INTERNATIONAL
STANDARD

IEC
61691-2

First edition
2001-06

Behavioural languages —

Part 2:
VHDL multilogic system
for model interoperability

Reference number
IEC 61691-2:2001(E)

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

Publication numbering

As from 1 January 1997 all IEC publications are issued with a designation in the
60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.

Consolidated editions

The IEC is now publishing consolidated versions of its publications. For example,
edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the
base publication incorporating amendment 1 and the base publication incorporating
amendments 1 and 2.

Further information on IEC publications

The technical content of IEC publications is kept under constant review by the IEC,
thus ensuring that the content reflects current technology. Information relating to
this publication, including its validity, is available in the IEC Catalogue of
publications (see below) in addition to new editions, amendments and corrigenda.
Information on the subjects under consideration and work in progress undertaken
by the technical committee which has prepared this publication, as well as the list
of publications issued, is also available from the following:

. IEC Web Site (www.iec.ch)

. Catalogue of IEC publications

The on-line catalogue on the IEC web site (www.iec.ch/catlg-e.htm) enables
you to search by a variety of criteria including text searches, technical
committees and date of publication. On-line information is also available on
recently issued publications, withdrawn and replaced publications, as well as
corrigenda.

. IEC Just Published

This summary of recently issued publications (www.iec.ch/JP.htm) is also
available by email. Please contact the Customer Service Centre (see below) for
further information.

. Customer Service Centre

If you have any questions regarding this publication or need further assistance,
please contact the Customer Service Centre:

Email: custserv@iec.ch
Tel: +41 22919 02 11

Fax: +4122919 03 00

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

INTERNATIONAL IEC
STANDARD 61691-2

First edition
2001-06

Behavioural languages —

Part 2:
VHDL multilogic system
for model interoperability

0 IEC 2001 O Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission 3, rue de Varembé Geneva, Switzerland
Telefax: +41 22 919 0300 e-mail: inmail@iec.ch IEC web site http://www.iec.ch

Commission Electrotechnique Internationale PRICE CODE T
International Electrotechnical Commission
MemayHapoaHaa OnekrpotexHuueckaa Homuccua

For price, see current catalogue

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

-2- 61691-2 O IEC:2001(E)

INTERNATIONAL ELECTROTECHNICAL COMMISSION

BEHAVIOURAL LANGUAGES -

Part 2: VHDL multilogic system for model interoperability

FOREWORD

The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, the IEC publishes International Standards. Their preparation is
entrusted to technical committees; any IEC National Committee interested in the subject dealt with may
participate in this preparatory work. International, governmental and non-governmental organizations liaising
with the IEC also participate in this preparation. The IEC collaborates closely with the International
Organization for Standardization (ISO) in accordance with conditions determined by agreement between the
two organizations.

The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an
international consensus of opinion on the relevant subjects since each technical committee has representation
from all interested National Committees.

The documents produced have the form of recommendations for international use and are published in the form
of standards, technical specifications, technical reports or guides and they are accepted by the National
Committees in that sense.

In order to promote international unification, IEC National Committees undertake to apply IEC International
Standards transparently to the maximum extent possible in their national and regional standards. Any
divergence between the IEC Standard and the corresponding national or regional standard shall be clearly
indicated in the latter.

The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with one of its standards.

Attention is drawn to the possibility that some of the elements of this International Standard may be the subject
of patent rights. The IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61691-2 has been prepared by IEC technical committee 93:
Design automation.

This standard is based on IEEE Std 1164-1993: Multivalue logic system for VHDL model
interoperability

The text of this standard is based on the following documents:

FDIS Report on voting
93/130/FDIS 93/140/RVD

Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.

This standard does not follow the rules for the structure of international standards given in
Part 3 of the ISO/IEC Directives.

IEC 61691 consists of the following parts, under the general title: Behavioural languages:
IEC 61691-1:1997, VHDL language reference manual 1)
IEC 61691-2:2001, Part 2: VHDL multilogic system for model interoperability

1)

The edition 2 with the title: VHSIC hardware description languageVHDL (076a) (under consideration) will
replace it.

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

61691-2 O IEC:2001(E) -3-

IEC 61691-3-1, Part 3-1: Analog description in VHDL (under consideration)
IEC 61691-3-2:2001, Part 3-2: Mathematical operation in VHDL

IEC 61691-3-3:2001, Part 3-3: Synthesis in VHDL

IEC 61691-3-4, Part 3-4: Timing expressions in VHDL (under consideration)
IEC 61691-3-5, Part 3-5: Library utilities in VHDL (under consideration)

The committee has decided that the contents of this publication will remain unchanged until
2004. At this date, the publication will be

* reconfirmed;

* withdrawn;

* replaced by a revised edition, or
+ amended.

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

4. 61691-2 © IEC:2001(E)

BEHAVIOURAL LANGUAGES -
Part 2: VHDL multilogic system
for model interoperatibility

1. Overview

1.1 Scope

This standard is embodied in the Std_logic_1164 package package body along with this clause 1 documentation. The
information annex AA is a guide to users and is not part of this standard, but suggests ways in which one might use

1.2 Conformance with this standard
The following conformance rules shall apply as they

a) No modifications shall be made to the package declaration

b) The Std_logic_1164 package body represents the formal Std_logic_1164 package declaration. Implementers
of this package body as it is; or they may choose to implement to the user. Users shall not implement a
semantic that

2. Std_logic_1164 package declaration

-- Title : Std_logic_1164 multivalue logic system
-- Library : This package shall be compiled into a library
-- : symbolically named IEEE.

