned is completely described. The same syntax for input,
inout, and output declarations is used in the module header as would be used for the list of port style declara-
tion, except the list_of port_declarations is included in the module header rather than separately (after the ;
which terminates the module header).

As an example, the module named test given in the previous example could alternatively be declared as:

Example:

module test (
input [7:0] a,
input signed [7:0] b, c, d, 7/ multiple ports that share all
// attributes can be declared together
output [7:0] e, // every attribute of the declaration
// must be in the one declaration
output signedreg [7:0] f, g,
output signed [7:0] h) ;
// 1t is illegal to redeclare any ports of the module in the body
// of the module.
endmodule

The port_reference type of module port declaration shall not be done using list_of _port_declarations style
of module declarations. Also ports declared using the list_of” port_declarations shall only be simple identifi-
ers. They shall not be bit-selects, part-selects, or concatenations (as in the example complex_ports); nor
can a port be split (as in the example sSplit_ports); nor can they be named ports (as in the example
same_port).

Designs may freely mix modules declared using each syntax; hence implementations desiring the above spe-
cial cases of port declaration can be done using the first list_of_ports syntax.

12.3.5 Connecting module instance ports by ordered list

One method of making the connection between the port expressions listed in a module instantiation and the
ports declared within the instantiated module is the ordered list that is, the ports expressions listed for the
module instance shall be in the same order as the ports listed in the module declaration.

Example:

The following example illustrates a top-level module (topmod) that instantiates a second module (modB).
Module modB has ports that are connected by an ordered list. The connections made are as follows:

— Port wa in the modB definition connects to the bit-select V[ 0] in the topmod module.
—  Port wb connects to V[ 3].

— Port € connects to w.

— Port d connects to v[4].

In the modB definition, ports wa and wb are declared as Inouts while ports ¢ and d are declared as
input.
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module topmod;
wire [4:0] v;
wire a,b,c,w;

modB bl (v[0], v[3], w, Vv[4]);
endmodule

module modB (wa, wb, c, d);
inout wa, wb;
input c, d;

tranifl gl (wa, wb, cinvert);

not #(2, 6) nl (cinvert, int);

and #(6, 5) g2 (int, c, d);
endmodule

During simulation of the b1 instance of modb, the and gate g2 activates first to produce a value on Int.
This value triggers the not gate nl to produce output on cinvert, which then activates the tranifl gate

gl.

12.3.6 Connecting module instance ports by name

The second way to connect module ports consists of explicitly linking the two names for each side of the
connection, the port declaration name from the module declaration to the expression the name used in the
module declaration, followed by the name used in the instantiating module. This compound name is then
placed in the list of module connections. The port name shall be the name specified in the module declara-
tion. The port name cannot be a bit-select, a part-select, or a concatenation of ports. If the module port decla-
ration was implicit, the port_expression shall be a simple port_identifer which is used as the
port name. If the module port declaration was explicit, the explicit name is used as the name of port.

The port expression can be any valid expression.

The port expression is optional so that the instantiating module can document the existence of the port with-
out connecting it to anything. The parentheses are required.

The two types of module port connections shall not be mixed; connections to the ports of a particular mod-
ule instance shall be all by order or all by name.

Examples:
Example 1 In the following example, the instantiating module connects its signals tOpA and topB to the
ports In1 and Out defined by the module ALPHA. At least one port provided by ALPHA is unused; it is

named IN2. There could be other unused ports not mentioned in the instantiation.

ALPHA instancel (.Out(topB), .In1(topA),-1n2());
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Example 2 This example defines the modules modB and topmod, and then topmod instantiates modB
using ports connected by name.

module topmod;
wire [4:0] v;
wire a,b,c,w;

modB bl (.wb(v[3]),-wa(v[0l),-d(v[4]),.c(W));

endmodule

module modB(wa, wb, c, d);
inout wa, wb;
input c, d;

tranifl gl(wa, wb, cinvert);

not #(6, 2) nl(cinvert, int);

and #(5, 6) g2(int, c, d);
endmodule

Since these connections are made by name, the order in which they appear is irrelevant.
Multiple module instance port connections are not allowed, e.g., the following example is illegal:
Example 3 This example shows illegal port connections.
module test;
aia (-i (@), -i (b), 7/ illegal connection of input port twice.
.0 (¢), -0 (d), /7 illegal connection of output port twice.
.e (e), -e (F)); // illegal connection of inout port twice.
endmodule

12.3.7 Real numbers in port connections

The real data type shall not be directly connected to a port. It shall be connected indirectly, as shown in the
following example. The system functions Srealtobits and $bitstoreal shall be used for passing the bit pat-
terns across module ports. (See 17.8 for a description of these system tasks.)
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Example:

module driver (net r);

output net_r;

real r;

wire [64:1] net_r = Srealtobits(r);
endmodule

module receiver (net_r);
input net_r;
wire [64:1] net_r;
real r;

initial assign r = S$bitstoreal(net_r);

endmodule

12.3.8 Connecting dissimilar ports

A port of a module can be viewed as providing a link or connection between two items (nets, regs, expres-
sions, etc.) one internal to the module instance and one external to the module instance.

Examination of the port connection rules described in 12.3.9 will show that the item receiving the value
through the port (the internal item for inputs, the external item for outputs) shall be a structural net expres-
sion. The item that provides the value can be any expression.

NOTE A port that is declared as input (output) but used as an output (input) or inout may be coerced to inout. If not
coerced to inout, a warning has to be issued.

12.3.9 Port connection rules

The following rules shall govern the way module ports are declared and the way they are interconnected.

12.3.9.1Rule 1

An input or inout port shall be of type net.

12.3.9.2 Rule 2

Each port connection shall be a continuous assignment of source to sink, where one connected item shall be
a signal source and the other shall be a signal sink. The assignment shall be a continuous assignment from
source to sink for input or output ports. The assignment is a nonstrength reducing transistor connection for
inout ports. Only nets or structural net expressions shall be the sinks in an assignment.

A structural net expression is a port expression whose operands can be the following:

— A scalar net

— A vector net

— A constant bit-select of a vector net

— A part-select of a vector net

— A concatenation of structural net expressions
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The following external items shall not be connected to the output or inout ports of modules:

— Variables
— Expressions other than

i) A scalar net

ii) A vector net

iii) A constant bit-select of a vector net
iv) A part-select of a vector net

v) A concatenation of the expressions listed above
12.3.10 Net types resulting from dissimilar port connections

When different net types are connected through a module port, the nets on both sides of the port can take on
the same type. The resulting net type can be determined as shown in Table 45. In the table, external net
means the net specified in the module instantiation, and internal net means the net specified in the module
definition. The net whose type is used is said to be the dominating net. The net whose type is changed is said
to be the dominated net. It is permissible to merge the dominating and dominated nets into a single net,
whose type shall be that of the dominating net. The resulting net is called the simulated net, and the domi-
nated net is called a collapsed net.

The simulated net shall take the delay specified for the dominating net. If the dominating net is of the type
trireg, any strength value specified for the trireg net shall apply to the simulated net.

12.3.10.1 Net type resolution rule

When the two nets connected by a port are of different net type, the resulting single net can be assigned one
of the following:

— The dominating net type if one of the two nets is dominating, or
— The net type external to the module

When a dominating net type does not exist, the external net type shall be used.
12.3.10.2 Net type table
Table 45 shows the net type dictated by net type resolution rule.

The simulated net shall take the net type specified in the table and the delay specified for that net. If the sim-
ulated net selected is a trireg, any strength value specified for the trireg net applies to the simulated net.

Table 45—Net types resulting from dissimilar port connections

External net
Internal
net wire, wand, wor, . . .
tri triand trior trireg tri0 tril supply0 | supplyl

wire, ext ext ext ext ext ext ext ext

tri

wand, int ext warn warn warn warn ext ext
triand
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Table 45—Net types resulting from dissimilar port connections (continued)

External net
Internal
net wire, wand, wor, . . .
tri triand trior trireg tri0 tril supply0 | supplyl
Wor, int warn ext warn warn warn ext ext
trior
trireg int warn warn ext ext ext ext ext
tri0 int warn warn int ext warn ext ext
tril int warn warn int warn ext ext ext
supply0 int int int int int int ext warn
supplyl int int int int int int warn ext
KEY:
ext = The external net type is used
int = The internal net type is used
warn = A warning is issued and the external net type is used

12.3.11 Connecting signed values via ports

The sign attribute shall not cross hierarchy. In order to have the signed type cross hierarchy, the signed key-
word must be used in the object’s declaration at the different levels of hierarchy. Any expressions on a port
shall be treated as any other expression in an assignment. It shall be typed, sized, evaluated and the resulting
value assigned to the object on the other side of the port using the same rules as an assignment.

12.4 Hierarchical names

Every identifier in a Verilog HDL description shall have a unique hierarchical path name. The hierarchy of
modules and the definition of items such as tasks and named blocks within the modules shall define these
names. The hierarchy of names can be viewed as a tree structure, where each module instance, generated
instance, task, function, or named begin-end or fork-join block defines a new hierarchical level, or
scope, in a particular branch of the tree.

At the top of the name hierarchy are the names of one or more root modules of which no instances have been
created. This root or these parallel root modules make up one or more hierarchies in a design description or
description. Inside any module, each module instance (including an arrayed or generated instance), task def-
inition, function definition, and named begin-end or fork-join block shall define a new branch of the
hierarchy. Named blocks within named blocks and within tasks and functions shall create new branches.
Only non-recursively referenced automatic tasks and/or functions create visible branches that can be refer-
enced. Recursively called tasks and functions, declared using the automatic keyword and recursively called
from within the same task or function, do not create visible branches that can be referenced. See 10.2.1 and
10.3.1 for a discussion of automatic tasks and functions.

Each node in the hierarchical name tree shall be a separate scope with respect to identifiers. A particular
identifier can be declared at most once in any scope. See 12.6 for a discussion of scope rules and 3.12 for a
discussion of name spaces.
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Any named Verilog object or hierarchical name reference can be referenced uniquely in its full form by con-
catenating the names of the modules, module instance names, tasks, functions, or named blocks that contain
it. The period character shall be used to separate each of the names in the hierarchy, except for escaped iden-
tifiers embedded in the hierarchical name reference, which are followed by separators composed of white
space and a period-character. The complete path name to any object shall start at a top-level (root) module.
This path name can be used from any level in the hierarchy or from a parallel hierarchy. The first node name
in a path name can also be the top of a hierarchy that starts at the level where the path is being used (which
allows and enables downward referencing of items) with the exceptions of items of automatic tasks and
automatic task item declarations. These declarations can not be accessed by their hierarchical names.

The syntax for hierarchical path names is given in Syntax 12-7.

escaped_hierarchical_identiﬁer* = (From Annex A - A.9.3)
escaped_hierarchical_branch
[ { .simple_hierarchical_branch | .escaped_hierarchical_branch } ]
escaped_identifier ::=
\ {Any_ASCII_character_except_white_space} white_space
hierarchical_identifier ::=
simple_hierarchical_identifier
| escaped_hierarchical_identifier
simple_hierarchical_identifier ::=
simple_hierarchical_branch [ .escaped_identifier ]
simple_identifier ::=[a-zA-Z_]{[ a-zA-Z0-9_$]}
simple_hierarchical_branch ::= (From Annex A - A.9.4)
simple_identifier [ [ unsigned_number | ]
[ { .simple_identifier [ [ unsigned_number ] ] } ]
escaped_hierarchical_branch* =
escaped_identifier [ [ unsigned_number | ]
[ { .escaped_identifier [ [ unsigned_number ] | } ]
white_space ::= (From Annex A - A.9.5)
space | tab | newline | eof’

*The period in escaped_hierarchical_identifier and escaped_hierarchical_branch shall be preceded by
white_space, but shall not be followed by white_space.
The period (.) in simple_hierarchical_identifier and simple_hierarchical_branch shall not be preceded or
followed by white_space.
A simple_identifier and arrayed_reference shall start with an alpha or underscore (_) character, shall have at
least one character, and shall not have any spaces.

/End of file.

Syntax 12-7 Syntax for hierarchical path names
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Examples:

Example 1 The code in this example defines a hierarchy of module instances and named blocks.

module mod (in); module cct (stiml, stim2);

input In; input stiml, stim2;

always @(posedge in) begin - keep // instantiate mod

reg hold; mod amod(stiml), bmod(stim2);
hold = in; endmodule

end

endmodule

module wave;
reg stiml, stim2;

cct a(stiml, stim2); // instantiate cct

initial begin :>wavel
#100 fork :innerwave

reg hold;
join
#150 begin
stiml = 0;
end
end
endmodule

Figure 32 illustrates the hierarchy implicit in this Verilog code.

FHOTVONVYE/IHON VY - 'Po1WT NOOIIN OL A3ISNIDIT
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Figure 32—Hierarchy in a model
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Figure 33 is a list of the hierarchical forms of the names of all the objects defined in the code.

wave wave.a.bmod

wave.stiml wave.a.bmod.in

wave.stim2 wave.a.bmod.keep

wave.a wave.a.bmod.keep.hold
wave.a.stiml wave .wavel

wave.a.stim2 wave.wavel. innerwave
wave.a.amod wave.wavel. innerwave.hold

wave.a.amod. in
wave.a.amod.keep
wave.a.amod.keep.hold

Figure 33—Hierarchical path names in a model

Hierarchical name referencing allows free data access to any object from any level in the hierarchy. If the
unique hierarchical path name of an item is known, its value can be sampled or changed from anywhere
within the description.

Example 2 The next example shows how a pair of named blocks can refer to items declared within each
other.
begin
fork :mod_1
reg X;
mod_2.Xx
join
fork :mod_2
reg X;
mod_1.X
join
end

1
=

1l
o

12.5 Upwards name referencing

The name of a module or module instance is sufficient to identify the module and its location in the hierar-
chy. A lower-level module can reference items in a module above it in the hierarchy.Variables can be refer-
enced if the name of the higher-level module or its instance name is known. For tasks, functions, and named
blocks, Verilog shall look in the enclosing module for the name until it is found or until the root of the hier-
archy is reached. It shall only search in higher enclosing modules for the name, not instances.

The syntax for an upward reference is given in Syntax 12-8.

upward_name_reference ::=

module_identifier.item_name
item_name ::=

function_identifier

| block_identifier

| net_identifier

| parameter_identifier

| port_identifier

| task_identifier

| variable_identifier

Syntax 12-8 Syntax for upward name referencing
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Upwards name references can also be done with names of the form
module_instance_name. item_name
A name of this form shall be resolved as follows:

a) Look in the current module for a module instance named module_instance_name. If found,
this name reference shall be treated as a downward reference, and the item name shall be resolved in
the corresponding module.

b) Look in the parent module for a module instance named module__instance_name. If found, the
item name shall be resolved from that instance, which is the sibling of the module containing the ref-
erence.

¢) Repeat step b), going up the hierarchy.

There shall be no spaces within the hierarchical name reference, except for escaped identifiers embedded in
the hierarchical name reference, which are followed by separators composed of white space and a period-
character.

Example:

In this example, there are four modules, a, b, ¢, and d. Each module contains an integer 1. The highest-
level modules in this segment of a model hierarchy are a and d. There are two copies of module b because
module a and d instantiate b. There are four copies of C. 1 because each of the two copies of b instantiates
C twice.
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module a;
integer 1i;
b abl(Q;

endmodule

module b;

integer 1;

c b_cl(Q), b_c2Q;

initial // downward path references two copies of i:
#10 b cl.i = 2;// a.a bl.b cl.i, d.d bl.b cl.i

endmodule

module C;
integer 1i;
initial begin // local name references four copies of i:
i =1; // a.a_bl.b cl.i, a.a_bl.b c2.i,
// d.d_bl.b_cl.i, d.d_bl.b c2.i
b.i = 1; // upward path references two copies of i:
// a.a_bl.i, d.d bl.i
end
endmodule

module d;
integer 1;

b d blQ;

initial begn // Tull path name references each copy of i
- = 5
=6

| bl.
| bl. 1.
| bl. c2-i

end
endmodule

12.6 Scope rules

The following four elements define a new scope in Verilog:

— Modules

— Tasks

— Functions

— Named blocks

An identifier shall be used to declare only one item within a scope. This rule means it is illegal to declare
two or more variables that have the same name, or to name a task the same as a variable within the same
module, or to give a gate instance the same name as the name of the net connected to its output.

If an identifier is referenced directly (without a hierarchical path) within a task, function, or named block, it
shall be declared either locally within the task, function, or named block, or within a module, task or named
block that is higher in the same branch of the name tree that contains the task, function, or named block. If it
is declared locally, then the local item shall be used; if not, the search shall continue upward until an item by
that name is found or until a module boundary is encountered. If the item is a variable, it shall stop at a mod-
ule boundary; if the item is a task, function, or named block it continues to search higher-level modules until
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found. The search shall cross named block, task, and function boundaries but not module boundaries. This
fact means that tasks and functions can use and modify the variables within the containing module by name,
without going through their ports.

If an identifier is referenced with a hierarchical name, the path can start with an module name, instance
name, task, function, or named block. The names shall be searched first at the current level, then in higher-
level modules until found. Since both module names and instance names can be used, precedence is given to
instance names if there is a module named the same as an instance name.

Because of the upward searching, path names which are not strictly on a downward path can be used.
Example:

Example 1 In Figure 34, each rectangle represents a local scope. The scope available to upward searching
extends outward to all containing rectangles with the boundary of the module A as the outer limit. Thus

block G can directly reference identifiers in F, E, and A; it cannot directly reference identifiers in H, B, C,
and D.

module A
AN
task E
\
Scopes not block B > _
available to i B Scopes available
block G block E«t] to block G
N #
N
\ block H
func D

Figure 34—Scopes available to upward name referencing

Example 2 The following example shows an incompletely defined downward reference that can be
accessed.

task t;
reg r, S;
begin - b

// redundant assignments to reg r

t.b.r = 0; // poorly defined but found by upward search
t.s = 0; // fully defined downward reference

end

endtask
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13. Configuring the contents of a design

13.1 Introduction

To facilitate both the sharing of Verilog designs between designers and/or design groups, and the repeatabil-
ity of the exact contents of a given simulation (or other tool) session, the concept of configurations is used in
the Verilog language. A configuration is simply an explicit set of rules to specify the exact source description
to be used to represent each instance in a design. The operation of selecting a source representation for an
instance is referred to as binding the instance.

The example below shows a simple configuration problem.

Example:
file top.v file adder.v file adder.vg
module top(); module adder(...); module adder(...);

adder al(...); // rtl adder description

// gate-level adder description
adder a2(...); . N
endmodule endmodule endmodule

Consider using the rtl adder description in adder .V for instance al in module top and the gate-level
adder description in adder . vg for instance a2. In order to specify this particular set of instance bindings
and to avoid having to change the source description to specify a new set, a configuration can be used.

config cfgl; // specify rtl adder for top.al, gate-level adder for top.a2
design rtlLib._top;
default liblist rtlLib;
instance top.a2 liblist gatelLib;

endconfig

The elements of a config are explained in subsequent sections, but this simple example illustrates some
important points about configs. As evidenced by the config-endconfig syntax, the config is a design ele-
ment, similar to a module, which exists in the Verilog namespace. The config contains a set of rules which
are applied when searching for a source description to bind to a particular instance of the design.

A Verilog design description starts with a top-level module (or modules), which is not instantiated elsewhere
in the design. From this module s source description, the instantiated modules (or children) are found, and
then the source descriptions for the module definitions of these subinstances shall be located, and so on until
every instance in the design is mapped to a source description.

13.1.1 Library notation

In order to map a Verilog instance to a source description, the concept of a symbolic library, which is simply
a logical collection of design elements (such as modules, macromodules, primitives, or configs) can be used.
These design elements can be referred to as cells. The cell name shall be the same as the name of the mod-
ule/macromodule/primitive/config being processed. Syntax 13-1 specifies a cell from a given library.
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library_cell ::=
[library_identifier.]cell_identifier[:config]

Syntax 13-1 Syntax for cell

This notation gives a symbolic method of referring to source descriptions; the method of mapping source
descriptions into libraries is shown in greater detail in 13.2.1. The optional :config extension shall be
used explicitly to refer to a config in the case where a config has the same name as a module/macromodule/
primitive.

For the purposes of this example, suppose the files top.v and adder .v, the rtl descriptions, have been
mapped into the library rtlLib, and the file adder .vg, the gate-level description of the adder, has
been mapped into the library gateL ib. The actual mechanism for mapping source descriptions to libraries
is detailed in 13.2.

13.1.2 Basic configuration elements

The design statement in conFig cFgl of the first example of 13.1 specifies the top-level module in the
design and what source description is to be used. In this example, the rtILib.top notation indicates the
top-level module description shall be taken from rtlILib. Since top.v and adder.v were mapped to
this library, the actual description for the module is known to come from top. V.

The default statement coupled with the liblist clause specifies, by default, all subinstances of top (i.e.,
top.al and top.a2) shall be taken from rtlLib, which means the descriptions in top.v and
adder .v, which were mapped to this library, shall be used. For a basic design, which can be completely
rtl, this can be sufficient to specify completely the binding for the entire design. However, here the
top-a2 instance of adder to the gate-level description shall be bound.

The instance statement specifies, for the particular instance top . a2, the source description shall be taken
from gateLib. The instance statement overrides the default rule for this particular instance. Since
adder.vg was mapped to gatelL ib, this statement dictates the gate-level description in adder .vg be
used for instance top.a2.

13.2 Libraries

As mentioned in the previous section, a library is a logical collection of cells which are mapped to particular
source description files. The symbolic /ib . cell[ zconFig] notation supports the separate compilation of
source files by providing a file system-independent name to refer to source descriptions when instances in a
design are bound. It also allows multiple tools, which can have different invocation use-models, to share the
same configuration.

13.2.1 Specifying libraries - the library map file

When parsing a source description file (or files), the parser shall first read the library mapping information
from a pre-defined file prior to reading any source files. The name of this file and the mechanism for reading
it shall be tool-specific, but all compliant tools shall provide a mechanism to specify one or more library
mapping files to be used for a particular invocation of the tool. If multiple mapping files are specified, then
they shall be read in the order in which they are specified.

For the purposes of this discussion, assume the existence of a file named I'ib.map in the current working
directory, which is automatically read by the parser prior to parsing any source files specified on the com-
mand line. The syntax for declaring a library in the library map file is shown in Syntax 13-2.
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escaped_hierarchical_identiﬁer* = (From Annex A - A.1.1)
library_text ::=

{ library_descriptions }
library_descriptions ::=

library_declaration

| include_statement

| config_declaration
library_declaration ::=

library library_identifier file_path_spec [ {, file_path_spec } ]

[ -incdir file_path_spec [ { , file_path_spec } ];

file_path_spec ::=

file_path
include_statement ::=

include <file_path_spec> ;

*The period in escaped_hierarchical_identifier and escaped_hierarchical_branch shall be preceded by
white_space, but shall not be followed by white_space.

Syntax 13-2 Syntax for declaring library in the library map file

NOTES

1 The file_path uses file system-specific notation to specify an absolute or relative path to a particular file or set of
files. The following shortcuts/wildcards can be used:

? single character wildcard (matches any single character)

multiple character wildcard (matches any number of characters in a directory/file name)
- hierarchical wildcard (matches any number of hierarchical directories)

-- specifies the parent directory

. specifies the directory containing the 1 1b_.map

Paths which endin / shall include all files in the specified directory. Identical to /*.
Paths which do not begin with / are relative to the directory in which the current lib.map file is located.

2 Thepaths ./*.V and *.V areidentical and both specify all files witha .V suffix in the current directory.

Any file encountered by the compiler which does not match any library s file_path specification shall by
default be compiled into a library named work.

To perform the library mapping discussed in the example in 13.1, use the following library definitions in the
1ib._map file:

library rtlLib *.v; // matches all files in the current directory with a .V suffix
library gateLib ./*.vg; //matches all files in the current directory with a . vg suffix

13.2.1.1 File path resolution

If a file name potentially matches multiple file path specifications, the path specifications shall be resolved
in the following order:

a)  File path specifications which end with an explicit filename
b)  File path specifications which end with a wildcarded filename
c) File path specifications which end with a directory

[ Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od



IEC 61691-4:2004(E) 227
|EEE 1364-2001(E)

If a file name matches path specifications in multiple library definitions (after the above resolution rules
have been applied), it shall be an error.

Using these rules with the library definitions in the I ib.map file, all source files encountered by the parser/
compiler can be mapped to a unique library. Once the source descriptions have been mapped to libraries, the
cells defined therein are available for binding.

NOTE Tool implementers may find it convenient to provide a command-line argument to explicitly specify the library
into which the file being parsed is to be mapped, which shall override any library definitions in the lib_map file. If
these libraries do not exist in the 1 1 .map file, they can only be accessed via an explicit config.

If multiple cells with the same name map to the same library, then the LAST cell encountered shall be writ-
ten to the library. This is to support a separate-compile use-model (see 13.4.3), where it is assumed
encountering a cell after it has previously been compiled is intended to be a recompiling of the cell. In the
case where multiple modules with the same name are mapped to the same library in a single invocation of
the compiler, then a warning message shall be issued.

13.2.2 Using multiple library mapping files

In addition to specifying library mapping information, a 1 ib.map file can also include references to other
lLib.map files. The include command is used to insert the entire contents of a library mapping file in
another file during parsing. The result is as though the contents of the included mapping file appear in place
of the include command.

The syntax of a 1 ib.map file is limited to library specifications, include statements, and standard Verilog
comment syntax. Syntax 13-3 shows the syntax for the include command.

include_statement ::= (From Annex A - A.1.1)
include <file_path_spec> ;

Syntax 13-3 Syntax for include command

If the file path specification, whether in an include or library statement, describes a relative path, it shall be
relative to the location of the file which contains the file path. Library providers shall include a local library
mapping file in addition to the source contents of the library. Individual users can then simply include the
provider s library mapping file in their own map file to gain access to the contents of the provided library.
13.2.3 Mapping source files to libraries

For each cell definition encountered during parsing/compiling, the name of the source file being parsed is
compared to the file path specifications of the library declarations in all of the library map files being used.
The cell is mapped into the library whose file path specification matches the source file name.

13.3 Configurations

As mentioned in the introduction of this chapter, a configuration is simply a set of rules to apply when
searching for library cells to which to bind instances. The syntax for configurations is shown in 13.3.1.

13.3.1 Basic configuration syntax

The configuration syntax is shown in Syntax 13-4.
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config_declaration ::= (From Annex A -A.1.2)
config config_identifier ;
design_statement
{config_rule_statement}
endconfig

design_statement ::=
design { [library_identifier.]cell_identifier } ;

config_rule_statement ::=
default_clause liblist_clause
| inst_clause liblist_clause
| inst_clause use_clause
| cell_clause liblist_clause
| cell_clause use_clause

Syntax 13-4 Syntax for configuration

13.3.1.1 Design statement

The design statement names the library and cell of the top-level module or modules in the design hierarchy
configured by the config. There shall be one and only one design statement, but multiple top-level modules
can be listed in the design statement. The cell or cells identified can not be configurations themselves. It is
possible the design identified can have the same name as configs, however.

The design statement shall appear before any config rule statements in the config.

If the library identifier is omitted, then the library which contains the config shall be used to search for the
cell.

13.3.1.2 The default clause

The syntax for the default clause is specified in Syntax 13-5.

default_clause ::= (From Annex A - A.1.2)
default

Syntax 13-5 Syntax for default clause

The default clause selects all instances which do not match a more specific selection clause. The use expan-
sion clause (see 13.3.1.6) can not be used with a default selection clause. For other expansion clauses, there
can not be more than one default clause which specifies the expansion clause.

For simple design configurations, it might be sufficient to specify a default /iblist (see 13.3.1.5).

13.3.1.3 The instance clause

The instance clause is used to specify the specific instance to which the expansion clause shall apply.The
syntax for the instance clause is specified in Syntax 13-6.
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inst_clause ::= (From Annex A - A.1.2)
instance inst_name

inst_name ::=
topmodule_identifier{.instance_identifier}

Syntax 13-6 Syntax for instance clause

The instance name associated with the instance clause is a Verilog hierarchical name, starting at the top-
level module of the config (i.e., the name of the cell in the design statement).

13.3.1.4 The cell clause

The cell selection clause names the cell to which it applies. The syntax for the cell clause is specified in
Syntax 13-7.

cell_clause ::= (From Annex A - A.1.2)
cell [ library_identifier.]cell_identifier

Syntax 13-7 Syntax for cell clause

If the optional library name is specified then the selection rule applies to any instance which is bound or is
under consideration for being bound to the selected library and cell. It is an error if a library name is
included in a cell selection clause and the corresponding expansion clause is a library list expansion clause.

