IEC 61691-1-1:2011(E) |IEEE Std 1076-2008

¢ IEEE

IEC 61691-1-1

INTERNATIONAL
STANDARD

Edition 2.0 2011-05

IEEE Std 1076 ™

Behavioural languages —
Part 1-1: VHDL Language Reference Manual

|0nuodun “papiwiad SI uonnquIsIp 1o uononpoidal Jayuny ON "UoSIpe sswer Aq T0Z-82-A0N UO PapeOjUMOp ‘W0219811syda]'suonduasgns “ou| ‘(aynusios) sisinay uoswoy] Aq owaq ¥g 01 pasuadl| [euarew pajybuidod

THIS PUBLICATION IS COPYRIGHT PROTECTED
Copyright © 2008 IEEE

All rights reserved. IEEE is a registered trademark in the U.S. Patent & Trademark Office, owned by the Institute of
Electrical and Electronics Engineers, Inc.

Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from the IEC Central Office.
Any questions about IEEE copyright should be addressed to the IEEE. Enquiries about obtaining additional rights

to this publication and other information requests should be addressed to the IEC or your local IEC member National
Committee.

IEC Central Office The Institute of Electrical and Electronics Engineers, Inc
3, rue de Varembé 3 Park Avenue

CH-1211 Geneva 20 US-New York, NY10016-5997

Switzerland USA

Email: inmail@iec.ch Email: stds-info@ieee.org

Web: www.iec.ch Web: www.ieee.org

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigenda or an amendment might have been published.

= Catalogue of IEC publications: www.iec.ch/searchpub
The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,...).
It also gives information on projects, withdrawn and replaced publications.

" |[EC Just Published: www.iec.ch/online_news/justpub
Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available
on-line and also by email.

" Electropedia: www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions
in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical
Vocabulary online.

= Customer Service Centre: www.iec.ch/webstore/custserv
If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service
Centre FAQ or contact us:

Email: csc@iec.ch
Tel.: +41 22 919 02 11

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

mailto:inmail@iec.ch
mailto:stds-info@ieee.org
http://www.iec.ch/
http://www.iec.ch/searchpub
http://www.iec.ch/online_news/justpub
http://www.electropedia.org/
http://www.iec.ch/webstore/custserv
mailto:csc@iec.ch

4 IEEE IEC 61691-1-1

Edition 2.0 2011-05

INTERNATIONAL IEEE Std 1076™
STANDARD

Behavioural languages —
Part 1-1: VHDL Language Reference Manual

INTERNATIONAL
ELECTROTECHNICAL

COMMISSION PRICE CODE X S

ICS 25.040 / 35.060 ISBN 978-2-88912-440-4

|onuooun “panwiad S uonnguisip 10 uononpoidal Jayuny ON "UOSIPRIN Sawer AQ $T0Z-8Z-A0ON U0 PapPeOjUMOP ‘W02°18311sYyoa1 suonduosgns “-ou| ‘(oynuaios) siainay uoswoy L Agq owad Hg 01 pasusdl| [eusrew paiybuidod

Copyrighted material licensed to BR Demo by Thomson Reuters (Scientific), Inc., subscriptions.techstreet.com, downloaded on Nov-28-2014 by James Madison. No further reproduction or distribution is permitted. Uncontroll

-i- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008
Contents

Overview Of this STANAArdcoeoiiiiiiiiiiiiccc ettt s 1
O B 170 1 TSRS 1
1.2 PUIPOSE. cueteeeiietie ettt ettt ettt et e et e et e s st e e sbe e beeesbeesseessbeenseessseesseesseesseensaeenseensaesnseenseesnsaenseensses 1
1.3 Structure and terminology of this standard.............cccoeeiriiiiniiiineeeee s 2
NOIMALIVE TEIETETICES ...ttt sttt ettt sttt eae bbb sae s 5
Design entities and CONTIGUIAIONS.........couiiuiiiiiiieieee ettt 7
Bl GOMNETAL. ...ttt a e eaee 7
3.2 EnNtity dCIarationscceeiieriiieieeiieiteet ettt ettt et bbb e ettt eae 7
3.3 ATChItECHUIE DOMIES ..c.veveiiiiiiiieieieietet ettt st 10
3.4 Configuration deClarations............cocceruiierieiieieetieteee ettt ettt ettt ea et seeeneeeaean 13
Subprograms and PACKAZESeeueeuirtieie ittt sttt sttt st e sttt e st ene e et e sbeeneenneas 19
AT GENCTAL..eiiiiiieeete ettt bbbttt ettt bt et be e sa e 19
4.2 Subprogram deClarationscceoieiereiieie ettt sttt 19
4.3 SUDPIrOZIam DOGIESoeueiuiiieieieeiiee ettt ettt ettt ettt se et et 23
4.4 Subprogram instantiation deClarations............cceceeriririerieiene e 26
4.5 Subprogram OVerloading...........coecieriiieiiiieiee ettt 26
4.6 ResSOIUtION FUNCHIONSooviriiriiiiieiieiieiieiieencst ettt sttt st s aene 29
4.7 Package deClarationscceeuiruieiierieieie ettt ettt ettt ettt sa et 30
4.8 PacCKage DOGICSe ettt et ettt ettt b et a et eeee 31
4.9 Package instantiation declarationsceceeuiruiiiiririeeeee e 33
4.10 CoNTOrMANCE TULESc.veeuiiiieiieie ettt e et ea et et esee e bt e e ese et e eseeneeeneeneeeees 34
00 01 OO OO OO O PSPPSR PP PO UPTUPTRPROTOPRUPRRIRt 35
R B 1< T TSRS 35
RN T | U g 74 1 TSRS 36
5.3 COMPOSILE LY PES.ueueeuriameerteeiestieiiesteeeesteeste bt eneeateeseenaeeneesaeemeeaseameeaseessenseeneanseeneenseeneensesseensenseas 44
54 ACCESS LY PES . eeuttiiiiiieeite ittt ettt ettt ettt ettt st e e h et e bt e bttt e bt e ea et e bt sht e e bt e et e nbeeeateeane 53
TR T 1 ST 7 o1 TSRS 55
R O o 0 107 10 B 74 01T 58
5.7 SN rePIESENLALIONSeouiereieeieieeiierieiteete et et e et entesteeeeseeeseestesseenteeseenseeseeneeeseensesseeneesseensennean 61
D eTed 21 15 0] PSP R 63
LT B G 1< T 1 TSRS 63
LT 1 o Tl [eTod 2 1 1o 4 LTSRS 64
6.3 SUDLYPE AECIATATIONSeeeeeieeeieiie ettt ettt ste sttt st et e et e e sae et e seeeneesaeeneesseensenneas 64
LT] o] T £ TSRS 66
6.5 Interface deClarations..........ceeouiiuieiiieiieeetieee ettt ettt ettt et ae st e enean 73
6.6 AlIas dECIATAtIONS.....cuieiiiiieie ittt ettt ettt e e e et ene ettt saeereeneennean 89
6.7 AUribute dEClarationS.eevuieieie ettt ettt ettt ettt ettt ae et e e enean 92
6.8 Component dECIATAtIONScoverieieieiriirienierte ettt ettt ettt ettt ettt sae e b b saennes 93
6.9 Group template deClarationsccoereeeeieiririneneet ettt ettt st aes 93
6.10 GIOUP ECIATALIONSc..eeveviiititeietetet ettt ettt ettt b bbb e 93
6.11 PSL Clock deClarations............cuerueieeerieiiieiesieeiestt ettt ettt sttt e st et e st e e e s neeneesseeneenneas 94

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -ii-

IEEE Std 1076-2008

7. SPECITICATIONS ...ttt ettt ettt ettt ettt et et e e e st e nteee e e besse e seeseenteeneeseeeeeneenseeneenneennens 95
A B € 1< 1< ¢ | DO OO UU PSR PUR PSRRIt 95
7.2 Atribute SPECITICATION.euieii ettt ettt ettt ettt e e et e e et et e aeeeesneeneeeneas 95
7.3 Configuration SPeCIfiCAtION.ccuiiieieieieie ettt et ee et seeeneeeneas 98
7.4 Disconnection SPECITICAtIONc.eeruirtieiieeiieteetieieet ettt et et s e eeseeeeesneenens 103

8 INAITIES .eeeeeuiiieeiiieeeite ettt e et e ettee ettt e e teeesssaeesssaeeessseeasnseeasseeaansseeansseeansseeensseeansaeeansseeeanseeennseeennens 107
I B € 1<) 1< ¢ | DRSO U TP TUPSRUU PP 107
8.2 SIMPLE NAMEScuieieiieie ittt st et e et ettt e e s te e e e st eteeneensesneensesreensenneens 108
8.3 SElECEA NAIMES......eiciiiiieiiie ettt e ettt e b e e eteeetb e e teessbeesbeessbeesseessseesseeseessseesaessens 108
8.4 INACXEA NAMES ..ouvviiiieiieiii ettt et et e st eeteestbeesbeetbeeabeessbessseessseesseenseessseenseensseas 111
8.5 STICE NMAIMES ..eecuvieviiiiieiieciie et et e et e et e et e et e e be e teeeebeeteessbeessaassseesseassseasseessseanseeseessseeseanssens 112
8.0 AITDULE NMAIMESvievieiieiiiieiie ettt eiee et e et et e eteestbeebeeeteeesbeesssassseebeessseessaessseesseessseesseeseanssens 112
8.7 EXLEINAl NAIMES......eiiiiiiiiiiiieiiectie ettt ette ettt ette et eeeteesebe e teastbeebeessseasseessseesseeseessseeseenssens 113

9. EXPIESSIONS ...ttt ettt ettt ettt ettt ettt ettt et et e bbbt bbbttt e et eaea 117
0.1 GONETAL. ...ttt ettt ettt e bt s tb e et e e tb e e be e bb e et e e tbeeabe e teeetbeebeestbeereetaeas 117
0.2 OPCTALOTS ...ttt ettt ettt e st b e st ean e bt esn e saeesn e saeeneshe s eaeeas 118
0.3 OPCIANAS ...ttt ettt ettt ettt b e bbbt sttt b ettt et b bt bbb naen 131
0.4 StAtIC EXPIESSIONS ...cvevitiruirtiteterteteutetetteteetesteste st eatesteseetteuteresbeebe s bt st ebes s et entestebeenesaesbenbenaens 139
9.5 UNIVETSAl EXPIESSIONS ...c..evitirentetiteteteitetteteete et sttt ettt estettebesb e st ebe st sbentebeteneeneeneeneseens 142

10. Sequential STALEIMEINES.ccueiiiriiirireret ettt ettt ettt ettt sttt et et ea et n e e 145
LO.1 GONCTAL.....eieiieiieie ettt ettt ettt e et e et e ene e st eneesseensesseense et eensenseenseeneensesneensennean 145
10.2 WAt SEALCIMEGIE ...ovvevieiiieiieieeeieieeeeie et eie et et e e et et e et etesseensesseessesseessenseeneesseensesseensessessneensesnean 145
10.3 ASSEITION STALEINIENL ... eeuveetieeiietietieiieteeteeteeeteteeetesteeeeesseessesseessesseesesseensenseensesseensenseeneensesneen 147
10.4 REPOTT STALEIMENLcovvieuiieiiiiieeiieeie ettt ettt ettt e st et e st e et esbeeeabe e bt esebeeseenane s 148
10.5 Signal assignment STAtEIMENLcveruieierieieieetieee st eteseeeee e eeae e eeteseeensesseensesneensesneensesneas 149
10.6 Variable assignment StAtEIMENLc..ceerverueerieriieiesieeieteeeeseeetessesaessessaessesssenseeneeseeneensesneas 160
10.7 Procedure call StAtEIMENTcceeriiriieiieiieie sttt ettt eeaeste e e e seeneesseenees 163
1.8 I STALCIMEILeveeeieiieieeieie et ettt et et e st e et et et e steenee st essesseenaeseensasseensenseensesnsensesneensessean 164
10.9 CaS SLALEIMENT ...e.uvieiieinieesiieeie ettt ettt ettt et et e st e et e st e e sbeesbtessbeenbeesateenstesaeesabeeseenseens 164
10. TOLOOD STALEIMENL.eeiutieiieriiietieiie ettt ettt ettt et et e st et ee st e e beesbeessbeenbeesateenbeesaeesabeeseensnens 166
TO.TTINEXE SEALEBIMETIE ..c..eeviieiieeiieiiie ettt ettt ettt et e st e sat e e s bt e st e e bt e s bbeeabeebeesabeenbeensseenseenseens 167
TO.12EXIt SEALEIMENL ...e.vveuieiiieieeiieieeieeteeetete et este st eteesaeeesseesseeseeseeseensesssensesssensenssenseensansesssensessean 167
1O I3RETUIN STALEIMENLevvieniieiiiieiieie ettt ettt sttt ettt et e st et e sbt e ebeenbeesateenbeesatesabeeseenaee s 168
LO.TANUIL SEALCIMENLvevvenieeiieii ettt ete st ete e eteste et et et e sseessesseessesseessesseesseseessenseensesseensesssensesseas 168

11. CONCUITENT SEALEITIETIESe.uteeiiieitieiieeieesite ettt et e et etee sttt e bt e sbeeeabeebtesabeesbbesabeenbeesabeenbeenstesnseanseens 169
L1.1 GONCTAL....c.eieiieiieiecieee ettt ettt et e et et e st e ste e st e s e ensesseessesseensesseensenseensesneensesseensesseas 169
11.2 BIOCK StAtEIMENL.cueeiieeieiieeieieeiesieeiteie st e et eet et esaesaeesaeseeessesseessesaessesseessenseensesseensesseensens 169
11.3 PrOCESS STALEINENL ...ccuuiiiuiieiieiiieetienite ettt ettt et e site et e sitesateebeesabeeabeesbbesabeenbeessbeenseensaeenseenseens 170
11.4 Concurrent procedure call StatemMENtSc.ccvvrverieiieiiieieie ettt eresee e sseenees 172
11.5 Concurrent assertion StAtCIMEIILSc.ecveeverreerueriieresteetesseeseesseessesseesessaessesseessesssessesssessessees 173
11.6 Concurrent signal assignment StAtEMENTSc.eeverveeieriieiierieeiereeeeseeereteeeseseeesesseessesseeneas 174
11.7 Component instantiation StAtCIMENLScverveerieriierieriieteeiesiesreeaeseesesseeseesseseeseensesssessesses 176
11.8 GENETate STALEIMENLSeevieeiiieiieiie et ettt et ettt et et e et e ebee st e e beesttessbeenbeesabeenbeenaeesabeenseenseenn 182

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

12.

13.

14.

15.

16.

- iii - IEC 61691-1-1:2011(E)

IEEE Std 1076-2008

SCOPE ANA VISIDILILY ..ottt ettt st b e ettt e et et e e neeene 185
12.1 DEClarative TEZIOMeueeieeiieiietieie ettt sttt ettt et e et e e et e e st e e eteense st eneesneeneeeneeseenean 185
12.2 ScOPE Of dECIATATIONSveeeieeiieiiete ettt ettt ettt ee et s et e e eeeneesneeneas 185
12.3 VISTIDIIIEY vttt ettt ettt s et ese et e beese b e b e s e st eneaseeseeneesassensensaneanens 187
12,4 TUSE ClAUSES ...ttt ettt ettt ettt sttt e sttt et e et e s e te e st e st e meessees e et e enteeseeneennesneenseenean 191
12.5 The context of overload reSOIULIONc..eeriiiieieiieiee et 192
Design units and their analySisccooieieriiieie ettt neeeneas 195
13,1 DIESIGI UIILS ...eueeeueieiieieeiieteeeeesteetesteeseeste e testeeseeteenee st eneenseeneesseeseanseensenseensenseeneesneensesneensesnean 195
LR 0P B 1TSS T L) 2 (<L SR PTS 195
13.3 ConteXt ECIATATIONSee.vereieeiieiieieeieeie ettt et te et et e et esee s eete st e e eseenteeseenseeneensesneesesnean 197
13.4 CONLEXE CLAUSESveveenieeiieiieeieie et et ete st et et et et e e et e et e e st eteeseenseese e seeseenseeseeseeneenseeneensesnean 197
13.5 Order Of @NaLYSIScoververieriiieieieiieieeteetet ettt st sttt ettt s 198
Elaboration and EXECULIONcc.eiueiiirieriieeiesie ettt e st et e st aeseeeeeen e ensenseeneenseeneesneenean 199
L € 153 1 | TP 199
14.2 Elaboration of a design hierarchyc.cccceceeivieiiiriiiiininininsene et 199
14.3 Elaboration of a block, package, or subprogram header............c..cocovevievienecincnininincncnene. 202
14.4 Elaboration of a declaratiVve Part..........cccveceeririenenieieeieie ettt 205
14.5 Elaboration of a Statement PAItcceeevererieriieieie et eeeeae sttt ee e eneesneenaeeneas 210
14.6 Dynamic €labOrationc..coerueieieieieiineriirieetetenetet ettt st sttt ettt sbe e saeenes 213
14.7 Execution 0f @ MOcc.oiiiriieiieiei et 214
ey o1 I (S5 10T 41T 225
LT € 153 1 | PP 225
15.2 CRATACTET SET ...vevitiieiertitestet ettt ettt ettt sttt ettt et et eb et st sb e bbbt a e et et ebeebesbesaennen 225
15.3 Lexical elements, separators, and delimitersccecuevierierierienieieseeieieee e 227
I5.4 TACIEITIETS ...ttt bbbttt ettt eb e sbe b e enes 229
15.5 ADSIIACT [IERTALScueuetititeriertetciteitccet ettt st sttt et ettt sbe e e aes 230
15.6 Character EETALScoueeuiiiiiriiict ettt sttt ettt s s 231
15.7 SEEING TEETALS ..cveevieeieciieie ettt ettt e e st e s e e e e et e entessaenseeneensesneensennean 231
15.8 Bit StIINE HEETALS.c.uiiieiieiieiieiieie ettt ettt e s be et enb e s e enseeneensesneensesnean 232
15.9 COMIMENLS ..ottt ettt ettt ettt et ettt et sa e et es e sb e eab et entesaeenaesaeennenaeen 234
15, T0ORESEIVEA WOTES ...c.evevitiieieteiieieie ettt sttt ettt et b e s 235
I5.11TOOL IFECHIVESeviiiiiitiiteriestet ettt ettt sttt a et eb bt b s nes 237
Predefined [anguage eNVITONMENTcceecveriieieniiiierieeieteeeete et estestesae e essessaessesseensesseensessesnnes 239
160.1 GONEIAL.....cuiiiiiiiietitest ettt ettt ettt b bt bt bbb st ettt et et eb e bt st nen 239
16.2 Predefined attriDULEScovevierieiiiiiiiieeiet ettt st e 239
16.3 Package STANDARDc.oooiiiiiiieie sttt ettt e s beesbestaenb et e enseeseensesseeseennan 254
16.4 Package TEXTIOcccioiieieiieieie ettt sttt ettt ssaessesae s seessessaessesseensenseensensensnan 268
16.5 Standard environment PACKAZEccvevvieierieeieriieieieeieteeteste et etesees e sreessesseesaesseensesseensesseas 274
16.6 Standard mathematical PACKAZESceeeveriirieriieieie ettt seseees 275
16.7 Standard multivalue 10ZiC PACKAZEeevvervieieiieieieeiieteee et 276
16.8 Standard SyNthesis PACKAZESccvvevirierieiiieiesiteie st et et te sttt e et seeeeenbeesaesesseensesseensesneas 277
16.9 Standard synthesis context declarationsc..cceecverieriiriereiieneeeee e 283
16.10FIX@d-POINt PACKAZE. .. .cveeeveiieiietieeieriieieete et e it eie et ete e stessaesessae e esaenseesaenseeseensessnensessnan 283
16.11F10ating-point PACKAZEcc.verierrieiiriieierieeteieetete et ettt esaesseesessaessesseessessaessesseensesseessessees 284

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -iv-

IEEE Std 1076-2008

17. VHDL Procedural INterface OVEIVIEWceiuiiieiiieiieiieieeie ettt e 285
LR B € 153 1 T | TP 285
17.2 Organization Of the interfaceccoiieiiiieiiiee e e 285
LR I O 301031 1 <1 PP 286
17,4 HANAIES ...ttt ettt ettt ettt e e bt et e et e et en e n e et e e neeteeneeaeenean 288

18. VHPI ACCESS fUNCLIONS ..ottt ettt st et e e e e st et e et eneeeneeeesneensesnean 291
L0 € 153 1 T | PP 291
18.2 Information access fUNCHIONScc.eeieriirierieeiieieei ettt sttt e e eneesseenaenneas 291
18.3 Property acCess fUNCLIONS.eeuiereieiieitieiieriesitete ettt et ee et e et e e et ene e s e e sneeneesneenseenean 293
18.4 Access DY NamMeE fUNCHIONo.uieuieiieeieie ettt ettt e aeeeeen 294

19. VHPI information MOdelc.ooiiiiiiiiiieieceeeee et 295
L € 153 1 3 | PP 295
19.2 FOrmMal NMOtALIONeuiiiieiieiieeieie ettt ettt ettt ettt et st e st e s st et e eseeneeeseenseeneesesneesneensenneas 295
19.3 Class inheritance hierarchyccccecueiirinininiiniciir ettt 296
19.4 NAIME PIOPEILIES ..cevevereirireteteitettetteteeteetert sttt et ettett bt sbee bt s besbe st et e st et eneeatenteneeteebesaesaennes 297
19.5 The stdUninstantiated PaCKAZEcoveeveruerieiruiriiinieeresteeeee ettt 310
19.6 The stdHIierarchy Packagecoevveeueiriririninineeteteete sttt ettt 313
19.7 The stATYPes PACKAZEcovertiriiiiiieieieetiri sttt sttt ettt 320
19.8 The StAEXPT PACKAZEcviovirieieiieiieiieieetist ettt ettt s st 322
19.9 The StASPEC PACKAZEcc.ervirtiriiieiieiieiieiietert ettt sttt ettt aes 325
19.10The stdSubprograms PACKAZEcc.ccveeruiriiririririeteteieteitee sttt ettt 327
19.11The StdStMLS PACKAZEeuveuiimieiiiiiiiiiiiititet ettt sttt ettt s s 329
19.12The stdCoNNECtiVity PACKAZEecveevereieierieeiesiieienieeieettete st este st ae e seeenteesaenteeneeseeneensesnees 335
19.13The stdCallbacks PACKAZEcevvirieriieieieeieieeee ettt et e ee e sneeneas 340
19.14The StAENGINEG PACKAGEeevvieieniiciieieeieee sttt ettt sttt ee et enee e esesnean 340
19.15The StdFOreign PaCKAZEccveevervieieiiieiestieeee ettt ettt e eneeaesneenseenean 341
19.16The StAMEta PACKAZE ...e.veeveeniieiieiieiieie ettt ettt te e st e sse st esseeseensessaeseeneeseennensesnean 341
19.17The StATOO0] PACKAZEc.veeveeeiieiieii ettt ettt e st e e nseensenseeneas 343
19. 18 APPIICALION CONIEXLS ..vevvieuretieiietieiterteetesteeeteteesteseeestesseeseesesseensesseessesseensenseensesseensesseessesnes 344

20. VHPI t00] €XECULION ...veuiiiiiiiierieieiieiteieettet ettt ettt sttt ettt st st be bbb e e e 345
20.1 GENEIAL.....cuitiiiitiitetet ettt ettt b bbbttt ettt et ebe et be st e aen 345
20.2 Re@ISTrAtiON PRASE.....ecuieiieiieiieiieie ettt tte ettt eteetesseestesseesaesseesaenseensanseenseseeseensenneas 345
20.3 ANALYSIS PRASE ..eeveeeieiieieeiietiet ettt et ettt et e et e et e st e besreenbessa e seeteenseesaenseeneensesneensenneas 351
20.4 E1aDOTation PRASE.......c.eervieiieiieieieeeeie et este sttt eteesteettesesseetesseessessaessesseenseesaansesseensesssensensens 351
20.5 InitialiZation PRASEccvirvieiieieie et eterte ettt ettt e ae st esessae e ssaesseesaenseeneenseeneensenneas 353
20.6 SIMUIALION PRASE....c.veitieiieiieiieieie ettt ettt et ettt ebesseessesseensesseesseeseessesseensesseensensens 353
20.7 SAVE PRASEC...cuviieieieeiieiieiieteeieste st e ste st e e et esbeett e te et e st etaese et e te et a e beesbenseeteanseesteseennesseensenneas 353
20.8 RESTAIt PRASE ...cuveivieeieiieieetieiiet ettt ettt et e st e e e e seessesseessessaesseeseessenseensesseensesseensenneas 354
20.9 RESEE PRASE ...vevieiieeiieiiieiieit ettt sttt et et et et e st e esse st essesseensesseenseeseesseesaenseeneenseeneensenneas 354
20.10TermMination PRASE........ccveveriieiertieiterieete st etesteetesteestesteestesseessesseesaesseessenseessenseassesesssensessees 355

21, VHPT CAIIDACKS ...ttt ettt bbbt sie 357
211 GNEIAL.....iititiie sttt ettt b bbbttt b et et eb e bt neenen 357
21.2 CallbaCK fUNCLIONSeoviitiitiriitiieiieiteitet ettt sttt ettt sttt b e nes 357
21.3 CallbACK TEASOMSueeeieiiitieiiieiteee ettt ettt ettt e et e et s et enaeese e seeseen e eneenteeneenseeneenaesnean 359

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-V- IEC 61691-1-1:2011(E)

IEEE Std 1076-2008

22. VHPI value access and UPAate.........ccoeieiiiieieiieeeieee ettt e e eneas 371
0 B € 153 1 <) | R TRR 371

22.2 Value Structures and tYPEScecveruieiereeierieeiieeieeee sttt ettt ste et ettt e e st et et eneeaeenean 371

22.3 Reading ODJECt VAIUEScoueiiieeieiieieie ettt ettt ettt neenee e e naeeneas 374

22.4 FOrMAtting VAIUCSocueeiiieieiieiieie ettt ettt sttt ettt e s e e st eneesneenaeenean 375

22.5 Updating ODJECt VAIUES.ccueeuieiieeieiieiieie sttt ettt ettt eee e bt e s e be et eseeneenaeenean 377

22.6 Scheduling transactions ON AIIVETScc.ieeeruerierieriieiesteeee et eee st eeesteeeeeneeeseeneeeneeneesseenaesneas 381

23. VHPI fUNCHION TEEETEICE ... eevieeieiieiieit ettt ettt sttt ettt e et eneeseeeseeeneenseenean 385
B B € 1< 1 <) | PR R 385

B 4 1Yo TS o USSR 385

23.3 VAPL CRECK CITOT ..ottt ettt ettt se et e s e e e nneenees 386

23.4 vhpi_compare handlescooceriiiiiiieeeeee e 388

23.5 VRPL COMEIOL...iiiiiiitiiiiitietert ettt ettt ettt bbbttt et ettt be e e nes 389

23.0 VIIPL CTRALEcueueiitertestiet ettt ettt ettt ettt et et ettt b et be bbb ea et et eat e st e bt ebeebesaeneenes 390

23.7 VIPL_diSADIE €D c..cuiiiiiiiiiiiiicccc ettt s 392

23.8 VIPL_€NADIE CD ..ottt ettt e 393

23.9 VhP1_fOrmMat VAIUEco.evuiiiiiiiiiiiictcic ettt sttt 394

23 T0VRPI ZEE ottt bbbttt et ebe b e e nen 396
23.11VHPL ZEt CD INTO ettt 396
23.12VAPT GO dALA...ccuiiiiiiiiiirtiiert e ettt ettt 397
23.13vhpi_get foreignf INfOcccooiiiiiriiieie e 399
23.14VHPI ZEt NEXE TITIC ..eveuiriiriirtiteieteteiteit ettt ettt ettt ettt be s sttt eae bt b sae e nes 400

23 15VRAPT GO PIYS .ttt bbbttt ettt ae e 401
23.1OVRAPT ZEE TEAL ..ttt bbb ettt e 402

23 1TVRAPL GO SIE ettt ettt sttt et et b e sa s 402

B B 341 o e L U T TSRS 403

B I 41 oV e 2 Y L PSPPSR 404

B I 41 o 1 ¥ L¢P 405
23.21vhpi_handle DY INAEX.....ccccieiiiieiieieciecieeee ettt sttt enae e e nneenean 406
23.22vhpi_handle DY NAMEcoeviiiieiieiececieeeee ettt ettt ne e sneeneeneen 408
23.23VhPL 1S PIINLADIE ..c.eeeieiieiieiieieie ettt ettt et neeneenean 410
23.24VIPT TEETALOTeeveeeietieneeetietteeteete et ete st etesteesseeseeseeeseensesseensesseensessaenseeseansenssensesnsensesneensenseas 411

B 24 1 o o) 1115 SO 412
23.26VhPi_ Protected Call......cciiiiriieiieiieieeieeie ettt ettt ee et e e st enseeneenneenean 413

I A4 1 o R o 10U L F TP 415
23.28VIPL PUL VAIUC.....eoiiiieiiciieiicteie ettt et e et ae st essessa e seeseesseessenseeneensesneensesneas 417
23.29VIPI TEGISTET CD.uvviriiiieiiciieiicie ettt ettt ettt be e esa et e esbenseeneenseeneensesneas 418
23.30Vhpi_re@iSter fOrCIGNTccciiiiiiieieiieeeeee ettt saeeaeeneas 419
23.31vhpi_release handle..........c.ociecieriieieniiiierie ettt ettt sre s eneen 421
23.32VIPL TEIMOVE CD.uviiiiiiieiiiciieiiet ettt ettt te s e e e st esseeseesseesaenseensensessnensesnnen 422

e 3041 o T o AR SPRT 422
23.34vhpi_schedule tranSaction...........c.cccveeverieiierieiierieseeieee ettt e et ese e esbesseeseesseesaesseennes 423
23.35VIPL VPIINEE ..ottt ettt et te s ae e s e st e e se et e enseeseenseeseenseeseennenneas 426

24. Standard t0O] QITECLIVESevverueieiieiiiiirieeiese ettt ettt sttt ettt sa e ee 429
24.1 Protect t00] dIr@CLIVESeeuiiitieieetieieeieee sttt ettt ettt et ese e e e s e e eneeseeneenaeeneas 429

Annex A (informative) Description of accompanying filesccoccveeerieiiriieriiiere e 447
Annex B (normative) VHPI header file........coooviiiiiiiiiiicieiec ettt 451

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) - Vi-

IEEE Std 1076-2008

Annex C (informative) SYNtax SUMIMATYcceiirierieiereeeiee et ete et e steesee st eeesseeseeneeeneessesseesesneens 477
Annex D (informative) Potentially nonportable CONSIUCESccirueeriirierieieeieieee e 501
Annex E (informative) Changes from IEEE Std 1076-2002ccoeoiiiiiieieiieieeeeere e 503
Annex F (informative) Features under consideration for removalc.coccveeeiiiiiiniieiie i 511
Annex G (informative) Guide to use of standard packages.........cocvevuerieriinieiieieeeee e 513
Annex H (informative) Guide to use of protect dir€CtiVesccvvveruerieriieieieeieieeeeee e 551
Annex I (Informative) GLOSSAIYccuiiuieiiiriieiieieeierit ettt ettt ettt et e s te et e st eneesaeeeesseenaesseensesseenseseans 557
Annex J (informative) BiblIOZIaphycccoeririririiniiieieierre ettt e 585
Annex K (informative) IEEE List of partiCipants...........ccccocceieererinienieneieieeeeeieseneseereseseeeeseneeneeveenes 587
5416 15 PSR 589

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

- Vii - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

INTERNATIONAL ELECTROTECHNICAL COMMISSION

BEHAVIOURAL LANGUAGES -

Part 1-1: VHDL Language Reference Manual

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization
comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to
promote international co-operation on all questions concerning standardization in the electrical and
electronic fields. To this end and in addition to other activities, IEC publishes International Standards,
Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter
referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC
National Committee interested in the subject dealt with may participate in this preparatory work.
International, governmental and non-governmental organizations liaising with the IEC also participate in
this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in
accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an
international consensus of opinion on the relevant subjects since each technical committee has
representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly
indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide
conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not
responsible for any services carried out by independent certification bodies.

6) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61691-1-1/IEEE Std 1076 has been processed through IEC
technical committee 93: Design automation.

This second edition cancels and replaces the first edition published in 2004. This edition
constitutes a technical revision.

The text of this standard is based on the following documents:

IEEE Std FDIS Report on voting
1076 (2008) 93/302/FDIS 93/304/RVD

Full information on the voting for the approval of this standard can be found in the report
on voting indicated in the above table.

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) - Viii -
IEEE Std 1076-2008

A list of parts of the IEC 61691 series can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged
until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the
data related to the specific publication. At this date, the publication will be

* reconfirmed,

« withdrawn,

* replaced by a revised edition, or
*+ amended.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-ix - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

IEC/IEEE Dual Logo International Standards

This Dual Logo International Standard is the result of an agreement between the IEC and the Institute of Electrical
and Electronics Engineers, Inc. (IEEE). The original IEEE Standard was submitted to the IEC for consideration
under the agreement, and the resulting IEC/IEEE Dual Logo International Standard has been published in
accordance with the ISO/IEC Directives.

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees
of the IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards through a
consensus development process, approved by the American National Standards Institute, which brings together
volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily
members of the Institute and serve without compensation. While the IEEE administers the process and establishes
rules to promote fairness in the consensus development process, the IEEE does not independently evaluate, test,
or verify the accuracy of any of the information contained in its standards.

Use of an IEC/IEEE Dual Logo International Standard is wholly voluntary. The IEC and IEEE disclaim liability for
any personal injury, property or other damage, of any nature whatsoever, whether special, indirect, consequential,
or compensatory, directly or indirectly resulting from the publication, use of, or reliance upon this, or any other IEC
or IEEE Standard document.

The IEC and IEEE do not warrant or represent the accuracy or content of the material contained herein, and
expressly disclaim any express or implied warranty, including any implied warranty of merchantability or fitness for
a specific purpose, or that the use of the material contained herein is free from patent infringement. IEC/IEEE Dual
Logo International Standards documents are supplied “AS IS”.

The existence of an IEC/IEEE Dual Logo International Standard does not imply that there are no other ways to
produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEC/
IEEE Dual Logo International Standard. Furthermore, the viewpoint expressed at the time a standard is approved
and issued is subject to change brought about through developments in the state of the art and comments received
from users of the standard.

Every IEEE Standard is subjected to review at least every five years for revision or reaffirmation. When a document
is more than five years old and has not been reaffirmed, it is reasonable to conclude that its contents, although still
of some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they
have the latest edition of any IEEE Standard.

In publishing and making this document available, the IEC and IEEE are not suggesting or rendering professional
or other services for, or on behalf of, any person or entity. Neither the IEC nor IEEE is undertaking to perform any
duty owed by any other person or entity to another. Any person utilizing this, and any other IEC/IEEE Dual Logo
International Standards or IEEE Standards document, should rely upon the advice of a competent professional in
determining the exercise of reasonable care in any given circumstances.

Interpretations — Occasionally questions may arise regarding the meaning of portions of standards as they relate to
specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate
action to prepare appropriate responses. Since IEEE Standards represent a consensus of concerned interests, it is
important to ensure that any interpretation has also received the concurrence of a balance of interests. For this
reason, |IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an
instant response to interpretation requests except in those cases where the matter has previously received formal
consideration.

Comments for revision of IEC/IEEE Dual Logo International Standards are welcome from any interested party,
regardless of membership affiliation with the IEC or IEEE. Suggestions for changes in documents should be in the
form of a proposed change of text, together with appropriate supporting comments. Comments on standards and
requests for interpretations should be addressed to:,

Secretary, IEEE-SA Standards Board, 445 Hoes Lane, Piscataway, NJ 08854, USA and/or General Secretary, IEC,
3, rue de Varembé, PO Box 131, 1211 Geneva 20, Switzerland.

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the Institute
of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance
Center. To arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service,
222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy portions of any
individual standard for educational classroom use can also be obtained through the Copyright Clearance Center.
NOTE - Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken with respect to the existence or
validity of any patent rights in connection therewith. The IEEE shall not be responsible for identifying patents for
which a license may be required by an IEEE standard or for conducting inquiries into the legal validity or scope of
those patents that are brought to its attention.

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

Copyrighted material licensed to BR Demo by Thomson Reuters (Scientific), Inc., subscriptions.techstreet.com, downloaded on Nov-28-2014 by James Madison. No further reproduction or distribution is permitted. Uncontroll

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

- Xi - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

IEEE Standard VHDL Language
Reference Manual

Sponsor

Design Automation Standards Committee
of the
IEEE Computer Society

Approved 26 September 2008
IEEE SA-Standards Board

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1: 2011 (E) - Xii -
IEEE Std 1076-2008

Acknowledgments

The editing and technical work done on the 2008 revision of this standard was done in collaboration
between Accellera VHDL Technical Subcommittee and the IEEE VHDL Analysis and Screening
Committee (VASG). Accellera had donated all of its work and copyrights back to the IEEE.

Material in clause titled “Protect Tool Directives” is derived from the document titled “A Mechanish
for VHDL Source Protection” © 2004, Cadence Design Systems Inc. Used, modified, and reprinted
by permission of Cadence Design Systems Inc.

The packages FIXED_GENERIC PKG, FIXED_PKG, FLOAT_GENERIC_PKG, FLOAT_PKG, and
FIXED_FLOAT_TYPES were modified and used with permission from Eastman Kodak Company
© 2006. Material in annex clauses titled “Using the fixed-point package” and “Using the floating-
point package” is derived from the documents titled “Fixed Point Package User's Guide” and
“Floating Point Package User’s Guide” by Eastman Kodak Company © 2006. Used, modified, and
reprinted by permission of Eastman Kodak Company.

The package STD_LOGIC_TEXTIO was modified and used with permission of Synopsys, Inc. ©
1990, 1991, and 1992.

Abstract: VHSIC Hardware Description Language (VHDL) is defined. VHDL is a formal notation
intended for use in all phases of the creation of electronic systems. Because it is both machine
readable and human readable, it supports the development, verification, synthesis, and testing of
hardware designs; the communication of hardware design data; and the maintenance,
modification, and procurement of hardware. Its primary audiences are the implementors of tools
supporting the language and the advanced users of the language.

Keywords: computer languages, electronic systems, hardware, hardware design, VHDL

IEEE and POSIX are registered trademarks in the U.S. Patent & Trademark Office, owned by the Institute of Electrical and
Electronics Engineers, Incorporated.

MagicDraw and No Magic, Inc., are registered trademarks of No Magic, Inc. in the United States and other countries.

TRI-STATE is a registered trademark of National Semiconductor Corporation.

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

- Xiii - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

IEEE introduction

The VHSIC Hardware Description Language (VHDL) is a formal notation intended for use in all phases of
the creation of electronic systems. Because it is both machine readable and human readable, it supports the
development, verification, synthesis, and testing of hardware designs; the communication of hardware
design data; and the maintenance, modification, and procurement of hardware.

This document, IEEE Std 1076-2008, is a revision of IEEE Std 1076-2002 as amended by
IEEE Std 1076¢™-2007. Initial work on gathering requirements and developing language extensions
was undertaken by the IEEE VHDL Analysis and Standardization Group (VASQG), otherwise known as the
1076 Working Group. Subsequently, Accellera® sponsored an effort to complete that work and draft a
revised Language Reference Manual. That draft was returned to IEEE for final revision and approval,
resulting in this document and the associated machine-readable files. This revision incorporates numerous
enhancements, both major and minor, to previously existing language feaures and several new language
features. The changes are summarized in Annex E. In addition, several VHDL library packages that were
previously defined in separate standards are now defined in this standard, ensuring that they are treated as
integral parts of the language. Finally, this revision incorporates the IEEE Property Specification Language
(PSL) as part of VHDL. The combination of these changes significantly improves VHDL as a language for
specification, design, and verification of complex electronic systems.

The maintenance of the VHDL language standard is an ongoing process. The chair of the VHDL Analysis
and Standardization Group extends his gratitude to all who have participated in this revision, both in the
IEEE committees and the Accellera effort, and encourages the participation of all interested parties in future
language revisions.?

Notice to users

Laws and regulations

Users of these documents should consult all applicable laws and regulations. Compliance with the
provisions of this standard does not imply compliance to any applicable regulatory requirements.
Implementers of the standard are responsible for observing or referring to the applicable regulatory
requirements. IEEE does not, by the publication of its standards, intend to urge action that is not in
compliance with applicable laws, and these documents may not be construed as doing so.

Copyrights

This document is copyrighted by the IEEE. It is made available for a wide variety of both public and private
uses. These include both use, by reference, in laws and regulations, and use in private self-regulation,
standardization, and the promotion of engineering practices and methods. By making this document
available for use and adoption by public authorities and private users, the IEEE does not waive any rights in
copyright to this document.

#More information is available at www.accellera.org.
bIf interested in participating, please contact the VASG at stds-vasg@ieee.org or visit: http://www.eda.org/vasg.

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) - Xiv -
IEEE Std 1076-2008

Updating of IEEE documents

Users of IEEE standards should be aware that these documents may be superseded at any time by the
issuance of new editions or may be amended from time to time through the issuance of amendments,
corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the
document together with any amendments, corrigenda, or errata then in effect. In order to determine whether
a given document is the current edition and whether it has been amended through the issuance
of amendments, corrigenda, or errata, visit the IEEE Standards Association website at http://
ieeexplore.ieee.org/xpl/standards.jsp, or contact the IEEE at the address listed previously.

For more information about the IEEE Standards Association or the IEEE standards development process,
visit the IEEE-SA website at http://standards.ieee.org.

Errata

Errata, if any, for this and all other standards can be accessed at the following URL: http://
standards.ieee.org/reading/ieee/updates/errata/index.html. Users are encouraged to check this URL for
errata periodically.

Interpretations

Current interpretations can be accessed at the following URL: http://standards.ieee.org/reading/icee/interp/
index.html.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken with respect to the existence or
validity of any patent rights in connection therewith. The IEEE shall not be responsible for identifying
patents or patent applications for which a license may be required to implement an IEEE standard or for
conducting inquiries into the legal validity or scope of those patents that are brought to its attention.

IMPORTANT NOTICE: This standard is not intended to assure safety, security, health, or
environmental protection in all circumstances. Implementers of the standard are responsible for
determining appropriate safety, security, environmental, and health practices or regulatory requirements.

This IEEE document is made available for use subject to important notices and legal disclaimers. These
notices and disclaimers appear in all publications containing this document and may be found under the
heading “Important Notice” or “Important Notices and Disclaimers Concerning IEEE Documents.”
They can also be obtained on request from IEEE or viewed at http://standards.ieee.org/IPR/
disclaimers.html.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

http://standards.ieee.org/reading/ieee/interp/index.html
http://standards.ieee.org/reading/ieee/interp/index.html
http://standards.ieee.org/IPR/disclaimers.html
http://standards.ieee.org/IPR/disclaimers.html

-1- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

Behavioural languages — Part 1-1:
VHDL Language Reference Manual

1. Overview of this standard

1.1 Scope

This standard revises and enhances the VHDL language reference manual (LRM) by including a standard C
language interface specification; specifications from previously separate, but related, standards
IEEE Std 1164™-1993 [B16],! IEEE Std 1076.2™-1996 [B11], and IEEE Std 1076.3™-1997 [B12]; and
general language enhancements in the areas of design and verification of electronic systems.

1.2 Purpose

The VHDL language was defined for use in the design and documentation of electronics systems. It is
revised to incorporate capabilities that improve the language’s usefulness for its intended purpose as well as
extend it to address design verification methodologies that have developed in industry. These new design
and verification capabilities are required to ensure VHDL remains relevant and valuable for use in electronic
systems design and verification. Incorporation of previously separate, but related standards, simplifies the
maintenance of the specifications.

!The numbers in brackets correspond to those of the bibliography in Annex J.

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -2-
IEEE Std 1076-2008

1.3 Structure and terminology of this standard
1.3.1 General

This standard is organized into clauses, each of which focuses on some particular area of the language.
Within each clause, individual constructs or concepts are discussed in each subclause.

Each subclause describing a specific construct begins with an introductory paragraph. Next, the syntax of
the construct is described using one or more grammatical productions.

A set of paragraphs describing the meaning and restrictions of the construct in narrative form then follow.

In this document, the word skall is used to indicate a mandatory requirement. The word should is used to
indicate a recommendation. The word may is used to indicate a permissible action. The word can is used for
statements of possibility and capability.

Finally, each clause may end with examples, notes, and references to other pertinent clauses.
1.3.2 Syntactic description

The form of a VHDL description is described by means of context-free syntax using a simple variant of the
Backus-Naur form (BNF); in particular:

a) Lowercase words in roman font, some containing embedded underlines, are used to denote syntactic
categories, for example:

formal port_list

Whenever the name of a syntactic category is used, apart from the syntax rules themselves, spaces
take the place of underlines [thus, “formal port list” would appear in the narrative description when
referring to the syntactic category in item a)].

b) Boldface words are used to denote reserved words, for example:
array
Reserved words shall be used only in those places indicated by the syntax.

¢) A production consists of a left-hand side, the symbol “::=” (which is read as “can be replaced by”),
and a right-hand side. The left-hand side of a production is always a syntactic category; the right-
hand side is a replacement rule. The meaning of a production is a textual-replacement rule: any
occurrence of the left-hand side may be replaced by an instance of the right-hand side.

d) A vertical bar (]) separates alternative items on the right-hand side of a production unless it occurs
immediately after an opening brace, in which case it stands for itself, as follows:
letter or digit ::= letter | digit
choices ::= choice { | choice }
In the first instance, an occurrence of “letter or digit” can be replaced by either “letter” or “digit.”
In the second case, “choices” can be replaced by a list of “choice,” separated by vertical bars [see
item f) for the meaning of braces].

e) Square brackets [] enclose optional items on the right-hand side of a production; thus, the following
two productions are equivalent:

return_statement ::= return [expression] ;
return_statement ::= return ; | return expression ;
Note, however, that the initial and terminal square brackets in the right-hand side of the production

for signatures (see 4.5.3) are part of the syntax of signatures and do not indicate that the entire right-
hand side is optional.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-3- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

f) Braces { } enclose a repeated item or items on the right-hand side of a production. The items may
appear zero or more times; the repetitions occur from left to right as with an equivalent left-recursive
rule. Thus, the following two productions are equivalent:

term ::= factor { multiplying operator factor }
term ::= factor | term multiplying operator factor

g) If the name of any syntactic category starts with an italicized part, it is equivalent to the category
name without the italicized part. The italicized part is intended to convey some semantic informa-
tion. For example, fype_name and subtype name are both syntactically equivalent to name alone.

h) The term simple name is used for any occurrence of an identifier that already denotes some
declared entity.

1.3.3 Semantic description

The meaning and restrictions of a particular construct are described with a set of narrative rules immediately
following the syntactic productions. In these rules, an italicized term indicates the definition of that term,
and identifiers appearing entirely in uppercase letters refer to definitions in package STANDARD (see
16.3).

The following terms are used in these semantic descriptions with the following meanings:

erroneous: The condition described represents an ill-formed description; however, implementations are not
required to detect and report this condition. Conditions are deemed erroneous only when it is impossible in
general to detect the condition during the processing of the language.

error: The condition described represents an ill-formed description; implementations are required to detect
the condition and report an error to the user of the tool.

illegal: A synonym for “error.”
legal: The condition described represents a well-formed description.
1.3.4 Front matter, examples, notes, references, and annexes

Prior to this subclause are several pieces of introductory material; following Clause 24 are some annexes and
an index. The front matter, annexes (except Annex B), and index serve to orient and otherwise aid the user
of this standard, but are not part of the definition of VHDL; Annex B, however, is normative.

Some clauses of this standard contain examples, notes, and cross-references to other clauses of the standard;
these parts always appear at the end of a clause. Examples are meant to illustrate the possible forms of the
construct described. Illegal examples are italicized. Notes are meant to emphasize consequences of the rules
described in the clause or elsewhere. In order to distinguish notes from the other narrative portions of this
standard, notes are set as enumerated paragraphs in a font smaller than the rest of the text. Cross-references
are meant to guide the user to other relevant clauses of the standard. Examples, notes, and cross-references
are not part of the definition of the language.

1.3.5 Incorporation of Property Specification Language

VHDL incorporates the simple subset of the Property Specification Language (PSL) as an embedded
language for formal specification of the behavior of a VHDL description. PSL is defined by
IEEE Std 1850™-2005.2 All PSL constructs that appear in a VHDL description shall conform to the

2Information on references can be found in Clause 2.

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -4-
IEEE Std 1076-2008

VHDL flavor of PSL. Within this standard, reference is made to syntactic rules of PSL. Each such reference
has the italicized prefix PSL_ and corresponds to the syntax rule in IEEE Std 1850-2005 with the same name
but without the prefix.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

|onuooun “panwiad S uonnguisip 10 uononpoidal Jayuny ON "UOSIPRIN Sawer AQ $T0Z-8Z-A0ON U0 PapPeOjUMOP ‘W02°18311sYyoa1 suonduosgns “-ou| ‘(oynuaios) siainay uoswoy L Agq owad Hg 01 pasusdl| [eusrew paiybuidod

-5- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

2. Normative references

The following referenced documents are indispensable for the application of this document (i.e., they must
be understood and used, so each referenced document is cited in text and its relationship to this document is
explained). For dated references, only the edition cited applies. For undated references, the latest edition of
the referenced document (including any amendments or corrigenda) applies.

IEC 62531:2007, Standard for Property Specification Language (PSL) |
IEEE Std 1850™-2005, IEEE Standard for Property Specification Language (PSL)

NOTE—IEEE Std 1850-2005 was adopted as IEC 62531:2007

IEEE Std 754™-1985 (Reaff 1990), IEEE Standard for Binary Floating-Point Arithmetic.> 4
IEEE Std 854™-1987 (Reaff 1994), IEEE Standard for Radix-Independent Floating-Point Arithmetic.

ISO/IEC 8859-1:1998, Information technology—=8-bit single-byte coded graphic character sets—Part 1:
Latin alphabet No. 1.3

ISO/IEC 9899:1999, Programming languages—C.
ISO/IEC 9899:1999/Cor 1:2001, Programming languages—C, Technical Corrigendum 1.
ISO/IEC 9899:1999/Cor 2:2004, Programming languages—C, Technical Corrigendum 2.

ISO/IEC 19501:2005, Information technology—Open Distributed Processing—Unified Modeling Language
(UML) Version 1.4.2.

3IBEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box 1331, Piscataway,
NJ 08855-1331, USA (http://standards.ieee.org/).

“The IEEE standards or products referred to in this clause are trademarks of the Institute of Electrical and Electronics Engineers, Inc.

SISO/IEC publications are available from the ISO Central Secretariat, Case Postale 56, 1 chemin de la Voie-Creuse, CH-1211 Geneve
20, Switzerland/Suisse (http://www.iso.ch/) and from the IEC Central Office, Case Postale 131, 3 rue de Varembé, CH-1211 Genéve
20, Switzerland/Suisse (http://www.iec.ch/). ISO/IEC publications are also available in the United States from Global Engineering
Documents, 15 Inverness Way East, Englewood, Colorado 80112, USA (http://global.ihs.com/). Electronic copies are available in the
United States from the American National Standards Institute, 25 West 43rd Street, 4th Floor, New York, NY 10036, USA (http://
www.ansi.org/).

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

Copyrighted material licensed to BR Demo by Thomson Reuters (Scientific), Inc., subscriptions.techstreet.com, downloaded on Nov-28-2014 by James Madison. No further reproduction or distribution is permitted. Uncontroll

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

-7- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

3. Design entities and configurations

3.1 General

The design entity is the primary hardware abstraction in VHDL. It represents a portion of a hardware design
that has well-defined inputs and outputs and performs a well-defined function. A design entity may
represent an entire system, a subsystem, a board, a chip, a macro-cell, a logic gate, or any level of abstraction
in-between. A configuration can be used to describe how design entities are put together to form a complete
design.

A design entity may be described in terms of a hierarchy of blocks, each of which represents a portion of the
whole design. The top-level block in such a hierarchy is the design entity itself; such a block is an external
block that resides in a library and may be used as a component of other designs. Nested blocks in the
hierarchy are internal blocks, defined by block statements (see 11.2).

A design entity may also be described in terms of interconnected components. Each component of a design
entity may be bound to a lower-level design entity in order to define the structure or behavior of that
component. Successive decomposition of a design entity into components, and binding those components to
other design entities that may be decomposed in like manner, results in a hierarchy of design entities
representing a complete design. Such a collection of design entities is called a design hierarchy. The
bindings necessary to identify a design hierarchy can be specified in a configuration of the top-level entity in
the hierarchy.

This clause describes the way in which design entities and configurations are defined. A design entity is
defined by an entity declaration together with a corresponding architecture body. A configuration is defined
by a configuration declaration.

3.2 Entity declarations
3.2.1 General

An entity declaration defines the interface between a given design entity and the environment in which it is
used. It may also specify declarations and statements that are part of the design entity. A given entity
declaration may be shared by many design entities, each of which has a different architecture. Thus, an
entity declaration can potentially represent a class of design entities, each with the same interface.

entity _declaration ::=
entity identifier is
entity header
entity declarative part
[begin
entity statement_part]
end [entity | [entity simple name] ;

The entity header and entity declarative part consist of declarative items that pertain to each design entity
whose interface is defined by the entity declaration. The entity statement part, if present, consists of
concurrent statements that are present in each such design entity.

If a simple name appears at the end of an entity declaration, it shall repeat the identifier of the entity
declaration.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -8-
IEEE Std 1076-2008

3.2.2 Entity header
The entity header declares objects used for communication between a design entity and its environment.

entity header ::=
[formal generic_clause]
[formal port clause]

The generic list in the formal generic clause defines generics whose associated actuals may be determined
by the environment (see 6.5.6.2). The port list in the formal port clause defines the input and output ports of
the design entity (see 6.5.6.3).

In certain circumstances, the names of generics and ports declared in the entity header become visible
outside of the design entity (see 12.2 and 12.3).

Examples:
— An entity declaration with port declarations only:

entity Full Adder is
port (X, Y, Cin: in Bit; Cout, Sum: out Bit);
end Full Adder;

— An entity declaration with generic declarations also:

entity AndGate is
generic (N: Natural := 2);
port (Inputs: in Bit Vector (1 to N);
Result: out Bit);
end entity AndGate;

— An entity declaration with neither:

entity TestBench is
end TestBench;

3.2.3 Entity declarative part

The entity declarative part of a given entity declaration declares items that are common to all design entities
whose interfaces are defined by the given entity declaration.

entity_declarative part ::=
{ entity declarative item }

entity declarative item ::=
subprogram_declaration
| subprogram_body
| subprogram_instantiation_declaration
| package declaration
| package body
| package instantiation_declaration
| type_declaration
| subtype declaration
| constant declaration
| signal_declaration
| shared variable declaration
| file_declaration
| alias_declaration

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-9- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

| attribute _declaration

| attribute_specification

| disconnection_specification
| use clause

| group template declaration
| group_declaration

| PSL_Property Declaration

| PSL_Sequence Declaration
| PSL_Clock Declaration

Names declared by declarative items in the entity declarative part of a given entity declaration are visible
within the bodies of corresponding design entities, as well as within certain portions of a corresponding
configuration declaration.

The various kinds of declaration are described in Clause 6, and the various kinds of specification are
described in Clause 7. The use clause, which makes externally defined names visible within the block, is
described in Clause 12.

Example:
— An entity declaration with entity declarative items:

entity ROM is

port (Addr: in Word;

Data: out Word;

Sel: in Bit);
type Instruction is array (1 to 5) of Natural;
type Program is array (Natural range <>) of Instruction;
use Work.OpCodes.all, Work.RegisterNames.all;
constant ROM Code: Program :=

(

(STM, R14, R12, 12, R13),

(Lb, R7, 32, 0, Rl),

(BAL, R14, O, 0, R7),

) g
end ROM;

NOTE—The entity declarative part of a design entity whose corresponding architecture is decorated with the 'FOREIGN
attribute is subject to special elaboration rules. See 14.4.1.°

3.2.4 Entity statement part

The entity statement part contains concurrent statements that are common to each design entity with this
interface.

entity statement part ::=
{ entity statement }

entity statement ::=
concurrent_assertion_statement

| passive_concurrent_procedure call statement

Notes in text, tables, and figures are given for information only and do not contain requirements needed to implement the standard.

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -10-
IEEE Std 1076-2008

| passive_process_statement
| PSL_PSL Directive

It is an error if any statements other than concurrent assertion statements, concurrent procedure call
statements, process statements, or PSL directives appear in the entity statement part. All entity statements
shall be passive (see 11.3). Such statements may be used to monitor the operating conditions or
characteristics of a design entity.

Example:
— An entity declaration with statements:

entity Latch is
port (Din: in Word;
Dout: out Word;
Load: in Bit;
Clk: in Bit);
constant Setup: Time := 12 ns;
constant PulseWidth: Time := 50 ns;
use Work.TimingMonitors.all;
begin
assert Clk='l' or Clk'Delayed'Stable (PulseWidth);
CheckTiming (Setup, Din, Load, Clk);
end;

NOTE—The entity statement part of a design entity whose corresponding architecture is decorated with the 'FOREIGN
attribute is subject to special elaboration rules. See 14.5.1.

3.3 Architecture bodies
3.3.1 General

An architecture body defines the body of a design entity. It specifies the relationships between the inputs and
outputs of a design entity and may be expressed in terms of structure, dataflow, or behavior. Such
specifications may be partial or complete.

architecture_body ::=
architecture identifier of entity name is
architecture_declarative part
begin
architecture statement part
end [architecture | [architecture_simple name] ;

The identifier defines the simple name of the architecture body; this simple name distinguishes architecture
bodies associated with the same entity declaration.

The entity name identifies the name of the entity declaration that defines the interface of this design entity.
For a given design entity, both the entity declaration and the associated architecture body shall reside in the
same library.

If a simple name appears at the end of an architecture body, it shall repeat the identifier of the architecture
body.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-11- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

More than one architecture body may exist corresponding to a given entity declaration. Each declares a
different body with the same interface; thus, each together with the entity declaration represents a different
design entity with the same interface.

NOTE—Two architecture bodies that are associated with different entity declarations may have the same simple name,
even if both architecture bodies (and the corresponding entity declarations) reside in the same library.

3.3.2 Architecture declarative part

The architecture declarative part contains declarations of items that are available for use within the block
defined by the design entity.

architecture declarative part ::=
{ block declarative item }

block declarative item ::=

subprogram_declaration

| subprogram_body

| subprogram_instantiation_declaration

| package declaration

| package body

| package instantiation_declaration

| type_declaration

| subtype_declaration

| constant_declaration

| signal_declaration

| shared variable declaration

| file declaration

| alias_declaration

| component_declaration

| attribute _declaration

| attribute_specification

| configuration_specification

| disconnection_specification

| use clause

| group template declaration

| group declaration

| PSL_Property Declaration

| PSL_Sequence Declaration

| PSL_Clock Declaration

The various kinds of declaration are described in Clause 6, and the various kinds of specification are
described in Clause 7. The use clause, which makes externally defined names visible within the block, is
described in Clause 12.

NOTE—The declarative part of an architecture decorated with the 'FOREIGN attribute is subject to special elaboration
rules. See 14.4.1.

3.3.3 Architecture statement part

The architecture statement part contains statements that describe the internal organization and/or operation
of the block defined by the design entity.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -12-
IEEE Std 1076-2008

architecture_statement_part ::=
{ concurrent statement }

All of the statements in the architecture statement part are concurrent statements, which execute
asynchronously with respect to one another. The various kinds of concurrent statements are described in

Clause 11.

Examples:
— A body of entity Full _Adder:

architecture DataFlow of Full Adder
signal A,B: Bit;
begin
A <= X xor Y;
B <= A and Cin;
Sum <= A xor Cinj;
Cout <= B or (X and Y);
end architecture DataFlow;
— A body of entity TestBench:
library Test;
use Test.Components.all;

architecture Structure of TestBench
component Full Adder

is

is

port (X, Y, Cin: Bit; Cout, Sum: out Bit);

end component;
signal A,B,C,D,E,F,G: Bit;
signal OK: Boolean;
begin
UUT: Full Adder port map
Generator: AdderTest port map
Comparator: AdderCheck port map
end Structure;

— A body of entity AndGate:

architecture Behavior of AndGate is
begin
process (Inputs)
variable Temp: Bit;
begin
Temp := '1"';
for i in Inputs'Range loop
if Inputs(i) = '0' then
Temp := '0';
exit;
end if;
end loop;
Result <= Temp after 10 ns;
end process;
end Behavior;

r

(A,B,C,D,E)
(A,B,C,F,G);
(D,E,F,G,0K);

NOTE—The statement part of an architecture decorated with the 'FOREIGN attribute is subject to special elaboration

rules. See 14.5.1.

|PuMBhedbyIECundmﬂmenseﬂomIEEEADZOOSIEEE.AHﬂghmresewedj

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

-13- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

3.4 Configuration declarations
3.4.1 General

The binding of component instances to design entities is performed by configuration specifications (see 7.3);
such specifications appear in the declarative part of the block in which the corresponding component
instances are created. In certain cases, however, it may be appropriate to leave unspecified the binding of
component instances in a given block and to defer such specification until later. A configuration declaration
provides the mechanism for specifying such deferred bindings.

configuration_declaration ::=
configuration identifier of entity name is
configuration declarative part
{ verification_unit_binding_indication ; }
block configuration
end [configuration | [configuration_simple name | ;

configuration_declarative part ::=
{ configuration declarative item }

configuration_declarative item ::=
use_clause
| attribute_specification
| group_declaration

The entity name identifies the name of the entity declaration that defines the design entity at the root of the
design hierarchy. For a configuration of a given design entity, both the configuration declaration and the
corresponding entity declaration shall reside in the same library.

If a simple name appears at the end of a configuration declaration, it shall repeat the identifier of the
configuration declaration.

A verification unit binding indication in a configuration declaration binds one or more PSL verification units
to the design entity at the root of the design hierarchy. Verification unit binding indications are described in
7.3.4.

NOTE 1—A configuration declaration achieves its effect entirely through elaboration (see Clause 14). There are no
behavioral semantics associated with a configuration declaration.

NOTE 2—A given configuration may be used in the definition of another, more complex configuration.

Examples:
— An architecture of a microprocessor:

architecture Structure View of Processor is

component ALU port (---); end component;

component MUX port (---); end component;

component Latch port (---); end component;
begin

Al: ALU port map

M1l: MUX port map

M2: MUX port map

M3: MUX port map

Ll: Latch port map (- -)7

L2: Latch port map (- -);
end Structure View;

o~

~e

(
(
(
(

—_— — — —
~

~e

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -14-
IEEE Std 1076-2008

— A configuration of the microprocessor:

library TTL, Work;
configuration V4 27 87 of Processor is
use Work.all;
for Structure View
for Al: ALU
use configuration TTL.SN74LS181;
end for;
for M1,M2,M3: MUX
use entity Multiplex4 (Behavior);
end for;
for all: Latch
-— use defaults
end for;
end for;
end configuration V4 27 87;

3.4.2 Block configuration

A block configuration defines the configuration of a block. Such a block is either an internal block defined
by a block statement or an external block defined by a design entity. If the block is an internal block, the
defining block statement is either an explicit block statement or an implicit block statement that is itself

defined by a generate statement.

block configuration ::=
for block specification
{ use_clause }
{ configuration_item }
end for ;

block_specification ::=
architecture_name
| block _statement label
| generate_statement label [(generate_specification) |

generate_specification ::=
static_discrete_range

| static_expression

| alternative_label

configuration_item ::=
block configuration

| component configuration

The block specification identifies the internal or external block to which this block configuration applies.

If a block configuration appears immediately within a configuration declaration, then the block specification
of that block configuration shall be an architecture name, and that architecture name shall denote a design
entity body whose interface is defined by the entity declaration denoted by the entity name of the enclosing
configuration declaration.

If a block configuration appears immediately within a component configuration, then the corresponding
components shall be fully bound (see 7.3.2.2), the block specification of that block configuration shall be an

|PuMBhedbyIECundmﬂmenseﬂomIEEEA32008IEEE.AHﬂghmresewedj

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-15- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

architecture name, and that architecture name shall denote the same architecture body as that to which the
corresponding components are bound.

If a block configuration appears immediately within another block configuration, then the block
specification of the contained block configuration shall be a block statement or generate statement label, and
the label shall denote a block statement or generate statement that is contained immediately within the block
denoted by the block specification of the containing block configuration.

If the scope of a declaration (see 12.2) includes the end of the declarative part of a block corresponding to a
given block configuration, then the scope of that declaration extends to each configuration item contained in
that block configuration, with the exception of block configurations that configure external blocks.
Similarly, if a declaration is visible (either directly or by selection) at the end of the declarative part of a
block corresponding to a given block configuration, then the declaration is visible in each configuration item
contained in that block configuration, with the exception of block configurations that configure external
blocks. Additionally, if a given declaration is a homograph of a declaration that a use clause in the block
configuration makes potentially directly visible, then the given declaration is not directly visible in the block
configuration or any of its configuration items. See 12.3.

For any name that is the label of a block statement appearing immediately within a given block, a
corresponding block configuration may appear as a configuration item immediately within a block
configuration corresponding to the given block. For any collection of names that are labels of instances of
the same component appearing immediately within a given block, a corresponding component configuration
may appear as a configuration item immediately within a block configuration corresponding to the given
block.

For any name that is the label of a generate statement immediately within a given block, one or more
corresponding block configurations may appear as configuration items immediately within a block
configuration corresponding to the given block. Such block configurations apply to implicit blocks
generated by that generate statement. If such a block configuration contains a generate specification that is a
static discrete range, then the block configuration applies to those implicit block statements that are
generated for the specified range of values of the corresponding generate parameter; the discrete range has
no significance other than to define the set of generate statement parameter values implied by the discrete
range. If such a block configuration contains a generate specification that is a static expression, then the
block configuration applies only to the implicit block statement generated for the specified value of the
corresponding generate parameter. If such a block configuration contains a generate specification that is an
alternative label, then the block configuration applies only to the implicit block generated for the generate
statement body following the alternative label in the generate statement, if and only if the condition after the
alternative label evaluates to TRUE (for an if generate statement) or the case generate alternative containing
the alternative label is the chosen alternative (for a case generate statement). If no generate specification
appears in such a block configuration, then it applies to exactly one of the following sets of blocks:

— All implicit blocks (if any) generated by the corresponding generate statement, if and only if the cor-
responding generate statement is a for generate statement.

— The implicit block generated by the corresponding generate statement, if and only if the correspond-
ing generate statement is an if generate statement and if the first condition after if evaluates to
TRUE.

— No implicit or explicit blocks, if and only if the corresponding generate statement is an if generate
statement and the first condition after if evaluates to FALSE.

If the block specification of a block configuration contains a generate statement label, and if this label
contains a generate specification, then:

— If the generate specification is a discrete range or an expression, then it is an error if the generate
statement denoted by the generate statement label is not a for generate statement. Moreover, for a
generate specification that is a discrete range, it is an error if the type of the discrete range is not the

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -16-
IEEE Std 1076-2008

same as the type of the discrete range of the generate parameter specification and if any value in the
range does not belong to the discrete range of the generate parameter specification. Similarly, for a
generate specification that is an expression, it is an error if the type of the expression is not the same
as the type of the discrete range of the generate parameter specification and if the value of the expres-
sion does not belong to the discrete range of the generate parameter specification.

— If the generate specification is an alternative label, then it is an error if the generate statement
denoted by the generate statement label is not an if generate statement that includes the alternative
label or a case generate statement that includes the alternative label.

If the block specification of a block configuration contains a generate statement label that denotes an if
generate statement, and if the first condition after if has an alternative label, then it is an error if the generate
statement label does not contain a generate specification that is an alternative label. Similarly, if the block
specification of a block configuration contains a generate statement label that denotes a case generate
statement, then it is an error if the generate statement label does not contain a generate specification that is
an alternative label.

Within a given block configuration, whether implicit or explicit, an implicit block configuration is assumed
to appear for any block statement that appears within the block corresponding to the given block
configuration, if no explicit block configuration appears for that block statement. Similarly, an implicit
component configuration is assumed to appear for each component instance that appears within the block
corresponding to the given block configuration, if no explicit component configuration appears for that
instance. Such implicit configuration items are assumed to appear following all explicit configuration items
in the block configuration.

It is an error if, in a given block configuration, more than one configuration item is defined for the same
block or component instance.

NOTE 1—As a result of the rules described in the preceding paragraphs and in Clause 12, a simple name that is visible
by selection at the end of the declarative part of a given block is also visible by selection within any configuration item
contained in a corresponding block configuration. If such a name is directly visible at the end of the given block declar-
ative part, it will likewise be directly visible in the corresponding configuration items, unless a use clause for a different
declaration with the same simple name appears in the corresponding configuration declaration, and the scope of that use
clause encompasses all or part of those configuration items. If such a use clause appears, then the name will be directly
visible within the corresponding configuration items except at those places that fall within the scope of the additional use
clause (at which places neither name will be directly visible).

NOTE 2—If an implicit configuration item is assumed to appear within a block configuration, that implicit
configuration item will never contain explicit configuration items.

NOTE 3—If the block specification in a block configuration specifies a generate statement label, and if this label
contains a generate specification that is a discrete range, then the direction specified or implied by the discrete range has
no significance other than to define, together with the bounds of the range, the set of generate statement parameter values
denoted by the range. Thus, the following two block configurations are equivalent:

for Adders (31 downto 0) - -- end for;
for Adders (0 to 31) --- end for;
NOTE 4—A block configuration is allowed to appear immediately within a configuration declaration only if the entity

declaration denoted by the entity name of the enclosing configuration declaration has associated architectures. Further-
more, the block specification of the block configuration shall denote one of these architectures.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-17 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

Examples:
— A block configuration for a design entity:

for ShiftRegStruct -- An architecture name.
-- Configuration items
-— for blocks and components
-- within ShiftRegStruct.

end for;

— A block configuration for a block statement:

for B1 -—- A Dblock label.
-- Configuration items
-- for blocks and components
-- within block Bl.

end for;

3.4.3 Component configuration

A component configuration defines the configuration of one or more component instances in a
corresponding block.

component_configuration ::=
for component_specification
[binding_indication ;]
{ verification_unit_binding_indication ; }
[block configuration]
end for ;

The component specification (see 7.3) identifies the component instances to which this component
configuration applies. A component configuration that appears immediately within a given block
configuration applies to component instances that appear immediately within the corresponding block.

It is an error if two component configurations apply to the same component instance.

If the component configuration contains a binding indication (see 7.3.2), then the component configuration
implies a configuration specification for the component instances to which it applies. This implicit
configuration specification has the same component specification and binding indication as that of the
component configuration.

If a given component instance is unbound in the corresponding block, then any explicit component
configuration for that instance that does not contain an explicit binding indication will contain an implicit,
default binding indication (see 7.3.3). Similarly, if a given component instance is unbound in the
corresponding block, then any implicit component configuration for that instance will contain an implicit,
default binding indication.

A verification unit binding indication in a configuration declaration binds one or more PSL verification units
to the instance of the design entity bound to the component instances identified by the component
specification. Verification unit binding indications are described in 7.3.4.

It is an error if a component configuration contains an explicit block configuration and the component
configuration does not bind all identified component instances to the same design entity.

Within a given component configuration, whether implicit or explicit, an implicit block configuration is
assumed for the design entity to which the corresponding component instance is bound, if no explicit block
configuration appears and if the corresponding component instance is fully bound.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -18-
IEEE Std 1076-2008

Examples:
— A component configuration with binding indication:

for all: IOPort
use entity StdCells.PadTriState4 (DataFlow)
port map (Pout=>A, Pin=>B, IO=>Dir, Vdd=>Pwr, Gnd=>Gnd);

end for;
— A component configuration containing block configurations:

for D1: DSP
for DSP STRUCTURE
-- Binding specified in design entity or else defaults.
for Filterer
-- Configuration items for filtering components.
end for;
for Processor
-- Configuration items for processing components.
end for;
end for;

end for;

NOTE—The requirement that all component instances corresponding to a block configuration be bound to the same
design entity makes the following configuration illegal:
architecture A of E is

component C is end component C;

for L1: C use entity EI (X);

for 1L2: C use entity E2 (X);

begin
Ll: C;
L2: C;

end architecture A;

configuration Illegal of Work.E is
for A
for all: C

for X -- Does not apply to the same design entity in all instances of C.

end for;, -- X
end for; -- C
end for; -- A

end configuration Illegal;

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

|onuooun “panwiad S uonnguisip 10 uononpoidal Jayuny ON "UOSIPRIN Sawer AQ $T0Z-8Z-A0ON U0 PapPeOjUMOP ‘W02°18311sYyoa1 suonduosgns “-ou| ‘(oynuaios) siainay uoswoy L Agq owad Hg 01 pasusdl| [eusrew paiybuidod

-19- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

4. Subprograms and packages

4.1 General

Subprograms define algorithms for computing values or exhibiting behavior. They may be used as
computational resources to convert between values of different types, to define the resolution of output
values driving a common signal, or to define portions of a process. Packages provide a means of defining
these and other resources in a way that allows different design units or different parts of a given design unit
to share the same declarations.

There are two forms of subprograms: procedures and functions. A procedure call is a statement; a function
call is an expression and returns a value. Certain functions, designated pure functions, return the same value
each time they are called with the same values as actual parameters; the remainder, impure functions, may
return a different value each time they are called, even when multiple calls have the same actual parameter
values. In addition, impure functions can update objects outside of their scope and can access a broader class
of values than can pure functions. The definition of a subprogram can be given in two parts: a subprogram
declaration defining its calling conventions, and a subprogram body defining its execution.

Packages may also be defined in two parts. A package declaration defines the visible contents of a package;
a package body provides hidden details. In particular, a package body contains the bodies of any
subprograms declared in the package declaration.

4.2 Subprogram declarations
4.2.1 General
A subprogram declaration declares a procedure or a function, as indicated by the appropriate reserved word.

subprogram_declaration ::=
subprogram_specification ;

subprogram_specification ::=
procedure specification | function_specification

procedure_specification ::=
procedure designator
subprogram_header
[[parameter] (formal parameter list)]

function_specification ::=
[pure | impure] function designator
subprogram_header
[[parameter] (formal parameter list)] return type mark

subprogram_header ::=
[generic (generic_list)
[generic map aspect] |

designator ::= identifier | operator symbol

operator_symbol ::= string_literal

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -20-
IEEE Std 1076-2008

The specification of a procedure specifies its designator, its generics (if any), and its formal parameters (if
any). The specification of a function specifies its designator, its generics (if any), its formal parameters (if
any), the subtype of the returned value (the result subtype), and whether or not the function is pure. A
function is impure if its specification contains the reserved word impure; otherwise, it is said to be pure. A
procedure designator is always an identifier. A function designator is either an identifier or an operator
symbol. A designator that is an operator symbol is used for the overloading of an operator (see 4.5.2). The
sequence of characters represented by an operator symbol shall be an operator belonging to one of the
classes of operators defined in 9.2. Extra spaces are not allowed in an operator symbol, and the case of
letters is not significant.

If the subprogram header is empty, the subprogram declared by a subprogram declaration is called a simple
subprogram. If the subprogram header contains the reserved word generic, a generic list, and no generic
map aspect, the subprogram is called an uninstantiated subprogram. If the subprogram header contains the
reserved word generic, a generic list, and a generic map aspect, the subprogram is called a generic-mapped
subprogram. A subprogram declared with a generic list in which every generic declaration has a default, and
with no generic map aspect, is considered to be an uninstantiated subprogram, not a generic-mapped
subprogram with default associations for all of the generic declarations. A generic list in a subprogram
declaration is equivalent to a generic clause containing that generic list (see 6.5.6.2).

An uninstantiated subprogram shall not be called, except as a recursive call within the body of the
uninstantiated subprogram. Moreover, an uninstantiated subprogram shall not be used as a resolution
function or used as a conversion function in an association list.

It is an error if the result subtype of a function denotes either a file type or a protected type. Moreover, it is
an error if the result subtype of a pure function denotes an access type or a subtype that has a subelement of
an access type.

NOTE 1—All subprograms can be called recursively. In the case of an instantiated subprogram, a reference to the
uninstantiated subprogram within the uninstantiated subprogram is interpreted as a reference to the instance (see 4.4).
Hence, the subprogram can be called recursively using the name of the uninstantiated subprogram. The effect is a
recursive call of the instance.

NOTE 2—The restrictions on pure functions are enforced even when the function appears within a protected type. That
is, pure functions whose body appears in the protected type body shall not directly reference variables declared
immediately within the declarative region associated with the protected type. However, impure functions and procedures
whose bodies appear in the protected type body may make such references. Such references are made only when the
referencing subprogram has exclusive access to the declarative region associated with the protected type.

NOTE 3—The rule stating equivalence of a generic list in a subprogram header to a generic clause containing the
generic list ensures that the generic list conforms to the same rules as a generic clause. A subprogram header is not

defined to contain a generic clause directly, since that would introduce a semicolon into the syntax of a subprogram
header.

4.2.2 Formal parameters

4.2.2.1 Formal parameter lists

The formal parameter list in a subprogram specification defines the formal parameters of the subprogram.
formal parameter list ::= parameter_interface list

Formal parameters of subprograms may be constants, variables, signals, or files. In the first three cases, the
mode of a parameter determines how a given formal parameter is accessed within the subprogram. The
mode of a formal parameter, together with its class, also determines how such access is implemented. In the
fourth case, that of files, the parameters have no mode.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-21- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

For those parameters with modes, the only modes that are allowed for formal parameters of a procedure are
in, inout, and out. If the mode is in and no object class is explicitly specified, constant is assumed. If the
mode is inout or out, and no object class is explicitly specified, variable is assumed.

For those parameters with modes, the only mode that is allowed for formal parameters of a function is the
mode in (whether this mode is specified explicitly or implicitly). The object class shall be constant, signal,
or file. If no object class is explicitly given, constant is assumed.

In a subprogram call, the actual designator (see 6.5.7.1) associated with a formal parameter of class signal
shall be a name denoting a signal. The actual designator associated with a formal of class variable shall be a
name denoting a variable. The actual designator associated with a formal of class constant shall be an
expression. The actual designator associated with a formal of class file shall be a name denoting a file.

NOTE—Attributes of an actual are never passed into a subprogram. References to an attribute of a formal parameter are
legal only if that formal has such an attribute. Such references retrieve the value of the attribute associated with the
formal.

4.2.2.2 Constant and variable parameters

For parameters of class constant or variable, only the values of the actual or formal are transferred into or
out of the subprogram call. The manner of such transfers, and the accompanying access privileges that are
granted for constant and variable parameters, are described in this subclause.

