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INTERNATIONAL ELECTROTECHNICAL COMMISSION
___________

BEHAVIOURAL LANGUAGES – 

Part 1-1: VHDL Language Reference Manual

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization 
comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to 
promote international co-operation on all questions concerning standardization in the electrical and 
electronic fields. To this end and in addition to other activities, IEC publishes International Standards, 
Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter 
referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC 
National Committee interested in the subject dealt with may participate in this preparatory work. 
International, governmental and non-governmental organizations liaising with the IEC also participate in 
this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in 
accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an 
international consensus of opinion on the relevant subjects since each technical committee has 
representation from all interested IEC National Committees. 

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National 
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC 
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any 
misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications 
transparently to the maximum extent possible in their national and regional publications. Any divergence 
between any IEC Publication and the corresponding national or regional publication shall be clearly 
indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide 
conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not 
responsible for any services carried out by independent certification bodies.

6) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of 
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61691-1-1/IEEE Std 1076 has been processed through IEC 
technical committee 93: Design automation.

This second edition cancels and replaces the first edition published in 2004. This edition 
constitutes a technical revision.

The text of this standard is based on the following documents:

�
Full information on the voting for the approval of this standard can be found in the report 
on voting indicated in the above table.

IEEE Std FDIS Report on voting
1076 (2008) 93/302/FDIS 93/304/RVD
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A list of parts of the IEC 61691 series can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged 
until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the 
data related to the specific publication. At this date, the publication will be 

• reconfirmed,
• withdrawn,
• replaced by a revised edition, or
• amended.
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IEC/IEEE Dual Logo International Standards
This Dual Logo International Standard is the result of an agreement between the IEC and the Institute of Electrical 
and Electronics Engineers, Inc. (IEEE). The original IEEE Standard was submitted to the IEC for consideration 
under the agreement, and the resulting IEC/IEEE Dual Logo International Standard has been published in 
accordance with the ISO/IEC Directives.
IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees 
of the IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards through a 
consensus development process, approved by the American National Standards Institute, which brings together 
volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily 
members of the Institute and serve without compensation. While the IEEE administers the process and establishes 
rules to promote fairness in the consensus development process, the IEEE does not independently evaluate, test, 
or verify the accuracy of any of the information contained in its standards.
Use of an IEC/IEEE Dual Logo International Standard is wholly voluntary. The IEC and IEEE disclaim liability for 
any personal injury, property or other damage, of any nature whatsoever, whether special, indirect, consequential, 
or compensatory, directly or indirectly resulting from the publication, use of, or reliance upon this, or any other IEC 
or IEEE Standard document. 
The IEC and IEEE do not warrant or represent the accuracy or content of the material contained herein, and 
expressly disclaim any express or implied warranty, including any implied warranty of merchantability or fitness for 
a specific purpose, or that the use of the material contained herein is free from patent infringement. IEC/IEEE Dual 
Logo International Standards documents are supplied “AS IS”. 
The existence of an IEC/IEEE Dual Logo International Standard does not imply that there are no other ways to 
produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEC/
IEEE Dual Logo International Standard. Furthermore, the viewpoint expressed at the time a standard is approved 
and issued is subject to change brought about through developments in the state of the art and comments received 
from users of the standard. 
Every IEEE Standard is subjected to review at least every five years for revision or reaffirmation. When a document 
is more than five years old and has not been reaffirmed, it is reasonable to conclude that its contents, although still 
of some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they 
have the latest edition of any IEEE Standard.
In publishing and making this document available, the IEC and IEEE are not suggesting or rendering professional 
or other services for, or on behalf of, any person or entity. Neither the IEC nor IEEE is undertaking to perform any 
duty owed by any other person or entity to another. Any person utilizing this, and any other IEC/IEEE Dual Logo 
International Standards or IEEE Standards  document, should rely upon the advice of a competent professional in 
determining the exercise of reasonable care in any given circumstances.
Interpretations – Occasionally questions may arise regarding the meaning of portions of standards as they relate to 
specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate 
action to prepare appropriate responses. Since IEEE Standards represent a consensus of concerned interests, it is 
important to ensure that any interpretation has also received the concurrence of a balance of interests. For this 
reason, IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an 
instant response to interpretation requests except in those cases where the matter has previously received formal 
consideration.
Comments for revision of IEC/IEEE Dual Logo International Standards are welcome from any interested party, 
regardless of membership affiliation with the IEC or IEEE. Suggestions for changes in documents should be in the 
form of a proposed change of text, together with appropriate supporting comments. Comments on standards and 
requests for interpretations should be addressed to:
Secretary, IEEE-SA Standards Board, 445 Hoes Lane, Piscataway, NJ 08854, USA and/or General Secretary, IEC, 
3, rue de Varembé, PO Box 131, 1211 Geneva 20, Switzerland. 
Authorization to photocopy portions of any individual standard for internal or personal use is granted by the Institute 
of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance 
Center. To arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 
222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy portions of any 
individual standard for educational classroom use can also be obtained through the Copyright Clearance Center.
NOTE – Attention is called to the possibility that implementation of this standard may require use of subject matter 
covered by patent rights. By publication of this standard, no position is taken with respect to the existence or 
validity of any patent rights in connection therewith. The IEEE shall not be responsible for identifying patents for 
which a license may be required by an IEEE standard or for conducting inquiries into the legal validity or scope of 
those patents that are brought to its attention.
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Abstract: VHSIC Hardware Description Language (VHDL) is defined. VHDL is a formal notation 
intended for use in all phases of the creation of electronic systems. Because it is both machine 
readable and human readable, it supports the development, verification, synthesis, and testing of 
hardware designs; the communication of hardware design data; and the maintenance, 
modification, and procurement of hardware. Its primary audiences are the implementors of tools 
supporting the language and the advanced users of the language.
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IEEE introduction�

The VHSIC Hardware Description Language (VHDL) is a formal notation intended for use in all phases of 
the creation of electronic systems. Because it is both machine readable and human readable, it supports the 
development, verification, synthesis, and testing of hardware designs; the communication of hardware 
design data; and the maintenance, modification, and procurement of hardware.

This document, IEEE Std 1076-2008, is a revision of IEEE Std 1076-2002 as amended by 
IEEE Std 1076cTM-2007. Initial work on gathering requirements and developing language extensions 
was undertaken by the IEEE VHDL Analysis and Standardization Group (VASG), otherwise known as the 
1076 Working Group. Subsequently, Accelleraa sponsored an effort to complete that work and draft a 
revised Language Reference Manual. That draft was returned to IEEE for final revision and approval, 
resulting in this document and the associated machine-readable files. This revision incorporates numerous 
enhancements, both major and minor, to previously existing language feaures and several new language 
features. The changes are summarized in Annex E. In addition, several VHDL library packages that were 
previously defined in separate standards are now defined in this standard, ensuring that they are treated as 
integral parts of the language. Finally, this revision incorporates the IEEE Property Specification Language 
(PSL) as part of VHDL. The combination of these changes significantly improves VHDL as a language for 
specification, design, and verification of complex electronic systems.

The maintenance of the VHDL language standard is an ongoing process. The chair of the VHDL Analysis 
and Standardization Group extends his gratitude to all who have participated in this revision, both in the 
IEEE committees and the Accellera effort, and encourages the participation of all interested parties in future 
language revisions.b 

Notice to users

Laws and regulations

Users of these documents should consult all applicable laws and regulations. Compliance with the 
provisions of this standard does not imply compliance to any applicable regulatory requirements. 
Implementers of the standard are responsible for observing or referring to the applicable regulatory 
requirements. IEEE does not, by the publication of its standards, intend to urge action that is not in 
compliance with applicable laws, and these documents may not be construed as doing so. 

Copyrights

This document is copyrighted by the IEEE. It is made available for a wide variety of both public and private 
uses. These include both use, by reference, in laws and regulations, and use in private self-regulation, 
standardization, and the promotion of engineering practices and methods. By making this document 
available for use and adoption by public authorities and private users, the IEEE does not waive any rights in 
copyright to this document.

aMore information is available at www.accellera.org. 
bIf interested in participating, please contact the VASG at stds-vasg@ieee.org or visit: http://www.eda.org/vasg.
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Updating of IEEE documents

Users of IEEE standards should be aware that these documents may be superseded at any time by the 
issuance of new editions or may be amended from time to time through the issuance of amendments, 
corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the 
document together with any amendments, corrigenda, or errata then in effect. In order to determine whether 
a given document is the current edition and whether it has been amended through the issuance 
of amendments, corrigenda, or errata, visit the IEEE Standards Association website at http://
ieeexplore.ieee.org/xpl/standards.jsp, or contact the IEEE at the address listed previously.

For more information about the IEEE Standards Association or the IEEE standards development process, 
visit the IEEE-SA website at http://standards.ieee.org.

Errata

Errata, if any, for this and all other standards can be accessed at the following URL: http://
standards.ieee.org/reading/ieee/updates/errata/index.html. Users are encouraged to check this URL for 
errata periodically.

Interpretations

Current interpretations can be accessed at the following URL: http://standards.ieee.org/reading/ieee/interp/
index.html.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter 
covered by patent rights. By publication of this standard, no position is taken with respect to the existence or 
validity of any patent rights in connection therewith. The IEEE shall not be responsible for identifying 
patents or patent applications for which a license may be required to implement an IEEE standard or for 
conducting inquiries into the legal validity or scope of those patents that are brought to its attention.

IMPORTANT NOTICE: This standard is not intended to assure safety, security, health, or 
environmental protection in all circumstances. Implementers of the standard are responsible for 
determining appropriate safety, security, environmental, and health practices or regulatory requirements.

This IEEE document is made available for use subject to important notices and legal disclaimers. These 
notices and disclaimers appear in all publications containing this document and may be found under the 
heading “Important Notice” or “Important Notices and Disclaimers Concerning IEEE Documents.” 
They can also be obtained on request from IEEE or viewed at http://standards.ieee.org/IPR/
disclaimers.html.
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Behavioural languages – Part 1-1: �
VHDL Language Reference Manual

1. Overview of this standard

1.1 Scope

This standard revises and enhances the VHDL language reference manual (LRM) by including a standard C 
language interface specification; specifications from previously separate, but related, standards 
IEEE Std 1164TM-1993 [B16],1 IEEE Std 1076.2TM-1996 [B11], and IEEE Std 1076.3TM-1997 [B12]; and 
general language enhancements in the areas of design and verification of electronic systems.

1.2 Purpose

The VHDL language was defined for use in the design and documentation of electronics systems. It is 
revised to incorporate capabilities that improve the language’s usefulness for its intended purpose as well as 
extend it to address design verification methodologies that have developed in industry. These new design 
and verification capabilities are required to ensure VHDL remains relevant and valuable for use in electronic 
systems design and verification. Incorporation of previously separate, but related standards, simplifies the 
maintenance of the specifications.

1The numbers in brackets correspond to those of the bibliography in Annex J.
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1.3 Structure and terminology of this standard

1.3.1 General

This standard is organized into clauses, each of which focuses on some particular area of the language. 
Within each clause, individual constructs or concepts are discussed in each subclause.

Each subclause describing a specific construct begins with an introductory paragraph. Next, the syntax of 
the construct is described using one or more grammatical productions.

A set of paragraphs describing the meaning and restrictions of the construct in narrative form then follow.

In this document, the word shall is used to indicate a mandatory requirement. The word should is used to 
indicate a recommendation. The word may is used to indicate a permissible action. The word can is used for 
statements of possibility and capability.

Finally, each clause may end with examples, notes, and references to other pertinent clauses.

1.3.2 Syntactic description

The form of a VHDL description is described by means of context-free syntax using a simple variant of the 
Backus-Naur form (BNF); in particular:

a) Lowercase words in roman font, some containing embedded underlines, are used to denote syntactic 
categories, for example:
      formal_port_list
Whenever the name of a syntactic category is used, apart from the syntax rules themselves, spaces 
take the place of underlines [thus, “formal port list” would appear in the narrative description when 
referring to the syntactic category in item a)].

b) Boldface words are used to denote reserved words, for example:
      array
Reserved words shall be used only in those places indicated by the syntax.

c) A production consists of a left-hand side, the symbol “::=” (which is read as “can be replaced by”), 
and a right-hand side. The left-hand side of a production is always a syntactic category; the right-
hand side is a replacement rule. The meaning of a production is a textual-replacement rule: any 
occurrence of the left-hand side may be replaced by an instance of the right-hand side.

d) A vertical bar (|) separates alternative items on the right-hand side of a production unless it occurs 
immediately after an opening brace, in which case it stands for itself, as follows:
      letter_or_digit ::= letter | digit
      choices  ::=  choice { | choice }
In the first instance, an occurrence of “letter_or_digit” can be replaced by either “letter” or “digit.” 
In the second case, “choices” can be replaced by a list of “choice,” separated by vertical bars [see 
item f) for the meaning of braces].

e) Square brackets [ ] enclose optional items on the right-hand side of a production; thus, the following 
two productions are equivalent:
      return_statement ::= return [ expression ] ;
      return_statement ::= return ; | return expression ;
Note, however, that the initial and terminal square brackets in the right-hand side of the production 
for signatures (see 4.5.3) are part of the syntax of signatures and do not indicate that the entire right-
hand side is optional.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



- 3 - IEC 61691-1-1:2011(E)�
IEEE Std 1076-2008

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

f) Braces { } enclose a repeated item or items on the right-hand side of a production. The items may 
appear zero or more times; the repetitions occur from left to right as with an equivalent left-recursive 
rule. Thus, the following two productions are equivalent:
      term ::= factor { multiplying_operator factor }
      term ::= factor | term multiplying_operator factor

g) If the name of any syntactic category starts with an italicized part, it is equivalent to the category 
name without the italicized part. The italicized part is intended to convey some semantic informa-
tion. For example, type_name and subtype_name are both syntactically equivalent to name alone.

h) The term simple_name is used for any occurrence of an identifier that already denotes some 
declared entity.

1.3.3 Semantic description

The meaning and restrictions of a particular construct are described with a set of narrative rules immediately 
following the syntactic productions. In these rules, an italicized term indicates the definition of that term, 
and identifiers appearing entirely in uppercase letters refer to definitions in package STANDARD (see 
16.3).

The following terms are used in these semantic descriptions with the following meanings:

erroneous: The condition described represents an ill-formed description; however, implementations are not 
required to detect and report this condition. Conditions are deemed erroneous only when it is impossible in 
general to detect the condition during the processing of the language.

error: The condition described represents an ill-formed description; implementations are required to detect 
the condition and report an error to the user of the tool.

illegal: A synonym for “error.”

legal: The condition described represents a well-formed description.

1.3.4 Front matter, examples, notes, references, and annexes

Prior to this subclause are several pieces of introductory material; following Clause 24 are some annexes and 
an index. The front matter, annexes (except Annex B), and index serve to orient and otherwise aid the user 
of this standard, but are not part of the definition of VHDL; Annex B, however, is normative.

Some clauses of this standard contain examples, notes, and cross-references to other clauses of the standard; 
these parts always appear at the end of a clause. Examples are meant to illustrate the possible forms of the 
construct described. Illegal examples are italicized. Notes are meant to emphasize consequences of the rules 
described in the clause or elsewhere. In order to distinguish notes from the other narrative portions of this 
standard, notes are set as enumerated paragraphs in a font smaller than the rest of the text. Cross-references 
are meant to guide the user to other relevant clauses of the standard. Examples, notes, and cross-references 
are not part of the definition of the language.

1.3.5 Incorporation of Property Specification Language

VHDL incorporates the simple subset of the Property Specification Language (PSL) as an embedded 
language for formal specification of the behavior of a VHDL description. PSL is defined by 
IEEE Std 1850TM-2005.2 All PSL constructs that appear in a VHDL description shall conform to the 

2Information on references can be found in Clause 2.
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VHDL flavor of PSL. Within this standard, reference is made to syntactic rules of PSL. Each such reference 
has the italicized prefix PSL_ and corresponds to the syntax rule in IEEE Std 1850-2005 with the same name 
but without the prefix.
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2. Normative references

The following referenced documents are indispensable for the application of this document (i.e., they must 
be understood and used, so each referenced document is cited in text and its relationship to this document is 
explained). For dated references, only the edition cited applies. For undated references, the latest edition of 
the referenced document (including any amendments or corrigenda) applies.

IEC 62531:2007, Standard for Property Specification Language (PSL) ¦ �
IEEE Std 1850TM-2005, IEEE Standard for Property Specification Language (PSL) 
NOTE—IEEE Std 1850-2005 was adopted as IEC 62531:2007

IEEE Std 754TM-1985 (Reaff 1990), IEEE Standard for Binary Floating-Point Arithmetic.3, 4

IEEE Std 854TM-1987 (Reaff 1994), IEEE Standard for Radix-Independent Floating-Point Arithmetic.

ISO/IEC 8859-1:1998, Information technology—8-bit single-byte coded graphic character sets—Part 1: 
Latin alphabet No. 1.5

ISO/IEC 9899:1999, Programming languages—C.

ISO/IEC 9899:1999/Cor 1:2001, Programming languages—C, Technical Corrigendum 1.

ISO/IEC 9899:1999/Cor 2:2004, Programming languages—C, Technical Corrigendum 2.

ISO/IEC 19501:2005, Information technology—Open Distributed Processing—Unified Modeling Language 
(UML) Version 1.4.2.

3IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box 1331, Piscataway, 
NJ 08855-1331, USA (http://standards.ieee.org/).
4The IEEE standards or products referred to in this clause are trademarks of the Institute of Electrical and Electronics Engineers, Inc.
5ISO/IEC publications are available from the ISO Central Secretariat, Case Postale 56, 1 chemin de la Voie-Creuse, CH-1211 Genève 
20, Switzerland/Suisse (http://www.iso.ch/) and from the IEC Central Office, Case Postale 131, 3 rue de Varembé, CH-1211 Genève 
20, Switzerland/Suisse (http://www.iec.ch/). ISO/IEC publications are also available in the United States from Global Engineering 
Documents, 15 Inverness Way East, Englewood, Colorado 80112, USA (http://global.ihs.com/). Electronic copies are available in the 
United States from the American National Standards Institute, 25 West 43rd Street, 4th Floor, New York, NY 10036, USA (http://
www.ansi.org/).
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3. Design entities and configurations

3.1 General

The design entity is the primary hardware abstraction in VHDL. It represents a portion of a hardware design 
that has well-defined inputs and outputs and performs a well-defined function. A design entity may 
represent an entire system, a subsystem, a board, a chip, a macro-cell, a logic gate, or any level of abstraction 
in-between. A configuration can be used to describe how design entities are put together to form a complete 
design.

A design entity may be described in terms of a hierarchy of blocks, each of which represents a portion of the 
whole design. The top-level block in such a hierarchy is the design entity itself; such a block is an external
block that resides in a library and may be used as a component of other designs. Nested blocks in the 
hierarchy are internal blocks, defined by block statements (see 11.2).

A design entity may also be described in terms of interconnected components. Each component of a design 
entity may be bound to a lower-level design entity in order to define the structure or behavior of that 
component. Successive decomposition of a design entity into components, and binding those components to 
other design entities that may be decomposed in like manner, results in a hierarchy of design entities 
representing a complete design. Such a collection of design entities is called a design hierarchy. The 
bindings necessary to identify a design hierarchy can be specified in a configuration of the top-level entity in 
the hierarchy.

This clause describes the way in which design entities and configurations are defined. A design entity is 
defined by an entity declaration together with a corresponding architecture body. A configuration is defined 
by a configuration declaration.

3.2 Entity declarations

3.2.1 General

An entity declaration defines the interface between a given design entity and the environment in which it is 
used. It may also specify declarations and statements that are part of the design entity. A given entity 
declaration may be shared by many design entities, each of which has a different architecture. Thus, an 
entity declaration can potentially represent a class of design entities, each with the same interface.

entity_declaration ::=
      entity identifier is
            entity_header
            entity_declarative_part
      [ begin
            entity_statement_part ]
      end [ entity ] [ entity_simple_name ] ;

The entity header and entity declarative part consist of declarative items that pertain to each design entity 
whose interface is defined by the entity declaration. The entity statement part, if present, consists of 
concurrent statements that are present in each such design entity.

If a simple name appears at the end of an entity declaration, it shall repeat the identifier of the entity 
declaration.
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3.2.2 Entity header

The entity header declares objects used for communication between a design entity and its environment.

entity_header ::=
      [formal_generic_clause ]
      [formal_port_clause ]

The generic list in the formal generic clause defines generics whose associated actuals may be determined 
by the environment (see 6.5.6.2). The port list in the formal port clause defines the input and output ports of 
the design entity (see 6.5.6.3).

In certain circumstances, the names of generics and ports declared in the entity header become visible 
outside of the design entity (see 12.2 and 12.3).

Examples:
— An entity declaration with port declarations only:

entity Full_Adder is
   port (X, Y, Cin: in Bit; Cout, Sum: out Bit);
end Full_Adder;

— An entity declaration with generic declarations also:
entity AndGate is
   generic (N: Natural := 2);
   port (Inputs: in Bit_Vector (1 to N);
         Result: out Bit);
end entity AndGate;

— An entity declaration with neither:
entity TestBench is
end TestBench;

3.2.3 Entity declarative part

The entity declarative part of a given entity declaration declares items that are common to all design entities 
whose interfaces are defined by the given entity declaration.

entity_declarative_part ::=
      { entity_declarative_item }

entity_declarative_item ::=
        subprogram_declaration
      | subprogram_body
      | subprogram_instantiation_declaration
      | package_declaration
      | package_body
      | package_instantiation_declaration
      | type_declaration
      | subtype_declaration
      | constant_declaration
      | signal_declaration
      | shared_variable_declaration
      | file_declaration
      | alias_declaration
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      | attribute_declaration
      | attribute_specification
      | disconnection_specification
      | use_clause
      | group_template_declaration
      | group_declaration
      | PSL_Property_Declaration
      | PSL_Sequence_Declaration
      | PSL_Clock_Declaration

Names declared by declarative items in the entity declarative part of a given entity declaration are visible 
within the bodies of corresponding design entities, as well as within certain portions of a corresponding 
configuration declaration.

The various kinds of declaration are described in Clause 6, and the various kinds of specification are 
described in Clause 7. The use clause, which makes externally defined names visible within the block, is 
described in Clause 12.

Example:
— An entity declaration with entity declarative items:

entity ROM is
   port (Addr: in  Word;
         Data: out Word;
         Sel:  in  Bit);
   type Instruction is array (1 to 5) of Natural;
   type Program is array (Natural range <>) of Instruction;
   use Work.OpCodes.all, Work.RegisterNames.all;
   constant ROM_Code: Program :=
      (
         (STM, R14, R12, 12, R13),
         (LD,  R7,  32,  0,  R1 ),
         (BAL, R14, 0,   0,  R7 ),
               ·
               ·    --  etc.
               ·
      ) ;
end ROM;

NOTE—The entity declarative part of a design entity whose corresponding architecture is decorated with the 'FOREIGN 
attribute is subject to special elaboration rules. See 14.4.1.6

3.2.4 Entity statement part

The entity statement part contains concurrent statements that are common to each design entity with this 
interface.

entity_statement_part ::=
      { entity_statement }

entity_statement ::=
        concurrent_assertion_statement
      | passive_concurrent_procedure_call_statement

6Notes in text, tables, and figures are given for information only and do not contain requirements needed to implement the standard.
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      | passive_process_statement
      | PSL_PSL_Directive

It is an error if any statements other than concurrent assertion statements, concurrent procedure call 
statements, process statements, or PSL directives appear in the entity statement part. All entity statements 
shall be passive (see 11.3). Such statements may be used to monitor the operating conditions or 
characteristics of a design entity.

Example:
— An entity declaration with statements:

entity Latch is
   port (Din:  in  Word;
         Dout: out Word;
         Load: in  Bit;
         Clk:  in  Bit );
   constant Setup: Time := 12 ns;
   constant PulseWidth: Time := 50 ns;
   use Work.TimingMonitors.all;
begin
   assert Clk='1' or Clk'Delayed'Stable (PulseWidth);
   CheckTiming (Setup, Din, Load, Clk);
end;

NOTE—The entity statement part of a design entity whose corresponding architecture is decorated with the 'FOREIGN 
attribute is subject to special elaboration rules. See 14.5.1.

3.3 Architecture bodies

3.3.1 General

An architecture body defines the body of a design entity. It specifies the relationships between the inputs and 
outputs of a design entity and may be expressed in terms of structure, dataflow, or behavior. Such 
specifications may be partial or complete.

architecture_body ::=
      architecture identifier of entity_name is
            architecture_declarative_part
      begin
            architecture_statement_part
      end [ architecture ] [ architecture_simple_name ] ;

The identifier defines the simple name of the architecture body; this simple name distinguishes architecture 
bodies associated with the same entity declaration.

The entity name identifies the name of the entity declaration that defines the interface of this design entity. 
For a given design entity, both the entity declaration and the associated architecture body shall reside in the 
same library.

If a simple name appears at the end of an architecture body, it shall repeat the identifier of the architecture 
body.
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More than one architecture body may exist corresponding to a given entity declaration. Each declares a 
different body with the same interface; thus, each together with the entity declaration represents a different 
design entity with the same interface.

NOTE—Two architecture bodies that are associated with different entity declarations may have the same simple name, 
even if both architecture bodies (and the corresponding entity declarations) reside in the same library.

3.3.2 Architecture declarative part

The architecture declarative part contains declarations of items that are available for use within the block 
defined by the design entity.

architecture_declarative_part ::=
      { block_declarative_item }

block_declarative_item ::=
        subprogram_declaration
      | subprogram_body
      | subprogram_instantiation_declaration
      | package_declaration
      | package_body
      | package_instantiation_declaration
      | type_declaration
      | subtype_declaration
      | constant_declaration
      | signal_declaration
      | shared_variable_declaration
      | file_declaration
      | alias_declaration
      | component_declaration
      | attribute_declaration
      | attribute_specification
      | configuration_specification
      | disconnection_specification
      | use_clause
      | group_template_declaration
      | group_declaration
      | PSL_Property_Declaration
      | PSL_Sequence_Declaration
      | PSL_Clock_Declaration

The various kinds of declaration are described in Clause 6, and the various kinds of specification are 
described in Clause 7. The use clause, which makes externally defined names visible within the block, is 
described in Clause 12.

NOTE—The declarative part of an architecture decorated with the 'FOREIGN attribute is subject to special elaboration 
rules. See 14.4.1.

3.3.3 Architecture statement part

The architecture statement part contains statements that describe the internal organization and/or operation 
of the block defined by the design entity.
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architecture_statement_part ::=
      { concurrent_statement }

All of the statements in the architecture statement part are concurrent statements, which execute 
asynchronously with respect to one another. The various kinds of concurrent statements are described in 
Clause 11.

Examples:
— A body of entity Full_Adder:

architecture DataFlow of Full_Adder is
   signal A,B: Bit;
begin
   A <= X xor Y;
   B <= A and Cin;
   Sum <= A xor Cin;
   Cout <= B or (X and Y);
end architecture DataFlow;

— A body of entity TestBench:
library Test;
use Test.Components.all;
architecture Structure of TestBench is
   component Full_Adder
      port (X, Y, Cin: Bit; Cout, Sum: out Bit);
   end component;
signal A,B,C,D,E,F,G: Bit;
   signal OK: Boolean;
begin
   UUT:        Full_Adder port map (A,B,C,D,E);
   Generator:  AdderTest  port map (A,B,C,F,G);
   Comparator: AdderCheck port map (D,E,F,G,OK);
end Structure;

— A body of entity AndGate:
architecture Behavior of AndGate is
begin
   process (Inputs)
      variable Temp: Bit;
   begin
      Temp := '1';
      for i in Inputs'Range loop
         if Inputs(i) = '0' then
            Temp := '0';
            exit;
         end if;
      end loop;
      Result <= Temp after 10 ns;
   end process;
end Behavior;

NOTE—The statement part of an architecture decorated with the 'FOREIGN attribute is subject to special elaboration 
rules. See 14.5.1.
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3.4 Configuration declarations

3.4.1 General

The binding of component instances to design entities is performed by configuration specifications (see 7.3); 
such specifications appear in the declarative part of the block in which the corresponding component 
instances are created. In certain cases, however, it may be appropriate to leave unspecified the binding of 
component instances in a given block and to defer such specification until later. A configuration declaration 
provides the mechanism for specifying such deferred bindings.

configuration_declaration ::=
      configuration identifier of entity_name is
            configuration_declarative_part
            { verification_unit_binding_indication ; }
            block_configuration
      end [ configuration ] [ configuration_simple_name ] ;

configuration_declarative_part ::=
      { configuration_declarative_item }

configuration_declarative_item ::=
        use_clause
      | attribute_specification
      | group_declaration

The entity name identifies the name of the entity declaration that defines the design entity at the root of the 
design hierarchy. For a configuration of a given design entity, both the configuration declaration and the 
corresponding entity declaration shall reside in the same library.

If a simple name appears at the end of a configuration declaration, it shall repeat the identifier of the 
configuration declaration.

A verification unit binding indication in a configuration declaration binds one or more PSL verification units 
to the design entity at the root of the design hierarchy. Verification unit binding indications are described in 
7.3.4.

NOTE 1—A configuration declaration achieves its effect entirely through elaboration (see Clause 14). There are no 
behavioral semantics associated with a configuration declaration.

NOTE 2—A given configuration may be used in the definition of another, more complex configuration.

Examples:
— An architecture of a microprocessor:

architecture Structure_View of Processor is
   component ALU port ( ··· ); end component;
   component MUX port ( ··· ); end component;
   component Latch port ( ··· ); end component;
begin
   A1: ALU port map ( ··· );
   M1: MUX port map ( ··· );
   M2: MUX port map ( ··· );
   M3: MUX port map ( ··· );
   L1: Latch port map ( ··· );
   L2: Latch port map ( ··· );
end Structure_View;
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— A configuration of the microprocessor:
library TTL, Work;
configuration V4_27_87 of Processor is
   use Work.all;
   for Structure_View
      for A1: ALU
         use configuration TTL.SN74LS181;
      end for;
      for M1,M2,M3: MUX
         use entity Multiplex4 (Behavior);
      end for;
      for all: Latch
         -- use defaults
      end for;
   end for;
end configuration V4_27_87;

3.4.2 Block configuration

A block configuration defines the configuration of a block. Such a block is either an internal block defined 
by a block statement or an external block defined by a design entity. If the block is an internal block, the 
defining block statement is either an explicit block statement or an implicit block statement that is itself 
defined by a generate statement.

block_configuration ::=
      for block_specification
            { use_clause }
            { configuration_item }
      end for ;

block_specification ::=
        architecture_name
      | block_statement_label
      | generate_statement_label [ ( generate_specification ) ]

generate_specification ::=
        static_discrete_range
      | static_expression
      | alternative_label

configuration_item ::=
        block_configuration
      | component_configuration

The block specification identifies the internal or external block to which this block configuration applies.

If a block configuration appears immediately within a configuration declaration, then the block specification 
of that block configuration shall be an architecture name, and that architecture name shall denote a design 
entity body whose interface is defined by the entity declaration denoted by the entity name of the enclosing 
configuration declaration.

If a block configuration appears immediately within a component configuration, then the corresponding 
components shall be fully bound (see 7.3.2.2), the block specification of that block configuration shall be an 
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architecture name, and that architecture name shall denote the same architecture body as that to which the 
corresponding components are bound.

If a block configuration appears immediately within another block configuration, then the block 
specification of the contained block configuration shall be a block statement or generate statement label, and 
the label shall denote a block statement or generate statement that is contained immediately within the block 
denoted by the block specification of the containing block configuration.

If the scope of a declaration (see 12.2) includes the end of the declarative part of a block corresponding to a 
given block configuration, then the scope of that declaration extends to each configuration item contained in 
that block configuration, with the exception of block configurations that configure external blocks. 
Similarly, if a declaration is visible (either directly or by selection) at the end of the declarative part of a 
block corresponding to a given block configuration, then the declaration is visible in each configuration item 
contained in that block configuration, with the exception of block configurations that configure external 
blocks. Additionally, if a given declaration is a homograph of a declaration that a use clause in the block 
configuration makes potentially directly visible, then the given declaration is not directly visible in the block 
configuration or any of its configuration items. See 12.3.

For any name that is the label of a block statement appearing immediately within a given block, a 
corresponding block configuration may appear as a configuration item immediately within a block 
configuration corresponding to the given block. For any collection of names that are labels of instances of 
the same component appearing immediately within a given block, a corresponding component configuration 
may appear as a configuration item immediately within a block configuration corresponding to the given 
block.

For any name that is the label of a generate statement immediately within a given block, one or more 
corresponding block configurations may appear as configuration items immediately within a block 
configuration corresponding to the given block. Such block configurations apply to implicit blocks 
generated by that generate statement. If such a block configuration contains a generate specification that is a 
static discrete range, then the block configuration applies to those implicit block statements that are 
generated for the specified range of values of the corresponding generate parameter; the discrete range has 
no significance other than to define the set of generate statement parameter values implied by the discrete 
range. If such a block configuration contains a generate specification that is a static expression, then the 
block configuration applies only to the implicit block statement generated for the specified value of the 
corresponding generate parameter. If such a block configuration contains a generate specification that is an 
alternative label, then the block configuration applies only to the implicit block generated for the generate 
statement body following the alternative label in the generate statement, if and only if the condition after the 
alternative label evaluates to TRUE (for an if generate statement) or the case generate alternative containing 
the alternative label is the chosen alternative (for a case generate statement). If no generate specification 
appears in such a block configuration, then it applies to exactly one of the following sets of blocks:

— All implicit blocks (if any) generated by the corresponding generate statement, if and only if the cor-
responding generate statement is a for generate statement.

— The implicit block generated by the corresponding generate statement, if and only if the correspond-
ing generate statement is an if generate statement and if the first condition after if evaluates to 
TRUE.

— No implicit or explicit blocks, if and only if the corresponding generate statement is an if generate 
statement and the first condition after if evaluates to FALSE.

If the block specification of a block configuration contains a generate statement label, and if this label 
contains a generate specification, then:

— If the generate specification is a discrete range or an expression, then it is an error if the generate 
statement denoted by the generate statement label is not a for generate statement. Moreover, for a 
generate specification that is a discrete range, it is an error if the type of the discrete range is not the 
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same as the type of the discrete range of the generate parameter specification and if any value in the 
range does not belong to the discrete range of the generate parameter specification. Similarly, for a 
generate specification that is an expression, it is an error if the type of the expression is not the same 
as the type of the discrete range of the generate parameter specification and if the value of the expres-
sion does not belong to the discrete range of the generate parameter specification.

— If the generate specification is an alternative label, then it is an error if the generate statement 
denoted by the generate statement label is not an if generate statement that includes the alternative 
label or a case generate statement that includes the alternative label.

If the block specification of a block configuration contains a generate statement label that denotes an if 
generate statement, and if the first condition after if has an alternative label, then it is an error if the generate 
statement label does not contain a generate specification that is an alternative label. Similarly, if the block 
specification of a block configuration contains a generate statement label that denotes a case generate 
statement, then it is an error if the generate statement label does not contain a generate specification that is 
an alternative label.

Within a given block configuration, whether implicit or explicit, an implicit block configuration is assumed 
to appear for any block statement that appears within the block corresponding to the given block 
configuration, if no explicit block configuration appears for that block statement. Similarly, an implicit 
component configuration is assumed to appear for each component instance that appears within the block 
corresponding to the given block configuration, if no explicit component configuration appears for that 
instance. Such implicit configuration items are assumed to appear following all explicit configuration items 
in the block configuration.

It is an error if, in a given block configuration, more than one configuration item is defined for the same 
block or component instance.

NOTE 1—As a result of the rules described in the preceding paragraphs and in Clause 12, a simple name that is visible 
by selection at the end of the declarative part of a given block is also visible by selection within any configuration item 
contained in a corresponding block configuration. If such a name is directly visible at the end of the given block declar-
ative part, it will likewise be directly visible in the corresponding configuration items, unless a use clause for a different 
declaration with the same simple name appears in the corresponding configuration declaration, and the scope of that use 
clause encompasses all or part of those configuration items. If such a use clause appears, then the name will be directly 
visible within the corresponding configuration items except at those places that fall within the scope of the additional use 
clause (at which places neither name will be directly visible).

NOTE 2—If an implicit configuration item is assumed to appear within a block configuration, that implicit 
configuration item will never contain explicit configuration items.

NOTE 3—If the block specification in a block configuration specifies a generate statement label, and if this label 
contains a generate specification that is a discrete range, then the direction specified or implied by the discrete range has 
no significance other than to define, together with the bounds of the range, the set of generate statement parameter values 
denoted by the range. Thus, the following two block configurations are equivalent:

for Adders(31 downto 0) ··· end for;
for Adders(0 to 31) ··· end for;

NOTE 4—A block configuration is allowed to appear immediately within a configuration declaration only if the entity 
declaration denoted by the entity name of the enclosing configuration declaration has associated architectures. Further-
more, the block specification of the block configuration shall denote one of these architectures.
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Examples:
— A block configuration for a design entity:

for ShiftRegStruct                      --  An architecture name.
   --  Configuration items
   --  for blocks and components
   --  within ShiftRegStruct.
end for;

— A block configuration for a block statement:
for B1                                  --  A block label.
   --  Configuration items
   --  for blocks and components
   --  within block B1.
end for;

3.4.3 Component configuration

A component configuration defines the configuration of one or more component instances in a 
corresponding block.

component_configuration ::=
      for component_specification
            [ binding_indication ; ]
            { verification_unit_binding_indication ; }
            [ block_configuration ]
      end for ;

The component specification (see 7.3) identifies the component instances to which this component 
configuration applies. A component configuration that appears immediately within a given block 
configuration applies to component instances that appear immediately within the corresponding block.

It is an error if two component configurations apply to the same component instance.

If the component configuration contains a binding indication (see 7.3.2), then the component configuration 
implies a configuration specification for the component instances to which it applies. This implicit 
configuration specification has the same component specification and binding indication as that of the 
component configuration.

If a given component instance is unbound in the corresponding block, then any explicit component 
configuration for that instance that does not contain an explicit binding indication will contain an implicit, 
default binding indication (see 7.3.3). Similarly, if a given component instance is unbound in the 
corresponding block, then any implicit component configuration for that instance will contain an implicit, 
default binding indication.

A verification unit binding indication in a configuration declaration binds one or more PSL verification units 
to the instance of the design entity bound to the component instances identified by the component 
specification. Verification unit binding indications are described in 7.3.4.

It is an error if a component configuration contains an explicit block configuration and the component 
configuration does not bind all identified component instances to the same design entity.

Within a given component configuration, whether implicit or explicit, an implicit block configuration is 
assumed for the design entity to which the corresponding component instance is bound, if no explicit block 
configuration appears and if the corresponding component instance is fully bound.
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Examples:

— A component configuration with binding indication:

for all: IOPort
   use entity StdCells.PadTriState4 (DataFlow)
      port map (Pout=>A, Pin=>B, IO=>Dir, Vdd=>Pwr, Gnd=>Gnd);
end for;

— A component configuration containing block configurations:

for D1: DSP
   for DSP_STRUCTURE
      --  Binding specified in design entity or else defaults.

      for Filterer
         --  Configuration items for filtering components.

      end for;
      for Processor
         --  Configuration items for processing components.

      end for;
   end for;
end for;

NOTE—The requirement that all component instances corresponding to a block configuration be bound to the same 
design entity makes the following configuration illegal:

architecture A of E is
   component C is end component C;
   for L1: C use entity E1(X);
   for L2: C use entity E2(X);
begin
   L1: C;

   L2: C;

end architecture A;

configuration Illegal of Work.E is

   for A

      for all: C

         for X        --  Does not apply to the same design entity in all instances of C.

            ···

         end for;     -- X

      end for; -- C

   end for; -- A

end configuration Illegal;
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4. Subprograms and packages

4.1 General

Subprograms define algorithms for computing values or exhibiting behavior. They may be used as 
computational resources to convert between values of different types, to define the resolution of output 
values driving a common signal, or to define portions of a process. Packages provide a means of defining 
these and other resources in a way that allows different design units or different parts of a given design unit 
to share the same declarations.

There are two forms of subprograms: procedures and functions. A procedure call is a statement; a function 
call is an expression and returns a value. Certain functions, designated pure functions, return the same value 
each time they are called with the same values as actual parameters; the remainder, impure functions, may 
return a different value each time they are called, even when multiple calls have the same actual parameter 
values. In addition, impure functions can update objects outside of their scope and can access a broader class 
of values than can pure functions. The definition of a subprogram can be given in two parts: a subprogram 
declaration defining its calling conventions, and a subprogram body defining its execution.

Packages may also be defined in two parts. A package declaration defines the visible contents of a package; 
a package body provides hidden details. In particular, a package body contains the bodies of any 
subprograms declared in the package declaration.

4.2 Subprogram declarations

4.2.1 General

A subprogram declaration declares a procedure or a function, as indicated by the appropriate reserved word.

subprogram_declaration ::=
      subprogram_specification ;

subprogram_specification ::=
      procedure_specification | function_specification

procedure_specification ::=
      procedure designator
            subprogram_header
            [ [ parameter ] ( formal_parameter_list ) ]

function_specification ::=
      [ pure | impure ] function designator
            subprogram_header
            [ [ parameter ] ( formal_parameter_list ) ] return type_mark

subprogram_header ::=
      [ generic ( generic_list )
      [ generic_map_aspect ] ]

designator ::=  identifier  |  operator_symbol

operator_symbol ::=  string_literal
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The specification of a procedure specifies its designator, its generics (if any), and its formal parameters (if 
any). The specification of a function specifies its designator, its generics (if any), its formal parameters (if 
any), the subtype of the returned value (the result subtype), and whether or not the function is pure. A 
function is impure if its specification contains the reserved word impure; otherwise, it is said to be pure. A 
procedure designator is always an identifier. A function designator is either an identifier or an operator 
symbol. A designator that is an operator symbol is used for the overloading of an operator (see 4.5.2). The 
sequence of characters represented by an operator symbol shall be an operator belonging to one of the 
classes of operators defined in 9.2. Extra spaces are not allowed in an operator symbol, and the case of 
letters is not significant.

If the subprogram header is empty, the subprogram declared by a subprogram declaration is called a simple 
subprogram. If the subprogram header contains the reserved word generic, a generic list, and no generic 
map aspect, the subprogram is called an uninstantiated subprogram. If the subprogram header contains the 
reserved word generic, a generic list, and a generic map aspect, the subprogram is called a generic-mapped 
subprogram. A subprogram declared with a generic list in which every generic declaration has a default, and 
with no generic map aspect, is considered to be an uninstantiated subprogram, not a generic-mapped 
subprogram with default associations for all of the generic declarations. A generic list in a subprogram 
declaration is equivalent to a generic clause containing that generic list (see 6.5.6.2).

An uninstantiated subprogram shall not be called, except as a recursive call within the body of the 
uninstantiated subprogram. Moreover, an uninstantiated subprogram shall not be used as a resolution 
function or used as a conversion function in an association list.

It is an error if the result subtype of a function denotes either a file type or a protected type. Moreover, it is 
an error if the result subtype of a pure function denotes an access type or a subtype that has a subelement of 
an access type.

NOTE 1—All subprograms can be called recursively. In the case of an instantiated subprogram, a reference to the 
uninstantiated subprogram within the uninstantiated subprogram is interpreted as a reference to the instance (see 4.4). 
Hence, the subprogram can be called recursively using the name of the uninstantiated subprogram. The effect is a 
recursive call of the instance.

NOTE 2—The restrictions on pure functions are enforced even when the function appears within a protected type. That 
is, pure functions whose body appears in the protected type body shall not directly reference variables declared 
immediately within the declarative region associated with the protected type. However, impure functions and procedures 
whose bodies appear in the protected type body may make such references. Such references are made only when the 
referencing subprogram has exclusive access to the declarative region associated with the protected type.

NOTE 3—The rule stating equivalence of a generic list in a subprogram header to a generic clause containing the 
generic list ensures that the generic list conforms to the same rules as a generic clause. A subprogram header is not 
defined to contain a generic clause directly, since that would introduce a semicolon into the syntax of a subprogram 
header.

4.2.2 Formal parameters

4.2.2.1 Formal parameter lists

The formal parameter list in a subprogram specification defines the formal parameters of the subprogram.

formal_parameter_list ::=  parameter_interface_list

Formal parameters of subprograms may be constants, variables, signals, or files. In the first three cases, the 
mode of a parameter determines how a given formal parameter is accessed within the subprogram. The 
mode of a formal parameter, together with its class, also determines how such access is implemented. In the 
fourth case, that of files, the parameters have no mode.
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For those parameters with modes, the only modes that are allowed for formal parameters of a procedure are 
in, inout, and out. If the mode is in and no object class is explicitly specified, constant is assumed. If the 
mode is inout or out, and no object class is explicitly specified, variable is assumed.

For those parameters with modes, the only mode that is allowed for formal parameters of a function is the 
mode in (whether this mode is specified explicitly or implicitly). The object class shall be constant, signal, 
or file. If no object class is explicitly given, constant is assumed.

In a subprogram call, the actual designator (see 6.5.7.1) associated with a formal parameter of class signal
shall be a name denoting a signal. The actual designator associated with a formal of class variable shall be a 
name denoting a variable. The actual designator associated with a formal of class constant shall be an 
expression. The actual designator associated with a formal of class file shall be a name denoting a file.

NOTE—Attributes of an actual are never passed into a subprogram. References to an attribute of a formal parameter are 
legal only if that formal has such an attribute. Such references retrieve the value of the attribute associated with the 
formal.

4.2.2.2 Constant and variable parameters

For parameters of class constant or variable, only the values of the actual or formal are transferred into or 
out of the subprogram call. The manner of such transfers, and the accompanying access privileges that are 
granted for constant and variable parameters, are described in this subclause.

For a nonforeign subprogram having a parameter of a scalar type or an access type, or for a subprogram 
decorated with the 'FOREIGN attribute defined in package STANDARD for which the attribute value is of 
the form described in 20.2.4, the parameter is passed by copy. At the start of each call, if the mode is in or 
inout, the value of the actual parameter is copied into the associated formal parameter; it is an error if, after 
applying any conversion function or type conversion present in the actual part of the applicable association 
element (see 6.5.7.1), the value of the actual parameter does not belong to the subtype denoted by the 
subtype indication of the formal. After completion of the subprogram body, if the mode is inout or out and 
the associated actual parameter is not forced, the value of the formal parameter is copied back into the 
associated actual parameter; it is similarly an error if, after applying any conversion function or type 
conversion present in the formal part of the applicable association element, the value of the formal 
parameter does not belong to the subtype denoted by the subtype indication of the actual.

For a nonforeign subprogram having a parameter whose type is an array or record, an implementation may 
pass parameter values by copy, as for scalar types. In that case, after completion of the subprogram body, if 
the mode is inout or out, the value of each subelement of the formal parameter is only copied back to the 
corresponding subelement of the associated actual parameter if the subelement of the associated actual 
parameter is not forced. If a parameter of mode out is passed by copy, then the range of each index position 
of the actual parameter is copied in, and likewise for its subelements or slices. Alternatively, an 
implementation may achieve these effects by reference; that is, by arranging that every use of the formal 
parameter (to read or update its value) be treated as a use of the associated actual parameter throughout the 
execution of the subprogram call. The language does not define which of these two mechanisms is to be 
adopted for parameter passing, nor whether different calls to the same subprogram are to use the same 
mechanism. The execution of a subprogram is erroneous if its effect depends on which mechanism is 
selected by the implementation.

For a subprogram having a parameter whose type is a protected type, the parameter is passed by reference. 
It is an error if the mode of the parameter is other than inout.

For a formal parameter of a composite subtype, the index ranges of the formal, if it is an array, and of any 
array subelements, are determined as specified in 5.3.2.2. For a formal parameter of mode in or inout, it is 
an error if the value of the associated actual parameter (after application of any conversion function or type 
conversion present in the actual part) does not contain a matching subelement for each subelement of the 
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formal. It is also an error if the value of each subelement of the actual (after applying any conversion 
function or type conversion present in the actual part) does not belong to the subtype of the corresponding 
subelement of the formal. If the formal parameter is of mode out or inout, it is also an error if, at the end of 
the subprogram call, the value of each subelement of the formal (after applying any conversion function or 
type conversion present in the formal part) does not belong to the subtype of the corresponding subelement 
of the actual.

NOTE 1—For parameters of array and record types, the parameter passing rules imply that if no actual parameter of 
such a type is accessible by more than one path, then the effect of a subprogram call is the same whether or not the 
implementation uses copying for parameter passing. If, however, there are multiple access paths to such a parameter (for 
example, if another formal parameter is associated with the same actual parameter), then the value of the formal is 
undefined after updating the actual other than by updating the formal. A description using such an undefined value is 
erroneous.

NOTE 2—The value of an actual associated with a formal variable parameter of mode out is not copied into the formal 
parameter. Rather, the formal parameter is initialized based on its declared type, regardless of whether the 
implementation chooses to pass the parameter by copy or by reference. When a formal variable parameter of mode out is 
read, the current value of the formal parameter is read.

4.2.2.3 Signal parameters

For a formal parameter of class signal, references to the signal, the driver of the signal, or both, are passed 
into the subprogram call.

For a signal parameter of mode in or inout, the actual signal is associated with the corresponding formal 
signal parameter at the start of each call. Thereafter, during the execution of the subprogram body, a 
reference to the formal signal parameter within an expression is equivalent to a reference to the actual signal.

It is an error if signal-valued attributes 'STABLE, 'QUIET, 'TRANSACTION, and 'DELAYED of formal 
signal parameters of any mode are read within a subprogram.

A process statement contains a driver for each actual signal associated with a formal signal parameter of 
mode out or inout in a subprogram call. Similarly, a subprogram contains a driver for each formal signal 
parameter of mode out or inout declared in its subprogram specification.

For a signal parameter of mode inout or out, the driver of an actual signal is associated with the 
corresponding driver of the formal signal parameter at the start of each call. Thereafter, during the execution 
of the subprogram body, an assignment to the driver of a formal signal parameter is equivalent to an 
assignment to the driver of the actual signal.

If an actual signal is associated with a signal parameter of any mode, the actual shall be denoted by a static 
signal name. It is an error if a conversion function or type conversion appears in either the formal part or the 
actual part of an association element that associates an actual signal with a formal signal parameter.

If an actual signal is associated with a signal parameter of mode in or inout, and if the type of the formal is a 
scalar type, then it is an error if the subtype of the actual is not compatible with the subtype of the formal. 
Similarly, if an actual signal is associated with a signal parameter of mode out or inout, and if the type of the 
actual is a scalar type, then it is an error if the subtype of the formal is not compatible with the subtype of the 
actual.

For a formal parameter of a composite subtype, the index ranges of the formal, if it is an array, and of any 
array subelements, are determined as specified in 5.3.2.2. It is an error if the actual signal does not contain a 
matching subelement for each subelement of the formal. It is also an error if the mode of the formal is in or 
inout and if the value of each scalar subelement of the actual does not belong to the subtype of the 
corresponding subelement of the formal.
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A formal signal parameter is a guarded signal if and only if it is associated with an actual signal that is a 
guarded signal. It is an error if the declaration of a formal signal parameter includes the reserved word bus
(see 6.5.2).

NOTE—It is a consequence of the preceding rules that a procedure with an out or inout signal parameter called by a 
process does not have to complete in order for any assignments to that signal parameter within the procedure to take 
effect. Assignments to the driver of a formal signal parameter are equivalent to assignments directly to the actual driver 
contained in the process calling the procedure.

4.2.2.4 File parameters

For parameters of class file, references to the actual file are passed into the subprogram. No particular 
parameter-passing mechanism is defined by the language, but a reference to the formal parameter shall be 
equivalent to a reference to the actual parameter. It is an error if an association element associates an actual 
with a formal parameter of a file type and that association element contains a conversion function or type 
conversion. It is also an error if a formal of a file type is associated with an actual that is not of a file type.

At the beginning of a given subprogram call, a file parameter is open (see 5.5.2) if and only if the actual file 
object associated with the given parameter in a given subprogram call is also open. Similarly, at the 
beginning of a given subprogram call, both the access mode of and external file associated with (see 5.5.2) 
an open file parameter are the same as, respectively, the access mode of and the external file associated with 
the actual file object associated with the given parameter in the subprogram call.

At the completion of the execution of a given subprogram call, the actual file object associated with a given 
file parameter is open if and only if the formal parameter is also open. Similarly, at the completion of the 
execution of a given subprogram call, the access mode of and the external file associated with an open actual 
file object associated with a given file parameter are the same as, respectively, the access mode of and the 
external file associated with the associated formal parameter.

4.3 Subprogram bodies

A subprogram body specifies the execution of a subprogram.

subprogram_body ::=
      subprogram_specification is
            subprogram_declarative_part
      begin
            subprogram_statement_part
      end [ subprogram_kind ] [ designator ] ;

subprogram_declarative_part ::=
      { subprogram_declarative_item }

subprogram_declarative_item ::=
        subprogram_declaration
      | subprogram_body
      | subprogram_instantiation_declaration
      | package_declaration
      | package_body
      | package_instantiation_declaration
      | type_declaration
      | subtype_declaration
      | constant_declaration
      | variable_declaration
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      | file_declaration
      | alias_declaration
      | attribute_declaration
      | attribute_specification
      | use_clause
      | group_template_declaration
      | group_declaration

subprogram_statement_part ::=
      { sequential_statement }

subprogram_kind ::=  procedure | function

The declaration of a subprogram is optional. In the absence of such a declaration, the subprogram 
specification of the subprogram body acts as the declaration. For each subprogram declaration, there shall be 
a corresponding body. If both a declaration and a body are given, the subprogram specification of the body 
shall lexically conform (see 4.10) to the subprogram specification of the declaration. Furthermore, both the 
declaration and the body shall occur immediately within the same declarative region (see 12.1).

If a subprogram kind appears at the end of a subprogram body, it shall repeat the reserved word given in the 
subprogram specification. If a designator appears at the end of a subprogram body, it shall repeat the 
designator of the subprogram.

It is an error if a variable declaration in a subprogram declarative part declares a shared variable. (See 
6.4.2.4.)

A foreign subprogram is one that is decorated with the attribute 'FOREIGN, defined in package 
STANDARD (see 16.3). The STRING value of the attribute may specify implementation-dependent 
information about the foreign subprogram. Foreign subprograms may have non-VHDL implementations. An 
implementation may place restrictions on the appearance of a generic list and a generic map aspect in the 
declaration of a foreign subprogram. An implementation may also place restrictions on the allowable modes, 
classes, and types of the formal parameters to a foreign subprogram; such restrictions may include 
restrictions on the number and allowable order of the parameters.

Excepting foreign subprograms, the algorithm performed by a subprogram is defined by the sequence of 
statements that appears in the subprogram statement part. For a foreign subprogram, the algorithm 
performed is implementation defined.

The execution of a subprogram body, other than an uninstantiated subprogram body, is invoked by a 
subprogram call. For this execution, after establishing the association between the formal and actual 
parameters, the sequence of statements of the body is executed if the subprogram is not a foreign 
subprogram; otherwise, an implementation-defined action occurs. Upon completion of the body or 
implementation-dependent action, if exclusive access to an object of a protected type was granted during 
elaboration of the declaration of the subprogram (see 14.6), the exclusive access is rescinded. Then, return is 
made to the caller (and any necessary copying back of formal to actual parameters occurs).

A process or a subprogram is said to be a parent of a given subprogram S if that process or subprogram 
contains a procedure call or function call for S or for a parent of S. An instantiated subprogram is a parent of 
a given subprogram S if the uninstantiated subprogram of which the instantiated subprogram is an instance 
is a parent of S.

An explicit signal is a signal other than an implicit signal GUARD and other than one of the implicit signals 
defined by the predefined attributes 'DELAYED, 'STABLE, 'QUIET, or 'TRANSACTION. The explicit 
ancestor of an implicit signal is found as follows. The implicit signal GUARD has no explicit ancestor. An 
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explicit ancestor of an implicit signal defined by the predefined attributes 'DELAYED, 'STABLE, 'QUIET, 
or 'TRANSACTION is the signal found by recursively examining the prefix of the attribute. If the prefix 
denotes an explicit signal, a slice, or a member (see Clause 5) of an explicit signal, then that is the explicit 
ancestor of the implicit signal. Otherwise, if the prefix is one of the implicit signals defined by the 
predefined attributes 'DELAYED, 'STABLE, 'QUIET, or 'TRANSACTION, this rule is recursively applied. 
If the prefix is an implicit signal GUARD, then the signal has no explicit ancestor.

If a pure function subprogram is a parent of a given procedure and if that procedure contains a reference to 
an explicitly declared signal or variable object, or a slice or subelement (or slice thereof) of an explicit 
signal, then that object shall be declared within the declarative region formed by the function (see 12.1) or 
within the declarative region formed by the procedure; this rule also holds for the explicit ancestor, if any, of 
an implicit signal and also for the implicit signal GUARD. If a pure function is the parent of a given 
procedure, then that procedure shall not contain a reference to an explicitly declared file object (see 6.4.2.5) 
or to a shared variable (see 6.4.2.4).

Similarly, if a pure function subprogram contains a reference to an explicitly declared signal or variable 
object, or a slice or subelement (or slice thereof) of an explicit signal, then that object shall be declared 
within the declarative region formed by the function; this rule also holds for the explicit ancestor, if any, of 
an implicit signal and also for the implicit signal GUARD. A pure function shall not contain a reference to 
an explicitly declared file object.

A pure function shall not be the parent of an impure function.

The rules of the preceding three paragraphs apply to all pure function subprograms. For pure functions that 
are not foreign subprograms, violations of any of these rules are errors. However, since implementations 
cannot in general check that such rules hold for pure function subprograms that are foreign subprograms, a 
description calling pure foreign function subprograms not adhering to these rules is erroneous.

Example:

— The declaration of a foreign function subprogram:

package P is
   function F return INTEGER;
   attribute FOREIGN of F: function is
      "implementation-dependent information";

end package P;
NOTE 1—It follows from the visibility rules that a subprogram declaration shall be given if a call of the subprogram 
occurs textually before the subprogram body, and that such a declaration shall occur before the call itself.

NOTE 2—The preceding rules concerning pure function subprograms, together with the fact that function parameters 
shall be of mode in, imply that a pure function has no effect other than the computation of the returned value. Thus, a 
pure function invoked explicitly as part of the elaboration of a declaration, or one invoked implicitly as part of the 
simulation cycle, is guaranteed to have no effect on other objects in the description.

NOTE 3—VHDL does not define the parameter-passing mechanisms for foreign subprograms.

NOTE 4—The declarative parts and statement parts of subprograms decorated with the 'FOREIGN attribute are subject 
to special elaboration rules. See 14.4.1 and 14.6.

NOTE 5—A pure function subprogram shall not reference a shared variable. This prohibition exists because a shared 
variable cannot be declared in a subprogram declarative part and a pure function cannot reference any variable declared 
outside of its declarative region.

NOTE 6—A subprogram containing a wait statement shall not have a parent that is a subprogram declared within either 
a protected type declaration or a protected type body.
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4.4 Subprogram instantiation declarations

A subprogram instantiation declaration defines an instance of an uninstantiated subprogram. The instance is 
called an instantiated subprogram.

subprogram_instantiation_declaration ::=
      subprogram_kind designator is new uninstantiated_subprogram_name [ signature ]
            [ generic_map_aspect ] ;

The uninstantiated subprogram name shall denote an uninstantiated subprogram declared in a subprogram 
declaration. The signature, if present, shall match the parameter and result type profile of exactly one 
subprogram denoted by the name, in which case the subprogram instantiation declaration defines an instance 
of the uninstantiated subprogram whose parameter and result type profile is matched by the signature. The 
subprogram kind shall repeat the reserved word used in the declaration of the uninstantiated subprogram. 
The generic map aspect, if present, optionally associates a single actual with each formal generic (or 
member thereof) in the corresponding subprogram declaration. Each formal generic (or member thereof) 
shall be associated at most once. The generic map aspect is described in 6.5.7.2.

The subprogram instantiation declaration is equivalent to a subprogram declaration and a subprogram body 
that jointly define a generic-mapped subprogram. The designator of the generic-mapped subprogram 
declaration and subprogram body is the designator of the subprogram instantiation declaration. The generic-
mapped subprogram declaration and subprogram body have the generic list of the uninstantiated 
subprogram declaration, the generic map aspect of the subprogram instantiation declaration, and the 
parameter list and return type (if appropriate) of the uninstantiated subprogram declaration. The generic-
mapped subprogram body has the declarations and statements of the uninstantiated subprogram body. The 
meaning of any identifier appearing anywhere in the generic-mapped subprogram declaration or subprogram 
body is that associated with the corresponding occurrence of the identifier in the subprogram instantiation 
declaration, the uninstantiated subprogram declaration, or the uninstantiated subprogram body, respectively, 
except that an identifier that denotes the uninstantiated subprogram denotes, instead, the generic-mapped 
subprogram.

If the subprogram instantiation declaration occurs immediately within an enclosing package declaration, the 
generic-mapped subprogram body occurs at the end of the package body corresponding to the enclosing 
package declaration. If there is no such body, then there is implicitly a package body corresponding to the 
enclosing package declaration, and that implicit body contains the generic-mapped subprogram body. If the 
subprogram instantiation declaration occurs immediately within an enclosing protected type declaration, the 
generic-mapped subprogram body occurs at the end of the protected type body corresponding to the 
enclosing protected type declaration.

NOTE—If two uninstantiated subprograms have the same name and have parameter and result type profiles that include 
formal generic types of the uninstantiated subprograms, in addition to other types, a signature can be used to distinguish 
between the uninstantiated subprograms, since the formal generic types are made visible by selection in the signatures.

4.5 Subprogram overloading

4.5.1 General

Two formal parameter lists are said to have the same parameter type profile if and only if they have the same 
number of parameters, and if at each parameter position the corresponding parameters have the same base 
type. Two subprograms are said to have the same parameter and result type profile if and only if both have 
the same parameter type profile, and if either both are functions with the same result base type or neither of 
the two is a function.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



- 27 - IEC 61691-1-1:2011(E)�
IEEE Std 1076-2008

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

A given subprogram designator can be used to designate multiple subprograms. The subprogram designator 
is then said to be overloaded; the designated subprograms are also said to be overloaded and to overload 
each other. If two subprograms overload each other, one of them can hide the other only if both subprograms 
have the same parameter and result type profile.

A call to an overloaded subprogram is ambiguous (and therefore is an error) if the name of the subprogram, 
the number of parameter associations, the types and order of the actual parameters, the names of the formal 
parameters (if named associations are used), and the result type (for functions) are not sufficient to identify 
exactly one (overloaded) subprogram.

Similarly, a reference to an overloaded resolution function name in a subtype indication is ambiguous (and 
is therefore an error) if the name of the function, the number of formal parameters, the result type, and the 
relationships between the result type and the types of the formal parameters (as defined in 4.6) are not 
sufficient to identify exactly one (overloaded) subprogram specification.

Examples:
— Declarations of overloaded subprograms:

procedure Dump (F: inout Text; Value: Integer);
procedure Dump (F: inout Text; Value: String);
procedure Check (Setup: Time; signal D: Data; signal C: Clock);
procedure Check (Hold: Time; signal C: Clock; signal D: Data);

— Calls to overloaded subprograms:
Dump (Sys_Output, 12);
Dump (Sys_Error, "Actual output does not match expected output");

Check (Setup=>10 ns, D=>DataBus, C=>Clk1);
Check (Hold=>5 ns, D=>DataBus, C=>Clk2);
Check (15 ns, DataBus, Clk) ;
   --  Ambiguous if the base type of DataBus is the same type
   --  as the base type of Clk.

NOTE 1—The notion of parameter and result type profile does not include parameter names, parameter classes, 
parameter modes, parameter subtypes, or default expressions or their presence or absence.

NOTE 2—Ambiguities may (but need not) arise when actual parameters of the call of an overloaded subprogram are 
themselves overloaded function calls, literals, or aggregates. Ambiguities may also (but need not) arise when several 
overloaded subprograms belonging to different packages are visible. These ambiguities can usually be solved in two 
ways: qualified expressions can be used for some or all actual parameters and for the result, if any; or the name of the 
subprogram can be expressed more explicitly as an expanded name (see 8.3). Further, ambiguities may (but need not) 
arise when the declarations of overloaded subprograms in an uninstantiated declaration have parameter and result type 
profiles that involve different formal generic types of the uninstantiated declaration. If the declaration is instantiated with 
the same actual type associated with the formals, the resulting overloaded subprograms in the instance may have the 
same parameter and result type profile. Such ambiguities cannot be solved.

4.5.2 Operator overloading

The declaration of a function whose designator is an operator symbol is used to overload an operator. The 
sequence of characters of the operator symbol shall be one of the operators in the operator classes defined in 
9.2.

The subprogram specification of a unary operator shall have a single parameter, unless the subprogram 
specification is a method (see 5.6.2) of a protected type. In this latter case, the subprogram specification 
shall have no parameters. The subprogram specification of a binary operator shall have two parameters, 
unless the subprogram specification is a method of a protected type, in which case, the subprogram 
specification shall have a single parameter. If the subprogram specification of a binary operator has two 
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parameters, for each use of this operator, the first parameter is associated with the left operand, and the 
second parameter is associated with the right operand.

For each of the operators “+”, “–”, “and”, “or”, “xor”, “nand”, “nor” and “xnor”, overloading is allowed 
both as a unary operator and as a binary operator.

NOTE 1—Overloading of the equality operator does not affect the selection of choices in a case statement in a selected 
signal assignment statement, nor does it affect the propagation of signal values.

NOTE 2—A user-defined operator that has the same designator as a short-circuit operator (i.e., a user-defined operator 
that overloads the short-circuit operator) is not invoked in a short-circuit manner. Specifically, calls to the user-defined 
operator always evaluate both arguments prior to the execution of the function.

NOTE 3—Functions that overload operator symbols may also be called using function call notation rather than operator 
notation. This statement is also true of the predefined operators themselves.

Examples:

type MVL is ('0', '1', 'Z', 'X');
type MVL_Vector is array (Natural range <>) of MVL;
function "and" (Left, Right: MVL) return MVL;
function "or" (Left, Right: MVL) return MVL;
function "not" (Value: MVL) return MVL;
function "xor" (Right: MVL_Vector) return MVL;

signal Q,R,S,T: MVL;
signal V: MVL_Vector(0 to 3);

Q <= 'X' or '1';
R <= "or" ('0','Z');
S <= (Q and R) or not S;
T <= xor V;

4.5.3 Signatures

A signature distinguishes between overloaded subprograms and overloaded enumeration literals based on 
their parameter and result type profiles. A signature can be used in a subprogram instantiation declaration, 
attribute name, entity designator, or alias declaration.

signature ::=  [ [ type_mark { , type_mark }  ] [ return type_mark ] ]

(Note that the initial and terminal brackets are part of the syntax of signatures and do not indicate that the 
entire right-hand side of the production is optional.) A signature is said to match the parameter and the result 
type profile of a given subprogram if, and only if, all of the following conditions hold:

— The number of type marks prior to the reserved word return, if any, matches the number of formal 
parameters of the subprogram.

— At each parameter position, the base type denoted by the type mark of the signature is the same as the 
base type of the corresponding formal parameter of the subprogram.

— If the reserved word return is present, the subprogram is a function and the base type of the type 
mark following the reserved word in the signature is the same as the base type of the return type of 
the function, or the reserved word return is absent and the subprogram is a procedure.

Similarly, a signature is said to match the parameter and result type profile of a given enumeration literal if 
the signature matches the parameter and result type profile of the subprogram equivalent to the enumeration 
literal defined in 5.2.2.1.
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Example:

attribute BuiltIn of "or" [MVL, MVL return MVL]: function is TRUE;
   --  Because of the presence of the signature, this attribute
   --  specification decorates only the "or" function defined in 4.5.2.

attribute Mapping of JMP [return OpCode] :literal is "001";

4.6 Resolution functions

A resolution function is a function that defines how the values of multiple sources of a given signal are to be 
resolved into a single value for that signal. Resolution functions are associated with signals that require 
resolution by including the name of the resolution function in the declaration of the signal or in the 
declaration of the subtype of the signal. A signal with an associated resolution function is called a resolved 
signal (see 6.4.2.3).

A resolution function shall be a pure function other than an uninstantiated function (see 4.2.1); moreover, it 
shall have a single input parameter of class constant that is a one-dimensional, unconstrained or partially 
constrained array with an undefined index range and whose element type is that of the associated subtype or 
subelement subtype in the subtype indication in which the name of the resolution function appears. The 
resolution function name shall not be an attribute name (see 8.6). The type of the return value of the function 
shall also be that of the associated subtype or subelement subtype in the subtype indication in which the 
name of the resolution function appears. Errors occur at the place of the subtype indication containing the 
name of the resolution function if any of these checks fail (see 6.3).

The resolution function associated with a resolved signal determines the resolved value of the signal as a 
function of the collection of inputs from its multiple sources. If a resolved signal is of a composite type, and 
if subelements of that type also have associated resolution functions, such resolution functions have no 
effect on the process of determining the resolved value of the signal. It is an error if a resolved signal has 
more connected sources than the number of elements in the index type of the unconstrained array type used 
to define the parameter of the corresponding resolution function.

Resolution functions are implicitly invoked during each simulation cycle in which corresponding resolved 
signals are active (see 14.7.3.1). Each time a resolution function is invoked, it is passed an array value, each 
element of which is determined by a corresponding source of the resolved signal, but excluding those 
sources that are drivers whose values are determined by null transactions (see 10.5.2.2). Such drivers are 
said to be off. For certain invocations (specifically, those involving the resolution of sources of a signal 
declared with the signal kind bus), a resolution function may thus be invoked with an input parameter that is 
a null array; this occurs when all sources of the bus are drivers, and they are all off. In such a case, the 
resolution function returns a value representing the value of the bus when no source is driving it.

Example:

function WIRED_OR (Inputs: BIT_VECTOR) return BIT is
   constant FloatValue: BIT := '0';
begin
   if Inputs'Length = 0 then
      --  This is a bus whose drivers are all off.
      return FloatValue;
   else
      for I in Inputs'Range loop
         if Inputs(I) = '1' then
            return '1';
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         end if;
      end loop;
      return '0';
   end if;
end function WIRED_OR;

4.7 Package declarations

A package declaration defines the interface to a package. The scope of a declaration within a package can be 
extended to other design units or to other parts of the design unit containing the package declaration.

package_declaration ::=
      package identifier is
            package_header
            package_declarative_part
      end [ package ] [ package_simple_name ] ;

package_header ::=
      [ generic_clause
      [ generic_map_aspect ; ] ]

package_declarative_part ::=
      { package_declarative_item }

package_declarative_item ::=
        subprogram_declaration
      | subprogram_instantiation_declaration
      | package_declaration
      | package_instantiation_declaration
      | type_declaration
      | subtype_declaration
      | constant_declaration
      | signal_declaration
      | variable_declaration
      | file_declaration
      | alias_declaration
      | component_declaration
      | attribute_declaration
      | attribute_specification
      | disconnection_specification
      | use_clause
      | group_template_declaration
      | group_declaration
      | PSL_Property_Declaration
      | PSL_Sequence_Declaration

If a simple name appears at the end of the package declaration, it shall repeat the identifier of the package 
declaration.

If the package header is empty, the package declared by a package declaration is called a simple package. If 
the package header contains a generic clause and no generic map aspect, the package is called an 
uninstantiated package. If the package header contains both a generic clause and a generic map aspect, the 
package is called a generic-mapped package. A package declared with a generic clause in which every 
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generic declaration has a default, and with no generic map aspect, is considered to be an uninstantiated 
package, not a generic-mapped package with default associations for all of the generic declarations.

If a package declarative item is a full type declaration whose type definition is a protected type definition, 
then that protected type definition shall not be a protected type body.

Items declared immediately within a simple or a generic-mapped package declaration become visible by 
selection within a given design unit wherever the name of that package is visible in the given unit. Such 
items may also be made directly visible by an appropriate use clause (see 12.4). Items declared immediately 
within an uninstantiated package declaration cannot be made visible outside of the package.

For a package declaration that appears in a subprogram body, a process statement, or a protected type body, 
it is an error if a variable declaration in the package declarative part of the package declaration declares a 
shared variable. Moreover, it is an error if a signal declaration, a disconnection specification, or a PSL 
declaration appears as a package declarative item of such a package declaration.

NOTE—Not all packages will have a package body. In particular, a package body is unnecessary if no subprograms, 
deferred constants, or protected type definitions are declared in the package declaration.

Examples:
— A package declaration that needs no package body:

package TimeConstants is
   constant tPLH: Time := 10 ns;
   constant tPHL: Time := 12 ns;
   constant tPLZ: Time := 7 ns;
   constant tPZL: Time := 8 ns;
   constant tPHZ: Time := 8 ns;
   constant tPZH: Time := 9 ns;
end TimeConstants;

— A package declaration that needs a package body:
package TriState is
   type Tri is ('0', '1', 'Z', 'E');
   function BitVal (Value: Tri) return Bit;
   function TriVal (Value: Bit) return Tri;
   type TriVector is array (Natural range <>) of Tri;
   function Resolve (Sources: TriVector) return Tri;
end package TriState;

4.8 Package bodies

A package body defines the bodies of subprograms and the values of deferred constants declared in the 
interface to the package.

package_body ::=
      package body package_simple_name is
            package_body_declarative_part
      end [ package body ] [ package_simple_name ] ;

package_body_declarative_part ::=
      { package_body_declarative_item }

package_body_declarative_item ::=
        subprogram_declaration
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      | subprogram_body
      | subprogram_instantiation_declaration
      | package_declaration
      | package_body
      | package_instantiation_declaration
      | type_declaration
      | subtype_declaration
      | constant_declaration
      | variable_declaration
      | file_declaration
      | alias_declaration
      | attribute_declaration
      | attribute_specification
      | use_clause
      | group_template_declaration
      | group_declaration

The simple name at the start of a package body shall repeat the package identifier. If a simple name appears 
at the end of the package body, it shall be the same as the identifier in the package declaration.

A package body that is not a library unit shall appear immediately within the same declarative region as the 
corresponding package declaration and textually subsequent to that package declaration.

For a package body that appears in a subprogram body, a process statement or a protected type body, it is an 
error if a variable declaration in the package body declarative part of the package body declares a shared 
variable.

In addition to subprogram body and constant declarative items, a package body may contain certain other 
declarative items to facilitate the definition of the bodies of subprograms declared in the interface. Items 
declared in the body of a package cannot be made visible outside of the package body.

If a given package declaration contains a deferred constant declaration (see 6.4.2.2), then a constant 
declaration with the same identifier shall appear as a declarative item in the corresponding package body. 
This object declaration is called the full declaration of the deferred constant. The subtype indication given in 
the full declaration shall lexically conform to that given in the deferred constant declaration.

Within a package declaration that contains the declaration of a deferred constant, and within the body of that 
package (before the end of the corresponding full declaration), the use of a name that denotes the deferred 
constant is only allowed in the default expression for a local generic, local port, or formal parameter. The 
result of evaluating an expression that references a deferred constant before the elaboration of the 
corresponding full declaration is not defined by the language.

Example:

package body TriState is

   function BitVal (Value: Tri) return Bit is
      constant Bits : Bit_Vector := "0100";
   begin
      return Bits(Tri'Pos(Value));
   end;

   function TriVal (Value: Bit) return Tri is
   begin
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      return Tri'Val(Bit'Pos(Value));
   end;

   function Resolve (Sources: TriVector) return Tri is
      variable V: Tri := 'Z';
   begin
      for i in Sources'Range loop
         if Sources(i) /= 'Z' then
            if V = 'Z' then
               V := Sources(i);
            else
               return 'E';
            end if;
         end if;
      end loop;
      return V;
   end;

end package body TriState;

4.9 Package instantiation declarations

A package instantiation declaration defines an instance of an uninstantiated package. The instance is called 
an instantiated package.

package_instantiation_declaration ::=
      package identifier is new uninstantiated_package_name
            [ generic_map_aspect ] ;

The uninstantiated package name shall denote an uninstantiated package declared in a package declaration. 
The generic map aspect, if present, optionally associates a single actual with each formal generic (or 
member thereof) in the corresponding package declaration. Each formal generic (or member thereof) shall 
be associated at most once. The generic map aspect is described in 6.5.7.2.

The package instantiation declaration is equivalent to declaration of a generic-mapped package, consisting 
of a package declaration and possibly a corresponding package body. The simple name of the generic-
mapped package declaration is the identifier of the package instantiation declaration. The generic-mapped 
package declaration has the generic clause of the uninstantiated package declaration, the generic map aspect 
of the package instantiation declaration, and the declarations of the uninstantiated package declaration. The 
package body corresponding to the generic-mapped package is present if the uninstantiated package has a 
package body. In that case, the simple name of the generic-mapped package body is the identifier of the 
package instantiation declaration, and the declarations of the generic-mapped package body are the 
declarations of the uninstantiated package body. The meaning of any identifier appearing anywhere in the 
generic-mapped package declaration or package body is that associated with the corresponding occurrence 
of the identifier in the package instantiation declaration, the uninstantiated package declaration, or the 
uninstantiated package body, respectively, except that an identifier that denotes the uninstantiated package 
denotes, instead, the generic-mapped package.

If the package instantiation declaration occurs immediately within an enclosing package declaration and the 
uninstantiated package has a package body, the generic-mapped package body occurs at the end of the 
package body corresponding to the enclosing package declaration. If there is no such body, then there is 
implicitly a package body corresponding to the enclosing package declaration, and that implicit body 
contains the generic-mapped package body.
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4.10 Conformance rules

Whenever the language rules either require or allow the specification of a given subprogram to be provided 
in more than one place, the following variations are allowed at each place:

— A numeric literal can be replaced by a different numeric literal if and only if both have the same 
value.

— A simple name can be replaced by an expanded name in which this simple name is the suffix if, and 
only if, at both places the meaning of the simple name is given by the same declaration.

Two subprogram specifications are said to lexically conform if, apart from comments and the preceding 
allowed variations, both specifications are formed by the same sequence of lexical elements and if 
corresponding lexical elements are given the same meaning by the visibility rules.

Lexical conformance is likewise defined for subtype indications in deferred constant declarations.

Two subprogram declarations are said to have conforming profiles if and only if both are procedures or both 
are functions, the parameter and result type profiles of the subprograms are the same and, at each parameter 
position, the corresponding parameters have the same class and mode.

NOTE 1—A simple name can be replaced by an expanded name even if the simple name is itself the prefix of a selected 
name. For example, Q.R can be replaced by P.Q.R if Q is declared immediately within P.

NOTE 2—The subprogram specification of an impure function is never lexically conformant to a subprogram 
specification of a pure function.

NOTE 3—The following specifications do not lexically conform since they are not formed by the same sequence of 
lexical elements:

procedure P (X,Y: INTEGER)
procedure P (X: INTEGER; Y: INTEGER)
procedure P (X,Y: in INTEGER)
NOTE 4—Conformance of profiles is required for formal and actual generic subprograms (see 6.5.4).
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5. Types

5.1 General

This clause describes the various categories of types that are provided by the language as well as those 
specific types that are predefined. The declarations of all predefined types are contained in package 
STANDARD, the declaration of which appears in Clause 16.

A type is characterized by a set of values and a set of operations. The set of operations of a type includes the 
explicitly declared subprograms that have a parameter or result of the type. The remaining operations of a 
type are the basic operations and the predefined operations (see 5.2.6, 5.3.2.4, 5.4.3, and 5.5.2). These 
operations are each implicitly declared for a given type declaration immediately after the type declaration 
and before the next explicit declaration, if any.

A basic operation is an operation that is inherent in one of the following:
— An assignment (in assignment statements and initializations)
— An allocator
— A selected name, an indexed name, or a slice name
— A qualification (in a qualified expression), an explicit type conversion, a formal or actual part in the 

form of a type conversion, or an implicit type conversion of a value of type universal_integer or 
universal_real to the corresponding value of another numeric type

— A numeric literal (for a universal type), the literal null (for an access type), a string literal, a bit string 
literal, an aggregate, or a predefined attribute

There are five classes of types. Scalar types are integer types, floating-point types, physical types, and types 
defined by an enumeration of their values; values of these types have no elements. Composite types are array 
and record types; values of these types consist of element values. Access types provide access to objects of a 
given type. File types provide access to objects that contain a sequence of values of a given type. Protected 
types provide atomic and exclusive access to variables accessible to multiple processes.

The set of possible values for an object of a given type can be subjected to a condition that is called a 
constraint (the case where the constraint imposes no restriction is also included); a value is said to satisfy a 
constraint if it satisfies the corresponding condition. A subtype is a type together with a constraint. A value is 
said to belong to a subtype of a given type if it belongs to the type and satisfies the constraint; the given type 
is called the base type of the subtype. A type is a subtype of itself; such a subtype is said to be unconstrained
(it corresponds to a condition that imposes no restriction). The base type of a type is the type itself.

A composite subtype is said to be unconstrained if:
— It is an array subtype with no index constraint and the element subtype either is not a composite 

subtype or is an unconstrained composite type, or
— It is a record subtype with at least one element of a composite subtype and each element that is of a 

composite subtype is unconstrained.

A composite subtype is said to be fully constrained if:
— It is an array subtype with an index constraint and the element subtype either is not a composite 

subtype or is a fully constrained composite type, or
— It is a record subtype and each element subtype either is not a composite subtype or is a fully 

constrained composite subtype.

A composite subtype is said to be partially constrained if it is neither unconstrained nor fully constrained.
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The set of operations defined for a subtype of a given type includes the operations defined for the type; 
however, the assignment operation to an object having a given subtype only assigns values that belong to the 
subtype. Additional operations, such as qualification (in a qualified expression) are implicitly defined by a 
subtype declaration.

The term subelement is used in this standard in place of the term element to indicate either an element, or an 
element of another element or subelement. Where other subelements are excluded, the term element is used 
instead.

A given type shall not have a subelement whose type is the given type itself.

A member of an object is one of the following:
— A slice of the object
— A subelement of the object
— A slice of a subelement of the object

The name of a class of types is used in this standard as a qualifier for objects and values that have a type of 
the class considered. For example, the term array object is used for an object whose type is an array type; 
similarly, the term access value is used for a value of an access type.

NOTE 1—The set of values of a subtype is a subset of the values of the base type. This subset need not be a proper 
subset.

NOTE 2—All composite subelements of an unconstrained type are unconstrained.

5.2 Scalar types

5.2.1 General

Scalar types consist of enumeration types, integer types, physical types, and floating-point types. 
Enumeration types and integer types are called discrete types. Integer types, floating-point types, and 
physical types are called numeric types. All scalar types are ordered; that is, all relational operators are 
predefined for their values. Each value of a discrete or physical type has a position number that is an integer 
value.

scalar_type_definition ::=
        enumeration_type_definition
      | integer_type_definition
      | floating_type_definition
      | physical_type_definition

range_constraint ::=  range range

range ::=
        range_attribute_name
      | simple_expression direction simple_expression

direction ::=  to | downto

A range specifies a subset of values of a scalar type. A range is said to be a null range if the specified subset 
is empty.

The range L to R is called an ascending range; if L > R, then the range is a null range. The range L downto
R is called a descending range; if L < R, then the range is a null range. L is called the left bound of the range, 
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and R is called the right bound of the range. The lower bound of a range is the left bound if the range is 
ascending or the right bound if the range is descending. The upper bound of a range is the right bound if the 
range is ascending or the left bound if the range is descending. The value V is said to belong to the range if 
the relations (lower bound <= V) and (V <= upper bound) are both true. The operators >, <, and <= in the 
preceding definitions are the predefined operators of the applicable scalar type.

For values of discrete or physical types, a value V1 is said to be to the left of a value V2 within a given range 
if both V1 and V2 belong to the range and either the range is an ascending range and V2 is the successor of 
V1, or the range is a descending range and V2 is the predecessor of V1. A list of values of a given range is in 
left to right order if each value in the list is to the left of the next value in the list within that range, except for 
the last value in the list.

If a range constraint is used in a subtype indication, the type of the expressions (likewise, of the bounds of a 
range attribute) shall be the same as the base type of the type mark of the subtype indication. A range 
constraint is compatible with a subtype if each bound of the range belongs to the subtype or if the range 
constraint defines a null range. Otherwise, the range constraint is not compatible with the subtype.

A subtype S1 is compatible with a subtype S2 if the range constraint associated with S1 is compatible with 
S2.

The direction of a range constraint is the same as the direction of its range.

NOTE—Indexing and iteration rules use values of discrete types.

5.2.2 Enumeration types

5.2.2.1 General

An enumeration type definition defines an enumeration type.

enumeration_type_definition ::=
      ( enumeration_literal { , enumeration_literal } )

enumeration_literal ::=  identifier | character_literal

The identifiers and character literals listed by an enumeration type definition shall be distinct within the 
enumeration type definition. Each enumeration literal is the declaration of the corresponding enumeration 
literal. For the purpose of determining the parameter and result type profile of an enumeration literal, this 
declaration is equivalent to the declaration of a parameterless function whose designator is the same as the 
enumeration literal and whose result type is the same as the enumeration type; the declaration is, 
nonetheless, a declaration of a literal, not of a function.

An enumeration type is said to be a character type if at least one of its enumeration literals is a character 
literal.

Each enumeration literal yields a different enumeration value. The predefined order relations between 
enumeration values follow the order of corresponding position numbers. The position number of the value 
of the first listed enumeration literal is zero; the position number for each additional enumeration literal is 
one more than that of its predecessor in the list.

If the same identifier or character literal is specified in more than one enumeration type definition, the 
corresponding literals are said to be overloaded. At any place where an overloaded enumeration literal 
occurs in the text of a program, the type of the enumeration literal is determined according to the rules for 
overloaded subprograms (see 4.5).
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Each enumeration type definition defines an ascending range.

Examples:

type MULTI_LEVEL_LOGIC is (LOW, HIGH, RISING, FALLING, AMBIGUOUS);

type BIT is ('0','1');

type SWITCH_LEVEL is ('0','1','X');     --  Overloads '0' and '1'

5.2.2.2 Predefined enumeration types

The predefined enumeration types are CHARACTER, BIT, BOOLEAN, SEVERITY_LEVEL, 
FILE_OPEN_KIND, and FILE_OPEN_STATUS.

The predefined type CHARACTER is a character type whose values are the 256 characters of the ISO/IEC 
8859-1 character set. Each of the 191 graphic characters of this character set is denoted by the corresponding 
character literal.

The declarations of the predefined types CHARACTER, BIT, BOOLEAN, SEVERITY_LEVEL, 
FILE_OPEN_KIND, and FILE_OPEN_STATUS appear in package STANDARD in Clause 16.

NOTE 1—The first 33 nongraphic elements of the predefined type CHARACTER (from NUL through DEL) are the 
ASCII abbreviations for the nonprinting characters in the ASCII set (except for those noted in Clause 16). The ASCII 
names are chosen as ISO/IEC 8859-1:1998 does not assign them abbreviations. The next 32 (C128 through C159) are 
also not assigned abbreviations, so names unique to VHDL are assigned.

NOTE 2—Type BOOLEAN can be used to model either active high or active low logic depending on the particular 
conversion functions chosen to and from type BIT.

5.2.3 Integer types

5.2.3.1 General

An integer type definition defines an integer type whose set of values includes those of the specified range.

integer_type_definition ::=  range_constraint

An integer type definition defines both a type and a subtype of that type. The type is an anonymous type, the 
range of which is selected by the implementation; this range shall be such that it wholly contains the range 
given in the integer type definition. The subtype is a named subtype of this anonymous base type, where the 
name of the subtype is that given by the corresponding type declaration and the range of the subtype is the 
given range.

Each bound of a range constraint that is used in an integer type definition shall be a locally static expression 
of some integer type, but the two bounds need not have the same integer type. (Negative bounds are 
allowed.)

Integer literals are the literals of an anonymous predefined type that is called universal_integer in this 
standard. Other integer types have no literals. However, for each integer type there exists an implicit 
conversion that converts a value of type universal_integer into the corresponding value (if any) of the 
integer type (see 9.3.6).

The position number of an integer value is the corresponding value of the type universal_integer.
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The same arithmetic operators are predefined for all integer types (see 9.2). It is an error if the execution of 
such an operation (in particular, an implicit conversion) cannot deliver the correct result (that is, if the value 
corresponding to the mathematical result is not a value of the integer type).

An implementation may restrict the bounds of the range constraint of integer types other than type 
universal_integer. However, an implementation shall allow the declaration of any integer type whose range 
is wholly contained within the bounds  –2147483647 and +2147483647 inclusive.

Examples:

type TWOS_COMPLEMENT_INTEGER is range -32768 to 32767;

type BYTE_LENGTH_INTEGER is range 0 to 255;

type WORD_INDEX is range 31 downto 0;

subtype HIGH_BIT_LOW is BYTE_LENGTH_INTEGER range 0 to 127;

5.2.3.2 Predefined integer types

The only predefined integer type is the type INTEGER. The range of INTEGER is implementation 
dependent, but it is guaranteed to include the range –2147483647 to +2147483647. It is defined with an 
ascending range.

NOTE—The range of INTEGER in a particular implementation is determinable from the values of its 'LOW and 'HIGH 
attributes.

5.2.4 Physical types

5.2.4.1 General

Values of a physical type represent measurements of some quantity. Any value of a physical type is an 
integral multiple of the primary unit of measurement for that type.

physical_type_definition ::=
      range_constraint
            units
                  primary_unit_declaration
                  { secondary_unit_declaration }
            end units [ physical_type_simple_name ]

primary_unit_declaration ::=  identifier ;

secondary_unit_declaration ::= identifier = physical_literal ;

physical_literal ::=  [ abstract_literal ] unit_name

A physical type definition defines both a type and a subtype of that type. The type is an anonymous type, the 
range of which is selected by the implementation; this range shall be such that it wholly contains the range 
given in the physical type definition. The subtype is a named subtype of this anonymous base type, where 
the name of the subtype is that given by the corresponding type declaration and the range of the subtype is 
the given range.
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Each bound of a range constraint that is used in a physical type definition shall be a locally static expression 
of some integer type, but the two bounds need not have the same integer type. (Negative bounds are 
allowed.)

Each unit declaration (either the primary unit declaration or a secondary unit declaration) defines a unit 
name. Unit names declared in secondary unit declarations shall be directly or indirectly defined in terms of 
integral multiples of the primary unit of the type declaration in which they appear. The position numbers of 
unit names need not lie within the range specified by the range constraint.

If a simple name appears at the end of a physical type declaration, it shall repeat the identifier of the type 
declaration in which the physical type definition is included.

The abstract literal portion (if present) of a physical literal appearing in a secondary unit declaration shall be 
an integer literal.

A physical literal consisting solely of a unit name is equivalent to the integer 1 followed by the unit name.

There is a position number corresponding to each value of a physical type. The position number of the value 
corresponding to a unit name is the number of primary units represented by that unit name. The position 
number of the value corresponding to a physical literal with an abstract literal part is the largest integer that 
is not greater than the product of the value of the abstract literal and the position number of the 
accompanying unit name.

The same arithmetic operators are predefined for all physical types (see 9.2). It is an error if the execution of 
such an operation cannot deliver the correct result (i.e., if the value corresponding to the mathematical result 
is not a value of the physical type).

An implementation may restrict the bounds of the range constraint of a physical type. However, an 
implementation shall allow the declaration of any physical type whose range is wholly contained within the 
bounds –2147483647 and +2147483647 inclusive.

Examples:

type DURATION is range -1E18 to 1E18
      units
         fs;                         --femtosecond
         ps    =   1000 fs;          --picosecond
         ns    =   1000 ps;          --nanosecond
         us    =   1000 ns;          --microsecond
         ms    =   1000 us;          --millisecond
         sec   =   1000 ms;          --second
         min   =   60 sec;           --minute
      end units;

type DISTANCE is range 0 to 1E16
      units
      -- primary unit:
         Å;                          --angstrom

      -- metric lengths:
         nm    =   10 Å;             --nanometer
         um    =   1000 nm;          --micrometer (or micron)
         mm    =   1000 um;          --millimeter
         cm    =   10 mm;            --centimeter
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         m     =   1000 mm;          --meter
         km    =   1000 m;           --kilometer

      -- English lengths:
         mil   =   254000 Å;         --mil
         inch  =   1000 mil;         --inch
         ft    =   12 inch;          --foot
         yd    =   3 ft;             --yard
         fm    =   6 ft;             --fathom
         mi    =   5280 ft;          --mile
         lg    =   3 mi;             --league
      end units DISTANCE;

variable x: distance;
variable y: duration;
variable z: integer;

x := 5 Å + 13 ft - 27 inch;
y := 3 ns + 5 min;
z := ns / ps;
x := z * mi;
y := y/10;
z := 39.34 inch / m;

NOTE 1—The 'POS and 'VAL attributes may be used to convert between abstract values and physical values.