13.3.1.5 The liblist clause

The liblist clause defines an ordered set of libraries to be searched to find the current instance. The syntax
for the liblist clause is specified in Syntax 13-8.

liblist_clause ::= (From Annex A - A.1.2)
liblist [{library_identifier}]

Syntax 13-8 Syntax for liblist clause

liblists are inherited hierarchically downward as instances are bound. When searching for a cell to bind to
the current unbound instance, and in the absence of an applicable binding expansion clause, the specified
library list is searched in the specified order.

The current library list is selected by the selection clauses. If no library list clause is selected, or the selected
library list is empty, then the library list contains the single name which is the library in which the cell con-
taining the unbound instance is found (i.e., the parent cell s library).
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13.3.1.6 The use clause

The use clause specifies a specific binding for the selected cell. The syntax for the use clause is specified in
Syntax 13-9.

use_clause ::= (From Annex A - A.1.2)
use [library_identifier.]cell_identifier[:config]

Syntax 13-9 Syntax for use clause

A use clause can only be used in conjunction with an instance or cell selection clause. It specifies the exact
library and cell to which a selected cell or instance is bound.

The use clause has no effect on the current value of the library list. It can be common in practice to specify
multiple config rule statements, one of which specifies a binding and the other of which specifies a library
list.

If the lib.cell being referred to by the use clause is a config which has the same name as a module/macro-
module/primitive in the same library, then the optional - config suffix can be added to the lib.cell to
specify the config explicitly.

If the library name is omitted, the library shall be inherited from the parent cell.

NOTE—The binding statement can create situations where the unbound instance's module name and the cell name to
which it is bound are different.

13.3.2 Hierarchical configurations

For situations where it is desirable to specify a special set of configuration rules for a subsection of a design,
it is possible to bind a particular instance directly to a configuration using the binding clause:

instance top.al.foo use libl.foo:config;
// bind to the config foo in library libl

specifies the instance top.al. oo is to be replaced with the design hierarchy specified by the configura-
tion 11b1.foo:config. The design statement in 1ib1l.Ffoo:config shall specify the actual binding
for the instance top.al.foo, and the rules specified in the config shall determine the configuration of all
other subinstances under top.al.foo.

It shall be an error for an instance clause to specify a hierarchical path to an instance which occurs within a
hierarchy specified by another config.

config bot;
design libl_bot;
default liblist 1ibl 1ib2;
instance bot.al liblist 1ib3;
endconfig

config top;

design libl._top;

default liblist 1ib2 libl;

instance top.bot use libl._bot:config;

instance top.bot.al liblist 1ib4;

// ERROR - can’t set liblist for top.bot.al from this config
endconfig
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13.4 Using libraries and configs

The following subclause describes potential use-models for referencing configs on the command line. It is
included for clarification purposes.

The traditional Verilog simulation use-model takes a file-based approach, where the source descriptions for
all cells in the design are specified on the command line for each invocation of the tool. With the advent of
compiled-code simulators, the configuration mechanism shall also support a use-model which allows for the
source files to be pre-compiled and then for the pre-compiled design objects to be referenced on the com-
mand line. This subclause shall explain how configurations can be used in both of these scenarios.

13.4.1 Precompiling in a single-pass use-model

The single-pass use-model is the traditional use-model with which most users are familiar. In this use-model,
all of the source description files shall be provided to the simulator via the command line, and only these
source descriptions can be used to bind cell instances in the current design. A precompiling strategy in this
scenario actually parses every cell description provided on the command line and maps it into the library
without regard to whether the cell actually is used in the design. The tool can optionally check to see if the
cell already exists in the library, and if it is up-to-date (i.e. the source description has not changed since the
last time the cell was compiled) the tool can skip recompiling the cell. After all cells on the command line
have been compiled, then the tool can locate the top-level cell (discussed in Section 12), and proceed down
the hierarchy, binding each instance as it is encountered in the hierarchy.

NOTE With this use-model it is not necessary for library objects to persist from one tool invocation to another
(although for performance considerations it is recommended they do).

13.4.2 Elaboration-time compiling in a single-pass use-model

An alternate strategy which can be used with a single-pass tool is to parse the source files only to find the
top-level module(s), without actually compiling anything into the library during this scanning process. Once
the top-level module(s) has been found, then it can be compiled into the library, and the tool can proceed
down the hierarchy, only compiling the source descriptions necessary to bind the design successfully. Based
on the binding rules in place, only the source files which match the current library specification need to be
parsed to find the current cell s source description to compile. As with the precompiled single-pass use-
model, it is not necessary for library cells to persist from one invocation to another using this strategy.

13.4.3 Precompiling using a separate compilation tool

When using a separate compilation tool, it is essential library cells persist, and the compiled forms shall
therefore exist somewhere in the file system. The exact format and location for holding these compiled
forms shall be vendor/tool-specific. Using this separate compiler strategy, the source descriptions shall be
parsed and compiled into the library using one or more invocations of the compiler tool. The only restriction
is all cells in a design shall be precompiled prior to binding the design (typically via an invocation of a sepa-
rate tool). Using this strategy, the tool which actually does the binding only needs to be told the top-level
module(s) of the design to be bound, and then it shall use the precompiled form of the cell description(s)
from the library to determine the subinstances and descend hierarchically down the design binding each cell
as it is located.

13.4.4 Command line considerations

In each of the three preceding strategies, the binding rules can either be specified via a config, or the default
rules (from the library map file) can be used. In the single-pass use-models, the config can be specified by
including its source description file on the command line. In the case where the config includes a design
statement, then the specified cell shall be the top-level module, regardless of the presence of any uninstanti-
ated cells in the rest of the source files. When using a separate compilation tool, the tool which actually does
the binding only needs to be given the /ib.cell specification for the top-level cell(s) and/or the config to be
used. In this strategy, the config itself shall also be precompiled.
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13.5 Configuration examples

Consider the following set of source descriptions:

Example:
file top.v file adder.v file adder.vg file lib_map
module top(-..); module adder(...); module adder(...); library rtlLib top.v;
- --- // rtl ... // gate-level library aLib adder.*;
adder al(...); foo f1(...); foo f1(...); library gatelLib
adder a2(...); foo f2(...); foo f2(...); adder.vg;
endmodule endmodule endmodule
module foo(...); module foo(...); module foo(...);

. // rtl ... // rtl ... // gate-level

endmodule endmodule endmodule

All of the examples in this section shall assume the top.v, adder.v and adder .vqg files get compiled
with the given ib.map file. This yields the following library structure:

rtiLib.top // from top.v
rtiLib.foo // from top.v
aLib.adder // from adder.v
aLib.foo // rtl from adder.v
gateLib.adder // from adder.vg
gateLib.foo // from adder.vg

13.5.1 Default configuration from library map file

With no configuration, the libraries are searched according to the library declaration order in the library map
file. This means all instances of module adder shall use aLib.adder (since aLib is the first library
specified which contains a cell named adder), and all instances of module oo shall use rtlLib.foo
(since rtlLib is the first library which contains F00).

13.5.2 Using the default clause
To always use the foo definition from file adder . v, use the following simple configuration:

config cfgl;

design rtlLib.top

default liblist aLib rtlLib;
endconfig

The default liblist statement overrides the library search order in the Iib_map file, so aLib is always
searched before rtlLib. Since the gateLib library is not included in the Iiblist, the gate-level
descriptions of adder and Foo0 shall not be used.

To use the gate-level representations of adder and Foo0, add to the config as follows:

config cfg2;

design rtlLib.top

default liblist gateLib aLib rtlLib;
endconfig

| Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved.|

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT



IEC 61691-4:2004(E) 233
|EEE 1364-2001(E)

This shall cause the gate representation always to be taken before the rtl representation, using the module
definitions for adder and Foo from adder .vg. The rtl view of top shall be taken since there is no gate
representation available.

13.5.3 Using the cell clause

To modify the config to use the rtl view of adder and the gate-level representation of foo from
gateLib:

config cfg3;

design rtlLib.top

default liblist aLib rtlLib;
cell foo use gatelLib.foo;
endconfig

The cell clause selects all cells named foo and explicitly binds them to the gate representation in
gatelLib.

13.5.4 Using the instance clause

To modify the config so the top.al adder (and its descendants) use the gate representation and the
top.a2 adder (and its descendants) use the rtl representation from aL ib:

config cfgd
design rtlLib.top
default liblist gateLib rtlLib;
instance top.a2 liblist aLib;
endconfig

Since the liblist is inherited, all of the descendants of top . a2 inherit its liblist from the instance selection
clause.

13.5.5 Using a hierarchical config

Now suppose all this work has only been on the adder module by itself and a config which uses the
rtlLib._foo cell for 1, and the gateL ib.Too cell for 2 has already been developed. Then use:

config cfg5;
design alLib.adder;
default liblist gateLib aLib;
instance adder.f1 liblist rtlLib;
endconfig

To use this configuration cg5 for the top.a2 instance of adder and take the full default aLib adder
for the top.al instance, use the following config:

config cfg6;

design rtlLib.top;

default liblist aLib rtlLib;

instance top.a2 use work.cfg5:config
endconfig

The binding clause specifies the work . cfg5: config configuration is to be used to resolve the bindings
of instance top.a2 and its descendants. It is the design statement in config cFg5 which defines the exact
binding for the top.a2 instance itself. The rest of cFg5 defines the rules to bind the descendants of
top-a2. Notice the instance clause in cFg5 is relative to its own top-level module, adder.

[ Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT



234 IEC 61691-4:2004(E)
IEEE 1364-2001(E)

13.6 Displaying library binding information

It shall be possible to display the actual library binding information for module instances during simulation.
The format specifier %01 or %L shall print out the Iibrary.cell binding information for the module
instance containing the display (or other textual output) command. This is similar to the %m format specifier
which prints out the hierarchical path name of the module containing it.

It shall also be able to use the VPI interface to display the binding information. The following new
vpiProperties shall exist for objects of type vpiModule:

vpiUseBinding - the library.cell binding information for a module instance
vpiLibrary - the library name into which the module was compiled

vpiCell - the name of the cell bound to the module instance

vpiConfig - the library.cell name of the config controlling the binding of the module
Instance

These properties shall be of sString type, similar to the vpiName and vpiFul IName properties.

13.7 Library mapping examples

In the absence of a configuration, it is possible to perform basic control of the library searching order when
binding a design.

When a config is used, the config overrides the rules specified here.
13.7.1 Using the command line to control library searching

In the absence of a configuration, it shall be necessary for all compliant tools to provide a mechanism of
specifying a library search order on the command line which overrides the default order from the library
mapping file. This mechanism shall include specification of library names only, with the definitions of these
libraries to be taken from the library mapping file.

NOTE It is recommended all compliant tools use "-L <library_name>" to specify this search order.
13.7.2 File path specification examples
Example:
Given the following set of files:
/proj/libl/rtl/a.v
/proj/lib2/gates/a.v

/proj/libl/rtl/b_v
/proj/lib2/gates/b.v

From the /proj library, the following absolute ¥i le_path_specs are resolved as shown:

/proj/lib*/*/a.v =/proj/libl/rtl/a.v, /proj/lib2/gates/a.v
.../a.v =/proj/libl/rtl/a.v, /proj/lib2/gates/a.v
/proj/.../b.v =/proj/libl/rtl/b.v, /proj/lib2/gates/b.v
... /rel/*.v =/proj/libl/rtl/a.v, /proj/libl/rti/b.v
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From the /proj/1ib1 directory, the following relative Fi le_path_specs are resolved as shown:

../lib2/gates/*.v = /proj/lib2/gates/a.v, /proj/lib2/gates/b.v
Jrel/?.v = /proj/libl/rtl/a.v, /proj/libl/rti/b.v
/rtel/ = /proj/libl/rtl/a.v, /proj/libl/rti/b.v

13.7.3 Resolving multiple path specifications

Example:

library libl “/proj/libl/foo*.v’;
library 1ib2 “/proj/libl/foo.v”’;
library 1ib3 “../1ibl/”;

library lib4 “/proj/libl/*ver.v’’;

When evaluated from the directory /proj/tb directory, the following source files shall map into the spec-
ified library:

-./libl/foobar.v - libl //potentially matches 1ib1l and 1ib3. Since 1ib1 includes
a filename and 1 1b3 only specifies a directory; 11b1 takes

precedence
/proj/libl/foo.v - 1ib2 // takes precedence over 11b1 and 11b3 path specifications
/proj/libl/bar.v - 1ib3
/proj/libl/barver.v - 1ib4 // takes precedence over 1 1b3 path specification
/proj/libl/foover.v - ERROR // matches ibl and 1ib4
/test/th/tb.v - work // does not match any library specifications.
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14. Specify blocks

Two types of HDL constructs are often used to describe delays for structural models such as ASIC cells.
They are as follows:

— Distributed delays, which specify the time it takes events to propagate through gates and nets inside
the module (see 7.14)
—  Module path delays, which describe the time it takes an event at a source (input port or inout port) to

propagate to a destination (output port or inout port)

This clause describes how paths are specified in a module and how delays are assigned to these paths.

14.1 Specify block declaration

A block statement called the specify block is the vehicle for describing paths between a source and a destina-
tion and for assigning delays to these paths. The syntax for specify block is shown in Syntax 14-1.

specify_item ::= (From Annex A - A.7.1)
specparam_declaration
| pulsestyle_declaration
| showcancelled_declaration
| path_declaration
| system_timing_check

Syntax 14-1 Syntax of specify block

The specify block shall be bounded by the keywords specify and endspecify, and it shall appear inside a
module declaration. The specify block can be used to perform the following tasks:

— Describe various paths across the module.

— Assign delays to those paths.

— Perform timing checks to ensure that events occurring at the module inputs satisfy the timing con-
straints of the device described by the module (see Clausel5).

The paths described in the specify block, called module paths, pair a signal source with a signal destination.
The source may be unidirectional (an input port) or bidirectional (an inout port) and is referred to as the
module path source. Similarly, the destination may be unidirectional (an output port) or bidirectional (an
inout port) and is referred to as the module path destination.

Example:
specify
specparam tRise_clk g = 150, tFall_clk_q = 200;
specparam tSetup = 70;
(clk == q) = (tRise_clk q, tFall_clk q);

$setup(d, posedge clk, tSetup);
endspecify
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The first two lines following the keyword specify declare specify parameters, which are discussed in 3.11.3.
The line following the declarations of specify parameters describes a module path and assigns delays to that
module path. The specify parameters determine the delay assigned to the module path. Specifying module
paths is presented in 14.2. Assigning delays to module paths is discussed in 14.3. The line preceding the key-
word endspecify instantiates one of the system timing checks, which are discussed further in Section 15.

14.2 Module path declarations
There are two steps required to set up module path delays in a specify block:

a)  Describe the module paths

b)  Assign delays to those paths (see 14.3)

The syntax of the module path declaration is described in Syntax 14-2.

path_declaration ::= (From Annex A - A.7.2)
simple_path_declaration ;
| edge_sensitive_path_declaration ;
| state_dependent_path_declaration ;

Syntax 14-2 Syntax of the module path declaration

A module path may be described as a simple path, an edge sensitive path, or a state dependent path. A mod-
ule path shall be defined inside a specify block as a connection between a source signal and a destination
signal. Module paths can connect any combination of vectors and scalars.

Example:

Figure 35 illustrates a circuit with module path delays. More than one source (A, B, C, and D) may have a
module path to the same destination (Q), and different delays may be specified for each input to output path.

= module path delay

A
B MODULE PATHS:
from A to Q
Q from B to Q
C from C to Q
D from D to Q

Figure 35—Module path delays
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14.2.1 Module path restrictions

Module paths have the following restrictions:

The module path source shall be a net that is connected to a module input port or inout port.
The module path destination shall be a net or variable that is connected to a module output port or
inout port.

The module path destination shall have only one driver inside the module.

14.2.2 Simple module paths

The syntax for specifying a simple module path is given in Syntax 14-3.

simple_path_declaration ::= (From Annex A - A.7.2)
parallel_path_description = path_delay_value
| full_path_description = path_delay_value
parallel_path_description ::=
( specify_input_terminal_descriptor [ polarity_operator | =>
specify_output_terminal_descriptor )
full_path_description ::=
(list_of_path_inputs [ polarity_operator ] *> list_of_path_outputs )
list_of_path_inputs ::=
specify_input_terminal_descriptor { , specify_input_terminal_descriptor }
list_of_path_outputs ::=
specify_output_terminal_descriptor { , specify_output_terminal_descriptor }
specify_input_terminal_descriptor ::= (From Annex A - A.7.3)
input_identifier
| input_identifier [ constant_expression ]
| input_identifier [ range_expression ]
specify_output_terminal_descriptor ::=
output_identifier
| output_identifier [ constant_expression |
| output_identifier [ range_expression ]
input_identifier ::=
input_port_identifier | inout_port_identifier
output_identifier ::=
output_port_identifier | inout_port_identifier
polarity_operator ::= (From Annex A - A.7.4)
+|-

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

Syntax 14-3 Syntax for simple module path

Simple path can be declared in one of the two forms:

The symbols *> and => each represent a different kind of connection between the module path source and
the module path destination. The operator *> establishes a full connection between source and destination.
The operator => establishes a parallel connection between source and destination. Refer to 14.2.5 for a

source *> destination
source => destination

description of full connection and parallel connection paths.
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Example:

The following three examples illustrate valid simple module path declarations.

(A =>0Q) = 10;

(B =>0Q) = (12);
(C, D *> Q) = 18;

14.2.3 Edge-sensitive paths
When a module path is described using an edge transition at the source, it is called an edge-sensitive path.
The edge-sensitive path construct is used to model the timing of input to output delays, which only occur

when a specified edge occurs at the source signal.

The syntax of the edge-sensitive path declaration is shown in Syntax 14-4.

edge_sensitive_path_declaration ::= (From Annex A - A.7.4)
parallel_edge_sensitive_path_description = path_delay_value
| full_edge_sensitive_path_description = path_delay_value
parallel_edge_sensitive_path_description ::=
([ edge_identifier ] specify_input_terminal_descriptor =>
specify_output_terminal_descriptor [ polarity_operator ] : data_source_expression )
full_edge_sensitive_path_description ::=
([ edge_identifier ] list_of_path_inputs *>
list_of_path_outputs [ polarity_operator ] : data_source_expression )
data_source_expression ::=
expression
edge_identifier ::=
posedge | negedge

Syntax 14-4 Syntax of the edge-sensitive path declaration

The edge identifier may be one of the keywords posedge or negedge, associated with an input terminal
descriptor, which may be any input port or inout port. If a vector port is specified as the input terminal
descriptor, the edge transition shall be detected on the least significant bit. If the edge transition is not speci-
fied, the path shall be considered active on any transition at the input terminal.

An edge-sensitive path may be specified with full connections (*>) or parallel connections (=>). For paral-
lel connections (=>), the destination shall be any scalar output or inout port or the bit-select of a vector out-
put or inout port. For full connections (*>), the destination shall be a list of one or more of the vector or
scalar output and inout ports, and bit-selects or part-selects of vector output and inout ports. Refer to 14.2.5
for a description of parallel paths and full connection paths.

The data source expression is an arbitrary expression, which serves as a description of the flow of data to the
path destination. This arbitrary data path description does not affect the actual propagation of data or events
through the model; how an event at the data path source propagates to the destination depends on the inter-
nal logic of the module. The polarity operator describes whether the data path is inverting or noninverting.
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Examples:

Example 1 The following example demonstrates an edge-sensitive path declaration with a positive polarity
operator:

( posedge clock => ( out +: in ) ) = (10, 8);
In this example, at the positive edge of clock, a module path extends from clock to out using a rise
delay of 10 and a fall delay of 8. The data path is from in to out, and In is not inverted as it propagates to
out.

Example 2 The following example demonstrates an edge-sensitive path declaration with a negative polar-
ity operator:

( negedge clock[0] => ( out -: in ) ) = (10, 8);
In this example, at the negative edge of clock[0], a module path extends from clock[0] to out using
arise delay of 10 and a fall delay of 8. The data path is from in to out, and in is inverted as it propagates
to out.
Example 3 The following example demonstrates an edge-sensitive path declaration with no edge identifier:
( clock => (out : in ) ) = (10, 8);
In this example, at any change in clock, a module path extends from clock to out.

14.2.4 State-dependent paths

A state-dependent path makes it possible to assign a delay to a module path that affects signal propagation
delay through the path only if specified conditions are true.

A state-dependent path description includes the following items:
— A conditional expression that, when evaluated true, enables the module path
— A module path description

— A delay expression that applies to the module path

The syntax for the state-dependent path declaration is shown in Syntax 14-5.

state_dependent_path_declaration ::= (From Annex A - A.7.4)
if ( module_path_expression ) simple_path_declaration
| if (module_path_expression ) edge_sensitive_path_declaration
| ifnone simple_path_declaration

Syntax 14-5 Syntax of state-dependent paths

14.2.4.1 Conditional expression
The operands in the conditional expression shall be constructed from the following:
— Scalar or vector module input ports or inout ports or their bit-selects or part-selects

— Locally defined variables or nets or their bit-selects or part-selects
— Compile time constants (constant numbers and specify parameters)
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Table 46 contains a list of valid operators that may be used in conditional expressions:

Table 46—L.ist of valid operators in state dependent path delay expression

241

Operator Description Operator Description
~ bit-wise negation & reduction and
& bit-wise and | reduction or

| bit-wise or A reduction xor
A bit-wise xor ~& reduction nand
A~ A bit-wise xnor ~| reduction nor
== logical equality A~ A reduction xnor
1= logical inequality {} concatenation
&& logical and {{}} replication

I logical or 2: conditional

! logical not

A conditional expression shall evaluate to true (1) for the state-dependent path to be assigned a delay
value. If the conditional expression evaluates to X or z, it shall be treated as true. If the conditional expres-
sion evaluates to multiple bits, the least significant bit shall represent the result. The conditional expression
can have any number of operands and operators.

14.2.4.2 Simple state-dependent paths

If the path description of a state-dependent path is a simple path, then it is called a simple state-dependent
path. The simple path description is discussed in 14.2.2.

Examples:

Example 1 The following example uses state-dependent paths to describe the timing of an XOR gate.

module XORgate (a, b, out);
input a, b:
output out;

xor X1 (out, a, b);

specify
specparam noninvrise = 1, noninvfall = 2
specparam invertrise = 3, invertfall = 4;
if (@) (b=> out) = (invertrise, invertfall);
if (b) (a=> out) = (invertrise, invertfall);
if (~a)(b=> out) = (nhoninvrise, noninvfall);
if (~=b)(a=> out) = (nhoninvrise, noninvfall);

endspecify

endmodule

In this example, first two state-dependent paths describe a pair of output rise and fall delay times when the
XOR gate (X1) inverts a changing input. The last two state-dependent paths describe another pair of output

rise and fall delay times when the XOR gate buffers a changing input.
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Example 2 The following example models a partial ALU. The state-dependent paths specify different
delays for different ALU operations.

module ALU (ol, il, 12, opcode);
input [7:0] i1, i2;

input [2:1] opcode;

output [7:0] ol;

//functional description omitted
specify
// add operation
if (opcode == 27b00) (il,i2 *> o0l) = (25.0, 25.0);
// pass-through il operation
if (opcode == 27b01) (il => o0l) = (5.6, 8.0);
// pass-through i2 operation
if (opcode == 27b10) (i2 => ol)
// delays on opcode changes
(opcode => 01) = (6.1, 6.5);
endspecify
endmodule

(5.6, 8.0);

In the preceding example, the first three path declarations declare paths extending from operand inputs i1
and 12 to the 01 output. The delays on these paths are assigned to operations on the basis of the operation
specified by the inputs on opcode. The last path declaration declares a path from the opcode input to the
01 output.

14.2.4.3 Edge-sensitive state-dependent paths

If the path description of a state-dependent path describes an edge-dependent path, then the state-dependent
path is called an edge-sensitive state-dependent path. The edge-sensitive paths are discussed in 14.2.3.

Different delays can be assigned to the same edge-sensitive path as long as the following criteria are met:

— The edge, condition, or both make each declaration unique.
— The port is referenced in the same way in all path declarations (entire port, bit-select, or part-select).

Examples:

Example 1

if ( 'reset && !clear )
( posedge clock => ( out +: in ) ) = (10, 8) ;

In this example, if the positive edge of clock occurs when reset and clear are low, and a module path
extends from clock to out using a rise delay of 10 and a fall delay of 8.
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Example 2 The following example shows four edge-sensitive path declarations. Note that each path has a
unique edge or condition.

specify
( posedge clk => ( q[0] : data ) ) = (10, 5);
( negedge clk => ( q[0] : data ) ) = (20, 12);
if (reset)
( posedge clk => ( q[0] : data ) ) = (15, 8);
if (Ireset && cntrl)
( posedge clk => ( q[0] : data ) ) = (6, 2);

endspecify

Example 3 The two state-dependent path declarations shown below are not legal because even though they
have different conditions, the destinations are not specified in the same way: the first destination is a part-
select, the second is a bit-select.

specify
if (reset)
(posedge clk => (q[3:0]:data)) = (10,5);
if (reset)
(posedge clk => (q[0]:data)) = (15,8);
endspecify

14.2.4.4 The ifnone condition

The ifnone keyword is used to specify a default state-dependent path delay when all other conditions for the
path are false. The ifnone condition shall specify the same module path source and destination as the state-
dependent module paths. The following rules apply to module paths specified with the ifnone condition:

—  Only simple module paths may be described with an ifnone condition.

— The state-dependent paths that correspond to the ifnone path may be either simple module paths or
edge-sensitive paths.

— If there are no corresponding state-dependent module paths to the ifnone module path, then the
ifnone module path shall be treated the same as an unconditional simple module path.

— It is illegal to specify both an ifnone condition for a module path and an unconditional simple mod-
ule path for the same module path.
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Examples:

Example 1 The following are valid state-dependent path combinations.

if (C1) (IN => OUT) = (1,1):
ifnone (IN => OUT) = (2,2);

// add operation

if (opcode == 2’b00) (il,i2 *> o0l) = (25.0, 25.0);
// pass-through il operation

if (opcode == 27b01) (il => ol) = (5.6, 8.0);

// pass-through 12 operation

if (opcode == 2’b10) (i2 => 0l1) = (5.6, 8.0);

// all other operations

ifnone (12 => 0l1) = (15.0, 15.0);

(posedge CLK => (Q +: D)) = (1,1);
ifnone (CLK => Q) = (2,2);

Example 2 The following module path description combination is illegal because it combines a state-
dependent path using an ifnone condition and an unconditional path for the same module path.

if (3) (b=> out) = (2,2);
if (b) (a=> out) = (2,2);
ifnone (a => out) = (1,1);

(a => out) = (1,1);

14.2.5 Full connection and parallel connection paths

The operator *> shall be used to establish a fill connection between source and destination. In a full connec-
tion, every bit in the source shall connect to every bit in the destination. The module path source need not
have the same number of bits as the module path destination.

The full connection can handle most types of module paths, since it does not restrict the size or number of
source signals and destination signals. The following situations require the use of full connections:

— To describe a module path between a vector and a scalar

— To describe a module path between vectors of different sizes

— To describe a module path with multiple sources or multiple destinations in a single statement (see
14.2.6)

The operator => shall be used to establish a parallel connection between source and destination. In a parallel
connection, each bit in the source shall connect to one corresponding bit in the destination. Parallel module
paths can be created only between sources and destinations that contain the same number of bits.

Parallel connections are more restrictive than full connections. They only connect one source to one destina-
tion, where each signal contains the same number of bits. Therefore, a parallel connection may only be used
to describe a module path between two vectors of the same size. Since scalars are one bit wide, either *> or
=> may be used to set up bit-to-bit connections between two scalars.

[ Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT



IEC 61691-4:2004(E)
|EEE 1364-2001(E)

Examples:

Example 1 Figure 36 illustrates how a parallel connection differs from a full connection between two 4-bit

245

vectors.
Parallel module path Full module path
Input bits Output bits Input bits Output bits

0 0 0

1 1 1

2 2 2

3 s 3 3.
N = number of bits = 4

Number of paths = N =
Use to define path

bit-to-bit connections

Number of paths =N * N =

Use to define path

bit-to-vector connections

Figure 36 —The difference between parallel and full connection paths

Example 2 The following example shows module paths for a 2:1 multiplexor with two 8-bit inputs and

one 8-bit output.

module mux8 (inl, in2, s, q) ;

output [7:0] q;
input [7:0] inl, in2;

input s;
// Functional
specify
(inl => q)
(in2 => q)
(s *> ) =
endspecify
endmodule

description omitted ...