For a nonforeign subprogram having a parameter of a scalar type or an access type, or for a subprogram
decorated with the 'FOREIGN attribute defined in package STANDARD for which the attribute value is of
the form described in 20.2.4, the parameter is passed by copy. At the start of each call, if the mode is in or
inout, the value of the actual parameter is copied into the associated formal parameter; it is an error if, after
applying any conversion function or type conversion present in the actual part of the applicable association
element (see 6.5.7.1), the value of the actual parameter does not belong to the subtype denoted by the
subtype indication of the formal. After completion of the subprogram body, if the mode is inout or out and
the associated actual parameter is not forced, the value of the formal parameter is copied back into the
associated actual parameter; it is similarly an error if, after applying any conversion function or type
conversion present in the formal part of the applicable association element, the value of the formal
parameter does not belong to the subtype denoted by the subtype indication of the actual.

For a nonforeign subprogram having a parameter whose type is an array or record, an implementation may
pass parameter values by copy, as for scalar types. In that case, after completion of the subprogram body, if
the mode is inout or out, the value of each subelement of the formal parameter is only copied back to the
corresponding subelement of the associated actual parameter if the subelement of the associated actual
parameter is not forced. If a parameter of mode out is passed by copy, then the range of each index position
of the actual parameter is copied in, and likewise for its subelements or slices. Alternatively, an
implementation may achieve these effects by reference; that is, by arranging that every use of the formal
parameter (to read or update its value) be treated as a use of the associated actual parameter throughout the
execution of the subprogram call. The language does not define which of these two mechanisms is to be
adopted for parameter passing, nor whether different calls to the same subprogram are to use the same
mechanism. The execution of a subprogram is erroneous if its effect depends on which mechanism is
selected by the implementation.

For a subprogram having a parameter whose type is a protected type, the parameter is passed by reference.
It is an error if the mode of the parameter is other than inout.

For a formal parameter of a composite subtype, the index ranges of the formal, if it is an array, and of any
array subelements, are determined as specified in 5.3.2.2. For a formal parameter of mode in or inout, it is
an error if the value of the associated actual parameter (after application of any conversion function or type
conversion present in the actual part) does not contain a matching subelement for each subelement of the

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -22-
IEEE Std 1076-2008

formal. It is also an error if the value of each subelement of the actual (after applying any conversion
function or type conversion present in the actual part) does not belong to the subtype of the corresponding
subelement of the formal. If the formal parameter is of mode out or inout, it is also an error if, at the end of
the subprogram call, the value of each subelement of the formal (after applying any conversion function or
type conversion present in the formal part) does not belong to the subtype of the corresponding subelement
of the actual.

NOTE 1—For parameters of array and record types, the parameter passing rules imply that if no actual parameter of
such a type is accessible by more than one path, then the effect of a subprogram call is the same whether or not the
implementation uses copying for parameter passing. If, however, there are multiple access paths to such a parameter (for
example, if another formal parameter is associated with the same actual parameter), then the value of the formal is
undefined after updating the actual other than by updating the formal. A description using such an undefined value is
erroneous.

NOTE 2—The value of an actual associated with a formal variable parameter of mode out is not copied into the formal
parameter. Rather, the formal parameter is initialized based on its declared type, regardless of whether the
implementation chooses to pass the parameter by copy or by reference. When a formal variable parameter of mode out is
read, the current value of the formal parameter is read.

4.2.2.3 Signal parameters

For a formal parameter of class signal, references to the signal, the driver of the signal, or both, are passed
into the subprogram call.

For a signal parameter of mode in or inout, the actual signal is associated with the corresponding formal
signal parameter at the start of each call. Thereafter, during the execution of the subprogram body, a
reference to the formal signal parameter within an expression is equivalent to a reference to the actual signal.

It is an error if signal-valued attributes 'STABLE, 'QUIET, "TRANSACTION, and 'DELAYED of formal
signal parameters of any mode are read within a subprogram.

A process statement contains a driver for each actual signal associated with a formal signal parameter of
mode out or inout in a subprogram call. Similarly, a subprogram contains a driver for each formal signal
parameter of mode out or inout declared in its subprogram specification.

For a signal parameter of mode inout or out, the driver of an actual signal is associated with the
corresponding driver of the formal signal parameter at the start of each call. Thereafter, during the execution
of the subprogram body, an assignment to the driver of a formal signal parameter is equivalent to an
assignment to the driver of the actual signal.

If an actual signal is associated with a signal parameter of any mode, the actual shall be denoted by a static
signal name. It is an error if a conversion function or type conversion appears in either the formal part or the
actual part of an association element that associates an actual signal with a formal signal parameter.

If an actual signal is associated with a signal parameter of mode in or inout, and if the type of the formal is a
scalar type, then it is an error if the subtype of the actual is not compatible with the subtype of the formal.
Similarly, if an actual signal is associated with a signal parameter of mode out or inout, and if the type of the
actual is a scalar type, then it is an error if the subtype of the formal is not compatible with the subtype of the
actual.

For a formal parameter of a composite subtype, the index ranges of the formal, if it is an array, and of any
array subelements, are determined as specified in 5.3.2.2. It is an error if the actual signal does not contain a
matching subelement for each subelement of the formal. It is also an error if the mode of the formal is in or
inout and if the value of each scalar subelement of the actual does not belong to the subtype of the
corresponding subelement of the formal.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-23- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

A formal signal parameter is a guarded signal if and only if it is associated with an actual signal that is a
guarded signal. It is an error if the declaration of a formal signal parameter includes the reserved word bus
(see 6.5.2).

NOTE—It is a consequence of the preceding rules that a procedure with an out or inout signal parameter called by a
process does not have to complete in order for any assignments to that signal parameter within the procedure to take
effect. Assignments to the driver of a formal signal parameter are equivalent to assignments directly to the actual driver
contained in the process calling the procedure.

4.2.2.4 File parameters

For parameters of class file, references to the actual file are passed into the subprogram. No particular
parameter-passing mechanism is defined by the language, but a reference to the formal parameter shall be
equivalent to a reference to the actual parameter. It is an error if an association element associates an actual
with a formal parameter of a file type and that association element contains a conversion function or type
conversion. It is also an error if a formal of a file type is associated with an actual that is not of a file type.

At the beginning of a given subprogram call, a file parameter is open (see 5.5.2) if and only if the actual file
object associated with the given parameter in a given subprogram call is also open. Similarly, at the
beginning of a given subprogram call, both the access mode of and external file associated with (see 5.5.2)
an open file parameter are the same as, respectively, the access mode of and the external file associated with
the actual file object associated with the given parameter in the subprogram call.

At the completion of the execution of a given subprogram call, the actual file object associated with a given
file parameter is open if and only if the formal parameter is also open. Similarly, at the completion of the
execution of a given subprogram call, the access mode of and the external file associated with an open actual
file object associated with a given file parameter are the same as, respectively, the access mode of and the
external file associated with the associated formal parameter.

4.3 Subprogram bodies
A subprogram body specifies the execution of a subprogram.

subprogram_body ::=
subprogram_specification is
subprogram_declarative part
begin
subprogram_statement part
end [subprogram_kind] [designator] ;

subprogram_declarative part ::=
{ subprogram_declarative item }

subprogram_declarative item ::=
subprogram_declaration
| subprogram_body
| subprogram_instantiation_declaration
| package declaration
| package body
| package instantiation_declaration
| type_declaration
| subtype declaration
| constant_declaration
| variable_declaration

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -24-
IEEE Std 1076-2008

| file declaration

| alias_declaration

| attribute _declaration

| attribute _specification

| use clause

| group template declaration
| group declaration

subprogram_statement_part ::=
{ sequential statement }

subprogram_kind ::= procedure | function

The declaration of a subprogram is optional. In the absence of such a declaration, the subprogram
specification of the subprogram body acts as the declaration. For each subprogram declaration, there shall be
a corresponding body. If both a declaration and a body are given, the subprogram specification of the body
shall lexically conform (see 4.10) to the subprogram specification of the declaration. Furthermore, both the
declaration and the body shall occur immediately within the same declarative region (see 12.1).

If a subprogram kind appears at the end of a subprogram body, it shall repeat the reserved word given in the
subprogram specification. If a designator appears at the end of a subprogram body, it shall repeat the
designator of the subprogram.

It is an error if a variable declaration in a subprogram declarative part declares a shared variable. (See
6.4.2.4.)

A foreign subprogram is one that is decorated with the attribute 'FOREIGN, defined in package
STANDARD (see 16.3). The STRING value of the attribute may specify implementation-dependent
information about the foreign subprogram. Foreign subprograms may have non-VHDL implementations. An
implementation may place restrictions on the appearance of a generic list and a generic map aspect in the
declaration of a foreign subprogram. An implementation may also place restrictions on the allowable modes,
classes, and types of the formal parameters to a foreign subprogram; such restrictions may include
restrictions on the number and allowable order of the parameters.

Excepting foreign subprograms, the algorithm performed by a subprogram is defined by the sequence of
statements that appears in the subprogram statement part. For a foreign subprogram, the algorithm
performed is implementation defined.

The execution of a subprogram body, other than an uninstantiated subprogram body, is invoked by a
subprogram call. For this execution, after establishing the association between the formal and actual
parameters, the sequence of statements of the body is executed if the subprogram is not a foreign
subprogram; otherwise, an implementation-defined action occurs. Upon completion of the body or
implementation-dependent action, if exclusive access to an object of a protected type was granted during
elaboration of the declaration of the subprogram (see 14.6), the exclusive access is rescinded. Then, return is
made to the caller (and any necessary copying back of formal to actual parameters occurs).

A process or a subprogram is said to be a parent of a given subprogram S if that process or subprogram
contains a procedure call or function call for S or for a parent of S. An instantiated subprogram is a parent of
a given subprogram S if the uninstantiated subprogram of which the instantiated subprogram is an instance
is a parent of S.

An explicit signal is a signal other than an implicit signal GUARD and other than one of the implicit signals
defined by the predefined attributes 'DELAYED, 'STABLE, 'QUIET, or "TRANSACTION. The explicit
ancestor of an implicit signal is found as follows. The implicit signal GUARD has no explicit ancestor. An

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-25- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

explicit ancestor of an implicit signal defined by the predefined attributes 'DELAYED, 'STABLE, 'QUIET,
or "TRANSACTION is the signal found by recursively examining the prefix of the attribute. If the prefix
denotes an explicit signal, a slice, or a member (see Clause 5) of an explicit signal, then that is the explicit
ancestor of the implicit signal. Otherwise, if the prefix is one of the implicit signals defined by the
predefined attributes 'DELAYED, 'STABLE, 'QUIET, or 'TRANSACTION, this rule is recursively applied.
If the prefix is an implicit signal GUARD, then the signal has no explicit ancestor.

If a pure function subprogram is a parent of a given procedure and if that procedure contains a reference to
an explicitly declared signal or variable object, or a slice or subelement (or slice thereof) of an explicit
signal, then that object shall be declared within the declarative region formed by the function (see 12.1) or
within the declarative region formed by the procedure; this rule also holds for the explicit ancestor, if any, of
an implicit signal and also for the implicit signal GUARD. If a pure function is the parent of a given
procedure, then that procedure shall not contain a reference to an explicitly declared file object (see 6.4.2.5)
or to a shared variable (see 6.4.2.4).

Similarly, if a pure function subprogram contains a reference to an explicitly declared signal or variable
object, or a slice or subelement (or slice thereof) of an explicit signal, then that object shall be declared
within the declarative region formed by the function; this rule also holds for the explicit ancestor, if any, of
an implicit signal and also for the implicit signal GUARD. A pure function shall not contain a reference to
an explicitly declared file object.

A pure function shall not be the parent of an impure function.

The rules of the preceding three paragraphs apply to all pure function subprograms. For pure functions that
are not foreign subprograms, violations of any of these rules are errors. However, since implementations
cannot in general check that such rules hold for pure function subprograms that are foreign subprograms, a
description calling pure foreign function subprograms not adhering to these rules is erroneous.

Example:
— The declaration of a foreign function subprogram:
package P is
function F return INTEGER;
attribute FOREIGN of F: function is
"implementation-dependent information";
end package P;

NOTE 1—It follows from the visibility rules that a subprogram declaration shall be given if a call of the subprogram
occurs textually before the subprogram body, and that such a declaration shall occur before the call itself.

NOTE 2—The preceding rules concerning pure function subprograms, together with the fact that function parameters
shall be of mode in, imply that a pure function has no effect other than the computation of the returned value. Thus, a
pure function invoked explicitly as part of the elaboration of a declaration, or one invoked implicitly as part of the
simulation cycle, is guaranteed to have no effect on other objects in the description.

NOTE 3—VHDL does not define the parameter-passing mechanisms for foreign subprograms.

NOTE 4—The declarative parts and statement parts of subprograms decorated with the 'FOREIGN attribute are subject
to special elaboration rules. See 14.4.1 and 14.6.

NOTE 5—A pure function subprogram shall not reference a shared variable. This prohibition exists because a shared
variable cannot be declared in a subprogram declarative part and a pure function cannot reference any variable declared
outside of its declarative region.

NOTE 6—A subprogram containing a wait statement shall not have a parent that is a subprogram declared within either
a protected type declaration or a protected type body.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -26-
IEEE Std 1076-2008

4.4 Subprogram instantiation declarations

A subprogram instantiation declaration defines an instance of an uninstantiated subprogram. The instance is
called an instantiated subprogram.

subprogram_instantiation _declaration ::=
subprogram_kind designator is new uninstantiated subprogram_name [signature |

[generic_map_aspect | ;

The uninstantiated subprogram name shall denote an uninstantiated subprogram declared in a subprogram
declaration. The signature, if present, shall match the parameter and result type profile of exactly one
subprogram denoted by the name, in which case the subprogram instantiation declaration defines an instance
of the uninstantiated subprogram whose parameter and result type profile is matched by the signature. The
subprogram kind shall repeat the reserved word used in the declaration of the uninstantiated subprogram.
The generic map aspect, if present, optionally associates a single actual with each formal generic (or
member thereof) in the corresponding subprogram declaration. Each formal generic (or member thereof)
shall be associated at most once. The generic map aspect is described in 6.5.7.2.

The subprogram instantiation declaration is equivalent to a subprogram declaration and a subprogram body
that jointly define a generic-mapped subprogram. The designator of the generic-mapped subprogram
declaration and subprogram body is the designator of the subprogram instantiation declaration. The generic-
mapped subprogram declaration and subprogram body have the generic list of the uninstantiated
subprogram declaration, the generic map aspect of the subprogram instantiation declaration, and the
parameter list and return type (if appropriate) of the uninstantiated subprogram declaration. The generic-
mapped subprogram body has the declarations and statements of the uninstantiated subprogram body. The
meaning of any identifier appearing anywhere in the generic-mapped subprogram declaration or subprogram
body is that associated with the corresponding occurrence of the identifier in the subprogram instantiation
declaration, the uninstantiated subprogram declaration, or the uninstantiated subprogram body, respectively,
except that an identifier that denotes the uninstantiated subprogram denotes, instead, the generic-mapped
subprogram.

If the subprogram instantiation declaration occurs immediately within an enclosing package declaration, the
generic-mapped subprogram body occurs at the end of the package body corresponding to the enclosing
package declaration. If there is no such body, then there is implicitly a package body corresponding to the
enclosing package declaration, and that implicit body contains the generic-mapped subprogram body. If the
subprogram instantiation declaration occurs immediately within an enclosing protected type declaration, the
generic-mapped subprogram body occurs at the end of the protected type body corresponding to the
enclosing protected type declaration.

NOTE—If two uninstantiated subprograms have the same name and have parameter and result type profiles that include
formal generic types of the uninstantiated subprograms, in addition to other types, a signature can be used to distinguish
between the uninstantiated subprograms, since the formal generic types are made visible by selection in the signatures.

4.5 Subprogram overloading
4.5.1 General

Two formal parameter lists are said to have the same parameter type profile if and only if they have the same
number of parameters, and if at each parameter position the corresponding parameters have the same base
type. Two subprograms are said to have the same parameter and result type profile if and only if both have
the same parameter type profile, and if either both are functions with the same result base type or neither of
the two is a function.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-27 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

A given subprogram designator can be used to designate multiple subprograms. The subprogram designator
is then said to be overloaded; the designated subprograms are also said to be overloaded and to overload
each other. If two subprograms overload each other, one of them can hide the other only if both subprograms
have the same parameter and result type profile.

A call to an overloaded subprogram is ambiguous (and therefore is an error) if the name of the subprogram,
the number of parameter associations, the types and order of the actual parameters, the names of the formal
parameters (if named associations are used), and the result type (for functions) are not sufficient to identify
exactly one (overloaded) subprogram.

Similarly, a reference to an overloaded resolution function name in a subtype indication is ambiguous (and
is therefore an error) if the name of the function, the number of formal parameters, the result type, and the
relationships between the result type and the types of the formal parameters (as defined in 4.6) are not
sufficient to identify exactly one (overloaded) subprogram specification.

Examples:
— Declarations of overloaded subprograms:

procedure Dump (F: inout Text; Value: Integer);
procedure Dump (F: inout Text; Value: String);

procedure Check (Setup: Time; signal D: Data; signal C: Clock);
procedure Check (Hold: Time; signal C: Clock; signal D: Data);

— Calls to overloaded subprograms:

Dump (Sys Output, 12);
Dump (Sys Error, "Actual output does not match expected output");

Check (Setup=>10 ns, D=>DataBus, C=>Clkl);

Check (Hold=>5 ns, D=>DataBus, C=>Clk2);

Check (15 ns, DataBus, Clk) ;
-- Ambiguous if the base type of DataBus is the same type
-- as the base type of Clk.

NOTE 1—The notion of parameter and result type profile does not include parameter names, parameter classes,
parameter modes, parameter subtypes, or default expressions or their presence or absence.

NOTE 2—Ambiguities may (but need not) arise when actual parameters of the call of an overloaded subprogram are
themselves overloaded function calls, literals, or aggregates. Ambiguities may also (but need not) arise when several
overloaded subprograms belonging to different packages are visible. These ambiguities can usually be solved in two
ways: qualified expressions can be used for some or all actual parameters and for the result, if any; or the name of the
subprogram can be expressed more explicitly as an expanded name (see 8.3). Further, ambiguities may (but need not)
arise when the declarations of overloaded subprograms in an uninstantiated declaration have parameter and result type
profiles that involve different formal generic types of the uninstantiated declaration. If the declaration is instantiated with
the same actual type associated with the formals, the resulting overloaded subprograms in the instance may have the
same parameter and result type profile. Such ambiguities cannot be solved.

4.5.2 Operator overloading

The declaration of a function whose designator is an operator symbol is used to overload an operator. The
sequence of characters of the operator symbol shall be one of the operators in the operator classes defined in
9.2.

The subprogram specification of a unary operator shall have a single parameter, unless the subprogram
specification is a method (see 5.6.2) of a protected type. In this latter case, the subprogram specification
shall have no parameters. The subprogram specification of a binary operator shall have two parameters,
unless the subprogram specification is a method of a protected type, in which case, the subprogram
specification shall have a single parameter. If the subprogram specification of a binary operator has two

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -28-
IEEE Std 1076-2008

parameters, for each use of this operator, the first parameter is associated with the left operand, and the
second parameter is associated with the right operand.

For each of the operators “+”, “~”, “and”, “or”, “xor”, “nand”, “nor” and “xnor”, overloading is allowed
both as a unary operator and as a binary operator.

NOTE 1—Overloading of the equality operator does not affect the selection of choices in a case statement in a selected
signal assignment statement, nor does it affect the propagation of signal values.

NOTE 2—A user-defined operator that has the same designator as a short-circuit operator (i.e., a user-defined operator
that overloads the short-circuit operator) is not invoked in a short-circuit manner. Specifically, calls to the user-defined
operator always evaluate both arguments prior to the execution of the function.

NOTE 3—Functions that overload operator symbols may also be called using function call notation rather than operator
notation. This statement is also true of the predefined operators themselves.

Examples:

type MVL is ('0', '1', 'z', 'X');

type MVL Vector is array (Natural range <>) of MVL;
function "and" (Left, Right: MVL) return MVL;
function "or" (Left, Right: MVL) return MVL;
function "not" (Value: MVL) return MVL;

function "xor" (Right: MVL Vector) return MVL;

signal Q,R,S,T: MVL;
signal V: MVL Vector (0 to 3);

<= 'X'" or '1l"';

<: "Or" ('O','Z');

<= (Q and R) or not S;
<= xor V;

H n WO

4.5.3 Signatures

A signature distinguishes between overloaded subprograms and overloaded enumeration literals based on
their parameter and result type profiles. A signature can be used in a subprogram instantiation declaration,
attribute name, entity designator, or alias declaration.

signature ::= [[type_mark {, type mark }][return type mark]]

(Note that the initial and terminal brackets are part of the syntax of signatures and do not indicate that the
entire right-hand side of the production is optional.) A signature is said to match the parameter and the result
type profile of a given subprogram if, and only if, all of the following conditions hold:

— The number of type marks prior to the reserved word return, if any, matches the number of formal
parameters of the subprogram.

— At each parameter position, the base type denoted by the type mark of the signature is the same as the
base type of the corresponding formal parameter of the subprogram.

— If the reserved word return is present, the subprogram is a function and the base type of the type
mark following the reserved word in the signature is the same as the base type of the return type of
the function, or the reserved word return is absent and the subprogram is a procedure.

Similarly, a signature is said to match the parameter and result type profile of a given enumeration literal if
the signature matches the parameter and result type profile of the subprogram equivalent to the enumeration
literal defined in 5.2.2.1.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-29- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

Example:

attribute BuiltIn of "or" [MVL, MVL return MVL]: function is TRUE;
-— Because of the presence of the signature, this attribute
-—- specification decorates only the "or" function defined in 4.5.2.

attribute Mapping of JMP [return OpCode] :literal is "001";

4.6 Resolution functions

A resolution function is a function that defines how the values of multiple sources of a given signal are to be
resolved into a single value for that signal. Resolution functions are associated with signals that require
resolution by including the name of the resolution function in the declaration of the signal or in the
declaration of the subtype of the signal. A signal with an associated resolution function is called a resolved
signal (see 6.4.2.3).

A resolution function shall be a pure function other than an uninstantiated function (see 4.2.1); moreover, it
shall have a single input parameter of class constant that is a one-dimensional, unconstrained or partially
constrained array with an undefined index range and whose element type is that of the associated subtype or
subelement subtype in the subtype indication in which the name of the resolution function appears. The
resolution function name shall not be an attribute name (see 8.6). The type of the return value of the function
shall also be that of the associated subtype or subelement subtype in the subtype indication in which the
name of the resolution function appears. Errors occur at the place of the subtype indication containing the
name of the resolution function if any of these checks fail (see 6.3).

The resolution function associated with a resolved signal determines the resolved value of the signal as a
function of the collection of inputs from its multiple sources. If a resolved signal is of a composite type, and
if subelements of that type also have associated resolution functions, such resolution functions have no
effect on the process of determining the resolved value of the signal. It is an error if a resolved signal has
more connected sources than the number of elements in the index type of the unconstrained array type used
to define the parameter of the corresponding resolution function.

Resolution functions are implicitly invoked during each simulation cycle in which corresponding resolved
signals are active (see 14.7.3.1). Each time a resolution function is invoked, it is passed an array value, each
element of which is determined by a corresponding source of the resolved signal, but excluding those
sources that are drivers whose values are determined by null transactions (see 10.5.2.2). Such drivers are
said to be off. For certain invocations (specifically, those involving the resolution of sources of a signal
declared with the signal kind bus), a resolution function may thus be invoked with an input parameter that is
a null array; this occurs when all sources of the bus are drivers, and they are all off. In such a case, the
resolution function returns a value representing the value of the bus when no source is driving it.

Example:

function WIRED OR (Inputs: BIT VECTOR) return BIT is
constant FloatValue: BIT := '0';
begin
if Inputs'Length = 0 then
-- This is a bus whose drivers are all off.
return FloatValue;
else
for I in Inputs'Range loop
if Inputs(I) = 'l' then
return '1l’';

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -30-
IEEE Std 1076-2008

end if;
end loop;
return '0';
end if;
end function WIRED OR;

4.7 Package declarations

A package declaration defines the interface to a package. The scope of a declaration within a package can be
extended to other design units or to other parts of the design unit containing the package declaration.

package declaration ::=
package identifier is
package header
package declarative part
end [package]| [package simple name] ;

package header ::=
[generic_clause
[generic_map aspect ;]]

package declarative part ::=
{ package declarative item }

package declarative item ::=
subprogram_declaration
| subprogram_instantiation_declaration
| package declaration
| package instantiation_declaration
| type_declaration
| subtype_declaration
| constant_declaration
| signal_declaration
| variable declaration
| file declaration
| alias_declaration
| component_declaration
| attribute _declaration
| attribute_specification
| disconnection_specification
| use clause
| group template declaration
| group_declaration
| PSL_Property Declaration
| PSL_Sequence Declaration

If a simple name appears at the end of the package declaration, it shall repeat the identifier of the package
declaration.

If the package header is empty, the package declared by a package declaration is called a simple package. If
the package header contains a generic clause and no generic map aspect, the package is called an
uninstantiated package. If the package header contains both a generic clause and a generic map aspect, the
package is called a generic-mapped package. A package declared with a generic clause in which every

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-31- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

generic declaration has a default, and with no generic map aspect, is considered to be an uninstantiated
package, not a generic-mapped package with default associations for all of the generic declarations.

If a package declarative item is a full type declaration whose type definition is a protected type definition,
then that protected type definition shall not be a protected type body.

Items declared immediately within a simple or a generic-mapped package declaration become visible by
selection within a given design unit wherever the name of that package is visible in the given unit. Such
items may also be made directly visible by an appropriate use clause (see 12.4). Items declared immediately
within an uninstantiated package declaration cannot be made visible outside of the package.

For a package declaration that appears in a subprogram body, a process statement, or a protected type body,
it is an error if a variable declaration in the package declarative part of the package declaration declares a
shared variable. Moreover, it is an error if a signal declaration, a disconnection specification, or a PSL
declaration appears as a package declarative item of such a package declaration.

NOTE—Not all packages will have a package body. In particular, a package body is unnecessary if no subprograms,

deferred constants, or protected type definitions are declared in the package declaration.

Examples:
— A package declaration that needs no package body:

package TimeConstants is

constant tPLH: Time := 10 ns;
constant tPHL: Time := 12 ns;
constant tPLZ: Time := 7 ns;
constant tPZL: Time := 8 ns;
constant tPHZ: Time := 8 ns;
constant tPZH: Time := 9 ns;

end TimeConstants;
— A package declaration that needs a package body:

package TriState is
type Tri is ('0O', '1', 'Z', 'E');
function BitVal (Value: Tri) return Bit;
function Trival (Value: Bit) return Tri;
type TriVector is array (Natural range <>) of Tri;
function Resolve (Sources: TriVector) return Tri;
end package TriState;

4.8 Package bodies

A package body defines the bodies of subprograms and the values of deferred constants declared in the
interface to the package.

package body ::=
package body package simple name is
package body declarative part
end [package body]| [package simple name] ;

package body declarative part ::=
{ package body declarative item }

package body declarative item ::=
subprogram_declaration

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -32-
IEEE Std 1076-2008

| subprogram_body

| subprogram_instantiation_declaration
| package declaration

| package body

| package instantiation_declaration
| type declaration

| subtype_declaration

| constant_declaration

| variable_declaration

| file declaration

| alias_declaration

| attribute _declaration

| attribute_specification

| use clause

| group template declaration

| group_declaration

The simple name at the start of a package body shall repeat the package identifier. If a simple name appears
at the end of the package body, it shall be the same as the identifier in the package declaration.

A package body that is not a library unit shall appear immediately within the same declarative region as the
corresponding package declaration and textually subsequent to that package declaration.

For a package body that appears in a subprogram body, a process statement or a protected type body, it is an
error if a variable declaration in the package body declarative part of the package body declares a shared
variable.

In addition to subprogram body and constant declarative items, a package body may contain certain other
declarative items to facilitate the definition of the bodies of subprograms declared in the interface. Items
declared in the body of a package cannot be made visible outside of the package body.

If a given package declaration contains a deferred constant declaration (see 6.4.2.2), then a constant
declaration with the same identifier shall appear as a declarative item in the corresponding package body.
This object declaration is called the full declaration of the deferred constant. The subtype indication given in
the full declaration shall lexically conform to that given in the deferred constant declaration.

Within a package declaration that contains the declaration of a deferred constant, and within the body of that
package (before the end of the corresponding full declaration), the use of a name that denotes the deferred
constant is only allowed in the default expression for a local generic, local port, or formal parameter. The
result of evaluating an expression that references a deferred constant before the elaboration of the
corresponding full declaration is not defined by the language.

Example:

package body TriState is

function BitVal (Value: Tri) return Bit is

constant Bits : Bit Vector := "0100";
begin

return Bits (Tri'Pos (Value));
end;

function Trival (Value: Bit) return Tri is
begin

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-33- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

return Tri'Val (Bit'Pos (Value));
end;

function Resolve (Sources: TriVector) return Tri is

variable V: Tri := 'Z';
begin
for i in Sources'Range loop
if Sources (i) /= 'Z' then
if Vv = 'Z' then
V := Sources (1) ;
else
return 'E';
end if;
end if;
end loop;
return V;
end;

end package body TriState;

4.9 Package instantiation declarations

A package instantiation declaration defines an instance of an uninstantiated package. The instance is called
an instantiated package.

package instantiation declaration ::=
package identifier is new uninstantiated package name
[generic_map_aspect | ;

The uninstantiated package name shall denote an uninstantiated package declared in a package declaration.
The generic map aspect, if present, optionally associates a single actual with each formal generic (or
member thereof) in the corresponding package declaration. Each formal generic (or member thereof) shall
be associated at most once. The generic map aspect is described in 6.5.7.2.

The package instantiation declaration is equivalent to declaration of a generic-mapped package, consisting
of a package declaration and possibly a corresponding package body. The simple name of the generic-
mapped package declaration is the identifier of the package instantiation declaration. The generic-mapped
package declaration has the generic clause of the uninstantiated package declaration, the generic map aspect
of the package instantiation declaration, and the declarations of the uninstantiated package declaration. The
package body corresponding to the generic-mapped package is present if the uninstantiated package has a
package body. In that case, the simple name of the generic-mapped package body is the identifier of the
package instantiation declaration, and the declarations of the generic-mapped package body are the
declarations of the uninstantiated package body. The meaning of any identifier appearing anywhere in the
generic-mapped package declaration or package body is that associated with the corresponding occurrence
of the identifier in the package instantiation declaration, the uninstantiated package declaration, or the
uninstantiated package body, respectively, except that an identifier that denotes the uninstantiated package
denotes, instead, the generic-mapped package.

If the package instantiation declaration occurs immediately within an enclosing package declaration and the
uninstantiated package has a package body, the generic-mapped package body occurs at the end of the
package body corresponding to the enclosing package declaration. If there is no such body, then there is
implicitly a package body corresponding to the enclosing package declaration, and that implicit body
contains the generic-mapped package body.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -34-
IEEE Std 1076-2008

4.10 Conformance rules

Whenever the language rules either require or allow the specification of a given subprogram to be provided
in more than one place, the following variations are allowed at each place:

— A numeric literal can be replaced by a different numeric literal if and only if both have the same
value.

— A simple name can be replaced by an expanded name in which this simple name is the suffix if, and
only if, at both places the meaning of the simple name is given by the same declaration.

Two subprogram specifications are said to lexically conform if, apart from comments and the preceding
allowed variations, both specifications are formed by the same sequence of lexical elements and if
corresponding lexical elements are given the same meaning by the visibility rules.

Lexical conformance is likewise defined for subtype indications in deferred constant declarations.

Two subprogram declarations are said to have conforming profiles if and only if both are procedures or both
are functions, the parameter and result type profiles of the subprograms are the same and, at each parameter
position, the corresponding parameters have the same class and mode.

NOTE 1—A simple name can be replaced by an expanded name even if the simple name is itself the prefix of a selected
name. For example, Q.R can be replaced by P.Q.R if Q is declared immediately within P.

NOTE 2—The subprogram specification of an impure function is never lexically conformant to a subprogram
specification of a pure function.

NOTE 3—The following specifications do not lexically conform since they are not formed by the same sequence of
lexical elements:

procedure P (X,Y: INTEGER)
procedure P (X: INTEGER; Y: INTEGER)
procedure P (X,Y: in INTEGER)

NOTE 4—Conformance of profiles is required for formal and actual generic subprograms (see 6.5.4).

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

-35- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

5. Types

5.1 General

This clause describes the various categories of types that are provided by the language as well as those
specific types that are predefined. The declarations of all predefined types are contained in package
STANDARD, the declaration of which appears in Clause 16.

A type is characterized by a set of values and a set of operations. The set of operations of a type includes the
explicitly declared subprograms that have a parameter or result of the type. The remaining operations of a
type are the basic operations and the predefined operations (see 5.2.6, 5.3.2.4, 5.4.3, and 5.5.2). These
operations are each implicitly declared for a given type declaration immediately after the type declaration
and before the next explicit declaration, if any.

A basic operation is an operation that is inherent in one of the following:
— An assignment (in assignment statements and initializations)
— An allocator
— A selected name, an indexed name, or a slice name

— A qualification (in a qualified expression), an explicit type conversion, a formal or actual part in the
form of a type conversion, or an implicit type conversion of a value of type universal integer or
universal_real to the corresponding value of another numeric type

— A numeric literal (for a universal type), the literal null (for an access type), a string literal, a bit string
literal, an aggregate, or a predefined attribute

There are five classes of types. Scalar types are integer types, floating-point types, physical types, and types
defined by an enumeration of their values; values of these types have no elements. Composite types are array
and record types; values of these types consist of element values. Access types provide access to objects of a
given type. File types provide access to objects that contain a sequence of values of a given type. Protected
types provide atomic and exclusive access to variables accessible to multiple processes.

The set of possible values for an object of a given type can be subjected to a condition that is called a
constraint (the case where the constraint imposes no restriction is also included); a value is said to satisfy a
constraint if it satisfies the corresponding condition. A subtype is a type together with a constraint. A value is
said to belong to a subtype of a given type if it belongs to the type and satisfies the constraint; the given type
is called the base type of the subtype. A type is a subtype of itself; such a subtype is said to be unconstrained
(it corresponds to a condition that imposes no restriction). The base type of a type is the type itself.

A composite subtype is said to be unconstrained if:

— It is an array subtype with no index constraint and the element subtype either is not a composite
subtype or is an unconstrained composite type, or

— Itis arecord subtype with at least one element of a composite subtype and each element that is of a
composite subtype is unconstrained.

A composite subtype is said to be fully constrained if:

— It is an array subtype with an index constraint and the element subtype either is not a composite
subtype or is a fully constrained composite type, or

— It is a record subtype and each element subtype either is not a composite subtype or is a fully
constrained composite subtype.

A composite subtype is said to be partially constrained if it is neither unconstrained nor fully constrained.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -36-
IEEE Std 1076-2008

The set of operations defined for a subtype of a given type includes the operations defined for the type;
however, the assignment operation to an object having a given subtype only assigns values that belong to the
subtype. Additional operations, such as qualification (in a qualified expression) are implicitly defined by a
subtype declaration.

The term subelement is used in this standard in place of the term element to indicate either an element, or an
element of another element or subelement. Where other subelements are excluded, the term element is used
instead.

A given type shall not have a subelement whose type is the given type itself.

A member of an object is one of the following:
— A slice of the object
— A subelement of the object

— A slice of a subelement of the object

The name of a class of types is used in this standard as a qualifier for objects and values that have a type of
the class considered. For example, the term array object is used for an object whose type is an array type;
similarly, the term access value is used for a value of an access type.

NOTE 1—The set of values of a subtype is a subset of the values of the base type. This subset need not be a proper
subset.

NOTE 2—All composite subelements of an unconstrained type are unconstrained.

5.2 Scalar types
5.2.1 General

Scalar types consist of enumeration types, integer types, physical types, and floating-point types.
Enumeration types and integer types are called discrefe types. Integer types, floating-point types, and
physical types are called numeric types. All scalar types are ordered; that is, all relational operators are
predefined for their values. Each value of a discrete or physical type has a position number that is an integer
value.

scalar_type definition ::=
enumeration_type definition
| integer _type definition
| floating_type definition
| physical type definition

range_constraint ::= range range
range ==
range_attribute name
| simple_expression direction simple_expression

direction ::= to | downto

A range specifies a subset of values of a scalar type. A range is said to be a nu/l range if the specified subset
is empty.

The range L to R is called an ascending range; if L > R, then the range is a null range. The range L downto
R is called a descending range; if L <R, then the range is a null range. L is called the left bound of the range,

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-37 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

and R is called the right bound of the range. The lower bound of a range is the left bound if the range is
ascending or the right bound if the range is descending. The upper bound of a range is the right bound if the
range is ascending or the left bound if the range is descending. The value V is said to belong to the range if
the relations (Jlower bound <= V) and (V <= upper bound) are both true. The operators >, <, and <= in the
preceding definitions are the predefined operators of the applicable scalar type.

For values of discrete or physical types, a value V1 is said to be to the left of a value V2 within a given range
if both V1 and V2 belong to the range and either the range is an ascending range and V2 is the successor of
V1, or the range is a descending range and V2 is the predecessor of V1. A list of values of a given range is in
left to right order if each value in the list is to the left of the next value in the list within that range, except for
the last value in the list.

If a range constraint is used in a subtype indication, the type of the expressions (likewise, of the bounds of a
range attribute) shall be the same as the base type of the type mark of the subtype indication. A range
constraint is compatible with a subtype if each bound of the range belongs to the subtype or if the range
constraint defines a null range. Otherwise, the range constraint is not compatible with the subtype.

A subtype S1 is compatible with a subtype S2 if the range constraint associated with S1 is compatible with
S2.

The direction of a range constraint is the same as the direction of its range.

NOTE—Indexing and iteration rules use values of discrete types.
5.2.2 Enumeration types

5.2.2.1 General

An enumeration type definition defines an enumeration type.

enumeration_type definition ::=
(enumeration_literal {, enumeration_literal })

enumeration_literal ::= identifier | character_literal

The identifiers and character literals listed by an enumeration type definition shall be distinct within the
enumeration type definition. Each enumeration literal is the declaration of the corresponding enumeration
literal. For the purpose of determining the parameter and result type profile of an enumeration literal, this
declaration is equivalent to the declaration of a parameterless function whose designator is the same as the
enumeration literal and whose result type is the same as the enumeration type; the declaration is,
nonetheless, a declaration of a literal, not of a function.

An enumeration type is said to be a character type if at least one of its enumeration literals is a character
literal.

Each enumeration literal yields a different enumeration value. The predefined order relations between
enumeration values follow the order of corresponding position numbers. The position number of the value
of the first listed enumeration literal is zero; the position number for each additional enumeration literal is
one more than that of its predecessor in the list.

If the same identifier or character literal is specified in more than one enumeration type definition, the
corresponding literals are said to be overloaded. At any place where an overloaded enumeration literal
occurs in the text of a program, the type of the enumeration literal is determined according to the rules for
overloaded subprograms (see 4.5).

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -38-
IEEE Std 1076-2008

Each enumeration type definition defines an ascending range.

Examples:

type MULTI LEVEL LOGIC is (LOW, HIGH, RISING, FALLING, AMBIGUOUS) ;
type BIT is ('0','1");

type SWITCH LEVEL is ('0','1','X'"); -— Overloads '0' and '1'
5.2.2.2 Predefined enumeration types

The predefined enumeration types are CHARACTER, BIT, BOOLEAN, SEVERITY LEVEL,
FILE_OPEN_KIND, and FILE_OPEN_STATUS.

The predefined type CHARACTER is a character type whose values are the 256 characters of the ISO/IEC
8859-1 character set. Each of the 191 graphic characters of this character set is denoted by the corresponding
character literal.

The declarations of the predefined types CHARACTER, BIT, BOOLEAN, SEVERITY LEVEL,
FILE OPEN KIND, and FILE OPEN_STATUS appear in package STANDARD in Clause 16.

NOTE 1—The first 33 nongraphic elements of the predefined type CHARACTER (from NUL through DEL) are the
ASCII abbreviations for the nonprinting characters in the ASCII set (except for those noted in Clause 16). The ASCII
names are chosen as ISO/IEC 8859-1:1998 does not assign them abbreviations. The next 32 (C128 through C159) are
also not assigned abbreviations, so names unique to VHDL are assigned.

NOTE 2—Type BOOLEAN can be used to model either active high or active low logic depending on the particular
conversion functions chosen to and from type BIT.

5.2.3 Integer types

5.2.3.1 General

An integer type definition defines an integer type whose set of values includes those of the specified range.
integer type definition ::= range constraint

An integer type definition defines both a type and a subtype of that type. The type is an anonymous type, the
range of which is selected by the implementation; this range shall be such that it wholly contains the range
given in the integer type definition. The subtype is a named subtype of this anonymous base type, where the
name of the subtype is that given by the corresponding type declaration and the range of the subtype is the
given range.

Each bound of a range constraint that is used in an integer type definition shall be a locally static expression
of some integer type, but the two bounds need not have the same integer type. (Negative bounds are
allowed.)

Integer literals are the literals of an anonymous predefined type that is called wuniversal integer in this
standard. Other integer types have no literals. However, for each integer type there exists an implicit
conversion that converts a value of type universal integer into the corresponding value (if any) of the
integer type (see 9.3.6).

The position number of an integer value is the corresponding value of the type universal _integer.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-39 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

The same arithmetic operators are predefined for all integer types (see 9.2). It is an error if the execution of
such an operation (in particular, an implicit conversion) cannot deliver the correct result (that is, if the value
corresponding to the mathematical result is not a value of the integer type).

An implementation may restrict the bounds of the range constraint of integer types other than type
universal _integer. However, an implementation shall allow the declaration of any integer type whose range
is wholly contained within the bounds —2147483647 and +2147483647 inclusive.

Examples:

type TWOS COMPLEMENT INTEGER is range -32768 to 32767;
type BYTE LENGTH INTEGER is range 0 to 255;
type WORD INDEX is range 31 downto O;

subtype HIGH BIT LOW is BYTE LENGTH INTEGER range 0 to 127;
5.2.3.2 Predefined integer types

The only predefined integer type is the type INTEGER. The range of INTEGER is implementation
dependent, but it is guaranteed to include the range —2147483647 to +2147483647. It is defined with an
ascending range.

NOTE—The range of INTEGER in a particular implementation is determinable from the values of its 'LOW and 'HIGH
attributes.

5.2.4 Physical types
5.2.4.1 General

Values of a physical type represent measurements of some quantity. Any value of a physical type is an
integral multiple of the primary unit of measurement for that type.

physical type definition ::=
range_constraint
units
primary unit declaration
{ secondary unit declaration }
end units [physical type _simple name]

primary unit declaration ::= identifier ;

secondary unit_declaration ::= identifier = physical_literal ;

physical literal ::= [abstract literal] unit name

A physical type definition defines both a type and a subtype of that type. The type is an anonymous type, the
range of which is selected by the implementation; this range shall be such that it wholly contains the range
given in the physical type definition. The subtype is a named subtype of this anonymous base type, where

the name of the subtype is that given by the corresponding type declaration and the range of the subtype is
the given range.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -40-
IEEE Std 1076-2008

Each bound of a range constraint that is used in a physical type definition shall be a locally static expression
of some integer type, but the two bounds need not have the same integer type. (Negative bounds are
allowed.)

Each unit declaration (either the primary unit declaration or a secondary unit declaration) defines a wunit
name. Unit names declared in secondary unit declarations shall be directly or indirectly defined in terms of
integral multiples of the primary unit of the type declaration in which they appear. The position numbers of
unit names need not lie within the range specified by the range constraint.

If a simple name appears at the end of a physical type declaration, it shall repeat the identifier of the type
declaration in which the physical type definition is included.

The abstract literal portion (if present) of a physical literal appearing in a secondary unit declaration shall be
an integer literal.

A physical literal consisting solely of a unit name is equivalent to the integer 1 followed by the unit name.

There is a position number corresponding to each value of a physical type. The position number of the value
corresponding to a unit name is the number of primary units represented by that unit name. The position
number of the value corresponding to a physical literal with an abstract literal part is the largest integer that
is not greater than the product of the value of the abstract literal and the position number of the
accompanying unit name.

The same arithmetic operators are predefined for all physical types (see 9.2). It is an error if the execution of
such an operation cannot deliver the correct result (i.e., if the value corresponding to the mathematical result
is not a value of the physical type).

An implementation may restrict the bounds of the range constraint of a physical type. However, an
implementation shall allow the declaration of any physical type whose range is wholly contained within the
bounds —2147483647 and +2147483647 inclusive.

Examples:

type DURATION is range -1E18 to 1E18

units
fs; -—-femtosecond
pPs = 1000 fs; --picosecond
ns = 1000 ps; —--nanosecond
us = 1000 ns; --microsecond
ms = 1000 us; --millisecond
sec = 1000 ms; --second
min = 60 sec; --minute

end units;

type DISTANCE is range 0 to 1lE16
units
-— primary unit:
A; —-—angstrom

-- metric lengths:

nm = 10 A; --nanometer
um = 1000 nm; --micrometer (or micron)
mm = 1000 um; --millimeter
cm = 10 mm; --centimeter

|PuMBhedbyIECundmﬂmenseﬂomIEEEA32008IEEE.AHﬂghmresewedj

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-41 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

m = 1000 mm; --meter
km 1000 m; -—-kilometer

-- English lengths:

mil = 254000 A; --mil
inch = 1000 mil; -—-inch
ft = 12 inch; -—-foot
yd = 3 ft; --yard
fm = 6 ft; -—-fathom
mi = 5280 ft; --mile
1lg = 3 mi; --league

end units DISTANCE;

variable x: distance;
variable y: duration;
variable z: integer;

°

x := 5 A + 13 ft - 27 inch;
y = 3 ns + 5 min;

z :=ns / ps;

X 1= z * mi;

y = y/10;

z

39.34 inch / m;

NOTE 1—The 'POS and 'VAL attributes may be used to convert between abstract values and physical values.

NOTE 2—The value of a physical literal, whose abstract literal is either the integer value zero or the floating-point value
zero, is the same value (specifically zero primary units) no matter what unit name follows the abstract literal.

5.2.4.2 Predefined physical types

The only predefined physical type is type TIME. The range of TIME is implementation dependent, but it is
guaranteed to include the range —2147483647 to +2147483647. It is defined with an ascending range. All
specifications of delays and pulse rejection limits shall be of type TIME. The declaration of type TIME
appears in package STANDARD in Clause 16.

By default, the primary unit of type TIME (1 fs) is the resolution limit for type TIME. Any TIME value
whose absolute value is smaller than this limit is truncated to zero (0) time units. An implementation may
allow a given elaboration of a model (see Clause 14) to select a secondary unit of type TIME as the
resolution limit. Furthermore, an implementation may restrict the precision of the representation of values of
type TIME and the results of expressions of type TIME, provided that values as small as the resolution limit
are representable within those restrictions. It is an error if a given unit of type TIME appears anywhere
within the design hierarchy defining a model to be elaborated, and if the position number of that unit is less
than that of the secondary unit selected as the resolution limit for type TIME during the elaboration of the
model, unless that unit is part of a physical literal whose abstract literal is either the integer value zero or the
floating-point value zero.

NOTE—BYy selecting a secondary unit of type TIME as the resolution limit for type TIME, it may be possible to
simulate for a longer period of simulated time, with reduced accuracy, or to simulate with greater accuracy for a shorter
period of simulated time.

Cross-references: Delay and rejection limit in a signal assignment, 10.5; disconnection, delay of a guarded
signal, 7.4; function NOW, 16.3; predefined attributes, functions of TIME, 16.2; simulation time, 14.7.3 and
14.7.4; type TIME, 16.3; updating a projected waveform, 10.5.2.2; wait statements, timeout clause in, 10.2;
elaboration of a declarative part, 14.4.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -42-
IEEE Std 1076-2008

5.2.5 Floating-point types

5.2.5.1 General

Floating-point types provide approximations to the real numbers.
floating_type definition ::= range constraint

A floating type definition defines both a type and a subtype of that type. The type is an anonymous type, the
range of which is selected by the implementation; this range shall be such that it wholly contains the range
given in the floating type definition. The subtype is a named subtype of this anonymous base type, where the
name of the subtype is that given by the corresponding type declaration and the range of the subtype is the
given range.

Each bound of a range constraint that is used in a floating type definition shall be a locally static expression
of some floating-point type, but the two bounds need not have the same floating-point type. (Negative
bounds are allowed.)

Floating-point literals are the literals of an anonymous predefined type that is called universal real in this
standard. Other floating-point types have no literals. However, for each floating-point type there exists an
implicit conversion that converts a value of type universal real into the corresponding value (if any) of the
floating-point type (see 9.3.6).

The same arithmetic operations are predefined for all floating-point types (see 9.2). A design is erroneous if
the execution of such an operation cannot deliver the correct result (that is, if the value corresponding to the
mathematical result is not a value of the floating-point type).

An implementation shall choose a representation for all floating-point types except for universal real that
conforms either to IEEE Std 754-1985 or to IEEE Std 854-1987; in either case, a minimum representation
size of 64 bits is required for this chosen representation.

An implementation may restrict the bounds of the range constraint of floating-point types other than type
universal_real. However, an implementation shall allow the declaration of any floating-point type whose
range is wholly contained within the bounds allowed by the chosen representation.

NOTE—An implementation is not required to detect errors in the execution of a predefined floating-point arithmetic
operation, since the detection of overflow conditions resulting from such operations might not be easily accomplished on
many host systems.

5.2.5.2 Predefined floating-point types

The only predefined floating-point type is the type REAL. The range of REAL is host-dependent, but it is
guaranteed to be the largest allowed by the chosen representation. It is defined with an ascending range.

NOTE—The range of REAL in a particular implementation is determinable from the values of its '"LOW and 'HIGH
attributes.

5.2.6 Predefined operations on scalar types

Given a type declaration that declares a scalar type T, the following operations are implicitly declared
immediately following the type declaration (except for the TO_STRING operations in package
STANDARD, which are implicitly declared at the end of the package declaration):

function MINIMUM (L, R: T) return T;
function MAXIMUM (L, R: T) return T;

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-43 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

function TO_ STRING (VALUE: T) return STRING;

The MINIMUM operation returns the value of L if L <R, or the value of R otherwise. The MAXIMUM
operation returns the value of R if L <R, or the value of L otherwise. For both operations, the comparison is
performed using the predefined relational operator for the type.

The TO_STRING operation returns the string representation (see 5.7) of the value of its actual parameter.
The result type of the operation is the type STRING defined in package STANDARD.

The following operations are implicitly declared in package STD.STANDARD immediately following the
declaration of the type BOOLEAN:

function RISING EDGE (signal S: BOOLEAN) return BOOLEAN;
function FALLING EDGE (signal S: BOOLEAN) return BOOLEAN;

The function RISING EDGE applied to a signal S of type BOOLEAN is TRUE if the expression
“S'EVENT and S” is TRUE, and FALSE otherwise. The function FALLING EDGE applied to a signal S of
type BOOLEAN is TRUE if the expression “S'EVENT and not S” is TRUE, and FALSE otherwise.

The following operations are implicitly declared in package STD.STANDARD immediately following the
declaration of the type BIT:

function RISING EDGE (signal S: BIT) return BOOLEAN;
function FALLING EDGE (signal S: BIT) return BOOLEAN;

The function RISING _EDGE applied to a signal S of type BIT is TRUE if the expression “S'EVENT and S
='1" is TRUE, and FALSE otherwise. The function FALLING EDGE applied to a signal S of type BIT is
TRUE if the expression “S'EVENT and S ='0" is TRUE, and FALSE otherwise.

The following operation is implicitly declared in package STD.STANDARD at the end of the package
declaration:

function TO_STRING (VALUE: TIME; UNIT: TIME) return STRING;

This overloaded TO_STRING operation returns the string representation (see 5.7) of the value of its actual
parameter. The result type of the operation is the type STRING defined in package STANDARD. The
parameter UNIT specifies how the result is to be formatted. The value of this parameter shall be equal to one
of the units declared as part of the declaration of type TIME; the result is that the TIME value is formatted as
an integer or real literal representing the number of multiples of this unit, followed by the name of the unit
itself.

The following operations are implicitly declared in package STD.STANDARD at the end of the package
declaration:

function TO STRING (VALUE: REAL; DIGITS: NATURAL) return STRING;
function TO_STRING (VALUE: REAL; FORMAT: STRING) return STRING;

These overloaded TO STRING operations return the value of the VALUE parameter converted to a string
whose format is specified by the value of the DIGITS or FORMAT parameter, respectively. The result type
of the operations is the type STRING defined in package STANDARD.

For the operation with the DIGITS parameter, the result is the string representation of the value. The
DIGITS specifies how many digits appear to the right of the decimal point. If DIGITS is 0, then the string

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -44 -
IEEE Std 1076-2008

representation is the same as that produced by the TO_STRING operation without the DIGITS or FORMAT
parameter. If DIGITS is non-zero, then the string representation contains an integer part followed by '.'
followed by the fractional part, using the specified number of digits, and no exponent (e.g., 3.14159).

For the operation with the FORMAT parameter, the format of the result is determined using the value of the
FORMAT parameter in the manner described in ISO/IEC 8859-1:1998, ISO/IEC 9899:1999/Cor 1:2001,
and ISO/IEC 9899:1999/Cor 2:2004 for the C fprintf function. A model is erroneous if it calls the
operation with a value for the FORMAT parameter that is other than a conversion specification in which the
conversion specifier is one of ¢, E, f, F, g, G, a, or A. Moreover, the model is erroneous if the conversion
specification contains a length modifier or uses an asterisk for the field width or precision. An
implementation shall support use of the conversion specifiers e, E, f, g, and G, and may additionally support
use of the conversion specifiers F, a, and A. A model is erroneous if it calls the operation with a value for the
FORMAT parameter that is a conversion specification in which the conversion specifier is one of F, a, or A
and the implementation does not support use of the conversion specifier. The values of FLT RADIX and
DECIMAL DIG (described in ISO/IEC 8859-1:1998, ISO/IEC 9899:1999/Cor 1:2001, and ISO/IEC
9899:1999/Cor 2:2004) are implementation defined.

5.3 Composite types
5.3.1 General

Composite types are used to define collections of values. These include both arrays of values (collections of
values of a homogeneous type) and records of values (collections of values of potentially heterogeneous

types).

composite_type definition ::=
array type definition
| record_type definition

An object of a composite type represents a collection of objects, one for each element of the composite
object. It is an error if a composite type contains elements of file types or protected types. Thus an object of
a composite type ultimately represents a collection of objects of scalar or access types, one for each
noncomposite subelement of the composite object.

5.3.2 Array types

5.3.2.1 General

An array object is a composite object consisting of elements that have the same subtype. The name for an
element of an array uses one or more index values belonging to specified discrete types. The value of an

array object is a composite value consisting of the values of its elements.

array type definition ::=
unbounded_array definition | constrained array definition

unbounded_array definition ::=
array (index subtype definition {, index_subtype definition })

of element subtype indication

constrained array definition ::=
array index_constraint of element_subtype indication

index_subtype definition ::= type mark range <>

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-45 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

array constraint ::=
index_constraint [array_element_constraint |
| (open) [array_element constraint]

array element constraint ::= element constraint

index_constraint ::= (discrete_range { , discrete_range })

discrete_range ::= discrete_subtype_indication | range

An array constraint may be used to constrain an array type or subtype (see 5.3.2.2 and 6.3).

An array object is characterized by the number of indices (the dimensionality of the array); the type,
position, and range of each index; and the type and possible constraints of the elements. The order of the
indices is significant.

A one-dimensional array has a distinct element for each possible index value. A multidimensional array has
a distinct element for each possible sequence of index values that can be formed by selecting one value for
each index (in the given order). The possible values for a given index are all the values that belong to the
corresponding range; this range of values is called the index range.

An unbounded array definition in which the element subtype indication denotes either an unconstrained
composite subtype or a subtype that is not a composite subtype defines an array type and a name denoting
that type. For each object that has the array type, the number of indices, the type and position of each index,
and the subtype of the elements are as in the type definition. The index subtype for a given index position is,
by definition, the subtype denoted by the type mark of the corresponding index subtype definition. The
values of the left and right bounds of each index range are not defined, but shall belong to the corresponding
index subtype; similarly, the direction of each index range is not defined. The symbol <> (called a box) in an
index subtype definition stands for an undefined range (different objects of the type need not have the same
bounds and direction).

An unbounded array definition in which the element subtype indication denotes a partially or fully
constrained composite subtype defines both an array type and a subtype of this type:

— The array type is an implicitly declared anonymous type; this type is defined by an implicit
unbounded array definition, in which the element subtype indication denotes the base type of the
subtype denoted by the element subtype indication of the explicit unbounded array definition and in
which the index subtype definitions are those of the explicit unbounded array definition, in the same
order.

— The array subtype is the subtype obtained by imposition of the constraint of the subtype denoted by
the element subtype indication of the explicit unbounded array definition as an array element
constraint on the array type.

A constrained array definition similarly defines both an array type and a subtype of this type:

— The array type is an implicitly declared anonymous type; this type is defined by an (implicit)
unbounded array definition, in which the element subtype indication either denotes the base type of
the subtype denoted by the element subtype indication of the constrained array definition, if that
subtype is a composite type, or otherwise is the element subtype indication of the constrained array
definition, in which the type mark of each index subtype definition denotes the subtype defined by
the corresponding discrete range.

— The array subtype is the subtype obtained by imposition of the index constraint on the array type and,
if the element subtype indication of the constrained array definition denotes a fully or partially

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -46-
IEEE Std 1076-2008

constrained composite subtype, imposition of the constraint of that subtype as an array element
constraint on the array type.

If an array definition that defines both an array type and a subtype of that type is given for a type declaration,
the simple name declared by this declaration denotes the array subtype.

The direction of a discrete range is the same as the direction of the range or the discrete subtype indication
that defines the discrete range. If a subtype indication appears as a discrete range, the subtype indication
shall not contain a resolution indication.

Examples:
— Examples of fully constrained array declarations:

type MY WORD is array (0 to 31) of BIT;
-- A memory word type with an ascending range.

type DATA IN is array (7 downto 0) of FIVE LEVEL LOGIC;
-- An input port type with a descending range.

— Example of partially constrained array declarations:

type MEMORY is array (INTEGER range <>) of MY WORD;
-—- A memory array type.

— Example of unconstrained array declarations:

type SIGNED FXPT is array (INTEGER range <>) of BIT;
-- A signed fixed-point array type

type SIGNED FXPT VECTOR is array (NATURAL range <>) of SIGNED FXPT;
-- A vector of signed fixed-point elements

— Example of partially constrained array declarations:

type SIGNED FXPT 5x4 is array (1 to 5, 1 to 4) of SIGNED FXPT;
-- A matrix of signed fixed-point elements

— Examples of array object declarations:

signal DATA LINE: DATA IN;
-- Defines a data input line.

variable MY MEMORY: MEMORY (0 to 2**n-1);
-- Defines a memory of 2" 32-bit words.

signal FXPT VAL: SIGNED FXPT (3 downto -4);
-- Defines an 8-bit fixed-point signal

signal VEC: SIGNED FXPT VECTOR (1 to 20) (9 downto 0);
-—- Defines a vector of 20 10-bit fixed-point elements

variable SMATRIX: SIGNED FXPT 5x4 (open) (3 downto -4);
—-- Defines a 5x4 matrix of 8-bit fixed-point elements

NOTE—The rules concerning constrained type declarations mean that a type declaration with a constrained array
definition such as

type T is array (POSITIVE range MIN BOUND to MAX BOUND) of ELEMENT;

is equivalent to the sequence of declarations

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

-47 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

subtype index subtype is POSITIVE range MIN BOUND to MAX BOUND;
type array type is array (index subtype range <>) of ELEMENT'BASE;
subtype T is array type (index subtype)element constraint;

where index_subtype and array type are both anonymous and element constraint is the constraint that applies to the
subtype ELEMENT. Consequently, T is the name of a subtype and all objects declared with this type mark are arrays
that have the same index range.

Similarly, a type declaration with an unbounded array definition whose element subtype indication denotes a partially or
fully constrained subtype such as

type T is array (INTEGER range <>) of STRING(l to 10);
is equivalent to the sequence of declarations

type array type is array (INTEGER range <>) of STRING'BASE;
subtype T is array type (open) (1 to 10);

5.3.2.2 Index constraints and discrete ranges

An index constraint determines the index range for every index of an array type and, thereby, the
corresponding array bounds.

For a discrete range used in a constrained array definition and defined by a range, an implicit conversion to
the predefined type INTEGER is assumed if the type of both bounds (prior to the implicit conversion) is the
type universal_integer. Otherwise, the type of the range shall be determined by applying the rules of 12.5 to
the range, considered as a complete context, using the rules that the type shall be discrete and that both
bounds shall have the same type. These rules apply also to a discrete range used in a loop parameter
specification (see 10.10) or a generate parameter specification (see 11.8).

If an array constraint of the first form (including an index constraint) applies to a type or subtype, then the
type or subtype shall be an unconstrained or partially constrained array type with no index constraint
applying to the index subtypes, or an access type whose designated type is such a type. In either case, the
index constraint shall provide a discrete range for each index of the array type, and the type of each discrete
range shall be the same as that of the corresponding index.

An array constraint of the first form is compatible with the type if, and only if, the constraint defined by each
discrete range is compatible with the corresponding index subtype and the array element constraint, if
present, is compatible with the element subtype of the type. If any of the discrete ranges defines a null range,
any array thus constrained is a null array, having no elements. An array value satisfies an index constraint if
at each index position the array value and the index constraint have the same index range. (Note, however,
that assignment and certain other operations on arrays involve an implicit subtype conversion.)

If an array constraint of the second form (including the reserved word open in place of an index constraint)
applies to a type or subtype, then the type or subtype shall be an array type or an access type whose
designated type is an array type. The array constraint imposes no further constraint on the index subtypes of
the array type. An array constraint of the second form is compatible with the type if, and only if, the array
element constraint, if present, is compatible with the element subtype of the type.

The index range for each index of an array object or array subelement of a composite object is determined as
follows:

a) For a variable or signal declared by an object declaration, the subtype indication of the correspond-
ing object declaration shall define a fully constrained subtype (and thereby, the index range for each
index of the array object or subelement).

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -48-
IEEE Std 1076-2008

b)

For a constant declared by an object declaration, if the subtype of the constant defines the index
range, the index range of the constant is that defined by the subtype; otherwise, the index range of
the constant is the corresponding index range of the initial value..

¢) For an attribute whose value is specified by an attribute specification, if the subtype of the attribute
defines the index range, the index range of the value of the attribute is that defined by the subtype;
otherwise, the index range of the value of the attribute is the corresponding index range of the
expression given in the specification..

d) For an object designated by an access value, the index ranges are defined by the allocator that
creates the designated object (see 9.3.7).

e) For an interface object of an array type, or a subelement of an interface object for which the subele-
ment type is an array type, each index range is obtained as follows: Let the subtype index range be
the corresponding index range of the subtype indication of the declaration of the object.

1) If the subtype index range is defined by a constraint, the index range of the object is the subtype
index range.

2) If the subtype index range is undefined, and the interface object or subelement is associated by
more than one association element or is associated by a single association element in which the
formal designator is a slice name, then the direction of the index range of the object is that of
the corresponding index subtype of the base type of the interface object, and the high and low
bounds of the index range of the object are respectively determined from the maximum and
minimum values of the indices given in the association element or elements corresponding to
the interface object or subelement.

3) If the subtype index range is undefined, and the interface object is associated in whole (see
6.5.7.1) or is a subelement that is associated individually by a single association element other
than one in which the formal designator is a slice name, then the index range of the object is
obtained from the association element in the following manner:

— For an interface object or subelement whose mode is in, inout or linkage, if the actual part
includes a conversion function or a type conversion, then the result type of that function or
the type mark of the type conversion shall define a constraint for the index range corre-
sponding to the index range of the object, and the index range of the object is obtained
from that constraint; otherwise, the index range is obtained from the object or value
denoted by the actual designator.

— For an interface object or subelement whose mode is out, buffer, inout, or linkage, if the
formal part includes a conversion function or a type conversion, then the parameter sub-
type of that function or the type mark of the type conversion shall define a constraint for
the index range corresponding to the index range of the object, and the index range is
obtained from that constraint; otherwise, the index range is obtained from the object
denoted by the actual designator.

For an interface object of mode inout or linkage, the index range determined by the first rule

shall be identical to the index range determined by the second rule.

For a given array interface object, or for a given array subelement of an interface object, it is an error

if application of the preceding rules yields different index ranges for any corresponding array sub-

elements of the given interface object or given subelement.
Examples:

type Word is array (NATURAL range <>) of BIT;
type Memory is array (NATURAL range <>) of Word (31 downto 0);

constant A Word: Word := "10011";

The index range of A Word is 0 to 4

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-49 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

entity E is
generic (ROM: Memory) ;
port (Opl, Op2: in Word; Result: out Word);
end entity E;
-— The index ranges of the generic and the ports are defined by
-- the actuals associated with an instance bound to E; these index
-—- ranges are accessible via the predefined array attributes
-- (see 16.2).

signal A, B: Word (1 to 4);
signal C: Word (5 downto 0);

Instance: entity E
generic map (ROM(1 to 2) => (others => (others => '0')))
port map (A, Op2(3 to 4) => B(l to 2), Op2(2) => B(3),
Result => C(3 downto 1));
-- In this instance, the index range of ROM is 1 to 2 (matching
-- that of the actual), the index range of Opl is 1 to 4 (matching
-- the index range of A), the index range of Op2 is 2 to 4, and
-- the index range of Result is (3 downto 1) (again matching the
-- index range of the actual).
NOTE—An index constraint with a null discrete range for an index of an array subelement of a composite array type

defines a null array subelement type. The array type is not necessarily a null array type. For example, given the
declarations

type E is array (NATURAL range <>) of INTEGER;
type T is array (1 to 10) of E (1 to 0);

values of type T are not null arrays. Rather, they are arrays of ten elements, each of which is a null array.
5.3.2.3 Predefined array types

The predefined array types are STRING, BOOLEAN VECTOR, BIT VECTOR, INTEGER VECTOR,
REAL VECTOR, and TIME VECTOR, defined in package STANDARD in Clause 16.

The values of the predefined type STRING are one-dimensional arrays of the predefined type
CHARACTER, indexed by values of the predefined subtype POSITIVE:

subtype POSITIVE is INTEGER range 1 to INTEGER'HIGH;
type STRING is array (POSITIVE range <>) of CHARACTER;

The values of the predefined types BOOLEAN VECTOR, BIT VECTOR, INTEGER VECTOR,
REAL _VECTOR, and TIME VECTOR, are one-dimensional arrays of the predefined types BOOLEAN,
BIT, INTEGER, REAL, and TIME, respectively, indexed by values of the predefined subtype NATURAL.:

subtype NATURAL is INTEGER range 0 to INTEGER'HIGH;

type BOOLEAN VECTOR is array (NATURAL range <>) of BOOLEAN;
type BIT VECTOR is array (NATURAL range <>) of BIT;

type INTEGER VECTOR is array (NATURAL range <>) of INTEGER;
type REAL VECTOR is array (NATURAL range <>) of REAL;

type TIME VECTOR is array (NATURAL range <>) of TIME;

NOTE—The type REAL VECTOR is added for consistency with VHDL-AMS, defined by IEEE Std 1076.1-2007
[B10].

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -50-
IEEE Std 1076-2008

Examples:
variable MESSAGE: STRING (1 to 17) := "THIS IS A MESSAGE";
signal LOW BYTE: BIT VECTOR (0 to 7);

constant MONITOR_ELEMENTS: BOOLEAN_VECTOR (LOW_BYTE'RANGE)
:= (others => FALSE) ;

constant ELEMENT_DELAYS: TIME_VECTOR (LOW_BYTE'RANGE)
:= (others => UNIT DELAY);

variable BUCKETS: INTEGER_VECTOR (1 to 10);
variable AVERAGES: REAL VECTOR (1 to 10);

5.3.2.4 Predefined operations on array types

Given a type declaration that declares a discrete array type T (see 9.2.3), the following operations are
implicitly declared immediately following the type declaration:

function MINIMUM (L, R: T) return T;
function MAXIMUM (L, R: T) return T;

The MINIMUM operation returns the value of L if L <R, or the value of R otherwise. The MAXIMUM
operation returns the value of R if L <R, or the value of L otherwise. For both operations, the comparison is
performed using the predefined relational operator for the type.

In addition, given a type declaration that declares a one-dimensional array type T whose elements are of a
scalar type E, the following operations are implicitly declared immediately following the type declaration:

function MINIMUM (L: T) return E;
function MAXIMUM (L: T) return E;

The values returned by these operations are defined as follows.

— The MINIMUM operation returns a value that is the least of the elements of L. That is, if L is a null
array, the return value is E'HIGH. Otherwise, the return value is the result of a two-parameter
MINIMUM operation. The first parameter of the two-parameter MINIMUM operation is the
leftmost element of L. The second parameter of the two-parameter MINIMUM operation is the result
of a single-parameter MINIMUM operation with the parameter being the rightmost (L'LENGTH — 1)
elements of L.

— The MAXIMUM operation returns a value that is the greatest of the elements of L. That is, if L is a
null array, the return value is E'LOW. Otherwise, the return value is the result of a two-parameter
MAXIMUM operation. The first parameter of the two-parameter MAXIMUM operation is the
leftmost element of L. The second parameter of the two-parameter MAXIMUM operation is the
result of a single-parameter MAXIMUM operation with the parameter being the rightmost
(L'LENGTH - 1) elements of L.

Given a type declaration that declares a one-dimensional array type T whose element type is a character type
that contains only character literals, the following operation is implicitly declared immediately following the

type declaration:

function TO STRING (VALUE: T) return STRING;

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-51- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

The TO_STRING operation returns the string representation (see 5.7) of the value of its actual parameter.
The result type of the operation is the type STRING defined in package STANDARD.

The following operations are implicitly declared in package STD.STANDARD immediately following the
declaration of the type BIT VECTOR:

alias TO_BSTRING is TO_STRING [BIT_VECTOR return STRING];
alias TO_BINARY STRING is TO_STRING [BIT_VECTOR return STRING];
function TO_OSTRING (VALUE: BIT_VECTOR) return STRING;

alias TO_OCTAL_STRING is TO_OSTRING [BIT_VECTOR return STRING];
function TO HSTRING (VALUE: BIT VECTOR) return STRING;

alias TO_HEX STRING is TO_HSTRING [BIT_VECTOR return STRING];

These operations return strings that are the binary, octal, and hexadecimal representations, respectively, of
the parameters. For the TO_OSTRING operation, the result has an uppercase octal digit corresponding to
each group of three elements in the parameter value. If the length of the parameter value is not a multiple of
three, then one or two '0' elements are implicitly concatenated on the left of the parameter value to yield a
value that is a multiple of three in length. Similarly, for the TO _HSTRING operation, the result has an
uppercase hexadecimal digit corresponding to each group of four elements in the parameter value. If the
length of the parameter value is not a multiple of four, then one, two, or three '0' elements are implicitly
concatenated on the left of the parameter value to yield a value that is a multiple of four in length.

5.3.3 Record types

A record type is a composite type, objects of which consist of named elements. The value of a record object
is a composite value consisting of the values of its elements.

record type definition ::=
record
element_declaration
{ element_declaration }
end record [record type simple name]

element_declaration ::=
identifier list : element subtype definition ;

identifier list ::= identifier {, identifier }
element_subtype definition ::= subtype indication

record constraint ::=
(record _element constraint { , record element constraint })

record element constraint ::= record_element simple name element constraint

A record constraint may be used to constrain a record type or subtype (see 6.3).

Each element declaration declares an element of the record type. The identifiers of all elements of a record
type shall be distinct. The use of a name that denotes a record element is not allowed within the record type
definition that declares the element.

An element declaration with several identifiers is equivalent to a sequence of single element declarations.

Each single element declaration declares a record element whose subtype is specified by the element
subtype definition.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -52-
IEEE Std 1076-2008

If a simple name appears at the end of a record type declaration, it shall repeat the identifier of the type
declaration in which the record type definition is included.

A record type definition creates a record type; it consists of the element declarations in the order in which
they appear in the type definition.

A record type definition in which each element subtype definition denotes either an unconstrained
composite subtype or a subtype that is not a composite subtype defines a record type and a name denoting
that type.

A record type definition in which at least one element subtype definition denotes a partially or fully
constrained composite subtype defines both a record type and a subtype of this type:

— The record type is an implicitly declared anonymous type; this type is defined by an implicit record
type definition with element declarations corresponding to those of the explicit record type
definition, in the same order. Each element declaration has the same identifier list as that of the
corresponding element declaration in the explicit record type definition. The element subtype
definition in each element declaration denotes the base type of the subtype denoted by the element
subtype definition of the corresponding element declaration in the explicit record type definition.

— The record subtype is the subtype obtained by imposition of the constraints of the subtypes denoted
by the element subtype definitions of the explicit record type definition as a record constraint on the
record type.

If a record type definition that defines both a record type and a subtype of that type is given for a type
declaration, the simple name declared by this declaration denotes the record subtype.

If a record constraint applies to a type or subtype, then the type or subtype shall be a record type or an access
type whose designated type is a record type. For each record element constraint in the record constraint, the
record type shall have an element with the same simple name as the record element simple name in the
record element constraint. A record constraint is compatible with the type if, and only if, the constraint in
each record element constraint is compatible with the element subtype of the corresponding element of the

type.
Example:

type DATE is

record
DAY : INTEGER range 1 to 31;
MONTH : MONTH NAME;
YEAR : INTEGER range 0 to 4000;

end record;

type SIGNED FXPT COMPLEX is
record
RE : SIGNED FXPT;
IM : SIGNED FXPT;

end record;

signal COMPLEX_VAL: SIGNED_FXPT_COMPLEX (RE (4 downto -16),
IM(4 downto -12));

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-53- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

5.4 Access types
5.4.1 General

An object declared by an object declaration is created by the elaboration of the object declaration and is
denoted by a simple name or by some other form of name. In contrast, objects that are created by the
evaluation of allocators (see 9.3.7) have no simple name. Access to such an object is achieved by an access
value returned by an allocator; the access value is said to designate the object.

access_type_definition ::= access subtype indication

For each access type, there is a literal null that has a null access value designating no object at all. The null
value of an access type is the default initial value of the type. Other values of an access type are obtained by
evaluation of a special operation of the type, called an allocator. Each such access value designates an object
of the subtype defined by the subtype indication of the access type definition. This subtype is called the
designated subtype and the base type of this subtype is called the designated type. The designated type shall
not be a file type or a protected type.

An object declared to be of an access type shall be an object of class variable. An object designated by an
access value is always an object of class variable.

The only form of constraint that is allowed after the name of an access type in a subtype indication is an
array constraint or a record constraint. An access value belongs to a corresponding subtype of an access type
either if the access value is the null value or if the value of the designated object satisfies the constraint.

Examples:

type ADDRESS is access MEMORY;
type BUFFER PTR is access TEMP BUFFER;

NOTE 1—An access value delivered by an allocator can be assigned to several variables of the corresponding access
type. Hence, it is possible for an object created by an allocator to be designated by more than one variable of the access
type. An access value can only designate an object created by an allocator; in particular, it cannot designate an object
declared by an object declaration.

NOTE 2—If the type of the object designated by the access value is an array type or has a subelement that is of an array
type, this object is constrained with the array bounds supplied implicitly or explicitly for the corresponding allocator.

NOTE 3—If the designated type is a composite type, it cannot have a subelement of a file type or a protected type (see
5.3.1).

5.4.2 Incomplete type declarations

The designated type of an access type can be of any type except a file type or a protected type (see 5.4.1). In
particular, the type of an element of the designated type can be another access type or even the same access
type. This permits mutually dependent and recursive access types. Declarations of such types require a prior
incomplete type declaration for one or more types.

incomplete type declaration ::= type identifier ;

For each incomplete type declaration there shall be a corresponding full type declaration with the same
identifier. This full type declaration shall occur later and immediately within the same declarative part as the
incomplete type declaration to which it corresponds.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -54-
IEEE Std 1076-2008

Prior to the end of the corresponding full type declaration, the only allowed use of a name that denotes a type
declared by an incomplete type declaration is as the type mark in the subtype indication of an access type
definition; no constraints are allowed in this subtype indication.

Example of a recursive type:

type CELL; -- An incomplete type declaration.

type LINK is access CELL;

type CELL is

record
VALUE : INTEGER;
SUCC : LINK;
PRED : LINK;
end record CELL;
variable HEAD: LINK := new CELL' (0, null, null);
variable \NEXT\: LINK := HEAD.SUCC;

Examples of mutually dependent access types:

type PART; -- Incomplete type declarations.
type WIRE;

type PART PTR is access PART;
type WIRE PTR is access WIRE;

type PART LIST is array (POSITIVE range <>) of PART PTR;
type WIRE LIST is array (POSITIVE range <>) of WIRE PTR;

type PART LIST PTR is access PART LIST;
type WIRE LIST PTR is access WIRE LIST;

type PART is
record
PART NAME : STRING (1 to MAX STRING LEN) ;
CONNECTIONS : WIRE LIST PTR;
end record;

type WIRE is

record
WIRE NAME : STRING (1 to MAX_STRING_LEN);
CONNECTS : PART LIST PTR;

end record;
5.4.3 Allocation and deallocation of objects
An object designated by an access value is allocated by an allocator for that type. An allocator is a primary
of an expression; allocators are described in 9.3.7. For each access type, a deallocation operation is
implicitly declared immediately following the full type declaration for the type. This deallocation operation

makes it possible to deallocate explicitly the storage occupied by a designated object.

Given the following access type declaration:

|PuMBhedbyIECundmﬂmenseﬂomIEEEA32008IEEE.AHﬂghmresewedj

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-55- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

type AT is access T;
the following operation is implicitly declared immediately following the access type declaration:
procedure DEALLOCATE (P: inout AT);

Procedure DEALLOCATE takes as its single parameter a variable of the specified access type. If the value
of that variable is the null value for the specified access type, then the operation has no effect. If the value of
that variable is an access value that designates an object, the storage occupied by that object is returned to
the system and may then be reused for subsequent object creation through the invocation of an allocator. The
access parameter P is set to the null value for the specified type.

NOTE—If an access value is copied to a second variable and is then deallocated, the second variable is not set to null
and thus references invalid storage.