-- Developers: IEEE model standards group (par 1164)

-- Purpose : This packages defines a standard for designers
-- : to use in describing the

-- : used in VHDL modeling.

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

61691-2 © |IEC:2001(E) -5-

-- Limitation: The logic system defined in this package may
-- : be insufficient for modeling switched

-- . since such a requirement is out of the

- . effort. Furthermore, mathematics, primitives,

-- : timing standards, etc. are considered

-- : issues in relation to this package and

-- : beyond the scope of this effort.

-- Note : No declarations or definitions shall be
-- : or excluded from, this package. The

-- . defines the types, subtypes, and

-- : Std_logic_1164. The Std_logic_1164

-- : considered the formal definition of the
-- . this package. Tool developers may

-- . the package body in the most efficient
-- : to them.

-- modification history :

-- version | mod. date:|
— v4.200 | 01/02/92 |

PACKAGE Std_logic_1164 IS
-- logic state system (unresolved)

TYPE std_ulogic IS (‘U’, -- Uninitialized
‘X’, -- Forcing Unknown
‘0’, -- Forcing 0
‘1°, -- Forcing 1
‘Z’, -- High Impedance
‘W’, -- Weak Unknown

‘L, --Weak O
‘H’, -- Weak 1
‘> --Don't care

);
-- unconstrained array of std_ulogic for use with the
TYPE std_ulogic_vector IS ARRAY (NATURAL RANGE <>)
-- resolution function
FUNCTION resolved (s : std_ulogic_vector) RETURN std_ulogic;

-- **¥* industry standard logic type ***

SUBTYPE std_logic IS resolved std_ulogic;
-- unconstrained array of std_logic for use in

TYPE std_logic_vector IS ARRAY) NATURAL RANGE <>) OF

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

-- common subtypes

SUBTYPE X01 IS resolved std_ulogic RANGE °
SUBTYPE X01Z IS resolved std_ulogic RANGE “Z’)
SUBTYPE UXO01 IS resolved std_ulogic RANGE “1”)

61691-2 © |IEC:2001(E)

SUBTYPE UX01Z 1S resolved std_ulogic RANGE “1°, ‘Z’)

-- overloaded logical operators

FUNCTION “and” (1: std_ulogic;r:
FUNCTION “nand” (1: std_ulogic; r:
FUNCTION “or” (1 :std_ulogic; r:
FUNCTION “nor” (1: std_ulogic; r:
FUNCTION “xor” (1:std_ulogic;r:
FUNCTION “xnor” (1: std_ulogic; r:
FUNCTION “not” (1: std_ulogic

-- vectorized overloaded logical operators

FUNCTION “and” (1, r: std_logic_vector)
FUNCTION “and” (1, r: std_ulogic_vector)
FUNCTION “nand” (1, r: std_logic_vector)
FUNCTION “nand” (1, r: std_ulogic_vector)
FUNCTION “or” (1, r: std_logic_vector)
FUNCTION “or” (1, r: std_ulogic_vector)
FUNCTION “nor” (1, r: std_logic_vector)
FUNCTION “nor” (1, r: std_ulogic_vector)
FUNCTION “xor” (1, r: std_logic_vector)
FUNCTION “xor” (1, r: std_ulogic_vector)

-- Note : The declaration and implementation of the

-- specifically commented until a time at which the VHDL

-- officially adopted as containing such a function. At

-- the following comments may be removed along with this

-- further “official” balloting of this

-- the intent of this effort to provide such a function

-- available in the VHDL standard.

-- FUNCTION “xnor” (1, r : std_logic_vector)

-- FUNCTION “xnor” (1, r : std_ulogic_vector)
FUNCTION “not” (1: std_logic_vector)
FUNCTION “not” (1: std_ulogic_vector)

-- conversion functions

FUNCTION To_bit (s : std_ulogic; Xmap :

FUNCTION To_bitvector (s : std_logic_vector ; xmap : BIT_VECTOR,;
FUNCTION To_bitvector (s : std_ulogic_vector; xmap : BIT_VECTOR;

FUNCTION To_StdULogic (b:BIT)
FUNCTION To_StdLogicVector (b : BIT_VECTOR

)

FUNCTION To_StdLogicVector (s : std_ulogic_vector) RETURN std_logic_vector;

FUNCTION To_StdULogicVector (b : BIT_VECTOR

) RETURN std_ulogic_vector;

FUNCTION To_StdULogicVector (s : std_logic_vector) RETURN std_ulogic_vector;

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

61691-2 © |IEC:2001(E) -7-

-- strength strippers and type converters

FUNCTION To_XO01 (s : std_logic_vector) RETURN
FUNCTION To_XO01 (s : std_ulogic_vector) RETURN
FUNCTION To_XO01 (s : std_ulogic) RETURN XO01,;
FUNCTION To_X01 (b:BIT_VECTOR) RETURN
FUNCTION To_XO01 (b:BIT_VECTOR) RETURN
FUNCTION To_XO01 (b:BIT) RETURN XO01;
FUNCTION To_XO01Z (s : std_logic_vector) RETURN
FUNCTION To_XO01Z (s : std_ulogic_vector) RETURN
FUNCTION To_XO01Z (s : std_ulogic) RETURN X01Z;
FUNCTION To_XO01Z (b : BIT_VECTOR) RETURN
FUNCTION To_XO01Z (b : BIT_VECTOR) RETURN
FUNCTION To_X01Z (b : BIT) RETURN XO01Z;
FUNCTION To_UXOL1 (s : std_logic_vector) RETURN
FUNCTION To_UXOLI (s : std_ulogic_vector) RETURN
FUNCTION To_UXO01 (s : std_ulogic) RETURN UXO01;
FUNCTION To_UXO01 (b : BIT_VECTOR) RETURN
FUNCTION To_UXO01 (b : BIT_VECTOR) RETURN
FUNCTION To_UXO0I1 (b : BIT) RETURN UXO01;