G. 4
., 3)

=

The module path from S to q uses a full connection (*>) because it connects a scalar source the 1-bit
select line to a vector destination the 8-bit output bus. The module paths from both input lines inl and
N2 to g use a parallel connection (=>) because they set up parallel connections between two 8-bit buses.

14.2.6 Declaring multiple module paths in a single statement

Multiple module paths may be described in a single statement by using the symbol *> to connect a comma-
separated list of sources to a comma-separated list of destinations. When describing multiple module paths
in one statement, the lists of sources and destinations may contain a mix of scalars and vectors of any size.
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The connection in a multiple module path declaration is always a full connection.
Example:
(a, b, ¢ *> ql, g2) = 10;
is equivalent to the following six individual module path assignments:

(a *>ql) = 10

(b *> ql) = 10 ;
(c *> ql) = 10 ;
(a *> qg2) = 10 ;
(b *> g2) = 10 ;
(c *> g2) = 10 ;

14.2.7 Module path polarity

The polarity of a module path is an arbitrary specification indicating whether or not the direction of a signal
transition is inverted as it propagates from the input to the output. This arbitrary polarity description does not
affect the actual propagation of data or events through the model; how a rise or a fall at the source propa-
gates to the destination depends on the internal logic of the module.

Module paths may specify any of three polarities:
— Unknown polarity
— Positive polarity
— Negative polarity

14.2.7.1 Unknown polarity

By default, module paths shall have unknown polarity that is, a transition at the path source may propagate
to the destination in an unpredictable way, as follows:

— A rise at the source may cause either a rise transition, a fall transition, or no transition at the
destination.

— A fall at the source may cause either a rise transition, a fall transition, or no transition at the
destination.

A module path specified either as a full connection or a parallel connection, but without a polarity operator +
or —, shall be treated as a module path with unknown polarity.

14.2.7.2 Positive polarity

For module paths with positive polarity, any transition at the source may cause the same transition at the des-
tination, as follows:

— Arrise at the source may cause either a rise transition or no transition at the destination.
— A fall at the source may cause either a fall transition or no transition at the destination.

A module path with positive polarity shall be specified by prefixing the + polarity operator to => or *>.
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14.2.7.3 Negative polarity

For module paths with negative polarity, any transition at the source may cause the opposite transition at the
destination, as follows:

— Arrise at the source may cause either a fall transition or no transition at the destination.
— A fall at the source may cause either a rise transition or no transition at the destination.

A module path with negative polarity shall be specified by prefixing the — polarity operator to => or *>.
Examples:

The following examples show each type of path polarity:

// Positive polarity
(Inl +=> q) = In_to g ;
(s +*> q) = s to q ;

// Negative polarity
(Inl -=> q) = In_to_q ;
(s -*>q) =s_togq;

// Unknown polarity

(Inl => q) = In_to q ;
(s *> ) =s_togq;

14.3 Assigning delays to module paths

The delays that occur at the module outputs where paths terminate shall be specified by assigning delay val-
ues to the module path descriptions. The syntax for specifying delay values is shown in Syntax 14-6.

path_delay_value ::= (From Annex A - A.7.4)
list_of_path_delay_expressions
| (list_of_path_delay_expressions )
list_of_path_delay_expressions ::=
t_path_delay_expression
| trise_path_delay_expression , tfall_path_delay_expression
| trise_path_delay_expression , tfall_path_delay_expression , tz_path_delay_expression
| t01_path_delay_expression , t10_path_delay_expression , t0z_path_delay_expression ,
tz1_path_delay_expression , t1z_path_delay_expression , tz0_path_delay_expression
| t01_path_delay_expression , t10_path_delay_expression , t0z_path_delay_expression ,
tz1_path_delay_expression , t1z_path_delay_expression , tz0_path_delay_expression ,
tOx_path_delay_expression , tx1_path_delay_expression , t1x_path_delay_expression ,
tx0_path_delay_expression , txz_path_delay_expression , tzx_path_delay_expression
t_path_delay_expression ::=
path_delay_expression

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od
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In module path delay assignments, a module path description (see 14.2) is specified on the left-hand side,
and one or more delay values are specified on the right-hand side. The delay values may be optionally
enclosed in a pair of parentheses. There may be one, two, three, six, or twelve delay values assigned to a
module path, as described in 14.3.1. The delay values shall be constant expressions containing literals or
specparams, and there may be a delay expression of the form min:typ:max.

Example:

specify
// Specifty Parameters
specparam tRise_clk_qgq = 45:150:270, tFall_clk g=60:200:350;
specparam tRise_Control = 35:40:45, tFall_control=40:50:65;

// Module Path Assignments

(clk => q) = (tRise_clk _q, tFall_clk Qq);

(clr, pre *> ) = (tRise_control, tFall _control);
endspecify

In the example above, the specify parameters declared following the specparam keyword specify values for
the module path delays. The module path assignments assign those module path delays to the module paths.

14.3.1 Specifying transition delays on module paths

Each path delay expression may be a single value representing the typical delay or a colon-separated list

of three values representing a  minimum, typical, and maximum delay, in that order. If the path delay
expression results in a negative value, it shall be treated as zero. Table 47 describes how different path delay
values shall be associated with various transitions. The path delay expression names refer to the names used
in Syntax 14-6.

Table 47— Associating path delay expressions with transitions

Number of path delay expressions specified
Transitions 1 2 3 6 12
0->1 t trise trise t01 t01
1->0 t tfall tfall t10 t10
0>z t trise tz t0z t0z
z->1 t trise trise tzl tzl
1>z t tfall tz tlz tlz
z->0 t tfall tfall tz0 tz0
0->x * * * * tOx
x> 1 * * * * tx1
1->x * * * * tlx
X ->0 * * * * tx0
X->7z * * * * txz
7Z->X * * * * tzx
* See 14.3.2.
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Example:

// one expression specifies all transitions

(C =0
C =0

// two expressions specify rise and fall delays

specparam
specparam
€ =>0Q
€ =0

// three
specparam
specparam
C =0
C =0

// six expressions specify transitions to/from 0, 1, and z

specparam

€ =>0Q
specparam
specparam

€ =0

= 20;
= 10:14:20;

tPLH1 = 12, tPHL1 = 25;

tPLH2 = 12:16:22, tPHL2 = 16:22:25;
= ( tPLH1, tPHL1 ) ;

= ( tPLH2, tPHL2 ) ;

expressions specify rise, fall, and z transition

tPLH1 = 12, tPHL1 = 22, tPzl = 34;

delays

tPLH2 = 12:14:30, tPHL2 = 16:22:40, tPz2 = 22:30:34,;

= (tPLH1, tPHL1, tPzl);
= (tPLH2, tPHL2, tPz2);

t0l1 = 12, t10 = 16, tO0z = 13,

tz1l = 10, tlz = 14, tz0 = 34 ;
= ( t01, ti10, tOz, tzl, tlz, tz0) ;
TO1l = 12:14:24, T10 = 16:18:20, TOz
Tzl = 10:12:16, Tlz = 14:23:36, Tz0
= ( TO1, T10, TOz, Tzl, Tlz, Tz0) ;

13:16:30
15:19:34

// twelve expressions specify all transition delays explicitly
specparam t01=10, t10=12, t0z=14, tz1=15, tl1z=29, tz0=36,

(c => Q)

tox=14, tx1=15, tix=15, tx0=14, txz=20, tzx=30 ;

= (t01, tl10, tO0z, tzl, tlz, tzO,
tOx, tx1, tlx, tx0, txz, tzx) ;

14.3.2 Specifying x transition delays

If the x transition delays are not explicitly specified, the calculation of delay values for x transitions is based

on the following two pessimistic rules:

— Transitions from a known state to X shall occur as quickly as possible—that is, the shortest possible

delay shall be used for any transition to X.

— Transitions from X to a known state shall take as long as possible—that is, the longest possible delay

shall be used for any transition from X.

Table 48 presents the general algorithm for calculating delay values for x transitions, along with specific

examples. The following two groups of x transitions are represented in the table:

a) Transition from a known state StoX: S X

b) Transition from X to a known state S: X S
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Table 48—Calculating delays for x transitions

X transition

Delay value

General algorithm

minimum (s -> other known signals)

maximum (other known signals -> s)

Specific transitions

minimum (0 -> z delay, 0 -> 1 delay)

minimum (1 -> z delay, 1 -> 0 delay)

z -> X

minimum (z -> 1 delay, z -> 0 delay)

X =>0

maximum (z -> 0 delay, 1 -> 0 delay)

maximum (z -> 1 delay, 0 -> 1 delay)

X =->z

maximum (1 -> z delay, 0 -> z delay)

Usage:

(C=>Q) = (512,17, 10, 6,22) ;

minimum (17, 5) =5

minimum (6, 12) =6

zZ =-> X

minimum (10, 22) =10

x=->0

maximum (22, 12) =22

maximum (10, 5) =10

maximum (6, 17) =17

14.3.3 Delay selection

IEC 61691-4:2004(E)
|EEE 1364-2001(E)

The simulator shall determine the proper delay to use when a specify path output must be scheduled to tran-
sition. There may be specify paths to the output from more than one input, and the simulator must decide

which specify path to use.

The simulator shall do this by first determining which specify paths to the output are active. Active specify
paths are those whose input has transitioned most recently in time, and which have either no condition or
whose conditions are true. In the presence of simultaneous input transitions, it is possible for many specify
paths to an output to be simultaneously active.

Once the active specify paths are identified, a delay must be selected from among them. This is done by
comparing the correct delay for the specific transition being scheduled from each specify path, and choosing

the smallest.

Examples:

Example 1:
(A =>Y) = (6, 9:;
(B == Y) = (6, 11);
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For a Y transition from O to 1, if A transitioned more recently than B a delay of 6 will be chosen. But if B
transitioned more recently than A, a delay of 5 will be chosen. And if the last time they transitioned A and B
did so simultaneously, then the smallest of the two rise delays would be chosen, which is the rise delay from
B of 5. The fall delay from A of 9 would be chosen if Y was instead to transition from 1 to O.

Example 2:
if (MODE <5) (A =>Y) = (5, 9);
if (MODE < 4) (A =>Y) = (4, 8);
if (MODE < 3) (A =>Y) = (6, 5);
if (MODE < 2) (A =>Y) = (3, 2);
if (MODE < 1) (A=>Y) = (7, 7);

Anywhere from zero to five of these specify paths might be active depending upon the value of MODE. For
instance, when MODE is 2 the first three specify paths are active. A rise transition would select a delay of 4,
because that is the smallest rise delay among the first three. A fall transition would select a delay of 5,
because that is the smallest fall delay among the first three.

14.4 Mixing module path delays and distributed delays

If a module contains module path delays and distributed delays (delays on primitive instances within the
module), the larger of the two delays for each path shall be used.

Examples:
Example 1 Figure 37 illustrates a simple circuit modeled with a combination of distributed delays and path
delays (only the D input to Q output path is illustrated). Here, the delay on the module path from input D to

output Q = 22, while the sum of the distributed delays = 0 + 1 = 1. Therefore, a transition on Q caused by a
transition on D will occur 22 time units after the transition on D.

= module path delay

Q ‘ = distributed delay
C ‘
- {o}

Figure 37—Module path delays longer than distributed delays

Example 2 In Figure 38, the delay on the module path from D to Q = 22, but the distributed delays along
that module path now add up to 10 + 20 = 30. Therefore, an event on Q caused by an event on D will occur
30 time units after the event on D.
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g ‘ /E\ = module path delay
_‘)‘Q ‘ = distributed delay

c |

c

Figure 38—Module path delays shorter than distributed delays

14.5 Driving wired logic

Module path output nets shall not have more than one driver within the module. Therefore, wired logic is not
allowed at module path outputs.

Figure 40 illustrates a violation of this wired-output rule and a method of avoiding the rule violation.

(a) (b)

Io
o

Figure 39—Legal and illegal module paths
In Figure 39 (a), any module path to S is illegal because the path destination has two drivers.
Assuming signal S in Figure 39 (a) is a wired-and, this limitation can be circumvented by replacing wired
logic with gated logic to create a single driver to the output. Figure 39 (b) shows how adding a third and
gate the shaded gate solves the problem for the module in Figure 39 (a).

The example in Figure 40 is also illegal. In this example, when the outputs Q and R are wired together, it cre-
ates a condition where both paths have multiple drivers from within the same module.
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w >

NUANW.

Figure 40—Illlegal module paths

Although multiple output drivers to a path destination are prohibited inside the same module, they are
allowed outside the module. The example in Figure 41 is legal since Q and R each have only one driver
within the module in which the module paths are specified.

w|>

Dai
R T

e

Figure 41 —Legal module paths

14.6 Detailed control of pulse filtering behavior

Two consecutive scheduled transitions closer together in time than the module path delay is deemed a pulse.
By default, pulses on a module path output are rejected. Consecutive transitions cannot be closer together
than the module path delay, and this is known as the inertial delay model of pulse propagation.

Pulse width ranges control how to handle a pulse presented at a module path output. They are:
— A pulse width range for which a pulse shall be rejected

— A pulse width range for which a pulse shall be allowed to propagate to the path destination
— A pulse width range for which a pulse shall generate a logic X on the path destination
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Two pulse limit values define the pulse width ranges associated with each module path transition delay. The
pulse limit values are called the error limit (e-limit) and the rejection limit (r-limit). The e-limit must always
be at least as large as the r-limit. Pulses greater than or equal to the e-limit pass unfiltered. Pulses less than
the e-limit but greater than or equal to the r-limit are filtered to X. Pulses less than the r-limit are rejected and
no pulse emerges. By default, both the e-limit and the r-limit are set equal to the delay. These default values
yield full inertial pulse behavior, rejecting all pulses smaller than the delay.

Example:

(A=>Y)=7,9;
/[l Module path
Il delay for a buffer

A

<«—» Dbulse width=4

/I Pulse considered
Y~ /l at module path output

<« Pulse width=4

/I Pulse is filtered

Y

The rise delay from input A to output Y is 7, and the fall delay is 9. By default, the e-limit and the r-limit for
the rise delay are both 7. The e-limit and the r-limit for the fall delay are both 9. The pulse limits associated
with the delay forming the trailing edge of the pulse determine if and how the pulse should be filtered.
Waveform Y’ shows the waveform resulting from no pulse filtering. The width of the pulse is2, which is less
than the reject limit for the rise delay of 7, and so the pulse is filtered as shown in waveform Y.

There are three ways to modify the pulse limits from their default values. First, the Verilog language pro-
vides the PATHPULSES specparam to modify the pulse limits from their default values. Second, invoca-
tion options can specify percentages applying to all module path delays to form the corresponding e-limits
and r-limits. Third, SDF annotation can individually annotate the e-limit and r-limit of each module path
transition delay.

14.6.1 Specify block control of pulse limit values

Pulse limit values may be set from within the specify block with the PATHPULSES specparam. The syntax
for using PATHPULSES to specify the reject limit and error limit values is given in Syntax 14-7.

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

pulse_control_specparam ::= (From Annex A - A.2.4)
PATHPULSES = ( reject_limit_value [ , error_limit_value | ) ;
| PATHPULSESspecify_input_terminal_descriptor$specify_output_terminal_descriptor
= (reject_limit_value [ , error_limit_value ])
error_limit_value ::=
limit_value
reject_limit_value ::=
limit_value
limit_value ::=
constant_mintypmax_expression

Syntax 14-7 Syntax for PATHPULSES$ pulse control
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If only the reject limit value is specified, it shall apply to both the reject limit and the error limit.

The reject limit and error limit may be specified for a specific module path. When no module path is speci-
fied, the reject limit and error limit shall apply to all module paths defined in a module. If both path-specific
PATHPULSES specparams and a non-path-specific PATHPULSES specparam appear in the same mod-
ule, then the path-specific specparams shall take precedence for the specified paths.

The module path input terminals and output terminals shall conform to the rules for module path inputs and
outputs, with the following restriction: the terminals may not be a bit-select or part-select of a vector.

When a module path declaration declares multiple paths, the PATHPULSES specparam shall only be spec-
ified for the first path input terminal and the first path output terminal. The reject limit and error limit speci-
fied shall apply to all other paths in the multiple path declaration. A PATHPULSES specparam which
specifies anything other than the first path input and path output terminals shall be ignored.

Example:

In the following example, the path (clk=>Q) acquires a reject limit of 2 and an error limit of 9, as defined
by the first PATHPULSES declaration. The paths (clr*>Q) and (pre*>Qq) receive a reject limit of O
and an error limit of 4, as specified by the second PATHPULSES declaration. The path (data=>q) is not
explicitly defined in any of the PATHPULSES declarations, and so it acquires reject and error limit of 3, as
defined by the last PATHPULSES declaration.

specify
(clk => q) = 12;
(data => q) = 10;
(clr, pre *> q) = 4;

specparam
PATHPULSESclk$q = (2,9),
PATHPULSESclIr$q = (0,4),
PATHPULSES = 3;

endspecify

14.6.2 Global control of pulse limit values

Two invocation options can specify percentages applying globally to all module path transition delays. The
error limit invocation option specifies the percentage of each module path transition delay used for its error
limit value. The reject limit invocation option specifies the percentage of each module path transition delay
used for its reject limit value. The percentage values shall be an integer between O and 100.

The default values for both the reject and error limit invocation options are 100%. When neither option is
present then 100% of each module transition delay is used as the reject and error limits.

It is an error if the error limit percentage is smaller than the reject limit percentage. In such cases the error
limit percentage is set equal to the reject limit percentage.

When both PATHPULSES and global pulse limit invocation options are present, the PATHPULSES val-
ues shall take precedence.

14.6.3 SDF annotation of pulse limit values

SDF annotation can be used to specify the pulse limit values of module path transition delays. Section 16
describes this in greater detail.
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When both PATHPULSES, global pulse limit invocation options, and SDF annotation of pulse limit values
are present, SDF annotation values shall take precedence.

14.6.4 Detailed pulse control capabilities

The default style of pulse filtering behavior has two drawbacks. First, pulse filtering to the X state may be
insufficiently pessimistic with an X state duration too short to be useful. Second, unequal delays can result in
pulse rejection whenever the trailing edge precedes the leading edge, leaving no indication that a pulse was
rejected. This section introduces more detailed pulse control capabilities.

14.6.4.1 On-event versus on-detect pulse filtering

When an output pulse must be filtered to X, greater pessimism can be expressed if the module path output
transitions immediately to X (on-detect) instead of at the already scheduled transition time of the leading
edge of the pulse (on-event).

The on-event method of pulse filtering to X is the default. When an output pulse must be filtered to X, the
leading edge of the pulse becomes a transition to X and the trailing edge a transition from X. The times of
transition of the edges do not change.

Just like on-event, the on-detect method of pulse filtering changes the leading edge of the pulse into a transi-
tion to X and the trailing edge to a transition from X, but the time of the leading edge is changed to occur
immediately upon detection of the pulse.

Figure 42 illustrates this behavior using a simple buffer with asymmetric rise/fall times and both the r-limits
and e-limits equal to 0. An output waveform is shown for both on-detect and on-event approaches.

rise/fall
4/6

in l\ out
2

10 12 14 18

out (on-event) /////

(default)

out (on-detect) W///A_

Figure 42— On-detect -vs.- on-event

On-detect versus on-event behavior can be selected in two different ways. First, one may be selected glo-
bally for all module path outputs through use of the on-detect or on-event invocation option. Second, one
may be selected locally through use of specify block pulse style declarations.
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The syntax for pulse style declarations is shown in Syntax 14-8.

pulsestyle_declaration ::= (From Annex A- A.7.1)
pulsestyle_onevent list_of_path_outputs ;
| pulsestyle_ondetect list_of_path_outputs ;

Syntax 14-8 Syntax for pulse style declarations

It is an error if a module path output appears in a pulse style declaration after it has already appeared in a
module path declaration.

The pulse style invocation options take precedence over pulse style specify block declarations.
14.6.4.2 Negative pulse detection

When the delays to a module path output are unequal, it is possible for the trailing edge of a pulse to be
scheduled for a time earlier than the schedule time of the leading edge, yielding a pulse with a negative
width. Under normal operation, if the schedule for a trailing pulse edge is earlier than the schedule for a
leading pulse edge, then the leading edge is cancelled. No transition takes place when the initial and final
states of the pulse are the same, leaving no indication a schedule was ever present.

Negative pulses can be indicated with the X state by use of the showcancelled style of behavior. When the
trailing edge of a pulse would be scheduled before the leading edge, this style causes the leading edge to be
scheduled to X, and the trailing edge to be scheduled from X. With on-event pulse style, the schedule to X
replaces the leading edge schedule. With on-detect pulse style, the schedule to X is made immediately upon
detection of the negative pulse.

showcancelled behavior can be enabled in two different ways. First, it may be enabled globally for all mod-
ule path outputs through use of the showcancelled and noshowcancelled invocation options. Second, it may
be enabled locally through use of specify block showcancelled declarations.

The syntax for showcancelled declarations is shown in Syntax 14-9.

showcancelled_declaration ::= (From Annex A- A.7.1)
showcancelled list_of_path_outputs ;
| noshowcancelled list_of _path_outputs ;

Syntax 14-9 Syntax for showcancelled declarations

It is an error if a module path output appears in a showcancelled declaration after it has already appeared in
a module path declaration. The showcancelled invocation options take precedence over the showcancelled
specify block declarations.

The showcancelled behavior is illustrated in Figure 43, which shows a narrow pulse presented at the input to
a buffer with unequal rise/fall delays. This causes the trailing edge of the pulse to be scheduled earlier than
leading edge. The leading edge of the input pulse schedules an output event 6 units later at the point marked
by A. The pulse trailing edge occurs one time unit later, which schedules an output event 4 units later
marked by point B. This second schedule on the output is for a time prior to the already existing schedule for
the leading output pulse edge.
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The output waveform is shown for three different operating modes. The first waveform shows the default
behavior with showcancelled behavior not enabled and with the default on-event style. The second wave-
form shows showcancelled behavior in conjunction with on-event. The last waveform shows showcancelled
behavior in conjunction with on-detect.

(in=>out)=(4,6);

in \ out

out (default)

out (showcancelled with on-event) /A

out (showcancelled with on-detect) ///////A_

Figure 43— Current event cancellation problem and correction

This same situation can also arise with nearly simultaneous input transitions, which is defined as two inputs
transitioning closer together in time than the difference in their respective delays to the output. Figure 44
shows waveforms for a 2-input NAND gate where initially A is high and B is low. B transitions 0->1 at
time 10, causing a 1->0 output schedule at time 24. A transitions 1->0 at time 12, causing a 0->1 sched-
ule at time 22. Arrows mark the output transitions caused by the transitions on inputs A and B.

The output waveform is shown for three different operating modes. The first waveform shows the default
behavior with showcancelled behavior not enabled and with the default on-event style. The second shows
showcancelled behavior in conjunction with on-event. The third shows showcancelled behavior in conjunc-
tion with on-detect.
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(A=>Q)
(B=>Q)

10 12 fZ 24

10;
14;

out (default)

out (showcancelled with on-eventj | V/

out (showcancelled with on-detect) ;//QZZZZZZ

Figure 44—NAND gate with nearly simultaneous input switching
where one event is scheduled prior to another that has not matured

One drawback of the on-event style with showcancelled behavior is that as the output pulse edges draw
closer together, the duration of the resulting X state becomes smaller. Figure 45 illustrates how the on-detect
style solves this problem.
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(A=>Q) = 10
(B=>Q) = 14

10 14 24

out (default)

out (showcancelled with on-event)

_l—‘7— _ _ —
out (showcancelled with on-detect) //QZZZZZZ

Figure 45—Input NAND gate with nearly simultaneous input switching
with output event scheduled at same time.

Examples:
Example 1:
specify
(a=>out)=(2,3);
(b =>out)=(3,4);
endspecify

Since no pulse style or showcancelled declarations appear within the specify block, the compiler applies the
default modes of on-event and noshowcancelled.

Example 2:

specify
(a=>out)=(2,3);
showcancelled out;
(b =>out)=(3,4);
endspecify
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This showcancelled declaration is in error because it follows use of out in a module path declaration. It
would be contradictory for out to have noshowcancelled behavior from input a, but showcancelled behav-
ior from input b.

Example 2 Both these specify blocks produce the same result. Outputs out and out_b are both declared
showcancelled and on_detect.

specify
showcancelled out;
pulsestyle_ondetect out;
(a =>out)=(2,3);
(a=>out)=(4,5);
showcancelled out b;
pulsestyle_ondetect out _b;
(b=>out_b)=(5,6);
(b=>out_b)=(3,4);

endspecify

specify
showcancelled out,out b;
pulsestyle_ondetect out,out b;
(a =>out)=(2,3);
(b=>out)=(3,4);
(a =>out_b)=(3,4);
(b=>out_b)=(5,6);

endspecify
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15.Timing checks

This section describes how timing checks are used in specify blocks to determine if signals obey the timing
constraints.

15.1 Overview

Timing checks can be placed in specify blocks to verify the timing performance of a design by making sure
critical events occur within given time limits. The syntax for system timing checks is given in Syntax 15-1.
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system_timing_check ::= (From Annex A - A.7.5.1)
$setup_timing_check
$hold _timing_check
$setuphold_timing_check
$recovery_timing_check
$removal_timing_check
$recrem_timing_check
$skew_timing_check
$timeskew_timing_check
$fullskew_timing_check
$period_timing_check
$width_timing_check
$nochange_timing_check
$setup_timing_check ::=
$setup ( data_event , reference_event , timing_check_limit [ , [ notify_reg]]) ;
$hold _timing_check ::=
$Shold ( reference_event , data_event , timing_check_limit [, [ notify_reg]]) ;
$setuphold_timing_check ::=
$setuphold ( reference_event , data_event , timing_check_limit , timing_check_limit
[, [ notify_reg ] [, [ stamptime_condition ] [ , [ checktime_condition ]
[, [ delayed_reference | [, [ delayed_data]]]]11]1);
$recovery_timing_check ::=
Srecovery ( reference_event , data_event , timing_check_limit [, [ notify_reg]]) ;
$removal_timing_check ::=
Sremoval ( reference_event , data_event , timing_check_limit [ , [ notify_reg]]) ;
$recrem_timing_check ::=
Srecrem ( reference_event , data_event , timing_check_limit , timing_check_limit
[, [ notify_reg ] [, [ stamptime_condition ] [, [ checktime_condition ]
[, [ delayed_reference ] [, [ delayed_data]]]1111);
$skew_timing_check ::=
$skew ( reference_event , data_event , timing_check_limit [ , [ notify_reg]]) ;
$timeskew_timing_check ::=
Stimeskew ( reference_event , data_event , timing_check_limit
[, [ notify_reg ][, [ event_based_flag ][, [ remain_active_flag]]]1]);
$fullskew_timing_check ::=
S$fullskew ( reference_event , data_event , timing_check_limit , timing_check_limit
[, [ notify_reg ][, [ event_based_flag ][, [ remain_active_flag]]]1])
$period_timing_check ::=
$period ( controlled_reference_event , timing_check_limit [, [ notify_reg]]) ;
$width_timing_check ::=
$width ( controlled_reference_event , timing_check_limit ,
threshold [ , [ notify_reg]]) s
$nochange_timing_check ::=
$nochange ( reference_event , data_event , start_edge_offset ,
end_edge_offset [, [ notify_reg]]) s

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

Syntax 15-1 Syntax for system timing checks
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The syntax for check time conditions and timing check events are given in Syntax 15-2.

checktime_condition ::= (From Annex A - A.7.5.2)
mintypmax_expression

controlled_reference_event ::=
controlled_timing_check_event

data_event ::=
timing_check_event

delayed_data ::=
terminal_identifier
| terminal_identifier [ constant_mintypmax_expression |

delayed_reference ::=
terminal_identifier
| terminal_identifier [ constant_mintypmax_expression |

end_edge_offset ::= mintypmax_expression

event_based_flag ::= constant_expression

notify_reg ::= variable_identifier

reference_event ::= timing_check_event

remain_active_flag ::= constant_mintypmax_expression

stamptime_condition ::= mintypmax_expression

start_edge_offset ::= mintypmax_expression

threshold ::=constant_expression

timing_check_limit ::= expression

timing_check_event ::= (From Annex A - A.7.5.3)
[timing_check_event_control] specify_terminal_descriptor [ && & timing_check_condition ]

controlled_timing_check_event ::=
timing_check_event_control specify_terminal_descriptor [ &&& timing_check_condition ]

timing_check_event_control ::= posedge | negedge | edge_control_specifier
specify_terminal_descriptor ::=
specify_input_terminal_descriptor
| specify_output_terminal_descriptor
edge_control_specifier ::= edge [ edge_descriptor [ , edge_descriptor | ]
edge_descriptor* ==01]10 | Z_Or_X Zero_or_one \ ZEero_or_one z_or_x
zero_or_one ::=0 |1
zorx:=x|X|z|Z
timing_check_condition ::=
scalar_timing_check_condition
| ( scalar_timing_check_condition )
scalar_timing_check_condition ::=
expression
| ~ expression
| expression == scalar_constant
| expression === scalar_constant
| expression != scalar_constant
| expression !== scalar_constant
scalar_constant ::=1°b0 | 1°b1| 1°’B0| 1°B1| °b0 | b1 |’B0 | °B1|1 |0
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*Embedded spaces are illegal.