NOTE 2—The value of a physical literal, whose abstract literal is either the integer value zero or the floating-point value 
zero, is the same value (specifically zero primary units) no matter what unit name follows the abstract literal.

5.2.4.2 Predefined physical types

The only predefined physical type is type TIME. The range of TIME is implementation dependent, but it is 
guaranteed to include the range –2147483647 to +2147483647. It is defined with an ascending range. All 
specifications of delays and pulse rejection limits shall be of type TIME. The declaration of type TIME 
appears in package STANDARD in Clause 16.

By default, the primary unit of type TIME (1 fs) is the resolution limit for type TIME. Any TIME value 
whose absolute value is smaller than this limit is truncated to zero (0) time units. An implementation may 
allow a given elaboration of a model (see Clause 14) to select a secondary unit of type TIME as the 
resolution limit. Furthermore, an implementation may restrict the precision of the representation of values of 
type TIME and the results of expressions of type TIME, provided that values as small as the resolution limit 
are representable within those restrictions. It is an error if a given unit of type TIME appears anywhere 
within the design hierarchy defining a model to be elaborated, and if the position number of that unit is less 
than that of the secondary unit selected as the resolution limit for type TIME during the elaboration of the 
model, unless that unit is part of a physical literal whose abstract literal is either the integer value zero or the 
floating-point value zero.

NOTE—By selecting a secondary unit of type TIME as the resolution limit for type TIME, it may be possible to 
simulate for a longer period of simulated time, with reduced accuracy, or to simulate with greater accuracy for a shorter 
period of simulated time.

Cross-references: Delay and rejection limit in a signal assignment, 10.5; disconnection, delay of a guarded 
signal, 7.4; function NOW, 16.3; predefined attributes, functions of TIME, 16.2; simulation time, 14.7.3 and 
14.7.4; type TIME, 16.3; updating a projected waveform, 10.5.2.2; wait statements, timeout clause in, 10.2; 
elaboration of a declarative part, 14.4.
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5.2.5 Floating-point types

5.2.5.1 General

Floating-point types provide approximations to the real numbers.

floating_type_definition ::=  range_constraint

A floating type definition defines both a type and a subtype of that type. The type is an anonymous type, the 
range of which is selected by the implementation; this range shall be such that it wholly contains the range 
given in the floating type definition. The subtype is a named subtype of this anonymous base type, where the 
name of the subtype is that given by the corresponding type declaration and the range of the subtype is the 
given range.

Each bound of a range constraint that is used in a floating type definition shall be a locally static expression 
of some floating-point type, but the two bounds need not have the same floating-point type. (Negative 
bounds are allowed.)

Floating-point literals are the literals of an anonymous predefined type that is called universal_real in this 
standard. Other floating-point types have no literals. However, for each floating-point type there exists an 
implicit conversion that converts a value of type universal_real into the corresponding value (if any) of the 
floating-point type (see 9.3.6).

The same arithmetic operations are predefined for all floating-point types (see 9.2). A design is erroneous if 
the execution of such an operation cannot deliver the correct result (that is, if the value corresponding to the 
mathematical result is not a value of the floating-point type).

An implementation shall choose a representation for all floating-point types except for universal_real that 
conforms either to IEEE Std 754-1985 or to IEEE Std 854-1987; in either case, a minimum representation 
size of 64 bits is required for this chosen representation.

An implementation may restrict the bounds of the range constraint of floating-point types other than type 
universal_real. However, an implementation shall allow the declaration of any floating-point type whose 
range is wholly contained within the bounds allowed by the chosen representation.

NOTE—An implementation is not required to detect errors in the execution of a predefined floating-point arithmetic 
operation, since the detection of overflow conditions resulting from such operations might not be easily accomplished on 
many host systems.

5.2.5.2 Predefined floating-point types

The only predefined floating-point type is the type REAL. The range of REAL is host-dependent, but it is 
guaranteed to be the largest allowed by the chosen representation. It is defined with an ascending range.

NOTE—The range of REAL in a particular implementation is determinable from the values of its 'LOW and 'HIGH 
attributes.

5.2.6 Predefined operations on scalar types

Given a type declaration that declares a scalar type T, the following operations are implicitly declared 
immediately following the type declaration (except for the TO_STRING operations in package 
STANDARD, which are implicitly declared at the end of the package declaration):

function MINIMUM (L, R: T) return T;
function MAXIMUM (L, R: T) return T;
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function TO_STRING (VALUE: T) return STRING;

The MINIMUM operation returns the value of L if L < R, or the value of R otherwise. The MAXIMUM 
operation returns the value of R if L < R, or the value of L otherwise. For both operations, the comparison is 
performed using the predefined relational operator for the type.

The TO_STRING operation returns the string representation (see 5.7) of the value of its actual parameter. 
The result type of the operation is the type STRING defined in package STANDARD.

The following operations are implicitly declared in package STD.STANDARD immediately following the 
declaration of the type BOOLEAN:

function RISING_EDGE  (signal S: BOOLEAN) return BOOLEAN;
function FALLING_EDGE (signal S: BOOLEAN) return BOOLEAN;

The function RISING_EDGE applied to a signal S of type BOOLEAN is TRUE if the expression 
“S'EVENT and S” is TRUE, and FALSE otherwise. The function FALLING_EDGE applied to a signal S of 
type BOOLEAN is TRUE if the expression “S'EVENT and not S” is TRUE, and FALSE otherwise.

The following operations are implicitly declared in package STD.STANDARD immediately following the 
declaration of the type BIT:

function RISING_EDGE  (signal S: BIT) return BOOLEAN;
function FALLING_EDGE (signal S: BIT) return BOOLEAN;

The function RISING_EDGE applied to a signal S of type BIT is TRUE if the expression “S'EVENT and S 
= '1'” is TRUE, and FALSE otherwise. The function FALLING_EDGE applied to a signal S of type BIT is 
TRUE if the expression “S'EVENT and S = '0'” is TRUE, and FALSE otherwise.

The following operation is implicitly declared in package STD.STANDARD at the end of the package 
declaration:

function TO_STRING (VALUE: TIME; UNIT: TIME) return STRING;

This overloaded TO_STRING operation returns the string representation (see 5.7) of the value of its actual 
parameter. The result type of the operation is the type STRING defined in package STANDARD. The 
parameter UNIT specifies how the result is to be formatted. The value of this parameter shall be equal to one 
of the units declared as part of the declaration of type TIME; the result is that the TIME value is formatted as 
an integer or real literal representing the number of multiples of this unit, followed by the name of the unit 
itself.

The following operations are implicitly declared in package STD.STANDARD at the end of the package 
declaration:

function TO_STRING (VALUE: REAL; DIGITS: NATURAL) return STRING;
function TO_STRING (VALUE: REAL; FORMAT: STRING) return STRING;

These overloaded TO_STRING operations return the value of the VALUE parameter converted to a string 
whose format is specified by the value of the DIGITS or FORMAT parameter, respectively. The result type 
of the operations is the type STRING defined in package STANDARD.

For the operation with the DIGITS parameter, the result is the string representation of the value. The 
DIGITS specifies how many digits appear to the right of the decimal point. If DIGITS is 0, then the string 
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representation is the same as that produced by the TO_STRING operation without the DIGITS or FORMAT 
parameter. If DIGITS is non-zero, then the string representation contains an integer part followed by '.' 
followed by the fractional part, using the specified number of digits, and no exponent (e.g., 3.14159).

For the operation with the FORMAT parameter, the format of the result is determined using the value of the 
FORMAT parameter in the manner described in ISO/IEC 8859-1:1998, ISO/IEC 9899:1999/Cor 1:2001, 
and ISO/IEC 9899:1999/Cor 2:2004 for the C fprintf function. A model is erroneous if it calls the 
operation with a value for the FORMAT parameter that is other than a conversion specification in which the 
conversion specifier is one of e, E, f, F, g, G, a, or A. Moreover, the model is erroneous if the conversion 
specification contains a length modifier or uses an asterisk for the field width or precision. An 
implementation shall support use of the conversion specifiers e, E, f, g, and G, and may additionally support 
use of the conversion specifiers F, a, and A. A model is erroneous if it calls the operation with a value for the 
FORMAT parameter that is a conversion specification in which the conversion specifier is one of F, a, or A 
and the implementation does not support use of the conversion specifier. The values of FLT_RADIX and 
DECIMAL_DIG (described in ISO/IEC 8859-1:1998, ISO/IEC 9899:1999/Cor 1:2001, and ISO/IEC 
9899:1999/Cor 2:2004) are implementation defined.

5.3 Composite types

5.3.1 General

Composite types are used to define collections of values. These include both arrays of values (collections of 
values of a homogeneous type) and records of values (collections of values of potentially heterogeneous 
types).

composite_type_definition ::=
        array_type_definition
      | record_type_definition

An object of a composite type represents a collection of objects, one for each element of the composite 
object. It is an error if a composite type contains elements of file types or protected types. Thus an object of 
a composite type ultimately represents a collection of objects of scalar or access types, one for each 
noncomposite subelement of the composite object.

5.3.2 Array types

5.3.2.1 General

An array object is a composite object consisting of elements that have the same subtype. The name for an 
element of an array uses one or more index values belonging to specified discrete types. The value of an 
array object is a composite value consisting of the values of its elements.

array_type_definition ::=
      unbounded_array_definition | constrained_array_definition

unbounded_array_definition ::=
      array ( index_subtype_definition { , index_subtype_definition } )
            of element_subtype_indication

constrained_array_definition ::=
      array index_constraint of element_subtype_indication

index_subtype_definition ::= type_mark range <>
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array_constraint ::=
        index_constraint [ array_element_constraint ]
      | ( open ) [ array_element_constraint ]

array_element_constraint ::= element_constraint

index_constraint ::=  ( discrete_range { , discrete_range } )

discrete_range ::=  discrete_subtype_indication | range

An array constraint may be used to constrain an array type or subtype (see 5.3.2.2 and 6.3).

An array object is characterized by the number of indices (the dimensionality of the array); the type, 
position, and range of each index; and the type and possible constraints of the elements. The order of the 
indices is significant.

A one-dimensional array has a distinct element for each possible index value. A multidimensional array has 
a distinct element for each possible sequence of index values that can be formed by selecting one value for 
each index (in the given order). The possible values for a given index are all the values that belong to the 
corresponding range; this range of values is called the index range.

An unbounded array definition in which the element subtype indication denotes either an unconstrained 
composite subtype or a subtype that is not a composite subtype defines an array type and a name denoting 
that type. For each object that has the array type, the number of indices, the type and position of each index, 
and the subtype of the elements are as in the type definition. The index subtype for a given index position is, 
by definition, the subtype denoted by the type mark of the corresponding index subtype definition. The 
values of the left and right bounds of each index range are not defined, but shall belong to the corresponding 
index subtype; similarly, the direction of each index range is not defined. The symbol <> (called a box) in an 
index subtype definition stands for an undefined range (different objects of the type need not have the same 
bounds and direction).

An unbounded array definition in which the element subtype indication denotes a partially or fully 
constrained composite subtype defines both an array type and a subtype of this type:

— The array type is an implicitly declared anonymous type; this type is defined by an implicit 
unbounded array definition, in which the element subtype indication denotes the base type of the 
subtype denoted by the element subtype indication of the explicit unbounded array definition and in 
which the index subtype definitions are those of the explicit unbounded array definition, in the same 
order.

— The array subtype is the subtype obtained by imposition of the constraint of the subtype denoted by 
the element subtype indication of the explicit unbounded array definition as an array element 
constraint on the array type.

A constrained array definition similarly defines both an array type and a subtype of this type:
— The array type is an implicitly declared anonymous type; this type is defined by an (implicit) 

unbounded array definition, in which the element subtype indication either denotes the base type of 
the subtype denoted by the element subtype indication of the constrained array definition, if that 
subtype is a composite type, or otherwise is the element subtype indication of the constrained array 
definition, in which the type mark of each index subtype definition denotes the subtype defined by 
the corresponding discrete range.

— The array subtype is the subtype obtained by imposition of the index constraint on the array type and, 
if the element subtype indication of the constrained array definition denotes a fully or partially 
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constrained composite subtype, imposition of the constraint of that subtype as an array element 
constraint on the array type.

If an array definition that defines both an array type and a subtype of that type is given for a type declaration, 
the simple name declared by this declaration denotes the array subtype.

The direction of a discrete range is the same as the direction of the range or the discrete subtype indication 
that defines the discrete range. If a subtype indication appears as a discrete range, the subtype indication 
shall not contain a resolution indication.

Examples:
— Examples of fully constrained array declarations:

type MY_WORD is array (0 to 31) of BIT;
   --  A memory word type with an ascending range.

type DATA_IN is array (7 downto 0) of FIVE_LEVEL_LOGIC;
   --  An input port type with a descending range.

— Example of partially constrained array declarations:
type MEMORY is array (INTEGER range <>) of MY_WORD;
   --  A memory array type.

— Example of unconstrained array declarations:
type SIGNED_FXPT is array (INTEGER range <>) of BIT;
   -- A signed fixed-point array type

type SIGNED_FXPT_VECTOR is array (NATURAL range <>) of SIGNED_FXPT;
   -- A vector of signed fixed-point elements

— Example of partially constrained array declarations:
type SIGNED_FXPT_5x4 is array (1 to 5, 1 to 4) of SIGNED_FXPT;
   -- A matrix of signed fixed-point elements

— Examples of array object declarations:
signal DATA_LINE: DATA_IN;
   --  Defines a data input line.

variable MY_MEMORY: MEMORY (0 to 2**n-1);
   --  Defines a memory of 2n 32-bit words.

signal FXPT_VAL: SIGNED_FXPT (3 downto -4);
   -- Defines an 8-bit fixed-point signal

signal VEC: SIGNED_FXPT_VECTOR (1 to 20)(9 downto 0);
   -- Defines a vector of 20 10-bit fixed-point elements

variable SMATRIX: SIGNED_FXPT_5x4 (open)(3 downto -4);
   -- Defines a 5x4 matrix of 8-bit fixed-point elements

NOTE—The rules concerning constrained type declarations mean that a type declaration with a constrained array 
definition such as

type T is array (POSITIVE range MIN_BOUND to MAX_BOUND) of ELEMENT;

is equivalent to the sequence of declarations
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subtype index_subtype is POSITIVE range MIN_BOUND to MAX_BOUND;
type array_type is array (index_subtype range <>) of ELEMENT'BASE;
subtype T is array_type (index_subtype)element_constraint;

where index_subtype and array_type are both anonymous and element_constraint is the constraint that applies to the 
subtype ELEMENT. Consequently, T is the name of a subtype and all objects declared with this type mark are arrays 
that have the same index range.

Similarly, a type declaration with an unbounded array definition whose element subtype indication denotes a partially or 
fully constrained subtype such as

type T is array (INTEGER range <>) of STRING(1 to 10);

is equivalent to the sequence of declarations

type array_type is array (INTEGER range <>) of STRING'BASE;
subtype T is array_type (open)(1 to 10);

5.3.2.2 Index constraints and discrete ranges

An index constraint determines the index range for every index of an array type and, thereby, the 
corresponding array bounds.

For a discrete range used in a constrained array definition and defined by a range, an implicit conversion to 
the predefined type INTEGER is assumed if the type of both bounds (prior to the implicit conversion) is the 
type universal_integer. Otherwise, the type of the range shall be determined by applying the rules of 12.5 to 
the range, considered as a complete context, using the rules that the type shall be discrete and that both 
bounds shall have the same type. These rules apply also to a discrete range used in a loop parameter 
specification (see 10.10) or a generate parameter specification (see 11.8).

If an array constraint of the first form (including an index constraint) applies to a type or subtype, then the 
type or subtype shall be an unconstrained or partially constrained array type with no index constraint 
applying to the index subtypes, or an access type whose designated type is such a type. In either case, the 
index constraint shall provide a discrete range for each index of the array type, and the type of each discrete 
range shall be the same as that of the corresponding index.

An array constraint of the first form is compatible with the type if, and only if, the constraint defined by each 
discrete range is compatible with the corresponding index subtype and the array element constraint, if 
present, is compatible with the element subtype of the type. If any of the discrete ranges defines a null range, 
any array thus constrained is a null array, having no elements. An array value satisfies an index constraint if 
at each index position the array value and the index constraint have the same index range. (Note, however, 
that assignment and certain other operations on arrays involve an implicit subtype conversion.)

If an array constraint of the second form (including the reserved word open in place of an index constraint) 
applies to a type or subtype, then the type or subtype shall be an array type or an access type whose 
designated type is an array type. The array constraint imposes no further constraint on the index subtypes of 
the array type. An array constraint of the second form is compatible with the type if, and only if, the array 
element constraint, if present, is compatible with the element subtype of the type.

The index range for each index of an array object or array subelement of a composite object is determined as 
follows:

a) For a variable or signal declared by an object declaration, the subtype indication of the correspond-
ing object declaration shall define a fully constrained subtype (and thereby, the index range for each 
index of the array object or subelement).
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b) For a constant declared by an object declaration, if the subtype of the constant defines the index 
range, the index range of the constant is that defined by the subtype; otherwise, the index range of 
the constant is the corresponding index range of the initial value.. 

c) For an attribute whose value is specified by an attribute specification, if the subtype of the attribute 
defines the index range, the index range of the value of the attribute is that defined by the subtype; 
otherwise, the index range of the value of the attribute is the corresponding index range of the 
expression given in the specification.. 

d) For an object designated by an access value, the index ranges are defined by the allocator that 
creates the designated object (see 9.3.7).

e) For an interface object of an array type, or a subelement of an interface object for which the subele-
ment type is an array type, each index range is obtained as follows: Let the subtype index range be 
the corresponding index range of the subtype indication of the declaration of the object.
1) If the subtype index range is defined by a constraint, the index range of the object is the subtype 

index range.
2) If the subtype index range is undefined, and the interface object or subelement is associated by 

more than one association element or is associated by a single association element in which the 
formal designator is a slice name, then the direction of the index range of the object is that of 
the corresponding index subtype of the base type of the interface object, and the high and low 
bounds of the index range of the object are respectively determined from the maximum and 
minimum values of the indices given in the association element or elements corresponding to 
the interface object or subelement.

3) If the subtype index range is undefined, and the interface object is associated in whole (see 
6.5.7.1) or is a subelement that is associated individually by a single association element other 
than one in which the formal designator is a slice name, then the index range of the object is 
obtained from the association element in the following manner:
— For an interface object or subelement whose mode is in, inout or linkage, if the actual part 

includes a conversion function or a type conversion, then the result type of that function or 
the type mark of the type conversion shall define a constraint for the index range corre-
sponding to the index range of the object, and the index range of the object is obtained 
from that constraint; otherwise, the index range is obtained from the object or value 
denoted by the actual designator.

— For an interface object or subelement whose mode is out, buffer, inout, or linkage, if the 
formal part includes a conversion function or a type conversion, then the parameter sub-
type of that function or the type mark of the type conversion shall define a constraint for 
the index range corresponding to the index range of the object, and the index range is 
obtained from that constraint; otherwise, the index range is obtained from the object 
denoted by the actual designator.

For an interface object of mode inout or linkage, the index range determined by the first rule 
shall be identical to the index range determined by the second rule.

For a given array interface object, or for a given array subelement of an interface object, it is an error 
if application of the preceding rules yields different index ranges for any corresponding array sub-
elements of the given interface object or given subelement.

Examples:

type Word is array (NATURAL range <>) of BIT;
type Memory is array (NATURAL range <>) of Word (31 downto 0);

constant A_Word: Word := "10011";
   --  The index range of A_Word is 0 to 4
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entity E is
   generic (ROM: Memory);
   port (Op1, Op2: in Word; Result: out Word);
end entity E;
   --  The index ranges of the generic and the ports are defined by
   --  the actuals associated with an instance bound to E; these index
   --  ranges are accessible via the predefined array attributes
   --  (see 16.2).

signal A, B: Word (1 to 4);
signal C: Word (5 downto 0);

Instance: entity E
   generic map (ROM(1 to 2) => (others => (others => '0')))
   port map (A, Op2(3 to 4) => B(1 to 2), Op2(2) => B(3),
             Result => C(3 downto 1));
   --  In this instance, the index range of ROM is 1 to 2 (matching
   --  that of the actual), the index range of Op1 is 1 to 4 (matching
   --  the index range of A), the index range of Op2 is 2 to 4, and
   --  the index range of Result is  (3 downto 1) (again matching the
   --  index range of the actual).

NOTE—An index constraint with a null discrete range for an index of an array subelement of a composite array type 
defines a null array subelement type. The array type is not necessarily a null array type. For example, given the 
declarations

type E is array (NATURAL range <>) of INTEGER;
type T is array (1 to 10) of E (1 to 0);

values of type T are not null arrays. Rather, they are arrays of ten elements, each of which is a null array.

5.3.2.3 Predefined array types

The predefined array types are STRING, BOOLEAN_VECTOR, BIT_VECTOR, INTEGER_VECTOR, 
REAL_VECTOR, and TIME_VECTOR, defined in package STANDARD in Clause 16.

The values of the predefined type STRING are one-dimensional arrays of the predefined type 
CHARACTER, indexed by values of the predefined subtype POSITIVE:

subtype POSITIVE is INTEGER range 1 to INTEGER'HIGH;
type STRING is array (POSITIVE range <>) of CHARACTER;

The values of the predefined types BOOLEAN_VECTOR, BIT_VECTOR, INTEGER_VECTOR, 
REAL_VECTOR, and TIME_VECTOR, are one-dimensional arrays of the predefined types BOOLEAN, 
BIT, INTEGER, REAL, and TIME, respectively, indexed by values of the predefined subtype NATURAL:

subtype NATURAL is INTEGER range 0 to INTEGER'HIGH;
type BOOLEAN_VECTOR is array (NATURAL range <>) of BOOLEAN;
type BIT_VECTOR is array (NATURAL range <>) of BIT;
type INTEGER_VECTOR is array (NATURAL range <>) of INTEGER;
type REAL_VECTOR is array (NATURAL range <>) of REAL;
type TIME_VECTOR is array (NATURAL range <>) of TIME;
NOTE—The type REAL_VECTOR is added for consistency with VHDL-AMS, defined by IEEE Std 1076.1-2007 
[B10].
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Examples:

variable MESSAGE: STRING (1 to 17) := "THIS IS A MESSAGE";

signal LOW_BYTE: BIT_VECTOR (0 to 7);

constant MONITOR_ELEMENTS: BOOLEAN_VECTOR (LOW_BYTE'RANGE)
   := (others => FALSE);

constant ELEMENT_DELAYS: TIME_VECTOR (LOW_BYTE'RANGE)
   := (others => UNIT_DELAY);

variable BUCKETS: INTEGER_VECTOR (1 to 10);
variable AVERAGES: REAL_VECTOR (1 to 10);

5.3.2.4 Predefined operations on array types

Given a type declaration that declares a discrete array type T (see 9.2.3), the following operations are 
implicitly declared immediately following the type declaration:

function MINIMUM (L, R: T) return T;
function MAXIMUM (L, R: T) return T;

The MINIMUM operation returns the value of L if L < R, or the value of R otherwise. The MAXIMUM 
operation returns the value of R if L < R, or the value of L otherwise. For both operations, the comparison is 
performed using the predefined relational operator for the type.

In addition, given a type declaration that declares a one-dimensional array type T whose elements are of a 
scalar type E, the following operations are implicitly declared immediately following the type declaration:

function MINIMUM (L: T) return E;
function MAXIMUM (L: T) return E;

The values returned by these operations are defined as follows.
— The MINIMUM operation returns a value that is the least of the elements of L. That is, if L is a null 

array, the return value is E'HIGH. Otherwise, the return value is the result of a two-parameter 
MINIMUM operation. The first parameter of the two-parameter MINIMUM operation is the 
leftmost element of L. The second parameter of the two-parameter MINIMUM operation is the result 
of a single-parameter MINIMUM operation with the parameter being the rightmost (L'LENGTH – 1) 
elements of L.

— The MAXIMUM operation returns a value that is the greatest of the elements of L. That is, if L is a 
null array, the return value is E'LOW. Otherwise, the return value is the result of a two-parameter 
MAXIMUM operation. The first parameter of the two-parameter MAXIMUM operation is the 
leftmost element of L. The second parameter of the two-parameter MAXIMUM operation is the 
result of a single-parameter MAXIMUM operation with the parameter being the rightmost 
(L'LENGTH – 1) elements of L.

Given a type declaration that declares a one-dimensional array type T whose element type is a character type 
that contains only character literals, the following operation is implicitly declared immediately following the 
type declaration:

function TO_STRING (VALUE: T) return STRING;
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The TO_STRING operation returns the string representation (see 5.7) of the value of its actual parameter. 
The result type of the operation is the type STRING defined in package STANDARD.

The following operations are implicitly declared in package STD.STANDARD immediately following the 
declaration of the type BIT_VECTOR:

alias TO_BSTRING is TO_STRING [BIT_VECTOR return STRING];
alias TO_BINARY_STRING is TO_STRING [BIT_VECTOR return STRING];
function TO_OSTRING (VALUE: BIT_VECTOR) return STRING;
alias TO_OCTAL_STRING is TO_OSTRING [BIT_VECTOR return STRING];
function TO_HSTRING (VALUE: BIT_VECTOR) return STRING;
alias TO_HEX_STRING is TO_HSTRING [BIT_VECTOR return STRING];

These operations return strings that are the binary, octal, and hexadecimal representations, respectively, of 
the parameters. For the TO_OSTRING operation, the result has an uppercase octal digit corresponding to 
each group of three elements in the parameter value. If the length of the parameter value is not a multiple of 
three, then one or two '0' elements are implicitly concatenated on the left of the parameter value to yield a 
value that is a multiple of three in length. Similarly, for the TO_HSTRING operation, the result has an 
uppercase hexadecimal digit corresponding to each group of four elements in the parameter value. If the 
length of the parameter value is not a multiple of four, then one, two, or three '0' elements are implicitly 
concatenated on the left of the parameter value to yield a value that is a multiple of four in length.

5.3.3 Record types

A record type is a composite type, objects of which consist of named elements. The value of a record object 
is a composite value consisting of the values of its elements.

record_type_definition ::=
      record
            element_declaration
            { element_declaration }
      end record [ record_type_simple_name ]

element_declaration ::=
      identifier_list : element_subtype_definition ;

identifier_list ::=  identifier { , identifier }

element_subtype_definition ::= subtype_indication

record_constraint ::=
      ( record_element_constraint { , record_element_constraint } )

record_element_constraint ::= record_element_simple_name element_constraint

A record constraint may be used to constrain a record type or subtype (see 6.3).

Each element declaration declares an element of the record type. The identifiers of all elements of a record 
type shall be distinct. The use of a name that denotes a record element is not allowed within the record type 
definition that declares the element.

An element declaration with several identifiers is equivalent to a sequence of single element declarations. 
Each single element declaration declares a record element whose subtype is specified by the element 
subtype definition.
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If a simple name appears at the end of a record type declaration, it shall repeat the identifier of the type 
declaration in which the record type definition is included.

A record type definition creates a record type; it consists of the element declarations in the order in which 
they appear in the type definition.

A record type definition in which each element subtype definition denotes either an unconstrained 
composite subtype or a subtype that is not a composite subtype defines a record type and a name denoting 
that type.

A record type definition in which at least one element subtype definition denotes a partially or fully 
constrained composite subtype defines both a record type and a subtype of this type:

— The record type is an implicitly declared anonymous type; this type is defined by an implicit record 
type definition with element declarations corresponding to those of the explicit record type 
definition, in the same order. Each element declaration has the same identifier list as that of the 
corresponding element declaration in the explicit record type definition. The element subtype 
definition in each element declaration denotes the base type of the subtype denoted by the element 
subtype definition of the corresponding element declaration in the explicit record type definition.

— The record subtype is the subtype obtained by imposition of the constraints of the subtypes denoted 
by the element subtype definitions of the explicit record type definition as a record constraint on the 
record type.

If a record type definition that defines both a record type and a subtype of that type is given for a type 
declaration, the simple name declared by this declaration denotes the record subtype.

If a record constraint applies to a type or subtype, then the type or subtype shall be a record type or an access 
type whose designated type is a record type. For each record element constraint in the record constraint, the 
record type shall have an element with the same simple name as the record element simple name in the 
record element constraint. A record constraint is compatible with the type if, and only if, the constraint in 
each record element constraint is compatible with the element subtype of the corresponding element of the 
type.

Example:

type DATE is
   record
      DAY   : INTEGER range 1 to 31;
      MONTH : MONTH_NAME;

      YEAR  : INTEGER range 0 to 4000;
   end record;

type SIGNED_FXPT_COMPLEX is
   record
      RE : SIGNED_FXPT;

      IM : SIGNED_FXPT;

   end record;

signal COMPLEX_VAL: SIGNED_FXPT_COMPLEX (RE(4 downto -16),
                                         IM(4 downto -12));
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5.4 Access types

5.4.1 General

An object declared by an object declaration is created by the elaboration of the object declaration and is 
denoted by a simple name or by some other form of name. In contrast, objects that are created by the 
evaluation of allocators (see 9.3.7) have no simple name. Access to such an object is achieved by an access 
value returned by an allocator; the access value is said to designate the object.

access_type_definition ::=  access subtype_indication

For each access type, there is a literal null that has a null access value designating no object at all. The null 
value of an access type is the default initial value of the type. Other values of an access type are obtained by 
evaluation of a special operation of the type, called an allocator. Each such access value designates an object 
of the subtype defined by the subtype indication of the access type definition. This subtype is called the 
designated subtype and the base type of this subtype is called the designated type. The designated type shall 
not be a file type or a protected type.

An object declared to be of an access type shall be an object of class variable. An object designated by an 
access value is always an object of class variable.

The only form of constraint that is allowed after the name of an access type in a subtype indication is an 
array constraint or a record constraint. An access value belongs to a corresponding subtype of an access type 
either if the access value is the null value or if the value of the designated object satisfies the constraint.

Examples:

type ADDRESS is access MEMORY;
type BUFFER_PTR is access TEMP_BUFFER;
NOTE 1—An access value delivered by an allocator can be assigned to several variables of the corresponding access 
type. Hence, it is possible for an object created by an allocator to be designated by more than one variable of the access 
type. An access value can only designate an object created by an allocator; in particular, it cannot designate an object 
declared by an object declaration.

NOTE 2—If the type of the object designated by the access value is an array type or has a subelement that is of an array 
type, this object is constrained with the array bounds supplied implicitly or explicitly for the corresponding allocator.

NOTE 3—If the designated type is a composite type, it cannot have a subelement of a file type or a protected type (see 
5.3.1).

5.4.2 Incomplete type declarations

The designated type of an access type can be of any type except a file type or a protected type (see 5.4.1). In 
particular, the type of an element of the designated type can be another access type or even the same access 
type. This permits mutually dependent and recursive access types. Declarations of such types require a prior 
incomplete type declaration for one or more types.

incomplete_type_declaration ::= type identifier ;

For each incomplete type declaration there shall be a corresponding full type declaration with the same 
identifier. This full type declaration shall occur later and immediately within the same declarative part as the 
incomplete type declaration to which it corresponds.
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Prior to the end of the corresponding full type declaration, the only allowed use of a name that denotes a type 
declared by an incomplete type declaration is as the type mark in the subtype indication of an access type 
definition; no constraints are allowed in this subtype indication.

Example of a recursive type:

type CELL;  --  An incomplete type declaration.

type LINK is access CELL;

type CELL is
   record
      VALUE : INTEGER;
      SUCC  : LINK;
      PRED  : LINK;
   end record CELL;
variable HEAD: LINK := new CELL'(0, null, null);
variable \NEXT\: LINK := HEAD.SUCC;

Examples of mutually dependent access types:

type PART;  --  Incomplete type declarations.
type WIRE;

type PART_PTR is access PART;
type WIRE_PTR is access WIRE;

type PART_LIST is array (POSITIVE range <>) of PART_PTR;
type WIRE_LIST is array (POSITIVE range <>) of WIRE_PTR;

type PART_LIST_PTR is access PART_LIST;
type WIRE_LIST_PTR is access WIRE_LIST;

type PART is
   record
      PART_NAME   : STRING (1 to MAX_STRING_LEN);
      CONNECTIONS : WIRE_LIST_PTR;
   end record;

type WIRE is
   record
      WIRE_NAME : STRING (1 to MAX_STRING_LEN);
      CONNECTS  : PART_LIST_PTR;
   end record;

5.4.3 Allocation and deallocation of objects

An object designated by an access value is allocated by an allocator for that type. An allocator is a primary 
of an expression; allocators are described in 9.3.7. For each access type, a deallocation operation is 
implicitly declared immediately following the full type declaration for the type. This deallocation operation 
makes it possible to deallocate explicitly the storage occupied by a designated object.

Given the following access type declaration:
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type AT is access T;

the following operation is implicitly declared immediately following the access type declaration:

procedure DEALLOCATE (P: inout AT);

Procedure DEALLOCATE takes as its single parameter a variable of the specified access type. If the value 
of that variable is the null value for the specified access type, then the operation has no effect. If the value of 
that variable is an access value that designates an object, the storage occupied by that object is returned to 
the system and may then be reused for subsequent object creation through the invocation of an allocator. The 
access parameter P is set to the null value for the specified type.

NOTE—If an access value is copied to a second variable and is then deallocated, the second variable is not set to null 
and thus references invalid storage.

5.5 File types

5.5.1 General

A file type definition defines a file type. File types are used to define objects representing files in the host 
system environment. The value of a file object is the sequence of values contained in the host system file.

file_type_definition ::= file of type_mark

The type mark in a file type definition defines the subtype of the values contained in the file. The type mark 
may denote either a fully constrained, a partially constrained, or an unconstrained subtype. The base type of 
this subtype shall not be a file type, an access type, a protected type, or a formal generic type. If the base type 
is a composite type, it shall not contain a subelement of an access type. If the base type is an array type, it 
shall be a one-dimensional array type whose element subtype is fully constrained. If the base type is a record 
type, it shall be fully constrained.

Examples:

file of STRING         --  Defines a file type that can contain
                       --  an indefinite number of strings of
                       --  arbitrary length.
file of NATURAL        --  Defines a file type that can contain
                       --  only nonnegative integer values.

NOTE—If the base type of the subtype denoted by the type mark is a composite type, it cannot have a subelement of a 
file type or a protected type (see 5.3.1).

5.5.2 File operations

The language implicitly defines the operations for objects of a file type. Given the following file type 
declaration:

type FT is file of TM;

where type mark TM denotes a scalar type, a record type, or a fully constrained array subtype, the following 
operations are implicitly declared immediately following the file type declaration:

procedure FILE_OPEN (file F: FT;
                     External_Name: in STRING;
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                     Open_Kind: in FILE_OPEN_KIND := READ_MODE);

procedure FILE_OPEN (Status: out FILE_OPEN_STATUS;
                     file F: FT;
                     External_Name: in STRING;
                     Open_Kind: in FILE_OPEN_KIND := READ_MODE);

procedure FILE_CLOSE (file F: FT);

procedure READ (file F: FT; VALUE: out TM);

procedure WRITE (file F: FT; VALUE: in TM);

procedure FLUSH (file F: FT);

function ENDFILE (file F: FT) return BOOLEAN;

The FILE_OPEN procedures open an external file specified by the External_Name parameter and associate 
it with the file object F. If the call to FILE_OPEN is successful (see the following), the file object is said to 
be open and the file object has an access mode dependent on the value supplied to the Open_Kind parameter 
(see 16.3).

— If the value supplied to the Open_Kind parameter is READ_MODE, the access mode of the file 
object is read-only. In addition, the file object is initialized so that a subsequent READ will return 
the first value in the external file. Values are read from the file object in the order that they appear in 
the external file.

— If the value supplied to the Open_Kind parameter is WRITE_MODE, the access mode of the file 
object is write-only. In addition, the external file is made initially empty. Values written to the file 
object are placed in the external file in the order in which they are written.

— If the value supplied to the Open_Kind parameter is APPEND_MODE, the access mode of the file 
object is write-only. In addition, the file object is initialized so that values written to it will be added 
to the end of the external file in the order in which they are written.

In the second form of FILE_OPEN, the value returned through the Status parameter indicates the results of 
the procedure call:

— A value of OPEN_OK indicates that the call to FILE_OPEN was successful. If the call to 
FILE_OPEN specifies an external file that does not exist at the beginning of the call, and if the 
access mode of the file object passed to the call is write-only, then the external file is created.

— A value of STATUS_ERROR indicates that the file object already has an external file associated 
with it.

— A value of NAME_ERROR indicates that the external file does not exist (in the case of an attempt to 
read from the external file) or the external file cannot be created (in the case of an attempt to write or 
append to an external file that does not exist). This value is also returned if the external file cannot be 
associated with the file object for any reason.

— A value of MODE_ERROR indicates that the external file cannot be opened with the requested 
Open_Kind.

The first form of FILE_OPEN causes an error to occur if the second form of FILE_OPEN, when called 
under identical conditions, would return a Status value other than OPEN_OK.

A call to FILE_OPEN of the first form is successful if and only if the call does not cause an error to occur. 
Similarly, a call to FILE_OPEN of the second form is successful if and only if it returns a Status value of 
OPEN_OK.
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If a file object F is associated with an external file, procedure FILE_CLOSE terminates access to the 
external file associated with F and closes the external file. If F is not associated with an external file, then 
FILE_CLOSE has no effect. In either case, the file object is no longer open after a call to FILE_CLOSE that 
associates the file object with the formal parameter F.

An implicit call to FILE_CLOSE exists in a subprogram body for every file object declared in the 
corresponding subprogram declarative part. Each such call associates a unique file object with the formal 
parameter F and is called whenever the corresponding subprogram completes its execution.

Procedure READ retrieves the next value from a file; it is an error if the access mode of the file object is 
write-only or if the file object is not open. Procedure WRITE appends a value to a file. Procedure FLUSH 
requests that the implementation complete the effect of all previous calls to the WRITE procedure for a file. 
For the WRITE and FLUSH procedures, it is an error if the access mode of the file object is read-only or if 
the file is not open. Function ENDFILE returns FALSE if a subsequent READ operation on an open file 
object whose access mode is read-only can retrieve another value from the file; otherwise, it returns TRUE. 
Function ENDFILE always returns TRUE for an open file object whose access mode is write-only. It is an 
error if ENDFILE is called on a file object that is not open.

For a file type declaration in which the type mark denotes an unconstrained or partially constrained array 
type, the same operations are implicitly declared, except that the READ operation is declared as follows:

procedure READ (file F: FT; VALUE: out TM; LENGTH: out Natural);

The READ operation for such a type performs the same function as the READ operation for other types, but 
in addition it returns a value in parameter LENGTH that specifies the actual length of the array value read by 
the operation. If the object associated with formal parameter VALUE is shorter than this length, then only 
that portion of the array value read by the operation that can be contained in the object is returned by the 
READ operation, and the rest of the value is lost. If the object associated with formal parameter VALUE is 
longer than this length, then the entire value is returned and remaining elements of the object are unaffected 
by the READ operation.

An error will occur when a READ operation is performed on file F if ENDFILE(F) would return TRUE at 
that point.

If a READ operation for a file object is executed after a FLUSH operation for a second file object and the 
same external file is associated with both file objects, an implementation should fulfill the request made by 
the FLUSH operation before retrieving a value from the file for the READ operation.

At the beginning of the execution of any file operation, the execution of the file operation blocks (see 14.6) 
until exclusive access to the file object denoted by the formal parameter F can be granted. Exclusive access 
to the given file object is then granted and the execution of the file operation proceeds. Once the file 
operation completes, exclusive access to the given file object is rescinded.

NOTE 1—An implementation may not be able to guarantee that all values written before a FLUSH operation are flushed 
to the external file before a subsequent READ operation to that external file, especially when the external file resides in 
a distributed or remote file system.

NOTE 2—Predefined package TEXTIO is provided to support formatted human-readable I/O. It defines type TEXT (a 
file type representing files of variable-length text strings) and type LINE (an access type that designates such strings). 
READ and WRITE operations are provided in package TEXTIO that append or extract data from a single line. 
Additional operations are provided to read or write entire lines and to determine the status of the current line or of the file 
itself. Package TEXTIO is defined in Clause 16.
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5.6 Protected types

5.6.1 Protected type definitions

A protected type definition defines a protected type. A protected type implements instantiatiable regions of 
sequential statements, each of which are guaranteed exclusive access to shared data. Shared data is a set of 
variable objects that may be potentially accessed as a unit by multiple processes.

protected_type_definition  ::=
        protected_type_declaration
      | protected_type_body

Each protected type declaration appearing immediately within a given declarative region (see 12.1) shall 
have exactly one corresponding protected type body appearing immediately within the same declarative 
region and textually subsequent to the protected type declaration. Similarly, each protected type body 
appearing immediately within a given declarative region shall have exactly one corresponding protected 
type declaration appearing immediately within the same declarative region and textually prior to the 
protected type body.

5.6.2 Protected type declarations

A protected type declaration declares the external interface to a protected type.

protected_type_declaration  ::=
      protected
            protected_type_declarative_part
      end protected [ protected_type_simple_name ]

protected_type_declarative_part  ::=
      { protected_type_declarative_item }

protected_type_declarative_item  ::=
        subprogram_declaration
      | subprogram_instantiation_declaration
      | attribute_specification
      | use_clause

If a simple name appears at the end of a protected type declaration, it shall repeat the identifier of the type 
declaration in which the protected type definition is included.

Each subprogram specified within a given protected type declaration defines an abstract operation, called a 
method, that operates atomically and exclusively on a single object of the protected type. In addition to the 
object of the protected type operated on by the subprogram, parameters may be explicitly specified in the 
formal parameter list of the subprogram declaration of the subprogram. Such formal parameters shall not be 
of an access type or a file type; moreover, they shall not have a subelement that is of an access type. 
Additionally, in the case of a function subprogram, the return type of the function shall not be of an access 
type; moreover, it shall not have a subelement that is of an access type.

NOTE 1—Composite formal parameters of methods and composite return types of function methods cannot have 
subelements of file types (see 5.3.1).

NOTE 2—A parameter type of a method or the return type of a function method may be a formal generic type or have a 
subelement of a formal generic type. However, for an instance of the enclosing declaration that defines the formal 
generic type, a check is required that the actual generic type is neither an access type nor contains a subelement of an 
access type. Depending on the implementation, this check may be done during analysis of the instantiation, or it may be 
deferred until the design hierarchy is elaborated.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



- 59 - IEC 61691-1-1:2011(E)�
IEEE Std 1076-2008

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

Examples:

type SharedCounter is protected
   procedure increment (N: Integer := 1);
   procedure decrement (N: Integer := 1);
   impure function value return Integer;
end protected SharedCounter;

type ComplexNumber is protected
   procedure extract (variable r, i: out Real);
   procedure add (variable a, b: inout ComplexNumber);
end protected ComplexNumber;

type VariableSizeBitArray is protected
   procedure add_bit (index: Positive; value: Bit);
   impure function size return Natural;
end protected VariableSizeBitArray;

5.6.3 Protected type bodies

A protected type body provides the implementation for a protected type.

protected_type_body ::=
      protected body
            protected_type_body_declarative_part
      end protected body [ protected_type_simple name ]

protected_type_body_declarative_part ::=
      { protected_type_body_declarative_item }

protected_type_body_declarative_item ::=
        subprogram_declaration
      | subprogram_body
      | subprogram_instantiation_declaration
      | package_declaration
      | package_body
      | package_instantiation_declaration
      | type_declaration
      | subtype_declaration
      | constant_declaration
      | variable_declaration
      | file_declaration
      | alias_declaration
      | attribute_declaration
      | attribute_specification
      | use_clause
      | group_template_declaration
      | group_declaration

Each subprogram declaration appearing in a given protected type declaration shall have a corresponding 
subprogram body appearing in the corresponding protected type body.

NOTE—Subprogram bodies appearing in a protected type body not lexically conformant to any of the subprogram 
declarations in the corresponding protected type declaration are visible only within the protected type body. Such 
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subprograms may have parameters that are access and file types and (in the case of functions) return types that are or 
contain access types.

Examples:

type SharedCounter is protected body

   variable counter: Integer := 0;

   procedure increment (N: Integer := 1) is
   begin
      counter := counter + N;
   end procedure increment;

   procedure decrement (N: Integer := 1) is
   begin
      counter := counter - N;
   end procedure decrement;

   impure function value return Integer is
   begin
      return counter;
   end function value;
end protected body SharedCounter;

type ComplexNumber is protected body

   variable re, im: Real;

   procedure extract (r, i: out Real) is
   begin
      r := re;
      i := im;
   end procedure extract;

   procedure add (variable a, b: inout ComplexNumber) is
      variable a_real, b_real: Real;
      variable a_imag, b_imag: Real;
   begin
      a.extract (a_real, a_imag);
      b.extract (b_real, b_imag);
      re  := a_real + b_real;
      im := a_imag + b_imag;
   end procedure add;
end protected body ComplexNumber;

type VariableSizeBitArray is protected body
   type bit_vector_access is access Bit_Vector;

   variable bit_array: bit_vector_access := null;
   variable bit_array_length: Natural := 0;

   procedure add_bit (index: Positive; value: Bit) is
      variable tmp: bit_vector_access;
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   begin
      if index > bit_array_length then
         tmp := bit_array;
         bit_array := new bit_vector (1 to index);
         if tmp /= null then
            bit_array (1 to bit_array_length) := tmp.all;
            deallocate (tmp);
         end if;
         bit_array_length := index;
      end if;
      bit_array (index) := value;
   end procedure add_bit;

   impure function size return Natural is
   begin
      return bit_array_length;
   end function size;
end protected body VariableSizeBitArray;

5.7 String representations

The string representation of a value of a given type is a value of type STRING, defined as follows:
— For a given value of type CHARACTER, the string representation contains one element that is the 

given value.
— For a given value of an enumeration type other than CHARACTER, if the value is a character literal, 

the string representation contains a single element that is the character literal; otherwise, the string 
representation is the sequence of characters in the identifier that is the given value. For an extended 
identifier, the string representation does not include leading or trailing backslash characters, and 
backslash characters in the extended identifier are not doubled in the string representation.

— For a given value of an integer type, the string representation is the sequence of characters of an 
abstract literal without a point and whose value is the given value. The sequence of characters of the 
abstract literal may be preceded by a sign character with no intervening space or format effector 
characters.

— For a given value of a physical type, the string representation is the sequence of characters of a 
physical literal whose value is the given value. The sequence of characters of the physical literal may 
be preceded by a sign character with no intervening space or format effector characters.

— For a given value of a floating-point type, the string representation is the sequence of characters of an 
abstract literal that includes a point and whose value is the given value. The sequence of characters 
of the abstract literal may be preceded by a sign character with no intervening space or format 
effector characters.

— For a given value that is of a one-dimensional array type whose element type is a character type that 
contains only character literals, the string representation has the same length as the given value. Each 
element of the string representation is the same character literal as the matching element of the given 
value.

— For a given value that is of a composite type other than described by the preceding paragraph, there 
is no string representation.

— For a value of an access type, a file type, or a protected type, there is no string representation.

In each case where a string representation is defined, the index range of the string representation is not 
specified by this standard.
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When forming the string representation for a WRITE procedure in STD.TEXTIO (see Clause 16) or for an 
implicitly defined TO_STRING operation, except where otherwise specified for an overloaded 
TO_STRING operation:

— For a value of an integer type, the abstract literal is a decimal literal and there is no exponent.
— Letters in a basic identifier are in lowercase.
— For a value of a floating-point type, when forming the string representation for a TO_STRING 

operation, the abstract literal is a decimal literal in standard form, consisting of a normalized 
mantissa and an exponent in which the sign is present and the “e” is in lowercase. The number of 
digits in the standard form is implementation defined. When forming the string representation for the 
WRITE procedure for type REAL in which the DIGITS parameter has the value 0, the string 
representation is as described for a TO_STRING operation. When the DIGITS parameter is non-
zero, the abstract literal is a decimal literal without the exponent, as described in 16.4.

— For a value of a physical type, when forming the string representation for a TO_STRING operation, 
the abstract literal is a decimal literal that is an integer literal, there is no exponent, and there is a 
single SPACE character between the abstract literal and the unit name. If the physical type is TIME, 
the unit name is the simple name of the resolution limit (see 5.2.4.2); otherwise, the unit name is the 
simple name of the primary unit of the physical type. When forming the string representation for the 
WRITE procedure for type TIME, the physical literal is as described in 16.4.

— There are no insignificant leading or trailing zeros in a decimal literal.
— There is no sign preceding the string representation of a non-negative value of an integer, physical or 

floating-point type.
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6. Declarations

6.1 General

The language defines several kinds of named entities that are declared explicitly or implicitly by 
declarations. Each entity’s name is defined by the declaration, either as an identifier or as an operator 
symbol or a character literal.

There are several forms of declaration. A declaration is one of the following:

— A type declaration

— A subtype declaration

— An object declaration

— An interface declaration

— An alias declaration

— An attribute declaration

— A component declaration

— A group template declaration

— A group declaration

— An entity declaration

— A configuration declaration

— A subprogram declaration

— A subprogram instantiation declaration

— A package declaration

— A package instantiation declaration

— A primary unit

— An architecture body

— A PSL property declaration

— A PSL sequence declaration

— An enumeration literal in an enumeration type definition

— A primary unit declaration in a physical type definition

— A secondary unit declaration in a physical type definition

— An element declaration in a record type definition

— A parameter specification in a loop statement or a for generate statement

— An implicit label declaration

— A logical name in a library clause, other than a library clause that appears within a context 
declarative region

For each form of declaration, the language rules define a certain region of text called the scope of the 
declaration (see 12.2). Each form of declaration associates an identifier, operator symbol, or character literal 
with a named entity. The identifier, operator symbol, or character literal is called the designator of the 
declaration. Only within its scope, there are places where it is possible to use the designator to refer to the 
associated declared entity; these places are defined by the visibility rules (see 12.3). At such places the 
designator is said to be a name of the entity; the name is said to denote the associated entity.
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This clause describes type and subtype declarations, the various kinds of object declarations, alias 
declarations, attribute declarations, component declarations, and group and group template declarations. The 
other kinds of declarations are described in Clause 3 and Clause 4.

A declaration takes effect through the process of elaboration. Elaboration of declarations is discussed in 
Clause 14.

PSL verification units and declarations are described in IEEE Std 1850-2005. It is an error if a property 
defined by a PSL property declaration does not conform to the rules for the simple subset of PSL.

6.2 Type declarations

A type declaration declares a type. Such a type is called an explicitly declared type.

type_declaration ::=
        full_type_declaration
      | incomplete_type_declaration

full_type_declaration ::=
      type identifier is type_definition ;

type_definition ::=
        scalar_type_definition
      | composite_type_definition
      | access_type_definition
      | file_type_definition
      | protected_type_definition

The types created by the elaboration of distinct type definitions are distinct types. Moreover, they are 
distinct from formal generic types of entity declarations, component declarations, and uninstantiated 
package and subprogram declarations. The elaboration of the type definition for a scalar type or a partially 
constrained or fully constrained composite type creates both a base type and a subtype of the base type.

The simple name declared by a type declaration denotes the declared type, unless the type declaration 
declares both a base type and a subtype of the base type, in which case the simple name denotes the subtype 
and the base type is anonymous. A type is said to be anonymous if it has no simple name. For explanatory 
purposes, this standard sometimes refers to an anonymous type by a pseudo-name, written in italics, and 
uses such pseudo-names at places where the syntax normally requires an identifier.

NOTE 1—Two type definitions always define two distinct types, even if they are lexically identical. Thus, the type def-
initions in the following two integer type declarations define distinct types:

type A is range 1 to 10;
type B is range 1 to 10;
This applies to type declarations for other classes of types as well.

NOTE 2—The various forms of type definition are described in Clause 5. Examples of type declarations are also given 
in that clause.

6.3 Subtype declarations

A subtype declaration declares a subtype.

subtype_declaration ::=
      subtype identifier is subtype_indication ;
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subtype_indication ::=
      [ resolution_indication ] type_mark [ constraint ]

resolution_indication ::=
      resolution_function_name | ( element_resolution )

element_resolution ::= array_element_resolution | record_resolution

array_element_resolution ::= resolution_indication

record_resolution ::= record_element_resolution { , record_element_resolution }

record_element_resolution ::= record_element_simple_name resolution_indication

type_mark ::=
        type_name
      | subtype_name

constraint ::=
        range_constraint
      | array_constraint
      | record_constraint

element_constraint ::=
        array_constraint
      | record_constraint

A type mark denotes a type or a subtype. If a type mark is the name of a type, the type mark denotes this type 
and also the corresponding unconstrained subtype. The base type of a type mark is, by definition, the base 
type of the type or subtype denoted by the type mark.

A subtype indication defines a subtype of the base type of the type mark.

A resolution indication is said to correspond to a subtype, and associates one or more resolution functions 
with the subtype to which it corresponds or with subelement subtypes of the subtype to which it 
corresponds. A resolution indication that appears in a subtype indication corresponds to the subtype defined 
by the subtype indication. For that resolution indication, and any resolution indications nested within it, the 
association of resolution functions is specified by the following rules, applied recursively:

— If a resolution indication is in the form of a resolution function name, then the named resolution 
function is associated with the subtype corresponding to the resolution indication.

— If a resolution indication is in the form that contains an element resolution that is an array element 
resolution, then the subtype corresponding to the resolution indication shall be an array subtype. The 
array element resolution corresponds to the element subtype of the array subtype.

— If a resolution indication is in the form that contains an element resolution that is a record resolution, 
then the subtype corresponding to the resolution indication shall be a record subtype. For each record 
element resolution in the record resolution, the record subtype shall have an element with the same 
simple name as the record element simple name in the record element resolution, and the resolution 
indication immediately following that record element simple name in the record element resolution 
corresponds to the element subtype of the element with that simple name in the record subtype.

If a subtype indication includes a resolution indication that associates a resolution function name with a 
subtype, then any signal declared to be of that subtype will be resolved, if necessary, by the named function 
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(see 4.6); for an overloaded function name, the meaning of the function name is determined by context (see 
4.5 and 12.5). It is an error if the function does not meet the requirements of a resolution function (see 4.6). 
The presence of a resolution function indication has no effect on the declarations of objects other than 
signals or on the declarations of files, aliases, attributes, or other subtypes.

If the subtype indication does not include a constraint, the subtype is the same as that denoted by the type 
mark. The condition imposed by a constraint is the condition obtained after evaluation of the expressions 
and ranges forming the constraint. The rules defining compatibility are given for each form of constraint in 
the appropriate clause. These rules are such that if a constraint is compatible with a subtype, then the 
condition imposed by the constraint cannot contradict any condition already imposed by the subtype on its 
values. An error occurs if any check of compatibility fails.

The direction of a discrete subtype indication is the same as the direction of the range constraint that appears 
as the constraint of the subtype indication. If no constraint is present, and the type mark denotes a subtype, 
the direction of the subtype indication is the same as that of the denoted subtype. If no constraint is present, 
and the type mark denotes a type, the direction of the subtype indication is the same as that of the range used 
to define the denoted type. The direction of a discrete subtype is the same as the direction of its subtype 
indication.

A subtype indication denoting an access type, a file type, or a protected type shall not contain a resolution 
function. Furthermore, the only allowable constraint on a subtype indication denoting an access type is an 
array constraint (and then only if the designated type is an array type) or a record constraint (and then only if 
the designated type is a record type).

A subtype indication denoting a subtype of a file type, a protected type, or a formal generic incomplete type 
of an uninstantiated package or subprogram declaration shall not contain a constraint.

NOTE—A subtype declaration does not define a new type.

6.4 Objects

6.4.1 General

An object is a named entity that contains (has) a value of a type. An object is one of the following:
— An object declared by an object declaration (see 6.4.2)
— A loop or generate parameter (see 10.10 and 11.8)
— A formal parameter of a subprogram (see 4.2.2)
— A formal port (see 6.5.6.3 and 11.2)
— A formal generic constant (see 6.5.6.2 and 11.2)
— A local port (see 6.8)
— A local generic constant (see 6.8)
— An implicit signal GUARD defined by the guard condition of a block statement (see 11.2)

In addition, the following are objects, but are not named entities:
— An implicit signal defined by any of the predefined attributes 'DELAYED, 'STABLE, 'QUIET, and 

'TRANSACTION (see 16.2)
— An element or slice of another object (see 8.3, 8.4, and 8.5)
— An object designated by a value of an access type (see 5.4.1)

There are four classes of objects: constants, signals, variables, and files. The variable class of objects also 
has an additional subclass: shared variables. The class of an explicitly declared object is specified by the 
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reserved word that shall or may appear at the beginning of the declaration of that object. For a given object 
of a composite type, each subelement of that object is itself an object of the same class and subclass, if any, 
as the given object. The value of a composite object is the aggregation of the values of its subelements.

Objects declared by object declarations are available for use within blocks, processes, subprograms, or 
packages. Loop and generate parameters are implicitly declared by the corresponding statement and are 
available for use only within that statement. Other objects, declared by interface object declarations, create 
channels for the communication of values between independent parts of a description.

6.4.2 Object declarations

6.4.2.1 General

An object declaration declares an object of a specified type. Such an object is called an explicitly declared 
object.

object_declaration ::=
        constant_declaration
      | signal_declaration
      | variable_declaration
      | file_declaration

An object declaration is called a single-object declaration if its identifier list has a single identifier; it is 
called a multiple-object declaration if the identifier list has two or more identifiers. A multiple-object 
declaration is equivalent to a sequence of the corresponding number of single-object declarations. For each 
identifier of the list, the equivalent sequence has a single-object declaration formed by this identifier, 
followed by a colon and by whatever appears at the right of the colon in the multiple-object declaration; the 
equivalent sequence is in the same order as the identifier list.

A similar equivalence applies also for interface object declarations (see 6.5.2).

NOTE—The subelements of a composite declared object are not declared objects.

6.4.2.2 Constant declarations

A constant declaration declares a constant of the specified type. Such a constant is an explicitly declared 
constant.

constant_declaration ::=
      constant identifier_list : subtype_indication [ := expression ] ;

If the assignment symbol “:=” followed by an expression is present in a constant declaration, the expression 
specifies the value of the constant; the type of the expression shall be that of the constant. The value of a 
constant cannot be modified after the declaration is elaborated.

If the assignment symbol “:=” followed by an expression is not present in a constant declaration, then the 
declaration declares a deferred constant. It is an error if such a constant declaration appears anywhere other 
than in a package declaration. The corresponding full constant declaration, which defines the value of the 
constant, shall appear in the body of the package (see 4.8).

Formal parameters of subprograms that are of mode in may be constants, and local and formal generics may 
also be constants; the declarations of such objects are discussed in 6.5.2. A loop parameter is a constant 
within the corresponding loop (see 10.10); similarly, a generate parameter is a constant within the 
corresponding generate statement (see 11.8). A subelement or slice of a constant is a constant.
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It is an error if a constant declaration declares a constant that is of a file type, an access type, a protected 
type, or a composite type that has a subelement that is of an access type.

NOTE 1—The subelements of a composite declared constant are not declared constants. Moreover, such subelements 
cannot be of file types or protected types (see 5.3.1).

NOTE 2—A constant may be of a formal generic type. However, for an instance of the enclosing declaration that defines 
the formal generic type, a check is required that the actual generic type is neither an access type nor contains a subele-
ment of an access type. Depending on the implementation, this check may be done during analysis of the instantiation, or 
it may be deferred until the design hierarchy is elaborated.

Examples:

constant TOLER: DISTANCE := 1.5 nm;
constant PI: REAL := 3.141592;
constant CYCLE_TIME: TIME := 100 ns;
constant Propagation_Delay: DELAY_LENGTH;  -- A deferred constant.

6.4.2.3 Signal declarations

A signal declaration declares a signal of the specified type. Such a signal is an explicitly declared signal.

signal_declaration ::=
      signal identifier_list : subtype_indication [ signal_kind ] [ := expression ] ;

signal_kind ::=  register | bus

If a resolution indication appears in the subtype indication in the declaration of a signal or in the declaration 
of the subtype used to declare the signal, then each resolution function in the subtype is associated 
correspondingly with the declared signal or with a subelement of the declared signal. Such a signal or 
subelement is called a resolved signal.

If a signal kind appears in a signal declaration, then the signals so declared are guarded signals of the kind 
indicated. For a guarded signal that is of a composite type, each subelement is likewise a guarded signal. For 
a guarded signal that is of an array type, each slice (see 8.5) is likewise a guarded signal. A guarded signal 
may be assigned values under the control of Boolean-valued guard conditions (or guards). When a given 
guard becomes FALSE, the drivers of the corresponding guarded signals are implicitly assigned a null 
transaction (see 10.5.2.2) to cause those drivers to turn off. A disconnection specification (see 7.4) is used to 
specify the time required for those drivers to turn off.

If the signal declaration includes the assignment symbol followed by an expression, it shall be of the same 
type as the signal. Such an expression is said to be a default expression. The default expression defines a 
default value associated with the signal or, for a composite signal, with each scalar subelement thereof. For a 
signal declared to be of a scalar subtype, the value of the default expression is the default value of the signal. 
For a signal declared to be of a composite subtype, each scalar subelement of the value of the default 
expression is the default value of the corresponding subelement of the signal.

In the absence of an explicit default expression, an implicit default value is assumed for a signal of a scalar 
subtype or for each scalar subelement of a composite signal, each of which is itself a signal of a scalar 
subtype. The implicit default value for a signal of a scalar subtype T is defined to be that given by T'LEFT.

It is an error if a signal declaration declares a signal that is of a file type, an access type, a protected type, or 
a composite type having a subelement that is of an access type. It is also an error if a guarded signal of a 
scalar type is neither a resolved signal nor a subelement of a resolved signal.
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A signal may have one or more sources. For a signal of a scalar type, each source is either a driver (see 
14.7.2) or an out, inout, buffer, or linkage port of a component instance or of a block statement with which 
the signal is associated. For a signal of a composite type, each composite source is a collection of scalar 
sources, one for each scalar subelement of the signal. It is an error if, after the elaboration of a description, a 
signal has multiple sources and it is not a resolved signal. It is also an error if, after the elaboration of a 
description, a resolved signal has more sources than the number of elements in the index range of the type of 
the formal parameter of the resolution function associated with the resolved signal.

If a subelement or slice of a resolved signal of composite type is associated as an actual in a port map aspect 
(either in a component instantiation statement, a block statement, or in a binding indication), and if the 
corresponding formal is of mode out, inout, buffer, or linkage, then every scalar subelement of that signal 
shall be associated exactly once with such a formal in the same port map aspect, and the collection of the 
corresponding formal parts taken together constitute one source of the signal. If a resolved signal of 
composite type is associated as an actual in a port map aspect, that is equivalent to each of its subelements 
being associated in the same port map aspect.

If a subelement of a resolved signal of composite type has a driver in a given process, then every scalar 
subelement of that signal shall have a driver in the same process, and the collection of all of those drivers 
taken together constitute one source of the signal.

The default value associated with a scalar signal defines the value component of a transaction that is the 
initial contents of each driver (if any) of that signal. The time component of the transaction is not defined, 
but the transaction is understood to have already occurred by the start of simulation.

Examples:

signal S: STANDARD.BIT_VECTOR (1 to 10);
signal CLK1, CLK2: TIME;
signal OUTPUT: WIRED_OR MULTI_VALUED_LOGIC;
NOTE 1—Ports of any mode are also signals. The term signal is used in this standard to refer to objects declared either 
by signal declarations or by port declarations (or to subelements, slices, or aliases of such objects). It also refers to the 
implicit signal GUARD (see 11.2) and to implicit signals defined by the predefined attributes 'DELAYED, 'STABLE, 
'QUIET, and 'TRANSACTION. The term port is used to refer to objects declared by port declarations only.

NOTE 2—Signals are given initial values by initializing their drivers. The initial values of drivers are then propagated 
through the corresponding net to determine the initial values of the signals that make up the net (see 14.7.3.4).

NOTE 3—The value of a signal is indirectly modified by a signal assignment statement (see 10.5); such assignments 
affect the future values of the signal.

NOTE 4—The subelements of a composite, declared signal are not declared signals. Moreover, such subelements cannot 
be of file types or protected types (see 5.3.1).

NOTE 5—A signal may be of a formal generic type. Depending on the implementation, various determinations and 
checks may be done during analysis of an instance of the enclosing declaration that defines the formal generic type, or 
they may be deferred until the design hierarchy is elaborated. These include: determining whether a signal or a subele-
ment of a signal is resolved, based on the actual generic subtype; determining the implicit default value; checking that 
the actual generic type is neither an access type nor contains a subelement of an access type.

Cross-references: Disconnection specifications, 7.4; disconnection statements, 11.6; guarded assignment, 
11.6; guarded blocks, 11.2; guarded targets, 11.6; signal guard, 11.2.

6.4.2.4 Variable declarations

A variable declaration declares a variable of the specified type. Such a variable is an explicitly declared 
variable.
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variable_declaration ::=
      [ shared ] variable identifier_list : subtype_indication [ := expression ] ;

A variable declaration that includes the reserved word shared is a shared variable declaration. A shared 
variable declaration declares a shared variable. Shared variables are a subclass of the variable class of 
objects. The base type of the subtype indication of a shared variable declaration shall be a protected type. 
Variables declared immediately within entity declarations, architecture bodies, blocks, and generate 
statements shall be shared variables. Variables declared immediately within subprograms and processes 
shall not be shared variables. Variables declared immediately within a package shall be not be shared 
variables if the package is declared within a subprogram, process, or protected type body; otherwise, the 
variables shall be shared variables. Variables declared immediately within a protected type body shall not be 
shared variables. Variables that appear in protected type bodies, other than within subprograms, represent 
shared data.

If a given variable declaration appears (directly or indirectly) within a protected type body, then the base 
type denoted by the subtype indication of the variable declaration shall not be the protected type defined by 
the protected type body.

If the variable declaration includes the assignment symbol followed by an expression, the expression 
specifies an initial value for the declared variable; the type of the expression shall be that of the variable. 
Such an expression is said to be an initial value expression. A variable declaration, whether it is a shared 
variable declaration or not, whose subtype indication denotes a protected type shall not have an initial value 
expression (moreover, it shall not include the immediately preceding assignment symbol).

If an initial value expression appears in the declaration of a variable, then the initial value of the variable is 
determined by that expression each time the variable declaration is elaborated. In the absence of an initial 
value expression, a default initial value applies. The default initial value for a variable of a scalar subtype T 
is defined to be the value given by T'LEFT. The default initial value of a variable of a composite type is 
defined to be the aggregate of the default initial values of all of its scalar subelements, each of which is itself 
a variable of a scalar subtype. The default initial value of a variable of an access type is defined to be the 
value null for that type.

NOTE 1—The value of a variable that is not a shared variable is modified by a variable assignment statement (see 10.6); 
such assignments take effect immediately.

NOTE 2—The variables declared within a given procedure persist until that procedure completes and returns to the 
caller. For procedures that contain wait statements, a variable therefore persists from one point in simulation time to 
another, and the value in the variable is thus maintained over time. For processes, which never complete, all variables 
persist from the beginning of simulation until the end of simulation.

NOTE 3—The subelements of a composite, declared variable are not declared variables.

NOTE 4—Since the language guarantees mutual exclusion of accesses to shared data, but not the order of access to such 
data by multiple processes in the same simulation cycle, the use of shared variables can be both non-portable and non-
deterministic. For example, consider the following architecture:

architecture UseSharedVariables of SomeEntity is
   subtype ShortRange is INTEGER range -1 to 1;
   type ShortRangeProtected is protected
      procedure Set (V: ShortRange);
      procedure Get (V: out ShortRange);
   end protected;

   type ShortRangeProtected is protected body
      variable Local: ShortRange := 0;
      procedure Set (V: ShortRange) is
      begin
         Local := V;
      end procedure Set;
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      procedure Get (V: out ShortRange) is
      begin
         V := Local;
      end procedure Get;
   end protected body;

   shared variable ShortCounter: ShortRangeProtected;

begin
   PROC1: process
      variable V: ShortRange;
   begin
      ShortCounter.Get (V);
      ShortCounter.Set (V+1);
      wait;
   end process PROC1;

   PROC2: process
      variable V: ShortRange;
   begin
      ShortCounter.Get (V);
      ShortCounter.Set (V-1);
      wait;
   end process PROC2;
end architecture UseSharedVariables;
In particular, the value of ShortCounter after the execution of both processes is not guaranteed to be 0.

NOTE 5—Variables that are not shared variables may have a subtype indication denoting a protected type.

NOTE 6—A variable, other than a shared variable, may be of a formal generic type. Depending on the implementation, 
a default initial value may be determined during analysis of an instance of the enclosing declaration that defines the for-
mal generic type, or determination may be deferred until the design hierarchy is elaborated. A shared variable cannot be 
of a formal generic type, since an actual generic type shall not be a protected type.

Examples:

variable INDEX: INTEGER range 0 to 99 := 0;
   -- Initial value is determined by the initial value expression

variable COUNT: POSITIVE;
   -- Initial value is POSITIVE'LEFT; that is,1

variable MEMORY: BIT_MATRIX (0 to 7, 0 to 1023);
   -- Initial value is the aggregate of the initial values of each 
element

shared variable Counter: SharedCounter;
   -- See 5.6.2 and 5.6.3 for the definitions of SharedCounter

shared variable addend, augend, result: ComplexNumber;
   -- See 5.6.2 and 5.6.3 for the definition of ComplexNumber

variable bit_stack: VariableSizeBitArray;
   -- See 5.6.2 and 5.6.3 for the definition of VariableSizeBitArray;
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6.4.2.5 File declarations

A file declaration declares a file of the specified type. Such a file is an explicitly declared file.

file_declaration ::=
      file identifier_list : subtype_indication [ file_open_information ] ;

file_open_information ::=  [ open file_open_kind_expression ] is file_logical_name

file_logical_name ::=  string_expression

The subtype indication of a file declaration shall define a file subtype.

If file open information is included in a given file declaration, then the file declared by the declaration is 
opened (see 5.5.2) with an implicit call to FILE_OPEN when the file declaration is elaborated (see 14.4.2.5). 
This implicit call is to the FILE_OPEN procedure of the first form, and it associates the identifier with the 
file parameter F, the file logical name with the External_Name parameter, and the file open kind expression 
with the Open_Kind parameter. If a file open kind expression is not included in the file open information of 
a given file declaration, then the default value of READ_MODE is used during elaboration of the file 
declaration.

If file open information is not included in a given file declaration, then the file declared by the declaration is 
not opened when the file declaration is elaborated.

The file logical name shall be an expression of predefined type STRING. The value of this expression is 
interpreted as a logical name for a file in the host system environment. An implementation shall provide 
some mechanism to associate a file logical name with a host-dependent file. Such a mechanism is not 
defined by the language.

The file logical name identifies an external file in the host file system that is associated with the file object. 
This association provides a mechanism for either importing data contained in an external file into the design 
during simulation or exporting data generated during simulation to an external file.

If multiple file objects are associated with the same external file, and each file object has an access mode 
that is read-only (see 5.5.2), then values read from each file object are read from the external file associated 
with the file object. The language does not define the order in which such values are read from the external 
file, nor does it define whether each value is read once or multiple times (once per file object).

The language does not define the order of and the relationship, if any, between values read from and written 
to multiple file objects that are associated with the same external file. An implementation may restrict the 
number of file objects that are associated at one time with a given external file.

If a formal subprogram parameter is of the class file, it shall be associated with an actual that is a file object.

Examples:

type IntegerFile is file of INTEGER;

file F1: IntegerFile;
   --  No implicit FILE_OPEN is performed during elaboration.

file F2: IntegerFile is "test.dat";
   --  At elaboration, an implicit call is performed:
   --  FILE_OPEN (F2, "test.dat");
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   --  The OPEN_KIND parameter defaults to READ_MODE.

file F3: IntegerFile open WRITE_MODE is "test.dat";
   --  At elaboration, an implicit call is performed:
   --  FILE_OPEN (F3, "test.dat", WRITE_MODE);

NOTE 1—All file objects associated with the same external file should be of the same base type.

NOTE 2—A file cannot be of a formal generic type, since an actual generic type shall not be a file type.

6.5 Interface declarations

6.5.1 General

An interface declaration is an interface object declaration, an interface type declaration, an interface 
subprogram declaration, or an interface package declaration.

interface_declaration ::=
        interface_object_declaration
      | interface_type_declaration
      | interface_subprogram_declaration
      | interface_package_declaration

6.5.2 Interface object declarations

An interface object declaration declares an interface object of a specified type. Interface objects include 
interface constants that appear as generics of a design entity, a component, a block, a package, or a 
subprogram, or as constant parameters of subprograms; interface signals that appear as ports of a design 
entity, component, or block, or as signal parameters of subprograms; interface variables that appear as 
variable parameters of subprograms; interface files that appear as file parameters of subprograms.

interface_object_declaration ::=
        interface_constant_declaration
      | interface_signal_declaration
      | interface_variable_declaration
      | interface_file_declaration

interface_constant_declaration ::=
      [ constant ] identifier_list : [ in ] subtype_indication [ := static_expression ]

interface_signal_declaration ::=
      [ signal ] identifier_list : [ mode ] subtype_indication [ bus ] [ := static_expression ]

interface_variable_declaration ::=
      [ variable ] identifier_list : [ mode ] subtype_indication [ := static_expression ]

interface_file_declaration ::=
      file identifier_list : subtype_indication

mode ::= in | out | inout | buffer | linkage

If no mode is explicitly given in an interface declaration other than an interface file declaration, mode in is 
assumed.
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For an interface constant declaration (other than a formal parameter of the predefined = or /= operator for an 
access type) or an interface signal declaration, the subtype indication shall define a subtype that is neither a 
file type, an access type, nor a protected type. Moreover, the subtype indication shall not denote a composite 
type with a subelement that is of an access type.

For an interface file declaration, it is an error if the subtype indication does not denote a subtype of a file 
type.

If an interface signal declaration includes the reserved word bus, then the signal declared by that interface 
declaration is a guarded signal of signal kind bus.

If an interface declaration contains a “:=” symbol followed by an expression, the expression is said to be the 
default expression of the interface object. The type of a default expression shall be that of the corresponding 
interface object. It is an error if a default expression appears in an interface declaration and any of the 
following conditions hold:

— The mode is linkage.
— The interface object is a formal signal parameter.
— The interface object is a formal variable parameter of mode other than in.
— The subtype indication of the interface declaration denotes a protected type.

In an interface signal declaration appearing in a port list, the default expression defines the default value(s) 
associated with the interface signal or its subelements. In the absence of a default expression, an implicit 
default value is assumed for the signal or for each scalar subelement, as defined for signal declarations (see 
6.4.2.3). The value, whether implicitly or explicitly provided, is used to determine the initial contents of 
drivers, if any, of the interface signal as specified for signal declarations.

An interface object provides a channel of communication between the environment and a particular portion 
of a description. The value of an interface object may be determined by the value of an associated object or 
expression in the environment; similarly, the value of an object in the environment may be determined by 
the value of an associated interface object. The manner in which such associations are made is described in 
6.5.7.

The value of an object is said to be read when one of the following conditions is satisfied:
— When the object is evaluated, and also (indirectly) when the object is associated with an interface 

object of the modes in, inout, or linkage.
— When the object is a signal and a name denoting the object appears in a sensitivity list in a wait 

statement or a process statement.
— When the object is a signal and the value of any of its predefined attributes 'STABLE, 'QUIET, 

'DELAYED, 'TRANSACTION, 'EVENT, 'ACTIVE, 'LAST_EVENT, 'LAST_ACTIVE, or 
'LAST_VALUE is read.

— When one of its subelements is read.
— When the object is a file and a READ operation is performed on the file.
— When the object is a file of type STD.TEXTIO.TEXT and the procedure STD.TEXTIO.READLINE 

is called with the given object associated with the formal parameter F of the given procedure.

The value of an object is said to be updated when one of the following conditions is satisfied:
— When it is the target of an assignment, and also (indirectly) when the object is associated with an 

interface object of the modes out, buffer, inout, or linkage.
— When a VHPI information model object representing the given object is updated using a call to the 

function vhpi_put_value.
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— When the object is a signal and the vhpi_schedule_transaction function is used to 
schedule a transaction on a driver of the signal.

— When one of its subelements is updated.

— When the object is a file and a WRITE or FLUSH operation is performed on the file.

— When the object is a file of type STD.TEXTIO.TEXT and the procedure 
STD.TEXTIO.WRITELINE is called with the given object associated with the formal parameter F 
of the given procedure.

It is an error if an object other than a signal, variable, or file object is updated.

An interface object has one of the following modes:

— in. The value of the interface object is allowed to be read, but it shall not be updated by a simple 
waveform assignment, a conditional waveform assignment, a selected waveform assignment, a 
concurrent signal assignment, or a variable assignment. Reading an attribute of the interface object is 
allowed, unless the interface object is a subprogram signal parameter and the attribute is one of 
'STABLE, 'QUIET, 'DELAYED, 'TRANSACTION, 'DRIVING, or 'DRIVING_VALUE.

— out. The value of the interface object is allowed to be updated and, provided it is not a signal 
parameter, read. Reading the attributes of the interface object is allowed, unless the interface object 
is a signal parameter and the attribute is one of 'STABLE, 'QUIET, 'DELAYED, 'TRANSACTION, 
'EVENT, 'ACTIVE, 'LAST_EVENT, 'LAST_ACTIVE, or 'LAST_VALUE.

— inout or buffer. Reading and updating the value of the interface object is allowed. Reading the 
attributes of the interface object, other than the attributes 'STABLE, 'QUIET, 'DELAYED, and 
'TRANSACTION of a signal parameter, is also permitted.

— linkage. Reading and updating the value of the interface object is allowed, but only by appearing as 
an actual corresponding to an interface object of mode linkage. No other reading or updating is 
permitted.

NOTE 1—A subprogram parameter that is of a file type shall be declared as a file parameter.

NOTE 2—Since shared variables are a subclass of variables, a shared variable may be associated as an actual with a for-
mal of class variable.

NOTE 3—Ports of mode linkage are used in the Boundary Scan Description Language (see IEEE Std 1149.1TM-2001 
[B15]).

NOTE 4—Interface file objects do not have modes.

NOTE 5—The driving value of a port that has no source is the default value of the port (see 14.7.3.2).

NOTE 6—If the subtype indication of an interface constant declaration or an interface signal declaration denotes a com-
posite type, the type cannot have a subelement of a file type or a protected type (see 5.3.1).

NOTE 7—Although ports of mode out have identical semantics to ports of mode buffer, there is an important design 
documentation distinction between them. It is intended that a port of mode out should be read only for passive activities, 
that is, for functionality used for verification purposes within monitors or property or assertion checkers. If the value of 
an output port is read to implement the algorithmic behavior of a description, then the port should be of mode buffer. 
Due to the potential complexity of monitors and checkers, it is not feasible to express these usage restrictions as seman-
tic rules within the language without compromising the ability to write complex monitors and checkers.

NOTE 8—A port of mode in may be updated by a force assignment, a release assignment, or a call to 
vhpi_put_value. A formal parameter of mode in shall not be updated by a call to vhpi_put_value (see 22.5.1).

6.5.3 Interface type declarations

An interface type declaration declares an interface type that appears as a generic of a design entity, a 
component, a block, a package, or a subprogram.
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interface_type_declaration ::=
      interface_incomplete_type_declaration

interface_incomplete_type_declaration ::= type identifier

An interface type provides a means for the environment to determine a type to be used for objects in a 
particular portion of a description. The set of values and applicable operations for an interface type may be 
determined by an associated subtype in the environment. The manner in which such associations are made is 
described in 6.5.7.

Within an entity declaration, an architecture body, a component declaration, or an uninstantiated 
subprogram or package declaration that declares a given interface type, the type declared by the given 
interface type declaration is distinct from the types declared by other interface type declarations and from 
explicitly declared types. The name of the given interface type denotes both an undefined base type and a 
subtype of the base type. The class (see 5.1) of the base type is not defined. The following operations are 
defined for the interface type:

— The basic operations of assignment, allocation, type qualification and type conversion
— The predefined equality (=) and inequality (/=) operators, implicitly declared as formal generic 

subprograms immediately following the interface type declaration in the enclosing interface list

The name of an interface type declaration of a block statement (including an implied block statement 
representing a component instance or a bound design entity), a generic-mapped package or a generic-
mapped subprogram denotes the subtype specified as the corresponding actual in a generic association list.

6.5.4 Interface subprogram declarations

An interface subprogram declaration declares an interface subprogram that appears as a generic of a design 
entity, a component, a block, a package, or a subprogram.

interface_subprogram_declaration ::=
      interface_subprogram_specification [ is interface_subprogram_default ]

interface_subprogram_specification ::=
      interface_procedure_specification | interface_function_specification

interface_procedure_specification ::=
      procedure designator
            [ [ parameter ] ( formal_parameter_list ) ]

interface_function_specification ::=
      [ pure | impure ] function designator
            [ [ parameter ] ( formal_parameter_list ) ] return type_mark

interface_subprogram_default ::= subprogram_name | <>

An interface subprogram provides a means for the environment to determine a subprogram to be called in a 
particular portion of a description by associating an actual subprogram with the formal interface 
subprogram. The manner in which such associations are made is described in 6.5.7.

If an interface subprogram declaration contains an interface subprogram default in the form of a subprogram 
name, the subprogram name shall denote a subprogram, and the denoted subprogram and the interface 
subprogram shall have conforming profiles (see 4.10).
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Within an entity declaration, an architecture body, a component declaration, or an uninstantiated 
subprogram or package declaration that declares a given interface subprogram, the name of the given 
interface subprogram denotes an undefined subprogram declaration and body. 

The name of an interface subprogram declaration of a block statement (including an implied block statement 
representing a component instance or a bound design entity), a generic-mapped package or a generic-
mapped subprogram denotes the subprogram specified as the corresponding actual in a generic association 
list.

6.5.5 Interface package declarations

An interface package declaration declares an interface package that appears as a generic of a design entity, a 
component, a block, a package, or a subprogram.

interface_package_declaration ::=
      package identifier is new uninstantiated_package_name interface_package_generic_map_aspect

interface_package_generic_map_aspect ::=
        generic_map_aspect
      | generic map ( <> )
      | generic map ( default )

An interface package provides a means for the environment to determine an instance of an uninstantiated 
package to be visible in a particular portion of a description by associating an actual instantiated package 
with the formal interface package. The manner in which such associations are made is described in 6.5.7.

The uninstantiated package name shall denote an uninstantiated package declared in a package declaration.

The interface package generic map aspect specifies the allowable actual generics of the instantiated package 
associated with the formal generic package (see 6.5.7.2), as follows:

— If the interface package generic map aspect is in the form of a generic map aspect, then the 
corresponding actual instantiated package shall have matching actual generics. Matching actual 
generics are described in 6.5.7.2.

— If the interface package generic map aspect is in the form that includes the box (<>) symbol, then the 
corresponding actual instantiated package may have any actual generics.

— If the interface package generic map aspect is in the form that includes the reserved word default, 
then every  generic of the uninstantiated package shall be either a generic constant with a default 
expression or a generic subprogram with an interface subprogram default. The interface package 
generic map aspect is equivalent to an implicit interface package generic map aspect containing a 
generic map aspect in which each generic of the uninstantiated package is associated with the 
corresponding default expression or subprogram name implied by the interface subprogram default. 
The subprogram implied by an interface subprogram default in the form of a box (<>) symbol is a 
subprogram directly visible at the place of the formal generic package declaration.

Within an entity declaration, an architecture body, a component declaration, or an uninstantiated 
subprogram or package declaration that declares a given interface package, the name of the given interface 
package denotes an undefined instance of the uninstantiated package. 

The name of an interface package declaration of a block statement (including an implied block statement 
representing a component instance or a bound design entity), a generic-mapped package or a generic-
mapped subprogram denotes the instantiated package specified as the corresponding actual in a generic 
association list.
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6.5.6 Interface lists

6.5.6.1 General

An interface list contains the interface declarations required by a subprogram, a component, a design entity, 
a block statement, or a package.

interface_list ::=
      interface_element { ; interface_element }

interface_element ::=  interface_declaration

A generic interface list consists entirely of interface constant declarations, interface type declarations, 
interface subprogram declarations, and interface package declarations. A port interface list consists entirely 
of interface signal declarations. A parameter interface list may contain interface constant declarations, 
interface signal declarations, interface variable declarations, interface file declarations, or any combination 
thereof.

A name that denotes an interface object declared in a port interface list or a parameter interface list shall not 
appear in any interface declaration within the interface list containing the denoted interface object except to 
declare this object. A name that denotes an interface declaration in a generic interface list may appear in an 
interface declaration within the interface list containing the denoted interface declaration.

NOTE—The restriction mentioned in the previous paragraph makes the following two interface lists illegal:

entity E is
   port (P1: STRING; P2: STRING(P1'RANGE));                    -- Illegal
   procedure X (Y1, Y2: INTEGER; Y3: INTEGER range Y1 to Y2);  -- Illegal
end E;

However, the following interface lists are legal:

entity E is
   generic (G1: INTEGER; G2: INTEGER := G1; G3, G4, G5, G6: INTEGER);
   port (P1, P2: STRING (G3 to G4));
   procedure X (Y3: INTEGER range G5 to G6);
end E;

6.5.6.2 Generic clauses

Generics provide a channel for information to be communicated to a block, a package, or a subprogram from 
its environment. The following applies to external blocks defined by design entities, to internal blocks 
defined by block statements, and to packages and subprograms.

generic_clause ::=
      generic ( generic_list ) ;

generic_list ::=  generic_interface_list

The generics of a block, a package, or a subprogram are defined by a generic interface list. Each interface 
element in such a generic interface list declares a formal generic.

The value of a generic constant may be specified by the corresponding actual in a generic association list. If 
no such actual is specified for a given formal generic constant (either because the formal generic is 
unassociated or because the actual is open), and if a default expression is specified for that generic, the value 
of this expression is the value of the generic. It is an error if no actual is specified for a given formal generic 
constant and no default expression is present in the corresponding interface element. It is an error if some of 
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the subelements of a composite formal generic constant are connected and others are either unconnected or 
unassociated.

The subtype denoted by a generic type is specified by the corresponding actual in a generic association list. 
It is an error if no such actual is specified for a given formal generic type (either because the formal generic 
is unassociated or because the actual is open).

The subprogram denoted by a generic subprogram may be specified by the corresponding actual in a generic 
association list. If no such actual is specified for a given formal generic subprogram (either because the 
formal generic is unassociated or because the actual is open), and if an interface subprogram default is 
specified for that generic, the subprogram denoted by the generic is determined as follows:

— If the interface subprogram default is in the form of a subprogram name, then the subprogram 
denoted by the generic is the subprogram denoted by the subprogram name.

— If the interface subprogram default is in the form of a box (<>) symbol, then there shall be a 
subprogram directly visible at the place of the generic association list that has the same designator as 
the formal and that has a conforming profile to that of the formal; the subprogram denoted by the 
generic is the directly visible subprogram.

It is an error if no actual is specified for a given formal generic subprogram and no interface subprogram 
default is present in the corresponding interface element. It is an error if the actual subprogram, whether 
explicitly associated or associated by default, is impure and the formal generic subprogram is pure.

A call to a formal generic subprogram uses the parameter names and default expressions defined by the 
declaration of the formal generic subprogram. Subtype checks and conversions for the association of actual 
parameters with formal parameters and for the execution of a return statement from the actual subprogram 
use the subtypes defined by the declaration of the actual subprogram.

The instantiated package denoted by a generic package is specified by the corresponding actual in a generic 
association list. It is an error if no such actual is specified for a given formal generic package (either because 
the formal generic is unassociated or because the actual is open).

NOTE—Generics may be used to control structural, dataflow, or behavioral characteristics of a block, a package, or a 
subprogram, or may simply be used as documentation. In particular, generics may be used to specify the size of ports; 
the number of subcomponents within a block; the timing characteristics of a block; or even the physical characteristics of 
a design such as temperature, capacitance, or location.

6.5.6.3 Port clauses

Ports provide channels for dynamic communication between a block and its environment. The following 
applies to both external blocks defined by design entities and to internal blocks defined by block statements, 
including those equivalent to component instantiation statements and generate statements (see 11.8).

port_clause ::=
      port ( port_list ) ;

port_list ::=  port_interface_list

The ports of a block are defined by a port interface list. Each interface element in the port interface list 
declares a formal port.

To communicate with other blocks, the ports of a block can be associated with signals in the environment in 
which the block is used. Moreover, the ports of a block may be associated with an expression in order to 
provide these ports with constant driving values or with values derived from signals and other ports; such 
ports shall be of mode in. A port is itself a signal (see 6.4.2.3); thus, a formal port of a block may be 
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associated as an actual with a formal port of an inner block. The port, signal, or expression associated with a 
given formal port is called the actual corresponding to the formal port (see 6.5.7). The actual, if a port or 
signal, shall be denoted by a static name (see 8.1).

If a formal port of mode in is associated with an expression that is not globally static (see 9.4.1) and the 
formal is of an unconstrained or partially constrained composite type requiring determination of index 
ranges from the actual according to the rules of 5.3.2.2, then the expression shall be one of the following:

— The name of an object whose subtype is globally static

— An indexed name whose prefix is one of the members of this list

— A slice name whose prefix is one of the members of this list and whose discrete range is a globally 
static discrete range

— An aggregate, provided all choices are locally static and all expressions in element associations are 
expressions described in this list

— A function call whose return type mark denotes a globally static subtype

— A qualified expression or type conversion whose type mark denotes a globally static subtype

— An expression described in this list and enclosed in parentheses

If the actual part of a given association element for a formal port of a block is the reserved word inertial
followed by an expression, or is an expression that is not globally static, then the given association element 
is equivalent to association of the port with an anonymous signal implicitly declared in the declarative 
region that immediately encloses the block.  The signal has the same subtype as the formal port and is the 
target of an implicit concurrent signal assignment statement of the form

anonymous <= E;

where E is the expression in the actual part of the given association element. The concurrent signal 
assignment statement occurs in the same statement part as the block.

After a given description is completely elaborated (see Clause 14), if a formal port is associated with an 
actual that is itself a port, then the following restrictions apply depending upon the mode (see 6.5.2), if any, 
of the formal port:

a) For a formal port of mode in, the associated actual shall be a port of mode in, out, inout, or buffer. 
This restriction applies both to an actual that is associated as a name in the actual part of an 
association element and to an actual that is associated as part of an expression in the actual part of an 
association element.

b) For a formal port of mode out, the associated actual shall be a port of mode out, inout, or buffer.

c) For a formal port of mode inout, the associated actual shall be a port of mode out, inout, or buffer.

d) For a formal port of mode buffer, the associated actual shall be a port of mode out, inout, or buffer.

e) For a formal port of mode linkage, the associated actual may be a port of any mode.

If a formal port is associated with an actual port, signal, or expression, then the formal port is said to be 
connected. If a formal port is instead associated with the reserved word open, then the formal is said to be 
unconnected. It is an error if a port of mode in is unconnected (see 6.5.6.3) or unassociated (see 6.5.7.3) 
unless its declaration includes a default expression (see 6.5.2). It is an error if a port of any mode other than 
in is unconnected or unassociated and its type is an unconstrained or partially constrained composite type. It 
is an error if some of the subelements of a composite formal port are connected and others are either 
unconnected or unassociated.
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6.5.7 Association lists

6.5.7.1 General

An association list, other than one appearing in an interface package generic map aspect (see 6.5.5), 
establishes correspondences between formal or local generic, port, or parameter names on the one hand and 
local or actual names, expressions, subtypes, subprograms, or packages on the other.

association_list ::=
      association_element { , association_element }

association_element ::=
      [ formal_part => ] actual_part

formal_part ::=
        formal_designator
      | function_name ( formal_designator )
      | type_mark ( formal_designator )

formal_designator ::=
        generic_name
      | port_name
      | parameter_name

actual_part ::=
        actual_designator
      | function_name ( actual_designator )
      | type_mark ( actual_designator )

actual_designator ::=
        [ inertial ] expression
      | signal_name
      | variable_name
      | file_name
      | subtype_indication
      | subprogram_name
      | instantiated_package_name
      | open

Each association element in an association list associates one actual designator with the corresponding 
interface element in the interface list of a subprogram declaration, component declaration, entity declaration, 
block statement, or package. The corresponding interface element is determined either by position or by 
name.