5.5 File types
5.5.1 General

A file type definition defines a file type. File types are used to define objects representing files in the host
system environment. The value of a file object is the sequence of values contained in the host system file.

file type definition ::= file of type mark

The type mark in a file type definition defines the subtype of the values contained in the file. The type mark
may denote either a fully constrained, a partially constrained, or an unconstrained subtype. The base type of
this subtype shall not be a file type, an access type, a protected type, or a formal generic type. If the base type
is a composite type, it shall not contain a subelement of an access type. If the base type is an array type, it
shall be a one-dimensional array type whose element subtype is fully constrained. If the base type is a record
type, it shall be fully constrained.

Examples:

file of STRING -—- Defines a file type that can contain
-- an indefinite number of strings of
-- arbitrary length.

file of NATURAL -- Defines a file type that can contain
-- only nonnegative integer values.

NOTE—If the base type of the subtype denoted by the type mark is a composite type, it cannot have a subelement of a
file type or a protected type (see 5.3.1).

5.5.2 File operations

The language implicitly defines the operations for objects of a file type. Given the following file type
declaration:

type FT is file of TM;

where type mark TM denotes a scalar type, a record type, or a fully constrained array subtype, the following
operations are implicitly declared immediately following the file type declaration:

procedure FILE OPEN (file F: FT;
External Name: in STRING;

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -56-
IEEE Std 1076-2008

Open Kind: in FILE OPEN KIND := READ MODE);

procedure FILE OPEN (Status: out FILE OPEN STATUS;

file F: FT;
External Name: in STRING;
Open Kind: in FILE OPEN KIND

READ MODE) ;

procedure FILE CLOSE (file F: FT);

procedure READ (file F: FT; VALUE: out TM);

procedure WRITE (file F: FT; VALUE: in TM);

procedure FLUSH (file F: FT);

function ENDFILE (file F: FT) return BOOLEAN;

The FILE OPEN procedures open an external file specified by the External Name parameter and associate
it with the file object F. If the call to FILE OPEN is successful (see the following), the file object is said to
be open and the file object has an access mode dependent on the value supplied to the Open_Kind parameter
(see 16.3).

If the value supplied to the Open Kind parameter is READ MODE, the access mode of the file
object is read-only. In addition, the file object is initialized so that a subsequent READ will return
the first value in the external file. Values are read from the file object in the order that they appear in
the external file.

If the value supplied to the Open_Kind parameter is WRITE MODE, the access mode of the file
object is write-only. In addition, the external file is made initially empty. Values written to the file
object are placed in the external file in the order in which they are written.

If the value supplied to the Open_Kind parameter is APPEND MODE, the access mode of the file
object is write-only. In addition, the file object is initialized so that values written to it will be added
to the end of the external file in the order in which they are written.

In the second form of FILE OPEN, the value returned through the Status parameter indicates the results of
the procedure call:

A value of OPEN OK indicates that the call to FILE OPEN was successful. If the call to
FILE OPEN specifies an external file that does not exist at the beginning of the call, and if the
access mode of the file object passed to the call is write-only, then the external file is created.

A value of STATUS ERROR indicates that the file object already has an external file associated
with it.

A value of NAME ERROR indicates that the external file does not exist (in the case of an attempt to
read from the external file) or the external file cannot be created (in the case of an attempt to write or
append to an external file that does not exist). This value is also returned if the external file cannot be
associated with the file object for any reason.

A value of MODE ERROR indicates that the external file cannot be opened with the requested
Open_Kind.

The first form of FILE OPEN causes an error to occur if the second form of FILE OPEN, when called
under identical conditions, would return a Status value other than OPEN_OK.

A call to FILE_OPEN of the first form is successful if and only if the call does not cause an error to occur.
Similarly, a call to FILE OPEN of the second form is successful if and only if it returns a Status value of
OPEN_OK.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-57 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

If a file object F is associated with an external file, procedure FILE CLOSE terminates access to the
external file associated with F and closes the external file. If F is not associated with an external file, then
FILE CLOSE has no effect. In either case, the file object is no longer open after a call to FILE _CLOSE that
associates the file object with the formal parameter F.

An implicit call to FILE CLOSE exists in a subprogram body for every file object declared in the
corresponding subprogram declarative part. Each such call associates a unique file object with the formal
parameter F and is called whenever the corresponding subprogram completes its execution.

Procedure READ retrieves the next value from a file; it is an error if the access mode of the file object is
write-only or if the file object is not open. Procedure WRITE appends a value to a file. Procedure FLUSH
requests that the implementation complete the effect of all previous calls to the WRITE procedure for a file.
For the WRITE and FLUSH procedures, it is an error if the access mode of the file object is read-only or if
the file is not open. Function ENDFILE returns FALSE if a subsequent READ operation on an open file
object whose access mode is read-only can retrieve another value from the file; otherwise, it returns TRUE.
Function ENDFILE always returns TRUE for an open file object whose access mode is write-only. It is an
error if ENDFILE is called on a file object that is not open.

For a file type declaration in which the type mark denotes an unconstrained or partially constrained array
type, the same operations are implicitly declared, except that the READ operation is declared as follows:

procedure READ (file F: FT; VALUE: out TM; LENGTH: out Natural);

The READ operation for such a type performs the same function as the READ operation for other types, but
in addition it returns a value in parameter LENGTH that specifies the actual length of the array value read by
the operation. If the object associated with formal parameter VALUE is shorter than this length, then only
that portion of the array value read by the operation that can be contained in the object is returned by the
READ operation, and the rest of the value is lost. If the object associated with formal parameter VALUE is
longer than this length, then the entire value is returned and remaining elements of the object are unaffected
by the READ operation.

An error will occur when a READ operation is performed on file F if ENDFILE(F) would return TRUE at
that point.

If a READ operation for a file object is executed after a FLUSH operation for a second file object and the
same external file is associated with both file objects, an implementation should fulfill the request made by
the FLUSH operation before retrieving a value from the file for the READ operation.

At the beginning of the execution of any file operation, the execution of the file operation blocks (see 14.6)
until exclusive access to the file object denoted by the formal parameter F can be granted. Exclusive access
to the given file object is then granted and the execution of the file operation proceeds. Once the file
operation completes, exclusive access to the given file object is rescinded.

NOTE 1—An implementation may not be able to guarantee that all values written before a FLUSH operation are flushed
to the external file before a subsequent READ operation to that external file, especially when the external file resides in
a distributed or remote file system.

NOTE 2—Predefined package TEXTIO is provided to support formatted human-readable I/O. It defines type TEXT (a
file type representing files of variable-length text strings) and type LINE (an access type that designates such strings).
READ and WRITE operations are provided in package TEXTIO that append or extract data from a single line.
Additional operations are provided to read or write entire lines and to determine the status of the current line or of the file
itself. Package TEXTIO is defined in Clause 16.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -58-
IEEE Std 1076-2008

5.6 Protected types
5.6.1 Protected type definitions

A protected type definition defines a protected type. A protected type implements instantiatiable regions of
sequential statements, each of which are guaranteed exclusive access to shared data. Shared data is a set of
variable objects that may be potentially accessed as a unit by multiple processes.

protected type definition ::=
protected type declaration
| protected type body

Each protected type declaration appearing immediately within a given declarative region (see 12.1) shall
have exactly one corresponding protected type body appearing immediately within the same declarative
region and textually subsequent to the protected type declaration. Similarly, each protected type body
appearing immediately within a given declarative region shall have exactly one corresponding protected
type declaration appearing immediately within the same declarative region and textually prior to the
protected type body.

5.6.2 Protected type declarations
A protected type declaration declares the external interface to a protected type.

protected type declaration ::=
protected
protected type declarative part
end protected [protected type simple name]|

protected type declarative part ::=
{ protected_type declarative item }

protected type declarative item ::=
subprogram_declaration
| subprogram_instantiation declaration
| attribute _specification
| use clause

If a simple name appears at the end of a protected type declaration, it shall repeat the identifier of the type
declaration in which the protected type definition is included.

Each subprogram specified within a given protected type declaration defines an abstract operation, called a
method, that operates atomically and exclusively on a single object of the protected type. In addition to the
object of the protected type operated on by the subprogram, parameters may be explicitly specified in the
formal parameter list of the subprogram declaration of the subprogram. Such formal parameters shall not be
of an access type or a file type; moreover, they shall not have a subelement that is of an access type.
Additionally, in the case of a function subprogram, the return type of the function shall not be of an access
type; moreover, it shall not have a subelement that is of an access type.

NOTE 1—Composite formal parameters of methods and composite return types of function methods cannot have
subelements of file types (see 5.3.1).

NOTE 2—A parameter type of a method or the return type of a function method may be a formal generic type or have a
subelement of a formal generic type. However, for an instance of the enclosing declaration that defines the formal
generic type, a check is required that the actual generic type is neither an access type nor contains a subelement of an
access type. Depending on the implementation, this check may be done during analysis of the instantiation, or it may be
deferred until the design hierarchy is elaborated.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-59 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

Examples:

type SharedCounter is protected
procedure increment (N: Integer := 1);
procedure decrement (N: Integer 1),
impure function value return Integer;
end protected SharedCounter;

type ComplexNumber is protected
procedure extract (variable r, i: out Real);
procedure add (variable a, b: inout ComplexNumber) ;
end protected ComplexNumber;

type VariableSizeBitArray is protected
procedure add bit (index: Positive; value: Bit);
impure function size return Natural;

end protected VariableSizeBitArray;

5.6.3 Protected type bodies
A protected type body provides the implementation for a protected type.

protected type body ::=
protected body
protected type body declarative part
end protected body [protected type simple name]

protected type body declarative part ::=
{ protected_type body declarative item }

protected type body declarative item ::=
subprogram_declaration
| subprogram_body
| subprogram_instantiation_declaration
| package declaration
| package body
| package instantiation_declaration
| type declaration
| subtype declaration
| constant_declaration
| variable declaration
| file declaration
| alias_declaration
| attribute _declaration
| attribute _specification
| use clause
| group_template declaration
| group_declaration

Each subprogram declaration appearing in a given protected type declaration shall have a corresponding
subprogram body appearing in the corresponding protected type body.

NOTE—Subprogram bodies appearing in a protected type body not lexically conformant to any of the subprogram
declarations in the corresponding protected type declaration are visible only within the protected type body. Such

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -60-
IEEE Std 1076-2008

subprograms may have parameters that are access and file types and (in the case of functions) return types that are or
contain access types.

Examples:

type SharedCounter is protected body

variable counter: Integer := 0;
procedure increment (N: Integer := 1) is
begin

counter := counter + N;

end procedure increment;

procedure decrement (N: Integer := 1) is
begin
counter := counter - N;

end procedure decrement;
impure function value return Integer is
begin
return counter;
end function value;
end protected body SharedCounter;
type ComplexNumber is protected body

variable re, im: Real;

procedure extract (r, i: out Real) is

begin
r 1= re;
i = im;

end procedure extract;

procedure add (variable a, b: inout ComplexNumber) is
variable a real, b real: Real;
variable a imag, b imag: Real;

begin
a.extract (a_real, a imag);
b.extract (b _real, b _imag);
re := a real + b _real;
im := a imag + b_imag;

end procedure add;

end protected body ComplexNumber;

type VariableSizeBitArray is protected body
type bit vector access is access Bit Vector;

variable bit array: bit vector access := null;
variable bit array length: Natural := 0;

procedure add bit (index: Positive; value: Bit) is
variable tmp: bit vector access;

|PuMBhedbyIECundmﬂmenseﬂomIEEEA32008IEEE.AHﬂghmresewedj

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-61- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

begin

if index > bit array length then
tmp := bit array;
bit array := new bit vector (1 to index);
if tmp /= null then
bit array (1 to bit array length) := tmp.all;
deallocate (tmp);
end if;
bit array length := index;
end if;
bit array (index) := value;

end procedure add bit;

impure function size return Natural is
begin

return bit array length;

end function size;
end protected body VariableSizeBitArray;

5.7 String representations

The string representation of a value of a given type is a value of type STRING, defined as follows:

For a given value of type CHARACTER, the string representation contains one element that is the
given value.

For a given value of an enumeration type other than CHARACTER, if the value is a character literal,
the string representation contains a single element that is the character literal; otherwise, the string
representation is the sequence of characters in the identifier that is the given value. For an extended
identifier, the string representation does not include leading or trailing backslash characters, and
backslash characters in the extended identifier are not doubled in the string representation.

For a given value of an integer type, the string representation is the sequence of characters of an
abstract literal without a point and whose value is the given value. The sequence of characters of the
abstract literal may be preceded by a sign character with no intervening space or format effector
characters.

For a given value of a physical type, the string representation is the sequence of characters of a
physical literal whose value is the given value. The sequence of characters of the physical literal may
be preceded by a sign character with no intervening space or format effector characters.

For a given value of a floating-point type, the string representation is the sequence of characters of an
abstract literal that includes a point and whose value is the given value. The sequence of characters
of the abstract literal may be preceded by a sign character with no intervening space or format
effector characters.

For a given value that is of a one-dimensional array type whose element type is a character type that
contains only character literals, the string representation has the same length as the given value. Each
element of the string representation is the same character literal as the matching element of the given
value.

For a given value that is of a composite type other than described by the preceding paragraph, there
is no string representation.

For a value of an access type, a file type, or a protected type, there is no string representation.

In each case where a string representation is defined, the index range of the string representation is not
specified by this standard.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -62-
IEEE Std 1076-2008

When forming the string representation for a WRITE procedure in STD.TEXTIO (see Clause 16) or for an
implicitly defined TO_STRING operation, except where otherwise specified for an overloaded
TO_STRING operation:

For a value of an integer type, the abstract literal is a decimal literal and there is no exponent.
Letters in a basic identifier are in lowercase.

For a value of a floating-point type, when forming the string representation for a TO_STRING
operation, the abstract literal is a decimal literal in standard form, consisting of a normalized
mantissa and an exponent in which the sign is present and the “e” is in lowercase. The number of
digits in the standard form is implementation defined. When forming the string representation for the
WRITE procedure for type REAL in which the DIGITS parameter has the value 0, the string
representation is as described for a TO _STRING operation. When the DIGITS parameter is non-
zero, the abstract literal is a decimal literal without the exponent, as described in 16.4.

For a value of a physical type, when forming the string representation for a TO_STRING operation,
the abstract literal is a decimal literal that is an integer literal, there is no exponent, and there is a
single SPACE character between the abstract literal and the unit name. If the physical type is TIME,
the unit name is the simple name of the resolution limit (see 5.2.4.2); otherwise, the unit name is the
simple name of the primary unit of the physical type. When forming the string representation for the
WRITE procedure for type TIME, the physical literal is as described in 16.4.

There are no insignificant leading or trailing zeros in a decimal literal.

There is no sign preceding the string representation of a non-negative value of an integer, physical or
floating-point type.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-63 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

6. Declarations

6.1 General

The language defines several kinds of named entities that are declared explicitly or implicitly by
declarations. Each entity’s name is defined by the declaration, either as an identifier or as an operator
symbol or a character literal.

There are several forms of declaration. A declaration is one of the following:
— A type declaration
— A subtype declaration
— An object declaration
— An interface declaration
— An alias declaration
— An attribute declaration
— A component declaration
— A group template declaration
— A group declaration
— An entity declaration
— A configuration declaration
— A subprogram declaration
— A subprogram instantiation declaration
— A package declaration
— A package instantiation declaration
— A primary unit
— An architecture body
— A PSL property declaration
— A PSL sequence declaration
— An enumeration literal in an enumeration type definition
— A primary unit declaration in a physical type definition
— A secondary unit declaration in a physical type definition
— An element declaration in a record type definition
— A parameter specification in a loop statement or a for generate statement
— An implicit label declaration

— A logical name in a library clause, other than a library clause that appears within a context
declarative region

For each form of declaration, the language rules define a certain region of text called the scope of the
declaration (see 12.2). Each form of declaration associates an identifier, operator symbol, or character literal
with a named entity. The identifier, operator symbol, or character literal is called the designator of the
declaration. Only within its scope, there are places where it is possible to use the designator to refer to the
associated declared entity; these places are defined by the visibility rules (see 12.3). At such places the
designator is said to be a name of the entity; the name is said to denote the associated entity.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -64-
IEEE Std 1076-2008

This clause describes type and subtype declarations, the various kinds of object declarations, alias
declarations, attribute declarations, component declarations, and group and group template declarations. The
other kinds of declarations are described in Clause 3 and Clause 4.

A declaration takes effect through the process of elaboration. Elaboration of declarations is discussed in
Clause 14.

PSL verification units and declarations are described in IEEE Std 1850-2005. It is an error if a property
defined by a PSL property declaration does not conform to the rules for the simple subset of PSL.

6.2 Type declarations
A type declaration declares a type. Such a type is called an explicitly declared type.

type declaration ::=
full type_ declaration
| incomplete type declaration

full type declaration ::=
type identifier is type definition ;

type definition ::=
scalar_type definition
| composite type definition
| access_type definition
| file type definition
| protected type definition

The types created by the elaboration of distinct type definitions are distinct types. Moreover, they are
distinct from formal generic types of entity declarations, component declarations, and uninstantiated
package and subprogram declarations. The elaboration of the type definition for a scalar type or a partially
constrained or fully constrained composite type creates both a base type and a subtype of the base type.

The simple name declared by a type declaration denotes the declared type, unless the type declaration
declares both a base type and a subtype of the base type, in which case the simple name denotes the subtype
and the base type is anonymous. A type is said to be anonymous if it has no simple name. For explanatory
purposes, this standard sometimes refers to an anonymous type by a pseudo-name, written in italics, and
uses such pseudo-names at places where the syntax normally requires an identifier.

NOTE 1—Two type definitions always define two distinct types, even if they are lexically identical. Thus, the type def-
initions in the following two integer type declarations define distinct types:

type A is range 1 to 10;
type B is range 1 to 10;

This applies to type declarations for other classes of types as well.

NOTE 2—The various forms of type definition are described in Clause 5. Examples of type declarations are also given
in that clause.

6.3 Subtype declarations
A subtype declaration declares a subtype.

subtype declaration ::=
subtype identifier is subtype indication ;

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-65 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

subtype_indication ::=
[resolution_indication] type mark [constraint |

resolution_indication ::=
resolution_function_name | (element_resolution)

element_resolution ::= array element_resolution | record_resolution

array element resolution ::= resolution_indication

record resolution ::=record element resolution {, record element resolution }
record_element resolution ::= record _element simple name resolution_indication

type mark ::=
type_name
| subtype_name

constraint ::=
range constraint
| array constraint
| record_constraint

element_constraint ::=
array_constraint
| record _constraint

A type mark denotes a type or a subtype. If a type mark is the name of a type, the type mark denotes this type
and also the corresponding unconstrained subtype. The base type of a type mark is, by definition, the base
type of the type or subtype denoted by the type mark.

A subtype indication defines a subtype of the base type of the type mark.

A resolution indication is said to correspond to a subtype, and associates one or more resolution functions
with the subtype to which it corresponds or with subelement subtypes of the subtype to which it
corresponds. A resolution indication that appears in a subtype indication corresponds to the subtype defined
by the subtype indication. For that resolution indication, and any resolution indications nested within it, the
association of resolution functions is specified by the following rules, applied recursively:

— If a resolution indication is in the form of a resolution function name, then the named resolution
function is associated with the subtype corresponding to the resolution indication.

— If a resolution indication is in the form that contains an element resolution that is an array element
resolution, then the subtype corresponding to the resolution indication shall be an array subtype. The
array element resolution corresponds to the element subtype of the array subtype.

— If aresolution indication is in the form that contains an element resolution that is a record resolution,
then the subtype corresponding to the resolution indication shall be a record subtype. For each record
element resolution in the record resolution, the record subtype shall have an element with the same
simple name as the record element simple name in the record element resolution, and the resolution
indication immediately following that record element simple name in the record element resolution
corresponds to the element subtype of the element with that simple name in the record subtype.

If a subtype indication includes a resolution indication that associates a resolution function name with a
subtype, then any signal declared to be of that subtype will be resolved, if necessary, by the named function

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -66-
IEEE Std 1076-2008

(see 4.6); for an overloaded function name, the meaning of the function name is determined by context (see
4.5 and 12.5). It is an error if the function does not meet the requirements of a resolution function (see 4.6).
The presence of a resolution function indication has no effect on the declarations of objects other than
signals or on the declarations of files, aliases, attributes, or other subtypes.

If the subtype indication does not include a constraint, the subtype is the same as that denoted by the type
mark. The condition imposed by a constraint is the condition obtained after evaluation of the expressions
and ranges forming the constraint. The rules defining compatibility are given for each form of constraint in
the appropriate clause. These rules are such that if a constraint is compatible with a subtype, then the
condition imposed by the constraint cannot contradict any condition already imposed by the subtype on its
values. An error occurs if any check of compatibility fails.

The direction of a discrete subtype indication is the same as the direction of the range constraint that appears
as the constraint of the subtype indication. If no constraint is present, and the type mark denotes a subtype,
the direction of the subtype indication is the same as that of the denoted subtype. If no constraint is present,
and the type mark denotes a type, the direction of the subtype indication is the same as that of the range used
to define the denoted type. The direction of a discrete subtype is the same as the direction of its subtype
indication.

A subtype indication denoting an access type, a file type, or a protected type shall not contain a resolution
function. Furthermore, the only allowable constraint on a subtype indication denoting an access type is an
array constraint (and then only if the designated type is an array type) or a record constraint (and then only if
the designated type is a record type).

A subtype indication denoting a subtype of a file type, a protected type, or a formal generic incomplete type
of an uninstantiated package or subprogram declaration shall not contain a constraint.

NOTE—A subtype declaration does not define a new type.

6.4 Objects
6.4.1 General

An object is a named entity that contains (has) a value of a type. An object is one of the following:
— An object declared by an object declaration (see 6.4.2)
— A loop or generate parameter (see 10.10 and 11.8)
— A formal parameter of a subprogram (see 4.2.2)
— A formal port (see 6.5.6.3 and 11.2)
— A formal generic constant (see 6.5.6.2 and 11.2)
— A local port (see 6.8)
— A local generic constant (see 6.8)
— An implicit signal GUARD defined by the guard condition of a block statement (see 11.2)

In addition, the following are objects, but are not named entities:

— An implicit signal defined by any of the predefined attributes ' DELAYED, 'STABLE, 'QUIET, and
'"TRANSACTION (see 16.2)

— An element or slice of another object (see 8.3, 8.4, and 8.5)

— An object designated by a value of an access type (see 5.4.1)

There are four classes of objects: constants, signals, variables, and files. The variable class of objects also
has an additional subclass: shared variables. The class of an explicitly declared object is specified by the

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

- 67 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

reserved word that shall or may appear at the beginning of the declaration of that object. For a given object
of a composite type, each subelement of that object is itself an object of the same class and subclass, if any,
as the given object. The value of a composite object is the aggregation of the values of its subelements.

Objects declared by object declarations are available for use within blocks, processes, subprograms, or
packages. Loop and generate parameters are implicitly declared by the corresponding statement and are
available for use only within that statement. Other objects, declared by interface object declarations, create
channels for the communication of values between independent parts of a description.

6.4.2 Object declarations
6.4.2.1 General

An object declaration declares an object of a specified type. Such an object is called an explicitly declared
object.

object_declaration ::=
constant_declaration
| signal_declaration
| variable_declaration
| file declaration

An object declaration is called a single-object declaration if its identifier list has a single identifier; it is
called a multiple-object declaration if the identifier list has two or more identifiers. A multiple-object
declaration is equivalent to a sequence of the corresponding number of single-object declarations. For each
identifier of the list, the equivalent sequence has a single-object declaration formed by this identifier,
followed by a colon and by whatever appears at the right of the colon in the multiple-object declaration; the
equivalent sequence is in the same order as the identifier list.

A similar equivalence applies also for interface object declarations (see 6.5.2).

NOTE—The subelements of a composite declared object are not declared objects.
6.4.2.2 Constant declarations

A constant declaration declares a constant of the specified type. Such a constant is an explicitly declared
constant.

constant_declaration ::=
constant identifier list : subtype indication [:= expression] ;

If the assignment symbol “:=" followed by an expression is present in a constant declaration, the expression
specifies the value of the constant; the type of the expression shall be that of the constant. The value of a
constant cannot be modified after the declaration is elaborated.

If the assignment symbol “:=" followed by an expression is not present in a constant declaration, then the
declaration declares a deferred constant. It is an error if such a constant declaration appears anywhere other
than in a package declaration. The corresponding full constant declaration, which defines the value of the
constant, shall appear in the body of the package (see 4.8).

Formal parameters of subprograms that are of mode in may be constants, and local and formal generics may
also be constants; the declarations of such objects are discussed in 6.5.2. A loop parameter is a constant
within the corresponding loop (see 10.10); similarly, a generate parameter is a constant within the
corresponding generate statement (see 11.8). A subelement or slice of a constant is a constant.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -68-
IEEE Std 1076-2008

It is an error if a constant declaration declares a constant that is of a file type, an access type, a protected
type, or a composite type that has a subelement that is of an access type.

NOTE 1—The subelements of a composite declared constant are not declared constants. Moreover, such subelements
cannot be of file types or protected types (see 5.3.1).

NOTE 2—A constant may be of a formal generic type. However, for an instance of the enclosing declaration that defines
the formal generic type, a check is required that the actual generic type is neither an access type nor contains a subele-
ment of an access type. Depending on the implementation, this check may be done during analysis of the instantiation, or
it may be deferred until the design hierarchy is elaborated.

Examples:

constant TOLER: DISTANCE := 1.5 nm;

constant PI: REAL := 3.141592;

constant CYCLE TIME: TIME := 100 ns;

constant Propagation Delay: DELAY LENGTH; -- A deferred constant.

6.4.2.3 Signal declarations
A signal declaration declares a signal of the specified type. Such a signal is an explicitly declared signal.

signal declaration ::=
signal identifier list : subtype indication [signal kind][:= expression] ;

signal _kind ::= register | bus

If a resolution indication appears in the subtype indication in the declaration of a signal or in the declaration
of the subtype used to declare the signal, then each resolution function in the subtype is associated
correspondingly with the declared signal or with a subelement of the declared signal. Such a signal or
subelement is called a resolved signal.

If a signal kind appears in a signal declaration, then the signals so declared are guarded signals of the kind
indicated. For a guarded signal that is of a composite type, each subelement is likewise a guarded signal. For
a guarded signal that is of an array type, each slice (see 8.5) is likewise a guarded signal. A guarded signal
may be assigned values under the control of Boolean-valued guard conditions (or guards). When a given
guard becomes FALSE, the drivers of the corresponding guarded signals are implicitly assigned a null
transaction (see 10.5.2.2) to cause those drivers to turn off. A disconnection specification (see 7.4) is used to
specify the time required for those drivers to turn off.

If the signal declaration includes the assignment symbol followed by an expression, it shall be of the same
type as the signal. Such an expression is said to be a default expression. The default expression defines a
default value associated with the signal or, for a composite signal, with each scalar subelement thereof. For a
signal declared to be of a scalar subtype, the value of the default expression is the default value of the signal.
For a signal declared to be of a composite subtype, each scalar subelement of the value of the default
expression is the default value of the corresponding subelement of the signal.

In the absence of an explicit default expression, an implicit default value is assumed for a signal of a scalar
subtype or for each scalar subelement of a composite signal, each of which is itself a signal of a scalar
subtype. The implicit default value for a signal of a scalar subtype T is defined to be that given by T'LEFT.

It is an error if a signal declaration declares a signal that is of a file type, an access type, a protected type, or
a composite type having a subelement that is of an access type. It is also an error if a guarded signal of a
scalar type is neither a resolved signal nor a subelement of a resolved signal.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

- 69 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

A signal may have one or more sources. For a signal of a scalar type, each source is either a driver (see
14.7.2) or an out, inout, buffer, or linkage port of a component instance or of a block statement with which
the signal is associated. For a signal of a composite type, each composite source is a collection of scalar
sources, one for each scalar subelement of the signal. It is an error if, after the elaboration of a description, a
signal has multiple sources and it is not a resolved signal. It is also an error if, after the elaboration of a
description, a resolved signal has more sources than the number of elements in the index range of the type of
the formal parameter of the resolution function associated with the resolved signal.

If a subelement or slice of a resolved signal of composite type is associated as an actual in a port map aspect
(either in a component instantiation statement, a block statement, or in a binding indication), and if the
corresponding formal is of mode out, inout, buffer, or linkage, then every scalar subelement of that signal
shall be associated exactly once with such a formal in the same port map aspect, and the collection of the
corresponding formal parts taken together constitute one source of the signal. If a resolved signal of
composite type is associated as an actual in a port map aspect, that is equivalent to each of its subelements
being associated in the same port map aspect.

If a subelement of a resolved signal of composite type has a driver in a given process, then every scalar
subelement of that signal shall have a driver in the same process, and the collection of all of those drivers
taken together constitute one source of the signal.

The default value associated with a scalar signal defines the value component of a transaction that is the
initial contents of each driver (if any) of that signal. The time component of the transaction is not defined,
but the transaction is understood to have already occurred by the start of simulation.

Examples:

signal S: STANDARD.BIT VECTOR (1 to 10);
signal CLK1l, CLK2: TIME;
signal OUTPUT: WIRED OR MULTI VALUED LOGIC;

NOTE 1—Ports of any mode are also signals. The term signal is used in this standard to refer to objects declared either
by signal declarations or by port declarations (or to subelements, slices, or aliases of such objects). It also refers to the
implicit signal GUARD (see 11.2) and to implicit signals defined by the predefined attributes 'DELAYED, 'STABLE,
'QUIET, and 'TRANSACTION. The term port is used to refer to objects declared by port declarations only.

NOTE 2—Signals are given initial values by initializing their drivers. The initial values of drivers are then propagated
through the corresponding net to determine the initial values of the signals that make up the net (see 14.7.3.4).

NOTE 3—The value of a signal is indirectly modified by a signal assignment statement (see 10.5); such assignments
affect the future values of the signal.

NOTE 4—The subelements of a composite, declared signal are not declared signals. Moreover, such subelements cannot
be of file types or protected types (see 5.3.1).

NOTE 5—A signal may be of a formal generic type. Depending on the implementation, various determinations and
checks may be done during analysis of an instance of the enclosing declaration that defines the formal generic type, or
they may be deferred until the design hierarchy is elaborated. These include: determining whether a signal or a subele-
ment of a signal is resolved, based on the actual generic subtype; determining the implicit default value; checking that
the actual generic type is neither an access type nor contains a subelement of an access type.

Cross-references: Disconnection specifications, 7.4; disconnection statements, 11.6; guarded assignment,
11.6; guarded blocks, 11.2; guarded targets, 11.6; signal guard, 11.2.

6.4.2.4 Variable declarations

A variable declaration declares a variable of the specified type. Such a variable is an explicitly declared
variable.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -70-
IEEE Std 1076-2008

variable_declaration ::=
[shared] variable identifier list : subtype indication [:= expression] ;

A variable declaration that includes the reserved word shared is a shared variable declaration. A shared
variable declaration declares a shared variable. Shared variables are a subclass of the variable class of
objects. The base type of the subtype indication of a shared variable declaration shall be a protected type.
Variables declared immediately within entity declarations, architecture bodies, blocks, and generate
statements shall be shared variables. Variables declared immediately within subprograms and processes
shall not be shared variables. Variables declared immediately within a package shall be not be shared
variables if the package is declared within a subprogram, process, or protected type body; otherwise, the
variables shall be shared variables. Variables declared immediately within a protected type body shall not be
shared variables. Variables that appear in protected type bodies, other than within subprograms, represent
shared data.

If a given variable declaration appears (directly or indirectly) within a protected type body, then the base
type denoted by the subtype indication of the variable declaration shall not be the protected type defined by
the protected type body.

If the variable declaration includes the assignment symbol followed by an expression, the expression
specifies an initial value for the declared variable; the type of the expression shall be that of the variable.
Such an expression is said to be an initial value expression. A variable declaration, whether it is a shared
variable declaration or not, whose subtype indication denotes a protected type shall not have an initial value
expression (moreover, it shall not include the immediately preceding assignment symbol).

If an initial value expression appears in the declaration of a variable, then the initial value of the variable is
determined by that expression each time the variable declaration is elaborated. In the absence of an initial
value expression, a default initial value applies. The default initial value for a variable of a scalar subtype T
is defined to be the value given by T'LEFT. The default initial value of a variable of a composite type is
defined to be the aggregate of the default initial values of all of its scalar subelements, each of which is itself
a variable of a scalar subtype. The default initial value of a variable of an access type is defined to be the
value null for that type.

NOTE 1—The value of a variable that is not a shared variable is modified by a variable assignment statement (see 10.6);
such assignments take effect immediately.

NOTE 2—The variables declared within a given procedure persist until that procedure completes and returns to the
caller. For procedures that contain wait statements, a variable therefore persists from one point in simulation time to
another, and the value in the variable is thus maintained over time. For processes, which never complete, all variables
persist from the beginning of simulation until the end of simulation.

NOTE 3—The subelements of a composite, declared variable are not declared variables.

NOTE 4—Since the language guarantees mutual exclusion of accesses to shared data, but not the order of access to such
data by multiple processes in the same simulation cycle, the use of shared variables can be both non-portable and non-
deterministic. For example, consider the following architecture:

architecture UseSharedVariables of SomeEntity is
subtype ShortRange is INTEGER range -1 to 1;
type ShortRangeProtected is protected
procedure Set (V: ShortRange);
procedure Get (V: out ShortRange);
end protected;

type ShortRangeProtected is protected body

variable Local: ShortRange := 0;
procedure Set (V: ShortRange) is
begin

Local := V;

end procedure Set;

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-71- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

procedure Get (V: out ShortRange) is
begin
V := Local;
end procedure Get;
end protected body;

shared variable ShortCounter: ShortRangeProtected;

begin

PROC1l: process
variable V: ShortRange;

begin
ShortCounter.Get (V) ;
ShortCounter.Set (V+1);
wait;

end process PROC1;

PROC2: process
variable V: ShortRange;

begin
ShortCounter.Get (V);
ShortCounter.Set (V-1);
wait;

end process PROC2;

end architecture UseSharedVariables;

In particular, the value of ShortCounter after the execution of both processes is not guaranteed to be 0.
NOTE 5—Variables that are not shared variables may have a subtype indication denoting a protected type.

NOTE 6—A variable, other than a shared variable, may be of a formal generic type. Depending on the implementation,
a default initial value may be determined during analysis of an instance of the enclosing declaration that defines the for-
mal generic type, or determination may be deferred until the design hierarchy is elaborated. A shared variable cannot be
of a formal generic type, since an actual generic type shall not be a protected type.

Examples:

variable INDEX: INTEGER range 0 to 99 := 0;
-—- Initial value is determined by the initial value expression

variable COUNT: POSITIVE;
-— Initial value is POSITIVE'LEFT; that is,1

variable MEMORY : BIT MATRIX (0O to 7, 0 to 1023);
-- Initial value is the aggregate of the initial wvalues of each
element

shared variable Counter: SharedCounter;
-— See 5.6.2 and 5.6.3 for the definitions of SharedCounter

shared variable addend, augend, result: ComplexNumber;
-— See 5.6.2 and 5.6.3 for the definition of ComplexNumber

variable bit stack: VariableSizeBitArray;
-- See 5.6.2 and 5.6.3 for the definition of VariableSizeBitArray;

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -72-
IEEE Std 1076-2008

6.4.2.5 File declarations
A file declaration declares a file of the specified type. Such a file is an explicitly declared file.

file declaration ::=
file identifier list : subtype indication [file_open_information] ;

file_open_information ::= [open file_open kind expression] is file logical name
file logical name ::= string expression
The subtype indication of a file declaration shall define a file subtype.

If file open information is included in a given file declaration, then the file declared by the declaration is
opened (see 5.5.2) with an implicit call to FILE OPEN when the file declaration is elaborated (see 14.4.2.5).
This implicit call is to the FILE OPEN procedure of the first form, and it associates the identifier with the
file parameter F, the file logical name with the External Name parameter, and the file open kind expression
with the Open_Kind parameter. If a file open kind expression is not included in the file open information of
a given file declaration, then the default value of READ MODE is used during elaboration of the file
declaration.

If file open information is not included in a given file declaration, then the file declared by the declaration is
not opened when the file declaration is elaborated.

The file logical name shall be an expression of predefined type STRING. The value of this expression is
interpreted as a logical name for a file in the host system environment. An implementation shall provide
some mechanism to associate a file logical name with a host-dependent file. Such a mechanism is not
defined by the language.

The file logical name identifies an external file in the host file system that is associated with the file object.
This association provides a mechanism for either importing data contained in an external file into the design
during simulation or exporting data generated during simulation to an external file.

If multiple file objects are associated with the same external file, and each file object has an access mode
that is read-only (see 5.5.2), then values read from each file object are read from the external file associated
with the file object. The language does not define the order in which such values are read from the external
file, nor does it define whether each value is read once or multiple times (once per file object).

The language does not define the order of and the relationship, if any, between values read from and written
to multiple file objects that are associated with the same external file. An implementation may restrict the
number of file objects that are associated at one time with a given external file.

If a formal subprogram parameter is of the class file, it shall be associated with an actual that is a file object.
Examples:

type IntegerFile is file of INTEGER;

file Fl: IntegerFile;
-- No implicit FILE OPEN is performed during elaboration.

file F2: IntegerFile is "test.dat";
-- At elaboration, an implicit call is performed:
-— FILE OPEN (F2, "test.dat");

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-73- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

-— The OPEN_KIND parameter defaults to READ MODE.

file F3: IntegerFile open WRITE MODE is "test.dat";
-- At elaboration, an implicit call is performed:
-- FILE OPEN (F3, "test.dat", WRITE MODE);

NOTE 1—All file objects associated with the same external file should be of the same base type.

NOTE 2—A file cannot be of a formal generic type, since an actual generic type shall not be a file type.

6.5 Interface declarations
6.5.1 General

An interface declaration is an interface object declaration, an interface type declaration, an interface
subprogram declaration, or an interface package declaration.

interface declaration ::=
interface object declaration
| interface type declaration
| interface_subprogram_declaration
| interface package declaration

6.5.2 Interface object declarations

An interface object declaration declares an interface object of a specified type. Interface objects include
interface constants that appear as generics of a design entity, a component, a block, a package, or a
subprogram, or as constant parameters of subprograms; inferface signals that appear as ports of a design
entity, component, or block, or as signal parameters of subprograms; interface variables that appear as
variable parameters of subprograms; interface files that appear as file parameters of subprograms.

interface object declaration ::=
interface constant declaration
| interface signal declaration
| interface variable declaration
| interface file declaration

interface constant_declaration ::=
[constant] identifier list: [in] subtype_indication [:= static_expression]

interface signal declaration ::=
[signal] identifier list : [mode] subtype_indication [bus] [:= static_expression]

interface variable declaration ::=
[variable] identifier list : [mode] subtype_indication [:= static_expression]

interface file declaration ::=
file identifier list : subtype indication

mode ::=in | out | inout | buffer | linkage

If no mode is explicitly given in an interface declaration other than an interface file declaration, mode in is
assumed.

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -74-
IEEE Std 1076-2008

For an interface constant declaration (other than a formal parameter of the predefined = or /= operator for an
access type) or an interface signal declaration, the subtype indication shall define a subtype that is neither a
file type, an access type, nor a protected type. Moreover, the subtype indication shall not denote a composite
type with a subelement that is of an access type.

For an interface file declaration, it is an error if the subtype indication does not denote a subtype of a file
type.

If an interface signal declaration includes the reserved word bus, then the signal declared by that interface
declaration is a guarded signal of signal kind bus.

If an interface declaration contains a “:=” symbol followed by an expression, the expression is said to be the
default expression of the interface object. The type of a default expression shall be that of the corresponding
interface object. It is an error if a default expression appears in an interface declaration and any of the
following conditions hold:

— The mode is linkage.

— The interface object is a formal signal parameter.

— The interface object is a formal variable parameter of mode other than in.

— The subtype indication of the interface declaration denotes a protected type.

In an interface signal declaration appearing in a port list, the default expression defines the default value(s)
associated with the interface signal or its subelements. In the absence of a default expression, an implicit
default value is assumed for the signal or for each scalar subelement, as defined for signal declarations (see
6.4.2.3). The value, whether implicitly or explicitly provided, is used to determine the initial contents of
drivers, if any, of the interface signal as specified for signal declarations.

An interface object provides a channel of communication between the environment and a particular portion
of a description. The value of an interface object may be determined by the value of an associated object or
expression in the environment; similarly, the value of an object in the environment may be determined by
the value of an associated interface object. The manner in which such associations are made is described in
6.5.7.

The value of an object is said to be read when one of the following conditions is satisfied:

— When the object is evaluated, and also (indirectly) when the object is associated with an interface
object of the modes in, inout, or linkage.

— When the object is a signal and a name denoting the object appears in a sensitivity list in a wait
statement or a process statement.

— When the object is a signal and the value of any of its predefined attributes 'STABLE, 'QUIET,
'DELAYED, 'TRANSACTION, 'EVENT, 'ACTIVE, 'LAST EVENT, 'LAST ACTIVE, or
'LAST VALUE is read.

— When one of its subelements is read.
— When the object is a file and a READ operation is performed on the file.

— When the object is a file of type STD.TEXTIO.TEXT and the procedure STD.TEXTIO.READLINE
is called with the given object associated with the formal parameter F of the given procedure.

The value of an object is said to be updated when one of the following conditions is satisfied:

— When it is the target of an assignment, and also (indirectly) when the object is associated with an
interface object of the modes out, buffer, inout, or linkage.

— When a VHPI information model object representing the given object is updated using a call to the
function vhpi put value.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-75- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

— When the object is a signal and the vhpi schedule transaction function is used to
schedule a transaction on a driver of the signal.

— When one of its subelements is updated.
— When the object is a file and a WRITE or FLUSH operation is performed on the file.

— When the object is a file of type STD.TEXTIO.TEXT and the procedure
STD.TEXTIO.WRITELINE is called with the given object associated with the formal parameter F
of the given procedure.

It is an error if an object other than a signal, variable, or file object is updated.

An interface object has one of the following modes:

— in. The value of the interface object is allowed to be read, but it shall not be updated by a simple
waveform assignment, a conditional waveform assignment, a selected waveform assignment, a
concurrent signal assignment, or a variable assignment. Reading an attribute of the interface object is
allowed, unless the interface object is a subprogram signal parameter and the attribute is one of
'STABLE, 'QUIET, 'DELAYED, 'TRANSACTION, 'DRIVING, or 'DRIVING_VALUE.

— out. The value of the interface object is allowed to be updated and, provided it is not a signal
parameter, read. Reading the attributes of the interface object is allowed, unless the interface object
is a signal parameter and the attribute is one of 'STABLE, 'QUIET, 'DELAYED, 'TRANSACTION,
'EVENT, 'ACTIVE, 'LAST EVENT, 'LAST ACTIVE, or 'LAST VALUE.

— inout or buffer. Reading and updating the value of the interface object is allowed. Reading the
attributes of the interface object, other than the attributes 'STABLE, 'QUIET, 'DELAYED, and
'"TRANSACTION of a signal parameter, is also permitted.

— linkage. Reading and updating the value of the interface object is allowed, but only by appearing as
an actual corresponding to an interface object of mode linkage. No other reading or updating is
permitted.

NOTE 1—A subprogram parameter that is of a file type shall be declared as a file parameter.

NOTE 2—Since shared variables are a subclass of variables, a shared variable may be associated as an actual with a for-
mal of class variable.

NOTE 3—Ports of mode linkage are used in the Boundary Scan Description Language (see IEEE Std 1149.1™-2001
[B15]).

NOTE 4—Interface file objects do not have modes.
NOTE 5—The driving value of a port that has no source is the default value of the port (see 14.7.3.2).

NOTE 6—If the subtype indication of an interface constant declaration or an interface signal declaration denotes a com-
posite type, the type cannot have a subelement of a file type or a protected type (see 5.3.1).

NOTE 7—Although ports of mode out have identical semantics to ports of mode buffer, there is an important design
documentation distinction between them. It is intended that a port of mode out should be read only for passive activities,
that is, for functionality used for verification purposes within monitors or property or assertion checkers. If the value of
an output port is read to implement the algorithmic behavior of a description, then the port should be of mode buffer.
Due to the potential complexity of monitors and checkers, it is not feasible to express these usage restrictions as seman-
tic rules within the language without compromising the ability to write complex monitors and checkers.

NOTE 8—A port of mode in may be updated by a force assignment, a release assignment, or a call to
vhpi put value. A formal parameter of mode in shall not be updated by a call to vhpi_put_value (see 22.5.1).

6.5.3 Interface type declarations

An interface type declaration declares an interface type that appears as a generic of a design entity, a
component, a block, a package, or a subprogram.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -76-
IEEE Std 1076-2008

interface type declaration ::=
interface_incomplete type declaration

interface_incomplete type declaration ::= type identifier

An interface type provides a means for the environment to determine a type to be used for objects in a
particular portion of a description. The set of values and applicable operations for an interface type may be
determined by an associated subtype in the environment. The manner in which such associations are made is
described in 6.5.7.

Within an entity declaration, an architecture body, a component declaration, or an uninstantiated
subprogram or package declaration that declares a given interface type, the type declared by the given
interface type declaration is distinct from the types declared by other interface type declarations and from
explicitly declared types. The name of the given interface type denotes both an undefined base type and a
subtype of the base type. The class (see 5.1) of the base type is not defined. The following operations are
defined for the interface type:

— The basic operations of assignment, allocation, type qualification and type conversion

— The predefined equality (=) and inequality (/=) operators, implicitly declared as formal generic
subprograms immediately following the interface type declaration in the enclosing interface list

The name of an interface type declaration of a block statement (including an implied block statement
representing a component instance or a bound design entity), a generic-mapped package or a generic-
mapped subprogram denotes the subtype specified as the corresponding actual in a generic association list.

6.5.4 Interface subprogram declarations

An interface subprogram declaration declares an interface subprogram that appears as a generic of a design
entity, a component, a block, a package, or a subprogram.

interface_subprogram_declaration ::=
interface_subprogram_specification [is interface_subprogram_default]

interface_subprogram_specification ::=
interface procedure specification | interface function_specification

interface procedure specification ::=
procedure designator
[[parameter] (formal parameter list)]

interface function_specification ::=
[pure | impure] function designator
[[parameter] (formal parameter list)] return type mark

interface_subprogram_default ::= subprogram_name | <>

An interface subprogram provides a means for the environment to determine a subprogram to be called in a
particular portion of a description by associating an actual subprogram with the formal interface
subprogram. The manner in which such associations are made is described in 6.5.7.

If an interface subprogram declaration contains an interface subprogram default in the form of a subprogram
name, the subprogram name shall denote a subprogram, and the denoted subprogram and the interface
subprogram shall have conforming profiles (see 4.10).

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-77 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

Within an entity declaration, an architecture body, a component declaration, or an uninstantiated
subprogram or package declaration that declares a given interface subprogram, the name of the given
interface subprogram denotes an undefined subprogram declaration and body.

The name of an interface subprogram declaration of a block statement (including an implied block statement
representing a component instance or a bound design entity), a generic-mapped package or a generic-
mapped subprogram denotes the subprogram specified as the corresponding actual in a generic association
list.

6.5.5 Interface package declarations

An interface package declaration declares an interface package that appears as a generic of a design entity, a
component, a block, a package, or a subprogram.

interface package declaration ::=
package identifier is new uninstantiated package name interface package generic map_aspect

interface package generic_map aspect ::=
generic_map_aspect
| generic map (<>)
| generic map (default)

An interface package provides a means for the environment to determine an instance of an uninstantiated
package to be visible in a particular portion of a description by associating an actual instantiated package
with the formal interface package. The manner in which such associations are made is described in 6.5.7.

The uninstantiated package name shall denote an uninstantiated package declared in a package declaration.

The interface package generic map aspect specifies the allowable actual generics of the instantiated package
associated with the formal generic package (see 6.5.7.2), as follows:

— If the interface package generic map aspect is in the form of a generic map aspect, then the
corresponding actual instantiated package shall have matching actual generics. Matching actual
generics are described in 6.5.7.2.

— If the interface package generic map aspect is in the form that includes the box (<>) symbol, then the
corresponding actual instantiated package may have any actual generics.

— If the interface package generic map aspect is in the form that includes the reserved word default,
then every generic of the uninstantiated package shall be either a generic constant with a default
expression or a generic subprogram with an interface subprogram default. The interface package
generic map aspect is equivalent to an implicit interface package generic map aspect containing a
generic map aspect in which each generic of the uninstantiated package is associated with the
corresponding default expression or subprogram name implied by the interface subprogram default.
The subprogram implied by an interface subprogram default in the form of a box (<>) symbol is a
subprogram directly visible at the place of the formal generic package declaration.

Within an entity declaration, an architecture body, a component declaration, or an uninstantiated
subprogram or package declaration that declares a given interface package, the name of the given interface
package denotes an undefined instance of the uninstantiated package.

The name of an interface package declaration of a block statement (including an implied block statement
representing a component instance or a bound design entity), a generic-mapped package or a generic-
mapped subprogram denotes the instantiated package specified as the corresponding actual in a generic
association list.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -78-
IEEE Std 1076-2008

6.5.6 Interface lists
6.5.6.1 General

An interface list contains the interface declarations required by a subprogram, a component, a design entity,
a block statement, or a package.

interface list ::=
interface element { ; interface element }

interface element ::= interface declaration

A generic interface list consists entirely of interface constant declarations, interface type declarations,
interface subprogram declarations, and interface package declarations. A port interface list consists entirely
of interface signal declarations. A parameter interface list may contain interface constant declarations,
interface signal declarations, interface variable declarations, interface file declarations, or any combination
thereof.

A name that denotes an interface object declared in a port interface list or a parameter interface list shall not
appear in any interface declaration within the interface list containing the denoted interface object except to
declare this object. A name that denotes an interface declaration in a generic interface list may appear in an
interface declaration within the interface list containing the denoted interface declaration.

NOTE—The restriction mentioned in the previous paragraph makes the following two interface lists illegal:

entity E is

port (Pl1: STRING,; P2: STRING (P1'RANGE)) ; -- Illegal
procedure X (Y1, Y2: INTEGER; Y3: INTEGER range Y1 to Y2); -- Illegal
end E;

However, the following interface lists are legal:

entity E is
generic (Gl: INTEGER; G2: INTEGER := Gl; G3, G4, G5, G6: INTEGER);
port (P1l, P2: STRING (G3 to G4));
procedure X (Y3: INTEGER range G5 to Go6);

end E;

6.5.6.2 Generic clauses

Generics provide a channel for information to be communicated to a block, a package, or a subprogram from
its environment. The following applies to external blocks defined by design entities, to internal blocks
defined by block statements, and to packages and subprograms.

generic_clause ::=
generic (generic_list) ;

generic_list ::= generic_interface list

The generics of a block, a package, or a subprogram are defined by a generic interface list. Each interface
element in such a generic interface list declares a formal generic.

The value of a generic constant may be specified by the corresponding actual in a generic association list. If
no such actual is specified for a given formal generic constant (either because the formal generic is
unassociated or because the actual is open), and if a default expression is specified for that generic, the value
of this expression is the value of the generic. It is an error if no actual is specified for a given formal generic
constant and no default expression is present in the corresponding interface element. It is an error if some of

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-79- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

the subelements of a composite formal generic constant are connected and others are either unconnected or
unassociated.

The subtype denoted by a generic type is specified by the corresponding actual in a generic association list.
It is an error if no such actual is specified for a given formal generic type (either because the formal generic
is unassociated or because the actual is open).

The subprogram denoted by a generic subprogram may be specified by the corresponding actual in a generic
association list. If no such actual is specified for a given formal generic subprogram (either because the
formal generic is unassociated or because the actual is open), and if an interface subprogram default is
specified for that generic, the subprogram denoted by the generic is determined as follows:

— If the interface subprogram default is in the form of a subprogram name, then the subprogram
denoted by the generic is the subprogram denoted by the subprogram name.

— If the interface subprogram default is in the form of a box (<>) symbol, then there shall be a
subprogram directly visible at the place of the generic association list that has the same designator as
the formal and that has a conforming profile to that of the formal; the subprogram denoted by the
generic is the directly visible subprogram.

It is an error if no actual is specified for a given formal generic subprogram and no interface subprogram
default is present in the corresponding interface element. It is an error if the actual subprogram, whether
explicitly associated or associated by default, is impure and the formal generic subprogram is pure.

A call to a formal generic subprogram uses the parameter names and default expressions defined by the
declaration of the formal generic subprogram. Subtype checks and conversions for the association of actual
parameters with formal parameters and for the execution of a return statement from the actual subprogram
use the subtypes defined by the declaration of the actual subprogram.

The instantiated package denoted by a generic package is specified by the corresponding actual in a generic
association list. It is an error if no such actual is specified for a given formal generic package (either because
the formal generic is unassociated or because the actual is open).

NOTE—Generics may be used to control structural, dataflow, or behavioral characteristics of a block, a package, or a
subprogram, or may simply be used as documentation. In particular, generics may be used to specify the size of ports;
the number of subcomponents within a block; the timing characteristics of a block; or even the physical characteristics of
a design such as temperature, capacitance, or location.

6.5.6.3 Port clauses

Ports provide channels for dynamic communication between a block and its environment. The following
applies to both external blocks defined by design entities and to internal blocks defined by block statements,
including those equivalent to component instantiation statements and generate statements (see 11.8).

port_clause ::=
port (port_list) ;

port_list ::= port_interface list

The ports of a block are defined by a port interface list. Each interface element in the port interface list
declares a formal port.

To communicate with other blocks, the ports of a block can be associated with signals in the environment in
which the block is used. Moreover, the ports of a block may be associated with an expression in order to
provide these ports with constant driving values or with values derived from signals and other ports; such
ports shall be of mode in. A port is itself a signal (see 6.4.2.3); thus, a formal port of a block may be

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -80-
IEEE Std 1076-2008

associated as an actual with a formal port of an inner block. The port, signal, or expression associated with a
given formal port is called the actual corresponding to the formal port (see 6.5.7). The actual, if a port or
signal, shall be denoted by a static name (see 8.1).

If a formal port of mode in is associated with an expression that is not globally static (see 9.4.1) and the
formal is of an unconstrained or partially constrained composite type requiring determination of index
ranges from the actual according to the rules of 5.3.2.2, then the expression shall be one of the following:

— The name of an object whose subtype is globally static
— An indexed name whose prefix is one of the members of this list

— A slice name whose prefix is one of the members of this list and whose discrete range is a globally
static discrete range

— An aggregate, provided all choices are locally static and all expressions in element associations are
expressions described in this list

— A function call whose return type mark denotes a globally static subtype
— A qualified expression or type conversion whose type mark denotes a globally static subtype

— An expression described in this list and enclosed in parentheses

If the actual part of a given association element for a formal port of a block is the reserved word inertial
followed by an expression, or is an expression that is not globally static, then the given association element
is equivalent to association of the port with an anonymous signal implicitly declared in the declarative
region that immediately encloses the block. The signal has the same subtype as the formal port and is the
target of an implicit concurrent signal assignment statement of the form

anonymous <= E,

where E is the expression in the actual part of the given association element. The concurrent signal
assignment statement occurs in the same statement part as the block.

After a given description is completely elaborated (see Clause 14), if a formal port is associated with an
actual that is itself a port, then the following restrictions apply depending upon the mode (see 6.5.2), if any,
of the formal port:

a) For a formal port of mode in, the associated actual shall be a port of mode in, out, inout, or buffer.
This restriction applies both to an actual that is associated as a name in the actual part of an
association element and to an actual that is associated as part of an expression in the actual part of an
association element.

b) For a formal port of mode out, the associated actual shall be a port of mode out, inout, or buffer.
c¢) For a formal port of mode inout, the associated actual shall be a port of mode out, inout, or buffer.
d) For a formal port of mode buffer, the associated actual shall be a port of mode out, inout, or buffer.

e) For a formal port of mode linkage, the associated actual may be a port of any mode.

If a formal port is associated with an actual port, signal, or expression, then the formal port is said to be
connected. If a formal port is instead associated with the reserved word open, then the formal is said to be
unconnected. 1t is an error if a port of mode in is unconnected (see 6.5.6.3) or unassociated (see 6.5.7.3)
unless its declaration includes a default expression (see 6.5.2). It is an error if a port of any mode other than
in is unconnected or unassociated and its type is an unconstrained or partially constrained composite type. It
is an error if some of the subelements of a composite formal port are connected and others are either
unconnected or unassociated.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-81- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

6.5.7 Association lists
6.5.7.1 General

An association list, other than one appearing in an interface package generic map aspect (see 6.5.5),
establishes correspondences between formal or local generic, port, or parameter names on the one hand and
local or actual names, expressions, subtypes, subprograms, or packages on the other.

association_list ::=
association_element { , association_element }

association_element ::=
[formal part=>] actual part

formal part ::=
formal designator
| function_name (formal designator)
| type_mark (formal designator)

formal designator ::=
generic_name
| port_ name
| parameter _name

actual part ::=
actual designator
| function_name (actual designator)
| type_mark (actual designator)

actual designator ::=
[inertial] expression
| signal name
| variable name
| file_ name
| subtype_indication
| subprogram_name
| instantiated package name
| open

Each association element in an association list associates one actual designator with the corresponding
interface element in the interface list of a subprogram declaration, component declaration, entity declaration,
block statement, or package. The corresponding interface element is determined either by position or by
name.

An association element is said to be named if the formal designator appears explicitly; otherwise, it is said to
be positional. For a positional association, an actual designator at a given position in an association list
corresponds to the interface element at the same position in the interface list.

Named associations can be given in any order, but if both positional and named associations appear in the
same association list, then all positional associations shall occur first at their normal position. Hence once a
named association is used, the rest of the association list shall use only named associations.

In the following paragraphs, the term actual refers to an actual designator, and the term formal refers to a
formal designator.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -82-
IEEE Std 1076-2008

The formal part of a named association element may be in the form of a function call, where the single
argument of the function is the formal designator itself, if and only if the formal is an interface object, the
mode of the formal is out, inout, buffer, or linkage, and if the actual is not open. In this case, the function
name shall denote a function whose single parameter is of the type of the formal and whose result is the type
of the corresponding actual. Such a conversion function provides for type conversion in the event that data
flows from the formal to the actual.

Alternatively, the formal part of a named association element may be in the form of a type conversion,
where the expression to be converted is the formal designator itself, if and only if the formal is an interface
object, the mode of the formal is out, inout, buffer, or linkage, and if the actual is not open. In this case, the
base type denoted by the type mark shall be the same as the base type of the corresponding actual. Such a
type conversion provides for type conversion in the event that data flows from the formal to the actual. It is
an error if the type of the formal is not closely related to the type of the actual. (See 9.3.6.)

The actual part of a (named or positional) association element corresponding to a formal interface object
may have the syntactic form of a function call. This form may be interpreted either as a function call whose
parameter is the actual designator, or as an expression, in which case the entire expression is the actual
designator. The actual part is interpreted as a function call whose parameter is the actual designator if and
only if

— The corresponding function declaration has one parameter,

— The mode of the formal corresponding to the association element is in, inout, or linkage and the
class of the formal is not constant,

— The function parameter is a signal name or a variable name, and

— The function name is not preceded by the reserved word inertial.

Otherwise, the entire expression given by the function call is interpreted as the actual designator. In the case
of a function call whose parameter is the actual designator, the type of the function parameter shall be the
type of the actual and the result type shall be the type of the corresponding formal. Such a function call is
interpreted as application of a conversion function that provides for type conversion in the event that data
flows from the actual to the formal.

Alternatively, the actual part of a (named or positional) association element corresponding to a formal
interface object may have the syntactic form of a type conversion. This form may be interpreted either as a
type conversion whose operand is the actual designator, or as an expression, in which case the entire
expression is the actual designator. The actual part is interpreted as a type conversion whose operand is the
actual designator if and only if

— The mode of the formal corresponding to the association element is in, inout, or linkage, and the
class of the formal is not constant,

— The operand is a signal name or a variable name, and

— The type mark is not preceded by the reserved word inertial.

Otherwise, the entire expression given by the type conversion is interpreted as the actual designator. In the
case of a type conversion whose operand is the actual designator, the base type denoted by the type mark
shall be the same as the base type of the corresponding formal. Such a type conversion provides for type
conversion in the event that data flows from the actual to the formal. It is an error if the type of the actual is
not closely related to the type of the formal.

The type of the actual (after applying the conversion function or type conversion, if present in the actual
part) shall be the same as the type of the corresponding formal, if the mode of the formal is in, inout, or
linkage, and if the actual is not open. Similarly, if the mode of the formal is out, inout, buffer, or linkage,
and if the actual is not open, then the type of the formal (after applying the conversion function or type
conversion, if present in the formal part) shall be the same as the corresponding actual.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-83- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

For the association of signals with corresponding formal ports, association of a formal of a given composite
type with an actual of the same type is equivalent to the association of each scalar subelement of the formal
with the matching subelement of the actual, provided that no conversion function or type conversion is
present in either the actual part or the formal part of the association element. If a conversion function or type
conversion is present, then the entire formal is considered to be associated with the entire actual.

Similarly, for the association of actuals with corresponding formal subprogram parameters, association of a
formal parameter of a given composite type with an actual of the same type is equivalent to the association
of each scalar subelement of the formal parameter with the matching subelement of the actual. Different
parameter passing mechanisms may be required in each case, but in both cases the associations will have an
equivalent effect. This equivalence applies provided that no actual is accessible by more than one path (see
42.2.2).

A formal interface object shall be either an explicitly declared interface object or member (see 5.1) of such
an interface object. In the former case, such a formal is said to be associated in whole. In the latter cases,
named association shall be used to associate the formal and actual; the subelements of such a formal are said
to be associated individually. Furthermore, every scalar subelement of the explicitly declared interface
object shall be associated exactly once with an actual (or subelement thereof) in the same association list,
and all such associations shall appear in a contiguous sequence within that association list. Each association
element that associates a slice or subelement (or slice thereof) of an interface object shall identify the formal
with a locally static name.

If an interface element in an interface list includes a default expression for a formal generic constant, for a
formal port of any mode other than linkage, or for a formal variable or constant parameter of mode in, or an
interface subprogram default for a formal generic subprogram, then any corresponding association list need
not include an association element for that interface element. For an interface element that is a formal
generic constant, a formal signal port, or a formal variable or constant parameter, if the association element
is not included in the association list, or if the actual is open, then the value of the default expression is used
as the actual expression or signal value in an implicit association element for that interface element. For an
interface element that is a formal generic subprogram, if the association element is not included in the
association list, or if the actual is open, then the subprogram denoted by the formal generic subprogram is
determined by the interface subprogram default as described in 6.5.6.2.

It is an error if an actual of open is associated with a formal interface object that is associated individually.
An actual of open counts as the single association allowed for the corresponding formal interface object, but
does not supply a constant, signal, or variable (as is appropriate to the object class of the formal) to the
formal.

It is an error if the reserved word inertial appears in an association element other than in a port map aspect.

NOTE 1—It is a consequence of these rules that, if an association element is omitted from an association list in order to
make use of the default expression on the corresponding interface element, all subsequent association elements in that
association list shall be named associations.

NOTE 2—Although a default expression can appear in an interface element that declares a (local or formal) port, such a
default expression is not interpreted as the value of an implicit association element for that port. Instead, the value of the
expression is used to determine the effective value of that port during simulation if the port is left unconnected (see
14.7.3).

NOTE 3—Named association cannot be used when invoking implicitly defined operators or predefined attributes that
are functions, since the formal parameters of these operators and functions are not named (see 9.2 and 16.2).

NOTE 4—Since information flows only from the actual to the formal when the mode of the formal is in, and since a
function call is itself an expression, the actual associated with a formal of object class constant is never interpreted as a
conversion function or a type conversion converting an actual designator that is an expression. Thus, the following asso-
ciation element is legal:

Param => F (open)

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -84 -
IEEE Std 1076-2008

under the conditions that Param is a constant formal and F is a function returning the same base type as that of Param and
having one or more parameters, all of which may be defaulted. It is an error if a conversion function or type conversion
appears in the actual part when the actual designator is open.

6.5.7.2 Generic map aspects

A generic map aspect, other than one appearing in an interface package generic map aspect (see 6.5.5),
associates values, subtypes, subprograms, or instantiated packages with the formal generics of a block, a
package, or a subprogram. The following applies to external blocks defined by design entities, to internal
blocks defined by block statements, and to packages and subprograms.

eneric_map_aspect ::=
» X t
generic map (generic_association_list)

Both named and positional association are allowed in a generic association list.

The following definitions are used in the remainder of this subclause:

— The term actual refers to an actual designator that appears in an association element of a generic
association list.

— The term formal refers to a formal designator that appears in an association element of a generic
association list.

The purpose of a generic map aspect is as follows:

— A generic map aspect appearing immediately within a binding indication associates actuals with the
formals of the entity declaration implied by the immediately enclosing binding indication.

— A generic map aspect appearing immediately within a component instantiation statement associates
actuals with the formals of the component instantiated by the statement.

— A generic map aspect appearing immediately within a block header associates actuals with the
formals defined by the same block header.

— A generic map aspect appearing immediately within a package header associates actuals with the
formals defined by the same package header. This applies to a generic map aspect appearing in the
package header of an explicitly declared generic-mapped package or a generic-mapped package that
is equivalent to a package instantiation declaration.

— A generic map aspect appearing immediately within a subprogram header associates actuals with the
formals defined by the same subprogram header. This applies to a generic map aspect appearing in
the subprogram header of an explicitly declared generic-mapped subprogram or a generic-mapped
subprogram that is equivalent to a subprogram instantiation declaration.

In each case, for a formal generic constant, it is an error if a scalar formal is associated with more than one
actual, and it is an error if a scalar subelement of any composite formal is associated with more than one
scalar subelement of an actual. Similarly, for a formal generic type, a formal generic subprogram, or a
formal generic package, it is an error if the formal is associated with more than one actual.

An actual associated with a formal generic constant in a generic map aspect shall be an expression or the
reserved word open. An actual associated with a formal generic type shall be a subtype indication. An actual
associated with a formal generic subprogram shall be a name that denotes a subprogram whose profile
conforms to that of the formal, or the reserved word open. The actual, if a predefined attribute name that
denotes a function, shall be one of the predefined attributes IMAGE, 'VALUE, 'POS, 'VAL, 'SUCC, 'PRED,
'LEFTOF, or 'RIGHTOF.

An actual associated with a formal generic package in a generic map aspect shall be a name that denotes an
instance of the uninstantiated package named in the formal generic package declaration, as follows:

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-85- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

a) If the formal generic package declaration includes an interface package generic map aspect in the
form of a generic map aspect, then the generic map aspect of the package instantiation declaration
that declares the instantiated package denoted by the actual shall match the generic map aspect of
the formal generic package declaration. The two generic map aspects match if, for each generic, the
corresponding associated actuals, whether explicit or implicit, match as follows:

— Two actual generic constants match if they are the same value.

— Two actual generic types match if they denote the same subtype; that is, if the subtypes denoted
by the two actual generic types have the same base type and the same constraints. Two range
constraints are the same if they have the same bounds and directions. Two array constraints are
the same if they define the same index ranges and the same element subtypes. Two record con-
straints are the same if, for each element, the element subtypes are the same.

— Two actual generic packages match if they denote the same instantiated package.
— Two actual generic subprograms match if they denote the same subprogram.

b) If the formal generic package declaration includes an interface package generic map aspect in the
form that includes the box (<>) symbol, then the instantiated package denoted by the actual may
be any instance of the uninstantiated package named in the formal generic package declaration.

c) If the formal generic package declaration includes an interface package generic map aspect in the
form that includes the reserved word default, then the generic map aspect of the package instantia-
tion declaration that declares the instantiated package denoted by the actual shall match the implicit
generic map aspect defined in 6.5.5.

A formal that is not associated with an actual is said to be an unassociated formal.

NOTE 1—A generic map aspect appearing immediately within a binding indication need not associate every formal
generic constant with an actual. These formals may be left unbound so that, for example, a component configuration
within a configuration declaration may subsequently bind them.

NOTE 2—A local generic (from a component declaration) or formal generic (from a package, a subprogram, a block
statement or from the entity declaration of the enclosing design entity) may appear as an actual in a generic map aspect.

NOTE 3—If a formal generic constant is rebound by an incremental binding indication, the actual expression associated
by the formal generic in the primary binding indication is not evaluated during the elaboration of the description.

Cross-references: Generic clauses, 6.5.6.2.
Example:
Clause 16 defines an uninstantiated package in library IEEE for fixed-point binary numbers, as follows:

package fixed generic pkg is
generic (fixed round style: BOOLEAN;
fixed overflow style: BOOLEAN;
fixed guard bits: NATURAL;
no _warning: BOOLEAN) ;
type ufixed is array (INTEGER range <>) of STD ULOGIC;
type sfixed is array (INTEGER range <>) of STD ULOGIC;

end package fixed generic pkg;

The package may be instantiated in a design unit as follows:

package fixed dsp pkg is new IEEE.fixed generic_ pkg
generic map (fixed rounding style => FALSE,

fixed overflow style => FALSE,
fixed guard bits => 0, no_warning => TRUE);

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -86-
IEEE Std 1076-2008

An uninstantiated package defining complex numbers in which the real and imaginary parts are fixed-point
binary numbers with the same index ranges can be defined as follows:

package fixed complex generic pkg is
generic (complex fixed left, complex fixed right: INTEGER;
package complex fixed formal pkg is
new IEEE.fixed generic pkg generic map (<>));
use complex fixed formal pkg.all;
type complex is record
re, im : sfixed(complex fixed left downto complex fixed right);
end record;
function "-"
function conj

(z complex) return complex;
(z complex) return complex;
function "+" (l: complex; r: complex) return complex;
function "-" (1 r: complex) return complex;
function "*" (1: complex; r: complex) return complex;
function "/" (1l: complex; r: complex) return complex;
end package fixed vector generic pkg;

complex;

This package may be instantiated to use the types and operations defined in fixed dsp pkg as follows:

package dsp complex pkg is new fixed complex generic pkg
generic map (complex fixed left => 3, complex fixed right => -12,
complex fixed formal pkg => fixed dsp pkg);

A further uninstantiated package defining mathematical operations on fixed-point binary numbers can be
defined as follows:

package fixed math generic pkg is
generic (package math fixed formal pkg is
new IEEE.fixed generic pkg generic map (<>));
use math fixed formal pkg.all;
function sqgrt (x: sfixed) return sfixed;
function exp (x: sfixed) return sfixed;

end package fixed math generic pkg;

This package, together with the complex numbers package, can be used to define an uninstantiated package
that provides mathematical operations on complex numbers. Since the mathematical operations and the
complex number representation depend on the fixed-point number package, an instance of the fixed-point
package, together with instances of the mathematical operations and complex numbers packages that refer to
the fixed-point package instance, shall be provided to the complex mathematical operations package. Thus,
this package has formal generic packages as follows:

package fixed complex math generic pkg is
generic (complex math fixed left, complex math fixed right: integer;

package complex math fixed formal pkg is

new IEEE.fixed generic pkg generic map (<>);
package fixed math formal pkg is

new fixed math generic pkg

generic map (math fixed formal pkg =>
complex math fixed formal pkg);

package fixed complex formal pkg is

new fixed complex generic pkg

|PuMBhedbyIECundmﬂmenseﬂomIEEEA32008IEEE.AHﬂghmresewedj

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-87 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

generic map (complex fixed left =>
complex math fixed left,
complex fixed right =>
complex math fixed right,
complex fixed formal pkg =>
complex math fixed formal pkg));
use complex math fixed formal pkg.all,
fixed math formal pkg.all,
fixed complex formal pkg.all;

function "abs" (z: complex return sfixed;
function arg (z: complex) return sfixed;
function sgrt (z: complex) return complex;

end package fixed complex math generic pkg;
The mathematical packages my be instantiated as follows:

package dsp math pkg is new fixed math generic pkg
generic map (math fixed formal pkg => fixed dsp pkg);
package dsp complex math pkg is new fixed complex math generic pkg
generic map (complex math fixed left => 3,
complex math fixed right => 3,
complex math fixed formal pkg => fixed dsp pkg,
fixed math formal pkg => dsp math pkg,
fixed complex formal pkg => dsp complex pkg);

6.5.7.3 Port map aspects

A port map aspect associates signals or values with the formal ports of a block. The following applies to
both external blocks defined by design entities and to internal blocks defined by block statements.

port map_aspect ::=
port map (port_association_list)

Both named and positional association are allowed in a port association list.

The following definitions are used in the remainder of this subclause:

— The term actual refers to an actual designator that appears in an association element of a port
association list.

— The term formal refers to a formal designator that appears in an association element of a port
association list.

The purpose of a port aspect is as follows:

— A port map aspect appearing immediately within a binding indication associates actuals with the
formals of the entity declaration implied by the immediately enclosing binding indication.

— Each scalar subelement of every local port of the component instances to which an enclosing
configuration specification or component configuration applies shall be associated as an actual with
at least one formal or with a scalar subelement thereof. The actuals of these associations for a given
local port shall be either the entire local port or any slice or subelement (or slice thereof) of the local
port. The actuals in these associations shall be locally static names.

— A port map aspect appearing immediately within a component instantiation statement associates
actuals with the formals of the component instantiated by the statement.

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -88-
IEEE Std 1076-2008

— A port map aspect appearing immediately within a block header associates actuals with the formals

defined by the same block header.

In each case, it is an error if a scalar formal is associated with more than one actual, and is is an error if a
scalar subelement of any composite formal is associated with more than one scalar subelement of an actual.

An actual associated with a formal port in a port map aspect shall be a signal, an expression, or the reserved

word open.

Certain restrictions apply to the actual associated with a formal port in a port map aspect; these restrictions

are described in 6.5.6.3.
A formal that is not associated with an actual is said to be an urnassociated formal.
Example:

entity Buf is

generic (Buf Delay: TIME := 0 ns);
port (Input pin: in Bit; Output pin: out Bit);
end Buf;

architecture DataFlow of Buf is
begin

Output pin <= Input pin after Buf Delay;
end DataFlow;

entity Test Bench is
end Test Bench;

architecture Structure of Test Bench is
component Buf is
generic (Comp Buf Delay: TIME);
port (Comp I: in Bit; Comp O: out Bit);
end component;
-- A binding indication; generic and port map aspects within a
-— binding indication associate actuals (Comp I, etc.) with formals
-— of the entity declaration (Input pin, etc.):
for UUT: Buf
use entity Work.Buf (DataFlow)
generic map (Buf Delay => Comp Buf Delay)
port map (Input pin => Comp_ I, Output pin=> Comp_ O);

signal S1,S82: Bit;
begin

-- A component instantiation statement; generic and port map aspects
-- within a component instantiation statement associate actuals
-- (81, etc.) with the formals of a component (Comp I, etc.):
UUT: Buf
generic map (Comp Buf Delay => 50 ns)
port map (Comp I => S1, Comp O => S2);

-- A block statement; generic and port map aspects within the
-- block header of a block statement associate actuals (in this

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

-89 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

-— case, 4) with the formals defined in the block header:
B: block
generic (G: INTEGER) ;
generic map (G => 4);
begin
end block;
end Structure;

NOTE—A local port (from a component declaration) or formal port (from a block statement or from the entity declara-
tion of the enclosing design entity) may appear as an actual in a port map aspect.

Cross-references: Port clauses, 6.5.6.3.

6.6 Alias declarations
6.6.1 General
An alias declaration declares an alternate name for an existing named entity.

alias_declaration ::=
alias alias_designator [: subtype indication] is name [signature] ;

alias_designator ::= identifier | character literal | operator symbol

An object alias is an alias whose alias designator denotes an object (i.e., a constant, a variable, a signal, or a
file). A nonobject alias is an alias whose alias designator denotes some named entity other than an object.
An alias can be declared for all named entities except for labels, loop parameters, and generate parameters.

The alias designator in an alias declaration denotes the named entity specified by the name and, if present,
the signature in the alias declaration. An alias of a signal denotes a signal; an alias of a variable denotes a
variable; an alias of a constant denotes a constant; and an alias of a file denotes a file. Similarly, an alias of a
subprogram (including an operator) denotes a subprogram, an alias of an enumeration literal denotes an
enumeration literal, and so forth.

If the alias designator is a character literal, the name shall denote an enumeration literal. If the alias
designator is an operator symbol, the name shall denote a function, and that function then overloads the
operator symbol. In this latter case, the operator symbol and the function both shall meet the requirements of
4.5.2.

NOTE 1—Since, for example, the alias of a variable is a variable, every reference within this document to a designator
(a name, character literal, or operator symbol) that requires the designator to denote a named entity with certain charac-
teristics (e.g., to be a variable) allows the designator to denote an alias, so long as the aliased name denotes a named
entity having the required characteristics. This situation holds except where aliases are specifically prohibited.

NOTE 2—The alias of an overloadable named entity is itself overloadable.
6.6.2 Object aliases

The following rules apply to object aliases:
a) A signature shall not appear in a declaration of an object alias.
b) If the name is an external name, a subtype indication shall not appear in the alias declaration.

¢) The name shall be a static name (see 8.1) that denotes an object. The base type of the name specified
in an alias declaration shall be the same as the base type of the type mark in the subtype indication
(if the subtype indication is present). When the object denoted by the name is referenced via the alias
defined by the alias declaration, the following rules apply:

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -90-
IEEE Std 1076-2008

d)

1) If the subtype indication is absent

— If the alias designator denotes a slice of an object, then the slice of the object is viewed as
if it were of the subtype specified by the slice.

— If the name is an external name, then the object is viewed as if it were of the subtype spec-
ified in the external name.

— Otherwise, the object is viewed as if it were of the subtype specified in the declaration of
the object denoted by the name.

2) If the subtype indication is present and denotes a composite subtype, then the object is viewed
as if it were of the subtype specified by the subtype indication. For each index range, if any, in
the subtype, if the subtype defines the index range, the object is viewed with that index range;
otherwise, the object is viewed with the index range of the object. The view specified by the
subtype shall include a matching element (see 9.2.3) for each element of the object denoted by
the name.

3) If the subtype indication denotes a scalar subtype, then the object is viewed as if it were of the
subtype specified by the subtype indication; moreover, it is an error if this subtype does not
have the same bounds and direction as the subtype denoted by the object name.

When the prefix of an attribute name denotes the alias defined by the alias declaration, subrules 1),
2), and 3), of rule c) apply.

A reference to an element of an object alias is implicitly a reference to the matching element of the
object denoted by the alias. A reference to a slice of an object alias consisting of the elements ey, e,
..., €, 1s implicitly a reference to a slice of the object denoted by the alias consisting of the matching
elements corresponding to each of e; through e,,.

6.6.3 Nonobject aliases

The following rules apply to nonobject aliases:

a)
b)

¢)

d)

A subtype indication shall not appear in a nonobject alias.

A signature is required if the name denotes a subprogram (including an operator) or enumeration lit-
eral. In this case, the signature is required to match (see 4.5.3) the parameter and result type profile
of exactly one of the subprograms or enumeration literals denoted by the name.