Syntax 15-2 Syntax for check time conditions and timing check events

[ Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |




IEC 61691-4:2004(E) 265
|EEE 1364-2001(E)

For ease of presentation, the timing checks are divided into two groups. The first group of timing checks are
described in terms of stability time windows:

$setup $hold $setuphold
Srecovery Sremoval Srecrem

The timing checks in the second group check clock and control signals, and are described in terms of the dif-
ference in time between two events (the $nochange check involves three events):

$skew $timeskew $tullskew
$width $period $nochange

Although they begin with a $, timing checks are not system tasks. The leading $ is present because of histor-
ical reasons, and timing checks shall not be confused with system tasks. In particular, no system task can
appear in a specify block, and no timing check can appear in procedural code.

Some timing checks can accept negative limit values. This topic is discussed in detail in 15.8.

All timing checks have both a reference event and a data event, and boolean conditions can be associated
with each. Some of the checks have two signal arguments, one of which is the reference event and the other
the data event. Other checks have only one signal argument, and the reference and data events are derived
from it. Reference events and data events shall only be detected by timing checks when their associated con-
ditions are true. See 15.6 for more information about conditions in timing checks.

Timing check evaluation is based upon the times of two events, called the timestamp event and the
timecheck event. A transition on the timestamp event signal causes the simulator to record (stamp) the time
of transition for future use in evaluating the timing check. A transition on the timecheck event signal causes
the simulator to actually evaluate the timing check to determine whether a violation has taken place.

For some checks the reference event is always the timestamp event, while the data event is always the
timecheck event, while for other checks the reverse is true. And for yet other checks the decision as to which
is the timestamp and which the timecheck event is based upon factors to be discussed later in greater detail.

Every timing check can include an optional notifier which toggles whenever the timing check detects a vio-
lation. The model can use the notifier to make behavior a function of timing check violations. Notifiers are
discussed in greater detail in 15.5.

Like expressions for module path delays, timing check limit values are constant expressions which can
include specparams.

15.2 Timing checks using a stability window

These timing checks are discussed in this section:

$setup $hold $setuphold
$recovery $Sremoval $recrem

These checks accept two signals, the reference event and the data event, and define a time window with
respect to one signal while checking the time of transition of the other signal with respect to the window. In
general they all perform the following steps:

a) Define a time window with respect to the reference signal using the specified limit or limits;
b)  Check the time of transition of the data signal with respect to the time window;

¢) Report a timing violation if the data signal transitions within the time window.
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15.2.1 $setup

The $setup timing check syntax is shown in Syntax 15-3.

$setup_timing_check ::= (From Annex A - A.7.5.1)
$setup ( data_event , reference_event , timing_check_limit [ , [ notify_reg]]) ;
data_event ::= (From Annex A - A.7.5.2)
timing_check_event
notify_reg ::=
variable_identifier
reference_event ::=
timing_check_event
timing_check_limit ::=
expression

Syntax 15-3 Syntax for $setup

Table 49 defines the $setup timing check.

Table 49— $setup arguments

Argument Description
data_event Timestamp event
reference_event Timecheck event

limit Non-negative constant expression
notifier (optional) Reg

The data event is usually a data signal, while the reference event is usually a clock signal.
The endpoints of the time window are determined as follows:

(beginning of time window) = (timecheck time) - limit
(end of time window) = (timecheck time)

The $setup timing check reports a timing violation in the following case:

(beginning of time window) < (timestamp time) < (end of time
window)

The endpoints of the time window are not part of the violation region. When the limit is zero, the $setup
check shall never issue a violation.

15.2.2 $hold

The $hold timing check syntax is shown in Syntax 15-4.
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$hold _timing_check ::= (From Annex A - A.7.5.1)
$Shold ( reference_event , data_event , timing_check_limit [, [ notify_reg ]]) ;

data_event ::= (From Annex A - A.7.5.2)
timing_check_event
notify_reg ::=
variable_identifier
reference_event ::=
timing_check_event
timing_check_limit ::=
expression

Syntax 15-4 Syntax for $hold

Table 50 defines the $hold timing check.

Table 50—$hold arguments

Argument Description
reference_event Timestamp event
data_event Timecheck event
limit Non-negative constant expression
notifier (optional) Reg

The data event is usually a data signal, while the reference event is usually a clock signal.
The endpoints of the time window are determined as follows:

(beginning of time window) = (timestamp time)
(end of time window) = (timestamp time) + limit

The $hold timing check reports a timing violation in the following case:

(beginning of time window) <= (timecheck time) < (end of time
window)

Only the end of the time window is not part of the violation region. When the limit is zero, the $hold check
shall never issue a violation.

15.2.3 $setuphold

The $setuphold timing check syntax is shown in Syntax 15-5.
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$setuphold_timing_check ::= (From Annex A - A.7.5.1)

$setuphold ( reference_event, data_event, timing_check_limit, timing_check_limit
[, [ notify_reg ] [ , [ stamptime_condition ] [ , [ checktime_condition ]

[, [ delayed_reference ] [, [ delayed_data]]]1]111);

data_event ::=

delayed_data ::=

notify_reg ::=

expression

checktime_condition ::= (From Annex A - A.7.5.2)
mintypmax_expression

timing_check_event

terminal_identifier
| terminal_identifier [ constant_mintypmax_expression |
delayed_reference :
terminal_identifier
| terminal_identifier [ constant_mintypmax_expression |

variable_identifier

reference_event ::=
timing_check_event

stamptime_condition ::=
mintypmax_expression

timing_check_limit ::=

Syntax 15-5 Syntax for $setuphold

Table 51 defines the $setuphold timing check.

Table 51—$setuphold arguments

Argument

Description

reference_event

Timecheck or timestamp event when setup limit is positive
Timestamp event when setup limit is negative

data_event

Timecheck or timestamp event when hold limit is positive
Timestamp event when hold limit is negative

setup_limit

Constant expression

hold_limit Constant expression

notifier (optional) Reg

timestamp_cond (optional) Timestamp condition for negative timing checks
timecheck_cond (optional) Timecheck condition for negative timing checks
delayed_reference (optional) Delayed reference signal for negative timing checks

delayed_data (optional)

Delayed data signal for negative timing checks

The $setuphold timing check can accept negative limit values. This is discussed in greater detail in 15.8.

The data event is usually a data signal, while the reference event is usually a clock signal.
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When both the setup limit and the hold limit are positive, either the reference event or the data event can be
the timecheck event. It shall depend upon which occurs first in the simulation.
When either the setup limit or the hold limit is negative the restriction becomes:

setup_limit + hold_limit > (simulation unit of precision)

The $setuphold timing check combines the functionality of the $setup and $hold timing checks into a sin-
gle timing check. Therefore, the following invocation:

$setuphold( posedge clk, data, tSU, tHLD );
is equivalent in functionality to the following, if €SU and tHLD are not negative:

$setup( data, posedge clk, tSU );
$hold( posedge clk, data, tHLD );

When both setup and hold limits are positive and the data event occurs first, the endpoints of the time win-
dow are determined as follows:

(beginning of time window) = (timecheck time) - limit
(end of time window) = (timecheck time)

And the $setuphold timing check reports a timing violation in the following case:

(beginning of time window) < (timecheck time) <= (end of time
window)

Only the beginning of the time window is not part of the violation region. The $setuphold check shall report
a timing violation when the reference and data events occur simultaneously.

When both setup and hold limits are positive and the data event occurs second, the endpoints of the time
window are determined as follows:

beginning of time window) = (timestamp time)
(end of time window) = (timestamp time) + limit

And the $setuphold timing check reports a timing violation in the following case:

(beginning of time window) <= (timecheck time) < (end of time
window)

Only the end of the time window is not part of the violation region. The $setuphold check shall report a tim-
ing violation when the reference and data events occur simultaneously.

When both limits are zero, the $setuphold check shall never issue a violation.

15.2.4 $removal

The $removal timing check syntax is shown in Syntax 15-6.
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notify_reg ::=
reference_event ::=

timing_check_limit ::=
expression

variable_identifier

timing_check_event

$removal_timing_check ::= (From Annex A - A.7.5.1)
Sremoval ( reference_event , data_event , timing_check_limit [, [ notify_reg]])

data_event ::= (From Annex A - A.7.5.2)
timing_check_event

Syntax 15-6 Syntax for $removal

Table 52 defines the $removal timing check.

Table 52— $removal arguments

Argument

Description

reference_event

Timestamp event

data_event

Timecheck event

limit

Non-negative constant expression

notifier (optional)

Reg

The reference event is usually a control signal like clear, reset or set, while the data event is usually a clock

signal.

The endpoints of the time window are determined as follows:

(beginning of time window) = (timecheck time) - limit
(end of time window) = (timecheck time)

The $removal timing check reports a timing violation in the following case:

(beginning of time window) < (timestamp time) < (end of time

window)

The endpoints of the time window are not part of the violation region. When the limit is zero, the $Sremoval

check shall never issue a violation.

15.2.5 $recovery

The $recovery timing check syntax is shown in Syntax 15-7.
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$recovery_timing_check ::= (From Annex A - A.7.5.1)
$recovery ( reference_event , data_event , timing_check_limit [, [ notify_reg ]]) ;

data_event ::= (From Annex A - A.7.5.2)
timing_check_event
notify_reg ::=
variable_identifier
reference_event ::=
timing_check_event
timing_check_limit ::=
expression

Syntax 15-7 Syntax for $recovery

Table 53 defines the $recovery timing check.

Table 53—$recovery arguments

Argument Description
reference_event Timestamp event

data_event Timecheck event

limit Non-negative constant expression
notifier (optional) Reg

The reference event is usually a control signal like clear, reset or set, while the data event is usually a clock
signal.

The endpoints of the time window are determined as follows:

(beginning of time window) = (timestamp time)
(end of time window) = (timestamp time) + limit

The $recovery timing check reports a timing violation in the following case:

(beginning of time window) <= (timecheck time) < (end of time
window)

Only the end of the time window is not part of the violation region. When the limit is zero, the $recovery
check shall never issue a violation.

15.2.6 $recrem

The $recrem timing check syntax is shown in Syntax 15-8.
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$recrem_timing_check ::= (From Annex A - A.7.5.1)

$recrem ( reference_event , data_event , timing_check_limit , timing_check_limit

checktime_condition
data_event ::=

delayed_data ::=

notify_reg ::=
reference_event ::=

stamptime_condition

expression

[, [ notify_reg ] [, [ stamptime_condition ] [ , [ checktime_condition ]
[, [ delayed_reference ] [, [ delayed_data]]]]1]11);

2= (From Annex A - A.7.5.2)
mintypmax_expression

timing_check_event
terminal_identifier

| terminal_identifier [ constant_mintypmax_expression |

delayed_reference ::=
terminal_identifier
| terminal_identifier [ constant_mintypmax_expression |

variable_identifier

timing_check_event

mintypmax_expression
timing_check_limit ::=

Syntax 15-8 Syntax for $recrem

Table 54 defines the $recrem timing check.

Table 54— $recrem arguments

Argument

Description

reference_event

Timecheck or timestamp event when removal limit is positive
Timestamp event when removal limit is negative

data_event

Timecheck or timestamp event when recovery limit is positive
Timestamp event when recovery limit is negative

recovery_limit

Constant expression

removal_limit

Constant expression

notifier (optional)

Reg

timestamp_cond (optional)

Timestamp condition for negative timing checks

timecheck_cond (optional)

Timecheck condition for negative timing checks

delayed_reference (optional)

Delayed reference signal for negative timing checks

delayed_data (optional)

Delayed data signal for negative timing checks

The $recrem timing check can accept negative limit values. This is discussed in greater detail in 15.8.

When both the removal limit and the recovery limit are positive, either the reference event or the data event

can be the timecheck event. It shall depend upon which occurs first in the simulation.
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When either the removal limit or the recovery limit is negative the restriction becomes:
removal _limit + recovery_limit > (simulation unit of precision)

The $recrem timing check combines the functionality of the $removal and $recovery timing checks into a
single timing check. Therefore, the following invocation:

$recrem( posedge clear, posedge clk, tREC, tREM );
is equivalent in functionality to the following, if tREC and tREM are not negative:

$removal( posedge clear, posedge clk, tREM );
$recovery( posedge clear, posedge clk, tREC );

When both removal and recovery limits are positive and the data event occurs first, the endpoints of the time
window are determined as follows:

(beginning of time window) = (timecheck time) - limit
(end of time window) = (timecheck time)

And the $recrem timing check reports a timing violation in the following case:

(beginning of time window) < (timecheck time) <= (end of time
window)

Only the beginning of the time window is not part of the violation region. The $recrem check shall report a
timing violation when the reference and data events occur simultaneously.

When both removal and recovery limits are positive and the data event occurs second, the endpoints of the
time window are determined as follows:

(beginning of time window) = (timestamp time)
(end of time window) = (timestamp time) + limit

And the $recrem timing check reports a timing violation in the following case:

(beginning of time window) <= (timecheck time) < (end of time
window)

Only the end of the time window is not part of the violation region. The $recrem check shall report a timing
violation when the reference and data events occur simultaneously.

When both limits are zero, the $recrem check shall never issue a violation.

15.3 Timing checks for clock and control signals
The following timing checks are discussed in this section:

$skew $timeskew $fullskew $period $width $nochange
These checks accept one or two signals and verify transitions on them are never separated by more than the

limit. For those checks specifying only one signal, the reference event and data event are derived from that
one signal. In general these checks all perform the following steps:
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a) Determine the elapsed time between two events;
b) Compare the elapsed time to the specified limit;

¢) Report a timing violation if the elapsed time violates the limit.
The skew checks have two different violation detection mechanisms, event-based and timer-based. Event-
based skew checking is performed only when a signal transitions, while timer-based skew checking takes
place as soon as the simulation time equal to the skew limit has elapsed.
The $nochange check involves three events rather than two.

15.3.1 $skew

The $skew timing check syntax is shown in Syntax 15-9.

$skew_timing_check ::= (From Annex A - A.7.5.1)
$skew ( reference_event , data_event , timing_check_limit [ , [ notify_reg]]) ;

data_event ::= (From Annex A - A.7.5.2)
timing_check_event
notify_reg ::=
variable_identifier
reference_event ::=
timing_check_event
timing_check_limit ::=
expression

Syntax 15-9 Syntax for $skew

Table 55 defines the $skew timing check.

Table 55— $skew arguments

Argument Description
reference_event Timestamp event
data_event Timecheck event
limit Non-negative constant expression
notifier (optional) Reg

The $skew timing check reports a violation in the following case:
(timecheck time) - (timestamp time) > limit

Simultaneous transitions on the reference and data signals can never cause $skew to report a timing viola-
tion, even when the skew limit value is zero.
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The $skew timing check is event-based; it is evaluated only after a data event. If there is never a data event
(i.e., the data event is infinitely late), the $skew timing check shall never be evaluated, and no timing viola-
tion shall ever be reported. In contrast, the $timeskew and $fullskew checks are timer-based by default, and
they shall be used if violation reports are absolutely required and the data event can be very late or even
absent altogether. These checks are discussed in 15.3.2 and 15.3.3.

$skew shall wait indefinitely for the data event once it has detected a reference event and it shall not report a
timing violation until the data event takes place. A second consecutive reference event shall cancel the old

wait for the data event and begin a new one.

After a reference event, the $skew timing check shall never stop checking data events for a timing violation.
$skew shall report timing violations for all data events occurring beyond the limit after a reference event.

15.3.2 $timeskew

The syntax for $timeskew is shown in Syntax 15-10.

$timeskew_timing_check ::= (From Annex A - A.7.5.1)
Stimeskew ( reference_event , data_event , timing_check_limit
[, [ notify_reg ][, [ event_based_flag ][, [ remain_active_flag]]]1]);
data_event ::= (From Annex A - A.7.5.2)
timing_check_event
event_based_flag ::=
constant_expression
notify_reg ::=
variable_identifier
reference_event ::=
timing_check_event
remain_active_flag ::=
constant_mintypmax_expression
timing_check_limit ::=
expression

Syntax 15-10 Syntax for $timeskew

Table 56 defines the $timeskew timing check arguments.

Table 56— $timeskew arguments

Argument Description
reference_event Timestamp event
data_event Timecheck event
limit Non-negative constant expression
notifier (optional) Reg
event_based_flag (optional) Constant expression
remain_active_flag (optional) Constant expression
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The $timeskew timing check reports a violation only in the following cases:
(timecheck time) - (timestamp time) > limit

Simultaneous transitions on the reference and data signals can never cause $timeskew to report a timing vio-
lation, even when the skew limit value is zero.

The default behavior for $timeskew is timer-based. Violations are reported immediately upon an elapse of
time after the reference event equal to the limit, and the check shall become dormant and report no more vio-
lations (even in response to data events) until after the next reference event. This check shall also become
dormant if it detects a reference event when its condition is false.

The $timeskew check’s default timer-based behavior can be altered to event-based using the event based
flag. It behaves like the $skew check when both the event based flag and the remain active flag are set. The
$timeskew check behaves like the $skew check when only the event based flag is set, except it becomes
dormant after reporting the first violation.

Example:
$timeskew (posedge CP &&& MODE, negedge CPN, 50);

MODE |
cp
| ] | | |
_>{ }<_=,0 F
A B
cey LT LML Lo
C D E

Figure 46 —Sample $timeskew
Case I: Event based flag and remain active flag not set.

After the first reference event on CP at A, a violation is reported at B as soon as 50 time units have passed.
No further violations are reported.

Case 2: Event based flag set, remain active flag not set.

The negative transition on CPN at point C shall cause a timing violation. Subsequent negative transitions at
points D and E do not cause violations. The second reference event at F occurs while MODE is false, turning
the $timeskew check dormant, and no further violations are reported.

Case 3: Event based flag set, remain active flag set.

The first three negative transitions on CPN at points C, D and E shall cause timing violations. The second ref-
erence event at F occurs while MODE is false, turning the $timeskew check dormant, and no further viola-
tions are reported.

Case 4: Event based flag and remain active flag both set.

Every negative edge on CPN is reported as a violation, which is identical to $skew behavior.
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15.3.3 $fullskew

The syntax for $fullskew is shown in Syntax 15-11.

$fullskew_timing_check ::= (From Annex A - A.7.5.1)
Sfullskew ( reference_event , data_event , timing_check_limit , timing_check_limit
[, [ notify_reg ][, [ event_based_flag ] [ , [ remain_active_flag]]]]);
data_event ::= (From Annex A - A.7.5.2)
timing_check_event
event_based_flag ::=
constant_expression
notify_reg ::=
variable_identifier
reference_event ::=
timing_check_event
remain_active_flag ::=
constant_mintypmax_expression
timing_check_limit ::=
expression

Syntax 15-11 Syntax for $fullskew

Table 57 defines the $fullskew timing check arguments.

Table 57— $fullskew arguments

Argument Description
reference_event Timestamp or timecheck event
data_event Timestamp or timecheck event
limit 1 Non-negative constant expression
limit 2 Non-negative constant expression
notifier (optional) Reg
event_based_flag (optional) Constant expression
remain_active_flag (optional) Constant expression

$fullskew is identical to $timeskew except the reference and data events can transition in either order. The
first limit is the maximum time by which the data event can follow the reference event. The second limit is
the maximum time by which the reference event can follow the data event.

The reference event is the timestamp event and the data event is the timecheck event when the reference
event precedes the data event. The data event is the timestamp event and the reference event is the timecheck

event when the data event precedes the reference event.

The $fullskew timing check reports a violation only in the following case, where limit is set to limit]l when
the reference event transitions first, and to limit2 when the data event transitions first:

(timecheck time) - (timestamp time) > limit
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Simultaneous transitions on the reference and data signals shall never cause $fullskew to report a timing
violation, even when the skew limit value is zero.

The default behavior for $fullskew is timer-based. Violations shall be reported immediately upon an elapse
of time after the timestamp event equal to the limit. It then becomes dormant and reports no more violations,
even in response to timecheck events, until after the next timestamp event. This check shall also become
dormant if it detects a timestamp event when the associated condition is false.

The $fullskew check’s default timer-based behavior can be altered to event-based using the event based flag.
It behaves like the $skew check when both the event based flag and the remain active flag are set. The
$timeskew check behaves like the $skew check when only the event based flag is set, except it becomes
dormant after it reports the first violation.

Example:
$fullskew (posedge CP &&& MODE, negedge CPN, 50, 70);

MOoDE L[

Figure 47 —Sample $fullskew
Case I: Event based flag and remain active flag not set.

The transition at A of CP while MODE is true begins a wait for a negative transition on CPN, and a violation
is reported at B as soon as a period of time equal to 50 time units has passed. This resets the check and read-
ies it for the next active transition.

A negative transition on CPN occurs next at C, beginning a wait for a positive transition on CP while MODE
is true. At D a time equal to 70 time units has passed without a positive edge on CP while MODE is true, so a
violation is reported and the check is again reset to await the next active transition.

A transition on CPN at E also results in a timing violation, as does the transition at F, because even though
CP transitions, MODE is no longer true. Transitions at G and H also result in timing violations, but not the
transition at 1, because it is followed by a positive transition on CP while MODE is true.

Case 2: Event based flag set, remain active flag not set.
The transition at A of CP while MODE is true begins a wait for a negative transition on CPN, and a violation

is reported at C on CPN because it occurs beyond the 50 time unit limit. This transition at C also begins a
wait of 70 time units for a positive transition on CP while MODE is true. But for transitions on CPN at B
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through H there is no positive transition on CP while MODE is true, and so no timing violations are reported.
The transition at 1 on CPN begins a wait of 70 time units, and this is satisfied by the positive transition on
CP at J while MODE is true.

Case 3: Event based flag and remain active flag both set.

The transition at A of CP while MODE is true begins a wait for a negative transition on CPN, and a violation
is reported at C on CPN, and it shall also begin a wait for a positive transition on CP while MODE is true. No
such transition on CP ever takes place after CPN transitions C through H, but no violations are reported
because CP never experiences a positive transition while MODE is true. Transition I also reports no violation
because a positive transition at I on CP while MODE is true occurs within the 70 time unit skew limit.

15.3.4 $width

The $width timing check syntax is shown in Syntax 15-12.

$width_timing_check ::= (From Annex A - A.7.5.1)
$width ( controlled_reference_event , timing_check_limit ,
threshold [ , [ notify_reg]]) ;
controlled_reference_event ::= (From Annex A - A.7.5.2)
controlled_timing_check_event
notify_reg ::=
variable_identifier
threshold ::=
constant_expression
timing_check_limit ::=
expression

Syntax 15-12 Syntax for $width

If the comma before the threshold is present, the comma before the notifier shall also be present, even
though both arguments are optional.

Table 58 defines the $width timing check.

Table 58 —$width arguments

Argument Description
reference_event Timestamp edge triggered event
(data_event - implicit) Timecheck edge triggered event
limit Non-negative constant expression
threshold (optional) Non-negative constant expression
notifier (optional) Reg

The $width timing check monitors the width of signal pulses by measuring the time from the timestamp
event to the timecheck event. Since a data event is not passed to $width, it is derived from the reference
event, as follows:

data event = reference event signal with opposite edge
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Because of the way the data event is derived for $width, an edge triggered event has to be passed as the ref-
erence event. A compilation error shall occur if the reference event is not an edge specification.

While the $width timing check can be defined in terms of a time window, it is simpler to express it as the
difference between the timecheck and timestamp times. The $width timing check reports a violation in the
following case:

threshold < (timecheck time) - (timestamp time) < limit

The pulse width has to be greater than or equal to limit in order to avoid a timing violation, but no violation
is reported for glitches smaller than the threshold.

The threshold argument shall be included if the notifier argument is required. It is permissible to not specify
both the threshold and notifier arguments, making the default value for the threshold zero (0). If the notifier
is present, a non-null value for the threshold shall also be present. Here is a legal $width check when the
notifier is required and the threshold is not:

$width (posedge clk, 6, 0, ntfr_reqg);

The data event and the reference event shall never occur at the same simulation time because these events
are triggered by opposite transitions.

Example:

The following example demonstrates some examples of legal and illegal calls:

// Legal Calls

$width ( negedge clr, lim );

$width ( negedge clr, lim, thresh, notif );
$width ( negedge clr, lim, O, notif );

// 1llegal Calls

$width ( negedge clr, Llim, , notif );

$width ( negedge clr, lim, notif );
15.3.5 $period

The $period timing check syntax is shown in Syntax 15-13.

$period_timing_check ::= (From Annex A - A.7.5.1)
$period ( controlled_reference_event , timing_check_limit [, [ notify_reg ]]) ;

controlled_reference_event ::= (From Annex A - A.7.5.2)
controlled_timing_check_event

notify_reg ::=
variable_identifier

timing_check_limit ::=
expression

Syntax 15-13 Syntax for $period
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Table 59 defines the $period timing check.

Table 59— $period arguments

Argument Description
reference_event Timestamp edge triggered event
(data_event - implicit) Timestamp edge triggered event
limit Non-negative constant expression
notifier (optional) Reg

Since the data event is not passed as an argument to $period, it is derived from the reference event, as
follows:

data event = reference event signal with the same edge

Because of the way the data event is derived for $Speriod, an edge triggered event shall be passed as the ref-
erence event. A compilation error shall occur if the reference event is not an edge specification.

While the $period timing check can be defined in terms of a time window, it is simpler to express it as the
difference between the timecheck and timestamp times.The $period timing check reports a violation in the
following case:

(timecheck time) - (timestamp time) < limit

15.3.6 $nochange

The $nochange syntax is shown in Syntax 15-14.

$nochange_timing_check ::= (From Annex A - A.7.5.1)
$nochange ( reference_event , data_event , start_edge_offset ,
end_edge_offset [, [ notify_reg]]);
data_event ::= (From Annex A - A.7.5.2)
timing_check_event
end_edge_offset ::=
mintypmax_expression
notify_reg ::=
variable_identifier
reference_event ::=
timing_check_event
start_edge_offset ::=
mintypmax_expression

Syntax 15-14 Syntax for $nochange
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Table 60 defines the $nochange timing check arguments.

Table 60— $nochange arguments

Argument Description
reference_event Edge triggered timestamp and/or timecheck event
data_event Timestamp or timecheck event
start_edge_offset Constant expression
end_edge_offset Constant expression
notifier (optional) Reg

The $nochange timing check reports a timing violation if the data event occurs during the specified level of
the control signal (the reference event). The reference event can be specified with the posedge or the
negedge keyword, but the edge control specifiers (see 15.4) can not be used.

The start edge and end edge offsets can expand or shrink the timing violation region, which is defined by the
duration of the reference event signal after the edge. For example, if the reference event is a posedge, then
the duration is the period during which the reference signal is high. A positive offset for start edge extends
the region by starting the timing violation region earlier; a negative offset for start edge shrinks the region by
starting the region later. Similarly, a positive offset for the end edge extends the timing violation region by
ending it later, while a negative offset for the end edge shrinks the region by ending it earlier. If both the oft-
sets are zero, the size of the region shall not change.

Unlike other timing checks, $nochange involves three, rather than two, transitions. The leading edge of the
reference event defines the beginning of the time window, while the trailing edge of the reference event
defines the end of the time window. A violation results if the data event occurs anytime within the time win-
dow.

The endpoints of the time window are determined as follows:

(beginning of time window) =

(leading reference edge time) - start_edge offset

(end of time window) = (trailing reference edge time) +
end_edge offset

The $nochange timing check reports a timing violation in the following case:

beginning of time window) < (data event time) < (end of time
window)

The endpoints of the time window are not included. The values of start edge offset and
end_edge_offset play a significant role in determining which signal, the reference event or the data
event, is the timestamp or timecheck event.