-- edge detection

FUNCTION rising_edge (SIGNAL s : std_ulogic) RETURN BOOLEAN;
FUNCTION falling_edge (SIGNAL s : std_ulogic) RETURN BOOLEAN;

-- object contains an unknown

FUNCTION Is_X (s : std_ulogic_vector) RETURN BOOLEAN;

FUNCTION Is_X (s : std_logic_vector) RETURN BOOLEAN;

FUNCTION Is_X (s : std_ulogic) RETURN BOOLEAN;
END Std_logic_1164;

3. Std_logic_1164 package body

-- Title : Std_logic_1164 multivalue logic system
-- Library : This package shall be compiled into a library
-- : symbolically named IEEE.

-- Developers: IEEE model standards group (par 1164)

-- Purpose : This package defines a standard for designers
-- : to use in describing the interconnection

-- : used in VHDL modeling.

-- Limitation: The logic system defined in this package may
-- : be insufficient for modeling switched

-- : since such a requirement is out of the

- . effort. Furthermore, mathematics, primitives,

- . timing standards, etc., are considered

-- : issues in relation to this package and

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

-- : beyond the scope of this effort.

-- Note : No declarations or definitions shall be

-- . or excluded from this package. The

-- . defines the types, subtypes and declarations of
- : Std_logic_1164. The Std_logic_1164

-- : considered the formal definition of the

-- : this package. Tool developers may choose

-- . the package body in the most efficient

-- : to them.

-- modification history :

-- version | mod. date:|
— v4.200 | 01/02/91 |

PACKAGE BODY Std_logic_1164 IS
-- local types

TYPE stdlogic_1d IS ARRAY (std_ulogic) OF std_ulogic;
TYPE stdlogic_table IS ARRAY (std_ulogic, std_ulogic)

-- resolution function

CONSTANT resolution_table : stdlogic_table := (

- |JU X 01 Z WL H -

(u,u, o,
(U, X, X,
(U, X, 0,
(U, X, X,
(U, X, 0
(U, X,
(U, X, 0,
(U, X, 0,
(U, X, X,

);

FUNCTION resolved (s : std_ulogic_vector) RETURN
VARIABLE result : std_ulogic := ‘Z’; --
BEGIN
-- the test for a single driver is essential;
-- loop would return ‘X’ for a single
-- would conflict with the value of a single
-- signal.
IF (s'LENGTH = 1) THEN RETURN s (s’LOW);
ELSE
FOR i IN s'RANGE LOOP
result := resolution_table (result, s(i));
END LOOP;
END IF;

61691-2 © |IEC:2001(E)

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

61691-2 © |IEC:2001(E)

RETURN result;
END resolved;

--tables for logical operations

--truth table for “and” function

CONSTANT and_table : stdlogic_table : = (

- U X 012Z W L H

(U, U, 0, ¢
(U, X, 0, ¢
(0%, 0%, ‘0, ¢

(U, X, 0, ¢
(U, X, 0, ¢
(U, X2, 0%, ¢
(<0°, 0%, <0, ¢

(U, X, 0, ¢
(U, X, 0%, ¢

);

-- truth table for “or” function

CONSTANT or_table : stdlogic_table := (

- |JU X 01 Z WL H

(U, U, U
(U, X, X, ¢
(U, X, 0, ¢
(1,1, 1, ¢

(U, X, X, ¢
(U, X, X, ¢
(U, X, 0%, ¢
(17D, 1, ¢

(U, X7, X0, ¢

);

-- truth table for “xor” function

CONSTANT xor_table : stdlogic_table := (

- JUX 012Z W LH

(U, U, U
(U, X, X, ¢
(U, X, 0, ¢
(U, X0, 41, ¢
(U, X, X, ¢
(U, X, X, ¢
(U, X, 0%, ¢
(U, X0, 1,
(U, X7, X0, ¢
);

-- truth table for “not” function

CONSTANT not_table: stdlogic_1d :=

-] U X 01 Z WTLH

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

-10 -

(‘U,, 4xv’ ‘1’, ‘0’,

-- overloaded logical operators (with optimizing hints)

FUNCTION “and” (1: std_ulogic;r :
BEGIN

RETURN (and_table(l, r));
END “and”;
FUNCTION “nand” (1 : std_ulogic; r :
BEGIN

RETURN (not_table (and_table(], 1)));
END “nand”;
FUNCTION “or” (1: std_ulogic; r:
BEGIN

RETURN (or_table(l, r));
END “or”;
FUNCTION “nor” (1: std_ulogic;r:
BEGIN

RETURN (not_table (or_table(1, r)));
END “nor”;
FUNCTION “xor” (1: std_ulogic; 1 :
BEGIN

RETURN (xor_table(l, r));
END “xor”;
FUNCTION “xnor” (1: std_ulogic; r:
begin

return not_table(xor_table(l, r));
end “xnor”’;
FUNCTION “not” (1:std_ulogic) RETURN UXO01 IS
BEGIN

RETURN (not_table(l));
END “not”;