If the name denotes an enumeration type or a subtype of an enumeration type, then one implicit alias
declaration for each of the literals of the base type immediately follows the alias declaration for the
enumeration type; each such implicit declaration has, as its alias designator, the simple name or
character literal of the literal and has, as its name, a name constructed by taking the name of the alias
for the enumeration type or subtype and substituting the simple name or character literal being
aliased for the simple name of the type or subtype. Each implicit alias has a signature that matches
the parameter and result type profile of the literal being aliased.

Alternatively, if the name denotes a subtype of a physical type, then one implicit alias declaration
for each of the units of the base type immediately follows the alias declaration for the physical type;
each such implicit declaration has, as its alias designator, the simple name of the unit and has, as its
name, a name constructed by taking the name of the alias for the subtype of the physical type and
substituting the simple name of the unit being aliased for the simple name of the subtype.

Finally, if the name denotes a type or a subtype, then implicit alias declarations for each predefined
operation for the type immediately follow the explicit alias declaration for the type or subtype and, if
present, any implicit alias declarations for literals or units of the type. Each implicit alias has a sig-
nature that matches the parameter and result type profile of the implicit operation being aliased.

Examples:

variable REAL NUMBER: BIT VECTOR (0 to 31);

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-91-

alias SIGN: BIT is REAL NUMBER (0);

-— SIGN is now a scalar

alias MANTISSA: BIT VECTOR

-- MANTISSA is a
-- Note that the
-- have opposite
-- 1is equivalent

alias EXPONENT: BIT

(BIT)

(23 downto 0)

value

IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

24-bit value whose range is 23 downto 0.
ranges of MANTISSA and REAL NUMBER (8 to 31)

di

rections.

A reference to MANTISSA

to a reference to REAL NUMBER (8 to 13).

_VE

CTOR

(1 to 7)

is REAL NUMBER (1 to 7);

-—- EXPONENT is a 7-bit value whose range is 1 to 7.

alias STD BIT

-- implicit aliases
-- alias '0Q'
-- alias '1' is
-- alias "and" is

-— alias "or" is

-- alias "nand" is

-— alias "nor" 1is

-- alias "xor" 1is

-— alias "xnor" is

-- alias "not" is
-- alias "=" is
-- alias "/=" is
-- alias "<" is
-- alias "<=" is
-- alias ">" is
-- alias ">=" is

STD
STD

STD.

STD.

STD.

STD.

STD.

STD.

STD.

STD.

STD.

STD.

STD.

STD.

is STD.STANDARD.BIT;

is STD.STANDARD

. STANDARD

.STANDARD.

STANDARD.

STANDARD.

STANDARD.

STANDARD.

STANDARD.

STANDARD.

STANDARD.

STANDARD.

STANDARD.

STANDARD.

STANDARD.

STANDARD.

L0
LT
"and"

"Or"

"nand"

"nor"

xor"

"xnor"

"not"

" /=n

"<"

ne=n

nsn

ny—n

-- explicit alias

[return STD.STANDARD.BIT];
[return STD.STANDARD.BIT];

[STD.STANDARD.BIT,
STD.STANDARD.BIT

return STD.STANDARD.

[STD.STANDARD.BIT,
STD.STANDARD.BIT

return STD.STANDARD.

[STD.STANDARD.BIT,
STD.STANDARD.BIT

return STD.STANDARD.

[STD.STANDARD.BIT,
STD.STANDARD.BIT

return STD.STANDARD.

[STD.STANDARD.BIT,
STD.STANDARD.BIT

return STD.STANDARD.

[STD.STANDARD.RIT,

STD.STANDARD.BIT
return STD.STANDARD

[STD.STANDARD.BIT

return STD.STANDARD.

[STD.STANDARD.BIT,
STD.STANDARD.BIT

return STD.STANDARD.

[STD.STANDARD.BIT,
STD.STANDARD.BIT

return STD.STANDARD.

[STD.STANDARD.BIT,
STD.STANDARD.BIT

return STD.STANDARD.

[STD.STANDARD.BIT,
STD.STANDARD.BIT

return STD.STANDARD.

[STD.STANDARD.BIT,
STD.STANDARD.BIT

return STD.STANDARD.

[STD.STANDARD.BIT,
STD.STANDARD.BIT

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

is REAL NUMBER (8 to 31);

(23 downto 18)

BIT];

BIT];

BIT];

BIT];

BIT];

.BIT];

BIT];

BOOLEAN] ;

BOOLEAN] ;

BOOLEAN] ;

BOOLEAN] ;

BOOLEAN] ;

|onuooun “panwiad S uonnguisip 10 uononpoidal Jayuny ON "UOSIPRIN Sawer AQ $T0Z-8Z-A0ON U0 PapPeOjUMOP ‘W02°18311sYyoa1 suonduosgns “-ou| ‘(oynuaios) siainay uoswoy L Agq owad Hg 01 pasusdl| [eusrew paiybuidod

IEC 61691-1-1:2011(E) -92-
IEEE Std 1076-2008

-= return STD.STANDARD.BOOLEAN];
-- alias MINIMUM is STD.STANDARD.MINIMUM [STD.STANDARD.BIT,

- STD.STANDARD.BIT

- return STD.STANDARD.BIT];
-- alias MAXIMUM is STD.STANDARD.MAXIMUM [STD.STANDARD.RIT,

-= STD.STANDARD.BIT

-— return STD.STANDARD.BIT];

NOTE—An alias of an explicitly declared object is not an explicitly declared object, nor is the alias of a subelement or
slice of an explicitly declared object an explicitly declared object.

6.7 Attribute declarations

An attribute is a value, function, type, range, signal, or constant that may be associated with one or more
named entities in a description. There are two categories of attributes: predefined attributes and user-defined
attributes. Predefined attributes provide information about named entities in a description. Clause 16
contains the definition of all predefined attributes. Predefined attributes that are signals shall not be updated.

User-defined attributes are constants of arbitrary type. Such attributes are defined by an attribute declaration.

attribute_declaration ::=

attribute identifier : type mark ;

The identifier is said to be the designator of the attribute. An attribute may be associated with an entity
declaration, an architecture, a configuration, a procedure, a function, a package, a type, a subtype, a
constant, a signal, a variable, a component, a label, a literal, a unit, a group, or a file.

It is an error if the type mark denotes an access type, a file type, a protected type, or a composite type with a
subelement that is of an access type. The denoted type or subtype need not be constrained.

Examples:

type COORDINATE is record X,Y: INTEGER; end record;
subtype POSITIVE is INTEGER range 1 to INTEGER'HIGH;
attribute LOCATION: COORDINATE;

attribute PIN NO: POSITIVE;

NOTE 1—A given named entity E will be decorated with the user-defined attribute A if and only if an attribute specifi-
cation for the value of attribute A exists in the same declarative part as the declaration of E. In the absence of such a
specification, an attribute name of the form E'A is illegal.

NOTE 2—A user-defined attribute is associated with the named entity denoted by the name specified in a declaration,
not with the name itself. Hence, an attribute of an object can be referenced by using an alias for that object rather than the
declared name of the object as the prefix of the attribute name, and the attribute referenced in such a way is the same
attribute (and therefore has the same value) as the attribute referenced by using the declared name of the object as the
prefix.

NOTE 3—A user-defined attribute of a port, signal, variable, or constant of some composite type is an attribute of the
entire port, signal, variable, or constant, not of its elements. If it is necessary to associate an attribute with each element
of some composite object, then the attribute itself can be declared to be of a composite type such that for each element of
the object, there is a corresponding element of the attribute.

NOTE 4—If the type mark denotes a composite type, the type cannot have a subelement of a file type or a protected type
(see 5.3.1).

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

-93- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

6.8 Component declarations

A component declaration declares an interface to a virtual design entity that may be used in a component
instantiation statement. A component configuration or a configuration specification can be used to associate
a component instance with a design entity that resides in a library.

component_declaration ::=
component identifier [is]
[local generic clause]
[local port_clause]
end component [component_simple name] ;

Each interface object in the local generic clause declares a local generic. Each interface object in the local
port clause declares a local port.

If a simple name appears at the end of a component declaration, it shall repeat the identifier of the
component declaration.

6.9 Group template declarations

A group template declaration declares a group template, which defines the allowable classes of named
entities that can appear in a group.

group template declaration ::=
group identifier is (entity_class_entry list) ;

entity class entry list ::=
entity_class_entry {, entity_class_entry }

entity class entry ::= entity class [<>]

A group template is characterized by the number of entity class entries and the entity class at each position.
Entity classes are described in 7.2.

An entity class entry that is an entity class defines the entity class that may appear at that position in the
group type. An entity class entry that includes a box (<>) allows zero or more group constituents to appear in
this position in the corresponding group declaration; such an entity class entry shall be the last one within the
entity class entry list.

Examples:

group PIN2PIN is (signal, signal); -- Groups of this type consist of
-- two signals.

group RESOURCE is (label <>); -—- Groups of this type consist of
-- any number of labels.

group DIFF CYCLES is (group <>); -- A group of groups.

6.10 Group declarations

A group declaration declares a group, a named collection of named entities. Named entities are described in
7.2.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -94 -
IEEE Std 1076-2008
group_declaration ::=

group identifier : group template name (group constituent list) ;

group_constituent_list ::= group constituent { , group_constituent }

group_constituent ::= name | character_literal

It is an error if the class of any group constituent in the group constituent list is not the same as the class
specified by the corresponding entity class entry in the entity class entry list of the group template.

A name that is a group constituent shall not be an attribute name (see 8.6). Moreover, if such a name
contains a prefix, it is an error if the prefix is a function call.

If a group declaration appears within a package body, and a group constituent within that group declaration
is the same as the simple name of the package body, then the group constituent denotes the package
declaration and not the package body. The same rule holds for group declarations appearing within
subprogram bodies containing group constituents with the same designator as that of the enclosing
subprogram body.

If a group declaration contains a group constituent that denotes a variable of an access type, the group
declaration declares a group incorporating the variable itself, and not the designated object, if any.

Examples:
group Gl: RESOURCE (L1, L2); -- A group of two labels.
group G2: RESOURCE (L3, L4, L5); -—- A group of three labels.

group C2Q: PIN2PIN (PROJECT.GLOBALS.CK, Q);
-- Groups may associate named
-- entities in different declarative
-- parts (and regions).

group CONSTRAINT1: DIFF CYCLES (Gl, G3); -- A group of groups.

6.11 PSL clock declarations

A PSL clock declaration may occur as an entity declarative item (see 3.2.3) or a block declarative item
(3.3.2) and applies to certain PSL directives (if any) in the declarative region containing the PSL clock
declaration. The PSL clock declaration, if any, that applies to a given PSL directive is the PSL clock
declaration in the innermost declarative region containing both the given directive and a PSL clock
directive. It is an error if more than one PSL clock declaration appears immediately with a given declarative
region.

NOTE—A PSL clock declaration differs from other declarations in VHDL and PSL in that it does not declare a designa-
tor denoting some entity. It is more akin to a VHDL specification in that it associates additional information with PSL
directives within a design. Hence, it is not listed as a declaration in 6.1. Since it is called a declaration in IEEE Std 1850-
2005, it is included in this clause for ease of reference, rather than in Clause 7.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

-95- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

7. Specifications

7.1 General

This clause describes specifications, which may be used to associate additional information with a VHDL
description. A specification associates additional information with a named entity that has been previously
declared. There are three kinds of specifications: attribute specifications, configuration specifications, and
disconnection specifications.

A specification always relates to named entities that already exist; thus a given specification shall either
follow or (in certain cases) be contained within the declaration of the entity to which it relates. Furthermore,
a specification shall always appear either immediately within the same declarative part as that in which the
declaration of the named entity appears, or (in the case of specifications that relate to design units or the
interface objects of design units, subprograms, or block statements) immediately within the declarative part
associated with the declaration of the design unit, subprogram body, or block statement.

7.2 Attribute specification

An attribute specification associates a user-defined attribute with one or more named entities and defines the
value of that attribute for those entities. The attribute specification is said to decorate the named entity.

attribute_specification ::=
attribute attribute designator of entity specification is expression ;

entity_specification ::=
entity name list : entity class

entity class ::=
entity
| architecture
| configuration
| procedure
| function
| package
| type
| subtype
| constant
| signal
| variable
| component
| label
| literal
| units
| group
| file
| property
| sequence

entity name_list ::=
entity_designator { , entity designator }
| others
| all

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -96-
IEEE Std 1076-2008

entity designator ::= entity tag [signature]
entity tag ::= simple name | character literal | operator symbol

The attribute designator shall denote an attribute. The entity name list identifies those named entities, both
implicitly and explicitly defined, that inherit the attribute, described as follows:

— If alist of entity designators is supplied, then the attribute specification applies to the named entities
that are denoted by those designators and are of the specified class. It is an error if any entity
designator denotes no named entity of the specified class.

— If the reserved word others is supplied, then the attribute specification applies to named entities of
the specified class that are declared in the immediately enclosing declarative part, provided that each
such entity is not explicitly named in the entity name list of a previous attribute specification for the
given attribute.

— Ifthe reserved word all is supplied, then the attribute specification applies to all named entities of the
specified class that are declared in the immediately enclosing declarative part.

An attribute specification with the entity name list others or all for a given entity class that appears in a
declarative part shall be the last such specification for the given attribute for the given entity class in that
declarative part. It is an error if a named entity in the specified entity class is declared in a given declarative
part following such an attribute specification.

If a name in an entity name list denotes a subprogram or package, it denotes the subprogram declaration or
package declaration. Subprogram and package bodies cannot be decorated.

An entity designator that denotes an alias of an object is required to denote the entire object, not a member of
an object.

The entity tag of an entity designator containing a signature shall denote the name of one or more
subprograms or enumeration literals. In this case, the signature shall match (see 4.5.3) the parameter and
result type profile of exactly one subprogram or enumeration literal in the current declarative part: the
enclosing attribute specification then decorates that subprogram or enumeration literal.

The expression specifies the value of this attribute for each of the named entities inheriting the attribute as a
result of this attribute specification. The type of the expression in the attribute specification shall be the same
as (or implicitly convertible to) the type mark in the corresponding attribute declaration. If the entity name
list denotes an entity declaration, architecture body, configuration declaration, or an uninstantiated package
that is declared as a design unit, then the expression is required to be locally static (see 9.4.1). Similarly, if
the entity name list denotes a subprogram and the attribute designator denotes the 'FOREIGN attribute
defined in package STANDARD, then the expression is required to be locally static.

An attribute specification for an attribute of an entity declaration, an architecture, a configuration, or a
package shall appear immediately within the declarative part of that declaration. Similarly, an attribute
specification for an attribute of an interface object of a design unit, subprogram, block statement, or package
shall appear immediately within the declarative part of that design unit, subprogram, block statement, or
package. An attribute specification for an attribute of a procedure, a function, a type, a subtype, an object
(i.e., a constant, a file, a signal, or a variable), a component, literal, unit name, group, property, sequence, or
a labeled entity shall appear within the declarative part in which that procedure, function, type, subtype,
object, component, literal, unit name, group, property, sequence, or label, respectively, is explicitly or
implicitly declared.

For a given named entity, the value of a user-defined attribute of that entity is the value specified in an
attribute specification for that attribute of that entity.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-97 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

It is an error if a given attribute is associated more than once with a given named entity. Similarly, it is an
error if two different attributes with the same simple name (whether predefined or user-defined) are both
associated with a given named entity.

An entity designator that is a character literal is used to associate an attribute with one or more character
literals. An entity designator that is an operator symbol is used to associate an attribute with one or more
overloaded operators.

If the entity tag is overloaded and the entity designator does not contain a signature, all named entities
already declared in the current declarative part and matching the specification are decorated.

If an attribute specification appears, it shall follow the declaration of the named entity with which the
attribute is associated, and it shall precede all references to that attribute of that named entity. Attribute
specifications are allowed for all user-defined attributes, but are not allowed for predefined attributes.

An attribute specification may reference a named entity by using an alias for that entity in the entity name
list, but such a reference counts as the single attribute specification that is allowed for a given attribute and
therefore prohibits a subsequent specification that uses the declared name of the entity (or any other alias) as
the entity designator.

An attribute specification whose entity designator contains no signature and identifies an overloaded
subprogram or enumeration literal has the effect of associating that attribute with each of the designated
overloaded subprograms or enumeration literals declared within that declarative part.

Examples:

attribute PIN NO of CIN: signal is 10;

attribute PIN NO of COUT: signal is 5;

attribute LOCATION of ADDER1: label is (10,15);

attribute LOCATION of others: label is (25,77);

attribute CAPACITANCE of all: signal is 15 pkF;

attribute IMPLEMENTATION of Gl: group is "74LS152";

attribute RISING DELAY of C2Q: group is 7.2 ns;

NOTE 1—User-defined attributes represent local information only and cannot be used to pass information from one
description to another. For instance, assume some signal X in an architecture body has some attribute A. Further, assume
that X is associated with some local port L of component C. C in turn is associated with some design entity E(B), and L

is associated with E’s formal port P. Neither L nor P has attributes with the simple name A, unless such attributes are
supplied via other attribute specifications; in this latter case, the values of P'A and X'A are not related in any way.

NOTE 2—The local ports and generics of a component declaration cannot be decorated, since component declarations
lack a declarative part.

NOTE 3—If an attribute specification applies to an overloadable named entity, then declarations of additional named
entities with the same simple name are allowed to occur in the current declarative part unless the aforementioned attri-
bute specification has as its entity name list either of the reserved words others or all.

NOTE 4—Attribute specifications supplying either of the reserved words others or all never apply to the interface
objects of design units, block statements, or subprograms.

NOTE 5—An attribute specification supplying either of the reserved words others or all may apply to none of the
named entities in the current declarative part, in the event that none of the named entities in the current declarative part
meet all of the requirements of the attribute specification.

NOTE 6—An enumeration literal is of class literal, not function.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -98-
IEEE Std 1076-2008

7.3 Configuration specification
7.3.1 General

A configuration specification associates binding information with component labels representing instances
of a given component declaration.

configuration_specification ::=
simple configuration_specification
| compound_configuration_specification

simple configuration_specification ::=
for component specification binding_indication ;
[end for ;]

compound_configuration_specification ::=
for component_specification binding_indication ;
verification_unit binding_indication ;
{ verification unit binding_indication ; }
end for ;

component_specification ::=
instantiation_list : component name

instantiation_list ::=
instantiation_label { , instantiation_label }
| others
| all

The instantiation list identifies those component instances with which binding information is to be
associated, defined as follows:

— If a list of instantiation labels is supplied, then the configuration specification applies to the
corresponding component instances. Such labels shall be (implicitly) declared within the
immediately enclosing declarative part. It is an error if these component instances are not instances
of the component declaration named in the component specification. It is also an error if any of the
labels denote a component instantiation statement whose corresponding instantiated unit does not
name a component.

— If the reserved word others is supplied, then the configuration specification applies to instances of
the specified component declaration whose labels are (implicitly) declared in the immediately
enclosing declarative part, provided that each such component instance is not explicitly named in the
instantiation list of a previous configuration specification. This rule applies only to those component
instantiation statements whose corresponding instantiated units name components.

— Ifthe reserved word all is supplied, then the configuration specification applies to all instances of the
specified component declaration whose labels are (implicitly) declared in the immediately enclosing
declarative part. This rule applies only to those component instantiation statements whose
corresponding instantiated units name components.

A configuration specification with the instantiation list others or all for a given component name that
appears in a declarative part shall be the last such specification for the given component name in that
declarative part.

The elaboration of a configuration specification results in the association of binding information with the
labels identified by the instantiation list. A label that has binding information associated with it, specified by

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-99 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

a binding indication, is said to be bound. It is an error if the elaboration of a configuration specification
results in the association of binding information with a component label that is already bound, unless the
binding indication in the configuration specification is an incremental binding indication (see 7.3.2.1). It is
also an error if the elaboration of a configuration specification containing an incremental binding indication
results in the association of binding information with a component label that is already incrementally bound.

NOTE—A configuration specification supplying either of the reserved words others or all may apply to none of the
component instances in the current declarative part. This is the case when none of the component instances in the current
declarative part meet all of the requirements of the given configuration specification.

7.3.2 Binding indication

7.3.2.1 General

A binding indication associates instances of a component with a particular design entity. It may also
associate actuals with formals declared in the entity declaration.

binding_indication ::=
[use entity aspect]
[generic_map_aspect]
[port map aspect]

The entity aspect of a binding indication, if present, identifies the design entity with which the instances of a
component are associated. If present, the generic map aspect of a binding indication identifies the
expressions, subtypes, subprograms, or instantiated packages to be associated with formal generics in the
entity declaration. Similarly, the port map aspect of a binding indication identifies the signals or values to be
associated with formal ports in the entity declaration.

When a binding indication is used in an explicit configuration specification, it is an error if the entity aspect
is absent.

A binding indication appearing in a component configuration shall have an entity aspect unless the block
corresponding to the block configuration in which the given component configuration appears has one or
more configuration specifications that together configure all component instances denoted in the given
component configuration. The binding indications appearing in these configuration specifications are the
corresponding primary binding indications. A binding indication need not have an entity aspect; in that case,
either or both of a generic map aspect or a port map aspect shall be present in the binding indication. Such a
binding indication is an incremental binding indication. An incremental binding indication is used to
incrementally rebind the ports and generic constants of the denoted instance(s) under the following
conditions:

— For each formal generic constant appearing in the generic map aspect of the incremental binding
indication and denoting a formal generic constant that is unassociated or associated with open in any
of the primary binding indications, the given formal generic constant is bound to the actual with
which it is associated in the generic map aspect of the incremental binding indication.

— For each formal generic constant appearing in the generic map aspect of the incremental binding
indication and denoting a formal generic constant that is associated with an actual other than open in
one of the primary binding indications, the given formal generic constant is rebound to the actual
with which it is associated in the generic map aspect of the incremental binding indication. That is,
the association given in the primary binding indication has no effect for the given instance.

— For each formal port appearing in the port map aspect of the incremental binding indication and
denoting a formal port that is unassociated or associated with open in any of the primary binding
indications, the given formal port is bound to the actual with which it is associated in the port map
aspect of the incremental binding indication.

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -100-
IEEE Std 1076-2008

It is an error if a formal port appears in the port map aspect of the incremental binding indication and it is a
formal port that is associated with an actual other than open in one of the primary binding indications.

If the generic map aspect or port map aspect of a primary binding indication is not present, then the default

rules as described in 7.3.3 apply.

It is an error if an explicit entity aspect in an incremental binding indication does not adhere to any of the

following rules:

— Ifthe entity aspect in the corresponding primary binding indication is of the first form (fully bound),
as specified in 7.3.2.2, then the entity aspect in the incremental binding indication shall also be of the
first form and shall denote the same entity declaration as that of the primary binding indication. An
architecture name shall be specified in the incremental binding indication if and only if the primary
binding indication also identifies an architecture name; in this case, the architecture name in the
incremental binding indication shall denote the same architecture name as that of the primary

binding indication.

— If the entity aspect in the primary binding indication is of the second form (that is, identifying a
configuration), then the entity aspect of the incremental binding indication shall be of the same form
and shall denote the same configuration declaration as that of the primary binding indication.

NOTE 1—The third form (open) of an entity aspect does not apply to incremental binding indications as this form can-
not include either a generic map aspect or a port map aspect and incremental binding indications shall contain at least

one of these aspects.

NOTE 2—The entity aspect of an incremental binding indication in a component configuration is optional.

NOTE 3—The presence of an incremental binding indication will never cause the default rules of 7.3.3 to be applied.

Examples:

entity AND GATE is

generic (IltoO, I2toO: DELAY LENGTH := 4 ns);
port (I1, I2: in BIT; O: out BIT);

end entity AND GATE;

entity XOR GATE is
generic (IltoO, I2toO: DELAY LENGTH := 4 ns);

port (Il, I2: in BIT; O: out BIT);
end entity XOR GATE;

package MY GATES is
component AND GATE is
generic IltoO, I2toO: DELAY LENGTH := 4 ns);
port (Il, I2: in BIT; O: out BIT);
end component AND GATE;

component XOR GATE is
generic (I1ltoO, I2toO: DELAY LENGTH := 4 ns);
port (Il, I2: in BIT; O: out BIT);
end component XOR GATE;
end package MY GATES;

entity Half Adder is
port (X, Y: in BIT; Sum, Carry: out BIT);
end entity Half Adder;

use WORK.MY GATES.all;

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-101 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

architecture Structure of Half Adder is
for L1: XOR GATE use
entity WORK.XOR GATE (Behavior) -- The primary binding
generic map (3 ns, 3 ns) -— indication for instance L1.
port map (I1 => Il1l, I2 => I2, O => 0O);
for L2: AND GATE use
entity WORK.AND GATE (Behavior) -- The primary binding
generic map (3 ns, 4 ns) -— indication for instance L2.
port map (I1, open, O);
begin
Ll: XOR _GATE port map (X, Y, Sum);
L2: AND GATE port map (X, Y, Carry);
end architecture Structure;

use WORK.GLOBAL SIGNALS.all;
configuration Different of Half Adder is
for Structure
for L1: XOR GATE
generic map (2.9 ns, 3.6 ns); -- The incremental binding

end for; -— indication of Ll; rebinds

for L2: AND GATE
generic map (2.8 ns, 3.25 ns)
port map (I2 => Tied High);
end for;

-- its generics.

-- The incremental binding
-- indication of L2; rebinds
-- 1ts generics and binds

-- 1its open port.
end for;
end configuration Different;

7.3.2.2 Entity aspect

An entity aspect identifies a particular design entity to be associated with instances of a component. An
entity aspect may also specify that such a binding is to be deferred.

entity _aspect ::=
entity entity name [(architecture_identifier) |
| configuration configuration_name
| open

The first form of entity aspect identifies a particular entity declaration and (optionally) a corresponding
architecture body. If no architecture identifier appears, then the immediately enclosing binding indication is
said to imply the design entity whose interface is defined by the entity declaration denoted by the entity
name and whose body is defined by the default binding rules for architecture identifiers (see 7.3.3). If an
architecture identifier appears, then the immediately enclosing binding indication is said to imply the design
entity consisting of the entity declaration denoted by the entity name together with an architecture body
associated with the entity declaration; the architecture identifier defines a simple name that is used during
the elaboration of a design hierarchy to select the appropriate architecture body. In either case, the
corresponding component instances are said to be fully bound.

At the time of the analysis of an entity aspect of the first form, the library unit corresponding to the entity
declaration denoted by the entity name is required to exist; moreover, the design unit containing the entity
aspect depends on the denoted entity declaration. If the architecture identifier is also present, the library unit
corresponding to the architecture identifier is required to exist only if the binding indication is part of a
component configuration containing explicit block configurations or explicit component configurations;

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -102 -
IEEE Std 1076-2008

only in this case does the design unit containing the entity aspect also depend on the denoted architecture
body. In any case, the library unit corresponding to the architecture identifier is required to exist at the time
that the design entity implied by the enclosing binding indication is bound to the component instance
denoted by the component configuration or configuration specification containing the binding indication; if
the library unit corresponding to the architecture identifier was required to exist during analysis, it is an error
if the architecture identifier does not denote the same library unit as that denoted during analysis. The library
unit corresponding to the architecture identifier, if it exists, shall be an architecture body associated with the
entity declaration denoted by the entity name.

The second form of entity aspect identifies a design entity indirectly by identifying a configuration. In this
case, the entity aspect is said to imply the design entity at the root of the design hierarchy that is defined by
the configuration denoted by the configuration name.

At the time of the analysis of an entity aspect of the second form, the library unit corresponding to the
configuration name is required to exist. The design unit containing the entity aspect depends on the
configuration denoted by the configuration name.

The third form of entity aspect is used to specify that the identification of the design entity is to be deferred.
In this case, the immediately enclosing binding indication is said to not imply any design entity.
Furthermore, the immediately enclosing binding indication shall not include a generic map aspect or a port
map aspect.

7.3.3 Default binding indication

In certain circumstances, a default binding indication will apply in the absence of an explicit binding
indication. The default binding indication consists of a default entity aspect, together with a default generic
map aspect and a default port map aspect, as appropriate.

If no visible entity declaration has the same simple name as that of the instantiated component, then the
default entity aspect is open. A visible entity declaration is the first entity declaration, if any, in the
following list:

a) An entity declaration that has the same simple name as that of the instantiated component and that is
directly visible (see 12.3),

b) An entity declaration that has the same simple name as that of the instantiated component and that
would be directly visible in the absence of a directly visible (see 12.3) component declaration with
the same simple name as that of the entity declaration, or

c) An entity declaration denoted by L.C, where L is the target library and C is the simple name of the
instantiated component. The target library is the library logical name of the library containing the
design unit in which the component C is declared.

These visibility checks are made at the point of the absent explicit binding indication that causes the default
binding indication to apply.

Otherwise, the default entity aspect is of the form
entity entity name (architecture identifier)

where the entity name is the simple name of the instantiated component, and the architecture identifier is the
same as the simple name of the most recently analyzed architecture body associated with the entity
declaration. If this rule is applied either to a binding indication contained within a configuration
specification or to a component configuration that does not contain an explicit inner block configuration,
then the architecture identifier is determined during elaboration of the design hierarchy containing the
binding indication. Likewise, if a component instantiation statement contains an instantiated unit containing

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-103 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

the reserved word entity but does not contain an explicitly specified architecture identifier, this rule is
applied during the elaboration of the design hierarchy containing a component instantiation statement. In all
other cases, this rule is applied during analysis of the binding indication.

It is an error if there is no architecture body associated with the entity declaration denoted by an entity name
that is the simple name of the instantiated component.

The default binding indication includes a default generic map aspect if the design entity implied by the entity
aspect contains formal generics. The default generic map aspect associates each local generic in the
corresponding component instantiation (if any) with a formal of the same simple name. It is an error if such
a formal does not exist or if its mode and type are not appropriate for such an association. Any remaining
unassociated formals are associated with the actual designator open.

The default binding indication includes a default port map aspect if the design entity implied by the entity
aspect contains formal ports. The default port map aspect associates each local port in the corresponding
component instantiation (if any) with a formal of the same simple name. It is an error if such a formal does
not exist or if its mode and type are not appropriate for such an association. Any remaining unassociated
formals are associated with the actual designator open.

If an explicit binding indication lacks a generic map aspect, and if the design entity implied by the entity
aspect contains formal generics, then the default generic map aspect is assumed within that binding
indication. Similarly, if an explicit binding indication lacks a port map aspect, and the design entity implied
by the entity aspect contains formal ports, then the default port map aspect is assumed within that binding
indication.

7.3.4 Verification unit binding indication

A verification unit binding indication binds one or more PSL verification units to the design entity bound to
a component instance.

verification_unit binding indication ::=
use vunit verification unit list

verification_unit_list ::= verification_unit name { , verification_unit_name }

Each name in a verification unit list shall denote a PSL verification unit (see 13.1 and IEEE Std 1850-2005).
It is an error if a PSL verification unit bound to a design entity by a configuration specification, whether
explicit or implicit, is explicitly bound by its declaration (see IEEE Std 1850-2005). It is an error if a

verification unit binding indication is specified for a component instance that is unbound or that is bound by
a binding indication that has an entity aspect of the third form (open).

7.4 Disconnection specification

A disconnection specification defines the time delay to be used in the implicit disconnection of drivers of a
guarded signal within a guarded signal assignment.

disconnection_specification ::=
disconnect guarded signal specification after time_expression ;

guarded signal specification ::=
guarded _signal_list : type_mark

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -104 -
IEEE Std 1076-2008

signal list ::=
signal_name { , signal name }
| others
| all

Each signal name in a signal list in a guarded signal specification shall be a locally static name that denotes
a guarded signal (see 6.4.2.3). Each guarded signal shall be an explicitly declared signal or member of such
a signal.

If a signal name in the guarded signal specification denotes a declared signal or a slice thereof, then the type
mark in the specification shall be the same as the type mark in the subtype indication of the signal
declaration (see 6.4.2.3).

If a signal name in the guarded signal specification denotes a slice of an array subelement of a composite
signal, then the type mark in the specification shall be the same as the type mark in the subtype indication of
the declaration of the array subelement.

If a signal name in the guarded signal specification denotes an array element of a composite signal, then the
type mark in the specification shall be the same as the type mark of the element subtype indication in the
declaration of the array type.

If a signal name in the guarded signal specification denotes a record element of a composite signal, then the
type mark shall be the same as the type mark of the element subtype indication in the declaration of the
record type.

Each signal shall either be declared in the declarative part enclosing the disconnection specification or be a
member of a signal declared in that declarative part.

Subject to the aforementioned rules, a disconnection specification applies to the drivers of a guarded signal
S specified with type mark T under the following circumstances:

— For a scalar signal S, if an explicit or implicit disconnection specification of the form
disconnect S: T after fime expression;
exists, then this disconnection specification applies to the drivers of S.

— For a composite signal S, an explicit or implicit disconnection specification of the form
disconnect S: T after time expression;

is equivalent to a series of implicit disconnection specifications, one for each scalar subelement of
the signal S. Each disconnection specification in the series is created as follows: it has, as its single
signal name in its signal list, a unique scalar subelement of S. Its type mark is the same as the type of
the same scalar subelement of S. Its time expression is the same as that of the original disconnection
specification.

The characteristics of the disconnection specification shall be such that each implicit disconnection
specification in the series is a legal disconnection specification.

— If the signal list in an explicit or implicit disconnection specification contains more than one signal
name, the disconnection specification is equivalent to a series of disconnection specifications, one
for each signal name in the signal list. Each disconnection specification in the series is created as
follows: It has, as its single signal name in its signal list, a unique member of the signal list from the
original disconnection specification. Its type mark and time expression are the same as those in the
original disconnection specification.

The characteristics of the disconnection specification shall be such that each implicit disconnection
specification in the series is a legal disconnection specification.

— An explicit disconnection specification of the form

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-105 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

disconnect others: T after time expression;

is equivalent to an implicit disconnection specification where the reserved word others is replaced
with a signal list comprised of the simple names of those guarded signals that are declared signals
declared in the enclosing declarative part, whose type mark is the same as T, and that do not
otherwise have an explicit disconnection specification applicable to its drivers; the remainder of the
disconnection specification is otherwise unchanged. If there are no guarded signals in the enclosing
declarative part whose type mark is the same as T and that do not otherwise have an explicit
disconnection specification applicable to its drivers, then the preceding disconnection specification
has no effect.

The characteristics of the explicit disconnection specification shall be such that the implicit
disconnection specification, if any, is a legal disconnection specification.

— An explicit disconnection specification of the form
disconnect all: T after time expression;

is equivalent to an implicit disconnection specification where the reserved word all is replaced with
a signal list comprised of the simple names of those guarded signals that are declared signals
declared in the enclosing declarative part and whose type mark is the same as T; the remainder of the
disconnection specification is otherwise unchanged. If there are no guarded signals in the enclosing
declarative part whose type mark is the same as T, then the preceding disconnection specification
has no effect.

The characteristics of the explicit disconnection specification shall be such that the implicit
disconnection specification, if any, is a legal disconnection specification.

A disconnection specification with the signal list others or all for a given type that appears in a declarative
part shall be the last such specification for the given type in that declarative part. It is an error if a guarded
signal of the given type is declared in a given declarative part following such a disconnection specification.

The time expression in a disconnection specification shall be static and shall evaluate to a non-negative
value.

It is an error if more than one disconnection specification applies to drivers of the same signal.

If, by the aforementioned rules, no disconnection specification applies to the drivers of a guarded, scalar
signal S whose type mark is T (including a scalar subelement of a composite signal), then the following
default disconnection specification is implicitly assumed:

disconnect S : T after 0 ns;

A disconnection specification that applies to the drivers of a guarded signal S is the applicable disconnection
specification for the signal S.

Thus the implicit disconnection delay for any guarded signal is always defined, either by an explicit
disconnection specification or by an implicit one.

NOTE 1—A disconnection specification supplying either the reserved words others or all may apply to none of the
guarded signals in the current declarative part, in the event that none of the guarded signals in the current declarative part
meet all of the requirements of the disconnection specification.

NOTE 2—Since disconnection specifications are based on declarative parts, not on declarative regions, ports declared in
an entity declaration cannot be referenced by a disconnection specification in a corresponding architecture body.

Cross-references: Disconnection statements, 11.6; guarded assignment, 11.6; guarded blocks, 11.2; guarded
signals, 6.4.2.3; guarded targets, 11.6; signal guard, 11.2.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

Copyrighted material licensed to BR Demo by Thomson Reuters (Scientific), Inc., subscriptions.techstreet.com, downloaded on Nov-28-2014 by James Madison. No further reproduction or distribution is permitted. Uncontroll

-106 -

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

-107 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

8. Names

8.1 General

Names can denote declared entities, whether declared explicitly or implicitly. Names can also denote the
following:

— Objects denoted by access values

— Methods (see 5.6.2) of protected types
— Subelements of composite objects

— Subelements of composite values

— Slices of composite objects

— Slices of composite values

— Attributes of any named entity

name ::=
simple_name

| operator symbol
| character literal
| selected_name

| indexed name

| slice_name

| attribute_name

| external _name

prefix ::=
name
| function_call

Certain forms of name (indexed and selected names, slice names, and attribute names) include a prefix that
is a name or a function call. If the prefix of a name is a function call, then the name denotes an element, a
slice, or an attribute, either of the result of the function call, or (if the result is an access value) of the object
designated by the result. Function calls are defined in 9.3.4.

A prefix is said to be appropriate for a type in either of the following cases:
— The type of the prefix is the type considered.
— The type of the prefix is an access type whose designated type is the type considered.

The evaluation of a name determines the named entity denoted by the name. The evaluation of a name that
has a prefix includes the evaluation of the prefix, that is, of the corresponding name or function call. If the
type of the prefix is an access type, the evaluation of the prefix includes the determination of the object
designated by the corresponding access value. In such a case, it is an error if the value of the prefix is a null
access value. It is an error if, after all type analysis (including overload resolution), the name is ambiguous.

A name is said to be a static name if and only if one of the following conditions holds:

— The name is a simple name or selected name (including those that are expanded names) that does not
denote a function call, an object or value of an access type, or an object of a protected type and (in
the case of a selected name) whose prefix is a static name.

— The name is an indexed name whose prefix is a static name, and every expression that appears as part
of the name is a static expression.

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -108 -
IEEE Std 1076-2008

— The name is a slice name whose prefix is a static name and whose discrete range is a static discrete
range.

— The name is an attribute name whose prefix is a static signal name and whose suffix is one of the pre-
defined attributes 'DELAYED, 'STABLE, 'QUIET, or ' TRANSACTION.

— The name is an external name.

Furthermore, a name is said to be a locally static name if and only if one of the following conditions hold:

— The name is a simple name or selected name (including those that are expanded names) that is not an
alias and that does not denote a function call, an object or value of an access type, or an object of a
protected type and (in the case of a selected name) whose prefix is a locally static name.

— The name is a simple name or selected name (including those that are expanded names) that is an
alias, and that the aliased name given in the corresponding alias declaration (see 6.6) is a locally
static name, and (in the case of a selected name) whose prefix is a locally static name.

— The name is an indexed name whose prefix is a locally static name, and every expression that
appears as part of the name is a locally static expression.

— The name is a slice name whose prefix is a locally static name and whose discrete range is a locally
static discrete range.

A static signal name is a static name that denotes a signal. The longest static prefix of a signal name is the
name itself, if the name is a static signal name; otherwise, it is the longest prefix of the name that is a static
signal name. Similarly, a static variable name is a static name that denotes a variable, and the longest static
prefix of a variable name is the name itself, if the name is a static variable name; otherwise, it is the longest
prefix of the name that is a static variable name.

Examples:
S(C,2) --A static name: C is a static constant.
R(J to 16) --A nonstatic name: J is a signal.
--R 1s the longest static prefix of R(J to 16).
T (n) --A static name; n is a generic constant.
T(2) --A locally static name.

8.2 Simple names

A simple name for a named entity is either the identifier associated with the entity by its declaration or
another identifier associated with the entity by an alias declaration. In particular, the simple name for an
entity declaration, a configuration, a package, a procedure, or a function is the identifier that appears in the
corresponding entity declaration, configuration declaration, package declaration, procedure declaration, or
function declaration, respectively. The simple name of an architecture is that defined by the identifier of the
architecture body.

simple name ::= identifier

The evaluation of a simple name has no other effect than to determine the named entity denoted by the
name.

8.3 Selected names

A selected name is used to denote a named entity whose declaration appears either within the declaration of
another named entity or within a design library.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-109 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

selected name ::= prefix . suffix

suffix ==
simple_name
| character literal
| operator_symbol
| all

A selected name can denote an element of a record, an object designated by an access value, or a named
entity whose declaration is contained within another named entity, particularly within a library, a package,
or a protected type. Furthermore, a selected name can denote all named entities whose declarations are
contained within a library or a package.

For a selected name that is used to denote a record element, the suffix shall be a simple name denoting an
element of a record object or value. The prefix shall be appropriate for the type of this object or value.

For a selected name that is used to denote the object designated by an access value, the suffix shall be the
reserved word all. The prefix shall belong to an access type.

The remaining forms of selected names are called expanded names. The prefix of an expanded name shall
not be a function call.

An expanded name denotes a primary unit contained in a design library if the prefix denotes the library and
the suffix is the simple name of a primary unit whose declaration is contained in that library. An expanded
name denotes all primary units contained in a library if the prefix denotes the library and the suffix is the
reserved word all. An expanded name is not allowed for a secondary unit, particularly for an architecture
body.

An expanded name denotes a named entity declared in a package if the prefix denotes the package and the
suffix is the simple name, character literal, or operator symbol of a named entity whose declaration occurs
immediately within that package. An expanded name denotes all named entities declared in a package if the
prefix denotes the package and the suffix is the reserved word all.

An expanded name denotes a named entity declared immediately within a named construct if the prefix
denotes a construct that is an entity declaration, an architecture body, a subprogram declaration, a
subprogram body, a block statement, a process statement, a generate statement, a loop statement, or a
protected type definition, and the suffix is the simple name, character literal, or operator symbol of a named
entity whose declaration occurs immediately within that construct. This form of expanded name is only
allowed within the construct itself, or if the prefix denotes an entity declaration and the expanded name
occurs within an architecture body corresponding to the entity declaration.

An expanded name denotes a named entity declared immediately within an architecture body if the prefix
denotes the entity declaration corresponding to the architecture body and the suffix is the simple name,
character literal, or operator symbol of a named entity whose declaration occurs immediately within the
architecture body. This form of expanded name is only allowed within the architecture body.

An expanded name denotes a named entity declared immediately within an elaborated protected type if the
prefix denotes an object of the protected type and the suffix is a simple name of a method whose declaration
appears immediately within the protected type declaration.

If, according to the visibility rules, there is at least one possible interpretation of the prefix of a selected
name as the name of an enclosing entity declaration, architecture, subprogram, block statement, process
statement, generate statement, loop statement, or protected type, or if there is at least one possible
interpretation of the prefix of a selected name as the name of an object of a protected type, then the only

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -110-
IEEE Std 1076-2008

interpretations considered are those of the immediately preceding three paragraphs. In this case, the selected
name is always interpreted as an expanded name. In particular, no interpretations of the prefix as a function
call are considered.

Examples:
-- Given the following declarations:
type INSTR TYPE is

record

OPCODE: OPCODE TYPE;

end record;
signal INSTRUCTION: INSTR TYPE;
—-— The name "INSTRUCTION.OPCODE" is the name of a record element.

-- Given the following declarations:

type INSTR PTR is access INSTR TYPE;
variable PTR: INSTR_ PTR;

-- The name "PTR.all" is the name of the object designated by PTR.
-- Given the following library clause:
library TTL, CMOS;

-- The name "TTL.SN74LS221" is the name of a design unit contained in
-- a library and the name "CMOS.all" denotes all design units contained
-- in a library.

-- Given the following declaration and use clause:

library MKS;
use MKS.MEASUREMENTS, STD.STANDARD;

-— The name "MEASUREMENTS.VOLTAGE" denotes a named entity declared in
-- a package and the name "STANDARD.all" denotes all named entities
-- declared in a package.

-—- Given the following process label and declarative part:

P: process
variable DATA: INTEGER;

begin
-- Within process P, the name "P.DATA" denotes a named entity
-- declared in process P.

end process;

counter.increment (5) ; -— See 6.4.2.4 for the definition
counter.decrement (i) ; -— of "counter."

if counter.value = 0 then ... end if;

result.add(svl, sv2); -— See 6.4.2.4 for the definition

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

|onuooun “panwiad S uonnguisip 10 uononpoidal Jayuny ON "UOSIPRIN Sawer AQ $T0Z-8Z-A0ON U0 PapPeOjUMOP ‘W02°18311sYyoa1 suonduosgns “-ou| ‘(oynuaios) siainay uoswoy L Agq owad Hg 01 pasusdl| [eusrew paiybuidod

-111 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

-- of "result."
bit stack.add bit(l, '1'); -— See 6.4.2.4 for the definition
bit stack.add bit(2, '1'); -— of "bit stack."
bit stack.add bit (3, '0");

NOTE 1—The object denoted by an access value is accessed differently depending on whether the entire object or a sub-
element of the object is desired. If the entire object is desired, a selected name whose prefix denotes the access value and
whose suffix is the reserved word all is used. In this case, the access value is not automatically dereferenced, since it is
necessary to distinguish an access value from the object denoted by an access value.

If a subelement of the object is desired, a selected name whose prefix denotes the access value is again used; however,
the suffix in this case denotes the subelement. In this case, the access value is automatically dereferenced.

These two cases are shown in the following example:
type rec;
type recptr is access rec;

type rec is

record
value : INTEGER;
\next\ : recptr;

end record;

variable listl, list2: recptr;
variable recobj: rec;

list2 := listl; -- Access values are copied;
-- listl and 1ist2 now denote the same object.
list2 := listl.\next\; -- list2 denotes the same object as listl.\next\.

-- listl.\next\ is the same as listl.all.\next\.
-- An implicit dereference of the access value occurs before the
-- "\next\" element is selected.

recobj := list2.all; -— An explicit dereference is needed here.

NOTE 2—Overload resolution is used to disambiguate selected names. See rules a) and c¢) of 12.5.

NOTE 3—If, according to the rules of this subclause and of 12.5, there is not exactly one interpretation of a selected
name that satisfies these rules, then the selected name is ambiguous.

8.4 Indexed names
An indexed name denotes an element of an array.
indexed name ::= prefix (expression { , expression })

The prefix of an indexed name shall be appropriate for an array type. The expressions specify the index
values for the element; there shall be one such expression for each index position of the array, and each
expression shall be of the type of the corresponding index. For the evaluation of an indexed name, the prefix
and the expressions are evaluated. It is an error if an index value does not belong to the range of the
corresponding index range of the array.

Examples:
REGISTER ARRAY (5) -- An element of a one-dimensional array
MEMORY CELL(1024,7) -- An element of a two-dimensional array

NOTE—If a name (including one used as a prefix) has an interpretation both as an indexed name and as a function call,
then the innermost complete context is used to disambiguate the name. If, after applying this rule, there is not exactly
one interpretation of the name, then the name is ambiguous. See 12.5.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -112-
IEEE Std 1076-2008

8.5 Slice names

A slice name denotes a one-dimensional array composed of a sequence of consecutive elements of another
one-dimensional array. A slice of a signal is a signal; a slice of a variable is a variable; a slice of a constant is
a constant; a slice of a value is a value.

slice_ name ::= prefix (discrete_range)

The prefix of a slice shall be appropriate for a one-dimensional array object. The base type of this array type
is the type of the slice.

The bounds of the discrete range define those of the slice and shall be of the type of the index of the array.
The slice is a null slice if the discrete range is a null range. It is an error if the direction of the discrete range
is not the same as that of the index range of the array denoted by the prefix of the slice name.

For the evaluation of a name that is a slice, the prefix and the discrete range are evaluated. It is an error if
either of the bounds of the discrete range does not belong to the index range of the prefixing array, unless the
slice is a null slice. (The bounds of a null slice need not belong to the subtype of the index.)

Examples:

signal R15: BIT VECTOR (0 to 31);
constant DATA: BIT VECTOR (31 downto 0);

R15(0 to 7) -- A slice with an ascending range.
DATA (24 downto 1) -— A slice with a descending range.
DATA (1 downto 24) -— A null slice.

DATA (24 to 25) -— An error.

NOTE—If A is a one-dimensional array of objects, the name A(N to N) or A(N downto N) is a slice that contains one
element; its type is the base type of A. On the other hand, A(N) is an element of the array A and has the corresponding
element type.

8.6 Attribute names
An attribute name denotes a value, function, type, range, signal, or constant associated with a named entity.

attribute name ::=
prefix [signature] ' attribute designator [(expression)]

attribute_designator ::= attribute_simple name

The applicable attribute designators depend on the prefix plus the signature, if any. The meaning of the
prefix of an attribute shall be determinable independently of the attribute designator and independently of
the fact that it is the prefix of an attribute.

It is an error if a signature follows the prefix and the prefix does not denote a subprogram or enumeration
literal, or an alias thereof. In this case, the signature is required to match (see 4.5.3) the parameter and result
type profile of exactly one visible subprogram or enumeration literal, as is appropriate to the prefix.

If the attribute designator denotes a predefined attribute, the expression either shall or may appear,
depending upon the definition of that attribute (see Clause 16); otherwise, it shall not be present. For an
attribute that denotes a function, an expression does not appear as part of the attribute name; a parenthesized
expression following the attribute designator is interpreted as part of a function call (see 9.3.4).

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-113 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

If the prefix of an attribute name denotes an alias, then the attribute name denotes an attribute of the aliased
name and not the alias itself, except when the attribute designator denotes any of the predefined attributes
'SIMPLE_NAME, 'PATH_NAME, or 'INSTANCE NAME. If the prefix of an attribute name denotes an
alias and the attribute designator denotes any of the predefined attributes SIMPLE NAME, 'PATH_NAME,
or INSTANCE NAME, then the attribute name denotes the attribute of the alias and not of the aliased
name.

If the attribute designator denotes a user-defined attribute, the prefix cannot denote a subelement or a slice of
an object.

NOTE—An attribute name that denotes a predefined attribute that is a function may be associated as the actual for a for-
mal generic subprogram.

Examples:
REG'LEFT (1) —-— The leftmost index bound of array REG
INPUT PIN'PATH NAME —— The hierarchical path name of
-—- the port INPUT PIN
CLK'DELAYED (5 ns) -- The signal CLK delayed by 5 ns

8.7 External names
An external name denotes an object declared in the design hierarchy containing the external name.
external name ::=
external _constant name
| external signal name

| external variable name

external_constant name ::=
<< constant external pathname : subtype indication >>

external signal name ::=
<< signal external pathname : subtype indication >>

external variable name ::=
<< variable external pathname : subtype indication >>

external pathname ::=
package pathname
| absolute pathname

| relative_pathname

package pathname ::=
@ library logical name . package simple name . { package simple name . } object simple name

absolute pathname ::= . partial pathname
relative_pathname ::= { ~ . } partial pathname

partial pathname ::= { pathname element . } object simple name

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -114 -
IEEE Std 1076-2008

pathname_element ::=
entity_simple_name
| component_instantiation_label

| block label
| generate_statement label [(static_expression)]

| package simple name

The object denoted by an external name is the object whose simple name is the object simple name of the
external pathname and that is declared in the elaborated declarative region identified by the external
pathname, as follows:

a) First, a declarative region is initially identified:

1)

2)

3)

For an absolute pathname, the root declarative region encompassing the design entity that
forms the root of the design hierarchy is initially identified.

For a package pathname, the library logical name shall be defined by a library clause, and the
library declarative region associated with the design library denoted by the library logical name
is initially identified.

For a relative pathname, the innermost concurrent region is initially identified, where a concur-
rent region is defined recursively to be

— A block declarative region (including an external block and any block equivalent to a
generate statement), or

— A package declarative region (including a generic-mapped package equivalent to a
package instantiation) declared immediately within a concurrent region.

Then, for each occurrence of a circumflex accent followed by a dot, the innermost concurrent
region, other than a block declarative region of a block corresponding to a component instanti-
ation statement, containing the previously identified declarative region replaces the previously
identified declarative region as the identified declarative region. It is an error when evaluating
the external name if, at any stage, there is no such containing declarative region, or if the con-
taining declarative region is the declarative region of an uninstantiated package.

b) Second, for each package simple name in a package pathname, or for each pathname element in an
absolute or relative pathname, in order, the previously identified declarative region is replaced as the
identified declarative region by one of the following:

1

2)

3)

4)
)

For a package simple name, the declarative region of the package denoted by the package sim-
ple name in the previously identified declarative region. If the package simple name denotes a
package instantiation, then the declarative region is that of the equivalent generic-mapped
package.

For an entity simple name, the declarative region of the external block of the design entity at
the root of the design hierarchy. This form of pathname element shall only occur at a place
where the previously identified declarative region is the root declarative region encompassing
the design entity that forms the root of the design hierarchy.

For a component instantiation label, the declarative region of the design entity bound to the
component instance.

For a block label, the declarative region of the block.

For a generate statement label, the declarative region of the equivalent block corresponding to
the generate statement. If the generate statement is a for generate statement, the pathname ele-
ment shall include a static expression, the type of the expression shall be the same as the type of
the generate parameter, and the value of the expression shall belong to the discrete range speci-
fied for the generate parameter. The type of the expression shall be determined by applying the
rules of 12.5 to the expression considered as a complete context, using the rule that the type
shall be discrete. If the type of the expression is universal integer and the type of the generate

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-115- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

parameter is an integer type, an implicit conversion of the expression to the type of the generate
parameter is assumed.

It is an error when evaluating the external name if, at any stage, a declarative region corresponding
to a package name in a package pathname or to a pathname element in an absolute or relative path-
name does not exist. It is an error when evaluating the external name if a package simple name in an
external pathname denotes an uninstantiated package.

It is an error when evaluating an external name if the identified declarative region does not contain a
declaration of an object whose simple name is the object simple name of the external pathname. It is also an
error when evaluating an external name if the object denoted by an external constant name is not a constant,
or if the object denoted by an external signal name is not a signal, or if the object denoted by an external
variable name is not a variable. Moreover, it is an error if the base type of the object denoted by an external
name is not the same as the base type of the type mark in the subtype indication of the external name.

If the subtype indication denotes a composite subtype, then the object denoted by the external name is
viewed as if it were of the subtype specified by the subtype indication. For each index range, if any, in the
subtype, if the subtype defines the index range, the object is viewed with that index range; otherwise, the
object is viewed with the index range of the object. The view specified by the subtype shall include a
matching element (see 9.2.3) for each element of the object denoted by the external name.

If the subtype indication denotes a scalar subtype, then the object denoted by the external name is viewed as
if it were of the subtype specified by the subtype indication; moreover, it is an error when evaluating the
external name if this subtype does not have the same bounds and direction as the subtype of the object
denoted by the external name.

The evaluation of an external name has no other effect than to determine the named entity denoted by the
name.

NOTE 1—A generic constant may be denoted by an external constant name, and a port may be denoted by external
signal name.

NOTE 2—Since the object denoted by an external name cannot be declared within a process or subprogram, if the object
is a variable, it shall be a shared variable.

NOTE 3—A declarative region corresponding to a package name or a pathname element does not exist if the name or
label is not declared. It may also not exist in the case of a component instance that is unbound, or in the case of an if
generate statement for which no block is generated.

NOTE 4—1t is not possible to use an external name to denote the local generics or local ports of a component
instantiated in a component instantiation statement.

NOTE 5—If a package has the same simple name as the entity at the root of the design entity, the external pathnames for
an object in the package and an object in the design hierarchy, could, in some cases, comprise the same sequence of
simple names. A package pathname starts with a different delimiter (@) from an absolute pathname (.) in order to avoid
such an ambiguity.

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

Copyrighted material licensed to BR Demo by Thomson Reuters (Scientific), Inc., subscriptions.techstreet.com, downloaded on Nov-28-2014 by James Madison. No further reproduction or distribution is permitted. Uncontroll

-116-

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

- 117 -

9. Expressions

9.1 General
An expression is a formula that defines the computation of a value.

expression ::=
condition_operator primary
| logical expression

logical expression ::=
relation { and relation }
| relation { or relation }
| relation { xor relation }
| relation [nand relation]
| relation [nor relation]
| relation { xnor relation }

relation ::=
shift expression [relational operator shift expression |

shift expression ::=
simple_expression [shift operator simple_expression |

simple expression ::=
[sign] term { adding_operator term }

term 1=
factor { multiplying_operator factor }

factor ::=
primary [** primary]
| abs primary
| not primary
| logical operator primary

primary ::=
name
| literal
| aggregate
| function_call
| qualified expression
| type conversion
| allocator
| (expression)

Each primary has a value and a type. The only names allowed as primaries are attributes that yield values
and names denoting objects or values. In the case of names denoting objects other than objects of file types
or protected types, the value of the primary is the value of the object. In the case of names denoting either

IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

file objects or objects of protected types, the value of the primary is the entity denoted by the name.

The type of an expression depends only upon the types of its operands and on the operators applied; for an
overloaded operand or operator, the determination of the operand type, or the identification of the

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -118-
IEEE Std 1076-2008

overloaded operator, depends on the context (see 12.5). For each predefined operator, the operand and result
types are given in the following subclause.

NOTE 1—The syntax for an expression involving logical operators allows a sequence of binary and, or, xor, or xnor
operators (whether predefined or user-defined), since the corresponding predefined operations are associative. For the
binary operators nand and nor (whether predefined or user-defined), however, such a sequence is not allowed, since the
corresponding predefined operations are not associative.

NOTE 2—The syntax for an expression involving a unary condition operator or unary logical operator in combination
with any other operator requires that the unary operator and its operand be a parenthesized expression. For example, the
expressions “(and A) and B” and “A and (and B)” are legal, whereas the expression “and A and B” and “A and and
B” are not. Similarly, “and (and A)” is legal, whereas “and and A” is not. An expression consisting only of a unary
condition oprator or unary logical operator and its operand need not be parenthesized.

NOTE 3—PSL extends the grammar of VHDL expressions to allow PSL expressions, PSL built-in function calls, and
PSL union expressions as subexpressions. Such extended expressions can only appear in a VHDL description within
PSL declarations and PSL directives, or in a verification unit.

9.2 Operators
9.2.1 General
The operators that may be used in expressions are defined as follows. Each operator belongs to a class of

operators, all of which have the same precedence level; the classes of operators are listed in order of
increasing precedence.

condition_operator = ??

logical operator ::= and | or | nand | nor | xor | xnor

relational operator ::= = | /= | < | <= | > | >= | 7= | U= | < | 7<= | 7> | I>=
shift operator ::= sll | srl | sla | sra | rol | ror

adding_operator == + | — | &

sign = + | —

multiplying_operator ::= * | / | mod | rem

miscellaneous_operator ::= ** | abs | not

Operators of higher precedence are associated with their operands before operators of lower precedence.
Where the language allows a sequence of operators, operators with the same precedence level are associated
with their operands in textual order, from left to right. The precedence of an operator is fixed and cannot be
changed by the user, but parentheses can be used to control the association of operators and operands.

In general, operands in an expression are evaluated before being associated with operators. For certain
operations, however, the right-hand operand is evaluated if and only if the left-hand operand has a certain
value. These operations are called short-circuit operations. The binary logical operations and, or, nand, and
nor defined for operands of types BIT and BOOLEAN are all short-circuit operations; furthermore, these
are the only short-circuit operations.

Every predefined operator and every predefined MINIMUM and MAXIMUM operation is a pure function
(see 4.2.1). No predefined operators have named formal parameters; therefore, named association (see
6.5.7.1) cannot be used when invoking a predefined operator.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-119 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

NOTE 1—The predefined operators for the standard types are declared in package STANDARD as shown in 16.3.

NOTE 2—The operator not is classified as a miscellaneous operator for the purposes of defining precedence, but is oth-
erwise classified as a logical operator.

9.2.2 Logical operators

The binary logical operators and, or, nand, nor, xor, and xnor, and the unary logical operator not are
defined for predefined types BIT and BOOLEAN. They are also defined for any one-dimensional array type
whose element type is BIT or BOOLEAN.

For the binary operators and, or, nand, nor, xor, and xnor, the operands shall both be of the same base
type, or one operand shall be of a scalar type and the other operand shall be a one-dimensional array whose
element type is the scalar type. The result type is the same as the base type of the operands if both operands
are scalars of the same base type or both operands are arrays, or the same as the base type of the array
operand if one operand is a scalar and the other operand is an array.

If both operands are one-dimensional arrays, the operands shall be arrays of the same length, the operation is
performed on matching elements of the arrays, and the result is an array with the same index range as the left
operand. If one operand is a scalar and the other operand is a one-dimensional array, the operation is
performed on the scalar operand with each element of the array operand. The result is an array with the same
index range as the array operand.

For the unary operator not, the result type is the same as the base type of the operand. If the operand is a one-
dimensional array, the operation is performed on each element of the operand, and the result is an array with
the same index range as the operand.

The effects of the logical operators are defined in the following tables. The symbol T represents TRUE for
type BOOLEAN, 'l' for type BIT; the symbol F represents FALSE for type BOOLEAN, '0' for type BIT.

A B Aand B A B AorB A B AxorB
T T T T T T T T F

T F F T F T T F T

F T F F T T F T T

F F F F F F F F F

A B A nand B A B A nor B A B A xnor B
T T F T T F T T T

T F T T F F T F F

F T T F T F F T F

F F T F F T F F T

A not A

T

F

For the short-circuit operations and, or, nand, and nor on types BIT and BOOLEAN, the right operand is
evaluated only if the value of the left operand is not sufficient to determine the result of the operation. For
operations and and nand, the right operand is evaluated only if the value of the left operand is T; for
operations or and nor, the right operand is evaluated only if the value of the left operand is F.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -120-
IEEE Std 1076-2008

The unary logical operators and, or, nand, nor, xor, and xnor are referred to as logical reduction operators.
The logical reduction operators are predefined for any one-dimensional array type whose element type is
BIT or BOOLEAN. The result type for the logical reduction operators is the same as the element type of the
operand.

The values returned by the logical reduction operators are defined as follows. In the remainder of this
subclause, the values of their arguments are referred to as R.

— The and operator returns a value that is the logical and of the elements of R. That is, if R is a null
array, the return value is 'l1' if the element type of R is BIT or TRUE if the element type of R is
BOOLEAN. Otherwise, the return value is the result of a binary and operation. The left argument of
the binary and operation is the leftmost element of R. The right argument of the binary and
operation is the result of a unary and operation with the argument being the rightmost (RLENGTH —
1) elements of R.

— The or operator returns a value that is the logical or of the elements of R. That is, if R is a null array,
the return value is '0' if the element type of R is BIT or FALSE if the element type of R is
BOOLEAN. Otherwise, the return value is the result of a binary or operation. The left argument of
the binary or operation is the leftmost element of R. The right argument of the binary or operation is
the result of a unary or operation with the argument being the rightmost (RLENGTH — 1) elements
of R.

— The xor operator returns a value that is the logical exclusive-or of the elements of R. That is, if R is a
null array, the return value is '0' if the element type of R is BIT or FALSE if the element type of R is
BOOLEAN. Otherwise, the return value is the result of a binary xor operation. The left argument of
the binary xor operation is the leftmost element of R. The right argument of the binary xor operation
is the result of a unary xor operation with the argument being the rightmost (R'LENGTH — 1)
elements of R.

— The nand operator returns a value that is the negated logical and of the elements of R. That is, the
return value is the result of a not operation. The argument of the not operation is the result of a unary
and operation with the argument being R.

— The nor operator returns a value that is the negated logical or of the elements of R. That is, the return
value is the result of a not operation. The argument of the not operation is the result of a unary or
operation with the argument being R.

— The xnor operator returns a value that is the negated logical exclusive-or of the elements of R. That
is, the return value is the result of a not operation. The argument of the not operation is the result of
a unary xor operation with the argument being R.

NOTE—AII of the binary logical operators belong to the class of operators with the lowest precedence. The unary logi-
cal operators belong to the class of operators with the highest precedence.

9.2.3 Relational operators

Relational operators include tests for equality, inequality, and ordering of operands. The operands of each
relational operator shall be of the same type. The result type of each ordinary relational operator (=, /=, <,
<=, >, and >=) is the predefined type BOOLEAN. The result type of each matching relational operator (?=,
/=, 1<, 7<=, 7>, and 7>=) is the same as the type of the operands (for scalar operands) or the the element
type of the operands (for array operands).

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-121 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

Operator Operation Operand type Result type
= Equality Any type, other thana | BOOLEAN
file type or a pro-
tected type
/= Inequality Any type, otherthana | BOOLEAN
file type or a pro-
tected type
< Ordering Any scalar type or BOOLEAN
- discrete array type
>
>=
7= Matching BIT or Same type
equality STD_ULOGIC
Any one-dimensional | The element
array type whose ele- | type
ment type is BIT or
STD_ULOGIC
/= Matching BIT or Same type
inequality STD ULOGIC
Any one-dimensional | The element
array type whose ele- | type
ment type is BIT or
STD ULOGIC
< Matching BIT or Same type
< ordering STD_ULOGIC
7>
>=

The equality and inequality operators (= and /=) are defined for all types other than file types and protected
types. The equality operator returns the value TRUE if the two operands are equal and returns the value
FALSE otherwise. The inequality operator returns the value FALSE if the two operands are equal and
returns the value TRUE otherwise.

Two scalar values of the same type are equal if and only if the values are the same. Two composite values of
the same type are equal if and only if for each element of the left operand there is a matching element of the
right operand and vice versa, and the values of matching elements are equal, as given by the predefined
equality operator for the element type. In particular, two null arrays of the same type are always equal. Two
values of an access type are equal if and only if they both designate the same object or they both are equal to
the null value for the access type.

For two record values, matching elements are those that have the same element identifier. For two one-
dimensional array values, matching elements are those (if any) whose index values match in the following
sense: the left bounds of the index ranges are defined to match; if two elements match, the elements
immediately to their right are also defined to match. For two multidimensional array values, matching
elements are those whose indices match in successive positions.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -122-
IEEE Std 1076-2008

The ordinary ordering operators are defined for any scalar type and for any discrete array type. A discrete
array is a one-dimensional array whose elements are of a discrete type. Each operator returns TRUE if the
corresponding relation is satisfied; otherwise, the operator returns FALSE.

For scalar types, ordering is defined in terms of the relative values. For discrete array types, the relation <
(less than) is defined such that the left operand is less than the right operand if and only if the left operand is
a null array and the right operand is a non-null array.

Otherwise, both operands are non-null arrays, and one of the following conditions is satisfied:
a) The leftmost element of the left operand is less than that of the right, or

b) The leftmost element of the left operand is equal to that of the right, and the tail of the left operand is
less than that of the right (the tail consists of the remaining elements to the right of the leftmost ele-
ment and can be null).

The relation <= (less than or equal) for discrete array types is defined to be the inclusive disjunction of the
results of the < and = operators for the same two operands. The relations > (greater than) and >= (greater
than or equal) are defined to be the complements of the <= and < operators, respectively, for the same two
operands.

The matching relational operators are predefined for the predefined type BIT and for the type
STD_ULOGIC defined in package STD LOGIC 1164. For operands of type BIT, each matching relational
operator returns '1' if the corresponding ordinary relational operator applied to the operands returns TRUE,
and returns the value '0' otherwise.

For the matching ordering operators applied to operands of type STD ULOGIC, if either operand is the
value ', an error is reported in a manner equivalent to execution of the following assertion statement (see
10.3):

assert FALSE
report "STD LOGIC 1164: '-' operand for matching ordering operator"
severity ERROR;

For operands of type STD ULOGIC, the value returned by the matching equality operator is defined in the
following table:

?= Right operand

Left operand U X' '0’' T VA W' 'L! 'H' !
' ' U U U U U U U T
X' ' X' X' X' X' X' X' X' T
‘0’ U X' T '0' X' X' " '0' "
T U X' '0' T X' X' '0' " "
'z U X' X' X' X' X' X' X' T
W' U X' X' X' X' X' X' X' T
' U X' T '0' X' X' T '0' T
'H' U X' '0' T X' X' '0' " "
! " " T T T T T T T

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

|onuooun “panwiad S uonnguisip 10 uononpoidal Jayuny ON "UOSIPRIN Sawer AQ $T0Z-8Z-A0ON U0 PapPeOjUMOP ‘W02°18311sYyoa1 suonduosgns “-ou| ‘(oynuaios) siainay uoswoy L Agq owad Hg 01 pasusdl| [eusrew paiybuidod

-123 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

For operands of type STD_ULOGIC, the value returned by the matching ordering operator ?< is defined in
the following table:

< Right operand

Left operand U X' '0’' T VA W' 'L 'H' !
' ' ' U U U U U U X'
X' U X' X' X' X' X' X' X' X'
‘0’ ' X' '0' T X' X' ‘0" T X'
T ' X' '0' '0' X' X' ‘0" '0' X'
VA U X' X' X' X' X' X' X' X'
W' U X' X' X' X' X' X' X' X'
' U X' '0' T X' X' ‘0" T X'
'H' U X' '0' '0' X' X' ‘0" ‘0’ X'
! X' X' X' X' X' X' X' X' X'

For operands of type STD ULOGIC, the value returned by the matching inequality operator is defined to be
the result of applying the not operator to the result of applying the ?= operator to the operands. The value
returned by the matching ordering operator 7<= is defined to be the result of applying the binary or operator
to the results of applications of the ?< and ?= operators to the operands. The value returned by the matching
ordering operator 7> is the result of applying the not operator to the result of applying the 7<= operator to
the operands. The value returned by the matching ordering operator ?>= is the result of applying the not
operator to the result of applying the ?< operator to the operands. In each case, the not and or operators are
those declared in the package IEEE.STD LOGIC 1164.

The matching equality and matching inequality operators are also defined for any one-dimensional array
type whose element type is BIT or STD ULOGIC. The operands shall be arrays of the same length. The
matching equality operator for the element type is applied to matching elements of the operands to form an
intermediate array of type BIT VECTOR (in the case of operands whose element type is BIT) or
STD ULOGIC_VECTOR (in the case of operands whose element type is STD_ULOGIC). The result of the
matching equality operator applied to the operands is then the result of applying the unary and operator to
the intermediate array. The result of the matching inequality operator is the result of applying the not
operator to the result of applying the unary and operator to the intermediate array. In each case, the not and
and operators are either the predefined operators or those declared in the package IEEE.STD LOGIC 1164,
as appropriate.

9.2.4 Shift operators

The shift operators sll, srl, sla, sra, rol, and ror are defined for any one-dimensional array type whose
element type is either of the predefined types BIT or BOOLEAN.

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

|onuooun “panwiad S uonnguisip 10 uononpoidal Jayuny ON "UOSIPRIN Sawer AQ $T0Z-8Z-A0ON U0 PapPeOjUMOP ‘W02°18311sYyoa1 suonduosgns “-ou| ‘(oynuaios) siainay uoswoy L Agq owad Hg 01 pasusdl| [eusrew paiybuidod

IEC 61691-1-1:2011(E) -124 -
IEEE Std 1076-2008

Operator Operation Left operand type Right operand type Result type

sl Shift left Any one-dimensional array type whose INTEGER Same as left
logical element type is BIT or BOOLEAN

srl Shift right Any one-dimensional array type whose INTEGER Same as left
logical element type is BIT or BOOLEAN

sla Shift left Any one-dimensional array type whose INTEGER Same as left

arithmetic element type is BIT or BOOLEAN

sra Shift right Any one-dimensional array type whose INTEGER Same as left
arithmetic element type is BIT or BOOLEAN

rol Rotate left Any one-dimensional array type whose INTEGER Same as left
logical element type is BIT or BOOLEAN

ror Rotate right Any one-dimensional array type whose INTEGER Same as left
logical element type is BIT or BOOLEAN

The index range of the return value of each shift operator is the same as the index range of the left operand.

The values returned by the shift operators are defined as follows. In the remainder of this subclause, the
values of their leftmost arguments are referred to as L and the values of their rightmost arguments are
referred to as R.

The sll operator returns a value that is L logically shifted left by R index positions. That is, if R is 0
or if L is a null array, the return value is L. Otherwise, a basic shift operation replaces L with a value
that is the result of a concatenation whose left argument is the rightmost (L'LENGTH — 1) elements
of L and whose right argument is T'LEFT, where T is the element type of L. If R is positive, this
basic shift operation is repeated R times to form the result. If R is negative, then the return value is
the value of the expression L srl —R.

The srl operator returns a value that is L logically shifted right by R index positions. That is, if R is 0
or if L is a null array, the return value is L. Otherwise, a basic shift operation replaces L with a value
that is the result of a concatenation whose right argument is the leftmost (L'LENGTH — 1) elements
of L and whose left argument is T'LEFT, where T is the element type of L. If R is positive, this basic
shift operation is repeated R times to form the result. If R is negative, then the return value is the
value of the expression L sll —R.

The sla operator returns a value that is L arithmetically shifted left by R index positions. That is, if R
is 0 or if L is a null array, the return value is L. Otherwise, a basic shift operation replaces L with a
value that is the result of a concatenation whose left argument is the rightmost (L'LENGTH — 1)
elements of L and whose right argument is L(L'RIGHT). If R is positive, this basic shift operation is
repeated R times to form the result. If R is negative, then the return value is the value of the
expression L sra —R.

The sra operator returns a value that is L arithmetically shifted right by R index positions. That is, if
R is 0 or if L is a null array, the return value is L. Otherwise, a basic shift operation replaces L with a
value that is the result of a concatenation whose right argument is the leftmost (L'LENGTH — 1)
elements of L and whose left argument is L(L'LEFT). If R is positive, this basic shift operation is
repeated R times to form the result. If R is negative, then the return value is the value of the
expression L sla —R.

The rol operator returns a value that is L rotated left by R index positions. That is, if R is 0 or if L is
a null array, the return value is L. Otherwise, a basic rotate operation replaces L with a value that is
the result of a concatenation whose left argument is the rightmost (L'LENGTH — 1) elements of L
and whose right argument is L(L'LEFT). If R is positive, this basic rotate operation is repeated R

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-125- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

times to form the result. If R is negative, then the return value is the value of the expression L ror
-R.

The ror operator returns a value that is L rotated right by R index positions. That is, if R is 0 or if L
is a null array, the return value is L. Otherwise, a basic rotate operation replaces L with a value that is
the result of a concatenation whose right argument is the leftmost (L'LENGTH — 1) elements of L
and whose left argument is L(L'RIGHT). If R is positive, this basic rotate operation is repeated R
times to form the result. If R is negative, then the return value is the value of the expression L rol —R.

NOTE 1—The logical operators may be overloaded, for example, to disallow negative integers as the second argument.

NOTE 2—The subtype of the result of a shift operator is the same as that of the left operand.

9.2.5 Adding operators

The adding operators + and — are predefined for any numeric type and have their conventional mathematical
meaning. The concatenation operator & is predefined for any one-dimensional array type.

array type

Operator Operation Left operand type Right operand type Result type
+ Addition Any numeric type Same type Same type
- Subtraction Any numeric type Same type Same type
& Concatenation | Any one-dimensional Same array type Same array type

Any one-dimensional
array type

The element type

Same array type

The element type

Any one-dimensional
array type

Same array type

The element type

The element type

Any one-dimensional

array type

For concatenation, there are three mutually exclusive cases, as follows:

a)

b)

¢)

If both operands are one-dimensional arrays of the same type, the result of the concatenation is a
one-dimensional array of this same type whose length is the sum of the lengths of its operands, and
whose elements consist of the elements of the left operand (in left-to-right order) followed by the
elements of the right operand (in left-to-right order).

If both operands are null arrays, then the result of the concatenation is the right operand. Otherwise,
the direction and bounds of the result are determined as follows: Let S be the index subtype of the
base type of the result. The direction of the result of the concatenation is the direction of S, and the
left bound of the result is S'LEFT.

If one of the operands is a one-dimensional array and the type of the other operand is the element
type of this aforementioned one-dimensional array, the result of the concatenation is given by the
rules in case a), using in place of the other operand an implicit array having this operand as its only
element. Both the left and right bounds of the index subtype of this implicit array is S'LEFT, and the
direction of the index subtype of this implicit array is the direction of S, where S is the index subtype
of the base type of the result.

If both operands are of the same type and it is the element type of some one-dimensional array type,
the type of the result is this one-dimensional array type. In this case, each operand is treated as the
one element of an implicit array, and the result of the concatenation is determined as in case a). The
bounds and direction of the index subtypes of the implicit arrays are determined as in the case of the
implicit array in case b).

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -126-
IEEE Std 1076-2008

In all cases, it is an error if either bound of the index range of the result does not belong to the index subtype
of the type of the result, unless the result is a null array. It is also an error if any element of the result does
not belong to the element subtype of the type of the result.

Examples:

subtype BYTE is BIT VECTOR (7 downto 0);
type MEMORY is array (Natural range <>) of BYTE;

-- The following concatenation accepts two BIT VECTORs and returns
-— a BIT VECTOR [case a)]:

constant ZERO: BYTE := "0000"™ & "000Q";
-—- The next two examples show that the same expression can represent
-— either case a) or case c), depending on the context of

-- the expression.

-- The following concatenation accepts two BIT VECTORS and returns
-— a BIT VECTOR [case a)]:

constant Cl: BIT VECTOR := ZERO & ZERO;

-- The following concatenation accepts two BIT VECTORs and returns
-— a MEMORY [case c)]:

constant C2: MEMORY := ZERO & ZERO;

-— The following concatenation accepts a BIT VECTOR and a MEMORY,
-- returning a MEMORY [case Db)]:

constant C3: MEMORY := ZERO & C2;

-— The following concatenation accepts a MEMORY and a BIT VECTOR,
-- returning a MEMORY [case Db)]:

constant C4: MEMORY := C2 & ZERO;

-— The following concatenation accepts two MEMORYs and returns
-- a MEMORY [case a)]:

constant C5: MEMORY := C2 & C3;

type Rl is range 0 to 7;
type R2 is range 7 downto O;

type Tl is array (Rl range <>) of Bit;
type T2 is array (R2 range <>) of Bit;

subtype S1 is T1(R1);
subtype S2 is T2 (R2);

constant K1l: S1 (others => '0");
constant K2: Tl := K1(1 to 3) & K1(3 to 4); -—- K2'Left =0

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

-127 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

-= and K2'Right = 4

constant K3: Tl := K1(5 to 7) & K1(1 to 2); —-- K3'Left =0
-= and K3'Right = 4
constant K4: Tl := K1(2 to 1) & K1(1 to 2); -— K4'Left =0
- and K4'Right = 1
constant K5: S2 := (others => '0');
constant K6: T2 := K5(3 downto 1) & K5(4 downto 3); -- Ko'Left = 7
-= and K6'Right = 3
constant K7: T2 := K5(7 downto 5) & K5(2 downto 1); -- K7'Left =7
- and K7'Right = 3
constant K8: T2 := K5(1 downto 2) & K5(2 downto 1); -- K8'Left =7

-- and K8'Right = 6

NOTE 1—For a given concatenation whose operands are of the same type, there may be visible more than one array
type that could be the result type according to the rules of case c). The concatenation is ambiguous and therefore an error
if, using the overload resolution rules of 4.5 and 12.5, the type of the result is not uniquely determined.