Example:
$nochange( posedge clk, data, 0, 0) ;

In this example, $nochange system task shall report a violation if the data signal changes while clkK is
high. It shall not be a violation if posedge clk and a transition on data occur simultaneously.
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15.4 Edge-control specifiers

The edge-control specifiers can be used to control events in timing checks based on specific edge transitions
between O, 1, and X. Syntax 15-15 shows the syntax for edge-control specifiers.

edge_control_specifier ::= (From Annex A - A.7.5.3)
edge [ edge_descriptor [ , edge_descriptor ] ]
edge_descriptor* =
01
|10
| z_or_x zero_or_one
| zero_or_one z_or_x
zero_or_one ::==0] 1
zorx:=x|X|z|Z

*Embedded spaces are illegal.

Syntax 15-15 Syntax for edge control specifier

Edge-control specifiers contain the keyword edge followed by a square bracketed list of from one to six
pairs of edge transitions between O, 1 and X, as follows:

01 Transition from O to 1
0x Transition from O to X
10 Transition from 1 to O
1x Transition from 1 to X
x0 Transition from X to O
x1 Transition from X to 1

Edge transitions involving z are treated the same way as edge transitions involving X.

The posedge and negedge keywords can be used as a shorthand for certain edge-control specifiers. For
example, the construct:

posedge clr
is equivalent to the following:
edge[01, Ox, x1] clr
Similarly, the construct
negedge clr
is the same as the following:
edge[10, x0, 1x] clr

However, edge-control specifiers offer the flexibility to declare edge transitions other than posedge and
negedge.
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15.5 Notifiers: user-defined responses to timing violations

Timing check notifiers detect timing check violations behaviorally, and, therefore, take an action as soon as
a violation occurs. Such notifiers can be used to print an informative error message describing the violation
or to propagate an X value at the output of the device which reported the violation.

The notifier is a reg declared in the module where timing check tasks are invoked which is passed as the
last argument to a system timing check. Whenever a timing violation occurs, the system task updates the

value of the notifier.

The notifier is an optional argument to all system timing checks and can be omitted from the system task call
without adversely affecting its operation.

Table 61 shows how the notifier values are toggled when timing violations occur.

Table 61—User-defined responses to timing violations

BEFORE violation AFTER violation
X 0
0 1
1 0
z z

Examples:

Example 1

$setup( data, posedge clk, 10, notify_reg ) ;
$width( posedge clk, 16, notify_reg ) ;

Example 2 Consider a more complex example of how to use notifiers in a behavioral model. The following
example uses a notifier to set the D flip-flop output to X when a timing violation occurs in an edge-sensitive
UDP.

[ Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od



IEC 61691-4:2004(E) 285
|EEE 1364-2001(E)

primitive posdff _udp(q, clock, data, preset, clear, notifier);

output q; reg q;

input clock, data, preset, clear, notifier;

table

//clock data p c notifier state ¢

/[ -
r 0 11 ? > ? -0
r 1 11 ? 0?7 -1
p 1 ?1 ? 1 -1
p 0 17 ? 0 O
n ? ?? ? e
? * ?? ? - ? -
? ? 01 ? 7?7 -1
? ? * 1 ? 1 -1
? ? 10 ? > ? -0
? ? 1= ? 0 :-O
? ? ? 7 * 0?7 I X

endtable

endprimitive
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module dff(q, gbar, clock, data, preset, clear);
output ¢, gbar;

input clock, data, preset, clear;

reg notifier;

and (enable, preset, clear);

not (gbar, ffout);

buf (q, ffout);

posdff _udp (ffout, clock, data, preset, clear, notifier);

specify

// Define timing check specparam values

specparam tSU = 10, tHD = 1, tPW = 25, tWPC = 10, tREC = 5;
// Define module path delay rise and fall min:typ:max values
specparam tPLHc = 4:6:9 , tPHLc = 5:8:11;

specparam tPLHpc = 3:5:6 , tPHLpc = 4:7:9;

// Specify module path delays
(clock *> q,gqbar) = (tPLHc, tPHLc);
(preset,clear *> q,gbar) = (tPLHpc, tPHLpcC);

// Setup time : data to clock, only when preset and clear are 1
$setup(data, posedge clock &&& enable, tSU, notifier);

// Hold time: clock to data, only when preset and clear are 1
Shold(posedge clock, data &&& enable, tHD, notifier);

// Clock period check

$period(posedge clock, tPW, notifier);

// Pulse width : preset, clear
$width(negedge preset, tWPC, 0, notifier);
$width(negedge clear, tWPC, 0, notifier);

// Recovery time: clear or preset to clock
$recovery(posedge preset, posedge clock, tREC, notifier);
Srecovery(posedge clear, posedge clock, tREC, notifier);

endspecify
endmodule

NOTE —This model applies to edge-sensitive UDPs only; for level-sensitive models, an additional UDP for X propaga-
tion has to be generated.

15.5.1 Requirements for accurate simulation

In order to accurately model negative value timing checks:

a)

b)

A timing violation shall be triggered if the signal changes in the violation window, exclusive of the
endpoints. Violation windows smaller than two units of simulation precision can not yield timing
violations.

The value of the latched data shall be the one which is stable during the violation window, again,
exclusive of the endpoints.
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To facilitate these modeling requirements, delayed copies of the data and reference signals are generated in
the timing checks, and these are used internally for timing check evaluation at run-time. The setup and hold
times used internally are adjusted so as to shift the violation window and make it overlap the reference sig-
nal.

Delayed data and reference signals can be declared within the timing check so they can be used in the
model’s functional implementation to insure accurate simulation. If no delayed signals are declared in the
timing check, and if a negative setup or hold value is present, then implicit delayed signals are created. Since
implicit delayed signals can not be used in defining model behavior, such a model can possibly behave
incorrectly.

Examples:
Example 1:
$setuphold (posedge CLK, DATA, -10, 20);

Implicit delayed signals shall be created for CLK and DATA, but it shall not be possible to access them. The
$setuphold check shall be properly evaluated, but functional behavior shall not always be accurate. The old
DATA value shall be incorrectly clocked in if DATA transitions between posedge CLK and 10 time units
later.

Example 2:

$setuphold (posedge CLK, DATA1l, -10, 20);
$setuphold (posedge CLK, DATA2, -15, 18);

Implicit delayed signals shall be created for CLK, DATAL and DATAZ2, one for each. Even though CLK is ref-
erenced in two different timing checks, only one implicit delayed signal is created, and it is used for both
timing checks.

Example 3:

If a given signal has a delayed signal in some timing checks but not in others, the delayed signal shall be
used in both cases:

$setuphold (posedge CLK, DATA1, -10, 20,,,, del _CLK, del_DATAl);
$setuphold (posedge CLK, DATA2, -15, 18);

Explicit delayed signals of del_CLK and del_DATAL are created for CLK and DATAL, while an implicit
delayed signal is created for DATA2. In other words, CLK has only one delayed signal created for it,
del_CLK, rather than one explicit delayed signal for the first check, and another implicit delayed signal for
the second check.

The delayed versions of the signals, whether implicit or explicit, shall be used in the $setup, $hold, $setup-
hold, Srecovery, $removal, $recrem, $width, $period and $nochange timing checks, and these checks
shall have their limits adjusted accordingly. This ensures the notifier shall be toggled at the proper moment.
If the adjusted limit becomes less than or equal to O, the limit shall be set to O and the simulator shall issue a
warning.

The delayed versions of the signals shall not be used for the $skew, $fullskew and $timeskew timing checks
because it can possibly result in the reversal of the order of signal transitions. This causes the notifiers for
these timing checks to toggle at the wrong time relative to the rest of the model, perhaps resulting in transi-
tions to X due to a timing check violation being canceled. This issue shall be addressed in the model, possi-
bly by using separate notifiers for these checks.
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It is possible for a set of negative timing check values to be mutually inconsistent and produce no solution
for the delay values of delayed signals. In these situations the simulator shall issue a warning message. The
inconsistency shall be resolved by changing the smallest negative limit value to O and recalculating the
delays for the delayed signals, and this shall be repeated until a solution is reached. This procedure shall
always produce a solution because in the worst case all negative limit values become O, and no delayed sig-
nals are needed.

The delayed timing check signals are only actually delayed when negative limit values are present. If a tim-
ing check signal becomes delayed by more than the propagation delay from that signal to an output, that out-
put shall take longer than its propagation delay to change. It shall instead transition at the same time which
the delayed timing check signal changes. Thus, the output shall behave as if its specify path delay were equal
to the delay applied to the timing check signal. This situation can only arise when unique setup/hold or
removal/recovery times are given for each edge of the data signal.

Example:

(CLK = Q) = 6;
$setuphold (posedge CLK, posedge D, -3, 8, , , , dCLK, dD);
$setuphold (posedge CLK, negedge D, -7, 13, , , , dCLK, dD);

The setup time of —7 (the larger in absolute value of —3 and -7) creates a delay of 7 for dCLK, and so out-
put Q shall not change until 7 time units after a positive edge on CLK, rather than the 6 time units given in
the specify path.

15.5.2 Conditions in negative timing checks

Conditions can be associated with both the reference and data signals by using the &&& operator, but when
either the setup or hold time is negative the conditions need to be paired with reference and data signals in a
more flexible way. This example illustrates why.

This pair of $setup and $hold checks work together to provide the same check as a single $setuphold:

$setup (data, clké&&&condl, tsetup, ntfr);
$hold (clk, data&&&condl, thold, ntfr);

clk is the timecheck event for the $setup check, while data is the timecheck event for the $hold check. This
can not be represented in a single $setuphold check, and so additional arguments are provided to make this
possible. These arguments are timestamp_cond and timecheck_cond, and they immediately follow the noti-
fier (see 15.2.3). This $setuphold check is equivalent to the separate $setup and $Shold checks shown above:

$setuphold( clk, data, tsetup, thold, ntfr, , condl);
The timestamp_cond argument is null, while the timecheck_cond argument is cond1.

The timestamp_cond and timecheck_cond arguments are associated with either the reference or data signals
based on which delayed version of these signals occurs first. timestamp_cond is associated with the delayed
signal which transitions first, while timecheck_cond is associated with the delayed signal which transitions
second.

Delayed signals are only created for the reference and data signals, and not for any condition signals associ-
ated with them. Therefore, timestamp_cond and timecheck_cond are not implicitly delayed by the simulator.
Delayed condition signals for the timestamp_cond and timecheck_cond fields can be created by making
them a function of the delayed signals.
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Example:

assign TE_cond_D
assign TE_cond_TI
assign DXT1_cond

(dTE 1== 1°b1);
(dTE 1== 1°b0);
(dT1 1==  dD);

specify
$setuphold (posedge CP, D, -10, 20, notifier, ,TE_cond D, dCP, dD);
$setuphold(posedge CP, TI1, 20, -10, notifier, ,TE_cond_TIl, dCP, dTl);
$setuphold(posedge CP, TE, -4, 8, notifier, ,DXTl_cond, dCP, dTE);
endspecify

The assign statements create condition signals which are functions of the delayed signals. Creating delayed
signal conditions synchronizes the conditions with the delayed versions of the reference and data signals
used to perform the checks.

The first $setuphold has a negative setup time, and so the timecheck condition TE_cond_D is associated
with data signal D. The second $setuphold has a negative hold time, and so the timecheck condition
TE_cond_T1 is associated with reference signals CP. The third $setuphold has a negative setup time, and
so the timecheck condition DXT I_cond is associated with data signal TE.

The violation windows for the example are shown in Figure 48.

cp
500
| | I
D I [ N -
51 520
TE\ |
504 s08
| | I
£
480 490

Figure 48—Timing check violation windows

These are the delay values calculated for the delayed signals:

dcp 10.01
db 0.00
daTl 20.02
dTE 2.02

Use of delayed signals in creating the signals for the timestamp_cond and timecheck_cond arguments is not
required, but it is usually closer to actual device behavior.
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15.5.3 Notifiers in negative timing checks

Because the reference and data signals are delayed internally, the detection of the timing violation is also
delayed. Notifier regs in negative timing checks shall be toggled when the timing check detects a timing vio-
lation, which occurs when the delayed signals as measured by the adjusted timing check values are in viola-
tion, not when the undelayed signals at the model inputs as measured by the original timing check values are
in violation.

15.5.4 Option behavior

As already mentioned, the ability of Verilog simulators to handle negative values in $setuphold and $rec-
rem timing checks shall be enabled with an invocation option. It is possible models written to accept nega-
tive timing check values with delayed reference and/or delayed data signals can be run without this
invocation option enabled. In this circumstance the delayed reference and data signals become copies of the
original reference and data signals. The same occurs if an invocation option turning off all timing checks is
used.

15.6 Enabling timing checks with conditioned events

A construct called a conditioned event ties the occurrence of timing checks to the value of a conditioning
signal. Syntax 15-16 shows the syntax for controlled timing check event.

timing_check_event ::= (From Annex A - A.7.5.3)
[timing_check_event_control] specify_terminal_descriptor [ &&& timing_check_condition ]
controlled_timing_check_event ::=
timing_check_event_control specify_terminal_descriptor [ &&& timing_check_condition ]
timing_check_event_control ::=
posedge
| negedge
| edge_control_specifier
specify_terminal_descriptor ::=
specify_input_terminal_descriptor
| specify_output_terminal_descriptor
timing_check_condition ::=
scalar_timing_check_condition
| (scalar_timing_check_condition )
scalar_timing_check_condition ::=
expression
| ~ expression
| expression == scalar_constant
| expression === scalar_constant
| expression != scalar_constant
| expression !== scalar_constant
scalar_constant ::=
1’b0|1°b1|1°’B0| 1°’B1|°b0| b1 |°B0O|’B1|1 |0

Syntax 15-16 Syntax for controlled timing check event

The comparisons used in the condition can be deterministic, as in ===, !==, ~, or no operation, or nondeter-
ministic, as in == or !=. When comparisons are deterministic, an X value on the conditioning signal shall
not enable the timing check. For nondeterministic comparisons, an X on the conditioning signal shall enable
the timing check.
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The conditioning signal shall be a scalar net; if a vector net or an expression resulting in a multi-bit value is
used, then the least significant bit of the vector net or the expression value is used.

If more than one conditioning signal is required for conditioning timing checks, appropriate logic shall be
combined in a separate signal outside the specify block, which can be used as the conditioning signal.

Examples:

Example 1 To illustrate the difference between conditioned and unconditioned timing check events, con-
sider the following example with unconditioned timing check:

$setup( data, posedge clk, 10 );
Here, a setup timing check shall occur every time there is a positive edge on the signal clk.

To trigger the setup check on the positive edge on the signal clk only when the signal clr is high, rewrite
the command as

$setup( data, posedge clk &&& clr, 10 ) ;

Example 2 This example shows two ways to trigger the same timing check as in example 1 (on the positive
clk edge) only when clr is low. The second method uses the === operator, which makes the comparison
deterministic.

$setup( data, posedge clk &&& (~clr), 10 ) ;
$setup( data, posedge clk &&& (clr===0), 10 );

Example 3 To perform the previous sample setup check on the positive clk edge only when clr and set
are high, add the following statement outside the specify block:

and new_gate( clr_and_set, clr, set );
Then add the condition to the timing check using the signal clr_and_set as follows:

$setup( data, posedge clk &&& clr_and_set, 10 );

15.7 Vector signals in timing checks

Either or both signals in a timing check can be a vector. This shall be interpreted as a single timing check
where the transition of one or more bits of a vector is considered a single transition of that vector.

Example:

module DFF (Q, CLK, DAT);
input CLK;

input [7:0] DAT;

output [7:0] Q;

always @(posedge clk)

Q = DAT;

specify

$setup (DAT, posedge CLK, 10);
endspecify

endmodule

If DAT transitions from 100101110 to "b01010011 at time 100, and CLK transitions from O to 1 at
time 105, then the $setup timing check shall still only report a single timing violation.
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Simulators can provide an option causing vectors in timing checks to result in the creation of multiple sin-
gle-bit timing checks. For timing checks with only a single signal, such as $period or $width, a vector of
width N results in N unique timing checks. For timing checks with two signals, such as $setup, $hold, $set-
uphold, $skew, $timeskew, $fullskew, $recovery, Sremoval, Srecrem and $nochange, where M and N are
the widths of the signals, the result is M*N unique timing checks. If there is a notifier, all the timing checks
trigger that notifier.

With such an option enabled, the above example yields six timing violation because six bits of DAT
transitioned.

15.8 Negative timing checks

Both the $setuphold and $recrem timing checks can accept negative values when the negative timing check
option is enabled. The behavior of these two timing checks is identical with respect to negative values. The
descriptions in this section are for the $setuphold timing check, but apply equally to the $recrem timing
check.

The setup and hold timing check values define a timing violation window with respect to the reference sig-
nal edge during which the data shall remain constant. Any change of the data during the specified window
causes a timing violation. The timing violation is reported and, through the notifier reg, other actions can
take place in the model, such as forcing the output of a flip-flop to X when it detects a timing violation.

A positive value for both setup and hold times implies this violation window straddles the reference signal
shown in Figure 49.

clock 7\ 1

data e | \
|

- D Setup time (+)
B Hold Time (+)

Figure 49—Data constraint interval, positive setup/hold

A negative hold or setup time means the violation window is shifted to either before or after the reference
edge. This can happen in a real device because of disparate internal device delays between the internal clock
and data signal paths. These internal device delays are illustrated in Figure 50 showing how significant dif-
ferences in these delays can cause negative setup or hold values.
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ASIC Cell
r-—--— - - - - - - - -=- - == a
[ [
[ [
data ! D1 | 1 output
[ Seq. \
‘ Elem ‘
clock : D2 :
[ [
[ [
Negative Hold time (D1>D2)
clock ‘
data | - [ ‘ - j‘
: e Setup time (+)
| o e Hold Time (-)
| ~—
Negative Setup time (D2>D1)
clock | : :
data | - |
! S Setup time (-)
w | U e Hold Time (+)

Figure 50—Data constraint interval, negative setup/hold
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16. Backannotation using the Standard Delay Format (SDF)

SDF files contain timing values for specify path delays, specparam values, timing check constraints, and
interconnect delays. SDF files can also contain other information in addition to simulation timing, but these
need not concern Verilog simulation. The timing values in SDF files usually come from ASIC delay calcula-
tion tools that take advantage of connectivity, technology, and layout geometry information.

Verilog backannotation is the process by which timing values from the SDF file update specify path delays,
specparam values, timing constraint values, and interconnect delays.

All this information is covered further in IEEE Std 1497-1999 [B2].

16.1 The SDF annotator

The term SDF Annotator refers to any tool capable of backannotating SDF data to a Verilog simulator. It
shall report a warning for any data it is unable to annotate.

An SDF file can contain many constructs which are not related to specify path delays, specparam values,
timing check constraint values, or interconnect delays. An example is any construct in the TIMINGENV sec-
tion of the SDF file. All constructs unrelated to Verilog timing shall be ignored without any warnings issued.

Any Verilog timing value for which the SDF file does not provide a value shall not be modified during the
backannotation process, and its pre-backannotation value shall be unchanged.

16.2 Mapping of SDF constructs to Verilog

SDF timing values appear within a CELL declaration, which can contain one or more of DELAY, TIM-
INGCHECK and LABEL sections. The DELAY section contains propagation delay values for specify paths
and interconnect delays. The TIMINGCHECK section contains timing check constraint values. The LABEL
section contains new values for specparams. Backannotation into Verilog is done by matching SDF con-
structs to the corresponding Verilog declarations, then replacing the existing Verilog timing values with
those from the SDF file.

16.2.1 Mapping of SDF delay constructs to Verilog declarations

When annotating DELAY constructs that are not interconnect delays (covered in 16.2.3), the SDF annotator
looks for specify paths where the names and conditions match. When annotating TIMINGCHECK con-
structs, the SDF annotator looks for timing checks of the same type where the names and conditions match.
Table 62 shows which Verilog structures can be annotated by each SDF construct in the DELAY section.
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Table 62—Mapping of SDF delay constructs to Verilog declarations

SDF Construct Verilog annotated structure

(PATHPULSE... Conditional and non-conditional specify path pulse limits

(PATHPULSEPERCENT... Conditional and non-conditional specify path pulse limits

(IOPATH... Conditional and non-conditional specify path delays/pulse limits

(1OPATH (RETAIN... Conditional and non-conditional specify path delays/pulse limits,
RETAIN ignored without warning

(COND (I0PATH... Conditional specify path delays/pulse limits

(COND (I0OPATH (RETAIN... Conditional specify path delays/pulse limits, RETAIN ignored without
warning

(CONDELSE (10PATH... ifnone

(CONDELSE (10PATH (RETAIN... ifnone, RETAIN ignored without warning

(DEVICE... All specify paths to module outputs. If no specify paths, all primitives
driving module outputs.

(DEVICE port_instance... If port_instance is a module instance, all specify paths to module
outputs. If no specify paths, all primitives driving module outputs. If
port_instance is a module instance output, all specify paths to that
module output. If no specify path, all primitives driving that module
output.

In this example the source SDF signal sel matches the source Verilog signal, and the destination SDF sig-
nal zout also matches the destination Verilog signal, and so the rise/fall times of 1.3 and 1.7 are
annotated to the specify path.
SDF file:

(I0PATH sel zout (1.3) (1.7))
Verilog specify path:

(sel => zout) = 0;
A conditional 10PATH delay between two ports shall annotate only to Verilog specify paths between those
same two ports with the same condition. In this example the rise/fall times of 1.3 and 1.7 are annotated
only to the second specify path.
SDF file:

(COND mode (I0PATH sel zout (1.3) (1-7)))
Verilog specify paths:

if (Imode) (sel => zout) = O;

if (mode) (sel => zout) = O;

A non-conditional 10PATH delay between two ports shall annotate to all Verilog specify paths between
those same two ports. In this example the rise/fall times of 1.3 and 1.7 are annotated to both specify
paths.
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SDF file:
(10PATH sel zout (1.3) (1.7))

Verilog specify paths:

if (Imode) (sel => zout) =
if (mode) (sel => zout) =0

16.2.2 Mapping of SDF timing check constructs to Verilog

IEC 61691-4:2004(E)
|EEE 1364-2001(E)

Table 63 shows which Verilog timing checks are annotated to by each type of SDF timing check. v1 is the
first value of a timing check, V2 is the second value, while X indicates no value is annotated.

Table 63—Mapping of SDF timing check constructs to Verilog

SDF Timing Check Annotated Verilog Timing checks
(SETUP vI... $setup(vl), $setuphold(vl,x)
(HOLD v1... $holdvl), $setuphold(x,vl)

(SETUPHOLD vI v2...

$setupvl), Shold2), $setuphold(vi,v2)

(RECOVERY vl...

$recoveryvl), $recremvl x)

(REMOVAL v1...

$removal(vl), $recrem(x,vl)

(RECREM v1 v2..

$recoveryvl), Sremoval (v2), $recrem(vi,v2)

(SKEW v1...

$skew(vl)

(TIMESKEW v1.."

$timeskew(vl)

(FULLSKEW v1 v2... ™ $Ful Iskew(vl,v2)
(WIDTH vL... $widthvix)
(PERIOD v1... $periodl)

(NOCHANGE v1 v2...

$nochange(vl,v2)

*Not part of current SDF standard
Not usually implemented in Verilog simulators

The reference and data signals of timing checks can have logical condition expressions and edges associated
with them. An SDF timing check with no conditions or edges on any of its signals shall match all corre-
sponding Verilog timing checks regardless of whether conditions are present or not. In this example the SDF

timing check shall annotate to all the Verilog timing checks:

SDF file:
(SETUPHOLD data clk (3) (4))

Verilog timing checks:

$setuphold (posedge clk&&& mode, data, 1, 1, ntfr);
$setuphold (negedge clk&&&!mode, data, 1, 1, ntfr);
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When conditions and/or edges are associated with the signals in an SDF timing check, then they shall match
those in any corresponding Verilog timing check before annotation shall happen. In this example the SDF
timing check shall annotate to the first Verilog timing check, but not the second:

SDF file:

(SETUPHOLD data (posedge clk) (3) (4))
Verilog timing checks:

$setuphold (posedge clk&&& mode, data, 1, 1, ntfr); // Annotated
$setuphold (negedge clk&&&!mode, data, 1, 1, ntfr); //Notannotated

Here, the SDF timing check shall not annotate to any of the Verilog timing checks:
SDF file:

(SETUPHOLD data (COND !mode (posedge clk)) (3) (4))
Verilog timing checks:

$setuphold (posedge clk&&& mode, data, 1, 1, ntfr); //Notannotated
$setuphold (mnegedge clk&&&!mode, data, 1, 1, ntfr); //Notannotated

16.2.3 SDF annotation of specparams

The SDF LABEL construct annotates to specparams. Any expression containing one or more specparams is
reevaluated when annotated to from an SDF file.

This example shows SDF LABEL constructs annotating to specparams in a Verilog module. The specparams
are used in procedural delays to control when the clock transitions. The SDF LABEL construct annotates the
values of dhigh and dlow, thereby setting the period and duty cycle of the clock.

SDF file:

(LABEL
(ABSOLUTE

(dhigh 60)

(dlow 40)))

Verilog file:

module clock(clk);
output clk;
reg clk;
specparam dhigh=0, dlow=0;
initial clk = O;
always
begin
#dhigh clk = 1; // Clock remains low for time dlow
// before transitioning to 1
#dlow clk = 0; // Clock remains high for time dhigh
// before transitioning to O
end;
endmodule
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This example shows a specparam in an expression of a specify path. The SDF LABEL construct can be used
to change the value of the specparam and cause reevaluation of the expression:

specparam cap = O;

specify
(A=>2)=1.4*cap + 0.7;
endspecify

16.2.4 SDF annotation of interconnect delays

SDF interconnect delay annotation differs from annotation of other constructs described above in that there
exists no corresponding Verilog declaration to which to annotate. In Verilog simulation, interconnect delays
are an abstraction that represents the signal propagation delay from an output or inout module port to an
input or inout module port. The INTERCONNECT construct includes a source, a load, and delay values,
while the PORT and NETDELAY constructs include only a load and delay values. Interconnect delays can
only be annotated between module ports, never between primitive pins. Table 64 shows how the SDF inter-
connect constructs in the DELAY section are annotated:

Table 64— SDF annotation of interconnect delays

SDF Construct Verilog annotated structure
(PORT... Interconnect delay
(NETDELAY * Interconnect delay
(INTERCONNECT... Interconnect delay

*Only OVI SDF version 1.0, 2.0, and 2.1, and IEEE SDF version 4.0
Interconnect delays can be annotated to both single source and multi-source nets.

When annotating a PORT construct, the SDF annotator shall search for the port and if it exists shall annotate
an interconnect delay to that port which shall represent the delay from all sources on the net to that port.

When annotating a NETDELAY construct, the SDF annotator shall check to see if it is annotating to a port or
a net. If it is a port then the SDF annotator shall annotate an interconnect delay to that port. If it is a net then
it shall annotate an interconnect delay to all load ports connected to that net. If the port or net has more than
one source then the delay shall represent the delay from all sources. NETDELAY delays can only be anno-
tated to input or inout module ports, or to nets.

In the case of multi-source nets, unique delays can be annotated between each source/load pair using the
INTERCONNECT construct. When annotating this construct, the SDF annotator shall find the source port
and the load port, and if both exist it shall annotate an interconnect delay between the two. If the source port
is not found, or if the source port and the load port are not actually on the same net, then a warning message
is issued, but the delay to the load port is annotated anyway. If this happens for a load port that is part of a
multi-source net, then the delay is treated as if it were the delay from all source ports, which is the same as
the annotation behavior for a PORT delay. Source ports shall be output or input ports, while load ports shall
be input or inout ports.

Interconnect delays share many of the characteristics of specify path delays. The same rules for specify path
delays for filling in missing delays and pulse limits also apply for interconnect delays. Interconnect delays
have twelve transition delays, and unique reject and error pulse limits are associated with each of the twelve.
An unlimited number of future schedules are permitted.
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In a Verilog module, a reference to an annotated port, wherever it occurs, whether in $monitor and
$display statements or in expressions, shall provide the delayed signal value. A reference to the source
shall yield the undelayed signal value, while a reference to the load shall yield the delayed signal value. In
general, references to the signal value hierarchically before the load shall yield the undelayed signal value,
while references to the signal at or hierarchically after the load shall yield the delayed signal value. An anno-
tation to a hierarchical port shall affect all connected ports at higher or lower hierarchical levels, depending
on the direction of annotation. An annotation from a source port shall be interpreted as being from all
sources hierarchically higher or lower than that source port.