--and

FUNCTION “and” (Lr : std_logic_vector)
ALIAS 1v : std_logic_vector (1 TO I'LENGTH) IS 1;
ALIAS rv : std_logic_vector (1 TO r'LENGTH) IS 1;
VARIABLE result : std_logic_vector (1 TO I'LENGTH);
BEGIN
IF (I'LENGTH /= r'LENGTH) THEN
ASSERT FALSE
REPORT *“arguments of overloaded ‘length”
SEVERITY FAILURE;
ELSE
FOR i IN result RANGE LOOP
result(i) := and_table (Iv(i), rv(i));
END LOOP;
END IF;
RETURN result;
END “and”;

FUNCTION “and” (Lr : std_ulogic_vector)

61691-2 © |IEC:2001(E)

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

61691-2 © |IEC:2001(E) -11-

ALIAS 1v : std_ulogic_vector (1 To I'LENGTH) IS |;
ALIAS rv : std_ulogic_vector (1 TO r'LENGTH) IS 1;
VARIABLE result : std_ulogic_vector (1 TO I'LENGTH);
BEGIN
IF (I'LENGTH /=r'LENGTH) THEN
ASSERT FALSE
REPORT *“arguments of overloaded ‘length”
SEVERITY FAILURE;
ELSE
FOR i IN result RANGE LOOP
result(i) := and_table (Iv(i), rv(i));
END LOOP;
END IF;
RETURN result;
END “and”;

-- nand

FUNCTION “nand” (1,r : std_logic_vector)
ALIAS 1v : std_logic_vector (1 TO I'LENGTH) IS 1;
ALIAS rv : std_logic_vector (1 TO r'LENGTH) IS 1;
VARIABLE result : std_logic_vector (1 TO 1 ' LENGTH);
BEGIN
IF (I'LENGTH /=r'LENGTH) THEN
ASSERT FALSE
REPORT *“arguments of overloaded ‘length”
SEVERITY FAILURE;
ELSE
FOR i IN result RANGE LOOP
result(i) := not_table(and_table (Iv(i), rv(i)));
END LOOP;
END IF;
RETURN result;
END “nand”;

FUNCTION “nand” (Lr : std_ulogic_vector)
ALIAS lv : std_ulogic_vector (1 TO I'LENGTH) IS [;
ALIAS rv : std_ulogic_vector (1 TO r'LENGTH) IS r;
VARIABLE result : std_ulogic_vector (1 TO I'LENGTH);
BEGIN
IF (I'LENGTH /=r'LENGTH) THEN
ASSERT FALSE
REPORT “arguments of overloaded ‘length”
SEVERITY FAILURE;
ELSE
FOR i IN result RANGE LOOP
result(i) := not_table(and_table (1v(i), rv(i)));
END LOOP;
END IF;
RETURN result;
END “nand”;

--or

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

-12 -

FUNCTION “or” (1,r: std_logic_vector)
ALIAS 1v : std_logic_vector (1 TO I'LENGTH) IS 1;
ALIAS rv : std_logic_vector (1 TO r'LENGTH) IS r;
VARIABLE result : std_logic_vector (1 TO I'LENGTH);
BEGIN
IF (I'LENGTH /=r'LENGTH) THEN
ASSERT FALSE
REPORT “arguments of overloaded ‘length
SEVERITY FAILURE;
ELSE
FOR i IN result RANGE LOOP
result(i) := or_table (1v(i), rv(i));
END LOOP;
END IF;
RETURN result;
END “or”;

FUNCTION “or” (1,r: std_ulogic_vector)
ALIAS lv : std_ulogic_vector (1 TO I'LENGTH) IS |;
ALIAS rv : std_ulogic_vector (1 TO r'LENGTH) IS r;
VARIABLE result : std_ulogic_vector (1 TO I'LENGTH);
BEGIN
IF (I'LENGTH /=r'LENGTH) THEN
ASSERT FALSE
REPORT “arguments of overloaded ‘length”
SEVERITY FAILURE;
ELSE
FOR i IN resultRANGE LOOP
result(i) := or_table (1v(i), rv(i));
END LOOP;
END IF;
RETURN result;
END ‘or’;

-- nor

FUNCTION “nor” (Lr : std_logic_vector)
ALIAS 1v : std_logic_vector (1 TO I'LENGTH) IS 1;
ALIAS rv : std_logic_vector (1 TO r'LENGTH) IS 1;
VARIABLE result : std_logic_vector (1 TO I'LENGTH);
BEGIN
IF (I'LENGTH /= r'LENGTH) THEN
ASSERT FALSE
REPORT *“arguments of overloaded ‘length”
SEVERITY FAILURE;
ELSE
FOR i IN result RANGE LOOP
result(i) := not_table(or_table (1v(i), rv(1)));
END LOOP;
END IF;
RETURN result;
END “nor”;

FUNCTION “nor” (Lr: std_ulogic_vector)

61691-2 © |IEC:2001(E)

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

61691-2 © |IEC:2001(E) -13-

ALIAS 1v : std_ulogic_vector (1 TO I'LENGTH) IS |;
ALIAS rv : std_ulogic_vector (1 TO r'LENGTH) IS 1;
VARIABLE result : std_ulogic_vector (1 TO I'LENGTH);
BEGIN
IF (I'LENGTH /=r'LENGTH) THEN
ASSERT FALSE
REPORT *“arguments of overloaded ‘length”
SEVERITY FAILURE;
ELSE
FOR i IN result RANGE LOOP
result(i) := not_table(or_table (1v(i), rv(i)));
END LOOP
END IF;
RETURN result;
END “nor”;