An association element is said to be named if the formal designator appears explicitly; otherwise, it is said to 
be positional. For a positional association, an actual designator at a given position in an association list 
corresponds to the interface element at the same position in the interface list.

Named associations can be given in any order, but if both positional and named associations appear in the 
same association list, then all positional associations shall occur first at their normal position. Hence once a 
named association is used, the rest of the association list shall use only named associations.

In the following paragraphs, the term actual refers to an actual designator, and the term formal refers to a 
formal designator.
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The formal part of a named association element may be in the form of a function call, where the single 
argument of the function is the formal designator itself, if and only if the formal is an interface object, the 
mode of the formal is out, inout, buffer, or linkage, and if the actual is not open. In this case, the function 
name shall denote a function whose single parameter is of the type of the formal and whose result is the type 
of the corresponding actual. Such a conversion function provides for type conversion in the event that data 
flows from the formal to the actual.

Alternatively, the formal part of a named association element may be in the form of a type conversion, 
where the expression to be converted is the formal designator itself, if and only if the formal is an interface 
object, the mode of the formal is out, inout, buffer, or linkage, and if the actual is not open. In this case, the 
base type denoted by the type mark shall be the same as the base type of the corresponding actual. Such a 
type conversion provides for type conversion in the event that data flows from the formal to the actual. It is 
an error if the type of the formal is not closely related to the type of the actual. (See 9.3.6.)

The actual part of a (named or positional) association element corresponding to a formal interface object 
may have the syntactic form of a function call. This form may be interpreted either as a function call whose 
parameter is the actual designator, or as an expression, in which case the entire expression is the actual 
designator. The actual part is interpreted as a function call whose parameter is the actual designator if and 
only if

— The corresponding function declaration has one parameter,
— The mode of the formal corresponding to the association element is in, inout, or linkage and the 

class of the formal is not constant,
— The function parameter is a signal name or a variable name, and
— The function name is not preceded by the reserved word inertial.

Otherwise, the entire expression given by the function call is interpreted as the actual designator. In the case 
of a function call whose parameter is the actual designator, the type of the function parameter shall be the 
type of the actual and the result type shall be the type of the corresponding formal. Such a function call is 
interpreted as application of a conversion function that provides for type conversion in the event that data 
flows from the actual to the formal.

Alternatively, the actual part of a (named or positional) association element corresponding to a formal 
interface object may have the syntactic form of a type conversion. This form may be interpreted either as a 
type conversion whose operand is the actual designator, or as an expression, in which case the entire 
expression is the actual designator. The actual part is interpreted as a type conversion whose operand is the 
actual designator if and only if

— The mode of the formal corresponding to the association element is in, inout, or linkage, and the 
class of the formal is not constant,

— The operand is a signal name or a variable name, and
— The type mark is not preceded by the reserved word inertial.

Otherwise, the entire expression given by the type conversion is interpreted as the actual designator. In the 
case of a type conversion whose operand is the actual designator, the base type denoted by the type mark 
shall be the same as the base type of the corresponding formal. Such a type conversion provides for type 
conversion in the event that data flows from the actual to the formal. It is an error if the type of the actual is 
not closely related to the type of the formal.

The type of the actual (after applying the conversion function or type conversion, if present in the actual 
part) shall be the same as the type of the corresponding formal, if the mode of the formal is in, inout, or 
linkage, and if the actual is not open. Similarly, if the mode of the formal is out, inout, buffer, or linkage, 
and if the actual is not open, then the type of the formal (after applying the conversion function or type 
conversion, if present in the formal part) shall be the same as the corresponding actual.
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For the association of signals with corresponding formal ports, association of a formal of a given composite 
type with an actual of the same type is equivalent to the association of each scalar subelement of the formal 
with the matching subelement of the actual, provided that no conversion function or type conversion is 
present in either the actual part or the formal part of the association element. If a conversion function or type 
conversion is present, then the entire formal is considered to be associated with the entire actual.

Similarly, for the association of actuals with corresponding formal subprogram parameters, association of a 
formal parameter of a given composite type with an actual of the same type is equivalent to the association 
of each scalar subelement of the formal parameter with the matching subelement of the actual. Different 
parameter passing mechanisms may be required in each case, but in both cases the associations will have an 
equivalent effect. This equivalence applies provided that no actual is accessible by more than one path (see 
4.2.2.2).

A formal interface object shall be either an explicitly declared interface object or member (see 5.1) of such 
an interface object. In the former case, such a formal is said to be associated in whole. In the latter cases, 
named association shall be used to associate the formal and actual; the subelements of such a formal are said 
to be associated individually. Furthermore, every scalar subelement of the explicitly declared interface 
object shall be associated exactly once with an actual (or subelement thereof) in the same association list, 
and all such associations shall appear in a contiguous sequence within that association list. Each association 
element that associates a slice or subelement (or slice thereof) of an interface object shall identify the formal 
with a locally static name.

If an interface element in an interface list includes a default expression for a formal generic constant, for a 
formal port of any mode other than linkage, or for a formal variable or constant parameter of mode in, or an 
interface subprogram default for a formal generic subprogram, then any corresponding association list need 
not include an association element for that interface element. For an interface element that is a formal 
generic constant, a formal signal port, or a formal variable or constant parameter, if the association element 
is not included in the association list, or if the actual is open, then the value of the default expression is used 
as the actual expression or signal value in an implicit association element for that interface element. For an 
interface element that is a formal generic subprogram, if the association element is not included in the 
association list, or if the actual is open, then the subprogram denoted by the formal generic subprogram is 
determined by the interface subprogram default as described in 6.5.6.2.

It is an error if an actual of open is associated with a formal interface object that is associated individually. 
An actual of open counts as the single association allowed for the corresponding formal interface object, but 
does not supply a constant, signal, or variable (as is appropriate to the object class of the formal) to the 
formal.

It is an error if the reserved word inertial appears in an association element other than in a port map aspect.

NOTE 1—It is a consequence of these rules that, if an association element is omitted from an association list in order to 
make use of the default expression on the corresponding interface element, all subsequent association elements in that 
association list shall be named associations.

NOTE 2—Although a default expression can appear in an interface element that declares a (local or formal) port, such a 
default expression is not interpreted as the value of an implicit association element for that port. Instead, the value of the 
expression is used to determine the effective value of that port during simulation if the port is left unconnected (see 
14.7.3).

NOTE 3—Named association cannot be used when invoking implicitly defined operators or predefined attributes that 
are functions, since the formal parameters of these operators and functions are not named (see 9.2 and 16.2).

NOTE 4—Since information flows only from the actual to the formal when the mode of the formal is in, and since a 
function call is itself an expression, the actual associated with a formal of object class constant is never interpreted as a 
conversion function or a type conversion converting an actual designator that is an expression. Thus, the following asso-
ciation element is legal:

Param => F (open)
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under the conditions that Param is a constant formal and F is a function returning the same base type as that of Param and 
having one or more parameters, all of which may be defaulted. It is an error if a conversion function or type conversion 
appears in the actual part when the actual designator is open.

6.5.7.2 Generic map aspects

A generic map aspect, other than one appearing in an interface package generic map aspect (see 6.5.5), 
associates values, subtypes, subprograms, or instantiated packages with the formal generics of a block, a 
package, or a subprogram. The following applies to external blocks defined by design entities, to internal 
blocks defined by block statements, and to packages and subprograms.

generic_map_aspect ::=
      generic map ( generic_association_list )

Both named and positional association are allowed in a generic association list.

The following definitions are used in the remainder of this subclause:
— The term actual refers to an actual designator that appears in an association element of a generic 

association list.
— The term formal refers to a formal designator that appears in an association element of a generic 

association list.

The purpose of a generic map aspect is as follows:
— A generic map aspect appearing immediately within a binding indication associates actuals with the 

formals of the entity declaration implied by the immediately enclosing binding indication.
— A generic map aspect appearing immediately within a component instantiation statement associates 

actuals with the formals of the component instantiated by the statement.
— A generic map aspect appearing immediately within a block header associates actuals with the 

formals defined by the same block header.
— A generic map aspect appearing immediately within a package header associates actuals with the 

formals defined by the same package header. This applies to a generic map aspect appearing in the 
package header of an explicitly declared generic-mapped package or a generic-mapped package that 
is equivalent to a package instantiation declaration.

— A generic map aspect appearing immediately within a subprogram header associates actuals with the 
formals defined by the same subprogram header. This applies to a generic map aspect appearing in 
the subprogram header of an explicitly declared generic-mapped subprogram or a generic-mapped 
subprogram that is equivalent to a subprogram instantiation declaration.

In each case, for a formal generic constant, it is an error if a scalar formal is associated with more than one 
actual, and it is an error if a scalar subelement of any composite formal is associated with more than one 
scalar subelement of an actual. Similarly, for a formal generic type, a formal generic subprogram, or a 
formal generic package, it is an error if the formal is associated with more than one actual.

An actual associated with a formal generic constant in a generic map aspect shall be an expression or the 
reserved word open. An actual associated with a formal generic type shall be a subtype indication. An actual 
associated with a formal generic subprogram shall be a name that denotes a subprogram whose profile 
conforms to that of the formal, or the reserved word open. The actual, if a predefined attribute name that 
denotes a function, shall be one of the predefined attributes 'IMAGE, 'VALUE, 'POS, 'VAL, 'SUCC, 'PRED, 
'LEFTOF, or 'RIGHTOF.

An actual associated with a formal generic package in a generic map aspect shall be a name that denotes an 
instance of the uninstantiated package named in the formal generic package declaration, as follows:

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



- 85 - IEC 61691-1-1:2011(E)�
IEEE Std 1076-2008

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

a) If the formal generic package declaration includes an interface package generic map aspect in the 
form of a generic map aspect, then the generic map aspect of the package instantiation declaration 
that declares the instantiated package denoted by the actual shall match the generic map aspect of 
the formal generic package declaration. The two generic map aspects match if, for each generic, the 
corresponding associated actuals, whether explicit or implicit, match as follows:
— Two actual generic constants match if they are the same value.
— Two actual generic types match if they denote the same subtype; that is, if the subtypes denoted 

by the two actual generic types have the same base type and the same constraints. Two range 
constraints are the same if they have the same bounds and directions. Two array constraints are 
the same if they define the same index ranges and the same element subtypes. Two record con-
straints are the same if, for each element, the element subtypes are the same.

— Two actual generic packages match if they denote the same instantiated package.
— Two actual generic subprograms match if they denote the same subprogram.

b) If the formal generic package declaration includes an interface package generic map aspect in the 
form that includes the box (<>) symbol, then the instantiated package denoted by the actual may 
be any instance of the uninstantiated package named in the formal generic package declaration.

c) If the formal generic package declaration includes an interface package generic map aspect in the 
form that includes the reserved word default, then the generic map aspect of the package instantia-
tion declaration that declares the instantiated package denoted by the actual shall match the implicit 
generic map aspect defined in 6.5.5.

A formal that is not associated with an actual is said to be an unassociated formal.

NOTE 1—A generic map aspect appearing immediately within a binding indication need not associate every formal 
generic constant with an actual. These formals may be left unbound so that, for example, a component configuration 
within a configuration declaration may subsequently bind them.

NOTE 2—A local generic (from a component declaration) or formal generic (from a package, a subprogram, a block 
statement or from the entity declaration of the enclosing design entity) may appear as an actual in a generic map aspect.

NOTE 3—If a formal generic constant is rebound by an incremental binding indication, the actual expression associated 
by the formal generic in the primary binding indication is not evaluated during the elaboration of the description.

Cross-references: Generic clauses, 6.5.6.2.

Example:

Clause 16 defines an uninstantiated package in library IEEE for fixed-point binary numbers, as follows:

package fixed_generic_pkg is
   generic (fixed_round_style: BOOLEAN;
            fixed_overflow_style: BOOLEAN;
            fixed_guard_bits: NATURAL;
            no_warning: BOOLEAN);
   type ufixed is array (INTEGER range <>) of STD_ULOGIC;
   type sfixed is array (INTEGER range <>) of STD_ULOGIC;
   ...
end package fixed_generic_pkg;

The package may be instantiated in a design unit as follows:

package fixed_dsp_pkg is new IEEE.fixed_generic_pkg
   generic map (fixed_rounding_style => FALSE, 

 fixed_overflow_style => FALSE,
 fixed_guard_bits => 0, no_warning => TRUE);
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An uninstantiated package defining complex numbers in which the real and imaginary parts are fixed-point 
binary numbers with the same index ranges can be defined as follows:

package fixed_complex_generic_pkg is
   generic (complex_fixed_left, complex_fixed_right: INTEGER;
            package complex_fixed_formal_pkg is
               new IEEE.fixed_generic_pkg generic map (<>));
   use complex_fixed_formal_pkg.all;
   type complex is record
      re, im : sfixed(complex_fixed_left downto complex_fixed_right);
   end record;
   function "-"  (z : complex ) return complex;
   function conj (z : complex ) return complex;
   function "+"  (l: complex; r: complex) return complex;
   function "-"  (l: complex; r: complex) return complex;
   function "*"  (l: complex; r: complex) return complex;
   function "/"  (l: complex; r: complex) return complex;
end package fixed_vector_generic_pkg;

This package may be instantiated to use the types and operations defined in fixed_dsp_pkg as follows:

package dsp_complex_pkg is new fixed_complex_generic_pkg
   generic map (complex_fixed_left => 3, complex_fixed_right => -12,
                complex_fixed_formal_pkg => fixed_dsp_pkg);

A further uninstantiated package defining mathematical operations on fixed-point binary numbers can be 
defined as follows:

package fixed_math_generic_pkg is
   generic (package math_fixed_formal_pkg is
               new IEEE.fixed_generic_pkg generic map (<>));
   use math_fixed_formal_pkg.all;
   function sqrt (x: sfixed) return sfixed;
   function exp  (x: sfixed) return sfixed;
   ...
end package fixed_math_generic_pkg;

This package, together with the complex numbers package, can be used to define an uninstantiated package 
that provides mathematical operations on complex numbers. Since the mathematical operations and the 
complex number representation depend on the fixed-point number package, an instance of the fixed-point 
package, together with instances of the mathematical operations and complex numbers packages that refer to 
the fixed-point package instance, shall be provided to the complex mathematical operations package. Thus, 
this package has formal generic packages as follows:

package fixed_complex_math_generic_pkg is
   generic (complex_math_fixed_left, complex_math_fixed_right: integer;
            package complex_math_fixed_formal_pkg is
               new IEEE.fixed_generic_pkg generic map (<>);
            package fixed_math_formal_pkg is
               new fixed_math_generic_pkg
                  generic map (math_fixed_formal_pkg =>
                                  complex_math_fixed_formal_pkg);
            package fixed_complex_formal_pkg is
               new fixed_complex_generic_pkg
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                  generic map (complex_fixed_left =>
                                  complex_math_fixed_left,
                               complex_fixed_right =>
                                  complex_math_fixed_right,
                               complex_fixed_formal_pkg =>
                                  complex_math_fixed_formal_pkg));
   use complex_math_fixed_formal_pkg.all,
       fixed_math_formal_pkg.all,
       fixed_complex_formal_pkg.all;
   function "abs" (z: complex  return sfixed;
   function arg   (z: complex) return sfixed;
   function sqrt  (z: complex) return complex;
   ...
end package fixed_complex_math_generic_pkg;

The mathematical packages my be instantiated as follows:

package dsp_math_pkg is new fixed_math_generic_pkg
   generic map ( math_fixed_formal_pkg => fixed_dsp_pkg );
package dsp_complex_math_pkg is new fixed_complex_math_generic_pkg
   generic map (complex_math_fixed_left => 3,
                complex_math_fixed_right => 3,
                complex_math_fixed_formal_pkg => fixed_dsp_pkg,
                fixed_math_formal_pkg => dsp_math_pkg,
                fixed_complex_formal_pkg => dsp_complex_pkg);

6.5.7.3 Port map aspects

A port map aspect associates signals or values with the formal ports of a block. The following applies to 
both external blocks defined by design entities and to internal blocks defined by block statements.

port_map_aspect ::=
      port map ( port_association_list )

Both named and positional association are allowed in a port association list.

The following definitions are used in the remainder of this subclause:
— The term actual refers to an actual designator that appears in an association element of a port 

association list.
— The term formal refers to a formal designator that appears in an association element of a port 

association list.

The purpose of a port aspect is as follows:
— A port map aspect appearing immediately within a binding indication associates actuals with the 

formals of the entity declaration implied by the immediately enclosing binding indication.
— Each scalar subelement of every local port of the component instances to which an enclosing 

configuration specification or component configuration applies shall be associated as an actual with 
at least one formal or with a scalar subelement thereof. The actuals of these associations for a given 
local port shall be either the entire local port or any slice or subelement (or slice thereof) of the local 
port. The actuals in these associations shall be locally static names.

— A port map aspect appearing immediately within a component instantiation statement associates 
actuals with the formals of the component instantiated by the statement.
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— A port map aspect appearing immediately within a block header associates actuals with the formals 
defined by the same block header.

In each case, it is an error if a scalar formal is associated with more than one actual, and is is an error if a 
scalar subelement of any composite formal is associated with more than one scalar subelement of an actual.

An actual associated with a formal port in a port map aspect shall be a signal, an expression, or the reserved 
word open.

Certain restrictions apply to the actual associated with a formal port in a port map aspect; these restrictions 
are described in 6.5.6.3.

A formal that is not associated with an actual is said to be an unassociated formal.

Example:

entity Buf is
   generic (Buf_Delay: TIME := 0 ns);
   port (Input_pin: in Bit; Output_pin: out Bit);
end Buf;

architecture DataFlow of Buf is
begin
   Output_pin <= Input_pin after Buf_Delay;
end DataFlow;

entity Test_Bench is
end Test_Bench;

architecture Structure of Test_Bench is
   component Buf is
      generic (Comp_Buf_Delay: TIME);
      port (Comp_I: in Bit; Comp_O: out Bit);
   end component;
   -- A binding indication; generic and port map aspects within a
   -- binding indication associate actuals (Comp_I, etc.) with formals
   -- of the entity declaration (Input_pin, etc.):
   for UUT: Buf
      use entity Work.Buf(DataFlow)
         generic map (Buf_Delay => Comp_Buf_Delay)
         port map (Input_pin => Comp_I, Output_pin=> Comp_O);

   signal S1,S2: Bit;
begin

   -- A component instantiation statement; generic and port map aspects
   -- within a component instantiation statement associate actuals
   -- (S1, etc.) with the formals of a component (Comp_I, etc.):
   UUT: Buf
      generic map (Comp_Buf_Delay => 50 ns)
      port map (Comp_I => S1, Comp_O => S2);

   -- A block statement; generic and port map aspects within the
   -- block header of a block statement associate actuals (in this
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   -- case, 4) with the formals defined in the block header:
   B: block
      generic (G: INTEGER);
      generic map (G => 4);
   begin
   end block;
end Structure;
NOTE—A local port (from a component declaration) or formal port (from a block statement or from the entity declara-
tion of the enclosing design entity) may appear as an actual in a port map aspect.

Cross-references: Port clauses, 6.5.6.3.

6.6 Alias declarations

6.6.1 General

An alias declaration declares an alternate name for an existing named entity.

alias_declaration ::=
      alias alias_designator [ : subtype_indication ] is name [ signature ] ;

alias_designator ::=  identifier | character_literal | operator_symbol

An object alias is an alias whose alias designator denotes an object (i.e., a constant, a variable, a signal, or a 
file). A nonobject alias is an alias whose alias designator denotes some named entity other than an object. 
An alias can be declared for all named entities except for labels, loop parameters, and generate parameters.

The alias designator in an alias declaration denotes the named entity specified by the name and, if present, 
the signature in the alias declaration. An alias of a signal denotes a signal; an alias of a variable denotes a 
variable; an alias of a constant denotes a constant; and an alias of a file denotes a file. Similarly, an alias of a 
subprogram (including an operator) denotes a subprogram, an alias of an enumeration literal denotes an 
enumeration literal, and so forth.

If the alias designator is a character literal, the name shall denote an enumeration literal. If the alias 
designator is an operator symbol, the name shall denote a function, and that function then overloads the 
operator symbol. In this latter case, the operator symbol and the function both shall meet the requirements of 
4.5.2.

NOTE 1—Since, for example, the alias of a variable is a variable, every reference within this document to a designator 
(a name, character literal, or operator symbol) that requires the designator to denote a named entity with certain charac-
teristics (e.g., to be a variable) allows the designator to denote an alias, so long as the aliased name denotes a named 
entity having the required characteristics. This situation holds except where aliases are specifically prohibited.

NOTE 2—The alias of an overloadable named entity is itself overloadable.

6.6.2 Object aliases

The following rules apply to object aliases:
a) A signature shall not appear in a declaration of an object alias.
b) If the name is an external name, a subtype indication shall not appear in the alias declaration.
c) The name shall be a static name (see 8.1) that denotes an object. The base type of the name specified 

in an alias declaration shall be the same as the base type of the type mark in the subtype indication 
(if the subtype indication is present). When the object denoted by the name is referenced via the alias 
defined by the alias declaration, the following rules apply:
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1) If the subtype indication is absent
— If the alias designator denotes a slice of an object, then the slice of the object is viewed as 

if it were of the subtype specified by the slice.
— If the name is an external name, then the object is viewed as if it were of the subtype spec-

ified in the external name.
— Otherwise, the object is viewed as if it were of the subtype specified in the declaration of 

the object denoted by the name.
2) If the subtype indication is present and denotes a composite subtype, then the object is viewed 

as if it were of the subtype specified by the subtype indication. For each index range, if any, in 
the subtype, if the subtype defines the index range, the object is viewed with that index range; 
otherwise, the object is viewed with the index range of the object. The view specified by the 
subtype shall include a matching element (see 9.2.3) for each element of the object denoted by 
the name.

3) If the subtype indication denotes a scalar subtype, then the object is viewed as if it were of the 
subtype specified by the subtype indication; moreover, it is an error if this subtype does not 
have the same bounds and direction as the subtype denoted by the object name.

d) When the prefix of an attribute name denotes the alias defined by the alias declaration, subrules 1), 
2), and 3), of rule c) apply.

e) A reference to an element of an object alias is implicitly a reference to the matching element of the 
object denoted by the alias. A reference to a slice of an object alias consisting of the elements e1, e2, 
…, en is implicitly a reference to a slice of the object denoted by the alias consisting of the matching 
elements corresponding to each of e1 through en.

6.6.3 Nonobject aliases

The following rules apply to nonobject aliases:
a) A subtype indication shall not appear in a nonobject alias.
b) A signature is required if the name denotes a subprogram (including an operator) or enumeration lit-

eral. In this case, the signature is required to match (see 4.5.3) the parameter and result type profile 
of exactly one of the subprograms or enumeration literals denoted by the name.

c) If the name denotes an enumeration type or a subtype of an enumeration type, then one implicit alias 
declaration for each of the literals of the base type immediately follows the alias declaration for the 
enumeration type; each such implicit declaration has, as its alias designator, the simple name or 
character literal of the literal and has, as its name, a name constructed by taking the name of the alias 
for the enumeration type or subtype and substituting the simple name or character literal being 
aliased for the simple name of the type or subtype. Each implicit alias has a signature that matches 
the parameter and result type profile of the literal being aliased.

d) Alternatively, if the name denotes a subtype of a physical type, then one implicit alias declaration 
for each of the units of the base type immediately follows the alias declaration for the physical type; 
each such implicit declaration has, as its alias designator, the simple name of the unit and has, as its 
name, a name constructed by taking the name of the alias for the subtype of the physical type and 
substituting the simple name of the unit being aliased for the simple name of the subtype.

e) Finally, if the name denotes a type or a subtype, then implicit alias declarations for each predefined 
operation for the type immediately follow the explicit alias declaration for the type or subtype and, if 
present, any implicit alias declarations for literals or units of the type. Each implicit alias has a sig-
nature that matches the parameter and result type profile of the implicit operation being aliased.

Examples:

variable REAL_NUMBER: BIT_VECTOR (0 to 31);
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alias SIGN: BIT is REAL_NUMBER (0);
   -- SIGN is now a scalar (BIT) value

alias MANTISSA: BIT_VECTOR (23 downto 0) is REAL_NUMBER (8 to 31);
   -- MANTISSA is a 24-bit value whose range is 23 downto 0.
   -- Note that the ranges of MANTISSA and REAL_NUMBER (8 to 31)
   -- have opposite directions. A reference to MANTISSA (23 downto 18)
   -- is equivalent to a reference to REAL_NUMBER (8 to 13).

alias EXPONENT: BIT_VECTOR (1 to 7) is REAL_NUMBER (1 to 7);
   -- EXPONENT is a 7-bit value whose range is 1 to 7.

alias STD_BIT         is STD.STANDARD.BIT;  -- explicit alias

-- implicit aliases ...
-- alias '0'    is STD.STANDARD.'0' [return STD.STANDARD.BIT];
-- alias '1'    is STD.STANDARD.'1' [return STD.STANDARD.BIT];
-- alias "and"  is STD.STANDARD."and"  [STD.STANDARD.BIT,
--                                      STD.STANDARD.BIT
--                                         return STD.STANDARD.BIT];
-- alias "or"   is STD.STANDARD."or"   [STD.STANDARD.BIT,
--                                      STD.STANDARD.BIT
--                                         return STD.STANDARD.BIT];
-- alias "nand" is STD.STANDARD."nand" [STD.STANDARD.BIT,
--                                      STD.STANDARD.BIT
--                                         return STD.STANDARD.BIT];
-- alias "nor"  is STD.STANDARD."nor"  [STD.STANDARD.BIT,
--                                      STD.STANDARD.BIT
--                                         return STD.STANDARD.BIT];
-- alias "xor"  is STD.STANDARD."xor"  [STD.STANDARD.BIT,
--                                      STD.STANDARD.BIT
--                                         return STD.STANDARD.BIT];
-- alias "xnor" is STD.STANDARD."xnor" [STD.STANDARD.BIT,
--                                      STD.STANDARD.BIT
--                                         return STD.STANDARD.BIT];
-- alias "not"  is STD.STANDARD."not"  [STD.STANDARD.BIT
--                                         return STD.STANDARD.BIT];
-- alias "="    is STD.STANDARD."="    [STD.STANDARD.BIT,
--                                      STD.STANDARD.BIT
--                                         return STD.STANDARD.BOOLEAN];
-- alias "/="   is STD.STANDARD."/="   [STD.STANDARD.BIT,
--                                      STD.STANDARD.BIT
--                                         return STD.STANDARD.BOOLEAN];
-- alias "<"    is STD.STANDARD."<"    [STD.STANDARD.BIT,
--                                      STD.STANDARD.BIT
--                                         return STD.STANDARD.BOOLEAN];
-- alias "<="   is STD.STANDARD."<="   [STD.STANDARD.BIT,
--                                      STD.STANDARD.BIT
--                                         return STD.STANDARD.BOOLEAN];
-- alias ">"    is STD.STANDARD.">"    [STD.STANDARD.BIT,
--                                      STD.STANDARD.BIT
--                                         return STD.STANDARD.BOOLEAN];
-- alias ">="   is STD.STANDARD.">="   [STD.STANDARD.BIT,
--                                      STD.STANDARD.BIT
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--                                         return STD.STANDARD.BOOLEAN];
-- alias MINIMUM is STD.STANDARD.MINIMUM [STD.STANDARD.BIT,
--                                        STD.STANDARD.BIT

--                                           return STD.STANDARD.BIT];
-- alias MAXIMUM is STD.STANDARD.MAXIMUM [STD.STANDARD.BIT,
--                                        STD.STANDARD.BIT

--                                           return STD.STANDARD.BIT];
NOTE—An alias of an explicitly declared object is not an explicitly declared object, nor is the alias of a subelement or 
slice of an explicitly declared object an explicitly declared object.

6.7 Attribute declarations

An attribute is a value, function, type, range, signal, or constant that may be associated with one or more 
named entities in a description. There are two categories of attributes: predefined attributes and user-defined 
attributes. Predefined attributes provide information about named entities in a description. Clause 16 
contains the definition of all predefined attributes. Predefined attributes that are signals shall not be updated.

User-defined attributes are constants of arbitrary type. Such attributes are defined by an attribute declaration.

attribute_declaration ::=
      attribute identifier : type_mark ;

The identifier is said to be the designator of the attribute. An attribute may be associated with an entity 
declaration, an architecture, a configuration, a procedure, a function, a package, a type, a subtype, a 
constant, a signal, a variable, a component, a label, a literal, a unit, a group, or a file.

It is an error if the type mark denotes an access type, a file type, a protected type, or a composite type with a 
subelement that is of an access type. The denoted type or subtype need not be constrained.

Examples:

type COORDINATE is record X,Y: INTEGER; end record;
subtype POSITIVE is INTEGER range 1 to INTEGER'HIGH;
attribute LOCATION: COORDINATE;
attribute PIN_NO: POSITIVE;
NOTE 1—A given named entity E will be decorated with the user-defined attribute A if and only if an attribute specifi-
cation for the value of attribute A exists in the same declarative part as the declaration of E. In the absence of such a 
specification, an attribute name of the form E'A is illegal.

NOTE 2—A user-defined attribute is associated with the named entity denoted by the name specified in a declaration, 
not with the name itself. Hence, an attribute of an object can be referenced by using an alias for that object rather than the 
declared name of the object as the prefix of the attribute name, and the attribute referenced in such a way is the same 
attribute (and therefore has the same value) as the attribute referenced by using the declared name of the object as the 
prefix.

NOTE 3—A user-defined attribute of a port, signal, variable, or constant of some composite type is an attribute of the 
entire port, signal, variable, or constant, not of its elements. If it is necessary to associate an attribute with each element 
of some composite object, then the attribute itself can be declared to be of a composite type such that for each element of 
the object, there is a corresponding element of the attribute.

NOTE 4—If the type mark denotes a composite type, the type cannot have a subelement of a file type or a protected type 
(see 5.3.1).
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6.8 Component declarations

A component declaration declares an interface to a virtual design entity that may be used in a component 
instantiation statement. A component configuration or a configuration specification can be used to associate 
a component instance with a design entity that resides in a library.

component_declaration ::=
      component identifier [ is ]
            [ local_generic_clause ]
            [ local_port_clause ]
      end component [ component_simple_name ] ;

Each interface object in the local generic clause declares a local generic. Each interface object in the local 
port clause declares a local port.

If a simple name appears at the end of a component declaration, it shall repeat the identifier of the 
component declaration.

6.9 Group template declarations

A group template declaration declares a group template, which defines the allowable classes of named 
entities that can appear in a group.

group_template_declaration ::=
      group identifier is ( entity_class_entry_list ) ;

entity_class_entry_list ::=
      entity_class_entry { , entity_class_entry }

entity_class_entry ::=  entity_class [ <> ]

A group template is characterized by the number of entity class entries and the entity class at each position. 
Entity classes are described in 7.2.

An entity class entry that is an entity class defines the entity class that may appear at that position in the 
group type. An entity class entry that includes a box (<>) allows zero or more group constituents to appear in 
this position in the corresponding group declaration; such an entity class entry shall be the last one within the 
entity class entry list.

Examples:

group PIN2PIN is (signal, signal);  --  Groups of this type consist of
                                    --  two signals.
group RESOURCE is (label <>);       --  Groups of this type consist of
                                    --  any number of labels.

group DIFF_CYCLES is (group <>);    --  A group of groups.

6.10 Group declarations

A group declaration declares a group, a named collection of named entities. Named entities are described in 
7.2.
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group_declaration ::=

      group identifier : group_template_name ( group_constituent_list ) ;

group_constituent_list ::=  group_constituent { , group_constituent }

group_constituent ::=  name | character_literal

It is an error if the class of any group constituent in the group constituent list is not the same as the class 
specified by the corresponding entity class entry in the entity class entry list of the group template.

A name that is a group constituent shall not be an attribute name (see 8.6). Moreover, if such a name 
contains a prefix, it is an error if the prefix is a function call.

If a group declaration appears within a package body, and a group constituent within that group declaration 
is the same as the simple name of the package body, then the group constituent denotes the package 
declaration and not the package body. The same rule holds for group declarations appearing within 
subprogram bodies containing group constituents with the same designator as that of the enclosing 
subprogram body.

If a group declaration contains a group constituent that denotes a variable of an access type, the group 
declaration declares a group incorporating the variable itself, and not the designated object, if any.

Examples:

group G1: RESOURCE (L1, L2);               --  A group of two labels.
group G2: RESOURCE (L3, L4, L5);           --  A group of three labels.
group C2Q: PIN2PIN (PROJECT.GLOBALS.CK, Q);
                                  --  Groups may associate named

                                  --  entities in different declarative

                                  --  parts (and regions).

group CONSTRAINT1: DIFF_CYCLES (G1, G3);   --  A group of groups.

6.11 PSL clock declarations

A PSL clock declaration may occur as an entity declarative item (see 3.2.3) or a block declarative item 
(3.3.2) and applies to certain PSL directives (if any) in the declarative region containing the PSL clock 
declaration. The PSL clock declaration, if any, that applies to a given PSL directive is the PSL clock 
declaration in the innermost declarative region containing both the given directive and a PSL clock 
directive. It is an error if more than one PSL clock declaration appears immediately with a given declarative 
region.

NOTE—A PSL clock declaration differs from other declarations in VHDL and PSL in that it does not declare a designa-
tor denoting some entity. It is more akin to a VHDL specification in that it associates additional information with PSL 
directives within a design. Hence, it is not listed as a declaration in 6.1. Since it is called a declaration in IEEE Std 1850-
2005, it is included in this clause for ease of reference, rather than in Clause 7.
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7. Specifications

7.1 General

This clause describes specifications, which may be used to associate additional information with a VHDL 
description. A specification associates additional information with a named entity that has been previously 
declared. There are three kinds of specifications: attribute specifications, configuration specifications, and 
disconnection specifications.

A specification always relates to named entities that already exist; thus a given specification shall either 
follow or (in certain cases) be contained within the declaration of the entity to which it relates. Furthermore, 
a specification shall always appear either immediately within the same declarative part as that in which the 
declaration of the named entity appears, or (in the case of specifications that relate to design units or the 
interface objects of design units, subprograms, or block statements) immediately within the declarative part 
associated with the declaration of the design unit, subprogram body, or block statement.

7.2 Attribute specification

An attribute specification associates a user-defined attribute with one or more named entities and defines the 
value of that attribute for those entities. The attribute specification is said to decorate the named entity.

attribute_specification ::=
      attribute attribute_designator of entity_specification is expression ;

entity_specification ::=
      entity_name_list : entity_class

entity_class ::=
        entity
      | architecture
      | configuration
      | procedure
      | function
      | package
      | type
      | subtype
      | constant
      | signal
      | variable
      | component
      | label
      | literal
      | units
      | group
      | file
      | property
      | sequence

entity_name_list ::=
        entity_designator { , entity_designator }
      | others
      | all

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



IEC 61691-1-1:2011(E) - 96 - �
IEEE Std 1076-2008

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

entity_designator ::=  entity_tag [ signature ]

entity_tag ::=  simple_name | character_literal | operator_symbol

The attribute designator shall denote an attribute. The entity name list identifies those named entities, both 
implicitly and explicitly defined, that inherit the attribute, described as follows:

— If a list of entity designators is supplied, then the attribute specification applies to the named entities 
that are denoted by those designators and are of the specified class. It is an error if any entity 
designator denotes no named entity of the specified class.

— If the reserved word others is supplied, then the attribute specification applies to named entities of 
the specified class that are declared in the immediately enclosing declarative part, provided that each 
such entity is not explicitly named in the entity name list of a previous attribute specification for the 
given attribute.

— If the reserved word all is supplied, then the attribute specification applies to all named entities of the 
specified class that are declared in the immediately enclosing declarative part.

An attribute specification with the entity name list others or all for a given entity class that appears in a 
declarative part shall be the last such specification for the given attribute for the given entity class in that 
declarative part. It is an error if a named entity in the specified entity class is declared in a given declarative 
part following such an attribute specification.

If a name in an entity name list denotes a subprogram or package, it denotes the subprogram declaration or 
package declaration. Subprogram and package bodies cannot be decorated.

An entity designator that denotes an alias of an object is required to denote the entire object, not a member of 
an object.

The entity tag of an entity designator containing a signature shall denote the name of one or more 
subprograms or enumeration literals. In this case, the signature shall match (see 4.5.3) the parameter and 
result type profile of exactly one subprogram or enumeration literal in the current declarative part: the 
enclosing attribute specification then decorates that subprogram or enumeration literal.

The expression specifies the value of this attribute for each of the named entities inheriting the attribute as a 
result of this attribute specification. The type of the expression in the attribute specification shall be the same 
as (or implicitly convertible to) the type mark in the corresponding attribute declaration. If the entity name 
list denotes an entity declaration, architecture body, configuration declaration, or an uninstantiated package 
that is declared as a design unit, then the expression is required to be locally static (see 9.4.1). Similarly, if 
the entity name list denotes a subprogram and the attribute designator denotes the 'FOREIGN attribute 
defined in package STANDARD, then the expression is required to be locally static.

An attribute specification for an attribute of an entity declaration, an architecture, a configuration, or a 
package shall appear immediately within the declarative part of that declaration. Similarly, an attribute 
specification for an attribute of an interface object of a design unit, subprogram, block statement, or package 
shall appear immediately within the declarative part of that design unit, subprogram, block statement, or 
package. An attribute specification for an attribute of a procedure, a function, a type, a subtype, an object 
(i.e., a constant, a file, a signal, or a variable), a component, literal, unit name, group, property, sequence, or 
a labeled entity shall appear within the declarative part in which that procedure, function, type, subtype, 
object, component, literal, unit name, group, property, sequence, or label, respectively, is explicitly or 
implicitly declared.

For a given named entity, the value of a user-defined attribute of that entity is the value specified in an 
attribute specification for that attribute of that entity.
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It is an error if a given attribute is associated more than once with a given named entity. Similarly, it is an 
error if two different attributes with the same simple name (whether predefined or user-defined) are both 
associated with a given named entity.

An entity designator that is a character literal is used to associate an attribute with one or more character 
literals. An entity designator that is an operator symbol is used to associate an attribute with one or more 
overloaded operators.

If the entity tag is overloaded and the entity designator does not contain a signature, all named entities 
already declared in the current declarative part and matching the specification are decorated.

If an attribute specification appears, it shall follow the declaration of the named entity with which the 
attribute is associated, and it shall precede all references to that attribute of that named entity. Attribute 
specifications are allowed for all user-defined attributes, but are not allowed for predefined attributes.

An attribute specification may reference a named entity by using an alias for that entity in the entity name 
list, but such a reference counts as the single attribute specification that is allowed for a given attribute and 
therefore prohibits a subsequent specification that uses the declared name of the entity (or any other alias) as 
the entity designator.

An attribute specification whose entity designator contains no signature and identifies an overloaded 
subprogram or enumeration literal has the effect of associating that attribute with each of the designated 
overloaded subprograms or enumeration literals declared within that declarative part.

Examples:

attribute PIN_NO of CIN: signal is 10;
attribute PIN_NO of COUT: signal is 5;
attribute LOCATION of ADDER1: label is (10,15);
attribute LOCATION of others: label is (25,77);
attribute CAPACITANCE of all: signal is 15 pF;
attribute IMPLEMENTATION of G1: group is "74LS152";
attribute RISING_DELAY of C2Q: group is 7.2 ns;
NOTE 1—User-defined attributes represent local information only and cannot be used to pass information from one 
description to another. For instance, assume some signal X in an architecture body has some attribute A. Further, assume 
that X is associated with some local port L of component C. C in turn is associated with some design entity E(B), and L 
is associated with E’s formal port P. Neither L nor P has attributes with the simple name A, unless such attributes are 
supplied via other attribute specifications; in this latter case, the values of P'A and X'A are not related in any way.

NOTE 2—The local ports and generics of a component declaration cannot be decorated, since component declarations 
lack a declarative part.

NOTE 3—If an attribute specification applies to an overloadable named entity, then declarations of additional named 
entities with the same simple name are allowed to occur in the current declarative part unless the aforementioned attri-
bute specification has as its entity name list either of the reserved words others or all.

NOTE 4—Attribute specifications supplying either of the reserved words others or all never apply to the interface 
objects of design units, block statements, or subprograms.

NOTE 5—An attribute specification supplying either of the reserved words others or all may apply to none of the 
named entities in the current declarative part, in the event that none of the named entities in the current declarative part 
meet all of the requirements of the attribute specification.

NOTE 6—An enumeration literal is of class literal, not function.
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7.3 Configuration specification

7.3.1 General

A configuration specification associates binding information with component labels representing instances 
of a given component declaration.

configuration_specification ::=
        simple_configuration_specification
      | compound_configuration_specification

simple_configuration_specification ::=
      for component_specification binding_indication ;
      [ end for ; ]

compound_configuration_specification ::=
      for component_specification binding_indication ;
            verification_unit_binding_indication ;
            { verification_unit_binding_indication ; }
      end for ;

component_specification ::=
      instantiation_list : component_name

instantiation_list ::=
        instantiation_label { , instantiation_label }
      | others
      | all

The instantiation list identifies those component instances with which binding information is to be 
associated, defined as follows:

— If a list of instantiation labels is supplied, then the configuration specification applies to the 
corresponding component instances. Such labels shall be (implicitly) declared within the 
immediately enclosing declarative part. It is an error if these component instances are not instances 
of the component declaration named in the component specification. It is also an error if any of the 
labels denote a component instantiation statement whose corresponding instantiated unit does not 
name a component.

— If the reserved word others is supplied, then the configuration specification applies to instances of 
the specified component declaration whose labels are (implicitly) declared in the immediately 
enclosing declarative part, provided that each such component instance is not explicitly named in the 
instantiation list of a previous configuration specification. This rule applies only to those component 
instantiation statements whose corresponding instantiated units name components.

— If the reserved word all is supplied, then the configuration specification applies to all instances of the 
specified component declaration whose labels are (implicitly) declared in the immediately enclosing 
declarative part. This rule applies only to those component instantiation statements whose 
corresponding instantiated units name components.

A configuration specification with the instantiation list others or all for a given component name that 
appears in a declarative part shall be the last such specification for the given component name in that 
declarative part.

The elaboration of a configuration specification results in the association of binding information with the 
labels identified by the instantiation list. A label that has binding information associated with it, specified by 
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a binding indication, is said to be bound. It is an error if the elaboration of a configuration specification 
results in the association of binding information with a component label that is already bound, unless the 
binding indication in the configuration specification is an incremental binding indication (see 7.3.2.1). It is 
also an error if the elaboration of a configuration specification containing an incremental binding indication 
results in the association of binding information with a component label that is already incrementally bound.

NOTE—A configuration specification supplying either of the reserved words others or all may apply to none of the 
component instances in the current declarative part. This is the case when none of the component instances in the current 
declarative part meet all of the requirements of the given configuration specification.

7.3.2 Binding indication

7.3.2.1 General

A binding indication associates instances of a component with a particular design entity. It may also 
associate actuals with formals declared in the entity declaration.

binding_indication ::=
      [ use entity_aspect ]
      [ generic_map_aspect ]
      [ port_map_aspect ]

The entity aspect of a binding indication, if present, identifies the design entity with which the instances of a 
component are associated. If present, the generic map aspect of a binding indication identifies the 
expressions, subtypes, subprograms, or instantiated packages to be associated with formal generics in the 
entity declaration. Similarly, the port map aspect of a binding indication identifies the signals or values to be 
associated with formal ports in the entity declaration.

When a binding indication is used in an explicit configuration specification, it is an error if the entity aspect 
is absent.

A binding indication appearing in a component configuration shall have an entity aspect unless the block 
corresponding to the block configuration in which the given component configuration appears has one or 
more configuration specifications that together configure all component instances denoted in the given 
component configuration. The binding indications appearing in these configuration specifications are the 
corresponding primary binding indications. A binding indication need not have an entity aspect; in that case, 
either or both of a generic map aspect or a port map aspect shall be present in the binding indication. Such a 
binding indication is an incremental binding indication. An incremental binding indication is used to 
incrementally rebind the ports and generic constants of the denoted instance(s) under the following 
conditions:

— For each formal generic constant appearing in the generic map aspect of the incremental binding 
indication and denoting a formal generic constant that is unassociated or associated with open in any 
of the primary binding indications, the given formal generic constant is bound to the actual with 
which it is associated in the generic map aspect of the incremental binding indication.

— For each formal generic constant appearing in the generic map aspect of the incremental binding 
indication and denoting a formal generic constant that is associated with an actual other than open in 
one of the primary binding indications, the given formal generic constant is rebound to the actual 
with which it is associated in the generic map aspect of the incremental binding indication. That is, 
the association given in the primary binding indication has no effect for the given instance.

— For each formal port appearing in the port map aspect of the incremental binding indication and 
denoting a formal port that is unassociated or associated with open in any of the primary binding 
indications, the given formal port is bound to the actual with which it is associated in the port map 
aspect of the incremental binding indication.
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It is an error if a formal port appears in the port map aspect of the incremental binding indication and it is a 
formal port that is associated with an actual other than open in one of the primary binding indications.

If the generic map aspect or port map aspect of a primary binding indication is not present, then the default 
rules as described in 7.3.3 apply.

It is an error if an explicit entity aspect in an incremental binding indication does not adhere to any of the 
following rules:

— If the entity aspect in the corresponding primary binding indication is of the first form (fully bound), 
as specified in 7.3.2.2, then the entity aspect in the incremental binding indication shall also be of the 
first form and shall denote the same entity declaration as that of the primary binding indication. An 
architecture name shall be specified in the incremental binding indication if and only if the primary 
binding indication also identifies an architecture name; in this case, the architecture name in the 
incremental binding indication shall denote the same architecture name as that of the primary 
binding indication.

— If the entity aspect in the primary binding indication is of the second form (that is, identifying a 
configuration), then the entity aspect of the incremental binding indication shall be of the same form 
and shall denote the same configuration declaration as that of the primary binding indication.

NOTE 1—The third form (open) of an entity aspect does not apply to incremental binding indications as this form can-
not include either a generic map aspect or a port map aspect and incremental binding indications shall contain at least 
one of these aspects.

NOTE 2—The entity aspect of an incremental binding indication in a component configuration is optional.

NOTE 3—The presence of an incremental binding indication will never cause the default rules of 7.3.3 to be applied.

Examples:

entity AND_GATE is
   generic (I1toO, I2toO: DELAY_LENGTH := 4 ns);
   port (I1, I2: in BIT; O: out BIT);
end entity AND_GATE;
entity XOR_GATE is
   generic (I1toO, I2toO: DELAY_LENGTH := 4 ns);
   port (I1, I2: in BIT; O: out BIT);
end entity XOR_GATE;
package MY_GATES is
   component AND_GATE is
      generic I1toO, I2toO: DELAY_LENGTH := 4 ns);
      port (I1, I2: in BIT; O: out BIT);
   end component AND_GATE;
   component XOR_GATE is
      generic (I1toO, I2toO: DELAY_LENGTH := 4 ns);
      port (I1, I2: in BIT; O: out BIT);
   end component XOR_GATE;
end package MY_GATES;
entity Half_Adder is
   port (X, Y: in BIT; Sum, Carry: out BIT);
end entity Half_Adder;
use WORK.MY_GATES.all;
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architecture Structure of Half_Adder is
   for L1: XOR_GATE use
      entity WORK.XOR_GATE(Behavior)    --  The primary binding
         generic map (3 ns, 3 ns)       --  indication for instance L1.
         port map (I1 => I1, I2 => I2, O => O);
   for L2: AND_GATE use
      entity WORK.AND_GATE(Behavior)    --  The primary binding
         generic map (3 ns, 4 ns)       --  indication for instance L2.
         port map (I1, open, O);
begin
   L1: XOR_GATE port map (X, Y, Sum);
   L2: AND_GATE port map (X, Y, Carry);
end architecture Structure;

use WORK.GLOBAL_SIGNALS.all;
configuration Different of Half_Adder is
   for Structure
      for L1: XOR_GATE
         generic map (2.9 ns, 3.6 ns);  --  The incremental binding
      end for;                          --  indication of L1; rebinds
                                        --  its generics.
      for L2: AND_GATE
         generic map (2.8 ns, 3.25 ns)  --  The incremental binding
         port map (I2 => Tied_High);    --  indication of L2; rebinds
      end for;                          --  its generics and binds
                                        --  its open port.
   end for;
end configuration Different;

7.3.2.2 Entity aspect

An entity aspect identifies a particular design entity to be associated with instances of a component. An 
entity aspect may also specify that such a binding is to be deferred.

entity_aspect ::=
        entity entity_name [ ( architecture_identifier ) ]
      | configuration configuration_name
      | open

The first form of entity aspect identifies a particular entity declaration and (optionally) a corresponding 
architecture body. If no architecture identifier appears, then the immediately enclosing binding indication is 
said to imply the design entity whose interface is defined by the entity declaration denoted by the entity 
name and whose body is defined by the default binding rules for architecture identifiers (see 7.3.3). If an 
architecture identifier appears, then the immediately enclosing binding indication is said to imply the design 
entity consisting of the entity declaration denoted by the entity name together with an architecture body 
associated with the entity declaration; the architecture identifier defines a simple name that is used during 
the elaboration of a design hierarchy to select the appropriate architecture body. In either case, the 
corresponding component instances are said to be fully bound.

At the time of the analysis of an entity aspect of the first form, the library unit corresponding to the entity 
declaration denoted by the entity name is required to exist; moreover, the design unit containing the entity 
aspect depends on the denoted entity declaration. If the architecture identifier is also present, the library unit 
corresponding to the architecture identifier is required to exist only if the binding indication is part of a 
component configuration containing explicit block configurations or explicit component configurations; 
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only in this case does the design unit containing the entity aspect also depend on the denoted architecture 
body. In any case, the library unit corresponding to the architecture identifier is required to exist at the time 
that the design entity implied by the enclosing binding indication is bound to the component instance 
denoted by the component configuration or configuration specification containing the binding indication; if 
the library unit corresponding to the architecture identifier was required to exist during analysis, it is an error 
if the architecture identifier does not denote the same library unit as that denoted during analysis. The library 
unit corresponding to the architecture identifier, if it exists, shall be an architecture body associated with the 
entity declaration denoted by the entity name.

The second form of entity aspect identifies a design entity indirectly by identifying a configuration. In this 
case, the entity aspect is said to imply the design entity at the root of the design hierarchy that is defined by 
the configuration denoted by the configuration name.

At the time of the analysis of an entity aspect of the second form, the library unit corresponding to the 
configuration name is required to exist. The design unit containing the entity aspect depends on the 
configuration denoted by the configuration name.

The third form of entity aspect is used to specify that the identification of the design entity is to be deferred. 
In this case, the immediately enclosing binding indication is said to not imply any design entity. 
Furthermore, the immediately enclosing binding indication shall not include a generic map aspect or a port 
map aspect.

7.3.3 Default binding indication

In certain circumstances, a default binding indication will apply in the absence of an explicit binding 
indication. The default binding indication consists of a default entity aspect, together with a default generic 
map aspect and a default port map aspect, as appropriate.

If no visible entity declaration has the same simple name as that of the instantiated component, then the 
default entity aspect is open. A visible entity declaration is the first entity declaration, if any, in the 
following list:

a) An entity declaration that has the same simple name as that of the instantiated component and that is 
directly visible (see 12.3),

b) An entity declaration that has the same simple name as that of the instantiated component and that 
would be directly visible in the absence of a directly visible (see 12.3) component declaration with 
the same simple name as that of the entity declaration, or

c) An entity declaration denoted by  L.C, where L is the target library and C is the simple name of the 
instantiated component. The target library is the library logical name of the library containing the 
design unit in which the component C is declared.

These visibility checks are made at the point of the absent explicit binding indication that causes the default 
binding indication to apply.

Otherwise, the default entity aspect is of the form

entity entity_name ( architecture_identifier )

where the entity name is the simple name of the instantiated component, and the architecture identifier is the 
same as the simple name of the most recently analyzed architecture body associated with the entity 
declaration. If this rule is applied either to a binding indication contained within a configuration 
specification or to a component configuration that does not contain an explicit inner block configuration, 
then the architecture identifier is determined during elaboration of the design hierarchy containing the 
binding indication. Likewise, if a component instantiation statement contains an instantiated unit containing 
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the reserved word entity but does not contain an explicitly specified architecture identifier, this rule is 
applied during the elaboration of the design hierarchy containing a component instantiation statement. In all 
other cases, this rule is applied during analysis of the binding indication.

It is an error if there is no architecture body associated with the entity declaration denoted by an entity name 
that is the simple name of the instantiated component.

The default binding indication includes a default generic map aspect if the design entity implied by the entity 
aspect contains formal generics. The default generic map aspect associates each local generic in the 
corresponding component instantiation (if any) with a formal of the same simple name. It is an error if such 
a formal does not exist or if its mode and type are not appropriate for such an association. Any remaining 
unassociated formals are associated with the actual designator open.

The default binding indication includes a default port map aspect if the design entity implied by the entity 
aspect contains formal ports. The default port map aspect associates each local port in the corresponding 
component instantiation (if any) with a formal of the same simple name. It is an error if such a formal does 
not exist or if its mode and type are not appropriate for such an association. Any remaining unassociated 
formals are associated with the actual designator open.

If an explicit binding indication lacks a generic map aspect, and if the design entity implied by the entity 
aspect contains formal generics, then the default generic map aspect is assumed within that binding 
indication. Similarly, if an explicit binding indication lacks a port map aspect, and the design entity implied 
by the entity aspect contains formal ports, then the default port map aspect is assumed within that binding 
indication.

7.3.4 Verification unit binding indication

A verification unit binding indication binds one or more PSL verification units to the design entity bound to 
a component instance.

verification_unit_binding_indication ::=
      use vunit verification_unit_list

verification_unit_list ::= verification_unit_name { , verification_unit_name }

Each name in a verification unit list shall denote a PSL verification unit (see 13.1 and IEEE Std 1850-2005).

It is an error if a PSL verification unit bound to a design entity by a configuration specification, whether 
explicit or implicit, is explicitly bound by its declaration (see IEEE Std 1850-2005). It is an error if a 
verification unit binding indication is specified for a component instance that is unbound or that is bound by 
a binding indication that has an entity aspect of the third form (open).

7.4 Disconnection specification

A disconnection specification defines the time delay to be used in the implicit disconnection of drivers of a 
guarded signal within a guarded signal assignment.

disconnection_specification ::=
      disconnect guarded_signal_specification after time_expression ;

guarded_signal_specification ::=
      guarded_signal_list : type_mark
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signal_list ::=
        signal_name { , signal_name }
      | others
      | all

Each signal name in a signal list in a guarded signal specification shall be a locally static name that denotes 
a guarded signal (see 6.4.2.3). Each guarded signal shall be an explicitly declared signal or member of such 
a signal.

If a signal name in the guarded signal specification denotes a declared signal or a slice thereof, then the type 
mark in the specification shall be the same as the type mark in the subtype indication of the signal 
declaration (see 6.4.2.3).

If a signal name in the guarded signal specification denotes a slice of an array subelement of a composite 
signal, then the type mark in the specification shall be the same as the type mark in the subtype indication of 
the declaration of the array subelement.

If a signal name in the guarded signal specification denotes an array element of a composite signal, then the 
type mark in the specification shall be the same as the type mark of the element subtype indication in the 
declaration of the array type.

If a signal name in the guarded signal specification denotes a record element of a composite signal, then the 
type mark shall be the same as the type mark of the element subtype indication in the declaration of the 
record type.

Each signal shall either be declared in the declarative part enclosing the disconnection specification or be a 
member of a signal declared in that declarative part.

Subject to the aforementioned rules, a disconnection specification applies to the drivers of a guarded signal 
S specified with type mark T under the following circumstances:

— For a scalar signal S, if an explicit or implicit disconnection specification of the form
disconnect S: T after time_expression;
exists, then this disconnection specification applies to the drivers of S.

— For a composite signal S, an explicit or implicit disconnection specification of the form
disconnect S: T after time_expression;
is equivalent to a series of implicit disconnection specifications, one for each scalar subelement of 
the signal S. Each disconnection specification in the series is created as follows: it has, as its single 
signal name in its signal list, a unique scalar subelement of S. Its type mark is the same as the type of 
the same scalar subelement of S. Its time expression is the same as that of the original disconnection 
specification.
The characteristics of the disconnection specification shall be such that each implicit disconnection 
specification in the series is a legal disconnection specification.

— If the signal list in an explicit or implicit disconnection specification contains more than one signal 
name, the disconnection specification is equivalent to a series of disconnection specifications, one 
for each signal name in the signal list. Each disconnection specification in the series is created as 
follows: It has, as its single signal name in its signal list, a unique member of the signal list from the 
original disconnection specification. Its type mark and time expression are the same as those in the 
original disconnection specification.
The characteristics of the disconnection specification shall be such that each implicit disconnection 
specification in the series is a legal disconnection specification.

— An explicit disconnection specification of the form
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disconnect others: T after time_expression;
is equivalent to an implicit disconnection specification where the reserved word others is replaced 
with a signal list comprised of the simple names of those guarded signals that are declared signals 
declared in the enclosing declarative part, whose type mark is the same as T, and that do not 
otherwise have an explicit disconnection specification applicable to its drivers; the remainder of the 
disconnection specification is otherwise unchanged. If there are no guarded signals in the enclosing 
declarative part whose type mark is the same as T and that do not otherwise have an explicit 
disconnection specification applicable to its drivers, then the preceding disconnection specification 
has no effect.

The characteristics of the explicit disconnection specification shall be such that the implicit 
disconnection specification, if any, is a legal disconnection specification.

— An explicit disconnection specification of the form

disconnect all: T after time_expression;
is equivalent to an implicit disconnection specification where the reserved word all is replaced with 
a signal list comprised of the simple names of those guarded signals that are declared signals 
declared in the enclosing declarative part and whose type mark is the same as T; the remainder of the 
disconnection specification is otherwise unchanged. If there are no guarded signals in the enclosing 
declarative part whose type mark is the same as T, then the preceding disconnection specification 
has no effect.

The characteristics of the explicit disconnection specification shall be such that the implicit 
disconnection specification, if any, is a legal disconnection specification.

A disconnection specification with the signal list others or all for a given type that appears in a declarative 
part shall be the last such specification for the given type in that declarative part. It is an error if a guarded 
signal of the given type is declared in a given declarative part following such a disconnection specification.

The time expression in a disconnection specification shall be static and shall evaluate to a non-negative 
value.

It is an error if more than one disconnection specification applies to drivers of the same signal.

If, by the aforementioned rules, no disconnection specification applies to the drivers of a guarded, scalar 
signal S whose type mark is T (including a scalar subelement of a composite signal), then the following 
default disconnection specification is implicitly assumed:

disconnect S : T after 0 ns;

A disconnection specification that applies to the drivers of a guarded signal S is the applicable disconnection 
specification for the signal S.

Thus the implicit disconnection delay for any guarded signal is always defined, either by an explicit 
disconnection specification or by an implicit one.

NOTE 1—A disconnection specification supplying either the reserved words others or all may apply to none of the 
guarded signals in the current declarative part, in the event that none of the guarded signals in the current declarative part 
meet all of the requirements of the disconnection specification.

NOTE 2—Since disconnection specifications are based on declarative parts, not on declarative regions, ports declared in 
an entity declaration cannot be referenced by a disconnection specification in a corresponding architecture body.

Cross-references: Disconnection statements, 11.6; guarded assignment, 11.6; guarded blocks, 11.2; guarded 
signals, 6.4.2.3; guarded targets, 11.6; signal guard, 11.2.
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8. Names

8.1 General

Names can denote declared entities, whether declared explicitly or implicitly. Names can also denote the 
following:

— Objects denoted by access values
— Methods (see 5.6.2) of protected types
— Subelements of composite objects
— Subelements of composite values
— Slices of composite objects
— Slices of composite values
— Attributes of any named entity

name ::=
        simple_name
      | operator_symbol
      | character_literal
      | selected_name
      | indexed_name
      | slice_name
      | attribute_name
      | external_name

prefix ::=
        name
      | function_call

Certain forms of name (indexed and selected names, slice names, and attribute names) include a prefix that 
is a name or a function call. If the prefix of a name is a function call, then the name denotes an element, a 
slice, or an attribute, either of the result of the function call, or (if the result is an access value) of the object 
designated by the result. Function calls are defined in 9.3.4.

A prefix is said to be appropriate for a type in either of the following cases:
— The type of the prefix is the type considered.
— The type of the prefix is an access type whose designated type is the type considered.

The evaluation of a name determines the named entity denoted by the name. The evaluation of a name that 
has a prefix includes the evaluation of the prefix, that is, of the corresponding name or function call. If the 
type of the prefix is an access type, the evaluation of the prefix includes the determination of the object 
designated by the corresponding access value. In such a case, it is an error if the value of the prefix is a null 
access value. It is an error if, after all type analysis (including overload resolution), the name is ambiguous.

A name is said to be a static name if and only if one of the following conditions holds:
— The name is a simple name or selected name (including those that are expanded names) that does not 

denote a function call, an object or value of an access type, or an object of a protected type and (in 
the case of a selected name) whose prefix is a static name.

— The name is an indexed name whose prefix is a static name, and every expression that appears as part 
of the name is a static expression.
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— The name is a slice name whose prefix is a static name and whose discrete range is a static discrete 
range.

— The name is an attribute name whose prefix is a static signal name and whose suffix is one of the pre-
defined attributes 'DELAYED, 'STABLE, 'QUIET, or 'TRANSACTION.

— The name is an external name.

Furthermore, a name is said to be a locally static name if and only if one of the following conditions hold:
— The name is a simple name or selected name (including those that are expanded names) that is not an 

alias and that does not denote a function call, an object or value of an access type, or an object of a 
protected type and (in the case of a selected name) whose prefix is a locally static name.

— The name is a simple name or selected name (including those that are expanded names) that is an 
alias, and that the aliased name given in the corresponding alias declaration (see 6.6) is a locally 
static name, and (in the case of a selected name) whose prefix is a locally static name.

— The name is an indexed name whose prefix is a locally static name, and every expression that 
appears as part of the name is a locally static expression.

— The name is a slice name whose prefix is a locally static name and whose discrete range is a locally 
static discrete range.

A static signal name is a static name that denotes a signal. The longest static prefix of a signal name is the 
name itself, if the name is a static signal name; otherwise, it is the longest prefix of the name that is a static 
signal name. Similarly, a static variable name is a static name that denotes a variable, and the longest static 
prefix of a variable name is the name itself, if the name is a static variable name; otherwise, it is the longest 
prefix of the name that is a static variable name.

Examples:

S(C,2)        --A static name: C is a static constant.
R(J to 16)    --A nonstatic name: J is a signal.
              --R is the longest static prefix of R(J to 16).

T(n)          --A static name; n is a generic constant.
T(2)          --A locally static name.

8.2 Simple names

A simple name for a named entity is either the identifier associated with the entity by its declaration or 
another identifier associated with the entity by an alias declaration. In particular, the simple name for an 
entity declaration, a configuration, a package, a procedure, or a function is the identifier that appears in the 
corresponding entity declaration, configuration declaration, package declaration, procedure declaration, or 
function declaration, respectively. The simple name of an architecture is that defined by the identifier of the 
architecture body.

simple_name ::=  identifier

The evaluation of a simple name has no other effect than to determine the named entity denoted by the 
name.

8.3 Selected names

A selected name is used to denote a named entity whose declaration appears either within the declaration of 
another named entity or within a design library.
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selected_name ::=  prefix . suffix

suffix ::=
        simple_name
      | character_literal
      | operator_symbol
      | all

A selected name can denote an element of a record, an object designated by an access value, or a named 
entity whose declaration is contained within another named entity, particularly within a library, a package, 
or a protected type. Furthermore, a selected name can denote all named entities whose declarations are 
contained within a library or a package.

For a selected name that is used to denote a record element, the suffix shall be a simple name denoting an 
element of a record object or value. The prefix shall be appropriate for the type of this object or value.

For a selected name that is used to denote the object designated by an access value, the suffix shall be the 
reserved word all. The prefix shall belong to an access type.

The remaining forms of selected names are called expanded names. The prefix of an expanded name shall 
not be a function call.

An expanded name denotes a primary unit contained in a design library if the prefix denotes the library and 
the suffix is the simple name of a primary unit whose declaration is contained in that library. An expanded 
name denotes all primary units contained in a library if the prefix denotes the library and the suffix is the 
reserved word all. An expanded name is not allowed for a secondary unit, particularly for an architecture 
body.

An expanded name denotes a named entity declared in a package if the prefix denotes the package and the 
suffix is the simple name, character literal, or operator symbol of a named entity whose declaration occurs 
immediately within that package. An expanded name denotes all named entities declared in a package if the 
prefix denotes the package and the suffix is the reserved word all.

An expanded name denotes a named entity declared immediately within a named construct if the prefix 
denotes a construct that is an entity declaration, an architecture body, a subprogram declaration, a 
subprogram body, a block statement, a process statement, a generate statement, a loop statement, or a 
protected type definition, and the suffix is the simple name, character literal, or operator symbol of a named 
entity whose declaration occurs immediately within that construct. This form of expanded name is only 
allowed within the construct itself, or if the prefix denotes an entity declaration and the expanded name 
occurs within an architecture body corresponding to the entity declaration.

An expanded name denotes a named entity declared immediately within an architecture body if the prefix 
denotes the entity declaration corresponding to the architecture body and the suffix is the simple name, 
character literal, or operator symbol of a named entity whose declaration occurs immediately within the 
architecture body. This form of expanded name is only allowed within the architecture body.

An expanded name denotes a named entity declared immediately within an elaborated protected type if the 
prefix denotes an object of the protected type and the suffix is a simple name of a method whose declaration 
appears immediately within the protected type declaration.

If, according to the visibility rules, there is at least one possible interpretation of the prefix of a selected 
name as the name of an enclosing entity declaration, architecture, subprogram, block statement, process 
statement, generate statement, loop statement, or protected type, or if there is at least one possible 
interpretation of the prefix of a selected name as the name of an object of a protected type, then the only 
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interpretations considered are those of the immediately preceding three paragraphs. In this case, the selected 
name is always interpreted as an expanded name. In particular, no interpretations of the prefix as a function 
call are considered.

Examples:

-- Given the following declarations:

type INSTR_TYPE is
   record
      OPCODE: OPCODE_TYPE;
   end record;
signal INSTRUCTION: INSTR_TYPE;

-- The name "INSTRUCTION.OPCODE" is the name of a record element.

-- Given the following declarations:

type INSTR_PTR is access INSTR_TYPE;
variable PTR: INSTR_PTR;

-- The name "PTR.all" is the name of the object designated by PTR.

-- Given the following library clause:

library TTL, CMOS;

-- The name "TTL.SN74LS221" is the name of a design unit contained in
-- a library and the name "CMOS.all" denotes all design units contained
-- in a library.

-- Given the following declaration and use clause:

library MKS;
use MKS.MEASUREMENTS, STD.STANDARD;

-- The name "MEASUREMENTS.VOLTAGE" denotes a named entity declared in
-- a package and the name "STANDARD.all" denotes all named entities
-- declared in a package.

-- Given the following process label and declarative part:

P: process
   variable DATA: INTEGER;
begin
   -- Within process P, the name "P.DATA" denotes a named entity
   -- declared in process P.
end process;

counter.increment(5);         -- See 6.4.2.4 for the definition
counter.decrement(i);         -- of "counter."
if counter.value = 0 then ... end if;

result.add(sv1, sv2);         -- See 6.4.2.4 for the definition
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                              -- of "result."
bit_stack.add_bit(1, '1');    -- See 6.4.2.4 for the definition
bit_stack.add_bit(2, '1');    -- of "bit_stack."
bit_stack.add_bit(3, '0');

NOTE 1—The object denoted by an access value is accessed differently depending on whether the entire object or a sub-
element of the object is desired. If the entire object is desired, a selected name whose prefix denotes the access value and 
whose suffix is the reserved word all is used. In this case, the access value is not automatically dereferenced, since it is 
necessary to distinguish an access value from the object denoted by an access value.

If a subelement of the object is desired, a selected name whose prefix denotes the access value is again used; however, 
the suffix in this case denotes the subelement. In this case, the access value is automatically dereferenced.

These two cases are shown in the following example:

type rec;

type recptr is access rec;

type rec is
   record
      value  : INTEGER;
      \next\ : recptr;
   end record;

variable list1, list2: recptr;
variable recobj: rec;

list2 := list1;           -- Access values are copied;
                          -- list1 and list2 now denote the same object.
list2 := list1.\next\;    -- list2 denotes the same object as list1.\next\.
                          -- list1.\next\ is the same as list1.all.\next\.
                          -- An implicit dereference of the access value occurs before the
                          -- "\next\" element is selected.
recobj := list2.all;      -- An explicit dereference is needed here.

NOTE 2—Overload resolution is used to disambiguate selected names. See rules a) and c) of 12.5.

NOTE 3—If, according to the rules of this subclause and of 12.5, there is not exactly one interpretation of a selected 
name that satisfies these rules, then the selected name is ambiguous.

8.4 Indexed names

An indexed name denotes an element of an array.

indexed_name ::=  prefix ( expression { , expression } )

The prefix of an indexed name shall be appropriate for an array type. The expressions specify the index 
values for the element; there shall be one such expression for each index position of the array, and each 
expression shall be of the type of the corresponding index. For the evaluation of an indexed name, the prefix 
and the expressions are evaluated. It is an error if an index value does not belong to the range of the 
corresponding index range of the array.

Examples:

REGISTER_ARRAY(5)          -- An element of a one-dimensional array
MEMORY_CELL(1024,7)        -- An element of a two-dimensional array

NOTE—If a name (including one used as a prefix) has an interpretation both as an indexed name and as a function call, 
then the innermost complete context is used to disambiguate the name. If, after applying this rule, there is not exactly 
one interpretation of the name, then the name is ambiguous. See 12.5.
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8.5 Slice names

A slice name denotes a one-dimensional array composed of a sequence of consecutive elements of another 
one-dimensional array. A slice of a signal is a signal; a slice of a variable is a variable; a slice of a constant is 
a constant; a slice of a value is a value.

slice_name ::=  prefix ( discrete_range )

The prefix of a slice shall be appropriate for a one-dimensional array object. The base type of this array type 
is the type of the slice.

The bounds of the discrete range define those of the slice and shall be of the type of the index of the array. 
The slice is a null slice if the discrete range is a null range. It is an error if the direction of the discrete range 
is not the same as that of the index range of the array denoted by the prefix of the slice name.

For the evaluation of a name that is a slice, the prefix and the discrete range are evaluated. It is an error if 
either of the bounds of the discrete range does not belong to the index range of the prefixing array, unless the 
slice is a null slice. (The bounds of a null slice need not belong to the subtype of the index.)

Examples:

signal   R15:  BIT_VECTOR (0 to 31);
constant DATA: BIT_VECTOR (31 downto 0);

R15(0 to 7)            -- A slice with an ascending range.
DATA(24 downto 1)      -- A slice with a descending range.
DATA(1 downto 24)      -- A null slice.
DATA(24 to 25)         -- An error.
NOTE—If A is a one-dimensional array of objects, the name A(N to N) or A(N downto N) is a slice that contains one 
element; its type is the base type of A. On the other hand, A(N) is an element of the array A and has the corresponding 
element type.

8.6 Attribute names

An attribute name denotes a value, function, type, range, signal, or constant associated with a named entity.

attribute_name ::=
      prefix [ signature ] ' attribute_designator [ ( expression ) ]

attribute_designator ::=  attribute_simple_name

The applicable attribute designators depend on the prefix plus the signature, if any. The meaning of the 
prefix of an attribute shall be determinable independently of the attribute designator and independently of 
the fact that it is the prefix of an attribute.

It is an error if a signature follows the prefix and the prefix does not denote a subprogram or enumeration 
literal, or an alias thereof. In this case, the signature is required to match (see 4.5.3) the parameter and result 
type profile of exactly one visible subprogram or enumeration literal, as is appropriate to the prefix.

If the attribute designator denotes a predefined attribute, the expression either shall or may appear, 
depending upon the definition of that attribute (see Clause 16); otherwise, it shall not be present. For an 
attribute that denotes a function, an expression does not appear as part of the attribute name; a parenthesized 
expression following the attribute designator is interpreted as part of a function call (see 9.3.4).
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If the prefix of an attribute name denotes an alias, then the attribute name denotes an attribute of the aliased 
name and not the alias itself, except when the attribute designator denotes any of the predefined attributes 
'SIMPLE_NAME, 'PATH_NAME, or 'INSTANCE_NAME. If the prefix of an attribute name denotes an 
alias and the attribute designator denotes any of the predefined attributes SIMPLE_NAME, 'PATH_NAME, 
or 'INSTANCE_NAME, then the attribute name denotes the attribute of the alias and not of the aliased 
name.

If the attribute designator denotes a user-defined attribute, the prefix cannot denote a subelement or a slice of 
an object.

NOTE—An attribute name that denotes a predefined attribute that is a function may be associated as the actual for a for-
mal generic subprogram.

Examples:

REG'LEFT(1)           -- The leftmost index bound of array REG

INPUT_PIN'PATH_NAME   -- The hierarchical path name of
                      -- the port INPUT_PIN

CLK'DELAYED(5 ns)     -- The signal CLK delayed by 5 ns

8.7 External names

An external name denotes an object declared in the design hierarchy containing the external name.

external_name ::=
        external_constant_name
      | external_signal_name
      | external_variable_name

external_constant_name ::=
      << constant external_pathname : subtype_indication >>

external_signal_name ::=
      << signal external_pathname : subtype_indication >>

external_variable_name ::=
      << variable external_pathname : subtype_indication >>

external_pathname ::= 
        package_pathname
      | absolute_pathname
      | relative_pathname

package_pathname ::=
      @ library_logical_name . package_simple_name . { package_simple_name . } object_simple_name

absolute_pathname ::= . partial_pathname

relative_pathname ::= { ^ . } partial_pathname

partial_pathname ::= { pathname_element . } object_simple_name
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pathname_element ::=
        entity_simple_name
      | component_instantiation_label
      | block_label
      | generate_statement_label [ ( static_expression ) ]
      | package_simple_name

The object denoted by an external name is the object whose simple name is the object simple name of the 
external pathname and that is declared in the elaborated declarative region identified by the external 
pathname, as follows:

a) First, a declarative region is initially identified:
1) For an absolute pathname, the root declarative region encompassing the design entity that 

forms the root of the design hierarchy is initially identified.
2) For a package pathname, the library logical name shall be defined by a library clause, and the 

library declarative region associated with the design library denoted by the library logical name 
is initially identified.

3) For a relative pathname, the innermost concurrent region is initially identified, where a concur-
rent region is defined recursively to be
— A block declarative region (including an external block and any block equivalent to a 

generate statement), or
— A package declarative region (including a generic-mapped package equivalent to a 

package instantiation) declared immediately within a concurrent region.
Then, for each occurrence of a circumflex accent followed by a dot, the innermost concurrent 
region, other than a block declarative region of a block corresponding to a component instanti-
ation statement, containing the previously identified declarative region replaces the previously 
identified declarative region as the identified declarative region. It is an error when evaluating 
the external name if, at any stage, there is no such containing declarative region, or if the con-
taining declarative region is the declarative region of an uninstantiated package.

b) Second, for each package simple name in a package pathname, or for each pathname element in an 
absolute or relative pathname, in order, the previously identified declarative region is replaced as the 
identified declarative region by one of the following:
1) For a package simple name, the declarative region of the package denoted by the package sim-

ple name in the previously identified declarative region. If the package simple name denotes a 
package instantiation, then the declarative region is that of the equivalent generic-mapped 
package.

2) For an entity simple name, the declarative region of the external block of the design entity at 
the root of the design hierarchy. This form of pathname element shall only occur at a place 
where the previously identified declarative region is the root declarative region encompassing 
the design entity that forms the root of the design hierarchy.

3) For a component instantiation label, the declarative region of the design entity bound to the 
component instance.

4) For a block label, the declarative region of the block.
5) For a generate statement label, the declarative region of the equivalent block corresponding to 

the generate statement. If the generate statement is a for generate statement, the pathname ele-
ment shall include a static expression, the type of the expression shall be the same as the type of 
the generate parameter, and the value of the expression shall belong to the discrete range speci-
fied for the generate parameter. The type of the expression shall be determined by applying the 
rules of 12.5 to the expression considered as a complete context, using the rule that the type 
shall be discrete. If the type of the expression is universal_integer and the type of the generate 
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parameter is an integer type, an implicit conversion of the expression to the type of the generate 
parameter is assumed.

It is an error when evaluating the external name if, at any stage, a declarative region corresponding 
to a package name in a package pathname or to a pathname element in an absolute or relative path-
name does not exist. It is an error when evaluating the external name if a package simple name in an 
external pathname denotes an uninstantiated package.

It is an error when evaluating an external name if the identified declarative region does not contain a 
declaration of an object whose simple name is the object simple name of the external pathname. It is also an 
error when evaluating an external name if the object denoted by an external constant name is not a constant, 
or if the object denoted by an external signal name is not a signal, or if the object denoted by an external 
variable name is not a variable. Moreover, it is an error if the base type of the object denoted by an external 
name is not the same as the base type of the type mark in the subtype indication of the external name.

If the subtype indication denotes a composite subtype, then the object denoted by the external name is 
viewed as if it were of the subtype specified by the subtype indication. For each index range, if any, in the 
subtype, if the subtype defines the index range, the object is viewed with that index range; otherwise, the 
object is viewed with the index range of the object. The view specified by the subtype shall include a 
matching element (see 9.2.3) for each element of the object denoted by the external name.

If the subtype indication denotes a scalar subtype, then the object denoted by the external name is viewed as 
if it were of the subtype specified by the subtype indication; moreover, it is an error when evaluating the 
external name if this subtype does not have the same bounds and direction as the subtype of the object 
denoted by the external name.

The evaluation of an external name has no other effect than to determine the named entity denoted by the 
name.

NOTE 1—A generic constant may be denoted by an external constant name, and a port may be denoted by external 
signal name.

NOTE 2—Since the object denoted by an external name cannot be declared within a process or subprogram, if the object 
is a variable, it shall be a shared variable.

NOTE 3—A declarative region corresponding to a package name or a pathname element does not exist if the name or 
label is not declared. It may also not exist in the case of a component instance that is unbound, or in the case of an if 
generate statement for which no block is generated.

NOTE 4—It is not possible to use an external name to denote the local generics or local ports of a component 
instantiated in a component instantiation statement.

NOTE 5—If a package has the same simple name as the entity at the root of the design entity, the external pathnames for 
an object in the package and an object in the design hierarchy, could, in some cases, comprise the same sequence of 
simple names. A package pathname starts with a different delimiter (@) from an absolute pathname (.) in order to avoid 
such an ambiguity.
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9. Expressions

9.1 General

An expression is a formula that defines the computation of a value.

expression ::=
        condition_operator primary
      | logical_expression

logical_expression ::=
        relation { and relation }
      | relation { or relation }
      | relation { xor relation }
      | relation [ nand relation ]
      | relation [ nor relation ]
      | relation { xnor relation }

relation ::=
      shift_expression [ relational_operator shift_expression ]

shift_expression ::=
      simple_expression [ shift_operator simple_expression ]

simple_expression ::=
      [ sign ] term { adding_operator term }

term ::=
      factor { multiplying_operator factor }

factor ::=
        primary [ ** primary ]
      | abs primary
      | not primary
      | logical_operator primary

primary ::=
        name
      | literal
      | aggregate
      | function_call
      | qualified_expression
      | type_conversion
      | allocator
      | ( expression )

Each primary has a value and a type. The only names allowed as primaries are attributes that yield values 
and names denoting objects or values. In the case of names denoting objects other than objects of file types 
or protected types, the value of the primary is the value of the object. In the case of names denoting either 
file objects or objects of protected types, the value of the primary is the entity denoted by the name.

The type of an expression depends only upon the types of its operands and on the operators applied; for an 
overloaded operand or operator, the determination of the operand type, or the identification of the 
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overloaded operator, depends on the context (see 12.5). For each predefined operator, the operand and result 
types are given in the following subclause.

NOTE 1—The syntax for an expression involving logical operators allows a sequence of binary and, or, xor, or xnor
operators (whether predefined or user-defined), since the corresponding predefined operations are associative. For the 
binary operators nand and nor (whether predefined or user-defined), however, such a sequence is not allowed, since the 
corresponding predefined operations are not associative.

NOTE 2—The syntax for an expression involving a unary condition operator or unary logical operator in combination 
with any other operator requires that the unary operator and its operand be a parenthesized expression. For example, the 
expressions “(and A) and B” and “A and (and B)” are legal, whereas the expression “and A and B” and “A and and
B” are not. Similarly, “and (and A)” is legal, whereas “and and A” is not. An expression consisting only of a unary 
condition oprator or unary logical operator and its operand need not be parenthesized.

NOTE 3—PSL extends the grammar of VHDL expressions to allow PSL expressions, PSL built-in function calls, and 
PSL union expressions as subexpressions. Such extended expressions can only appear in a VHDL description within 
PSL declarations and PSL directives, or in a verification unit.

9.2 Operators

9.2.1 General

The operators that may be used in expressions are defined as follows. Each operator belongs to a class of 
operators, all of which have the same precedence level; the classes of operators are listed in order of 
increasing precedence.

condition_operator     ::=     ??

logical_operator  ::=  and  |  or  |  nand  |  nor  |  xor  |  xnor

relational_operator ::=  =  |  /=  |  <  |  <=  |  >  |  >=  |  ?=  |  ?/=  |  ?<  |  ?<=  |  ?>  |  ?>=

shift_operator  ::=  sll  |  srl  |  sla  |  sra  |  rol  |  ror

adding_operator  ::=  +  |  –  |  &

sign  ::=  +  |  –

multiplying_operator  ::=  *  |  /  |  mod  |  rem

miscellaneous_operator  ::=  **  |  abs  |  not

Operators of higher precedence are associated with their operands before operators of lower precedence. 
Where the language allows a sequence of operators, operators with the same precedence level are associated 
with their operands in textual order, from left to right. The precedence of an operator is fixed and cannot be 
changed by the user, but parentheses can be used to control the association of operators and operands.

In general, operands in an expression are evaluated before being associated with operators. For certain 
operations, however, the right-hand operand is evaluated if and only if the left-hand operand has a certain 
value. These operations are called short-circuit operations. The binary logical operations and, or, nand, and 
nor defined for operands of types BIT and BOOLEAN are all short-circuit operations; furthermore, these 
are the only short-circuit operations.

Every predefined operator and every predefined MINIMUM and MAXIMUM operation is a pure function 
(see 4.2.1). No predefined operators have named formal parameters; therefore, named association (see 
6.5.7.1) cannot be used when invoking a predefined operator.
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NOTE 1—The predefined operators for the standard types are declared in package STANDARD as shown in 16.3.

NOTE 2—The operator not is classified as a miscellaneous operator for the purposes of defining precedence, but is oth-
erwise classified as a logical operator.

9.2.2 Logical operators

The binary logical operators and, or, nand, nor, xor, and xnor, and the unary logical operator not are 
defined for predefined types BIT and BOOLEAN. They are also defined for any one-dimensional array type 
whose element type is BIT or BOOLEAN.

For the binary operators and, or, nand, nor, xor, and xnor, the operands shall both be of the same base 
type, or one operand shall be of a scalar type and the other operand shall be a one-dimensional array whose 
element type is the scalar type. The result type is the same as the base type of the operands if both operands 
are scalars of the same base type or both operands are arrays, or the same as the base type of the array 
operand if one operand is a scalar and the other operand is an array.

If both operands are one-dimensional arrays, the operands shall be arrays of the same length, the operation is 
performed on matching elements of the arrays, and the result is an array with the same index range as the left 
operand.  If one operand is a scalar and the other operand is a one-dimensional array, the operation is 
performed on the scalar operand with each element of the array operand. The result is an array with the same 
index range as the array operand.

For the unary operator not, the result type is the same as the base type of the operand. If the operand is a one-
dimensional array, the operation is performed on each element of the operand, and the result is an array with 
the same index range as the operand.

The effects of the logical operators are defined in the following tables. The symbol T represents TRUE for 
type BOOLEAN, '1' for type BIT; the symbol F represents FALSE for type BOOLEAN, '0' for type BIT.

For the short-circuit operations and, or, nand, and nor on types BIT and BOOLEAN, the right operand is 
evaluated only if the value of the left operand is not sufficient to determine the result of the operation. For 
operations and and nand, the right operand is evaluated only if the value of the left operand is T; for 
operations or and nor, the right operand is evaluated only if the value of the left operand is F.
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The unary logical operators and, or, nand, nor, xor, and xnor are referred to as logical reduction operators. 
The logical reduction operators are predefined for any one-dimensional array type whose element type is 
BIT or BOOLEAN. The result type for the logical reduction operators is the same as the element type of the 
operand.

The values returned by the logical reduction operators are defined as follows. In the remainder of this 
subclause, the values of their arguments are referred to as R.

— The and operator returns a value that is the logical and of the elements of R. That is, if R is a null 
array, the return value is '1' if the element type of R is BIT or TRUE if the element type of R is 
BOOLEAN. Otherwise, the return value is the result of a binary and operation. The left argument of 
the binary and operation is the leftmost element of R. The right argument of the binary and
operation is the result of a unary and operation with the argument being the rightmost (R'LENGTH – 
1) elements of R.

— The or operator returns a value that is the logical or of the elements of R. That is, if R is a null array, 
the return value is '0' if the element type of R is BIT or FALSE if the element type of R is 
BOOLEAN. Otherwise, the return value is the result of a binary or operation. The left argument of 
the binary or operation is the leftmost element of R. The right argument of the binary or operation is 
the result of a unary or operation with the argument being the rightmost (R'LENGTH – 1) elements 
of R.

— The xor operator returns a value that is the logical exclusive-or of the elements of R. That is, if R is a 
null array, the return value is '0' if the element type of R is BIT or FALSE if the element type of R is 
BOOLEAN. Otherwise, the return value is the result of a binary xor operation. The left argument of 
the binary xor operation is the leftmost element of R. The right argument of the binary xor operation 
is the result of a unary xor operation with the argument being the rightmost (R'LENGTH – 1) 
elements of R.

— The nand operator returns a value that is the negated logical and of the elements of R. That is, the 
return value is the result of a not operation. The argument of the not operation is the result of a unary 
and operation with the argument being R.

— The nor operator returns a value that is the negated logical or of the elements of R. That is, the return 
value is the result of a not operation. The argument of the not operation is the result of a unary or
operation with the argument being R.

— The xnor operator returns a value that is the negated logical exclusive-or of the elements of R. That 
is, the return value is the result of a not operation. The argument of the not operation is the result of 
a unary xor operation with the argument being R.

NOTE—All of the binary logical operators belong to the class of operators with the lowest precedence. The unary logi-
cal operators belong to the class of operators with the highest precedence.

9.2.3 Relational operators

Relational operators include tests for equality, inequality, and ordering of operands. The operands of each 
relational operator shall be of the same type. The result type of each ordinary relational operator (=, /=, <, 
<=, >, and >=) is the predefined type BOOLEAN. The result type of each matching relational operator (?=, 
?/=, ?<, ?<=, ?>, and ?>=) is the same as the type of the operands (for scalar operands) or the the element 
type of the operands (for array operands).
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The equality and inequality operators (= and /=) are defined for all types other than file types and protected 
types. The equality operator returns the value TRUE if the two operands are equal and returns the value 
FALSE otherwise. The inequality operator returns the value FALSE if the two operands are equal and 
returns the value TRUE otherwise.

Two scalar values of the same type are equal if and only if the values are the same. Two composite values of 
the same type are equal if and only if for each element of the left operand there is a matching element of the 
right operand and vice versa, and the values of matching elements are equal, as given by the predefined 
equality operator for the element type. In particular, two null arrays of the same type are always equal. Two 
values of an access type are equal if and only if they both designate the same object or they both are equal to 
the null value for the access type.

For two record values, matching elements are those that have the same element identifier. For two one-
dimensional array values, matching elements are those (if any) whose index values match in the following 
sense: the left bounds of the index ranges are defined to match; if two elements match, the elements 
immediately to their right are also defined to match. For two multidimensional array values, matching 
elements are those whose indices match in successive positions.

Operator Operation Operand type Result type

= Equality Any type, other than a 
file type or a pro-
tected type

BOOLEAN

/= Inequality Any type, other than a 
file type or a pro-
tected type

BOOLEAN

<

<=

>

>=

Ordering Any scalar type or 
discrete array type

BOOLEAN

?= Matching 
equality

BIT or 
STD_ULOGIC

Same type

Any one-dimensional 
array type whose ele-
ment type is BIT or 
STD_ULOGIC

The element 
type

?/= Matching 
inequality

BIT or 
STD_ULOGIC

Same type

Any one-dimensional 
array type whose ele-
ment type is BIT or 
STD_ULOGIC

The element 
type

?<

?<=

?>

?>=

Matching 
ordering

BIT or 
STD_ULOGIC

Same type
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The ordinary ordering operators are defined for any scalar type and for any discrete array type. A discrete 
array is a one-dimensional array whose elements are of a discrete type. Each operator returns TRUE if the 
corresponding relation is satisfied; otherwise, the operator returns FALSE.

For scalar types, ordering is defined in terms of the relative values. For discrete array types, the relation < 
(less than) is defined such that the left operand is less than the right operand if and only if the left operand is 
a null array and the right operand is a non-null array.

Otherwise, both operands are non-null arrays, and one of the following conditions is satisfied:
a) The leftmost element of the left operand is less than that of the right, or
b) The leftmost element of the left operand is equal to that of the right, and the tail of the left operand is 

less than that of the right (the tail consists of the remaining elements to the right of the leftmost ele-
ment and can be null).

The relation <= (less than or equal) for discrete array types is defined to be the inclusive disjunction of the 
results of the < and = operators for the same two operands. The relations > (greater than) and >= (greater 
than or equal) are defined to be the complements of the <= and < operators, respectively, for the same two 
operands.

The matching relational operators are predefined for the predefined type BIT and for the type 
STD_ULOGIC defined in package STD_LOGIC_1164. For operands of type BIT, each matching relational 
operator returns '1' if the corresponding ordinary relational operator applied to the operands returns TRUE, 
and returns the value '0' otherwise.

For the matching ordering operators applied to operands of type STD_ULOGIC, if either operand is the 
value '–', an error is reported in a manner equivalent to execution of the following assertion statement (see 
10.3):

assert FALSE
   report "STD_LOGIC_1164: '-' operand for matching ordering operator"
   severity ERROR;

For operands of type STD_ULOGIC, the value returned by the matching equality operator is defined in the 
following table:

?= Right operand

Left operand 'U' 'X' '0' '1' 'Z' 'W' 'L' 'H' '–'

'U' 'U' 'U' 'U' 'U' 'U' 'U' 'U' 'U' '1'

'X' 'U' 'X' 'X' 'X' 'X' 'X' 'X' 'X' '1'

'0' 'U' 'X' '1' '0' 'X' 'X' '1' '0' '1'

'1' 'U' 'X' '0' '1' 'X' 'X' '0' '1' '1'

'Z' 'U' 'X' 'X' 'X' 'X' 'X' 'X' 'X' '1'

'W' 'U' 'X' 'X' 'X' 'X' 'X' 'X' 'X' '1'

'L' 'U' 'X' '1' '0' 'X' 'X' '1' '0' '1'

'H' 'U' 'X' '0' '1' 'X' 'X' '0' '1' '1'

'–' '1' '1' '1' '1' '1' '1' '1' '1' '1'
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For operands of type STD_ULOGIC, the value returned by the matching ordering operator ?< is defined in 
the following table:

For operands of type STD_ULOGIC, the value returned by the matching inequality operator is defined to be 
the result of applying the not operator to the result of applying the ?= operator to the operands. The value 
returned by the matching ordering operator ?<= is defined to be the result of applying the binary or operator 
to the results of applications of the ?< and ?= operators to the operands. The value returned by the matching 
ordering operator ?> is the result of applying the not operator to the result of applying the ?<= operator to 
the operands. The value returned by the matching ordering operator ?>= is the result of applying the not
operator to the result of applying the ?< operator to the operands. In each case, the not and or operators are 
those declared in the package IEEE.STD_LOGIC_1164.