Up-hierarchy annotations shall be properly handled. This situation arises when the load is hierarchically
above the source. The delay to all ports hierarchically above the load or which connect to the net at points
hierarchically above the load is the same as the delay to that load.

Down-hierarchy annotation shall also be properly handled. This situation arises when the source is hierar-
chically above the load. The delay to the load is interpreted as being from all ports at or above the source or
which connect to the net at points hierarchically above the source.

Hierarchically overlapping annotations are permitted. This occurs when annotations to or from the same port
take place at different hierarchical levels, and therefore do not correspond to the same hierarchical subset of
ports. In this example, the first INTERCONNECT statement annotates to all ports of the net that are at or
hierarchically within 153/selmode, while the second annotates to a smaller subset of ports, only those at
or hierarchically within 153/u21/in:

(INTERCONNECT i14/u5/out i53/selmode (1.43) (2.17))
(INTERCONNECT il14/u5/out i53/u21/in (1.58) (1.92))

Overlapping annotations can occur in many different ways, particularly on multi-source/multi-load nets, and
SDF annotation shall properly resolve all the interactions.

16.3 Multiple annotations

SDF annotation is an ordered process. The constructs from the SDF file are annotated in their order of occur-
rence. This means that annotation of an SDF construct can be changed by annotation of a subsequent con-
struct that either modifies (INCREMENT) or overwrites (ABSOLUTE) it. These do not have to be the same
construct. This example first annotates pulse limits to an IOPATH, then annotates the entire 10PATH,
thereby overwriting the pulse limits that were just annotated:

(DELAY
(ABSOLUTE
(PATHPULSE A Z (2.1) (3.4))
(10PATH A Z (3.5) (6.1))

Overwriting the pulse limits can be avoided by using empty parentheses to hold the current values of the
pulse limits:

(DELAY
(ABSOLUTE
(PATHPULSE A Z (2.1) (3.4))

(1I0PATH A Z ((3-5) O O) ((6-1) O O))

The above annotation can be simplified into a single statement like this:

(DELAY
(ABSOLUTE

(10PATH A Z ((3.5) (2-1) (3.4)) ((6-1) (2.1) (3.-4)) )

[ Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT



300 IEC 61691-4:2004(E)
IEEE 1364-2001(E)

A PORT annotation followed by an INTERCONNECT annotation to the same load shall cause only the delay
from the INTERCONNECT source to be affected. For this net with three sources and a single load, the delay
from all sources except 113/0uUt remains 6:

(DELAY
(ABSOLUTE
(PORT i15/in (6))
(INTERCONNECT i13/out i15/in (5))

An INTERCONNECT annotation followed by a PORT annotation shall cause the INTERCONNECT annota-
tion to be overwritten. Here, the delays from all sources to the load shall become 6.

(DELAY
(ABSOLUTE
(INTERCONNECT i13/out i15/in (5))
(PORT i15/in (6))

16.4 Multiple SDF files

More than one SDF file can be annotated. Each call to the $sdf_annotate task annotates the design with tim-
ing information from an SDF file. Annotated values either modify (INCREMENT) or overwrite (ABSO-
LUTE) values from earlier SDF files. Different regions of a design can be annotated from different SDF files
by specifying the region s hierarchy scope as the second argument to $sdf_annotate.

16.5 Pulse limit annotation

For SDF annotation of delays (not timing constraints), the default values annotated for pulse limits shall be
calculated using the percentage settings for the reject and error limits. By default these limits are 100%, but
they can be modified through invocation options. For example, assuming invocation options have set the
reject limit to 40% and the error limit to 80%, this SDF construct shall annotate a delay of 5, a reject limit of
2, and an error limit of 4:

(DELAY
(ABSOLUTE
(I0PATH A Z (5))

Given that the specify path delay was originally O, this annotation results in a delay of 5 and pulse limits of
0O:

(DELAY
(ABSOLUTE

(1I0PATH A Z ((3) O O) )

Annotations in INCREMENT mode can result in pulse limits less than O, in which case they shall be adjusted
to 0. For example, if the specify path pulse limits were both 3, this annotation results in a O value for both
pulse limits:

(DELAY
(INCREMENT

(IOPATH A Z (O (-9 (-5)) )

There are two SDF constructs that annotate only to pulse limits, PATHPULSE and PATHPULSEPERCENT.
They do not affect the delay. When PATHPULSE sets the pulse limits to values greater than the delay Ver-
ilog shall exhibit the same behavior as if the pulse limits had been set equal to the delay.
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16.6 SDF to Verilog delay value mapping

Verilog specify paths and interconnects can have unique delays for up to twelve state transitions (see 14.3.1).
All other constructs, such as gate primitives and continuous assignments, can have only three state transition
delays (see 7.14).

For Verilog specify path and interconnect delays, the number of transition delay values provided by SDF
might be less than twelve.

Table 65 shows how fewer than twelve SDF delays are extended to be twelve delays. The Verilog transition

types are shown down the left hand side, while the number of SDF delays provided is shown across the top.
The SDF values are given the names V1 through v12.

Table 65— SDF to Verilog delay value mapping

Number of SDF delay values provided
Verilog transition
1 value 2 values 3 values 6 values 12 values
0->1 vl vl vl vl vl
1->0 vl v2 v2 v2 v2
0->z vl vl v3 v3 v3
z->1 vl vl vl v4 v4
1->z vl v2 v3 v5 v5
z->0 vl v2 v2 vo vo
0->x vl vl min(vl,v3) min(v1,v3) v7
x->1 vl vl vl max(vl,v4) v8
1->x vl v2 min(v2,v3) min(v2,v5) v9
x->0 vl v2 v2 max(v2,v6) v10
X->z vl max(vl,v2) v3 max(v3,v5) vll
z->X vl min(vl,v2) min(vl,v2) min(v4,v6) vi2

For other delays that can have at most three values, the expansion of less than three SDF delays into three
Verilog delays is covered in Table 39. More than three SDF delays are reduced to three Verilog delays by
simply ignoring the extra delays. The delay to the X-state is created from the minimum of the other three
delays.
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17. System tasks and functions

This clause describes system tasks and functions that are considered part of the Verilog HDL. These system
tasks and functions are divided into ten categories as follows:

Display tasks [17.1] PLA modeling tasks [17.5]

$display $strobe $async$and$array $async$and$plane

$displayb $strobeb $async$nandSarray $async$nandS$plane

$d%sp layh $strobeh $asyncSor$array $async$or$plane

Sdisp l.ayo $str9beo $async$nor$array $async$nor$plane

$m°“¥t°r $wr¥te $sync$andSarray $sync$andSplane

$mon!torb $wr¥teb $sync$nandS$array $sync$nand$plane

Smonitorh $writeh $sync$orSarray $syncSor$plane

$mon¥toro $wr1t§o $sync$norSarray $sync$nor$plane

$monitoroff $monitoron

File I/O tasks [17.2] Stochastic analysis tasks [17.6]

$fclose $fopen $q_initialize $q_add

$fdlsplay $fstrobe $q_remove $q_fu]]

$fdisplayb $fstrobeb $q_exam

$fdisplayh $fstrobeh

$fdisplayo $fstrobeo

$fgetc $ungetc Simulation time functions [17.7]

Sfflush Sferror $realtime $stime

$fgets $rewind $time

$fmonitor $twrite

$fmonitorb $fwriteb

$fmonitorh $fwriteh Conversion functions [17.8]

$fmonitoro $fwriteo . .

$readmemb $readmemh iiﬁtoreal iﬁzgiltoblts

$swrite $swriteb . .

$swriteo $swriteh $signed Sunsigned

$sformat $sdf_annotate

$fscanf $sscanf Probabilistic distribution functions [17.9]

$fread $ftell ) ) )

$fseck $dist_chi_square $dist_erlang
$dist_exponential $dist_normal

e s

$printtimescale $timeformat h

Simulation control tasks [17.4] ~Command line input [17.10]

$finish $stop $test$plusargs $valueSplusargs

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

These utility tasks and functions provide some broadly useful capabilities. The following clauses describe
the behavior of these tasks and functions. Additional tasks for value change dump (VCD) are described in
Clause 18.

17.1 Display system tasks

The display group of system tasks are divided into three categories: the display and write tasks, strobed
monitoring tasks, and continuous monitoring tasks.
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17.1.1 The display and write tasks

display_tasks ::=
display_task_name ( list_of_arguments ) ;
display_task_name ::=
$display | $displayb | $displayo | $Sdisplayh
| $write | $writeb | $writeo | Swriteh

Syntax 17-1 Syntax for $display and $write system tasks

These are the main system task routines for displaying information. The two sets of tasks are identical
except that $Sdisplay automatically adds a newline character to the end of its output, whereas the $write task
does not.

The $display and $write tasks display their arguments in the same order as they appear in the argument list.
Each argument can be a quoted string, an expression that returns a value, or a null argument.

The contents of string arguments are output literally except when certain escape sequences are inserted to
display special characters or to specify the display format for a subsequent expression.

Escape sequences are inserted into a string in three ways:

— The special character \ indicates that the character to follow is a literal or nonprintable character (see
Table 66).

— The special character % indicates that the next character should be interpreted as a format specifica-
tion that establishes the display format for a subsequent expression argument (see Table 67). For
each % character, with the exception of $m that appears in a string, a corresponding expression argu-
ment shall be supplied after the string.

— The special character string $% indicates the display of the percent sign character % (see Table 66).

Any null argument produces a single space character in the display. (A null argument is characterized by two
adjacent commas in the argument list.)

The Sdisplay task, when invoked without arguments, simply prints a newline character. A $write task sup-
plied without parameters prints nothing at all.

17.1.1.1 Escape sequences for special characters

The escape sequences given in Table 66, when included in a string argument, cause special characters to be
displayed.

[ Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT



304

IEC 61691-4:2004(E)
|EEE 1364-2001(E)

Table 66 —Escape sequences for printing special characters

Argument

Description

\n

The newline character

\t

The tab character

\

The \ character

\n

The " character

\ddd

A character specified by 1 to 3 octal digits

%%

The % character

Example:

module disp;

initial begin
Sdisplay("\\t\\\n\"\123");

end

endmodule

Simulating this example shall display the following:

Voo
||S

17.1.1.2 Format specifications

Table 67 shows the escape sequences used for format specifications. Each escape sequence, when included
in a string argument, specifies the display format for a subsequent expression. For each % character (except
%m) that appears in a string, a corresponding expression shall follow the string in the argument list. The
value of the expression replaces the format specification when the string is displayed.

Any expression argument that has no corresponding format specification is displayed using the default deci-
mal format in $display and $write, binary format in $displayb and $writeb, octal format in $displayo and
$writeo, and hexadecimal format in $displayh and $writeh.

Table 67—Escape sequences for format specifications

Argument

Description

%h or %H

Display in hexadecimal format

%d or %D

Display in decimal format

%0 or %0

Display in octal format

%b or %B

Display in binary format

%c or %C

Display in ASCII character format

%I or %L

Display library binding information

%v or %V

Display net signal strength
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Table 67 —Escape sequences for format specifications (continued)

%m or %M Display hierarchical name

%s or %S Display as a string

Y%t or %T Display in current time format
Y%u or %U Unformatted 2 value data

%z or %Z Unformatted 4 value data

The formatting specification 1 (or L) is defined for displaying the library information of the specific
module. This information shall be displayed as "/ibrary.cell" corresponding to the library name the current
module instance was extracted from and the cell name of the current module instance. See Clause 13 for
information on libraries and configuring designs.

The formatting specification $u (or $U) is defined for writing data without formatting (binary values). The
application shall transfer the 2 value binary representation of the specified data to the output stream. This
escape sequence can be used with any of the existing display system tasks, although $fwrite should be
the preferred one to use. Any unknown or high-impedance bits in the source shall be treated as zero. This
formatting specifier is intended to be used to support transferring data to and from external programs that
have no concept of x and z. Applications that require preservation of x and z are encouraged to use the %z
I/O format specification.

The data shall be written to the file in the native endian format of the underlying system (i.e., in the same
endian order as if the PLI was used, and the C language write (2) system call was used). The data shall be
written in units of 32 bits with the word containing the LSB written first.

NOTE For POSIX applications: It might be necessary to open files for unformatted I/O with the wb, wb+, or w+b
specifiers, to avoid the systems implementation of I/O altering patterns in the unformatted stream that match special
characters.

The formatting specification %z (or $2) is defined for writing data without formatting (binary values). The
application shall transfer the 4 value binary representation of the specified data to the output stream. This
escape sequence can be used with any of the existing display system tasks, although $fwrite should be
the preferred one to use.

This formatting specifier is intended to be used to support transferring data to and from external programs
that recognize and support the concept of x and z. Applications that do not require the preservation of x and
z are encouraged to use the $u 1/O format specification.

The data shall be written to the file in the native endian format of the underlying system (i.e., in the same
endian order as if the PLI was used, and the data were in a s_vpi vecval structure (See 27.14,
Figure 179), and the C language write (2) system call was used to write the structure to disk). The data
shall be written in units of 32 bits with the structure containing the LSB written first.

NOTE For POSIX applications: It might be necessary to open files for unformatted I/O with the wb, wb+ or w+b
specifiers, to avoid the systems implementation of I/O altering patterns in the unformatted stream that match special
characters.

The format specifications in Table 68 are used with real numbers and have the full formatting capabilities
available in the C language. For example, the format specification $10 . 3g specifies a minimum field width
of 10 with 3 fractional digits.
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68— Format specifications for real numbers

Argument

Description

%e or %E

Display real in an exponential format

%f or %F

Display real in a decimal format

%g or %G

Display real in exponential or decimal format, which-
ever format results in the shorter printed output

The net signal strength, hierarchical name, and string format specifications are described in 17.1.1.5 through

17.1.1.7.

The %t format specification works with the $timeformat system task to specify a uniform time unit, time
precision, and format for reporting timing information from various modules that use different time units
and precisions. The $timeformat task is described in 17.3.2.

Example:

module disp;
reg [31:0] rval;
pulldown (pd);
initial begin
rval = 101;
$display ("rval
$display ("rval =
$display ("rval ha

¢h hex %d decimal",rval,rval);
%0 octall\nrval = %b bin",rval,rval);
s %c ascii character value",rval);

Sdisplay ("pd strength value is %v",pd);

$display ( "current
$display("%s is a
$display ("simulat
end
endmodule

scope is %m");
scii value for 101",101);
ion time is %t", S$time);

Simulating this example shall display the following:

rval 00000065 he
rval 00000000145
rval = 00000000000
rval has e ascii c
pd strength value

current scope is d
e is ascii value f

X 101 decimal
octal
000000000000001100101 bin
haracter value

is StX

isp

or 101

17.1.1.3 Size of displayed data

For expression arguments, the values written to the output file (or terminal) are sized automatically.

For example, the result of a 12-bit expression would be allocated three characters when displayed in hexa-
decimal format and four characters when displayed in decimal format, since the largest possible value for
the expression is FFF (hexadecimal) and 4095 (decimal).
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When displaying decimal values, leading zeros are suppressed and replaced by spaces. In other radices,
leading zeros are always displayed.

The automatic sizing of displayed data can be overridden by inserting a zero between the % character and the
letter that indicates the radix, as shown in the following example.

$display ("d=%0h a=%0h", data, addr);

Example:

module printval;
reg [11:0] rl;
initial begin

rl = 10;
$Sdisplay( "Printing with maximum size - :%d: :%h:", rl,rl );
$Sdisplay( "Printing with minimum size - :%0d: :%0h:", rl,rl );
end
endmodule
Printing with maximum size - : 10: :00a:
Printing with minimum size - :10: :a:

In this example, the result of a 12-bit expression is displayed. The first call to $display uses the standard for-
mat specifier syntax and produces results requiring four and three columns for the decimal and hexadecimal
radices, respectively. The second $display call uses the $0 form of the format specifier syntax and produces
results requiring two columns and one column, respectively.

17.1.1.4 Unknown and high impedance values

When the result of an expression contains an unknown or high impedance value, the following rules apply to
displaying that value.

In decimal (%$d) format

— If all bits are at the unknown value, a single lowercase x character is displayed.

— If all bits are at the high impedance value, a single lowercase z character is displayed.

— If some, but not all, bits are at the unknown value, the uppercase X character is displayed.

— If some, but not all, bits are at the high impedance value, the uppercase Z character is displayed.
— Decimal numerals always appear right-justified in a fixed-width field.

In hexadecimal (%h) and octal (%0) formats

— Each group of 4 bits is represented as a single hexadecimal digit; each group of 3 bits is represented
as a single octal digit.

— If all bits in a group are at the unknown value, a lowercase x is displayed for that digit.

— If all bits in a group are at a high impedance state, a lowercase z is printed for that digit.

— If some, but not all, bits in a group are unknown, an uppercase X is displayed for that digit.

— If some, but not all, bits in a group are at a high impedance state, then an uppercase Z is displayed for
that digit.

In binary (%b) format, each bit is printed separately using the characters 0, 1, x, and z.
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Example:

STATEMENT RESULT
Sdisplay("%d", 1'bx); X
$Sdisplay ("%h", 14'bx01010); xxXa
$display("%h %0", 12'b001xxx101x01,
12'b001xxx101x01); XXX 1x5X

17.1.1.5 Strength format

The %v format specification is used to display the strength of scalar nets. For each v specification that
appears in a string, a corresponding scalar reference shall follow the string in the argument list.

The strength of a scalar net is reported in a three-character format. The first two characters indicate the
strength. The third character indicates the current logic value of the scalar and can be any one of the values
given in Table 69.

Table 69—Logic value component of strength format

Argument Description

0 For a logic 0 value

—_

For a logic 1 value

For an unknown value

For a high impedance value

For a logic 0 or high impedance value

| O N X

For a logic 1 or high impedance value

The first two characters the strength characters are either a two-letter mnemonic or a pair of decimal dig-

its. Usually, a mnemonic is used to indicate strength information; however, in less typical cases, a pair of
decimal digits can be used to indicate a range of strength levels. Table 70 shows the mnemonics used to rep-
resent the various strength levels.

Table 70—Mnemonics for strength levels

Mnemonic Strength name Strength level
Su Supply drive 7
St Strong drive 6
Pu Pull drive 5
La Large capacitor 4
We Weak drive 3
Me Medium capacitor 2
Sm Small capacitor 1
Hi High impedance 0
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Note that there are four driving strengths and three charge storage strengths. The driving strengths are asso-
ciated with gate outputs and continuous assignment outputs. The charge storage strengths are associated

309

with the trireg type net. (See Clause 7 for strength modeling.)

For the logic values 0 and 1, a mnemonic is used when there is no range of strengths in the signal. Other-
wise, the logic value is preceded by two decimal digits, which indicate the maximum and minimum strength

levels.

For the unknown value, a mnemonic is used when both the 0 and 1 strength components are at the same
strength level. Otherwise, the unknown value X is preceded by two decimal digits, which indicate the 0 and

1 strength levels respectively.

The high impedance strength cannot have a known logic value; the only logic value allowed for this level is

Z.

For the values L and H, a mnemonic is always used to indicate the strength level.

Examples:

always

#15 S$display (Stime, , "group=%b signals=%v %v %v",{sl,s2,s3}, sl,

s2, s3);

The example below shows the output that might result from such a call, while Table 71 explains the various

strength formats that appear in the output.

0 group=111 signals=Stl Pul Stl
15 group=011 signals=Pul0 Pul Stl
30 group=0xz signals=520 PuH HiZ
45 group=0xx signals=Pul 65X StX
60 group=000 signals=Me0 St0 StO0

Table 71 —Explanation of strength formats

Argument

Description

Stl

Means a strong driving 1 value

Pu0

Means a pull driving 0 value

Hiz

Means the high-impedance state

Me0

Means a 0 charge storage of medium capacitor strength

StX

Means a strong driving unknown value

PuH

Means a pull driving strength of 1 or high-impedance value

65X

Means an unknown value with a strong driving 0 component
and a pull driving 1 component

520

Means an 0 value with a range of possible strength from pull
driving to medium capacitor
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17.1.1.6 Hierarchical name format

The %m format specifier does not accept an argument. Instead, it causes the display task to print the hierar-
chical name of the module, task, function, or named block that invokes the system task containing the format
specifier. This is useful when there are many instances of the module that calls the system task. One obvious
application is timing check messages in a flip-flop or latch module; the $m format specifier shall pinpoint
the module instance responsible for generating the timing check message.

17.1.1.7 String format

The s format specifier is used to print ASCII codes as characters. For each $s specification that appears in
a string, a corresponding parameter shall follow the string in the argument list. The associated argument is
interpreted as a sequence of 8-bit hexadecimal ASCII codes, with each 8 bits representing a single character.
If the argument is a variable, its value should be right-justified so that the rightmost bit of the value is the
least-significant bit of the last character in the string. No termination character or value is required at the end
of a string, and leading zeros are never printed.

17.1.2 Strobed monitoring

strobe_tasks ::=

strobe_task_name ( list_of_arguments ) ;
strobe_task _name ::=

$strobe | $strobeb | $strobeo | $strobeh

Syntax 17-2 Syntax for $strobe system tasks

The system task $strobe provides the ability to display simulation data at a selected time. That time is the
end of the current simulation time, when all the simulation events that have occurred for that simulation
time, just before simulation time is advanced. The arguments for this task are specified in exactly the same
manner as for the $display system task including the use of escape sequences for special characters and
format specifications (see 17.1.1).

Example:

forever @ (negedge clock)
$strobe ("At time %d, data is %h",S$time,data);

In this example, $strobe writes the time and data information to the standard output and the log file at each
negative edge of the clock. The action shall occur just before simulation time is advanced and after all other
events at that time have occurred, so that the data written is sure to be the correct data for that simulation
time.
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17.1.3 Continuous monitoring

monitor_tasks ::=
monitor_task_name [ ( list_of_arguments ) ] ;
| $monitoron ;
| $monitoroff ;
monitor_task_name ::=
$monitor | Smonitorb | Smonitoro | $monitorh

Syntax 17-3 Syntax for $monitor system tasks

The $monitor task provides the ability to monitor and display the values of any variables or expressions
specified as arguments to the task. The arguments for this task are specified in exactly the same manner as
for the $display system task including the use of escape sequences for special characters and format spec-
ifications (see 17.1.1).

When a $monitor task is invoked with one or more arguments, the simulator sets up a mechanism whereby
each time a variable or an expression in the argument list changes value with the exception of the $time,
$stime or $realtime system functions the entire argument list is displayed at the end of the time step as if
reported by the $display task. If two or more arguments change value at the same time, only one display is
produced that shows the new values.

Only one $monitor display list can be active at any one time; however, a new $Smonitor task with a new dis-
play list can be issued any number of times during simulation.

The $monitoron and $monitoroff tasks control a monitor flag that enables and disables the monitoring. Use
$monitoroff to turn off the flag and disable monitoring. The $monitoron system task can be used to turn on
the flag so that monitoring is enabled and the most recent call to $monitor can resume its display. A call to
$monitoron shall produce a display immediately after it is invoked, regardless of whether a value change
has taken place; this is used to establish the initial values at the beginning of a monitoring session. By
default, the monitor flag is turned on at the beginning of simulation.

17.2 File input-output system tasks and functions

The system tasks and functions for file-based operations are divided into three categories:
— Functions and tasks that open and close files
—  Tasks that output values into files
—  Tasks that output values into variables

— Tasks and functions that read values from files and load into variables or memories

17.2.1 Opening and closing files

file_open_function ::=
integer multi_channel_descriptor = $fopen (" file_name " );
| integer fd = $fopen (" file_name ", type );
file_close_task ::=
$fclose ( multi_channel_descriptor );
| $fclose (fd);

Syntax 17-4 Syntax for $fopen and $fclose system tasks
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The function $fopen opens the file specified as the filename argument and returns either a 32 bit multi chan-
nel descriptor, or a 32 bit file descriptor, determined by the absence or presence of the type argument.

filename is a character string, or a reg containing a character string that names the file to be opened.

type is a character string, or a reg containing a character string of one of the following forms in the table
below, which indicates how the file should be opened. If type is omitted, the file is opened for writing, and a
multi channel descriptor med is returned. If type is supplied, the file is opened as specified by the value of
type, and a file descriptor £d is returned.

The multi channel descriptor med is a 32 bit reg in which a single bit is set indicating which file is opened.
The least significant bit (bit 0) of a mcd always refers to the standard output. Output is directed to two or
more files opened with multi channel descriptors by bitwise oring together their mcds and writing to the
resultant value.

The most significant bit (bit 32) of a multi channel descriptor is reserved, and shall always be cleared, limit-
ing an implementation to at most 31 files opened for output via multi channel descriptors.

The file descriptor £d is a 32 bit value. The most significant bit (bit 32) of a £d is reserved, and shall always
be set; this allows implementations of the file input and output functions to determine how the file was
opened. The remaining bits hold a small number indicating what file is opened. Three file descriptors are pre
opened; they are STDIN, STDOUT and STDERR, which have the values 32'h8000 0000,
32'h8000_0001 and 32'h8000_0002, respectively. STDIN is pre opened for reading, and STDOUT
and STDERR are pre opened for append.

Unlike multi channel descriptors, file descriptors can not be combined via bitwise or in order to direct output
to multiple files. Instead, files are opened via file descriptor for input, output, input and output, as well as for
append operations, based on the value of type, according to the following table:

Table 72—Types for file descriptors

Argument Description

"r" or "rb" open for reading

"w'" or "wb" truncate to zero length or create for writing

"a" or "ab" append; open for writing at end of file, or create for writing
"r+", "r+b", or "rb+" open for update (reading and writing)

"wt", "wtb", or "wb+" | truncate or create for update

"at", "atb", or "ab+" append; open or create for update at end-of-file

If a file can not be opened (either the file doesn’t exist, and the type specified is "r", "rb", "r+", "r+b", or
"rb+", or the permissions do not allow the file to be opened at that path, a zero is returned for either the med
or the £d. Applications can call $ferror to determine the cause of the most recent error (see 17.2.7).

The "b" in the above types exists to distinguish binary files from text files. Many systems (such as Unix)
make no distinction between binary and text files, and on these systems the "b" is ignored. However, some
systems (such as machines running NT or Windows) perform data mappings on certain binary values written
to and read from files that are opened for text access.
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The $fclose system tasks closes the file specified by f£d or closes the file(s) specified by the multi channel
descriptor mecd. No further output to or input from any file descriptor(s) closed by $fclose is allowed. Active
$fmonitor and/or $fstrobe operations on a file descriptor or multi channel descriptor are implicitly can-
celled by an $fclose operation. The $fopen function shall reuse channels that have been closed.

NOTE The number of simultaneous input and output channels that can be open at any one time is dependent on the
operating system. Some operating systems do not support opening files for update.

17.2.2 File output system tasks

file_output_tasks ::=
file_output_task_name ( multi_channel_descriptor , list_of_arguments ) ;
| file_output_task_name ( fd , list_of_arguments ) ;
file_output_task_name ::=
$fdisplay | $fdisplayb | $fdisplayh | $fdisplayo
| $fwrite | $fwriteb | $Sfwriteh | $fwriteo
| $fstrobe | Sfstrobeb | $fstrobeh | $fstrobeo
| $fmonitor | $fmonitorb | $fmonitorh | $fmonitoro

Syntax 17-5 Syntax for file output system tasks

Each of the four formatted display tasks $display, $write, Smonitor, and $strobe has a counterpart that
writes to specific files as opposed to the standard output. These counterpart tasks $fdisplay, $fwrite,
$fmonitor, and $fstrobe accept the same type of arguments as the tasks upon which they are based, with
one exception: The first parameter shall be either a multi channel descriptor or a file descriptor, which indi-
cates where to direct the file output. Multi channel descriptors are described in detail in 17.2.1. A multichan-
nel descriptor is either a variable or the result of an expression that takes the form of a 32-bit unsigned
integer value.

The $fstrobe and $fmonitor system tasks work just like their counterparts, $strobe and $monitor, except
that they write to files using the multi channel descriptor for control. Unlike $monitor, any number of
$fmonitor tasks can be set up to be simultaneously active. However, there is no counterpart to $Smonitoron
and $Smonitoroff tasks. The task $fclose is used to cancel an active $fstrobe or $fmonitor task.