-- XOor

FUNCTION “xor” (Lr : std_logic_vector)
ALIAS 1v : std_logic_vector (1 To 'LENGTH) IS I;
ALIAS RV : std_logic_vector (1 TO r'LENGTH) IS r;
VARIABLE result : std_logic_vector (1 TO I'LENGTH);
BEGIN
IF (I'LENGTH /=r'LENGTH) THEN
ASSERT FALSE
REPORT *“arguments of overloaded ‘length”
SEVERITY FAILURE;
ELSE
FOR i IN result RANGE LOOP
result(i) := xor_table (Iv(i), rv(i));
END LOOP;
END IF;
RETURN result;
END “xor”;

FUNCTION “xor” (Lr : std_ulogic_vector)
ALIAS lv : std_ulogic_vector (1 TO I'LENGTH) IS |;
ALIAS rv : std_ulogic_vector (1 TO r'LENGTH) IS r;
VARIABLE result : std_ulogic_vector (1 TO I'LENGTH);
BEGIN
IF (I'LENGTH /=r'LENGTH) THEN
ASSERT FALSE
REPORT “arguments of overloaded ‘length”
SEVERITY FAILURE;
ELSE
FOR i IN result RANGE LOOP
result(i) := xor_table (Iv(i), rv(i));
END LOOP;
END IF;
RETURN result;
END “xor”;

-- == Xnor

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

14 - 61691-2 © IEC:2001(E)

Note : The declaration and implementation of the
specifically commented until a time at which the VHDL
officially adopted as containing such a function. At

the following comments may be removed along with this
further “official” balloting of this

the intent of this effort to provide such a function
available in the VHDL standard.

FUNCTION “xnor” (1, r : std_logic_vector)
alias 1v : std_logic_vector (1 to I'length) is ;
alias rv : std_logic_vector (1 to r'length) is r;
variable result : std_logic_vector (1 to 1'length);
begin
if (I'length /= r'length) then
assert false
report “arguments of overloaded ‘length”
severity failure;
else
for i in result'range loop
result(i) := not_table(xor_table (1v(i), rv(i)));
end loop;
end if}
return result;
end “xnor”’;

FUNCTION “xnor” (Lr: std_ulogic_vector)
alias Iv : std_ulogic_vector) 1 to I'length) is |;
alias rv : std_ulogic_vector) 1 to r'length) is 1;
variable result : std_ulogic_vector (1 to I'length);
begin
if (I'length /= r'length) then
assert false
report “arguments of overloaded ‘length”
severity failure;
else
for i in result'range loop
result(i) := not_table(xor_table (Iv(i), rv(i)));
end loop;
end if}
return result;
end “xnor”;

-- not

FUNCTION “not” (1: std_logic_vector)
ALIAS 1v : std_logic_vector (1 TO I'LENGTH) IS [;
VARIABLE result : std_logic_vector (1 To
BEGIN
FOR i IN resultRANGE LOOP
result(i) := not_table(1v(i));
END LOOP;
RETURN result;
END;

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

61691-2 © |IEC:2001(E) -15-

FUNCTION “not” (1: std_ulogic_vector)
ALIAS 1v : std_ulogic_vector) 1 TO 'LENGTH) IS |;
VARIABLE result : std_ulogic_vector (1 TO
BEGIN
FOR i IN result RANGE LOOP
result(i) := not_table(1v(i));
END LOOP;
RETURN result;
END;

-- conversion tables
TYPE logic_x01_table IS ARRAY (std_ulogic‘'LOW TO

TYPE logic_x01z_table IS ARRAY (std_ulogic'LOW TO
TYPE logic_ux01_table IS ARRAY (std_ulogic‘'LOW TO

-- table name : cvt_to_x01

-- parameters :
-- in : std_ulogic -- some logic value
--returns @ x01 -- state value of logic value

-- purpose : to convert state-strength to state only

--example :if (cvt_to_x01) input_signal) = *

CONSTANT cvt_to_x01 : logic_x01_table := (

X, U
0,
SRR
X W
0, D

-- table name : cvt_to_x01z

-- parameters :
-- in : std_ulogic -- some logic value
--returns : x0lz -- state value of logic value

-- purpose : to convert state-strength to state only

--example :if (cvt_to_x01z (input_signal) =

CONSTANT cvt_to_x01z : logic_x01z_table :=(

AX” . ‘U’
‘X,, . ‘X’
40,’ - noa

‘1’, . ¢1$

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

VA A
X0, W
0, - L
P, H
X e
)i
-- table name : cvt_to_ux01
-- parameters :
-- in : std_ulogic -- some logic value
--returns : ux0l -- state value of logic value

-- purpose : to convert state-strength to state only

--example :if (cvt_to_ux01 (input_signal) = ¢

CONSTANT cvt_to_ux01 : logic_ux01_table := (

U U
'
0, 0

SO

X W
0 L

R
);

-- conversion functions

FUNCTION To_bit (s : std_ulogic; xmap
BEGIN

CASEs IS
WHEN 0’ | ‘'L =>
WHEN ‘I’ | ‘H’ =>
WHEN OTHERS => RETURN xmap;
END CASE,;
END;

FUNCTION To_bitvector (s : std_logic_vector ; xmap : BIT_VECTOR_IS

-16 -

ALIAS sv : std_logic_vector (SLENGTH-1 DOWNTO

VARIABLE result : BIT_VECTOR (s'LENGTH-1 DOWNTO 0);