The matching equality and matching inequality operators are also defined for any one-dimensional array 
type whose element type is BIT or STD_ULOGIC. The operands shall be arrays of the same length. The 
matching equality operator for the element type is applied to matching elements of the operands to form an 
intermediate array of type BIT_VECTOR (in the case of operands whose element type is BIT) or 
STD_ULOGIC_VECTOR (in the case of operands whose element type is STD_ULOGIC). The result of the 
matching equality operator applied to the operands is then the result of applying the unary and operator to 
the intermediate array. The result of the matching inequality operator is the result of applying the not
operator to the result of applying the unary and operator to the intermediate array. In each case, the not and 
and operators are either the predefined operators or those declared in the package IEEE.STD_LOGIC_1164, 
as appropriate.

9.2.4 Shift operators

The shift operators sll, srl, sla, sra, rol, and ror are defined for any one-dimensional array type whose 
element type is either of the predefined types BIT or BOOLEAN.

?< Right operand

Left operand 'U' 'X' '0' '1' 'Z' 'W' 'L' 'H' '–'

'U' 'U' 'U' 'U' 'U' 'U' 'U' 'U' 'U' 'X'

'X' 'U' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 'X'

'0' 'U' 'X' '0' '1' 'X' 'X' '0' '1' 'X'

'1' 'U' 'X' '0' '0' 'X' 'X' '0' '0' 'X'

'Z' 'U' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 'X'

'W' 'U' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 'X'

'L' 'U' 'X' '0' '1' 'X' 'X' '0' '1' 'X'

'H' 'U' 'X' '0' '0' 'X' 'X' '0' '0' 'X'

'–' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 'X'
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The index range of the return value of each shift operator is the same as the index range of the left operand.

The values returned by the shift operators are defined as follows. In the remainder of this subclause, the 
values of their leftmost arguments are referred to as L and the values of their rightmost arguments are 
referred to as R.

— The sll operator returns a value that is L logically shifted left by R index positions. That is, if R is 0 
or if L is a null array, the return value is L. Otherwise, a basic shift operation replaces L with a value 
that is the result of a concatenation whose left argument is the rightmost (L'LENGTH – 1) elements 
of L and whose right argument is T'LEFT, where T is the element type of L. If R is positive, this 
basic shift operation is repeated R times to form the result. If R is negative, then the return value is 
the value of the expression L srl –R.

— The srl operator returns a value that is L logically shifted right by R index positions. That is, if R is 0 
or if L is a null array, the return value is L. Otherwise, a basic shift operation replaces L with a value 
that is the result of a concatenation whose right argument is the leftmost (L'LENGTH – 1) elements 
of L and whose left argument is T'LEFT, where T is the element type of L. If R is positive, this basic 
shift operation is repeated R times to form the result. If R is negative, then the return value is the 
value of the expression L sll –R.

— The sla operator returns a value that is L arithmetically shifted left by R index positions. That is, if R 
is 0 or if L is a null array, the return value is L. Otherwise, a basic shift operation replaces L with a 
value that is the result of a concatenation whose left argument is the rightmost (L'LENGTH – 1) 
elements of L and whose right argument is L(L'RIGHT). If R is positive, this basic shift operation is 
repeated R times to form the result. If R is negative, then the return value is the value of the 
expression L sra –R.

— The sra operator returns a value that is L arithmetically shifted right by R index positions. That is, if 
R is 0 or if L is a null array, the return value is L. Otherwise, a basic shift operation replaces L with a 
value that is the result of a concatenation whose right argument is the leftmost (L'LENGTH – 1) 
elements of L and whose left argument is L(L'LEFT). If R is positive, this basic shift operation is 
repeated R times to form the result. If R is negative, then the return value is the value of the 
expression L sla –R.

— The rol operator returns a value that is L rotated left by R index positions. That is, if R is 0 or if L is 
a null array, the return value is L. Otherwise, a basic rotate operation replaces L with a value that is 
the result of a concatenation whose left argument is the rightmost (L'LENGTH – 1) elements of L 
and whose right argument is L(L'LEFT). If R is positive, this basic rotate operation is repeated R 

Operator Operation Left operand type Right operand type Result type

sll Shift left 
logical

Any one-dimensional array type whose 
element type is BIT or BOOLEAN

INTEGER Same as left

srl Shift right 
logical

Any one-dimensional array type whose 
element type is BIT or BOOLEAN

INTEGER Same as left

sla Shift left 
arithmetic

Any one-dimensional array type whose 
element type is BIT or BOOLEAN

INTEGER Same as left

sra Shift right 
arithmetic

Any one-dimensional array type whose 
element type is BIT or BOOLEAN

INTEGER Same as left

rol Rotate left 
logical

Any one-dimensional array type whose 
element type is BIT or BOOLEAN

INTEGER Same as left

ror Rotate right 
logical

Any one-dimensional array type whose 
element type is BIT or BOOLEAN

INTEGER Same as left
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times to form the result. If R is negative, then the return value is the value of the expression L ror
–R.

— The ror operator returns a value that is L rotated right by R index positions. That is, if R is 0 or if L 
is a null array, the return value is L. Otherwise, a basic rotate operation replaces L with a value that is 
the result of a concatenation whose right argument is the leftmost (L'LENGTH – 1) elements of L 
and whose left argument is L(L'RIGHT). If R is positive, this basic rotate operation is repeated R 
times to form the result. If R is negative, then the return value is the value of the expression L rol –R.

NOTE 1—The logical operators may be overloaded, for example, to disallow negative integers as the second argument.

NOTE 2—The subtype of the result of a shift operator is the same as that of the left operand.

9.2.5 Adding operators

The adding operators + and – are predefined for any numeric type and have their conventional mathematical 
meaning. The concatenation operator & is predefined for any one-dimensional array type.

For concatenation, there are three mutually exclusive cases, as follows:
a) If both operands are one-dimensional arrays of the same type, the result of the concatenation is a 

one-dimensional array of this same type whose length is the sum of the lengths of its operands, and 
whose elements consist of the elements of the left operand (in left-to-right order) followed by the 
elements of the right operand (in left-to-right order).
If both operands are null arrays, then the result of the concatenation is the right operand. Otherwise, 
the direction and bounds of the result are determined as follows: Let S be the index subtype of the 
base type of the result. The direction of the result of the concatenation is the direction of S, and the 
left bound of the result is S'LEFT.

b) If one of the operands is a one-dimensional array and the type of the other operand is the element 
type of this aforementioned one-dimensional array, the result of the concatenation is given by the 
rules in case a), using in place of the other operand an implicit array having this operand as its only 
element. Both the left and right bounds of the index subtype of this implicit array is S'LEFT, and the 
direction of the index subtype of this implicit array is the direction of S, where S is the index subtype 
of the base type of the result.

c) If both operands are of the same type and it is the element type of some one-dimensional array type, 
the type of the result is this one-dimensional array type. In this case, each operand is treated as the 
one element of an implicit array, and the result of the concatenation is determined as in case a). The 
bounds and direction of the index subtypes of the implicit arrays are determined as in the case of the 
implicit array in case b).

Operator Operation Left operand type Right operand type Result type

+ Addition Any numeric type Same type Same type

– Subtraction Any numeric type Same type Same type

& Concatenation Any one-dimensional 
array type

Same array type Same array type

Any one-dimensional 
array type

The element type Same array type

The element type Any one-dimensional 
array type

Same array type

The element type The element type Any one-dimensional 
array type
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In all cases, it is an error if either bound of the index range of the result does not belong to the index subtype 
of the type of the result, unless the result is a null array. It is also an error if any element of the result does 
not belong to the element subtype of the type of the result.

Examples:

subtype BYTE is BIT_VECTOR (7 downto 0);
type MEMORY is array (Natural range <>) of BYTE;

--  The following concatenation accepts two BIT_VECTORs and returns
--  a BIT_VECTOR [case a)]:

constant ZERO: BYTE := "0000" & "0000";

--  The next two examples show that the same expression can represent
--  either case a) or case c), depending on the context of
--  the expression.

--  The following concatenation accepts two BIT_VECTORS and returns
--  a BIT_VECTOR [case a)]:

constant C1: BIT_VECTOR := ZERO & ZERO;

--  The following concatenation accepts two BIT_VECTORs and returns
--  a MEMORY [case c)]:

constant C2: MEMORY := ZERO & ZERO;

--  The following concatenation accepts a BIT_VECTOR and a MEMORY,
--  returning a MEMORY [case b)]:

constant C3: MEMORY := ZERO & C2;

--  The following concatenation accepts a MEMORY and a BIT_VECTOR,
--  returning a MEMORY [case b)]:

constant C4: MEMORY := C2 & ZERO;

--  The following concatenation accepts two MEMORYs and returns
--  a MEMORY [case a)]:

constant C5: MEMORY := C2 & C3;

type R1 is range 0 to 7;
type R2 is range 7 downto 0;

type T1 is array (R1 range <>) of Bit;
type T2 is array (R2 range <>) of Bit;

subtype S1 is T1(R1);
subtype S2 is T2(R2);

constant K1: S1 := (others => '0');
constant K2: T1 := K1(1 to 3) & K1(3 to 4);  --  K2'Left = 0
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                                             --     and K2'Right = 4
constant K3: T1 := K1(5 to 7) & K1(1 to 2);  --  K3'Left = 0
                                             --     and K3'Right = 4
constant K4: T1 := K1(2 to 1) & K1(1 to 2);  --  K4'Left = 0
                                             --     and K4'Right = 1

constant K5: S2 := (others => '0');
constant K6: T2 := K5(3 downto 1) & K5(4 downto 3);  --  K6'Left = 7
                                             --      and K6'Right = 3
constant K7: T2 := K5(7 downto 5) & K5(2 downto 1);  --  K7'Left = 7
                                             --      and K7'Right = 3
constant K8: T2 := K5(1 downto 2) & K5(2 downto 1);  --  K8'Left = 7
                                             --      and K8'Right = 6
NOTE 1—For a given concatenation whose operands are of the same type, there may be visible more than one array 
type that could be the result type according to the rules of case c). The concatenation is ambiguous and therefore an error 
if, using the overload resolution rules of 4.5 and 12.5, the type of the result is not uniquely determined.

NOTE 2—Additionally, for a given concatenation, there may be visible array types that allow both case a) and case c) to 
apply. The concatenation is again ambiguous and therefore an error if the overload resolution rules cannot be used to 
determine a result type uniquely.

9.2.6 Sign operators

Signs + and – are predefined for any numeric type and have their conventional mathematical meaning: they 
respectively represent the identity and negation functions. For each of these unary operators, the operand 
and the result have the same type.

NOTE—Because of the relative precedence of signs + and – in the grammar for expressions, a signed operand shall not 
follow a multiplying operator, the exponentiating operator **, or the operators abs and not. For example, the syntax 
does not allow the following expressions:

A/+B           --  An illegal expression.

A**-B          --  An illegal expression.

However, these expressions may be rewritten legally as follows:

A/(+B)         --  A legal expression.

A ** (-B)      --  A legal expression.

9.2.7 Multiplying operators

The operators * and / are predefined for any integer and any floating-point type and have their conventional 
mathematical meaning; the operators mod and rem are predefined for any integer type. For each of these 
operators, the operands and the result are of the same type.

Operator Operation Operand type Result type

+ Identity Any numeric type Same type

– Negation Any numeric type Same type
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Integer division and remainder are defined by the following relation:

A = (A/B) * B + (A rem B)

where (A rem B) has the sign of A and an absolute value less than the absolute value of B. Integer division 
satisfies the following identity:

(–A)/B = – (A/B) = A/(–B)

The result of the modulus operation is such that (A mod B) has the sign of B and an absolute value less than 
the absolute value of B; in addition, for some integer value N, this result shall satisfy the relation:

A = B * N + (A mod B)

In addition to the preceding table, the multiplying operators are predefined for any physical type.

Multiplication of a value P of a physical type Tp by a value I of type INTEGER is equivalent to the 
following computation:

Tp'Val( Tp'Pos(P) * I )

Operator Operation Left operand type Right operand type Result type

* Multiplication Any integer type Same type Same type

Any floating-point type Same type Same type

/ Division Any integer type Same type Same type

Any floating-point type Same type Same type

mod Modulus Any integer type Same type Same type

rem Remainder Any integer type Same type Same type

Operator Operation Left operand type Right operand type Result type

* Multiplication Any physical type INTEGER Same as left

Any physical type REAL Same as left

INTEGER Any physical type Same as right

REAL Any physical type Same as right

/ Division Any physical type INTEGER Same as left

Any physical type REAL Same as left

Any physical type The same type Universal integer

mod Modulus Any physical type Same type Same type

rem Remainder Any physical type Same type Same type
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Multiplication of a value P of a physical type Tp by a value F of type REAL is equivalent to the following 
computation:

Tp'Val( INTEGER( REAL( Tp'Pos(P) ) * F ))

Division of a value P of a physical type Tp by a value I of type INTEGER is equivalent to the following 
computation:

Tp'Val( Tp'Pos(P) / I )

Division of a value P of a physical type Tp by a value F of type REAL is equivalent to the following 
computation:

Tp'Val( INTEGER( REAL( Tp'Pos(P) ) / F ))

Division of a value P of a physical type Tp by a value P2 of the same physical type is equivalent to the 
following computation:

Tp'Pos(P) / Tp'Pos(P2)

The computation of P mod P2, where P and P2 are values of a physical type Tp, is equivalent to the 
following computation:

Tp'Val(Tp'Pos(P) mod Tp'Pos(P2)) 

The computation of P rem P2, where P and P2 are values of a physical type Tp, is equivalent to the 
following computation:

Tp'Val(Tp'Pos(P) rem Tp'Pos(P2))

Examples:

  5      rem    3       =  2
  5      mod    3       =  2
(-5)     rem    3       = -2
(-5)     mod    3       =  1
(-5)     rem  (-3)      = -2
(-5)     mod  (-3)      = -2
  5      rem  (-3)      =  2
  5      mod  (-3)      = -1
  5 ns   rem    3 ns    = 2 ns
  5 ns   mod    3 ns    = 2 ns
(-5 ns)  rem    3 ns    = -2 ns
(-5 ns)  mod    3 ns    = 1 ns
  1 ns   mod    300 ps  = 100 ps
(-1 ns)  mod    300 ps  = 200 ps
NOTE—Because of the precedence rules (see 9.2.1), the expression “–5 rem 2” is interpreted as “–(5 rem 2)” and not as�
“(–5) rem 2.”

9.2.8 Miscellaneous operators

The unary operator abs is predefined for any numeric type.
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The exponentiating operator ** is predefined for each integer type and for each floating-point type. In either 
case the right operand, called the exponent, is of the predefined type INTEGER.

Exponentiation with an integer exponent is equivalent to repeated multiplication of the left operand by itself 
for a number of times indicated by the absolute value of the exponent and from left to right; if the exponent 
is negative, then the result is the reciprocal of that obtained with the absolute value of the exponent. 
Exponentiation with a negative exponent is only allowed for a left operand of a floating-point type. 
Exponentiation by a zero exponent results in the value one. Exponentiation of a value of a floating-point 
type is approximate.

9.2.9 Condition operator

The unary operator ?? is predefined for type BIT defined in package STANDARD (see 16.3).

Conversion of a value of type BIT converts '1' to TRUE and '0' to FALSE. The conversion operator may be 
overloaded for other types.

In certain circumstances, the condition operator is implicitly applied to an expression that occurs as a 
condition in any of the following places:

— After until in the condition clause of a wait statement (see 10.2)
— After assert in an assertion, either in an assertion statement (see 10.3) or in a concurrent assertion 

statement (see 11.5)
— After if or elsif in an if statement (see 10.8)
— After while in a while iteration scheme of a loop statement (see 10.10)
— After when in a next statement (see 10.11)
— After when in an exit statement (see 10.12)
— After when in a conditional signal assignment statement (see 10.5.3), either in a signal assignment 

statement or in a concurrent signal assignment statement
— After when in a conditional variable assignment statement (see 10.6.3)
— After if or elsif in an if generate statement (see 11.8)
— In a guard condition in a block statement (see 11.2)
— In a Boolean expression in a PSL declaration or a PSL directive

Operator Operation Operand type Result type

abs Absolute value Any numeric type Same numeric type

Operator Operation Left operand type Right operand type Result type

** Exponentiation Any integer type INTEGER Same as left

Any floating-point type INTEGER Same as left

Operator Operation Operand type Result type

?? Condition conversion BIT BOOLEAN
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The condition operator implicitly applied, if any, is either the predefined operator for type BIT or an 
overloaded operator, determined as follows. If, without overload resolution (see 12.5), the expression is of 
type BOOLEAN defined in package STANDARD, or if, assuming a rule requiring the expression to be of 
type BOOLEAN defined in package STANDARD, overload resolution can determine at least one 
interpretation of each constituent of the innermost complete context including the expression, then the 
condition operator is not applied. Otherwise, the condition operator is implicitly applied, and the type of the 
expression with the implicit application shall be BOOLEAN defined in package STANDARD.

Example:

use IEEE.STD_LOGIC_1164.all;
signal S: STD_ULOGIC;

assert S;  -- implicit conversion applied
NOTE 1—The condition operator is not implicitly applied if there is at least one interpretation of the expression as being 
of type BOOLEAN. If overload resolution yields more than one such interpretation, the expression is of type BOOL-
EAN but ambiguous. In cases where the condition operator is implicitly applied to the expression, overload resolution 
may yield multiple interpretations, in which case the expression is ambiguous. The expression is only legal if there is 
exactly one interpretation of type BOOLEAN without the condition operator, or failing that, one interpretation of type 
BOOLEAN with the condition operator.

NOTE 2—The condition operator is defined for type STD_ULOGIC defined in package STD_LOGIC_1164 (see 16.7). 
Conversion of a value of type STD_ULOGIC converts '1' and 'H' to TRUE and all other values to FALSE.

9.3 Operands

9.3.1 General

The operands in an expression include names (that denote objects, values, or attributes that result in a value), 
literals, aggregates, function calls, qualified expressions, type conversions, and allocators. In addition, an 
expression enclosed in parentheses may be an operand in an expression. Names are defined in 8.1; the other 
kinds of operands are defined in 9.3.2 through 9.3.7.

9.3.2 Literals

A literal is either a numeric literal, an enumeration literal, a string literal, a bit string literal, or the literal 
null.

literal ::=
        numeric_literal
      | enumeration_literal
      | string_literal
      | bit_string_literal
      | null

numeric_literal ::=
        abstract_literal
      | physical_literal

Numeric literals include literals of the abstract types universal_integer and universal_real, as well as literals 
of physical types. Abstract literals are defined in 15.5; physical literals are defined in 5.2.4.1.

Enumeration literals are literals of enumeration types. They include both identifiers and character literals. 
Enumeration literals are defined in 5.2.2.1.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



IEC 61691-1-1:2011(E) - 132 - �
IEEE Std 1076-2008

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

String and bit string literals are representations of one-dimensional arrays of characters. The type of a string 
or bit string literal shall be determinable solely from the context in which the literal appears, excluding the 
literal itself but using the fact that the type of the literal shall be a one-dimensional array of a character type. 
The lexical structure of string and bit string literals is defined in Clause 15.

For a non-null array value represented by either a string or bit string literal, the direction and bounds of the 
index range of the array value are determined according to the rules for positional array aggregates, where 
the number of elements in the aggregate is equal to the length (see 15.7 and 15.8) of the string or bit string 
literal. For a null array value represented by either a string or bit string literal, the direction and leftmost 
bound of the index range of the array value are determined as follows: the direction and nominal leftmost 
bound of the index range of the array value are determined as in the non-null case. If there is a value to the 
left of the nominal leftmost bound (given by the 'LEFTOF attribute), then the leftmost bound is the nominal 
leftmost bound, and the rightmost bound is the value to the left of the nominal leftmost bound. Otherwise, 
the leftmost bound is the value to the right of the nominal leftmost bound, and the rightmost bound is the 
nominal leftmost bound.

For a null array value represented by either a string or bit string literal, it is an error if the base type of the 
index subtype of the array type does not have at least two values.

The character literals corresponding to the graphic characters contained within a string literal or a bit string 
literal shall be visible at the place of the string literal.

The literal null represents the null access value for any access type.

Evaluation of a literal yields the corresponding value.

Examples:

3.14159_26536     --  A literal of type universal_real.
5280              --  A literal of type universal_integer.
10.7 ns           --  A literal of a physical type.
O"4777"           --  A bit string literal.
"54LS281"         --  A string literal.
""                --  A string literal representing a null array.

9.3.3 Aggregates

9.3.3.1 General

An aggregate is a basic operation (see 5.1) that combines one or more values into a composite value of a 
record or array type.

aggregate ::=
      ( element_association { , element_association } )

element_association ::=
      [ choices => ] expression

choices ::=  choice { | choice }

choice ::=
        simple_expression
      | discrete_range
      | element_simple_name

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



- 133 - IEC 61691-1-1:2011(E)�
IEEE Std 1076-2008

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

      | others

Each element association associates an expression with elements (possibly none). An element association is 
said to be named if the elements are specified explicitly by choices; otherwise, it is said to be positional. For 
a positional association, each element is implicitly specified by position in the textual order of the elements 
in the corresponding type declaration.

Both named and positional associations can be used in the same aggregate, with all positional associations 
appearing first (in textual order) and all named associations appearing next (in any order, except that it is an 
error if any associations follow an others association). Aggregates containing a single element association 
shall always be specified using named association in order to distinguish them from parenthesized 
expressions.

An element association with a choice that is an element simple name is only allowed in a record aggregate. 
An element association with a choice that is a simple expression or a discrete range is only allowed in an 
array aggregate: a simple expression specifies the element at the corresponding index value, whereas a 
discrete range specifies the elements at each of the index values in the range. Except as described in 9.3.3.3, 
the discrete range, and, in particular, the direction specified or implied by the discrete range, has no 
significance other than to define the set of choices implied by the discrete range. An element association 
with the choice others is allowed in either an array aggregate or a record aggregate if the association appears 
last and has this single choice; it specifies all remaining elements, if any.

Each element of the value defined by an aggregate shall be represented once and only once in the aggregate.

The type of an aggregate shall be determinable solely from the context in which the aggregate appears, 
excluding the aggregate itself but using the fact that the type of the aggregate shall be a composite type. The 
type of an aggregate in turn determines the required type for each of its elements.

9.3.3.2 Record aggregates

If the type of an aggregate is a record type, the element names given as choices shall denote elements of that 
record type. If the choice others is given as a choice of a record aggregate, it shall represent at least one 
element. An element association with more than one choice, or with the choice others, is only allowed if the 
elements specified are all of the same type. The expression of an element association shall have the type of 
the associated record elements.

A record aggregate is evaluated as follows. The expressions given in the element associations are evaluated 
in an order (or lack thereof) not defined by the language. The expression of a named association is evaluated 
once for each associated element. A check is made that the value of each element of the aggregate belongs to 
the subtype of this element. It is an error if this check fails.

9.3.3.3 Array aggregates

For an aggregate of a one-dimensional array type, each choice shall specify values of the index type, and the 
expression of each element association shall be of either the element type or the type of the aggregate. If the 
type of the expression of an element association is the type of the aggregate, then either the element 
association shall be positional or the choice shall be a discrete range.

For an element association with a choice that is a discrete range and an expression of the element type of the 
aggregate, the value of the expression is the element at each index value in the range.

For an element association with a choice that is a discrete range and an expression of the type of the 
aggregate, each element of the value of the expression is the value of the element of the aggregate at the 
matching index value in the range. The matching index value for an element of the value of the expression is 
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determined as follows: the leftmost element of the value matches the left bound of the range; if an element 
matches an index value, the element immediately to its right matches the index value immediately to the 
right in the range. It is an error if the length of the discrete range differs from the length of the value of the 
expression.

For a positional association with an expression of the element type of the aggregate, the expression specifies 
one element of the aggregate value.  For a positional association with an expression of the type of the 
aggregate, the expression specifies a number of matching elements (see 9.2.3) of the aggregate value given 
by the length of the value of the expression.

An aggregate of an n-dimensional array type, where n is greater than 1, is written as a one-dimensional 
aggregate in which the index subtype of the aggregate is given by the first index position of the array type, 
and the expression specified for each element association is an (n–1)-dimensional array or array aggregate, 
which is called a subaggregate. A string or bit string literal is allowed as a subaggregate in the place of any 
aggregate of a one-dimensional array of a character type.

Apart from a final element association with the single choice others, the rest (if any) of the element 
associations of an array aggregate shall be either all positional or all named. A named association of an array 
aggregate is allowed to have a choice that is not locally static, or likewise a choice that is a null range, only 
if the aggregate includes a single element association and this element association has a single choice. An 
others choice is locally static if the applicable index constraint is locally static.

The index range of an array aggregate that has an others choice shall be determinable from the context. That 
is, an array aggregate with an others choice shall appear only in one of the following contexts:

a) As an actual associated with a formal parameter, formal generic, or formal port (or member thereof), 
where either the formal (or the member) is declared to be of a fully constrained array subtype, or the 
formal designator is a slice name

b) As the default expression defining the default initial value of a port declared to be of a fully 
constrained array subtype

c) As the default expression for a generic constant declared to be of a fully constrained array subtype

d) As the result expression of a function, where the corresponding function result type is a fully 
constrained array subtype

e) As a value expression in an assignment statement, where the target is a declared object (or member 
thereof), and either the subtype of the target is a fully constrained array subtype or the target is a 
slice name

f) As the expression defining the initial value of a constant or variable object, where that object is 
declared to be of a fully constrained array subtype

g) As the expression defining the default values of signals in a signal declaration, where the corre-
sponding subtype is a fully constrained array subtype

h) As the expression defining the value of an attribute in an attribute specification, where that attribute 
is declared to be of a fully constrained array subtype

i) As the operand of a qualified expression whose type mark denotes a fully constrained array subtype

j) As a choice in a case statement whose expression is of a one-dimensional character array type and is 
one of the following:

— The name of an object whose subtype is locally static, in which case the index range of the 
aggregate is the index range of the subtype of the object

— An indexed name whose prefix is one of the members of this list and whose indexing expres-
sions are locally static expressions, in which case the index range of the aggregate is the index 
range of the element subtype of the prefix
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— A slice name whose prefix is one of the members of this list and whose discrete range is a 
locally static discrete range, in which case the index range of the aggregate is the discrete range

— A function call whose return type mark denotes a locally static subtype, in which case the index 
range of the aggregate is the index range of the subtype denoted by the return type mark

— A qualified expression or type conversion whose type mark denotes a locally static subtype, in 
which case the index range of the aggregate is the index range of the subtype denoted by the 
type mark

— An expression described in this list and enclosed in parentheses, in which case the index range 
of the aggregate is the index range of the subtype defined for the enclosed expression

In each case, the applicable index constraint is locally static.

k) As a subaggregate nested within an aggregate, where that aggregate itself appears in one of these 
contexts

The direction of the index range of an array that does not have an others choice are determined as follows:

— If the aggregate appears in one of the contexts in the preceding list, then the direction of the index 
range of the aggregate is that of the corresponding fully constrained array subtype, or that of the 
range of the corresponding slice name, as appropriate.

— If the aggregate does not appear in one of the contexts in the preceding list and an element 
association in the aggregate has a choice that is a discrete range and an expression that is of the type 
of the aggregate, then the direction of the index range of the aggregate is that of the discrete range.

— Otherwise, the direction of the index range of the aggregate is that of the index subtype of the base 
type of the aggregate.

The bounds of an array that does not have an others choice are determined as follows. For an aggregate that 
has named associations, the leftmost and rightmost bounds are determined by the direction of the index 
range of the aggregate and the smallest and largest choices given. For a positional aggregate, the leftmost 
bound is determined by the applicable index constraint if the aggregate appears in one of the contexts in the 
preceding list; otherwise, the leftmost bound is given by S'LEFT where S is the index subtype of the base 
type of the array. In either case, the rightmost bound is determined by the direction of the index range and 
the number of elements.

It is an error if the direction of the index range of an aggregate is determined by the context, and an element 
association has a choice that is a discrete range and an expression that is of the type of the aggregate, and the 
direction of the discrete range differs from that of the index range of the aggregate. If an aggregate has a 
given element association with a choice that is a discrete range and an expression that is of the type of the 
aggregate, then it is an error if any other element association has a choice that is a discrete range whose 
direction differs from that of the choice of the given element association.

The evaluation of an array aggregate that is not a subaggregate proceeds in two steps. First, the choices of 
this aggregate and of its subaggregates, if any, are evaluated in some order (or lack thereof) that is not 
defined by the language. Second, the expressions of the element associations of the array aggregate are 
evaluated in some order that is not defined by the language; the expression of a named association in which 
the expression is of the element type of the aggregate is evaluated once for each associated element. The 
evaluation of a subaggregate consists of this second step (the first step is omitted since the choices have 
already been evaluated).

For the evaluation of an aggregate that is not a null array, a check is made that the index values defined by 
choices belong to the corresponding index subtypes, and also that the value of each element of the aggregate 
belongs to the subtype of this element. For a multidimensional aggregate of dimension n, a check is made 
that all (n–1)-dimensional subaggregates have the same bounds. It is an error if any one of these checks fails.
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9.3.4 Function calls

A function call invokes the execution of a function body. The call specifies the name of the function to be 
invoked and specifies the actual parameters, if any, to be associated with the formal parameters of the 
function. Execution of the function body results in a value of the type declared to be the result type in the 
declaration of the invoked function.

function_call ::=
      function_name [ ( actual_parameter_part ) ]

actual_parameter_part ::=  parameter_association_list

For each formal parameter of a function, a function call shall specify exactly one corresponding actual 
parameter. This actual parameter is specified either explicitly, by an association element (other than the 
actual part open) in the association list, or in the absence of such an association element, by a default 
expression (see 6.5.2).

It is an error if the function name denotes an uninstantiated function.

Evaluation of a function call includes evaluation of the actual parameter expressions specified in the call and 
evaluation of the default expressions associated with formal parameters of the function that do not have 
actual parameters associated with them. In both cases, the resulting value shall belong to the subtype of the 
associated formal parameter. (If the formal parameter is of an unconstrained or partially constrained 
composite type, then any undefined index ranges of subelements of the formal parameter are determined as 
described in 5.3.2.2.) The function body is executed using the actual parameter values and default 
expression values as the values of the corresponding formal parameters.

NOTE 1—If a name (including one used as a prefix) has an interpretation both as a function call and an indexed name, 
then the innermost complete context is used to disambiguate the name. If, after applying this rule, there is not exactly 
one interpretation of the name, then the name is ambiguous. See 12.5.

NOTE 2—A call to a formal generic function uses the parameter names and default expressions defined in the formal 
generic function declaration and the parameter subtypes and result subtype of the associated actual generic function.

9.3.5 Qualified expressions

A qualified expression is a basic operation (see 5.1) that is used to explicitly state the type, and possibly the 
subtype, of an operand that is an expression or an aggregate.

qualified_expression ::=
        type_mark ' ( expression )
      | type_mark ' aggregate

The operand shall have the same type as the base type of the type mark. The value of a qualified expression 
is the value of the operand. The evaluation of a qualified expression evaluates the operand and converts it to 
the subtype denoted by the type mark.

NOTE—Whenever the type of an enumeration literal or aggregate is not known from the context, a qualified expression 
can be used to state the type explicitly.

9.3.6 Type conversions

A type conversion provides for explicit conversion between closely related types.

type_conversion ::=  type_mark ( expression )
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The target type of a type conversion is the base type of the type mark, and the target subtype of a type 
conversion is the type or subtype denoted by the type mark. The type of the operand of a type conversion 
shall be determined by applying the rules of 12.5 to the operand considered as a complete context. (In 
particular, the type of the operand must be determinable independent of the target type). Furthermore, the 
operand of a type conversion is not allowed to be the literal null, an allocator, an aggregate, or a string 
literal. An expression enclosed by parentheses is allowed as the operand of a type conversion only if the 
expression alone is allowed.

If the type mark denotes a subtype, conversion consists of conversion to the target type followed by a check 
that the result of the conversion belongs to the subtype.

In certain cases, an implicit subtype conversion is performed. A subtype conversion involves a type 
conversion in which the target subtype is the subtype to which the operand is converted and the target type is 
the base type of the target subtype.

Explicit type conversions are allowed between closely related types. In particular, a type is closely related to 
itself. Other types are closely related only under the following conditions:

— Abstract numeric types—Any abstract numeric type is closely related to any other abstract numeric 
type.

— Array types—Two array types are closely related if and only if the types have the same 
dimensionality and the element types are closely related

No other types are closely related.

In a type conversion where the target type is an abstract numeric type, the operand can be of any integer or 
floating-point type. The value of the operand is converted to the target type, which shall also be an integer or 
floating-point type. The conversion of a floating-point value to an integer type rounds to the nearest integer; 
if the value is halfway between two integers, rounding may be up or down.

In the case of conversions between numeric types, it is an error if the result of the conversion fails to satisfy 
a constraint imposed by the type mark.

In a type conversion where the target type is an array type, the following rules apply:
a) If the target subtype is an array type or subtype for which the index ranges are not defined, then, for 

each index position, the index range of the result is determined as follows:
— If the index type of the operand and the index type of the target type are not closely related, 

then the direction and nominal left bound of the index range of the result are the direction and 
left bound, respectively, of the corresponding index subtype of the target type. For a non-null 
range, the left bound of the index range is the nominal left bound, and the right bound is deter-
mined by the number of values in the corresponding index range of the operand. For a null 
range, if there is a value to the left of the nominal left bound (given by the 'LEFTOF attribute), 
then the left bound is the nominal left bound, and the right bound is the value to the left of the 
nominal left bound; otherwise, the left bound is the value to the right of the nominal left bound, 
and the right bound is the nominal left bound. For either a non-null or a null range, it is an error 
if the base type of the corresponding index subtype of the target type does not include sufficient 
values for the index range of the result.

— If the index type of the operand and the index type of the target type are closely related, then the 
bounds of the index range of the result are obtained by converting the bounds of the index 
range of the operand to the index type of the target type, and the direction of the index range of 
the result is the direction of the index type of the operand.

b) If the target subtype is an array subtype for which the index ranges are defined, then the bounds of 
the result are those imposed by the target subtype.
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In either case, the value of each element of the result is that of the matching element of the operand (see 
9.2.3) converted to the element subtype of the target subtype.

In the case of conversions between array types, if the target subtype is an array type for which the index 
ranges are not defined, then, for each index position, a check is made that the bounds of the result belong to 
the corresponding index subtype of the target type. If the target subtype is an array subtype for which the 
index ranges are defined, a check is made that for each element of the operand there is a matching element of 
the target subtype, and vice versa. It is an error if any of these checks fail.

In a subtype conversion where the target type is a record type, the value of each element of the result is that 
of the matching element of the operand (see 9.2.3) converted to the subtype of the element of the result.

In certain cases, an implicit type conversion will be performed. An implicit conversion of an operand of type 
universal_integer to another integer type, or of an operand of type universal_real to another floating-point 
type, can only be applied if the operand is either a numeric literal or an attribute, or if the operand is an 
expression consisting of the division of a value of a physical type by a value of the same type; such an 
operand is called a convertible universal operand. An implicit conversion of a convertible universal operand 
is applied if and only if the innermost complete context determines a unique (numeric) target type for the 
implicit conversion, and there is no legal interpretation of this context without this conversion.

NOTE 1—Two array types may be closely related even if corresponding index positions have different directions.

NOTE 2—Two distinct record types are not closely related, even if they have the same element identifiers and element 
subtypes. A record type is, however, closely related to itself. Hence, an operand of a record type can be converted to a 
subtype of the record type.

9.3.7 Allocators

The evaluation of an allocator creates an object and yields an access value that designates the object.

allocator ::=
        new subtype_indication
      | new qualified_expression

The type of the object created by an allocator is the base type of the type mark given in either the subtype 
indication or the qualified expression. For an allocator with a subtype indication, the initial value of the 
created object is the same as the default initial value for an explicitly declared variable of the designated 
subtype. For an allocator with a qualified expression, this expression defines the initial value of the created 
object.

The type of the access value returned by an allocator shall be determinable solely from the context, but using 
the fact that the value returned is of an access type having the named designated type.

The only allowed form of constraint in the subtype indication of an allocator is an array constraint or a 
record constraint. If an allocator includes a subtype indication and if the type of the object created is an array 
type or a record type, then the subtype indication shall denote a fully constrained subtype. A subtype 
indication that is part of an allocator shall not include a resolution indication.

If the type of the created object is an array type or a record type, then the created object is always fully 
constrained. If the allocator includes a subtype indication, the created object is constrained by the subtype. If 
the allocator includes a qualified expression, the created object is constrained by the bounds of the initial 
value defined by that expression. For other types, the subtype of the created object is the subtype defined by 
the subtype of the access type definition.
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For the evaluation of an allocator, the elaboration of the subtype indication or the evaluation of the qualified 
expression is first performed. The new object is then created, and the object is then assigned its initial value. 
Finally, an access value that designates the created object is returned.

In the absence of explicit deallocation, an implementation shall guarantee that any object created by the 
evaluation of an allocator remains allocated for as long as this object or one of its subelements is accessible 
directly or indirectly; that is, as long as it can be denoted by some name.

NOTE 1—Procedure deallocate is implicitly declared for each access type. This procedure provides a mechanism for 
explicitly deallocating the storage occupied by an object created by an allocator.

NOTE 2—An implementation may (but need not) deallocate the storage occupied by an object created by an allocator, 
once this object has become inaccessible.

Examples:

new NODE                        -- Takes on default initial value.
new NODE'(15 ns, null)          -- Initial value is specified.
new NODE'(Delay => 5  ns,
          \Next\=> Stack)       -- Initial value is specified.
new BIT_VECTOR'("00110110")     -- Constrained by initial value.
new STRING (1 to 10)            -- Constrained by index constraint.
new STRING                      -- Illegal: must be constrained.

9.4 Static expressions

9.4.1 General

Certain expressions are said to be static. Similarly, certain discrete ranges are said to be static, and the type 
marks of certain subtypes are said to denote static subtypes.

There are two categories of static expression. Certain forms of expression can be evaluated during the 
analysis of the design unit in which they appear; such an expression is said to be locally static. Certain forms 
of expression can be evaluated as soon as the design hierarchy in which they appear is elaborated; such an 
expression is said to be globally static.

9.4.2 Locally static primaries

An expression is said to be locally static if and only if every operator in the expression denotes an implicitly 
defined operator or an operator defined in one of the packages STD_LOGIC_1164, NUMERIC_BIT, 
NUMERIC_STD, NUMERIC_BIT_UNSIGNED, or NUMERIC_STD_UNSIGNED in library IEEE, and if 
every primary in the expression is a locally static primary, where a locally static primary is defined to be one 
of the following:

a) A literal of any type other than type TIME
b) A constant (other than a deferred constant) explicitly declared by a constant declaration with a 

locally static subtype or with an unconstrained or partially constrained composite subtype for which 
the applicable constraints are locally static, and initialized with a locally static expression

c) A formal generic constant of a generic-mapped subprogram or package (whether explicitly declared 
or equivalent to a subprogram or package instance, respectively), declared with a locally static sub-
type and for which the associated actual is a locally static expression

d) An alias whose aliased name (given in the corresponding alias declaration) is a locally static primary 
and for which the subtype with which the aliased object is viewed is a locally static subtype

e) A function call whose function name denotes an implicitly defined operation or an operation defined 
in one of the packages STD_LOGIC_1164, NUMERIC_BIT, NUMERIC_STD, 
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NUMERIC_BIT_UNSIGNED, or NUMERIC_STD_UNSIGNED in library IEEE and whose actual 
parameters are each locally static expressions

f) A predefined attribute that is a value, other than the predefined attributes 'INSTANCE_NAME and 
'PATH_NAME, and whose prefix is either a locally static subtype or is an object name that is of a 
locally static subtype

g) A predefined attribute that is a function, other than the predefined attribute 'VALUE with a prefix 
whose base type is the predefined type TIME, and other than the predefined attributes 'EVENT, 
'ACTIVE, 'LAST_EVENT, 'LAST_ACTIVE, 'LAST_VALUE, 'DRIVING, and 
'DRIVING_VALUE, whose prefix is either a locally static subtype or is an object that is of a locally 
static subtype, and whose actual parameter (if any) is a locally static expression

h) A user-defined attribute whose value is defined by a locally static expression

i) A qualified expression whose type mark denotes a locally static subtype and whose operand is a 
locally static expression

j) A type conversion whose type mark denotes a locally static subtype and whose expression is a 
locally static expression

k) A locally static expression enclosed in parentheses

l) An array aggregate in which all expressions in element associations are locally static expressions, all 
simple expressions in choices are locally static expressions, all discrete ranges in choices are locally 
static discrete ranges, and the others choice, if present, is locally static

m) A record aggregate in which all expressions in element associations are locally static expressions

n) An indexed name whose prefix is a locally static primary and whose index expressions are all 
locally static expressions

o) A slice name whose prefix is a locally static primary and whose discrete range is a locally static dis-
crete range

p) A selected name whose prefix is a locally static primary

A locally static range is either a range of the second form (see 5.2.1) whose bounds are locally static 
expressions, or a range of the first form whose prefix denotes either a locally static subtype or an object that 
is of a locally static subtype. A locally static range constraint is a range constraint whose range is locally 
static. A locally static scalar subtype is either a scalar base type or a scalar subtype formed by imposing on a 
locally static subtype a locally static range constraint. A locally static discrete range is either a locally static 
subtype or a locally static range.

A locally static index constraint is an index constraint for which each index subtype of the corresponding 
array type is locally static and in which each discrete range is locally static. A locally static array constraint 
is an array constraint with a locally static index constraint and, if the array element constraint is present, a 
locally static array element constraint. A locally static array subtype is a fully constrained array subtype 
formed by imposing on an unconstrained array type a locally static array constraint. The unconstrained array 
type shall have a locally static index subtype for each index position and a locally static index subtype for 
each index position of each array subelement, if any. A locally static record constraint is a record constraint 
with a locally static constraint in each record element constraint. A locally static record subtype is a fully 
constrained record type whose elements are all of locally static subtypes, or a fully constrained record 
subtype formed by imposing on an unconstrained record type a locally static record constraint. The 
unconstrained record type shall have a locally static index subtype for each index position of each array 
subelement, if any. A locally static access subtype is a subtype denoting an access type. A locally static file 
subtype is a subtype denoting a file type. A locally static formal generic type is a formal generic type of an 
explicit block statement or of a generic-mapped subprogram or package (whether explicitly declared or 
equivalent to a subprogram or package instance, respectively) for which the associated actual is a locally 
static subtype.
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A locally static subtype is either a locally static scalar subtype, a locally static array subtype, a locally static 
record subtype, a locally static access subtype, a locally static file subtype, or a locally static formal generic 
type.

9.4.3 Globally static primaries

An expression is said to be globally static if and only if every operator in the expression denotes a pure 
function and every primary in the expression is a globally static primary, where a globally static primary is a 
primary that, if it denotes an object or a function, does not denote a dynamically elaborated named entity 
(see 14.6) and is one of the following:

a) A literal of type TIME
b) A locally static primary
c) A generic constant declared with a globally static subtype
d) A generate parameter
e) A constant (including a deferred constant) explicitly declared by a constant declaration with a glob-

ally static subtype or with an unconstrained or partially constrained composite subtype for which the 
applicable constraints are globally static

f) An alias whose aliased name (given in the corresponding alias declaration) is a globally static 
primary

g) An array aggregate, if and only if
1) All expressions in its element associations are globally static expressions, and
2) All ranges in its element associations are globally static ranges

h) A record aggregate, if and only if all expressions in its element associations are globally static 
expressions

i) A function call whose function name denotes a pure function and whose actual parameters are each 
globally static expressions

j) A predefined attribute that is one of 'SIMPLE_NAME, 'INSTANCE_NAME, or 'PATH_NAME
k) A predefined attribute that is a value, other than the predefined attributes 'SIMPLE_NAME, 

'INSTANCE_NAME, and 'PATH_NAME, whose prefix is appropriate for a globally static attribute
l) A predefined attribute that is a function, other than the predefined attributes 'EVENT, 'ACTIVE, 

'LAST_EVENT, 'LAST_ACTIVE, 'LAST_VALUE, 'DRIVING, and 'DRIVING_VALUE, whose 
prefix is appropriate for a globally static attribute, and whose actual parameter (if any) is a globally 
static expression

m) A user-defined attribute whose value is defined by a globally static expression
n) A qualified expression whose type mark denotes a globally static subtype and whose operand is a 

globally static expression
o) A type conversion whose type mark denotes a globally static subtype and whose expression is a 

globally static expression
p) An allocator of the first form (see 9.3.7) whose subtype indication denotes a globally static subtype
q) An allocator of the second form whose qualified expression is a globally static expression
r) A globally static expression enclosed in parentheses
s) A subelement or a slice of a globally static primary, provided that any index expressions are globally 

static expressions and any discrete ranges used in slice names are globally static discrete ranges

A prefix is appropriate for a globally static attribute if it denotes a signal, a constant, a type or subtype, a 
globally static function call, a variable that is not of an access type, or a variable of an access type whose 
designated subtype is fully constrained.
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A globally static range is either a range of the second form (see 5.2.1) whose bounds are globally static 
expressions, or a range of the first form whose prefix is appropriate for a globally static attribute. A globally 
static range constraint is a range constraint whose range is globally static. A globally static scalar subtype is 
either a scalar base type or a scalar subtype formed by imposing on a globally static subtype a globally static 
range constraint. A globally static discrete range is either a globally static subtype or a globally static range.

A globally static index constraint is an index constraint for which each index subtype of the corresponding 
array type is globally static and in which each discrete range is globally static. A globally static array 
constraint is an array constraint with a globally static index constraint and, if the array element constraint is 
present, a globally static array element constraint. A globally static array subtype is a fully constrained array 
subtype formed by imposing on an unconstrained array type a globally static array constraint. A globally 
static record constraint is a record constraint with a globally static constraint in each record element 
constraint. A globally static record subtype is a fully constrained record type whose elements are all of 
globally static subtypes, or a fully constrained record subtype formed by imposing on an unconstrained 
record type a globally static record constraint. A globally static access subtype is a subtype denoting an 
access type. A globally static file subtype is a subtype denoting a file type. A globally static formal generic 
type is a formal generic type of a block statement (including an implied block statement representing a 
component instance or a bound design entity) or of a generic-mapped subprogram or package (whether 
explicitly declared or equivalent to a subprogram or package instance, respectively) for which the associated 
actual is a globally static subtype.

A globally static subtype is either a globally static scalar subtype, a globally static array subtype, a globally 
static record subtype, a globally static access subtype, a globally static file subtype, or a globally static 
formal generic type.

NOTE 1—An expression that is required to be a static expression shall either be a locally static expression or a globally 
static expression. Similarly, a range, a range constraint, a scalar subtype, a discrete range, an index constraint, an array 
constraint, an array subtype, a record constraint, or a record subtype that is required to be static shall either be locally 
static or globally static.

NOTE 2—The rules for globally static expressions imply that a declared constant or a generic may be initialized with an 
expression that is not globally static, for example, with a call to an impure function. The resulting constant value may be 
globally static, even though its initial value expression is not. Only interface constant, variable, and signal declarations 
require that their initial value expressions be static expressions.

9.5 Universal expressions

A universal_expression is either an expression that delivers a result of type universal_integer or one that 
delivers a result of type universal_real.

The same operations are predefined for the type universal_integer as for any integer type. The same 
operations are predefined for the type universal_real as for any floating-point type. In addition, these 
operations include the following multiplication and division operators:

Operator Operation Left operand type Right operand 
type Result type

* Multiplication Universal real Universal integer Universal real

Universal integer Universal real Universal real

/ Division Universal real Universal integer Universal real
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The accuracy of the evaluation of a universal expression of type universal_real is at least as good as the 
accuracy of evaluation of expressions of the most precise predefined floating-point type supported by the 
implementation, apart from universal_real itself.

For the evaluation of an operation of a universal expression, the following rules apply. If the result is of type 
universal_integer, then the values of the operands and the result shall lie within the range of the integer type 
with the widest range provided by the implementation, excluding type universal_integer itself. If the result 
is of type universal_real, then the values of the operands and the result shall lie within the range of the 
floating-point type with the widest range provided by the implementation, excluding type universal_real
itself.

NOTE—The predefined operators for the universal types are declared in package STANDARD as shown in 16.3.
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10. Sequential statements

10.1 General

The various forms of sequential statements are described in this clause. Sequential statements are used to 
define algorithms for the execution of a subprogram or process; they execute in the order in which they 
appear.

sequence_of_statements ::=
      { sequential_statement }

sequential_statement ::=
        wait_statement
      | assertion_statement
      | report_statement
      | signal_assignment_statement
      | variable_assignment_statement
      | procedure_call_statement
      | if_statement
      | case_statement
      | loop_statement
      | next_statement
      | exit_statement
      | return_statement
      | null_statement

All sequential statements may be labeled. Such labels are implicitly declared at the beginning of the 
declarative part of the innermost enclosing process statement or subprogram body.

10.2 Wait statement

The wait statement causes the suspension of a process statement or a procedure.

wait_statement ::=
      [ label : ] wait [ sensitivity_clause ] [ condition_clause ] [ timeout_clause ] ;

sensitivity_clause ::=  on sensitivity_list

sensitivity_list ::=  signal_name { , signal_name }

condition_clause ::=  until condition

condition ::= expression

timeout_clause ::=  for time_expression

The sensitivity clause defines the sensitivity set of the wait statement, which is the set of signals to which the 
wait statement is sensitive. Each signal name in the sensitivity list identifies a given signal as a member of 
the sensitivity set. Each signal name in the sensitivity list shall be a static signal name, and each name shall 
denote a signal for which reading is permitted. If no sensitivity clause appears, the sensitivity set is 
constructed according to the following (recursive) rule:
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The sensitivity set is initially empty. For each primary in the condition of the condition clause, if the primary 
is

— A simple name that denotes a signal, add the longest static prefix of the name to the sensitivity set.
— An expanded name that denotes a signal, add the longest static prefix of the name to the sensitivity 

set.
— A selected name whose prefix denotes a signal, add the longest static prefix of the name to the 

sensitivity set.
— An indexed name whose prefix denotes a signal, add the longest static prefix of the name to the 

sensitivity set and apply this rule to all expressions in the indexed name.
— A slice name whose prefix denotes a signal, add the longest static prefix of the name to the 

sensitivity set and apply this rule to any expressions appearing in the discrete range of the slice name.
— An attribute name, if the designator denotes a signal attribute, add the longest static prefix of the 

name of the implicit signal denoted by the attribute name to the sensitivity set; otherwise, apply this 
rule to the prefix of the attribute name.

— An aggregate, apply this rule to every expression appearing after the choices and the =>, if any, in 
every element association.

— A function call, apply this rule to every actual designator in every parameter association.
— An actual designator of open in a parameter association, do not add to the sensitivity set.
— A qualified expression, apply this rule to the expression or aggregate qualified by the type mark, as 

appropriate.
— A type conversion, apply this rule to the expression type converted by the type mark.
— A parenthesized expression, apply this rule to the expression enclosed within the parentheses.
— Otherwise, do not add to the sensitivity set.

This rule is also used to construct the sensitivity sets of the wait statements in the equivalent process 
statements for concurrent procedure call statements (11.4), concurrent assertion statements (11.5), and 
concurrent signal assignment statements (11.6). Furthermore, this rule is used to construct the sensitivity list 
of an implicit wait statement in a process statement whose process sensitivity list is the reserved word all
(11.3).

If a signal name that denotes a signal of a composite type appears in a sensitivity list, the effect is as if the 
name of each scalar subelement of that signal appears in the list.

The condition clause specifies a condition that shall be met for the process to continue execution. If no 
condition clause appears, the condition clause until TRUE is assumed.

The timeout clause specifies the maximum amount of time the process will remain suspended at this wait 
statement. If no timeout clause appears, the timeout clause for (STD.STANDARD.TIME'HIGH – 
STD.STANDARD.NOW) is assumed. It is an error if the time expression in the timeout clause evaluates to 
a negative value.

The execution of a wait statement causes the time expression to be evaluated to determine the timeout 
interval. It also causes the execution of the corresponding process statement to be suspended, where the 
corresponding process statement is the one that either contains the wait statement or is the parent (see 4.3) of 
the procedure that contains the wait statement. The suspended process will resume, at the latest, immediately 
after the timeout interval has expired.

The suspended process also resumes as a result of an event occurring on any signal in the sensitivity set of 
the wait statement. If such an event occurs, the condition in the condition clause is evaluated. If the value of 
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the condition is FALSE, the process suspends again. Such repeated suspension does not involve the 
recalculation of the timeout interval.

It is an error if a wait statement appears in a function subprogram or in a procedure that has a parent that is a 
function subprogram. Furthermore, it is an error if a wait statement appears in an explicit process statement 
that includes a sensitivity list or in a procedure that has a parent that is such a process statement. Finally, it is 
an error if a wait statement appears within any subprogram whose body is declared within a protected type 
body, or within any subprogram that has a parent whose body is declared within a protected type body.

Example:

type Arr is array (1 to 5) of BOOLEAN;
function F (P: BOOLEAN) return BOOLEAN;
signal S: Arr;
signal l, r: INTEGER range 1 to 5;

--  The following two wait statements have the same meaning:

wait until F(S(3)) and (S(l) or S(r));
wait on S(3), S, l, r until F(S(3)) and (S(l) or S(r));
NOTE 1—The wait statement wait until Clk = '1'; has semantics identical to

loop
   wait on Clk;
   exit when Clk = '1';
end loop;
because of the rules for the construction of the default sensitivity clause. These same rules imply that wait until TRUE; 
has semantics identical to wait;.

NOTE 2—The conditions that cause a wait statement to resume execution of its enclosing process may no longer hold at 
the time the process resumes execution if the enclosing process is a postponed process.

NOTE 3—The rule for the construction of the default sensitivity set implies that if a function call appears in a condition 
clause and the called function is an impure function, then any signals that are accessed by the function but that are not 
passed through the association list of the call are not added to the default sensitivity set for the condition by virtue of the 
appearance of the function call in the condition.

10.3 Assertion statement

An assertion statement checks that a specified condition is true and reports an error if it is not.

assertion_statement ::=  [ label : ] assertion ;

assertion ::=
      assert condition
            [ report expression ]
            [ severity expression ]

If the report clause is present, it shall include an expression of predefined type STRING that specifies a 
message to be reported. If the severity clause is present, it shall specify an expression of predefined type 
SEVERITY_LEVEL that specifies the severity level of the assertion.

The report clause specifies a message string to be included in error messages generated by the assertion. In 
the absence of a report clause for a given assertion, the string “Assertion violation.” is the default value for 
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the message string. The severity clause specifies a severity level associated with the assertion. In the 
absence of a severity clause for a given assertion, the default value of the severity level is ERROR.

Execution of an assertion statement consists of evaluation of the Boolean expression specifying the 
condition. If the expression results in the value FALSE, then an assertion violation is said to occur. When an 
assertion violation occurs, the report and severity clause expressions of the corresponding assertion, if 
present, are evaluated. The specified message string and severity level (or the corresponding default values, 
if not specified) are then used to construct an error message.

The error message consists of at least the following:
a) An indication that this message is from an assertion
b) The value of the severity level
c) The value of the message string
d) The name of the design unit (see 13.1) containing the assertion

A line feed (LF) format effector occurring as an element of the message string is interpreted by the 
implementation as signifying the end of a line. The implementation shall transform the LF into the 
implementation-defined representation of the end of a line.

An implementation should continue execution of a model after occurrence of an assertion violation in which 
the severity level is NOTE, WARNING, or ERROR.

NOTE 1—An implementation may choose whether or not to continue execution of a model after occurrence of assertion 
violations with various severity levels. It may also give tool users ability to control simulator actions for assertions of 
various severity levels via mechanisms not specified by this standard.

NOTE 2—The inadvertent insertion of a semicolon between the condition and the reserved word report in an assertion 
statement does not cause an error. Rather, it causes the statement to be parsed as an assertion statement with no report or 
severity clause, followed by a report statement.

10.4 Report statement

A report statement displays a message.

report_statement ::=
      [ label : ]
            report expression
                  [ severity expression ] ;

The report statement expression shall be of the predefined type STRING. The string value of this 
expression is included in the message generated by the report statement. If the severity clause is present, it 
shall specify an expression of predefined type SEVERITY_LEVEL. The severity clause specifies a severity 
level associated with the report. In the absence of a severity clause for a given report, the default value of the 
severity level is NOTE.

Execution of a report statement consists of the evaluation of the report expression and severity clause 
expression, if present. The specified message string and severity level (or corresponding default, if the 
severity level is not specified) are then used to construct a report message.

The report message consists of at least the following:
a) An indication that this message is from a report statement
b) The value of the severity level
c) The value of the message string
d) The name of the design unit containing the report statement
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An LF format effector occurring as an element of the message string is interpreted by the implementation as 
signifying the end of a line. The implementation shall transform the LF into the implementation-defined 
representation of the end of a line.

An implementation should continue execution of a model after displaying a report message in which the 
severity level is NOTE, WARNING, or ERROR.

NOTE—An implementation may choose whether or not to continue execution of a model after execution of report state-
ments with various severity levels. It may also give tool users ability to control simulator actions for report statements of 
various severity levels via mechanisms not specified by this standard.

Example:

report "Entering process P";
   -- A report statement with default severity NOTE.

report "Setup or Hold violation; outputs driven to 'X'"
   severity WARNING;
   -- Another report statement; severity is specified.

10.5 Signal assignment statement

10.5.1 General

A signal assignment statement modifies the projected output waveforms contained in the drivers of one or 
more signals (see 14.7.2), schedules a force for one or more signals, or schedules release of one or more 
signals (see 14.7.3).

signal_assignment_statement ::=
        [ label : ] simple_signal_assignment
      | [ label : ] conditional_signal_assignment
      | [ label : ] selected_signal_assignment

10.5.2 Simple signal assignments

10.5.2.1 General

simple_signal_assignment ::=
        simple_waveform_assignment
      | simple_force_assignment
      | simple_release_assignment

simple_waveform_assignment ::=
      target <= [ delay_mechanism ] waveform ;

simple_force_assignment ::=
      target <= force [ force_mode ] expression ;

simple_release_assignment ::=
      target <= release [ force_mode ] ;

force_mode ::= in | out

delay_mechanism ::=
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        transport
      | [ reject time_expression ] inertial

target ::=
        name
      | aggregate

waveform ::=
        waveform_element { , waveform_element }
      | unaffected

If the target of the signal assignment statement is a name, then the name shall denote a signal. For a simple 
waveform assignment, the base type of the value component of each transaction produced by a waveform 
element on the right-hand side shall be the same as the base type of the signal denoted by the target. This 
form of signal assignment assigns right-hand side values to the drivers associated with a single (scalar or 
composite) signal. For a simple force assignment, the base type of the expression on the right-hand side shall 
be the same as the base type of the signal denoted by the target. This form of signal assignment schedules 
either a driving-value force or an effective-value force for a single signal, with the expression value being the 
driving force value or effective force value, respectively. A simple release assignment schedules a driving-
value release or an effective-value release for a single signal.

If the target of the signal assignment statement is in the form of an aggregate, then the type of the aggregate 
shall be determinable from the context, excluding the aggregate itself but including the fact that the type of 
the aggregate shall be a composite type. Furthermore, the expression in each element association of the 
aggregate shall be a locally static name that denotes a signal. For a simple waveform assignment, the base 
type of the value component of each transaction produced by a waveform element on the right-hand side 
shall be the same as the base type of the aggregate. This form of signal assignment assigns slices or 
subelements of the right-hand side values to the drivers associated with the signal named as the 
corresponding slice or subelement of the aggregate. It is an error if the target of a simple force assignment or 
a simple release assignment is in the form of an aggregate.

If the target of a signal assignment statement is in the form of an aggregate, and if the expression in an 
element association of that aggregate is a signal name that denotes a given signal, then the given signal and 
each subelement thereof (if any) are said to be identified by that element association as targets of the 
assignment statement. It is an error if a given signal or any subelement thereof is identified as a target by 
more than one element association in such an aggregate. Furthermore, it is an error if an element association 
in such an aggregate contains an others choice, or if the element association contains a choice that is a 
discrete range and an expression of a type other than the aggregate type.

The right-hand side of a simple waveform assignment may optionally specify a delay mechanism. A delay 
mechanism consisting of the reserved word transport specifies that the delay associated with the first 
waveform element is to be construed as transport delay. Transport delay is characteristic of hardware 
devices (such as transmission lines) that exhibit nearly infinite frequency response: any pulse is transmitted, 
no matter how short its duration. If no delay mechanism is present, or if a delay mechanism including the 
reserved word inertial is present, the delay is construed to be inertial delay. Inertial delay is characteristic of 
switching circuits: a pulse whose duration is shorter than the switching time of the circuit will not be 
transmitted, or in the case that a pulse rejection limit is specified, a pulse whose duration is shorter than that 
limit will not be transmitted.

Every inertially delayed signal assignment has a pulse rejection limit. If the delay mechanism specifies 
inertial delay, and if the reserved word reject followed by a time expression is present, then the time 
expression specifies the pulse rejection limit. In all other cases, the pulse rejection limit is specified by the 
time expression associated with the first waveform element.
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It is an error if the pulse rejection limit for any inertially delayed signal assignment statement is either 
negative or greater than the time expression associated with the first waveform element.

A simple signal assignment of the form

target <= [ delay_mechanism ] unaffected ;

has the same effect as replacing the given assignment with a null statement (not an assignment with a null 
waveform element).

The right-hand side of a simple force assignment or a simple release assignment may optionally specify a 
force mode. A force mode consisting of the reserved word in specifies that an effective-value force or an 
effective-value release is to be scheduled, and a force mode consisting of the reserved word out specifies 
that a driving-value force or a driving-value release is to be scheduled.

If the right-hand side of a simple force assignment or a simple release assignment does not specify a force 
mode, then a default force mode is used, as follows:

— If the target is a port or signal parameter of mode in, a force mode of in is used.
— If the target is a port of mode out, inout, or buffer, or a signal parameter of mode out or inout, a 

force mode of out is used.
— If the target is not a port or a signal parameter, a force mode of in is used.

It is an error if a force mode of out is specified and the target is a port of mode in.

It is an error if a simple force assignment schedules a driving value force or an effective value force for a 
member of a resolved composite signal.

NOTE 1—For a signal assignment whose target is a name, no subelement of the target can be of a protected type (see 
5.3.1).

NOTE 2—For a signal assignment whose target is in the form of an aggregate, no element of the target can be of a pro-
tected type, nor can any subelement of any element of the target be of a protected type (see 5.3.1).

NOTE 3—If a right-hand side value expression is either a numeric literal or an attribute that yields a result of type 
universal_integer or universal_real, then an implicit type conversion is performed.

Examples:

-- Assignments using inertial delay:

-- The following three assignments are equivalent to each other:

Output_pin <= Input_pin after 10 ns;
Output_pin <= inertial Input_pin after 10 ns;
Output_pin <= reject 10 ns inertial Input_pin after 10 ns;

-- Assignments with a pulse rejection limit less than the time 
expression:

Output_pin <= reject 5 ns inertial Input_pin after 10 ns;
Output_pin <= reject 5 ns inertial Input_pin after 10 ns,
                                   not Input_pin after 20 ns;

-- Assignments using transport delay:
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Output_pin <= transport Input_pin after 10 ns;
Output_pin <= transport Input_pin after 10 ns,
                        not Input_pin after 20 ns;

-- Their equivalent assignments:

Output_pin <= reject 0 ns inertial Input_pin after 10 ns;
Output_pin <= reject 0 ns inertial Input_pin after 10 ns,
                                   not Input_pin after 20 ns;

10.5.2.2 Executing a simple assignment statement

The effect of execution of a simple waveform assignment statement is defined in terms of its effect upon the 
projected output waveforms (see 14.7.2) representing the current and future values of drivers of signals.

waveform_element ::=
        value_expression [ after time_expression ]
      | null [ after time_expression ]

The future behavior of the driver(s) for a given target is defined by transactions produced by the evaluation 
of waveform elements in the waveform of a simple waveform assignment statement. The first form of 
waveform element is used to specify that the driver is to assign a particular value to the target at the specified 
time. The second form of waveform element is used to specify that the driver of the signal is to be turned off, 
so that it (at least temporarily) stops contributing to the value of the target. This form of waveform element 
is called a null waveform element. It is an error if the target of a simple waveform assignment statement 
containing a null waveform element is not a guarded signal or an aggregate of guarded signals.

The base type of the time expression in each waveform element shall be the predefined physical type TIME 
as defined in package STANDARD. If the after clause of a waveform element is not present, then an 
implicit “after 0 ns” is assumed. It is an error if the time expression in a waveform element evaluates to a 
negative value.

Evaluation of a waveform element produces a single transaction. The time component of the transaction is 
determined by the current time added to the value of the time expression in the waveform element. For the 
first form of waveform element, the value component of the transaction is determined by the value 
expression in the waveform element. For the second form of waveform element, the value component is not 
defined by the language, but it is defined to be of the type of the target. A transaction produced by the 
evaluation of the second form of waveform element is called a null transaction.

For the execution of a simple waveform assignment statement whose target is of a scalar type, the waveform 
on its right-hand side is first evaluated. Evaluation of a waveform consists of the evaluation of each 
waveform element in the waveform. Thus, the evaluation of a waveform results in a sequence of 
transactions, where each transaction corresponds to one waveform element in the waveform. These 
transactions are called new transactions. It is an error if the sequence of new transactions is not in ascending 
order with respect to time. It is also an error if the value of any value expression in the waveform does not 
belong to the subtype of the target.

The sequence of transactions is then used to update the projected output waveform representing the current 
and future values of the driver associated with the simple waveform assignment statement. Updating a 
projected output waveform consists of the deletion of zero or more previously computed transactions (called 
old transactions) from the projected output waveform and the addition of the new transactions, as follows:

a) All old transactions that are projected to occur at or after the time at which the earliest new 
transaction is projected to occur are deleted from the projected output waveform.
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b) The new transactions are then appended to the projected output waveform in the order of their 
projected occurrence.

If the initial delay is inertial delay according to the definitions of 10.5.2.1, the projected output waveform is 
further modified as follows:

1) All of the new transactions are marked.
2) An old transaction is marked if the time at which it is projected to occur is less than the time at 

which the first new transaction is projected to occur minus the pulse rejection limit.
3) For each remaining unmarked, old transaction, the old transaction is marked if it immediately pre-

cedes a marked transaction and its value component is the same as that of the marked transaction.
4) The transaction that determines the current value of the driver is marked.
5) All unmarked transactions (all of which are old transactions) are deleted from the projected output 

waveform.

For the purposes of marking transactions, any two successive null transactions in a projected output 
waveform are considered to have the same value component.

The execution of a simple waveform assignment statement whose target is of a composite type proceeds in a 
similar fashion, except that the evaluation of the waveform results in one sequence of transactions for each 
scalar subelement of the type of the target. Each such sequence consists of transactions whose value portions 
are determined by the values of the same scalar subelement of the value expressions in the waveform, and 
whose time portion is determined by the time expression corresponding to that value expression. Each such 
sequence is then used to update the projected output waveform of the driver of the matching subelement of 
the target. This applies both to a target that is the name of a signal of a composite type and to a target that is 
in the form of an aggregate.

For the execution of a simple force assignment whose target is of a scalar type, the expression on its right-
hand side is first evaluated. It is an error if the value of the expression does not belong to the subtype of the 
target. The value of the expression is then used to schedule a driving-value force or an effective-value force.

The execution of a simple force assignment whose target is of a composite type proceeds in a similar 
fashion, except that the evaluation of the expression results in one value for each scalar subelement of the 
type of the target. Each such value is then used to schedule a driving-value force or an effective-value force 
of the matching subelement of the target.

For the execution of a simple release assignment whose target is of a scalar type, a driving-value release or 
an effective-value release is scheduled for the target. The execution of a simple release assignment whose 
target is of a composite type proceeds in a similar fashion, except that a driving-value release or an effective-
value release is scheduled for each scalar subelement of the target.

It is an error if the target of a simple force assignment or a simple release assignment is a member of a 
resolved composite signal.

If a given procedure is declared by a declarative item that is not contained within a process statement, and if 
a simple waveform assignment statement appears in that procedure, then the target of the simple waveform 
assignment shall be a formal parameter of the given procedure or of a parent of that procedure, or an 
aggregate of such formal parameters. Similarly, if a given procedure is declared by a declarative item that is 
not contained within a process statement, and if a signal is associated with an inout or out mode signal 
parameter in a subprogram call within that procedure, then the signal so associated shall be a formal 
parameter of the given procedure or of a parent of that procedure.

NOTE 1—These rules guarantee that the driver affected by a simple waveform assignment statement is always statically 
determinable if the simple waveform assignment appears within a given process (including the case in which it appears 
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within a procedure that is declared within the given process). In this case, the affected driver is the one defined by the 
process; otherwise, the simple waveform assignment shall appear within a procedure, and the affected driver is the one 
passed to the procedure along with a signal parameter of that procedure. Simple force assignments and simple release 
assignments, on the other hand, do not involve drivers. Hence, the target of such an assignment occurring in a procedure 
not contained with a process statement need not be a signal parameter of the procedure.

NOTE 2—Overloading the operator "=" has no effect on the updating of a projected output waveform.

NOTE 3—Consider a signal assignment statement of the form

T <= reject tr inertial e1 after t1 { , ei after ti }

The following relations hold:

and

Note that, if tr = 0 ns, then the waveform editing is identical to that for transport-delayed assignment; and if tr = t1, the 
waveform is identical to that for the statement

T <= e1 after t1 { , ei after ti }

NOTE 4—Consider the following signal assignment in some process:

S <= reject 15 ns inertial 12 after 20 ns, 18 after 41 ns;
where S is a signal of some integer type.

Assume that at the time this signal assignment is executed, the driver of S in the process has the following contents (the 
first entry is the current driving value):

(The times given are relative to the current time.) The updating of the projected output waveform proceeds as follows:

— The driver is truncated at 20 ns. The driver now contains the following pending transactions:

— The new waveforms are added to the driver. The driver now contains the following pending transactions:

1 2 2 12 5 8

NOW +3 ns +12 ns +13 ns +20 ns +42 ns

1 2 2 12

NOW +3 ns +12 ns +13 ns

1 2 2 12 12 18

NOW +3 ns +12 ns +13 ns +20 ns +41 ns

0 ns tr t1� �

0 ns ti ti 1+��
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— All new transactions are marked, as well as those old transactions that occur at less than the time of the first new 
waveform (20 ns) less the rejection limit (15 ns). The driver now contains the following pending transactions 
(marked transactions are in bold type):

— Each remaining unmarked transaction is marked if it immediately precedes a marked transaction and has the 
same value as the marked transaction. The driver now contains the following pending transactions:

— The transaction that determines the current value of the driver is marked, and all unmarked transactions are then 
deleted. The final driver contents are then as follows, after clearing the markings:

10.5.3 Conditional signal assignments

The conditional signal assignment represents an equivalent if statement that assigns values to signals or that 
forces or releases signals.

conditional_signal_assignment ::=
        conditional_waveform_assignment
      | conditional_force_assignment

conditional_waveform_assignment ::=
      target  <=  [ delay_mechanism ] conditional_waveforms ;

conditional_waveforms ::=
      waveform when condition
      { else waveform when condition }
      [ else waveform ]

conditional_force_assignment ::=
      target <= force [ force_mode ] conditional_expressions ;

conditional_expressions ::=
      expression when condition
      { else expression when condition }
      [ else expression ]

The delay mechanism for a conditional waveform assignment statement is discussed in 10.5.2.1.
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For a given conditional signal assignment, there is an equivalent sequential statement with the same 
meaning. If the conditional signal assignment is of the form

target <= delay_mechanism
          waveform1   when condition1   else
          waveform2   when condition2   else
             ·
             ·
             ·
          waveformN-1 when conditionN-1 else
          waveformN   when conditionN;

then the equivalent sequential statement is of the form

if condition1 then
   target <= delay_mechanism waveform1;
elsif condition2 then
   target <= delay_mechanism waveform2;
      ·
      ·
      ·
elsif conditionN-1 then
   target <= delay_mechanism waveformN-1;
elsif conditionN then
   target <= delay_mechanism waveformN;
end if;

If the conditional signal assignment is of the form

target <= delay_mechanism
          waveform1   when condition1   else
          waveform2   when condition2   else
             ·
             ·
             ·
          waveformN-1 when conditionN-1 else
          waveformN;

then the equivalent sequential statement is of the form

if condition1 then
   target <= delay_mechanism waveform1;
elsif condition2 then
   target <= delay_mechanism waveform2;
      ·
      ·
      ·
elsif conditionN-1 then
   target <= delay_mechanism waveformN-1;
else
   target <= delay_mechanism waveformN;
end if;

If the conditional signal assignment is of the form
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target <= force
          expression1   when condition1   else
          expression2   when condition2   else
             ·
             ·
             ·
          expressionN-1 when conditionN-1 else
          expressionN   when conditionN;

then the equivalent sequential statement is of the form

if condition1 then
   target <= force expression1;
elsif condition2 then
   target <= force expression2;
      ·
      ·
      ·
elsif conditionN-1 then
   target <= force expressionN-1;
elsif conditionN then
   target <= force expressionN;
end if;

If the conditional signal assignment is of the form

target <= force
   expression1 when condition1 else
   expression2 when condition2 else
      ·
      ·
      ·
   expressionN-1 when conditionN-1 else
   expressionN;

then the equivalent sequential statement is of the form

if condition1 then
   target <= force expression1;
elsif condition2 then
   target <= force expression2;
      ·
      ·
      ·
elsif conditionN-1 then
   target <= force expressionN-1;
else
   target <= force expressionN;
end if;

The characteristics of the target, waveforms, expressions, and conditions in the conditional assignment 
statement shall be such that the equivalent sequential statement is a legal statement.
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If a label appears on the signal assignment statement containing the conditional signal assignment, then the 
same label appears on the equivalent sequential statement. If a delay mechanism appears in a conditional 
waveform assignment, then the same delay mechanism appears in every simple waveform assignment 
statement in the equivalent sequential statement.

Example:

S <= unaffected when Input_pin = S'Driving_Value else
     Input_pin after Buffer_Delay;
10.5.4 Selected signal assignments

The selected signal assignment represents an equivalent case statement that assigns values to signals or that 
forces or releases signals.

selected_signal_assignment ::=
        selected_waveform_assignment
      | selected_force_assignment

selected_waveform_assignment ::=
      with expression select [ ? ]
            target <= [ delay_mechanism ] selected_waveforms ;

selected_waveforms ::=
      { waveform when choices , }
      waveform when choices

selected_force_assignment ::=
      with expression select [ ? ]
            target <= force [ force_mode ] selected_expressions ;

selected_expressions ::=
      { expression when choices , }
      expression when choices

The delay mechanism for a selected waveform assignment statement is discussed in 10.5.2.1.

For a given selected signal assignment, there is an equivalent sequential statement with the same meaning. If 
the selected signal assignment is of the form

with expression select
   target <= delay_mechanism waveform1   when choice_list1,
                             waveform2   when choice_list2,
                                ·
                                ·
                                ·
                             waveformN-1 when choice_listN-1,
                             waveformN   when choice_listN;

then the equivalent sequential statement is of the form

case expression is
   when choice_list1 =>
      target <= delay_mechanism waveform1;
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   when choice_list2 =>
      target <= delay_mechanism waveform2;
         ·
         ·
         ·
   when choice_listN-1 =>
      target <= delay_mechanism waveformN-1;
   when choice_listN =>
      target <= delay_mechanism waveformN;
end case;

If the selected signal assignment is of the form

with expression select
   target <= force expression1   when choice_list1,
                   expression2   when choice_list2,
                      ·
                      ·
                      ·
                   expressionN-1 when choice_listN-1,
                   expressionN   when choice_listN;

then the equivalent sequential statement is of the form

case expression is
   when choice_list1 =>
      target <= force expression1;
   when choice_list2 =>
      target <= force expression2;
         ·
         ·
         ·
   when choice_listN-1 =>
      target <= force expressionN-1;
   when choice_listN =>
      target <= force expressionN;
end case;

If a selected signal assignment statement includes the question mark delimiter, then the equivalent 
sequential statement includes a question mark delimiter after both occurrences of the reserved word case; 
otherwise the equivalent sequential statement does not include the question mark delimiters.

The characteristics of the select expression, the target, the waveforms, the expressions, and the choices in the 
selected assignment statement shall be such that the equivalent sequential statement is a legal statement.

If a label appears on the signal assignment statement containing the selected signal assignment, then the 
same label appears on the equivalent sequential statement. If a delay mechanism appears in a selected 
waveform assignment, then the same delay mechanism appears in every simple waveform assignment 
statement in the equivalent sequential statement.
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10.6 Variable assignment statement

10.6.1 General

A variable assignment statement replaces the current value of a variable with a new value specified by an 
expression. The named variable and the right-hand side expression shall be of the same type.

variable_assignment_statement ::=
        [ label : ] simple_variable_assignment
      | [ label : ] conditional_variable_assignment
      | [ label : ] selected_variable_assignment

10.6.2 Simple variable assignments

10.6.2.1 General

simple_variable_assignment ::=
      target := expression ;

If the target of the variable assignment statement is a name, then the name shall denote a variable, and the 
base type of the expression on the right-hand side shall be the same as the base type of the variable denoted 
by that name. It is an error if the type of the target is a protected type. This form of variable assignment 
assigns the right-hand side value to a single (scalar or composite) variable.

If the target of the variable assignment statement is in the form of an aggregate, then the type of the 
aggregate shall be determinable from the context, excluding the aggregate itself but including the fact that 
the type of the aggregate shall be a composite type. The base type of the expression on the right-hand side 
shall be the same as the base type of the aggregate. Furthermore, the expression in each element association 
of the aggregate shall be a locally static name that denotes a variable. This form of variable assignment 
assigns each subelement or slice of the right-hand side value to the variable named as the corresponding 
subelement or slice of the aggregate.

If the target of a variable assignment statement is in the form of an aggregate, and if the locally static name 
in an element association of that aggregate denotes a given variable or denotes another variable of which the 
given variable is a subelement or slice, then the element association is said to identify the given variable as a 
target of the assignment statement. It is an error if a given variable is identified as a target by more than one 
element association in such an aggregate. Furthermore, it is an error if an element association in such an 
aggregate contains an others choice, or if the element association contains a choice that is a discrete range 
and an expression of a type other than the aggregate type.

For the execution of a variable assignment whose target is a variable name, the variable name and the 
expression are first evaluated. A check is then made that the value of the expression belongs to the subtype 
of the variable, except in the case of a variable that is of a composite type (in which case the assignment 
involves a subtype conversion). Finally, each subelement of the variable that is not forced is updated with 
the corresponding subelement of the expression. A design is erroneous if it depends on the order of 
evaluation of the target and source expressions of an assignment statement.

The execution of a variable assignment whose target is in the form of an aggregate proceeds in a similar 
fashion, except that each of the names in the aggregate is evaluated, and a subtype check is performed for 
each subelement or slice of the right-hand side value that corresponds to one of the names in the aggregate. 
For each variable denoted by a name corresponding to a subelement or slice of the right-hand side value, 
each subelement of the variable that is not forced is updated with the corresponding subelement of the 
subelement or slice of the right-hand side value.
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An error occurs if the aforementioned subtype checks fail.

NOTE 1—If the right-hand side is either a numeric literal or an attribute that yields a result of type universal integer or 
universal real, then an implicit type conversion is performed.

NOTE 2—For a variable assignment whose target is a name, no subelement of the target can be of a protected type (see 
5.3.1).

NOTE 3—For a variable assignment whose target is in the form of an aggregate, no element of the target can be of a pro-
tected type, nor can any subelement of any element of the target be of a protected type (see 5.3.1).

NOTE 4—The value of a composite variable or of any element or slice of a composite variable is considered to have 
changed if any of the subelements of the variable, element, or slice changes value.

10.6.2.2 Composite variable assignments

If the target of an assignment statement is a name denoting a composite variable (including a slice), the 
value assigned to the target is implicitly converted to the subtype of the composite variable; the result of this 
subtype conversion becomes the new value of the composite variable.

This means that the new value of each element of the composite variable is specified by the matching 
element (see 9.2.3) in the corresponding composite value obtained by evaluation of the expression. The 
subtype conversion checks that for each element of the composite variable there is a matching element in the 
composite value, and vice versa. An error occurs if this check fails.

10.6.3 Conditional variable assignments

The conditional variable assignment represents an equivalent if statement that assigns values to variables.

conditional_variable_assignment ::=
      target  :=  conditional_expressions ;

For a given conditional variable assignment, there is an equivalent sequential statement with the same 
meaning. If the conditional variable assignment is of the form

If the conditional variable assignment is of the form

target :=
   expression1   when condition1   else
   expression2   when condition2   else
      ·
      ·
      ·
   expressionN-1 when conditionN-1 else
   expressionN   when conditionN;

then the equivalent sequential statement is of the form

if condition1 then
   target := expression1;
elsif condition2 then
   target := expression2;
      ·
      ·
      ·
elsif conditionN-1 then
   target := expressionN-1;
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elsif conditionN
   target := expressionN;
end if;

If the conditional variable assignment is of the form

target :=
   expression1   when condition1   else
   expression2   when condition2   else
      ·
      ·
      ·
   expressionN-1 when conditionN-1 else
   expressionN;

then the equivalent sequential statement is of the form

if condition1 then
   target := expression1;
elsif condition2 then
   target := expression2;
      ·
      ·
      ·
elsif conditionN-1 then
   target := expressionN-1;
else
   target := expressionN;
end if;

The characteristics of the expressions and conditions in the conditional assignment statement shall be such 
that the equivalent sequential statement is a legal statement.

If a label appears on the variable assignment statement containing the conditional variable assignment, then 
the same label appears on the equivalent sequential statement.

Example:

N := V1 when S = S1 else
     V2 when S = S2;

10.6.4 Selected variable assignments

The selected variable assignment represents an equivalent case statement that assigns values to variables.

selected_variable_assignment ::=
      with expression select [ ? ]
            target := selected_expressions ;

For a given selected variable assignment, there is an equivalent sequential statement with the same meaning. 
If the selected variable assignment is of the form

with expression select
   target := expression1   when choice_list1,
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             expression2   when choice_list2,
                ·
                ·
                ·
             expressionN-1 when choice_listN-1,
             expressionN   when choice_listN;

then the equivalent sequential statement is of the form

case expression is
   when choice_list1 =>
      target := expression1;
   when choice_list2 =>
      target := expression2;
         ·
         ·
         ·
   when choice_listN-1 =>
      target := expressionN-1;
   when choice_listN =>
      target := expressionN;
end case;

If a selected variable assignment statement includes the question mark delimiter, then the equivalent 
sequential statement includes a question mark delimiter after both occurrences of the reserved word case; 
otherwise the equivalent sequential statement does not include the question mark delimiters.

The characteristics of the select expression, the expressions, and the choices in the selected assignment 
statement shall be such that the equivalent sequential statement is a legal statement.

If a label appears on the variable assignment statement containing the selected variable assignment, then the 
same label appears on the equivalent sequential statement.

10.7 Procedure call statement

A procedure call invokes the execution of a procedure body.

procedure_call_statement ::=  [ label : ] procedure_call ;

procedure_call ::=  procedure_name [ ( actual_parameter_part ) ]

The procedure name specifies the procedure body to be invoked. It is an error if the procedure name denotes 
an uninstantiated procedure. The actual parameter part, if present, specifies the association of actual 
parameters with formal parameters of the procedure.

For each formal parameter of a procedure, a procedure call shall specify exactly one corresponding actual 
parameter. This actual parameter is specified either explicitly, by an association element (other than the 
actual open) in the association list or, in the absence of such an association element, by a default expression 
(see 6.5.2).

Execution of a procedure call includes evaluation of the actual parameter expressions specified in the call 
and evaluation of the default expressions associated with formal parameters of the procedure that do not 
have actual parameters associated with them. In both cases, the resulting value shall belong to the subtype of 
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the associated formal parameter. (If the formal parameter is of an unconstrained or partially constrained 
composite type, then any undefined index ranges of subelements of the formal parameter are determined as 
described in 5.3.2.2.) The procedure body is executed using the actual parameter values and default 
expression values as the values of the corresponding formal parameters.

NOTE—A call to a formal generic procedure uses the parameter names and default expressions defined in the formal 
generic procedure declaration, and the parameter subtypes of the associated actual generic procedure.

10.8 If statement

An if statement selects for execution one or none of the enclosed sequences of statements, depending on the 
value of one or more corresponding conditions.

if_statement ::=
      [ if_label : ]
            if condition then
                  sequence_of_statements
            { elsif condition then
                  sequence_of_statements }
            [ else
                  sequence_of_statements ]
            end if [ if_label ] ;

If a label appears at the end of an if statement, it shall repeat the if label.

For the execution of an if statement, the condition specified after if, and any conditions specified after elsif, 
are evaluated in succession (treating a final else as elsif TRUE then) until one evaluates to TRUE or all 
conditions are evaluated and yield FALSE. If one condition evaluates to TRUE, then the corresponding 
sequence of statements is executed; otherwise, none of the sequences of statements is executed.

10.9 Case statement

A case statement selects for execution one of a number of alternative sequences of statements; the chosen 
alternative is defined by the value of an expression.

case_statement ::=
      [ case_label : ]
            case [ ? ] expression is
                  case_statement_alternative
                  { case_statement_alternative }
            end case [ ? ] [ case_label ] ;

case_statement_alternative ::=
      when choices =>
            sequence_of_statements

A case statement shall include the question mark delimiter either in both places, in which case the case 
statement is called a matching case statement, or in neither place, in which case the case statement is called 
an ordinary case statement.

The expression shall be of a discrete type or of a one-dimensional array type whose element base type is a 
character type. This type shall be determined by applying the rules of 12.5 to the expression considered as a 
complete context, using the rule that the expression shall be of a discrete type or a one-dimensional character 
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array type. (In particular, the type of the case expression must be determinable independent of the type of the 
case statement choices.) It is an error if the type of the expression in a matching case statement is other than 
BIT, STD_ULOGIC, or a one-dimensional array type whose element type is BIT or STD_ULOGIC. Each 
choice in a case statement alternative shall be of the same type as the expression; the list of choices specifies 
for which values of the expression the alternative is chosen.

For an ordinary case statement, or for a matching case statement in which the expression is of type BIT or an 
array type whose element type is BIT, if the expression is the name of an object whose subtype is locally 
static, whether a scalar type or an array type, then each value of the subtype shall be represented once and 
only once in the set of choices of the case statement, and no other value is allowed; this rule is likewise 
applied if the expression is a qualified expression or type conversion whose type mark denotes a locally 
static subtype, or if the expression is a call to a function whose return type mark denotes a locally static 
subtype, or if the expression is an expression described in this paragraph and enclosed in parentheses.

For a matching case statement in which the expression is of type STD_ULOGIC, or an array type whose 
element type is STD_ULOGIC, if the expression is the name of an object whose subtype is locally static, 
whether a scalar type or an array type, then each value of the subtype, other than the scalar value '–' or an 
array value containing '–' as an element, shall be represented once and only once in the set of choices of the 
case statement. A value is represented by a choice if application of the predefined matching equality 
operator to the value and the choice gives the result '1'. It is an error if a choice does not represent a value of 
the subtype other than the scalar value '–' or an array value containing '–' as an element. This rule is likewise 
applied if the expression is a qualified expression or type conversion whose type mark denotes a locally 
static subtype, or if the expression is a call to a function whose return type mark denotes a locally static 
subtype, or if the expression is an expression described in this paragraph and enclosed in parentheses.

If the expression is of a one-dimensional character array type and is not described by either of the preceding 
two paragraphs, then the values of all of the choices, except the others choice, if present, shall be of the 
same length. Moreover, for an ordinary case statement, or for a matching case statement in which the 
expression is of an array type whose element type is BIT, each value of the (base) type of the expression 
shall be represented once and only once in the set of choices, and no other value is allowed. For a matching 
case statement in which the expression is of an array type whose element type is STD_ULOGIC, each value 
of the (base) type of the expression, other than an array value containing '–' as an element, shall be 
represented (as defined in the preceding paragraph) once and only once in the set of choices of the case 
statement. It is an error if a choice does not represent a value of the (base) type of the expression other than 
an array value containing '–' as an element. In all cases, it is an error if the value of the expression is not of 
the same length as the values of the choices. If there is only one choice and that choice is others, then the 
value of the expression may be of any length.

For other forms of expression in an ordinary case statement or in a matching case statement in which the 
expression is of type BIT, each value of the (base) type of the expression shall be represented once and only 
once in the set of choices, and no other value is allowed. For other forms of expression in a matching case 
statement in which the expression is of type STD_ULOGIC, each value of the (base) type of the expression, 
other than the scalar value '–', shall be represented once and only once in the set of choices of the case 
statement. It is an error if a choice does not represent a value of the (base) type of the expression other than 
the scalar value '–'.

All simple expressions and discrete ranges given as choices in a case statement shall be locally static. A 
choice defined by a discrete range stands for all values in the corresponding range. The choice others is only 
allowed for the last alternative and as its only choice; it stands for all values (possibly none) not given in the 
choices of previous alternatives. An element simple name (see 9.3.3.1) is not allowed as a choice of a case 
statement alternative. For a matching case statement in which the expression is of type STD_ULOGIC, or an 
array type whose element type is STD_ULOGIC, it is an error if application of the predefined matching 
equality  operator to the values of any two distinct choices other than the choice others gives the result '1'.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



IEC 61691-1-1:2011(E) - 166 - �
IEEE Std 1076-2008

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

If a label appears at the end of a case statement, it shall repeat the case label.

The execution of a case statement consists of the evaluation of the expression followed by the execution of 
the chosen sequence of statements. A sequence of statements in a given ordinary case statement alternative 
is the chosen sequence of statements if and only if the expression “E = V” evaluates to TRUE, where “E” is 
the expression, “V” is the value of one of the choices of the given case statement alternative (if a choice is a 
discrete range, then this latter condition is fulfilled when V is an element of the discrete range), and the 
operator “=” in the expression is the predefined “=” operator on the base type of E. A sequence of statements 
in a given matching case statement alternative is the chosen sequence of statements if and only if the 
condition “E ?= V” evaluates to TRUE or '1', where “E” and “V” are similarly defined and the operator “?=” 
is the predefined “?=” operator on the base type of E.

For a matching case statement in which the expression is of type STD_ULOGIC, or an array type whose 
element type is STD_ULOGIC, it is an error if the value of the expression is the scalar value '–' or an array 
value containing '–' as an element.

NOTE 1—The execution of a case statement chooses one and only one alternative, since the choices are exhaustive and 
mutually exclusive. A qualified expression whose type mark denotes a locally static subtype can often be used as the 
expression of a case statement to limit the number of choices that need be explicitly specified.

NOTE 2—An others choice is required in a case statement if the type of the expression is the type universal_integer (for 
example, if the expression is an integer literal), since this is the only way to cover all values of the type 
universal_integer.

NOTE 3—Overloading the operator “=” has no effect on the semantics of ordinary case statement execution. Similarly, 
overloading the operator “?=” has no effect on the semantics of matching case statement execution.

NOTE 4—An others choice is generally required in a matching case statement in which the expression is of type 
STD_ULOGIC, or an array type whose element type is STD_ULOGIC, since explicit choice values cannot be written to 
represent metalogical values of the expression. (Application of the predefined matching equality operator with a metal-
ogical operand value gives the result 'X'.) Such expression values, which shall nonetheless be represented by a choice, 
are represented by the others choice.

10.10 Loop statement

A loop statement includes a sequence of statements that is to be executed repeatedly, zero or more times.

loop_statement ::=
      [ loop_label : ]
            [ iteration_scheme ] loop
                  sequence_of_statements
            end loop [ loop_label ] ;

iteration_scheme ::=
        while condition
      | for loop_parameter_specification

parameter_specification ::=
      identifier in discrete_range

If a label appears at the end of a loop statement, it shall repeat the label at the beginning of the loop 
statement.