NOTE 2—Additionally, for a given concatenation, there may be visible array types that allow both case a) and case ¢) to
apply. The concatenation is again ambiguous and therefore an error if the overload resolution rules cannot be used to
determine a result type uniquely.

9.2.6 Sign operators

Signs + and — are predefined for any numeric type and have their conventional mathematical meaning: they
respectively represent the identity and negation functions. For each of these unary operators, the operand
and the result have the same type.

Operator Operation Operand type Result type
+ Identity Any numeric type Same type
- Negation Any numeric type Same type

NOTE—Because of the relative precedence of signs + and — in the grammar for expressions, a signed operand shall not
follow a multiplying operator, the exponentiating operator **, or the operators abs and net. For example, the syntax
does not allow the following expressions:

A/+B -- An illegal expression.

A**-B -- An illegal expression.
However, these expressions may be rewritten legally as follows:

A/ (+B) -— A legal expression.

A ** (-B) -- A legal expression.
9.2.7 Multiplying operators
The operators * and / are predefined for any integer and any floating-point type and have their conventional

mathematical meaning; the operators mod and rem are predefined for any integer type. For each of these
operators, the operands and the result are of the same type.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -128-
IEEE Std 1076-2008

Operator Operation Left operand type Right operand type Result type
* Multiplication Any integer type Same type Same type
Any floating-point type | Same type Same type
/ Division Any integer type Same type Same type
Any floating-point type | Same type Same type
mod Modulus Any integer type Same type Same type
rem Remainder Any integer type Same type Same type

Integer division and remainder are defined by the following relation:
A=(A/B) * B+ (AremB)

where (A rem B) has the sign of A and an absolute value less than the absolute value of B. Integer division
satisfies the following identity:

(-A)/B = — (A/B) = A/(-B)

The result of the modulus operation is such that (A mod B) has the sign of B and an absolute value less than
the absolute value of B; in addition, for some integer value N, this result shall satisfy the relation:

A=B * N+ (A mod B)

In addition to the preceding table, the multiplying operators are predefined for any physical type.

Operator Operation Left operand type | Right operand type Result type
* Multiplication Any physical type INTEGER Same as left
Any physical type REAL Same as left
INTEGER Any physical type Same as right
REAL Any physical type Same as right
/ Division Any physical type INTEGER Same as left
Any physical type REAL Same as left
Any physical type The same type Universal integer
mod Modulus Any physical type Same type Same type
rem Remainder Any physical type Same type Same type

Multiplication of a value P of a physical type T, by a value I of type INTEGER is equivalent to the
following computation:

T,'Val(T,'Pos(P) * 1)

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

-129 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

Multiplication of a value P of a physical type T, by a value F of type REAL is equivalent to the following
computation:

T,'Val(INTEGER(REAL(T,Pos(P)) * F))

Division of a value P of a physical type T, by a value I of type INTEGER is equivalent to the following
computation:

T,'Val(T,Pos(P) /1)

Division of a value P of a physical type T, by a value F of type REAL is equivalent to the following
computation:

T, Val(INTEGER(REAL(T,Pos(P))/ F))

Division of a value P of a physical type T, by a value P2 of the same physical type is equivalent to the
following computation:

T,'Pos(P) / T'Pos(P2)

The computation of P mod P2, where P and P2 are values of a physical type T, is equivalent to the
following computation:

T,'Val(T,'Pos(P) mod T,'Pos(P2))

The computation of P rem P2, where P and P2 are values of a physical type T, is equivalent to the
following computation:

T,'Val(T, Pos(P) rem T,'Pos(P2))

Examples:

5 rem 3 = 2

5 mod 3 = 2
(=-5) rem 3 = =2
(-5) mod 3 = 1
(=-5) rem (-3) = =2
(-5) mod (-3) = -2

5 rem (-3) = 2

5 mod (-3) = -1

5 ns rem 3 ns = 2 ns

5 ns mod 3 ns = 2 ns
(-5 ns) rem 3 ns = -2 ns
(-5 ns) mod 3 ns = 1 ns

1 ns mod 300 ps = 100 ps
(-1 ns) mod 300 ps = 200 ps

NOTE—Because of the precedence rules (see 9.2.1), the expression “—5 rem 2” is interpreted as “—(5 rem 2)” and not as
“(-5)rem 2.”

9.2.8 Miscellaneous operators

The unary operator abs is predefined for any numeric type.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -130-
IEEE Std 1076-2008

Operator Operation Operand type Result type

abs Absolute value Any numeric type | Same numeric type

The exponentiating operator ** is predefined for each integer type and for each floating-point type. In either
case the right operand, called the exponent, is of the predefined type INTEGER.

Operator Operation Left operand type Right operand type | Result type
** Exponentiation Any integer type INTEGER Same as left
Any floating-point type | INTEGER Same as left

Exponentiation with an integer exponent is equivalent to repeated multiplication of the left operand by itself
for a number of times indicated by the absolute value of the exponent and from left to right; if the exponent
is negative, then the result is the reciprocal of that obtained with the absolute value of the exponent.
Exponentiation with a negative exponent is only allowed for a left operand of a floating-point type.
Exponentiation by a zero exponent results in the value one. Exponentiation of a value of a floating-point
type is approximate.

9.2.9 Condition operator

The unary operator ?? is predefined for type BIT defined in package STANDARD (see 16.3).

Operator Operation Operand type Result type

7? Condition conversion BIT BOOLEAN

Conversion of a value of type BIT converts '1' to TRUE and '0' to FALSE. The conversion operator may be
overloaded for other types.

In certain circumstances, the condition operator is implicitly applied to an expression that occurs as a
condition in any of the following places:

— After until in the condition clause of a wait statement (see 10.2)

— After assert in an assertion, either in an assertion statement (see 10.3) or in a concurrent assertion
statement (see 11.5)

— After if or elsif in an if statement (see 10.8)
— After while in a while iteration scheme of a loop statement (see 10.10)
— After when in a next statement (see 10.11)
— After when in an exit statement (see 10.12)

— After when in a conditional signal assignment statement (see 10.5.3), either in a signal assignment
statement or in a concurrent signal assignment statement

— After when in a conditional variable assignment statement (see 10.6.3)
— After if or elsif in an if generate statement (see 11.8)
— In a guard condition in a block statement (see 11.2)

— In a Boolean expression in a PSL declaration or a PSL directive

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-131- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

The condition operator implicitly applied, if any, is either the predefined operator for type BIT or an
overloaded operator, determined as follows. If, without overload resolution (see 12.5), the expression is of
type BOOLEAN defined in package STANDARD, or if, assuming a rule requiring the expression to be of
type BOOLEAN defined in package STANDARD, overload resolution can determine at least one
interpretation of each constituent of the innermost complete context including the expression, then the
condition operator is not applied. Otherwise, the condition operator is implicitly applied, and the type of the
expression with the implicit application shall be BOOLEAN defined in package STANDARD.

Example:

use IEEE.STD LOGIC 1164.all;
signal S: STD ULOGIC;

assert S; -- implicit conversion applied

NOTE 1—The condition operator is not implicitly applied if there is at least one interpretation of the expression as being
of type BOOLEAN. If overload resolution yields more than one such interpretation, the expression is of type BOOL-
EAN but ambiguous. In cases where the condition operator is implicitly applied to the expression, overload resolution
may yield multiple interpretations, in which case the expression is ambiguous. The expression is only legal if there is
exactly one interpretation of type BOOLEAN without the condition operator, or failing that, one interpretation of type
BOOLEAN with the condition operator.

NOTE 2—The condition operator is defined for type STD_ULOGIC defined in package STD_LOGIC_ 1164 (see 16.7).
Conversion of a value of type STD_ULOGIC converts '1' and 'H' to TRUE and all other values to FALSE.

9.3 Operands
9.3.1 General

The operands in an expression include names (that denote objects, values, or attributes that result in a value),
literals, aggregates, function calls, qualified expressions, type conversions, and allocators. In addition, an
expression enclosed in parentheses may be an operand in an expression. Names are defined in 8.1; the other
kinds of operands are defined in 9.3.2 through 9.3.7.

9.3.2 Literals

A literal is either a numeric literal, an enumeration literal, a string literal, a bit string literal, or the literal
null.

literal ::=
numeric_literal
| enumeration_literal
| string_literal
| bit_string_literal
| null

numeric_literal ::=
abstract_literal
| physical _literal

Numeric literals include literals of the abstract types universal _integer and universal real, as well as literals
of physical types. Abstract literals are defined in 15.5; physical literals are defined in 5.2.4.1.

Enumeration literals are literals of enumeration types. They include both identifiers and character literals.
Enumeration literals are defined in 5.2.2.1.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -132-
IEEE Std 1076-2008

String and bit string literals are representations of one-dimensional arrays of characters. The type of a string
or bit string literal shall be determinable solely from the context in which the literal appears, excluding the
literal itself but using the fact that the type of the literal shall be a one-dimensional array of a character type.
The lexical structure of string and bit string literals is defined in Clause 15.

For a non-null array value represented by either a string or bit string literal, the direction and bounds of the
index range of the array value are determined according to the rules for positional array aggregates, where
the number of elements in the aggregate is equal to the length (see 15.7 and 15.8) of the string or bit string
literal. For a null array value represented by either a string or bit string literal, the direction and leftmost
bound of the index range of the array value are determined as follows: the direction and nominal leftmost
bound of the index range of the array value are determined as in the non-null case. If there is a value to the
left of the nominal leftmost bound (given by the 'LEFTOF attribute), then the leftmost bound is the nominal
leftmost bound, and the rightmost bound is the value to the left of the nominal leftmost bound. Otherwise,
the leftmost bound is the value to the right of the nominal leftmost bound, and the rightmost bound is the
nominal leftmost bound.

For a null array value represented by either a string or bit string literal, it is an error if the base type of the
index subtype of the array type does not have at least two values.

The character literals corresponding to the graphic characters contained within a string literal or a bit string
literal shall be visible at the place of the string literal.

The literal null represents the null access value for any access type.

Evaluation of a literal yields the corresponding value.

Examples:

3.14159 26536 -—- A literal of type universal real.

5280 -—- A literal of type universal integer.

10.7 ns -- A literal of a physical type.

om477I" -- A bit string literal.

"541,5281" -- A string literal.

" -- A string literal representing a null array.

9.3.3 Aggregates
9.3.3.1 General

An aggregate is a basic operation (see 5.1) that combines one or more values into a composite value of a
record or array type.

aggregate ::=
(element association { , element association })

element association ::=
[choices =>] expression

choices ::= choice { | choice }

choice ::=
simple expression
| discrete_range
| element_simple_name

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-133- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

| others

Each element association associates an expression with elements (possibly none). An element association is
said to be named if the elements are specified explicitly by choices; otherwise, it is said to be positional. For
a positional association, each element is implicitly specified by position in the textual order of the elements
in the corresponding type declaration.

Both named and positional associations can be used in the same aggregate, with all positional associations
appearing first (in textual order) and all named associations appearing next (in any order, except that it is an
error if any associations follow an others association). Aggregates containing a single element association
shall always be specified using named association in order to distinguish them from parenthesized
expressions.

An element association with a choice that is an element simple name is only allowed in a record aggregate.
An element association with a choice that is a simple expression or a discrete range is only allowed in an
array aggregate: a simple expression specifies the element at the corresponding index value, whereas a
discrete range specifies the elements at each of the index values in the range. Except as described in 9.3.3.3,
the discrete range, and, in particular, the direction specified or implied by the discrete range, has no
significance other than to define the set of choices implied by the discrete range. An element association
with the choice others is allowed in either an array aggregate or a record aggregate if the association appears
last and has this single choice; it specifies all remaining elements, if any.

Each element of the value defined by an aggregate shall be represented once and only once in the aggregate.

The type of an aggregate shall be determinable solely from the context in which the aggregate appears,
excluding the aggregate itself but using the fact that the type of the aggregate shall be a composite type. The
type of an aggregate in turn determines the required type for each of its elements.

9.3.3.2 Record aggregates

If the type of an aggregate is a record type, the element names given as choices shall denote elements of that
record type. If the choice others is given as a choice of a record aggregate, it shall represent at least one
element. An element association with more than one choice, or with the choice others, is only allowed if the
elements specified are all of the same type. The expression of an element association shall have the type of
the associated record elements.

A record aggregate is evaluated as follows. The expressions given in the element associations are evaluated
in an order (or lack thereof) not defined by the language. The expression of a named association is evaluated
once for each associated element. A check is made that the value of each element of the aggregate belongs to
the subtype of this element. It is an error if this check fails.

9.3.3.3 Array aggregates

For an aggregate of a one-dimensional array type, each choice shall specify values of the index type, and the
expression of each element association shall be of either the element type or the type of the aggregate. If the
type of the expression of an element association is the type of the aggregate, then either the element
association shall be positional or the choice shall be a discrete range.

For an element association with a choice that is a discrete range and an expression of the element type of the
aggregate, the value of the expression is the element at each index value in the range.

For an element association with a choice that is a discrete range and an expression of the type of the
aggregate, each element of the value of the expression is the value of the element of the aggregate at the
matching index value in the range. The matching index value for an element of the value of the expression is

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -134 -
IEEE Std 1076-2008

determined as follows: the leftmost element of the value matches the left bound of the range; if an element
matches an index value, the element immediately to its right matches the index value immediately to the
right in the range. It is an error if the length of the discrete range differs from the length of the value of the
expression.

For a positional association with an expression of the element type of the aggregate, the expression specifies
one element of the aggregate value. For a positional association with an expression of the type of the
aggregate, the expression specifies a number of matching elements (see 9.2.3) of the aggregate value given
by the length of the value of the expression.

An aggregate of an n-dimensional array type, where » is greater than 1, is written as a one-dimensional
aggregate in which the index subtype of the aggregate is given by the first index position of the array type,
and the expression specified for each element association is an (»—1)-dimensional array or array aggregate,
which is called a subaggregate. A string or bit string literal is allowed as a subaggregate in the place of any
aggregate of a one-dimensional array of a character type.

Apart from a final element association with the single choice others, the rest (if any) of the element
associations of an array aggregate shall be either all positional or all named. A named association of an array
aggregate is allowed to have a choice that is not locally static, or likewise a choice that is a null range, only
if the aggregate includes a single element association and this element association has a single choice. An
others choice is locally static if the applicable index constraint is locally static.

The index range of an array aggregate that has an others choice shall be determinable from the context. That
is, an array aggregate with an others choice shall appear only in one of the following contexts:

a) Asan actual associated with a formal parameter, formal generic, or formal port (or member thereof),
where either the formal (or the member) is declared to be of a fully constrained array subtype, or the
formal designator is a slice name

b) As the default expression defining the default initial value of a port declared to be of a fully
constrained array subtype

c) As the default expression for a generic constant declared to be of a fully constrained array subtype

d) As the result expression of a function, where the corresponding function result type is a fully
constrained array subtype

e) As avalue expression in an assignment statement, where the target is a declared object (or member
thereof), and either the subtype of the target is a fully constrained array subtype or the target is a
slice name

f) As the expression defining the initial value of a constant or variable object, where that object is
declared to be of a fully constrained array subtype

g) As the expression defining the default values of signals in a signal declaration, where the corre-
sponding subtype is a fully constrained array subtype

h) As the expression defining the value of an attribute in an attribute specification, where that attribute
is declared to be of a fully constrained array subtype

i) As the operand of a qualified expression whose type mark denotes a fully constrained array subtype

j) Asachoice in a case statement whose expression is of a one-dimensional character array type and is
one of the following:

— The name of an object whose subtype is locally static, in which case the index range of the
aggregate is the index range of the subtype of the object

— An indexed name whose prefix is one of the members of this list and whose indexing expres-
sions are locally static expressions, in which case the index range of the aggregate is the index
range of the element subtype of the prefix

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-135- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

— A slice name whose prefix is one of the members of this list and whose discrete range is a
locally static discrete range, in which case the index range of the aggregate is the discrete range

— A function call whose return type mark denotes a locally static subtype, in which case the index
range of the aggregate is the index range of the subtype denoted by the return type mark

— A qualified expression or type conversion whose type mark denotes a locally static subtype, in
which case the index range of the aggregate is the index range of the subtype denoted by the
type mark

— An expression described in this list and enclosed in parentheses, in which case the index range
of the aggregate is the index range of the subtype defined for the enclosed expression

In each case, the applicable index constraint is locally static.

k) As a subaggregate nested within an aggregate, where that aggregate itself appears in one of these
contexts

The direction of the index range of an array that does not have an others choice are determined as follows:

— If the aggregate appears in one of the contexts in the preceding list, then the direction of the index
range of the aggregate is that of the corresponding fully constrained array subtype, or that of the
range of the corresponding slice name, as appropriate.

— If the aggregate does not appear in one of the contexts in the preceding list and an element
association in the aggregate has a choice that is a discrete range and an expression that is of the type
of the aggregate, then the direction of the index range of the aggregate is that of the discrete range.

— Otherwise, the direction of the index range of the aggregate is that of the index subtype of the base
type of the aggregate.

The bounds of an array that does not have an others choice are determined as follows. For an aggregate that
has named associations, the leftmost and rightmost bounds are determined by the direction of the index
range of the aggregate and the smallest and largest choices given. For a positional aggregate, the leftmost
bound is determined by the applicable index constraint if the aggregate appears in one of the contexts in the
preceding list; otherwise, the leftmost bound is given by S'LEFT where S is the index subtype of the base
type of the array. In either case, the rightmost bound is determined by the direction of the index range and
the number of elements.

It is an error if the direction of the index range of an aggregate is determined by the context, and an element
association has a choice that is a discrete range and an expression that is of the type of the aggregate, and the
direction of the discrete range differs from that of the index range of the aggregate. If an aggregate has a
given element association with a choice that is a discrete range and an expression that is of the type of the
aggregate, then it is an error if any other element association has a choice that is a discrete range whose
direction differs from that of the choice of the given element association.

The evaluation of an array aggregate that is not a subaggregate proceeds in two steps. First, the choices of
this aggregate and of its subaggregates, if any, are evaluated in some order (or lack thereof) that is not
defined by the language. Second, the expressions of the element associations of the array aggregate are
evaluated in some order that is not defined by the language; the expression of a named association in which
the expression is of the element type of the aggregate is evaluated once for each associated element. The
evaluation of a subaggregate consists of this second step (the first step is omitted since the choices have
already been evaluated).

For the evaluation of an aggregate that is not a null array, a check is made that the index values defined by
choices belong to the corresponding index subtypes, and also that the value of each element of the aggregate
belongs to the subtype of this element. For a multidimensional aggregate of dimension #, a check is made
that all (»—1)-dimensional subaggregates have the same bounds. It is an error if any one of these checks fails.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -136-
IEEE Std 1076-2008

9.3.4 Function calls

A function call invokes the execution of a function body. The call specifies the name of the function to be
invoked and specifies the actual parameters, if any, to be associated with the formal parameters of the
function. Execution of the function body results in a value of the type declared to be the result type in the
declaration of the invoked function.

function_call ::=
function_name [(actual parameter part)]

actual parameter part ::= parameter_association_list

For each formal parameter of a function, a function call shall specify exactly one corresponding actual
parameter. This actual parameter is specified either explicitly, by an association element (other than the
actual part open) in the association list, or in the absence of such an association element, by a default
expression (see 6.5.2).

It is an error if the function name denotes an uninstantiated function.

Evaluation of a function call includes evaluation of the actual parameter expressions specified in the call and
evaluation of the default expressions associated with formal parameters of the function that do not have
actual parameters associated with them. In both cases, the resulting value shall belong to the subtype of the
associated formal parameter. (If the formal parameter is of an unconstrained or partially constrained
composite type, then any undefined index ranges of subelements of the formal parameter are determined as
described in 5.3.2.2.) The function body is executed using the actual parameter values and default
expression values as the values of the corresponding formal parameters.

NOTE 1—If a name (including one used as a prefix) has an interpretation both as a function call and an indexed name,
then the innermost complete context is used to disambiguate the name. If, after applying this rule, there is not exactly
one interpretation of the name, then the name is ambiguous. See 12.5.

NOTE 2—A call to a formal generic function uses the parameter names and default expressions defined in the formal
generic function declaration and the parameter subtypes and result subtype of the associated actual generic function.

9.3.5 Qualified expressions

A qualified expression is a basic operation (see 5.1) that is used to explicitly state the type, and possibly the
subtype, of an operand that is an expression or an aggregate.

qualified_expression ::=
type mark ' (expression)
| type mark ' aggregate

The operand shall have the same type as the base type of the type mark. The value of a qualified expression

is the value of the operand. The evaluation of a qualified expression evaluates the operand and converts it to
the subtype denoted by the type mark.

NOTE—Whenever the type of an enumeration literal or aggregate is not known from the context, a qualified expression
can be used to state the type explicitly.

9.3.6 Type conversions
A type conversion provides for explicit conversion between closely related types.

type_conversion ::= type mark (expression)

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-137 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

The target type of a type conversion is the base type of the type mark, and the target subtype of a type
conversion is the type or subtype denoted by the type mark. The type of the operand of a type conversion
shall be determined by applying the rules of 12.5 to the operand considered as a complete context. (In
particular, the type of the operand must be determinable independent of the target type). Furthermore, the
operand of a type conversion is not allowed to be the literal null, an allocator, an aggregate, or a string
literal. An expression enclosed by parentheses is allowed as the operand of a type conversion only if the
expression alone is allowed.

If the type mark denotes a subtype, conversion consists of conversion to the target type followed by a check
that the result of the conversion belongs to the subtype.

In certain cases, an implicit subtype conversion is performed. A subtype conversion involves a type
conversion in which the target subtype is the subtype to which the operand is converted and the target type is
the base type of the target subtype.

Explicit type conversions are allowed between closely related types. In particular, a type is closely related to
itself. Other types are closely related only under the following conditions:

— Abstract numeric types—Any abstract numeric type is closely related to any other abstract numeric
type.

— Array types—Two array types are closely related if and only if the types have the same
dimensionality and the element types are closely related

No other types are closely related.

In a type conversion where the target type is an abstract numeric type, the operand can be of any integer or
floating-point type. The value of the operand is converted to the target type, which shall also be an integer or
floating-point type. The conversion of a floating-point value to an integer type rounds to the nearest integer;
if the value is halfway between two integers, rounding may be up or down.

In the case of conversions between numeric types, it is an error if the result of the conversion fails to satisfy
a constraint imposed by the type mark.

In a type conversion where the target type is an array type, the following rules apply:

a) If the target subtype is an array type or subtype for which the index ranges are not defined, then, for
each index position, the index range of the result is determined as follows:

— If the index type of the operand and the index type of the target type are not closely related,
then the direction and nominal left bound of the index range of the result are the direction and
left bound, respectively, of the corresponding index subtype of the target type. For a non-null
range, the left bound of the index range is the nominal left bound, and the right bound is deter-
mined by the number of values in the corresponding index range of the operand. For a null
range, if there is a value to the left of the nominal left bound (given by the 'LEFTOF attribute),
then the left bound is the nominal left bound, and the right bound is the value to the left of the
nominal left bound; otherwise, the left bound is the value to the right of the nominal left bound,
and the right bound is the nominal left bound. For either a non-null or a null range, it is an error
if the base type of the corresponding index subtype of the target type does not include sufficient
values for the index range of the result.

— Ifthe index type of the operand and the index type of the target type are closely related, then the
bounds of the index range of the result are obtained by converting the bounds of the index
range of the operand to the index type of the target type, and the direction of the index range of
the result is the direction of the index type of the operand.

b) If the target subtype is an array subtype for which the index ranges are defined, then the bounds of
the result are those imposed by the target subtype.

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -138-
IEEE Std 1076-2008

In either case, the value of each element of the result is that of the matching element of the operand (see
9.2.3) converted to the element subtype of the target subtype.

In the case of conversions between array types, if the target subtype is an array type for which the index
ranges are not defined, then, for each index position, a check is made that the bounds of the result belong to
the corresponding index subtype of the target type. If the target subtype is an array subtype for which the
index ranges are defined, a check is made that for each element of the operand there is a matching element of
the target subtype, and vice versa. It is an error if any of these checks fail.

In a subtype conversion where the target type is a record type, the value of each element of the result is that
of the matching element of the operand (see 9.2.3) converted to the subtype of the element of the result.

In certain cases, an implicit type conversion will be performed. An implicit conversion of an operand of type
universal_integer to another integer type, or of an operand of type universal real to another floating-point
type, can only be applied if the operand is either a numeric literal or an attribute, or if the operand is an
expression consisting of the division of a value of a physical type by a value of the same type; such an
operand is called a convertible universal operand. An implicit conversion of a convertible universal operand
is applied if and only if the innermost complete context determines a unique (numeric) target type for the
implicit conversion, and there is no legal interpretation of this context without this conversion.

NOTE 1—Two array types may be closely related even if corresponding index positions have different directions.

NOTE 2—Two distinct record types are not closely related, even if they have the same element identifiers and element
subtypes. A record type is, however, closely related to itself. Hence, an operand of a record type can be converted to a
subtype of the record type.

9.3.7 Allocators
The evaluation of an allocator creates an object and yields an access value that designates the object.

allocator ::=
new subtype_indication

| new qualified expression

The type of the object created by an allocator is the base type of the type mark given in either the subtype
indication or the qualified expression. For an allocator with a subtype indication, the initial value of the
created object is the same as the default initial value for an explicitly declared variable of the designated
subtype. For an allocator with a qualified expression, this expression defines the initial value of the created
object.

The type of the access value returned by an allocator shall be determinable solely from the context, but using
the fact that the value returned is of an access type having the named designated type.

The only allowed form of constraint in the subtype indication of an allocator is an array constraint or a
record constraint. If an allocator includes a subtype indication and if the type of the object created is an array
type or a record type, then the subtype indication shall denote a fully constrained subtype. A subtype
indication that is part of an allocator shall not include a resolution indication.

If the type of the created object is an array type or a record type, then the created object is always fully
constrained. If the allocator includes a subtype indication, the created object is constrained by the subtype. If
the allocator includes a qualified expression, the created object is constrained by the bounds of the initial
value defined by that expression. For other types, the subtype of the created object is the subtype defined by
the subtype of the access type definition.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-139 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

For the evaluation of an allocator, the elaboration of the subtype indication or the evaluation of the qualified
expression is first performed. The new object is then created, and the object is then assigned its initial value.
Finally, an access value that designates the created object is returned.

In the absence of explicit deallocation, an implementation shall guarantee that any object created by the
evaluation of an allocator remains allocated for as long as this object or one of its subelements is accessible
directly or indirectly; that is, as long as it can be denoted by some name.

NOTE 1—Procedure deallocate is implicitly declared for each access type. This procedure provides a mechanism for
explicitly deallocating the storage occupied by an object created by an allocator.

NOTE 2—An implementation may (but need not) deallocate the storage occupied by an object created by an allocator,
once this object has become inaccessible.

Examples:
new NODE -- Takes on default initial wvalue.
new NODE' (15 ns, null) -- Initial value is specified.
new NODE' (Delay => 5 ns,

\Next\=> Stack) -— Initial value is specified.
new BIT VECTOR' ("00110110") -- Constrained by initial value.
new STRING (1 to 10) -- Constrained by index constraint.
new STRING -— TIllegal: must be constrained.

9.4 Static expressions
9.4.1 General

Certain expressions are said to be static. Similarly, certain discrete ranges are said to be static, and the type
marks of certain subtypes are said to denote static subtypes.

There are two categories of static expression. Certain forms of expression can be evaluated during the
analysis of the design unit in which they appear; such an expression is said to be locally static. Certain forms
of expression can be evaluated as soon as the design hierarchy in which they appear is elaborated; such an
expression is said to be globally static.

9.4.2 Locally static primaries

An expression is said to be locally static if and only if every operator in the expression denotes an implicitly
defined operator or an operator defined in one of the packages STD LOGIC 1164, NUMERIC BIT,
NUMERIC STD, NUMERIC BIT UNSIGNED, or NUMERIC STD UNSIGNED in library IEEE, and if
every primary in the expression is a locally static primary, where a locally static primary is defined to be one
of the following:

a) A literal of any type other than type TIME

b) A constant (other than a deferred constant) explicitly declared by a constant declaration with a
locally static subtype or with an unconstrained or partially constrained composite subtype for which
the applicable constraints are locally static, and initialized with a locally static expression

¢) A formal generic constant of a generic-mapped subprogram or package (whether explicitly declared
or equivalent to a subprogram or package instance, respectively), declared with a locally static sub-
type and for which the associated actual is a locally static expression

d) Analias whose aliased name (given in the corresponding alias declaration) is a locally static primary
and for which the subtype with which the aliased object is viewed is a locally static subtype

e) A function call whose function name denotes an implicitly defined operation or an operation defined
in one of the packages STD LOGIC 1164, NUMERIC BIT, NUMERIC STD,

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -140-
IEEE Std 1076-2008

NUMERIC BIT _UNSIGNED, or NUMERIC STD_ UNSIGNED in library IEEE and whose actual
parameters are each locally static expressions

f) A predefined attribute that is a value, other than the predefined attributes TNSTANCE NAME and
'PATH_NAME, and whose prefix is either a locally static subtype or is an object name that is of a
locally static subtype

g) A predefined attribute that is a function, other than the predefined attribute "VALUE with a prefix
whose base type is the predefined type TIME, and other than the predefined attributes 'EVENT,
'ACTIVE, 'LAST _EVENT, 'LAST _ACTIVE, 'LAST VALUE, 'DRIVING, and
'DRIVING VALUE, whose prefix is either a locally static subtype or is an object that is of a locally
static subtype, and whose actual parameter (if any) is a locally static expression

h) A user-defined attribute whose value is defined by a locally static expression

i) A qualified expression whose type mark denotes a locally static subtype and whose operand is a
locally static expression

j) A type conversion whose type mark denotes a locally static subtype and whose expression is a
locally static expression

k) A locally static expression enclosed in parentheses

1) Anarray aggregate in which all expressions in element associations are locally static expressions, all
simple expressions in choices are locally static expressions, all discrete ranges in choices are locally
static discrete ranges, and the others choice, if present, is locally static

m) A record aggregate in which all expressions in element associations are locally static expressions

n) An indexed name whose prefix is a locally static primary and whose index expressions are all
locally static expressions

0) A slice name whose prefix is a locally static primary and whose discrete range is a locally static dis-
crete range

p) A selected name whose prefix is a locally static primary

A locally static range is either a range of the second form (see 5.2.1) whose bounds are locally static
expressions, or a range of the first form whose prefix denotes either a locally static subtype or an object that
is of a locally static subtype. A locally static range constraint is a range constraint whose range is locally
static. A locally static scalar subtype is either a scalar base type or a scalar subtype formed by imposing on a
locally static subtype a locally static range constraint. A locally static discrete range is either a locally static
subtype or a locally static range.

A locally static index constraint is an index constraint for which each index subtype of the corresponding
array type is locally static and in which each discrete range is locally static. A locally static array constraint
is an array constraint with a locally static index constraint and, if the array element constraint is present, a
locally static array element constraint. A locally static array subtype is a fully constrained array subtype
formed by imposing on an unconstrained array type a locally static array constraint. The unconstrained array
type shall have a locally static index subtype for each index position and a locally static index subtype for
each index position of each array subelement, if any. A locally static record constraint is a record constraint
with a locally static constraint in each record element constraint. A locally static record subtype is a fully
constrained record type whose elements are all of locally static subtypes, or a fully constrained record
subtype formed by imposing on an unconstrained record type a locally static record constraint. The
unconstrained record type shall have a locally static index subtype for each index position of each array
subelement, if any. A locally static access subtype is a subtype denoting an access type. A locally static file
subtype is a subtype denoting a file type. A locally static formal generic type is a formal generic type of an
explicit block statement or of a generic-mapped subprogram or package (whether explicitly declared or
equivalent to a subprogram or package instance, respectively) for which the associated actual is a locally
static subtype.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-141 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

A locally static subtype is either a locally static scalar subtype, a locally static array subtype, a locally static
record subtype, a locally static access subtype, a locally static file subtype, or a locally static formal generic

type.

9.4.3 Globally static primaries

An expression is said to be globally static if and only if every operator in the expression denotes a pure
function and every primary in the expression is a globally static primary, where a globally static primary is a
primary that, if it denotes an object or a function, does not denote a dynamically elaborated named entity
(see 14.6) and is one of the following:

a)
b)

¢)
d)

e)

2

h)

i)
k)

)

p)
q

s)

A literal of type TIME

A locally static primary

A generic constant declared with a globally static subtype
A generate parameter

A constant (including a deferred constant) explicitly declared by a constant declaration with a glob-
ally static subtype or with an unconstrained or partially constrained composite subtype for which the
applicable constraints are globally static

An alias whose aliased name (given in the corresponding alias declaration) is a globally static
primary

An array aggregate, if and only if

1) All expressions in its element associations are globally static expressions, and

2) All ranges in its element associations are globally static ranges

A record aggregate, if and only if all expressions in its element associations are globally static
expressions

A function call whose function name denotes a pure function and whose actual parameters are each
globally static expressions

A predefined attribute that is one of 'SIMPLE_NAME, 'INSTANCE NAME, or PATH NAME

A predefined attribute that is a value, other than the predefined attributes 'SIMPLE NAME,
'INSTANCE NAME, and 'PATH_NAME, whose prefix is appropriate for a globally static attribute

A predefined attribute that is a function, other than the predefined attributes 'EVENT, 'ACTIVE,
'LAST EVENT, 'LAST ACTIVE, 'LAST VALUE, 'DRIVING, and 'DRIVING VALUE, whose
prefix is appropriate for a globally static attribute, and whose actual parameter (if any) is a globally
static expression

A user-defined attribute whose value is defined by a globally static expression

A qualified expression whose type mark denotes a globally static subtype and whose operand is a
globally static expression

A type conversion whose type mark denotes a globally static subtype and whose expression is a
globally static expression

An allocator of the first form (see 9.3.7) whose subtype indication denotes a globally static subtype
An allocator of the second form whose qualified expression is a globally static expression
A globally static expression enclosed in parentheses

A subelement or a slice of a globally static primary, provided that any index expressions are globally
static expressions and any discrete ranges used in slice names are globally static discrete ranges

A prefix is appropriate for a globally static attribute if it denotes a signal, a constant, a type or subtype, a
globally static function call, a variable that is not of an access type, or a variable of an access type whose
designated subtype is fully constrained.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -142-
IEEE Std 1076-2008

A globally static range is either a range of the second form (see 5.2.1) whose bounds are globally static
expressions, or a range of the first form whose prefix is appropriate for a globally static attribute. A globally
static range constraint is a range constraint whose range is globally static. A globally static scalar subtype is
either a scalar base type or a scalar subtype formed by imposing on a globally static subtype a globally static
range constraint. A globally static discrete range is either a globally static subtype or a globally static range.

A globally static index constraint is an index constraint for which each index subtype of the corresponding
array type is globally static and in which each discrete range is globally static. A globally static array
constraint is an array constraint with a globally static index constraint and, if the array element constraint is
present, a globally static array element constraint. A globally static array subtype is a fully constrained array
subtype formed by imposing on an unconstrained array type a globally static array constraint. A globally
static record constraint is a record constraint with a globally static constraint in each record element
constraint. A globally static record subtype is a fully constrained record type whose elements are all of
globally static subtypes, or a fully constrained record subtype formed by imposing on an unconstrained
record type a globally static record constraint. A globally static access subtype is a subtype denoting an
access type. A globally static file subtype is a subtype denoting a file type. A globally static formal generic
type is a formal generic type of a block statement (including an implied block statement representing a
component instance or a bound design entity) or of a generic-mapped subprogram or package (whether
explicitly declared or equivalent to a subprogram or package instance, respectively) for which the associated
actual is a globally static subtype.

A globally static subtype is either a globally static scalar subtype, a globally static array subtype, a globally
static record subtype, a globally static access subtype, a globally static file subtype, or a globally static
formal generic type.

NOTE 1—An expression that is required to be a static expression shall either be a locally static expression or a globally
static expression. Similarly, a range, a range constraint, a scalar subtype, a discrete range, an index constraint, an array
constraint, an array subtype, a record constraint, or a record subtype that is required to be static shall either be locally
static or globally static.

NOTE 2—The rules for globally static expressions imply that a declared constant or a generic may be initialized with an
expression that is not globally static, for example, with a call to an impure function. The resulting constant value may be
globally static, even though its initial value expression is not. Only interface constant, variable, and signal declarations
require that their initial value expressions be static expressions.

9.5 Universal expressions

A universal expression is either an expression that delivers a result of type universal integer or one that
delivers a result of type universal real.

The same operations are predefined for the type umiversal integer as for any integer type. The same
operations are predefined for the type wunmiversal real as for any floating-point type. In addition, these
operations include the following multiplication and division operators:

Operator Operation Left operand type nghtt;ll::rand Result type
* Multiplication | Universal real Universal integer Universal real
Universal integer Universal real Universal real

/ Division Universal real Universal integer Universal real

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

- 143 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

The accuracy of the evaluation of a universal expression of type universal real is at least as good as the
accuracy of evaluation of expressions of the most precise predefined floating-point type supported by the
implementation, apart from universal real itself.

For the evaluation of an operation of a universal expression, the following rules apply. If the result is of type
universal_integer, then the values of the operands and the result shall lie within the range of the integer type
with the widest range provided by the implementation, excluding type universal_integer itself. If the result
is of type universal real, then the values of the operands and the result shall lie within the range of the
floating-point type with the widest range provided by the implementation, excluding type wuniversal real
itself.

NOTE—The predefined operators for the universal types are declared in package STANDARD as shown in 16.3.

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

Copyrighted material licensed to BR Demo by Thomson Reuters (Scientific), Inc., subscriptions.techstreet.com, downloaded on Nov-28-2014 by James Madison. No further reproduction or distribution is permitted. Uncontroll

-144-

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

- 145 -

10. Sequential statements

10.1 General

The various forms of sequential statements are described in this clause. Sequential statements are used to
define algorithms for the execution of a subprogram or process; they execute in the order in which they

appear.

sequence of statements ::=
{ sequential statement }

sequential statement ::=
wait_statement
| assertion_statement
| report_statement
| signal assignment_statement
| variable assignment statement
| procedure call statement
| if statement
| case statement
| loop_statement
| next_statement
| exit_statement
| return_statement
| null_statement

All sequential statements may be labeled. Such labels are implicitly declared at the beginning of the
declarative part of the innermost enclosing process statement or subprogram body.

10.2 Wait statement
The wait statement causes the suspension of a process statement or a procedure.

wait_statement ::=
[label :] wait [sensitivity clause] [condition_clause] [timeout_clause] ;

sensitivity clause ::= on sensitivity list
sensitivity list ::= signal name { , signal_name }
condition_clause ::= until condition

condition ::= expression

timeout_clause ::= for time_expression

The sensitivity clause defines the sensitivity set of the wait statement, which is the set of signals to which the
wait statement is sensitive. Each signal name in the sensitivity list identifies a given signal as a member of
the sensitivity set. Each signal name in the sensitivity list shall be a static signal name, and each name shall
denote a signal for which reading is permitted. If no sensitivity clause appears, the sensitivity set is

constructed according to the following (recursive) rule:

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -146 -
IEEE Std 1076-2008

The sensitivity set is initially empty. For each primary in the condition of the condition clause, if the primary
is

— A simple name that denotes a signal, add the longest static prefix of the name to the sensitivity set.

— An expanded name that denotes a signal, add the longest static prefix of the name to the sensitivity
set.

— A selected name whose prefix denotes a signal, add the longest static prefix of the name to the
sensitivity set.

— An indexed name whose prefix denotes a signal, add the longest static prefix of the name to the
sensitivity set and apply this rule to all expressions in the indexed name.

— A slice name whose prefix denotes a signal, add the longest static prefix of the name to the
sensitivity set and apply this rule to any expressions appearing in the discrete range of the slice name.

— An attribute name, if the designator denotes a signal attribute, add the longest static prefix of the
name of the implicit signal denoted by the attribute name to the sensitivity set; otherwise, apply this
rule to the prefix of the attribute name.

— An aggregate, apply this rule to every expression appearing after the choices and the =>, if any, in
every element association.

— A function call, apply this rule to every actual designator in every parameter association.
— An actual designator of open in a parameter association, do not add to the sensitivity set.

— A qualified expression, apply this rule to the expression or aggregate qualified by the type mark, as
appropriate.

— A type conversion, apply this rule to the expression type converted by the type mark.
— A parenthesized expression, apply this rule to the expression enclosed within the parentheses.

— Otherwise, do not add to the sensitivity set.

This rule is also used to construct the sensitivity sets of the wait statements in the equivalent process
statements for concurrent procedure call statements (11.4), concurrent assertion statements (11.5), and
concurrent signal assignment statements (11.6). Furthermore, this rule is used to construct the sensitivity list
of an implicit wait statement in a process statement whose process sensitivity list is the reserved word all
(11.3).

If a signal name that denotes a signal of a composite type appears in a sensitivity list, the effect is as if the
name of each scalar subelement of that signal appears in the list.

The condition clause specifies a condition that shall be met for the process to continue execution. If no
condition clause appears, the condition clause until TRUE is assumed.

The timeout clause specifies the maximum amount of time the process will remain suspended at this wait
statement. If no timeout clause appears, the timeout clause for (STD.STANDARD.TIME'HIGH -
STD.STANDARD.NOW) is assumed. It is an error if the time expression in the timeout clause evaluates to
a negative value.

The execution of a wait statement causes the time expression to be evaluated to determine the timeout
interval. It also causes the execution of the corresponding process statement to be suspended, where the
corresponding process statement is the one that either contains the wait statement or is the parent (see 4.3) of
the procedure that contains the wait statement. The suspended process will resume, at the latest, immediately
after the timeout interval has expired.

The suspended process also resumes as a result of an event occurring on any signal in the sensitivity set of
the wait statement. If such an event occurs, the condition in the condition clause is evaluated. If the value of

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

- 147 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

the condition is FALSE, the process suspends again. Such repeated suspension does not involve the
recalculation of the timeout interval.

It is an error if a wait statement appears in a function subprogram or in a procedure that has a parent that is a
function subprogram. Furthermore, it is an error if a wait statement appears in an explicit process statement
that includes a sensitivity list or in a procedure that has a parent that is such a process statement. Finally, it is
an error if a wait statement appears within any subprogram whose body is declared within a protected type
body, or within any subprogram that has a parent whose body is declared within a protected type body.

Example:

type Arr is array (1 to 5) of BOOLEAN;
function F (P: BOOLEAN) return BOOLEAN;
signal S: Arr;

signal 1, r: INTEGER range 1 to 5;

-- The following two wait statements have the same meaning:

wait until F(S(3)) and (S(l) or S(r));
wait on S(3), S, 1, r until F(S(3)) and (S(l) or S(r)):;

NOTE 1—The wait statement wait until Clk = '1'; has semantics identical to

loop

wait on Clk;

exit when Clk = '1"';
end loop;

because of the rules for the construction of the default sensitivity clause. These same rules imply that wait until TRUE;
has semantics identical to wait;.

NOTE 2—The conditions that cause a wait statement to resume execution of its enclosing process may no longer hold at
the time the process resumes execution if the enclosing process is a postponed process.

NOTE 3—The rule for the construction of the default sensitivity set implies that if a function call appears in a condition
clause and the called function is an impure function, then any signals that are accessed by the function but that are not
passed through the association list of the call are not added to the default sensitivity set for the condition by virtue of the
appearance of the function call in the condition.

10.3 Assertion statement
An assertion statement checks that a specified condition is true and reports an error if it is not.
assertion_statement ::= [label :] assertion ;

assertion ::=
assert condition
[report expression |
[severity expression]

If the report clause is present, it shall include an expression of predefined type STRING that specifies a
message to be reported. If the severity clause is present, it shall specify an expression of predefined type
SEVERITY_LEVEL that specifies the severity level of the assertion.

The report clause specifies a message string to be included in error messages generated by the assertion. In
the absence of a report clause for a given assertion, the string “Assertion violation.” is the default value for

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -148 -
IEEE Std 1076-2008

the message string. The severity clause specifies a severity level associated with the assertion. In the
absence of a severity clause for a given assertion, the default value of the severity level is ERROR.

Execution of an assertion statement consists of evaluation of the Boolean expression specifying the
condition. If the expression results in the value FALSE, then an assertion violation is said to occur. When an
assertion violation occurs, the report and severity clause expressions of the corresponding assertion, if
present, are evaluated. The specified message string and severity level (or the corresponding default values,
if not specified) are then used to construct an error message.

The error message consists of at least the following:
a) An indication that this message is from an assertion
b) The value of the severity level
c) The value of the message string

d) The name of the design unit (see 13.1) containing the assertion

A line feed (LF) format effector occurring as an element of the message string is interpreted by the
implementation as signifying the end of a line. The implementation shall transform the LF into the
implementation-defined representation of the end of a line.

An implementation should continue execution of a model after occurrence of an assertion violation in which
the severity level is NOTE, WARNING, or ERROR.

NOTE 1—An implementation may choose whether or not to continue execution of a model after occurrence of assertion
violations with various severity levels. It may also give tool users ability to control simulator actions for assertions of
various severity levels via mechanisms not specified by this standard.

NOTE 2—The inadvertent insertion of a semicolon between the condition and the reserved word report in an assertion
statement does not cause an error. Rather, it causes the statement to be parsed as an assertion statement with no report or
severity clause, followed by a report statement.

10.4 Report statement
A report statement displays a message.

report_statement ::=
[label :]
report expression
[severity expression] ;

The report statement expression shall be of the predefined type STRING. The string value of this
expression is included in the message generated by the report statement. If the severity clause is present, it
shall specify an expression of predefined type SEVERITY LEVEL. The severity clause specifies a severity
level associated with the report. In the absence of a severity clause for a given report, the default value of the
severity level is NOTE.

Execution of a report statement consists of the evaluation of the report expression and severity clause
expression, if present. The specified message string and severity level (or corresponding default, if the
severity level is not specified) are then used to construct a report message.

The report message consists of at least the following:
a) Anindication that this message is from a report statement
b) The value of the severity level
c) The value of the message string

d) The name of the design unit containing the report statement

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

- 149 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

An LF format effector occurring as an element of the message string is interpreted by the implementation as
signifying the end of a line. The implementation shall transform the LF into the implementation-defined
representation of the end of a line.

An implementation should continue execution of a model after displaying a report message in which the
severity level is NOTE, WARNING, or ERROR.

NOTE—An implementation may choose whether or not to continue execution of a model after execution of report state-

ments with various severity levels. It may also give tool users ability to control simulator actions for report statements of
various severity levels via mechanisms not specified by this standard.

Example:

report "Entering process P";
-- A report statement with default severity NOTE.

report "Setup or Hold violation; outputs driven to 'X'"
severity WARNING;
-- Another report statement; severity is specified.

10.5 Signal assignment statement
10.5.1 General

A signal assignment statement modifies the projected output waveforms contained in the drivers of one or
more signals (see 14.7.2), schedules a force for one or more signals, or schedules release of one or more
signals (see 14.7.3).

signal assignment statement ::=
[label :] simple signal assignment
| [label :] conditional signal assignment
| [label :] selected signal assignment

10.5.2 Simple signal assignments
10.5.2.1 General
simple signal assignment ::=
simple waveform_assignment
| simple force assignment

| simple release assignment

simple_waveform_assignment ::=
target <= [delay_mechanism] waveform ;

simple force assignment ::=
target <= force [force_mode] expression ;

simple_release assignment ::=
target <= release [force_mode | ;

force_mode ::=in | out

delay _mechanism ::=

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -150-
IEEE Std 1076-2008

transport
| [reject time_expression] inertial

target ;==
name
| aggregate

waveform ==
waveform_element { , waveform_element }
| unaffected

If the target of the signal assignment statement is a name, then the name shall denote a signal. For a simple
waveform assignment, the base type of the value component of each transaction produced by a waveform
element on the right-hand side shall be the same as the base type of the signal denoted by the target. This
form of signal assignment assigns right-hand side values to the drivers associated with a single (scalar or
composite) signal. For a simple force assignment, the base type of the expression on the right-hand side shall
be the same as the base type of the signal denoted by the target. This form of signal assignment schedules
either a driving-value force or an effective-value force for a single signal, with the expression value being the
driving force value or effective force value, respectively. A simple release assignment schedules a driving-
value release or an effective-value release for a single signal.

If the target of the signal assignment statement is in the form of an aggregate, then the type of the aggregate
shall be determinable from the context, excluding the aggregate itself but including the fact that the type of
the aggregate shall be a composite type. Furthermore, the expression in each element association of the
aggregate shall be a locally static name that denotes a signal. For a simple waveform assignment, the base
type of the value component of each transaction produced by a waveform element on the right-hand side
shall be the same as the base type of the aggregate. This form of signal assignment assigns slices or
subelements of the right-hand side values to the drivers associated with the signal named as the
corresponding slice or subelement of the aggregate. It is an error if the target of a simple force assignment or
a simple release assignment is in the form of an aggregate.

If the target of a signal assignment statement is in the form of an aggregate, and if the expression in an
element association of that aggregate is a signal name that denotes a given signal, then the given signal and
each subelement thereof (if any) are said to be identified by that element association as targets of the
assignment statement. It is an error if a given signal or any subelement thereof is identified as a target by
more than one element association in such an aggregate. Furthermore, it is an error if an element association
in such an aggregate contains an others choice, or if the element association contains a choice that is a
discrete range and an expression of a type other than the aggregate type.

The right-hand side of a simple waveform assignment may optionally specify a delay mechanism. A delay
mechanism consisting of the reserved word transport specifies that the delay associated with the first
waveform element is to be construed as transport delay. Transport delay is characteristic of hardware
devices (such as transmission lines) that exhibit nearly infinite frequency response: any pulse is transmitted,
no matter how short its duration. If no delay mechanism is present, or if a delay mechanism including the
reserved word inertial is present, the delay is construed to be inertial delay. Inertial delay is characteristic of
switching circuits: a pulse whose duration is shorter than the switching time of the circuit will not be
transmitted, or in the case that a pulse rejection limit is specified, a pulse whose duration is shorter than that
limit will not be transmitted.

Every inertially delayed signal assignment has a pulse rejection limit. If the delay mechanism specifies
inertial delay, and if the reserved word reject followed by a time expression is present, then the time
expression specifies the pulse rejection limit. In all other cases, the pulse rejection limit is specified by the
time expression associated with the first waveform element.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-151 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

It is an error if the pulse rejection limit for any inertially delayed signal assignment statement is either
negative or greater than the time expression associated with the first waveform element.

A simple signal assignment of the form
target <= [delay _mechanism] unaffected ;

has the same effect as replacing the given assignment with a null statement (not an assignment with a null
waveform element).

The right-hand side of a simple force assignment or a simple release assignment may optionally specify a
force mode. A force mode consisting of the reserved word in specifies that an effective-value force or an
effective-value release is to be scheduled, and a force mode consisting of the reserved word out specifies
that a driving-value force or a driving-value release is to be scheduled.

If the right-hand side of a simple force assignment or a simple release assignment does not specify a force
mode, then a default force mode is used, as follows:

— If the target is a port or signal parameter of mode in, a force mode of in is used.

— If the target is a port of mode out, inout, or buffer, or a signal parameter of mode out or inout, a
force mode of out is used.

— If the target is not a port or a signal parameter, a force mode of in is used.
It is an error if a force mode of out is specified and the target is a port of mode in.
It is an error if a simple force assignment schedules a driving value force or an effective value force for a

member of a resolved composite signal.

NOTE 1—For a signal assignment whose target is a name, no subelement of the target can be of a protected type (see
5.3.1).

NOTE 2—For a signal assignment whose target is in the form of an aggregate, no element of the target can be of a pro-
tected type, nor can any subelement of any element of the target be of a protected type (see 5.3.1).

NOTE 3—If a right-hand side value expression is either a numeric literal or an attribute that yields a result of type
universal_integer or universal_real, then an implicit type conversion is performed.

Examples:

-- Assignments using inertial delay:

-- The following three assignments are equivalent to each other:
Output pin <= Input pin after 10 ns;

Output pin <= inertial Input pin after 10 ns;

Output pin <= reject 10 ns inertial Input pin after 10 ns;

-— Assignments with a pulse rejection limit less than the time
expression:

Output pin <= reject 5 ns inertial Input pin after 10 ns;
Output pin <= reject 5 ns inertial Input pin after 10 ns,

not Input pin after 20 ns;

-- Assignments using transport delay:

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -152-
IEEE Std 1076-2008

Output pin <= transport Input pin after 10 ns;
Output pin <= transport Input pin after 10 ns,
not Input pin after 20 ns;

-- Their equivalent assignments:

Output pin <= reject 0 ns inertial Input pin after 10 ns;
Output pin <= reject 0 ns inertial Input pin after 10 ns,
not Input pin after 20 ns;

10.5.2.2 Executing a simple assignment statement

The effect of execution of a simple waveform assignment statement is defined in terms of its effect upon the
projected output waveforms (see 14.7.2) representing the current and future values of drivers of signals.

waveform_element ::=
value_expression [after time_expression]
| null [after time expression]

The future behavior of the driver(s) for a given target is defined by transactions produced by the evaluation
of waveform elements in the waveform of a simple waveform assignment statement. The first form of
waveform element is used to specify that the driver is to assign a particular value to the target at the specified
time. The second form of waveform element is used to specify that the driver of the signal is to be turned off,
so that it (at least temporarily) stops contributing to the value of the target. This form of waveform element
is called a null waveform element. It is an error if the target of a simple waveform assignment statement
containing a null waveform element is not a guarded signal or an aggregate of guarded signals.

The base type of the time expression in each waveform element shall be the predefined physical type TIME
as defined in package STANDARD. If the after clause of a waveform element is not present, then an
implicit “after 0 ns” is assumed. It is an error if the time expression in a waveform element evaluates to a
negative value.

Evaluation of a waveform element produces a single transaction. The time component of the transaction is
determined by the current time added to the value of the time expression in the waveform element. For the
first form of waveform element, the value component of the transaction is determined by the value
expression in the waveform element. For the second form of waveform element, the value component is not
defined by the language, but it is defined to be of the type of the target. A transaction produced by the
evaluation of the second form of waveform element is called a null transaction.

For the execution of a simple waveform assignment statement whose target is of a scalar type, the waveform
on its right-hand side is first evaluated. Evaluation of a waveform consists of the evaluation of each
waveform element in the waveform. Thus, the evaluation of a waveform results in a sequence of
transactions, where each transaction corresponds to one waveform element in the waveform. These
transactions are called new transactions. It is an error if the sequence of new transactions is not in ascending
order with respect to time. It is also an error if the value of any value expression in the waveform does not
belong to the subtype of the target.

The sequence of transactions is then used to update the projected output waveform representing the current
and future values of the driver associated with the simple waveform assignment statement. Updating a
projected output waveform consists of the deletion of zero or more previously computed transactions (called
old transactions) from the projected output waveform and the addition of the new transactions, as follows:

a) All old transactions that are projected to occur at or after the time at which the earliest new
transaction is projected to occur are deleted from the projected output waveform.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-153 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

b) The new transactions are then appended to the projected output waveform in the order of their
projected occurrence.

If the initial delay is inertial delay according to the definitions of 10.5.2.1, the projected output waveform is
further modified as follows:

1) All of the new transactions are marked.

2) An old transaction is marked if the time at which it is projected to occur is less than the time at
which the first new transaction is projected to occur minus the pulse rejection limit.

3) For each remaining unmarked, old transaction, the old transaction is marked if it immediately pre-
cedes a marked transaction and its value component is the same as that of the marked transaction.

4) The transaction that determines the current value of the driver is marked.

5) All unmarked transactions (all of which are old transactions) are deleted from the projected output
waveform.

For the purposes of marking transactions, any two successive null transactions in a projected output
waveform are considered to have the same value component.

The execution of a simple waveform assignment statement whose target is of a composite type proceeds in a
similar fashion, except that the evaluation of the waveform results in one sequence of transactions for each
scalar subelement of the type of the target. Each such sequence consists of transactions whose value portions
are determined by the values of the same scalar subelement of the value expressions in the waveform, and
whose time portion is determined by the time expression corresponding to that value expression. Each such
sequence is then used to update the projected output waveform of the driver of the matching subelement of
the target. This applies both to a target that is the name of a signal of a composite type and to a target that is
in the form of an aggregate.

For the execution of a simple force assignment whose target is of a scalar type, the expression on its right-
hand side is first evaluated. It is an error if the value of the expression does not belong to the subtype of the
target. The value of the expression is then used to schedule a driving-value force or an effective-value force.

The execution of a simple force assignment whose target is of a composite type proceeds in a similar
fashion, except that the evaluation of the expression results in one value for each scalar subelement of the
type of the target. Each such value is then used to schedule a driving-value force or an effective-value force
of the matching subelement of the target.

For the execution of a simple release assignment whose target is of a scalar type, a driving-value release or
an effective-value release is scheduled for the target. The execution of a simple release assignment whose
target is of a composite type proceeds in a similar fashion, except that a driving-value release or an effective-
value release is scheduled for each scalar subelement of the target.

It is an error if the target of a simple force assignment or a simple release assignment is a member of a
resolved composite signal.

If a given procedure is declared by a declarative item that is not contained within a process statement, and if
a simple waveform assignment statement appears in that procedure, then the target of the simple waveform
assignment shall be a formal parameter of the given procedure or of a parent of that procedure, or an
aggregate of such formal parameters. Similarly, if a given procedure is declared by a declarative item that is
not contained within a process statement, and if a signal is associated with an inout or out mode signal
parameter in a subprogram call within that procedure, then the signal so associated shall be a formal
parameter of the given procedure or of a parent of that procedure.

NOTE 1—These rules guarantee that the driver affected by a simple waveform assignment statement is always statically
determinable if the simple waveform assignment appears within a given process (including the case in which it appears

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -154 -
IEEE Std 1076-2008

within a procedure that is declared within the given process). In this case, the affected driver is the one defined by the
process; otherwise, the simple waveform assignment shall appear within a procedure, and the affected driver is the one
passed to the procedure along with a signal parameter of that procedure. Simple force assignments and simple release
assignments, on the other hand, do not involve drivers. Hence, the target of such an assignment occurring in a procedure
not contained with a process statement need not be a signal parameter of the procedure.

NOTE 2—Overloading the operator "=" has no effect on the updating of a projected output waveform.

NOTE 3—Consider a signal assignment statement of the form

T <=reject t, inertial ¢| after t; {, ¢; after t; }

The following relations hold:

Ons<t <t

and

Ons<t,<t;

Note that, if t, = 0 ns, then the waveform editing is identical to that for transport-delayed assignment; and if t, = t;, the
waveform is identical to that for the statement

T <=e after t; {,e;aftert; }

NOTE 4—Consider the following signal assignment in some process:

S <= reject 15 ns inertial 12 after 20 ns, 18 after 41 ns;
where S is a signal of some integer type.

Assume that at the time this signal assignment is executed, the driver of S in the process has the following contents (the
first entry is the current driving value):

NOW +3 ns +12 ns +13 ns +20 ns +42 ns

(The times given are relative to the current time.) The updating of the projected output waveform proceeds as follows:

— The driver is truncated at 20 ns. The driver now contains the following pending transactions:

NOW +3 ns +12 ns +13 ns

— The new waveforms are added to the driver. The driver now contains the following pending transactions:

NOW +3 ns +12 ns +13 ns +20 ns +41 ns

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

— All new transactions are marked, as well as those old transactions that occur at less than the time of the first new
waveform (20 ns) less the rejection limit (15 ns). The driver now contains the following pending transactions

- 155 -

(marked transactions are in bold type):

IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

12

12

18

NOW

+3 ns

+12 ns

+13 ns

+20 ns

+41 ns

— Each remaining unmarked transaction is marked if it immediately precedes a marked transaction and has the
same value as the marked transaction. The driver now contains the following pending transactions:

12

12

18

NOW

+3 ns

+12 ns

+13 ns

+20 ns

+41 ns

— The transaction that determines the current value of the driver is marked, and all unmarked transactions are then

deleted. The final driver contents are then as follows, after clearing the markings:

NOW

+3 ns +13 ns

+20 ns

+41 ns

10.5.3 Conditional signal assignments

The conditional signal assignment represents an equivalent if statement that assigns values to signals or that

forces or releases signals.

conditional signal assignment ::=

conditional waveform_assignment

| conditional force assignment

conditional waveform_assignment

target <= [delay_mechanism] conditional waveforms ;

conditional waveforms ::=
waveform when condition

{ else waveform when condition }

[else waveform]

conditional force assignment ::=

target <= force [force_mode] conditional expressions ;

conditional expressions ::=
expression when condition

{ else expression when condition }

[else expression |

The delay mechanism for a conditional waveform assignment statement is discussed in 10.5.2.1.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -156 -
IEEE Std 1076-2008

For a given conditional signal assignment, there is an equivalent sequential statement with the same
meaning. If the conditional signal assignment is of the form

target <= delay mechanism
waveforml when conditionl else
waveform?2 when condition2 else

waveformN-1 when conditionN-1 else
waveformN when conditionN;

then the equivalent sequential statement is of the form

if conditionl then

target <= delay mechanism waveforml;
elsif condition2 then

target <= delay mechanism waveform2;

elsif conditionN-1 then

target <= delay mechanism waveformN-1;
elsif conditionN then

target <= delay mechanism waveformN;
end if;

If the conditional signal assignment is of the form

target <= delay mechanism
waveforml when conditionl else
waveform?2 when condition?2 else

waveformN-1 when conditionN-1 else
waveformN;

then the equivalent sequential statement is of the form

if conditionl then

target <= delay mechanism waveforml;
elsif condition2 then

target <= delay mechanism waveform2;

elsif conditionN-1 then

target <= delay mechanism waveformN-1;
else

target <= delay mechanism waveformN;
end if;

If the conditional signal assignment is of the form

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

target <= force
expressionl when
expression?2 when

expressionN-1 when
expressionN when

- 157 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

conditionl else
condition?2 else

conditionN-1 else
conditionN;

then the equivalent sequential statement is of the form

if conditionl then

target <= force expressionl;

elsif condition2 then

target <= force expression2;

elsif conditionN-1 then

target <= force expressionN-1;

elsif conditionN then

target <= force expressionN;

end if;

If the conditional signal assignment is of the form

target <= force

expressionl when conditionl else
expression?2 when condition?2 else

expressionN-1 when conditionN-1 else

expressionN;

then the equivalent sequential statement is of the form

if conditionl then

target <= force expressionl;

elsif condition2 then

target <= force expression2;

elsif conditionN-1 then

target <= force expressionN-1;

else

target <= force expressionN;

end if;

The characteristics of the target, waveforms, expressions, and conditions in the conditional assignment

statement shall be such that the equivalent sequential statement is a legal statement.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -158 -
IEEE Std 1076-2008

If a label appears on the signal assignment statement containing the conditional signal assignment, then the
same label appears on the equivalent sequential statement. If a delay mechanism appears in a conditional
waveform assignment, then the same delay mechanism appears in every simple waveform assignment
statement in the equivalent sequential statement.

Example:

S <= unaffected when Input pin = S'Driving Value else
Input pin after Buffer Delay;

10.5.4 Selected signal assignments

The selected signal assignment represents an equivalent case statement that assigns values to signals or that
forces or releases signals.

selected signal assignment ::=
selected waveform_assignment
| selected_force assignment

selected waveform_assignment ::=
with expression select [?]
target <= [delay mechanism] selected waveforms ;

selected waveforms ::=
{ waveform when choices , }
waveform when choices

selected force assignment ::=
with expression select [?]
target <= force [force_mode] selected expressions ;

selected expressions ::=
{ expression when choices , }
expression when choices

The delay mechanism for a selected waveform assignment statement is discussed in 10.5.2.1.

For a given selected signal assignment, there is an equivalent sequential statement with the same meaning. If
the selected signal assignment is of the form

with expression select
target <= delay mechanism waveforml when choice listl,
waveform2 when choice list2,

waveformN-1 when choice 1istN-1,
waveformN when choice 1istN;

then the equivalent sequential statement is of the form
case expression is

when choice listl =>
target <= delay mechanism waveforml;

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

- 159 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

when choice list2 =>
target <= delay mechanism waveform2;

when choice listN-1 =>
target <= delay mechanism waveformN-1;
when choice listN =>
target <= delay mechanism waveformN;
end case;

If the selected signal assignment is of the form

with expression select
target <= force expressionl when choice 1listl,
expression2 when choice list2,

expressionN-1 when choice 1listN-1,
expressionN when choice 1istN;

then the equivalent sequential statement is of the form

case expression is
when choice listl =>
target <= force expressionl;
when choice list2 =>
target <= force expression2;

when choice listN-1 =>
target <= force expressionN-1;
when choice listN =>
target <= force expressionN;
end case;

If a selected signal assignment statement includes the question mark delimiter, then the equivalent
sequential statement includes a question mark delimiter after both occurrences of the reserved word case;
otherwise the equivalent sequential statement does not include the question mark delimiters.

The characteristics of the select expression, the target, the waveforms, the expressions, and the choices in the
selected assignment statement shall be such that the equivalent sequential statement is a legal statement.

If a label appears on the signal assignment statement containing the selected signal assignment, then the
same label appears on the equivalent sequential statement. If a delay mechanism appears in a selected
waveform assignment, then the same delay mechanism appears in every simple waveform assignment
statement in the equivalent sequential statement.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -160-
IEEE Std 1076-2008

10.6 Variable assignment statement
10.6.1 General

A variable assignment statement replaces the current value of a variable with a new value specified by an
expression. The named variable and the right-hand side expression shall be of the same type.

variable assignment_statement ::=
[label :] simple variable assignment
| [label :] conditional variable assignment
| [label :] selected variable assignment

10.6.2 Simple variable assignments
10.6.2.1 General

simple variable assignment ::=
target := expression ;

If the target of the variable assignment statement is a name, then the name shall denote a variable, and the
base type of the expression on the right-hand side shall be the same as the base type of the variable denoted
by that name. It is an error if the type of the target is a protected type. This form of variable assignment
assigns the right-hand side value to a single (scalar or composite) variable.

If the target of the variable assignment statement is in the form of an aggregate, then the type of the
aggregate shall be determinable from the context, excluding the aggregate itself but including the fact that
the type of the aggregate shall be a composite type. The base type of the expression on the right-hand side
shall be the same as the base type of the aggregate. Furthermore, the expression in each element association
of the aggregate shall be a locally static name that denotes a variable. This form of variable assignment
assigns each subelement or slice of the right-hand side value to the variable named as the corresponding
subelement or slice of the aggregate.

If the target of a variable assignment statement is in the form of an aggregate, and if the locally static name
in an element association of that aggregate denotes a given variable or denotes another variable of which the
given variable is a subelement or slice, then the element association is said to identify the given variable as a
target of the assignment statement. It is an error if a given variable is identified as a target by more than one
element association in such an aggregate. Furthermore, it is an error if an element association in such an
aggregate contains an others choice, or if the element association contains a choice that is a discrete range
and an expression of a type other than the aggregate type.

For the execution of a variable assignment whose target is a variable name, the variable name and the
expression are first evaluated. A check is then made that the value of the expression belongs to the subtype
of the variable, except in the case of a variable that is of a composite type (in which case the assignment
involves a subtype conversion). Finally, each subelement of the variable that is not forced is updated with
the corresponding subelement of the expression. A design is erroneous if it depends on the order of
evaluation of the target and source expressions of an assignment statement.

The execution of a variable assignment whose target is in the form of an aggregate proceeds in a similar
fashion, except that each of the names in the aggregate is evaluated, and a subtype check is performed for
each subelement or slice of the right-hand side value that corresponds to one of the names in the aggregate.
For each variable denoted by a name corresponding to a subelement or slice of the right-hand side value,
each subelement of the variable that is not forced is updated with the corresponding subelement of the
subelement or slice of the right-hand side value.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-161 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

An error occurs if the aforementioned subtype checks fail.

NOTE 1—If the right-hand side is either a numeric literal or an attribute that yields a result of type universal integer or
universal real, then an implicit type conversion is performed.

NOTE 2—For a variable assignment whose target is a name, no subelement of the target can be of a protected type (see
5.3.1).

NOTE 3—For a variable assignment whose target is in the form of an aggregate, no element of the target can be of a pro-
tected type, nor can any subelement of any element of the target be of a protected type (see 5.3.1).

NOTE 4—The value of a composite variable or of any element or slice of a composite variable is considered to have
changed if any of the subelements of the variable, element, or slice changes value.

10.6.2.2 Composite variable assignments

If the target of an assignment statement is a name denoting a composite variable (including a slice), the
value assigned to the target is implicitly converted to the subtype of the composite variable; the result of this
subtype conversion becomes the new value of the composite variable.

This means that the new value of each element of the composite variable is specified by the matching
element (see 9.2.3) in the corresponding composite value obtained by evaluation of the expression. The
subtype conversion checks that for each element of the composite variable there is a matching element in the
composite value, and vice versa. An error occurs if this check fails.

10.6.3 Conditional variable assignments

The conditional variable assignment represents an equivalent if statement that assigns values to variables.

conditional variable assignment ::=
target := conditional expressions ;

For a given conditional variable assignment, there is an equivalent sequential statement with the same
meaning. If the conditional variable assignment is of the form

If the conditional variable assignment is of the form

target :=
expressionl when conditionl else
expression? when condition? else

expressionN-1 when conditionN-1 else
expressionN when conditionN;

then the equivalent sequential statement is of the form

if conditionl then

target := expressionl;
elsif condition2 then

target := expression2;

elsif conditionN-1 then
target := expressionN-1;

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -162-
IEEE Std 1076-2008

elsif conditionN
target := expressionN;
end if;

If the conditional variable assignment is of the form

target :=
expressionl when conditionl else
expression?2 when condition? else

expressionN-1 when conditionN-1 else
expressionN;

then the equivalent sequential statement is of the form

if conditionl then

target := expressionl;
elsif condition2 then

target := expression2;

elsif conditionN-1 then

target := expressionN-1;
else

target := expressionN;
end if;

The characteristics of the expressions and conditions in the conditional assignment statement shall be such
that the equivalent sequential statement is a legal statement.

If a label appears on the variable assignment statement containing the conditional variable assignment, then
the same label appears on the equivalent sequential statement.

Example:
N := V1 when S = S1 else
V2 when S = S2;

10.6.4 Selected variable assignments
The selected variable assignment represents an equivalent case statement that assigns values to variables.
selected variable assignment ::=

with expression select [?]

target := selected_expressions ;

For a given selected variable assignment, there is an equivalent sequential statement with the same meaning.
If the selected variable assignment is of the form

with expression select
target := expressionl when choice listl,

|PuMBhedbyIECundmﬂmenseﬂomIEEEADZOOSIEEE.AHﬂghmresewedj

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

-163 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

expression?2 when choice list2,

expressionN-1 when choice 1listN-1,
expressionN when choice 1istN;

then the equivalent sequential statement is of the form

case expression is
when choice listl =>

target := expressionl;
when choice list2 =>

target := expression2;

when choice listN-1 =>

target := expressionN-1;
when choice listN =>
target := expressionN;

end case;

If a selected variable assignment statement includes the question mark delimiter, then the equivalent
sequential statement includes a question mark delimiter after both occurrences of the reserved word case;
otherwise the equivalent sequential statement does not include the question mark delimiters.

The characteristics of the select expression, the expressions, and the choices in the selected assignment
statement shall be such that the equivalent sequential statement is a legal statement.

If a label appears on the variable assignment statement containing the selected variable assignment, then the
same label appears on the equivalent sequential statement.

10.7 Procedure call statement

A procedure call invokes the execution of a procedure body.
procedure call statement ::= [label :] procedure call ;
procedure call ::= procedure name [(actual parameter part)]

The procedure name specifies the procedure body to be invoked. It is an error if the procedure name denotes
an uninstantiated procedure. The actual parameter part, if present, specifies the association of actual
parameters with formal parameters of the procedure.

For each formal parameter of a procedure, a procedure call shall specify exactly one corresponding actual
parameter. This actual parameter is specified either explicitly, by an association element (other than the
actual open) in the association list or, in the absence of such an association element, by a default expression
(see 6.5.2).

Execution of a procedure call includes evaluation of the actual parameter expressions specified in the call
and evaluation of the default expressions associated with formal parameters of the procedure that do not
have actual parameters associated with them. In both cases, the resulting value shall belong to the subtype of

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -164 -
IEEE Std 1076-2008

the associated formal parameter. (If the formal parameter is of an unconstrained or partially constrained
composite type, then any undefined index ranges of subelements of the formal parameter are determined as
described in 5.3.2.2.) The procedure body is executed using the actual parameter values and default
expression values as the values of the corresponding formal parameters.

NOTE—A call to a formal generic procedure uses the parameter names and default expressions defined in the formal
generic procedure declaration, and the parameter subtypes of the associated actual generic procedure.

10.8 If statement

An if statement selects for execution one or none of the enclosed sequences of statements, depending on the
value of one or more corresponding conditions.

if statement ::=
[if label :]
if condition then
sequence of statements
{ elsif condition then
sequence of statements }
[else
sequence of statements |
end if [if label] ;

If a label appears at the end of an if statement, it shall repeat the if label.

For the execution of an if statement, the condition specified after if, and any conditions specified after elsif,
are evaluated in succession (treating a final else as elsif TRUE then) until one evaluates to TRUE or all
conditions are evaluated and yield FALSE. If one condition evaluates to TRUE, then the corresponding
sequence of statements is executed; otherwise, none of the sequences of statements is executed.

10.9 Case statement

A case statement selects for execution one of a number of alternative sequences of statements; the chosen
alternative is defined by the value of an expression.

case_statement ::=
[case label :]
case [?] expression is
case_statement alternative
{ case_statement_alternative }
end case [? | [case_label] ;

case_statement alternative ::=
when choices =>
sequence of statements

A case statement shall include the question mark delimiter either in both places, in which case the case
statement is called a matching case statement, or in neither place, in which case the case statement is called
an ordinary case statement.

The expression shall be of a discrete type or of a one-dimensional array type whose element base type is a
character type. This type shall be determined by applying the rules of 12.5 to the expression considered as a
complete context, using the rule that the expression shall be of a discrete type or a one-dimensional character

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

- 165 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

array type. (In particular, the type of the case expression must be determinable independent of the type of the
case statement choices.) It is an error if the type of the expression in a matching case statement is other than
BIT, STD_ULOGIC, or a one-dimensional array type whose element type is BIT or STD_ULOGIC. Each
choice in a case statement alternative shall be of the same type as the expression; the list of choices specifies
for which values of the expression the alternative is chosen.

For an ordinary case statement, or for a matching case statement in which the expression is of type BIT or an
array type whose element type is BIT, if the expression is the name of an object whose subtype is locally
static, whether a scalar type or an array type, then each value of the subtype shall be represented once and
only once in the set of choices of the case statement, and no other value is allowed; this rule is likewise
applied if the expression is a qualified expression or type conversion whose type mark denotes a locally
static subtype, or if the expression is a call to a function whose return type mark denotes a locally static
subtype, or if the expression is an expression described in this paragraph and enclosed in parentheses.

For a matching case statement in which the expression is of type STD_ULOGIC, or an array type whose
element type is STD ULOGIC, if the expression is the name of an object whose subtype is locally static,
whether a scalar type or an array type, then each value of the subtype, other than the scalar value ' or an
array value containing '-' as an element, shall be represented once and only once in the set of choices of the
case statement. A value is represented by a choice if application of the predefined matching equality
operator to the value and the choice gives the result '1'. It is an error if a choice does not represent a value of
the subtype other than the scalar value ' or an array value containing '-' as an element. This rule is likewise
applied if the expression is a qualified expression or type conversion whose type mark denotes a locally
static subtype, or if the expression is a call to a function whose return type mark denotes a locally static
subtype, or if the expression is an expression described in this paragraph and enclosed in parentheses.

If the expression is of a one-dimensional character array type and is not described by either of the preceding
two paragraphs, then the values of all of the choices, except the others choice, if present, shall be of the
same length. Moreover, for an ordinary case statement, or for a matching case statement in which the
expression is of an array type whose element type is BIT, each value of the (base) type of the expression
shall be represented once and only once in the set of choices, and no other value is allowed. For a matching
case statement in which the expression is of an array type whose element type is STD ULOGIC, each value
of the (base) type of the expression, other than an array value containing '-' as an element, shall be
represented (as defined in the preceding paragraph) once and only once in the set of choices of the case
statement. It is an error if a choice does not represent a value of the (base) type of the expression other than
an array value containing '-' as an element. In all cases, it is an error if the value of the expression is not of
the same length as the values of the choices. If there is only one choice and that choice is others, then the
value of the expression may be of any length.

For other forms of expression in an ordinary case statement or in a matching case statement in which the
expression is of type BIT, each value of the (base) type of the expression shall be represented once and only
once in the set of choices, and no other value is allowed. For other forms of expression in a matching case
statement in which the expression is of type STD_ULOGIC, each value of the (base) type of the expression,
other than the scalar value '-', shall be represented once and only once in the set of choices of the case
statement. It is an error if a choice does not represent a value of the (base) type of the expression other than
the scalar value '-'.

All simple expressions and discrete ranges given as choices in a case statement shall be locally static. A
choice defined by a discrete range stands for all values in the corresponding range. The choice others is only
allowed for the last alternative and as its only choice; it stands for all values (possibly none) not given in the
choices of previous alternatives. An element simple name (see 9.3.3.1) is not allowed as a choice of a case
statement alternative. For a matching case statement in which the expression is of type STD ULOGIC, or an
array type whose element type is STD ULOGIC, it is an error if application of the predefined matching
equality operator to the values of any two distinct choices other than the choice others gives the result '1'".

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -166 -
IEEE Std 1076-2008

If a label appears at the end of a case statement, it shall repeat the case label.

The execution of a case statement consists of the evaluation of the expression followed by the execution of
the chosen sequence of statements. A sequence of statements in a given ordinary case statement alternative
is the chosen sequence of statements if and only if the expression “E = V” evaluates to TRUE, where “E” is
the expression, “V” is the value of one of the choices of the given case statement alternative (if a choice is a
discrete range, then this latter condition is fulfilled when V is an element of the discrete range), and the
operator “=" in the expression is the predefined “=" operator on the base type of E. A sequence of statements
in a given matching case statement alternative is the chosen sequence of statements if and only if the
condition “E ?= V" evaluates to TRUE or 'l', where “E” and “V” are similarly defined and the operator “?="
is the predefined “?=" operator on the base type of E.