BEGIN
FOR i IN resulttRANGE LOOP
CASE sv(i) IS
WHEN 0’ | ‘'L’ =>
WHEN ‘1’ | ‘H” =>
WHEN OTHERS => result(i) := xmap;
END CASE;
END LOOP;
RETURN result;
END;

FUNCTION To_bitvector (s : std_ulogic_vector; xmap : BIT_VECTOR_IS

ALIAS sv : std_logic_vector (SLENGTH-1 DOWNTO

61691-2 © |IEC:2001(E)

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

61691-2 © |IEC:2001(E) -17 -

VARIABLE result : BIT_VECTOR (sLENGTH-1 DOWNTO 0);
BEGIN
FOR i IN resultt RANGE LOOP
CASE sv(i) IS

WHEN ‘0’ | ‘' =>
WHEN ‘1’ | ‘H* =>
WHEN OTHERS => result(i) := xmap;
END CASE,;
END LOOP;
RETURN result;

END;

FUNCTION To_StdUlogic (b:BIT)RETURN
BEGIN
CASEb IS
WHEN ‘0’ => RETURN 0’
WHEN ‘1° => RETURN ‘1’
END CASE;
END;

FUNCTION To_StdlogicVector (b : BIT_VECTOR) RETURN
ALIAS bv : BIT_VECTOR (b'LENGTH-1 DOWNTO 0) IS b;
VARIABLE result : std_logic_vector (' LENGTH-1

BEGIN
FOR i IN result RANGE LOOP

CASEbv (1) IS
WHEN 0’ => result(i) := ‘0’;
WHEN °1” => result(i) == ‘1’;
END CASE,;
END LOOP;
RETURN result;
END;

FUNCTION To_StdLogicVector (s : std_ulogic_vector) RETURN std_logic_vector IS
ALIAS sv : std_ulogic_vector (SLENGTH-1 DOWNTO
VARIABLE result : std_logic_vector (SLENGTH-1
BEGIN
FOR i IN RESULT'RANGE LOOP
result(i) := sv(i)
END LOOP;
RETURN result;
END;

FUNCTION To_StdULogicVector (b : BIT_VECTOR)IS
ALIAS bv : BIT_VECTOR (b'LENGTH-1 DOWNTO 0) IS b;
VARIABLE result : std_ulogic_vector (bLENGTH-1

BEGIN
FOR i IN resultRANGE LOOP

CASE bv (i) IS
WHEN 0’ => result(i) := ‘0’;
WHEN ‘1’ => result(i) == ‘1’;
END CASE,;
END LOOP;
RETURN result;

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

-18 -

END;

FUNCTION To_StdULogicVector (s : std_logic_vector) RETURN std_ulogic_vector IS

ALIAS sv : std_logic_vector (SLENGTH-1 DOWNTO

VARIABLE result : std_ulogic_vector (SLENGTH-1
BEGIN

FOR i IN resultRANGE LOOP

result(i) := sv(i);

END LOOP;

RETURN result;
END;

-- strength strippers and type convertors
-- to_x01

FUNCTION To_XO01 (s : std_logic_vector) RETURN
ALIAS sv : std_logic_vector (1 TO sS'LENGTH) IS s;
VARIABLE result : std_logic_vector (1 TO s'LENGTH);

BEGIN
FOR i IN result RANGE LOOP

result(i) ;= cvt_to_x01 (sv(i));
END LOOP;
RETURN result;
END;

FUNCTION To_XO01 (s : std_ulogic_vector) RETURN
ALIAS sv : std_ulogic_vector (1 TO sS'LENGTH) IS s;
VARIABLE result : std_ulogic_vector (1 TO s'LENGTH);

BEGIN
FOR i IN result RANGE LOOP

result(i) ;= cvt_to_x01 (sv(i));
END LOOP;
RETURN result;
END;

FUNCTION To_XO01 (s : std_ulogic) RETURN XO01 IS
BEGIN

RETURN (cvt_to_x01(s));
END;

FUNCTION To_X01 (b:BIT_VECTOR) RETURN
ALIAS bv : BIT_VECTOR (1 TO b'LENGTH) IS b;
VARIABLE result : std_logic_vector (1 TO b'LENGTH);

BEGIN
FOR i IN result RANGE LOOP

CASE bv(i) IS
WHEN ‘0’ => result(i) := ‘0’;
WHEN ‘1’ => result(i) := “1’;
END CASE,;
END LOOP;
RETURN result;
END;

61691-2 © |IEC:2001(E)

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

61691-2 © |IEC:2001(E) -19-

FUNCTION To_XO01 (b : BIT_VECTOR) RETURN
ALIAS bv : BIT_VECTOR (1 TO b'LENGTH) IS b;
VARIABLE result : std_ulogic_vector (1 TO b'LENGTH);

BEGIN
FOR i IN result RANGE LOOP

CASE bv(i) IS
WHEN €0’ => result(i) := 0’;
WHEN ‘1’ => result(i) := ‘1’;
END CASE,;
END LOOP;
RETURN result;
END;

FUNCTION To_X01 (b:BIT)RETURN XO01 IS
BEGIN
CASEDb IS
WHEN ‘0’ => RETURN(‘0°);
WHEN ‘1’ => RETURN(‘1);
END CASE;
END;

--to_x01z

FUNCTION TO_XO01Z (s: std_logic_vector) RETURN
ALIAS sv : std_logic_vector (1 TO s'LENGTH) IS s;
VARIABLE result : std_logic_vector (1 TO s'LENGTH);