Example:

This example shows how to set up multi channel descriptors. In this example, three different channels are
opened using the $fopen function. The three multi channel descriptors that are returned by the function are
then combined in a bit-wise or operation and assigned to the integer variable messages. The mes-
sages variable can then be used as the first parameter in a file output task to direct output to all three chan-
nels at once. To create a descriptor that directs output to the standard output as well, the messages variable
is a bit-wise logical or with the constant 1, which effectively enables channel 0.
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integer
messages, broadcast,
cpu_chann, alu chann, mem chann;

initial begin
cpu_chann = $fopen("cpu.dat");
if (cpu_chann == 0) $finish;
alu chann = $fopen("alu.dat");
if (alu chann == 0) $finish;
mem chann = $fopen('mem.dat");
if (mem_chann == 0) S$finish;
messages = cpu_chann | alu chann | mem chann;
// broadcast includes standard output
broadcast = 1 | messages;
end
endmodule

The following file output tasks show how the channels opened in the preceding example might be used:

$fdisplay ( broadcast, "system reset at time %d",$time );

$fdisplay ( messages, "Error occurred on address bus",
" at time %d, address = %h", S$time, address );

forever @ (posedge clock)
$fdisplay ( alu chann, "acc= %h f=%h a=%h b=%h", acc, £, a, b );

17.2.3 Formatting data to a string

string_output_tasks ::=

string_output_tasks_name ( output_reg, list_of_arguments );
string_output_task_name ::=

$swrite | $swriteb | $swriteh | $swriteo
variable_format_string_output_task ::=

$sformat ( output_reg, format, list_of_arguments );

Syntax 17-6 Syntax for formatting data tasks

The syntax for the string output system tasks is

Sswrite (output_reg, list_of _arguments) ;
$sformat (output_reg, format_string, list_of _arguments) ;
length = S$sformat(output reg, format string, list_of _arguments) ;

The $swrite family of tasks are based on the $fwrite family of tasks, and accept the same type of arguments
as the tasks upon which they are based, with one exception: The first parameter to $swrite shall be a reg
variable to which the resulting string shall be written, instead of a variable specifying the file to which to
write the resulting string.

The variable output_reg is assigned using the Verilog s string assignment to variable rules, as specified in
4.23.
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The system task $sformat is similar to the system task $swrite, with a one major difference.

Unlike the display and write family of output system tasks, $sformat always interprets its second argu-
ment, and only its second argument as a format string. This format argument can be a static string, such as
"data is %d" , or can be a reg variable whose content is interpreted as the format string. No other arguments
are interpreted as format strings. $sformat supports all the format specifiers supported by $display, as
documented in 17.1.1.2.

The remaining arguments to $sformat are processed using any format specifiers in the format_string,
until all such format specifiers are used up. If not enough arguments are supplied for the format specifiers, or
too many are supplied, then the application shall issue a warning, and continue execution. The application, if
possible, can statically determine a mismatch in format specifiers and number of arguments, and issue a
compile time error message.

NOTE Ifthe format_string is a reg, it might not be possible to determine its value at compile time.

The variable output_reg is assigned using the Verilog s string assignment to variable rules, as specified in
423.

17.2.4 Reading data from a file

Files opened using file descriptors can be read from only if they were opened with either the r or r+ type
values. See 17.2.1 for more information about opening files.

17.2.4.1 Reading a character at a time
c = S$fgetc ( £d );

Read a byte from the file specified by £d. If an error occurs reading from the file, then c is set to EOF (-1).
Define the width of the reg to be wider than § bits so that a return value from $fgetc of EOF (-1) can be dif-
ferentiated from the character code 0xXFF. Applications can call $ferror to determine the cause of the most
recent error (see 17.2.7).

code = Sungetc ( c, fd );

Insert the character specified by c into the buffer specified by file descriptor £d. The character ¢ shall be
returned by the next $fgetc call on that file descriptor. The file itself is unchanged. Note that the features of
the underlying implementation of fileio on the host system limits the number of characters that can be
pushed back onto a stream. Note also that operations like $fseek might erase any pushed back characters. If
an error occurs pushing a character onto a file descriptor, then code is set to EOF. Otherwise code is set to
zero. Applications can call $ferror to determine the cause of the most recent error (see 17.2.7).

17.2.4.2 Reading a line at a time

integer code = S$fgets ( str, £d );
Read characters from the file specified by £d into the reg str until either str is filled, or a newline charac-
ter is read and transferred to str, or an end-of-file condition is encountered. If str is not an integral num-

ber of bytes in length, the most significant partial byte is not used in order to determine the size.

If an error occurs reading from the file, then code is set to zero. Otherwise the number of characters read is
returned in code. Applications can call $ferror to determine the cause of the most recent error (see below).

17.2.4.3 Reading formatted data

integer code = S$fscanf ( £d, format, args );
integer code $sscanf ( str, format, args );
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$fscanf reads from the files specified by the file descriptor f£d.
$sscanf reads from the reg str.

Both functions read characters, interpret them according to a format, and store the results. Both expect as
arguments a control string, format, and a set of arguments specifying where to place the results. If there
are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while argu-
ments remain, the excess arguments are ignored.

If an argument is too small to hold the converted input, then in general, the least significant bits are trans-
ferred. Arguments of any length that is supported by Verilog can be used. However if the destination is a real
or realtime then the value +Inf (or -Inf) is transferred. The format can be a string constant or a reg contain-
ing a string constant. The string contains conversion specifications, which direct the conversion of input into
the arguments. The control string can contain

a)  White-space characters (blanks, tabs, new-lines, or form-feeds) that, except in one case described
below, cause input to be read up to the next non-white-space character.

b)  An ordinary character (not %) that must match the next character of the input stream.

c¢) Conversion specifications consisting of the character % an optional assignment suppression
character *, a decimal digit string that specifies an optional numerical maximum field width, and a
conversion code.

A conversion specification directs the conversion of the next input field; the result is placed in the variable
specified in the corresponding argument unless assignment suppression was indicated by the character *; in
this case no argument shall be supplied.

The suppression of assignment provides a way of describing an input field that is to be skipped. An input
field is defined as a string of non-space characters; it extends to the next inappropriate character or until the
maximum field width, if one is specified, is exhausted. For all descriptors except the character ¢, white space
leading an input field is ignored.

% A single % is expected in the input at this point; no assignment is done.
b Matches a binary number, consisting of a sequence from the set 0,1,X,x,Z,z,? and _.
0 Matches a octal number, consisting of a sequence of characters from the set

0,1,2,3,4,5,6,7,X,x,Z,2,? and _.

d Matches an optionally signed decimal number, consisting of the optional sign from the set + or -,
followed by a sequence of characters from the set 0,1,2,3,4,5,6,7,8,9 and _, or a single value from
the set x,X,z,7.,?.

horx Matches a hexadecimal number, consisting of a sequence of characters from the set
0,1,2,3,4,5,6,7,8,9,a,A,b,B,c,C,d,D,e,E.f,F,x,X,z,Z,? and _.

f, e or g Matches a floating point number. The format of a floating point number is an optional sign (either +
or -), followed by a string of digits from the set 0,1,2,3,4,5,6,7,8,9 optionally containing a decimal
point character (.), then an optional exponent part including e or E followed by an optional sign,
followed by a string of digits from the set 0,1,2,3,4,5,6,7,8,9.

v Matches a net signal strength, consisting of three character sequence as specified in 17.1.1.5. This
conversion is not extremely useful, as strength values are really only usefully assigned to nets and
$fscanf can only assign values to regs (if assigned to regs, the values are converted to the 4 value
equivalent).
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t Matches a floating point number. The format of a floating point number is an optional sign (either +
or -), followed by a string of digits from the set 0,1,2,3,4,5,6,7,8,9 optionally containing a decimal
point character (.), then an optional exponent part including e or E followed by an optional sign,
followed by a string of digits from the set 0,1,2,3,4,5,6,7,8,9. The value matched is then scaled and
rounded according to the current time scale as set by $timeformat. For example, if the timescale is
‘timescale 1ns/100ps and the time format is $timeformat(-3,2," ms",10);, then a value read with
$sscanf("10.345", "%t", t) would return 10350000.0.

c Matches a single character, whose 8 bit ASCII value is returned.
s Matches a string, which is a sequence of non white space characters.
u Matches unformatted (binary) data. The application shall transfer sufficient data from the input to

fill the target reg. Typically the data is obtained from a matching $fwrite ("%u",data), or from
an external application written in another programming language such as C, Perl or FORTRAN.

The application shall transfer the 2 value binary data from the input stream to the destination reg,
expanding the data to the four value format. This escape sequence can be used with any of the
existing input system tasks, although $fscanf should be the preferred one to use. As the input
data can not represent x or z, it is not possible to obtain an x or z in the result reg. This formatting
specifier is intended to be used to support transferring data to and from external programs that have
no concept of x and z.

Applications that require preservation of x and z are encouraged to use the ¥z I/O format specifi-
cation.

The data shall be read from the file in the native endian format of the underlying system (i.e., in the
same endian order as if the PLI was used, and the C language read (2) system call was used).

For POSIX applications: It might be necessary to open files for unformatted I/O with the "rb"
"rb+" or "r+b" specifiers, to avoid the systems implementation of I/O altering patterns in the unfor-
matted stream that match special characters.

z The formatting specification %z (or $2) is defined for reading data without formatting (binary val-
ues). The application shall transfer the 4 value binary representation of the specified data from the
input stream to the destination reg. This escape sequence can be used with any of the existing input
system tasks, although $fscanf should be the preferred one to use.

This formatting specifier is intended to be used to support transferring data to and from external
programs that recognize and support the concept of x and z. Applications that do not require the
preservation of x and z are encouraged to use the $u I/O format specification.

The data shall be read from the file in the native endian format of the underlying system (i.e., in the
same endian order as if the PLI was used, and the data were ina s_vpi vecval structure (See
27.14, Figure 27-8), and the C language read(2) system call was used to read the data from disk).

For POSIX applications: It might be necessary to open files for unformatted I/O with the "rb",
"rb+" or "r+b" specifiers, to avoid the systems implementation of I/O altering patterns in the unfor-
matted stream that match special characters.

m Returns the current hierarchical path as a string. Does not read data from the input file or str argu-
ment. If an invalid conversion character follows the %, the results of the operation are implementa-
tion dependent.

If the format string, or the str argument to $sscanf contains unknown bits (x or z) then the system task
shall return EOF.
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If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs before any charac-
ters matching the current directive have been read (other than leading white space, where permitted), execu-
tion of the current directive terminates with an input failure; otherwise, unless execution of the current
directive is terminated with a matching failure, execution of the following directive (if any) is terminated
with an input failure.

If conversion terminates on a conflicting input character, the offending input character is left unread in the
input stream. Trailing white space (including new-line characters) is left unread unless matched by a direc-
tive. The success of literal matches and suppressed assignments is not directly determinable.

The number of successfully matched and assigned input items is returned in code; this number can be 0 in
the event of an early matching failure between an input character and the control string. If the input ends
before the first matching failure or conversion, EOF is returned. Applications can call $ferror to determine
the cause of the most recent error (see below).

17.2.4.4 Reading binary data

integer code = S$fread( myreg, £fd);

integer code $fread( mem, £d);

integer code $fread( mem, fd, start);

integer code $fread( mem, fd, start, count);
integer code $fread( mem, £fd, , count);

Read a binary data from the file specified by £d into the reg myreg or the memory mem.

start is an optional argument. If present, start shall be used as the address of the first element in the
memory to be loaded. If not present the lowest numbered location in the memory shall be used.

count is an optional argument. If present, count shall be the maximum number of locations in mem that
shall be loaded. If not supplied the memory shall be filled with what data is available.

start and count are ignored if $fread is loading a reg.

If no addressing information is specified within the system task, and no address specifications appear within
the data file, then the default start address is the lowest address given in the declaration of the memory. Con-
secutive words are loaded towards the highest address until either the memory is full or the data file is com-
pletely read. If the start address is specified in the task without the finish address, then loading starts at the
specified start address and continues towards the highest address given in the declaration of the memory.

start is the address in the memory. For start = 12 and the memory up[10:20], the first data would be
loaded at up[12]. For the memory down[20:10], the first location loaded would be down[12], then
down|[13].

The data in the file shall be read byte by byte to fulfill the request. An 8-bit wide memory is loaded using one
byte per memory word, while a 9-bit wide memory is loaded using 2 bytes per memory word. The data is
read from the file in a big endian manner; the first byte read is used to fill the most significant location in the
memory element. If the memory width is not evenly divisible by 8 (8, 16, 24, 32), not all data in the file is
loaded into memory because of truncation.

The data loaded from the file is taken as "two value" data. A bit set in the data is interpreted as a 1, and bit
not set is interpreted as a 0. It is not possible to read a value of x or z using $fread.

If an error occurs reading from the file, then code is set to zero. Otherwise the number of characters read is
returned in code. Applications can call $ferror to determine the cause of the most recent error (see 17.2.7).

Note that there is not a "binary" mode and a "ASCII" mode; one can freely intermingle binary and formatted
read commands from the same file.
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17.2.5 File positioning

integer pos = $ftell ( £d );

Returns in pos the offset from the beginning of the file of the current byte of the file £d which shall be read
or written by a subsequent operation on that file descriptor.

This value can be used by subsequent $fseek calls to reposition the file to this point. Note that any reposi-
tioning shall cancel any $ungetc operations. If an error occurs EOF is returned. Applications can call $fer-
ror to determine the cause of the most recent error (see 17.2.7).

code = $fseek ( fd, offset, operation );
code Srewind ( £d );

Sets the position of the next input or output operation on the file specified by £d. The new position is at the
signed distance offset bytes from the beginning, from the current position, or from the end of the file,
according to an operation value of 0, 1 and 2 as follows:

— 0 set position equal to offset bytes
— 1 set position to current location plus offset
— 2 set position to EOF plus offset

$rewind is equivalent to $fseek (£d,0,0);
Repositioning the current file position with $fseek or $rewind shall cancel any $ungetc operations.

$fseek() allows the file position indicator to be set beyond the end of the existing data in the file. If data is
later written at this point, subsequent reads of data in the gap shall return zero until data is actually written
into the gap. $fseek, by itself, does not extend the size of the file.

When a file is opened for append (that is, when type is "a", or "a+"), it is impossible to overwrite informa-
tion already in the file. $fseek can be used to reposition the file pointer to any position in the file, but when
output is written to the file, the current file pointer is disregarded. All output is written at the end of the file
and causes the file pointer to be repositioned at the end of the output.

If an error occurs repositioning the file, then code is set to -1. Otherwise code is set to 0. Applications can
call $ferror to determine the cause of the most recent error (see 17.2.7).

17.2.6 Flushing output

$fflush ( mcd );
$fflush ( £d );
$fflush ( );

Writes any buffered output to the file(s) specified by mcd, the file specified by £d or if $fflush is invoked
with no arguments, writes any buffered output to all open files.

17.2.7 1/O error status

Should any error be detected by one of the fileio routines, an error code is returned. Often this is sufficient
for normal operation; (i.e., if the opening of a optional configuration file fails, the application typically
would simply continue using default values.) However sometimes it is useful to obtain more information
about the error for correct application operation. In this case the $ferror function can be used:

integer errno = $ferror ( £d, str );
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A string description of type of error encountered by the most recent file I/O operation is written into str
which should be at least 640 bits wide. The integral value of the error code is returned in errno. If the most
recent operation did not result in an error, then the value returned shall be zero, and the reg str shall be
cleared.

17.2.8 Loading memory data from a file

load_memory_tasks ::=
Sreadmemb (" file_name " , memory_name [, start_addr [, finish_addr]]);
| Sreadmemh (" file_name ", memory_name [ , start_addr [, finish_addr]]);

Syntax 17-7 Syntax for memory load system tasks

Two system tasks $readmemb and $readmemh read and load data from a specified text file into a spec-
ified memory. Either task can be executed at any time during simulation. The text file to be read shall con-
tain only the following:

— White space (spaces, new lines, tabs, and form-feeds)
— Comments (both types of comment are allowed)
— Binary or hexadecimal numbers

The numbers shall have neither the length nor the base format specified. For $readmemb, each number
shall be binary. For $readmembh, the numbers shall be hexadecimal. The unknown value (x or X), the high
impedance value (z or Z), and the underscore (_) can be used in specifying a number as in a Verilog HDL
source description. White space and/or comments shall be used to separate the numbers.

In the following discussion, the term address refers to an index into the array that models the memory.

As the file is read, each number encountered is assigned to a successive word element of the memory.
Addressing is controlled both by specifying start and/or finish addresses in the system task invocation and
by specifying addresses in the data file.

When addresses appear in the data file, the format is an at character ( @) followed by a hexadecimal num-
ber as follows:

@hh...h

Both uppercase and lowercase digits are allowed in the number. No white space is allowed between the @
and the number. As many address specifications as needed within the data file can be used. When the system
task encounters an address specification, it loads subsequent data starting at that memory address.

If no addressing information is specified within the system task, and no address specifications appear within
the data file, then the default start address shall be the left-hand address given in the declaration of the mem-
ory. Consecutive words shall be loaded until either the memory is full or the data file is completely read. If
the start address is specified in the task without the finish address, then loading shall start at the specified
start address and shall continue towards the right-hand address given in the declaration of the memory.

If both start and finish addresses are specified as parameters to the task, then loading shall begin at the start
address and shall continue toward the finish address, regardless of how the addresses are specified in the
memory declaration.

When addressing information is specified both in the system task and in the data file, the addresses in the
data file shall be within the address range specified by the system task parameters; otherwise, an error mes-
sage is issued and the load operation is terminated.
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A warning message shall be issued if the number of data words in the file differs from the number of words
in the range implied by the start through finish addresses.
Example:

reg [7:0] mem[1:256];
Given this declaration, each of the following statements load data into mem in a different manner:

initial $readmemh ( "mem.data", mem);

initial Sreadmemh ("mem.data", mem, 16);

initial $readmemh ( "mem.data", mem, 128, 1);
The first statement loads up the memory at simulation time 0 starting at the memory address 1. The second
statement begins loading at address 16 and continue on towards address 256. For the third and final state-

ment, loading begins at address 128 and continue down towards address 1.

In the third case, when loading is complete, a final check is performed to ensure that exactly 128 numbers
are contained in the file. If the check fails, a warning message is issued.

17.2.9 Loading timing data from an SDF file

The syntax for the $sdf_annotate system task is shown in Syntax 17-8.

sdf_annotate_task ::=
$sdf_annotate ("'sdf_file" [, [ module_instance ] [, [ "config_file" ]
[,["log_file" ][, [ "mtm_spec" ]
[, [ "scale_factors" ][, [ "scale_type" 1111111);

Syntax 17-8 Syntax for $sdf_annotate system task

The $sdf_annotate system task reads timing data from an SDF file into a specified region of the design.

sdf file is a character string, or a reg containing a character string naming the file to be opened.

module_instance is an optional argument specifying the scope to which to annotate the information in the
SDF file. The SDF annotator uses the hierarchy level of the specified instance for running
the annotation. Array indices are permitted. If the module_instance not specified, the SDF
Annotator uses the module containing the call to the $sdf_annotate system task as the
module_instance for annotation.

config_file is an optional character string argument providing the name of a configuration file.
Information in this file can be used to provide detailed control over many aspects of
annotation.

log_file is an optional character string argument providing the name of the log file used during

SDF annotation. Each individual annotation of timing data from the SDF file results in an
entry in the log file.

mtm_spec is an optional character string argument specifying which member of the min/typ/max
triples shall be annotated. The legal values for this string are described in Table 73. This
overrides any MTM _SPEC keywords in the configuration file.

[ Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT



scale_factors

scale_type

322 IEC 61691-4:2004(E)
IEEE 1364-2001(E)

Table 73—mtm spec argument

Keyword Description
MAXIMUM Annotate the maximum value
MINIMUM Annotate the minimum value

TOOL_CONTROL (default) Annotate the value as selected by
the simulator

TYPICAL Annotate the typical value

is an optional character string argument specifying the scale factors to be used while
annotating timing values. For example, "1.6:1.4:1.2" causes minimum values to be
multiplied by 1.6, typical values by 1.4, and maximum values by 1.2. The default
values are 1.0:1.0:1.0. The scale_factors argument overrides any
SCALE_FACTORS keywords in the configuration file.

is an optional character string argument specifying how the scale factors should be applied
to the min/typ/max triples. The legal values for this string are shown in Table 74. This
overrides any SCALE_TYPE keywords in the configuration file.

Table 74—scale type argument

Keyword Description
FROM MAXIMUM Apply scale factors to maximum value
FROM_MINIMUM Apply scale factors to minimum value
FROM_MTM (default) Apply scale factors to min/typ/max
values
FROM_TYPICAL Apply scale factors to typical value

17.3 Timescale system tasks

The following system tasks display and set timescale information:

a) Sprinttimescale

b) Stimeformat

17.3.1 $printtimescale

The Sprinttimescale system task displays the time unit and precision for a particular module. The syntax for
the system task is shown in Syntax 17-9.
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printtimescale_task ::=
$Sprinttimescale [ ( hierarchical_identifier ) ] ;

Syntax 17-9 Syntax for $printtimescale

This system task can be specified with or without an argument.

—  When no argument is specified, $printtimescale displays the time unit and precision of the module
that is the current scope.

—  When an argument is specified, $printtimescale displays the time unit and precision of the module
passed to it.

The timescale information shall appear in the following format:

Time scale of (module name) is unit / precision

Example:

‘timescale 1 ms / 1 us
module a_dat;
initial

$printtimescale (b_dat.cl);
endmodule

‘timescale 10 fs / 1 fs
module b dat;

c_dat cl ();
endmodule

‘timescale 1 ns / 1 ns
module c_dat;

endmodule

In this example, module a_dat invokes the $printtimescale system task to display timescale information
about another module c_dat, which is instantiated in module b_dat.

The information about c_dat shall be displayed in the following format:
Time scale of (b dat.cl) is 1lns / 1lns

17.3.2 $timeformat

The syntax for $timeformat system task is shown in Syntax 17-10.
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timeformat_task ::=
$timeformat [ (units_number , precision_number , suffix_string , minimum_field_width) ] ;

Syntax 17-10 Syntax for $timeformat

The $timeformat system task performs the following two functions:

— It specifies how the %t format specification reports time information for the $write, $display,
$strobe, $monitor, $fwrite, $fdisplay, $fstrobe, and $fmonitor group of system tasks.
— It specifies the time unit for delays entered interactively.

The units number argument shall be an integer in the range from 0 to -15. This argument represents the time
unit as shown in Table 75.

Table 75— $timeformat units_number arguments

Unit number Time unit Unit number Time unit
0 ls -8 10 ns

-1 100 ms -9 1 ns

-2 10 ms -10 100 ps

-3 1 ms -11 10 ps

-4 100 us -12 1 ps

-5 10 us -13 100 fs

-6 1us -14 10 fs

-7 100 ns -15 1fs

The $timeformat system task performs the following two operations:

— It sets the time unit for all later-entered delays entered interactively.

— It sets the time unit, precision number, suffix string, and minimum field width for all $t formats
specified in all modules that follow in the source description until another $timeformat system task
is invoked.

The default $timeformat system task arguments are given in Table 76.

Table 76— $timeformat default value for arguments

Argument Default

units_number The smallest time precision argument of all the ‘timescale com-
piler directives in the source description

precision_number 0

suffix_string A null character string

minimum_field_width | 20
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Example:

The following example shows the use of $t with the $timeformat system task to specify a uniform time
unit, time precision, and format for timing information.

‘timescale 1 ms / 1 ns
module cntrl;
initial
$Stimeformat(-9, 5, " ns", 10);
endmodule

‘timescale 1 fs / 1 fs

module al dat;

reg inl;

integer file;

buf #10000000 (ol,inl);

initial begin
file = S$fopen("al.dat");
#00000000 $fmonitor(file,"%m: %t inl=%d ol=%h", Srealtime,inl,ol);
#10000000 inl = 0;
#10000000 inl = 1;

end

endmodule

‘timescale 1 ps / 1 ps

module a2 dat;

reg in2;

integer file2;

buf #10000 (02,in2);

initial begin
file2=$fopen("a2.dat");
#00000 Sfmonitor(file2,"2%m: %t in2=%d o02=%h", S$realtime, in2,02);
#10000 in2 = 0;
#10000 in2 = 1;

end

endmodule

The contents of file al.dat are as follows:

al dat: 0.00000 ns inl= x ol=x
al dat: 10.00000 ns inl= 0 ol=x
al dat: 20.00000 ns inl= 1 ol=0
al dat: 30.00000 ns inl= 1 ol=1

The contents of file a2.dat are as follows:

a2 _dat: 0.00000 ns in2=x 02=x
a2 _dat: 10.00000 ns in2=0 o2=x
a2 _dat: 20.00000 ns in2=1 02=0
a2 _dat: 30.00000 ns in2=1 o2=1
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In this example, the times of events written to the files by the $fmonitor system task in modules al dat
and a2_dat are reported as multiples of 1 ns even though the time units for these modules are 1 fs
and 1 ps respectively because the first argument of the $timeformat system task is -9 and the %t for-
mat specification is included in the arguments to $fmonitor. This time information is reported after the
module names with five fractional digits, followed by an ns character string in a space wide enough for 10
ASCII characters.

17.4 Simulation control system tasks

There are two simulation control system tasks:

a)  S$finish
b) S$stop
17.4.1 $finish

Syntax 17-11 shows the syntax for $finish system task.

finish_task ::=
$finish [ (n)];

Syntax 17-11 Syntax for $finish

The $finish system task simply makes the simulator exit and pass control back to the host operating system.
If an expression is supplied to this task, then its value (0, 1, or 2) determines the diagnostic messages that
are printed before the prompt is issued. If no argument is supplied, then a value of 1 is taken as the default.

Table 77 —Diagnostics for $finish

Parameter value Diagnostic message
0 Prints nothing
1 Prints simulation time and location
2 Prints simulation time, location, and statistics about the memory
and CPU time used in simulation

17.4.2 $stop

The syntax for $stop system task is shown in Syntax 17-12.

stop_task ::==
$stop [(n)];

Syntax 17-12 Syntax for $stop
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The $stop system task causes simulation to be suspended. This task takes an optional expression argument
(0, 1, or 2) that determines what type of diagnostic message is printed. The amount of diagnostic messages
output increases with the value of the optional argument passed to $stop.

17.5 PLA modeling system tasks

The modeling of PLA devices is provided in the Verilog HDL by a group of system tasks. This clause
describes the syntax and use of these system tasks and the formats of the logic array personality file.The syn-
tax for PLA modeling system task is shown in Syntax 17-13.

pla_system_task ::=
Sarray_type$logic$format ( memory_type , input_terms , output_terms ) ;
array_type ::=
sync | async
logic ::=
and | or | nand | nor
format ::=
array | plane
input_terms ::=
expression
output_terms ::=
variable_lvalue

Syntax 17-13 Syntax for PLA modeling system task

NOTE The input terms can be nets or variables whereas the output terms shall only be variables.
The PLA syntax allows for the system tasks as shown in Table 78.

Table 78 —PLA modeling system tasks

$async$andS$array $syncSandSarray $async$andS$plane $syncSand$plane
$async$nandSarray | $sync$nandSarray $async$nandS$plane | $sync$nand$plane
$async$orSarray $syncSorS$array $async$orS$plane $syncSor$plane
$async$norSarray $sync$norS$array $async$nor$plane $syncSnor$plane

17.5.1 Array types

The modeling of both synchronous and asynchronous arrays is provided by the PLA system tasks. The syn-
chronous forms control the time at which the logic array shall be evaluated and the outputs shall be updated.
For the asynchronous forms, the evaluations are automatically performed whenever an input term changes
value or any word in the personality memory is changed.

For both the synchronous and asynchronous forms, the output terms are updated without any delay.
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Examples:
An example of an asynchronous system call is as follows:
wire al, a2, a3, a4, a5, a6, a7;
reg bl, b2, b3;
wire [1:7] awire;
reg [1l:3] breg;
$async$andS$array (mem, {al,a2,a3,a4,a5,a6,a7},{bl,b2,b3});
or
$async$andSarray (mem, awire, breg);
An example of a synchronous system call is as follows:
$sync$or$plane (mem, {al,a2,a3,a4,a5,a6,a7}, {bl,b2,b3});
17.5.2 Array logic types

The logic arrays are modeled with and, or, nand, and nor logic planes. This applies to all array types and
formats.

Examples:
An example of a nor plane system call is as follows:

$async$norS$plane (mem, {al,a2,a3,a4,a5,a6,a7},{bl,b2,b3});
An example of a nand plane system call is as follows:

$sync$nandS$plane (mem, {al,a2,a3,a4,a5,a6,a7}, {bl,b2,b3});
17.5.3 Logic array personality declaration and loading

The logic array personality is declared as an array of regs that is as wide as the number of input terms and as
deep as the number of output terms.