Execution of a loop statement is complete when the loop is left as a consequence of the completion of the 
iteration scheme (see the following), if any, or the execution of a next statement, an exit statement, or a 
return statement.
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A loop statement without an iteration scheme specifies repeated execution of the sequence of statements.

For a loop statement with a while iteration scheme, the condition is evaluated before each execution of the 
sequence of statements; if the value of the condition is TRUE, the sequence of statements is executed; if 
FALSE, the iteration scheme is said to be complete and the execution of the loop statement is complete.

For a loop statement with a for iteration scheme, the loop parameter specification is the declaration of the 
loop parameter with the given identifier. The loop parameter is an object whose type is the base type of the 
discrete range. Within the sequence of statements, the loop parameter is a constant. Hence, a loop parameter 
is not allowed as the target of an assignment statement. Similarly, the loop parameter shall not be given as an 
actual corresponding to a formal of mode out or inout in an association list.

For the execution of a loop with a for iteration scheme, the discrete range is first evaluated. If the discrete 
range is a null range, the iteration scheme is said to be complete and the execution of the loop statement is 
therefore complete; otherwise, the sequence of statements is executed once for each value of the discrete 
range (subject to the loop not being left as a consequence of the execution of a next statement, an exit 
statement, or a return statement), after which the iteration scheme is said to be complete. Prior to each such 
iteration, the corresponding value of the discrete range is assigned to the loop parameter. These values are 
assigned in left-to-right order.

NOTE—A loop may be left as the result of the execution of a next statement if the loop is nested inside of an outer loop 
and the next statement has a loop label that denotes the outer loop.

10.11 Next statement

A next statement is used to complete the execution of one of the iterations of an enclosing loop statement 
(called loop in the following text). The completion is conditional if the statement includes a condition.

next_statement ::=
      [ label : ] next [ loop_label ] [ when condition ] ;

A next statement with a loop label is only allowed within the labeled loop and applies to that loop; a next 
statement without a loop label is only allowed within a loop and applies only to the innermost enclosing loop 
(whether labeled or not).

For the execution of a next statement, the condition, if present, is first evaluated. The current iteration of the 
loop is terminated if the value of the condition is TRUE or if there is no condition.

10.12 Exit statement

An exit statement is used to complete the execution of an enclosing loop statement (called loop in the 
following text). The completion is conditional if the statement includes a condition.

exit_statement ::=
      [ label : ] exit [ loop_label ] [ when condition ] ;

An exit statement with a loop label is only allowed within the labeled loop and applies to that loop; an exit 
statement without a loop label is only allowed within a loop and applies only to the innermost enclosing loop 
(whether labeled or not).

For the execution of an exit statement, the condition, if present, is first evaluated. Exit from the loop then 
takes place if the value of the condition is TRUE or if there is no condition.
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10.13 Return statement

A return statement is used to complete the execution of the innermost enclosing function or procedure body.

return_statement ::=
      [ label : ] return [ expression ] ;

A return statement is only allowed within the body of a function or procedure, and it applies to the innermost 
enclosing function or procedure.

A return statement appearing in a procedure body shall not have an expression. A return statement appearing 
in a function body shall have an expression.

The value of the expression defines the result returned by the function. The type of this expression shall be 
the base type of the type mark given after the reserved word return in the specification of the function. It is 
an error if execution of a function completes by any means other than the execution of a return statement.

For the execution of a return statement, the expression (if any) is first evaluated and  converted to the result 
subtype. The execution of the return statement is thereby completed if the conversion succeeds; so also is the 
execution of the enclosing subprogram. An error occurs at the place of the return statement if the conversion 
fails.

NOTE—If the expression is either a numeric literal, or an attribute that yields a result of type universal_integer or 
universal_real, then an implicit conversion of the result is performed.

10.14 Null statement

A null statement performs no action.

null_statement ::=
      [ label : ] null ;

The execution of the null statement has no effect other than to pass on to the next statement.

NOTE—The null statement can be used to specify explicitly that no action is to be performed when certain conditions 
are true, although it is never mandatory for this (or any other) purpose. This is particularly useful in conjunction with the 
case statement, in which all possible values of the case expression shall be covered by choices; for certain choices, it 
may be that no action is required.
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11. Concurrent statements

11.1 General

The various forms of concurrent statements are described in this clause. Concurrent statements are used to 
define interconnected blocks and processes that jointly describe the overall behavior or structure of a design. 
Concurrent statements execute asynchronously with respect to each other.

concurrent_statement ::=
        block_statement
      | process_statement
      | concurrent_procedure_call_statement
      | concurrent_assertion_statement
      | concurrent_signal_assignment_statement
      | component_instantiation_statement
      | generate_statement
      | PSL_PSL_Directive

The primary concurrent statements are the block statement, which groups together other concurrent 
statements, and the process statement, which represents a single independent sequential process. Additional 
concurrent statements provide convenient syntax for representing simple, commonly occurring forms of 
processes, as well as for representing structural decomposition and regular descriptions.

Within a given simulation cycle, an implementation may execute concurrent statements in parallel or in 
some order. The language does not define the order, if any, in which such statements will be executed. A 
description that depends upon a particular order of execution of concurrent statements is erroneous.

All concurrent statements may be labeled. Such labels are implicitly declared at the beginning of the 
declarative part of the innermost enclosing entity declaration, architecture body, block statement, or generate 
statement.

11.2 Block statement

A block statement defines an internal block representing a portion of a design. Blocks may be hierarchically 
nested to support design decomposition.

block_statement ::=
      block_label :
            block [ ( guard_condition ) ] [ is ]
                  block_header
                  block_declarative_part
            begin
                  block_statement_part
            end block [ block_label ] ;

block_header ::=
      [ generic_clause
      [ generic_map_aspect ; ] ]
      [ port_clause
      [ port_map_aspect ; ] ]

block_declarative_part ::=
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      { block_declarative_item }

block_statement_part ::=
      { concurrent_statement }

If a guard condition appears after the reserved word block, then a signal with the simple name GUARD of 
predefined type BOOLEAN is implicitly declared at the beginning of the declarative part of the block, and 
the guard condition defines the value of that signal at any given time (see 14.7.4). The type of the guard 
condition shall be type BOOLEAN. Signal GUARD may be used to control the operation of certain 
statements within the block (see 11.6).

The implicit signal GUARD shall not have a source.

If a block header appears in a block statement, it explicitly identifies certain values or signals that are to be 
imported from the enclosing environment into the block and associated with formal generics or ports. The 
generic and port clauses define the formal generics and formal ports of the block (see 6.5.6.2 and 6.5.6.3); 
the generic map and port map aspects define the association of actuals with those formals (see 6.5.7.2 and 
6.5.7.3). Such actuals are evaluated in the context of the enclosing declarative region.

If a label appears at the end of a block statement, it shall repeat the block label.

NOTE 1—The value of signal GUARD is always defined within the scope of a given block, and it does not implicitly 
extend to design entities bound to components instantiated within the given block. However, the signal GUARD may be 
explicitly passed as an actual signal in a component instantiation in order to extend its value to lower-level components.

NOTE 2—An actual appearing in a port association list of a given block can never denote a formal port of the same 
block.

11.3 Process statement

A process statement defines an independent sequential process representing the behavior of some portion of 
the design.

process_statement ::=
      [ process_label : ]
            [ postponed ] process [ ( process_sensitivity_list ) ] [ is ]
                  process_declarative_part
            begin
                  process_statement_part
            end [ postponed ] process [ process_label ] ;

process_sensitivity_list ::= all | sensitivity_list

process_declarative_part ::=
      { process_declarative_item }

process_declarative_item ::=
        subprogram_declaration
      | subprogram_body
      | subprogram_instantiation_declaration
      | package_declaration
      | package_body
      | package instantiation_declaration
      | type_declaration
      | subtype_declaration
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      | constant_declaration
      | variable_declaration
      | file_declaration
      | alias_declaration
      | attribute_declaration
      | attribute_specification
      | use_clause
      | group_template_declaration
      | group_declaration

process_statement_part ::=
      { sequential_statement }

If the reserved word postponed precedes the initial reserved word process, the process statement defines a 
postponed process; otherwise, the process statement defines a nonpostponed process.

If a process sensitivity list appears following the reserved word process, then the process statement is 
assumed to contain an implicit wait statement as the last statement of the process statement part; this implicit 
wait statement is of the form

wait on sensitivity_list ;

where the sensitivity list is determined in one of two ways. If the process sensitivity list is specified as a 
sensitivity list, then the sensitivity list of the wait statement is that following the reserved word process. If 
the process sensitivity list is specified using the reserved word all, then the sensitivity list of the wait 
statement is constructed by taking the union of the sets constructed from each of the statements in the 
process by applying the following rules:

— For each assertion, report, next, exit, or return statement, apply the rule of 10.2 to each expression in 
the statement, and construct the union of the resulting sets.

— For each assignment statement, apply the rule of 10.2 to each expression occurring in the 
assignment, including any expressions occurring in the index names or slice names in the target, and 
construct the union of the resulting sets.

— For each if statement, apply the rule of 10.2 to each condition and apply this rule recursively to each 
sequence of statements within the if statement, and construct the union of the resulting sets.

— For each case statement, apply the rule of 10.2 to the expression and apply this rule recursively to 
each sequence of statements within the case statement, and construct the union of the resulting sets.

— For each loop statement, apply the rule of 10.2 to each expression in the iteration scheme, if present, 
and apply this rule recursively to the sequence of statements within the loop statement, and construct 
the union of the resulting sets.

— For each procedure call statement, apply the rule of 10.2 to each actual designator (other than open) 
associated with each formal parameter of mode in or inout, and construct the union of the resulting 
sets.

Moreover, for each subprogram for which the process is a parent (see 4.3), the sensitivity list includes 
members of the set constructed by applying the preceding rule to the statements of the subprogram, but 
excluding the members that denote formal signal parameters or members of formal signal parameters of the 
subprogram or any of its parents.

It is an error if a process statement with the reserved word all as its process sensitivity list is the parent of a 
subprogram declared in a design unit other than that containing the process statement, and the subprogram 
reads an explicitly declared signal that is not a formal signal parameter or member of a formal signal 
parameter of the subprogram or of any of its parents.  Similarly, it is an error if such a subprogram reads an 
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implicit signal whose explicit ancestor is not a formal signal parameter or member of a formal parameter of 
the subprogram or of any of its parents.

It is an error if any name that does not denote a static signal name (see 8.1) for which reading is permitted 
appears in the sensitivity list of a process statement.

If a process sensitivity list appears following the reserved word process in a process statement, then the 
process statement shall not contain an explicit wait statement. Similarly, if such a process statement is a 
parent of a procedure, then it is an error if that procedure contains a wait statement.

If the reserved word postponed appears at the end of a process statement, the process shall be a postponed 
process. If a label appears at the end of a process statement, the label shall repeat the process label.

It is an error if a variable declaration in a process declarative part declares a shared variable.

The execution of a process statement consists of the repetitive execution of its sequence of statements. After 
the last statement in the sequence of statements of a process statement is executed, execution will 
immediately continue with the first statement in the sequence of statements.

A process statement is said to be a passive process if neither the process itself, nor any procedure of which 
the process is a parent, contains a signal assignment statement. It is an error if a process or a concurrent 
statement, other than a passive process or a concurrent statement equivalent to such a process, appears in the 
entity statement part of an entity declaration.

NOTE 1—The rules in 11.3 imply that a process that has an explicit sensitivity list always has exactly one (implicit) wait 
statement in it, and that wait statement appears at the end of the sequence of statements in the process statement part. 
Thus, a process with a sensitivity list always waits at the end of its statement part; any event on a signal named in the 
sensitivity list will cause such a process to execute from the beginning of its statement part down to the end, where it will 
wait again. Such a process executes once through at the beginning of simulation, suspending for the first time when it 
executes the implicit wait statement.

NOTE 2—The time at which a process executes after being resumed by a wait statement (see 10.2) differs depending on 
whether the process is postponed or nonpostponed. When a nonpostponed process is resumed, it executes in the current 
simulation cycle (see 14.7.5). When a postponed process is resumed, it does not execute until a simulation cycle occurs 
in which the next simulation cycle is not a delta cycle. In this way, a postponed process accesses the values of signals 
that are the “final” values at the current simulated time.

NOTE 3—The conditions that cause a process to resume execution may no longer hold at the time the process resumes 
execution if the process is a postponed process.

NOTE 4—In general, it is not possible to determine at analysis time whether a process with the reserved word all as its 
process sensitivity list is the parent of a subprogram declared in a separate design unit and whether the rules for such a 
subprogram are met.

11.4 Concurrent procedure call statements

A concurrent procedure call statement represents a process containing the corresponding sequential 
procedure call statement.

concurrent_procedure_call_statement ::=
      [ label : ] [ postponed ] procedure_call ;

For any concurrent procedure call statement, there is an equivalent process statement. The equivalent 
process statement is a postponed process if and only if the concurrent procedure call statement includes the 
reserved word postponed. The equivalent process statement has a label if and only if the concurrent 
procedure call statement has a label; if the equivalent process statement has a label, it is the same as that of 
the concurrent procedure call statement. The equivalent process statement also has no sensitivity list, an 
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empty declarative part, and a statement part that consists of a procedure call statement followed by a wait 
statement.

The procedure call statement consists of the same procedure name and actual parameter part that appear in 
the concurrent procedure call statement.

If there exists a name that denotes a signal in the actual part of any association element in the concurrent 
procedure call statement, and that actual is associated with a formal parameter of mode in or inout, then the 
equivalent process statement includes a final wait statement with a sensitivity clause that is constructed by 
taking the union of the sets constructed by applying the rule of 10.2 to each actual part associated with a 
formal parameter.

Execution of a concurrent procedure call statement is equivalent to execution of the equivalent process 
statement.

Example:

CheckTiming (tPLH, tPHL, Clk, D, Q);  --  A concurrent procedure call�
                                      --  statement.

process                               --  The equivalent process.
begin
   CheckTiming (tPLH, tPHL, Clk, D, Q);
   wait on Clk, D, Q;
end process;
NOTE 1—Concurrent procedure call statements make it possible to declare procedures representing commonly used 
processes and to create such processes easily by merely calling the procedure as a concurrent statement. The wait 
statement at the end of the statement part of the equivalent process statement allows a procedure to be called without 
having it loop interminably, even if the procedure is not necessarily intended for use as a process (i.e., it contains no wait 
statement). Such a procedure may persist over time (and thus the values of its variables retain state over time) if its 
outermost statement is a loop statement and the loop contains a wait statement. Similarly, such a procedure may be 
guaranteed to execute only once, at the beginning of simulation, if its last statement is a wait statement that has no 
sensitivity clause, condition clause, or timeout clause.

NOTE 2—The value of an implicitly declared signal GUARD has no effect on evaluation of a concurrent procedure call 
unless it is explicitly referenced in one of the actual parts of the actual parameter part of the concurrent procedure call 
statement.

11.5 Concurrent assertion statements

A concurrent assertion statement represents a passive process statement containing the specified assertion 
statement.

concurrent_assertion_statement ::=
      [ label : ] [ postponed ] assertion ;

For any concurrent assertion statement, there is an equivalent process statement. The equivalent process 
statement is a postponed process if and only if the concurrent assertion statement includes the reserved word 
postponed. The equivalent process statement has a label if and only if the concurrent assertion statement has 
a label; if the equivalent process statement has a label, it is the same as that of the concurrent assertion 
statement. The equivalent process statement also has no sensitivity list, an empty declarative part, and a 
statement part that consists of an assertion statement followed by a wait statement.

The assertion statement consists of the same condition, report clause, and severity clause that appear in the 
concurrent assertion statement.
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If there exists a name that denotes a signal in the Boolean expression that defines the condition of the 
assertion, then the equivalent process statement includes a final wait statement with a sensitivity clause that 
is constructed by applying the rule of 10.2 to that expression; otherwise, the equivalent process statement 
contains a final wait statement that has no explicit sensitivity clause, condition clause, or timeout clause.

Execution of a concurrent assertion statement is equivalent to execution of the equivalent process statement.

If a concurrent statement is ambiguous and can be interpreted either as a concurrent assertion statement or as 
a PSL assertion directive, then it is interpreted as a concurrent assertion statement.

NOTE 1—Since a concurrent assertion statement represents a passive process statement, such a process has no outputs. 
Therefore, the execution of a concurrent assertion statement will never cause an event to occur. However, if the assertion 
is false, then the specified error message will be sent to the simulation report.

NOTE 2—The value of an implicitly declared signal GUARD has no effect on evaluation of the assertion unless it is 
explicitly referenced in one of the expressions of that assertion.

NOTE 3—A concurrent assertion statement whose condition is defined by a static expression is equivalent to a process 
statement that ends in a wait statement that has no sensitivity clause; such a process will execute once through at the 
beginning of simulation and then wait indefinitely.

NOTE 4—A concurrent statement consisting of the reserved word assert followed by a condition, optionally followed 
by the reserved word report and a string expression, is ambiguous. It can be interpreted as a concurrent assertion 
statement with no severity clause or as a PSL assert directive with a property consisting of a Boolean expression, 
specifying a condition that shall hold at time zero. The statement is interpreted as a concurrent assertion statement, 
specifying a condition that shall hold at all times.

11.6 Concurrent signal assignment statements

A concurrent signal assignment statement represents an equivalent process statement that assigns values to 
signals.

concurrent_signal_assignment_statement ::=
        [ label : ] [ postponed ] concurrent_simple_signal_assignment
      | [ label : ] [ postponed ] concurrent_conditional_signal_assignment
      | [ label : ] [ postponed ] concurrent_selected_signal_assignment

concurrent_simple_signal_assignment ::=
      target <= [ guarded ] [ delay_mechanism ] waveform ;

concurrent_conditional_signal_assignment ::=
      target  <=  [ guarded ] [ delay_mechanism ] conditional_waveforms ;

concurrent_selected_signal_assignment ::=
      with expression select [ ? ]
            target <= [ guarded ] [ delay_mechanism ] selected_waveforms ;

There are three forms of the concurrent signal assignment statement. For each form, the characteristics that 
distinguish it are discussed in the following paragraphs.

Each form may include the reserved word guarded, which specifies that the signal assignment statement is 
executed when a signal GUARD changes from FALSE to TRUE, or when that signal has been TRUE and an 
event occurs on one of the signal assignment statement’s inputs. (The signal GUARD shall be either one of 
the implicitly declared GUARD signals associated with block statements that have guard conditions, or it 
shall be an explicitly declared signal of type BOOLEAN that is visible at the point of the concurrent signal 
assignment statement.)
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If the target of a concurrent signal assignment is a name that denotes a guarded signal (see 6.4.2.3), or if it is 
in the form of an aggregate and the expression in each element association of the aggregate is a static signal 
name denoting a guarded signal, then the target is said to be a guarded target. If the target of a concurrent 
signal assignment is a name that denotes a signal that is not a guarded signal, or if it is in the form of an 
aggregate and the expression in each element association of the aggregate is a static signal name denoting a 
signal that is not a guarded signal, then the target is said to be an unguarded target. It is an error if the target 
of a concurrent signal assignment is neither a guarded target nor an unguarded target.

For any concurrent signal assignment statement, there is an equivalent process statement with the same 
meaning. The process statement equivalent to a concurrent signal assignment statement whose target is a 
signal name is constructed as follows:

a) If a label appears on the concurrent signal assignment statement, then the same label appears on the 
process statement.

b) The equivalent process statement is a postponed process if and only if the concurrent signal 
assignment statement includes the reserved word postponed.

c) The statement part of the equivalent process statement consists of a statement transform [described 
in item e)].

d) If the reserved word guarded appears in the concurrent signal assignment statement, then the 
concurrent signal assignment is called a guarded assignment. If the concurrent signal assignment 
statement is a guarded assignment, and if the target of the concurrent signal assignment is a guarded 
target, then the statement transform is as follows:
if GUARD then
   signal_transform
else
   disconnection_statements
end if;
Otherwise, if the concurrent signal assignment statement is a guarded assignment, but if the target of 
the concurrent signal assignment is not a guarded target, then the statement transform is as follows:
if GUARD then
   signal_transform
end if;
Finally, if the concurrent signal assignment statement is not a guarded assignment, and if the target 
of the concurrent signal assignment is not a guarded target, then the statement transform is as 
follows:
signal_transform

It is an error if a concurrent signal assignment is not a guarded assignment and the target of the 
concurrent signal assignment is a guarded target.
A signal transform is a sequential signal assignment statement that has no label and that contains a 
simple, conditional, or selected signal assignment that is the same as the concurrent simple, 
conditional, or selected signal assignment statement, as appropriate, without the reserved word 
guarded.

e) If the concurrent signal assignment statement is a guarded assignment, or if any expression (other 
than a time expression) within the concurrent signal assignment statement references a signal, then 
the process statement contains a final wait statement with an explicit sensitivity clause. The 
sensitivity clause is constructed by taking the union of the sets constructed by applying the rule of 
10.2 to each of the aforementioned expressions. Furthermore, if the concurrent signal assignment 
statement is a guarded assignment, then the sensitivity clause also contains the simple name 
GUARD. (The signals identified by these names are called the inputs of the signal assignment 
statement.) Otherwise, the process statement contains a final wait statement that has no explicit 
sensitivity clause, condition clause, or timeout clause.
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Under certain conditions [see item d) in the preceding list] the equivalent process statement may contain a 
sequence of disconnection statements. A disconnection statement is a sequential signal assignment statement 
that assigns a null transaction to its target. If a sequence of disconnection statements is present in the 
equivalent process statement, the sequence consists of one sequential signal assignment for each scalar 
subelement of the target of the concurrent signal assignment statement. For each such sequential signal 
assignment, the target of the assignment is the corresponding scalar subelement of the target of the 
concurrent signal assignment, and the waveform of the assignment is a null waveform element whose time 
expression is given by the applicable disconnection specification (see 7.4).

If the target of a concurrent signal assignment statement is in the form of an aggregate, then the same 
transformation applies. Such a target shall contain only locally static signal names; moreover, it is an error if 
any signal is identified by more than one signal name.

It is an error if a null waveform element appears in a waveform of a concurrent signal assignment statement.

Execution of a concurrent signal assignment statement is equivalent to execution of the equivalent process 
statement.

NOTE 1—A concurrent signal assignment statement whose waveforms and target contain only static expressions is 
equivalent to a process statement whose final wait statement has no explicit sensitivity clause, so it will execute once 
through at the beginning of simulation and then suspend permanently.

NOTE 2—A concurrent signal assignment statement whose waveforms are all the reserved word unaffected has no 
drivers for the target, since every waveform in the concurrent signal assignment statement is transformed to the 
statement

null;
in the equivalent process statement (see 10.5.2.1).

11.7 Component instantiation statements

11.7.1 General

A component instantiation statement defines a subcomponent of the design entity in which it appears, 
associates signals or values with the ports of that subcomponent, and associates values with generics of that 
subcomponent. This subcomponent is one instance of a class of components defined by a corresponding 
component declaration, design entity, or configuration declaration.

component_instantiation_statement ::=
      instantiation_label :
            instantiated_unit
                  [ generic_map_aspect ]
                  [ port_map_aspect ] ;

instantiated_unit ::=
        [ component ] component_name
      | entity entity_name [ ( architecture_identifier ) ]
      | configuration configuration_name

The component name, if present, shall be the name of a component declared in a component declaration. 
The entity name, if present, shall be the name of a previously analyzed entity declaration; if an architecture 
identifier appears in the instantiated unit, then that identifier shall be the same as the simple name of an 
architecture body associated with the entity declaration denoted by the corresponding entity name. The 
architecture identifier defines a simple name that is used during the elaboration of a design hierarchy to 
select the appropriate architecture body. The configuration name, if present, shall be the name of a 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



- 177 - IEC 61691-1-1:2011(E)�
IEEE Std 1076-2008

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

previously analyzed configuration declaration. The generic map aspect, if present, optionally associates a 
single actual with each local generic (or member thereof) in the corresponding component declaration or 
entity declaration. Each local generic (or member thereof) shall be associated at most once. Similarly, the 
port map aspect, if present, optionally associates a single actual with each local port (or member thereof) in 
the corresponding component declaration or entity declaration. Each local port (or member thereof) shall be 
associated at most once. The generic map and port map aspects are described in 6.5.7.2 and 6.5.7.3.

If an instantiated unit containing the reserved word entity does not contain an explicitly specified 
architecture identifier, then the architecture identifier is implicitly specified according to the rules given in 
7.3.3. The architecture identifier defines a simple name that is used during the elaboration of a design 
hierarchy to select the appropriate architecture body.

A component instantiation statement and a corresponding configuration specification, if any, taken together, 
imply that the block hierarchy within the design entity containing the component instantiation is to be 
extended with a unique copy of the block defined by another design entity. The generic map and port map 
aspects in the component instantiation statement and in the binding indication of the configuration 
specification identify the connections that are to be made in order to accomplish the extension.

NOTE 1—A configuration specification can be used to bind a particular instance of a component to a design entity and 
to associate the local generics and local ports of the component with the formal generics and formal ports of that design 
entity. A configuration specification can apply to a component instantiation statement only if the name in the instantiated 
unit of the component instantiation statement denotes a component declaration. See 7.3.

NOTE 2—The component instantiation statement may be used to imply a structural organization for a hardware design. 
By using component declarations, signals, and component instantiation statements, a given (internal or external) block 
may be described in terms of subcomponents that are interconnected by signals.

NOTE 3—Component instantiation provides a way of structuring the logical decomposition of a design. The precise 
structural or behavioral characteristics of a given subcomponent may be described later, provided that the instantiated 
unit is a component declaration. Component instantiation also provides a mechanism for reusing existing designs in a 
design library. A configuration specification can bind a given component instance to an existing design entity, even if 
the generics and ports of the entity declaration do not precisely match those of the component (provided that the 
instantiated unit is a component declaration); if the generics or ports of the entity declaration do not match those of the 
component, the configuration specification shall contain a generic map or port map, as appropriate, to map the generics 
and ports of the entity declaration to those of the component.

11.7.2 Instantiation of a component

A component instantiation statement whose instantiated unit contains a name denoting a component is 
equivalent to a pair of nested block statements that couple the block hierarchy in the containing design unit 
to a unique copy of the block hierarchy contained in another design unit (i.e., the subcomponent). The outer 
block represents the component declaration; the inner block represents the design entity to which the 
component is bound. Each is defined by a block statement.

The header of the block statement corresponding to the component declaration consists of the generic and 
port clauses (if present) that appear in the component declaration, followed by the generic map and port map 
aspects (if present) that appear in the corresponding component instantiation statement. The meaning of any 
identifier appearing in the header of this block statement is that associated with the corresponding 
occurrence of the identifier in the generic clause, port clause, generic map aspect, or port map aspect. The 
statement part of the block statement corresponding to the component declaration consists of a nested block 
statement corresponding to the design entity.

The header of the block statement corresponding to the design entity consists of the generic and port clauses 
(if present) that appear in the entity declaration that defines the interface to the design entity, followed by the 
generic map and port map aspects (if present) that appear in the binding indication that binds the component 
instance to that design entity. The declarative part of the block statement corresponding to the design entity 
consists of the declarative items from the entity declarative part, followed by the declarative items from the 
declarative part of the corresponding architecture body. The statement part of the block statement 
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corresponding to the design entity consists of the concurrent statements from the entity statement part, 
followed by the concurrent statements from the statement part of the corresponding architecture body. The 
meaning of any identifier appearing anywhere in this block statement is that associated with the 
corresponding occurrence of the identifier in the entity declaration or architecture body.

For example, consider the following component declaration, instantiation, and corresponding configuration 
specification:

component
   COMP port (A,B: inout BIT);
end component;

for C: COMP use
   entity X(Y)
      port map (P1 => A, P2 => B);
   ·
   ·
   ·
C: COMP port map (A => S1, B => S2);
Given the following entity declaration and architecture declaration:

entity X is
   port (P1, P2: inout BIT);
   constant Delay: TIME := 1 ms;
begin
   CheckTiming (P1, P2, 2*Delay);
end X ;

architecture Y of X is
   signal P3: BIT;
begin
   P3 <= P1 after Delay;
   P2 <= P3 after Delay;
   B: block
      ·
      ·
      ·
   begin
      ·
      ·
      ·
   end block;
end Y;

then the following block statements implement the coupling between the block hierarchy in which 
component instantiation statement C appears and the block hierarchy contained in design entity X(Y):

C: block                             --  Component block.
   port (A,B: inout BIT);            --  Local ports.
   port map (A => S1, B => S2);      --  Actual/local binding.
begin
   X: block                          --  Design entity block.
      port (P1, P2 : inout BIT);     --  Formal ports.
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      port map (P1 => A, P2 => B);   --  Local/formal binding.
      constant Delay: TIME := 1 ms;  --  Entity declarative item.
      signal P3: BIT;      --  Architecture declarative item.
   begin
      CheckTiming (P1, P2, 2*Delay); --  Entity statement.
      P3 <= P1 after Delay;          --  Architecture statements.
      P2 <= P3 after Delay;
      B: block                       --  Internal block hierarchy.
         ·
         ·
         ·
      begin
         ·
         ·
         ·
      end block;
   end block X ;
end block C;

The block hierarchy extensions implied by component instantiation statements that are bound to design 
entities are accomplished during the elaboration of a design hierarchy (see Clause 14).

11.7.3 Instantiation of a design entity

A component instantiation statement whose instantiated unit denotes either a design entity or a configuration 
declaration is equivalent to a pair of nested block statements that couple the block hierarchy in the 
containing design unit to a unique copy of the block hierarchy contained in another design unit (i.e., the 
subcomponent). The outer block represents the component instantiation statement; the inner block 
represents the design entity to which the instance is bound. Each is defined by a block statement.

The header of the block statement corresponding to the component instantiation statement is empty, as is the 
declarative part of this block statement. The statement part of the block statement corresponding to the 
component declaration consists of a nested block statement corresponding to the design entity.

The header of the block statement corresponding to the design entity consists of the generic and port clauses 
(if present) that appear in the entity declaration that defines the interface to the design entity, followed by the 
generic map and port map aspects (if present) that appear in the component instantiation statement that binds 
the component instance to a copy of that design entity. The declarative part of the block statement 
corresponding to the design entity consists of the declarative items from the entity declarative part, followed 
by the declarative items from the declarative part of the corresponding architecture body. The statement part 
of the block statement corresponding to the design entity consists of the concurrent statements from the 
entity statement part, followed by the concurrent statements from the statement part of the corresponding 
architecture body. The meaning of any identifier appearing anywhere in this block statement is that 
associated with the corresponding occurrence of the identifier in the entity declaration or architecture body.

For example, consider the following design entity:

entity X is
   port (P1, P2: inout BIT);
   constant Delay: DELAY_LENGTH := 1 ms;
   use WORK.TimingChecks.all;
begin
   CheckTiming (P1, P2, 2*Delay);
end entity X;
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architecture Y of X is
   signal P3: BIT;
begin
   P3 <= P1 after Delay;
   P2 <= P3 after Delay;
   B: block
      ·
      ·
      ·
   begin
      ·
      ·
      ·
   end block B;
end architecture Y;

This design entity is instantiated by the following component instantiation statement:

C: entity WORK.X (Y) port map (P1 => S1, P2 => S2);
The following block statements implement the coupling between the block hierarchy in which component 
instantiation statement C appears and the block hierarchy contained in design entity X(Y):

C: block                             --  Instance block.
begin
   X: block                          --  Design entity block.
      port (P1, P2: inout BIT);      --  Entity declaration ports.
      port map (P1 => S1, P2 => S2); --  Instantiation statement
                                     --  port map.
      constant Delay: DELAY_LENGTH   --  Entity declarative items.
                      := 1 ms;
      use WORK.TimingChecks.all;
      signal P3: BIT;                --  Architecture declarative item.
   begin
      CheckTiming (P1, P2, 2*Delay); --  Entity statement.
      P3 <= P1 after Delay;          --  Architecture statements.
      P2 <= P3 after Delay;
      B: block
         ·
         ·
         ·
      begin
         ·
         ·
         ·
      end block B;
   end block X;
end block C;

Moreover, consider the following design entity, which is followed by an associated configuration 
declaration and component instantiation:

entity X is

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



- 181 - IEC 61691-1-1:2011(E)�
IEEE Std 1076-2008

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

   port (P1, P2: inout BIT);
   constant Delay: DELAY_LENGTH := 1 ms;
   use WORK.TimingChecks.all;
begin
   CheckTiming (P1, P2, 2*Delay);
end entity X;

architecture Y of X is
   signal P3: BIT;
begin
   P3 <= P1 after Delay;
   P2 <= P3 after Delay;
   B: block
      ·
      ·
      ·
   begin
      ·
      ·
      ·
   end block B;
end architecture Y;

The configuration declaration is

configuration Alpha of X is
   for Y
      ·
      ·
      ·
   end for;
end configuration Alpha;

The component instantiation is

C: configuration WORK.Alpha port map (P1 => S1, P2 => S2);
The following block statements implement the coupling between the block hierarchy in which component 
instantiation statement C appears and the block hierarchy contained in design entity X(Y):

C: block                             --  Instance block.
begin
   X: block                          --  Design entity block.
      port (P1, P2: inout BIT);      --  Entity declaration ports.
      port map (P1 => S1, P2 => S2); --  Instantiation statement
                                     --  port map.
      constant Delay: DELAY_LENGTH   --  Entity declarative items.
                      := 1 ms;
      use WORK.TimingChecks.all;
      signal P3: BIT;                --  Architecture declarative item.
   begin
      CheckTiming (P1, P2, 2*Delay); --  Entity statement.
      P3 <= P1 after Delay;          --  Architecture statements.
      P2 <= P3 after Delay;
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      B: block
         ·
         ·
         ·
      begin
         ·
         ·
         ·
      end block B;
   end block X;
end block C;

The block hierarchy extensions implied by component instantiation statements that are bound to design 
entities occur during the elaboration of a design hierarchy (see Clause 14).

11.8 Generate statements

A generate statement provides a mechanism for iterative or conditional elaboration of a portion of a 
description.

generate_statement ::=
        for_generate_statement
      | if_generate_statement
      | case_generate_statement

for_generate_statement ::=
      generate_label :
            for generate_parameter_specification generate
                  generate_statement_body
            end generate [ generate_label ] ;

if_generate_statement ::=
      generate_label :
            if [ alternative_label : ] condition generate
                  generate_statement_body
            { elsif [ alternative_label : ] condition generate
                  generate_statement_body }
            [ else [ alternative_label : ] generate
                  generate_statement_body ]
            end generate [ generate_label ] ;

case_generate_statement ::=
      generate_label :
            case expression generate
                  case_generate_alternative
                  { case_generate_alternative }
            end generate [ generate_label ] ;

case_generate_alternative ::=
      when [ alternative_label : ] choices =>
            generate_statement_body

generate_statement_body ::=
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            [ block_declarative_part
      begin ]
            { concurrent_statement }
      [ end [ alternative_label ] ; ]

label ::=  identifier

If a label appears at the end of a generate statement, it shall repeat the generate label. The alternative labels, 
if any, within an if generate statement or a case generate statement shall all be distinct. An alternative label 
shall not appear at the end of the generate statement body in a for generate statement. If a label appears at the 
end of a generate statement body in an if generate statement, then the immediately enclosing if, elsif, or else
part of the if generate statement shall include an alternative label, and the label at the end of the generate 
statement body shall repeat the alternative label. Similarly, if a label appears at the end of a generate 
statement body in a case generate statement, then the immediately enclosing case generate alternative of the 
case generate statement shall include an alternative label, and the label at the end of the generate statement 
body shall repeat the alternative label.

For a for generate statement, the generate parameter specification is the declaration of the generate 
parameter with the given identifier. The generate parameter is a constant object whose type is the base type 
of the discrete range of the generate parameter specification.

The discrete range in the generate parameter specification of a for generate statement shall be a static 
discrete range; similarly, each condition in an if generate statement shall be a static expression.

For a case generate statement, the expression shall be globally static, and shall be of a discrete type, or of a 
one-dimensional array type whose element base type is a character type. This type shall be determined by 
applying the rules of 12.5 to the expression considered as a complete context, using the fact that the 
expression shall be of a discrete type or a one-dimensional character array type. Each choice in a case 
generate alternative shall be of the same type as the expression; the list of choices specifies for which values 
of the expression the alternative is chosen.

If the expression is the name of an object whose subtype is globally static, whether a scalar type or an array 
type, then each value of the subtype shall be represented once and only once in the set of choices of the case 
generate statement, and no other value is allowed; this rule is likewise applied if the expression is a qualified 
expression or type conversion whose type mark denotes a globally static subtype, or if the expression is a 
call to a function whose return type mark denotes a globally static subtype, or if the expression is an 
expression described in this paragraph and enclosed in parentheses.

If the expression is of a one-dimensional character array type and is not described by the preceding 
paragraph, then the values of all of the choices, except the others choice, if present, shall be of the same 
length. Moreover, each value of the (base) type of the expression shall be represented once and only once in 
the set of choices, and no other value is allowed. It is an error if the value of the expression is not of the same 
length as the values of the choices. If there is only one choice and that choice is others, then the value of the 
expression may be of any length.

For other forms of expression, each value of the (base) type of the expression shall be represented once and 
only once in the set of choices, and no other value is allowed.

The simple expression and discrete ranges given as choices in a case generate statement shall be globally 
static. A choice defined by a discrete range stands for all values in the corresponding range. The choice 
others is only allowed for the last alternative and as its only choice; it stands for all values (possibly none) 
not given in the choices of previous alternatives. An element simple name (see 9.3.3.1) is not allowed as a 
choice of a case generate alternative.
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The elaboration of a generate statement is described in 14.5.3.

Example:

Gen: block
begin
   L1: CELL port map (Top, Bottom, A(0), B(0));
   L2: for I in 1 to 3 generate
      L3: for J in 1 to 3 generate
         L4: if I+J>4 generate
            L5: CELL port map (A(I-1),B(J-1),A(I),B(J));
         end generate;
      end generate;
   end generate;

   L6: for I in 1 to 3 generate
      L7: for J in 1 to 3 generate
         L8: if I+J<4 generate
            L9: CELL port map (A(I+1),B(J+1),A(I),B(J));
         end generate;
      end generate;
   end generate;
end block Gen;

Gen2: block
begin
   L1: case verify_mode generate
      when V_rtl: all_rtl | cpu_rtl =>
         CPU1: entity work.cpu(rtl) port map ( ... );
      when V_bfm: others =>
            signal bfm_sig : BIT;
         begin
            CPU1: entity work.cpu(bfm) port map ( ... );
         end V_bfm;
   end generate L1;

   L2: if A1: max_latency < 10 generate
         signal s1 : BIT;
      begin
         multiplier1: parallel_multiplier port map ( ... );
      end A1;
   else A2: generate
         signal s1 : STD_LOGIC;
      begin
         multiplier1: sequential_multiplier port map ( ... );
      end A2;
   end generate L2;
end block Gen2;
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12. Scope and visibility

12.1 Declarative region

With two exceptions, a declarative region is a portion of the text of the description. A single declarative 
region is formed by the text of each of the following:

a) An entity declaration, together with a corresponding architecture body
b) A configuration declaration
c) A subprogram declaration, together with the corresponding subprogram body
d) A package declaration together with the corresponding body (if any)
e) A record type declaration
f) A component declaration
g) A block statement
h) A process statement
i) A loop statement
j) A block configuration
k) A component configuration
l) A generate statement
m) A protected type declaration, together with the corresponding body

In each of these cases, the declarative region is said to be associated with the corresponding declaration or 
statement. A declaration is said to occur immediately within a declarative region if this region is the 
innermost region that encloses the declaration, not counting the declarative region (if any) associated with 
the declaration itself.

Certain declarative regions include disjoint parts. Each declarative region is nevertheless considered as a 
(logically) continuous portion of the description text. Hence, if any rule defines a portion of text as the text 
that extends from some specific point of a declarative region to the end of this region, then this portion is the 
corresponding subset of the declarative region (thus, it does not include intermediate declarative items 
between the interface declaration and a corresponding body declaration).

In addition to the preceding declarative regions, there is a root declarative region, not associated with a 
portion of the text of the description, but encompassing any given primary unit. At the beginning of the 
analysis of a given primary unit, there are no declarations whose scopes (see 12.2) are within the root 
declarative region. Moreover, the root declarative region associated with any given secondary unit is the root 
declarative region of the corresponding primary unit.

There is also a library declarative region associated with each design library (see 13.2). Each library 
declarative region has within its scope declarations corresponding to each primary unit contained within the 
associated design library.

NOTE—An architecture body, though a declaration, does not occur immediately within any declarative region.

12.2 Scope of declarations

For each form of declaration, the language rules define a certain portion of the description text called the 
scope of the declaration. The scope of a declaration is also called the scope of any named entity declared by 
the declaration. Furthermore, if the declaration associates some notation (either an identifier, a character 
literal, or an operator symbol) with the named entity, this portion of the text is also called the scope of this 
notation. Within the scope of a named entity, and only there, there are places where it is legal to use the 
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associated notation in order to refer to the named entity. These places are defined by the rules of visibility 
and overloading.

The scope of a declaration, except for an architecture body, extends from the beginning of the declaration to 
the end of the immediately closing declarative region; the scope of an architecture body extends from the 
beginning to the end of the architecture body. In either case, this part of the scope of a declaration is called 
the immediate scope. Furthermore, for any of the declarations in the following list, the scope of the 
declaration extends beyond the immediate scope:

a) A declaration that occurs immediately within a package declaration

b) An element declaration in a record type declaration

c) A formal parameter declaration in a subprogram declaration

d) A local generic declaration in a component declaration

e) A local port declaration in a component declaration

f) A formal generic declaration in an entity declaration, an uninstantiated package declaration, or an 
uninstantiated subprogram declaration

g) A formal port declaration in an entity declaration

h) A declaration that occurs immediately within a protected type declaration

i) An architecture body

In the absence of a separate subprogram declaration, the subprogram specification given in the subprogram 
body acts as the declaration, and rule c) applies also in such a case. In each of these cases except i), the given 
declaration occurs immediately within some enclosing declaration, and the scope of the given declaration 
extends to the end of the scope of the enclosing declaration.

In addition to the preceding rules, if the the scope of any declaration includes the end of the declarative part 
of a given block (whether it be an external block defined by a design entity or an internal block defined by a 
block statement) then the scope of the declaration extends into a configuration declaration that configures 
the given block.

If a component configuration appears as a configuration item immediately within a block configuration that 
configures a given block, and if the scope of a given declaration includes the end of the declarative part of 
that block, then the scope of the given declaration extends from the beginning to the end of the declarative 
region associated with the given component configuration. A similar rule applies to a block configuration 
that appears as a configuration item immediately within another block configuration, provided that the 
contained block configuration configures an internal block. Furthermore, the scope of a use clause is 
similarly extended. Finally, the scope of a library unit contained within a design library is extended along 
with the scope of the logical library name corresponding to that design library.

If the scope of any declaration includes the end of the declarative region of the design entity at the root of the 
design hierarchy, then the scope extends into a PSL verification unit that is bound to that design entity. 
Similarly, if the scope of any declaration includes the end of the declarative region of a design entity bound 
to a component instance, then the scope extends into a PSL verification unit that is bound to that component 
instance.

NOTE 1—These scope rules apply to all forms of declaration. In particular, they apply also to implicit declarations and 
to named primary units.

NOTE 2—The scope of an entity declaration includes an associated architecture body, if any. Thus, the entity name may 
be used within the architecture body as the prefix of an expanded name denoting a declaration that occurs immediately 
within the entity declaration or the architecture body. The scope of an architecture body does not include the 
corresponding entity declaration. Thus, the entity cannot use an expanded name to refer to the architecture body nor to 
any declaration within the architecture body.
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12.3 Visibility

The meaning of the occurrence of an identifier at a given place in the text is defined by the visibility rules 
and also, in the case of overloaded declarations, by the overloading rules. The identifiers considered in this 
subclause include any identifier other than a reserved word or an attribute designator that denotes a 
predefined attribute. The places considered in this subclause are those where a lexical element (such as an 
identifier) occurs. The overloaded declarations considered in this subclause are those for subprograms and 
enumeration literals.

For each identifier and at each place in the text, the visibility rules determine a set of declarations (with this 
identifier) that define the possible meanings of an occurrence of the identifier. A declaration is said to be 
visible at a given place in the text when, according to the visibility rules, the declaration defines a possible 
meaning of this occurrence. The following two cases arise in determining the meaning of such a declaration:

— The visibility rules determine at most one possible meaning. In such a case, the visibility rules are 
sufficient to determine the declaration defining the meaning of the occurrence of the identifier, or in 
the absence of such a declaration, to determine that the occurrence is not legal at the given point.

— The visibility rules determine more than one possible meaning. In such a case, the occurrence of the 
identifier is legal at this point if and only if exactly one visible declaration is acceptable for the 
overloading rules in the given context or all visible declarations denote the same named entity.

A declaration is visible only within a certain part of its scope; this part starts at the end of the declaration 
except in the declaration of a design unit other than a PSL verification unit, a package declaration, or a 
protected type declaration, in which case it starts immediately after the reserved word is occurring after the 
identifier of the design unit, a package declaration, or protected type declaration. This rule applies to both 
explicit and implicit declarations.

Visibility is either by selection or direct. A declaration is visible by selection at places that are defined as 
follows:

a) For a primary unit contained in a library: at the place of the suffix in a selected name whose prefix 
denotes the library.

b) For an entity name in a configuration declaration whose entity name is a simple name: at the place of 
the simple name, and the context is that of the library WORK.

c) For an architecture body associated with a given entity declaration: at the place of the block 
specification in a block configuration for an external block whose interface is defined by that entity 
declaration.

d) For an architecture body associated with a given entity declaration: at the place of an architecture 
identifier (between the parentheses) in the first form of an entity aspect in a binding indication.

e) For an architecture body associated with a given entity declaration: at the place of an architecture 
identifier (between the parentheses) in the second form of an instantiated unit in a component 
instantiation statement.

f) For a declaration given in a package declaration, other than in a package declaration that defines an 
uninstantiated package: at the place of the suffix in a selected name whose prefix denotes the 
package.

g) For an element declaration of a given record type declaration: at the place of the suffix in a selected 
name whose prefix is appropriate for the type; also at the place of a choice (before the compound 
delimiter =>) in a named element association of an aggregate of the type.

h) For an element declaration of a given record type declaration: at the place of the record element 
simple name in a record element constraint of a record constraint that applies to a type or subtype 
that is the given record type or an access type whose designated type is the given record type; also at 
the place of a record element simple name in a record element resolution of a record resolution 
corresponding to the given record type or a subtype of the given record type.
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i) For a user-defined attribute: at the place of the attribute designator (after the delimiter ') in an 
attribute name whose prefix denotes a named entity with which that attribute has been associated.

j) For a formal parameter declaration of a given subprogram declaration: at the place of the formal part 
(before the compound delimiter =>) of a named parameter association element of a corresponding 
subprogram call.

k) For a local generic declaration of a given component declaration: at the place of the formal part 
(before the compound delimiter =>) of a named generic association element of a corresponding 
component instantiation statement; similarly, at the place of the actual part (after the compound 
delimiter =>, if any) of a generic association element of a corresponding binding indication.

l) For a local port declaration of a given component declaration: at the place of the formal part (before 
the compound delimiter =>) of a named port association element of a corresponding component 
instantiation statement; similarly, at the place of the actual part (after the compound delimiter =>, if 
any) of a port association element of a corresponding binding indication.

m) For a formal generic declaration of a given entity declaration: at the place of the formal part (before 
the compound delimiter =>) of a named generic association element of a corresponding binding 
indication; similarly, at the place of the formal part (before the compound delimiter =>) of a generic 
association element of a corresponding component instantiation statement when the instantiated unit 
is a design entity or a configuration declaration.

n) For a formal port declaration of a given entity declaration: at the place of the formal part (before the 
compound delimiter =>) of a named port association element of a corresponding binding indication; 
similarly, at the place of the formal part (before the compound delimiter =>) of a port association 
element of a corresponding component instantiation statement when the instantiated unit is a design 
entity or a configuration declaration.

o) For a formal generic declaration or a formal port declaration of a given block statement: at the place 
of the formal part (before the compound delimiter =>) of a named association element of a 
corresponding generic or port map aspect.

p) For a formal generic declaration of a given package declaration: at the place of the formal part 
(before the compound delimiter =>) of a named association element of a corresponding generic map 
aspect.

q) For a formal generic declaration of a given subprogram declaration: at the place of the formal part 
(before the compound delimiter =>) of a named association element of a corresponding generic map 
aspect.

r) For a formal generic type of a given uninstantiated subprogram declaration: at the place of a 
signature in a subprogram instantiation declaration in which the uninstantiated subprogram name 
denotes the given uninstantiated subprogram declaration.

s) For a subprogram declared immediately within a given protected type declaration: at the place of the 
suffix in a selected name whose prefix denotes an object of the protected type.

t) For an alternative label of an if generate statement or a case generate statement: at the place of the 
generate specification in a block specification that refers to the generate statement label of the 
generate statement.

Finally, within the declarative region associated with a construct other than a record type declaration or a 
protected type, any declaration that occurs immediately within the region and that also occurs textually 
within the construct is visible by selection at the place of the suffix of an expanded name whose prefix 
denotes the construct. Similarly, within an architecture body, any declaration that occurs immediately within 
the architecture body or the corresponding entity declaration is visible by selection at the place of the suffix 
of an expanded name whose prefix denotes the entity declaration.

Where it is not visible by selection, a visible declaration is said to be directly visible. A declaration is said to 
be directly visible within a certain part of its immediate scope; this part extends to the end of the immediate 
scope of the declaration but excludes places where the declaration is hidden as explained in the following 
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paragraphs. In addition, a declaration occurring immediately within the visible part of a package, other than 
an uninstantiated package, can be made directly visible by means of a use clause according to the rules 
described in 12.4.

A declaration is said to be hidden within (part of) an inner declarative region if the inner region contains a 
homograph of this declaration; the outer declaration is then hidden within the immediate scope of the inner 
homograph. Each of two declarations is said to be a homograph of the other if and only if both declarations 
have the same designator, and they denote different named entities, and either overloading is allowed for at 
most one of the two, or overloading is allowed for both declarations and they have the same parameter and 
result type profile (see 4.5.1).

At a place in which a given declaration is visible by selection, every declaration with the same designator as 
the given declaration and that would otherwise be directly visible is hidden.

Within the specification of a subprogram, every declaration with the same designator as the subprogram is 
hidden. Where hidden in this manner, a declaration is visible neither by selection nor directly.

Two declarations that occur immediately within the same declarative region, other than the declarative 
region of a block implied by a component instantiation or the declarative region of a generic-mapped 
package or subprogram equivalent to a package instance or a subprogram instance, shall not be homographs, 
unless exactly one of them is the implicit declaration of a predefined operation or is an implicit alias of such 
an implicit declaration. In such cases, a predefined operation or alias thereof is always hidden by the other 
homograph. Where hidden in this manner, an implicit declaration is hidden within the entire scope of the 
other declaration (regardless of which declaration occurs first); the implicit declaration is visible neither by 
selection nor directly. For a declarative region of a block implied by a component instantiation or the 
declarative region of a generic-mapped package or subprogram equivalent to a package instance or a 
subprogram instance, the rules of this paragraph are applied to the corresponding entity declaration, 
component declaration, uninstantiated package declaration, or uninstantiated subprogram declaration, as 
appropriate.

A declaration is hidden within a PSL declaration, a PSL directive, or a PSL verification unit if the simple 
name of the declaration is a PSL keyword.

Whenever a declaration with a certain identifier is visible from a given point, the identifier and the named 
entity (if any) are also said to be visible from that point. Direct visibility and visibility by selection are 
likewise defined for character literals and operator symbols. An operator is directly visible if and only if the 
corresponding operator declaration is directly visible.

In addition to the aforementioned rules, any declaration that is visible by selection at the end of the 
declarative part of a given (external or internal) block is visible by selection in a configuration declaration 
that configures the given block.

In addition, any declaration that is directly visible at the end of the declarative part of a given block is 
directly visible in a block configuration that configures the given block. This rule holds unless a use clause 
that makes a homograph of the declaration potentially visible (see 12.4) appears in the corresponding 
configuration declaration, and if the scope of that use clause encompasses all or part of those configuration 
items. If such a use clause appears, then the declaration will be directly visible within the corresponding 
configuration items, except at those places that fall within the scope of the additional use clause. At such 
places, neither name will be directly visible.

If a component configuration appears as a configuration item immediately within a block configuration that 
configures a given block, and if a given declaration is visible by selection at the end of the declarative part of 
that block, then the given declaration is visible by selection from the beginning to the end of the declarative 
region associated with the given component configuration. A similar rule applies to a block configuration 
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that appears as a configuration item immediately within another block configuration, provided that the 
contained block configuration configures an internal block.

If a component configuration appears as a configuration item immediately within a block configuration that 
configures a given block, and if a given declaration is directly visible at the end of the declarative part of that 
block, then the given declaration is visible by selection from the beginning to the end of the declarative 
region associated with the given component configuration. A similar rule applies to a block configuration 
that appears as a configuration item immediately within another block configuration, provided that the 
contained block configuration configures an internal block. Furthermore, the visibility of declarations made 
directly visible by a use clause within a block is similarly extended. Finally, the visibility of a logical library 
name corresponding to a design library directly visible at the end of a block is similarly extended. The rules 
of this paragraph hold unless a use clause that makes a homograph of the declaration potentially visible 
appears in the corresponding block configuration, and if the scope of that use clause encompasses all or part 
of those configuration items. If such a use clause appears, then the declaration will be directly visible within 
the corresponding configuration items, except at those places that fall within the scope of the additional use 
clause. At such places, neither name will be directly visible.

NOTE 1—The same identifier, character literal, or operator symbol may occur in different declarations and may thus be 
associated with different named entities, even if the scopes of these declarations overlap. Overlap of the scopes of 
declarations with the same identifier, character literal, or operator symbol can result from overloading of subprograms 
and of enumeration literals. Such overlaps can also occur for named entities declared in the visible parts of packages and 
for formal generics and ports, record elements, and formal parameters, where there is overlap of the scopes of the 
enclosing package declarations, entity declarations, record type declarations, or subprogram declarations. Finally, 
overlapping scopes can result from nesting.

NOTE 2—The rules defining immediate scope, hiding, and visibility imply that a reference to an identifier, character 
literal, or operator symbol within its own declaration is illegal (except for design units). The identifier, character literal, 
or operator symbol hides outer homographs within its immediate scope—that is, from the start of the declaration. On the 
other hand, the identifier, character literal, or operator symbol is visible only after the end of the declaration (again, 
except for design units). For this reason, all but the last of the following declarations are illegal:

constant K: INTEGER := K*K;             --  Illegal
constant T: T;                          --  Illegal
procedure P (X: P);                     --  Illegal
function Q (X: REAL := Q) return Q;     --  Illegal
procedure R (R: REAL);                  --  Legal (although perhaps confusing)
NOTE 3—A declaration in an uninstantiated package cannot be made visible by selection by referencing it with a 
selected name. However, a declaration in an instance of the package can be referenced with a selected name.

NOTE 4—There are circumstances where it is legal for two subprograms declared in the same declarative region to be 
homographs. An example is the declaration of the following two subprograms in an uninstantiated package with formal 
generic types T1 and T2:

procedure P (X: T1);
procedure P (X: T2);

Since T1 and T2 are distinct types, the subprograms are not homographs within the uninstantiated package. If an 
instance of the package associates the same actual type with both T1 and T2, then the subprograms are legal homographs 
within the instance. However, any call to either of the subprograms in the instance will be ambiguous.

NOTE 5—The visibility of declarations within a PSL verification unit is defined in IEEE Std 1850-2005.

Example:

L1: block
   signal A,B: Bit;
begin
   L2: block
      signal B: Bit;                     --  An inner homograph of B.
   begin
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      A <= B after 5 ns;                 --  Means L1.A <= L2.B
      B <= L1.B after 10 ns;             --  Means L2.B <= L1.B
   end block ;
   B <= A after 15 ns;                   --  Means L1.B <= L1.A
end block;

12.4 Use clauses

A use clause achieves direct visibility of declarations that are visible by selection.

use_clause ::=
      use selected_name { , selected_name } ;

Each selected name in a use clause identifies one or more declarations that will potentially become directly 
visible. If the suffix of the selected name is a simple name other than a type mark, or is a character literal or 
operator symbol, then the selected name identifies only the declaration(s) of that simple name, character 
literal, or operator symbol contained within the package or library denoted by the prefix of the selected 
name.

If the suffix of the selected name is a type mark, then the declaration of the type or subtype denoted by the 
type mark is identified. Moreover, the following declarations, if any, that occur immediately within the 
package denoted by the prefix of the selected name, are also identified:

— If the type mark denotes an enumeration type or a subtype of an enumeration type, the enumeration 
literals of the base type

— If the type mark denotes a subtype of a physical type, the units of the base type
— The implicit declarations of predefined operations for the type that are not hidden by homographs 

explicitly declared immediately within the package denoted by the prefix of the selected name
— The declarations of homographs, explicitly declared immediately within the package denoted by the 

prefix of the selected name, that hide implicit declarations of predefined operations for the type

If the suffix is the reserved word all, then the selected name identifies all declarations that are contained 
within the package or library denoted by the prefix of the selected name.

It is an error if the prefix of a selected name in a use clause denotes an uninstantiated package.

For each use clause, except a use clause that appears within a context declaration, there is a certain region of 
text called the scope of the use clause. This region starts immediately after the use clause. If a use clause is a 
declarative item of some declarative region, the scope of the clause extends to the end of the given 
declarative region. If a use clause occurs within the context clause of a design unit, the scope of the use 
clause extends to the end of the root declarative region associated with the given design unit. The scope of a 
use clause may additionally extend into a configuration declaration (see 12.2).

In order to determine which declarations are made directly visible at a given place by use clauses, consider 
the set of declarations identified by all use clauses whose scopes enclose this place. Any declaration in this 
set is a potentially visible declaration. A potentially visible declaration is actually made directly visible 
except in the following three cases:

a) A potentially visible declaration is not made directly visible if the place considered is within the 
immediate scope of a homograph of the declaration.

b) If two potentially visible declarations are homographs and one is explicitly declared and the other is 
implicitly declared, then the implicit declaration is not made directly visible.
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c) Potentially visible declarations that have the same designator and that are not covered by case b) are 
not made directly visible unless each of them is either an enumeration literal specification or the 
declaration of a subprogram.

NOTE 1—These rules guarantee that a declaration that is made directly visible by a use clause cannot hide an otherwise 
directly visible declaration. Moreover, an explicitly declared operation has priority over an implicitly declared 
homograph of that operation if both are made potentially visible by use clauses.

NOTE 2—If a named entity X declared in package P is made potentially visible within a package Q (e.g., by the 
inclusion of the clause "use P.X;" in the context clause of package Q), and the context clause for design unit R includes 
the clause "use Q.all;", this does not imply that X will be potentially visible in R. Only those named entities that are 
actually declared in package Q will be potentially visible in design unit R (in the absence of any other use clauses).

NOTE 3—A declaration in an uninstantiated package cannot be made potentially or directly visible by a use clause. 
However, a declaration in an instance of the package can be made potentially or directly visible by a use clause.

12.5 The context of overload resolution

Overloading is defined for names, subprograms, and enumeration literals.

For overloaded entities, overload resolution determines the actual meaning that an occurrence of an 
identifier or a character literal has whenever the visibility rules have determined that more than one meaning 
is acceptable at the place of this occurrence; overload resolution likewise determines the actual meaning of 
an occurrence of an operator or basic operation (see 5.1).

At such a place, all visible declarations are considered. The occurrence is only legal if there is exactly one 
interpretation of each constituent of the innermost complete context. Each of the following constructs is a 
complete context:

— A declaration
— A specification
— A statement
— A discrete range used in a constrained array definition, a generate parameter specification, or a loop 

parameter specification
— The expression of a type conversion
— The expression of a case statement or a case generate  statement
— The expression following a for generate statement label in an external name

When considering possible interpretations of a complete context, the only rules considered are the syntax 
rules, the scope and visibility rules, and the rules of the form as follows:

a) Any rule that requires a name or expression to have a certain type or to have the same type as 
another name or expression.

b) Any rule that requires the type of a name or expression to be a type of a certain class; similarly, any 
rule that requires a certain type to be a discrete, integer, floating-point, physical, universal, or 
character type.

c) Any rule that requires a prefix to be appropriate for a certain type.
d) The rules that require the type of an aggregate or string literal to be determinable solely from the 

enclosing complete context. Similarly, the rules that require that the meaning of the prefix of an 
attribute must be determinable independently of the attribute designator and independently of the 
fact that it is the prefix of an attribute.

e) The rules given for the resolution of overloaded subprogram calls; for the implicit conversions of 
universal expressions; for the interpretation of discrete ranges with bounds having a universal type; 
for the interpretation of an expanded name whose prefix denotes a subprogram; and for a 
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subprogram named in a subprogram instantiation declaration to denote an uninstantiated 
subprogram.

f) The rules given for the requirements on the return type, the number of formal parameters, and the 
types of the formal parameters of the subprogram denoted by the resolution function name (see 4.6).

NOTE 1—If there is only one possible interpretation of an occurrence of an identifier, character literal, operator symbol, 
or string, that occurrence denotes the corresponding named entity. However, this condition does not mean that the 
occurrence is necessarily legal since other requirements exist that are not considered for overload resolution: for 
example, the fact that the expression is static, the parameter modes, conformance rules, the use of named association in 
an indexed name, the use of open in an indexed name, the use of a slice as an actual to a function call, and so forth.

NOTE 2—A loop parameter specification is a declaration, and hence a complete context.

NOTE 3—Rules that require certain constructs to have the same parameter and result type profile fall under the 
preceding category a). This includes the rule that the actual associated with a formal generic subprogram have a 
conforming profile with the formal. The same holds for rules that require lexical conformance of two constructs, since 
lexical conformance requires that corresponding names be given the same meaning by the visibility and overloading 
rules.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



IEC 61691-1-1:2011(E) - 194 - �
IEEE Std 1076-2008

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



- 195 - IEC 61691-1-1:2011(E)�
IEEE Std 1076-2008

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

13. Design units and their analysis

13.1 Design units

Certain constructs are independently analyzed and inserted into a design library; these constructs are called 
design units. One or more design units in sequence comprise a design file.

design_file ::=  design_unit { design_unit }

design_unit ::=  context_clause library_unit

library_unit ::=
        primary_unit
      | secondary_unit

primary_unit ::=
        entity_declaration
      | configuration_declaration
      | package_declaration
      | package_instantiation_declaration
      | context_declaration
      | PSL_Verification_Unit

secondary_unit ::=
        architecture_body
      | package_body

Design units in a design file are analyzed in the textual order of their appearance in the design file. Analysis 
of a design unit defines the corresponding library unit in a design library. A library unit is either a primary 
unit or a secondary unit. A secondary unit is a separately analyzed body of a primary unit resulting from a 
previous analysis.

It is an error if the context clause preceding a library unit that is a context declaration is not empty.

The name of a primary unit is given by the first identifier after the initial reserved word of that unit. Of the 
secondary units, only architecture bodies are named; the name of an architecture body is given by the 
identifier following the reserved word architecture. Each primary unit in a given library shall have a simple 
name that is unique within the given library, and each architecture body associated with a given entity 
declaration shall have a simple name that is unique within the set of names of the architecture bodies 
associated with that entity declaration.

Entity declarations, architecture bodies, and configuration declarations are discussed in Clause 3. Package 
declarations, package bodies, and package instantiations are discussed in Clause 4. Context declarations are 
discussed in 13.3. PSL verification units are described in IEEE Std 1850-2005.

13.2 Design libraries

A design library is an implementation-dependent storage facility for previously analyzed design units. A 
given implementation is required to support any number of design libraries.

library_clause  ::=  library logical_name_list ;
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logical_name_list  ::=  logical_name { , logical_name }

logical_name  ::=  identifier

A library clause defines logical names for design libraries in the host environment. A library clause appears 
as part of a context clause, either at the beginning of a design unit or within a context declaration. For the 
former case, the declaration of each logical name defined by the library clause occurs immediately within 
the root declarative region associated with the design unit. For a library clause that appears within a context 
declarative region, the logical names are not declared; rather, there is an equivalent library clause that 
declares the logical names (see 13.4).

If two or more logical names having the same identifier (see 15.4) appear in library clauses in the same 
context clause, the second and subsequent occurrences of the logical name have no effect. The same is true 
of logical names appearing both in the context clause of a primary unit and in the context clause of a 
corresponding secondary unit.

Each logical name defined by the library clause denotes a design library in the host environment.

For a given library logical name, the actual name of the corresponding design library in the host 
environment may or may not be the same. A given implementation shall provide some mechanism to 
associate a library logical name with a host-dependent library. Such a mechanism is not defined by the 
language.

There are two classes of design libraries: working libraries and resource libraries. A working library is the 
library into which the library unit resulting from the analysis of a design unit is placed. A resource library is 
a library containing library units that are referenced within the design unit being analyzed. Only one library 
is the working library during the analysis of any given design unit; in contrast, any number of libraries 
(including the working library itself) may be resource libraries during such an analysis.

Every design unit except a context declaration and package STANDARD is assumed to contain the 
following implicit context items as part of its context clause:

library STD, WORK; use STD.STANDARD.all;

Library logical name STD denotes the design library in which packages STANDARD, TEXTIO, and ENV 
reside (see Clause 16). (The use clause makes all declarations within package STANDARD directly visible 
within the corresponding design unit; see 12.4.) Library logical name WORK denotes the current working 
library during a given analysis. Library logical name IEEE denotes the design library in which the 
mathematical, multivalue logic and synthesis packages, and the synthesis context declarations reside (see 
Clause 16).

The library denoted by the library logical name STD contains no library units other than packages 
STANDARD, TEXTIO, and ENV.

A secondary unit corresponding to a given primary unit shall be placed into the design library in which the 
primary unit resides.

NOTE—The design of the language assumes that the contents of resource libraries named in all library clauses in the 
context clause of a design unit will remain unchanged during the analysis of that unit (with the possible exception of the 
updating of the library unit corresponding to the analyzed design unit within the working library, if that library is also a 
resource library).
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13.3 Context declarations

A context declaration defines context items that may be referenced by design units.

context_declaration ::=
      context identifier is
            context_clause
      end [ context ] [ context_simple_name ] ;

If a simple name appears at the end of a context declaration, it shall repeat the identifier of the context 
declaration.

It is an error if a library clause in a context declaration defines the library logical name WORK, or if a 
selected name in a use clause or a context reference in a context declaration has the library logical name 
WORK as a prefix.

Example:

context project_context is
   library project_lib;
   use project_lib.project_defs.all;
   library IP_lib;
   context IP_lib.IP_context;
end context project_context;

13.4 Context clauses

A context clause defines the initial name environment in which a design unit is analyzed.

context_clause ::=  { context_item }

context_item  ::=
        library_clause
      | use_clause
      | context_reference

context_reference ::=
      context selected_name { , selected_name } ;

A library clause defines library logical names that may be referenced in the design unit; library clauses are 
described in 13.2. A use clause makes certain declarations directly visible within the design unit; use clauses 
are described in 12.4.

It is an error if a selected name in a context reference does not denote a context declaration.

A given context clause is equivalent to an expanded context clause containing only library clauses and use 
clauses.  The expanded context clause is formed from the given context clause by replacing each context 
reference with the expanded context clause of the context clause in the context declaration denoted by the 
selected name of the context reference.

For a context clause that precedes a library unit, rules concerning scope and visibility are interpreted to 
apply to the expanded context clause at the place of the context clause.
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It is an error if, during analysis of a design unit, there is a library clause in the expanded context clause of the 
design unit that occurs as part of a replacement of a context reference, and a logical name in that library 
clause denotes a different design library from the design library denoted by the logical name during analysis 
of the context declaration from which the library clause was expanded.

NOTE 1—The rules given for use clauses are such that the same effect is obtained whether the name of a library unit is 
mentioned once or more than once by the applicable use clauses, or even within a given use clause.

NOTE 2—For a context clause that appears within a context declaration, the library clauses and use clauses have no 
scope; hence, rules concerning scope and visibility do not apply.

13.5 Order of analysis

The rules defining the order in which design units can be analyzed are direct consequences of the visibility 
rules. In particular

a) A primary unit whose name is referenced within a given design unit shall be analyzed prior to the 
analysis of the given design unit.

b) A primary unit shall be analyzed prior to the analysis of any corresponding secondary unit.

In each case, the second unit depends on the first unit.

The order in which design units are analyzed shall be consistent with the partial ordering defined by the 
preceding rules.

If any error is detected while attempting to analyze a design unit, then the attempted analysis is rejected and 
has no effect whatsoever on the current working library.

A given library unit is potentially affected by a change in any library unit whose name is referenced within 
the given library unit. A secondary unit is potentially affected by a change in its corresponding primary unit. 
If a library unit is changed (e.g., by reanalysis of the corresponding design unit), then all library units that are 
potentially affected by such a change become obsolete and shall be reanalyzed before they can be used 
again.
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14. Elaboration and execution

14.1 General

The process by which a declaration achieves its effect is called the elaboration of the declaration. After its 
elaboration, a declaration is said to be elaborated. Prior to the completion of its elaboration (including before 
the elaboration), the declaration is not yet elaborated.

Elaboration is also defined for design hierarchies, declarative parts, statement parts (containing concurrent 
statements), and concurrent statements. Elaboration of such constructs is necessary in order ultimately to 
elaborate declarative items that are declared within those constructs.

In order to execute a model, the design hierarchy defining the model shall first be elaborated. Initialization 
of nets (see 14.7.3.4) in the model then occurs. Finally, simulation of the model proceeds. Simulation 
consists of the repetitive execution of the simulation cycle, during which processes are executed and nets 
updated.

14.2 Elaboration of a design hierarchy

The elaboration of a design hierarchy creates a collection of processes interconnected by nets; this collection 
of processes and nets can then be executed to simulate the behavior of the design.

At the beginning of the elaboration of a design hierarchy, every registered and enabled 
vhpiCbStartOfElaboration callback is executed. Once the elaboration of a given design hierarchy 
is complete, every registered and enabled vhpiCbEndOfElaboration callback is executed.

A design hierarchy is defined either by a design entity or by a configuration.

An implementation may allow PSL verification units, in addition to any whose binding is specified as part of 
the design hierarchy, to be bound to design entities within the design hierarchy. The manner in which such 
PSL verification units are identified and the manner in which binding is specified for such PSL verification 
units that are not explicitly bound are not defined by this standard.

Elaboration of a design hierarchy defined by a design entity consists of the elaboration of the block 
statement equivalent to the external block defined by the design entity. The architecture of this design entity 
is assumed to contain an implicit configuration specification (see 7.3) for each component instance that is 
unbound in this architecture; each configuration specification has an entity aspect denoting an anonymous 
configuration declaration identifying the visible entity declaration (see 7.3.3) and supplying an implicit 
block configuration (see 3.4.2) that binds and configures a design entity identified according to the rules of 
7.3.3. The equivalent block statement is defined in 11.7.3. Elaboration of a block statement is defined in 
14.5.2.

Elaboration of a configuration consists of the elaboration of the block statement equivalent to the external 
block defined by the design entity configured by the configuration. The configuration contains an implicit 
component configuration (see 3.4.3) for each unbound component instance contained within the external 
block and an implicit block configuration (see 3.4.2) for each internal block contained within the external 
block.

An implementation may allow, but is not required to allow, a design entity at the root of a design hierarchy 
to have generics and ports. If an implementation allows these top-level interface objects, it may restrict their 
allowed forms (that is, whether they are allowed to be interface types, subprograms, packages, or objects), 
and, in the case of interface objects, their allowed types and modes in an implementation-defined manner. 
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Similarly, the means by which top-level interface objects are associated with the external environment of the 
hierarchy are also defined by an implementation supporting top-level interface objects.

Elaboration of a block statement involves first elaborating each not-yet-elaborated package primary unit or 
package instantiation primary unit containing declarations referenced by the block. Similarly, elaboration of 
a given package primary unit or package instantiation primary unit involves first elaborating each not-yet-
elaborated package primary unit or package instantiation primary unit containing declarations referenced by 
the given package or package instantiation. Elaboration of a package primary unit consists additionally of 
the following:

a) Elaboration of the package declaration, eventually followed by
b) Elaboration of the corresponding package body, if the package has a corresponding package body.

Elaboration of a package instantiation primary unit consists of elaboration of the equivalent generic-mapped 
package declaration, eventually followed by elaboration of the corresponding equivalent generic-mapped 
package body, if such a package body is defined (see 4.9).

Step b), the elaboration of a package body, may be deferred until the declarations of other packages have 
been elaborated, if necessary, because of the dependencies created between packages by their interpackage 
references. Similarly, elaboration of an equivalent generic-mapped package body may be deferred if 
necessary.

Elaboration of a package is defined in 14.4.2.9.

For a block statement implied by a design entity, whether the design entity at the root of the design hierarchy 
or a design entity bound to a component instance, to which one or more PSL verification units are bound, 
after elaboration of the implied block statement, each PSL verification unit bound to the design entity is 
elaborated. Elaboration of a PSL verification unit involves first elaborating each not-yet-elaborated package 
primary unit or package instantiation primary unit containing declarations referenced by the PSL 
verification unit. Further interpretation of the PSL verification unit is defined in IEEE Std 1850-2005.

Elaboration of a design hierarchy is completed as follows:
— The drivers identified during elaboration of process statements (see 14.5.5) are created.
— The initial transaction defined by the default value associated with each scalar signal driven by a 

process statement is inserted into the corresponding driver.

During elaboration of a design hierarchy, if an external name or alias of an external name appears in a 
declaration or statement being elaborated, then in the following cases, the declaration of the object denoted 
by the external name or alias shall have been previously elaborated:

— If the external name or alias is a primary or a prefix of a primary in an expression that is evaluated 
during elaboration of the design hierarchy, when the primary is read during evaluation of the 
expression.

— If the external name or alias, or a name in which the external name or alias is a prefix, is associated as 
an actual in an association element in a port map aspect, when the association element is elaborated.

NOTE—Since elaboration of declarations and statements occurs in the order of their appearance in a description, prior 
elaboration of an object denoted by an external name may be ensured by an appropriate ordering of the declarations and 
statements in the description.

Examples:

--  In the following example, because of the dependencies between
--  the packages, the elaboration of either package body shall
--  follow the elaboration of both package declarations.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



- 201 - IEC 61691-1-1:2011(E)�
IEEE Std 1076-2008

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

package P1 is
   constant C1: INTEGER := 42;
   constant C2: INTEGER;
end package P1;

package P2 is
   constant C1: INTEGER := 17;
   constant C2: INTEGER;
end package P2;

package body P1 is
   constant C2: INTEGER := Work.P2.C1;
end package body P1;

package body P2 is
   constant C2: INTEGER := Work.P1.C1;
end package body P2;

--  If a design hierarchy is described by the following design entity:

entity E is end;

architecture A of E is
   component comp
      port (...);
   end component;
begin
   C: comp port map (...);
   B: block
      ...
   begin
      ...
   end block B;
end architecture A;

--  then its architecture contains the following implicit configuration
--  specification at the end of its declarative part:

for C: comp use configuration anonymous;

--  and the following configuration declaration is assumed to exist
--  when E(A) is elaborated:

configuration anonymous of L.E is    --  L is the library in which
                                     --  E(A) is found.
   for A                             --  The most recently analyzed
                                     --  architecture of L.E.
   end for;
end configuration anonymous;

--  In the following example, each appearance of an external name is 
-- legal or illegal as noted.
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entity TOP is 
end entity TOP;

architecture ARCH of TOP is
   signal S1, S2, S3: BIT;
   alias DONE_SIG is <<signal .TOP.DUT.DONE: BIT>>;  -- Legal
   constant DATA_WIDTH: INTEGER
                        := <<signal .TOP.DUT.DATA: BIT_VECTOR>>'LENGTH;
      --  Illegal, because .TOP.DUT.DATA has not yet been elaborated
      --  when the expression is evaluated
begin
   P1: process ( DONE_SIG ) is  -- Legal
   begin
      if DONE_SIG then  -- Legal
         ...;
      end if;
   end process P1;
   MONITOR: entity WORK.MY_MONITOR port map (DONE_SIG);
      --  Illegal, because .TOP.DUT.DONE has not yet been elaborated
      --  when the association element is elaborated
   DUT: entity WORK.MY_DESIGN port map (s1, S2, S3);
   MONITOR2: entity WORK.MY_MONITOR port map (DONE_SIG);
      -- Legal, because .TOP.DUT.DONE has now been elaborated
   B1: block
      constant DATA_WIDTH: INTEGER
         := <<signal .TOP.DUT.DATA: BIT_VECTOR>>'LENGTH
         -- Legal, because .TOP.DUT.DATA has now been elaborated
   begin
   end block B1;
   B2: block
      constant C0: INTEGER := 6;
      constant C1: INTEGER := <<constant .TOP.B3.C2: INTEGER>>;
         -- Illegal, because .TOP.B3.C2 has not yet been elaborated
   begin
   end block B2;
   B3: block
      constant C2: INTEGER
                   := <<constant .TOP.B2.C0: INTEGER>>;  -- Legal
   begin
   end block B3;
   --  Together, B2 and B3 are illegal, because they cannot be ordered
   --  so that the objects are elaborated in the order .TOP.B2.C0,
   --  then .TOP.B3.C2, and finally .TOP.B2.C1.
end architecture ARCH;

14.3 Elaboration of a block, package, or subprogram header

14.3.1 General

Elaboration of a block header consists of the elaboration of the generic clause, the generic map aspect, the 
port clause, and the port map aspect. Similarly, elaboration of a package header consists of the elaboration of 
the generic clause and the generic map aspect; and elaboration of a subprogram header consists of the 
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elaboration of the generic clause equivalent to the generic list of the subprogram header and the generic map 
aspect.

14.3.2 Generic clause

Elaboration of a generic clause consists of the elaboration of each of the equivalent single generic 
declarations contained in the clause, in the order given. The elaboration of a generic declaration establishes 
that the generic can subsequently be referenced.

14.3.3 Generic map aspect

14.3.3.1 General

Elaboration of a generic map aspect consists of elaborating the generic association list. The generic 
association list contains an implicit association element for each generic constant that is not explicitly 
associated with an actual or that is associated with the reserved word open; the actual part of such an 
implicit association element is the default expression appearing in the declaration of that generic constant. 
Similarly, the generic association list contains an implicit association element for each generic subprogram 
that is not explicitly associated with an actual or that is associated with the reserved word open; the actual 
part of such an implicit association element is determined by the interface subprogram default as described 
in 6.5.6.2. The generic association list also contains implicit association elements for the predefined equality 
(=) operator and inequality (/=) operators of each generic type; the actual part of such an implicit association 
element is the name of the predefined equality operator or inequality operator for the base type of the 
subtype indication in the actual part of the association element corresponding to the generic type.

Elaboration of a generic association list consists of the elaboration of the generic association element or 
elements in the association list associated with each generic declaration, in the order given by the generic 
declarations in the generic clause.

14.3.3.2 Association elements for generic constants

Elaboration of the generic association elements associated with a generic constant declaration proceeds as 
follows:

a) The subtype indication of the corresponding generic declaration is elaborated.
b) The formal part or parts of the generic association elements corresponding to the generic declaration 

are elaborated.
c) If the type of the generic constant is an array type or contains a subelement that is of an array type, 

the rules of 5.3.2.2 are applied to determine the index ranges.
d) The generic constant is created.

The generic constant or subelement or slice thereof designated by each formal part is then initialized with 
the value resulting from the evaluation of the corresponding actual part. It is an error if the value of the 
actual does not belong to the subtype denoted by the subtype indication of the formal. If the subtype denoted 
by the subtype indication of the declaration of the formal is a composite subtype, then an implicit subtype 
conversion is performed prior to this check. It is also an error if the type of the formal is an array type and 
the value of each element of the actual does not belong to the element subtype of the formal.

14.3.3.3 Association elements for generic types

Elaboration of the generic association element associated with a generic type declaration involves the 
elaboration of the subtype indication in the actual part followed by creating the generic type and defining it 
to denote the subtype resulting from elaboration of the actual part.
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14.3.3.4 Association elements for generic subprograms

Elaboration of the generic association element associated with a generic subprogram declaration proceeds as 
follows:

a) The parameter list of the formal generic subprogram declaration is elaborated. This involves the 
elaboration of the subtype indication of each interface element to determine the subtype of each for-
mal parameter of the formal generic subprogram.

b) The generic subprogram is then defined to denote the subprogram denoted by the subprogram name 
in the actual part.

14.3.3.5 Association elements for generic packages

For a generic association element associated with a generic package declaration, if the generic package 
declaration contains an interface package generic map aspect in the form that includes the box (<>) symbol, 
elaboration of the generic association element involves defining the generic package to denote the 
instantiated package denoted by the instantiated package name in the actual part. Otherwise, elaboration of 
the generic association element proceeds as follows:

a) An implicit package header formed from the generic clause of the uninstantiated package named in 
the formal package declaration and the generic map aspect (whether explicit or implicit, see 6.5.5) of 
the interface package generic map aspect is elaborated.

b) A check is made that the generic map aspect of the package instantiation declaration that declares 
the instantiated package denoted by the instantiated package name in the actual part matches the 
elaborated generic map aspect of the implicit package header.

c) The generic package is defined to denote the instantiated package denoted by the instantiated pack-
age name in the actual part.

14.3.4 Port clause

Elaboration of a port clause consists of the elaboration of each of the equivalent single port declarations 
contained in the clause, in the order given. The elaboration of a port declaration establishes that the port can 
subsequently be referenced.

14.3.5 Port map aspect

Elaboration of a port map aspect consists of elaborating the port association list.

Elaboration of a port association list consists of the elaboration of the port association element or elements in 
the association list associated with each port declaration. If the actual in a port association element is an 
expression that is not globally static, or if the actual part includes the reserved word inertial, then 
elaboration of the port association element first consists of constructing and elaborating the equivalent 
anonymous signal declaration, concurrent signal assignment statement, and port association element (see 
6.5.6.3); the port or subelement or slice thereof designated by the formal part is then associated with the 
anonymous signal.

Elaboration of the port association elements associated with a port declaration proceeds as follows:

a) The subtype indication of the corresponding port declaration is elaborated.

b) The formal part or parts of the port association elements corresponding to the port declaration are 
elaborated.

c) If the type of the port is an array type or contains a subelement that is of an array type, the rules of 
5.3.2.2 are applied to determine the index ranges.
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d) For each port association element associated with the port declaration, if the actual is not the 
reserved word open, the port or subelement or slice thereof designated by the formal part is then 
associated with the signal or expression designated by the actual part. This association involves a 
check that the restriction on port associations (see 6.5.6.3) are met. It is an error if this check fails.

If a given port is a port of mode in whose declaration includes a default expression, and if no association 
element associates a signal or expression with that port, then the default expression is evaluated and the 
effective and driving value of the port is set to the value of the default expression. Similarly, if a given port 
of mode in is associated with an expression that is globally static and the reserved word inertial does not 
appear in the actual part of the association element, that expression is evaluated and the effective and driving 
value of the port is set to the value of the expression. In the event that the value of a port is derived from an 
expression in either fashion, references to the predefined attributes 'DELAYED, 'STABLE, 'QUIET, 
'EVENT, 'ACTIVE, 'LAST_EVENT, 'LAST_ACTIVE, 'LAST_VALUE, 'DRIVING, and 
'DRIVING_VALUE of the port return values indicating that the port has the given driving value with no 
activity at any time (see 14.7.4).

If an actual signal is associated with a port of mode in or inout, and if the type of the formal is a scalar type, 
then it is an error if (after applying any conversion function or type conversion expression present in the 
actual part) the subtype of the actual is not compatible with the subtype of the formal. If an actual expression 
is associated with a formal port (of mode in), and if the type of the formal is a scalar type, then it is an error 
if the value of the expression does not belong to the subtype denoted by the subtype indication of the 
declaration of the formal.

Similarly, if an actual signal is associated with a port of mode out, inout, or buffer, and if the type of the 
actual is a scalar type, then it is an error if (after applying any conversion function or type conversion 
expression present in the formal part) the subtype of the formal is not compatible with the subtype of the 
actual.

If an actual signal or expression is associated with a formal port, and if the formal is of a composite subtype, 
then it is an error if the actual does not contain a matching element for each element of the formal. This 
check is made after applying the rules of 5.3.2.2 and, in the case of an actual signal, after applying any 
conversion function or type conversion that is present in the actual part. It is also an error if the mode of the 
formal is in or inout and the value of each element of the actual (after applying any conversion function or 
type conversion present in the actual part) does not belong to the corresponding element subtype of the 
formal. If the formal port is of mode out, inout, or buffer, it is also an error if the value of each element of 
the formal (after applying any conversion function or type conversion present in the formal part) does not 
belong to the corresponding element subtype of the actual.

14.4 Elaboration of a declarative part

14.4.1 General

The elaboration of a declarative part consists of the elaboration of the declarative items, if any, in the order 
in which they are given in the declarative part. This rule holds for all declarative parts, with the following 
three exceptions:

a) The entity declarative part of a design entity whose corresponding architecture is decorated with the 
'FOREIGN attribute defined in package STANDARD (see 7.2 and 16.3) and for which the value of 
the attribute is not of the form described in 20.2.4.

b) The architecture declarative part of a design entity whose architecture is decorated with the 
'FOREIGN attribute defined in package STANDARD and for which the value of the attribute is not 
of the form described in 20.2.4.
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c) A subprogram declarative part whose subprogram is decorated with the 'FOREIGN attribute defined 
in package STANDARD.

For these cases, the declarative items are not elaborated; instead, the design entity or subprogram is subject 
to implementation-dependent elaboration.

In certain cases, the elaboration of a declarative item involves the evaluation of expressions that appear 
within the declarative item. The value of any object denoted by a primary in such an expression shall be 
defined at the time the primary is read (see 6.5.2). In addition, if a primary in such an expression is a 
function call, then the value of any object denoted by or appearing as a part of an actual designator in the 
function call shall be defined at the time the expression is evaluated. Additionally, it is an error if a primary 
that denotes a shared variable, or a method of the protected type of a shared variable, is evaluated during the 
elaboration of a declarative item. During static elaboration, the function STD.STANDARD.NOW (see 16.3) 
returns the value 0 ns.

NOTE 1—It is a consequence of this rule that the name of a signal declared within a block cannot be referenced in 
expressions appearing in declarative items within that block, an inner block, or process statement; nor can it be passed as 
a parameter to a function called during the elaboration of the block. These restrictions exist because the value of a signal 
is not defined until after the design hierarchy is elaborated. However, a signal parameter name may be used within 
expressions in declarative items within a subprogram declarative part, provided that the subprogram is only called after 
simulation begins, because the value of every signal will be defined by that time.

NOTE 2—A function called in an expression evaluated during elaboration of a declarative item may be a foreign 
function.

14.4.2 Elaboration of a declaration

14.4.2.1 General

Elaboration of a declaration has the effect of creating the declared item.

For each declaration, the language rules (in particular scope and visibility rules) are such that it is either 
impossible or illegal to use a given item before the elaboration of its corresponding declaration. For 
example, it is not possible to use the name of a type for an object declaration before the corresponding type 
declaration is elaborated. Similarly, it is illegal to call a subprogram before its corresponding body is 
elaborated.

Rules for creation of PSL declarations are defined in IEEE Std 1850-2005.

14.4.2.2 Subprogram declarations, bodies, and instantiations

Elaboration of a subprogram declaration, other than a subprogram declaration that defines an uninstantiated 
subprogram, involves the elaboration of the subprogram header, if present, followed by the elaboration of 
the parameter interface list of the subprogram declaration; the latter in turn involves the elaboration of the 
subtype indication of each interface element to determine the subtype of each formal parameter of the 
subprogram. Elaboration of an uninstantiated subprogram declaration simply establishes that the name of 
the subprogram may be referenced subsequently in subprogram instantiation declarations.

Elaboration of a subprogram body, other than the subprogram body of an uninstantiated subprogram, has no 
effect other than to establish that the body can, from then on, be used for the execution of calls of the 
subprogram. Elaboration of a subprogram body of an uninstantiated subprogram has no effect.

Elaboration of a subprogram instantiation declaration consists of elaboration of the equivalent generic-
mapped subprogram declaration, followed by elaboration of the corresponding equivalent generic-mapped 
subprogram body (see 4.4). If the subprogram instantiation declaration occurs immediately within an 
enclosing package declaration, elaboration of the equivalent generic-mapped subprogram body occurs as 
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part of elaboration of the body, whether explicit or implicit, of the enclosing package. Similarly, if the 
subprogram instantiation declaration occurs immediately within an enclosing protected type declaration, 
elaboration of the equivalent generic-mapped subprogram body occurs as part of elaboration of the protected 
type body.

14.4.2.3 Type declarations

Elaboration of a type declaration generally consists of the elaboration of the definition of the type and the 
creation of that type. For a constrained type declaration that declares a partially or fully constrained 
composite subtype, however, elaboration consists of the elaboration of the equivalent anonymous 
unconstrained type followed by the elaboration of the named subtype of that unconstrained type.

Elaboration of an enumeration type definition has no effect other than the creation of the corresponding 
type.

Elaboration of an integer, floating-point, or physical type definition consists of the elaboration of the 
corresponding range constraint. For a physical type definition, each unit declaration in the definition is also 
elaborated. Elaboration of a physical unit declaration has no effect other than to create the unit defined by 
the unit declaration.

Elaboration of an unbounded array type definition that defines an unconstrained array type consists of the 
elaboration of the element subtype indication of the array type.

Elaboration of a record type definition consists of the elaboration of the equivalent single element 
declarations in the given order. Elaboration of an element declaration consists of elaboration of the element 
subtype indication.

Elaboration of an access type definition consists of the elaboration of the corresponding subtype indication.

Elaboration of a protected type definition consists of the elaboration, in the order given, of each of the 
declarations occurring immediately within the protected type definition.

Elaboration of a protected type body has no effect other than to establish that the body, from then on, can be 
used during the elaboration of objects of the given protected type.

14.4.2.4 Subtype declarations

Elaboration of a subtype declaration consists of the elaboration of the subtype indication. The elaboration of 
a subtype indication creates a subtype. If the subtype does not include a constraint, then the subtype is the 
same as that denoted by the type mark. The elaboration of a subtype indication that includes a constraint 
proceeds as follows:

a) The constraint is first elaborated.
b) A check is then made that the constraint is compatible with the type or subtype denoted by the type 

mark (see 5.2.1, 5.3.2.2, and 5.3.3).

Elaboration of a range constraint consists of the evaluation of the range. The evaluation of a range defines 
the bounds and direction of the range. Elaboration of an index constraint consists of the elaboration of each 
of the discrete ranges in the index constraint in some order that is not defined by the language. Elaboration 
of an array constraint consists of the elaboration of the index constraint, if present, and the elaboration of the 
array element constraint, if present. The order of elaboration of the index constraint and the array element 
constraint, if both are present, is not defined by the language. Elaboration of a record constraint consists of 
the elaboration of each of the record element constraints in the record constraint in some order that is not 
defined by the language.
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14.4.2.5 Object declarations

The rules of this subclause apply only to explicitly declared objects (see 6.4.2.1). Generic declarations, port 
declarations, and other interface declarations are elaborated as described in 14.3.2 through 14.3.5 and 14.6.

Elaboration of an object declaration that declares an object other than a file object or an object of a protected 
type proceeds as follows:

a) The subtype indication is first elaborated; this establishes the subtype of the object.

b) If the object declaration includes an explicit initialization expression, then the initial value of the 
object is obtained by evaluating the expression. It is an error if the value of the expression does not 
belong to the subtype of the object; if the object is a composite object, then an implicit subtype con-
version is first performed on the value unless the object is a constant whose subtype indication 
denotes an unconstrained type. Otherwise, any implicit initial value for the object is determined.

c) The object is created.

d) Any initial value is assigned to the object.

The initialization of such an object (either the declared object or one of its subelements) involves a check 
that the initial value belongs to the subtype of the object. For a composite object declared by an object 
declaration, an implicit subtype conversion is first applied as for an assignment statement, unless the object 
is a constant whose subtype is an unconstrained type.

The elaboration of a file object declaration consists of the elaboration of the subtype indication followed by 
the creation of the object. If the file object declaration contains file open information, then the implicit call to 
FILE_OPEN is then executed (see 6.4.2.5).