For a matching case statement in which the expression is of type STD_ULOGIC, or an array type whose
element type is STD_ULOGIC, it is an error if the value of the expression is the scalar value '-' or an array
value containing '-' as an element.

NOTE 1—The execution of a case statement chooses one and only one alternative, since the choices are exhaustive and
mutually exclusive. A qualified expression whose type mark denotes a locally static subtype can often be used as the
expression of a case statement to limit the number of choices that need be explicitly specified.

NOTE 2—An others choice is required in a case statement if the type of the expression is the type universal_integer (for
example, if the expression is an integer literal), since this is the only way to cover all values of the type
universal_integer.

NOTE 3—Overloading the operator “=" has no effect on the semantics of ordinary case statement execution. Similarly,
overloading the operator “?=" has no effect on the semantics of matching case statement execution.

NOTE 4—An others choice is generally required in a matching case statement in which the expression is of type
STD_ULOGIC, or an array type whose element type is STD_ULOGIC, since explicit choice values cannot be written to
represent metalogical values of the expression. (Application of the predefined matching equality operator with a metal-
ogical operand value gives the result 'X'.) Such expression values, which shall nonetheless be represented by a choice,
are represented by the others choice.

10.10 Loop statement
A loop statement includes a sequence of statements that is to be executed repeatedly, zero or more times.

loop_statement ::=
[loop label :]
[iteration_scheme] loop
sequence of statements
end loop [loop label];

iteration_scheme ::=
while condition
| for loop_parameter specification

parameter specification ::=
identifier in discrete_range

If a label appears at the end of a loop statement, it shall repeat the label at the beginning of the loop
statement.

Execution of a loop statement is complete when the loop is left as a consequence of the completion of the
iteration scheme (see the following), if any, or the execution of a next statement, an exit statement, or a
return statement.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

- 167 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

A loop statement without an iteration scheme specifies repeated execution of the sequence of statements.

For a loop statement with a while iteration scheme, the condition is evaluated before each execution of the
sequence of statements; if the value of the condition is TRUE, the sequence of statements is executed; if
FALSE, the iteration scheme is said to be complete and the execution of the loop statement is complete.

For a loop statement with a for iteration scheme, the loop parameter specification is the declaration of the
loop parameter with the given identifier. The loop parameter is an object whose type is the base type of the
discrete range. Within the sequence of statements, the loop parameter is a constant. Hence, a loop parameter
is not allowed as the target of an assignment statement. Similarly, the loop parameter shall not be given as an
actual corresponding to a formal of mode out or inout in an association list.

For the execution of a loop with a for iteration scheme, the discrete range is first evaluated. If the discrete
range is a null range, the iteration scheme is said to be complete and the execution of the loop statement is
therefore complete; otherwise, the sequence of statements is executed once for each value of the discrete
range (subject to the loop not being left as a consequence of the execution of a next statement, an exit
statement, or a return statement), after which the iteration scheme is said to be complete. Prior to each such
iteration, the corresponding value of the discrete range is assigned to the loop parameter. These values are
assigned in left-to-right order.

NOTE—A loop may be left as the result of the execution of a next statement if the loop is nested inside of an outer loop
and the next statement has a loop label that denotes the outer loop.

10.11 Next statement

A next statement is used to complete the execution of one of the iterations of an enclosing loop statement
(called /oop in the following text). The completion is conditional if the statement includes a condition.

next_statement ::=
[label : | next [loop label | [when condition] ;

A next statement with a loop label is only allowed within the labeled loop and applies to that loop; a next
statement without a loop label is only allowed within a loop and applies only to the innermost enclosing loop
(whether labeled or not).

For the execution of a next statement, the condition, if present, is first evaluated. The current iteration of the
loop is terminated if the value of the condition is TRUE or if there is no condition.

10.12 Exit statement

An exit statement is used to complete the execution of an enclosing loop statement (called /oop in the
following text). The completion is conditional if the statement includes a condition.

exit statement ::=
[label :] exit [loop_label | [when condition | ;

An exit statement with a loop label is only allowed within the labeled loop and applies to that loop; an exit
statement without a loop label is only allowed within a loop and applies only to the innermost enclosing loop
(whether labeled or not).

For the execution of an exit statement, the condition, if present, is first evaluated. Exit from the loop then
takes place if the value of the condition is TRUE or if there is no condition.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -168 -
IEEE Std 1076-2008

10.13 Return statement
A return statement is used to complete the execution of the innermost enclosing function or procedure body.

return_statement ::=
[label :] return [expression] ;

A return statement is only allowed within the body of a function or procedure, and it applies to the innermost
enclosing function or procedure.

A return statement appearing in a procedure body shall not have an expression. A return statement appearing
in a function body shall have an expression.

The value of the expression defines the result returned by the function. The type of this expression shall be
the base type of the type mark given after the reserved word return in the specification of the function. It is
an error if execution of a function completes by any means other than the execution of a return statement.

For the execution of a return statement, the expression (if any) is first evaluated and converted to the result
subtype. The execution of the return statement is thereby completed if the conversion succeeds; so also is the
execution of the enclosing subprogram. An error occurs at the place of the return statement if the conversion
fails.

NOTE—If the expression is either a numeric literal, or an attribute that yields a result of type universal integer or
universal_real, then an implicit conversion of the result is performed.

10.14 Null statement
A null statement performs no action.

null statement ::=
[label :] null ;

The execution of the null statement has no effect other than to pass on to the next statement.

NOTE—The null statement can be used to specify explicitly that no action is to be performed when certain conditions
are true, although it is never mandatory for this (or any other) purpose. This is particularly useful in conjunction with the
case statement, in which all possible values of the case expression shall be covered by choices; for certain choices, it
may be that no action is required.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

- 169 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

11. Concurrent statements

11.1 General

The various forms of concurrent statements are described in this clause. Concurrent statements are used to
define interconnected blocks and processes that jointly describe the overall behavior or structure of a design.
Concurrent statements execute asynchronously with respect to each other.

concurrent_statement ::=
block statement
| process_statement
| concurrent procedure call statement
| concurrent assertion_statement
| concurrent signal assignment_statement
| component_instantiation_statement
| generate_statement
| PSL_PSL Directive

The primary concurrent statements are the block statement, which groups together other concurrent
statements, and the process statement, which represents a single independent sequential process. Additional
concurrent statements provide convenient syntax for representing simple, commonly occurring forms of
processes, as well as for representing structural decomposition and regular descriptions.

Within a given simulation cycle, an implementation may execute concurrent statements in parallel or in
some order. The language does not define the order, if any, in which such statements will be executed. A
description that depends upon a particular order of execution of concurrent statements is erroneous.

All concurrent statements may be labeled. Such labels are implicitly declared at the beginning of the
declarative part of the innermost enclosing entity declaration, architecture body, block statement, or generate
statement.

11.2 Block statement

A block statement defines an internal block representing a portion of a design. Blocks may be hierarchically
nested to support design decomposition.

block statement ::=
block label :

block [(guard condition)] [is]
block header
block declarative part

begin
block statement part

end block [block label];

block header ::=
[generic_clause
[generic_map aspect ;]]
[port_clause
[port map_aspect;]]

block declarative part ::=

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -170-
IEEE Std 1076-2008

{ block_declarative item }

block statement part ::=
{ concurrent_statement }

If a guard condition appears after the reserved word block, then a signal with the simple name GUARD of
predefined type BOOLEAN is implicitly declared at the beginning of the declarative part of the block, and
the guard condition defines the value of that signal at any given time (see 14.7.4). The type of the guard
condition shall be type BOOLEAN. Signal GUARD may be used to control the operation of certain
statements within the block (see 11.6).

The implicit signal GUARD shall not have a source.

If a block header appears in a block statement, it explicitly identifies certain values or signals that are to be
imported from the enclosing environment into the block and associated with formal generics or ports. The
generic and port clauses define the formal generics and formal ports of the block (see 6.5.6.2 and 6.5.6.3);
the generic map and port map aspects define the association of actuals with those formals (see 6.5.7.2 and
6.5.7.3). Such actuals are evaluated in the context of the enclosing declarative region.

If a label appears at the end of a block statement, it shall repeat the block label.

NOTE 1—The value of signal GUARD is always defined within the scope of a given block, and it does not implicitly
extend to design entities bound to components instantiated within the given block. However, the signal GUARD may be
explicitly passed as an actual signal in a component instantiation in order to extend its value to lower-level components.

NOTE 2—An actual appearing in a port association list of a given block can never denote a formal port of the same
block.

11.3 Process statement

A process statement defines an independent sequential process representing the behavior of some portion of
the design.

process_statement ::=
[process label :]
[postponed] process [(process_sensitivity list)][is]
process_declarative part
begin
process_statement part
end [postponed | process [process_label] ;

process_sensitivity list ::= all | sensitivity list

process_declarative part ::=
{ process_declarative item }

process_declarative item ::=
subprogram_declaration
| subprogram_body
| subprogram_instantiation_declaration
| package declaration
| package body
| package instantiation_declaration
| type_declaration
| subtype declaration

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-171 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

| constant_declaration

| variable_declaration

| file declaration

| alias_declaration

| attribute _declaration

| attribute specification

| use clause

| group template declaration
| group declaration

process_statement_part ::=
{ sequential statement }

If the reserved word postponed precedes the initial reserved word process, the process statement defines a
postponed process; otherwise, the process statement defines a nonpostponed process.

If a process sensitivity list appears following the reserved word process, then the process statement is
assumed to contain an implicit wait statement as the last statement of the process statement part; this implicit
wait statement is of the form

wait on sensitivity list;

where the sensitivity list is determined in one of two ways. If the process sensitivity list is specified as a
sensitivity list, then the sensitivity list of the wait statement is that following the reserved word process. If
the process sensitivity list is specified using the reserved word all, then the sensitivity list of the wait
statement is constructed by taking the union of the sets constructed from each of the statements in the
process by applying the following rules:

— For each assertion, report, next, exit, or return statement, apply the rule of 10.2 to each expression in
the statement, and construct the union of the resulting sets.

— For each assignment statement, apply the rule of 10.2 to each expression occurring in the
assignment, including any expressions occurring in the index names or slice names in the target, and
construct the union of the resulting sets.

— For each if statement, apply the rule of 10.2 to each condition and apply this rule recursively to each
sequence of statements within the if statement, and construct the union of the resulting sets.

— For each case statement, apply the rule of 10.2 to the expression and apply this rule recursively to
each sequence of statements within the case statement, and construct the union of the resulting sets.

— For each loop statement, apply the rule of 10.2 to each expression in the iteration scheme, if present,
and apply this rule recursively to the sequence of statements within the loop statement, and construct
the union of the resulting sets.

— For each procedure call statement, apply the rule of 10.2 to each actual designator (other than open)
associated with each formal parameter of mode in or inout, and construct the union of the resulting
sets.

Moreover, for each subprogram for which the process is a parent (see 4.3), the sensitivity list includes
members of the set constructed by applying the preceding rule to the statements of the subprogram, but
excluding the members that denote formal signal parameters or members of formal signal parameters of the
subprogram or any of its parents.

It is an error if a process statement with the reserved word all as its process sensitivity list is the parent of a
subprogram declared in a design unit other than that containing the process statement, and the subprogram
reads an explicitly declared signal that is not a formal signal parameter or member of a formal signal
parameter of the subprogram or of any of its parents. Similarly, it is an error if such a subprogram reads an

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -172-
IEEE Std 1076-2008

implicit signal whose explicit ancestor is not a formal signal parameter or member of a formal parameter of
the subprogram or of any of its parents.

It is an error if any name that does not denote a static signal name (see 8.1) for which reading is permitted
appears in the sensitivity list of a process statement.

If a process sensitivity list appears following the reserved word process in a process statement, then the
process statement shall not contain an explicit wait statement. Similarly, if such a process statement is a
parent of a procedure, then it is an error if that procedure contains a wait statement.

If the reserved word postponed appears at the end of a process statement, the process shall be a postponed
process. If a label appears at the end of a process statement, the label shall repeat the process label.

It is an error if a variable declaration in a process declarative part declares a shared variable.

The execution of a process statement consists of the repetitive execution of its sequence of statements. After
the last statement in the sequence of statements of a process statement is executed, execution will
immediately continue with the first statement in the sequence of statements.

A process statement is said to be a passive process if neither the process itself, nor any procedure of which
the process is a parent, contains a signal assignment statement. It is an error if a process or a concurrent
statement, other than a passive process or a concurrent statement equivalent to such a process, appears in the
entity statement part of an entity declaration.

NOTE 1—The rules in 11.3 imply that a process that has an explicit sensitivity list always has exactly one (implicit) wait
statement in it, and that wait statement appears at the end of the sequence of statements in the process statement part.
Thus, a process with a sensitivity list always waits at the end of its statement part; any event on a signal named in the
sensitivity list will cause such a process to execute from the beginning of its statement part down to the end, where it will
wait again. Such a process executes once through at the beginning of simulation, suspending for the first time when it
executes the implicit wait statement.

NOTE 2—The time at which a process executes after being resumed by a wait statement (see 10.2) differs depending on
whether the process is postponed or nonpostponed. When a nonpostponed process is resumed, it executes in the current
simulation cycle (see 14.7.5). When a postponed process is resumed, it does not execute until a simulation cycle occurs
in which the next simulation cycle is not a delta cycle. In this way, a postponed process accesses the values of signals
that are the “final” values at the current simulated time.

NOTE 3—The conditions that cause a process to resume execution may no longer hold at the time the process resumes
execution if the process is a postponed process.

NOTE 4—1In general, it is not possible to determine at analysis time whether a process with the reserved word all as its
process sensitivity list is the parent of a subprogram declared in a separate design unit and whether the rules for such a
subprogram are met.

11.4 Concurrent procedure call statements

A concurrent procedure call statement represents a process containing the corresponding sequential
procedure call statement.

concurrent_procedure call_statement ::=
[label :] [postponed] procedure call ;

For any concurrent procedure call statement, there is an equivalent process statement. The equivalent
process statement is a postponed process if and only if the concurrent procedure call statement includes the
reserved word postponed. The equivalent process statement has a label if and only if the concurrent
procedure call statement has a label; if the equivalent process statement has a label, it is the same as that of
the concurrent procedure call statement. The equivalent process statement also has no sensitivity list, an

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-173 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

empty declarative part, and a statement part that consists of a procedure call statement followed by a wait
statement.

The procedure call statement consists of the same procedure name and actual parameter part that appear in
the concurrent procedure call statement.

If there exists a name that denotes a signal in the actual part of any association element in the concurrent
procedure call statement, and that actual is associated with a formal parameter of mode in or inout, then the
equivalent process statement includes a final wait statement with a sensitivity clause that is constructed by
taking the union of the sets constructed by applying the rule of 10.2 to each actual part associated with a
formal parameter.

Execution of a concurrent procedure call statement is equivalent to execution of the equivalent process
statement.

Example:

CheckTiming (tPLH, tPHL, Clk, D, Q); -- A concurrent procedure call
-—- Statement.

process -- The equivalent process.

begin

CheckTiming (tPLH, tPHL, Clk, D, Q);
wait on Clk, D, Q;
end process;

NOTE 1—Concurrent procedure call statements make it possible to declare procedures representing commonly used
processes and to create such processes easily by merely calling the procedure as a concurrent statement. The wait
statement at the end of the statement part of the equivalent process statement allows a procedure to be called without
having it loop interminably, even if the procedure is not necessarily intended for use as a process (i.¢., it contains no wait
statement). Such a procedure may persist over time (and thus the values of its variables retain state over time) if its
outermost statement is a loop statement and the loop contains a wait statement. Similarly, such a procedure may be
guaranteed to execute only once, at the beginning of simulation, if its last statement is a wait statement that has no
sensitivity clause, condition clause, or timeout clause.

NOTE 2—The value of an implicitly declared signal GUARD has no effect on evaluation of a concurrent procedure call
unless it is explicitly referenced in one of the actual parts of the actual parameter part of the concurrent procedure call
statement.

11.5 Concurrent assertion statements

A concurrent assertion statement represents a passive process statement containing the specified assertion
statement.

concurrent_assertion_statement ::=
[label :] [postponed] assertion ;

For any concurrent assertion statement, there is an equivalent process statement. The equivalent process
statement is a postponed process if and only if the concurrent assertion statement includes the reserved word
postponed. The equivalent process statement has a label if and only if the concurrent assertion statement has
a label; if the equivalent process statement has a label, it is the same as that of the concurrent assertion
statement. The equivalent process statement also has no sensitivity list, an empty declarative part, and a
statement part that consists of an assertion statement followed by a wait statement.

The assertion statement consists of the same condition, report clause, and severity clause that appear in the
concurrent assertion statement.

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -174 -
IEEE Std 1076-2008

If there exists a name that denotes a signal in the Boolean expression that defines the condition of the
assertion, then the equivalent process statement includes a final wait statement with a sensitivity clause that
is constructed by applying the rule of 10.2 to that expression; otherwise, the equivalent process statement
contains a final wait statement that has no explicit sensitivity clause, condition clause, or timeout clause.

Execution of a concurrent assertion statement is equivalent to execution of the equivalent process statement.

If a concurrent statement is ambiguous and can be interpreted either as a concurrent assertion statement or as
a PSL assertion directive, then it is interpreted as a concurrent assertion statement.

NOTE 1—Since a concurrent assertion statement represents a passive process statement, such a process has no outputs.
Therefore, the execution of a concurrent assertion statement will never cause an event to occur. However, if the assertion
is false, then the specified error message will be sent to the simulation report.

NOTE 2—The value of an implicitly declared signal GUARD has no effect on evaluation of the assertion unless it is
explicitly referenced in one of the expressions of that assertion.

NOTE 3—A concurrent assertion statement whose condition is defined by a static expression is equivalent to a process
statement that ends in a wait statement that has no sensitivity clause; such a process will execute once through at the
beginning of simulation and then wait indefinitely.

NOTE 4—A concurrent statement consisting of the reserved word assert followed by a condition, optionally followed
by the reserved word report and a string expression, is ambiguous. It can be interpreted as a concurrent assertion
statement with no severity clause or as a PSL assert directive with a property consisting of a Boolean expression,
specifying a condition that shall hold at time zero. The statement is interpreted as a concurrent assertion statement,
specifying a condition that shall hold at all times.

11.6 Concurrent signal assignment statements

A concurrent signal assignment statement represents an equivalent process statement that assigns values to
signals.

concurrent_signal assignment statement ::=
[label :] [postponed] concurrent simple signal assignment
| [label :] [postponed] concurrent _conditional signal assignment
| [label :] [postponed] concurrent selected signal assignment

concurrent_simple signal assignment ::=
target <= [guarded] [delay_mechanism | waveform ;

concurrent_conditional signal assignment ::=
target <= [guarded] [delay mechanism] conditional waveforms ;

concurrent_selected signal assignment ::=
with expression select [?]
target <= [guarded] [delay _mechanism] selected waveforms ;

There are three forms of the concurrent signal assignment statement. For each form, the characteristics that
distinguish it are discussed in the following paragraphs.

Each form may include the reserved word guarded, which specifies that the signal assignment statement is
executed when a signal GUARD changes from FALSE to TRUE, or when that signal has been TRUE and an
event occurs on one of the signal assignment statement’s inputs. (The signal GUARD shall be either one of
the implicitly declared GUARD signals associated with block statements that have guard conditions, or it
shall be an explicitly declared signal of type BOOLEAN that is visible at the point of the concurrent signal
assignment statement.)

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-175- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

If the target of a concurrent signal assignment is a name that denotes a guarded signal (see 6.4.2.3), or if it is
in the form of an aggregate and the expression in each element association of the aggregate is a static signal
name denoting a guarded signal, then the target is said to be a guarded target. If the target of a concurrent
signal assignment is a name that denotes a signal that is not a guarded signal, or if it is in the form of an
aggregate and the expression in each element association of the aggregate is a static signal name denoting a
signal that is not a guarded signal, then the target is said to be an unguarded target. It is an error if the target
of a concurrent signal assignment is neither a guarded target nor an unguarded target.

For any concurrent signal assignment statement, there is an equivalent process statement with the same
meaning. The process statement equivalent to a concurrent signal assignment statement whose target is a
signal name is constructed as follows:

a) If alabel appears on the concurrent signal assignment statement, then the same label appears on the
process statement.

b) The equivalent process statement is a postponed process if and only if the concurrent signal
assignment statement includes the reserved word postponed.

¢) The statement part of the equivalent process statement consists of a statement transform [described
in item e)].

d) If the reserved word guarded appears in the concurrent signal assignment statement, then the
concurrent signal assignment is called a guarded assignment. 1f the concurrent signal assignment
statement is a guarded assignment, and if the target of the concurrent signal assignment is a guarded
target, then the statement transform is as follows:

if GUARD then

signal transform
else

disconnection statements
end if;

Otherwise, if the concurrent signal assignment statement is a guarded assignment, but if the target of
the concurrent signal assignment is nof a guarded target, then the statement transform is as follows:

if GUARD then
signal transform
end if;

Finally, if the concurrent signal assignment statement is nof a guarded assignment, and if the target
of the concurrent signal assignment is not a guarded target, then the statement transform is as
follows:

signal transform

It is an error if a concurrent signal assignment is not a guarded assignment and the target of the
concurrent signal assignment is a guarded target.

A signal transform is a sequential signal assignment statement that has no label and that contains a
simple, conditional, or selected signal assignment that is the same as the concurrent simple,
conditional, or selected signal assignment statement, as appropriate, without the reserved word
guarded.

e) If the concurrent signal assignment statement is a guarded assignment, or if any expression (other
than a time expression) within the concurrent signal assignment statement references a signal, then
the process statement contains a final wait statement with an explicit sensitivity clause. The
sensitivity clause is constructed by taking the union of the sets constructed by applying the rule of
10.2 to each of the aforementioned expressions. Furthermore, if the concurrent signal assignment
statement is a guarded assignment, then the sensitivity clause also contains the simple name
GUARD. (The signals identified by these names are called the inputs of the signal assignment
statement.) Otherwise, the process statement contains a final wait statement that has no explicit
sensitivity clause, condition clause, or timeout clause.

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -176-
IEEE Std 1076-2008

Under certain conditions [see item d) in the preceding list] the equivalent process statement may contain a
sequence of disconnection statements. A disconnection statement is a sequential signal assignment statement
that assigns a null transaction to its target. If a sequence of disconnection statements is present in the
equivalent process statement, the sequence consists of one sequential signal assignment for each scalar
subelement of the target of the concurrent signal assignment statement. For each such sequential signal
assignment, the target of the assignment is the corresponding scalar subelement of the target of the
concurrent signal assignment, and the waveform of the assignment is a null waveform element whose time
expression is given by the applicable disconnection specification (see 7.4).

If the target of a concurrent signal assignment statement is in the form of an aggregate, then the same
transformation applies. Such a target shall contain only locally static signal names; moreover, it is an error if
any signal is identified by more than one signal name.

It is an error if a null waveform element appears in a waveform of a concurrent signal assignment statement.

Execution of a concurrent signal assignment statement is equivalent to execution of the equivalent process
statement.

NOTE 1—A concurrent signal assignment statement whose waveforms and target contain only static expressions is
equivalent to a process statement whose final wait statement has no explicit sensitivity clause, so it will execute once
through at the beginning of simulation and then suspend permanently.

NOTE 2—A concurrent signal assignment statement whose waveforms are all the reserved word unaffected has no
drivers for the target, since every waveform in the concurrent signal assignment statement is transformed to the
statement

null;

in the equivalent process statement (see 10.5.2.1).

11.7 Component instantiation statements
11.7.1 General

A component instantiation statement defines a subcomponent of the design entity in which it appears,
associates signals or values with the ports of that subcomponent, and associates values with generics of that
subcomponent. This subcomponent is one instance of a class of components defined by a corresponding
component declaration, design entity, or configuration declaration.

component_instantiation_statement ::=
instantiation_label :
instantiated unit
[generic_map_aspect |
[port map_aspect] ;

instantiated _unit ::=
[component | component_name
| entity entity name [(architecture_identifier)]
| configuration configuration name

The component name, if present, shall be the name of a component declared in a component declaration.
The entity name, if present, shall be the name of a previously analyzed entity declaration; if an architecture
identifier appears in the instantiated unit, then that identifier shall be the same as the simple name of an
architecture body associated with the entity declaration denoted by the corresponding entity name. The
architecture identifier defines a simple name that is used during the elaboration of a design hierarchy to
select the appropriate architecture body. The configuration name, if present, shall be the name of a

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

=177 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

previously analyzed configuration declaration. The generic map aspect, if present, optionally associates a
single actual with each local generic (or member thereof) in the corresponding component declaration or
entity declaration. Each local generic (or member thereof) shall be associated at most once. Similarly, the
port map aspect, if present, optionally associates a single actual with each local port (or member thereof) in
the corresponding component declaration or entity declaration. Each local port (or member thereof) shall be
associated at most once. The generic map and port map aspects are described in 6.5.7.2 and 6.5.7.3.

If an instantiated unit containing the reserved word entity does not contain an explicitly specified
architecture identifier, then the architecture identifier is implicitly specified according to the rules given in
7.3.3. The architecture identifier defines a simple name that is used during the elaboration of a design
hierarchy to select the appropriate architecture body.

A component instantiation statement and a corresponding configuration specification, if any, taken together,
imply that the block hierarchy within the design entity containing the component instantiation is to be
extended with a unique copy of the block defined by another design entity. The generic map and port map
aspects in the component instantiation statement and in the binding indication of the configuration
specification identify the connections that are to be made in order to accomplish the extension.

NOTE 1—A configuration specification can be used to bind a particular instance of a component to a design entity and
to associate the local generics and local ports of the component with the formal generics and formal ports of that design
entity. A configuration specification can apply to a component instantiation statement only if the name in the instantiated
unit of the component instantiation statement denotes a component declaration. See 7.3.

NOTE 2—The component instantiation statement may be used to imply a structural organization for a hardware design.
By using component declarations, signals, and component instantiation statements, a given (internal or external) block
may be described in terms of subcomponents that are interconnected by signals.

NOTE 3—Component instantiation provides a way of structuring the logical decomposition of a design. The precise
structural or behavioral characteristics of a given subcomponent may be described later, provided that the instantiated
unit is a component declaration. Component instantiation also provides a mechanism for reusing existing designs in a
design library. A configuration specification can bind a given component instance to an existing design entity, even if
the generics and ports of the entity declaration do not precisely match those of the component (provided that the
instantiated unit is a component declaration); if the generics or ports of the entity declaration do not match those of the
component, the configuration specification shall contain a generic map or port map, as appropriate, to map the generics
and ports of the entity declaration to those of the component.

11.7.2 Instantiation of a component

A component instantiation statement whose instantiated unit contains a name denoting a component is
equivalent to a pair of nested block statements that couple the block hierarchy in the containing design unit
to a unique copy of the block hierarchy contained in another design unit (i.e., the subcomponent). The outer
block represents the component declaration; the inner block represents the design entity to which the
component is bound. Each is defined by a block statement.

The header of the block statement corresponding to the component declaration consists of the generic and
port clauses (if present) that appear in the component declaration, followed by the generic map and port map
aspects (if present) that appear in the corresponding component instantiation statement. The meaning of any
identifier appearing in the header of this block statement is that associated with the corresponding
occurrence of the identifier in the generic clause, port clause, generic map aspect, or port map aspect. The
statement part of the block statement corresponding to the component declaration consists of a nested block
statement corresponding to the design entity.

The header of the block statement corresponding to the design entity consists of the generic and port clauses
(if present) that appear in the entity declaration that defines the interface to the design entity, followed by the
generic map and port map aspects (if present) that appear in the binding indication that binds the component
instance to that design entity. The declarative part of the block statement corresponding to the design entity
consists of the declarative items from the entity declarative part, followed by the declarative items from the
declarative part of the corresponding architecture body. The statement part of the block statement

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -178 -
IEEE Std 1076-2008

corresponding to the design entity consists of the concurrent statements from the entity statement part,
followed by the concurrent statements from the statement part of the corresponding architecture body. The
meaning of any identifier appearing anywhere in this block statement is that associated with the
corresponding occurrence of the identifier in the entity declaration or architecture body.

For example, consider the following component declaration, instantiation, and corresponding configuration
specification:

component

COMP port (A,B: inout BIT);
end component;
for C: COMP use

entity X (Y)
port map (Pl => A, P2 => B);

C: COMP port map (A => S1, B => S2);
Given the following entity declaration and architecture declaration:

entity X is
port (Pl, P2: inout BIT);

constant Delay: TIME := 1 ms;
begin

CheckTiming (P1, P2, 2*Delay);
end X ;

architecture Y of X is
signal P3: BIT;
begin
P3 <= Pl after Delay;
P2 <= P3 after Delay;
B: block

begin

end block;
end Y;

then the following block statements implement the coupling between the block hierarchy in which
component instantiation statement C appears and the block hierarchy contained in design entity X(Y):

C: block -- Component block.
port (A,B: inout BIT); -- Local ports.
port map (A => S1, B => S2); -- Actual/local binding.
begin
X: block -— Design entity block.
port (Pl, P2 : inout BIT); -- Formal ports.

|PuMBhedbyIECundmﬂmenseﬂomIEEEA32008IEEE.AHﬂghmresewedj

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-179 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008
port map (Pl => A, P2 => B); -- Local/formal binding.
constant Delay: TIME := 1 ms; -- Entity declarative item.
signal P3: BIT; -- Architecture declarative item.
begin
CheckTiming (P1, P2, 2*Delay); -- Entity statement.
P3 <= Pl after Delay; -— Architecture statements.
P2 <= P3 after Delay;
B: block -- Internal block hierarchy.
begin
end block;

end block X ;
end block C;

The block hierarchy extensions implied by component instantiation statements that are bound to design
entities are accomplished during the elaboration of a design hierarchy (see Clause 14).

11.7.3 Instantiation of a design entity

A component instantiation statement whose instantiated unit denotes either a design entity or a configuration
declaration is equivalent to a pair of nested block statements that couple the block hierarchy in the
containing design unit to a unique copy of the block hierarchy contained in another design unit (i.e., the
subcomponent). The outer block represents the component instantiation statement; the inner block
represents the design entity to which the instance is bound. Each is defined by a block statement.

The header of the block statement corresponding to the component instantiation statement is empty, as is the
declarative part of this block statement. The statement part of the block statement corresponding to the
component declaration consists of a nested block statement corresponding to the design entity.

The header of the block statement corresponding to the design entity consists of the generic and port clauses
(if present) that appear in the entity declaration that defines the interface to the design entity, followed by the
generic map and port map aspects (if present) that appear in the component instantiation statement that binds
the component instance to a copy of that design entity. The declarative part of the block statement
corresponding to the design entity consists of the declarative items from the entity declarative part, followed
by the declarative items from the declarative part of the corresponding architecture body. The statement part
of the block statement corresponding to the design entity consists of the concurrent statements from the
entity statement part, followed by the concurrent statements from the statement part of the corresponding
architecture body. The meaning of any identifier appearing anywhere in this block statement is that
associated with the corresponding occurrence of the identifier in the entity declaration or architecture body.

For example, consider the following design entity:

entity X is
port (Pl, P2: inout BIT);

constant Delay: DELAY LENGTH := 1 ms;
use WORK.TimingChecks.all;
begin

CheckTiming (P1, P2, 2*Delay);
end entity X;

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -180-
IEEE Std 1076-2008

architecture Y of X is
signal P3: BIT;

begin
P3 <= Pl after Delay;
P2 <= P3 after Delay;
B: block

begin

end block B;
end architecture Y;

This design entity is instantiated by the following component instantiation statement:
C: entity WORK.X (Y) port map (Pl => S1, P2 => S2);

The following block statements implement the coupling between the block hierarchy in which component
instantiation statement C appears and the block hierarchy contained in design entity X(Y):

C: block -- Instance block.
begin
X: block -— Design entity block.
port (Pl, P2: inout BIT); -- Entity declaration ports.
port map (Pl => S1, P2 => S2); -- Instantiation statement
-— port map.
constant Delay: DELAY LENGTH -- Entity declarative items.
:= 1 ms;
use WORK.TimingChecks.all;
signal P3: BIT; -- Architecture declarative item.
begin
CheckTiming (P1, P2, 2*Delay); -- Entity statement.
P3 <= Pl after Delay; -- Architecture statements.
P2 <= P3 after Delay;
B: block

begin

end block B;
end block X;
end block C;

Moreover, consider the following design entity, which is followed by an associated configuration
declaration and component instantiation:

entity X is

|PuMBhedbyIECundmﬂmenseﬂomIEEEADZOOSIEEE.AHﬂghmresewedj

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

-181- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

port (Pl, P2: inout BIT);

constant Delay: DELAY LENGTH := 1 ms;
use WORK.TimingChecks.all;
begin

CheckTiming (P1, P2, 2*Delay);
end entity X;

architecture Y of X is
signal P3: BIT;
begin
P3 <= Pl after Delay;

P2 <= P3 after Delay;
B: block

begin

end block B;
end architecture Y;

The configuration declaration is

configuration Alpha of X is
for v

end for;
end configuration Alpha;

The component instantiation is
C: configuration WORK.Alpha port map (Pl => S1, P2 => S2);

The following block statements implement the coupling between the block hierarchy in which component
instantiation statement C appears and the block hierarchy contained in design entity X(Y):

C: block -- Instance block.
begin
X: block -— Design entity block.
port (Pl, P2: inout BIT); -- Entity declaration ports.
port map (Pl => S1, P2 => 32); -- Instantiation statement
-— port map.
constant Delay: DELAY LENGTH -- Entity declarative items.
:= 1 ms;
use WORK.TimingChecks.all;
signal P3: BIT; -- Architecture declarative item.
begin
CheckTiming (P1, P2, 2*Delay); -- Entity statement.
P3 <= Pl after Delay; -- Architecture statements.

P2 <= P3 after Delay;

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -182-
IEEE Std 1076-2008

B: block

begin

end block B;
end block X;
end block C;

The block hierarchy extensions implied by component instantiation statements that are bound to design
entities occur during the elaboration of a design hierarchy (see Clause 14).

11.8 Generate statements

A generate statement provides a mechanism for iterative or conditional elaboration of a portion of a
description.

generate statement ::=
for generate statement
| if generate statement
| case generate statement

for generate statement ::=
generate_label :
for generate parameter_specification generate
generate statement body
end generate [generate_label | ;

if generate statement ::=
generate_label :

if [alternative label :] condition generate
generate_statement_body

{ elsif [alternative label :] condition generate
generate statement body }

[else [alternative label : | generate
generate _statement_body |

end generate [generate label] ;

case_generate_statement ::=
generate_label :
case expression generate
case generate alternative
{ case_generate alternative }
end generate [generate label] ;

case_generate alternative ::=
when [alternative label :] choices =>

generate statement body

generate statement body ::=

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-183 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

[block declarative part
begin |

{ concurrent_statement }
[end [alternative label |; |

label ::= identifier

If a label appears at the end of a generate statement, it shall repeat the generate label. The alternative labels,
if any, within an if generate statement or a case generate statement shall all be distinct. An alternative label
shall not appear at the end of the generate statement body in a for generate statement. If a label appears at the
end of a generate statement body in an if generate statement, then the immediately enclosing if;, elsif, or else
part of the if generate statement shall include an alternative label, and the label at the end of the generate
statement body shall repeat the alternative label. Similarly, if a label appears at the end of a generate
statement body in a case generate statement, then the immediately enclosing case generate alternative of the
case generate statement shall include an alternative label, and the label at the end of the generate statement
body shall repeat the alternative label.

For a for generate statement, the generate parameter specification is the declaration of the generate
parameter with the given identifier. The generate parameter is a constant object whose type is the base type
of the discrete range of the generate parameter specification.

The discrete range in the generate parameter specification of a for generate statement shall be a static
discrete range; similarly, each condition in an if generate statement shall be a static expression.

For a case generate statement, the expression shall be globally static, and shall be of a discrete type, or of a
one-dimensional array type whose element base type is a character type. This type shall be determined by
applying the rules of 12.5 to the expression considered as a complete context, using the fact that the
expression shall be of a discrete type or a one-dimensional character array type. Each choice in a case
generate alternative shall be of the same type as the expression; the list of choices specifies for which values
of the expression the alternative is chosen.

If the expression is the name of an object whose subtype is globally static, whether a scalar type or an array
type, then each value of the subtype shall be represented once and only once in the set of choices of the case
generate statement, and no other value is allowed; this rule is likewise applied if the expression is a qualified
expression or type conversion whose type mark denotes a globally static subtype, or if the expression is a
call to a function whose return type mark denotes a globally static subtype, or if the expression is an
expression described in this paragraph and enclosed in parentheses.

If the expression is of a one-dimensional character array type and is not described by the preceding
paragraph, then the values of all of the choices, except the others choice, if present, shall be of the same
length. Moreover, each value of the (base) type of the expression shall be represented once and only once in
the set of choices, and no other value is allowed. It is an error if the value of the expression is not of the same
length as the values of the choices. If there is only one choice and that choice is others, then the value of the
expression may be of any length.

For other forms of expression, each value of the (base) type of the expression shall be represented once and
only once in the set of choices, and no other value is allowed.

The simple expression and discrete ranges given as choices in a case generate statement shall be globally
static. A choice defined by a discrete range stands for all values in the corresponding range. The choice
others is only allowed for the last alternative and as its only choice; it stands for all values (possibly none)
not given in the choices of previous alternatives. An element simple name (see 9.3.3.1) is not allowed as a
choice of a case generate alternative.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -184 -
IEEE Std 1076-2008

The elaboration of a generate statement is described in 14.5.3.
Example:

Gen: block
begin
L1l: CELL port map (Top, Bottom, A(0), B(0));
L2: for I in 1 to 3 generate
L3: for J in 1 to 3 generate
L4: if I+J>4 generate
L5: CELL port map (A(I-1),B(J-1),A(I),B(J));
end generate;
end generate;
end generate;

L6: for I in 1 to 3 generate
L7: for J in 1 to 3 generate
L8: if I+J<4 generate
L9: CELL port map (A(I+1),B(J+1),A(I),B(J));
end generate;
end generate;
end generate;
end block Gen;

Gen2: block
begin
Ll: case verify mode generate
when V rtl: all rtl | cpu rtl =>
CPUl: entity work.cpu(rtl) port map (...)
when V _bfm: others =>
signal bfm sig : BIT;

~.

begin
CPUl: entity work.cpu(bfm) port map (...);
end V bfm;
end generate LI1;

L2: if Al: max latency < 10 generate
signal sl : BIT;
begin
multiplierl: parallel multiplier port map (
end Al;
else A2: generate
signal sl : STD LOGIC;
begin
multiplierl: sequential multiplier port map (
end A2;
end generate L2;
end block Gen2;

|PuMBhedbyIECundmﬂmenseﬂomIEEEA32008IEEE.AHﬂghmresewedj

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-185- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

12. Scope and visibility

12.1 Declarative region

With two exceptions, a declarative region is a portion of the text of the description. A single declarative
region is formed by the text of each of the following:

a) An entity declaration, together with a corresponding architecture body
b) A configuration declaration

¢) A subprogram declaration, together with the corresponding subprogram body
d) A package declaration together with the corresponding body (if any)
e) A record type declaration

f) A component declaration

g) A block statement

h) A process statement

i) A loop statement

j) A block configuration

k) A component configuration

1) A generate statement

m) A protected type declaration, together with the corresponding body

In each of these cases, the declarative region is said to be associated with the corresponding declaration or
statement. A declaration is said to occur immediately within a declarative region if this region is the
innermost region that encloses the declaration, not counting the declarative region (if any) associated with
the declaration itself.

Certain declarative regions include disjoint parts. Each declarative region is nevertheless considered as a
(logically) continuous portion of the description text. Hence, if any rule defines a portion of text as the text
that extends from some specific point of a declarative region to the end of this region, then this portion is the
corresponding subset of the declarative region (thus, it does not include intermediate declarative items
between the interface declaration and a corresponding body declaration).

In addition to the preceding declarative regions, there is a root declarative region, not associated with a
portion of the text of the description, but encompassing any given primary unit. At the beginning of the
analysis of a given primary unit, there are no declarations whose scopes (see 12.2) are within the root
declarative region. Moreover, the root declarative region associated with any given secondary unit is the root
declarative region of the corresponding primary unit.

There is also a library declarative region associated with each design library (see 13.2). Each library
declarative region has within its scope declarations corresponding to each primary unit contained within the
associated design library.

NOTE—An architecture body, though a declaration, does not occur immediately within any declarative region.

12.2 Scope of declarations

For each form of declaration, the language rules define a certain portion of the description text called the
scope of the declaration. The scope of a declaration is also called the scope of any named entity declared by
the declaration. Furthermore, if the declaration associates some notation (either an identifier, a character
literal, or an operator symbol) with the named entity, this portion of the text is also called the scope of this
notation. Within the scope of a named entity, and only there, there are places where it is legal to use the

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -186-
IEEE Std 1076-2008

associated notation in order to refer to the named entity. These places are defined by the rules of visibility
and overloading.

The scope of a declaration, except for an architecture body, extends from the beginning of the declaration to
the end of the immediately closing declarative region; the scope of an architecture body extends from the
beginning to the end of the architecture body. In either case, this part of the scope of a declaration is called
the immediate scope. Furthermore, for any of the declarations in the following list, the scope of the
declaration extends beyond the immediate scope:

a) A declaration that occurs immediately within a package declaration
b) An element declaration in a record type declaration

¢) A formal parameter declaration in a subprogram declaration

d) A local generic declaration in a component declaration

e) A local port declaration in a component declaration

f) A formal generic declaration in an entity declaration, an uninstantiated package declaration, or an
uninstantiated subprogram declaration

g) A formal port declaration in an entity declaration
h) A declaration that occurs immediately within a protected type declaration

i) An architecture body

In the absence of a separate subprogram declaration, the subprogram specification given in the subprogram
body acts as the declaration, and rule ¢) applies also in such a case. In each of these cases except i), the given
declaration occurs immediately within some enclosing declaration, and the scope of the given declaration
extends to the end of the scope of the enclosing declaration.

In addition to the preceding rules, if the the scope of any declaration includes the end of the declarative part
of a given block (whether it be an external block defined by a design entity or an internal block defined by a
block statement) then the scope of the declaration extends into a configuration declaration that configures
the given block.

If a component configuration appears as a configuration item immediately within a block configuration that
configures a given block, and if the scope of a given declaration includes the end of the declarative part of
that block, then the scope of the given declaration extends from the beginning to the end of the declarative
region associated with the given component configuration. A similar rule applies to a block configuration
that appears as a configuration item immediately within another block configuration, provided that the
contained block configuration configures an internal block. Furthermore, the scope of a use clause is
similarly extended. Finally, the scope of a library unit contained within a design library is extended along
with the scope of the logical library name corresponding to that design library.

If the scope of any declaration includes the end of the declarative region of the design entity at the root of the
design hierarchy, then the scope extends into a PSL verification unit that is bound to that design entity.
Similarly, if the scope of any declaration includes the end of the declarative region of a design entity bound
to a component instance, then the scope extends into a PSL verification unit that is bound to that component
Instance.

NOTE 1—These scope rules apply to all forms of declaration. In particular, they apply also to implicit declarations and
to named primary units.

NOTE 2—The scope of an entity declaration includes an associated architecture body, if any. Thus, the entity name may
be used within the architecture body as the prefix of an expanded name denoting a declaration that occurs immediately
within the entity declaration or the architecture body. The scope of an architecture body does not include the
corresponding entity declaration. Thus, the entity cannot use an expanded name to refer to the architecture body nor to
any declaration within the architecture body.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

- 187 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

12.3 Visibility

The meaning of the occurrence of an identifier at a given place in the text is defined by the visibility rules
and also, in the case of overloaded declarations, by the overloading rules. The identifiers considered in this
subclause include any identifier other than a reserved word or an attribute designator that denotes a
predefined attribute. The places considered in this subclause are those where a lexical element (such as an
identifier) occurs. The overloaded declarations considered in this subclause are those for subprograms and
enumeration literals.

For each identifier and at each place in the text, the visibility rules determine a set of declarations (with this
identifier) that define the possible meanings of an occurrence of the identifier. A declaration is said to be
visible at a given place in the text when, according to the visibility rules, the declaration defines a possible
meaning of this occurrence. The following two cases arise in determining the meaning of such a declaration:

— The visibility rules determine at most one possible meaning. In such a case, the visibility rules are
sufficient to determine the declaration defining the meaning of the occurrence of the identifier, or in
the absence of such a declaration, to determine that the occurrence is not legal at the given point.

— The visibility rules determine more than one possible meaning. In such a case, the occurrence of the
identifier is legal at this point if and only if exactly one visible declaration is acceptable for the
overloading rules in the given context or all visible declarations denote the same named entity.

A declaration is visible only within a certain part of its scope; this part starts at the end of the declaration
except in the declaration of a design unit other than a PSL verification unit, a package declaration, or a
protected type declaration, in which case it starts immediately after the reserved word is occurring after the
identifier of the design unit, a package declaration, or protected type declaration. This rule applies to both
explicit and implicit declarations.

Visibility is either by selection or direct. A declaration is visible by selection at places that are defined as
follows:

a) For a primary unit contained in a library: at the place of the suffix in a selected name whose prefix
denotes the library.

b) For an entity name in a configuration declaration whose entity name is a simple name: at the place of
the simple name, and the context is that of the library WORK.

¢) For an architecture body associated with a given entity declaration: at the place of the block
specification in a block configuration for an external block whose interface is defined by that entity
declaration.

d) For an architecture body associated with a given entity declaration: at the place of an architecture
identifier (between the parentheses) in the first form of an entity aspect in a binding indication.

e) For an architecture body associated with a given entity declaration: at the place of an architecture
identifier (between the parentheses) in the second form of an instantiated unit in a component
instantiation statement.

f) For a declaration given in a package declaration, other than in a package declaration that defines an
uninstantiated package: at the place of the suffix in a selected name whose prefix denotes the
package.

g) For an element declaration of a given record type declaration: at the place of the suffix in a selected
name whose prefix is appropriate for the type; also at the place of a choice (before the compound
delimiter =>) in a named element association of an aggregate of the type.

h) For an element declaration of a given record type declaration: at the place of the record element
simple name in a record element constraint of a record constraint that applies to a type or subtype
that is the given record type or an access type whose designated type is the given record type; also at
the place of a record element simple name in a record element resolution of a record resolution
corresponding to the given record type or a subtype of the given record type.

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -188-
IEEE Std 1076-2008

)

)

k)

D

0)

p)

Q

r)

t)

For a user-defined attribute: at the place of the attribute designator (after the delimiter ') in an
attribute name whose prefix denotes a named entity with which that attribute has been associated.

For a formal parameter declaration of a given subprogram declaration: at the place of the formal part
(before the compound delimiter =>) of a named parameter association element of a corresponding
subprogram call.

For a local generic declaration of a given component declaration: at the place of the formal part
(before the compound delimiter =>) of a named generic association element of a corresponding
component instantiation statement; similarly, at the place of the actual part (after the compound
delimiter =>, if any) of a generic association element of a corresponding binding indication.

For a local port declaration of a given component declaration: at the place of the formal part (before
the compound delimiter =>) of a named port association element of a corresponding component
instantiation statement; similarly, at the place of the actual part (after the compound delimiter =>, if
any) of a port association element of a corresponding binding indication.

For a formal generic declaration of a given entity declaration: at the place of the formal part (before
the compound delimiter =>) of a named generic association element of a corresponding binding
indication; similarly, at the place of the formal part (before the compound delimiter =>) of a generic
association element of a corresponding component instantiation statement when the instantiated unit
is a design entity or a configuration declaration.

For a formal port declaration of a given entity declaration: at the place of the formal part (before the
compound delimiter =>) of a named port association element of a corresponding binding indication;
similarly, at the place of the formal part (before the compound delimiter =>) of a port association
element of a corresponding component instantiation statement when the instantiated unit is a design
entity or a configuration declaration.

For a formal generic declaration or a formal port declaration of a given block statement: at the place
of the formal part (before the compound delimiter =>) of a named association element of a
corresponding generic or port map aspect.

For a formal generic declaration of a given package declaration: at the place of the formal part
(before the compound delimiter =>) of a named association element of a corresponding generic map
aspect.

For a formal generic declaration of a given subprogram declaration: at the place of the formal part
(before the compound delimiter =>) of a named association element of a corresponding generic map
aspect.

For a formal generic type of a given uninstantiated subprogram declaration: at the place of a
signature in a subprogram instantiation declaration in which the uninstantiated subprogram name
denotes the given uninstantiated subprogram declaration.

For a subprogram declared immediately within a given protected type declaration: at the place of the
suffix in a selected name whose prefix denotes an object of the protected type.

For an alternative label of an if generate statement or a case generate statement: at the place of the
generate specification in a block specification that refers to the generate statement label of the
generate statement.

Finally, within the declarative region associated with a construct other than a record type declaration or a
protected type, any declaration that occurs immediately within the region and that also occurs textually
within the construct is visible by selection at the place of the suffix of an expanded name whose prefix
denotes the construct. Similarly, within an architecture body, any declaration that occurs immediately within
the architecture body or the corresponding entity declaration is visible by selection at the place of the suffix
of an expanded name whose prefix denotes the entity declaration.

Where it is not visible by selection, a visible declaration is said to be directly visible. A declaration is said to
be directly visible within a certain part of its immediate scope; this part extends to the end of the immediate
scope of the declaration but excludes places where the declaration is hidden as explained in the following

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

- 189 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

paragraphs. In addition, a declaration occurring immediately within the visible part of a package, other than
an uninstantiated package, can be made directly visible by means of a use clause according to the rules
described in 12.4.

A declaration is said to be hidden within (part of) an inner declarative region if the inner region contains a
homograph of this declaration; the outer declaration is then hidden within the immediate scope of the inner
homograph. Each of two declarations is said to be a homograph of the other if and only if both declarations
have the same designator, and they denote different named entities, and either overloading is allowed for at
most one of the two, or overloading is allowed for both declarations and they have the same parameter and
result type profile (see 4.5.1).

At a place in which a given declaration is visible by selection, every declaration with the same designator as
the given declaration and that would otherwise be directly visible is hidden.

Within the specification of a subprogram, every declaration with the same designator as the subprogram is
hidden. Where hidden in this manner, a declaration is visible neither by selection nor directly.

Two declarations that occur immediately within the same declarative region, other than the declarative
region of a block implied by a component instantiation or the declarative region of a generic-mapped
package or subprogram equivalent to a package instance or a subprogram instance, shall not be homographs,
unless exactly one of them is the implicit declaration of a predefined operation or is an implicit alias of such
an implicit declaration. In such cases, a predefined operation or alias thereof is always hidden by the other
homograph. Where hidden in this manner, an implicit declaration is hidden within the entire scope of the
other declaration (regardless of which declaration occurs first); the implicit declaration is visible neither by
selection nor directly. For a declarative region of a block implied by a component instantiation or the
declarative region of a generic-mapped package or subprogram equivalent to a package instance or a
subprogram instance, the rules of this paragraph are applied to the corresponding entity declaration,
component declaration, uninstantiated package declaration, or uninstantiated subprogram declaration, as
appropriate.

A declaration is hidden within a PSL declaration, a PSL directive, or a PSL verification unit if the simple
name of the declaration is a PSL keyword.

Whenever a declaration with a certain identifier is visible from a given point, the identifier and the named
entity (if any) are also said to be visible from that point. Direct visibility and visibility by selection are
likewise defined for character literals and operator symbols. An operator is directly visible if and only if the
corresponding operator declaration is directly visible.

In addition to the aforementioned rules, any declaration that is visible by selection at the end of the
declarative part of a given (external or internal) block is visible by selection in a configuration declaration
that configures the given block.

In addition, any declaration that is directly visible at the end of the declarative part of a given block is
directly visible in a block configuration that configures the given block. This rule holds unless a use clause
that makes a homograph of the declaration potentially visible (see 12.4) appears in the corresponding
configuration declaration, and if the scope of that use clause encompasses all or part of those configuration
items. If such a use clause appears, then the declaration will be directly visible within the corresponding
configuration items, except at those places that fall within the scope of the additional use clause. At such
places, neither name will be directly visible.

If a component configuration appears as a configuration item immediately within a block configuration that
configures a given block, and if a given declaration is visible by selection at the end of the declarative part of
that block, then the given declaration is visible by selection from the beginning to the end of the declarative
region associated with the given component configuration. A similar rule applies to a block configuration

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -190-
IEEE Std 1076-2008

that appears as a configuration item immediately within another block configuration, provided that the
contained block configuration configures an internal block.

If a component configuration appears as a configuration item immediately within a block configuration that
configures a given block, and if a given declaration is directly visible at the end of the declarative part of that
block, then the given declaration is visible by selection from the beginning to the end of the declarative
region associated with the given component configuration. A similar rule applies to a block configuration
that appears as a configuration item immediately within another block configuration, provided that the
contained block configuration configures an internal block. Furthermore, the visibility of declarations made
directly visible by a use clause within a block is similarly extended. Finally, the visibility of a logical library
name corresponding to a design library directly visible at the end of a block is similarly extended. The rules
of this paragraph hold unless a use clause that makes a homograph of the declaration potentially visible
appears in the corresponding block configuration, and if the scope of that use clause encompasses all or part
of those configuration items. If such a use clause appears, then the declaration will be directly visible within
the corresponding configuration items, except at those places that fall within the scope of the additional use
clause. At such places, neither name will be directly visible.

NOTE 1—The same identifier, character literal, or operator symbol may occur in different declarations and may thus be
associated with different named entities, even if the scopes of these declarations overlap. Overlap of the scopes of
declarations with the same identifier, character literal, or operator symbol can result from overloading of subprograms
and of enumeration literals. Such overlaps can also occur for named entities declared in the visible parts of packages and
for formal generics and ports, record elements, and formal parameters, where there is overlap of the scopes of the
enclosing package declarations, entity declarations, record type declarations, or subprogram declarations. Finally,
overlapping scopes can result from nesting.

NOTE 2—The rules defining immediate scope, hiding, and visibility imply that a reference to an identifier, character
literal, or operator symbol within its own declaration is illegal (except for design units). The identifier, character literal,
or operator symbol hides outer homographs within its immediate scope—that is, from the start of the declaration. On the
other hand, the identifier, character literal, or operator symbol is visible only after the end of the declaration (again,
except for design units). For this reason, all but the last of the following declarations are illegal:

constant K: INTEGER := K*K; -- Illegal
constant T: T, -— Illegal
procedure P (X: P); -- Illegal
function Q (X: REAL := Q) return Q, -- Illegal
procedure R (R: REAL); -- Legal (although perhaps confusing)

NOTE 3—A declaration in an uninstantiated package cannot be made visible by selection by referencing it with a
selected name. However, a declaration in an instance of the package can be referenced with a selected name.

NOTE 4—There are circumstances where it is legal for two subprograms declared in the same declarative region to be
homographs. An example is the declaration of the following two subprograms in an uninstantiated package with formal
generic types T1 and T2:

procedure P (X: T1);
procedure P (X: T2);

Since T1 and T2 are distinct types, the subprograms are not homographs within the uninstantiated package. If an
instance of the package associates the same actual type with both T1 and T2, then the subprograms are legal homographs
within the instance. However, any call to either of the subprograms in the instance will be ambiguous.

NOTE 5—The visibility of declarations within a PSL verification unit is defined in IEEE Std 1850-2005.

Example:

L1l: block
signal A,B: Bit;
begin
L2: block
signal B: Bit; -- An inner homograph of B.
begin

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-191 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008
A <= B after 5 ns; --— Means L1.A <= L2.B
B <= L1.B after 10 ns; -- Means L2.B <= L1.B
end block ;
B <= A after 15 ns; -— Means L1.B <= L1.A
end block;

12.4 Use clauses
A use clause achieves direct visibility of declarations that are visible by selection.

use_clause ::=
use selected name {, selected name } ;

Each selected name in a use clause identifies one or more declarations that will potentially become directly
visible. If the suffix of the selected name is a simple name other than a type mark, or is a character literal or
operator symbol, then the selected name identifies only the declaration(s) of that simple name, character
literal, or operator symbol contained within the package or library denoted by the prefix of the selected
name.

If the suffix of the selected name is a type mark, then the declaration of the type or subtype denoted by the
type mark is identified. Moreover, the following declarations, if any, that occur immediately within the
package denoted by the prefix of the selected name, are also identified:

— If the type mark denotes an enumeration type or a subtype of an enumeration type, the enumeration
literals of the base type

— If the type mark denotes a subtype of a physical type, the units of the base type

— The implicit declarations of predefined operations for the type that are not hidden by homographs
explicitly declared immediately within the package denoted by the prefix of the selected name

— The declarations of homographs, explicitly declared immediately within the package denoted by the
prefix of the selected name, that hide implicit declarations of predefined operations for the type

If the suffix is the reserved word all, then the selected name identifies all declarations that are contained
within the package or library denoted by the prefix of the selected name.

It is an error if the prefix of a selected name in a use clause denotes an uninstantiated package.

For each use clause, except a use clause that appears within a context declaration, there is a certain region of
text called the scope of the use clause. This region starts immediately after the use clause. If a use clause is a
declarative item of some declarative region, the scope of the clause extends to the end of the given
declarative region. If a use clause occurs within the context clause of a design unit, the scope of the use
clause extends to the end of the root declarative region associated with the given design unit. The scope of a
use clause may additionally extend into a configuration declaration (see 12.2).

In order to determine which declarations are made directly visible at a given place by use clauses, consider
the set of declarations identified by all use clauses whose scopes enclose this place. Any declaration in this
set is a potentially visible declaration. A potentially visible declaration is actually made directly visible
except in the following three cases:

a) A potentially visible declaration is not made directly visible if the place considered is within the
immediate scope of a homograph of the declaration.

b) Iftwo potentially visible declarations are homographs and one is explicitly declared and the other is
implicitly declared, then the implicit declaration is not made directly visible.

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -192-
IEEE Std 1076-2008

c) Potentially visible declarations that have the same designator and that are not covered by case b) are
not made directly visible unless each of them is either an enumeration literal specification or the
declaration of a subprogram.

NOTE 1—These rules guarantee that a declaration that is made directly visible by a use clause cannot hide an otherwise
directly visible declaration. Moreover, an explicitly declared operation has priority over an implicitly declared
homograph of that operation if both are made potentially visible by use clauses.

NOTE 2—If a named entity X declared in package P is made potentially visible within a package Q (e.g., by the
inclusion of the clause "use P.X;" in the context clause of package Q), and the context clause for design unit R includes
the clause "use Q.all;", this does not imply that X will be potentially visible in R. Only those named entities that are
actually declared in package Q will be potentially visible in design unit R (in the absence of any other use clauses).

NOTE 3—A declaration in an uninstantiated package cannot be made potentially or directly visible by a use clause.
However, a declaration in an instance of the package can be made potentially or directly visible by a use clause.

12.5 The context of overload resolution
Overloading is defined for names, subprograms, and enumeration literals.

For overloaded entities, overload resolution determines the actual meaning that an occurrence of an
identifier or a character literal has whenever the visibility rules have determined that more than one meaning
is acceptable at the place of this occurrence; overload resolution likewise determines the actual meaning of
an occurrence of an operator or basic operation (see 5.1).

At such a place, all visible declarations are considered. The occurrence is only legal if there is exactly one
interpretation of each constituent of the innermost complete context. Each of the following constructs is a
complete context:

— A declaration
— A specification
— A statement

— A discrete range used in a constrained array definition, a generate parameter specification, or a loop
parameter specification

— The expression of a type conversion
— The expression of a case statement or a case generate statement

— The expression following a for generate statement label in an external name

When considering possible interpretations of a complete context, the only rules considered are the syntax
rules, the scope and visibility rules, and the rules of the form as follows:

a) Any rule that requires a name or expression to have a certain type or to have the same type as
another name or expression.

b) Any rule that requires the type of a name or expression to be a type of a certain class; similarly, any
rule that requires a certain type to be a discrete, integer, floating-point, physical, universal, or
character type.

¢) Any rule that requires a prefix to be appropriate for a certain type.

d) The rules that require the type of an aggregate or string literal to be determinable solely from the
enclosing complete context. Similarly, the rules that require that the meaning of the prefix of an
attribute must be determinable independently of the attribute designator and independently of the
fact that it is the prefix of an attribute.

e) The rules given for the resolution of overloaded subprogram calls; for the implicit conversions of
universal expressions; for the interpretation of discrete ranges with bounds having a universal type;
for the interpretation of an expanded name whose prefix denotes a subprogram; and for a

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-193 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

subprogram named in a subprogram instantiation declaration to denote an uninstantiated
subprogram.

f) The rules given for the requirements on the return type, the number of formal parameters, and the
types of the formal parameters of the subprogram denoted by the resolution function name (see 4.6).

NOTE 1—If there is only one possible interpretation of an occurrence of an identifier, character literal, operator symbol,
or string, that occurrence denotes the corresponding named entity. However, this condition does not mean that the
occurrence is necessarily legal since other requirements exist that are not considered for overload resolution: for
example, the fact that the expression is static, the parameter modes, conformance rules, the use of named association in
an indexed name, the use of open in an indexed name, the use of a slice as an actual to a function call, and so forth.

NOTE 2—A loop parameter specification is a declaration, and hence a complete context.

NOTE 3—Rules that require certain constructs to have the same parameter and result type profile fall under the
preceding category a). This includes the rule that the actual associated with a formal generic subprogram have a
conforming profile with the formal. The same holds for rules that require lexical conformance of two constructs, since
lexical conformance requires that corresponding names be given the same meaning by the visibility and overloading
rules.

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

Copyrighted material licensed to BR Demo by Thomson Reuters (Scientific), Inc., subscriptions.techstreet.com, downloaded on Nov-28-2014 by James Madison. No further reproduction or distribution is permitted. Uncontroll

-194 -

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

-195- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

13. Design units and their analysis

13.1 Design units

Certain constructs are independently analyzed and inserted into a design library; these constructs are called
design units. One or more design units in sequence comprise a design file.

design_file ::= design_unit { design_unit }

design_unit ::= context clause library unit

library unit ::
primary_unit
| secondary unit

primary unit ::=
entity declaration
| configuration declaration
| package declaration
| package instantiation_declaration
| context declaration
| PSL_Verification_Unit

secondary unit ::=
architecture_body
| package body

Design units in a design file are analyzed in the textual order of their appearance in the design file. Analysis
of a design unit defines the corresponding library unit in a design library. A library unit is either a primary
unit or a secondary unit. A secondary unit is a separately analyzed body of a primary unit resulting from a
previous analysis.

It is an error if the context clause preceding a library unit that is a context declaration is not empty.

The name of a primary unit is given by the first identifier after the initial reserved word of that unit. Of the
secondary units, only architecture bodies are named; the name of an architecture body is given by the
identifier following the reserved word architecture. Each primary unit in a given library shall have a simple
name that is unique within the given library, and each architecture body associated with a given entity
declaration shall have a simple name that is unique within the set of names of the architecture bodies
associated with that entity declaration.

Entity declarations, architecture bodies, and configuration declarations are discussed in Clause 3. Package

declarations, package bodies, and package instantiations are discussed in Clause 4. Context declarations are
discussed in 13.3. PSL verification units are described in IEEE Std 1850-2005.

13.2 Design libraries

A design library is an implementation-dependent storage facility for previously analyzed design units. A
given implementation is required to support any number of design libraries.

library clause ::= library logical name list;

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -196 -
IEEE Std 1076-2008

logical name list ::= logical name {, logical name }
logical name ::= identifier

A library clause defines logical names for design libraries in the host environment. A library clause appears
as part of a context clause, either at the beginning of a design unit or within a context declaration. For the
former case, the declaration of each logical name defined by the library clause occurs immediately within
the root declarative region associated with the design unit. For a library clause that appears within a context
declarative region, the logical names are not declared; rather, there is an equivalent library clause that
declares the logical names (see 13.4).

If two or more logical names having the same identifier (see 15.4) appear in library clauses in the same
context clause, the second and subsequent occurrences of the logical name have no effect. The same is true
of logical names appearing both in the context clause of a primary unit and in the context clause of a
corresponding secondary unit.

Each logical name defined by the library clause denotes a design library in the host environment.

For a given library logical name, the actual name of the corresponding design library in the host
environment may or may not be the same. A given implementation shall provide some mechanism to
associate a library logical name with a host-dependent library. Such a mechanism is not defined by the
language.

There are two classes of design libraries: working libraries and resource libraries. A working library is the
library into which the library unit resulting from the analysis of a design unit is placed. A resource library is
a library containing library units that are referenced within the design unit being analyzed. Only one library
is the working library during the analysis of any given design unit; in contrast, any number of libraries
(including the working library itself) may be resource libraries during such an analysis.

Every design unit except a context declaration and package STANDARD is assumed to contain the
following implicit context items as part of its context clause:

library STD, WORK; use STD.STANDARD.all;

Library logical name STD denotes the design library in which packages STANDARD, TEXTIO, and ENV
reside (see Clause 16). (The use clause makes all declarations within package STANDARD directly visible
within the corresponding design unit; see 12.4.) Library logical name WORK denotes the current working
library during a given analysis. Library logical name IEEE denotes the design library in which the
mathematical, multivalue logic and synthesis packages, and the synthesis context declarations reside (see
Clause 16).

The library denoted by the library logical name STD contains no library units other than packages
STANDARD, TEXTIO, and ENV.

A secondary unit corresponding to a given primary unit shall be placed into the design library in which the
primary unit resides.

NOTE—The design of the language assumes that the contents of resource libraries named in all library clauses in the
context clause of a design unit will remain unchanged during the analysis of that unit (with the possible exception of the
updating of the library unit corresponding to the analyzed design unit within the working library, if that library is also a
resource library).

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-197 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

13.3 Context declarations
A context declaration defines context items that may be referenced by design units.

context_declaration ::=
context identifier is
context_clause
end [context | [context simple name] ;

If a simple name appears at the end of a context declaration, it shall repeat the identifier of the context
declaration.

It is an error if a library clause in a context declaration defines the library logical name WORK, or if a
selected name in a use clause or a context reference in a context declaration has the library logical name
WORK as a prefix.

Example:

context project context is
library project lib;
use project lib.project defs.all;
library IP lib;
context IP 1lib.IP context;
end context project context;

13.4 Context clauses
A context clause defines the initial name environment in which a design unit is analyzed.
context_clause ::= { context item }

context_item ::=
library_clause
| use clause
| context reference

context_reference ::=
context selected_name { , selected_name } ;

A library clause defines library logical names that may be referenced in the design unit; library clauses are
described in 13.2. A use clause makes certain declarations directly visible within the design unit; use clauses
are described in 12.4.

It is an error if a selected name in a context reference does not denote a context declaration.

A given context clause is equivalent to an expanded context clause containing only library clauses and use
clauses. The expanded context clause is formed from the given context clause by replacing each context
reference with the expanded context clause of the context clause in the context declaration denoted by the
selected name of the context reference.

For a context clause that precedes a library unit, rules concerning scope and visibility are interpreted to
apply to the expanded context clause at the place of the context clause.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -198 -
IEEE Std 1076-2008

It is an error if, during analysis of a design unit, there is a library clause in the expanded context clause of the
design unit that occurs as part of a replacement of a context reference, and a logical name in that library
clause denotes a different design library from the design library denoted by the logical name during analysis
of the context declaration from which the library clause was expanded.

NOTE 1—The rules given for use clauses are such that the same effect is obtained whether the name of a library unit is
mentioned once or more than once by the applicable use clauses, or even within a given use clause.

NOTE 2—For a context clause that appears within a context declaration, the library clauses and use clauses have no
scope; hence, rules concerning scope and visibility do not apply.

13.5 Order of analysis

The rules defining the order in which design units can be analyzed are direct consequences of the visibility
rules. In particular

a) A primary unit whose name is referenced within a given design unit shall be analyzed prior to the
analysis of the given design unit.

b) A primary unit shall be analyzed prior to the analysis of any corresponding secondary unit.
In each case, the second unit depends on the first unit.

The order in which design units are analyzed shall be consistent with the partial ordering defined by the
preceding rules.

If any error is detected while attempting to analyze a design unit, then the attempted analysis is rejected and
has no effect whatsoever on the current working library.

A given library unit is potentially affected by a change in any library unit whose name is referenced within
the given library unit. A secondary unit is potentially affected by a change in its corresponding primary unit.
If a library unit is changed (e.g., by reanalysis of the corresponding design unit), then all library units that are
potentially affected by such a change become obsolete and shall be reanalyzed before they can be used
again.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

-199 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

14. Elaboration and execution

14.1 General

The process by which a declaration achieves its effect is called the elaboration of the declaration. After its
elaboration, a declaration is said to be elaborated. Prior to the completion of its elaboration (including before
the elaboration), the declaration is not yet elaborated.

Elaboration is also defined for design hierarchies, declarative parts, statement parts (containing concurrent
statements), and concurrent statements. Elaboration of such constructs is necessary in order ultimately to
elaborate declarative items that are declared within those constructs.

In order to execute a model, the design hierarchy defining the model shall first be elaborated. Initialization
of nets (see 14.7.3.4) in the model then occurs. Finally, simulation of the model proceeds. Simulation
consists of the repetitive execution of the simulation cycle, during which processes are executed and nets
updated.

14.2 Elaboration of a design hierarchy

The elaboration of a design hierarchy creates a collection of processes interconnected by nets; this collection
of processes and nets can then be executed to simulate the behavior of the design.

At the beginning of the eclaboration of a design hierarchy, every registered and enabled
vhpiCbStartOfElaboration callback is executed. Once the elaboration of a given design hierarchy
is complete, every registered and enabled vhpiCbEndOfElaboration callback is executed.

A design hierarchy is defined either by a design entity or by a configuration.

An implementation may allow PSL verification units, in addition to any whose binding is specified as part of
the design hierarchy, to be bound to design entities within the design hierarchy. The manner in which such
PSL verification units are identified and the manner in which binding is specified for such PSL verification
units that are not explicitly bound are not defined by this standard.

Elaboration of a design hierarchy defined by a design entity consists of the elaboration of the block
statement equivalent to the external block defined by the design entity. The architecture of this design entity
is assumed to contain an implicit configuration specification (see 7.3) for each component instance that is
unbound in this architecture; each configuration specification has an entity aspect denoting an anonymous
configuration declaration identifying the visible entity declaration (see 7.3.3) and supplying an implicit
block configuration (see 3.4.2) that binds and configures a design entity identified according to the rules of
7.3.3. The equivalent block statement is defined in 11.7.3. Elaboration of a block statement is defined in
14.5.2.

Elaboration of a configuration consists of the elaboration of the block statement equivalent to the external
block defined by the design entity configured by the configuration. The configuration contains an implicit
component configuration (see 3.4.3) for each unbound component instance contained within the external
block and an implicit block configuration (see 3.4.2) for each internal block contained within the external
block.

An implementation may allow, but is not required to allow, a design entity at the root of a design hierarchy
to have generics and ports. If an implementation allows these fop-level interface objects, it may restrict their
allowed forms (that is, whether they are allowed to be interface types, subprograms, packages, or objects),
and, in the case of interface objects, their allowed types and modes in an implementation-defined manner.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -200-
IEEE Std 1076-2008

Similarly, the means by which top-level interface objects are associated with the external environment of the
hierarchy are also defined by an implementation supporting top-level interface objects.

Elaboration of a block statement involves first elaborating each not-yet-elaborated package primary unit or
package instantiation primary unit containing declarations referenced by the block. Similarly, elaboration of
a given package primary unit or package instantiation primary unit involves first elaborating each not-yet-
elaborated package primary unit or package instantiation primary unit containing declarations referenced by
the given package or package instantiation. Elaboration of a package primary unit consists additionally of
the following:

a) Elaboration of the package declaration, eventually followed by

b) Elaboration of the corresponding package body, if the package has a corresponding package body.

Elaboration of a package instantiation primary unit consists of elaboration of the equivalent generic-mapped
package declaration, eventually followed by elaboration of the corresponding equivalent generic-mapped
package body, if such a package body is defined (see 4.9).

Step b), the elaboration of a package body, may be deferred until the declarations of other packages have
been elaborated, if necessary, because of the dependencies created between packages by their interpackage
references. Similarly, elaboration of an equivalent generic-mapped package body may be deferred if
necessary.

Elaboration of a package is defined in 14.4.2.9.

For a block statement implied by a design entity, whether the design entity at the root of the design hierarchy
or a design entity bound to a component instance, to which one or more PSL verification units are bound,
after elaboration of the implied block statement, each PSL verification unit bound to the design entity is
elaborated. Elaboration of a PSL verification unit involves first elaborating each not-yet-elaborated package
primary unit or package instantiation primary unit containing declarations referenced by the PSL
verification unit. Further interpretation of the PSL verification unit is defined in IEEE Std 1850-2005.

Elaboration of a design hierarchy is completed as follows:
— The drivers identified during elaboration of process statements (see 14.5.5) are created.

— The initial transaction defined by the default value associated with each scalar signal driven by a
process statement is inserted into the corresponding driver.

During elaboration of a design hierarchy, if an external name or alias of an external name appears in a
declaration or statement being elaborated, then in the following cases, the declaration of the object denoted
by the external name or alias shall have been previously elaborated:

— If the external name or alias is a primary or a prefix of a primary in an expression that is evaluated
during elaboration of the design hierarchy, when the primary is read during evaluation of the
expression.

— If'the external name or alias, or a name in which the external name or alias is a prefix, is associated as
an actual in an association element in a port map aspect, when the association element is elaborated.

NOTE—Since elaboration of declarations and statements occurs in the order of their appearance in a description, prior
elaboration of an object denoted by an external name may be ensured by an appropriate ordering of the declarations and
statements in the description.

Examples:

-— In the following example, because of the dependencies between
-- the packages, the elaboration of either package body shall
-- follow the elaboration of both package declarations.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

- 201 -
package Pl is
constant Cl: INTEGER := 42;
constant C2: INTEGER;
end package P1;
package P2 is
constant Cl: INTEGER := 17;
constant C2: INTEGER;
end package P2;
package body Pl is
constant C2: INTEGER := Work.P2.Cl;
end package body P1;
package body P2 is
constant C2: INTEGER := Work.P1.Cl;

end package body P2;
-- If a design hierarchy is described by
entity E is end;

architecture A of E is
component comp
port (...);
end component;
begin
C: comp port map (...);
B: block

begin

end block B;
end architecture A;

IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

the following design entity:

then its architecture contains the following implicit configuration

-- specification at the end of its declarative part:
for C: comp use configuration anonymous;

-- and the following configuration declaration is assumed to exist
-— when E(A) 1s elaborated:

configuration anonymous of L.E is -- L is the library in which
-- E(A) is found.
for A —-—- The most recently analyzed

-- architecture of L.E.
end for;
end configuration anonymous;

-- In the following example, each appearance of an external name is
-- legal or illegal as noted.

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -202-
IEEE Std 1076-2008

entity TOP is
end entity TOP;

architecture ARCH of TOP is
signal S1, S2, S3: BIT;
alias DONE SIG is <<signal .TOP.DUT.DONE: BIT>>; -- Legal
constant DATA WIDTH: INTEGER
:= <<signal .TOP.DUT.DATA: BIT VECTOR>>'LENGTH;
-—- 1Illegal, because .TOP.DUT.DATA has not yet been elaborated
-- when the expression is evaluated

begin
Pl: process (DONE SIG) is -- Legal
begin
if DONE SIG then -- Legal
end if;

end process Pl;
MONITOR: entity WORK.MY MONITOR port map (DONE SIG);
-- 1Illegal, because .TOP.DUT.DONE has not yet been elaborated
-- when the association element is elaborated
DUT: entity WORK.MY DESIGN port map (sl, S2, S3);
MONITOR2: entity WORK.MY MONITOR port map (DONE SIG) ;
-- Legal, because .TOP.DUT.DONE has now been elaborated
Bl: block
constant DATA WIDTH: INTEGER
:= <<signal .TOP.DUT.DATA: BIT VECTOR>>'LENGTH
-- Legal, because .TOP.DUT.DATA has now been elaborated
begin
end block Bl;
B2: block
constant CO: INTEGER 6;
constant Cl: INTEGER <<constant .TOP.B3.C2: INTEGER>>;
-- Illegal, because .TOP.B3.C2 has not yet been elaborated

begin
end block B2;
B3: block
constant C2: INTEGER
:= <<constant .TOP.B2.CO: INTEGER>>; -- Legal
begin

end block B3;
-- Together, B2 and B3 are illegal, because they cannot be ordered
-- so that the objects are elaborated in the order .TOP.B2.CO,
-- then .TOP.B3.C2, and finally .TOP.B2.Cl.
end architecture ARCH;

14.3 Elaboration of a block, package, or subprogram header
14.3.1 General
Elaboration of a block header consists of the elaboration of the generic clause, the generic map aspect, the

port clause, and the port map aspect. Similarly, elaboration of a package header consists of the elaboration of
the generic clause and the generic map aspect; and elaboration of a subprogram header consists of the

|PuMBhedbyIECundmﬂmenseﬂomIEEEADZOOSIEEE.AHﬂghmresewedj

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

-203 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

elaboration of the generic clause equivalent to the generic list of the subprogram header and the generic map
aspect.

14.3.2 Generic clause

Elaboration of a generic clause consists of the elaboration of each of the equivalent single generic
declarations contained in the clause, in the order given. The elaboration of a generic declaration establishes
that the generic can subsequently be referenced.

14.3.3 Generic map aspect
14.3.3.1 General

Elaboration of a generic map aspect consists of elaborating the generic association list. The generic
association list contains an implicit association element for each generic constant that is not explicitly
associated with an actual or that is associated with the reserved word open; the actual part of such an
implicit association element is the default expression appearing in the declaration of that generic constant.
Similarly, the generic association list contains an implicit association element for each generic subprogram
that is not explicitly associated with an actual or that is associated with the reserved word open; the actual
part of such an implicit association element is determined by the interface subprogram default as described
in 6.5.6.2. The generic association list also contains implicit association elements for the predefined equality
(=) operator and inequality (/=) operators of each generic type; the actual part of such an implicit association
element is the name of the predefined equality operator or inequality operator for the base type of the
subtype indication in the actual part of the association element corresponding to the generic type.

Elaboration of a generic association list consists of the elaboration of the generic association element or
elements in the association list associated with each generic declaration, in the order given by the generic
declarations in the generic clause.

14.3.3.2 Association elements for generic constants

Elaboration of the generic association elements associated with a generic constant declaration proceeds as
follows:

a) The subtype indication of the corresponding generic declaration is elaborated.

b) The formal part or parts of the generic association elements corresponding to the generic declaration
are elaborated.

c) If the type of the generic constant is an array type or contains a subelement that is of an array type,
the rules of 5.3.2.2 are applied to determine the index ranges.

d) The generic constant is created.