BEGIN
FOR i IN resultRANGE LOOP

result(i) := cvt_to_x01z (sv(i));
END LOOP;
RETURN result;
END;

FUNCTION TO_XO01Z (s : std_ulogic_vector) RETURN
ALIAS sv : std_ulogic_vector (1 TO sS'LENGTH) IS s;
VARIABLE result : std_ulogic_vector (1 TO s'LENGTH);

BEGIN
FOR i IN resultt RANGE LOOP

result(i) ;= cvt_to_x01z (sv(i));
END LOOP;
RETURN result;
END;

FUNCTION To_XO01Z (s : std_ulogic) RETURN X01Z IS
BEGIN

RETURN (cvt_to_x01z(s));
END;

FUNCTION To_X01Z (b : BIT_VECTOR) RETURN
ALIAS bv : BIT_VECTOR (1 TO b'LENGTH) IS b;
VARIABLE result : std_logic_vector (1 TO b'LENGTH);

BEGIN
FOR i IN result RANGE LOOP

CASE bv(i) IS

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

-20 -

WHEN ‘0’ => result(i) := ‘0’;
WHEN ‘1’ => result(i) := “1’;
END CASE;
END LOOP;
RETURN result;
END;

FUNCTION To_X01Z (b : BIT_VECTOR) RETURN
ALIAS bv : BIT_VECTOR (1 TO b'LENGTH) IS b;

VARIABLE result : std_ulogic_vector (1 TO b'LENGTH);

BEGIN
FOR i IN resultRANGE LOOP
CASE bv(i) IS
WHEN ‘0’ => result(i) := ‘0’;
WHEN °1” => result(i) == ‘1’;
END CASE,;
END LOOP;
RETURN result;
END;

FUNCTION To_X01Z (b : BIT) RETURN X01Z IS
BEGIN
CASEb IS
WHEN ‘0’ => RETURN(*0");
WHEN ‘1’ => RETURN(*’);
END CASE;
END;

--to_ux01

FUNCTION To_UXO01 (s : std_logic_vector) RETURN
ALIAS sv : std_logic_vector (1 TO sLENGTH) IS s;
VARIABLE result : std_logic_vector (1 TO s'LENGTH);

BEGIN
FOR i IN result RANGE LOOP

result(i) := cvt_to_ux01 (sv(i));
END LOOP;
RETURN result;
END;

FUNCTION To_UXO01 (s : std_ulogic_vector) RETURN
ALIAS sv : std_ulogic_vector (1 TO s'LENGTH) IS s;

VARIABLE result : std_ulogic_vector (1 TO s'LENGTH);

BEGIN
FOR i IN resultRANGE LOOP
result (i) := cvt_to_ux01 (sv(i));
END LOOP;
RETURN result;
END;

FUNCTION To_UXO01 (s : std_ulogic) RETURN UXO01 IS
BEGIN

RETURN (cvt_to_ux01(s));
END;

61691-2 © |IEC:2001(E)

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

61691-2 © |IEC:2001(E) -21-

FUNCTION To_UXO01 (b:BIT_VECTOR) RETURN
ALIAS bv : BIT_VECTOR (1 TO b'LENGTH) IS b;
VARIABLE result : std_logic_vector (1 TO b'LENGTH);

BEGIN
FOR i IN resultt RANGE LOOP

CASE bv(i) IS
WHEN 0’ => result(i) := ‘0’;
WHEN °1” => result(i) == ‘1’;
END CASE;
END LOOP;
RETURN result;
END;

FUNCTION To_UXO01 (b:BIT_VECTOR) RETURN
ALIAS bv : BIT_VECTOR (1 TO b'LENGTH) IS b;
VARIABLE result : std_ulogic_vector (1 TO b'LENGTH)

BEGIN
FOR i IN result RANGE LOOP

CASE bv(i) IS
WHEN ‘0’ => result(i) := ‘0’;
WHEN ‘1’ => result(i) := ‘1’;
END CASE;
END LOOP;
RETURN result;
END;

FUNCTION To_UXO01 (b:BIT)RETURN UXO01 IS
BEGIN
CASEb IS
WHEN ‘0’ => RETURN(*0");
WHEN ‘1’ => RETURN(*I’);
END CASE;
END;

-- edge detection

FUNCTION rising_edge (SIGNAL s : std_ulogic) RETURN
BEGIN
RETURN (s'EVENT AND (To_X01(s) = “1") AND
(To_XO01(s'LAST_VALUE) =
END;
FUNCTION falling_edge (SIGNAL s : std_ulogic) RETURN
BEGIN
RETURN (s'EVENT AND (To_X01(s) = ‘0") AND
(To_XO01(s'LAST_VALUE) =

-- object contains an unknown

FUNCTION Is_X (s : std_ulogic_vector) RETURN BOOLEAN IS
BEGIN
FOR i IN sS'SRANGE LOOP
CASE s(i) IS
WHEN ‘U’ | X | ¢

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

-22 -

WHEN OTHERS => NULL;
END CASE;
END LOOP;
RETURN FALSE;
END;

FUNCTION Is_X (s : std_logic_vector) RETURN BOOLEAN IS
BEGIN
FOR i IN s'RANGE LOOP
CASE s(i) IS
WHEN ‘U’ | ‘X’ | ¢
WHEN OTHERS => NULL;
END CASE
END LOOP;
RETURN FALSE;
END;

FUNCTION Is_X (s : std_ulogic) RETURN BOOLEAN IS
BEGIN
CASE s IS
WHEN ‘U’ | ‘X’ | ‘22
WHEN OTHERS => NULL;
END CASE;
RETURN FALSE,;
END;
END std_logic_1164;

61691-2 © |IEC:2001(E)

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

61691-2 © |IEC:2001(E) -23-

Annex A Using the Std_logic_1164 Package

(Informative)

This annex is intended to be a brief guide to using the a means of building models that interoperate, provided typing
imposed by the VHDL language.