The elaboration of an object of a protected type consists of the elaboration of the subtype indication, 
followed by creation of the object.  Creation of the object consists of elaborating, in the order given, each of 
the declarative items in the protected type body.

NOTE 1—The expression initializing a constant object need not be a static expression.

NOTE 2—Each object whose type is a protected type involves creation of separate instances of the objects declared by 
object declarations within the protected type body.

14.4.2.6 Alias declarations

Elaboration of an alias declaration consists of the elaboration of the subtype indication to establish the 
subtype associated with the alias, followed by the creation of the alias as an alternative name for the named 
entity. The creation of an alias for a composite object involves a check that the subtype associated with the 
alias includes a matching element for each element of the named object. It is an error if this check fails.

14.4.2.7 Attribute declarations

Elaboration of an attribute declaration has no effect other than to create a template for defining attributes of 
items.

14.4.2.8 Component declarations

Elaboration of a component declaration has no effect other than to create a template for instantiating 
component instances.
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14.4.2.9 Packages

Elaboration of a package declaration, other than a package declaration that defines an uninstantiated 
package, consists of the elaboration of the package header, if present, followed by the elaboration of the 
declarative part of the package declaration. Elaboration of a package body, other than a package body of an 
uninstantiated package, consists of the elaboration of the declarative part of the package body. Elaboration 
of an uninstantiated package declaration simply establishes that the name of the package may be referenced 
subsequently in package instantiation declarations. Elaboration of a package body of an uninstantiated 
package has no effect.

Elaboration of a package instantiation declaration consists of elaboration of the equivalent generic-mapped 
package declaration, followed by elaboration of the corresponding equivalent generic-mapped package 
body, if such a package body is defined (see 4.9). If the package instantiation declaration occurs 
immediately within an enclosing package declaration and the uninstantiated package has a package body, 
elaboration of the equivalent generic-mapped package body occurs as part of elaboration of the body, 
whether explicit or implicit, of the enclosing package.

14.4.3 Elaboration of a specification

14.4.3.1 General

Elaboration of a specification has the effect of associating additional information with a previously declared 
item.

14.4.3.2 Attribute specifications

Elaboration of an attribute specification proceeds as follows:
a) The entity specification is elaborated in order to determine which items are affected by the attribute 

specification.
b) The expression is evaluated to determine the value of the attribute. It is an error if the value of the 

expression does not belong to the subtype of the attribute; if the attribute is of a composite type, then 
an implicit subtype conversion is first performed on the value, unless the subtype indication of the 
attribute denotes an unconstrained type.

c) A new instance of the designated attribute is created and associated with each of the affected items.
d) Each new attribute instance is assigned the value of the expression.

The assignment of a value to an instance of a given attribute involves a check that the value belongs to the 
subtype of the designated attribute. For an attribute of a partially or fully constrained composite type, an 
implicit subtype conversion is first applied as for an assignment statement. No such conversion is necessary 
for an attribute of an unconstrained type; the constraints on the value determine the constraints on the 
attribute.

NOTE—The expression in an attribute specification need not be a static expression.

14.4.3.3 Configuration specifications

Elaboration of a configuration specification proceeds as follows:
a) The component specification is elaborated in order to determine which component instances are 

affected by the configuration specification.
b) The binding indication is elaborated to identify the design entity to which the affected component 

instances will be bound.
c) The binding information is associated with each affected component instance label for later use in 

instantiating those component instances.
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As part of this elaboration process, a check is made that both the entity declaration and the corresponding 
architecture body implied by the binding indication exist within the specified library. It is an error if this 
check fails.

14.4.3.4 Disconnection specifications

Elaboration of a disconnection specification proceeds as follows:

a) The guarded signal specification is elaborated in order to identify the signals affected by the discon-
nection specification.

b) The time expression is evaluated to determine the disconnection time for drivers of the affected 
signals.

c) The disconnection time is associated with each affected signal for later use in constructing discon-
nection statements in the equivalent processes for guarded assignments to the affected signals.

14.5 Elaboration of a statement part

14.5.1 General

Concurrent statements appearing in the statement part of a block shall be elaborated before execution 
begins. Elaboration of the statement part of a block consists of the elaboration of each concurrent statement 
in the order given. This rule holds for all block statement parts except for those blocks equivalent to a design 
entity whose corresponding architecture is decorated with the 'FOREIGN attribute defined in package 
STANDARD (see 16.3).

For this case, there are two subcases:

— If the value of the attribute is of the form described in 20.2.4, the statements are not elaborated; 
instead, the elaboration function of the foreign model is invoked, as described in 20.4.1, at the point 
where elaboration of the statements of the block statement corresponding to the architecture body 
would otherwise occur.

— Otherwise, the statements are not elaborated; instead, the design entity is subject to implementation-
dependent elaboration.

Rules for interpretation of PSL directives are defined in IEEE Std 1850-2005.

14.5.2 Block statements

Elaboration of a block statement consists of the elaboration of the block header, if present, followed by the 
elaboration of the block declarative part, followed by the elaboration of the block statement part.

Elaboration of a block statement may occur under the control of a configuration declaration. In particular, a 
block configuration, whether implicit or explicit, within a configuration declaration may supply a sequence 
of additional implicit configuration specifications to be applied during the elaboration of the corresponding 
block statement. If a block statement is being elaborated under the control of a configuration declaration, 
then the sequence of implicit configuration specifications supplied by the block configuration is elaborated 
as part of the block declarative part, following all other declarative items in that part.

The sequence of implicit configuration specifications supplied by a block configuration, whether implicit or 
explicit, consists of each of the configuration specifications implied by component configurations (see 3.4.3) 
occurring immediately within the block configuration, in the order in which the component configurations 
themselves appear.
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14.5.3 Generate statements

Elaboration of a generate statement consists of the replacement of the generate statement with zero or more 
copies of a block statement whose declarative part consists of declarative items contained within the 
generate statement and whose statement part consists of concurrent statements contained within the generate 
statement. These block statements are said to be represented by the generate statement. Each block 
statement is then elaborated.

For a for generate statement, elaboration consists of the elaboration of the discrete range, followed by the 
generation of one block statement for each value in the range. The block statements all have the following 
form:

a) The label of the block statement is the same as the label of the for generate statement.
b) The block declarative part has, as its first item, a single constant declaration that declares a constant 

with the same simple name as that of the applicable generate parameter; the value of the constant is 
the value of the generate parameter for the generation of this particular block statement. The type of 
this declaration is determined by the base type of the discrete range of the generate parameter. The 
remainder of the block declarative part consists of a copy of the declarative items contained within 
the generate statement.

c) The block statement part consists of a copy of the concurrent statements contained within the gener-
ate statement.

For an if generate statement, elaboration consists of the evaluation, in succession, of the condition specified 
after if and any conditions specified after elsif (treating a final else as elsif TRUE generate) until one 
evaluates to TRUE or all conditions are evaluated and yield FALSE. If one condition evaluates to TRUE, 
then exactly one block statement is generated; otherwise, no block statement is generated. If generated, the 
block statement has the following form:

— The block label is the same as the label of the if generate statement.
— The block declarative part consists of a copy of the declarative items contained within the generate 

statement body following the condition that evaluated to TRUE. If the condition is preceded by an 
alternative label, the label is implicitly declared at the beginning of the block declarative part.

— The block statement part consists of a copy of the concurrent statements contained within the 
generate statement body following the condition that evaluated to TRUE.

For a case generate statement, elaboration consists of the evaluation of the expression followed by the 
generation of a block statement for the chosen alternative. A given case generate alternative is the chosen 
alternative if and only if the expression “E = V” evaluates to TRUE, where “E” is the expression, “V” is the 
value of one of the choices of the given case generate alternative (if a choice is a discrete range, then this 
latter condition is fulfilled when V is an element of the discrete range), and the operator “=” in the 
expression is the predefined “=” operator on the base type of E. The generate block statement has the 
following form:

— The block label is the same as the label of the case generate statement.
— The block declarative part consists of a copy of the declarative items contained within the generate 

statement body of the chosen alternative. If the choices of the chosen alternative are preceded by an 
alternative label, the label is implicitly declared at the beginning of the block declarative part.

— The block statement part consists of a copy of the concurrent statements contained within the 
generate statement body of the chosen alternative.

Examples:

--  The following generate statement:
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LABL: for I in 1 to 2 generate
   signal s1: INTEGER;
begin
   s1 <= p1;
   Inst1: and_gate port map (s1, p2(I), p3);
end generate LABL;

--  is equivalent to the following two block statements:

LABL: block
   constant I: INTEGER := 1;
   signal s1: INTEGER;
begin
   s1 <= p1;
   Inst1: and_gate port map (s1, p2(I), p3);
end block LABL;

LABL: block
   constant I: INTEGER := 2;
   signal s1: INTEGER;
begin
   s1 <= p1;
   Inst1: and_gate port map (s1, p2(I), p3);
end block LABL;

--  The following generate statement:

LABL: if (g1 = g2) generate
   signal s1: INTEGER;
begin
   s1 <= p1;
   Inst1: and_gate port map (s1, p4, p3);
end generate LABL;

--  is equivalent to the following statement if g1 = g2;
--  otherwise, it is equivalent to no statement at all:

LABL: block
   signal s1: INTEGER;
begin
   s1 <= p1;
   Inst1: and_gate port map (s1, p4, p3);
end block LABL;
NOTE—The repetition of the block labels in the case of a for generate statement does not produce multiple declarations 
of the label on the generate statement. The multiple block statements represented by the generate statement constitute 
multiple references to the same implicitly declared label.

14.5.4 Component instantiation statements

Elaboration of a component instantiation statement that instantiates a component declaration has no effect 
unless the component instance is either fully bound to a design entity defined by an entity declaration and 
architecture body or bound to a configuration of such a design entity. If a component instance is so bound, 
then elaboration of the corresponding component instantiation statement consists of the elaboration of the 
implied block statement representing the component instance and (within that block) the implied block 
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statement representing the design entity to which the component instance is bound. The implied block 
statements are defined in 11.7.2.

Elaboration of a component instantiation statement whose instantiated unit denotes either a design entity or 
a configuration declaration consists of the elaboration of the implied block statement representing the 
component instantiation statement and (within that block) the implied block statement representing the 
design entity to which the component instance is bound. The implied block statements are defined in 11.7.3.

14.5.5 Other concurrent statements

All other concurrent statements are either process statements or are statements for which there is an 
equivalent process statement.

Elaboration of a process statement proceeds as follows:
a) The process declarative part is elaborated.
b) The drivers required by the process statement are identified.

Elaboration of all concurrent signal assignment statements and concurrent assertion statements consists of 
the construction of the equivalent process statement followed by the elaboration of the equivalent process 
statement.

14.6 Dynamic elaboration

The execution of certain constructs that involve sequential statements rather than concurrent statements also 
involves elaboration. Such elaboration occurs during the execution of the model.

There are three particular instances in which elaboration occurs dynamically during simulation. These are as 
follows:

a) Execution of a loop statement with a for iteration scheme involves the elaboration of the loop 
parameter specification prior to the execution of the statements enclosed by the loop (see 10.10). 
This elaboration creates the loop parameter and evaluates the discrete range.

b) Execution of a subprogram call involves the elaboration of the parameter association list. This 
involves the elaboration of the parameter association element or elements in the association list 
associated with each interface declaration. Elaboration of the parameter association elements associ-
ated with a formal parameter declaration proceeds as follows:
1) The subtype indication of the corresponding formal parameter declaration is elaborated.
2) The formal part or parts of the parameter association elements corresponding to the formal 

parameter declaration are elaborated.
3) If the type of the formal parameter is an array type or contains a subelement that is of an array 

type, the rules of 5.3.2.2 are applied to determine the index ranges.
4) For each parameter association element associated with the formal parameter declaration, the 

parameter or subelement or slice thereof designated by the formal part is then associated with 
the actual part.

5) If the formal parameter is a variable of mode out, then the implicit initial value for the object is 
determined.

Next, if the subprogram is a method of a protected type (see 5.6.2) or an implicitly declared file 
operation (see 5.5.2), the elaboration blocks (suspends execution while retaining all state), if 
necessary, until exclusive access to the object denoted by the prefix of the method or to the file 
object denoted by the file parameter of the file operation is secured. Finally, if the designator of the 
subprogram is not decorated with the 'FOREIGN attribute defined in package STANDARD, the 
declarative part of the corresponding subprogram body is elaborated and the sequence of statements 
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in the subprogram body is executed. If the designator of the subprogram is decorated with the 
'FOREIGN attribute defined in package STANDARD, there are two cases:
— If the value of the attribute is of the form described in 20.2.4, the declarative part of the 

corresponding subprogram body is not elaborated nor is the sequence of statements in the 
subprogram body executed; instead, the execution function of the foreign model is invoked, as 
described in 20.2.4.

— Otherwise, the subprogram body is subject to implementation-dependent elaboration and 
execution.

c) Evaluation of an allocator that contains a subtype indication involves the elaboration of the subtype 
indication prior to the allocation of the created object.

NOTE 1—It is a consequence of these rules that declarative items appearing within the declarative part of a subprogram 
body are elaborated each time the corresponding subprogram is called; thus, successive elaborations of a given 
declarative item appearing in such a place may create items with different characteristics. For example, successive 
elaborations of the same subtype declaration appearing in a subprogram body may create subtypes with different 
constraints.

NOTE 2—If two or more processes access the same set of shared variables, livelock or deadlock may occur.  That is, it 
may not be possible to ever grant exclusive access to the shared variable as outlined in the preceding item b). 
Implementations are allowed to, but not required to, detect and, if possible, resolve such conditions.

14.7 Execution of a model

14.7.1 General

The elaboration of a design hierarchy produces a model that can be executed in order to simulate the design 
represented by the model. Simulation involves the execution of user-defined processes that interact with 
each other and with the environment. Simulation also involves interpretation of PSL directives to verify the 
properties that they specify.

The kernel process is a conceptual representation of the agent that coordinates the activity of user-defined 
processes during a simulation. This agent causes the propagation of signal values to occur and causes the 
values of implicit signals (such as S'STABLE) to be updated. Furthermore, this process is responsible for 
detecting events that occur and for causing the appropriate processes to execute in response to those events.

For any given signal that is explicitly declared within a model, the kernel process contains variables 
representing the driving value and current value of that signal. Any evaluation of a name denoting a given 
signal retrieves the current value of the corresponding variable in the kernel process. During simulation, the 
kernel process updates these variables from time to time, based upon the current values of sources of the 
corresponding signal.

In addition, the kernel process contains a variable representing the current value of any implicitly declared 
GUARD signal resulting from the appearance of a guard condition on a given block statement. Furthermore, 
the kernel process contains both a driver for, and a variable representing the current value of, any signal 
S'STABLE(T), for any prefix S and any time T, that is referenced within the model; likewise, for any signal 
S'QUIET(T) or S'TRANSACTION.

14.7.2 Drivers

Every signal assignment statement in a process statement defines a set of drivers for certain scalar signals. 
There is a single driver for a given scalar signal S in a process statement, provided that there is at least one 
signal assignment statement in that process statement and that the longest static prefix of the target signal of 
that signal assignment statement denotes S or denotes a composite signal of which S is a subelement. Each 
such signal assignment statement is said to be associated with that driver. Execution of a signal assignment 
statement affects only the associated driver(s).
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A driver for a scalar signal is represented by a projected output waveform. A projected output waveform 
consists of a sequence of one or more transactions, where each transaction is a pair consisting of a value 
component and a time component. For a given transaction, the value component represents a value that the 
driver of the signal is to assume at some point in time, and the time component specifies which point in time. 
These transactions are ordered with respect to their time components.

A driver always contains at least one transaction. The initial contents of a driver associated with a given 
signal are defined by the default value associated with the signal (see 6.4.2.3). The kernel process contains a 
variable representing the current value of the driver. The initial value of the variable is the value component 
of the initial transaction of the driver.

For any driver, if, as the result of the advance of time, the current time becomes equal to the time component 
of the second transaction of the driver, the first transaction is deleted from the projected output waveform, 
and what was the second transaction becomes the first transaction. Then, or if a force or deposit is scheduled 
for the driver, the variable containing the current value of the driver is updated as follows:

— If a force is scheduled for the driver, the driver becomes forced and the variable containing the 
current value of the driver is updated with the force value for the driver.

— If the driver is forced and no force is scheduled for the driver, the variable containing the current 
value of the driver is unchanged from its previous value.

— If a deposit is scheduled for the driver and the driver is not forced, the variable containing the current 
value of the driver is updated with the deposit value for the driver.

— Otherwise, the variable containing the current value of the driver is updated with the value 
component of the first transaction of the driver.

When this action occurs on a driver, any registered and enabled vhpiCbTransaction callbacks 
associated with the given driver are executed. Moreover, if the current value of the driver changes as a result 
of this action, any registered and enabled vhpiCbValueChange callbacks associated with the given 
driver are executed.

14.7.3 Propagation of signal values

14.7.3.1 General

As simulation time advances, the transactions in the projected output waveform of a given driver (see 
14.7.2) will each, in succession, become the value of the driver. When a driver acquires a new value in this 
way or as a result of a force or deposit scheduled for the driver, regardless of whether the new value is 
different from the previous value, that driver is said to be active during that simulation cycle. For the 
purposes of defining driver activity, a driver acquiring a value from a null transaction is assumed to have 
acquired a new value. A signal is said to be active during a given simulation cycle if

— One of its sources is active.
— One of its subelements is active.
— The signal is named in the formal part of an association element in a port association list and the 

corresponding actual is active.
— The signal is a subelement of a resolved signal and the resolved signal is active.
— A force, a deposit, or a release is scheduled for the signal.
— The signal is a subelement of another signal for which a force or a deposit is scheduled.

If a signal of a given composite type has a source that is of a different type (and therefore a conversion 
function or type conversion appears in the corresponding association element), then each scalar subelement 
of that signal is considered to be active if the source itself is active. Similarly, if a port of a given composite 
type is associated with a signal that is of a different type (and therefore a conversion function or type 
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conversion appears in the corresponding association element), then each scalar subelement of that port is 
considered to be active if the actual signal itself is active.

In addition to the preceding information, an implicit signal is said to be active during a given simulation 
cycle if the kernel process updates that implicit signal within the given cycle.

If a signal is not active during a given simulation cycle, then the signal is said to be quiet during that 
simulation cycle.

The kernel process determines two values for certain signals during certain simulation cycles. The driving 
value of a given signal is the value that signal provides as a source of other signals. The effective value of a 
given signal is the value obtainable by evaluating a reference to the signal within an expression. The driving 
value and the effective value of a signal are not always the same, especially when resolution functions and 
conversion functions or type conversions are involved in the propagation of signal values.

NOTE 1—In a given simulation cycle, situations can occur where a subelement of a composite signal is quiet, and the 
signal itself is active.

NOTE 2—The rules concerning association of actuals with formals (see 6.5.7.1) imply that, if a composite signal is 
associated with a composite port of mode out, inout, or buffer, and if no conversion function or type conversion appears 
in either the actual or formal part of the association element, then each scalar subelement of the formal is a source of the 
matching subelement of the actual. In such a case, a given subelement of the actual will be active if and only if the 
matching subelement of the formal is active.

NOTE 3—A signal of kind register may be active even if its associated resolution function does not execute in the 
current simulation cycle if the values of all of its drivers are determined by the null transaction and at least one of its 
drivers is also active.

14.7.3.2 Driving values

A basic signal is a signal that has all of the following properties:
— It is either a scalar signal or a resolved signal (see 6.4.2.3).
— It is not a subelement of a resolved signal.
— Is not an implicit signal of the form S'STABLE(T), S'QUIET(T), or S'TRANSACTION (see 16.2).
— It is not an implicit signal GUARD (see 11.2).

Basic signals are those that determine the driving values for all other signals.

The driving value of any signal S is determined by the following steps:
a) If a driving-value release is scheduled for S or for a signal of which S is a subelement, S becomes 

driving-value released, that is, no longer driving-value forced. Proceed to step b).
b) If a driving-value force is scheduled for S or for a signal of which S is a subelement, S becomes 

driving-value forced and the driving value of S is the driving force value for S or the element of the 
driving force value for the signal of which S is a subelement, as appropriate; no further steps are 
required. Otherwise, proceed to step c).

c) If S is driving-value forced, the driving value of S is unchanged from its previous value; no further 
steps are required. Otherwise, proceed to step d).

d) If a driving-value deposit is scheduled for S or for a signal of which S is a subelement, the driving 
value of S is the driving deposit value for S or the element of the driving deposit value for the signal 
of which S is a subelement, as appropriate; no further steps are required. Otherwise, proceed to step 
e) or f), as appropriate.

e) If S is a basic signal:
— If S has no source, then the driving value of S is given by the default value associated with S 

(see 6.4.2.3).
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— If S has one source that is a driver and S is not a resolved signal (see 6.4.2.3), then the driving 
value of S is the current value of that driver.

— If S has one source that is a port and S is not a resolved signal, then the driving value of S is the 
driving value of the formal part of the association element that associates S with that port (see 
6.5.7.1). The driving value of a formal part is obtained by evaluating the formal part as follows: 
If no conversion function or type conversion is present in the formal part, then the driving value 
of the formal part is the driving value of the signal denoted by the formal designator. 
Otherwise, the driving value of the formal part is the value obtained by applying either the 
conversion function or type conversion (whichever is contained in the formal part) to the 
driving value of the signal denoted by the formal designator.

— If S is a resolved signal and has one or more sources, then the driving values of the sources of S 
are examined. It is an error if any of these driving values is a composite where one or more 
subelement values are determined by the null transaction (see 10.5.2.2) and one or more 
subelement values are not determined by the null transaction. If S is of signal kind register and 
all the sources of S have values determined by the null transaction, then the driving value of S 
is unchanged from its previous value. Otherwise, the driving value of S is obtained by 
executing the resolution function associated with S, where that function is called with an input 
parameter consisting of the concatenation of the driving values of the sources of S, with the 
exception of the value of any source of S whose current value is determined by the null 
transaction.

f) If S is not a basic signal:
— If S is a subelement of a resolved signal R, the driving value of S is the corresponding 

subelement value of the driving value of R.
— Otherwise (S is a nonresolved, composite signal), the driving value of S is equal to the 

aggregate of the driving values of each of the basic signals that are the subelements of S.

NOTE 1—The algorithm for computing the driving value of a scalar signal S is recursive. For example, if S is a local 
signal appearing as an actual in a port association list whose formal is of mode out or inout, the driving value of S can 
only be obtained after the driving value of the corresponding formal part is computed. This computation may involve 
multiple executions of the preceding algorithm.

NOTE 2—The definition of the driving value of a basic signal exhausts all cases, with the exception of a non-resolved 
signal with more than one source. This condition is defined as an error in 6.4.2.3.

NOTE 3—The driving value of a port that has no source is the default value of the port (see 6.5.2).

14.7.3.3 Effective values

For a scalar signal S, the effective value of S is determined by the following steps:
a) If an effective-value release is scheduled for S or for a signal of which S is a subelement, S becomes 

effective-value released, that is, no longer effective-value forced. Proceed to step b).
b) If an effective-value force is scheduled for S or for a signal of which S is a subelement, S becomes 

effective-value forced and the effective value of S is the effective force value for S or the element of 
the effective force value for the signal of which S is a subelement, as appropriate; no further steps 
are required. Otherwise, proceed to step c).

c) If S is effective-value forced, the effective value of S is unchanged from its previous value; no 
further steps are required. Otherwise, proceed to step d).

d) If an effective-value deposit is scheduled for S or for a signal of which S is a subelement, the 
effective value of S is the effective deposit value for S or the element of the effective deposit value 
for the signal of which S is a subelement, as appropriate; no further steps are required. Otherwise, 
proceed to step e).

e) The effective value of S is then determined as follows:
— If S is a signal declared by a signal declaration, a port of mode out or buffer, or an unconnected 

port of mode inout, then the effective value of S is the same as the driving value of S.
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— If S is a connected port of mode in or inout, then the effective value of S is the same as the 
effective value of the actual part of the association element that associates an actual with S (see 
6.5.7.1). The effective value of an actual part is obtained by evaluating the actual part, using the 
effective value of the signal denoted by the actual designator in place of the actual designator.

— If S is an unconnected port of mode in, the effective value of S is given by the default value 
associated with S (see 6.4.2.3).

For a composite signal R, the effective value of R is the aggregate of the effective values of each of the 
subelements of R.

NOTE 1—The algorithm for computing the effective value of a signal S is recursive. For example, if a formal port S of 
mode in corresponds to an actual A, the effective value of A shall be computed before the effective value of S can be 
computed. The actual A may itself appear as a formal port in a port association list.

NOTE 2—No effective value is specified for linkage ports, since these ports cannot be read.

14.7.3.4 Signal update

For a scalar signal S, both the driving and effective values shall belong to the subtype of the signal. For a 
composite signal R, an implicit subtype conversion is performed to the subtype of R; for each element of R, 
there shall be a matching element in both the driving and the effective value, and vice versa.

In order to update a signal during a given simulation cycle, the kernel process first determines the driving 
and effective values of that signal. The kernel process then updates the variable containing the driving value 
with the newly determined driving value. The kernel also updates the variable containing the current value 
of the signal with the newly determined effective value, as follows:

a) If S is a scalar signal, the effective value of S is used to update the current value of S. A check is 
made that the effective value of S belongs to the subtype of S. An error occurs if this subtype check 
fails. Finally, the effective value of S is assigned to the variable representing the current value of the 
signal.

b) If S is a composite signal (including a slice of an array), the effective value of S is implicitly con-
verted to the subtype of S. The subtype conversion checks that for each element of S there is a 
matching element in the effective value and vice versa. An error occurs if this check fails. The result 
of this subtype conversion is then assigned to the variable representing the current value of S.

The current value of a signal of type T is said to change if and only if application of the predefined “=” 
operator for type T to the current value of the signal and the value of the signal prior to the update evaluates 
to FALSE. If updating a signal causes the current value of that signal to change, then an event is said to have 
occurred on the signal, unless the update occurs by application of the vhpi_put_value function with an 
update mode of vhpiDeposit or vhpiForce to an object that represents the signal. This definition 
applies to any updating of a signal, whether such updating occurs according to the preceding rules or 
according to the rules for updating implicit signals given in 14.7.4. The occurrence of an event will cause the 
resumption and subsequent execution of certain processes during the simulation cycle in which the event 
occurs, if and only if those processes are currently sensitive to the signal on which the event has occurred.

Each time a signal S is updated, any registered and enabled vhpiCbTransaction callbacks associated 
with S are executed. Each time there is an event on a signal S, any registered and enabled 
vhpiCbValueChange callbacks associated with S are executed.

A net is a collection of drivers, signals (including ports and implicit signals), conversion functions, and 
resolution functions that, taken together, determine the effective and driving values of every signal on the 
net.
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For any signal that is part of a given net, the driving and effective values of the signal are determined and the 
variables containing the driving value and current value of that signal are updated as previously described in 
those simulation cycles in which any driver or signal on the net is active.

Implicit signals GUARD, S'STABLE(T), S'QUIET(T), and S'TRANSACTION, for any prefix S and any 
time T, are not updated according to the preceding rules; such signals are updated according to the rules 
described in 14.7.4.

NOTE 1—Overloading the operator “=” has no effect on the propagation of signal values.

NOTE 2—If a net includes an implicitly declared GUARD signal, the drivers of signals referred to in the corresponding 
guard condition determine the value of the GUARD signal. Hence, those drivers are part of the net, and when any of the 
drivers are active, the signals that are part of the net are updated.

14.7.4 Updating implicit signals

The kernel process updates the value of each implicit signal GUARD associated with a block statement that 
has a guard condition. Similarly, the kernel process updates the values of each implicit signal S'STABLE(T), 
S'QUIET(T), or S'TRANSACTION for any prefix S and any time T; this also involves updating the drivers 
of S'STABLE(T) and S'QUIET(T).

For any implicit signal GUARD, the current value of the signal is modified if and only if the corresponding 
guard condition contains a reference to a signal S and if S is active during the current simulation cycle. In 
such a case, the implicit signal GUARD is updated by evaluating the corresponding guard condition and 
assigning the result of that evaluation to the variable representing the current value of the signal. Whenever 
an implicit signal GUARD is updated, any registered and enabled vhpiCbTransaction callbacks 
associated with the given signal are executed.

For any implicit signal S'STABLE(T), the current value of the signal (and likewise the current state of the 
corresponding driver) is modified if and only if one of the following statements is true:

— An event has occurred on S in this simulation cycle.

— The driver of S'STABLE(T) is active.

If an event has occurred on signal S, then S'STABLE(T) is updated by assigning the value FALSE to the 
variable representing the current value of S'STABLE(T), and the driver of S'STABLE(T) is assigned the 
waveform TRUE after T. Otherwise, if the driver of S'STABLE(T) is active, then S'STABLE(T) is updated 
by assigning the current value of the driver to the variable representing the current value of S'STABLE(T). 
Otherwise, neither the variable nor the driver is modified. Whenever a signal of the form S'STABLE(T) is 
updated, any registered and enabled vhpiCbTransaction callbacks associated with the given signal are 
executed.

Similarly, for any implicit signal S'QUIET(T), the current value of the signal (and likewise the current state 
of the corresponding driver) is modified if and only if one of the following statements is true:

— S is active.

— The driver of S'QUIET(T) is active.

If signal S is active, then S'QUIET(T) is updated by assigning the value FALSE to the variable representing 
the current value of S'QUIET(T), and the driver of S'QUIET(T) is assigned the waveform TRUE after T. 
Otherwise, if the driver of S'QUIET(T) is active, then S'QUIET(T) is updated by assigning the current value 
of the driver to the variable representing the current value of S'QUIET(T). Otherwise, neither the variable 
nor the driver is modified. Whenever a signal of the form S'QUIET(T) is updated, any registered and 
enabled vhpiCbTransaction callbacks associated with the given signal are executed.
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Finally, for any implicit signal S'TRANSACTION, the current value of the signal is modified if and only if 
S is active. If signal S is active, then S'TRANSACTION is updated by assigning the value of the expression 
(not S'TRANSACTION) to the variable representing the current value of S'TRANSACTION. At most one 
such assignment will occur during any given simulation cycle. Whenever a signal of the form 
S'TRANSACTION is updated, any registered and enabled vhpiCbTransaction callbacks associated 
with the given signal are executed.

For any implicit signal S'DELAYED(T), the signal is not updated by the kernel process. Instead, it is 
updated by constructing an equivalent process (see 16.2) and executing that process.

Each time there is an event on a signal S, where S is any one of

— An implicit signal GUARD

— P'STABLE(T), for any prefix P and any time T

— P'QUIET(T), for any prefix P and any time T

— P'TRANSACTION, for any prefix P

any registered and enabled vhpiCbValueChange callbacks associated with S are executed.

The current value of a given implicit signal denoted by R is said to depend upon the current value of another 
signal S if one of the following statements is true:

— R denotes an implicit GUARD signal and S is any other implicit signal named within the guard 
condition that defines the current value of R.

— R denotes an implicit signal S'STABLE(T).

— R denotes an implicit signal S'QUIET(T).

— R denotes an implicit signal S'TRANSACTION.

— R denotes an implicit signal S'DELAYED(T).

Similarly, the current value of a given interface signal denoted by R is said to depend upon the current value 
of an implicit signal S if R denotes a port of mode in and S is the actual associated with that port.

These rules define a partial ordering on all signals within a model. The updating of signals by the kernel 
process is guaranteed to proceed in such a manner that, if a given implicit signal R depends upon the current 
value of another signal S, or if a given interface signal R depends upon the value of an implicit signal S, then 
the current value of S will be updated during a particular simulation cycle prior to the updating of the current 
value of R.

NOTE—These rules imply that, if the driver of S'STABLE(T) is active, then the new current value of that driver is the 
value TRUE. Furthermore, these rules imply that, if an event occurs on S during a given simulation cycle, and if the 
driver of S'STABLE(T) becomes active during the same cycle, the variable representing the current value of 
S'STABLE(T) will be assigned the value FALSE, and the current value of the driver of S'STABLE(T) during the given 
cycle will never be assigned to that signal.

14.7.5 Model execution

14.7.5.1 General

The execution of a model consists of an initialization phase followed by the repetitive execution of process 
statements in the description of that model. Each such repetition is said to be a simulation cycle. In each 
cycle, the values of all signals in the description are computed. If as a result of this computation an event 
occurs on a given signal, process statements that are sensitive to that signal will resume and will be executed 
as part of the simulation cycle.
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At certain stages during the initialization phase and each simulation cycle, the current time, Tc, and the time 
of the next simulation cycle, Tn, are calculated. Tn is calculated by setting it to the earliest of

a) TIME'HIGH,
b) The next time at which a driver or signal becomes active,
c) The next time at which a process resumes, or
d) The next time at which a registered and enabled vhpiCbAfterDelay, vhpiCbRepAfterDe-

lay, vhpiCbTimeOut, or vhpiCbRepTimeOut callback is to occur.

If Tn = Tc, then the next simulation cycle (if any) will be a delta cycle.

14.7.5.2 Initialization

At the beginning of initialization, the current time, Tc, is assumed to be 0 ns.

The initialization phase consists of the following steps:
a) Each registered and enabled vhpiCbStartofInitialization callback is executed.
b) Each registered and enabled vhpiCbStartOfNextCycle and vhpiCbRepStartOfNext-

Cycle callback is executed.
c) The signals in the model are updated as follows in an order such that if a given signal R depends 

upon the current value of another signal S, then the current value of S is updated prior to the updat-
ing of the current value of R:
— The driving value and the effective value of each explicitly declared signal are computed, and 

the variables representing the driving value and current value of the signal are set to the driving 
value and effective value, respectively. The current value is assumed to have been the value of 
the signal for an infinite length of time prior to the start of simulation. If a force, deposit, or 
release was scheduled for any driver or signal, the force, deposit or release is no longer sched-
uled for the driver or signal.

— The value of each implicit signal of the form S'STABLE(T) or S'QUIET(T) is set to TRUE. 
The value of each implicit signal of the form S'DELAYED(T) is set to the initial value of its 
prefix, S.

— The value of each implicit GUARD signal is set to the result of evaluating the corresponding 
guard condition.

d) Any action required to give effect to a PSL directive is performed (see IEEE Std 1850-2005).
e) Each registered and enabled vhpiCbStartOfProcesses and vhpiCbRepStartOfPro-

cesses callback is executed.
f) For each nonpostponed process P in the model, the following actions occur in the indicated order:

1) The process executes until it suspends.
2) Each registered and enabled vhpiCbSuspend callback associated with P is executed.

g) For each elaborated instance of a registered foreign architecture, the corresponding execution 
function is invoked.

h) Each registered and enabled vhpiCbEndOfProcesses and vhpiCbRepEndOfProcesses
callback is executed.

i) Each registered and enabled vhpiCbStartOfPostponed and vhpiCbRepStartOfPost-
poned callback is executed.

j) For each postponed process P in the model, the following actions occur in the indicated order:
1) The process executes until it suspends.
2) Each registered and enabled vhpiCbSuspend callback associated with P is executed.
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k) The time of the next simulation cycle (which in this case is the first simulation cycle), Tn, is calcu-
lated according to the rules of 14.7.5.1.

l) If the VHDL tool executing the initialization phase has requested a model save that has not yet been 
satisfied, the model is saved as described in 20.7.

m) Each registered and enabled vhpiCbEndOfInitialization callback is executed.

NOTE 1—The initial value of any implicit signal of the form S'TRANSACTION is not defined.

NOTE 2—Updating of explicit signals is described in 14.7.3; updating of implicit signals is described in 14.7.4.

NOTE 3—vhpiCbResume callbacks are not executed during initialization as processes do not resume during 
initialization.

14.7.5.3 Simulation cycle

A simulation cycle consists of the following steps:
a) The current time, Tc, is set equal to Tn. Simulation is complete when Tn = TIME'HIGH and there are 

no active drivers, process resumptions, or registered and enabled vhpiCbAfterDelay, vhpiC-
bRepAfterDelay, vhpiCbTimeOut, or vhpiCbRepTimeOut callbacks to occur at Tn.

b) The following actions occur in the indicated order:
1) If the current simulation cycle is not a delta cycle, each registered and enabled vhpiCbNext-

TimeStep and vhpiCbRepNextTimeStep callback is executed.
2) Each registered and enabled vhpiCbStartOfNextCycle and vhpiCbRepStartOf-

NextCycle callback is executed.
3) Each registered and enabled vhpiCbAfterDelay and vhpiCbRepAfterDelay callback 

is executed.
c) Each active driver in the model is updated. If a force or deposit was scheduled for any driver, the 

force or deposit is no longer scheduled for the driver.
d) Each signal on each net in the model that includes active drivers is updated in an order that is consis-

tent with the dependency relation between signals (see 14.7.4). (Events may occur on signals as a 
result.) If a force, deposit, or release was scheduled for any signal, the force, deposit, or release is no 
longer scheduled for the signal.

e) Any action required to give effect to a PSL directive is performed (see IEEE Std 1850-2005).
f) The following actions occur in the indicated order:

1) Each registered and enabled vhpiCbStartOfProcesses and vhpiCbRepStartOf-
Processes callback is executed. If an event has occurred on a signal S in this simulation 
cycle, then each registered and enabled vhpiCbSensitivity callback associated with S is 
executed.

2) For each process, P, if P is currently sensitive to a signal, S, and if an event has occurred on S in 
this simulation cycle, then P resumes.

3) Each registered and enabled vhpiCbTimeOut and vhpiCbRepTimeOut callback whose 
triggering condition is met is executed. For each nonpostponed process P that has resumed in 
the current simulation cycle, the following actions occur in the indicated order:
— Each registered and enabled vhpiCbResume callback associated with P is executed.
— The process executes until it suspends.
— Each registered and enabled vhpiCbSuspend callback associated with P is executed.

4) Each registered and enabled vhpiCbEndOfProcesses and vhpiCbRepEndOfPro-
cesses callback is executed.

g) The time of the next simulation cycle, Tn, is calculated according to the rules of 14.7.5.1.
h) If the next simulation cycle will be a delta cycle, the remainder of step h) is skipped. Otherwise, the 

following actions occur in the indicated order:
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1) Each registered and enabled vhpiCbLastKnownDeltaCycle and vhpiCbRepLast-
KnownDeltaCycle callback is executed. Tn is recalculated according to the rules of 
14.7.5.1.

2) If the next simulation cycle will be a delta cycle, the remainder of step h) is skipped.
3) Each registered and enabled vhpiCbStartOfPostponed and vhpiCbRepStartOf-

Postponed callback is executed.
4) For each postponed process P, if P has resumed but has not been executed since its last 

resumption, the following actions occur in the indicated order:
— Each registered and enabled vhpiCbResume callback associated with P is executed.
— The process executes until it suspends.
— Each registered and enabled vhpiCbSuspend callback associated with P is executed.

5) Tn is recalculated according to the rules of 14.7.5.1.
6) Each registered and enabled vhpiCbEndOfTimeStep and vhpiCbRepEndOfTimeStep

callback is executed.
7) If Tn = TIME'HIGH and there are no active drivers, process resumptions, or registered and 

enabled vhpiCbAfterDelay, vhpiCbRepAfterDelay, vhpiCbTimeOut, or 
vhpiCbRepTimeOut callbacks to occur at Tn, then each registered and enabled 
vhpiCbQuiescence callback is executed. Tn is recalculated according to the rules of 
14.7.5.1.

It is an error if the execution of any postponed process or any callback executed in substeps 3) 
through 7) of step h) causes a delta cycle to occur immediately after the current simulation cycle.

i) If the VHDL tool executing the simulation cycle has requested a model save that has not yet been 
satisfied, the model is saved as described in 20.7.

Immediately prior to the execution of the first simulation cycle, each registered and enabled 
vhpiCbStartOfSimulation callback is executed. Immediately subsequent to the execution of the 
final simulation cycle (i.e., when simulation is complete), each registered and enabled 
vhpiCbEndOfSimulation callback is executed.

NOTE 1—Updating of explicit signals is described in 14.7.3; updating of implicit signals is described in 14.7.4.

NOTE 2—When a process resumes, it is added to one of two sets of processes to be executed (the set of postponed 
processes and the set of nonpostponed processes). However, no process actually begins to execute until all signals have 
been updated and all executable processes for this simulation cycle have been identified. Nonpostponed processes are 
always executed during step f) of every simulation cycle, while postponed processes are executed during step h) of every 
simulation cycle that does not immediately precede a delta cycle.

NOTE 3—The vhpiCbEndOfTimeStep and vhpiCbRepEndOfTimeStep callbacks cannot cause activity or 
register callbacks that would result in a change to the time of the next simulation cycle, Tn (see 21.3.6.8).
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15.  Lexical elements

15.1 General

The text of a description consists of one or more design files. The text of a design file is a sequence of lexical 
elements, each composed of characters; the rules of composition are given in this clause.

15.2 Character set

The only characters allowed in the text of a VHDL description (except within comments—see 15.9, and 
within text treated specially due to the effect of tool directives—see 15.11) are the graphic characters and 
format effectors. Each graphic character corresponds to a unique code of the ISO eight-bit coded character 
set (ISO/IEC 8859-1:1998) and is represented (visually) by a graphical symbol.

basic_graphic_character ::=
      upper_case_letter | digit | special_character | space_character

graphic_character ::=
      basic_graphic_character | lower_case_letter | other_special_character

basic_character ::=
      basic_graphic_character | format_effector

The basic character set is sufficient for writing any description, other than a PSL declaration, a PSL 
directive, or a PSL verification unit. The characters included in each of the categories of basic graphic 
characters are defined as follows:

— Uppercase letters
— A B C D E F G H I J K L M N O P Q R S T U V W X Y Z À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î
— Ï Ð Ñ Ò Ó Ô Õ Ö Ø Ù Ú Û Ü ÝÞ
— Digits
— 0 1 2 3 4 5 6 7 8 9
— Special characters
— " # & ' () * + , - . / : ; < = > ? @ [ ] _ ` |
— The space characters
— SPACE7 NBSP8

Format effectors are the ISO/IEC (and ASCII) characters called horizontal tabulation, vertical tabulation, 
carriage return, line feed, and form feed.

The characters included in each of the remaining categories of graphic characters are defined as follows:
— Lowercase letters

a b c d e f g h i j k l m n o p q r s t u v w x y z ß à á â ã ä å æ ç è é ê ë ì í î ï ð ñ ò ó ô
õ ö ø ù ú û ü ý þ ÿ

— Other special characters
! $ % \ ^ { }  ~ ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ ® ¯ ° ± ² ³ ´ μ ¶ · ¸ ¹ º » ¼ ½ ¾ ¿ × ÷ - (soft hyphen)

7The visual representation of the space is the absence of a graphic symbol. It may be interpreted as a graphic character, a control 
character, or both.
8The visual representation of the nonbreaking space is the absence of a graphic symbol. It is used when a line break is to be prevented 
in the text as presented.
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For each uppercase letter, there is a corresponding lowercase letter; and for each lowercase letter except ÿ 
and ß, there is a corresponding uppercase letter.  The pairs of corresponding uppercase and lowercase letters 
are:�

Within a PSL declaration, a PSL directive, or a PSL verification unit, certain of the other special characters 
are allowed (see 15.3 and IEEE Std 1850-2005).

NOTE 1—The font design of graphical symbols (for example, whether they are in italic or bold typeface) is not part of 
ISO/IEC 8859-1:1998.

NOTE 2—The meanings of the acronyms used in this subclause are as follows: ASCII stands for American Standard 
Code for Information Interchange, ISO stands for International Organization for Standardization.

NOTE 3—There are no uppercase equivalents for the characters ß and ÿ.

NOTE 4—The following names are used when referring to special characters:�

A a B b C c D d E e F f G g

H h I i J i K k L l M m N n

O o P p Q q R r S s T t U u

V v W w X x Y y Z z À à Á á

Â â Ã ã Ä ä Å å Æ æ Ç ç È è

É é Ê ê Ë ë Ì ì Í í Î î Ï ï

Ð ð Ñ ñ Ò ò Ó ó Ô ô Õ õ Ö ö

Ø ø Ù ù Ú ú Û û Ü ü Ý ý Þ þ

Character Name

" Quotation mark £ Pound sign

# Number sign ¤ Currency sign

& Ampersand ¥ Yen sign

' Apostrophe, tick ¦ Broken bar

( Left parenthesis § Paragraph sign, clause sign

) Right parenthesis ¨ Diaeresis

* Asterisk, multiply © Copyright sign

+ Plus sign ª Feminine ordinal indicator

, Comma « Left angle quotation mark

- Hyphen, minus sign ¬ Not sign

. Dot, point, period, full stop - Soft hyphena

/ Slash, divide, solidus ® Registered trade mark sign

: Colon ¯ Macron

; Semicolon ° Ring above, degree sign

< Less-than sign ± Plus-minus sign
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15.3 Lexical elements, separators, and delimiters

The text of each design unit, apart from text treated specially due to the effect of tool directives (see 15.11), 
is a sequence of separate lexical elements. Each lexical element is either a delimiter, an identifier (which 
may be a reserved word), an abstract literal, a character literal, a string literal, a bit string literal, a comment, 
a lexical element defined for a tool directive, or a lexical element defined in IEEE Std 1850-2005 for a PSL 
declaration, a PSL directive, or a PSL verification unit.

In some cases an explicit separator is required to separate adjacent lexical elements (namely when, without 
separation, interpretation as a single lexical element is possible). A separator is either a space character 
(SPACE or NBSP), a format effector, or the end of a line. A space character (SPACE or NBSP) is a 
separator except within an extended identifier, a comment, a string literal, a space character literal, or where 
defined to be part of a lexical element in a tool directive.

The end of a line is always a separator. The language does not define what causes the end of a line. However 
if, for a given implementation, the end of a line is signified by one or more characters, then these characters 
shall be format effectors other than horizontal tabulation. In any case, a sequence of one or more format 
effectors other than horizontal tabulation shall cause at least one end-of-line.

= Equals sign ² Superscript two

> Greater-than sign ³ Superscript three

_ Underline, low line ´ Acute accent

| Vertical line, vertical bar μ Micro sign

! Exclamation mark ¶ Pilcrow sign

$ Dollar sign · Middle dot

% Percent sign ¸ Cedilla

? Question mark ¹ Superscript one

@ Commercial at º Masculine ordinal indicator

[ Left square bracket » Right angle quotation mark

 \ Backslash, reverse solidus ¼ Vulgar fraction one quarter

] Right square bracket ½ Vulgar fraction one half

^ Circumflex accent ¾ Vulgar fraction three quarters

` Grave accent ¿ Inverted question mark

{ Left curly bracket × Multiplication sign

} Right curly bracket ÷ Division sign

~ Tilde

¡ Inverted exclamation mark

¢ Cent sign
aThe soft hyphen is a graphic character that is represented by a graphic symbol identical with, or similar to, that 
representing a hyphen, for use when a line break has been established within a word.

Character Name
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One or more separators are allowed between any two adjacent lexical elements, before the first of each 
design unit, or after the last lexical element of a design file. At least one separator is required between an 
identifier or an abstract literal and an adjacent identifier or abstract literal.

A delimiter is either one of the following special characters (in the basic character set):

&  '  (  )  *  +  ,  - .  /  :  ;  <  =  >  `  | [ ]  ? @

or one of the following compound delimiters, each composed of two or more adjacent special characters:

=>  **  :=  /=  >=  <=  <> ??  ?=  ?/=  ?<  ?<=  ?>  ?>=  <<  >>

Each of the special characters listed for single character delimiters is a single delimiter except if this 
character is used as a character of a compound delimiter or as a character of an extended identifier, 
comment, string literal, character literal, or abstract literal.

The remaining forms of lexical elements are described in subclauses of this clause.

NOTE 1—Each lexical element shall fit on one line, since the end of a line is a separator. The quotation mark, number 
sign, and underline characters, likewise two adjacent hyphens, are not delimiters, but may form part of other lexical 
elements.

NOTE 2—The following names are used when referring to compound delimiters:

NOTE 3—PSL macros and preprocessing directives can only be defined and used within PSL verification units. They 
cannot appear in PSL declarations or PSL directives embedded in other VHDL code, since they do not occur as part of 
the syntax of PSL declarations or PSL directives.

Delimiter Name

=> Arrow

** Double star, exponentiate

:= Variable assignment

/= Inequality (pronounced “not equal”)

>= Greater than or equal

<= Less than or equal; signal assignment

<> Box

?? Condition conversion

?= Matching equality

?/= Matching inequality

?< Matching less than

?<= Matching less than or equal

?> Matching greater than

?>= Matching greater than or equal

<< Double less than

>> Double greater than
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15.4 Identifiers

15.4.1 General

Identifiers are used as names and also as reserved words.

identifier ::=  basic_identifier | extended_identifier

15.4.2 Basic identifiers

A basic identifier consists only of letters, digits, and underlines.

basic_identifier ::=
      letter  { [ underline ] letter_or_digit }

letter_or_digit ::=  letter | digit

letter ::=  upper_case_letter | lower_case_letter

All characters of a basic identifier are significant, including any underline character inserted between a letter 
or digit and an adjacent letter or digit. Basic identifiers differing only in the use of corresponding uppercase 
and lowercase letters are considered the same.

Examples:

COUNT    X     c_out        FFT                Decoder
VHSIC    X1    PageCount    STORE_NEXT_ITEM

NOTE—No space (SPACE or NBSP) is allowed within a basic identifier, since a space is a separator.

15.4.3 Extended identifiers

Extended identifiers may contain any graphic character.

extended_identifier ::=
      \ graphic_character { graphic_character } \

If a backslash is to be used as one of the graphic characters of an extended identifier, it shall be doubled. All 
characters of an extended identifier are significant (a doubled backslash counting as one character). 
Extended identifiers differing only in the use of corresponding uppercase and lowercase letters are distinct. 
Moreover, every extended identifier is distinct from any basic identifier.

Examples:

\BUS\     \bus\                   --  Two different identifiers,
                                  --  neither of which is
                                  --  the reserved word bus.
\a\\b\                            --  An identifier containing
                                  --  three characters.
VHDL      \VHDL\      \vhdl\      --  Three distinct identifiers.
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15.5 Abstract literals

15.5.1 General

There are two classes of abstract literals: real literals and integer literals. A real literal is an abstract literal 
that includes a point; an integer literal is an abstract literal without a point. Real literals are the literals of the 
type universal_real. Integer literals are the literals of the type universal_integer.

abstract_literal ::=  decimal_literal | based_literal

15.5.2 Decimal literals

A decimal literal is an abstract literal expressed in the conventional decimal notation (that is, the base is 
implicitly ten).

decimal_literal ::=  integer [ . integer ] [ exponent ]

integer ::=  digit  { [ underline ] digit }

exponent ::=  E [ + ] integer | E – integer

An underline character inserted between adjacent digits of a decimal literal does not affect the value of this 
abstract literal. The letter E of the exponent, if any, can be written either in lowercase or in uppercase, with 
the same meaning.

An exponent indicates the power of 10 by which the value of the decimal literal without the exponent is to be 
multiplied to obtain the value of the decimal literal with the exponent. An exponent for an integer literal 
shall not have a minus sign.

Examples:

12          0         1E6          123_456       --  Integer literals.
12.0        0.0       0.456        3.14159_26    --  Real literals.
1.34E-12    1.0E+6    6.023E+24                  --  Real literals
                                                 --  with exponents.

NOTE—Leading zeros are allowed. No space (SPACE or NBSP) is allowed in an abstract literal, not even between con-
stituents of the exponent, since a space is a separator. A zero exponent is allowed for an integer literal.

15.5.3 Based literals

A based literal is an abstract literal expressed in a form that specifies the base explicitly. The base shall be at 
least two and at most sixteen.

based_literal ::=
      base # based_integer [ . based_integer ] # [ exponent ]

base ::=  integer

based_integer ::=
      extended_digit { [ underline ] extended_digit }

extended_digit ::=  digit | letter
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An underline character inserted between adjacent digits of a based literal does not affect the value of this 
abstract literal. The base and the exponent, if any, are in decimal notation. The only letters allowed as 
extended digits are the letters A through F for the digits 10 through 15. A letter in a based literal (either an 
extended digit or the letter E of an exponent) can be written either in lowercase or in uppercase, with the 
same meaning.

The conventional meaning of based notation is assumed; in particular the value of each extended digit of a 
based literal shall be less than the base. An exponent indicates the power of the base by which the value of 
the based literal without the exponent is to be multiplied to obtain the value of the based literal with the 
exponent. An exponent for a based integer literal shall not have a minus sign.

Examples:

--  Integer literals of value 255:
    2#1111_1111#                16#FF#                016#0FF#

--  Integer literals of value 224:
    16#E#E1                     2#1110_0000#

--  Real literals of value 4095.0:
    16#F.FF#E+2                 2#1.1111_1111_111#E11

15.6 Character literals

A character literal is formed by enclosing one of the 191 graphic characters (including the space and 
nonbreaking space characters) between two apostrophe characters. A character literal has a value that 
belongs to a character type.

character_literal ::= ' graphic_character '

Examples:

'A'   '*'  '''   ' '

15.7 String literals

A string literal is formed by a sequence of graphic characters (possibly none) enclosed between two 
quotation marks used as string brackets.

string_literal ::=  " { graphic_character } "

A string literal has a value that is a sequence of character values corresponding to the graphic characters of 
the string literal apart from the quotation mark itself. If a quotation mark value is to be represented in the 
sequence of character values, then a pair of adjacent quotation marks shall be written at the corresponding 
place within the string literal. (This means that a string literal that includes two adjacent quotation marks is 
never interpreted as two adjacent string literals.)

The length of a string literal is the number of character values in the sequence represented. (Each doubled 
quotation mark is counted as a single character.)

Examples:

"Setup time is too short"       --  An error message.
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""                              --  An empty string literal.

" "    "A"   """"               --  Three string literals of length 1.

"Characters such as $, %, and } are allowed in string literals."

NOTE—A string literal shall fit on one line, since it is a lexical element (see 15.3). Longer sequences of graphic charac-
ter values can be obtained by concatenation of string literals. The concatenation operation may also be used to obtain 
string literals containing nongraphic character values. The predefined type CHARACTER in package STANDARD 
specifies the enumeration literals denoting both graphic and nongraphic characters. Examples of such uses of concatena-
tion are as follows:

"FIRST PART OF A SEQUENCE OF CHARACTERS " &

"THAT CONTINUES ON THE NEXT LINE"

"Sequence that includes the" & ACK & "control character"

15.8 Bit string literals

A bit string literal is formed by a sequence of characters (possibly none) enclosed between two quotation 
marks used as bit string brackets, preceded by a base specifier. The bit string literal may also be preceded by 
an integer specifying the length of the value represented by the bit string literal.

bit_string_literal ::= [ integer ] base_specifier " [ bit_value ] "

bit_value ::=  graphic_character { [ underline ] graphic_character }

base_specifier ::=  B | O | X | UB | UO | UX | SB | SO | SX | D

A graphic character in a bit string literal shall not be an underline character. An underline character inserted 
between adjacent graphic characters of a bit string literal does not affect the value of this literal.

If the base specifier is B, UB or SB, the digits 0 and 1 in the bit value are interpreted as extended digits, and 
all other graphic characters are not interpreted as extended digits. If the base specifier is O, UO, or SO, the 
digits 0 through 7 in the bit value are interpreted as extended digits, and all other graphic characters are not 
interpreted as extended digits. If the base specifier is X, UX or SX, all digits together with the letters A 
through F in the bit value are interpreted as extended digits. If the base specifier is D, all of the graphic 
characters in the bit value (not counting underline characters) shall be digits. An extended digit and the base 
specifier in a bit string literal can be written either in lowercase or in uppercase, with the same meaning.

A bit string literal has a value that is a string literal. The string literal is formed from the bit value by first 
obtaining a simplified bit value, consisting of the bit value with underline characters removed, and then 
obtaining an expanded bit value. Finally, the string literal value is obtained by adjusting the expanded bit 
value, if required.

If the base specifier is B, UB or SB, the expanded bit value is the simplified bit value itself. If the base 
specifier is O, UO, or SO (respectively X, UX, or SX), the expanded bit value is the string obtained by 
replacing each character of the simplified bit value by a sequence of three (respectively four) characters. For 
a character in the simplified bit value that is interpreted as an extended digit, the replacement sequence is as 
follows:
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For a character in the simplified value that is not interpreted as an extended digit, each character in the 
replacement sequence is the same as the character replaced.

If the base specifier is D, the simplified bit value is interpreted as a decimal integer. The expanded bit value 
is a string of 0 and 1 digits that is the binary representation of the decimal integer. The number of characters 
in the expanded bit value is given by the expression , where n is the value of the decimal 
integer.

The length of a bit string literal is the length of its string literal value. If a bit string literal includes the 
integer immediately preceding the base specifier, the length of the bit string literal is the value of the integer. 
Otherwise, the length is the number of characters in the expanded bit value.

The string literal value is obtained by adjusting the expanded bit value to the length of the bit string literal, as 
follows:

— If the length is equal to the number of characters in the expanded bit value, the string literal value is 
the expanded bit value itself.

— If the length is greater than the number of characters in the expanded bit value and the base specifier 
is B, UB, O, UO, X, UX, or D, the bit string value is obtained by concatenating a string of 0 digits to 
the left of the expanded bit value. The number of 0 digits in the string is such that the number of 
characters in the result of the concatenation is the length of the bit string literal.

— If the length is greater than the number of characters in the expanded bit value and the base specifier 
is SB, SO, or SX, the bit string value is obtained by concatenating to the left of the expanded bit 
value a string, each of whose characters is the leftmost character of the expanded bit value. The 

Extended digit Replacement when the base specifier is
O, UO, or SO

Replacement when the base specifier is
X, UX, or SX

0 000 0000

1 001 0001

2 010 0010

3 011 0011

4 100 0100

5 101 0101

6 110 0110

7 111 0111

8 1000

9 1001

A 1010

B 1011

C 1100

D 1101

E 1110

F 1111

log2n 1+
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number of characters in the string is such that the number of characters in the result of the 
concatenation is the length of the bit string literal.

— If the length is less than the number of characters in the expanded bit value and the base specifier is 
B, UB, O, UO, X, UX, or D, the bit string value is obtained by deleting sufficient characters from the 
left of the expanded bit value to yield a string whose length is the length of the bit string literal. It is 
an error if any of the characters so deleted is other than the digit 0.

— If the length is less than the number of characters in the expanded bit value and the base specifier is 
SB, SO, or SX, the bit string value is obtained by deleting sufficient characters from the left of the 
expanded bit value to yield a string whose length is the length of the bit string literal. It is an error if 
any of the characters so deleted differs from the leftmost remaining character.

Example:

B"1111_1111_1111"    --  Equivalent to the string literal "111111111111".
X"FFF"               --  Equivalent to B"1111_1111_1111".
O"777"               --  Equivalent to B"111_111_111".
X"777"               --  Equivalent to B"0111_0111_0111".

B"XXXX_01LH"         -- Equivalent to the string literal "XXXX01LH"
UO"27"               -- Equivalent to B"010_111"
UO"2C"               -- Equivalent to B"011_CCC"
SX"3W"               -- Equivalent to B"0011_WWWW"
D"35"                -- Equivalent to B"100011"

12UB"X1"             -- Equivalent to B"0000_0000_00X1"
12SB"X1"             -- Equivalent to B"XXXX_XXXX_XXX1"
12UX"F-"             -- Equivalent to B"0000_1111_----"
12SX"F-"             -- Equivalent to B"1111_1111_----"
12D"13"              -- Equivalent to B"0000_0000_1101"

12UX"000WWW"         -- Equivalent to B"WWWW_WWWW_WWWW"
12SX"FFFC00"         -- Equivalent to B"1100_0000_0000"
12SX"XXXX00"         -- Equivalent to B"XXXX_0000_0000"

8D"511"              -- Error
8UO"477"             -- Error
8SX"0FF"             -- Error
8SX"FXX"             -- Error

constant c1: STRING := B"1111_1111_1111";

constant c2: BIT_VECTOR := X"FFF";
type MVL is ('X', '0', '1', 'Z');
type MVL_VECTOR is array (NATURAL range <>) of MVL;
constant c3: MVL_VECTOR := O"777";

assert c1'LENGTH = 12 and c2'LENGTH = 12 and c3 = "111111111";

15.9 Comments

A comment is either a single-line comment or a delimited comment. A single-line comment starts with two 
adjacent hyphens and extends up to the end of the line. A delimited comment starts with a solidus (slash) 
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character immediately followed by an asterisk character and extends up to the first subsequent occurrence of 
an asterisk character immediately followed by a solidus character.

An occurrence of two adjacent hyphens within a delimited comment is not interpreted as the start of a single-
line comment. Similarly, an occurrence of a solidus character immediately followed by an asterisk character 
within a single-line comment is not interpreted as the start of a delimited comment. Moreover, an occurrence 
of a solidus character immediately followed by an asterisk character within a delimited comment is not 
interpreted as the start of a nested delimited comment.

A single-line comment can appear on any line of a VHDL description and may contain any character except 
the format effectors vertical tab, carriage return, line feed, and form feed. A delimited comment can start on 
any line of a VHDL description and may finish on the same line or any subsequent line.

The presence or absence of comments has no influence on whether a description is legal or illegal. 
Furthermore, comments do not influence the execution of a simulation module; their sole purpose is to 
enlighten the human reader.

Examples:

--  The last sentence above echoes the Algol 68 report.

end;  --  Processing of LINE is complete.
-----------  The first two hyphens start the comment.

/* A long comment may be written
    on several consecutive lines */

x := 1;  /* Comments /* do not nest */

NOTE 1—Horizontal tabulation can be used in comments, after the starting characters, and is equivalent to one or more 
spaces (SPACE characters) (see 15.3).

NOTE 2—Comments may contain characters that, according to 15.2, are non-printing characters. Implementations may 
interpret the characters of a comment as members of ISO/IEC 8859-1:1998, or of any other character set; for example, 
an implementation may interpret multiple consecutive characters within a comment as single characters of a multi-byte 
character set.

15.10 Reserved words

The following identifiers are called reserved words and are reserved for significance in the language. For 
readability of this standard, the reserved words appear in lowercase boldface.
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A reserved word shall not be used as an explicitly declared identifier.

abs

access

after

alias

all

and

architecture

array

assert

assume

assume_guarantee

attribute

begin

block

body

buffer

bus

case

component

configuration

constant

context

cover

default

disconnect

downto

else

elsif

end

entity

exit

fairness

file

for

force

function

generate

generic

group

guarded

if

impure

in

inertial

inout

is

label

library

linkage

literal

loop

map

mod

nand

new

next

nor

not

null

of

on

open

or

others

out

package

parameter

port

postponed

procedure

process

property

protected

pure

range

record

register

reject

release

rem

report

restrict

restrict_guarantee

return

rol

ror

select

sequence

severity

signal

shared

sla

sll

sra

srl

strong

subtype

then

to

transport

type

unaffected

units

until

use

variable

vmode

vprop

vunit

wait

when

while

with

xnor

xor
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Within a PSL declaration, a PSL directive, or a PSL verification unit, PSL keywords are reserved words (see 
IEEE Std 1850-2005). A PSL keyword shall not be used as an identifier to declare a PSL declaration or a 
PSL verification unit. A PSL keyword that is a legal VHDL identifier may be used as an explicitly declared 
identifier other than to declare a PSL declaration or a PSL verification unit, but such a declaration is hidden 
within a PSL declaration, a PSL directive, or a PSL verification unit (see 12.3).

NOTE 1—Reserved words differing only in the use of corresponding uppercase and lowercase letters are considered as 
the same (see 15.4.2). The reserved words range and subtype are also used as the names of predefined attributes.

NOTE 2—An extended identifier whose sequence of characters inside the leading and trailing backslashes is identical to 
a reserved word is not a reserved word. For example, \next\ is a legal (extended) identifier and is not the reserved word 
next.

NOTE 3—The following reserved words are PSL keywords, that is, reserved identifiers in PSL:

Their use in PSL is defined in IEEE Std 1850-2005. Other PSL keywords, reserved only within PSL declarations, PSL 
directives, and PSL verification units, are defined in IEEE Std 1850-2005.

15.11 Tool directives

A tool directive directs a tool to analyze, elaborate, execute, or otherwise process a description in a specified 
manner. A tool directive starts with a grave accent character and extends up to the end of the line.

tool_directive ::= ` identifier { graphic_character }

The identifier determines the form of processing to be performed by the tool. Apart from the standard tool 
directives (see Clause 24), the requirements, if any, on the location of a tool directive and on the graphic 
characters are implementation defined, as is the effect of the tool directive.

assert

assume

assume_guarantee

cover

default

fairness

property

restrict

restrict_guarantee

sequence

strong

vmode

vprop

vunit

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



IEC 61691-1-1:2011(E) - 238 - �
IEEE Std 1076-2008

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



- 239 - IEC 61691-1-1:2011(E)�
IEEE Std 1076-2008

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

16. Predefined language environment

16.1 General

This clause describes the predefined attributes of VHDL and the packages that all VHDL implementations 
shall provide.

16.2 Predefined attributes

16.2.1 General

Predefined attributes denote values, functions, types, subtypes, signals, and ranges associated with various 
kinds of named entities. These attributes are described as follows. For each attribute, the following 
information is provided:

— The kind of attribute: value, type, subtype, range, function, or signal

— The prefixes for which the attribute is defined

— A description of the parameter or argument, if one exists

— The result of evaluating the attribute, and the result type (if applicable)

— Any further restrictions or comments that apply

For those predefined attributes that denote functions, the functions do not have named formal parameters; 
therefore, named association (see 6.5.7.1) cannot be used when invoking a function denoted by a predefined 
attribute.

16.2.2 Predefined attributes of types and objects

T'BASE Kind: Type.

Prefix: Any type or subtype T.

Result: The base type of T.

Restrictions: This attribute is allowed only as the prefix of the name of another 
attribute; for example, T'BASE'LEFT.

T'LEFT Kind: Value.

Prefix: Any scalar type or subtype T.

Result type: Same type as T.

Result: The left bound of T.

T'RIGHT Kind: Value.

Prefix: Any scalar type or subtype T.

Result type: Same type as T.

Result: The right bound of T.

T'HIGH Kind: Value.

Prefix: Any scalar type or subtype T.

Result type: Same type as T.

Result: The upper bound of T.
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T'LOW Kind: Value.

Prefix: Any scalar type or subtype T.

Result type: Same type as T.

Result: The lower bound of T.

T'ASCENDING Kind: Value.

Prefix: Any scalar type or subtype T.

Result type: Type BOOLEAN

Result: It is TRUE if T is defined with an ascending range; FALSE otherwise.

T'IMAGE(X) Kind: Pure function.

Prefix: Any scalar type or subtype T.

Parameter: An expression whose type is the base type of T.

Result type: Type STRING.

Result: The string representation of the parameter value as defined in 5.7, but 
with the following differences. If T is an enumeration type or subtype 
and the parameter value is either an extended identifier or a character 
literal, the result is expressed with both a leading and trailing reverse 
solidus (backslash) (in the case of an extended identifier) or 
apostrophe (in the case of a character literal); in the case of an 
extended identifier that has a backslash, the backslash is doubled in 
the string representation. If T is an enumeration type or subtype and 
the parameter value is a basic identifier, then the result is expressed in 
lowercase characters. If T is a numeric type or subtype, the result is 
expressed as the decimal representation of the parameter value 
without underlines or leading or trailing zeros (except as necessary to 
form the image of a legal literal with the proper value); moreover, an 
exponent may (but is not required to) be present and the language does 
not define under what conditions it is or is not present. If the exponent 
is present, the “e” is expressed as a lowercase character. If T is a 
physical type or subtype, the result is expressed in terms of the 
primary unit of T unless the base type of T is TIME, in which case the 
result is expressed in terms of the resolution limit (see 5.2.4.2); in 
either case, if the unit is a basic identifier, the image of the unit is 
expressed in lowercase characters. If T is a floating-point type or 
subtype, the number of digits to the right of the decimal point 
corresponds to the standard form generated when the DIGITS 
parameter to TEXTIO.WRITE for type REAL is set to 0 (see 16.4).

Restrictions: It is an error if the parameter value does not belong to the subtype 
implied by the prefix.
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T'VALUE(X) Kind: Pure function.

Prefix: Any scalar type or subtype T.

Parameter: An expression of type STRING.

Result type: The base type of T.

Result: The value of T whose string representation (as defined in 5.7) is given 
by the parameter. Leading and trailing whitespace is allowed and 
ignored. If T is a numeric type or subtype, the parameter shall be 
expressed either as a decimal literal or as a based literal, with the addi-
tion of an optional leading sign. If the sign is present, whitespace shall 
not occur between the sign and the remainder of the value. If T is a 
physical type or subtype, the parameter shall be expressed using a 
string representation of any of the unit names of T, with or without a 
leading abstract literal. The parameter shall have whitespace between 
any abstract literal and the unit name.

Restrictions: It is an error if the parameter is not a valid string representation of a 
literal of type T or if the result does not belong to the subtype implied 
by T.

T'POS(X) Kind: Pure function.

Prefix: Any discrete or physical type or subtype T.

Parameter: An expression whose type is the base type of T.

Result type: universal_integer.

Result: The position number of the value of the parameter.

Restrictions: It is an error if the value of the parameter does not belong to the sub-
type implied by the prefix.

T'VAL(X) Kind: Pure function.

Prefix: Any discrete or physical type or subtype T.

Parameter: An expression of any integer type.

Result type: The base type of T.

Result: The value whose position number is the universal_integer value cor-
responding to X.

Restrictions: It is an error if the result does not belong to the range T'LOW to 
T'HIGH.

T'SUCC(X) Kind: Pure function.

Prefix: Any discrete or physical type or subtype T.

Parameter: An expression whose type is the base type of T.

Result type: The base type of T.

Result: The value whose position number is one greater than that of the 
parameter.

Restrictions: An error occurs if X equals T'HIGH or if X does not belong to the 
range T'LOW to T'HIGH.
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NOTE 1—The relationship between the values of the LEFT, RIGHT, LOW, and HIGH attributes is expressed as 
follows:

NOTE 2—For all values V of any scalar type T except a real type, the following relation holds:

V = T'Value(T'Image(V))

T'PRED(X) Kind: Pure function.

Prefix: Any discrete or physical type or subtype T.

Parameter: An expression whose type is the base type of T.

Result type: The base type of T.

Result: The value whose position number is one less than that of the 
parameter.

Restrictions: An error occurs if X equals T'LOW or if X does not belong to the 
range T'LOW to T'HIGH.

T'LEFTOF(X) Kind: Pure function.

Prefix: Any discrete or physical type or subtype T.

Parameter: An expression whose type is the base type of T.

Result type: The base type of T.

Result: The value that is to the left of the parameter in the range of T.

Restrictions: An error occurs if X equals T'LEFT or if X does not belong to the 
range T'LOW to T'HIGH.

T'RIGHTOF(X) Kind: Pure function.

Prefix: Any discrete or physical type or subtype T.

Parameter: An expression whose type is the base type of T.

Result type: The base type of T.

Result: The value that is to the right of the parameter in the range of T.

Restrictions: An error occurs if X equals T'RIGHT or if X does not belong to the 
range T'LOW to T'HIGH.

O'SUBTYPE Kind: Subtype.

Prefix: Any prefix O that is appropriate for an object, or an alias thereof.

Result: The fully constrained subtype that is the subtype of O, together with 
constraints defining any index ranges that are determined by applica-
tion of the rules of 5.3.2.2. (If O is an alias for an object, then the 
result is determined by the declaration of O, not that of the object.)

Ascending range Descending range

T'LEFT = T'LOW T'HIGH

T'RIGHT = T'HIGH T'LOW
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16.2.3 Predefined attributes of arrays

A'LEFT [(N)] Kind: Function.

Prefix: Any prefix A that is appropriate for an array object, or an alias thereof, 
or that denotes an array subtype whose index ranges are defined by a 
constraint.

Parameter: A locally static expression of type universal_integer, the value of 
which shall not exceed the dimensionality of A. If omitted, it defaults 
to 1.

Result type: Type of the left bound of the Nth index range of A.

Result: Left bound of the Nth index range of A. (If A is an alias for an array 
object, then the result is the left bound of the Nth index range from the 
declaration of A, not that of the object.)

A'RIGHT [(N)] Kind: Function.

Prefix: Any prefix A that is appropriate for an array object, or an alias thereof, 
or that denotes an array subtype whose index ranges are defined by a 
constraint.

Parameter: A locally static expression of type universal_integer, the value of 
which shall not exceed the dimensionality of A. If omitted, it defaults 
to 1.

Result type: Type of the Nth index range of A.

Result: Right bound of the Nth index range of A. (If A is an alias for an array 
object, then the result is the right bound of the Nth index range from 
the declaration of A, not that of the object.)

A'HIGH [(N)] Kind: Function.

Prefix: Any prefix A that is appropriate for an array object, or an alias thereof, 
or that denotes an array subtype whose index ranges are defined by a 
constraint.

Parameter: A locally static expression of type universal_integer, the value of 
which shall not exceed the dimensionality of A. If omitted, it defaults 
to 1.

Result type: Type of the Nth index range of A.

Result: Upper bound of the Nth index range of A. (If A is an alias for an array 
object, then the result is the upper bound of the Nth index range from 
the declaration of A, not that of the object.)

A'LOW [(N)] Kind: Function.

Prefix: Any prefix A that is appropriate for an array object, or an alias thereof, 
or that denotes an array subtype whose index ranges are defined by a 
constraint.

Parameter: A locally static expression of type universal_integer, the value of 
which shall not exceed the dimensionality of A. If omitted, it defaults 
to 1.

Result type: Type of the Nth index range of A.

Result: Lower bound of the Nth index range of A. (If A is an alias for an array 
object, then the result is the lower bound of the Nth index range from 
the declaration of A, not that of the object.)
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A'RANGE [(N)] Kind: Range.

Prefix: Any prefix A that is appropriate for an array object, or an alias thereof, 
or that denotes an array subtype whose index ranges are defined by a 
constraint.

Parameter: A locally static expression of type universal_integer, the value of 
which shall not exceed the dimensionality of A. If omitted, it defaults 
to 1.

Result type: The type of the Nth index range of A.

Result: The range A'LEFT(N) to A'RIGHT(N) if the Nth index range of A is 
ascending, or the range A'LEFT(N) downto A'RIGHT(N) if the Nth 
index range of A is descending. (If A is an alias for an array object, 
then the result is determined by the Nth index range from the declara-
tion of A, not that of the object.)

A'REVERSE_RANGE [(N)] Kind: Range.

Prefix: Any prefix A that is appropriate for an array object, or an alias thereof, 
or that denotes an array subtype whose index ranges are defined by a 
constraint.

Parameter: A locally static expression of type universal_integer, the value of 
which shall not exceed the dimensionality of A. If omitted, it defaults 
to 1.

Result type: The type of the Nth index range of A.

Result: The range A'RIGHT(N) downto A'LEFT(N) if the Nth index range of 
A is ascending, or the range A'RIGHT(N) to A'LEFT(N) if the Nth 
index range of A is descending. (If A is an alias for an array object, 
then the result is determined by the Nth index range from the declara-
tion of A, not that of the object.)

A'LENGTH [(N)] Kind: Function.

Prefix: Any prefix A that is appropriate for an array object, or an alias thereof, 
or that denotes an array subtype whose index ranges are defined by a 
constraint.

Parameter: A locally static expression of type universal_integer, the value of 
which shall not exceed the dimensionality of A. If omitted, it defaults 
to 1.

Result type: universal_integer.

Result: Number of values in the Nth index range; i.e., if the Nth index range 
of A is a null range, then the result is 0. Otherwise, the result is the 
value of T'POS(A'HIGH(N)) – T'POS(A'LOW(N)) + 1, where T is the 
subtype of the Nth index of A.

A'ASCENDING [(N)] Kind: Function.

Prefix: Any prefix A that is appropriate for an array object, or an alias thereof, 
or that denotes an array subtype whose index ranges are defined by a 
constraint.

Parameter: A locally static expression of type universal integer, the value of 
which shall be greater than zero and shall not exceed the dimensional-
ity of A. If omitted, it defaults to 1.

Result type: Type BOOLEAN.

Result: TRUE if the Nth index range of A is defined with an ascending range; 
FALSE otherwise.
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16.2.4 Predefined attributes of signals

A'ELEMENT Kind: Subtype.

Prefix: Any prefix A that is appropriate for an array object, or an alias thereof, 
or that denotes an array subtype.

Result: If A is an array subtype, the result is the element subtype of A. If A is 
an array object, the result is the fully constrained element subtype that 
is the element subtype of A, together with constraints defining any 
index ranges that are determined by application of the rules of 5.3.2.2. 
(If A is an alias for an array object, then the result is determined by the 
declaration of A, not that of the object.)

S'DELAYED [(T)] Kind: Signal.

Prefix: Any signal denoted by the static signal name S.

Parameter: A static expression of type TIME that evaluates to a nonnegative 
value. If omitted, it defaults to 0 ns.

Result type: The base type of S.

Result: A signal equivalent to signal S delayed T units of time.

Let R be of the same subtype as S, let T >= 0 ns, and let P be a process statement of the 
form

P: process (S)
   begin
      R <= transport S after T;
end process;
Assuming that the initial value of R is the same as the initial value of S, then the attribute 
'DELAYED is defined such that S'DELAYED(T) = R for any T.

S'STABLE [(T)] Kind: Signal.

Prefix: Any signal denoted by the static signal name S.

Parameter: A static expression of type TIME that evaluates to a nonnegative 
value. If omitted, it defaults to 0 ns.

Result type: Type BOOLEAN.

Result: A signal that has the value TRUE when an event has not occurred on 
signal S for T units of time, and the value FALSE otherwise (see 
14.7.3.4).

S'QUIET [(T)] Kind: Signal.

Prefix: Any signal denoted by the static signal name S.

Parameter: A static expression of type TIME that evaluates to a nonnegative 
value. If omitted, it defaults to 0 ns.

Result type: Type BOOLEAN.

Result: A signal that has the value TRUE when the signal has been quiet for T 
units of time, and the value FALSE otherwise (see 14.7.3.1).
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S'TRANSACTION Kind: Signal.

Prefix: Any signal denoted by the static signal name S.

Result type: Type BIT.

Result: A signal whose value toggles to the inverse of its previous value in 
each simulation cycle in which signal S becomes active.

Restrictions: A description is erroneous if it depends on the initial value of 
S'TRANSACTION.

S'EVENT Kind: Function.

Prefix: Any signal denoted by the static signal name S.

Result type: Type BOOLEAN.

Result: A value that indicates whether an event has just occurred on signal S. 
Specifically:

For a scalar signal S, S'EVENT returns the value TRUE if an event has occurred on S dur-
ing the current simulation cycle; otherwise, it returns the value FALSE.

For a composite signal S, S'EVENT returns TRUE if an event has occurred on any scalar 
subelement of S during the current simulation cycle; otherwise, it returns FALSE.

S'ACTIVE Kind: Function.

Prefix: Any signal denoted by the static signal name S.

Result type: Type BOOLEAN.

Result: A value that indicates whether signal S is active. Specifically:

For a scalar signal S, S'ACTIVE returns the value TRUE if signal S is active during the 
current simulation cycle; otherwise, it returns the value FALSE.

For a composite signal S, S'ACTIVE returns TRUE if any scalar subelement of S is active 
during the current simulation cycle; otherwise, it returns FALSE.

S'LAST_EVENT Kind: Function.

Prefix: Any signal denoted by the static signal name S.

Result type: Type TIME.

Result: The amount of time that has elapsed since the last event occurred on 
signal S. Specifically:

For a signal S, S'LAST_EVENT returns the smallest value T of type TIME such that 
S'EVENT = TRUE during any simulation cycle at time NOW – T, if such a value exists; 
otherwise, it returns TIME'HIGH.

S'LAST_ACTIVE Kind: Function.

Prefix: Any signal denoted by the static signal name S.

Result type: Type TIME.

Result: The amount of time that has elapsed since the last time at which signal 
S was active. Specifically:

For a signal S, S'LAST_ACTIVE returns the smallest value T of type TIME such that 
S'ACTIVE = TRUE during any simulation cycle at time NOW – T, if such value exists; 
otherwise, it returns TIME'HIGH.
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NOTE 1—Since the attributes S'EVENT, S'ACTIVE, S'LAST_EVENT, S'LAST_ACTIVE, and S'LAST_VALUE are 
functions, not signals, they cannot cause the execution of a process, even though the value returned by such a function 
may change dynamically. It is thus recommended that the equivalent signal-valued attributes S'STABLE and S'QUIET, 
or expressions involving those attributes, be used in concurrent contexts such as guard conditions or concurrent signal 
assignments. Similarly, function STANDARD.NOW should not be used in concurrent contexts.

NOTE 2—S'DELAYED(0 ns) is not equal to S during any simulation cycle where S'EVENT is true.

NOTE 3—S'STABLE(0 ns) = (S'DELAYED(0 ns) = S), and S'STABLE(0 ns) is FALSE only during a simulation cycle 
in which S has had a transaction.

NOTE 4—For a given simulation cycle, S'QUIET(0 ns) is TRUE if and only if S is quiet for that simulation cycle.

S'LAST_VALUE Kind: Function.

Prefix: Any signal denoted by the static signal name S.

Result type: The base type of S.

Result: For a signal S, if an event has occurred on S in any simulation cycle, 
S'LAST_VALUE returns the value of S prior to the update of S in the 
last simulation cycle in which an event occurred; otherwise, 
S'LAST_VALUE returns the current value of S.

S'DRIVING Kind: Function.

Prefix: Any signal denoted by the static signal name S.

Result type: Type BOOLEAN.

Result: If the prefix denotes a scalar signal, the result is FALSE if the current 
value of the driver for S in the current process is determined by the 
null transaction; TRUE otherwise. If the prefix denotes a composite 
signal, the result is TRUE if and only if R'DRIVING is TRUE for 
every scalar subelement R of S; FALSE  otherwise. If the prefix 
denotes a null slice of a signal, the result is TRUE.

Restrictions: This attribute is available only from within a process, a concurrent 
statement with an equivalent process, or a subprogram. If the prefix 
denotes a port, it is an error if the port does not have a mode of inout, 
out, or buffer. It is also an error if the attribute name appears in a 
subprogram body that is not a declarative item contained within a 
process statement and the prefix is not a formal parameter of the given 
subprogram or of a parent of that subprogram. Finally, it is an error if 
the prefix denotes a subprogram formal parameter whose mode is not 
inout or out.

S'DRIVING_VALUE Kind: Function.

Prefix: Any signal denoted by the static signal name S.

Result type: The base type of S.

Result: If S is a scalar signal, the result is the current value of the driver for S 
in the current process. If S is a composite signal, the result is the 
aggregate of the values of R'DRIVING_VALUE for each element R 
of S. If S is a null slice, the result is a null slice.

Restrictions: This attribute is available only from within a process, a concurrent 
statement with an equivalent process, or a subprogram. If the prefix 
denotes a port, it is an error if the port does not have a mode of inout, 
out, or buffer. It is also an error if the attribute name appears in a 
subprogram body that is not a declarative item contained within a 
process statement and the prefix is not a formal parameter of the given 
subprogram or of a parent of that subprogram. Finally, it is an error if 
the prefix denotes a subprogram formal parameter whose mode is not 
inout or out, or if S'DRIVING is FALSE at the time of the evaluation 
of S'DRIVING_VALUE.
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NOTE 5—If S'STABLE(T) is FALSE, then, by definition, for some t where 0 ns < t < T, S'DELAYED(t) /= S.

NOTE 6—If Ts is the smallest value such that S'STABLE (Ts) is FALSE, then for all t where 0 ns < t < Ts, 
S'DELAYED(t) = S.

NOTE 7—S'EVENT should not be used within a postponed process (or a concurrent statement that has an equivalent 
postponed process) to determine if the prefix signal S caused the process to resume. However, S'LAST_EVENT = 0 ns 
can be used for this purpose.

NOTE 8—For a composite signal S, if an event on S as a whole is caused by an event on a subelement of S, the value of 
S'LAST_VALUE is the whole value of S before the update of the subelement. That value includes subelement values 
that may not have changed.

16.2.5 Predefined attributes of named entities

E'SIMPLE_NAME Kind: Value.

Prefix: Any named entity as defined in 7.2.

Result type: Type STRING.

Result: The simple name, character literal, or operator symbol of the named 
entity, without leading or trailing whitespace or quotation marks but 
with apostrophes (in the case of a character literal) and both a leading 
and trailing reverse solidus (backslash) (in the case of an extended 
identifier). In the case of a simple name or operator symbol, the 
characters are converted to their lowercase equivalents. In the case of 
an extended identifier, the case of the identifier is preserved, and any 
reverse solidus characters appearing as part of the identifier are 
represented with two consecutive reverse solidus characters.
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E'INSTANCE_NAME Kind: Value.

Prefix: Any named entity other than the local ports and generics of a compo-
nent declaration.

Result type: Type STRING.

Result: A string describing the hierarchical path starting at the root of the 
design hierarchy and descending to the named entity, including the 
names of instantiated design entities. Specifically:

The result string has the following syntax:

instance_name ::=  package_based_path | full_instance_based_path

package_based_path ::=
      leader library_logical_name leader
            { package_path_instance_element leader }
            [ local_item_name ]

package_path_instance_element ::=
        subprogram_designator signature
      | variable_simple_name
      | package_simple_name

full_instance_based_path ::=  leader full_path_to_instance [ local_item_name ]

full_path_to_instance ::=  { full_path_instance_element leader }

local_item_name ::=
        simple_name
      | character_literal
      | operator_symbol

full_path_instance_element ::=
      [ component_instantiation_label @ ]
            entity_simple_name ( architecture_simple_name )
      | block_label
      | generate_label
      | process_label
      | loop_label
      | subprogram_designator signature
      | variable_simple_name
      | package_simple_name

generate_label ::=  generate_label [ ( literal ) ]

process_label ::=  [ process_label ]

loop_label ::=  [ loop_label ]

leader ::=  :
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Package-based paths identify items declared within package library units. Full-instance-
based paths identify items within an elaborated design hierarchy.

A library logical name denotes a library (see 13.2). Since it is possible for multiple logical 
names to denote the same library, it is possible that the library logical name not be unique.

The local item name in E'INSTANCE_NAME equals E'SIMPLE_NAME, unless E 
denotes a library, package, subprogram, label, or variable of a protected type. In this latter 
case, the package-based path or full-instance-based path, as appropriate, will not contain a 
local item name.

There is one package path instance element for each subprogram body, shared variable of 
a protected type, or nested package in the package library unit between the package decla-
ration or package body of the package library unit and the named entity denoted by the 
prefix. Similarly, there is one full path instance element for each component instantiation, 
block statement, generate statement, process statement, loop statement, subprogram body, 
variable of a protected type, or package in the design hierarchy between the root design 
entity and the named entity denoted by the prefix.

In a full path instance element, the architecture simple name shall denote an architecture 
associated with the entity declaration designated by the entity simple name; furthermore, 
the component instantiation label (and the commercial at character following it) are 
required unless the entity simple name and the architecture simple name together denote 
the root design entity.

The literal in a generate label is required if the label denotes a for generate statement; the 
literal shall denote one of the values of the generate parameter.

A process statement with no label is denoted by an empty process label. Similarly, a loop 
statement with no label is denoted by an empty loop label.

The signature occurring after a subprogram designator in the result of the 
'INSTANCE_NAME or 'PATH_NAME attribute shall match the parameter and result type 
profile of the subprogram.  Each type mark in the signature is the type mark of the subtype 
indication of the corresponding formal parameter, or the return type mark, as appropriate, 
in the subprogram declaration.

All characters in basic identifiers appearing in the result are converted to their lowercase 
equivalents. Both a leading and trailing reverse solidus surround an extended identifier 
appearing in the result; any reverse solidus characters appearing as part of the identifier 
are represented with two consecutive reverse solidus characters.
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Examples:

library Lib;   --  All design units are in this library:
package P is   --  P'PATH_NAME = ":lib:p:"
               --  P'INSTANCE_NAME = ":lib:p:"
   procedure Proc (F: inout INTEGER);
      --  Proc'PATH_NAME = ":lib:p:proc [integer]:"
      --  Proc'INSTANCE_NAME = ":lib:p:proc [integer]:"
   constant C: INTEGER := 42;   --  C'PATH_NAME = ":lib:p:c"
end package P;                  --  C'INSTANCE_NAME = ":lib:p:c"

package body P is
   procedure Proc (F: inout INTEGER) is
      variable x: INTEGER;   --  x'PATH_NAME = ":lib:p:proc [integer]:x"
   begin                     --  x'INSTANCE_NAME = ":lib:p:proc [integer]:x"

E'PATH_NAME Kind: Value.

Prefix: Any named entity other than the local ports and generics of a compo-
nent declaration.

Result type: Type STRING.

Result: A string describing the hierarchical path starting at the root of the 
design hierarchy and descending to the named entity, excluding the 
name of instantiated design entities. Specifically:

The result string has the following syntax:

path_name ::=  package_based_path | instance_based_path

instance_based_path ::=
      leader path_to_instance [ local_item_name ]

path_to_instance ::=  { path_instance_element leader }

path_instance_element  ::=
        component_instantiation_label
      | entity_simple_name
      | block_label
      | generate_label
      | process_label
      | loop_label
      | subprogram_designator signature
      | variable_simple_name
      | package_simple_name

Package-based paths identify items declared within package library units. Instance-based 
paths identify items within an elaborated design hierarchy.

The local item name in E'PATH_NAME equals E'SIMPLE_NAME, unless E denotes a 
library, package, subprogram, label, or variable of a protected type. In this latter case, the 
package-based path or instance-based path, as appropriate, will not contain a local item 
name.