The generic constant or subelement or slice thereof designated by each formal part is then initialized with
the value resulting from the evaluation of the corresponding actual part. It is an error if the value of the
actual does not belong to the subtype denoted by the subtype indication of the formal. If the subtype denoted
by the subtype indication of the declaration of the formal is a composite subtype, then an implicit subtype
conversion is performed prior to this check. It is also an error if the type of the formal is an array type and
the value of each element of the actual does not belong to the element subtype of the formal.

14.3.3.3 Association elements for generic types
Elaboration of the generic association element associated with a generic type declaration involves the

elaboration of the subtype indication in the actual part followed by creating the generic type and defining it
to denote the subtype resulting from elaboration of the actual part.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -204 -
IEEE Std 1076-2008

14.3.3.4 Association elements for generic subprograms

Elaboration of the generic association element associated with a generic subprogram declaration proceeds as
follows:

a) The parameter list of the formal generic subprogram declaration is elaborated. This involves the
elaboration of the subtype indication of each interface element to determine the subtype of each for-
mal parameter of the formal generic subprogram.

b) The generic subprogram is then defined to denote the subprogram denoted by the subprogram name
in the actual part.

14.3.3.5 Association elements for generic packages

For a generic association element associated with a generic package declaration, if the generic package
declaration contains an interface package generic map aspect in the form that includes the box (<>) symbol,
elaboration of the generic association element involves defining the generic package to denote the
instantiated package denoted by the instantiated package name in the actual part. Otherwise, elaboration of
the generic association element proceeds as follows:

a) An implicit package header formed from the generic clause of the uninstantiated package named in
the formal package declaration and the generic map aspect (whether explicit or implicit, see 6.5.5) of
the interface package generic map aspect is elaborated.

b) A check is made that the generic map aspect of the package instantiation declaration that declares
the instantiated package denoted by the instantiated package name in the actual part matches the
elaborated generic map aspect of the implicit package header.

¢) The generic package is defined to denote the instantiated package denoted by the instantiated pack-
age name in the actual part.

14.3.4 Port clause

Elaboration of a port clause consists of the elaboration of each of the equivalent single port declarations
contained in the clause, in the order given. The elaboration of a port declaration establishes that the port can
subsequently be referenced.

14.3.5 Port map aspect
Elaboration of a port map aspect consists of elaborating the port association list.

Elaboration of a port association list consists of the elaboration of the port association element or elements in
the association list associated with each port declaration. If the actual in a port association element is an
expression that is not globally static, or if the actual part includes the reserved word inertial, then
elaboration of the port association element first consists of constructing and elaborating the equivalent
anonymous signal declaration, concurrent signal assignment statement, and port association element (see
6.5.6.3); the port or subelement or slice thereof designated by the formal part is then associated with the
anonymous signal.

Elaboration of the port association elements associated with a port declaration proceeds as follows:
a) The subtype indication of the corresponding port declaration is elaborated.

b) The formal part or parts of the port association elements corresponding to the port declaration are
elaborated.

c) If the type of the port is an array type or contains a subelement that is of an array type, the rules of
5.3.2.2 are applied to determine the index ranges.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-205 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

d) For each port association element associated with the port declaration, if the actual is not the
reserved word open, the port or subelement or slice thereof designated by the formal part is then
associated with the signal or expression designated by the actual part. This association involves a
check that the restriction on port associations (see 6.5.6.3) are met. It is an error if this check fails.

If a given port is a port of mode in whose declaration includes a default expression, and if no association
element associates a signal or expression with that port, then the default expression is evaluated and the
effective and driving value of the port is set to the value of the default expression. Similarly, if a given port
of mode in is associated with an expression that is globally static and the reserved word inertial does not
appear in the actual part of the association element, that expression is evaluated and the effective and driving
value of the port is set to the value of the expression. In the event that the value of a port is derived from an
expression in either fashion, references to the predefined attributes 'DELAYED, 'STABLE, 'QUIET,
'EVENT, 'ACTIVE, 'LAST EVENT, 'LAST ACTIVE, 'LAST VALUE, 'DRIVING, and
'DRIVING_VALUE of the port return values indicating that the port has the given driving value with no
activity at any time (see 14.7.4).

If an actual signal is associated with a port of mode in or inout, and if the type of the formal is a scalar type,
then it is an error if (after applying any conversion function or type conversion expression present in the
actual part) the subtype of the actual is not compatible with the subtype of the formal. If an actual expression
is associated with a formal port (of mode in), and if the type of the formal is a scalar type, then it is an error
if the value of the expression does not belong to the subtype denoted by the subtype indication of the
declaration of the formal.

Similarly, if an actual signal is associated with a port of mode out, inout, or buffer, and if the type of the
actual is a scalar type, then it is an error if (after applying any conversion function or type conversion
expression present in the formal part) the subtype of the formal is not compatible with the subtype of the
actual.

If an actual signal or expression is associated with a formal port, and if the formal is of a composite subtype,
then it is an error if the actual does not contain a matching element for each element of the formal. This
check is made after applying the rules of 5.3.2.2 and, in the case of an actual signal, after applying any
conversion function or type conversion that is present in the actual part. It is also an error if the mode of the
formal is in or inout and the value of each element of the actual (after applying any conversion function or
type conversion present in the actual part) does not belong to the corresponding element subtype of the
formal. If the formal port is of mode out, inout, or buffer, it is also an error if the value of each element of
the formal (after applying any conversion function or type conversion present in the formal part) does not
belong to the corresponding element subtype of the actual.

14.4 Elaboration of a declarative part
14.4.1 General

The elaboration of a declarative part consists of the elaboration of the declarative items, if any, in the order
in which they are given in the declarative part. This rule holds for all declarative parts, with the following
three exceptions:

a) The entity declarative part of a design entity whose corresponding architecture is decorated with the
'FOREIGN attribute defined in package STANDARD (see 7.2 and 16.3) and for which the value of
the attribute is not of the form described in 20.2.4.

b) The architecture declarative part of a design entity whose architecture is decorated with the
'FOREIGN attribute defined in package STANDARD and for which the value of the attribute is not
of the form described in 20.2.4.

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -206-
IEEE Std 1076-2008

¢) A subprogram declarative part whose subprogram is decorated with the 'FOREIGN attribute defined
in package STANDARD.

For these cases, the declarative items are not elaborated; instead, the design entity or subprogram is subject
to implementation-dependent elaboration.

In certain cases, the elaboration of a declarative item involves the evaluation of expressions that appear
within the declarative item. The value of any object denoted by a primary in such an expression shall be
defined at the time the primary is read (see 6.5.2). In addition, if a primary in such an expression is a
function call, then the value of any object denoted by or appearing as a part of an actual designator in the
function call shall be defined at the time the expression is evaluated. Additionally, it is an error if a primary
that denotes a shared variable, or a method of the protected type of a shared variable, is evaluated during the
elaboration of a declarative item. During static elaboration, the function STD.STANDARD.NOW (see 16.3)
returns the value 0 ns.

NOTE 1—1It is a consequence of this rule that the name of a signal declared within a block cannot be referenced in
expressions appearing in declarative items within that block, an inner block, or process statement; nor can it be passed as
a parameter to a function called during the elaboration of the block. These restrictions exist because the value of a signal
is not defined until after the design hierarchy is elaborated. However, a signal parameter name may be used within
expressions in declarative items within a subprogram declarative part, provided that the subprogram is only called after
simulation begins, because the value of every signal will be defined by that time.

NOTE 2—A function called in an expression evaluated during elaboration of a declarative item may be a foreign
function.

14.4.2 Elaboration of a declaration
14.4.2.1 General
Elaboration of a declaration has the effect of creating the declared item.

For each declaration, the language rules (in particular scope and visibility rules) are such that it is either
impossible or illegal to use a given item before the elaboration of its corresponding declaration. For
example, it is not possible to use the name of a type for an object declaration before the corresponding type
declaration is elaborated. Similarly, it is illegal to call a subprogram before its corresponding body is
elaborated.

Rules for creation of PSL declarations are defined in IEEE Std 1850-2005.
14.4.2.2 Subprogram declarations, bodies, and instantiations

Elaboration of a subprogram declaration, other than a subprogram declaration that defines an uninstantiated
subprogram, involves the elaboration of the subprogram header, if present, followed by the elaboration of
the parameter interface list of the subprogram declaration; the latter in turn involves the elaboration of the
subtype indication of each interface element to determine the subtype of each formal parameter of the
subprogram. Elaboration of an uninstantiated subprogram declaration simply establishes that the name of
the subprogram may be referenced subsequently in subprogram instantiation declarations.

Elaboration of a subprogram body, other than the subprogram body of an uninstantiated subprogram, has no
effect other than to establish that the body can, from then on, be used for the execution of calls of the
subprogram. Elaboration of a subprogram body of an uninstantiated subprogram has no effect.

Elaboration of a subprogram instantiation declaration consists of elaboration of the equivalent generic-
mapped subprogram declaration, followed by elaboration of the corresponding equivalent generic-mapped
subprogram body (see 4.4). If the subprogram instantiation declaration occurs immediately within an
enclosing package declaration, elaboration of the equivalent generic-mapped subprogram body occurs as

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

- 207 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

part of elaboration of the body, whether explicit or implicit, of the enclosing package. Similarly, if the
subprogram instantiation declaration occurs immediately within an enclosing protected type declaration,
elaboration of the equivalent generic-mapped subprogram body occurs as part of elaboration of the protected
type body.

14.4.2.3 Type declarations

Elaboration of a type declaration generally consists of the elaboration of the definition of the type and the
creation of that type. For a constrained type declaration that declares a partially or fully constrained
composite subtype, however, elaboration consists of the elaboration of the equivalent anonymous
unconstrained type followed by the elaboration of the named subtype of that unconstrained type.

Elaboration of an enumeration type definition has no effect other than the creation of the corresponding
type.

Elaboration of an integer, floating-point, or physical type definition consists of the elaboration of the
corresponding range constraint. For a physical type definition, each unit declaration in the definition is also
claborated. Elaboration of a physical unit declaration has no effect other than to create the unit defined by
the unit declaration.

Elaboration of an unbounded array type definition that defines an unconstrained array type consists of the
elaboration of the element subtype indication of the array type.

Elaboration of a record type definition consists of the elaboration of the equivalent single element
declarations in the given order. Elaboration of an element declaration consists of elaboration of the element
subtype indication.

Elaboration of an access type definition consists of the elaboration of the corresponding subtype indication.

Elaboration of a protected type definition consists of the elaboration, in the order given, of each of the
declarations occurring immediately within the protected type definition.

Elaboration of a protected type body has no effect other than to establish that the body, from then on, can be
used during the elaboration of objects of the given protected type.

14.4.2.4 Subtype declarations

Elaboration of a subtype declaration consists of the elaboration of the subtype indication. The elaboration of
a subtype indication creates a subtype. If the subtype does not include a constraint, then the subtype is the
same as that denoted by the type mark. The elaboration of a subtype indication that includes a constraint
proceeds as follows:

a) The constraint is first elaborated.

b) A check is then made that the constraint is compatible with the type or subtype denoted by the type
mark (see 5.2.1, 5.3.2.2, and 5.3.3).

Elaboration of a range constraint consists of the evaluation of the range. The evaluation of a range defines
the bounds and direction of the range. Elaboration of an index constraint consists of the elaboration of each
of the discrete ranges in the index constraint in some order that is not defined by the language. Elaboration
of an array constraint consists of the elaboration of the index constraint, if present, and the elaboration of the
array element constraint, if present. The order of elaboration of the index constraint and the array element
constraint, if both are present, is not defined by the language. Elaboration of a record constraint consists of
the elaboration of each of the record element constraints in the record constraint in some order that is not
defined by the language.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -208 -
IEEE Std 1076-2008

14.4.2.5 Object declarations

The rules of this subclause apply only to explicitly declared objects (see 6.4.2.1). Generic declarations, port
declarations, and other interface declarations are elaborated as described in 14.3.2 through 14.3.5 and 14.6.

Elaboration of an object declaration that declares an object other than a file object or an object of a protected
type proceeds as follows:

a) The subtype indication is first elaborated; this establishes the subtype of the object.

b) If the object declaration includes an explicit initialization expression, then the initial value of the
object is obtained by evaluating the expression. It is an error if the value of the expression does not
belong to the subtype of the object; if the object is a composite object, then an implicit subtype con-
version is first performed on the value unless the object is a constant whose subtype indication
denotes an unconstrained type. Otherwise, any implicit initial value for the object is determined.

c) The object is created.

d) Any initial value is assigned to the object.

The initialization of such an object (either the declared object or one of its subelements) involves a check
that the initial value belongs to the subtype of the object. For a composite object declared by an object
declaration, an implicit subtype conversion is first applied as for an assignment statement, unless the object
is a constant whose subtype is an unconstrained type.

The elaboration of a file object declaration consists of the elaboration of the subtype indication followed by
the creation of the object. If the file object declaration contains file open information, then the implicit call to
FILE OPEN is then executed (see 6.4.2.5).

The elaboration of an object of a protected type consists of the elaboration of the subtype indication,
followed by creation of the object. Creation of the object consists of elaborating, in the order given, each of
the declarative items in the protected type body.

NOTE 1—The expression initializing a constant object need not be a static expression.

NOTE 2—Each object whose type is a protected type involves creation of separate instances of the objects declared by
object declarations within the protected type body.

14.4.2.6 Alias declarations

Elaboration of an alias declaration consists of the elaboration of the subtype indication to establish the
subtype associated with the alias, followed by the creation of the alias as an alternative name for the named
entity. The creation of an alias for a composite object involves a check that the subtype associated with the
alias includes a matching element for each element of the named object. It is an error if this check fails.

14.4.2.7 Attribute declarations

Elaboration of an attribute declaration has no effect other than to create a template for defining attributes of
items.

14.4.2.8 Component declarations

Elaboration of a component declaration has no effect other than to create a template for instantiating
component instances.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

- 209 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

14.4.2.9 Packages

Elaboration of a package declaration, other than a package declaration that defines an uninstantiated
package, consists of the elaboration of the package header, if present, followed by the elaboration of the
declarative part of the package declaration. Elaboration of a package body, other than a package body of an
uninstantiated package, consists of the elaboration of the declarative part of the package body. Elaboration
of an uninstantiated package declaration simply establishes that the name of the package may be referenced
subsequently in package instantiation declarations. Elaboration of a package body of an uninstantiated
package has no effect.

Elaboration of a package instantiation declaration consists of elaboration of the equivalent generic-mapped
package declaration, followed by elaboration of the corresponding equivalent generic-mapped package
body, if such a package body is defined (see 4.9). If the package instantiation declaration occurs
immediately within an enclosing package declaration and the uninstantiated package has a package body,
elaboration of the equivalent generic-mapped package body occurs as part of elaboration of the body,
whether explicit or implicit, of the enclosing package.

14.4.3 Elaboration of a specification

14.4.3.1 General

Elaboration of a specification has the effect of associating additional information with a previously declared
item.

14.4.3.2 Attribute specifications

Elaboration of an attribute specification proceeds as follows:

a) The entity specification is elaborated in order to determine which items are affected by the attribute
specification.

b) The expression is evaluated to determine the value of the attribute. It is an error if the value of the
expression does not belong to the subtype of the attribute; if the attribute is of a composite type, then
an implicit subtype conversion is first performed on the value, unless the subtype indication of the
attribute denotes an unconstrained type.

¢) A new instance of the designated attribute is created and associated with each of the affected items.

d) Each new attribute instance is assigned the value of the expression.

The assignment of a value to an instance of a given attribute involves a check that the value belongs to the
subtype of the designated attribute. For an attribute of a partially or fully constrained composite type, an
implicit subtype conversion is first applied as for an assignment statement. No such conversion is necessary
for an attribute of an unconstrained type; the constraints on the value determine the constraints on the
attribute.

NOTE—The expression in an attribute specification need not be a static expression.
14.4.3.3 Configuration specifications

Elaboration of a configuration specification proceeds as follows:

a) The component specification is elaborated in order to determine which component instances are
affected by the configuration specification.

b) The binding indication is elaborated to identify the design entity to which the affected component
instances will be bound.

¢) The binding information is associated with each affected component instance label for later use in
instantiating those component instances.

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -210-
IEEE Std 1076-2008

As part of this elaboration process, a check is made that both the entity declaration and the corresponding
architecture body implied by the binding indication exist within the specified library. It is an error if this
check fails.

14.4.3.4 Disconnection specifications

Elaboration of a disconnection specification proceeds as follows:

a) The guarded signal specification is elaborated in order to identify the signals affected by the discon-
nection specification.

b) The time expression is evaluated to determine the disconnection time for drivers of the affected
signals.

c¢) The disconnection time is associated with each affected signal for later use in constructing discon-
nection statements in the equivalent processes for guarded assignments to the affected signals.

14.5 Elaboration of a statement part
14.5.1 General

Concurrent statements appearing in the statement part of a block shall be elaborated before execution
begins. Elaboration of the statement part of a block consists of the elaboration of each concurrent statement
in the order given. This rule holds for all block statement parts except for those blocks equivalent to a design
entity whose corresponding architecture is decorated with the 'FOREIGN attribute defined in package
STANDARD (see 16.3).

For this case, there are two subcases:

— If the value of the attribute is of the form described in 20.2.4, the statements are not elaborated;
instead, the elaboration function of the foreign model is invoked, as described in 20.4.1, at the point
where elaboration of the statements of the block statement corresponding to the architecture body
would otherwise occur.

— Otherwise, the statements are not elaborated; instead, the design entity is subject to implementation-
dependent elaboration.

Rules for interpretation of PSL directives are defined in IEEE Std 1850-2005.
14.5.2 Block statements

Elaboration of a block statement consists of the elaboration of the block header, if present, followed by the
elaboration of the block declarative part, followed by the elaboration of the block statement part.

Elaboration of a block statement may occur under the control of a configuration declaration. In particular, a
block configuration, whether implicit or explicit, within a configuration declaration may supply a sequence
of additional implicit configuration specifications to be applied during the elaboration of the corresponding
block statement. If a block statement is being elaborated under the control of a configuration declaration,
then the sequence of implicit configuration specifications supplied by the block configuration is elaborated
as part of the block declarative part, following all other declarative items in that part.

The sequence of implicit configuration specifications supplied by a block configuration, whether implicit or
explicit, consists of each of the configuration specifications implied by component configurations (see 3.4.3)
occurring immediately within the block configuration, in the order in which the component configurations
themselves appear.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-211 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

14.5.3 Generate statements

Elaboration of a generate statement consists of the replacement of the generate statement with zero or more
copies of a block statement whose declarative part consists of declarative items contained within the
generate statement and whose statement part consists of concurrent statements contained within the generate
statement. These block statements are said to be represented by the generate statement. Each block
statement is then elaborated.

For a for generate statement, elaboration consists of the elaboration of the discrete range, followed by the
generation of one block statement for each value in the range. The block statements all have the following
form:

a) The label of the block statement is the same as the label of the for generate statement.

b) The block declarative part has, as its first item, a single constant declaration that declares a constant
with the same simple name as that of the applicable generate parameter; the value of the constant is
the value of the generate parameter for the generation of this particular block statement. The type of
this declaration is determined by the base type of the discrete range of the generate parameter. The
remainder of the block declarative part consists of a copy of the declarative items contained within
the generate statement.

c¢) The block statement part consists of a copy of the concurrent statements contained within the gener-
ate statement.

For an if generate statement, elaboration consists of the evaluation, in succession, of the condition specified
after if and any conditions specified after elsif (treating a final else as elsif TRUE generate) until one
evaluates to TRUE or all conditions are evaluated and yield FALSE. If one condition evaluates to TRUE,
then exactly one block statement is generated; otherwise, no block statement is generated. If generated, the
block statement has the following form:

— The block label is the same as the label of the if generate statement.

— The block declarative part consists of a copy of the declarative items contained within the generate
statement body following the condition that evaluated to TRUE. If the condition is preceded by an
alternative label, the label is implicitly declared at the beginning of the block declarative part.

— The block statement part consists of a copy of the concurrent statements contained within the
generate statement body following the condition that evaluated to TRUE.

For a case generate statement, elaboration consists of the evaluation of the expression followed by the
generation of a block statement for the chosen alternative. A given case generate alternative is the chosen
alternative if and only if the expression “E = V” evaluates to TRUE, where “E” is the expression, “V” is the
value of one of the choices of the given case generate alternative (if a choice is a discrete range, then this
latter condition is fulfilled when V is an element of the discrete range), and the operator “=" in the
expression is the predefined “=" operator on the base type of E. The generate block statement has the
following form:

— The block label is the same as the label of the case generate statement.

— The block declarative part consists of a copy of the declarative items contained within the generate
statement body of the chosen alternative. If the choices of the chosen alternative are preceded by an
alternative label, the label is implicitly declared at the beginning of the block declarative part.

— The block statement part consists of a copy of the concurrent statements contained within the
generate statement body of the chosen alternative.

Examples:

-- The following generate statement:

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -212-
IEEE Std 1076-2008

LABL: for I in 1 to 2 generate

signal sl: INTEGER;
begin

sl <= pl;

Instl: and gate port map (sl, p2(I), p3);
end generate LABL;

-- 1s equivalent to the following two block statements:

LABL: block

constant I: INTEGER := 1;

signal sl: INTEGER;
begin

sl <= pl;

Instl: and gate port map (sl, p2(I), p3);
end block LABL;

LABL: block

constant I: INTEGER := 2;

signal sl: INTEGER;
begin

sl <= pl;

Instl: and gate port map (sl, p2(I), p3);
end block LABL;

-- The following generate statement:

LABL: if (gl = g2) generate

signal sl: INTEGER;
begin

sl <= pl;

Instl: and gate port map (sl, p4, p3);
end generate LABL;

-- 1is equivalent to the following statement if gl = g2;
-—- otherwise, it is equivalent to no statement at all:

LABL: block

signal sl: INTEGER;
begin

sl <= pl;

Instl: and gate port map (sl, p4, p3);
end block LABL;

NOTE—The repetition of the block labels in the case of a for generate statement does not produce multiple declarations
of the label on the generate statement. The multiple block statements represented by the generate statement constitute

multiple references to the same implicitly declared label.

14.5.4 Component instantiation statements

Elaboration of a component instantiation statement that instantiates a component declaration has no effect
unless the component instance is either fully bound to a design entity defined by an entity declaration and
architecture body or bound to a configuration of such a design entity. If a component instance is so bound,
then elaboration of the corresponding component instantiation statement consists of the elaboration of the
implied block statement representing the component instance and (within that block) the implied block

|PuMBhedbyIECundmﬂmenseﬂomIEEEADZOOSIEEE.AHﬂghmresewedj

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

-213 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

statement representing the design entity to which the component instance is bound. The implied block
statements are defined in 11.7.2.

Elaboration of a component instantiation statement whose instantiated unit denotes either a design entity or
a configuration declaration consists of the elaboration of the implied block statement representing the
component instantiation statement and (within that block) the implied block statement representing the
design entity to which the component instance is bound. The implied block statements are defined in 11.7.3.

14.5.5 Other concurrent statements

All other concurrent statements are either process statements or are statements for which there is an
equivalent process statement.

Elaboration of a process statement proceeds as follows:
a) The process declarative part is elaborated.

b) The drivers required by the process statement are identified.

Elaboration of all concurrent signal assignment statements and concurrent assertion statements consists of
the construction of the equivalent process statement followed by the elaboration of the equivalent process
statement.

14.6 Dynamic elaboration

The execution of certain constructs that involve sequential statements rather than concurrent statements also
involves elaboration. Such elaboration occurs during the execution of the model.

There are three particular instances in which elaboration occurs dynamically during simulation. These are as
follows:

a) Execution of a loop statement with a for iteration scheme involves the elaboration of the loop
parameter specification prior to the execution of the statements enclosed by the loop (see 10.10).
This elaboration creates the loop parameter and evaluates the discrete range.

b) Execution of a subprogram call involves the elaboration of the parameter association list. This
involves the elaboration of the parameter association element or elements in the association list
associated with each interface declaration. Elaboration of the parameter association elements associ-
ated with a formal parameter declaration proceeds as follows:

1) The subtype indication of the corresponding formal parameter declaration is elaborated.

2) The formal part or parts of the parameter association elements corresponding to the formal
parameter declaration are elaborated.

3) If the type of the formal parameter is an array type or contains a subelement that is of an array
type, the rules of 5.3.2.2 are applied to determine the index ranges.

4) For each parameter association element associated with the formal parameter declaration, the
parameter or subelement or slice thereof designated by the formal part is then associated with
the actual part.

5) If the formal parameter is a variable of mode out, then the implicit initial value for the object is
determined.

Next, if the subprogram is a method of a protected type (see 5.6.2) or an implicitly declared file
operation (see 5.5.2), the elaboration blocks (suspends execution while retaining all state), if
necessary, until exclusive access to the object denoted by the prefix of the method or to the file
object denoted by the file parameter of the file operation is secured. Finally, if the designator of the
subprogram is not decorated with the 'FOREIGN attribute defined in package STANDARD, the
declarative part of the corresponding subprogram body is elaborated and the sequence of statements

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -214 -
IEEE Std 1076-2008

in the subprogram body is executed. If the designator of the subprogram is decorated with the
'FOREIGN attribute defined in package STANDARD, there are two cases:

— If the value of the attribute is of the form described in 20.2.4, the declarative part of the
corresponding subprogram body is not elaborated nor is the sequence of statements in the
subprogram body executed; instead, the execution function of the foreign model is invoked, as

described in 20.2.4.
— Otherwise, the subprogram body is subject to implementation-dependent elaboration and
execution.

¢) Evaluation of an allocator that contains a subtype indication involves the elaboration of the subtype
indication prior to the allocation of the created object.

NOTE 1—It is a consequence of these rules that declarative items appearing within the declarative part of a subprogram
body are elaborated each time the corresponding subprogram is called; thus, successive elaborations of a given
declarative item appearing in such a place may create items with different characteristics. For example, successive
elaborations of the same subtype declaration appearing in a subprogram body may create subtypes with different
constraints.

NOTE 2—If two or more processes access the same set of shared variables, livelock or deadlock may occur. That is, it
may not be possible to ever grant exclusive access to the shared variable as outlined in the preceding item b).
Implementations are allowed to, but not required to, detect and, if possible, resolve such conditions.

14.7 Execution of a model
14.7.1 General

The elaboration of a design hierarchy produces a model that can be executed in order to simulate the design
represented by the model. Simulation involves the execution of user-defined processes that interact with
each other and with the environment. Simulation also involves interpretation of PSL directives to verify the
properties that they specify.

The kernel process is a conceptual representation of the agent that coordinates the activity of user-defined
processes during a simulation. This agent causes the propagation of signal values to occur and causes the
values of implicit signals (such as S'STABLE) to be updated. Furthermore, this process is responsible for
detecting events that occur and for causing the appropriate processes to execute in response to those events.

For any given signal that is explicitly declared within a model, the kernel process contains variables
representing the driving value and current value of that signal. Any evaluation of a name denoting a given
signal retrieves the current value of the corresponding variable in the kernel process. During simulation, the
kernel process updates these variables from time to time, based upon the current values of sources of the
corresponding signal.

In addition, the kernel process contains a variable representing the current value of any implicitly declared
GUARD signal resulting from the appearance of a guard condition on a given block statement. Furthermore,
the kernel process contains both a driver for, and a variable representing the current value of, any signal
S'STABLE(T), for any prefix S and any time T, that is referenced within the model; likewise, for any signal
S'QUIET(T) or STRANSACTION.

14.7.2 Drivers

Every signal assignment statement in a process statement defines a set of drivers for certain scalar signals.
There is a single driver for a given scalar signal S in a process statement, provided that there is at least one
signal assignment statement in that process statement and that the longest static prefix of the target signal of
that signal assignment statement denotes S or denotes a composite signal of which S is a subelement. Each
such signal assignment statement is said to be associated with that driver. Execution of a signal assignment
statement affects only the associated driver(s).

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-215- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

A driver for a scalar signal is represented by a projected output waveform. A projected output waveform
consists of a sequence of one or more fransactions, where each transaction is a pair consisting of a value
component and a time component. For a given transaction, the value component represents a value that the
driver of the signal is to assume at some point in time, and the time component specifies which point in time.
These transactions are ordered with respect to their time components.

A driver always contains at least one transaction. The initial contents of a driver associated with a given
signal are defined by the default value associated with the signal (see 6.4.2.3). The kernel process contains a
variable representing the current value of the driver. The initial value of the variable is the value component
of the initial transaction of the driver.

For any driver, if, as the result of the advance of time, the current time becomes equal to the time component
of the second transaction of the driver, the first transaction is deleted from the projected output waveform,
and what was the second transaction becomes the first transaction. Then, or if a force or deposit is scheduled
for the driver, the variable containing the current value of the driver is updated as follows:

— If a force is scheduled for the driver, the driver becomes forced and the variable containing the
current value of the driver is updated with the force value for the driver.

— If the driver is forced and no force is scheduled for the driver, the variable containing the current
value of the driver is unchanged from its previous value.

— Ifadeposit is scheduled for the driver and the driver is not forced, the variable containing the current
value of the driver is updated with the deposit value for the driver.

— Otherwise, the variable containing the current value of the driver is updated with the value
component of the first transaction of the driver.

When this action occurs on a driver, any registered and enabled vhpiCbTransaction callbacks
associated with the given driver are executed. Moreover, if the current value of the driver changes as a result
of this action, any registered and enabled vhpiCbValueChange callbacks associated with the given
driver are executed.

14.7.3 Propagation of signal values
14.7.3.1 General

As simulation time advances, the transactions in the projected output waveform of a given driver (see
14.7.2) will each, in succession, become the value of the driver. When a driver acquires a new value in this
way or as a result of a force or deposit scheduled for the driver, regardless of whether the new value is
different from the previous value, that driver is said to be active during that simulation cycle. For the
purposes of defining driver activity, a driver acquiring a value from a null transaction is assumed to have
acquired a new value. A signal is said to be active during a given simulation cycle if

— One of its sources is active.
— One of its subelements is active.

— The signal is named in the formal part of an association element in a port association list and the
corresponding actual is active.

— The signal is a subelement of a resolved signal and the resolved signal is active.
— A force, a deposit, or a release is scheduled for the signal.

— The signal is a subelement of another signal for which a force or a deposit is scheduled.

If a signal of a given composite type has a source that is of a different type (and therefore a conversion
function or type conversion appears in the corresponding association element), then each scalar subelement
of that signal is considered to be active if the source itself is active. Similarly, if a port of a given composite
type is associated with a signal that is of a different type (and therefore a conversion function or type

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -216-
IEEE Std 1076-2008

conversion appears in the corresponding association element), then each scalar subelement of that port is
considered to be active if the actual signal itself is active.

In addition to the preceding information, an implicit signal is said to be active during a given simulation
cycle if the kernel process updates that implicit signal within the given cycle.

If a signal is not active during a given simulation cycle, then the signal is said to be quiet during that
simulation cycle.

The kernel process determines two values for certain signals during certain simulation cycles. The driving
value of a given signal is the value that signal provides as a source of other signals. The effective value of a
given signal is the value obtainable by evaluating a reference to the signal within an expression. The driving
value and the effective value of a signal are not always the same, especially when resolution functions and
conversion functions or type conversions are involved in the propagation of signal values.

NOTE 1—In a given simulation cycle, situations can occur where a subelement of a composite signal is quiet, and the
signal itself is active.

NOTE 2—The rules concerning association of actuals with formals (see 6.5.7.1) imply that, if a composite signal is
associated with a composite port of mode out, inout, or buffer, and if no conversion function or type conversion appears
in either the actual or formal part of the association element, then each scalar subelement of the formal is a source of the
matching subelement of the actual. In such a case, a given subelement of the actual will be active if and only if the
matching subelement of the formal is active.

NOTE 3—A signal of kind register may be active even if its associated resolution function does not execute in the
current simulation cycle if the values of all of its drivers are determined by the null transaction and at least one of its
drivers is also active.

14.7.3.2 Driving values

A basic signal is a signal that has all of the following properties:
— It is either a scalar signal or a resolved signal (see 6.4.2.3).
— Itis not a subelement of a resolved signal.
— Is not an implicit signal of the form S'STABLE(T), S'QUIET(T), or STRANSACTION (see 16.2).
— It is not an implicit signal GUARD (see 11.2).

Basic signals are those that determine the driving values for all other signals.

The driving value of any signal S is determined by the following steps:

a) If a driving-value release is scheduled for S or for a signal of which S is a subelement, S becomes
driving-value released, that is, no longer driving-value forced. Proceed to step b).

b) If a driving-value force is scheduled for S or for a signal of which S is a subelement, S becomes
driving-value forced and the driving value of S is the driving force value for S or the element of the
driving force value for the signal of which S is a subelement, as appropriate; no further steps are
required. Otherwise, proceed to step c).

¢) If Sis driving-value forced, the driving value of S is unchanged from its previous value; no further
steps are required. Otherwise, proceed to step d).

d) If a driving-value deposit is scheduled for S or for a signal of which S is a subelement, the driving
value of S is the driving deposit value for S or the element of the driving deposit value for the signal
of which S is a subelement, as appropriate; no further steps are required. Otherwise, proceed to step
e) or f), as appropriate.

e) IfSisa basic signal:

— If S has no source, then the driving value of S is given by the default value associated with S
(see 6.4.2.3).

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-217 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

— If S has one source that is a driver and S is not a resolved signal (see 6.4.2.3), then the driving
value of S is the current value of that driver.

— If S has one source that is a port and S is not a resolved signal, then the driving value of S is the
driving value of the formal part of the association element that associates S with that port (see
6.5.7.1). The driving value of a formal part is obtained by evaluating the formal part as follows:
If no conversion function or type conversion is present in the formal part, then the driving value
of the formal part is the driving value of the signal denoted by the formal designator.
Otherwise, the driving value of the formal part is the value obtained by applying either the
conversion function or type conversion (whichever is contained in the formal part) to the
driving value of the signal denoted by the formal designator.

— IfSisaresolved signal and has one or more sources, then the driving values of the sources of S
are examined. It is an error if any of these driving values is a composite where one or more
subelement values are determined by the null transaction (see 10.5.2.2) and one or more
subelement values are not determined by the null transaction. If S is of signal kind register and
all the sources of S have values determined by the null transaction, then the driving value of S
is unchanged from its previous value. Otherwise, the driving value of S is obtained by
executing the resolution function associated with S, where that function is called with an input
parameter consisting of the concatenation of the driving values of the sources of S, with the
exception of the value of any source of S whose current value is determined by the null
transaction.

f) If Sis not a basic signal:

— If S is a subelement of a resolved signal R, the driving value of S is the corresponding
subelement value of the driving value of R.

— Otherwise (S is a nonresolved, composite signal), the driving value of S is equal to the
aggregate of the driving values of each of the basic signals that are the subelements of S.

NOTE 1—The algorithm for computing the driving value of a scalar signal S is recursive. For example, if S is a local
signal appearing as an actual in a port association list whose formal is of mode out or inout, the driving value of S can
only be obtained after the driving value of the corresponding formal part is computed. This computation may involve
multiple executions of the preceding algorithm.

NOTE 2—The definition of the driving value of a basic signal exhausts all cases, with the exception of a non-resolved
signal with more than one source. This condition is defined as an error in 6.4.2.3.

NOTE 3—The driving value of a port that has no source is the default value of the port (see 6.5.2).

14.7.3.3 Effective values

For a scalar signal S, the effective value of S is determined by the following steps:

a) If an effective-value release is scheduled for S or for a signal of which S is a subelement, S becomes
effective-value released, that is, no longer effective-value forced. Proceed to step b).

b) If an effective-value force is scheduled for S or for a signal of which S is a subelement, S becomes
effective-value forced and the effective value of S is the effective force value for S or the element of
the effective force value for the signal of which S is a subelement, as appropriate; no further steps
are required. Otherwise, proceed to step c).

c¢) If S is effective-value forced, the effective value of S is unchanged from its previous value; no
further steps are required. Otherwise, proceed to step d).

d) If an effective-value deposit is scheduled for S or for a signal of which S is a subelement, the
effective value of S is the effective deposit value for S or the element of the effective deposit value
for the signal of which S is a subelement, as appropriate; no further steps are required. Otherwise,
proceed to step e).

e) The effective value of S is then determined as follows:

— If Sis asignal declared by a signal declaration, a port of mode out or buffer, or an unconnected
port of mode inout, then the effective value of S is the same as the driving value of S.

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -218-
IEEE Std 1076-2008

— If S is a connected port of mode in or inout, then the effective value of S is the same as the
effective value of the actual part of the association element that associates an actual with S (see
6.5.7.1). The effective value of an actual part is obtained by evaluating the actual part, using the
effective value of the signal denoted by the actual designator in place of the actual designator.

— If S is an unconnected port of mode in, the effective value of S is given by the default value
associated with S (see 6.4.2.3).

For a composite signal R, the effective value of R is the aggregate of the effective values of each of the
subelements of R.

NOTE 1—The algorithm for computing the effective value of a signal S is recursive. For example, if a formal port S of
mode in corresponds to an actual A, the effective value of A shall be computed before the effective value of S can be
computed. The actual A may itself appear as a formal port in a port association list.

NOTE 2—No effective value is specified for linkage ports, since these ports cannot be read.

14.7.3.4 Signal update

For a scalar signal S, both the driving and effective values shall belong to the subtype of the signal. For a
composite signal R, an implicit subtype conversion is performed to the subtype of R; for each element of R,
there shall be a matching element in both the driving and the effective value, and vice versa.

In order to update a signal during a given simulation cycle, the kernel process first determines the driving
and effective values of that signal. The kernel process then updates the variable containing the driving value
with the newly determined driving value. The kernel also updates the variable containing the current value
of the signal with the newly determined effective value, as follows:

a) If S is a scalar signal, the effective value of S is used to update the current value of S. A check is
made that the effective value of S belongs to the subtype of S. An error occurs if this subtype check
fails. Finally, the effective value of S is assigned to the variable representing the current value of the
signal.

b) If S is a composite signal (including a slice of an array), the effective value of S is implicitly con-
verted to the subtype of S. The subtype conversion checks that for each element of S there is a
matching element in the effective value and vice versa. An error occurs if this check fails. The result
of this subtype conversion is then assigned to the variable representing the current value of S.

The current value of a signal of type T is said to change if and only if application of the predefined “="
operator for type T to the current value of the signal and the value of the signal prior to the update evaluates
to FALSE. If updating a signal causes the current value of that signal to change, then an event is said to have
occurred on the signal, unless the update occurs by application of the vhpi put wvalue function with an
update mode of vhpiDeposit or vhpiForce to an object that represents the signal. This definition
applies to any updating of a signal, whether such updating occurs according to the preceding rules or
according to the rules for updating implicit signals given in 14.7.4. The occurrence of an event will cause the
resumption and subsequent execution of certain processes during the simulation cycle in which the event
occurs, if and only if those processes are currently sensitive to the signal on which the event has occurred.

Each time a signal S is updated, any registered and enabled vhpiCbTransaction callbacks associated
with S are executed. Each time there is an event on a signal S, any registered and enabled
vhpiCbValueChange callbacks associated with S are executed.

A net is a collection of drivers, signals (including ports and implicit signals), conversion functions, and
resolution functions that, taken together, determine the effective and driving values of every signal on the
net.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-219 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

For any signal that is part of a given net, the driving and effective values of the signal are determined and the
variables containing the driving value and current value of that signal are updated as previously described in
those simulation cycles in which any driver or signal on the net is active.

Implicit signals GUARD, S'STABLE(T), S'QUIET(T), and STRANSACTION, for any prefix S and any
time T, are not updated according to the preceding rules; such signals are updated according to the rules
described in 14.7.4.

NOTE 1—Overloading the operator “=" has no effect on the propagation of signal values.

NOTE 2—If a net includes an implicitly declared GUARD signal, the drivers of signals referred to in the corresponding
guard condition determine the value of the GUARD signal. Hence, those drivers are part of the net, and when any of the
drivers are active, the signals that are part of the net are updated.

14.7.4 Updating implicit signals

The kernel process updates the value of each implicit signal GUARD associated with a block statement that
has a guard condition. Similarly, the kernel process updates the values of each implicit signal S'STABLE(T),
S'QUIET(T), or STRANSACTION for any prefix S and any time T; this also involves updating the drivers
of S'STABLE(T) and S'QUIET(T).

For any implicit signal GUARD, the current value of the signal is modified if and only if the corresponding
guard condition contains a reference to a signal S and if S is active during the current simulation cycle. In
such a case, the implicit signal GUARD is updated by evaluating the corresponding guard condition and
assigning the result of that evaluation to the variable representing the current value of the signal. Whenever
an implicit signal GUARD is updated, any registered and enabled vhpiCbTransaction callbacks
associated with the given signal are executed.

For any implicit signal S'STABLE(T), the current value of the signal (and likewise the current state of the
corresponding driver) is modified if and only if one of the following statements is true:

— An event has occurred on S in this simulation cycle.

— The driver of S'STABLE(T) is active.

If an event has occurred on signal S, then S'STABLE(T) is updated by assigning the value FALSE to the
variable representing the current value of S'STABLE(T), and the driver of S'STABLE(T) is assigned the
waveform TRUE after T. Otherwise, if the driver of S'SSTABLE(T) is active, then S'STABLE(T) is updated
by assigning the current value of the driver to the variable representing the current value of S'STABLE(T).
Otherwise, neither the variable nor the driver is modified. Whenever a signal of the form S'STABLE(T) is
updated, any registered and enabled vhpiCbTransaction callbacks associated with the given signal are
executed.

Similarly, for any implicit signal S'QUIET(T), the current value of the signal (and likewise the current state
of the corresponding driver) is modified if and only if one of the following statements is true:

— Sis active.

— The driver of S'QUIET(T) is active.

If signal S is active, then S'QUIET(T) is updated by assigning the value FALSE to the variable representing
the current value of S'QUIET(T), and the driver of S'QUIET(T) is assigned the waveform TRUE after T.
Otherwise, if the driver of S'QUIET(T) is active, then S'QUIET(T) is updated by assigning the current value
of the driver to the variable representing the current value of S'QUIET(T). Otherwise, neither the variable
nor the driver is modified. Whenever a signal of the form S'QUIET(T) is updated, any registered and
enabled vhpiCbTransaction callbacks associated with the given signal are executed.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -220-
IEEE Std 1076-2008

Finally, for any implicit signal STRANSACTION, the current value of the signal is modified if and only if
S is active. If signal S is active, then STRANSACTION is updated by assigning the value of the expression
(not STRANSACTION) to the variable representing the current value of STRANSACTION. At most one
such assignment will occur during any given simulation cycle. Whenever a signal of the form
S'TRANSACTION is updated, any registered and enabled vhpiCbTransaction callbacks associated
with the given signal are executed.

For any implicit signal SDELAYED(T), the signal is not updated by the kernel process. Instead, it is
updated by constructing an equivalent process (see 16.2) and executing that process.

Each time there is an event on a signal S, where S is any one of
— An implicit signal GUARD
— P'STABLE(T), for any prefix P and any time T
— P'QUIET(T), for any prefix P and any time T
— P'TRANSACTION, for any prefix P

any registered and enabled vhpiCbValueChange callbacks associated with S are executed.

The current value of a given implicit signal denoted by R is said to depend upon the current value of another
signal S if one of the following statements is true:

— R denotes an implicit GUARD signal and S is any other implicit signal named within the guard
condition that defines the current value of R.

— R denotes an implicit signal S'STABLE(T).

— R denotes an implicit signal SSQUIET(T).

— R denotes an implicit signal STRANSACTION.
— R denotes an implicit signal SDELAYED(T).

Similarly, the current value of a given interface signal denoted by R is said to depend upon the current value
of an implicit signal S if R denotes a port of mode in and S is the actual associated with that port.

These rules define a partial ordering on all signals within a model. The updating of signals by the kernel
process is guaranteed to proceed in such a manner that, if a given implicit signal R depends upon the current
value of another signal S, or if a given interface signal R depends upon the value of an implicit signal S, then
the current value of S will be updated during a particular simulation cycle prior to the updating of the current
value of R.

NOTE—These rules imply that, if the driver of S'STABLE(T) is active, then the new current value of that driver is the
value TRUE. Furthermore, these rules imply that, if an event occurs on S during a given simulation cycle, and if the
driver of S'STABLE(T) becomes active during the same cycle, the variable representing the current value of
S'STABLE(T) will be assigned the value FALSE, and the current value of the driver of S'STABLE(T) during the given
cycle will never be assigned to that signal.

14.7.5 Model execution
14.7.5.1 General

The execution of a model consists of an initialization phase followed by the repetitive execution of process
statements in the description of that model. Each such repetition is said to be a simulation cycle. In each
cycle, the values of all signals in the description are computed. If as a result of this computation an event
occurs on a given signal, process statements that are sensitive to that signal will resume and will be executed
as part of the simulation cycle.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-221- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

At certain stages during the initialization phase and each simulation cycle, the current time, 7., and the time
of the next simulation cycle, 7,,, are calculated. T, is calculated by setting it to the earliest of

a) TIME'HIGH,
b) The next time at which a driver or signal becomes active,
c¢) The next time at which a process resumes, or

d) The next time at which a registered and enabled vhpiCbAfterDelay, vhpiCbRepAfterDe-
lay, vhpiCbTimeOut, or vhpiCbRepTimeOut callback is to occur.

If T,, = T, then the next simulation cycle (if any) will be a delta cycle.
14.7.5.2 Initialization
At the beginning of initialization, the current time, 7, is assumed to be 0 ns.

The initialization phase consists of the following steps:
a) Each registered and enabled vhpiCbStartofInitialization callback is executed.

b) Each registered and enabled vhpiCbStartOfNextCycle and vhpiCbRepStartOfNext-
Cycle callback is executed.

¢) The signals in the model are updated as follows in an order such that if a given signal R depends
upon the current value of another signal S, then the current value of S is updated prior to the updat-
ing of the current value of R:

— The driving value and the effective value of each explicitly declared signal are computed, and
the variables representing the driving value and current value of the signal are set to the driving
value and effective value, respectively. The current value is assumed to have been the value of
the signal for an infinite length of time prior to the start of simulation. If a force, deposit, or
release was scheduled for any driver or signal, the force, deposit or release is no longer sched-
uled for the driver or signal.

— The value of each implicit signal of the form S'STABLE(T) or S'QUIET(T) is set to TRUE.
The value of each implicit signal of the form S'TDELAYED(T) is set to the initial value of its
prefix, S.

— The value of each implicit GUARD signal is set to the result of evaluating the corresponding
guard condition.

d) Any action required to give effect to a PSL directive is performed (see IEEE Std 1850-2005).

e) Each registered and enabled vhpiCbStartOfProcesses and vhpiCbRepStartOfPro-
cesses callback is executed.

f) For each nonpostponed process P in the model, the following actions occur in the indicated order:
1) The process executes until it suspends.
2) Each registered and enabled vhpiCbSuspend callback associated with P is executed.

g) For each elaborated instance of a registered foreign architecture, the corresponding execution
function is invoked.

h) Each registered and enabled vhpiCbEndOfProcesses and vhpiCbRepEndOfProcesses
callback is executed.

i) Each registered and enabled vhpiCbStartOfPostponed and vhpiCbRepStartOfPost-
poned callback is executed.

j) For each postponed process P in the model, the following actions occur in the indicated order:
1) The process executes until it suspends.

2) Each registered and enabled vhpiCbSuspend callback associated with P is executed.

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -222-
IEEE Std 1076-2008

k)

)

m)

The time of the next simulation cycle (which in this case is the first simulation cycle), 7,,, is calcu-
lated according to the rules of 14.7.5.1.

If the VHDL tool executing the initialization phase has requested a model save that has not yet been
satisfied, the model is saved as described in 20.7.

Each registered and enabled vhpiCbEndOfInitialization callback is executed.

NOTE 1—The initial value of any implicit signal of the form S'TRANSACTION is not defined.

NOTE 2—Updating of explicit signals is described in 14.7.3; updating of implicit signals is described in 14.7.4.

NOTE 3—vhpiCbResume callbacks are not executed during initialization as processes do not resume during
initialization.

14.7.5.3 Simulation cycle

A simulation cycle consists of the following steps:

a)

b)

©)

d)

2
h)

The current time, 7, is set equal to 7,. Simulation is complete when 7,, = TIME'HIGH and there are

no active drivers, process resumptions, or registered and enabled vhpiCbAfterDelay, vhpiC-

bRepAfterDelay, vhpiCbTimeOut, or vhpiCbRepTimeOut callbacks to occur at 7,

The following actions occur in the indicated order:

1) If the current simulation cycle is not a delta cycle, each registered and enabled vhpiCbNext -
TimeStep and vhpiCbRepNextTimeStep callback is executed.

2) Each registered and enabled vhpiCbStartOfNextCycle and vhpiCbRepStartOf-
NextCycle callback is executed.

3) Each registered and enabled vhpiCbAfterDelay and vhpiCbRepAfterDelay callback
is executed.

Each active driver in the model is updated. If a force or deposit was scheduled for any driver, the

force or deposit is no longer scheduled for the driver.

Each signal on each net in the model that includes active drivers is updated in an order that is consis-
tent with the dependency relation between signals (see 14.7.4). (Events may occur on signals as a
result.) If a force, deposit, or release was scheduled for any signal, the force, deposit, or release is no
longer scheduled for the signal.

Any action required to give effect to a PSL directive is performed (see IEEE Std 1850-2005).

The following actions occur in the indicated order:

1) Each registered and enabled vhpiCbStartOfProcesses and vhpiCbRepStartOf-
Processes callback is executed. If an event has occurred on a signal S in this simulation
cycle, then each registered and enabled vhpiCbSensitivity callback associated with S is
executed.

2) For each process, P, if P is currently sensitive to a signal, S, and if an event has occurred on S in
this simulation cycle, then P resumes.

3) Each registered and enabled vhpiCbTimeOut and vhpiCbRepTimeOut callback whose
triggering condition is met is executed. For each nonpostponed process P that has resumed in
the current simulation cycle, the following actions occur in the indicated order:

— Each registered and enabled vhpiCbResume callback associated with P is executed.
— The process executes until it suspends.
— Each registered and enabled vhpiCbSuspend callback associated with P is executed.

4) Each registered and enabled vhpiCbEndOfProcesses and vhpiCbRepEndOfPro-
cesses callback is executed.

The time of the next simulation cycle, 7, is calculated according to the rules of 14.7.5.1.

If the next simulation cycle will be a delta cycle, the remainder of step h) is skipped. Otherwise, the
following actions occur in the indicated order:

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

-223 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

1) Each registered and enabled vhpiCbLastKnownDeltaCycle and vhpiCbRepLast-
KnownDeltaCycle callback is executed. 7, is recalculated according to the rules of
14.7.5.1.

2) If the next simulation cycle will be a delta cycle, the remainder of step h) is skipped.

3) Each registered and enabled vhpiCbStartOfPostponed and vhpiCbRepStartOf-
Postponed callback is executed.

4) For each postponed process P, if P has resumed but has not been executed since its last
resumption, the following actions occur in the indicated order:

— Each registered and enabled vhpiCbResume callback associated with P is executed.

— The process executes until it suspends.

— Each registered and enabled vhpiCbSuspend callback associated with P is executed.
5) T, is recalculated according to the rules of 14.7.5.1.

6) Each registered and enabled vhpiCbEndOfTimeStep and vhpiCbRepEndOfTimeStep
callback is executed.

7) If T, = TIME'HIGH and there are no active drivers, process resumptions, or registered and
enabled vhpiCbAfterDelay, vhpiCbRepAfterDelay, vhpiCbTimeOut, or
vhpiCbRepTimeOut callbacks to occur at 7,, then each registered and enabled
vhpiCbQuiescence callback is executed. 7, is recalculated according to the rules of
14.7.5.1.

It is an error if the execution of any postponed process or any callback executed in substeps 3)
through 7) of step h) causes a delta cycle to occur immediately after the current simulation cycle.

i) If the VHDL tool executing the simulation cycle has requested a model save that has not yet been
satisfied, the model is saved as described in 20.7.

Immediately prior to the execution of the first simulation cycle, each registered and enabled
vhpiCbStartOfSimulation callback is executed. Immediately subsequent to the execution of the
final simulation cycle (i.e., when simulation is complete), each registered and enabled
vhpiCbEndOfSimulation callback is executed.

NOTE 1—Updating of explicit signals is described in 14.7.3; updating of implicit signals is described in 14.7.4.

NOTE 2—When a process resumes, it is added to one of two sets of processes to be executed (the set of postponed
processes and the set of nonpostponed processes). However, no process actually begins to execute until all signals have
been updated and all executable processes for this simulation cycle have been identified. Nonpostponed processes are
always executed during step f) of every simulation cycle, while postponed processes are executed during step h) of every
simulation cycle that does not immediately precede a delta cycle.

NOTE 3—The vhpiCbEndOfTimeStep and vhpiCbRepEndOfTimeStep callbacks cannot cause activity or
register callbacks that would result in a change to the time of the next simulation cycle, 7}, (see 21.3.6.8).

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

Copyrighted material licensed to BR Demo by Thomson Reuters (Scientific), Inc., subscriptions.techstreet.com, downloaded on Nov-28-2014 by James Madison. No further reproduction or distribution is permitted. Uncontroll

-224-

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

-225- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

15. Lexical elements

15.1 General

The text of a description consists of one or more design files. The text of a design file is a sequence of lexical
elements, each composed of characters; the rules of composition are given in this clause.

15.2 Character set

The only characters allowed in the text of a VHDL description (except within comments—see 15.9, and
within text treated specially due to the effect of tool directives—see 15.11) are the graphic characters and
format effectors. Each graphic character corresponds to a unique code of the ISO eight-bit coded character
set (ISO/IEC 8859-1:1998) and is represented (visually) by a graphical symbol.

basic_graphic_character ::=
upper_case_letter | digit | special character | space character

graphic_character ::=
basic_graphic_character | lower case letter | other special character

basic_character ::=
basic_graphic_character | format_effector

The basic character set is sufficient for writing any description, other than a PSL declaration, a PSL
directive, or a PSL verification unit. The characters included in each of the categories of basic graphic
characters are defined as follows:

— Uppercase letters

— ABCDEFGHIJKLMNOPQRSTUVWXYZAAAAAAZCEEREREBIII
— IPNOOOOOQUUUUYP

— Digits

— 0123456789

— Special characters

— TH&O*H,- =@

— The space characters

— SPACE’ NBSP®

Format effectors are the ISO/IEC (and ASCII) characters called horizontal tabulation, vertical tabulation,
carriage return, line feed, and form feed.

The characters included in each of the remaining categories of graphic characters are defined as follows:
— Lowercase letters
abcdefghijklmnopqrstuvwxyzfadaddaececeéciiiionooo
ddeuultliybpy
— Other special characters
PS%ANN{} ~(¢£0¥§7O*«~® °£237pq- '°» VY% X+ - (soft hyphen)

"The visual representation of the space is the absence of a graphic symbol. It may be interpreted as a graphic character, a control
character, or both.

8The visual representation of the nonbreaking space is the absence of a graphic symbol. It is used when a line break is to be prevented
in the text as presented.

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -226-
IEEE Std 1076-2008

For each uppercase letter, there is a corresponding lowercase letter; and for each lowercase letter except ¥
and B, there is a corresponding uppercase letter. The pairs of corresponding uppercase and lowercase letters
are:

A a B b C ¢ D d E e F f G g
H h I i I i K k L 1 M m N n
O o P p Q ¢q R r S s T t U u
V v W w X Y vy Z z A a A
A a A a A A & E = C ¢ E
E ¢ E ¢ B I [Ii i
D o N 0 0 ¢ O o 0 b 0
0 o U u U U a U i Y ¥y

Within a PSL declaration, a PSL directive, or a PSL verification unit, certain of the other special characters
are allowed (see 15.3 and IEEE Std 1850-2005).

NOTE 1—The font design of graphical symbols (for example, whether they are in italic or bold typeface) is not part of
ISO/IEC 8859-1:1998.

NOTE 2—The meanings of the acronyms used in this subclause are as follows: ASCII stands for American Standard

Code for Information Interchange, ISO stands for International Organization for Standardization.

NOTE 3—There are no uppercase equivalents for the characters 8 and §.

NOTE 4—The following names are used when referring to special characters:

Character Name

" Quotation mark £ Pound sign

Number sign o} Currency sign

& Ampersand ¥ Yen sign

! Apostrophe, tick | Broken bar

(Left parenthesis § Paragraph sign, clause sign

) Right parenthesis Diaeresis

* Asterisk, multiply © Copyright sign

+ Plus sign "‘ Feminine ordinal indicator

, Comma « Left angle quotation mark

- Hyphen, minus sign - Not sign
Dot, point, period, full stop - Soft hyphen?

/ Slash, divide, solidus ® Registered trade mark sign
Colon a Macron

; Semicolon ° Ring above, degree sign

< Less-than sign + Plus-minus sign

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

|onuooun “panwiad S uonnguisip 10 uononpoidal Jayuny ON "UOSIPRIN Sawer AQ $T0Z-8Z-A0ON U0 PapPeOjUMOP ‘W02°18311sYyoa1 suonduosgns “-ou| ‘(oynuaios) siainay uoswoy L Agq owad Hg 01 pasusdl| [eusrew paiybuidod

- 227 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008
Character Name

= Equals sign 2 Superscript two

> Greater-than sign 3 Superscript three

_ Underline, low line ! Acute accent

Vertical line, vertical bar 0 Micro sign

! Exclamation mark q Pilcrow sign

$ Dollar sign : Middle dot
% Percent sign R Cedilla

? Question mark ! Superscript one
@ Commercial at ° Masculine ordinal indicator

[Left square bracket » Right angle quotation mark

\ Backslash, reverse solidus YVa Vulgar fraction one quarter

] Right square bracket ¥z Vulgar fraction one half

A Circumflex accent Ya Vulgar fraction three quarters

Grave accent A Inverted question mark

{ Left curly bracket x Multiplication sign

} Right curly bracket + Division sign

~ Tilde

i Inverted exclamation mark

¢ Cent sign

The soft hyphen is a graphic character that is represented by a graphic symbol identical with, or similar to, that
representing a hyphen, for use when a line break has been established within a word.

15.3 Lexical elements, separators, and delimiters

The text of each design unit, apart from text treated specially due to the effect of tool directives (see 15.11),
is a sequence of separate lexical elements. Each lexical element is either a delimiter, an identifier (which
may be a reserved word), an abstract literal, a character literal, a string literal, a bit string literal, a comment,
a lexical element defined for a tool directive, or a lexical element defined in IEEE Std 1850-2005 for a PSL
declaration, a PSL directive, or a PSL verification unit.

In some cases an explicit separator is required to separate adjacent lexical elements (namely when, without
separation, interpretation as a single lexical element is possible). A separator is either a space character
(SPACE or NBSP), a format effector, or the end of a line. A space character (SPACE or NBSP) is a
separator except within an extended identifier, a comment, a string literal, a space character literal, or where
defined to be part of a lexical element in a tool directive.

The end of a line is always a separator. The language does not define what causes the end of a line. However
if, for a given implementation, the end of a line is signified by one or more characters, then these characters
shall be format effectors other than horizontal tabulation. In any case, a sequence of one or more format
effectors other than horizontal tabulation shall cause at least one end-of-line.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -228-
IEEE Std 1076-2008

One or more separators are allowed between any two adjacent lexical elements, before the first of each
design unit, or after the last lexical element of a design file. At least one separator is required between an
identifier or an abstract literal and an adjacent identifier or abstract literal.

A delimiter is either one of the following special characters (in the basic character set):

&' ()*+,-. /iy <=>"[]1T@

or one of the following compound delimiters, each composed of two or more adjacent special characters:
= *¥* .= = >= <= <> 7= = < <= D> o= << >>

Each of the special characters listed for single character delimiters is a single delimiter except if this
character is used as a character of a compound delimiter or as a character of an extended identifier,
comment, string literal, character literal, or abstract literal.

The remaining forms of lexical elements are described in subclauses of this clause.

NOTE 1—Each lexical element shall fit on one line, since the end of a line is a separator. The quotation mark, number
sign, and underline characters, likewise two adjacent hyphens, are not delimiters, but may form part of other lexical
elements.

NOTE 2—The following names are used when referring to compound delimiters:

Delimiter Name
= Arrow
Hok Double star, exponentiate

= Variable assignment

/= Inequality (pronounced “not equal”)
>= Greater than or equal

<= Less than or equal; signal assignment
< Box

7? Condition conversion

7= Matching equality

7= Matching inequality

< Matching less than
7<= Matching less than or equal

7> Matching greater than
>= Matching greater than or equal

<< Double less than

>> Double greater than

NOTE 3—PSL macros and preprocessing directives can only be defined and used within PSL verification units. They
cannot appear in PSL declarations or PSL directives embedded in other VHDL code, since they do not occur as part of
the syntax of PSL declarations or PSL directives.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

-229 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

15.4 Identifiers

15.4.1 General

Identifiers are used as names and also as reserved words.
identifier ::= basic_identifier | extended identifier

15.4.2 Basic identifiers

A basic identifier consists only of letters, digits, and underlines.

basic_identifier ::=
letter { [underline] letter_or digit }

letter or_digit ::= letter | digit
letter ::= upper_case_letter | lower case_letter

All characters of a basic identifier are significant, including any underline character inserted between a letter
or digit and an adjacent letter or digit. Basic identifiers differing only in the use of corresponding uppercase
and lowercase letters are considered the same.

Examples:
COUNT X c_out FFT Decoder
VHSIC X1 PageCount STORE _NEXT ITEM

NOTE—No space (SPACE or NBSP) is allowed within a basic identifier, since a space is a separator.

15.4.3 Extended identifiers
Extended identifiers may contain any graphic character.

extended_identifier ::=
\ graphic_character { graphic_character } \

If a backslash is to be used as one of the graphic characters of an extended identifier, it shall be doubled. All
characters of an extended identifier are significant (a doubled backslash counting as one character).
Extended identifiers differing only in the use of corresponding uppercase and lowercase letters are distinct.
Moreover, every extended identifier is distinct from any basic identifier.

Examples:

\BUS\ \bus\ -- Two different identifiers,
-- neither of which is
-— the reserved word bus.

\a\\b\ -- An identifier containing
-- three characters.

VHDL \VHDL\ \vhdl\ -- Three distinct identifiers.

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -230-
IEEE Std 1076-2008

15.5 Abstract literals

15.5.1 General

There are two classes of abstract literals: real literals and integer literals. A real literal is an abstract literal
that includes a point; an integer literal is an abstract literal without a point. Real literals are the literals of the
type universal _real. Integer literals are the literals of the type universal integer.

abstract _literal ::= decimal _literal | based_literal

15.5.2 Decimal literals

A decimal literal is an abstract literal expressed in the conventional decimal notation (that is, the base is
implicitly ten).

decimal_literal ::= integer [. integer | [exponent |

integer ::= digit { [underline] digit }

exponent ::= E [+] integer | E — integer

An underline character inserted between adjacent digits of a decimal literal does not affect the value of this
abstract literal. The letter E of the exponent, if any, can be written either in lowercase or in uppercase, with
the same meaning.

An exponent indicates the power of 10 by which the value of the decimal literal without the exponent is to be

multiplied to obtain the value of the decimal literal with the exponent. An exponent for an integer literal
shall not have a minus sign.

Examples:

12 0 1E6 123 456 -- Integer literals.
12.0 0.0 0.456 3.14159 26 -- Real literals.
1.34E-12 1.0E+6 6.023E+24 -- Real literals

-- with exponents.

NOTE—Leading zeros are allowed. No space (SPACE or NBSP) is allowed in an abstract literal, not even between con-
stituents of the exponent, since a space is a separator. A zero exponent is allowed for an integer literal.

15.5.3 Based literals

A based literal is an abstract literal expressed in a form that specifies the base explicitly. The base shall be at
least two and at most sixteen.

based literal ::=
base # based_integer [. based integer | # [exponent]

base ::= integer

based_integer ::=
extended digit { [underline] extended digit }

extended digit ::= digit | letter

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

-231- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

An underline character inserted between adjacent digits of a based literal does not affect the value of this
abstract literal. The base and the exponent, if any, are in decimal notation. The only letters allowed as
extended digits are the letters A through F for the digits 10 through 15. A letter in a based literal (either an
extended digit or the letter E of an exponent) can be written either in lowercase or in uppercase, with the
same meaning.

The conventional meaning of based notation is assumed; in particular the value of each extended digit of a
based literal shall be less than the base. An exponent indicates the power of the base by which the value of
the based literal without the exponent is to be multiplied to obtain the value of the based literal with the
exponent. An exponent for a based integer literal shall not have a minus sign.

Examples:

-- Integer literals of value 255:
2#1111 11114 16#FF# Ol6#O0FF#

-- Integer literals of value 224:
16#E#EL 241110 _0000#

-— Real literals of wvalue 4095.0:
L6#F.FF#E+2 24#1.1111 1111 111#E11

15.6 Character literals

A character literal is formed by enclosing one of the 191 graphic characters (including the space and
nonbreaking space characters) between two apostrophe characters. A character literal has a value that
belongs to a character type.

character literal ::="' graphic character '

Examples:

'A' X LI B | L} L

15.7 String literals

A string literal is formed by a sequence of graphic characters (possibly none) enclosed between two
quotation marks used as string brackets.

string_literal ::= " { graphic_character } "

A string literal has a value that is a sequence of character values corresponding to the graphic characters of
the string literal apart from the quotation mark itself. If a quotation mark value is to be represented in the
sequence of character values, then a pair of adjacent quotation marks shall be written at the corresponding
place within the string literal. (This means that a string literal that includes two adjacent quotation marks is

never interpreted as two adjacent string literals.)

The length of a string literal is the number of character values in the sequence represented. (Each doubled
quotation mark is counted as a single character.)

Examples:

"Setup time is too short" -- An error message.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -232-
IEEE Std 1076-2008

" -- An empty string literal.
non npmn LRIALA -— Three string literals of length 1.

"Characters such as $, %, and } are allowed in string literals."

NOTE—A string literal shall fit on one line, since it is a lexical element (see 15.3). Longer sequences of graphic charac-
ter values can be obtained by concatenation of string literals. The concatenation operation may also be used to obtain
string literals containing nongraphic character values. The predefined type CHARACTER in package STANDARD
specifies the enumeration literals denoting both graphic and nongraphic characters. Examples of such uses of concatena-
tion are as follows:

"FIRST PART OF A SEQUENCE OF CHARACTERS " &
"THAT CONTINUES ON THE NEXT LINE"

"Sequence that includes the" & ACK & "control character"

15.8 Bit string literals

A Dbit string literal is formed by a sequence of characters (possibly none) enclosed between two quotation
marks used as bit string brackets, preceded by a base specifier. The bit string literal may also be preceded by
an integer specifying the length of the value represented by the bit string literal.

bit_string_literal ::= [integer] base_specifier " [bit_value] "

bit value ::= graphic_character { [underline] graphic character }

base_specifier::= B|O| X |UB|UO | UX|SB|SO|SX|D

A graphic character in a bit string literal shall not be an underline character. An underline character inserted
between adjacent graphic characters of a bit string literal does not affect the value of this literal.

If the base specifier is B, UB or SB, the digits 0 and 1 in the bit value are interpreted as extended digits, and
all other graphic characters are not interpreted as extended digits. If the base specifier is O, UO, or SO, the
digits 0 through 7 in the bit value are interpreted as extended digits, and all other graphic characters are not
interpreted as extended digits. If the base specifier is X, UX or SX, all digits together with the letters A
through F in the bit value are interpreted as extended digits. If the base specifier is D, all of the graphic
characters in the bit value (not counting underline characters) shall be digits. An extended digit and the base
specifier in a bit string literal can be written either in lowercase or in uppercase, with the same meaning.

A bit string literal has a value that is a string literal. The string literal is formed from the bit value by first
obtaining a simplified bit value, consisting of the bit value with underline characters removed, and then
obtaining an expanded bit value. Finally, the string literal value is obtained by adjusting the expanded bit
value, if required.

If the base specifier is B, UB or SB, the expanded bit value is the simplified bit value itself. If the base
specifier is O, UO, or SO (respectively X, UX, or SX), the expanded bit value is the string obtained by
replacing each character of the simplified bit value by a sequence of three (respectively four) characters. For
a character in the simplified bit value that is interpreted as an extended digit, the replacement sequence is as
follows:

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

-233- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

Extended digit Replacement when the base specifier is Replacement when the base specifier is
0, UO, or SO X, UX, or SX
0 000 0000
1 001 0001
2 010 0010
3 011 0011
4 100 0100
5 101 0101
6 110 0110
7 111 0111
8 1000
9 1001
A 1010
B 1011
C 1100
D 1101
E 1110
F 1111

For a character in the simplified value that is not interpreted as an extended digit, each character in the
replacement sequence is the same as the character replaced.

If the base specifier is D, the simplified bit value is interpreted as a decimal integer. The expanded bit value
is a string of 0 and 1 digits that is the binary representation of the decimal integer. The number of characters
in the expanded bit value is given by the expression Llogsz + 1, where #n is the value of the decimal
integer.

The length of a bit string literal is the length of its string literal value. If a bit string literal includes the
integer immediately preceding the base specifier, the length of the bit string literal is the value of the integer.
Otherwise, the length is the number of characters in the expanded bit value.

The string literal value is obtained by adjusting the expanded bit value to the length of the bit string literal, as
follows:

— If the length is equal to the number of characters in the expanded bit value, the string literal value is
the expanded bit value itself.

— Ifthe length is greater than the number of characters in the expanded bit value and the base specifier
is B, UB, O, UO, X, UX, or D, the bit string value is obtained by concatenating a string of 0 digits to
the left of the expanded bit value. The number of 0 digits in the string is such that the number of
characters in the result of the concatenation is the length of the bit string literal.

— Ifthe length is greater than the number of characters in the expanded bit value and the base specifier
is SB, SO, or SX, the bit string value is obtained by concatenating to the left of the expanded bit
value a string, each of whose characters is the leftmost character of the expanded bit value. The

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -234 -
IEEE Std 1076-2008

number of characters in the string is such that the number of characters in the result of the
concatenation is the length of the bit string literal.

— If the length is less than the number of characters in the expanded bit value and the base specifier is
B, UB, O, UO, X, UX, or D, the bit string value is obtained by deleting sufficient characters from the
left of the expanded bit value to yield a string whose length is the length of the bit string literal. It is
an error if any of the characters so deleted is other than the digit 0.

— If the length is less than the number of characters in the expanded bit value and the base specifier is
SB, SO, or SX, the bit string value is obtained by deleting sufficient characters from the left of the
expanded bit value to yield a string whose length is the length of the bit string literal. It is an error if
any of the characters so deleted differs from the leftmost remaining character.

Example:

B"1111 1111 1111" -- Equivalent to the string literal "111111111111".
X"FFE" -- Equivalent to B"1111 1111 1111".
o"77I7" -—- Equivalent to B"111 111 111".
X"7T7I" -- Equivalent to B"0111 0111 O111".
B"XXXX O01LH" -- Equivalent to the string literal "XXXXO01LH"
ugom"27" -- Equivalent to B"010 111"

uo"ac" -- Equivalent to B"011 cCccC"

SX"3W" -— Equivalent to B"0011 WWWW"

D"35" -- Equivalent to B"100011"

12UB"X1" -- Equivalent to B"0000_0000_0OX1"
12SB"X1" -— Equivalent to B"XXXX XXXX XXX1"
12UX"F-" -- Equivalent to B"0000 1111 ----"
12SX"F-" -- Equivalent to B"1111 1111 ----"
12D"13" -- Equivalent to B"0000 0000 _1101"
12UX"000WWW" -- Equivalent to B"WWWW WWWW WWWW"
12SX"FFFCOQO" -- Equivalent to B"1100 _0000_00O0Q"
12SX"XXXX00" -- Equivalent to B"XXXX 0000_000Q"
8D"511" -- Error

guo"47T" -- Error

8SX"OFE" -- Error

8SX"FXX" -- Error

constant cl: STRING := B"1111 1111 1111";

constant c2: BIT VECTOR := X"FFF";

type MVL is ('x', '0', '1', '2');
type MVL VECTOR is array (NATURAL range <>) of MVL;
constant c3: MVL VECTOR := O"777";

assert cl'LENGTH = 12 and c2'LENGTH = 12 and c3 = "111111111";

15.9 Comments

A comment is either a single-line comment or a delimited comment. A single-line comment starts with two
adjacent hyphens and extends up to the end of the line. A delimited comment starts with a solidus (slash)

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

-235- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

character immediately followed by an asterisk character and extends up to the first subsequent occurrence of
an asterisk character immediately followed by a solidus character.

An occurrence of two adjacent hyphens within a delimited comment is not interpreted as the start of a single-
line comment. Similarly, an occurrence of a solidus character immediately followed by an asterisk character
within a single-line comment is not interpreted as the start of a delimited comment. Moreover, an occurrence
of a solidus character immediately followed by an asterisk character within a delimited comment is not
interpreted as the start of a nested delimited comment.

A single-line comment can appear on any line of a VHDL description and may contain any character except
the format effectors vertical tab, carriage return, line feed, and form feed. A delimited comment can start on
any line of a VHDL description and may finish on the same line or any subsequent line.

The presence or absence of comments has no influence on whether a description is legal or illegal.
Furthermore, comments do not influence the execution of a simulation module; their sole purpose is to
enlighten the human reader.

Examples:

-- The last sentence above echoes the Algol 68 report.
end; -- Processing of LINE is complete.

——————————— The first two hyphens start the comment.

/* A long comment may be written
on several consecutive lines */

X :=1; /* Comments /* do not nest */

NOTE 1—Horizontal tabulation can be used in comments, after the starting characters, and is equivalent to one or more
spaces (SPACE characters) (see 15.3).

NOTE 2—Comments may contain characters that, according to 15.2, are non-printing characters. Implementations may
interpret the characters of a comment as members of ISO/IEC 8859-1:1998, or of any other character set; for example,
an implementation may interpret multiple consecutive characters within a comment as single characters of a multi-byte
character set.

15.10 Reserved words

The following identifiers are called reserved words and are reserved for significance in the language. For
readability of this standard, the reserved words appear in lowercase boldface.

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -236-
IEEE Std 1076-2008

abs fairness nand select
access file new sequence
after for next severity
alias force nor signal
all function not shared
and null sla
architecture generate sl
array generic of sra
assert group on srl
assume guarded open strong
assume_guarantee or subtype
attribute if others

impure out then
begin in to
block inertial package transport
body inout parameter type
buffer is port
bus postponed unaffected

label procedure units
case library process until
component linkage property use
configuration literal protected
constant loop pure variable
context vmode
cover map range vprop

mod record vunit
default register
disconnect reject wait
downto release when

rem while
else report with
elsif restrict
end restrict_guarantee xnor
entity return xor
exit rol
ror

A reserved word shall not be used as an explicitly declared identifier.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

- 237 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

Within a PSL declaration, a PSL directive, or a PSL verification unit, PSL keywords are reserved words (see
IEEE Std 1850-2005). A PSL keyword shall not be used as an identifier to declare a PSL declaration or a
PSL verification unit. A PSL keyword that is a legal VHDL identifier may be used as an explicitly declared
identifier other than to declare a PSL declaration or a PSL verification unit, but such a declaration is hidden
within a PSL declaration, a PSL directive, or a PSL verification unit (see 12.3).

NOTE 1—Reserved words differing only in the use of corresponding uppercase and lowercase letters are considered as
the same (see 15.4.2). The reserved words range and subtype are also used as the names of predefined attributes.

NOTE 2—An extended identifier whose sequence of characters inside the leading and trailing backslashes is identical to
a reserved word is not a reserved word. For example, \next\ is a legal (extended) identifier and is not the reserved word
next.

NOTE 3—The following reserved words are PSL keywords, that is, reserved identifiers in PSL:

assert default restrict_guarantee vprop
assume fairness sequence vunit
assume_guarantee property strong

cover restrict vmode

Their use in PSL is defined in IEEE Std 1850-2005. Other PSL keywords, reserved only within PSL declarations, PSL
directives, and PSL verification units, are defined in IEEE Std 1850-2005.

15.11 Tool directives

A tool directive directs a tool to analyze, elaborate, execute, or otherwise process a description in a specified
manner. A tool directive starts with a grave accent character and extends up to the end of the line.

tool directive ::= " identifier { graphic_character }
The identifier determines the form of processing to be performed by the tool. Apart from the standard tool

directives (see Clause 24), the requirements, if any, on the location of a tool directive and on the graphic
characters are implementation defined, as is the effect of the tool directive.

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

Copyrighted material licensed to BR Demo by Thomson Reuters (Scientific), Inc., subscriptions.techstreet.com, downloaded on Nov-28-2014 by James Madison. No further reproduction or distribution is permitted. Uncontroll

-238-

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

-239 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

16. Predefined language environment

16.1 General

This clause describes the predefined attributes of VHDL and the packages that all VHDL implementations
shall provide.

16.2 Predefined attributes
16.2.1 General

Predefined attributes denote values, functions, types, subtypes, signals, and ranges associated with various
kinds of named entities. These attributes are described as follows. For each attribute, the following
information is provided:

— The kind of attribute: value, type, subtype, range, function, or signal
— The prefixes for which the attribute is defined

— A description of the parameter or argument, if one exists

— The result of evaluating the attribute, and the result type (if applicable)

— Any further restrictions or comments that apply

For those predefined attributes that denote functions, the functions do not have named formal parameters;
therefore, named association (see 6.5.7.1) cannot be used when invoking a function denoted by a predefined
attribute.

16.2.2 Predefined attributes of types and objects

T'BASE Kind: Type.
Prefix: Any type or subtype T.
Result: The base type of T.
Restrictions: This attribute is allowed only as the prefix of the name of another

attribute; for example, T'BASE'LEFT.

T'LEFT Kind: Value.

Prefix: Any scalar type or subtype T.

Result type: Same type as T.

Result: The left bound of T.
TRIGHT Kind: Value.

Prefix: Any scalar type or subtype T.

Result type: Same type as T.

Result: The right bound of T.
T'HIGH Kind: Value.

Prefix: Any scalar type or subtype T.

Result type: Same type as T.

Result: The upper bound of T.

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

TLOW Kind:
Prefix:
Result type:
Result:

T'ASCENDING Kind:
Prefix:
Result type:
Result:

TIMAGE(X) Kind:
Prefix:
Parameter:
Result type:

Result:

Restrictions:

-240-

Value.

Any scalar type or subtype T.
Same type as T.

The lower bound of T.

Value.
Any scalar type or subtype T.
Type BOOLEAN

It is TRUE if T is defined with an ascending range; FALSE otherwise.

Pure function.

Any scalar type or subtype T.

An expression whose type is the base type of T.
Type STRING.