A.1 Value system

The value system in Std_logic_1164 was developed to model the logic system is named “std_ulogic” where the
comprising the type have a specified semantic and a interoperate, one must interpret the meaning of each of

Type std_ulogic is (

‘U, Uninitialized state
‘X, Forcing Unknown etc.
‘0, Forcing Zero

‘1, Forcing One

A High Impedance

‘W’, Weak Unknown

‘L, Weak Zero

‘H’, Weak One

[3E)

Don't Care modeling

A.2 Handling strengths

Behavioral modeling techniques rarely require knowledge “strength stripper” functions have been designed “forcing”
strength counterparts.

Once in forcing strength, the model can simply respond to stripping is done by using one of the following functions:

To_XO01 (...) converts ‘L’ and ‘H’ to ‘0’ and
To_UXO0 1(...) converts ‘L’ and ‘H’ to ‘0’ and to ‘X".

A.3 Use of the uninitialized value
The ‘U’ value is located in the first position of automatically initialized to ‘U’ unless expressly

Uninitialized values were designed to provide a means of uninitialized state since the time of system XNOR, and NOT
have been designed to propagate ‘U’

The propagation of ‘U’s through a circuit gives properly initialized. The AND gate example that follows

A.4 Behavioral modeling for ‘U’ propagation

For behavioral modeling where ‘U’ propagation is system, as far as the modeler is concerned, thereby

A.5 ‘U’s related to conditional expressions

Case statements, “if” expressions, and selected path for ‘U’ state propagation in order to

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

-24 - 61691-2 © IEC:2001(E)

A.6 Structural modeling with logical tables

The logical tables are designed to generate output values of the nine-state system passes through any of the arises for
a weak or floating strength to be propagated model developer shall be certain to assign the

A.7 X-handling: assignment of X's

In assignments, the ‘X’ and -’ values means that synthesis tools are allowed to generate either ‘X’ usually appears
during transitions or as a conditions, such as in the following waveform assignment:

S <= ‘X’ after 1 ns, ‘1’ after 5 ns

where the current value of S becomes indeterminate after

A.8 Modeling with don't care's

A.8.1 Use of the don't care state in synthesis models

For synthesis, a VHDL program is a specification of the order to simulate) real circuits. The former deals with function
of a circuit from an electrical point of view. assumption that the VHDL models will be logical function of the logic
type to logical function. The motivation for do not specify the behavior of the circuit to be built, such simulation
artifacts to remain in models for these references, the user is assuming only the kind of occur in hardware.

A.8.2 Semantics of ‘-’

In designing the resolution function and the various syntactic shorthand for ‘X’, provided for becomes ‘X’ as soon as
it is operated upon and value represents either a ‘1’ ora ‘0’ as

A.9 Resolution function
In digital logic design, there are a number of occasions together. The most common of which is tri-state™! buses in
which memory data ports are connected to each to controlling microprocessors. Another common case is loaded signal

path. In each of these cases, the VHDL devices be “resolved” signal types.

Focusing on resolution: when two signals' values are that wire. For example, if two parallel buffers both is in the high-
impedance state ‘Z’ and another signal values will result in a value of ‘1’

The resolution function built into Std_logic_1164 impedance values and forcing values dominate over weak values.

A.10 Using Std_ulogic vs. Std_logic
In deciding whether to use the resolved signal or

a) Does the simulator run slower when using a resolved type simulator optimized for the std_logic data types?
b) What should be done to insure interoperability of models

Each of these is considered, in order, below:

I Tri-state is a trademark of National Semiconductor.

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

61691-2 © |IEC:2001(E) -25-

Most simulator vendors, in approving this standard, formal semantics of the package, but wanted to be allowed
manner. Consequently, a great number of simulator vendors performance for signals declared of the resolved type.

In the case of two unity buffers, wired in parallel and signal (i.e., std_logic) and the type of the unity driver work
properly. But, suppose a user developed a model of ports as eight element arrays of std_logic just to each and every
buffer element. In this scenario, the user std_logic_vector as the array type of the buffer port. are by definition
incompatible. Therefore, if the user to a microprocessor address or data bus unless that Since the user may have not
developed the microprocessor and might prefer not to use a type conversion function in order to have resolved vector
type is preferred.

For scalar ports and signals, the developer may use either the std_ulogic or std_logic type.

For vector ports and signals, the developer should use the STD_LOGIC_VECTOR type.

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

LICENSED TO MECON Limited. - RANCHI/BANGALORE
FOR INTERNAL USE AT THISLOCATION ONLY, SUPPLIED BY BOOK SUPPLY BUREAU.

LICENSED TO MECON Limited. - RANCHI/BANGALORE
FOR INTERNAL USE AT THISLOCATION ONLY, SUPPLIED BY BOOK SUPPLY BUREAU.

ISBN 2-8318-5837-2

9 "782831"858371

ICS 35.240.50

Typeset and printed by the IEC Central Office
GENEVA, SWITZERLAND

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