There is one package path instance element for each subprogram body or shared variable 
of a protected type or nested package in the package library unit between the package dec-
laration or package body of the package library unit and the named entity denoted by the 
prefix. Similarly, there is one path instance element for each component instantiation, 
block statement, generate statement, process statement, loop statement, subprogram body, 
variable of a protected type, or package in the design hierarchy between the root design 
entity and the named entity denoted by the prefix.
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      ·
      ·
      ·
   end;
end;

library Lib;
use Lib.P.all;             --  Assume that E is in Lib and
entity E is                --  E is the top-level design entity:
                           --  E'PATH_NAME = ":e:"
                           --  E'INSTANCE_NAME = ":e(a):"
   generic (G: INTEGER);   --  G'PATH_NAME = ":e:g"
                           --  G'INSTANCE_NAME = ":e(a):g"
   port (P: in INTEGER);   --  P'PATH_NAME = ":e:p"
end entity E;              --  P'INSTANCE_NAME = ":e(a):p"

architecture A of E is
   signal S: BIT_VECTOR (1 to G);   --  S'PATH_NAME = ":e:s"
                                    --  S'INSTANCE_NAME = ":e(a):s"
   procedure Proc1 (signal sp1: NATURAL; C: out INTEGER) is
      --  Proc1'PATH_NAME = ":e:proc1[natural,integer]:"
      --  Proc1'INSTANCE_NAME = ":e(a):proc1[natural,integer]:"
      --  C'PATH_NAME = ":e:proc1[natural,integer]:c"
      --  C'INSTANCE_NAME = ":e(a):proc1[natural,integer]:c"
      variable max: DELAY_LENGTH;
         --  max'PATH_NAME = ":e:proc1[natural,integer]:max"
         --  max'INSTANCE_NAME = ":e(a):proc1[natural,integer]:max"
   begin
      max := sp1 * ns;
      wait on sp1 for max;
      c := sp1;
   end procedure Proc1;

begin
   p1: process
      variable T: INTEGER := 12;   --  T'PATH_NAME =  :e:p1:t"
   begin                           --  T'INSTANCE_NAME = ":e(a):p1:t"
      ·
      ·
      ·
   end process p1;

   process
      variable T: INTEGER := 12;   --  T'PATH_NAME = ":e::t"
   begin                           --  T'INSTANCE_NAME = ":e(a)::t"
      ·
      ·
      ·
   end process ;
end architecture;

entity Bottom is
   generic (GBottom: INTEGER);
   port (PBottom: INTEGER);
end entity Bottom;

architecture BottomArch of Bottom is
   signal SBottom: INTEGER;
begin
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   ProcessBottom: process
      variable V: INTEGER;
   begin
      if GBottom = 4 then
         assert V'Simple_Name = "v"
                and V'Path_Name = ":top:b1:b2:g1(4):b3:l1:processbottom:v"
                and V'Instance_Name =
      ":top(top):b1:b2:g1(4):b3:l1@bottom(bottomarch):processbottom:v";
         assert GBottom'Simple_Name = "gbottom"
                and GBottom'Path_Name = ":top:b1:b2:g1(4):b3:l1:gbottom"
                and GBottom'Instance_Name =
                ":top(top):b1:b2:g1(4):b3:l1@bottom(bottomarch):gbottom";

      elsif GBottom = -1 then
         assert V'Simple_Name = "v"
                and V'Path_Name = ":top:l2:processbottom:v"
                and V'Instance_Name =
                ":top(top):l2@bottom(bottomarch):processbottom:v";
         assert GBottom'Simple_Name = "gbottom"
                and GBottom'Path_Name = ":top:l2:gbottom"
                and GBottom'Instance_Name =
                ":top(top):l2@bottom(bottomarch):gbottom";
      end if;
      wait;
   end process ProcessBottom;
end architecture BottomArch;

entity Top is end Top;

architecture Top of Top is
   component BComp is
      generic (GComp: INTEGER);
      port (PComp: INTEGER);

   end component BComp;
   signal S: INTEGER;
begin
   B1: block
      signal S: INTEGER;
   begin
      B2: block
         signal S: INTEGER;
      begin
         G1: for I in 1 to 10 generate
            B3: block
               signal S: INTEGER;
               for L1: BComp use entity Work.Bottom(BottomArch)
                  generic map (GBottom => GComp)
                  port map (PBottom => PComp);
            begin
               L1: BComp generic map (I) port map (S);
               P1: process
                  variable V: INTEGER;
               begin
                  if I = 7 then
                     assert V'Simple_Name = "v"
                            and V'Path_Name = ":top:b1:b2:g1(7):b3:p1:v"
                            and V'Instance_Name =
                                ":top(top):b1:b2:g1(7):b3:p1:v";
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                     assert P1'Simple_Name = "p1"
                            and P1'Path_Name = ":top:b1:b2:g1(7):b3:p1:"
                            and P1'Instance_Name =
                                ":top(top):b1:b2:g1(7):b3:p1:";
                     assert S'Simple_Name = "s"
                            and S'Path_Name = ":top:b1:b2:g1(7):b3:s"
                            and S'Instance_Name =
                                ":top(top):b1:b2:g1(7):b3:s";
                     assert B1.S'Simple_Name = "s"
                            and B1.S'Path_Name = ":top:b1:s"
                            and B1.S'Instance_Name = ":top(top):b1:s";
                  end if;
                  wait;
               end process P1;
            end block B3;
         end generate;
      end block B2;
   end block B1;
   L2: BComp generic map (-1) port map (S);
end architecture Top;

configuration TopConf of Top is
   for Top
      for L2: BComp use
         entity Work.Bottom(BottomArch)
            generic map (GBottom => GComp)
            port map (PBottom => PComp);
      end for;
   end for;
end configuration TopConf;
NOTE 1—The values of E'PATH_NAME and E'INSTANCE_NAME are not unique. Specifically, named entities in two 
different, unlabeled processes may have the same path names or instance names. Overloaded subprograms, and named 
entities within them, may also have the same path names or instance names.

NOTE 2—If the prefix to the attributes 'SIMPLE_NAME, 'PATH_NAME, or 'INSTANCE_NAME denotes an alias, the 
result is respectively the simple name, path name or instance name of the alias. See 8.6.

16.3 Package STANDARD

Package STANDARD predefines a number of types, subtypes, and functions. An implicit context clause 
naming this package is assumed to exist at the beginning of each design unit. Package STANDARD must 
not be modified by the user.

The operations that are predefined for the types declared for package STANDARD are given in comments 
since they are implicitly declared. Italics are used for pseudo-names of anonymous types (such as 
universal_integer), formal parameters, and undefined information (such as implementation_defined).

package STANDARD is

   --  Predefined enumeration types:
   type BOOLEAN is (FALSE, TRUE);

   --  The predefined operations for this type are as follows:

   --  function "and"  (anonymous, anonymous: BOOLEAN) return BOOLEAN;
   --  function "or"   (anonymous, anonymous: BOOLEAN) return BOOLEAN;
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   --  function "nand" (anonymous, anonymous: BOOLEAN) return BOOLEAN;
   --  function "nor"  (anonymous, anonymous: BOOLEAN) return BOOLEAN;
   --  function "xor"  (anonymous, anonymous: BOOLEAN) return BOOLEAN;
   --  function "xnor" (anonymous, anonymous: BOOLEAN) return BOOLEAN;

   --  function "not"  (anonymous: BOOLEAN) return BOOLEAN;

   --  function "="    (anonymous, anonymous: BOOLEAN) return BOOLEAN;
   --  function "/="   (anonymous, anonymous: BOOLEAN) return BOOLEAN;
   --  function "<"    (anonymous, anonymous: BOOLEAN) return BOOLEAN;
   --  function "<="   (anonymous, anonymous: BOOLEAN) return BOOLEAN;
   --  function ">"    (anonymous, anonymous: BOOLEAN) return BOOLEAN;
   --  function ">="   (anonymous, anonymous: BOOLEAN) return BOOLEAN;

   --  function MINIMUM (L, R: BOOLEAN) return BOOLEAN;
   --  function MAXIMUM (L, R: BOOLEAN) return BOOLEAN;

   --  function RISING_EDGE  (signal S: BOOLEAN) return BOOLEAN;
   --  function FALLING_EDGE (signal S: BOOLEAN) return BOOLEAN;

   type BIT is ('0', '1');

   --  The predefined operations for this type are as follows:

   --  function "and"  (anonymous, anonymous: BIT) return BIT;
   --  function "or"   (anonymous, anonymous: BIT) return BIT;
   --  function "nand" (anonymous, anonymous: BIT) return BIT;
   --  function "nor"  (anonymous, anonymous: BIT) return BIT;
   --  function "xor"  (anonymous, anonymous: BIT) return BIT;
   --  function "xnor" (anonymous, anonymous: BIT) return BIT;

   --  function "not"  (anonymous: BIT) return BIT;

   --  function "="    (anonymous, anonymous: BIT) return BOOLEAN;
   --  function "/="   (anonymous, anonymous: BIT) return BOOLEAN;
   --  function "<"    (anonymous, anonymous: BIT) return BOOLEAN;
   --  function "<="   (anonymous, anonymous: BIT) return BOOLEAN;
   --  function ">"    (anonymous, anonymous: BIT) return BOOLEAN;
   --  function ">="   (anonymous, anonymous: BIT) return BOOLEAN;

   --  function "?="   (anonymous, anonymous: BIT) return BIT;
   --  function "?/="  (anonymous, anonymous: BIT) return BIT;
   --  function "?<"   (anonymous, anonymous: BIT) return BIT;
   --  function "?<="  (anonymous, anonymous: BIT) return BIT;
   --  function "?>"   (anonymous, anonymous: BIT) return BIT;
   --  function "?>="  (anonymous, anonymous: BIT) return BIT;

   --  function MINIMUM (L, R: BIT) return BIT;
   --  function MAXIMUM (L, R: BIT) return BIT;

   --  function "??"   (anonymous: BIT) return BOOLEAN;

   --  function RISING_EDGE  (signal S: BIT) return BOOLEAN;
   --  function FALLING_EDGE (signal S: BIT) return BOOLEAN;
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   type CHARACTER is (

      NUL,    SOH,    STX,    ETX,    EOT,    ENQ,    ACK,    BEL,
      BS,     HT,     LF,     VT,     FF,     CR,     SO,     SI,
      DLE,    DC1,    DC2,    DC3,    DC4,    NAK,    SYN,    ETB,
      CAN,    EM,     SUB,    ESC,    FSP,    GSP,    RSP,    USP,

      ' ',    '!',    '"',    '#',    '$',    '%',    '&',    ''',
      '(',    ')',    '*',    '+',    ',',    '-',    '.',    '/',
      '0',    '1',    '2',    '3',    '4',    '5',    '6',    '7',
      '8',    '9',    ':',    ';',    '<',    '=',    '>',    '?',

      '@',    'A',    'B',    'C',    'D',    'E',    'F',    'G',
      'H',    'I',    'J',    'K',    'L',    'M',    'N',    'O',
      'P',    'Q',    'R',    'S',    'T',    'U',    'V',    'W',
      'X',    'Y',    'Z',    '[',    '\',    ']',    '^',    '_',

      '`',    'a',    'b',    'c',    'd',    'e',    'f',    'g',
      'h',    'i',    'j',    'k',    'l',    'm',    'n',    'o',
      'p',    'q',    'r',    's',    't',    'u',    'v',    'w',
      'x',    'y',    'z',    '{',    '|',    '}',    '~',    DEL,

      C128,   C129,   C130,   C131,   C132,   C133,   C134,   C135,
      C136,   C137,   C138,   C139,   C140,   C141,   C142,   C143,
      C144,   C145,   C146,   C147,   C148,   C149,   C150,   C151,
      C152,   C153,   C154,   C155,   C156,   C157,   C158,   C159,

      ' ',9    '¡',    '¢',    '£',    '¤',    '¥',    '¦',    '§',
      '¨',    '©',    'ª',    '«',    '¬',    '-',10    '®',    '¯',
      '°',    '±',    '²',    '³',    '´',    'μ',    '¶',    '·',
      '¸',    '¹',    'º',    '»',    '¼',    '½',    '¾',    '¿',

      'À',    'Á',    'Â',    'Ã',    'Ä',    'Å',    'Æ',    'Ç',
      'È',    'É',    'Ê',    'Ë',    'Ì',    'Í',    'Î',    'Ï',
      'Ð',    'Ñ',    'Ò',    'Ó',    'Ô',    'Õ',    'Ö',    '×',
      'Ø',    'Ù',    'Ú',    'Û',    'Ü',    'Ý',    'Þ',    'ß',

      'à',    'á',    'â',    'ã',    'ä',    'å',    'æ',    'ç',
      'è',    'é',    'ê',    'ë',    'ì',    'í',    'î',    'ï',
      'ð',    'ñ',    'ò',    'ó',    'ô',    'õ',    'ö',    '÷',
      'ø',    'ù',    'ú',    'û',    'ü',    'ý',    'þ',    'ÿ');

   --  The predefined operations for this type are as follows:

   --  function "="  (anonymous, anonymous: CHARACTER)
   --                                       return BOOLEAN;
   --  function "/=" (anonymous, anonymous: CHARACTER)
   --                                       return BOOLEAN;
   --  function "<"  (anonymous, anonymous: CHARACTER)
   --                                       return BOOLEAN;
9The nonbreaking space character.
10The soft hyphen character.
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   --  function "<=" (anonymous, anonymous: CHARACTER)
   --                                       return BOOLEAN;
   --  function ">"  (anonymous, anonymous: CHARACTER)
   --                                       return BOOLEAN;
   --  function ">=" (anonymous, anonymous: CHARACTER)
   --                                       return BOOLEAN;

   --  function MINIMUM (L, R: CHARACTER) return CHARACTER;
   --  function MAXIMUM (L, R: CHARACTER) return CHARACTER;

   type SEVERITY_LEVEL is (NOTE, WARNING, ERROR, FAILURE);

   --  The predefined operations for this type are as follows:

   --  function "="  (anonymous, anonymous: SEVERITY_LEVEL)
   --                                       return BOOLEAN;
   --  function "/=" (anonymous, anonymous: SEVERITY_LEVEL)
   --                                       return BOOLEAN;
   --  function "<"  (anonymous, anonymous: SEVERITY_LEVEL)
   --                                       return BOOLEAN;
   --  function "<=" (anonymous, anonymous: SEVERITY_LEVEL)
   --                                       return BOOLEAN;
   --  function ">"  (anonymous, anonymous: SEVERITY_LEVEL)
   --                                       return BOOLEAN;
   --  function ">=" (anonymous, anonymous: SEVERITY_LEVEL)
   --                                       return BOOLEAN;

   --  function MINIMUM (L, R: SEVERITY_LEVEL) return SEVERITY_LEVEL;
   --  function MAXIMUM (L, R: SEVERITY_LEVEL) return SEVERITY_LEVEL;

   --  type universal_integer  is range implementation_defined;

   --  The predefined operations for this type are as follows:

   --  function "="   (anonymous, anonymous: universal_integer)
   --                                       return BOOLEAN;
   --  function "/="  (anonymous, anonymous: universal_integer)
   --                                       return BOOLEAN;
   --  function "<"   (anonymous, anonymous: universal_integer)
   --                                       return BOOLEAN;
   --  function "<="  (anonymous, anonymous: universal_integer)
   --                                       return BOOLEAN;
   --  function ">"   (anonymous, anonymous: universal_integer)
   --                                       return BOOLEAN;
   --  function ">="  (anonymous, anonymous: universal_integer)
   --                                       return BOOLEAN;
   --  function "+"   (anonymous: universal_integer)
   --                                       return universal_integer;
   --  function "-"   (anonymous: universal_integer)
   --                                       return universal_integer;
   --  function "abs" (anonymous: universal_integer)
   --                                       return universal_integer;

   --  function "+"   (anonymous, anonymous: universal_integer)
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   --                                       return universal_integer;
   --  function "-"   (anonymous, anonymous: universal_integer)
   --                                       return universal_integer;
   --  function "*"   (anonymous, anonymous: universal_integer)
   --                                       return universal_integer;
   --  function "/"   (anonymous, anonymous: universal_integer)
   --                                       return universal_integer;
   --  function "mod" (anonymous, anonymous: universal_integer)
   --                                       return universal_integer;
   --  function "rem" (anonymous, anonymous: universal_integer)
   --                                       return universal_integer;

   --  function MINIMUM (L, R: universal_integer)
   --                                       return universal_integer;
   --  function MAXIMUM (L, R: universal_integer)
   --                                       return universal_integer;

   --  type universal_real  is range implementation_defined;

   --  The predefined operations for this type are as follows:

   --  function "="   (anonymous, anonymous: universal_real)
   --                                        return BOOLEAN;
   --  function "/="  (anonymous, anonymous: universal_real)
   --                                        return BOOLEAN;
   --  function "<"   (anonymous, anonymous: universal_real)
   --                                        return BOOLEAN;
   --  function "<="  (anonymous, anonymous: universal_real)
   --                                        return BOOLEAN;
   --  function ">"   (anonymous, anonymous: universal_real)
   --                                        return BOOLEAN;
   --  function ">="  (anonymous, anonymous: universal_real)
   --                                        return BOOLEAN;

   --  function "+"   (anonymous: universal_real)
   --                                        return universal_real;
   --  function "-"   (anonymous: universal_real)
   --                                        return universal_real;
   --  function "abs" (anonymous: universal_real)
   --                                        return universal_real;

   --  function "+"   (anonymous, anonymous: universal_real)
   --                                        return universal_real;
   --  function "-"   (anonymous, anonymous: universal_real)
   --                                        return universal_real;
   --  function "*"   (anonymous, anonymous: universal_real)
   --                                        return universal_real;
   --  function "/"   (anonymous, anonymous: universal_real)
   --                                        return universal_real;

   --  function "*"   (anonymous: universal_real;
   --                  anonymous: universal_integer)
   --                                        return universal_real;
   --  function "*"   (anonymous: universal_integer;
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   --                  anonymous: universal_real)
   --                                        return universal_real;
   --  function "/"   (anonymous: universal_real;
   --                  anonymous: universal_integer)
   --                                        return universal_real;

   --  function MINIMUM (L, R: universal_real) return universal_real;
   --  function MAXIMUM (L, R: universal_real) return universal_real;

   --  Predefined numeric types:
   type INTEGER is range implementation_defined;

   --  The predefined operations for this type are as follows:

   --  function "**"  (anonymous: universal_integer;
   --                  anonymous: INTEGER) return universal_integer;
   --  function "**"  (anonymous: universal_real;
   --                  anonymous: INTEGER) return universal_real;

   --  function "="   (anonymous, anonymous: INTEGER) return BOOLEAN;
   --  function "/="  (anonymous, anonymous: INTEGER) return BOOLEAN;
   --  function "<"   (anonymous, anonymous: INTEGER) return BOOLEAN;
   --  function "<="  (anonymous, anonymous: INTEGER) return BOOLEAN;
   --  function ">"   (anonymous, anonymous: INTEGER) return BOOLEAN;
   --  function ">="  (anonymous, anonymous: INTEGER) return BOOLEAN;
   --  function "+"   (anonymous: INTEGER) return INTEGER;
   --  function "-"   (anonymous: INTEGER) return INTEGER;
   --  function "abs" (anonymous: INTEGER) return INTEGER;

   --  function "+"   (anonymous, anonymous: INTEGER) return INTEGER;
   --  function "-"   (anonymous, anonymous: INTEGER) return INTEGER;
   --  function "*"   (anonymous, anonymous: INTEGER) return INTEGER;
   --  function "/"   (anonymous, anonymous: INTEGER) return INTEGER;
   --  function "mod" (anonymous, anonymous: INTEGER) return INTEGER;
   --  function "rem" (anonymous, anonymous: INTEGER) return INTEGER;

   --  function "**"  (anonymous: INTEGER; anonymous: INTEGER)
   --                                        return INTEGER;

   --  function MINIMUM (L, R: INTEGER) return INTEGER;
   --  function MAXIMUM (L, R: INTEGER) return INTEGER;

   type REAL is range implementation_defined;

   --  The predefined operations for this type are as follows:

   --  function "="   (anonymous, anonymous: REAL) return BOOLEAN;
   --  function "/="  (anonymous, anonymous: REAL) return BOOLEAN;
   --  function "<"   (anonymous, anonymous: REAL) return BOOLEAN;
   --  function "<="  (anonymous, anonymous: REAL) return BOOLEAN;
   --  function ">"   (anonymous, anonymous: REAL) return BOOLEAN;
   --  function ">="  (anonymous, anonymous: REAL) return BOOLEAN;

   --  function "+"   (anonymous: REAL) return REAL;
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   --  function "-"   (anonymous: REAL) return REAL;
   --  function "abs" (anonymous: REAL) return REAL;

   --  function "+"   (anonymous, anonymous: REAL) return REAL;
   --  function "-"   (anonymous, anonymous: REAL) return REAL;
   --  function "*"   (anonymous, anonymous: REAL) return REAL;
   --  function "/"   (anonymous, anonymous: REAL) return REAL;

   --  function "**"  (anonymous: REAL; anonymous: INTEGER) return REAL;

   --  function MINIMUM (L, R: REAL) return REAL;
   --  function MAXIMUM (L, R: REAL) return REAL;

   --  Predefined type TIME:

   type TIME is range implementation_defined
      units
         fs;                       --  femtosecond
         ps   =  1000 fs;          --  picosecond
         ns   =  1000 ps;          --  nanosecond
         us   =  1000 ns;          --  microsecond
         ms   =  1000 us;          --  millisecond
         sec  =  1000 ms;          --  second
         min  =  60 sec;           --  minute
         hr   =  60 min;           --  hour
      end units;

   --  The predefined operations for this type are as follows:

   --  function "="   (anonymous, anonymous: TIME) return BOOLEAN;
   --  function "/="  (anonymous, anonymous: TIME) return BOOLEAN;
   --  function "<"   (anonymous, anonymous: TIME) return BOOLEAN;
   --  function "<="  (anonymous, anonymous: TIME) return BOOLEAN;
   --  function ">"   (anonymous, anonymous: TIME) return BOOLEAN;
   --  function ">="  (anonymous, anonymous: TIME) return BOOLEAN;
   --  function "+"   (anonymous: TIME) return TIME;
   --  function "-    (anonymous: TIME) return TIME;
   --  function "abs" (anonymous: TIME) return TIME;

   --  function "+"   (anonymous, anonymous: TIME) return TIME;
   --  function "-"   (anonymous, anonymous: TIME) return TIME;

   --  function "*"   (anonymous: TIME;    anonymous: INTEGER)
   --                                        return TIME;
   --  function "*"   (anonymous: TIME;    anonymous: REAL)
   --                                        return TIME;
   --  function "*"   (anonymous: INTEGER; anonymous: TIME)
   --                                        return TIME;
   --  function "*"   (anonymous: REAL;    anonymous: TIME)
   --                                        return TIME;
   --  function "/"   (anonymous: TIME;    anonymous: INTEGER)
   --                                        return TIME;
   --  function "/"   (anonymous: TIME;    anonymous: REAL)
   --                                        return TIME;
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   --  function "/"   (anonymous, anonymous: TIME)
   --                                        return universal_integer;

   --  function "mod" (anonymous, anonymous: TIME) return TIME;
   --  function "rem" (anonymous, anonymous: TIME) return TIME;

   --  function MINIMUM (L, R: TIME) return TIME;
   --  function MAXIMUM (L, R: TIME) return TIME;

   subtype DELAY_LENGTH is TIME range 0 fs to TIME'HIGH;

   --  A function that returns the current simulation time, Tc,
   -- (see 14.7.5.1):

   impure function NOW return DELAY_LENGTH;

   --  Predefined numeric subtypes:

   subtype NATURAL is INTEGER range 0 to INTEGER'HIGH;
   subtype POSITIVE is INTEGER range 1 to INTEGER'HIGH;

   --  Predefined array types:

   type STRING is array (POSITIVE range <>) of CHARACTER;

   --  The predefined operations for these types are as follows:

   --  function "="  (anonymous, anonymous: STRING) return BOOLEAN;
   --  function "/=" (anonymous, anonymous: STRING) return BOOLEAN;
   --  function "<"  (anonymous, anonymous: STRING) return BOOLEAN;
   --  function "<=" (anonymous, anonymous: STRING) return BOOLEAN;
   --  function ">"  (anonymous, anonymous: STRING) return BOOLEAN;
   --  function ">=" (anonymous, anonymous: STRING) return BOOLEAN;

   --  function "&"  (anonymous: STRING;    anonymous: STRING)
   --                                       return STRING;
   --  function "&"  (anonymous: STRING;    anonymous: CHARACTER)
   --                                       return STRING;
   --  function "&"  (anonymous: CHARACTER; anonymous: STRING)
   --                                       return STRING;
   --  function "&"  (anonymous: CHARACTER; anonymous: CHARACTER)
   --                                       return STRING;

   --  function MINIMUM (L, R: STRING) return STRING;
   --  function MAXIMUM (L, R: STRING) return STRING;

   --  function MINIMUM (L: STRING) return CHARACTER;
   --  function MAXIMUM (L: STRING) return CHARACTER;

   type BOOLEAN_VECTOR is array (NATURAL range <>) of BOOLEAN;

   --  The predefined operations for this type are as follows:
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   --  function "and"  (anonymous, anonymous: BOOLEAN_VECTOR)
   --                                       return BOOLEAN_VECTOR;
   --  function "or"   (anonymous, anonymous: BOOLEAN_VECTOR)
   --                                       return BOOLEAN_VECTOR;
   --  function "nand" (anonymous, anonymous: BOOLEAN_VECTOR)
   --                                       return BOOLEAN_VECTOR;
   --  function "nor"  (anonymous, anonymous: BOOLEAN_VECTOR)
   --                                       return BOOLEAN_VECTOR;
   --  function "xor"  (anonymous, anonymous: BOOLEAN_VECTOR)
   --                                       return BOOLEAN_VECTOR;
   --  function "xnor" (anonymous, anonymous: BOOLEAN_VECTOR)
   --                                       return BOOLEAN_VECTOR;

   --  function "not"  (anonymous: BOOLEAN_VECTOR)
   --                                       return BOOLEAN_VECTOR;

   --  function "and"  (anonymous: BOOLEAN_VECTOR; anonymous: BOOLEAN)
   --                                       return BOOLEAN_VECTOR;
   --  function "and"  (anonymous: BOOLEAN; anonymous: BOOLEAN_VECTOR)
   --                                       return BOOLEAN_VECTOR;
   --  function "or"   (anonymous: BOOLEAN_VECTOR; anonymous: BOOLEAN)
   --                                       return BOOLEAN_VECTOR;
   --  function "or"   (anonymous: BOOLEAN; anonymous : BOOLEAN_VECTOR)
   --                                       return BOOLEAN_VECTOR;
   --  function "nand" (anonymous: BOOLEAN_VECTOR; anonymous: BOOLEAN)
   --                                       return BOOLEAN_VECTOR;
   --  function "nand" (anonymous: BOOLEAN; anonymous: BOOLEAN_VECTOR)
   --                                       return BOOLEAN_VECTOR;
   --  function "nor"  (anonymous: BOOLEAN_VECTOR; anonymous: BOOLEAN)
   --                                       return BOOLEAN_VECTOR;
   --  function "nor"  (anonymous: BOOLEAN; anonymous: BOOLEAN_VECTOR)
   --                                       return BOOLEAN_VECTOR;
   --  function "xor"  (anonymous: BOOLEAN_VECTOR; anonymous: BOOLEAN)
   --                                       return BOOLEAN_VECTOR;
   --  function "xor"  (anonymous: BOOLEAN; anonymous: BOOLEAN_VECTOR)
   --                                       return BOOLEAN_VECTOR;
   --  function "xnor" (anonymous: BOOLEAN_VECTOR; anonymous: BOOLEAN)
   --                                       return BOOLEAN_VECTOR;
   --  function "xnor" (anonymous: BOOLEAN; anonymous: BOOLEAN_VECTOR)
   --                                       return BOOLEAN_VECTOR;

   --  function "and"  (anonymous: BOOLEAN_VECTOR) return BOOLEAN;
   --  function "or"   (anonymous: BOOLEAN_VECTOR) return BOOLEAN;
   --  function "nand" (anonymous: BOOLEAN_VECTOR) return BOOLEAN;
   --  function "nor"  (anonymous: BOOLEAN_VECTOR) return BOOLEAN;
   --  function "xor"  (anonymous: BOOLEAN_VECTOR) return BOOLEAN;
   --  function "xnor" (anonymous: BOOLEAN_VECTOR) return BOOLEAN;

   --  function "sll"  (anonymous: BOOLEAN_VECTOR; anonymous: INTEGER)
   --                                       return BOOLEAN_VECTOR;
   --  function "srl"  (anonymous: BOOLEAN_VECTOR; anonymous: INTEGER)
   --                                       return BOOLEAN_VECTOR;
   --  function "sla"  (anonymous: BOOLEAN_VECTOR; anonymous: INTEGER)
   --                                       return BOOLEAN_VECTOR;

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



- 263 - IEC 61691-1-1:2011(E)�
IEEE Std 1076-2008

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

   --  function "sra"  (anonymous: BOOLEAN_VECTOR; anonymous: INTEGER)
   --                                       return BOOLEAN_VECTOR;
   --  function "rol"  (anonymous: BOOLEAN_VECTOR; anonymous: INTEGER)
   --                                       return BOOLEAN_VECTOR;
   --  function "ror"  (anonymous: BOOLEAN_VECTOR; anonymous: INTEGER)
   --                                       return BOOLEAN_VECTOR;

   --  function "="    (anonymous, anonymous: BOOLEAN_VECTOR)
   --                                       return BOOLEAN;
   --  function "/="   (anonymous, anonymous: BOOLEAN_VECTOR)
   --                                       return BOOLEAN;
   --  function "<"    (anonymous, anonymous: BOOLEAN_VECTOR)
   --                                       return BOOLEAN;
   --  function "<="   (anonymous, anonymous: BOOLEAN_VECTOR)
   --                                       return BOOLEAN;
   --  function ">"    (anonymous, anonymous: BOOLEAN_VECTOR)
   --                                       return BOOLEAN;
   --  function ">="   (anonymous, anonymous: BOOLEAN_VECTOR)
   --                                       return BOOLEAN;

   --  function "?="   (anonymous, anonymous: BOOLEAN_VECTOR)
   --                                       return BOOLEAN;
   --  function "?/="  (anonymous, anonymous: BOOLEAN_VECTOR)
   --                                       return BOOLEAN;

   --  function "&"    (anonymous: BOOLEAN_VECTOR;
   --                   anonymous: BOOLEAN_VECTOR)
   --                                       return BOOLEAN_VECTOR;
   --  function "&"    (anonymous: BOOLEAN_VECTOR; anonymous: BOOLEAN)
   --                                       return BOOLEAN_VECTOR;
   --  function "&"    (anonymous: BOOLEAN; anonymous: BOOLEAN_VECTOR)
   --                                       return BOOLEAN_VECTOR;
   --  function "&"    (anonymous: BOOLEAN; anonymous: BOOLEAN)
   --                                       return BOOLEAN_VECTOR;

   --  function MINIMUM (L, R: BOOLEAN_VECTOR) return BOOLEAN_VECTOR;
   --  function MAXIMUM (L, R: BOOLEAN_VECTOR) return BOOLEAN_VECTOR;

   --  function MINIMUM (L: BOOLEAN_VECTOR) return BOOLEAN;
   --  function MAXIMUM (L: BOOLEAN_VECTOR) return BOOLEAN;

   type BIT_VECTOR is array (NATURAL range <>) of BIT;

   --  The predefined operations for this type are as follows:

   --  function "and"  (anonymous, anonymous: BIT_VECTOR)
   --                                        return BIT_VECTOR;
   --  function "or"   (anonymous, anonymous: BIT_VECTOR)
   --                                        return BIT_VECTOR;
   --  function "nand" (anonymous, anonymous: BIT_VECTOR)
   --                                        return BIT_VECTOR;
   --  function "nor"  (anonymous, anonymous: BIT_VECTOR)
   --                                        return BIT_VECTOR;
   --  function "xor"  (anonymous, anonymous: BIT_VECTOR)
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   --                                        return BIT_VECTOR;
   --  function "xnor" (anonymous, anonymous: BIT_VECTOR)
   --                                        return BIT_VECTOR;

   --  function "not"  (anonymous: BIT_VECTOR) return BIT_VECTOR;

   --  function "and"  (anonymous: BIT_VECTOR; anonymous : BIT)
   --                                        return BIT_VECTOR;
   --  function "and"  (anonymous: BIT; anonymous : BIT_VECTOR)
   --                                        return BIT_VECTOR;
   --  function "or"   (anonymous: BIT_VECTOR; anonymous : BIT)
   --                                        return BIT_VECTOR;
   --  function "or"   (anonymous: BIT; anonymous : BIT_VECTOR)
   --                                        return BIT_VECTOR;
   --  function "nand" (anonymous: BIT_VECTOR; anonymous : BIT)
   --                                        return BIT_VECTOR;
   --  function "nand" (anonymous: BIT; anonymous : BIT_VECTOR)
   --                                        return BIT_VECTOR;
   --  function "nor"  (anonymous: BIT_VECTOR; anonymous : BIT)
   --                                        return BIT_VECTOR;
   --  function "nor"  (anonymous: BIT; anonymous : BIT_VECTOR)
   --                                        return BIT_VECTOR;
   --  function "xor"  (anonymous: BIT_VECTOR; anonymous : BIT)
   --                                        return BIT_VECTOR;
   --  function "xor"  (anonymous: BIT; anonymous : BIT_VECTOR)
   --                                        return BIT_VECTOR;
   --  function "xnor" (anonymous: BIT_VECTOR; anonymous : BIT)
   --                                        return BIT_VECTOR;
   --  function "xnor" (anonymous: BIT; anonymous : BIT_VECTOR)
   --                                        return BIT_VECTOR;

   --  function "and"  (anonymous: BIT_VECTOR) return BIT;
   --  function "or"   (anonymous: BIT_VECTOR) return BIT;
   --  function "nand" (anonymous: BIT_VECTOR) return BIT;
   --  function "nor"  (anonymous: BIT_VECTOR) return BIT;
   --  function "xor"  (anonymous: BIT_VECTOR) return BIT;
   --  function "xnor" (anonymous: BIT_VECTOR) return BIT;

   --  function "sll"  (anonymous: BIT_VECTOR; anonymous: INTEGER)
   --                                        return BIT_VECTOR;
   --  function "srl"  (anonymous: BIT_VECTOR; anonymous: INTEGER)
   --                                        return BIT_VECTOR;
   --  function "sla"  (anonymous: BIT_VECTOR; anonymous: INTEGER)
   --                                        return BIT_VECTOR;
   --  function "sra"  (anonymous: BIT_VECTOR; anonymous: INTEGER)
   --                                        return BIT_VECTOR;
   --  function "rol"  (anonymous: BIT_VECTOR; anonymous: INTEGER)
   --                                        return BIT_VECTOR;
   --  function "ror"  (anonymous: BIT_VECTOR; anonymous: INTEGER)
   --                                        return BIT_VECTOR;

   --  function "="    (anonymous, anonymous: BIT_VECTOR)
   --                                        return BOOLEAN;
   --  function "/="   (anonymous, anonymous: BIT_VECTOR)
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   --                                        return BOOLEAN;
   --  function "<"    (anonymous, anonymous: BIT_VECTOR)
   --                                        return BOOLEAN;
   --  function "<="   (anonymous, anonymous: BIT_VECTOR)
   --                                        return BOOLEAN;
   --  function ">"    (anonymous, anonymous: BIT_VECTOR)
   --                                        return BOOLEAN;
   --  function ">="   (anonymous, anonymous: BIT_VECTOR)
   --                                        return BOOLEAN;

   --  function "?="   (anonymous, anonymous: BIT_VECTOR) return BIT;
   --  function "?/="  (anonymous, anonymous: BIT_VECTOR) return BIT;

   --  function "&"    (anonymous: BIT_VECTOR; anonymous: BIT_VECTOR)
   --                                        return BIT_VECTOR;
   --  function "&"    (anonymous: BIT_VECTOR; anonymous: BIT)
   --                                        return BIT_VECTOR;
   --  function "&"    (anonymous: BIT; anonymous: BIT_VECTOR)
   --                                        return BIT_VECTOR;
   --  function "&"    (anonymous: BIT; anonymous: BIT)
   --                                        return BIT_VECTOR;

   --  function MINIMUM (L, R: BIT_VECTOR) return BIT_VECTOR;
   --  function MAXIMUM (L, R: BIT_VECTOR) return BIT_VECTOR;

   --  function MINIMUM (L: BIT_VECTOR) return BIT;
   --  function MAXIMUM (L: BIT_VECTOR) return BIT;

   --  function TO_STRING (VALUE: BIT_VECTOR) return STRING;

   --  alias    TO_BSTRING       is TO_STRING
   --                               [BIT_VECTOR return STRING];
   --  alias    TO_BINARY_STRING is TO_STRING
   --                               [BIT_VECTOR return STRING];
   --  function TO_OSTRING (VALUE: BIT_VECTOR) return STRING;
   --  alias    TO_OCTAL_STRING  is TO_OSTRING
   --                               [BIT_VECTOR return STRING];
   --  function TO_HSTRING (VALUE: BIT_VECTOR) return STRING;
   --  alias    TO_HEX_STRING    is TO_HSTRING
   --                               [BIT_VECTOR return STRING];

   type INTEGER_VECTOR is array (NATURAL range <>) of INTEGER;

   --  The predefined operations for this type are as follows:

   --  function "="  (anonymous, anonymous: INTEGER_VECTOR)
   --                                        return BOOLEAN;
   --  function "/=" (anonymous, anonymous: INTEGER_VECTOR)
   --                                        return BOOLEAN;
   --  function "<"  (anonymous, anonymous: INTEGER_VECTOR)
   --                                        return BOOLEAN;
   --  function "<=" (anonymous, anonymous: INTEGER_VECTOR)
   --                                        return BOOLEAN;
   --  function ">"  (anonymous, anonymous: INTEGER_VECTOR)
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   --                                        return BOOLEAN;
   --  function ">=" (anonymous, anonymous: INTEGER_VECTOR)
   --                                        return BOOLEAN;

   --  function "&"  (anonymous: INTEGER_VECTOR;
   --                 anonymous: INTEGER_VECTOR) return INTEGER_VECTOR;
   --  function "&"  (anonymous: INTEGER_VECTOR;
   --                 anonymous: INTEGER)        return INTEGER_VECTOR;
   --  function "&"  (anonymous: INTEGER;
   --                 anonymous: INTEGER_VECTOR) return INTEGER_VECTOR;
   --  function "&"  (anonymous: INTEGER;
   --                 anonymous: INTEGER)        return INTEGER_VECTOR;

   --  function MINIMUM (L, R: INTEGER_VECTOR) return INTEGER_VECTOR;
   --  function MAXIMUM (L, R: INTEGER_VECTOR) return INTEGER_VECTOR;

   --  function MINIMUM (L: INTEGER_VECTOR) return INTEGER;
   --  function MAXIMUM (L: INTEGER_VECTOR) return INTEGER;

   type REAL_VECTOR is array (NATURAL range <>) of REAL;

   --  The predefined operations for this type are as follows:

   --  function "="  (anonymous, anonymous: REAL_VECTOR)
                                             return BOOLEAN;
   --  function "/=" (anonymous, anonymous: REAL_VECTOR)
                                             return BOOLEAN;

   --  function "&"  (anonymous: REAL_VECTOR; anonymous: REAL_VECTOR)
   --                                        return REAL_VECTOR;
   --  function "&"  (anonymous: REAL_VECTOR; anonymous: REAL)
   --                                        return REAL_VECTOR;
   --  function "&"  (anonymous: REAL; anonymous: REAL_VECTOR)
   --                                        return REAL_VECTOR;
   --  function "&"  (anonymous: REAL; anonymous: REAL)
   --                                        return REAL_VECTOR;

   --  function MINIMUM (L: REAL_VECTOR) return REAL;
   --  function MAXIMUM (L: REAL_VECTOR) return REAL;

   type TIME_VECTOR is array (NATURAL range <>) of TIME;

   --  The predefined operations for this type are as follows:

   --  function "="  (anonymous, anonymous: TIME_VECTOR)
                                             return BOOLEAN;
   --  function "/=" (anonymous, anonymous: TIME_VECTOR)
                                             return BOOLEAN;

   --  function "&"  (anonymous: TIME_VECTOR; anonymous: TIME_VECTOR)
   --                                        return TIME_VECTOR;
   --  function "&"  (anonymous: TIME_VECTOR; anonymous: TIME)
   --                                        return TIME_VECTOR;
   --  function "&"  (anonymous: TIME; anonymous: TIME_VECTOR)
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   --                                        return TIME_VECTOR;
   --  function "&"  (anonymous: TIME; anonymous: TIME)
   --                                        return TIME_VECTOR;

   --  function MINIMUM (L: TIME_VECTOR) return TIME;
   --  function MAXIMUM (L: TIME_VECTOR) return TIME;

   --  The predefined types for opening files:

   type FILE_OPEN_KIND is (
      READ_MODE,              --  Resulting access mode is read-only.
      WRITE_MODE,             --  Resulting access mode is write-only.
      APPEND_MODE);           --  Resulting access mode is write-only;
                              --  information is appended to the end
                              --  of the existing file.

   --  The predefined operations for this type are as follows:

   --  function "="  (anonymous, anonymous: FILE_OPEN_KIND)
   --                                        return BOOLEAN;
   --  function "/=" (anonymous, anonymous: FILE_OPEN_KIND)
   --                                        return BOOLEAN;
   --  function "<"  (anonymous, anonymous: FILE_OPEN_KIND)
   --                                        return BOOLEAN;
   --  function "<=" (anonymous, anonymous: FILE_OPEN_KIND)
   --                                        return BOOLEAN;
   --  function ">"  (anonymous, anonymous: FILE_OPEN_KIND)
   --                                        return BOOLEAN;
   --  function ">=" (anonymous, anonymous: FILE_OPEN_KIND)
   --                                        return BOOLEAN;

   --  function MINIMUM (L, R: FILE_OPEN_KIND) return FILE_OPEN_KIND;
   --  function MAXIMUM (L, R: FILE_OPEN_KIND) return FILE_OPEN_KIND;

   type FILE_OPEN_STATUS is (
      OPEN_OK,                --  File open was successful.
      STATUS_ERROR,           --  File object was already open.
      NAME_ERROR,             --  External file not found
                              --  or inaccessible.
      MODE_ERROR);            --  Could not open file with requested
                              --  access mode.

   --  The predefined operations for this type are as follows:

   --  function "="  (anonymous, anonymous: FILE_OPEN_STATUS)
   --                                        return BOOLEAN;
   --  function "/=" (anonymous, anonymous: FILE_OPEN_STATUS)
   --                                        return BOOLEAN;
   --  function "<"  (anonymous, anonymous: FILE_OPEN_STATUS)
   --                                        return BOOLEAN;
   --  function "<=" (anonymous, anonymous: FILE_OPEN_STATUS)
   --                                        return BOOLEAN;
   --  function ">"  (anonymous, anonymous: FILE_OPEN_STATUS)
   --                                        return BOOLEAN;
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   --  function ">=" (anonymous, anonymous: FILE_OPEN_STATUS)
   --                                        return BOOLEAN;

   --  function MINIMUM (L, R: FILE_OPEN_STATUS)
                                             return FILE_OPEN_STATUS;
   --  function MAXIMUM (L, R: FILE_OPEN_STATUS)
                                             return FILE_OPEN_STATUS;

   --  The 'FOREIGN attribute:

   attribute FOREIGN: STRING;

   --  Predefined TO_STRING operations on scalar types

   --  function TO_STRING (VALUE: BOOLEAN)           return STRING;
   --  function TO_STRING (VALUE: BIT)               return STRING;
   --  function TO_STRING (VALUE: CHARACTER)         return STRING;
   --  function TO_STRING (VALUE: SEVERITY_LEVEL)    return STRING;
   --  function TO_STRING (VALUE: universal_integer) return STRING;
   --  function TO_STRING (VALUE: universal_real)    return STRING;
   --  function TO_STRING (VALUE: INTEGER)           return STRING;
   --  function TO_STRING (VALUE: REAL)              return STRING;
   --  function TO_STRING (VALUE: TIME)              return STRING;
   --  function TO_STRING (VALUE: FILE_OPEN_KIND)    return STRING;
   --  function TO_STRING (VALUE: FILE_OPEN_STATUS)  return STRING;

   --  Predefined overloaded TO_STRING operations

   --  function TO_STRING (VALUE: REAL; DIGITS: NATURAL)
                                                     return STRING;
   --  function TO_STRING (VALUE: REAL; FORMAT: STRING)
                                                     return STRING;
   --  function TO_STRING (VALUE: TIME; UNIT: TIME)  return STRING;

end STANDARD;

The 'FOREIGN attribute shall be associated only with architectures (see 3.3) or with subprograms. In the 
latter case, the attribute specification shall appear in the declarative part in which the subprogram is declared 
(see 4.2).

NOTE 1—The ASCII mnemonics for file separator (FS), group separator (GS), record separator (RS), and unit separator 
(US) are represented by FSP, GSP, RSP, and USP, respectively, in type CHARACTER in order to avoid conflict with 
the units of type TIME.

NOTE 2—The declarative parts and statement parts of design entities whose corresponding architectures are decorated 
with the 'FOREIGN attribute and subprograms that are likewise decorated are subject to special elaboration rules. See 
14.4.1 and 14.5.1.

16.4 Package TEXTIO

Package TEXTIO contains declarations of types and subprograms that support formatted I/O operations on 
text files.

package TEXTIO is
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   --  Type definitions for text I/O:

   type LINE is access STRING;  --  A LINE is a pointer
                                --  to a STRING value.

   --  The predefined operations for this type are as follows:

   --  function"="  (anonymous, anonymous: LINE) return BOOLEAN;
   --  function"/=" (anonymous, anonymous: LINE) return BOOLEAN;

   --  procedure DEALLOCATE (P: inout LINE);

   type TEXT is file of STRING;  --  A file of variable-length
                                 --  ASCII records.

   --  The predefined operations for this type are as follows:

   --  procedure FILE_OPEN  (file F: TEXT; External_Name; in STRING;
   --                        Open_Kind: in FILE_OPEN_KIND := READ_MODE);
   --  procedure FILE_OPEN  (Status: out FILE_OPEN_STATUS; file F: TEXT;
   --                        External_Name: in STRING;
   --                        Open_Kind: in FILE_OPEN_KIND := READ_MODE);
   --  procedure FILE_CLOSE (file F: TEXT);
   --  procedure READ       (file F: TEXT; VALUE: out STRING);
   --  procedure WRITE      (file F: TEXT; VALUE: in STRING);
   --  procedure FLUSH      (file F: TEXT);
   --  function  ENDFILE    (file F: TEXT) return BOOLEAN;

   type SIDE is (RIGHT, LEFT);  --  For justifying output data
                                --  within fields.

   --  The predefined operations for this type are as follows:

   --  function "="  (anonymous, anonymous: SIDE) return BOOLEAN;
   --  function "/=" (anonymous, anonymous: SIDE) return BOOLEAN;
   --  function "<"  (anonymous, anonymous: SIDE) return BOOLEAN;
   --  function "<=" (anonymous, anonymous: SIDE) return BOOLEAN;
   --  function ">"  (anonymous, anonymous: SIDE) return BOOLEAN;
   --  function ">=" (anonymous, anonymous: SIDE) return BOOLEAN;

   --  function MINIMUM (L, R: SIDE) return SIDE;
   --  function MAXIMUM (L, R: SIDE) return SIDE;

   --  function TO_STRING (VALUE: SIDE) return STRING;

   subtype WIDTH is NATURAL;  --  For specifying widths of output fields.

   function JUSTIFY (VALUE: STRING;
                     JUSTIFIED: SIDE := RIGHT;
                     FIELD: WIDTH := 0 ) return STRING;

   --  Standard text files:
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   file INPUT:  TEXT open READ_MODE  is "STD_INPUT";

   file OUTPUT: TEXT open WRITE_MODE is "STD_OUTPUT";

   --  Input routines for standard types:

   procedure READLINE (file F: TEXT; L: inout LINE);

   procedure READ (L: inout LINE; VALUE: out BIT;
                                  GOOD:  out BOOLEAN);
   procedure READ (L: inout LINE; VALUE: out BIT);

   procedure READ (L: inout LINE; VALUE: out BIT_VECTOR;
                                  GOOD:  out BOOLEAN);
   procedure READ (L: inout LINE; VALUE: out BIT_VECTOR);

   procedure READ (L: inout LINE; VALUE: out BOOLEAN;
                                  GOOD:  out BOOLEAN);
   procedure READ (L: inout LINE; VALUE: out BOOLEAN);

   procedure READ (L: inout LINE; VALUE: out CHARACTER;
                                  GOOD:  out BOOLEAN);
   procedure READ (L: inout LINE; VALUE: out CHARACTER);

   procedure READ (L: inout LINE; VALUE: out INTEGER;
                                  GOOD:  out BOOLEAN);
   procedure READ (L: inout LINE; VALUE: out INTEGER);

   procedure READ (L: inout LINE; VALUE: out REAL;
                                  GOOD:  out BOOLEAN);
   procedure READ (L: inout LINE; VALUE: out REAL);

   procedure READ (L: inout LINE; VALUE: out STRING;
                                  GOOD:  out BOOLEAN);
   procedure READ (L: inout LINE; VALUE: out STRING);

   procedure READ (L: inout LINE; VALUE: out TIME;
                                  GOOD:  out BOOLEAN);
   procedure READ (L: inout LINE; VALUE: out TIME);

   procedure SREAD (L: inout LINE; VALUE:  out STRING;
                                   STRLEN: out NATURAL);
   alias STRING_READ is SREAD [LINE, STRING, NATURAL];

   alias BREAD is READ [LINE, BIT_VECTOR, BOOLEAN];
   alias BREAD is READ [LINE, BIT_VECTOR];
   alias BINARY_READ is READ [LINE, BIT_VECTOR, BOOLEAN];
   alias BINARY_READ is READ [LINE, BIT_VECTOR];

   procedure OREAD (L: inout LINE; VALUE: out BIT_VECTOR;
                                   GOOD:  out BOOLEAN);
   procedure OREAD (L: inout LINE; VALUE: out BIT_VECTOR);
   alias OCTAL_READ is OREAD [LINE, BIT_VECTOR, BOOLEAN];
   alias OCTAL_READ is OREAD [LINE, BIT_VECTOR];
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   procedure HREAD (L: inout LINE; VALUE: out BIT_VECTOR;
                                   GOOD:  out BOOLEAN);
   procedure HREAD (L: inout LINE; VALUE: out BIT_VECTOR);
   alias HEX_READ is HREAD [LINE, BIT_VECTOR, BOOLEAN];
   alias HEX_READ is HREAD [LINE, BIT_VECTOR];

   --  Output routines for standard types:

   procedure WRITELINE (file F: TEXT; L: inout LINE);

   procedure TEE   (file F: TEXT; L: inout LINE);

   procedure WRITE (L: inout LINE; VALUE: in BIT;
                    JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

   procedure WRITE (L: inout LINE; VALUE: in BIT_VECTOR;
                    JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

   procedure WRITE (L: inout LINE; VALUE: in BOOLEAN;
                    JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

   procedure WRITE (L: inout LINE; VALUE: in CHARACTER;
                    JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

   procedure WRITE (L: inout LINE; VALUE: in INTEGER;
                    JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

   procedure WRITE (L: inout LINE; VALUE: in REAL;
                    JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0;
                    DIGITS: in NATURAL:= 0);

   procedure WRITE (L: inout LINE; VALUE: in REAL;
                    FORMAT: in STRING);

   procedure WRITE (L: inout LINE; VALUE: in STRING;
                    JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

   procedure WRITE (L: inout LINE; VALUE: in TIME;
                    JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0;
                    UNIT: in TIME:= ns);

   alias SWRITE       is WRITE [LINE, STRING, SIDE, WIDTH];
   alias STRING_WRITE is WRITE [LINE, STRING, SIDE, WIDTH];

   alias BWRITE       is WRITE [LINE, BIT_VECTOR, SIDE, WIDTH];
   alias BINARY_WRITE is WRITE [LINE, BIT_VECTOR, SIDE, WIDTH];

   procedure OWRITE (L: inout LINE; VALUE: in BIT_VECTOR;
                     JUSTIFIED: in SIDE := RIGHT; FIELD: in WIDTH := 0);
   alias OCTAL_WRITE is OWRITE [LINE, BIT_VECTOR, SIDE, WIDTH];

   procedure HWRITE (L: inout LINE; VALUE: in BIT_VECTOR;
                     JUSTIFIED: in SIDE := RIGHT; FIELD: in WIDTH := 0);
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   alias HEX_WRITE is HWRITE [LINE, BIT_VECTOR, SIDE, WIDTH];

end TEXTIO;

Procedures READLINE, WRITELINE, and TEE declared in package TEXTIO read and write entire lines of 
a file of type TEXT. Procedure READLINE causes the next line to be read from the file and returns as the 
value of parameter L an access value that designates an object representing that line. If parameter L contains 
a non-null access value at the start of the call, the procedure may deallocate the object designated by that 
value. The representation of the line does not contain the representation of the end of the line. It is an error if 
the file specified in a call to READLINE is not open or, if open, the file has an access mode other than read-
only (see 5.5.2). Procedures WRITELINE and TEE each cause the current line designated by parameter L to 
be written to the file and returns with the value of parameter L designating a null string. Procedure TEE 
additionally causes the current line to be written to the file OUTPUT. If parameter L contains a null access 
value at the start of the call, then a null string is written to the file or files. If parameter L contains a non-null 
access value at the start of the call, the procedures may deallocate the object designated by that value. It is an 
error if the file specified in a call to WRITELINE or TEE is not open or, if open, the file has an access mode 
other than write-only.

The language does not define the representation of the end of a line. An implementation shall allow all 
possible values of types CHARACTER and STRING to be written to a file. However, as an implementation 
is permitted to use certain values of types CHARACTER and STRING as line delimiters, it might not be 
possible to read these values from a TEXT file.

A line feed (LF) format effector occurring as an element of a string written to a file of type TEXT, either 
using procedure WRITELINE or TEE, or using the WRITE operation implicitly defined for the type TEXT, 
is interpreted by the implementation as signifying the end of a line. The implementation shall transform the 
LF into the implementation-defined representation of the end of a line.

The JUSTIFY operation formats a string value within a field that is at least as long as required to contain the 
value. Parameter FIELD specifies the desired field width. Since the actual field width will always be at least 
large enough to hold the string value, the default value 0 for the FIELD parameter has the effect of causing 
the string value to be contained in a field of exactly the right width (i.e., no additional leading or trailing 
spaces). Parameter JUSTIFIED specifies whether the string value is to be right- or left-justified within the 
field; the default is right-justified. If the FIELD parameter describes a field width larger than the number of 
characters in the string value, space characters are used to fill the remaining characters in the field.

Each READ, SREAD, OREAD, and HREAD procedure declared in package TEXTIO extracts data from the 
beginning of the string value designated by parameter L and modifies the value so that it designates the 
remaining portion of the line on exit. Each procedure may modify the value of the object designated by the 
parameter L at the start of the call or may deallocate the object.

The READ procedures defined for a given type other than CHARACTER and STRING begin by skipping 
leading whitespace characters. A whitespace character is defined as a space, a nonbreaking space, or a 
horizontal tabulation character (SP, NBSP, or HT). For all READ procedures, characters are then removed 
from L and composed into a string representation (see 5.7) of the value of the specified type. The READ 
procedure for type BIT_VECTOR also removes underline characters from L, provided the underline 
character does not precede the string representation of the value and does not immediately follow another 
underline character. The removed underline characters are not added to the string representation. For all 
READ procedures, character removal and string composition stops when the end of the line is encountered. 
Character removal and string composition also stops when a character is encountered that cannot be part of 
the value according to the rules for string representations, or, in the case of the READ procedure for 
BIT_VECTOR, is not an underline character that can be removed according to the preceding rule; this 
character is not removed from L and is not added to the string representation of the value. The READ 
procedures for types STRING and BIT_VECTOR also terminate acceptance when VALUE'LENGTH 
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characters have been accepted (not counting underline characters in the case of the READ procedure for 
BIT_VECTOR). Again using the rules of 5.7, the accepted characters are then interpreted as a string 
representation of the specified type. The READ does not succeed if the sequence of characters composed 
into the string representation is not a valid string representation of a value of the specified type or, in the case 
of types STRING and BIT_VECTOR, if the sequence does not contain VALUE'LENGTH characters.

The SREAD procedure begins by skipping leading whitespace characters. Characters are then removed and 
composed from left to right into a string provided as the VALUE parameter. Character removal and string 
composition stops when the end of the line is encountered. Character removal and string composition also 
stops when a whitespace character is encountered or VALUE'LENGTH characters have been accepted; the 
whitespace character is not removed from L and is not added to the string. The number of characters 
composed into the string is provided as the value of the STRLEN parameter. The values of elements of the 
string to the right of those composed by the SREAD procedure are not defined by this standard.

The OREAD and HREAD procedures begin by skipping leading whitespace characters. Characters are then 
removed and composed into a sequence of octal (respectively, hexadecimal) digits. Each underline character 
is also removed from L, provided the underline character does not precede the sequence of octal 
(respectively, hexadecimal) digits and does not immediately follow another underline character. The 
removed underline characters are not added to the string representation. Character removal and composition 
stops when the end of the line is encountered. Character removal and string composition also stops when a 
character is encountered that is not an octal (respectively, hexadecimal) digit or an underline character that 
can be removed according to the preceding rule; this character is not removed from L and is not added to the 
string. Moreover, character removal and composition stops when the expected number of digits have been 
removed, where the expected number of digits is the smallest integer greater than or equal to 
VALUE'LENGTH divided by three (respectively, four). The OREAD or HREAD procedure does not 
succeed if less than the expected number of digits are removed. Otherwise, the sequence of octal 
(respectively, hexadecimal) digits is interpreted as an octal (respectively, hexadecimal) number and 
converted into a binary number of three (respectively, four) times VALUE'LENGTH bits. The rightmost 
VALUE'LENGTH bits of the binary number are used to form the result for the VALUE parameter, with a '0' 
element corresponding to a 0 bit and a '1' element corresponding to a 1 bit. The OREAD or HREAD 
procedure does not succeed if any unused bits are 1.

Each WRITE procedure similarly appends data to the end of the string value designated by parameter L. The 
format of the appended data is defined by the string representations defined in 5.7.

The OWRITE and HWRITE procedures append the octal (respectively, hexadecimal) representation of the 
VALUE parameter to the end of the string value designated by parameter L. The octal (respectively, 
hexadecimal) representation is the value given by application of the TO_OSTRING (respectively, 
TO_HSTRING) operation to the VALUE parameter (see 5.3.2.4).

For each WRITE, OWRITE, and HWRITE procedure, after data is appended to the string value designated 
by the parameter L, L designates the entire line. The procedure may modify the value of the object 
designated by the parameter L at the start of the call or may deallocate the object.

The READ and WRITE procedures for the types BIT_VECTOR and STRING respectively read and write 
the element values in left-to-right order.

For each predefined data type there are two READ procedures declared in package TEXTIO. The first has 
three parameters: L, the line to read from; VALUE, the value read from the line; and GOOD, a Boolean flag 
that indicates whether the read operation succeeded or not. For example, the operation READ (L, IntVal, 
OK) would return with OK set to FALSE, L unchanged, and IntVal undefined if IntVal is a variable of type 
INTEGER and L designates the line “ABC.” The success indication returned via parameter GOOD allows a 
process to recover gracefully from unexpected discrepancies in input format. The second form of read 
operation has only the parameters L and VALUE. If the requested type cannot be read into VALUE from 
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line L, then an error occurs. Thus, the operation READ (L, IntVal) would cause an error to occur if IntVal is 
of type INTEGER and L designates the line "ABC". For the predefined type BIT_VECTOR, there are 
likewise two OREAD and two HREAD procedures, with similar parameters.

For each predefined data type there is one or more WRITE procedure declared in package TEXTIO. Each of 
these has at least two parameters: L, the line to which to write, and VALUE, the value to be written. The 
additional parameters JUSTIFIED, FIELD, DIGITS, FORMAT, and UNIT control the formatting of output 
data. Each write operation appends data to a line formatted within a field that is at least as long as required to 
represent the data value. Parameters FIELD and JUSTIFIED specify the desired field width and 
justification, as for the JUSTIFY operation. For the predefined type BIT_VECTOR, there is likewise one 
OWRITE and one HWRITE procedure, with similar parameters.

Parameter DIGITS specifies how many digits to the right of the decimal point are to be output when writing 
a real number; the default value 0 indicates that the number should be output in standard form, consisting of 
a normalized mantissa plus exponent (e.g., 1.079236e-23). If DIGITS is non-zero, then the real number is 
output as an integer part followed by '.' followed by the fractional part, using the specified number of digits 
(e.g., 3.14159).

Parameter FORMAT specifies how values of type REAL are to be formatted. The formatting is determined 
in the same manner as for the TO_STRING operation for type REAL with the FORMAT parameter (see 
5.2.6).

Parameter UNIT specifies how values of type TIME are to be formatted. The value of this parameter shall be 
equal to one of the units declared as part of the declaration of type TIME; the result is that the TIME value is 
formatted as an integer or real literal representing the number of multiples of this unit, followed by the name 
of the unit itself. The name of the unit is formatted using only lowercase characters. Thus the procedure call 
WRITE(Line, 5 ns, UNIT=>us) would result in the string value "0.005 us" being appended to the string 
value designated by Line, whereas WRITE(Line, 5 ns) would result in the string value "5 ns" being 
appended (since the default UNIT value is ns).

Function ENDFILE is defined for files of type TEXT by the implicit declaration of that function as part of 
the declaration of the file type.

NOTE 1—For a variable L of type Line, attribute L'Length gives the current length of the line, whether that line is being 
read or written. For a line L that is being written, the value of L'Length gives the number of characters that have already 
been written to the line; this is equivalent to the column number of the last character of the line. For a line L that is being 
read, the value of L'Length gives the number of characters on that line remaining to be read. In particular, the expression 
L'Length = 0 is true precisely when the end of the current line has been reached.

NOTE 2—Since the execution of a read or write operation may modify or deallocate the string object designated by 
input parameter L of type Line for that operation, a dangling reference may result if the value of a variable L of type Line 
is assigned to another access variable and then a read or write operation is performed on L.

NOTE 3—A call to a WRITE procedure with a string literal for the VALUE parameter is ambiguous, as the string could 
be interpreted as a value of type STRING or type BIT_VECTOR. If the intention is to write a value of type STRING, the 
alias SWRITE can be called without ambiguity.

16.5 Standard environment package

Package ENV contains declarations that provide a VHDL interface to the host environment.

package ENV is

   procedure STOP (STATUS: INTEGER);
   procedure STOP;
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   procedure FINISH (STATUS: INTEGER);
   procedure FINISH;

   function RESOLUTION_LIMIT return DELAY_LENGTH;

end package ENV;

Execution of the STOP procedures causes the same action by the host simulator as that caused by the 
vhpi_control function called with the argument vhpiStop (see 23.5). Execution of the FINISH 
procedures causes the same action by the host simulator as that caused by the vhpi_control function 
called with the argument vhpiFinish (see 23.5).  Execution shall not return to the VHDL description 
after a call to the FINISH procedure. For the procedures with the STATUS parameter, the value of the 
STATUS parameter may be used in an implementation defined manner by the host simulator. For the 
procedures with no parameter, the effect is the same as that caused by the vhpi_control function with 
no additional arguments beyond the vhpiStop or vhpiFinish argument.

The function RESOLUTION_LIMIT returns the value of the resolution limit (see 5.2.4.2).

NOTE 1—The value of the STATUS parameter of the STOP and FINISH procedures may, for example, be provided to 
a simulation control script for use in determining what external control actions to perform.

NOTE 2—An implementation shall provide the STOP and FINISH procedures in package ENV regardless of whether it 
implements the VHPI.

NOTE 3—A description may include a comparison of the resolution limit with a literal of type TIME, but an error 
occurs if the literal includes a unit that is smaller than the resolution limit (see 5.2.4.2). For example, the expression 
“RESOLUTION_LIMIT <= ns” will cause an error if the resolution limit is greater than ns. The error can be avoided by 
using a literal with a suitably larger unit, for example, 1.0E–9 sec. Such a literal may be truncated to zero time units, but 
will not cause an error.

16.6 Standard mathematical packages

The library denoted by the library logical name IEEE contains packages MATH_REAL and 
MATH_COMPLEX. The following conformance rules shall apply as they pertain to the use and 
implementation of these packages:

a) The package declarations may be modified to include additional data required by tools, but modifi-
cations shall in no way change the external interfaces or simulation behavior of the description. It is 
permissible to add comments and/or attributes to the package declarations, but not to change or 
delete any original lines of the approved package declarations.

b) The standard mathematical definition and conventional meaning of the mathematical functions that 
are part of the packages, together with the MATH_REAL and MATH_COMPLEX package declara-
tions, represent the formal semantics of the implementation of the MATH_REAL and 
MATH_COMPLEX packages. An implementation is provided as a guideline in the machine-read-
able files accompanying this standard (see Annex A). Implementors of these packages may choose 
to simply compile the package bodies provided in the files, or they may choose to implement the 
package bodies in the most efficient form available to them. Implementations should conform to the 
semantics and minimum precision required by this standard.

c) The MATH REAL package shall be built on top of the standard data type and precision require-
ments for floating-point operations defined in STD.STANDARD.

d) The minimum precision required is that specified by this standard for floating-point types (see 
5.2.5.1). Because of this reason and the fact that the functions are implemented on digital computers 
with only finite precision, the functions and constants in this set of packages can, at best, only 
approximate the corresponding mathematically defined functions and constants. An implementation 
is allowed to provide a higher precision than the minimum required.
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e) For some functions, the implementation shall deliver “prescribed results” for certain special argu-
ments, as defined in the comments for the functions in the function declaration. The purpose is to 
strengthen the accuracy requirements at special argument values. Prescribed results take precedence 
over maximum relative error requirements.

f) The semantics of the standard require that all the functions in the packages detect and report invalid 
parameters (out of valid domain) through an assert statement. The domain of valid values is indi-
cated in the MATH_REAL and MATH_COMPLEX package declarations. The default value of the 
severity level shall be ERROR.

g) The semantics of the standard do not require detection of overflow or underflow. Therefore, detec-
tion of underflow/overflow is optional and implementation dependent.

h) If an implementation chooses to provide any extensions to the packages beyond the minimum 
requirements of this standard (e.g., precision, overflow handling), then it shall document its behavior 
accordingly.

The declaration of each function includes the following information: description of the mathematical 
definition of the function; values to be returned by the function for special arguments; valid domain of 
values for the input arguments; error conditions; range of values into which the function maps the values in 
its domain; and notes on special accuracy situations, reachable values, usable domains, or algorithms to be 
used by an implementation.

The texts of the MATH_REAL and MATH_COMPLEX packages (both package declarations and package 
bodies) are included with this standard (see Annex A). Those texts are an official part of this standard.

NOTE—The mathematical packages were originally specified in IEEE Std 1076.2-1996 [B11]. The specifications in 
this standard supersede the original specifications.

16.7 Standard multivalue logic package

The library denoted by the library logical name IEEE contains packages STD_LOGIC_1164 and 
STD_LOGIC_TEXTIO.11 The following conformance rules shall apply as they pertain to the use and 
implementation of this package:

a) The package declaration may be modified to include additional data required by tools, but modifica-
tions shall in no way change the external interfaces or simulation behavior of the description. It is 
permissible to add comments and/or attributes to the package declarations, but not to change or 
delete any original lines of the approved package declaration.

b) The STD_LOGIC_1164 package body provided in the machine-readable files accompanying this 
standard (see Annex A) represents the formal semantics of the implementation of the 
STD_LOGIC_1164 package declaration. Implementers of this package body may choose to simply 
compile the package body as it is; or they may choose to implement the package body in the most 
efficient form available to the user. Implementers shall not implement a semantic that differs from 
the formal semantic provided herein.

c) The STD_LOGIC_TEXTIO package is empty and is provided as a replacement for non-standard 
implementations of that package provided by implementers of previous versions of this standard. 
The declarations that appeared in  those non-standard implementations appear in the package 
STD_LOGIC_1164 in this standard.

The text of the STD_LOGIC_1164 package (both package declaration and package body) and the 
STD_LOGIC_TEXTIO package (package declaration only) are included with this standard (see Annex A). 
That text is an official part of this standard.

11The package STD_LOGIC_TEXTIO was modified and used with permission of Synopsys, Inc. © 1990, 1991, and 1992.
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NOTE—The name of the STD_LOGIC_1164 package derives from the fact that the package was originally specified in 
IEEE Std 1164-1993 [B16]. The specification in this standard supersedes the original specification.

16.8 Standard synthesis packages

NOTE—The specifications in this subclause were originally described in IEEE Std 1076.3-1997 [B12] The 
specifications in this standard supersede the original specifications.

16.8.1 Overview

16.8.1.1 Scope

This subclause defines standard practices for synthesizing binary digital electronic circuits from VHDL 
source code. It includes the following:

a) The hardware interpretation of values belonging to the BIT and BOOLEAN types defined in pack-
age STD.STANDARD and to the STD_ULOGIC type defined in package 
IEEE.STD_LOGIC_1164.

b) A function (STD_MATCH) that provides “don’t care” or “wild card” testing of values based on the 
STD_ULOGIC type.

c) Standard functions for representing sensitivity to the edge of a signal.

d) Packages that define one-dimensional array types for representing signed and unsigned arithmetic 
values, and that define arithmetic, shift, and type conversion operations on those types.

The packages are designed for use with this standard. Modifications that may be made to the packages for 
use with previous editions are described in 16.8.5.3.

Further related standard practices for synthesis of register-transfer level digital circuits are specified in 
IEEE Std 1076.6-2004 [B14].

16.8.1.2 Terminology

A synthesis tool is any tool that interprets VHDL source code as a description of an electronic circuit in 
accordance with the terms of this standard and derives an alternate description of that circuit. A synthesis 
tool is said to accept a VHDL construct if it allows that construct to be legal input; it is said to interpret the 
construct (or to provide an interpretation of the construct) by producing something that represents the 
construct. A synthesis tool is not required to provide an interpretation for every construct that it accepts, but 
only for those for which an interpretation is specified by this standard.

16.8.2 Interpretation of the standard logic types

16.8.2.1 General

This subclause (16.8.2) defines how a synthesis tool shall interpret values of the standard logic types defined 
in IEEE.STD_LOGIC_1164 and of the BIT and BOOLEAN types defined in STD.STANDARD. 
Simulation tools, however, shall continue to interpret these values according to the clauses of this standard 
in which the values are defined.

16.8.2.2 The STD_LOGIC_1164 values

The logical values '1', 'H', '0', and 'L' of type STD_ULOGIC are interpreted as representing one of two logic 
levels, where each logic level represents one of two distinct voltage ranges in the circuit to be synthesized.
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The resolution function RESOLVED treats the values '0' and '1' as forcing values that override the weak 
values 'L' and 'H' when multiple sources drive the same signal.

The values 'U', 'X', 'W', and '–' are metalogical values; they define the behavior of the model itself rather 
than the behavior of the hardware being synthesized. The value 'U' represents the value of an object before it 
is explicitly assigned a value during simulation; the values 'X' and 'W' represent forcing and weak values, 
respectively, for which the model is not able to distinguish between logic levels.

The value '–' is also called the don’t care value. This standard treats it in the same way as the other 
metalogical values except when it is furnished as an actual parameter to the STD_MATCH functions in the 
IEEE.NUMERIC_STD package or as an operand to a predefined matching relational operator (see 9.2.3). 
The STD_MATCH functions and the predefined matching relational operators use '–' to implement a “match 
all” or “wild card” matching.

The value 'Z' is called the high-impedance value, and represents the condition of a signal source when that 
source makes no effective contribution to the resolved value of the signal.

16.8.2.3 Static constant values

Wherever a synthesis tool accepts a reference to a locally static or globally static named constant, it shall 
treat that constant as the equivalent of the associated static expression.

16.8.2.4 Interpretation of logic values

16.8.2.4.1 General

This subclause (16.8.2.4) describes the interpretations of logic values occurring as literals (or in literals) 
after a synthesis tool has replaced named constants by their corresponding values.

16.8.2.4.2 Interpretation of the forcing and weak values ('0', '1', 'L', 'H', FALSE, TRUE)

A synthesis tool shall interpret the following values as representing a logic value 0:
— The BIT value '0'
— The BOOLEAN value FALSE
— The STD_ULOGIC values '0' and 'L'

It shall interpret the following values as representing a logic value 1:
— The BIT value '1'
— The BOOLEAN value TRUE
— The STD_ULOGIC value '1' and 'H'

This standard makes no restriction as to the interpretation of the relative strength of values.

16.8.2.4.3 Interpretation of the metalogical values ('U', 'W', 'X', '–')

16.8.2.4.4 Metalogical values in relational expressions

If the VHDL source code includes an equality operator (=) for which one operand is a static metalogical 
value and for which the other operand is not a static value, a synthesis tool shall interpret the equality 
relation as equivalent to the BOOLEAN value FALSE. If one operand of an equality relation is a one-
dimensional array, and one element of that one-dimensional array is a static metalogical value, a synthesis 
tool shall interpret the entire equality relation as equivalent to the BOOLEAN value FALSE.
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A synthesis tool shall interpret an inequality operator (/=) for which one operand is or contains a static 
metalogical value, and for which the other operand is not a static value, as equivalent to the BOOLEAN 
value TRUE.

A synthesis tool shall treat an ordering operator (<, <=, >, or >=) for which at least one operand is or 
contains a static metalogical value as an error.

16.8.2.4.5 Metalogical values as a choice in a case statement

If a metalogical value occurs as a choice, or as an element of a choice, in a case statement that is interpreted 
by a synthesis tool, the synthesis tool shall interpret the choice as one that can never occur. That is, the 
interpretation that is generated is not required to contain any constructs corresponding to the presence or 
absence of the sequence of statements associated with the choice.

Whenever a synthesis tool interprets a case statement alternative that associates multiple choices with a 
single sequence of statements, it shall produce an interpretation consistent with associating the sequence of 
statements with each choice individually.

Whenever a synthesis tool interprets a selected signal assignment statement, it shall interpret the selected 
signal assignment statement as if it were the case statement in the equivalent process as defined in 11.6.

16.8.2.4.6 Metalogical values in logical, arithmetic, and shift operations

When a static metalogical value occurs as all of, or one element of, an operand to a logical, arithmetic, or 
shift operation, and when the other operand to the operation is not a static value, a synthesis tool shall treat 
the operation as an error. An arithmetic operation is one of the operators +, –, *, /, mod, rem, abs, and **.

16.8.2.4.7 Metalogical values in concatenate operations

If a static metalogical value occurs as all of, or as one element of, an operand to the concatenate (&) 
operator, a synthesis tool shall treat it as if it had occurred as the corresponding element of the expression 
formed by the concatenate operation.

16.8.2.4.8 Metalogical values in type conversion and sign-extension functions

If a static metalogical value occurs as all of, or as one element of, the operand of a type conversion or sign-
extension function, a synthesis tool shall treat it as if it had occurred as the corresponding element of the 
expression formed by the function call.

16.8.2.4.9 Metalogical values used in assignment references

A synthesis tool shall accept a static metalogical value used as all of, or as one element of, a value 
expression in an assignment statement, but is not required to provide any particular interpretation of that 
metalogical value.

16.8.2.4.10 Interpretation of the high-impedance value ('Z')

If the static value 'Z' occurs as a value expression in a signal assignment statement, a synthesis tool shall 
interpret the assignment as implying the equivalent of a three-state buffer that is disabled when the 
conditions under which the assignment occurs is true. The output of the three-state buffer is the target of the 
assignment. The input of the three-state buffer is the logic network that represents the value of the target 
apart from any assignments to 'Z'.
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If the 'Z' occurs as one or more elements of a value expression in a signal assignment statement, a synthesis 
tool shall interpret each such occurrence as implying the equivalent of a three-state buffer in the manner 
defined by the preceding paragraph.

This standard does not specify an interpretation when a static value 'Z' occurs as all of, or one bit of, a value 
expression in a variable assignment statement.

Whenever a static high-impedance value occurs in any context other than a value expression in an 
assignment statement, a synthesis tool shall treat it as equivalent to a static metalogical value.

NOTE—A signal assignment statement that assigns one or more bits of a signal to 'Z' unconditionally implies the equiv-
alent of a three-state buffer that is always disabled. A synthesis tool may choose to ignore such assignments.

16.8.3 The STD_MATCH function and predefined matching relational operators

The NUMERIC_STD package defines functions named STD_MATCH that, like the predefined matching 
relational operators, provide wild card matching for the don’t care value. Whenever the STD_MATCH 
function compares two actual parameters that are STD_ULOGIC values, it returns TRUE if and only if:

— Both values are neither metalogical or high-impedance values and the values are the same, or
— One value is '0' and the other is 'L', or
— One value is '1' and the other is 'H', or
— At least one of the values is the don’t care value ('–').

Whenever the STD_MATCH function compares two actual parameters that are one-dimensional arrays 
whose elements belong to the STD_ULOGIC type or to one of its subtypes, it returns TRUE if and only if:

a) The operands have the same length, and
b) STD_MATCH applied to each pair of matching elements returns TRUE.

When one of the actual parameters to the STD_MATCH function or a predefined matching equality operator 
is a static value and the other is not, a synthesis tool shall interpret the call to the STD_MATCH function or 
predefined matching equality operator as equivalent to an equality test on matching elements of the actual 
parameters, excepting those elements of the static value that are equal to '–'.

When one of the operands of a predefined matching inequality operator is a static value and the other is not, 
a synthesis tool shall interpret the call to the predefined matching inequality operator as equivalent to a call 
to the predefined matching equality operator followed by application of the not operator to the result.

NOTE—If any actual parameter passed to STD_MATCH is or contains a metalogical or high-impedance value other 
than '–', the function returns FALSE.

16.8.4 Signal edge detection

Wherever a synthesis tool interprets a particular expression as the edge of a signal, it shall also interpret the 
function RISING_EDGE as representing a rising edge and the function FALLING_EDGE as representing a 
falling edge, where RISING_EDGE and FALLING_EDGE are the functions declared either by the package 
STD_LOGIC_1164 or by the package NUMERIC_BIT.

16.8.5 Packages for arithmetic using bit and standard logic values

16.8.5.1 General

Four VHDL packages for arithmetic using bit and standard logic values are defined by this standard. The 
NUMERIC_BIT and NUMERIC_BIT_UNSIGNED packages are based on the VHDL type BIT, while the 
NUMERIC_STD and NUMERIC_STD_UNSIGNED packages are based on the type STD_ULOGIC. 
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Simulations based on the subprograms of the NUMERIC_BIT and NUMERIC_BIT_UNSIGNED packages 
ordinarily require less execution time, because the subprograms do not have to deal with operands 
containing metalogical or high-impedance values. Use of the subprograms of the NUMERIC_STD and 
NUMERIC_STD_UNSIGNED packages allow simulation to detect the propagation or generation of 
metalogical values.

The NUMERIC_BIT package defines a one-dimensional array type named SIGNED and a one-dimensional 
array type named UNSIGNED. The type UNSIGNED represents an unsigned binary integer with the most 
significant bit on the left, while the type SIGNED represents a two’s-complement binary integer with the 
most significant bit on the left. In particular, a one-element SIGNED one-dimensional array represents the 
integer values –1 and 0.

The NUMERIC_STD package defines a one-dimensional array type named UNRESOLVED_SIGNED and 
a one-dimensional array type named UNRESOLVED_UNSIGNED, and aliases U_SIGNED and 
U_UNSIGNED for these two types, respectively. The package also defines a subtype named SIGNED of the 
base type UNRESOLVED_SIGNED and a subtype named UNSIGNED of the base type 
UNRESOLVED_UNSIGNED. Whereas the base types have unresolved elements, the subtypes associate 
the resolution function RESOLVED from the STD_LOGIC_1164 package with the elements. 
UNRESOLVED_UNSIGNED and UNSIGNED represent unsigned binary integers, and 
UNRESOLVED_SIGNED and SIGNED represent two’s-complement binary integers, in the same way as 
the types UNSIGNED and SIGNED, respectively, from the NUMERIC_BIT package.

The NUMERIC_BIT_UNSIGNED package provides the same operations as those provided by the 
NUMERIC_BIT package on UNSIGNED operands, but operating on BIT_VECTOR operands interpreted 
as representing unsigned binary integers. Similarly, the NUMERIC_STD_UNSIGNED package provides 
the same operations as those provided by the NUMERIC_STD package on UNSIGNED operands, but 
operating on STD_ULOGIC_VECTOR operands interpreted as representing unsigned binary integers.

The four packages are mutually incompatible, and only one shall be used in any given design unit. To 
facilitate changing from one package to the other, most of the subprograms declared in one package are also 
declared for corresponding parameters in the other. Exceptions are when:

a) The NUMERIC_BIT package declares the functions RISING_EDGE and FALLING_EDGE; the 
corresponding functions for STD_ULOGIC are declared by the STD_LOGIC_1164 package.

b) The NUMERIC_STD package declares the STD_MATCH functions, which give special treatment 
to the don’t care value, whereas the BIT-based types of the NUMERIC_BIT package have no don’t 
care values.

c) The NUMERIC_STD package declares the TO_01, TO_X01, TO_X01Z, TO_UX01, and IS_X 
functions, which may be applied to SIGNED and UNSIGNED values, and which map the element 
values to the STD_ULOGIC values '0', '1', and metalogical and high-impedance values.

If a null array is furnished as an actual parameter to any subprogram declared by the packages, a synthesis 
tool shall treat it as an error.

All one-dimensional array return values that are not null array values are normalized so that the direction of 
the index range is downto and the right bound is 0. A one-dimensional array return value that is a null array 
has the index range 0 downto 1.

All of the packages defined in this subclause (16.8) shall be analyzed into the library symbolically named 
IEEE.
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16.8.5.2 Allowable modifications

Vendors of tools conforming to this standard shall not modify the package declarations. However, a vendor 
may provide package bodies for any of the packages in which subprograms are rewritten for more efficient 
simulation or synthesis, provided that the behavior of the rewritten subprograms remains the same under 
simulation. The behavior of the original and rewritten subprograms are the same if, for any combination of 
input values, they return the same return values. The text of messages associated with assertions may differ 
in the rewritten subprogram.

The package bodies for the NUMERIC_BIT and NUMERIC_STD packages declare a constant named 
NO_WARNING that has the value FALSE. A user may set NO_WARNING to TRUE and reanalyze the 
package body to suppress warning messages generated by calls to the functions in these packages. For this 
reason:

— A tool vendor who rewrites the package body shall preserve the declaration of the NO_WARNING 
constant to allow a user to suppress warnings by editing and reanalyzing the package body.

— A simulation tool vendor who provides a preanalyzed version of the package body should also 
provide a mechanism for suppressing warning messages generated by the package functions.

16.8.5.3 Compatibility with previous editions of IEEE Std 1076

The following functions from the packages are compatible with IEEE Std 1076-1993 and subsequent 
editions of this standard but not with a previous edition, IEEE Std 1076-1987:

— binary "xnor"
— "sll"
— "srl"
— "rol"
— "ror"
— "sla"
— "sra"

To use these functions with a VHDL-based system that has not yet been upgraded to be compatible with 
IEEE Std 1076-1993 and subsequent editions, a user or vendor may comment out the subprogram 
declarations and subprogram bodies.

The following functions from the packages are compatible with this standard but not with previous editions:
— unary "and"
— unary "nand"
— unary "or"
— unary "nor"
— unary "xor"
— unary "xnor"

To use these functions with a VHDL-based system that has not yet been upgraded to be compatible with this 
edition of this standard, a user or vendor may comment out the subprogram declarations and subprogram 
bodies.

In addition, IEEE Std 1076-1993 and subsequent editions support a character set that includes the copyright 
symbol (©). However, IEEE Std 1076-1987 does not support this same character set. Therefore, in order to 
use the packages with a system that has not yet been upgraded to be compatible with IEEE Std 1076-1993 
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and subsequent editions, a user or vendor may replace the copyright symbol within the sources of those 
packages by a left parenthesis, a lowercase “c,” and a right parenthesis.

16.8.5.4 The package texts

The texts of the packages (both package declarations and package bodies) are included with this standard 
(see Annex A). Those texts are an official part of this standard.

16.9 Standard synthesis context declarations

The library denoted by the library logical name IEEE contains context declarations IEEE_BIT_CONTEXT 
and IEEE_STD_CONTEXT.

context IEEE_BIT_CONTEXT is
   library IEEE;
   use IEEE.NUMERIC_BIT.all;
end context IEEE_BIT_CONTEXT;

context IEEE_STD_CONTEXT is
   library IEEE;
   use IEEE.STD_LOGIC_1164.all;
   use IEEE.NUMERIC_STD.all;
end context IEEE_STD_CONTEXT;

16.10 Fixed-point package

The library denoted by the library logical name IEEE contains packages FIXED_FLOAT_TYPES, 
FIXED_GENERIC_PKG, and FIXED_PKG.12 The following conformance rules shall apply as they pertain 
to the use and implementation of these packages:

a) The package declarations may be modified to include additional data required by tools, but modifi-
cations shall in no way change the external interfaces or simulation behavior of the description. It is 
permissible to add comments and/or attributes to the package declarations, but not to change or 
delete any original lines of the approved package declaration.

b) The FIXED_GENERIC_PKG package body and the FIXED_PKG package instantiation declaration 
provided in the machine-readable files accompanying this standard (see Annex A) represent the for-
mal semantics of the implementation of the FIXED_GENERIC_PKG and FIXED_PKG packages. 
Implementers of these packages may choose to simply compile the package body and package 
instantiation declaration as it is, or they may choose to implement the packages in the most efficient 
form available to the user. Implementers shall not implement semantics that differ from the formal 
semantics provided herein.

The text of the FIXED_GENERIC_PKG package (both package declaration and package body) and the text 
of the FIXED_PKG instantiated package are included with this standard (see Annex A). Those texts are 
official parts of this standard.

12The packages FIXED_GENERIC PKG, FIXED_PKG, and FIXED_FLOAT_TYPES were modified and used with permission from 
Eastman Kodak Company © 2006. 
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16.11 Floating-point package

The library denoted by the library logical name IEEE contains packages FLOAT_GENERIC_PKG and 
FLOAT_PKG.13 The following conformance rules shall apply as they pertain to the use and implementation 
of these packages:

a) The package declarations may be modified to include additional data required by tools, but modifi-
cations shall in no way change the external interfaces or simulation behavior of the description. It is 
permissible to add comments and/or attributes to the package declarations, but not to change or 
delete any original lines of the approved package declaration.

b) The FLOAT_GENERIC_PKG package body and the FLOAT_PKG package instantiation declara-
tion provided in the machine-readable files accompanying this standard (see Annex A) represent the 
formal semantics of the implementation of the FLOAT_GENERIC_PKG and FLOAT_PKG pack-
ages. Implementers of these packages may choose to simply compile the package body and package 
instantiation declaration as it is, or they may choose to implement the packages in the most efficient 
form available to the user. Implementers shall not implement semantics that differ from the formal 
semantics provided herein.

The text of the FLOAT_GENERIC_PKG package (both package declaration and package body) and the text 
of the FLOAT_PKG instantiated package are included with this standard (see Annex A). Those texts are 
official parts of this standard.

13The packages FLOAT_GENERIC_PKG and  FLOAT_PKG were modified and used with permission from Eastman Kodak Com-
pany © 2006. 
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17. VHDL Procedural Interface overview

17.1 General

The VHDL Procedural Interface (VHPI) is an application-programming interface to VHDL tools that allows 
programmatic access to a VHDL model during its analysis, elaboration, and execution. The VHPI is 
described in this clause, subsequent clauses through to Clause 23, and Annex B.

17.2 Organization of the interface

17.2.1 General

The VHPI consists of two aspects:

— An information model that represents the topology and state of a VHDL model

— A number of functions that operate on the information model to access or affect the state of the 
VHDL model and that interact with tools during analysis, elaboration, or execution of the VHDL 
model

A tool is a program that maintains a representation of a VHDL model and provides the VHPI functions. A 
VHPI program is a program that calls the VHPI functions.

The information model is expressed in an object-oriented manner as a set of classes that bear relationships
to one another. The classes are data types that have data properties and subprogram operations. A subclass
may be derived from one or more superclasses, in which case it inherits the properties and operations of its 
superclasses. An object is an instance of a class and of any superclasses of that class. The most specialized
class of an object is the class of which the object is a member and that has no subclass of which the object is 
also a member. An abstract class cannot be the most specialized class of any object; however, it may be a 
superclass of a non-abstract class that is the most specialized class of an object.

Some objects are static; that is, once created, they remain in existence until termination of the tool. Other 
objects are dynamic; that is, once created, they may cease to exist at a later time during execution of the tool.

The properties of a class represent data that is characteristic of an object of the class. The VHPI provides 
functions that allow a VHPI program to access and modify the values of properties of a given object. By 
using such functions, a VHPI program can access and modify values of VHDL objects in a VHDL model.

In addition to the inheritance relationship, a class may bear an association relationship with one or more 
other classes. A one-to-one association means that an object of a class is associated with at most one object 
of the second class. A one-to-many association means that an object of the class is associated with possibly 
more than one object of the second class. The VHPI provides functions that allow a VHPI program to 
traverse associations; that is, to locate objects that are associated with a given object.

The information model contains two sub-models. The first, referred to as the library information model, 
represents the design units that comprise a VHDL model after analysis and prior to elaboration. The second, 
referred to as the design hierarchy information model, represents the elaborated VHDL model. It contains 
instances, created through elaboration, of objects from the library information model. The design hierarchy 
information model may be used by a tool that simulates the VHDL model to gain access to the state of the 
VHDL model during execution. The design hierarchy information model includes associations with objects 
in the library information model, allowing navigation between the information models. The information 
model also contains objects representing the tool and its environment.
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A VHPI program can interact with a tool by providing callback functions. Such functions are identified to 
the tool using VHPI registration functions. The tool then calls the functions in response to events specified 
during registration. Such events include phases of tool execution, phases of model simulation, and changes 
of value of VHDL objects.

The VHPI also provides utility functions for such purposes as printing, error checking, and tool control.

In this standard, the VHPI information model is described using the UML notation. UML is described in 
ISO/IEC 19501:2005. The VHPI is ISO C-compliant. The VHPI functions are expressed as C functions, and 
the data and arguments used by the functions are expressed as C data types. ISO C is described in ISO/IEC 
9899:1999, as corrected by ISO/IEC 9899:1999/Cor 1:2001 and ISO/IEC 9899:1999/Cor 2:2004.

17.2.2 VHPI naming conventions

Named items in the VHPI conform to the following conventions:
— The names of functions consist of the letters vhpi followed by an underline character and one or 

more words, each of which consists of lowercase letters, with a single underline character between 
words.

— The names of items other than functions consist of the letters vhpi followed by one or more words, 
each of which consists of an uppercase letter followed by zero or more lowercase letters, with no 
character between words.

— The names of types end in an uppercase letter T.
— The names of enumeration constants that correspond to classes end in an uppercase letter K.
— The names of enumeration constants that correspond to properties end in an uppercase letter P.
— The names of enumeration constants that correspond to one-to-many associations end in a lowercase 

letter s, indicating plurality.
— Some words are abbreviated, for example, decl for declaration, stmt for statement, conc for 

concurrent, seq for sequential, and subp for subprogram.

In this standard, C identifiers are formatted in a monospaced font to enhance readability of the text.

17.3 Capability sets

The VHPI is divided into a number of capability sets, each of which provides a subset of the VHPI 
operations, properties, and functions. Corresponding to each capability set, there is an enumeration constant 
of type vhpiCapabilitiesT defined in the VHPI header file (see Annex B).

The VHPI capability set names and corresponding enumeration constants are:
— Hierarchy set: vhpiProvidesHierarchy.

A tool that implements this hierarchy set shall provide access to objects in the design hierarchy 
information model that represent statically elaborated regions and declarations and shall provide 
access to the values of declared objects.

— Static access set: vhpiProvidesStaticAccess. This set requires the hierarchy set.
A tool that implements the static access set shall additionally provide access to objects in the design 
hierarchy information model that represent statically elaborated statements and the expressions 
within them.

— Connectivity set: vhpiProvidesConnectivity. This set requires the hierarchy set.
A tool that implements the connectivity set shall additionally provide access to objects in the design 
hierarchy information model that represent drivers, contributors, loads, and port associations.

— Post-analysis set: vhpiProvidesPostAnalysis.
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A tool that implements the post-analysis set shall provide access to objects in the library information 
model and shall provide access to the values of declared objects that are initialized with locally static 
expressions.

— Basic foreign model set: vhpiProvidesForeignModel. This set requires the hierarchy set.

A tool that implements the basic foreign model set shall additionally support creation of foreign 
models and foreign model callbacks and shall provide access to objects in the design hierarchy 
information model that represent foreign models.

— Advanced foreign model set: vhpiProvidesAdvancedForeignModel. This set requires the 
basic foreign model set.

A tool that implements the advanced foreign model set shall additionally support creation of foreign 
drivers and processes and scheduling of transactions on foreign drivers.

— Save/restart set: vhpiProvidesSaveRestart.

A tool that implements the save/restart set shall support save and restart of foreign models, use of the 
vhpi_put_data and vhpi_get_data functions, save and restart callbacks, and shall provide 
access to the Id and SaveRestartLocation properties.

— Reset set: vhpiProvidesReset.

A tool that implements the reset set shall support reset of foreign models and reset callbacks.

— Basic debug and runtime simulation set: vhpiProvidesDebugRuntime. This set requires the 
static access set and the connectivity set.

A tool that implements the debug and runtime simulation set shall support use of the 
vhpi_control, vhpi_get_time, and vhpi_get_next_time functions; object value 
change callbacks for signals, ports, and drivers; time and action callbacks; and updating of signals, 
ports, and drivers.

— Advanced debug and runtime simulation set: vhpiProvidesAdvancedDebugRuntime. This 
set requires the basic debug and runtime simulation set.

A tool that implements the advanced debug and runtime simulation set shall additionally support 
object value change callbacks for variables, updating of variables, and the LineOffset property.

— Dynamic elaboration set: vhpiProvidesDynamicElab. This set requires the debug and runtime 
simulation set.

A tool that implements the dynamic elaboration set shall additionally provide access to objects that 
represent dynamically elaborated regions, declarations, and constructs.

If a tool specifies that it implements a given capability set, it shall provide all of the operations, properties, 
and functions specified for the capability set. If the capability set requires one or more other capability sets, 
the tool shall also implement the required capability sets. A tool shall provide a value for the 
vhpiCapabilitiesP property of the tool class that specifies the capability sets that the tool 
implements.