The string representation of the parameter value as defined in 5.7, but
with the following differences. If T is an enumeration type or subtype
and the parameter value is either an extended identifier or a character
literal, the result is expressed with both a leading and trailing reverse
solidus (backslash) (in the case of an extended identifier) or
apostrophe (in the case of a character literal); in the case of an
extended identifier that has a backslash, the backslash is doubled in
the string representation. If T is an enumeration type or subtype and
the parameter value is a basic identifier, then the result is expressed in
lowercase characters. If T is a numeric type or subtype, the result is
expressed as the decimal representation of the parameter value
without underlines or leading or trailing zeros (except as necessary to
form the image of a legal literal with the proper value); moreover, an
exponent may (but is not required to) be present and the language does
not define under what conditions it is or is not present. If the exponent
is present, the “e” is expressed as a lowercase character. If T is a
physical type or subtype, the result is expressed in terms of the
primary unit of T unless the base type of T is TIME, in which case the
result is expressed in terms of the resolution limit (see 5.2.4.2); in
either case, if the unit is a basic identifier, the image of the unit is
expressed in lowercase characters. If T is a floating-point type or
subtype, the number of digits to the right of the decimal point
corresponds to the standard form generated when the DIGITS
parameter to TEXTIO.WRITE for type REAL is set to 0 (see 16.4).

It is an error if the parameter value does not belong to the subtype
implied by the prefix.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

T'VALUE(X) Kind:
Prefix:
Parameter:
Result type:
Result:

Restrictions:

T'POS(X) Kind:
Prefix:
Parameter:
Result type:

Result:

Restrictions:

T'VAL(X) Kind:
Prefix:
Parameter:
Result type:

Result:

Restrictions:

T'SUCC(X) Kind:
Prefix:
Parameter:
Result type:

Result:

Restrictions:

-241 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

Pure function.

Any scalar type or subtype T.
An expression of type STRING.
The base type of T.

The value of T whose string representation (as defined in 5.7) is given
by the parameter. Leading and trailing whitespace is allowed and
ignored. If T is a numeric type or subtype, the parameter shall be
expressed either as a decimal literal or as a based literal, with the addi-
tion of an optional leading sign. If the sign is present, whitespace shall
not occur between the sign and the remainder of the value. If T is a
physical type or subtype, the parameter shall be expressed using a
string representation of any of the unit names of T, with or without a
leading abstract literal. The parameter shall have whitespace between
any abstract literal and the unit name.

It is an error if the parameter is not a valid string representation of a
literal of type T or if the result does not belong to the subtype implied
by T.

Pure function.

Any discrete or physical type or subtype T.

An expression whose type is the base type of T.
universal_integer.

The position number of the value of the parameter.

It is an error if the value of the parameter does not belong to the sub-
type implied by the prefix.

Pure function.

Any discrete or physical type or subtype T.
An expression of any integer type.

The base type of T.

The value whose position number is the universal _integer value cor-
responding to X.

It is an error if the result does not belong to the range T'LOW to
T'HIGH.

Pure function.

Any discrete or physical type or subtype T.

An expression whose type is the base type of T.
The base type of T.

The value whose position number is one greater than that of the
parameter.

An error occurs if X equals T'HIGH or if X does not belong to the
range T'LOW to T'HIGH.

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

T'PRED(X) Kind:
Prefix:
Parameter:
Result type:
Result:

Restrictions:

T'LEFTOF(X) Kind:
Prefix:
Parameter:
Result type:

Result:

Restrictions:

T'RIGHTOF(X) Kind:
Prefix:
Parameter:
Result type:

Result:

Restrictions:

O'SUBTYPE Kind:
Prefix:

Result:

-242-

Pure function.

Any discrete or physical type or subtype T.

An expression whose type is the base type of T.
The base type of T.

The value whose position number is one less than that of the
parameter.

An error occurs if X equals T'LOW or if X does not belong to the
range T'LOW to T'HIGH.

Pure function.

Any discrete or physical type or subtype T.

An expression whose type is the base type of T.

The base type of T.

The value that is to the left of the parameter in the range of T.

An error occurs if X equals T'LEFT or if X does not belong to the
range T'LOW to T'HIGH.

Pure function.

Any discrete or physical type or subtype T.

An expression whose type is the base type of T.

The base type of T.

The value that is to the right of the parameter in the range of T.

An error occurs if X equals T'RIGHT or if X does not belong to the
range T'LOW to T'HIGH.

Subtype.
Any prefix O that is appropriate for an object, or an alias thereof.

The fully constrained subtype that is the subtype of O, together with
constraints defining any index ranges that are determined by applica-
tion of the rules of 5.3.2.2. (If O is an alias for an object, then the
result is determined by the declaration of O, not that of the object.)

NOTE 1—The relationship between the values of the LEFT, RIGHT, LOW, and HIGH attributes is expressed as

follows:

T'LEFT

T'RIGHT

Ascending range Descending range
TLOW T'HIGH
T'HIGH TLOW

NOTE 2—For all values V of any scalar type T except a real type, the following relation holds:

V =T'Value(T'Image(V))

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

16.2.3 Predefined attributes of arrays

A'LEFT [(N)] Kind:
Prefix:

Parameter:

Result type:

Result:

A'RIGHT [(N)] Kind:
Prefix:

Parameter:

Result type:
Result:

AHIGH [(N)] Kind:

Prefix:

Parameter:

Result type:

Result:

A'LOW [(N)] Kind:

Prefix:

Parameter:

Result type:

Result:

-243 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

Function.

Any prefix A that is appropriate for an array object, or an alias thereof,
or that denotes an array subtype whose index ranges are defined by a
constraint.

A locally static expression of type universal_integer, the value of
which shall not exceed the dimensionality of A. If omitted, it defaults
to 1.

Type of the left bound of the Nth index range of A.

Left bound of the Nth index range of A. (If A is an alias for an array
object, then the result is the left bound of the Nth index range from the
declaration of A, not that of the object.)

Function.

Any prefix A that is appropriate for an array object, or an alias thereof,
or that denotes an array subtype whose index ranges are defined by a
constraint.

A locally static expression of type universal_integer, the value of
which shall not exceed the dimensionality of A. If omitted, it defaults
to 1.

Type of the Nth index range of A.

Right bound of the Nth index range of A. (If A is an alias for an array
object, then the result is the right bound of the Nth index range from
the declaration of A, not that of the object.)

Function.

Any prefix A that is appropriate for an array object, or an alias thereof,
or that denotes an array subtype whose index ranges are defined by a
constraint.

A locally static expression of type universal_integer, the value of
which shall not exceed the dimensionality of A. If omitted, it defaults
to 1.

Type of the Nth index range of A.

Upper bound of the Nth index range of A. (If A is an alias for an array
object, then the result is the upper bound of the Nth index range from
the declaration of A, not that of the object.)

Function.

Any prefix A that is appropriate for an array object, or an alias thereof,
or that denotes an array subtype whose index ranges are defined by a
constraint.

A locally static expression of type universal_integer, the value of
which shall not exceed the dimensionality of A. If omitted, it defaults
to 1.

Type of the Nth index range of A.

Lower bound of the Nth index range of A. (If A is an alias for an array
object, then the result is the lower bound of the Nth index range from
the declaration of A, not that of the object.)

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

A'RANGE [(N)] Kind:
Prefix:

Parameter:

Result type:

Result:

A'REVERSE_RANGE [(N)] Kind:
Prefix:

Parameter:

Result type:

Result:

A'LENGTH [(N)] Kind:
Prefix:

Parameter:

Result type:

Result:

A'ASCENDING [(N)] Kind:
Prefix:

Parameter:

Result type:

Result:

-244.-

Range.

Any prefix A that is appropriate for an array object, or an alias thereof,
or that denotes an array subtype whose index ranges are defined by a
constraint.

A locally static expression of type universal_integer, the value of
which shall not exceed the dimensionality of A. If omitted, it defaults
to 1.

The type of the Nth index range of A.

The range A'LEFT(N) to A'RIGHT(N) if the Nth index range of A is
ascending, or the range A'LEFT(N) downto A'RIGHT(N) if the Nth
index range of A is descending. (If A is an alias for an array object,
then the result is determined by the Nth index range from the declara-
tion of A, not that of the object.)

Range.

Any prefix A that is appropriate for an array object, or an alias thereof,
or that denotes an array subtype whose index ranges are defined by a
constraint.

A locally static expression of type universal_integer, the value of
which shall not exceed the dimensionality of A. If omitted, it defaults
to 1.

The type of the Nth index range of A.

The range A'RIGHT(N) downto A'LEFT(N) if the Nth index range of
A is ascending, or the range A'RIGHT(N) to A'LEFT(N) if the Nth
index range of A is descending. (If A is an alias for an array object,
then the result is determined by the Nth index range from the declara-
tion of A, not that of the object.)

Function.

Any prefix A that is appropriate for an array object, or an alias thereof,
or that denotes an array subtype whose index ranges are defined by a
constraint.

A locally static expression of type universal_integer, the value of
which shall not exceed the dimensionality of A. If omitted, it defaults
to 1.

universal_integer.

Number of values in the Nth index range; i.e., if the Nth index range
of A is a null range, then the result is 0. Otherwise, the result is the
value of T'POS(A'HIGH(N)) — T'POS(A'LOW(N)) + 1, where T is the
subtype of the Nth index of A.

Function.

Any prefix A that is appropriate for an array object, or an alias thereof,
or that denotes an array subtype whose index ranges are defined by a
constraint.

A locally static expression of type universal integer, the value of
which shall be greater than zero and shall not exceed the dimensional-
ity of A. If omitted, it defaults to 1.

Type BOOLEAN.

TRUE if the Nth index range of A is defined with an ascending range;
FALSE otherwise.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

-245 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

A'ELEMENT Kind: Subtype.

Prefix: Any prefix A that is appropriate for an array object, or an alias thereof,
or that denotes an array subtype.

Result: If A is an array subtype, the result is the element subtype of A. If A is
an array object, the result is the fully constrained element subtype that
is the element subtype of A, together with constraints defining any
index ranges that are determined by application of the rules of 5.3.2.2.
(If A is an alias for an array object, then the result is determined by the
declaration of A, not that of the object.)

16.2.4 Predefined attributes of signals

S'DELAYED [(T)] Kind: Signal.
Prefix: Any signal denoted by the static signal name S.
Parameter: A static expression of type TIME that evaluates to a nonnegative
value. If omitted, it defaults to 0 ns.
Result type: The base type of S.
Result: A signal equivalent to signal S delayed T units of time.

Let R be of the same subtype as S, let T >= 0 ns, and let P be a process statement of the
form

P: process (S)
begin
R <= transport S after T;
end process;

Assuming that the initial value of R is the same as the initial value of S, then the attribute
'DELAYED is defined such that SDELAYED(T) =R for any T.

S'STABLE [(T)] Kind: Signal.

Prefix: Any signal denoted by the static signal name S.

Parameter: A static expression of type TIME that evaluates to a nonnegative
value. If omitted, it defaults to 0 ns.

Result type: Type BOOLEAN.

Result: A signal that has the value TRUE when an event has not occurred on
signal S for T units of time, and the value FALSE otherwise (see
14.7.3.4).

S'QUIET [(T)] Kind: Signal.

Prefix: Any signal denoted by the static signal name S.

Parameter: A static expression of type TIME that evaluates to a nonnegative
value. If omitted, it defaults to O ns.

Result type: Type BOOLEAN.

Result: A signal that has the value TRUE when the signal has been quiet for T

units of time, and the value FALSE otherwise (see 14.7.3.1).

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

S'TRANSACTION

S'EVENT

S'ACTIVE

SLAST_EVENT

S'LAST ACTIVE

-246 -

Kind: Signal.

Prefix: Any signal denoted by the static signal name S.

Result type: Type BIT.

Result: A signal whose value toggles to the inverse of its previous value in
each simulation cycle in which signal S becomes active.

Restrictions: A description is erroneous if it depends on the initial value of
S'TRANSACTION.

Kind: Function.

Prefix: Any signal denoted by the static signal name S.

Result type: Type BOOLEAN.

Result: A value that indicates whether an event has just occurred on signal S.
Specifically:

For a scalar signal S, S'SEVENT returns the value TRUE if an event has occurred on S dur-
ing the current simulation cycle; otherwise, it returns the value FALSE.

For a composite signal S, SEVENT returns TRUE if an event has occurred on any scalar
subelement of S during the current simulation cycle; otherwise, it returns FALSE.

Kind: Function.

Prefix: Any signal denoted by the static signal name S.

Result type: Type BOOLEAN.

Result: A value that indicates whether signal S is active. Specifically:

For a scalar signal S, S'ACTIVE returns the value TRUE if signal S is active during the
current simulation cycle; otherwise, it returns the value FALSE.

For a composite signal S, S'ACTIVE returns TRUE if any scalar subelement of S is active
during the current simulation cycle; otherwise, it returns FALSE.

Kind: Function.

Prefix: Any signal denoted by the static signal name S.

Result type: Type TIME.

Result: The amount of time that has elapsed since the last event occurred on

signal S. Specifically:

For asignal S, SSLAST EVENT returns the smallest value T of type TIME such that
S'EVENT = TRUE during any simulation cycle at time NOW — T, if such a value exists;
otherwise, it returns TIME'HIGH.

Kind: Function.

Prefix: Any signal denoted by the static signal name S.

Result type: Type TIME.

Result: The amount of time that has elapsed since the last time at which signal

S was active. Specifically:

For a signal S, SLAST_ ACTIVE returns the smallest value T of type TIME such that
S'ACTIVE = TRUE during any simulation cycle at time NOW — T, if such value exists;
otherwise, it returns TIME'HIGH.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

S'LAST VALUE Kind:
Prefix:
Result type:
Result:

SDRIVING Kind:
Prefix:
Result type:

Result:

Restrictions:

SDRIVING VALUE Kind:
Prefix:
Result type:

Result:

Restrictions:

- 247 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

Function.
Any signal denoted by the static signal name S.
The base type of S.

For a signal S, if an event has occurred on S in any simulation cycle,
S'LAST VALUE returns the value of S prior to the update of S in the
last simulation cycle in which an event occurred; otherwise,
S'LAST_VALUE returns the current value of S.

Function.
Any signal denoted by the static signal name S.
Type BOOLEAN.

If the prefix denotes a scalar signal, the result is FALSE if the current
value of the driver for S in the current process is determined by the
null transaction; TRUE otherwise. If the prefix denotes a composite
signal, the result is TRUE if and only if R'DRIVING is TRUE for
every scalar subelement R of S; FALSE otherwise. If the prefix
denotes a null slice of a signal, the result is TRUE.

This attribute is available only from within a process, a concurrent
statement with an equivalent process, or a subprogram. If the prefix
denotes a port, it is an error if the port does not have a mode of inout,
out, or buffer. It is also an error if the attribute name appears in a
subprogram body that is not a declarative item contained within a
process statement and the prefix is not a formal parameter of the given
subprogram or of a parent of that subprogram. Finally, it is an error if
the prefix denotes a subprogram formal parameter whose mode is not
inout or out.

Function.
Any signal denoted by the static signal name S.
The base type of S.

If S is a scalar signal, the result is the current value of the driver for S
in the current process. If S is a composite signal, the result is the
aggregate of the values of R'DRIVING VALUE for each element R
of S. If S is a null slice, the result is a null slice.

This attribute is available only from within a process, a concurrent
statement with an equivalent process, or a subprogram. If the prefix
denotes a port, it is an error if the port does not have a mode of inout,
out, or buffer. It is also an error if the attribute name appears in a
subprogram body that is not a declarative item contained within a
process statement and the prefix is not a formal parameter of the given
subprogram or of a parent of that subprogram. Finally, it is an error if
the prefix denotes a subprogram formal parameter whose mode is not
inout or out, or if S'DRIVING is FALSE at the time of the evaluation
of S'DRIVING_VALUE.

NOTE 1—Since the attributes SEVENT, S'ACTIVE, STLAST EVENT, S'LAST ACTIVE, and SLAST VALUE are
functions, not signals, they cannot cause the execution of a process, even though the value returned by such a function
may change dynamically. It is thus recommended that the equivalent signal-valued attributes S'STABLE and S'QUIET,
or expressions involving those attributes, be used in concurrent contexts such as guard conditions or concurrent signal
assignments. Similarly, function STANDARD.NOW should not be used in concurrent contexts.

NOTE 2—S'DELAYED(O0 ns) is not equal to S during any simulation cycle where S'EVENT is true.

NOTE 3—S'STABLE(0 ns) = (S'DELAYED(0 ns) = S), and S'STABLE(O ns) is FALSE only during a simulation cycle

in which S has had a transaction.

NOTE 4—For a given simulation cycle, S'QUIET(0 ns) is TRUE if and only if S is quiet for that simulation cycle.

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -248 -
IEEE Std 1076-2008

NOTE 5—If S'STABLE(T) is FALSE, then, by definition, for some t where 0 ns <t <T, SDELAYED(t) /=S.

NOTE 6—If T, is the smallest value such that S'STABLE (T,) is FALSE, then for all t where 0 ns <t < T,
S'DELAYED(t) = S.

NOTE 7—S'EVENT should not be used within a postponed process (or a concurrent statement that has an equivalent
postponed process) to determine if the prefix signal S caused the process to resume. However, SLAST EVENT = 0 ns
can be used for this purpose.

NOTE 8—For a composite signal S, if an event on S as a whole is caused by an event on a subelement of S, the value of
S'LAST VALUE is the whole value of S before the update of the subelement. That value includes subelement values
that may not have changed.

16.2.5 Predefined attributes of named entities

E'SIMPLE_NAME Kind: Value.
Prefix: Any named entity as defined in 7.2.
Result type: Type STRING.
Result: The simple name, character literal, or operator symbol of the named

entity, without leading or trailing whitespace or quotation marks but
with apostrophes (in the case of a character literal) and both a leading
and trailing reverse solidus (backslash) (in the case of an extended
identifier). In the case of a simple name or operator symbol, the
characters are converted to their lowercase equivalents. In the case of
an extended identifier, the case of the identifier is preserved, and any
reverse solidus characters appearing as part of the identifier are
represented with two consecutive reverse solidus characters.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

E'INSTANCE _NAME

- 249 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

Kind: Value.

Prefix: Any named entity other than the local ports and generics of a compo-
nent declaration.

Result type: Type STRING.

Result: A string describing the hierarchical path starting at the root of the

design hierarchy and descending to the named entity, including the
names of instantiated design entities. Specifically:

The result string has the following syntax:
instance _name ::= package based path | full instance based path

package based path ::=
leader /ibrary logical name leader
{ package path instance element leader }
[local item name]

package path instance element ::=
subprogram_designator signature
| variable_simple name
| package_simple name

full instance based path ::= leader full path to instance [local item name]
full path to instance ::= { full path instance element leader }

local item name ::=
simple name
| character literal
| operator_symbol

full path instance element ::=
[component_instantiation_label @]
entity_simple_name (architecture_simple name)
| block_label
| generate label
| process_label
| loop_label
| subprogram_designator signature
| variable_simple name
| package simple name

generate_label ::= generate label [(literal)]
process_label ::= [process_label]
loop_label ::= [loop label]

leader ::= :

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

-250-

Package-based paths identify items declared within package library units. Full-instance-
based paths identify items within an elaborated design hierarchy.

A library logical name denotes a library (see 13.2). Since it is possible for multiple logical
names to denote the same library, it is possible that the library logical name not be unique.

The local item name in EINSTANCE NAME equals E'SIMPLE_NAME, unless E
denotes a library, package, subprogram, label, or variable of a protected type. In this latter
case, the package-based path or full-instance-based path, as appropriate, will not contain a
local item name.

There is one package path instance element for each subprogram body, shared variable of
a protected type, or nested package in the package library unit between the package decla-
ration or package body of the package library unit and the named entity denoted by the
prefix. Similarly, there is one full path instance element for each component instantiation,
block statement, generate statement, process statement, loop statement, subprogram body,
variable of a protected type, or package in the design hierarchy between the root design
entity and the named entity denoted by the prefix.

In a full path instance element, the architecture simple name shall denote an architecture
associated with the entity declaration designated by the entity simple name; furthermore,
the component instantiation label (and the commercial at character following it) are
required unless the entity simple name and the architecture simple name together denote
the root design entity.

The literal in a generate label is required if the label denotes a for generate statement; the
literal shall denote one of the values of the generate parameter.

A process statement with no label is denoted by an empty process label. Similarly, a loop
statement with no label is denoted by an empty loop label.

The signature occurring after a subprogram designator in the result of the
'INSTANCE_NAME or 'PATH_NAME attribute shall match the parameter and result type
profile of the subprogram. Each type mark in the signature is the type mark of the subtype
indication of the corresponding formal parameter, or the return type mark, as appropriate,
in the subprogram declaration.

All characters in basic identifiers appearing in the result are converted to their lowercase
equivalents. Both a leading and trailing reverse solidus surround an extended identifier
appearing in the result; any reverse solidus characters appearing as part of the identifier
are represented with two consecutive reverse solidus characters.

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

-251- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

E'PATH NAME Kind: Value.
Prefix: Any named entity other than the local ports and generics of a compo-
nent declaration.
Result type: Type STRING.
Result: A string describing the hierarchical path starting at the root of the

design hierarchy and descending to the named entity, excluding the
name of instantiated design entities. Specifically:

The result string has the following syntax:
path_name ::= package based path | instance based path

instance_based_path ::=
leader path_to_instance [local item_ name]

path_to instance ::= { path_instance element leader }

path_instance element ::=
component_instantiation_label
| entity_simple name
| block_label
| generate label
| process_label
| loop_label
| subprogram_designator signature
| variable_simple name
| package simple name

Package-based paths identify items declared within package library units. Instance-based
paths identify items within an elaborated design hierarchy.

The local item name in E'PATH NAME equals E'SIMPLE NAME, unless E denotes a
library, package, subprogram, label, or variable of a protected type. In this latter case, the
package-based path or instance-based path, as appropriate, will not contain a local item
name.

There is one package path instance element for each subprogram body or shared variable
of a protected type or nested package in the package library unit between the package dec-
laration or package body of the package library unit and the named entity denoted by the
prefix. Similarly, there is one path instance element for each component instantiation,
block statement, generate statement, process statement, loop statement, subprogram body,
variable of a protected type, or package in the design hierarchy between the root design
entity and the named entity denoted by the prefix.

Examples:
library Lib; -- All design units are in this library:
package P is -- P'PATH NAME = ":lib:p:"
-— P'INSTANCE NAME = ":lib:p:"
procedure Proc (F: inout INTEGER);
-— Proc'PATH NAME = ":lib:p:proc [integer]:"
-— Proc'INSTANCE NAME = ":lib:p:proc [integer]:"
constant C: INTEGER := 42; -— C'PATH NAME = ":lib:p:c"
end package P; -— C'INSTANCE NAME = ":lib:p:c"

package body P is
procedure Proc (F: inout INTEGER) is
variable x: INTEGER; -- x'PATH NAME = ":lib:p:proc [integer]:x"
begin -- x'"INSTANCE NAME = ":lib:p:proc [integer]:x"

|Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -252-
IEEE Std 1076-2008

end;
end;

library Lib;

use Lib.P.all; -- Assume that E is in Lib and
entity E is -- E is the top-level design entity:
-— E'PATHiNAME = ":e:"
-— E'INSTANCEiNAME = ":e(a):"
generic (G: INTEGER); -— G'PATH NAME = ":e:g"
-— G'INSTANCE NAME = ":e(a):g"
port (P: in INTEGER); -— P'PATH NAME = ":e:p"
end entity E; -— P'INSTANCE NAME = ":e(a):p"

architecture A of E is

signal S: BIT VECTOR (1 to G); -- S'PATH NAME = ":e:s"
-- S'INSTANCE NAME = ":e(a):s"
procedure Procl (signal spl: NATURAL; C: out INTEGER) is
-- Procl'PATH NAME = ":e:procl[natural,integer]:"
-- Procl'INSTANCE NAME = ":e(a):procl[natural,integer]:"
-- C'PATH NAME = ":e:procl[natural,integer]:c"
--— C'INSTANCE NAME = ":e(a):procl[natural,integer]:c"
variable max: DELAY LENGTH;
-— max'PATH NAME = ":e:procl[natural, integer] :max"
-—- max'INSTANCE NAME = ":e(a) :procl[natural, integer] :max"
begin
max := spl * ns;
wait on spl for max;
c := spl;

end procedure Procl;

begin
pl: process
variable T: INTEGER := 12; -- T'PATH NAME = :e:pl:t"

begin -— T'INSTANCE NAME = ":e(a):pl:t"

end process pl;

process
variable T: INTEGER := 12; -— T'PATH NAME = ":e::t"
1 e(a) "

begin -—- T'INSTANCE NAME

end process ;
end architecture;

entity Bottom is
generic (GBottom: INTEGER) ;
port (PBottom: INTEGER);
end entity Bottom;

architecture BottomArch of Bottom is
signal SBottom: INTEGER;
begin

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

|onuooun “panwiad S uonnguisip 10 uononpoidal Jayuny ON "UOSIPRIN Sawer AQ $T0Z-8Z-A0ON U0 PapPeOjUMOP ‘W02°18311sYyoa1 suonduosgns “-ou| ‘(oynuaios) siainay uoswoy L Agq owad Hg 01 pasusdl| [eusrew paiybuidod

- 253 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

ProcessBottom: process
variable V: INTEGER;
begin
if GBottom = 4 then
assert V'Simple Name = "v"
and V'Path Name = ":top:bl:b2:gl(4):b3:11l:processbottom:v"
and V'Instance Name =
":top(top) :bl:b2:gl(4) :b3:110@bottom (bottomarch) :processbottom:v";
assert GBottom'Simple Name = "gbottom"
and GBottom'Path Name = ":top:bl:b2:gl(4):b3:11:gbottom"
and GBottom'Instance Name =
":top (top) :bl:b2:gl(4) :b3:11@bottom (bottomarch) :gbottom";

elsif GBottom = -1 then
assert V'Simple Name = "v"
and V'Path Name = ":top:l2:processbottom:v"
and V'Instance Name =
":top (top) : 12@bottom (bottomarch) :processbottom:v";
assert GBottom'Simple Name = "gbottom"
and GBottom'Path Name = ":top:12:gbottom”
and GBottom'Instance Name =
":top (top) :12@bottom (bottomarch) :gbottom";
end if;
wait;
end process ProcessBottom;
end architecture BottomArch;

entity Top is end Top;

architecture Top of Top is
component BComp is
generic (GComp: INTEGER) ;
port (PComp: INTEGER);

end component BComp;
signal S: INTEGER;
begin
Bl: block
signal S: INTEGER;
begin
B2: block
signal S: INTEGER;
begin
Gl: for I in 1 to 10 generate
B3: block
signal S: INTEGER;
for L1: BComp use entity Work.Bottom(BottomArch)
generic map (GBottom => GComp)
port map (PBottom => PComp) ;
begin
Ll: BComp generic map (I) port map (S);
Pl: process
variable V: INTEGER;

begin
if T = 7 then
assert V'Simple Name = "v"
and V'Path Name = ":top:bl:b2:gl(7):b3:pl:v"

and V'Instance Name =
":top (top) :bl:b2:gl(7):b3:pl:v";

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -254 -
IEEE Std 1076-2008
assert Pl'Simple Name = "pl"
and P1'Path Name = ":top:bl:b2:gl(7):b3:pl:"

and Pl'Instance Name =
":top (top) :bl:b2:gl(7) :b3:pl:";
assert S'Simple Name = "s"
and S'Path Name = ":top:bl:b2:91(7):b3:s"
and S'Instance Name =
":top(top) :bl:b2:gl(7):b3:s";

assert Bl.S'Simple Name = "s"
and Bl.S'Path Name = ":top:bl:s"
and Bl.S'Instance Name = ":top(top):bl:s";
end if;
wait;

end process Pl;
end block B3;
end generate;
end block B2;
end block BIl;
L2: BComp generic map (-1) port map (S);
end architecture Top;

configuration TopConf of Top is
for Top
for L2: BComp use
entity Work.Bottom (BottomArch)
generic map (GBottom => GComp)
port map (PBottom => PComp) ;
end for;
end for;
end configuration TopConf;

NOTE 1—The values of EPATH_NAME and E'INSTANCE_NAME are not unique. Specifically, named entities in two
different, unlabeled processes may have the same path names or instance names. Overloaded subprograms, and named
entities within them, may also have the same path names or instance names.

NOTE 2—If the prefix to the attributes 'SIMPLE NAME, 'PATH_NAME, or INSTANCE NAME denotes an alias, the
result is respectively the simple name, path name or instance name of the alias. See 8.6.

16.3 Package STANDARD

Package STANDARD predefines a number of types, subtypes, and functions. An implicit context clause
naming this package is assumed to exist at the beginning of each design unit. Package STANDARD must
not be modified by the user.

The operations that are predefined for the types declared for package STANDARD are given in comments
since they are implicitly declared. Italics are used for pseudo-names of anonymous types (such as
universal_integer), formal parameters, and undefined information (such as implementation_defined).

package STANDARD is

-- Predefined enumeration types:
type BOOLEAN is (FALSE, TRUE);

-- The predefined operations for this type are as follows:

-- function "and" (anonymous, anonymous: BOOLEAN) return BOOLEAN;
-- function "or" (anonymous, anonymous: BOOLEAN) return BOOLEAN;

|PuMBhedbyIECundmﬂmenseﬂomIEEEADZOOSIEEE.AHﬂghmresewedj

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

-- function
--— function
-— function
-— function

--— function

-- function
-- function
-- function
-- function
-- function
-- function

-— function
-— function

-— function
-— function

type BIT is

- 255 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

"nand" (anonymous, anonymous: BOOLEAN) return BOOLEAN;
"nor" (anonymous, anonymous: BOOLEAN) return BOOLEAN;
"xor" (anonymous, anonymous: BOOLEAN) return BOOLEAN;
"xnor" (anonymous, anonymous: BOOLEAN) return BOOLEAN;
"not" (anonymous: BOOLEAN) return BOOLEAN;
n="n (anonymous, anonymous: BOOLEAN) return BOOLEAN;
/=" (anonymous, anonymous: BOOLEAN) return BOOLEAN;
< (anonymous, anonymous: BOOLEAN) return BOOLEAN;
=" (anonymous, anonymous: BOOLEAN) return BOOLEAN;
n>n (anonymous, anonymous: BOOLEAN) return BOOLEAN;
">=" (anonymous, anonymous: BOOLEAN) return BOOLEAN;
MINIMUM (L, R: BOOLEAN) return BOOLEAN;
MAXIMUM (L, R: BOOLEAN) return BOOLEAN;
RISING EDGE (signal S: BOOLEAN) return BOOLEAN;
FALLING EDGE (signal S: BOOLEAN) return BOOLEAN;

(ro',

1)

-- The predefined operations for this type are

-- function
-— function
-— function
-— function
-- function
-— function

-— function

-- function
-- function
-- function
-- function
-- function
-- function

-- function
-- function
-- function
-- function
-— function
-— function

-— function
-— function

--— function

-— function
-— function

return BIT;

BIT)
BIT)
BIT)
BIT)
BIT)
BIT)

BIT)
BIT)
BIT)
BIT)
BIT)
BIT)

"and" (anonymous, anonymous:
"or" (anonymous, anonymous:
"nand" (anonymous, anonymous:
"noxr" (anonymous, anonymous:
"xor" (anonymous, anonymous:
"xnor" (anonymous, anonymous:
"not" (anonymous: BIT)

"= (anonymous, anonymous:
"/=n (anonymous, anonymous:
n"en (anonymous, anonymous:
"<=" (anonymous, anonymous:
"> (anonymous, anonymous:
">=" (anonymous, anonymous:
"o=" (anonymous, anonymous:
"o /=" (anonymous, anonymous:
no" (anonymous, anonymous:
nog=" (anonymous, anonymous:
ne>" (anonymous, anonymous:
"e>=" (anonymous, anonymous:
MINIMUM (L, R: BIT) return BIT;
MAXIMUM (L, R: BIT) return BIT;
non (anonymous: BIT)
RISING EDGE (signal S: BIT)

FALLING_ EDGE

(signal S: BIT)

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

as follows:

return BIT;
return BIT;
return BIT;
return BIT;
return BIT;
return BIT;

return BOOLEAN;
return BOOLEAN;
return BOOLEAN;
return BOOLEAN;
return BOOLEAN;
return BOOLEAN;

return BIT;
return BIT;
return BIT;
return BIT;
return BIT;
return BIT;

return BOOLEAN;

return BOOLEAN;
return BOOLEAN;

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -256 -
IEEE Std 1076-2008
type CHARACTER is (

NUL, SOH, STX, ETX, EOT, ENQ, ACK,
BS, HT, LF, vT, FF, CR, SO,
DLE, DC1, DC2, DC3, DC4, NAK, SYN,
CAN, EM, SUB, ESC, FSP, GSP, RSP,
] l, '!l, '"l, l#l, l$l, I%l, I&l,
I(l, ')l, '*l, l+l, l,l, I_l, I.l,
IO', '1', '2', l3l, l4l, I5l, I6l,
181, 191, ':', |,.|, !<!, l=l, l>l,
l@l, IAI, 'B', |C|, !D!, IEI lFl,
lHl, 'I', 'Jl, |Kl, lLl, lMl, lNl,
lPl, 'Q', 'Rl, |Sl, lTl, lUl, lvl,
le, 'Y', 'Zl, |[l, l\l’ lJl, l/\l,
|l ', 'al, 'bl, lcl’ ldl’ Iel’ Ifl’
lh', 'il, 'jl, lkl’ lll’ Iml’ Inl’
Ipl, lql,] ', 'S'/ ltl, Iul, 'V',
le, lyl, 'Z', l{l, lIl, I}l, INI,

c128, Ccl29, C130, C131, Cl32, Cl33, Cl34,
Cl36, c137, C138, C139, Cc140, cl41, Ccl4z,
Ccl44, Cl145, Clde, c147, Cc148, Cl49, C150,
Cl52, C153, C1l54, C155, Cl56, C157, C158,

' 1,9 viv, v¢v, 'y
UL o', van !
v°v, 'i', 121, T30
v, 111, vov, Tyt
|Av, lAl, lAl, IAI
|Ev, lEl, lEl, i
va, INI, 'O', |©|
v@v, IUI, 'U', 'fj'
vév, vév, vav, 3!
vév, vév, 'é', e
5, A, 0, T4t
o', ', mar, g

-—- The predefined operations

-— function "=" (anonymous,
-- function " /=" (anonymous,
-— function "<" (anonymous,

9The nonbreaking space character.
10The soft hyphen character.

‘l ‘n‘l '¥'I '}'I
14 =ty ! 1,10 '®',
Y, By T,
14 '1/'1 e '3/4'1
’ 'A'r 'A'/ 'E',
’ 'i'r 'i'/ 'i'/
, v@v, 161, v(‘jv,
, vUv, va, 'B',
’ '‘a’, 'ar, 'e',
’ 'l', 'l', 'i',
, 5, 5, s,
’ 'a', 'Y'I 'b',

for this type are as follows:

anonymous: CHARACTER)
return BOOLEAN;

anonymous: CHARACTER)
return BOOLEAN;

anonymous: CHARACTER)
return BOOLEAN;

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

BEL,
SI,

ETB,
USP,

l/l,
|7|,
'?',

C135,
Cl43,
C151,
C159,

'C'y
|I|,
(BN

'B',

|onuooun “panwiad S uonnguisip 10 uononpoidal Jayuny ON "UOSIPRIN Sawer AQ $T0Z-8Z-A0ON U0 PapPeOjUMOP ‘W02°18311sYyoa1 suonduosgns “-ou| ‘(oynuaios) siainay uoswoy L Agq owad Hg 01 pasusdl| [eusrew paiybuidod

-- function

-— function

-— function

-— function
-— function

ne—mn

nsn

ns_—n

MINIMUM
MAXIMUM

(anonymous,
(anonymous,

(anonymous,

type SEVERITY LEVEL is (NOTE,

-- The predefined operations

-— function

-— function

-— function

-— function

-— function

--— function

-— function
-— function

-- type universal integer

u/:u

nen

ne—n

">"

ns—mn

(anonymous,
(anonymous,
(anonymous,
(anonymous,
(anonymous,

(anonymous,

(L, R: CHARACTER)
(L, R: CHARACTER)

WARNING,

- 257 -

anonymous:

anonymous:

anonymous:

anonymous:

anonymous:

anonymous:

anonymous:

anonymous:

anonymous:

IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

CHARACTER)
return BOOLEAN;
CHARACTER)
return BOOLEAN;
CHARACTER)
return BOOLEAN;

return CHARACTER;
return CHARACTER;

ERROR, FAILURE) ;

for this type are as follows:

SEVERITY LEVEL)
return BOOLEAN;
SEVERITY_LEVEL)
return BOOLEAN;
SEVERITY LEVEL)
return BOOLEAN;
SEVERITY LEVEL)
return BOOLEAN;
SEVERITY_LEVEL)
return BOOLEAN;
SEVERITY LEVEL)
return BOOLEAN;

MINIMUM (L, R: SEVERITY LEVEL) return SEVERITY LEVEL;

MAXIMUM (L, R:

SEVERITY LEVEL) return SEVERITY LEVEL;

is range implementation defined;

-- The predefined operations for this type are as follows:

-— function

-— function

-— function

-— function

--— function

-— function

-— function

-— function

-— function

-— function

n/=n

nen

ne=n

nsn

ns—n

wyn

"+"

(anonymous,
(anonymous,
(anonymous,
(anonymous,
(anonymous,
(anonymous,
(anonymous:
(anonymous:

(anonymous:

(anonymous,

anonymous:

anonymous:

anonymous:

anonymous:

anonymous:

anonymous:

universal
universal

universal

anonymous:

universal integer)
return BOOLEAN;

universal integer)
return BOOLEAN;

universal integer)
return BOOLEAN;

universal integer)
return BOOLEAN;

universal integer)
return BOOLEAN;

universal integer)
return BOOLEAN;
integer)
return universal integer;
integer)
return universal integer;
integer)
return universal integer;

universal integer)

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E)

IEEE Std 1076-2008

-— function

-— function

--— function

--— function

-- function

-— function

-— function

"

"/"

"mod"

" rem"

(anonymous,
(anonymous,
(anonymous,
(anonymous,

(anonymous,

-258 -

anonymous:

anonymous:

anonymous:

anonymous:

anonymous:

return universal integer;
universal integer)
return universal integer;
universal integer)
return universal integer;
universal integer)
return universal integer;
universal integer)
return universal integer;
universal integer)
return universal integer;

MINIMUM (L, R: universal integer)

return universal integer;

MAXIMUM (L, R: universal integer)

return universal integer;

-— type universal real is range Implementation defined;

-— The predefined operations for this type are as follows:

-— function

-— function

-— function

-— function

-— function

-—- function

--— function

-- function

-—- function

-— function

--— function

-— function

-— function

-—- function

--— function

n/=n

nen

ne=n

">"

ns=n

"

"/"

"

"ok

(anonymous,
(anonymous,
(anonymous,
(anonymous,
(anonymous,

(anonymous,

(anonymous:
(anonymous:

(anonymous:

(anonymous,
(anonymous,
(anonymous,
(anonymous,
(anonymous:

anonymous:

(anonymous:

anonymous:

anonymous:

anonymous:

anonymous:

anonymous:

anonymous:

universal
universal

universal

anonymous:

anonymous:

anonymous:

anonymous:

universal
universal

universal

universal real)
return BOOLEAN;
universal real)
return BOOLEAN;
universal real)
return BOOLEAN;
universal real)
return BOOLEAN;
universal real)
return BOOLEAN;
universal real)
return BOOLEAN;

real)
return universal real;
real)
return universal real;
real)
return universal real;

universal real)
return universal real;
universal real)
return universal real;
universal real)
return universal real;
universal real)
return universal real;

real;

integer)

return universal real;
integer;

|Pub|ished by IEC under license from IEEE. © 2008 IEEE.

All rights reserved.|

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

- 259 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

- anonymous:

-- function "/" (anonymous:
-— anonymous:

universal real)

return universal real;
universal real;
universal integer)

return universal real;

-- function MINIMUM (L, R: universal real) return universal real;

-- function MAXIMUM (L, R: universal real) return universal real;

-—- Predefined numeric types:

type INTEGER is range implementation defined;

-- The predefined operations for this type are as follows:

-- function "**" (anonymous:
-= anonymous:
-- function "**" (anonymous:
-= anonymous:
-— function "=" anonymous,
-- function "/=" anonymous,
-— function "<" anonymous,
-— function "<=" anonymous,

(
(
(
(
-— function ">" (anonymous,
(
(
(
(

-— function ">=" anonymous,
-- function "+" anonymous:
-- function "-" anonymous:
—-— function "abs" (anonymous:
-- function "+" (anonymous,
-- function "-" (anonymous,
-- function "*" (anonymous,
-- function "/" (anonymous,
-- function "mod" (anonymous,
-- function "rem" (anonymous,
-— function "**" (anonymous:

universal integer;

INTEGER) return universal integer;
universal real;

INTEGER) return universal real;

return BOOLEAN;
return BOOLEAN;

anonymous: INTEGER
anonymous: INTEGER

anonymous: INTEGER) return BOOLEAN;
anonymous: INTEGER) return BOOLEAN;
anonymous: INTEGER) return BOOLEAN;
INTEGER) return INTEGER;
INTEGER) return INTEGER;
INTEGER) return INTEGER;

)
)
anonymous: INTEGER) return BOOLEAN;
)
)

anonymous: INTEGER) return INTEGER;
anonymous: INTEGER) return INTEGER;
anonymous: INTEGER) return INTEGER;
anonymous: INTEGER) return INTEGER;
anonymous: INTEGER) return INTEGER;
anonymous: INTEGER) return INTEGER;

INTEGER; anonymous: INTEGER)
return INTEGER;

-- function MINIMUM (L, R: INTEGER) return INTEGER;
-- function MAXIMUM (L, R: INTEGER) return INTEGER;

type REAL is range implementation defined;

-- The predefined operations for this type are as follows:

-— function "=" anonymous,
-- function "/=" anonymous,
-— function "<" anonymous,

(
(
(
-— function "<=" (anonymous,
(
(

-— function ">" anonymous,
-— function ">=" anonymous,
-— function "+" (anonymous:

anonymous: REAL) return BOOLEAN;
anonymous: REAL) return BOOLEAN;
anonymous: REAL) return BOOLEAN;
anonymous: REAL) return BOOLEAN;
anonymous: REAL) return BOOLEAN;
)

anonymous: REAL) return BOOLEAN;

REAL) return REAL;

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

-- function "-"
-— function "abs"

-- function "+"
-- function "-"
-- function "*"
-- function "/"

-— function "**"

(anonymous:
(anonymous:

(anonymous,
(anonymous,
(anonymous,
(anonymous,

(anonymous:

-260-

REAL) return REAL;
REAL) return REAL;

anonymous: REAL) return
anonymous: REAL) return
anonymous: REAL) return
anonymous: REAL) return

REAL; anonymous: INTEGER)

-— function MINIMUM (L, R: REAL) return REAL;
-- function MAXIMUM (L, R: REAL) return REAL;

-- Predefined type TIME:

type TIME is range implementation defined

units
fs;
Ps = 1000 fs;
ns = 1000 ps;
us = 1000 ns;
ms = 1000 us;
sec = 1000 ms;
min = 60 sec;
hr = 60 min;

end units;

-- The predefined operations for this type are

-- function "="
-- function "/="
-- function "<"
-—- function "<="
-- function ">"
-- function ">="
-- function "+"
-- function "-
-- function "abs"

-- function "+"
-- function "-"

-- function "*"
-- function "*"
-- function "*"
-- function "*"
-- function "/"

-- function "/"

(anonymous,
(anonymous,
(anonymous,
(anonymous,
(anonymous,
(anonymous,
(anonymous:
(anonymous:
(anonymous:

(anonymous,
(anonymous,

(anonymous:
(anonymous:
(anonymous:
(anonymous:
(anonymous:

(anonymous:

-- femtosecond
-- picosecond
-- nanosecond
-—- microsecond
--— millisecond
-- second

-- minute

-- hour

anonymous: TIME) return
anonymous: TIME) return
anonymous: TIME) return
)
)

BOOLEAN;
anonymous: TIME) return BOOLEAN;
anonymous: TIME) return BOOLEAN;
anonymous: TIME) return BOOLEAN;
TIME) return TIME;

TIME) return TIME;

TIME) return TIME;

anonymous: TIME) return TIME;

anonymous: TIME) return TIME;

TIME; anonymous: INTEGER)
return TIME;

TIME; anonymous: REAL)

return TIME;

REAL;
REAL;
REAL;
REAL;

as follows:

BOOLEAN;
BOOLEAN;

INTEGER; anonymous: TIME)

return TIME;

REAL; anonymous: TIME)

return TIME;

TIME; anonymous: INTEGER)

return TIME;

TIME; anonymous: REAL)

return TIME;

|PuMBhedbyIECundmﬂmenseﬂomIEEEADZOOSIEEE.AHﬂghmresewedj

return REAL;

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

- 261 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

-- function "/" (anonymous, anonymous: TIME)
-- return universal integer;
-- function "mod" (anonymous, anonymous: TIME) return TIME;
-— function "rem" (anonymous, anonymous: TIME) return TIME;
-- function MINIMUM (L, R: TIME) return TIME;
-— function MAXIMUM (L, R: TIME) return TIME;

subtype DELAY LENGTH is TIME range O fs to TIME'HIGH;

- A function that returns the current simulation time, T,

- (see 14.7.5.1):

impure function NOW return DELAY LENGTH;

- Predefined numeric subtypes:

subtype NATURAL is INTEGER range 0 to INTEGER'HIGH;
subtype POSITIVE is INTEGER range 1 to INTEGER'HIGH;

type STRING is array

- Predefined array types:

- The predefined operations

(POSITIVE range <>)

of CHARACTER;

for these types are as follows:

-- function "=" (anonymous, anonymous: STRING) return BOOLEAN;
-- function " /=" (anonymous, anonymous: STRING) return BOOLEAN;
-— function "<" (anonymous, anonymous: STRING) return BOOLEAN;
-— function "<=" (anonymous, anonymous: STRING) return BOOLEAN;
-- function ">" (anonymous, anonymous: STRING) return BOOLEAN;
-— function ">=" (anonymous, anonymous: STRING) return BOOLEAN;
-- function "&" (anonymous: STRING; anonymous: STRING)

- return STRING;

—-— function "g&" (anonymous: STRING; anonymous: CHARACTER)
-— return STRING;

-- function "&" (anonymous: CHARACTER; anonymous: STRING)

-— return STRING;

-— function "g&" (anonymous: CHARACTER; anonymous: CHARACTER)

- function MINIMUM (L, R: STRING)
- function MAXIMUM (L, R: STRING)

- function MINIMUM (L:
- function MAXIMUM (L:

STRING)
STRING)

return STRING;

return STRING;
return STRING;

return CHARACTER;
return CHARACTER;

type BOOLEAN VECTOR is array (NATURAL range <>) of BOOLEAN;

-- The predefined operations for this type are as follows:

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E)

IEEE Std 1076-2008

-- function

-— function

-— function

-— function

-— function

-— function

-— function

-— function
-— function
-— function
-— function
-- function
-- function
-— function
--— function
-— function
-— function
--— function
-— function
-— function
--— function
-— function
-- function
-— function
-— function
-— function

-- function

-— function

"nor"

"Xor"

"xnor"

"nOt"

"and"

"and"

"Or"

"O]f"

"nand"

"nand"

"nor"

"Sll"

"Srl"

"Sla"

(anonymous,
(anonymous,
(anonymous,
(anonymous,
(anonymous,

(anonymous,
(anonymous:

(anonymous:
(anonymous:
(anonymous:
(anonymous:
(anonymous:
(anonymous:
(anonymous:
(anonymous:
(anonymous:
(anonymous:
(anonymous:
(anonymous:
(anonymous:
(anonymous:
(anonymous:
(anonymous:
(anonymous:
(anonymous:
(anonymous:

(anonymous:

(anonymous:

-262-

anonymous: BOOLEAN VECTOR)
return BOOLEAN VECTOR;
anonymous: BOOLEAN VECTOR)
return BOOLEAN VECTOR;
anonymous: BOOLEAN VECTOR)
return BOOLEAN VECTOR;
anonymous: BOOLEAN_VECTOR)
return BOOLEAN VECTOR;
anonymous: BOOLEAN VECTOR)
return BOOLEAN VECTOR;
anonymous: BOOLEAN VECTOR)
return BOOLEAN VECTOR;

BOOLEAN VECTOR)
return BOOLEAN VECTOR;

BOOLEAN VECTOR; anonymous: BOOLEAN)
return BOOLEAN VECTOR;
BOOLEAN; anonymous: BOOLEAN VECTOR)
return BOOLEAN VECTOR;
BOOLEAN VECTOR; anonymous: BOOLEAN)
return BOOLEAN VECTOR;
BOOLEAN; anonymous BOOLEAN VECTOR)
return BOOLEAN VECTOR;
BOOLEAN VECTOR; anonymous: BOOLEAN)
return BOOLEAN VECTOR;
BOOLEAN; anonymous: BOOLEAN VECTOR)
return BOOLEAN VECTOR;
BOOLEAN VECTOR; anonymous: BOOLEAN)
return BOOLEAN VECTOR;
BOOLEAN; anonymous: BOOLEAN VECTOR)
return BOOLEAN VECTOR;
BOOLEAN VECTOR; anonymous: BOOLEAN)
return BOOLEAN VECTOR;
BOOLEAN; anonymous: BOOLEAN_VECTOR)
return BOOLEAN VECTOR;
BOOLEAN VECTOR; anonymous: BOOLEAN)
return BOOLEAN VECTOR;
BOOLEAN; anonymous: BOOLEAN VECTOR)
return BOOLEAN VECTOR;

BOOLEAN VECTOR) return BOOLEAN;
BOOLEAN VECTOR) return BOOLEAN;
BOOLEAN VECTOR) return BOOLEAN;
BOOLEAN VECTOR) return BOOLEAN;
BOOLEAN VECTOR) return BOOLEAN;
BOOLEAN VECTOR) return BOOLEAN;

BOOLEAN VECTOR; anonymous: INTEGER)
return BOOLEAN VECTOR;

BOOLEAN VECTOR; anonymous: INTEGER)
return BOOLEAN VECTOR;

BOOLEAN VECTOR; anonymous: INTEGER)
return BOOLEAN VECTOR;

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

-- function

-— function

-— function

-— function

-— function

-— function

-— function

-— function

-— function

-— function

--— function

--— function

-— function

-— function

-- function

-— function

-— function

-— function
-— function

u/:u

"<"

ne—mn

nsn

ns—mn

no_n

n?/:n

nen

ll&"

"&"

nen

MINIMUM

MAXIMUM

MINIMUM
MAXIMUM

(anonymous:
(anonymous:

(anonymous:

(anonymous,
(anonymous,
(anonymous,
(anonymous,
(anonymous,

(anonymous,

(anonymous,
(anonymous,
(anonymous:

anonymous:
(anonymous:
(anonymous:

(anonymous:

(L, R: BOOLEAN VECTOR)
(L, R: BOOLEAN VECTOR)

- 263 -

BOOLEAN VECTOR; anonymous:

return BOOLEAN VECTOR;

BOOLEAN VECTOR; anonymous:

return BOOLEAN VECTOR;

BOOLEAN VECTOR; anonymous:

return BOOLEAN VECTOR;

anonymous: BOOLEAN_VECTOR)
return BOOLEAN;
anonymous: BOOLEAN VECTOR)
return BOOLEAN;
anonymous: BOOLEAN VECTOR)
return BOOLEAN;
anonymous: BOOLEAN VECTOR)
return BOOLEAN;
anonymous: BOOLEAN_VECTOR)
return BOOLEAN;
anonymous: BOOLEAN VECTOR)
return BOOLEAN;

anonymous: BOOLEAN_VECTOR)
return BOOLEAN;

anonymous: BOOLEAN VECTOR)
return BOOLEAN;

BOOLEAN VECTOR;
BOOLEAN VECTOR)

return BOOLEAN VECTOR;

BOOLEAN VECTOR; anonymous:

return BOOLEAN VECTOR;
BOOLEAN; anonymous: BOOLEAN VECTOR)

return BOOLEAN VECTOR;
BOOLEAN; anonymous: BOOLEAN)

return BOOLEAN VECTOR;

(L: BOOLEAN VECTOR) return BOOLEAN;
(L: BOOLEAN VECTOR) return BOOLEAN;

type BIT VECTOR is array (NATURAL range <>) of BIT;

-—- The predefined operations for this type are as follows:

-— function

-— function

--— function

-— function

-— function

"and"

"O]f"

"nand"

"nor"

XOor

(anonymous,
(anonymous,
(anonymous,
(anonymous,

(anonymous,

anonymous: BIT VECTOR)

return BIT VECTOR;

anonymous: BIT VECTOR)

return BIT VECTOR;

anonymous: BIT VECTOR)

return BIT VECTOR;

anonymous: BIT VECTOR)

return BIT VECTOR;

anonymous: BIT VECTOR)

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

return BOOLEAN VECTOR;
return BOOLEAN VECTOR;

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E)

IEEE Std 1076-2008

-— function

-— function
-- function
-— function
--— function
-— function
-— function
-- function
-- function
-— function
--— function
-- function
-- function
-— function
-- function
-- function
-— function
--— function
-- function
-- function
-— function
--— function
-- function
-- function

-— function

-— function

-- function

-— function

"xnor"

"not"

"and"

"and"

"or"

"Or"

"nand"

"nand"

"nor"

"nor"

xor"

XOor

"wnor"

"xnor"

"Srl"

"Sla"

"sra"

vv/:n

(anonymous,

(anonymous:
(anonymous:
(anonymous:
(anonymous:
(anonymous:
(anonymous:
(anonymous:
(anonymous:
(anonymous:
(anonymous:
(anonymous:
(anonymous:
(anonymous:
anonymous:
anonymous:
anonymous:
anonymous:

anonymous:
anonymous:

(
(
(
(
(
(
(anonymous:
(anonymous:
(anonymous:
(anonymous:

(anonymous:

(anonymous:

(anonymous,

(anonymous,

-264 -

return BIT VECTOR;
anonymous: BIT VECTOR)
return BIT VECTOR;

BIT VECTOR) return BIT VECTOR;

BIT VECTOR; anonymous : BIT)
return BIT VECTOR;
BIT; anonymous BIT VECTOR)
return BIT VECTOR;
BIT VECTOR; anonymous : BIT)
return BIT VECTOR;
BIT; anonymous BIT VECTOR)
return BIT VECTOR;
BIT VECTOR; anonymous : BIT)
return BIT VECTOR;
BIT; anonymous BIT VECTOR)
return BIT VECTOR;
BIT VECTOR; anonymous : BIT)
return BIT VECTOR;
BIT; anonymous BIT VECTOR)
return BIT VECTOR;
BIT VECTOR; anonymous : BIT)
return BIT VECTOR;
BIT; anonymous BIT VECTOR)
return BIT VECTOR;
BIT VECTOR; anonymous : BIT)
return BIT VECTOR;
BIT; anonymous BIT VECTOR)
return BIT VECTOR;

BIT VECTOR) return BIT;
BIT VECTOR) return BIT;
BIT VECTOR) return BIT;

)

)

)

BIT VECTOR) return BIT;

BIT VECTOR) return BIT;

BIT VECTOR) return BIT;

BIT VECTOR; anonymous: INTEGER)
return BIT VECTOR;

BIT VECTOR; anonymous: INTEGER)
return BIT VECTOR;

BIT VECTOR; anonymous: INTEGER)
return BIT VECTOR;

BIT VECTOR; anonymous: INTEGER)
return BIT VECTOR;

BIT VECTOR; anonymous: INTEGER)
return BIT VECTOR;

BIT VECTOR; anonymous: INTEGER)
return BIT VECTOR;

anonymous: BIT VECTOR)
return BOOLEAN;
anonymous: BIT VECTOR)

|PuMBhedbyIECundmﬂmenseﬂomIEEEADZOOSIEEE.AHﬂghmresewedj

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

- 265 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

return BOOLEAN;

-— function "<" (anonymous, anonymous: BIT VECTOR)

return BOOLEAN;

-— function "<=" (anonymous, anonymous: BIT VECTOR)

return BOOLEAN;

-— function ">" (anonymous, anonymous: BIT VECTOR)

return BOOLEAN;

-- function ">=" (anonymous, anonymous: BIT VECTOR)

return BOOLEAN;

--— function "?=" (anonymous, anonymous: BIT VECTOR) return BIT;
-— function "?/=" (anonymous, anonymous: BIT VECTOR) return BIT;
-—- function "&" (anonymous: BIT VECTOR; anonymous: BIT VECTOR)

return BIT VECTOR;

-- function "&" (anonymous: BIT VECTOR; anonymous: BIT)

return BIT VECTOR;

-— function "g&" (anonymous: BIT; anonymous: BIT VECTOR)

return BIT VECTOR;

-- function "&" (anonymous: BIT; anonymous: BIT)

return BIT VECTOR;

-- function MINIMUM (L, R: BIT VECTOR) return BIT VECTOR;
-- function MAXIMUM (L, R: BIT_VECTOR) return BIT VECTOR;

-- function MINIMUM (L: BIT VECTOR) return BIT;
-- function MAXIMUM (L: BIT VECTOR) return BIT;

-- function TO STRING (VALUE:

BIT VECTOR) return STRING;

-- alias TO_BSTRING is TO STRING
-- [BIT VECTOR return STRING];
-- alias TO_BINARY STRING is TO_STRING

[BIT VECTOR return STRING];

-- function TO OSTRING (VALUE: BIT VECTOR) return STRING;

-- alias TO_OCTAL_ STRING

is TO OSTRING
[BIT VECTOR return STRING];

-- function TO HSTRING (VALUE: BIT VECTOR) return STRING;

-- alias TO_HEX_STRING

is TO_HSTRING
[BIT VECTOR return STRING];

type INTEGER VECTOR is array (NATURAL range <>) of INTEGER;

-—- The predefined operations

-- function "=" (anonymous,
:: function "/=" (anonymous,
:: function "<" (anonymous,
:: function "<=" (anonymous,
:: function ">" (anonymous,

for this type are as follows:

anonymous: INTEGER_VECTOR)
return BOOLEAN;
anonymous: INTEGER VECTOR)
return BOOLEAN;
anonymous: INTEGER VECTOR)
return BOOLEAN;
anonymous: INTEGER VECTOR)
return BOOLEAN;
anonymous: INTEGER_VECTOR)

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E)

IEEE Std 1076-2008

-— function

-— function

-— function

-— function

-— function

-— function

-— function

-- function
-- function

type REAL VECTOR is array

ny—n

"&"

nwemn

ll&ll

"&"

(anonymous,

(anonymous:
anonymous:
(anonymous:
anonymous:
(anonymous:
anonymous:
(anonymous:
anonymous:

- 266 -

return BOOLEAN;
anonymous: INTEGER VECTOR)
return BOOLEAN;

INTEGER VECTOR;

INTEGER VECTOR) return INTEGER VECTOR;

INTEGER VECTOR;

INTEGER) return INTEGER VECTOR;
INTEGER;
INTEGER VECTOR) return INTEGER VECTOR;
INTEGER;
INTEGER) return INTEGER VECTOR;

MINIMUM (L, R: INTEGER VECTOR) return INTEGER VECTOR;
MAXIMUM (L, R: INTEGER VECTOR) return INTEGER VECTOR;

MINIMUM (L: INTEGER VECTOR) return INTEGER;
MAXIMUM (L: INTEGER VECTOR) return INTEGER;

(NATURAL range <>) of REAL;

-- The predefined operations for this type are as follows:

-— function

-— function

-- function

--— function

-— function

-— function

-- function
-— function

"= (anonymous,
"/=" (anonymous,
e (anonymous:
e (anonymous:
e (anonymous:
"e" (anonymous:
MINIMUM

MAXIMUM

anonymous: REAL VECTOR)
return BOOLEAN;

anonymous: REAL VECTOR)
return BOOLEAN;

REAL VECTOR; anonymous: REAL VECTOR)

return REAL VECTOR;
REAL VECTOR; anonymous: REAL)

return REAL VECTOR;
REAL; anonymous: REAL VECTOR)

return REAL VECTOR;
REAL; anonymous: REAL)

return REAL VECTOR;

(L: REAL VECTOR) return REAL;
(L: REAL VECTOR) return REAL;

type TIME VECTOR is array (NATURAL range <>) of TIME;

-— The predefined operations for this type are as follows:

--— function

-— function

--— function

-— function

-— function

n/=n

nwen

"&"

"&"

(anonymous,

(anonymous,

(anonymous:
(anonymous:

(anonymous:

anonymous: TIME VECTOR)
return BOOLEAN;

anonymous: TIME VECTOR)
return BOOLEAN;

TIME VECTOR; anonymous: TIME VECTOR)
return TIME VECTOR;
TIME VECTOR; anonymous: TIME)
return TIME VECTOR;
TIME; anonymous: TIME VECTOR)

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

- 267 - IEC 61691-1-1:2011(E)

IEEE Std 1076-2008

-- return TIME VECTOR;
-— function "&" (anonymous: TIME; anonymous: TIME)
= return TIME VECTOR;

-— function MINIMUM (L:
-— function MAXIMUM (L:

TIME_VECTOR) return TIME;
TIME VECTOR) return TIME;

-—- The predefined types for opening files:

type FILE OPEN KIND is (

READ MODE,

WRITE MODE,
APPEND MODE) ;

-- The predefined operations

Resulting access mode is read-only.
Resulting access mode is write-only.
Resulting access mode is write-only;
information is appended to the end
of the existing file.

for this type are as follows:

-— function "=" (anonymous, anonymous: FILE OPEN KIND)

- return BOOLEAN;

-- function "/=" (anonymous, anonymous: FILE OPEN KIND)

- return BOOLEAN;

-— function "<" (anonymous, anonymous: FILE OPEN KIND)

-= return BOOLEAN;

-- function "<=" (anonymous, anonymous: FILE OPEN KIND)

- return BOOLEAN;

-- function ">" (anonymous, anonymous: FILE OPEN KIND)

-= return BOOLEAN;

-— function ">=" (anonymous, anonymous: FILE OPEN_KIND)

-= return BOOLEAN;

-- function MINIMUM (L, R: FILE OPEN KIND) return FILE OPEN KIND;
-- function MAXIMUM (L, R: FILE OPEN KIND) return FILE OPEN KIND;

type FILE OPEN STATUS is (

OPEN_OK,

STATUS ERROR,

File open was successful.
File object was already open.

NAME ERROR, -— External file not found
-- or inaccessible.
MODE_ ERROR) ; -- Could not open file with requested

-—- The predefined operations

access mode.

for this type are as follows:

-— function (anonymous, anonymous: FILE OPEN_ STATUS)
- return BOOLEAN;
-- function " /=" (anonymous, anonymous: FILE OPEN_ STATUS)
-— return BOOLEAN;
-- function "<" (anonymous, anonymous: FILE OPEN_ STATUS)
-= return BOOLEAN;
-— function "<=" (anonymous, anonymous: FILE OPEN STATUS)
- return BOOLEAN;
-— function ">" (anonymous, anonymous: FILE OPEN STATUS)

return BOOLEAN;

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -268 -
IEEE Std 1076-2008

-- function ">=" (anonymous, anonymous: FILE OPEN_ STATUS)
-- return BOOLEAN;

-- function MINIMUM (L, R: FILE OPEN STATUS)

return FILE OPEN STATUS;
-- function MAXIMUM (L, R: FILE OPEN_ STATUS)

return FILE OPEN STATUS;
-- The 'FOREIGN attribute:

attribute FOREIGN: STRING;

-- Predefined TO_ STRING operations on scalar types

-- function TO_STRING (VALUE: BOOLEAN) return STRING;
-- function TO STRING (VALUE: BIT) return STRING;
-— function TO_STRING (VALUE: CHARACTER) return STRING;
-- function TO STRING (VALUE: SEVERITY LEVEL) return STRING;
-- function TO STRING (VALUE: universal integer) return STRING;
-- function TO_ STRING (VALUE: universal real) return STRING;
-— function TO_STRING (VALUE: INTEGER) return STRING;
-- function TO STRING (VALUE: REAL) return STRING;
-- function TO STRING (VALUE: TIME) return STRING;
-— function TO_STRING (VALUE : FILE_OPEN_KIND) return STRING;
(

-— function TO STRING (VALUE: FILE OPEN STATUS) return STRING;

-- Predefined overloaded TO STRING operations

-— function TO_ STRING (VALUE: REAL; DIGITS: NATURAL)

return STRING;
-- function TO_STRING (VALUE: REAL; FORMAT: STRING)

return STRING;
-- function TO STRING (VALUE: TIME; UNIT: TIME) return STRING;

end STANDARD;

The 'FOREIGN attribute shall be associated only with architectures (see 3.3) or with subprograms. In the
latter case, the attribute specification shall appear in the declarative part in which the subprogram is declared
(see 4.2).

NOTE 1—The ASCII mnemonics for file separator (FS), group separator (GS), record separator (RS), and unit separator
(US) are represented by FSP, GSP, RSP, and USP, respectively, in type CHARACTER in order to avoid conflict with
the units of type TIME.

NOTE 2—The declarative parts and statement parts of design entities whose corresponding architectures are decorated
with the 'FOREIGN attribute and subprograms that are likewise decorated are subject to special elaboration rules. See
14.4.1 and 14.5.1.

16.4 Package TEXTIO

Package TEXTIO contains declarations of types and subprograms that support formatted I/O operations on
text files.

package TEXTIO is

|PuMBhedbyIECundmﬂmenseﬂomIEEEADZOOSIEEE.AHﬂghmresewedj

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

- 269 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

-- Type definitions for text I/0:
type LINE is access STRING; -- A LINE is a pointer
-- to a STRING value.
-- The predefined operations for this type are as follows:

-— function"=" (anonymous, anonymous: LINE) return BOOLEAN;
-- function"/=" (anonymous, anonymous: LINE) return BOOLEAN;

-- procedure DEALLOCATE (P: inout LINE);

type TEXT is file of STRING; -- A file of variable-length
-— ASCII records.

-- The predefined operations for this type are as follows:

-- procedure FILE OPEN (file F: TEXT; External Name; in STRING;

- Open Kind: in FILE OPEN KIND := READ MODE) ;
-- procedure FILE OPEN (Status: out FILE OPEN STATUS; file F: TEXT;
-- External Name: in STRING;

-- Open Kind: in FILE OPEN KIND := READ MODE);
-— procedure FILE CLOSE (file F: TEXT);

-- procedure READ (file F: TEXT; VALUE: out STRING) ;

-- procedure WRITE (file F: TEXT; VALUE: in STRING) ;

-—- procedure FLUSH (file F: TEXT);

-— function ENDFILE (file F: TEXT) return BOOLEAN;

type SIDE is (RIGHT, LEFT); -- For justifying output data

--— within fields.

-— The predefined operations for this type are as follows:

-- function "=" (anonymous, anonymous: SIDE) return BOOLEAN;

-- function " /=" (anonymous, anonymous: SIDE) return BOOLEAN;

-— function "<" (anonymous, anonymous: SIDE) return BOOLEAN;

-- function "<=" (anonymous, anonymous: SIDE) return BOOLEAN;

-— function ">" (anonymous, anonymous: SIDE) return BOOLEAN;
()

-- function ">=" (anonymous, anonymous: SIDE) return BOOLEAN;

-— function MINIMUM (L, R: SIDE) return SIDE;
-- function MAXIMUM (L, R: SIDE) return SIDE;

-- function TO STRING (VALUE: SIDE) return STRING;
subtype WIDTH is NATURAL; -- For specifying widths of output fields.
function JUSTIFY (VALUE: STRING;

JUSTIFIED: SIDE := RIGHT;

FIELD: WIDTH := 0) return STRING;

-— Standard text files:

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -270-
IEEE Std 1076-2008

file INPUT: TEXT open READ MODE is "STD INPUT";
file OUTPUT: TEXT open WRITE MODE is "STD OUTPUT";
-- Input routines for standard types:

procedure READLINE (file F: TEXT; L: inout LINE);

procedure READ (L: inout LINE; VALUE: out BIT;
GOOD: out BOOLEAN) ;
procedure READ (L: inout LINE; VALUE: out BIT);

procedure READ (L: inout LINE; VALUE: out BIT VECTOR;
GOOD: out BOOLEAN) ;
procedure READ (L: inout LINE; VALUE: out BIT VECTOR) ;

procedure READ (L: inout LINE; VALUE: out BOOLEAN;
GOOD: out BOOLEAN) ;
procedure READ (L: inout LINE; VALUE: out BOOLEAN) ;

procedure READ (L: inout LINE; VALUE: out CHARACTER;
GOOD: out BOOLEAN) ;
procedure READ (L: inout LINE; VALUE: out CHARACTER) ;

procedure READ (L: inout LINE; VALUE: out INTEGER;
GOOD: out BOOLEAN) ;
procedure READ (L: inout LINE; VALUE: out INTEGER);

procedure READ (L: inout LINE; VALUE: out REAL;
GOOD: out BOOLEAN) ;
procedure READ (L: inout LINE; VALUE: out REAL);

procedure READ (L: inout LINE; VALUE: out STRING;
GOOD: out BOOLEAN) ;
procedure READ (L: inout LINE; VALUE: out STRING);

procedure READ (L: inout LINE; VALUE: out TIME;
GOOD: out BOOLEAN) ;
procedure READ (L: inout LINE; VALUE: out TIME);

procedure SREAD (L: inout LINE; VALUE: out STRING;
STRLEN: out NATURAL) ;
alias STRING READ is SREAD [LINE, STRING, NATURAL];

alias BREAD is READ [LINE, BIT VECTOR, BOOLEAN];

alias BREAD is READ [LINE, BIT VECTOR];

alias BINARY READ is READ [LINE, BIT VECTOR, BOOLEAN];
alias BINARY READ is READ [LINE, BIT VECTOR];

procedure OREAD (L: inout LINE; VALUE: out BIT VECTOR;

GOOD: out BOOLEAN) ;
procedure OREAD (L: inout LINE; VALUE: out BIT_VECTOR);
alias OCTAL_READ is OREAD [LINE, BIT VECTOR, BOOLEAN];
alias OCTAL_READ is OREAD [LINE, BIT_VECTOR];

|PuMBhedbyIECundmﬂmenseﬂomIEEEADZOOSIEEE.AHﬂghmresewedj

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

-271- IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

procedure HREAD (L: inout LINE; VALUE: out BIT VECTOR;

GOOD: out BOOLEAN) ;
procedure HREAD (L: inout LINE; VALUE: out BIT VECTOR);
alias HEX READ is HREAD [LINE, BIT VECTOR, BOOLEAN];
alias HEX READ is HREAD [LINE, BIT VECTOR];

-- Output routines for standard types:
procedure WRITELINE (file F: TEXT; L: inout LINE);
procedure TEE (file F: TEXT; L: inout LINE);

procedure WRITE (L: inout LINE; VALUE: in BIT;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

procedure WRITE (L: inout LINE; VALUE: in BIT VECTOR;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

procedure WRITE (L: inout LINE; VALUE: in BOOLEAN;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

procedure WRITE (L: inout LINE; VALUE: in CHARACTER;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

procedure WRITE (L: inout LINE; VALUE: in INTEGER;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

procedure WRITE (L: inout LINE; VALUE: in REAL;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0;
DIGITS: in NATURAL: 0);

procedure WRITE (L: inout LINE; VALUE: in REAL;
FORMAT: in STRING) ;

procedure WRITE (L: inout LINE; VALUE: in STRING;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

procedure WRITE (L: inout LINE; VALUE: in TIME;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0;
UNIT: in TIME:= ns);

alias SWRITE is WRITE [LINE, STRING, SIDE, WIDTH];
alias STRING WRITE is WRITE [LINE, STRING, SIDE, WIDTH];

alias BWRITE is WRITE [LINE, BIT VECTOR, SIDE, WIDTH];
alias BINARY WRITE is WRITE [LINE, BIT VECTOR, SIDE, WIDTH];

procedure OWRITE (L: inout LINE; VALUE: in BIT VECTOR;

JUSTIFIED: in SIDE := RIGHT; FIELD: in WIDTH := 0);
alias OCTAL WRITE is OWRITE [LINE, BIT VECTOR, SIDE, WIDTH];
procedure HWRITE (L: inout LINE; VALUE: in BIT VECTOR;

JUSTIFIED: in SIDE := RIGHT; FIELD: in WIDTH := 0);

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwiad SI uonNgUISIP 1o uononpoidal Jayuny ON "UOSIPRN Sawer AQ T0Z-82-A0ON UO Papeojumop ‘Wo09d19a11syoa) suonduasgns -oul ‘(dunuaios) sisinay uoswoy L Ag owad Hg 0} pasuadl| feuarew pajybuidod

IEC 61691-1-1:2011(E) -272-
IEEE Std 1076-2008

alias HEX WRITE is HWRITE [LINE, BIT_VECTOR, SIDE, WIDTH];
end TEXTIO;

Procedures READLINE, WRITELINE, and TEE declared in package TEXTIO read and write entire lines of
a file of type TEXT. Procedure READLINE causes the next line to be read from the file and returns as the
value of parameter L an access value that designates an object representing that line. If parameter L contains
a non-null access value at the start of the call, the procedure may deallocate the object designated by that
value. The representation of the line does not contain the representation of the end of the line. It is an error if
the file specified in a call to READLINE is not open or, if open, the file has an access mode other than read-
only (see 5.5.2). Procedures WRITELINE and TEE each cause the current line designated by parameter L to
be written to the file and returns with the value of parameter L designating a null string. Procedure TEE
additionally causes the current line to be written to the file OUTPUT. If parameter L contains a null access
value at the start of the call, then a null string is written to the file or files. If parameter L contains a non-null
access value at the start of the call, the procedures may deallocate the object designated by that value. It is an
error if the file specified in a call to WRITELINE or TEE is not open or, if open, the file has an access mode
other than write-only.

The language does not define the representation of the end of a line. An implementation shall allow all
possible values of types CHARACTER and STRING to be written to a file. However, as an implementation
is permitted to use certain values of types CHARACTER and STRING as line delimiters, it might not be
possible to read these values from a TEXT file.

A line feed (LF) format effector occurring as an element of a string written to a file of type TEXT, either
using procedure WRITELINE or TEE, or using the WRITE operation implicitly defined for the type TEXT,
is interpreted by the implementation as signifying the end of a line. The implementation shall transform the
LF into the implementation-defined representation of the end of a line.

The JUSTIFY operation formats a string value within a field that is at least as long as required to contain the
value. Parameter FIELD specifies the desired field width. Since the actual field width will always be at least
large enough to hold the string value, the default value 0 for the FIELD parameter has the effect of causing
the string value to be contained in a field of exactly the right width (i.e., no additional leading or trailing
spaces). Parameter JUSTIFIED specifies whether the string value is to be right- or left-justified within the
field; the default is right-justified. If the FIELD parameter describes a field width larger than the number of
characters in the string value, space characters are used to fill the remaining characters in the field.

Each READ, SREAD, OREAD, and HREAD procedure declared in package TEXTIO extracts data from the
beginning of the string value designated by parameter L and modifies the value so that it designates the
remaining portion of the line on exit. Each procedure may modify the value of the object designated by the
parameter L at the start of the call or may deallocate the object.

The READ procedures defined for a given type other than CHARACTER and STRING begin by skipping
leading whitespace characters. A whitespace character is defined as a space, a nonbreaking space, or a
horizontal tabulation character (SP, NBSP, or HT). For all READ procedures, characters are then removed
from L and composed into a string representation (see 5.7) of the value of the specified type. The READ
procedure for type BIT VECTOR also removes underline characters from L, provided the underline
character does not precede the string representation of the value and does not immediately follow another
underline character. The removed underline characters are not added to the string representation. For all
READ procedures, character removal and string composition stops when the end of the line is encountered.
Character removal and string composition also stops when a character is encountered that cannot be part of
the value according to the rules for string representations, or, in the case of the READ procedure for
BIT_VECTOR, is not an underline character that can be removed according to the preceding rule; this
character is not removed from L and is not added to the string representation of the value. The READ
procedures for types STRING and BIT VECTOR also terminate acceptance when VALUE'LENGTH

|Pub|ished by IEC under license from IEEE. © 2008 IEEE. All rights reserved.|

[021uooun “paniwsad SI uonNQUISIP 1o uononpoidal Jayuny ON "UOSIPRIN Sawer AQ tT0Z-82-A0ON UO Papeojumop ‘Wo09d19a.11syoaa) suonduasgns “-oul ‘(ounuaios) sisinay uoswoy L Aq owad yg 01 pasuadl| feuarew pajybuidod

-273 - IEC 61691-1-1:2011(E)
IEEE Std 1076-2008

characters have been accepted (not counting underline characters in the case of the READ procedure for
BIT _VECTOR). Again using the rules of 5.7, the accepted characters are then interpreted as a string
representation of the specified type. The READ does not succeed if the sequence of characters composed
into the string representation is not a valid string representation of a value of the specified type or, in the case
of types STRING and BIT_VECTOR, if the sequence does not contain VALUE'LENGTH characters.

The SREAD procedure begins by skipping leading whitespace characters. Characters are then removed and
composed from left to right into a string provided as the VALUE parameter. Character removal and string
composition stops when the end of the line is encountered. Character removal and string composition also
stops when a whitespace character is encountered or VALUE'LENGTH characters have been accepted; the
whitespace character is not removed from L and is not added to the string. The number of characters
composed into the string is provided as the value of the STRLEN parameter. The values of elements of the
string to the right of those composed by the SREAD procedure are not defined by this standard.

The OREAD and HREAD procedures begin by skipping leading whitespace characters. Characters are then
removed and composed into a sequence of octal (respectively, hexadecimal) digits. Each underline character
is also removed from L, provided the underline character does not precede the sequence of octal
(respectively, hexadecimal) digits and does not immediately follow another underline character. The
removed underline characters are not added to the string representation. Character removal and composition
stops when the end of the line is encountered. Character removal and string composition also stops when a
character is encountered that is not an octal (respectively, hexadecimal) digit or an underline character that
can be removed according to the preceding rule; this character is not removed from L and is not added to the
string. Moreover, character removal and composition stops when the expected number of digits have been
removed, where the expected number of digits is the smallest integer greater than or equal to
VALUE'LENGTH divided by three (respectively, four). The OREAD or HREAD procedure does not
succeed if less than the expected number of digits are removed. Otherwise, the sequence of octal
(respectively, hexadecimal) digits is interpreted as an octal (respectively, hexadecimal) number and
converted into a binary number of three (respectively, four) times VALUE'LENGTH bits. The rightmost
VALUE'LENGTH bits of the binary number are used to form the result for the VALUE parameter, with a '0'
element corresponding to a 0 bit and a 'l' element corresponding to a 1 bit. The OREAD or HREAD
procedure does not succeed if any unused bits are 1.

Each WRITE procedure simi