The personality of the logic array is normally loaded into the memory from a text data file using the system
tasks $readmemb or $readmemh. Alternatively, the personality data can be written directly into the mem-
ory using the procedural assignment statements. PLA personalities can be changed dynamically at any time
during simulation simply by changing the contents of the memory. The new personality shall be reflected on
the outputs of the logic array at the next evaluation.
Example:
The following example shows a logic array with n input terms and m output terms.

reg [l:n] mem[l:m];
NOTE Put PLA input terms, output terms, and memory in ascending order, as shown in examples in this clause.
17.5.4 Logic array personality formats
Two separate personality formats are supported by the Verilog HDL and are differentiated by using either an

array system call or a plane system call. The array system call allows for a 1 or 0 in the memory that has
been declared. A 1 means take the input value and a 0 means do not take the input value.
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The plane system call complies with the University of California at Berkeley format for Espresso. Each bit
of the data stored in the array has the following meaning:

0 Take the complemented input value

1 Take the true input value

X Take the worst case of the input value

z Don t-care; the input value is of no significance
? Same as z

Examples:

Example 1 The following example illustrates an array with logic equations:

bl = al & a2
b2 a3 & a4 & ab
b3 a5 & a6 & a7

The PLA personality is as follows:

1100000 in mem[1]
0011100 in mem[2]
0000111 in mem[3]

The module for the PLA is as follows:

module async_ array(al,a2,a3,a4,a5,a6,a7,bl,b2,b3);

input al, a2, a3, a4, a5, a6, a7 ;

output bl, b2, b3;

reg [1:7] mem[1:3]; // memory declaration for array personality

reg bl, b2, b3;

initial begin
// setup the personality from the file array.dat
Sreadmemb ( "array.dat", mem);
// setup an asynchronous logic array with the input
// and output terms expressed as concatenations
$async$andSarray (mem, {al,a2,a3,a4,a5,a6,a7},{bl,b2,b3});

end

endmodule

Where the file array.dat contains the binary data for the PLA personality:
1100000

0011100
0000111

A synchronous version of this example has the following description:
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module sync_array(al,a2,a3,a4,a5,a6,a7,bl,b2,b3,clk);
input al, a2, a3, a4, a5, a6, a7, clk;
output bl, b2, b3;
reg [1:7] mem[1l:3]; // memory declaration
reg bl, b2, b3;
initial begin
// setup the personality
$readmemb ( "array.dat", mem);
// setup a synchronous logic array to be evaluated
// when a positive edge on the clock occurs
forever @ (posedge clk)
Sasync$andSarray (mem, {al,a2,a3,a4,a5,a6,a7},{bl,b2,b3});
end
endmodule

Example 2 An example of the usage of the plane format tasks follows. The logical function of this PLA is
shown first, followed by the PLA personality in the new format, the Verilog HDL description using the
$async$andSplane system task, and finally the result of running the simulation.

The logical function of the PLA is as follows:

b[1l] = a[l] & ~a[2];

b[2] = a[3];
b[3] = ~a[l] & ~a[3];
b[4] = 1;

The PLA personality is as follows:

3'b10?
3'b??1
3'b0?0
3'b???
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module pla;

‘define rows 4

‘define cols 3

reg [1l: cols] a, mem[l: rows];

reg [1l: rows] b;

initial begin
// PLA system call
$async$andS$plane (mem,a[1:3],b[1:4]);
mem[l] = 3'b10?;

mem[2] = 3'b??1;
mem[3] = 3'b0?0;
mem[4] = 3'b?2?2?;

// stimulus and display
#10 a = 3'blll;
#10 S$displayb(a, " -> ", b);
#10 a = 3'b000;
#10 S$displayb(a, " -> ", b);
#10 a = 3'bxxx;
#10 S$displayb(a, " -> ", b);
#10 a = 3'b101;
#10 S$displayb(a, " -> ", b);
end
endmodule

The output is as follows:

111 -> 0101
000 -> 0011
XXX =-> xxx1
101 -> 1101

17.6 Stochastic analysis tasks

This clause describes a set of system tasks and functions that manage queues and generate random numbers
with specific distributions. These tasks facilitate implementation of stochastic queueing models.

The set of tasks and functions that create and manage queues follow:

$q_initialize (q_id, q_type, max_length, status) ;
$q_add (q_id, job_id, inform_id, status) ;
$q_remove (q_id, job_id, inform_id, status) ;
$q_full (q_id, status) ;

$q_exam (q_id, q_stat_code, g_stat_value, status) ;

17.6.1 $q_initialize

The $q_initialize system task creates new queues. The g id parameter is an integer input that shall
uniquely identify the new queue. The g type parameter is an integer input. The value of the g type
parameter specifies the type of the queue as shown in Table 79.
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Table 79—Types of queues of $q_type values

q_type value Type of queue

1 first-in, first-out

2 last-in, first-out

The maximum length parameter is an integer input that specifies the maximum number of entries allowed on
the queue. The success or failure of the creation of the queue is returned as an integer value in status. The
error conditions and corresponding values of status are described in Table 79.

17.6.2 $q_add

The $q_add system task places an entry on a queue. The g_id parameter is an integer input that indicates to
which queue to add the entry. The job_id parameter is an integer input that identifies the job.

The inform id parameter is an integer input that is associated with the queue entry. Its meaning is user-
defined. For example, inform id parameter can represent execution time for an entry in a CPU model.
The status parameter reports on the success of the operation or error conditions as described in Table 79.

17.6.3 $g_remove

The $q_remove system task receives an entry from a queue. The g_id parameter is an integer input that
indicates from which queue to remove. The job_id parameter is an integer output that identifies the entry
being removed. The inform id parameter is an integer output that the queue manager stored during
$q_add. Its meaning is user-defined. The status parameter reports on the success of the operation or error
conditions as described in Table 79.

17.6.4 $q_full

The $q_full system function checks whether there is room for another entry on a queue. It returns 0 when
the queue is not full and 1 when the queue is full.

17.6.5 $g_exam

The $q_exam system task provides statistical information about activity at the queue g_id. It returns a
value in g_stat_value depending on the information requested in g_stat_code. The values of
g_stat code and the corresponding information returned in g_stat_value are described in Table §0.

Table 80— Parameter values for $q_exam system task

Value requested in Information received back
q_stat_code from q_stat_value

1 Current queue length

2 Mean interarrival time

3 Maximum queue length

4 Shortest wait time ever

5 Longest wait time for jobs still in the queue

6 Average wait time in the queue
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17.6.6 Status codes

All of the queue management tasks and functions return an output status parameter. The status parameter

333

values and corresponding information are described in Table 81.

Table 81—Status parameter values

Status parameter
values

What it means

OK

Queue full, cannot add

Undefined q_id

Queue empty, cannot remove

Unsupported queue type, cannot create queue

Specified length <= 0, cannot create queue

Duplicate q_id, cannot create queue

Not enough memory, cannot create queue

17.7 Simulation time system functions

The following system functions provide access to current simulation time:

$time $stime Srealtime

17.7.1 $time

The syntax for $time system function is shown in Syntax 17-14.

time_function ::=
$time

Syntax 17-14 Syntax for $time

The $time system function returns an integer that is a 64-bit time, scaled to the timescale unit of the module

that invoked it.
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Example:

‘timescale 10 ns / 1 ns
module test;
reg set;
parameter p = 1.55;
initial begin
$monitor ($time, , "set=",set);

#p set = 0;
#p set = 1;
end
endmodule

// The output from this example is as follows:
// 0 set=x
// 2 set=0
// 3 set=1

In this example, the reg set is assigned the value 0 at simulation time 16 ns, and the value 1 at simulation
time 32 ns. Note that these times do not match the times reported by $time. The time values returned by the
$time system function are determined by the following steps:

a)  The simulation times 16ns and 32 ns are scaled to 1.6 and 3.2 because the time unit for the module
is 10 ns, so time values reported by this module are multiples of 10 ns.

b) The value 1.6 is rounded to 2, and 3. 2 is rounded to 3 because the $time system function returns
an integer. The time precision does not cause rounding of these values.

17.7.2 $stime

The syntax for $stime system function is shown in Syntax 17-15.

stime_function ::=
$stime

Syntax 17-15 Syntax for $stime

The $stime system function returns an unsigned integer that is a 32-bit time, scaled to the timescale unit of
the module that invoked it. If the actual simulation time does not fit in 32 bits, the low order 32 bits of the
current simulation time are returned.

17.7.3 $realtime

The syntax for $realtime system function is shown in Syntax 17-16.

realtime_function ::= $realtime

Syntax 17-16 Syntax for $realtime

| Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved.|

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT



IEC 61691-4:2004(E) 335
|EEE 1364-2001(E)

The Srealtime system function returns a real number time that, like $time, is scaled to the time unit of the

module that invoked it.

Example:

‘timescale 10 ns / 1 ns
module test;
reg set;
parameter p = 1.55;
initial begin
$monitor (Srealtime, , "set=",set);

#p set = 0;
#p set = 1;
end
endmodule

// The output from this example is as follows:
// 0 set=x

// 1.6 set=0

// 3.2 set=1

In this example, the event times in the reg set are multiples of 10 ns because 10 ns is the time unit of the

module. They are real numbers because $realtime returns a real number.

17.8 Conversion functions

The following functions handle real values:

integer Srtoi(real val) ;
real Sitor (int_val) ;
[63:0] Srealtobits (real val) ;
real $bitstoreal (bit val) ;
Srtoi converts real values to integers by truncating the real value (for example, 123.45 becomes
123)
$itor converts integers to real values (for example, 123 becomes 123.0)
Srealtobits passes bit patterns across module ports; converts from a real number to the 64-bit
representation (vector) of that real number
S$bitstoreal is the reverse of $realtobits; converts from the bit pattern to a real number.
The real numbers accepted or generated by these functions shall conform to the IEEE Std 754-1985 [B1]

representation of the real number. The conversion shall round the result to the nearest valid representation.

Example:

The following example shows how the $realtobits and $bitstoreal functions are used in port connections:
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module driver (net r);

output net_rj;

real r;

wire [64:1] net_r = Srealtobits(r);
endmodule

module receiver (net r);

input net r;

wire [64:1] net r;

real r;

initial assign r = Sbitstoreal(net r);
endmodule

See 4.5 for a description of $signed and $Sunsigned.

17.9 Probabilistic distribution functions

There are a set of random number generators that return integer values distributed according to standard
probabilistic functions.

17.9.1 $random function

The syntax for the system function $random is shown in Syntax 17-17.

random_function ::=
Srandom [ (seed )] ;

Syntax 17-17 Syntax for $random

The system function $random provides a mechanism for generating random numbers. The function returns
a new 32-bit random number each time it is called. The random number is a signed integer; it can be positive
or negative. For further information on probabilistic random number generators, see 17.9.2.

The seed parameter controls the numbers that $random returns such that different seeds generate different
random streams. The seed parameter shall be either a reg, an integer, or a time variable. The seed value
should be assigned to this variable prior to calling $random.

Examples:

Example 1 Where b is greater than 0, the expression ($random % b) gives a number in the following
range: [(-b+1): (b-1)].

The following code fragment shows an example of random number generation between -59 and 59:

reg [23:0] rand;
rand = S$random % 60;
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Example 2 The following example shows how adding the concatenation operator to the preceding example
gives rand a positive value from 0 to 59.

reg [23:0] rand;
rand = {S$random} % 60;

17.9.2 $dist_ functions

dist_functions ::=
$dist_uniform ( seed , start,end) ;
| $dist_normal ( seed , mean , standard_deviation ) ;
| $dist_exponential ( seed , mean ) ;
| $dist_poisson ( seed , mean ) ;
| $dist_chi_square ( seed , degree_of_freedom ) ;
| $dist_t ( seed , degree_of_freedom ) ;
| $dist_erlang ( seed , k_stage , mean ) ;

Syntax 17-18 Syntax for the probabilistic distribution functions

All parameters to the system functions are integer values. For the exponential, poisson, chi-
square, t, and erlang functions, the parameters mean, degree of freedom, and k_stage shall be
greater than 0.

Each of these functions returns a pseudo-random number whose characteristics are described by the function
name. That is, $dist_uniform returns random numbers uniformly distributed in the interval specified by its
parameters.

For each system function, the seed parameter is an in-out parameter; that is, a value is passed to the function
and a different value is returned. The system functions shall always return the same value given the same
seed. This facilitates debugging by making the operation of the system repeatable. The argument for the
seed parameter should be an integer variable that is initialized by the user and only updated by the system
function. This ensures the desired distribution is achieved.

In the $dist_uniform function, the start and end parameters are integer inputs that bound the values
returned. The start value should be smaller than the end value.

The mean parameter, used by $dist_normal, $dist_exponential, $dist_poisson, and $dist_erlang, is an
integer input that causes the average value returned by the function to approach the value specified.

The standard deviation parameter used with the $dist_normal function is an integer input that helps deter-
mine the shape of the density function. Larger numbers for standard deviation spread the returned values
over a wider range.

The degree of freedom parameter used with the $dist_chi_square and $dist_t functions is an integer input
that helps determine the shape of the density function. Larger numbers spread the returned values over a
wider range.
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17.9.3 Algorithm for probabilistic distribution functions

Table 82 shows the Verilog probabilistic distribution functions listed with their corresponding C functions.

Table 82— Verilog to C function cross-listing

Verilog function C function
$dist_uniform rtl_dist_uniform
$dist_normal rtl_dist_normal
$dist_exponential rtl_dist_exponential
$dist_poisson rtl_dist_poisson
$dist_chi_square rtl_dist_chi_square
$dist_t rtl_dist_t
$dist_erlang rtl_dist_erlang
$random rtl_dist_uniform( seed,

LONG_MIN, LONG_MAX)

The algorithm for these functions is defined by the following C code.

/*
* Algorithm for probabilistic distribution functions.

IEEE Std 1364-2000 Verilog Hardware Description Language (HDL).
*/

#include <limits.h>

static double uniform( long *seed, long start, long end );
static double normal( long *seed, long mean, long deviation);
static double exponential( long *seed, long mean);

static long poisson( long *seed, long mean);

static double chi square( long *seed, long deg of free);
static double t( long *seed, long deg of free);

static double erlangian( long *seed, long k, long mean);

long

rtl dist chi square( seed, df )
long *seed;
long df;

double r;
long ij;

if (d£>0)
{
r=chi square(seed,df);
if(r>=0)
{
i=(long) (r+0.5);
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}
else
r = -r;
i=(long) (r+0.5);
i= -i;
}
}
else
{
print error("WARNING: Chi_square distribution must have
positive
degree of freedom\n");
i=0;
}
return (1i);
}
long

rtl dist erlang( seed, k, mean )
long *seed;
long k, mean;

{

double r;

long i;

if(k>0)

{
r=erlangian(seed,k,mean);
if (r>=0)

{
i=(long) (r+0.5);
}
else
{
r = -r;
i=(long) (r+0.5);
i=-i;
}

}

else

{

print error("WARNING: k-stage erlangian distribution must have
positive k\n");

i=0;
}
return (i);
}
long

rtl dist exponential( seed, mean )
long *seed;
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long mean;

{
double r;
long i;
if (mean>0)
{
r=exponential (seed,mean);
if(r>=0)
{
i=(long) (r+0.5);
}
else
{
r = -r;
i=(long) (r+0.5);
i= -i;
}
}
else
{
print error("WARNING: Exponential distribution must have a
positive mean\n");
i=0;
}
return (1i);
}
long

rtl dist normal( seed, mean, sd )
long *seed;
long mean, sd;

{
double r;
long i;
r=normal (seed,mean,sd);
if(r>=0)
{
i=(long) (r+0.5);
}
else
{
r = -r;
i=(long) (r+0.5);
i=-1i;
}
return (i);
}

long
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rtl dist poisson( seed, mean )
long *seed;
long mean;

{
long i;
if (mean>0)
{
i=poisson(seed,mean);
}
else
{
print error("WARNING: Poisson distribution must have a positive
mean\n");
i=0;
}
return (1i);
}
long

rtl dist t( seed, df )
long *seed;

long df;
{
double r;
long i;
if (d£>0)
{
r=t(seed,df);
if (r>=0)
{
i=(long) (r+0.5);
}
else
{
r = -r;
i=(long) (r+0.5);
i=-i;
}
}
else
{
print error("WARNING: t distribution must have positive degree
of freedom\n");
i=0;
}
return (i);
}
long

rtl dist uniform(seed, start, end)
long *seed;
long start, end;

double r;
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long ij;
if (start >= end) return(start);

if (end != LONG MAX)

{
end++;
r = uniform( seed, start,
if (r >= 0)
{
i = (long) r;
}
else
{
i = (long) (r-1);
}
if (i<start) i = start;
if (i>=end) i = end-1;
}
else if (start!=LONG_MIN)
{
start--;
r = uniform( seed, start,
if (r>=0)
{
i = (long) r;
}
else
{
i = (long) (r-1);
}
if (i<=start) i = start+l;
if (i>end) i = end;
}
else
{

IEC 61691-4:2004(E)
|EEE 1364-2001(E)

end );

end) + 1.0;

r =(uniform(seed,start,end)+2147483648.0)/

4294967295.0);

r = r*4294967296.0-2147483648.0;

if (r>=0)

-
]

(long) r;

-
]

(long) (r-1);
}

return (1i);

}

static double
uniform( seed, start, end )
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long *seed, start, end;

union u_s

{
float s;
unsigned stemp;

}ou;

double d = 0.00000011920928955078125;
double a,b,c;

if ((*seed) == 0)

*seed = 259341593;

if (start >= end)

{
a=20.0;
b = 2147483647.0;
}
else
{
a = (double) start;
b = (double) end;
}

*seed = 69069 * (*seed) + 1;
u.stemp = *seed;

/*

* This relies on IEEE floating point format
*/
u.stemp = (u.stemp >> 9) | 0x3£800000;

c (double) u.s;

c = ct(c*d);
c ((b - a) * (c - 1.0)) + a;

return (c);

static double
normal (seed, mean,deviation)
long *seed,mean,deviation;

{

double v1,v2,s;
double log(), sqrt();

1.0;

while((s >= 1.0) || (s == 0.0))

vl = uniform(seed,-1,1);
v2 = uniform(seed,-1,1);
s =vl * vl + v2 * v2;
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s = vl * sqrt(-2.0 * log(s) / s);

vl = (double) deviation;
v2 = (double) mean;
return(s * vl + v2);

}

static double
exponential (seed,mean)
long *seed,mean;

{
double log(),n;
n = uniform(seed,0,1);
if(n != 0)
{
n = -log(n) * mean;
}
return(n);
}

static long
poisson(seed,mean)
long *seed,mean;
{
long n;
double p,q;
double exp();

= 0;
—(double)mean;

= exp(q);

= uniform(seed,0,1);
while(p < q)

{

Qo Q B

n++;

q = uniform(seed,0,1) * q;
}
return(n);

}

static double
chi square(seed,deg of free)
long *seed,deg of free;

{
double x;
long k;
if(deg of free % 2)
{
X = normal(seed,0,1);
X = X * X3
}
else
{
x = 0.0;
}

double log(),n;
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n = uniform(seed,0,1);
if(n !'= 0)
{

n = -log(n) * mean;
}

return(n);

}

static double
t(seed,deg_of free)
long *seed,deg of free;

{
double sqrt(),x;
double chi2 = chi square(seed,deg of free);
double div = chi2 / (double)deg of free;
double root = sqrt(div);
X = normal(seed,0,1) / root;
return(x);

}

static double
erlangian(seed, k,mean)
long *seed,k,mean;
{
double x,log(),a,b;
long i;

x=1.0;
for (i=1;i<=k;i++)

{
x = x * uniform(seed,0,1);
}
a=(double)mean;
b=(double)k;
x= -a*log(x)/b;
return(x);

17.10 Command line input

An alternative to reading a file to obtain information for use in the simulation is specifying information with
the command to invoke the simulator. This information is in the form of a optional argument provided to the
simulation. These arguments are visually distinguished from other simulator arguments by the starting with
the plus (+) character.

These arguments, referred to below as plusargs, are accessible through the system functions described in
17.10.1 and 17.10.2.
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17.10.1 $test$plusargs (string)
This system function searches the list of plusargs for the provided string. The plusargs present on the com-
mand line are searched in the order provided. If the prefix of one of the supplied plusargs matches all charac-
ters in the provided string, a non-zero integer is returned. If no plusarg from the command line matches the
string provided, the integer value zero (0) is returned.

Examples:

Run simulator with command: +HELLO

The Verilog code is:
initial begin
if (Stest$plusargs("HELLO")) $display ("Hello argument found.")
if (StestSplusargs("HE")) $display ("The HE subset string is
detected.");
if (Stest$plusargs("H")) $Sdisplay ("Argument starting with H

found.");
if (S$test$plusargs ("HELLO HERE") )S$display ("Long argument.");

if (Stest$plusargs("HI")) $display ("Simple greeting.");
if (Stest$plusargs("LO")) $display ( "Does not match.");
end

This would produce the following output:

Hello argument found.
The HE subset string is detected.
Argument starting with H found.

17.10.2 $value$plusargs (user_string, variable)

This system function searches the list of plusargs (like the $test$plusargs system function) for a user speci-
fied plusarg string. The string is specified in the first argument to the system function as either a string or a
register which is interpreted as a string. If the string is found, the remainder of the string is converted to the
type specified in the user_string and the resulting value stored in the variable provided. If a string is found,
the function returns a non-zero integer. If no string is found matching, the function returns the integer value
zero and the variable provided is not modified. No warnings shall be generated when the function returns
zero (0).

The user_string shall be of the form: "plusarg_string format_string". The format strings are the same as the
$display system tasks. These are the only valid ones (upper and lower case as well as a leading 0 forms are
valid):

%d decimal conversion

%0 octal conversion

$h hexadecimal conversion

$b binary conversion

%e real exponential conversion

st real decimal conversion

%g real decimal or exponential conversion
%s string (no conversion)

The first string, from the list of p/usargs provided to the simuator, which matches the plusarg_string portion
of the user_string specified shall be the plusarg string available for conversion. The remainder string of the
matching plusarg (the remainder is the part of the plusarg string after the portion which matches the users
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plusarg_string) shall be converted from a string into the format indicated by the format string and stored in
the variable provided. If there is no remaining string, the value stored into the variable shall either be a zero
(0) or an empty string value.

If the size of the variable is larger than the value after conversion, the value stored is zero (0) padded to the
width of the variable. If the variable can not contain the value after conversion, the value shall be truncated.
If the value is negative, the value shall be considered larger than the variable provided. If characters exist in
the string available for conversion, which are illegal for the specified conversion, the variable shall be writ-
ten with the value ' bx.

Examples:
+FINISH=10000 +TESTNAME=this test +FREQ+5.6666 +FREQUENCY +TEST12

// Get clock to terminate simulation if specified.

real frequency;

reg [8*32:1] testname;

integer stop_clock;

if ($value$plusargs("FINISH=%d", stop_clock))
begin
repeat (stop clock) @ (posedge clk);
$finish ;
end

// Get testname from plusarg.

if ($valueSplusargs("TESTNAME=%s", testname))
begin
$display ("Running test %0s.", testname);
startTest();
end

// Get frequency from command line; set default if not specified.
if (!$valueSplusargs("FREQ+%0F", frequency))
frequency = 8.33333; // 166MHz;

forever
begin
#frequency clk = 0;
#frequency clk 1;
end

reg [64*8:1] pstring;

pstring = "+TEST%d";
if ($valueSplusargs(pstring, test[31:0))
begin

$display ("Running test number %0d.", test);
startTest();
end

This code would have the following effects:

— The variable test would get the value 'd12.

— The variable stop clock obtains the value 10000.

— The variable testname obtains the value this test.

— The variable frequency obtains the value 5. 666 6; note the final plusarg +FREQUENCY does not
affect the value of the variable frequency.
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The output is:

Running test this_test.
Running test number 12.
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18. Value change dump (VCD) files

A value change dump (VCD) file contains information about value changes on selected variables in the
design stored by value change dump system tasks. Two types of VCD files exist:

a) Four state: to represent variable changes in O, 1, X, and z with no strength information.

b) Extended: to represent variable changes in all states and strength information.

This clause describes how to generate both types of VCD files and their format.

18.1 Creating the four state value change dump file
The steps involved in creating the four state VCD file are listed below and illustrated in Figure 51.

a) Insert the VCD system tasks in the Verilog source file to define the dump file name and to specify
the variables to be dumped.

b)  Run the simulation.

Verilog Source File Four State VCD File
S dumpl.dump
initial
) (Header

$dumpfile(“‘dumpl.dump™); Information)

- ) ) User

- simulation (Node Postprocessing
$dumpvars(...) Information)

) (Value

- Changes)

Figure 51—Creating the four state VCD file

A VCD file is an ASCII file which contains header information, variable definitions, and the value changes
for all variables specified in the task calls.

Several system tasks can be inserted in the source description to create and control the VCD file.
18.1.1 Specifying the name of the dump file ($dumpfile)

The $dumpfile task shall be used to specify the name of the VCD file. The syntax for the task is given in
Syntax 18-1.
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dumpfile_task ::=
Sdumpfile ( filename ) ;

Syntax 18-1 Syntax for $dumpfile task

The filename syntax is given in Syntax 18-2.

filename ::=
literal_string
| variable
| expression

Syntax 18-2 Syntax for filename

The filename is optional and defaults to the literal string dump . vcd if not specified.
Example:
initial $dumpfile ("'modulel._dump'™) ;
18.1.2 Specifying the variables to be dumped ($dumpvars)
The $dumpvars task shall be used to list which variables to dump into the file specified by $dumpfile. The
Sdumpvars task can be invoked as often as desired throughout the model (for example, within various

blocks), but the execution of all the $dumpvars tasks shall be at the same simulation time.

The $Sdumpvars task can be used with or without arguments. The syntax for the $dumpvars task is given in
Syntax 18-3.

dumpvars_task ::= (Not in the Annex A BNF)
$Sdumpvars ;
| $dumpvars ( levels [ , list_of_modules_or_variables ]) ;
list_of_modules_or_variables ::= (Not in the Annex A BNF)
module_or_variable { , module_or_variable }
module_or_variable ::=
module_identifier
| variable_identifier

Syntax 18-3 Syntax for $dumpvars task

When invoked with no arguments, $dumpvars dumps all the variables in the model to the VCD file.
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When the $dumpvars task is specified with arguments, the first argument indicates how many levels of the
hierarchy below each specified module instance to dump to the VCD file. Subsequent arguments specify
which scopes of the model to dump to the VCD file. These arguments can specify entire modules or individ-
ual variables within a module.
Setting the first argument to O causes a dump of all variables in the specified module and in all module
instances below the specified module. The argument O applies only to subsequent arguments which specify
module instances, and not to individual variables.
Examples:
Example 1

$dumpvars (1, top);

Because the first argument is a 1, this invocation dumps all variables within the module top; it does not
dump variables in any of the modules instantiated by module top.

Example 2
$dumpvars (0, top);

In this example, the $dumpvars task shall dump all variables in the module top and in all module instances
below module top in the hierarchy.

Example 3 This example shows how the $dumpvars task can specify both modules and individual vari-
ables:

$dumpvars (0, top.modl, top.mod2.netl);
This call shall dump all variables in module mod1 and in all module instances below mod1, along with vari-
able netl in module mod2. The argument O applies only to the module instance top .mod1 and not to the
individual variable top.mod2.netl.
18.1.3 Stopping and resuming the dump ($dumpoff/$dumpon)
Executing the Sdumpvars task causes the value change dumping to start at the end of the current simulation

time unit. To suspend the dump, the Sdumpoff task can be invoked. To resume the dump, the $dumpon task
can be invoked. The syntax of these two tasks is given in Syntax 18-4.

dumpoff_task ::=
Sdumpoff ;
dumpon_task ::=
$Sdumpon ;

Syntax 18-4 Syntax for $dumpoff and $dumpon tasks

When the $dumpoff task is executed, a checkpoint is made in which every selected variable is dumped as
an X value. When the $dumpon task is later executed, each variable is dumped with its value at that time. In
the interval between $dumpoff and $dumpon, no value changes are dumped.
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The $Sdumpoff and $dumpon tasks provide the mechanism to control the simulation period during which
the dump shall take place.
Example:
initial begin
#10 $dumpvars( . - . );
#200 $Sdumpoff;
#800 $Sdumpon ;

#900 Sdumpoff;
end

This example sta