If a VHPI program calls an operation or function that is not provided in the capability sets provided by a 
tool, the function shall raise a VHPI error condition. Similarly, if a VHPI program accesses a property that is 
not provided in the capability sets provided by a tool, the access function shall raise a VHPI error condition. 
In both cases, the error message returned by a subsequent call to vhpi_check_error shall indicate that 
the operation is not implemented.

NOTE—A minimal implementation of the VHPI need only provide the function interface described in Clause 23 and 
Annex B, with none of the capability sets described in this subclause being implemented by the tool. In such a minimal 
implementation, calls to functions would, in most cases, raise a VHPI error condition.
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17.4 Handles

17.4.1 General

A handle is an opaque reference to an object in the VHPI information model. It is represented as a value of 
the data type vhpiHandleT (see Annex B); however, the interpretation of the representation is 
implementation defined. A handle allows a VHPI program to refer to an object without assuming details of 
the representation of the object. The VHPI provides functions that operate on objects referred to by handles. 
The particular operations that are legal for an object referred to by a handle depend on the class of the object. 
The class is identified by the Kind property of the object.

In this standard, if an object is described as being of a given class, the object may be of the given class, 
provided the class is not an abstract class or any non-abstract subclass of the given class.

NOTE—The Kind property of an object identifies the most specific class of the object, that is, the class for which no 
subclass is also a class of the object.

17.4.2 Handle creation

A handle is created by a tool as the result of one of the following functions called by a VHPI program:

— vhpi_handle_by_name, which returns a handle that refers to an object identified by a name
— vhpi_handle_by_index, which returns a handle that refers to an object in an ordered one-to-

many association
— vhpi_handle, which returns a handle that refers to the object in a one-to-one association
— vhpi_create, which creates or modifies an object, such as a driver, a process statement, or a 

collection, and returns a handle that refers to the object

— vhpi_register_cb, which returns a handle that refers to the callback object
— vhpi_register_foreignf, which returns a handle that refers to the callback object
— vhpi_iterator, which returns a handle that refers to an iterator
— vhpi_scan, which returns a handle that refers to an object referenced by an iterator

A tool shall support multiple VHPI programs, each of which acquires handles. The way in which a tool 
implements handles shall allow a VHPI program to function correctly independently of other VHPI 
programs executing concurrently. A tool may share between VHPI programs resources associated with the 
implementation of handles and the objects to which they refer. However, the occurrence of such sharing 
shall not alter the effect of the VHPI programs.

If a tool creates two handles that refer to the same object, the tool may create two distinct handles or may 
provide the same handle in both cases. Two distinct handles that refer to the same object are equivalent.

NOTE—The number of handles that an implementation can create may be constrained by the capacity of the host 
system.

17.4.3 Handle release

The function vhpi_release_handle called by a VHPI program causes a tool to release a handle. If a 
tool shares resources associated with handles and one VHPI program releases a handle, other VHPI 
programs shall be able to continue to refer to objects using handles that they have not released.

The tool may reclaim resources associated with the representation of a released handle.

NOTE 1—It is recommended that a VHPI program release handles when they are no longer needed.
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NOTE 2—A tool may reclaim resources associated with a handle when the handle is released by a VHPI program, pro-
vided the requirements of 17.4 are met. As a consequence, resources might not be reclaimed immediately upon release of 
a handle by a VHPI program, as the resources may be associated with handles in use by other VHPI programs.

17.4.4 Handle comparison

The function vhpi_compare_handles compares handles. It returns the value vhpiTrue if the handles 
are equivalent (that is, they refer to the same object); otherwise it returns the value vhpiFalse.

17.4.5 Validity of handles

The lifetime of an object is the duration of existence of the object in the VHPI information model. A static 
object is created at some time during the execution of a tool and exists until termination of the tool. A 
dynamic object is created at some time during the execution of a tool and may cease to exist at a later time 
during the execution of the tool, either as a consequence of execution of the VHDL model or of removal by 
a VHPI program.

A tool can create a handle that refers to an object only during the lifetime of the object. A handle is said to be 
valid from the time of its creation until the time at which it is released, or until the object that it refers to 
ceases to exist, or until termination of the tool; at other times it is invalid. A VHPI program that attempts to 
refer to an object using an invalid handle is erroneous.

NOTE—A VHPI program that attempts to release an invalid handle is also erroneous.
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18. VHPI access functions

18.1 General

This clause describes the VHPI functions that are used by VHPI programs to access the information model 
of a VHDL model.

18.2 Information access functions

18.2.1 General

The VHPI information access functions allow a VHPI program to navigate an association between objects.

The VHPI header file defines enumeration types that contain enumeration constants corresponding to 
association roles specified implicitly or explicitly in the information model. The name of each enumeration 
constant is the name of the corresponding role prefixed with the letters vhpi.

18.2.2 One-to-one association traversal

The VHPI header file defines the enumeration type vhpiOneToOneT that contains enumeration constants 
corresponding to one-to-one association roles.

If the information model includes a one-to-one association that is navigable from a reference class to a target 
class, the function vhpi_handle navigates from an object of the reference class to an object of the target 
class (see 23.20).

Examples:

Given the information model described by the UML class diagram shown in Figure 1

the following VHPI program navigates from an object of the compInstStmt class to an object of the 
designUnit class using the enumeration constant vhpiDesignUnit.

void get_binding_info(vhpiHandleT instHdl) {
  char duName[MAXSTR];
  char libName[MAXSTR];
  vhpiHandleT duHdl;

designInstUnit

compInstStmt packInstrootInst

designUnit

1

Figure 1—UML class diagram
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  switch (vhpi_get(vhpiKindP, instHdl)) {
  case vhpiCompInstStmtK:
  case vhpiRootInstK:
  case vhpiPackInstK:
    duHdl = vhpi_handle(vhpiDesignUnit, instHdl);
    sprintf (duName, "%s", vhpi_get_str(vhpiUnitNameP, duHdl));
    sprintf(libName, "%s", vhpi_get_str(vhpiLibLogicalNameP, duHdl));
    vhpi_printf("design unit name %s in library %s\n", duName, libName);
    break;
  default:
    break;
  }/* end switch */
}/* get_binding_info() */

Given the information model described by the UML class diagram shown in Figure 2

the following VHPI program navigates from an object of the waitStmt class to one object of the expr
class using the enumeration constant vhpiCondExpr and to a second object of the expr class using the 
enumeration constant vhpiTimeOutExpr.

vhpiHandleT stmtHdl, condHdl, timeHdl;�
if (vhpi_get(vhpiKindP, stmtHdl) == vhpiWaitStmtK) {�
  condHdl = vhpi_handle(vhpiCondExpr, stmtHdl);�
  timeHdl = vhpi_handle(vhpiTimeOutExpr, stmtHdl);�
}

18.2.3 One-to-many association traversal

The VHPI header file defines the enumeration type vhpiOneToManyT that contains enumeration 
constants corresponding to one-to-many association roles.

If the information model includes a one-to-many association that is navigable from a reference class to a 
target class, the function vhpi_iterator navigates from an object of the reference class to a set of 
objects of the target class (see 23.24).

If the information model includes an ordered one-to-many association that is navigable from a reference 
class to a target class, the function vhpi_handle_by_index navigates from an object of the reference 
class to an object of the target class (see 23.21).

NOTE 1—A VHPI program can use the vhpi_scan function to access the objects referred to by an iterator.

waitStmt

expr

+CondExpr
0..1

+TimeOutExpr
0..1

Figure 2—UML class diagram
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NOTE 2—If the association navigated by the vhpi_iterator function is not an ordered association, the order of 
objects returned by applying vhpi_scan to the iterator is not defined.

Example:

vhpiHandleT instHdl, instIter;�
/* get all sub-instances of a scope instance */�
instIter = vhpi_iterator(vhpiInternalRegions, instHdl);�
if (instIter) {�
  while (instHdl = vhpi_scan(instIter)) {�
    vhpi_printf("found instance %s\n",

                vhpi_get_str(vhpiNameP, instHdl));�
  }�
}

18.3 Property access functions

18.3.1 General

The VHPI property access functions allow a VHPI program to access property values of objects.

The VHPI header file defines enumeration types that contain enumeration constants corresponding to 
properties of classes specified in the information model. The name of each enumeration constant is the name 
of the corresponding property prefixed with the letters vhpi and suffixed with the uppercase letter P.

18.3.2 Integer and Boolean property access function

The VHPI header file defines the enumeration type vhpiIntPropertyT that contains enumeration 
constants corresponding to integer and Boolean properties. The header file defines the type vhpiIntT that 
is used to represent values of integer and Boolean properties. The header file defines the integer constant 
vhpiFalse that is used to represent the value of a Boolean property that is false and the integer constant 
vhpiTrue that is used to represent the value of a Boolean property that is true.

The function vhpi_get accesses an integer or Boolean property of an object (see 23.10).

NOTE—Some properties may legally take on the same value as the constant vhpiUndefined. In such cases, a VHPI 
program should use the vhpi_check_error to determine whether a call to vhpi_get resulted in an error.

18.3.3 String property access function

The VHPI header file defines the enumeration type vhpiStrPropertyT that contains enumeration 
constants corresponding to string properties.

The function vhpi_get_str accesses a string property of an object (see 23.17).

NOTE 1—Successive calls to vhpi_get_str may use the same storage for the results. A VHPI program that needs to 
save the result of a call to vhpi_get_str should copy the result before subsequent calls to the function. (See Clause 
23.)

NOTE 2—String properties that represent VHDL pathnames and extended identifiers may contain non-letter graphic 
characters, such as '\'. VHPI programs that use C string library functions or printf functions to operate on such strings 
should ensure that the special characters are not interpreted as escape characters by the functions.
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18.3.4 Real property access function

The VHPI header file defines the enumeration type vhpiRealPropertyT that contains enumeration 
constants corresponding to real properties. The header file defines the type vhpiRealT that is used to 
represent values of real properties.

The function vhpi_get_real accesses a real property of an object (see 23.16).

NOTE—A VHPI program should use the vhpi_check_error to determine whether a call to vhpi_get_real
resulted in an error.

18.3.5 Physical property access function

The VHPI header file defines the enumeration type vhpiPhysPropertyT that contains enumeration 
constants corresponding to physical properties. The header file defines the struct type vhpiPhysT that is 
used to represent values of physical properties. The member high of the struct type represents the most 
significant 32 bits of the position number of a value, and the member low represents the least significant 32 
bits of the position number of the value.

The function vhpi_get_phys accesses a physical property of an object (see 23.15).

NOTE—A VHPI program should use the vhpi_check_error to determine whether a call to vhpi_get_phys
resulted in an error.

18.4 Access by name function

If a class in the information model has the vhpiFullNameP property (see 19.4.7), the function 
vhpi_handle_by_name (see 23.22) navigates to an object of the class.
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19. VHPI information model

19.1 General

This clause describes the VHPI information model using the Unified Modeling Language (UML) (ISO/IEC 
19501:2005). The clause specifies the classes, subclass relationships, associations, properties, and 
operations of the information model. Part of this clause is included here in textual form. The remainder of 
this clause is included in machine-readable form, comprising a navigable representation of the information 
model.

The information model described here allows representation of VHDL models that conform to 
IEEE Std 1076-2002. Certain aspects of the language added in the current revision of this standard cannot 
be represented by the information model. It is expected that a subsequent revision of this standard will 
extend the information model to allow representation of those aspects.

19.2 Formal notation

19.2.1 General

The information model is described using a set of UML class diagrams. The diagrams specify the classes 
that are included in the information model, the subclass relationships that exist between classes, the 
properties and operations of classes, and the associations that exist between objects of classes.

Each association is annotated with the navigability of the association. If the association is navigable from an 
object of one class to an object of a second class, the first class is said to be the reference class, and the 
second class is said to be the target class. The object of the reference class is said to be the reference object, 
and an object of the target class is said to be a target object. An association may be navigable in one 
direction only (in which case, it is shown with an arrow indicating the direction of navigability) or it may be 
navigable in both directions (in which case it is shown with no arrow).

Each association is annotated with the multiplicity of the association in the direction of navigation of the 
association. One-to-one associations are those that have a multiplicity of 1 or 0..1 in the direction of 
navigation. One-to-many associations are those that have a multiplicity of 0..* or 1..* in the direction of 
navigation.

Some associations are annotated with a role name in the direction of navigation of the association. If an 
association is not so annotated, the role name is implicitly the name of the target class.

Some one-to-many associations are annotated with the ordered constraint. The description of the association 
includes a specification of the order of occurrence of target objects within the association.

In certain cases, a class inherits a given property or association from more than one superclass, or has a 
given property or association and also inherits the property or association from a superclass. In such cases, 
the class does not replicate the property or association. Rather, the class has a single occurrence of the 
property or association. The meaning of the property or association is the same for all classes in which it is 
specified.

19.2.2 Machine-readable information model

The machine-readable form of the information model is part of this clause. The following aspects of the 
machine-readable form are normative:

a) The partitioning of class diagrams, class specification, and association specifications into packages
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b) The class diagrams
c) For each package specification:

— The package name
— The text of the documentation
— The list of classes provided by the package

d) For each class specification:
— The text of the documentation
— The specification of whether the class is abstract
— The cardinality
— The name and signature of operations
— The name, supplying class, and type of properties (referred to as “attributes” in the machine-

readable form)
— The role names and target classes of associations
— The specialized class and supplier class of generalization relationships

e) For each property specification:
— The name, type, and supplying class of the property
— The text of the documentation

f) For each operation specification:
— The name, signature, and supplying class of operations
— The text of the documentation

g) For each association specification:
— If an association is navigable in a given direction, the target class role name, and the target class
— Otherwise, the role name is shown as “Not Named”

h) For each navigable association role specification:
— The role name and target class
— The text of the documentation
— The multiplicity (referred to as the “cardinality” in the machine-readable form)
— The navigability

NOTE—Other aspects of the machine-readable form do not form part of this standard. They occur as a side effect of the 
software program used to develop this standard.

19.3 Class inheritance hierarchy

The UML description of the VHPI information model is partitioned into several UML packages. Each 
package defines one or more classes and includes one or more class diagrams. The class diagrams of all of 
the packages jointly specify the inheritance hierarchy of the UML description, that is, the set of inheritance 
relationships that exist between all of the classes of the information model.

The class base forms the root of the inheritance hierarchy; all other classes inherit directly or indirectly 
from it. A single virtual object of class null represents the context in which the VHPI tool executes and is 
accessed using a NULL handle. Other classes represent aspects of the VHDL model and VHPI programs 
being processed by the VHPI tool.

For each class, this clause and the documentation in the machine-readable form of the information model 
jointly describe the properties, operations, and associations defined in the information model. The class also 
inherits properties, operations, and associations defined for its superclasses.
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19.4 Name properties

19.4.1 General

This subclause (19.4) describes certain properties of objects that relate to the names of VHDL named 
entities or constructs. Other name-related properties are described in the documentation in the machine-
readable form of the information model.

19.4.2 Implicit labels of statements

19.4.2.1 General

Certain properties that relate to names derive their values from labels of statements. In cases where the label 
of such a statement is optional, this subclause (19.4.2) describes rules for determining an implicit label that 
is used in the value of the property.

19.4.2.2 Implicit labels of loop statements

For each loop statement that occurs immediately within a given declarative region, there corresponds a 
unique sequence number, determined as follows. The loop statements are ordered according to the order of 
occurrence of their first lexical elements in the text of the declarative region. The sequence number of the 
first loop statement in the ordering, if any, is 0. The sequence number of each subsequent loop statement in 
the ordering, if any, is one greater than that of the preceding loop statement.

If a loop statement is unlabeled, an implicit label is defined for use in name properties. The implicit label is 
a sequence of characters starting with an underline character, followed by the letter 'L' or 'l', further followed 
by the loop sequence number of the loop statement expressed in decimal without leading insignificant zero 
digits. The choice between the letter 'L' and 'l' is implementation defined.

Example:

In the following VHDL procedure body, the implicit loop labels are indicated in comments.

procedure LOOP_EXAMPLE is
begin
   loop -- _L0
      L: for I in 1 to 10 loop  -- explicitly labeled,
                                 -- so no implicit label defined
         while TEST loop -- _L2
            ...
         end loop;
      end loop L;
   end loop;
   loop  -- _L3
         ...
   end loop;
end procedure LOOP_EXAMPLE;

19.4.2.3 Implicit labels of concurrent statements

For each concurrent statement that is a process statement or is equivalent to a process statement and that 
occurs immediately within a given declarative region, there corresponds a unique sequence number, 
determined as follows. The statements are ordered according to their order of occurrence in the text of the 
declarative region. In the case of statements occurring immediately within an entity declaration, a block 
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statement, or a generate statement, the sequence number of the first statement in the ordering, if any, is 0. In 
the case of statements occurring immediately within an architecture body, the sequence number of the first 
statement in the ordering, if any, is one greater than that of the last statement in the ordering of the entity 
declaration to which the architecture body corresponds. The sequence number of each subsequent statement 
in the ordering of the given declarative region, if any, is one greater than that of the preceding statement.

If a concurrent statement that is a process statement or is equivalent to a process statement is unlabeled, an 
implicit label is defined for use in name properties. The implicit label is a sequence of characters starting 
with an underline character, followed by the letter 'P' or 'p', further followed by the sequence number of the 
statement expressed in decimal without leading insignificant zero digits. The choice between the letter 'P' 
and 'p' is implementation defined.

Example:

In the following VHDL model, the implicit labels are indicated in comments.

entity E is
   generic (G: INTEGER);
   port (S: out INTEGER);
   assert G > 0; -- _P0
end entity E;

architecture A of E is
begin
   process is -- _P1
   begin
      ...
   end process;
   A1: assert G > 2;
   B: block is
   begin
      WORK.PKG.PROC(G); -- _P0
   end block B;
   S <= G; -- _P2
end architecture A;

19.4.3 The Name and CaseName properties

Certain objects in the information model have both the Name and CaseName properties. If the value of the 
Name property of an object is the simple name of a named entity and the simple name is in the form of an 
extended identifier, the case of letters occurring in the value of the Name property is the same as the case of 
letters occurring in the extended identifier. Otherwise, the case of letters occurring in the value of the Name
property is not specified by this standard.

For an object of class decl that does not represent the declaration of an anonymous named entity, the 
values of the Name and CaseName properties are the simple name or operator symbol of the declaration 
represented by the object. In determining the case of letters in the CaseName property, there are four cases:

— If the object represents a type declaration, either there is both an incomplete type declaration and a 
full type declaration, in which case the case of letters in the value of the CaseName property is the 
same as the case of letters in the identifier of the incomplete type declaration; or there is only a full 
type declaration, in which case the case of letters in the value of the CaseName property is the same 
as the case of letters in the identifier of the full type declaration.
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— If the object represents an interface object of a subprogram, either there is both a subprogram 
declaration and a subprogram body, in which case the case of letters in the value of the CaseName
property is the same as the case of letters in the identifier of the interface declaration of the 
subprogram declaration; or there is only a subprogram body, in which case the case of letters in the 
value of the CaseName property is the same as the case of letters in the identifier of the interface 
declaration of the subprogram body.

— If the object represents a subprogram body for which there is a separate subprogram declaration, the 
case of letters in the value of the CaseName property is the same as the case of letters in the 
designator of the subprogram specification of the subprogram declaration. Otherwise, if the object 
represents a subprogram body for which there is no separate subprogram declaration, the case of 
letters in the value of the CaseName property is the same as the case of letters in the designator of 
the subprogram specification of the subprogram body.

— If the object is none of the preceding cases, the case of letters in the value of the CaseName property 
is the same as the case of letters in the identifier or operator symbol in the declaration represented by 
the object.

The values of the Name and CaseName properties of an object of class decl that represents the 
declaration of an anonymous named entity are not specified by this standard.

For an object of class rootInst, the values of the Name and CaseName properties are the simple name 
of the entity declaration whose instantiation is represented by the object. The case of letters in the value of 
the CaseName property is the same as the case of letters in the identifier of the entity declaration.

For an object of class packInst, the values of the Name and CaseName properties are the simple name 
of the package declaration whose elaboration is represented by the object. The case of letters in the value of 
the CaseName property is the same as the case of letters in the identifier of the package declaration.

For an object of class protectedTypeInst, the values of the Name and CaseName properties are the 
simple name of the variable whose elaboration is represented by the object. The case of letters in the value of 
the CaseName property is the same as the case of letters in the identifier of the variable declaration.

For an object of class blockStmt, eqProcessStmt, or compInstStmt, or for an object of class 
generateStmt other than an object of class forGenerate in the design hierarchy information model, 
or for an object of class loopStmt, the values of the Name and CaseName properties are the label, either 
explicit or implicit (see 19.4.2), of the statement represented by the object. The case of letters in the value of 
the CaseName property is the same as the case of letters in the label of the statement.

For an object of class forGenerate in the design hierarchy information model, the values of the Name
and CaseName properties are a string of the form

generate_statement_label ( literal )

The string includes no leading, trailing, or embedded space characters between lexical elements. The 
generate statement label is the label of the generate statement represented by the object, and the literal is the 
value of the generate parameter corresponding to the instance of the generate statement represented by the 
object. If the generate parameter is of an integer type, the literal is a numeric literal whose value is an 
integer. Otherwise, if the generate parameter is of an enumeration type, the literal is an enumeration literal 
whose value is of the type of the generate parameter. The case of letters in the label part of the value of the 
CaseName property is the same as the case of letters in the label of the statement. The case of letters in a 
numeric literal in the value of the CaseName property is not specified by this standard. The case of letters 
in an enumeration literal that is an identifier in the value of the CaseName property is the same as the case 
of letters in the identifier in the declaration of the enumeration type of which the enumeration literal is a 
value.
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For an object of class seqProcCall or funcCall representing invocation of a subprogram other than a 
method of a protected type, the values of the Name and CaseName properties are the values of the Name
and CaseName properties, respectively, of an object of class subpDecl representing the subprogram 
specification of the subprogram invoked.

For an object of class seqProcCall or funcCall representing invocation of a method of a protected 
type, the value of the Name property is a string of the form

shared_variable_name_property . named_entity_name_property

and the value of the CaseName property is a string of the form

shared_variable_case_name_property . named_entity_case_name_property

The strings include no leading, trailing, or embedded space characters between lexical elements. The shared 
variable name property and the shared variable case name property are the values of the Name and 
CaseName properties, respectively, of an object of class decl representing the declaration of the shared 
variable denoted by the prefix of the name of the subprogram invoked. The named entity name property and 
the named entity case name property are the values of the Name and CaseName properties, respectively, of 
an object of class subpDecl representing the subprogram specification of the subprogram invoked.

For an object of class indexedName representing an element of a named entity that is a declared object of 
an array type, the value of the Name property is a string of the form

named_entity_name_property ( literal { , literal } )

and the value of the CaseName property is a string of the form

named_entity_case_name_property ( literal { , literal } )

The strings include no leading, trailing, or embedded space characters between lexical elements. In the 
strings

— The named entity name property is the value of the Name property of the object representing the 
declaration of the named entity, and the named entity case name property is the value of the 
CaseName property of that object.

— Each literal is the index value of the element for the corresponding index position of the array type of 
the named entity. If the index subtype for a given index position is an integer type, the literal for that 
index position is a numeric literal whose value is an integer. Otherwise, if the index subtype for the 
index position is an enumeration type, the literal is an enumeration literal whose value is of the index 
subtype.

For an object of class selectedName representing an element of a named entity that is a declared object 
of a record type, the value of the Name property is a string of the form

named_entity_name_property . element_simple_name

and the value of the CaseName property is a string of the form

named_entity_case_name_property . element_simple_name

The strings include no leading, trailing, or embedded space characters between lexical elements. In the 
strings
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— The named entity name property is the value of the Name property of the object representing the 
declaration of the named entity, and the named entity case name property is the value of the 
CaseName property of that object.

— The element simple name is the simple name of the element. The case of letters in the element simple 
name in the value of the CaseName property is the same as the case of letters occurring in the 
identifier of the element in the declaration of the record type.

For an object of class sliceName representing
— a slice of a named entity that is a declared object of an array type, and
— a slice in which the discrete range is in the form of a literal representing the left bound, a direction 

and a literal representing the right bound,

the value of the Name property is a string of the form

named_entity_name_property ( literal direction literal )

and the value of the CaseName property is a string of the form

named_entity_case_name_property ( literal direction literal )

The strings include no leading, trailing, or embedded space characters between lexical elements. In the 
strings

— The named entity name property is the value of the Name property of the object representing the 
declaration of the object denoted by the prefix of the slice, and the named entity case name property 
is the value of the CaseName property of the former object.

— The literals are the left and right bounds, respectively, of the range of the slice. If the index subtype 
of the object denoted by the prefix is an integer type, the literals are a numeric literals whose values 
are integers. Otherwise, if the index subtype of the object denoted by the prefix is an enumeration 
type, the literals are enumeration literals whose value is of the index subtype.

— The direction is to if the discrete range of the slice is an ascending range, or downto otherwise.

For an object of class derefObj in the library information model representing an element of an array 
variable, the values of the Name and CaseName properties are strings of the same form as the value of the 
Name and CaseName properties, respectively, of an object of class indexedName, except that:

— The named entity name property is the value of the Name property of an object representing the 
access value that designates the array variable, and the named entity case name property is the value 
of the CaseName property of that object.

— Each literal is the index value of the element for the corresponding index position of the array type of 
the array variable.

For an object of class derefObj in the library information model representing an element of a record 
variable, the values of the Name and CaseName properties are strings of the same form as the value of the 
Name and CaseName properties, respectively, of an object of class selectedName, except that the 
named entity name property is the value of the Name property of an object representing the access value that 
designates the record variable, and the named entity case name property is the value of the CaseName
property of that object.

For an object of class derefObj in the library information model representing a slice of an array variable, 
the values of the Name and CaseName properties are strings of the same form as the value of the Name and 
CaseName properties, respectively, of an object of class sliceName, except that the named entity name 
property is the value of the Name property of an object representing the access value that designates the 
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array variable, and the named entity case name property is the value of the CaseName property of that 
object.

For an object of class derefObj in the library information model representing an entire variable, denoted 
by a selected name with the suffix all, the value of the Name property is a string of the form

named_entity_name_property . all

and the value of the CaseName property is a string of the form

named_entity_case_name_property . all

The strings include no leading, trailing, or embedded space characters between lexical elements. In the 
strings, the named entity name property is the value of the Name property of an object representing the 
access value that designates the variable, and the named entity case name property is the value of the 
CaseName property of that object.

It is an error if a VHPI program reads the Name or CaseName property of an object of class derefObj in 
the design hierarchy information model.

For an object of class attrName representing an attribute name, the value of the Name property is a string 
of the form

named_entity_name_property ' attribute_name_property

and the value of the CaseName property is a string of the form

named_entity_case_name_property ' attribute_case_name_property

The strings include no leading, trailing, or embedded space characters between lexical elements. In the 
strings

— The named entity name property is the value of the Name property of the object representing the 
prefix of the attribute name, and the named entity case name property is the value of the CaseName
property of that object.

— For user-defined attributes, the attribute name property is the value of the Name property of the 
object representing the declaration of the attribute denoted by the attribute designator in the attribute 
name, and the attribute case name property is the value of the CaseName property of that object.

— For predefined attributes, the attribute name property and the attribute case name property are both 
the simple name of the attribute. The case of letters in the attribute case name property is not 
specified by this standard.

For an object of class useClause representing a reference to a declaration in a use clause, the values of the 
Name and CaseName properties are the values of the Name and CaseName properties, respectively, of an 
object of class decl representing the declaration.

For an object of class designUnit representing an analyzed design unit in the library information model, 
the values of the Name and CaseName properties are the simple name of the design unit. The case of letters 
in the simple name in the value of the CaseName property is the same as the case of letters occurring in the 
identifier of the design unit.
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19.4.4 The SignatureName property

An object of class subpDecl, charLiteral, or enumLiteral has the SignatureName property. 
The value of the property is a string that is the signature (see 4.5.3) of the subprogram or enumeration literal, 
as appropriate, represented by the object. Similarly, an object of class subpCall has the 
SignatureName property. The value of the property is a string that is the signature of the subprogram 
invoked by the procedure call statement or function call represented by the object.

The signature includes a type mark for each parameter of the subprogram, and that type mark denotes the 
base type of the parameter. If the subprogram is a function, the signature includes the reserved word return
and a further type mark that denotes the base type of the return type of the function. The case of letters in the 
value of the SignatureName property is not specified by this standard.

19.4.5 The UnitName property

Objects of class designUnit in the library information model have the UnitName property. The value of 
the property is a string of the form

library_name_property . design_unit_name_property [ : body_name_property ]

The string includes no leading, trailing, or embedded space characters between lexical elements. The library 
name property is the value of the LibLogicalName property of the object that represents the library 
containing the design unit. If the design unit is a primary unit, the design unit name property is the value of 
the Name property of the object that represents the design unit in the library information model, and the 
colon character and body name property are not included in the string. If the design unit is an architecture 
body, the design unit name property is the value of the Name property of the object that represents the 
corresponding entity declaration in the library information model, and the body name property is the simple 
name of the architecture body. If the design unit is a package body, the design unit name property is the 
value of the Name property of the object that represents the package declaration in the library information 
model, and the body name property is the letters body with the case of letters not specified by this standard.

19.4.6 The DefName and DefCaseName properties

Objects of class lexicalScope and decl in the library information model have both the DefName and 
DefCaseName properties. For a given object representing a named entity other than an anonymous named 
entity, the value of the DefName property is a string of the form

@ unit_name_property { . lexical_scope_name_property } [ . named_entity_name_property ]

and the value of the DefCaseName property is a string of the form

@ unit_name_property { . lexical_scope_case_name_property } [ . named_entity_case_name_property ]

The strings include no leading, trailing, or embedded space characters between lexical elements. If the 
named entity is a design unit, the unit name property is the value of the UnitName property of the given 
object; otherwise, the unit name property is the value of the UnitName property of the object that 
represents the design unit in which the named entity is declared. There is one lexical scope name property in 
the value of the DefName property, and one lexical scope case name property in the value of the 
DefCaseName property, for each declarative region (if any) between the design unit and the declaration of 
the named entity. A lexical scope name property is the value of the Name property of the object that 
represents the corresponding declarative region, and a lexical scope case name property is the value of the 
CaseName property of that object. If the named entity is a design unit, the named entity name property and 
the named entity case name property and the immediately preceding period characters are not included in the 
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strings. Otherwise, the named entity name property and the named entity case name property are the values 
of the Name and CaseName properties, respectively, of the object representing the named entity.

For a given object in the library information model representing an anonymous named entity, the values of 
the DefName and DefCaseName properties are not specified by this standard.

Objects in the design hierarchy information model that have the Name and CaseName properties also have 
the DefName and DefCaseName properties.

For a given object of class decl in the design hierarchy information model representing a named entity, the 
value of the DefName and DefCaseName properties are the values of the DefName and DefCaseName
properties, respectively, of the object in the library information model that represents the declaration of the 
named entity.

For a given object of class rootInst, the value of the DefName and DefCaseName properties are the 
values of the DefName and DefCaseName properties, respectively, of the object in the library information 
model representing the entity declaration whose instantiation is represented by the given object.

For an object of class packInst, the value of the DefName and DefCaseName properties are the values 
of the DefName and DefCaseName properties, respectively, of the object in the library information model 
representing the package declaration whose instantiation is represented by the given object.

For an object of class protectedTypeInst, the value of the DefName and DefCaseName properties 
are the values of the DefName and DefCaseName properties, respectively, of the object in the library 
information model representing the variable declaration whose instantiation is represented by the given 
object.

For an object of class concStmt in the design hierarchy information model other than an object of class 
concProcCallStmt, or for an object of class forLoop, the value of the DefName and 
DefCaseName properties are the values of the DefName and DefCaseName properties, respectively, of 
the object in the library information model representing the statement whose instantiation is represented by 
the given object.

For an object of class subpCall in the design hierarchy information model representing a subprogram call, 
the value of the DefName property is a string of the form

lexical_scope_definition_name_property . named_entity_name_property

and the value of the DefCaseName property is a string of the form

lexical_scope_definition_case_name_property . named_entity_case_name_property

The strings include no leading, trailing, or embedded space characters between lexical elements. The lexical 
scope definition name property and the lexical scope definition case name property are the values of the 
DefName and DefCaseName properties, respectively, of the object of class lexicalScope in the 
library information model representing the declarative region immediately within which the subprogram call 
occurs. The named entity name property and the named entity case name property are the values of the 
Name and CaseName properties, respectively, of the object in the library information model representing 
the subprogram call.

For an object of class indexedName representing an element of a named entity that is a declared object of 
an array type, the value of the DefName property is a string of the form

named_entity_definition_name_property ( literal { , literal } )
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and the value of the DefCaseName property is a string of the form

named_entity_definition_case_name_property ( literal { , literal } )

The strings include no leading, trailing, or embedded space characters between lexical elements. In the 
strings

— The named entity definition name property is the value of the DefName property of the object 
representing the declaration of the named entity, and the named entity definition case name property 
is the value of the DefCaseName property of that object.

— The literals are formed according to the rules for forming the literals in the Name and CaseName
properties of the object (see 19.4.3).

For an object of class selectedName representing an element of a named entity that is a declared object 
of a record type, the value of the DefName property is a string of the form

named_entity_definition_name_property . element_simple_name

and the value of the DefCaseName property is a string of the form

named_entity_definition_case_name_property . element_simple_name

The strings include no leading, trailing, or embedded space characters between lexical elements. In the 
strings

— The named entity definition name property is the value of the DefName property of the object 
representing the declaration of the named entity, and the named entity definition case name property 
is the value of the DefCaseName property of that object.

— The element simple name is formed according to the rules for forming the element simple name in 
the Name and CaseName properties of the object (see 19.4.3).

For an object of class sliceName representing
— a slice of a named entity that is a declared object of an array type, and
— a slice in which the discrete range is in the form of a literal representing the left bound, a direction, 

and a literal representing the right bound,

the value of the DefName property is a string of the form

named_entity_definition_name_property ( literal direction literal )

and the value of the DefCaseName property is a string of the form

named_entity_definition_case_name_property ( literal direction literal )

The strings include no leading, trailing, or embedded space characters between lexical elements. In the 
strings

— The named entity definition name property is the value of the DefName property of the object 
representing the declaration of the object denoted by the prefix of the slice, and the named entity 
definition case name property is the value of the DefCaseName property of the former object.

— The literals and the direction are formed according to the rules for forming the literals and direction 
in the Name and CaseName properties of the object (see 19.4.3).

For an object of class derefObj in the library information model representing an element of an array 
variable, the values of the DefName and DefCaseName properties are strings of the same form as the 
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value of the DefName and DefCaseName properties, respectively, of an object of class indexedName, 
except that:

— The named entity definition name property is the value of the DefName property of an object 
representing the access value that designates the array variable, and the named entity definition case 
name property is the value of the DefCaseName property of that object.

— Each literal is the index value of the element for the corresponding index position of the array type of 
the array variable.

For an object of class derefObj in the library information model representing an element of a record 
variable, the values of the DefName and DefCaseName properties are strings of the same form as the 
value of the DefName and DefCaseName properties, respectively, of an object of class selectedName, 
except that the named entity definition name property is the value of the DefName property of an object 
representing the access value that designates the record variable, and the named entity definition case name 
property is the value of the DefCaseName property of that object.

For an object of class derefObj in the library information model representing a slice of an array variable, 
the values of the DefName and DefCaseName properties are strings of the same form as the value of the 
DefName and DefCaseName properties, respectively, of an object of class sliceName, except that the 
named entity definition name property is the value of the DefName property of an object representing the 
access value that designates the array variable, and the named entity definition case name property is the 
value of the DefCaseName property of that object.

For an object of class derefObj in the library information model representing an entire variable, denoted 
by a selected name with the suffix all, the value of the DefName property is a string of the form

named_entity_definition_name_property . all

and the value of the DefCaseName property is a string of the form

named_entity_case_definition_name_property . all

The strings include no leading, trailing, or embedded space characters between lexical elements. In the 
strings, the named entity definition name property is the value of the DefName property of an object 
representing the access value that designates the variable, and the named entity definition case name 
property is the value of the DefCaseName property of that object.

It is an error if a VHPI program reads the DefName or DefCaseName property of an object of class 
derefObj in the design hierarchy information model.

For an object of class attrName representing an attribute name, the value of the DefName property is a 
string of the form

named_entity_definition_name_property ' attribute_name_property

and the value of the DefCaseName property is a string of the form

named_entity_definition_case_name_property ' attribute_case_name_property

The strings include no leading, trailing, or embedded space characters between lexical elements. In the 
strings

— The named entity definition name property is the value of the DefName property of the object 
representing the prefix of the attribute name, and the named entity definition case name property is 
the value of the DefCaseName property of that object.
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— The attribute name property and the attribute case name property are formed according to the rules 
for forming the attribute name property and the attribute case name property in the Name and 
CaseName properties of the object (see 19.4.3).

19.4.7 The FullName and FullCaseName properties

Objects of class decl and name in the library information model have the FullName and 
FullCaseName string properties. The value of the FullName property of such an object is the same as 
the value of the DefName property of the object, and the value of the FullCaseName property of such an 
object is the same as the value of the DefCaseName property of the object.

Objects of classes decl, region, and name in the design hierarchy information model have the 
FullName and FullCaseName string properties.

For a given object of class decl or region representing a named entity that is statically elaborated and 
that is either a package, declared immediately within in a package, or elaborated as a declaration in a 
protected type that is the type of a shared variable declared immediately within a package, the value of the 
FullName property is a string of the form

@ library_name_property : package_name_property :
      [ shared_variable_name_property : ] [ named_entity_name_property ]

and the value of the FullCaseName property is a string of the form

@ library_case_name_property : package_case_name_property :
      [ shared_variable_case_name_property : ] [ named_entity_case_name_property ]

The strings include no leading, trailing, or embedded space characters between lexical elements. The library 
name property and the library case name property are both the value of the LibLogicalName property of 
the object that represents the library containing the package declaration. The package name property and the 
package case name property are the values of the Name and CaseName properties, respectively, of the 
object that represents the package. The shared variable name property and the shared variable case name 
property are present if the given object represents a named entity elaborated as a declaration in a protected 
type that is the type of a shared variable declared immediately within a package. In that case, the properties 
are the values of the Name and CaseName properties, respectively, of the object that represents the shared 
variable. The named entity name property and the named entity case name property are present if the given 
object represents a named entity declared immediately within a package or elaborated as a declaration in a 
protected type that is the type of a shared variable declared immediately within a package. In that case, the 
properties are the values of the Name and CaseName properties, respectively, of the given object.

For a given object of class decl or region representing a named entity that is statically elaborated and 
that is a root design entity instance, a named entity declared in a declarative region other than immediately 
within a package, a named entity elaborated as a declaration in a protected type that is the type of a shared 
variable declared other than immediately within a package, or a concurrent statement, the value of the 
FullName property is a string of the form

: { region_name_property : } [ named_entity_name_property ]

and the value of the FullCaseName property is a string of the form

: { region_case_name_property : } [ named_entity_case_name_property ]

The strings include no leading, trailing, or embedded space characters between lexical elements. There is 
one region name property in the value of the FullName property, and one region case name property in the 
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CaseName property, for the root design entity and each declarative region instance in the design hierarchy 
between the root design entity and the named entity. Each region name property is the value of the Name
property of the object representing the corresponding root design entity or declarative region instance, and 
each region case name property is the value of the CaseName property of the object representing the 
corresponding root design entity or declarative region instance. The named entity name property or named 
entity case name property is present if the given object represents a declared named entity. In that case, the 
named entity name property is the value of the Name property of the given object, and the named entity case 
name property is the CaseName property of the given object.

For an object of class decl or region representing a named entity that is dynamically elaborated, the 
value of the FullName property is a string of the form

parent_process_full_name_property : { parent_subprogram_full_name_property : }
      [ variable_name_property : ] named_entity_name_property

and the value of the FullCaseName property is a string of the form

parent_process_full_case_name_property : { parent_subprogram_full_case_name_property : }
      [ variable_case_name_property : ] named_entity_case_name_property

The strings include no leading, trailing, or embedded space characters between lexical elements. In the 
strings

— The parent process full name property is the value of the FullName property of the object 
representing the equivalent process instance from which the subprogram containing the named entity 
is directly or indirectly called, and the parent process full case name property is the value of the 
FullCaseName property of that object.

— There is one occurrence of the parent subprogram full name property and one occurrence of the 
parent subprogram full case name property for each dynamically elaborated subprogram call, if any, 
in the chain of subprogram calls between the equivalent process instance and the named entity. Each 
parent subprogram full name property is the value of the FullName property of the object of class 
subpCall representing the corresponding subprogram call, and each parent subprogram full case 
name property is the value of the FullCaseName property of the object of class subpCall
representing the corresponding subprogram call.

— The variable name property and the variable case name property are present if the named entity is 
elaborated as a declaration in a protected type that is the type of a variable declared immediately 
within the subprogram, if any, that is at the end of the chain of subprogram calls leading to the named 
entity. In that case, the properties are the values of the Name and CaseName properties, 
respectively, of the object representing the elaborated variable.

— The named entity name property and the named entity case name property are the values of the Name
and CaseName properties, respectively, of the object that represents the named entity.

For an object of class indexedName representing an element of a named entity that is a declared object of 
an array type, the value of the FullName property is a string of the form

named_entity_full_name_property ( literal { , literal } )

and the value of the FullCaseName property is a string of the form

named_entity_full_case_name_property ( literal { , literal } )

The strings include no leading, trailing, or embedded space characters between lexical elements. In the 
strings
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— The named entity full name property is the value of the FullName property of the object 
representing the declaration of the named entity, and the named entity full case name property is the 
value of the FullCaseName property of that object.

— The literals are formed according to the rules for forming the literals in the Name and CaseName
properties of the object (see 19.4.3).

For an object of class selectedName representing an element of a named entity that is a declared object 
of a record type, the value of the FullName property is a string of the form

named_entity_full_name_property . element_simple_name

and the value of the FullCaseName property is a string of the form

named_entity_full_case_name_property . element_simple_name

The strings include no leading, trailing, or embedded space characters between lexical elements. In the 
strings

— The named entity full name property is the value of the FullName property of the object 
representing the declaration of the named entity, and the named entity full case name property is the 
value of the FullCaseName property of that object.

— The element simple name is formed according to the rules for forming the element simple name in 
the Name and CaseName properties of the object (see 19.4.3).

For an object of class sliceName representing
— a slice of a named entity that is a declared object of an array type, and
— a slice in which the discrete range is in the form of a literal representing the left bound, a direction, 

and a literal representing the right bound,

the value of the FullName property is a string of the form

named_entity_full_name_property ( literal direction literal )

and the value of the FullCaseName property is a string of the form

named_entity_full_case_name_property ( literal direction literal )

The strings include no leading, trailing, or embedded space characters between lexical elements. In the 
strings

— The named entity full name property is the value of the FullName property of the object 
representing the declaration of the object denoted by the prefix of the slice, and the named entity full 
case name property is the value of the FullCaseName property of the former object.

— The literals and the direction are formed according to the rules for forming the literals and direction 
in the Name and CaseName properties of the object (see 19.4.3).

It is an error if a VHPI program reads the FullName or FullCaseName property of an object of class 
derefObj in the design hierarchy information model.

For an object of class attrName representing an attribute name, the value of the FullName property is a 
string of the form

named_entity_full_name_property ' attribute_name_property
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and the value of the FullCaseName property is a string of the form

named_entity_full_case_name_property ' attribute_case_name_property

The strings include no leading, trailing, or embedded space characters between lexical elements. In the 
strings

— The named entity full name property is the value of the FullName property of the object 
representing the prefix of the attribute name, and the named entity full case name property is the 
value of the FullCaseName property of that object.

— The attribute name property and the attribute case name property are formed according to the rules 
for forming the attribute name property and the attribute case name property in the Name and 
CaseName properties of the object (see 19.4.3).

NOTE 1—For a named entity within a package, the value of the 'PATH_NAME attribute is a package-based path in 
which the library logical name may, in some designs, be the same as the root design entity name. In such designs, there 
may be a named entity within the design hierarchy that has the same value of the 'PATH_NAME attribute as that of a 
named entity within the package. The FullName property of the object representing the named entity in the package 
has the leader character replaced with “@” to avoid the ambiguity.

NOTE 2—An object of class subpCall in the design hierarchy information model representing a concurrent procedure 
call statement is treated as an object of class region representing a statically elaborated named entity. An object of 
class subpCall in the design hierarchy information model representing a sequential procedure call statement is treated 
as an object of class region representing a dynamically elaborated named entity.

19.4.8 The PathName and InstanceName properties

Objects of classes decl and region in the design hierarchy information model have the PathName and 
InstanceName string properties. The value of the PathName property of such an object is the same as 
the value of the 'PATH_NAME attribute of the named entity represented by the object, and the value of the 
InstanceName property of such an object is the same as the value of the 'INSTANCE_NAME attribute of 
the named entity represented by the object (see 16.2).

19.5 The stdUninstantiated package

The class diagrams in the stdUninstantiated package specify aspects of the VHPI information model 
that relate to uninstantiated design units in the VHDL model. See Figure 3, Figure 4, and Figure 5.
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Figure 3—ConfigDecl class diagram
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Figure 4—DesignUnit class diagram

Figure 5—LexicalScope class diagram
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19.6 The stdHierarchy package

The class diagrams in the stdHierarchy package specify aspects of the VHPI information model that 
relate to the VHDL design hierarchy. See Figure 6, Figure 7, Figure 8, Figure 9, Figure 10, Figure 11, 
Figure 12, Figure 13, Figure 14, Figure 15, Figure 16, Figure 17, and Figure 18.

Figure 6—AliasDecl class diagram

Figure 7—Composite class diagram
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Figure 8—Constants class diagram

Figure 9—DeclInheritance class diagram
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Figure 10—FileInheritance class diagram
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Figure 11—Generics class diagram
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Figure 13—Object class diagram
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Figure 14—Ports class diagram
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Figure 15—RegionInstance class diagram

Figure 16—Signals class diagram
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Figure 17—StructuralRegions class diagram

Figure 18—Variables class diagram
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19.7 The stdTypes package

The class diagrams in the stdTypes package specify aspects of the VHPI information model that relate to 
types and subtypes in the VHDL model. See Figure 19, Figure 20, Figure 21, and Figure 22.

Figure 19—Constraint class diagram

Figure 20—ScalarType class diagram
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Figure 21—TypeInheritance class diagram

Figure 22—TypeSubtype class diagram
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19.8 The stdExpr package

The class diagrams in the stdExpr package specify aspects of the VHPI information model that relate to 
expressions in the VHDL model. See Figure 23, Figure 24, Figure 25, Figure 26, Figure 27, Figure 28, and 
Figure 29.

Figure 23—Aggregate class diagram

Figure 24—Attribute class diagram
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Figure 25—Expression class diagram
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Figure 26—Literal class diagram

Figure 27—Name class diagram
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Figure 28—SimpleName class diagram

Figure 29—TypeConvAllocator class diagram

19.9 The stdSpec package

The class diagrams in the stdSpec package specify aspects of the VHPI information model that relate to 
attribute, disconnection, and configuration specifications in the VHDL model. See Figure 30, Figure 31, 
Figure 32, and Figure 33.
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Figure 30—AttrSpec class diagram

Figure 31—AttrSpecIterations class diagram
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Figure 32—DisconnectionSpec class diagram

Figure 33—SpecInheritance class diagram

19.10 The stdSubprograms package

The class diagrams in the stdSubprograms package specify aspects of the VHPI information model that 
relate to subprogram declarations and subprogram calls in the VHDL model. See Figure 34 and Figure 35.
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Figure 34—SubBody class diagram
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Figure 35—SubpCall class diagram

19.11 The stdStmts package

The class diagrams in the stdStmts package specify aspects of the VHPI information model that relate to 
concurrent and sequential statements in the VHDL model. See Figure 36, Figure 37, Figure 38, Figure 39, 
Figure 40, Figure 41, Figure 42, Figure 43, and Figure 44.
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Figure 36—CaseIfWaitReturnStmt class diagram
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Figure 37—ConcSigAssignStmt class diagram
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Figure 38—ConcStmt class diagram

Figure 39—GenerateStmt class diagram
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Figure 40—LoopNextStmt class diagram

Figure 41—SeqSigAssignStmt class diagram
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Figure 42—SeqStmtInheritance class diagram

Figure 43—StructStmt class diagram
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Figure 44—VarAssignAssertReportStmt class diagram

19.12 The stdConnectivity package

19.12.1 Class diagrams

The class diagrams in the stdConnectivity package specify aspects of the VHPI information model 
that relate to the interconnection of drivers, ports, and signals in the VHDL model. See Figure 45, Figure 46, 
Figure 47, Figure 48, and Figure 49.
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Figure 45—BasicSignal class diagram
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Figure 46—Connectivity class diagram

Figure 47—Contributor class diagram
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Figure 48—Driver class diagram

Figure 49—Loads class diagram

19.12.2 Contributors, loads, and simulated nets

19.12.2.1 General

The VHPI information model uses the class signal to represent parts of a net, including declared signals 
and ports, and subelements and slices of declared signals and ports. The information model also uses the 
class to represent signal parameters, implicit signals (namely, predefined attributes of signal kind and 
implicitly declared GUARD signals), and subelements and slices of signal parameters and implicitly 
declared signals.
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Each basic signal, represented by an object of class signal for which the IsBasic property has the value 
vhpiTrue, has contributors and loads. A contributor provides a value that is used to determine the value of 
the object. A load reads the value of an object represented by an object of class signal.

The VHPI information model represents contributors and loads that are defined by the VHDL model or 
created by calls to the vhpi_create function. Such contributors and loads are called local contributors
and local loads, respectively. An implementation may optimize its internal representation of contributors 
and loads, for example, to represent only those contributors or loads whose values are distinct. The VHPI 
provides associations that allow an implementation to identify such optimized contributors and optimized 
loads. This standard does not specify which contributors or loads, if any, are the target objects of 
associations that identify optimized contributors or loads.

NOTE—The VHPI information model does not represent contributors and loads for aliases of objects represented by 
objects of class signal. Those contributors and loads are represented as contributors and loads of the aliased object.

19.12.2.2 Local contributors

The local contributors for a basic signal are defined as follows:
a) For a declared signal, a port of mode out, the aspect of a port of mode inout or buffer that is in com-

mon with a port of mode out, the aspect of a port of mode buffer that is in common with a port of 
mode in, including a subelement or slice of any of these, each of the following is a local contributor:
— A driver of the signal, represented by an object of class driver
— A port of mode out, inout, or buffer, represented by an object of class interfaceElt, with 

which the signal is associated as an actual in an association element in which the formal part is 
in the form of the port name

— A type conversion, represented by an object of class typeConv, or a conversion function call, 
represented by an object of class convFunc, occurring as the formal part of an association 
element in which the signal name is the actual designator

— If the signal has no sources, the default expression, represented by an object of class expr, in 
the declaration of the signal

b) For a port of mode in, or the aspect of a port of mode inout that is in common with a port of mode 
in, including a subelement or slice of any of these, each of the following is a local contributor:
— If the port is associated with an actual object or expression in an association element in which 

the actual part is the name of the actual object or is an expression, the actual object, or expres-
sion, represented by an object of class expr

— If the port is associated with an actual object in an association element in which the actual part 
is in the form of a type conversion or a conversion function call, the type conversion, repre-
sented by an object of class typeConv, or the conversion function call, represented by an 
object of class convFunc, respectively

— If the port is unassociated or unconnected and the declaration of the port includes a default 
expression, the default expression, represented by an object of class expr

c) For a formal signal parameter that is associated with an actual signal that is a basic signal, each of 
the following is a local contributor:
— If the formal signal parameter is of mode in or inout, the local contributors of the actual signal
— If the formal signal parameter is of mode out, the driver for the formal signal parameter

NOTE—A signal that is one of the predefined attributes 'DELAYED, 'STABLE, 'QUIET, or 'TRANSACTION may be a 
contributor.

19.12.2.3 Local loads

The local loads for a basic signal are defined as follows:
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a) A process, or a concurrent statement that is equivalent to a process, represented by an object of class 
eqProcessStmt, that reads the basic signal or an alias of the basic signal

b) A port of mode in or inout, represented by an object of class interfaceElt, with which the 
basic signal is associated as an actual in an association element in which the actual part is in the form 
of the name of the basic signal

c) A type conversion, represented by an object of class typeConv, or a conversion function call, rep-
resented by an object of class convFunc, occurring as the actual part of an association element in 
which the name of the basic signal is the actual designator

d) For a basic signal that is a port of mode out or for the aspect of a basic signal that is a port of mode 
inout or buffer that is in common with a port of mode out, where the port is associated in an associ-
ation element with an actual object
— If the formal part of the association element is the name of the port, the actual object
— If the formal part is in the form of a type conversion or a conversion function call, the type 

conversion, represented by an object of class typeConv, or the conversion function call, 
represented by an object of class convFunc, respectively

19.12.2.4 Simulated nets

Where a number of objects represented by objects of class signal have the same effective and driving 
values, as appropriate, at all simulations times, those objects jointly form a simulated net. An 
implementation may represent a simulated net by selecting one of the constituent objects as a representative 
of the simulated net, setting the value of its IsSimNet property to the value vhpiTrue and making it the 
target object of the SimNet association for each object in the simulated net; for the remaining objects, the 
implementation sets the value of the IsSimNet property to the value vhpiFalse.

19.13 The stdCallbacks package

The stdCallbacks package contains the Callbacks class diagram that specifies aspects of the VHPI 
information model that relate to callbacks in VHPI programs. See Figure 50.

Figure 50—Callbacks class diagram

19.14 The stdEngine package

The stdEngine package contains the SimulatorKernel class diagram that specifies aspects of the 
VHPI information model that relate to the simulation kernel. See Figure 51.
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Figure 51—SimulatorKernel class diagram

19.15 The stdForeign package

The stdForeign package contains the ForeignModel class diagram that specifies aspects of the VHPI 
information model that relate to foreign models and applications implemented by VHPI programs. See 
Figure 52.

Figure 52—ForeignModel class diagram

19.16 The stdMeta package

The class diagrams in the stdMeta package specify aspects of the VHPI information model that relate to 
the VHPI tool, collections, and iterators. The package also contains a class diagram that relates classes to the 
base class. See Figure 53, Figure 54, and Figure 55.
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Figure 53—Base class diagram
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Figure 54—Collection class diagram

Figure 55—Iterator class diagram

19.17 The stdTool package

The stdTool package contains the Tool class diagram that specifies aspects of the VHPI information 
model that relate to the VHPI tool. See Figure 56.
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Figure 56—Tool class diagram

19.18 Application contexts

Objects of certain classes in the information model exist during different phases of tool execution. The 
application context of a class specifies whether objects of the class may exist in either or both of the library 
information model or the design hierarchy information model, and as a consequence, when the object is 
accessible to VHPI programs. The documentation for each class in the machine-readable information model 
describes the application context for that class.

Objects in the library information model representing a design unit are created during the analysis phase of 
tool execution in which the design unit is analyzed. Objects representing previously analyzed design units 
are accessible from the start of tool execution and remain accessible until the end of tool execution. If a 
VHPI tool performs the analysis phase, objects representing a design unit being analyzed by the tool are 
accessible at the end of the analysis phase.

Objects in the design hierarchy information model are created during the elaboration phase of tool execution 
and are accessible at the end of the elaboration phase. It is an error if a VHPI program accesses objects in the 
design hierarchy information model during the elaboration phase other than from an elaboration function as 
specified in 20.4.1.

NOTE—For objects in the library information model, the target objects of associations are also in the library informa-
tion model. The library information model includes no associations with objects in the design hierarchy information 
model. For objects in the design hierarchy information model, the target objects of associations are also in the design 
hierarchy information model, except where specified in the documentation for the association. Those associations from 
objects in the design hierarchy information model to objects in the library information model allow a VHPI program to 
navigate between the two information models.
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20. VHPI tool execution

20.1 General

This clause describes the way in which foreign models and applications interact with a VHPI tool and the 
way in which the tool executes VHDL and foreign models. A foreign model is a design entity whose 
architecture is decorated with the 'FOREIGN attribute in the form described in this clause, or a subprogram 
similarly decorated. A foreign application is a VHPI program that does not correspond to design entities or 
subprograms declared in the VHDL model.

The VHPI supports various execution phases of a VHDL tool. Each phase is identified by a value of the 
enumeration type vhpiPhaseT (see Annex B). A VHPI program determines the current phase of the 
VHDL tool by calling the VHPI routine vhpi_get (see 23.10) supplying the value vhpiPhaseP as the 
first parameter and NULL as the second parameter. The return value of vhpi_get is one of the values of 
vhpiPhaseT.

In temporal order, the VHDL tool execution phases are:
a) vhpiRegistrationPhase: Indicates the tool has begun executing
b) vhpiAnalysisPhase: The analysis of a design file is occurring
c) vhpiElaborationPhase: The static elaboration of a design hierarchy is occurring
d) vhpiInitializationPhase: The initialization of an elaborated design hierarchy is occurring
e) vhpiSimulationPhase: The execution of an elaborated and initialized design hierarchy is 

occurring
f) vhpiSavePhase: The current state of a VHDL model is being saved for possible restart
g) vhpiRestartPhase: A previously saved VHDL model is being restarted from the point of its 

save
h) vhpiResetPhase: A VHDL model is being restarted from the state it was in at the end of initial-

ization
i) vhpiTerminationPhase: The tool is terminating

NOTE—If a tool does not support a given phase and a VHPI program attempts to register a callback with the callback 
reason being the start or end of the phase, the vhpi_register_cb function raises an error indicating that the callback 
reason is not implemented.

20.2 Registration phase

20.2.1 General

The registration phase involves the following steps:
a) Foreign models, applications, and libraries of foreign models are registered
b) Each registered and enabled vhpiCbStartOfTool callback is executed

The registration phase is complete when all registered and enabled vhpiCbStartOfTool callbacks have 
returned to the VHDL tool. During the registration phase, a call to vhpi_get(vhpiPhaseP, NULL)
returns vhpiRegistrationPhase.

Before a VHPI program can gain access to the internals of a VHDL tool, the program shall register itself 
with the tool. Through either of two registration mechanisms described in 20.2.2 and 20.2.3, or through 
decoration of a foreign model with the 'FOREIGN attribute in the form of a standard direct binding (see 
20.2.4.3), the tool is supplied with the identity of one or more elaboration, execution, or registration 
functions in a VHPI program. These functions shall be provided to the tool as entry points in one or more 
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object libraries. The format of the object libraries and whether the object libraries are statically or 
dynamically bound to the tool are not specified by this standard. Each registration function shall be of the 
type vhpiRegistrationFctT defined in Annex B.

Prior to the start of processing of any VHDL model by the tool, all registration functions of registered 
libraries of foreign models and registration functions of selected registered foreign applications are invoked. 
The manner in which registered foreign applications are selected is not defined by this standard. All such 
calls to the registration functions shall terminate prior to the tool continuing its execution.

During the registration phase, the only parts of the information model defined by this standard that are 
available are the objects of the tool and argv classes. It is an error if a registration function attempts to 
access other parts of the information model during the registration phase.

A registration function may register callbacks. It is not possible for any VHPI callbacks (see Clause 21) to 
occur prior to the completion of execution of all registration functions; in particular, registration shall be 
complete before the vhpiCbStartOfTool callback (see 21.3.7.2) can occur.

A tool shall bind an elaboration, execution, or registration function prior to acquiring a pointer to the 
function or calling the function. A tool is not required to bind such a function immediately upon registration. 
It is an error if the tool cannot locate an entry point denoted by an elaboration or execution or registration 
function name.

It is an error if a given foreign model, identified by a unique combination of object library name and model 
name, is registered more than once by any of the mechanisms defined in this standard.

A foreign application may be registered multiple times with different registration functions. It is an error if a 
given foreign application, identified by a unique combination of object library name and application name, 
is registered more than once with the same registration function name by any of the mechanisms defined in 
this standard.

A library of foreign models may be registered multiple times with different registration functions. It is an 
error if a given library of foreign models, identified by an object library name, is registered more than once 
with the same registration function name by any of the mechanisms defined in this standard.

The registration of a VHPI program with a given invocation of a tool does not persist beyond termination of 
that invocation of the tool.

NOTE 1—A foreign model for which there is no corresponding VHDL architecture or subprogram decorated with the 
'FOREIGN attribute may be registered. However, it will have no effect on the design since neither its elaboration func-
tion (for a foreign architecture) nor its execution function can be invoked.

NOTE 2—The registration functions are the only entry points in an object library for a foreign application or library of 
foreign models that need to be externally visible. Entry points for local elaboration and execution functions can be made 
known to the tool as a consequence of resolving symbols referenced by the registration functions.

20.2.2 Registration using a tabular registry

A tabular registry is a text file containing the registration information for foreign models and applications. 
Any number of registry files can be passed to a VHDL tool; the mechanism for identifying the files to be 
passed to a tool is not specified by this standard.

Each entry in the file defines the registration of one foreign model or application, or one library of foreign 
models. Each entry occupies one line of the file and is a sequence of identifiers separated by one or more 
space (SPACE or NBSP) characters. Blank lines, containing either no characters or only space characters, 
and comments may also appear in the file. Space characters preceding an entry in the file or a comment are 
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ignored. Space characters following an entry in the file are ignored. A comment begins with the characters 
“--” and continues to the end of the line containing the beginning of the comment.

tabular_registry_file ::= { tabular_registry_entry }

tabular_registry_entry ::=�
        foreign_architecture_registry�
      | foreign_subprogram_registry�
      | foreign_application_registry�
      | library_registry

foreign_architecture_registry ::=�
      object_library_name model_name vhpiArchF elaboration_specifier execution_function_name

foreign_subprogram_registry ::=�
        object_library_name model_name vhpiFuncF null execution_specifier�
      | object_library_name model_name vhpiProcF null execution_specifier

foreign_application_registry ::= �
      object_library_name application_name vhpiAppF registration_function_name null

library_registry ::= �
      object_library_name null vhpiLibF registration_function_name null

object_library_name ::= C_identifier | extended_identifier

model_name ::= C_identifier | extended_identifier

application_name ::= C_identifier | extended_identifier

elaboration_specifier ::= elaboration_function_name | null

elaboration_function_name ::= C_identifier

execution_specifier ::= execution_function_name | null

execution_function_name ::= C_identifier

registration_function_name ::= C_identifier

An object library name denotes a logical name for an object library containing one or more entry points for 
elaboration, execution, or registration functions. An object library name may or may not be case sensitive, 
depending on the host environment. The mapping between an object library logical name and a host physical 
object library is not defined by this standard. It is an error if the host system cannot locate the physical object 
library identified by an object library name.

A model name is an identifier that, jointly with the object library name, shall uniquely identify a foreign 
model. An application name is an identifier that, jointly with the object library name, shall uniquely identify 
a foreign application.

An elaboration function name, execution function name, or registration function name denotes an entry 
point in the library denoted by the immediately preceding object library name. An elaboration specifier of 
null indicates that no elaboration function is required for the foreign model. An execution specifier of null
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in a foreign subprogram registry is equivalent to an execution function name that is the same as the 
immediately preceding model name.

A C identifier is formed from a contiguous sequence of graphical characters according to the rules for 
forming identifiers in ISO/IEC 9899:1999/Cor 1:2001. The reserved words in a tabular registry entry, 
vhpiArchF, vhpiFuncF, vhpiProcF, vhpiAppF, vhpiLibF, and null, are case sensitive and shall be 
written using the combination of uppercase and lowercase letters shown in this standard.

For each entry in the file, the foreign model, foreign application, or library of foreign models whose 
registration is defined by the entry is registered with the tool reading the tabular registry.

NOTE 1—This standard does not define a default name or location for any tabular registry file.

NOTE 2—A model name or application name alone is not sufficient to uniquely identify a model or application. 
Different models or applications may have the same model or application names, provided they can be distinguished by 
different object library names.

NOTE 3—A C identifier that denotes a C function name is the same as the name of the C function defined in the C 
source code. If an implementation modifies such a name during machine code generation, for example, by prefixing it 
with an underline character, such modification is not reflected in the use of the name in a tabular registry entry.

Examples:

An example tabular registry:

-- registration of a foreign architecture:

myLib orgate vhpiArchF elab_or_gate init_or_gate

-- registration of a foreign function:

myLib myfunc vhpiFuncF null sim_myfunc

-- registration of a foreign application:

myApp appl vhpiAppF register_myapp null

-- registration of a library of models:

myLib null vhpiLibF register_lib null

An example registration function for the preceding table:

void register_lib() {

  for each model in the library

    vhpi_register_foreignf(...);

}

20.2.3 Registration using registration functions

A VHPI program can register a foreign model or application using the vhpi_register_foreignf
function (see 23.30). The function shall be called during the registration phase of tool execution directly or 
indirectly from a registration function of a previously registered foreign application or library of foreign 
models.
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20.2.4 Foreign attribute for foreign models

20.2.4.1 General

The value of the 'FOREIGN attribute defined in package STANDARD decorating an architecture or a 
subprogram may be a string of the form described in this subclause (20.2.4). The value of the attribute is 
used to identify the VHPI program that implements the foreign model.

The value of the 'FOREIGN attribute for a foreign model is a sequence of identifiers separated by one or 
more space (SPACE or NBSP) characters. Space characters, if any, preceding or following the sequence of 
identifiers are ignored.

foreign_attribute_value ::=�
      standard_indirect_binding | standard_direct_binding

NOTE 1—The expression in an attribute specification for the 'FOREIGN attribute is required to be locally static (see 
7.2). Nonetheless, analysis of a design unit containing a 'FOREIGN attribute specification does not require interpretation 
of the value of the attribute at the time of analysis.

NOTE 2—An implementation may, as part of elaboration of a 'FOREIGN attribute specification whose value is of the 
form described in this subclause (20.2.4), perform certain checks, for example, that the C library exists or that the for-
eign model implementation functions exists.

NOTE 3—The object library name for a foreign model need not be the same as the logical name of the VHDL library 
containing the architecture or subprogram decorated with the 'FOREIGN attribute.

20.2.4.2 Standard indirect binding

standard_indirect_binding ::=�
      VHPI object_library_name model_name

The object library name and model name are described in 20.2.2. The reserved word VHPI in a standard 
indirect binding is case sensitive and shall be written using uppercase letters.

A foreign attribute value in the form of a standard indirect binding specifies sufficient information for the 
tool to register a foreign model, but not to identify elaboration or execution functions for the foreign model. 
Identification of functions shall be specified separately using one of the mechanisms described in 20.2.2 or 
20.2.3. A VHDL design entity or subprogram decorated with the 'FOREIGN attribute in the form of a 
standard indirect binding is implemented by the elaboration and execution functions, as appropriate, 
identified using the same object library name and model name as those that occur in the attribute value.

It is an error if, upon completion of registration, no execution function is specified corresponding to a 
foreign model for which standard indirect binding is specified in the value of a 'FOREIGN attribute.

NOTE—It is permissible for no elaboration function to be specified corresponding to a foreign architecture for which 
standard indirect binding is specified.

Example:

The following are analyzed into library foreignmodels:

package PACKSHELL is
  component C_AND
    port (P1, P2: in BIT; P3: out: BIT);
  end component;

  procedure MYPROC (signal F1: out BIT; constant F2: in INTEGER);
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  attribute FOREIGN of MYPROC: procedure is "VHPI foreignC myCproc";

  function MYFUNC (signal F1: in BIT) return INTEGER;
  attribute FOREIGN of MYFUNC: function is "VHPI foreignC myCfunc";
end package PACKSHELL;

entity C_AND is
  port (P1, P2: in BIT; P3: out: bit);
end C_AND;

architecture MY_C_GATE of C_AND is
  attribute FOREIGN of MY_C_GATE: architecture is
            "VHPI foreignC myCarch";
begin
end architecture MY_C_GATE;

The following refer to declarations in the foreignmodels library:

library FOREIGNMODELS;
use FOREIGNMODELS.PACKSHELL.all;
entity TOP is
end TOP;

architecture MY_VHDL of TOP is
  constant VAL: INTEGER:= 0;
  signal S1, S2, S3: BIT;
begin
  U1: C_AND (S1, S2, S3);
  MYPROC (S1, VAL);

  process (S1)
    variable VA: INTEGER := VAL;
  begin
    VA := MYFUNC (S1);
  end process;
end MY_VHDL;

20.2.4.3 Standard direct binding

standard_direct_binding ::=�
      standard_direct_architecture_binding | standard_direct_subprogram_binding

standard_direct_architecture_binding ::=�
      VHPIDIRECT object_library_specifier elaboration_specifier execution_function_name

standard_direct_subprogram_binding ::=�
      VHPIDIRECT object_library_specifier execution_specifier

object_library_specifier ::= object_library_path | null

object_library_path ::=�
      graphic_character { graphic_character }
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A foreign attribute value in the form of a standard direct binding specifies sufficient information for the tool 
to register a foreign model and to identify elaboration and execution functions, as required, for the foreign 
model. If the foreign model is a design entity, the standard direct binding shall take the form of a standard 
direct architecture binding; otherwise, the standard direct binding shall take the form of a standard direct 
subprogram binding.

An object library specifier denotes a physical name for an object library containing one or more entry points 
for elaboration or execution functions.

An object library path may or may not be case sensitive, depending on the host environment. If a space 
character (SPACE or NBSP) is to be used as one of the graphic characters of an object library path, it shall 
be preceded by a backslash character (the combination of the backslash and space character counting as just 
the space character). If a backslash is to be used as one of the graphic characters of an extended literal, it 
shall be doubled (a doubled backslash counting as just one backslash). A host system interprets an object 
library path in a manner not defined by this standard to locate a physical object library. It is an error if the 
host system cannot locate the physical object library identified by an object library path.

An object library specifier of null indicates that a physical object library is to be determined in an 
implementation defined manner. It is an error if an object library specifier of null is used and the host system 
cannot locate the physical object library.

The reserved words VHPIDIRECT and null in a standard direct binding are case sensitive and shall be 
written using uppercase and lowercase letters, respectively, as shown in this standard.

The elaboration specifier, execution specifier, and execution function name are described in 20.2.2. An 
execution specifier of null in a standard direct subprogram binding is equivalent to an execution function 
name that is the same as the designator of the subprogram decorated with the foreign attribute value using 
the same combination of uppercase and lowercase letters that occur in the subprogram declaration for the 
subprogram, if present, or the subprogram body otherwise.

NOTE—A host system may interpret an object library path by appending an implementation-dependent file-name exten-
sion, such as “.so” or “.dll,” to derive a file pathname. It is recommended that a file-name extension in an object library 
path be omitted so that an implementation can append an extension that is appropriate for the host environment.

20.3 Analysis phase

The analysis phase involves the following steps:

a) Each registered and enabled vhpiCbStartOfAnalysis callback is executed.

b) One or more design files are analyzed. The manner in which the design files to be analyzed are spec-
ified to the tool is not specified by this standard.

c) Each registered and enabled vhpiCbEndOfAnalysis callback is executed.

During the analysis phase, a call to vhpi_get(vhpiPhaseP, NULL) returns 
vhpiAnalysisPhase.

20.4 Elaboration phase

20.4.1 General

The elaboration phase involves the following steps:

a) Each registered and enabled vhpiCbStartOfElaboration callback is executed.
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b) The design hierarchy is elaborated, as described in 14.2 through 14.5. This may involve invocation 
of elaboration functions, if any, for registered foreign architectures.

c) Each registered and enabled vhpiCbEndOfElaboration callback is executed.

During the elaboration phase, a call to vhpi_get(vhpiPhaseP, NULL) returns 
vhpiElaborationPhase.

An elaboration function shall conform to the rules for a callback function (see Clause 21). It is invoked by 
the tool in the same way as a vhpiCbStartOfElaboration callback. The reason member of the 
callback data structure passed to the elaboration function has the value vhpiCbStartOfElaboration. 
The obj member of the callback data structure passed to the elaboration function contains a handle that 
refers to an object of class designUnitInst that represents an instance of the foreign architecture 
corresponding to the elaboration function. The value of the user_data member of the structure is not 
specified by this standard.

It is an error if an elaboration function accesses the design hierarchy information model other than as 
follows:

— To access objects navigable from the object of class designUnitInst, representing the instance 
of the foreign architecture body, passed to the elaboration function.

— To use the vhpi_create function to create a foreign process, a driver, or a driver collection.
— To use the vhpi_put_value function to set the initial value of an elaborated signal within the 

instance of the corresponding foreign architecture or of an elaborated port of mode out, inout, or 
buffer of the instance of the corresponding foreign architecture.

NOTE—At the time an elaboration function is invoked, the entire design hierarchy might not have been completely 
elaborated. Thus, objects that ultimately will be accessible by navigating from the object passed to the elaboration func-
tion might not yet exist.

20.4.2 Dynamic elaboration

Dynamic elaboration of a foreign subprogram (see 14.6) involves invocation of the execution function of the 
foreign subprogram. Dynamic elaboration of a foreign subprogram may occur during the elaboration, 
initialization, or simulation phases of tool execution

An execution function of a foreign subprogram shall conform to the rules for a callback function (see 
Clause 21). It is invoked by the tool in the same way as a vhpiCbStartOfSubpCall callback. The 
reason member of the callback data structure passed to the elaboration function has the value 
vhpiCbStartOfSubpCall. The obj member of the callback data structure passed to the elaboration 
function contains a handle that refers to an object of class subpCall that represents an instance of the call 
to the subprogram corresponding to the execution function. The value of the user_data member of the 
structure is not specified by this standard.

An execution function of a foreign subprogram may obtain handles to objects representing the elaborated 
formal parameters and their associated actual parameters. Such handles may become invalid upon 
completion of the subprogram call. A VHPI program that relies upon such a handle remaining valid after the 
execution function has returned is erroneous.

Parameters of a foreign subprogram implemented by a VHPI execution function are passed either by copy or 
by references, as described in 4.2.2. An execution function may use the vhpi_get_value function to 
read the value of a formal parameter of mode in or inout, and may use the vhpi_put_value function to 
write the value of a formal parameter of mode out or inout. An execution function may use the 
vhpi_schedule_transaction function to schedule a transaction on a driver for a formal signal 
parameter of mode out or inout.
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It is an error if the execution function for a foreign function does not provide a result for the function call 
represented by the object referred to by the obj member of the callback data structure. The mechanism for 
the execution to provide the result is described in 22.5.5.

NOTE—An implementation may, in some cases, be able to statically elaborate parts of interface declarations in a con-
current procedure call statement that invokes a foreign subprogram. In such cases, handles to objects representing the 
elaborated declarations may remain valid between invocations of the subprogram.

20.5 Initialization phase

The initialization phase involves initializing the design hierarchy, as described in 14.7.5.2. This may involve 
invocation of execution functions for registered foreign architectures. During the initialization phase, a call 
to vhpi_get(vhpiPhaseP, NULL) returns vhpiInitializationPhase.

An execution function of a foreign architecture shall conform to the rules for a callback function (see 
Clause 21). It is invoked by the tool in the same way as a vhpiCbStartOfInitialization
callback. The reason member of the callback data structure passed to the elaboration function has the 
value vhpiCbStartOfInitialization. The obj member of the callback data structure passed to the 
execution function contains a handle that refers to an object of class compInstStmt that represents an 
instance of the foreign architecture corresponding to the execution function. The value of the user_data
member of the structure is not specified by this standard.

An execution function of a foreign architecture may access any part of the design hierarchy information 
model.

NOTE—An execution function of a foreign architecture may register callbacks that occur in later phases of tool 
execution. Memory allocated by the execution function may be referred to in the user_data member of callback data 
structures used to register such callbacks.

20.6 Simulation phase

The simulation phase involves execution of simulation cycles, including execution of registered and enabled 
vhpiCbStartOfSimulation and vhpiCbEndOfSimulation callbacks, as described in 14.7.5.3. 
During the simulation phase, a call to vhpi_get(vhpiPhaseP, NULL) returns 
vhpiSimulationPhase.

20.7 Save phase

A tool may allow a user or a VHPI program to request that the current state of a VHDL model be saved for 
possible restart. The manner by which such a request is made is not specified by this standard. If a VHPI 
program makes such a request, the tool shall enter the save phase of tool execution either at the end of the 
initialization phase, if the request was made before the end of the initialization phase, or at the end of the 
current simulation cycle otherwise.

The save phase involves the following steps:

a) The tool performs some actions, not specified by this standard, to save the current state of the VHDL 
model, which includes the time of the next simulation cycle, Tn.

b) Each registered and enabled vhpiCbStartOfSave callback is executed.

c) Each registered and enabled vhpiCbEndOfSave callback is executed.

During the save phase, a call to vhpi_get(vhpiPhaseP, NULL) returns vhpiSavePhase.
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A VHPI program may register vhpiCbStartOfSave and/or vhpiCbEndOfSave callbacks. During 
execution of such callbacks, the VHPI program may use the vhpi_put_data (see 23.27) function to 
include data as part of the saved state. The VHPI program may also register vhpiCbStartOfRestart
and/or vhpiCbEndOfRestart callbacks. During the save phase, the tool shall save registration of such 
callbacks and restore the registration in such a manner that the callbacks can be invoked upon a subsequent 
restart using the saved state.

NOTE 1—A tool may automatically save part or all of the state of a VHPI program. The flag bits of the value of the 
AutomaticRestore property of the tool class specify the parts of the state that the tool automatically saves. 
Depending on which flag bits are set, a VHPI program may need to save information about its handles, callbacks, and 
private data using the vhpi_put_data function.

NOTE 2—A VHPI program that uses vhpi_put_data to save its state should register a vhpiCbStartOfRe-
start or vhpiCbEndOfRestart callback and write to the user_data member of the callback data structure the 
value of the identification number used to save state. The callback function, when invoked, should read the identification 
number from the user_data member of the callback data structure it is passed and use the id value in calls to the 
vhpi_get_data function to restore the state.

NOTE 3—If a user interrupts the save phase, through some implementation-defined means, the current state of the 
model might not be correctly saved. It might not be possible to restart execution of the model using the saved state.

20.8 Restart phase

A tool may allow a user or a VHPI program to request that execution of a VHDL model be restarted from a 
previously saved state. The manner by which such a request is made is not specified by this standard. If a 
VHPI program makes such a request, the tool shall enter the restart phase of tool execution either at the end 
of the initialization phase, if the request was made before the end of the initialization phase, or at the end of 
the current simulation cycle otherwise.

The restart phase involves the following steps:
a) The tool performs some actions, not specified by this standard, to restore the previously saved state 

of the VHDL model, including the time of the next simulation cycle, Tn. The manner in which the 
saved state is identified to the tool is not specified by this standard.

b) Each registered and enabled vhpiCbStartOfRestart callback is executed.
c) Each registered and enabled vhpiCbEndOfRestart callback is executed.

During the restart phase, a call to vhpi_get(vhpiPhaseP, NULL) returns vhpiRestartPhase. 
After completion of the restart phase, the tool enters the simulation phase, commencing with a new 
simulation cycle.

NOTE 1—A tool may automatically restore part or all of the state of a VHPI program. The flag bits of the value of the 
AutomaticRestore property of the tool class specify the parts of the state that the tool automatically restores. 
Depending on which flag bits are set, a VHPI program may need to reacquire handles, reregister callbacks, and restore 
private data using the vhpi_get_data function.

NOTE 2—Upon entering the simulation phase from the restart phase, the tool does not execute any vhpiCbStartOf-
Simulation callbacks.

20.9 Reset phase

A tool may allow a user or a VHPI program to request that execution of a VHDL model be reset to the 
beginning of the initialization phase. The manner by which such a request is made is not specified by this 
standard. If a VHPI program makes such a request, the tool shall enter the reset phase of tool execution 
either at the end of the initialization phase, if the request was made before the end of the initialization phase, 
or at the end of the current simulation cycle otherwise.

The reset phase involves the following steps:
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a) Each registered and enabled vhpiCbStartOfReset callback is executed.
b) All callbacks except vhpiCbEndOfReset callbacks are removed.
c) The projected output waveform of each driver is reset to its initial contents.
d) The current time, Tc, is reset to be 0 ns.
e) Each registered and enabled vhpiCbEndOfReset callback is executed.

During the reset phase, a call to vhpi_get(vhpiPhaseP, NULL) returns vhpiResetPhase. After 
completion of the reset phase, the tool enters the initialization phase.

A handle, acquired before the reset phase, that refers to a static object, remains valid during and after the 
reset phase. A handle, acquired before the reset phase, that refers to a dynamic object, may become invalid 
during or after the reset phase.

NOTE—A VHPI program that allows for reset should register a vhpiCbStartOfReset callback that releases 
resources and saves information about callbacks that are to be reinstated after reset. It should also register a 
vhpiCbEndOfReset callback that reregisters the callbacks that are to be reinstated.

20.10 Termination phase

The termination phase involves executing each registered and enabled vhpiCbEndOfTool callback. 
When all such callbacks have returned to the tool, the tool may terminate. No further VHPI operations may 
be called. During the termination phase, a call to vhpi_get(vhpiPhaseP, NULL) returns 
vhpiTerminationPhase.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



IEC 61691-1-1:2011(E) - 356 - �
IEEE Std 1076-2008

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



- 357 - IEC 61691-1-1:2011(E)�
IEEE Std 1076-2008

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

21. VHPI callbacks

21.1 General

A callback is a mechanism for a VHPI program to gain control during tool execution. A VHPI program 
registers a callback, providing to the tool a reference to a callback function and a callback reason, that is, a 
specification of an event or events that may trigger execution of the callback function by the tool. For some 
callbacks, the trigger event is associated with one or more objects in the information model; such an object is 
called a trigger object of the callback. A foreign model typically registers callbacks during execution of its 
elaboration or initialization functions, and a foreign application typically registers callbacks during 
execution of its registration function. A callback function may register subsequent callbacks. As part of 
registration of a callback, a VHPI program may provide data to be supplied to the callback function when it 
is invoked.

Depending on the callback reason, a callback is either a one-time callback, meaning that the callback 
function is triggered at most once, or a repetitive callback, meaning that the callback function may be 
triggered multiple times. A callback is in one of three states:

— enabled, meaning that the callback function will be called if the trigger event occurs,
— disabled, meaning that the callback function will not be called if the trigger event occurs, or
— mature, meaning that the callback is a one-time callback whose trigger event has occurred.

If the trigger event of an enabled callback occurs, the callback state is changed to mature if the callback is a 
one-time callback or remains enabled if the callback is a repetitive callback. In either case, the callback 
function is then triggered. A VHPI program may register a callback in the enabled state and may disable an 
enabled callback.

If the trigger event of a disabled callback occurs, the callback state is changed to mature if the callback is a 
one-time callback or remains disabled if the callback is a repetitive callback. In either case, the callback 
function is not triggered. A VHPI program may register a callback in the disabled state and may enable a 
disabled callback. Disabling a callback does not affect the specification of the trigger event of the callback.

A mature callback is not triggered by occurrence of its trigger event subsequent to the occurrence that 
caused the callback to become mature. Furthermore, the state of a mature callback cannot be changed. A 
repetitive callback never becomes mature.

NOTE—Disabling a callback simply determines whether or not the callback will be triggered when its trigger event 
occurs. For example, disabling a callback that is registered to trigger after a given delay and subsequently enabling 
before expiry of the delay does not postpone the time at which the trigger event occurs.

21.2 Callback functions

21.2.1 General

A callback is represented in the VHPI information model by an object of class callback. A VHPI 
program can obtain a handle to a callback object by navigating the information model. The VHPI provides 
functions to register, remove, enable, and disable callbacks and to access information about callbacks.

21.2.2 Registering callbacks

A VHPI program may register a callback using the vhpi_register_cb function (see 23.9). Prior to 
calling the function, the VHPI program shall allocate memory for a callback data structure of type 
vhpiCbDataT (see Annex B) and write to it values that specify the callback. After the 
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vhpi_register_cb function returns, the tool does not retain any references to the callback data 
structure or to storage pointed to by members of the callback data structure.

The reason member of a callback data structure specifies the callback reason (see 21.3). The cb_rtn
member shall be a pointer to the callback function. The VHPI program may write a value to the 
user_data member to be passed to the callback function when it is triggered. The value may be of any 
type, provided it can be cast to a type that is compatible with the type of the user_data member. The 
value is not used by the tool other than being stored so that it can be passed to the callback function. Each of 
the remaining members either specifies further information, if required for the given callback reason, or is 
ignored.

NOTE—Since the tool retains no references to the callback data structure provided by a VHPI program to register a call-
back, the VHPI program may reuse the same data structure to register further callbacks.

21.2.3 Enabling and disabling callbacks

A VHPI program may enable a callback using the vhpi_enable_cb function (see 23.8) and may disable 
a callback using the vhpi_disable_cb function (see 23.7).

21.2.4 Removing callbacks

A VHPI program may remove a callback using the vhpi_remove_cb function (see 23.32). Once 
removed, the callback is no longer registered, and occurrence of the callback reason for which the callback 
was registered does not trigger the callback function. The object representing the callback is removed from 
the information model. Any handle that refers to the object representing the removed callback is made 
invalid.

NOTE—Releasing a handle that refers to a callback object neither removes the callback nor changes its state. A handle 
to the callback can subsequently be acquired by navigating the information model.

21.2.5 Callback information

A VHPI program may obtain information about a registered callback using the vhpi_get_cb_info
function (see 23.11).

21.2.6 Execution of callbacks

A callback function shall have a single argument that is a constant pointer to a callback data structure and 
shall have a void* return type. When the tool triggers a callback, the tool passes a callback data structure in 
which

— The value of the reason member is the enumeration constant that identifies the callback reason for 
which the callback was triggered (see 21.3).

— The value of the cb_rtn member is a pointer to the callback function.
— The value of the user_data member is the value that was provided in the user_data member 

of the callback data structure specified during registration of the callback.

The values of the remaining members depend on the callback reason (see 21.3). The callback data structure 
passed to a callback function, any time and value structures pointed to by members of the callback data 
structure, and any buffers for values pointed to by members of the value structure are allocated by the tool.

A callback function that modifies the callback data structure passed to it by the tool is erroneous. If the tool 
provides a handle to an object in the obj member of a callback data structure passed to a callback function, 
the tool may release the handle upon return of the callback function to the tool. A callback function that 
releases such a handle is erroneous.
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NOTE—Any actions performed by a callback function are subject to rules specified for the step of the simulation cycle 
in which the callback function is invoked (see 14.7.5) and rules specified for the callback reason for which the callback 
was triggered (see 21.3).

21.3 Callback reasons

21.3.1 General

This subclause (21.3) describes the callback reasons. Callback reasons are identified by enumeration 
constants, defined in the VHPI include file, whose names start with the characters vhpiCb. In this standard, 
the term callback qualified with an enumeration constant identifying a callback reason refers to a callback 
that is registered with the reason identified by the enumeration constant. This subclause (21.3) specifies the 
values required, if any, in the obj, time, and value members of the callback data structure provided by a 
VHPI program upon registration of a callback for each reason.

If a VHPI program provides a pointer to a time structure in the time member of a callback data structure, 
the VHPI program shall allocate the memory for the time structure.

Similarly, if a VHPI program provides a pointer to a value structure in the value member of a callback data 
structure, the VHPI program shall allocate the memory for the value structure. The value structure shall have 
the format member set to a value of type vhpiFormatT specifying the format of a value to be provided 
to the callback function.

21.3.2 Object callbacks

21.3.2.1 General

An object callback is a callback whose trigger event relates to the value of a variable or a signal, represented 
by a trigger object. An object callback is a repetitive callback.

In the case of the trigger event of an object callback occurring on a trigger object representing a variable,
— If the variable is of a composite type, the trigger event also occurs on each subelement of the trigger 

object variable.
— If the variable is a subelement or slice of a composite variable, the trigger event also occurs on each 

composite variable containing the trigger object variable.
— If the variable is a slice of a composite variable, the trigger event also occurs on each overlapping 

slice of the trigger object variable.

If the VHPI program registering an object callback provides in the time member of the callback data 
structure a value other than NULL, the tool, upon triggering the callback function, provides in the time
member of the callback structure passed to the callback function a pointer to a time structure representing 
the time at which the trigger event occurred. The tool does not dereference the value provided by the VHPI 
program in the time member of the callback data structure. If the VHPI program provides the value NULL
in the time member of the callback data structure, the value of the time member of the callback structure 
passed to the callback function is NULL.

If the VHPI program registering an object callback provides in the value member of the callback data 
structure a value other than NULL, the value shall be a pointer to a value structure. In that case, the tool, 
upon triggering the callback function, provides in the value member of the callback structure passed to the 
callback function a pointer to a value structure representing the value of the trigger object resulting from the 
trigger event. The value is represented in the format (see 22.4) specified by the format member of the 
value structure provided by the VHPI program. The tool ignores other members of the value structure 
provided by the VHPI program. If the VHPI program provides the value NULL in the value member of the 
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callback data structure, the value of the value member of the callback structure passed to the callback 
function is NULL.

NOTE—Since the tool ignores members of the value structure other than the format member, the VHPI program need 
not allocate memory to be pointed to by the value member of the value structure.

21.3.2.2 vhpiCbValueChange

A VHPI program that registers a vhpiCbValueChange callback shall provide in the obj member of the 
callback data structure a handle that refers to a trigger object. When the callback is executed, the value of the 
obj member of the callback data structure passed to the callback function is a handle that refers to the 
trigger object.

The trigger event for a vhpiCbValueChange callback is one of:
— A change of value of a variable represented by a trigger object of class variable as a result of exe-

cution of a variable assignment statement (see 10.6), update of an actual parameter associated with a 
formal variable parameter of mode out or inout, or a call by a VHPI program to the 
vhpi_put_value function to update the variable.

— An event on a signal represented by a trigger object of class signal as a result of signal update (see 
14.7), unless the signal is a port of mode out.

— A change of driving value of a port of mode out represented by an object of class outPort as a 
result of a source of the port being active.

— A change of driving value of a driver represented by a trigger object of class driver as a result of 
the driver being active (see 14.7).

— An implementation-defined trigger event, other than a trigger event previously listed, that causes the 
value of the trigger object to change.

NOTE 1—A change in value of a signal or a port caused by a call to the vhpi_put_value function with mode value 
vhpiDeposit or vhpiForce is not a trigger event for a vhpiCbValueChange callback.

NOTE 2—A VHPI program cannot register a vhpiCbValueChange for an alias of an object.

NOTE 3—An implementation-defined trigger event for a vhpiCbValueChange callback may be an event such as a 
change caused by a user-interface command.

NOTE 4—An event on a signal may result from assignment to the signal by a VHDL description or from a call by a 
VHPI program to the vhpi_put_value function with mode value vhpiDepositPropagate or 
vhpiForcePropagate to update the signal. Similarly, a change of driving value of a port of mode out may result 
from assignment to a source by a VHDL description or of a call by a VHPI program to the vhpi_put_value function 
with mode value vhpiDepositPropagate or vhpiForcePropagate to update the port; and a change of 
driving value of a driver may result from assignment to the driven signal by a VHDL description or from a call by a 
VHPI program to the vhpi_put_value function to update the driver. In each case, the change of value is a single 
trigger event for the vhpiCbValueChange callback.

21.3.2.3 vhpiCbForce

A VHPI program that registers a vhpiCbForce callback shall provide in the obj member of the callback 
data structure either a handle that refers to a trigger object or NULL. If the VHPI program provides a handle 
that refers to a trigger object, the vhpiCbForce callback is associated with that trigger object. If the VHPI 
program provides NULL, the vhpiCbForce callback is associated with all objects for which forcing is 
permitted as trigger objects. In either case, when the callback is executed, the value of the obj member of 
the callback data structure passed to the callback function is a handle that refers to the trigger object upon 
which the trigger event occurred.

The trigger event for a vhpiCbForce callback is one of:
— Execution, without error, of the vhpi_put_value function with a mode value of vhpiForce or 

vhpiForcePropagate to update the value of the trigger object of the callback.
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— Execution of a simple force assignment, conditional force assignment or selected force assignment 
(see 10.5) in which the target or a subelement of the target is represented by the trigger object of the 
callback.

— Execution, without error, of an implementation-defined force directive, issued from an interactive 
user or a command source, applied to the trigger object of the callback.

21.3.2.4 vhpiCbRelease

A VHPI program that registers a vhpiCbRelease callback shall provide in the obj member of the 
callback data structure either a handle that refers to a trigger object, or NULL. If the VHPI program provides 
a handle that refers to a trigger object, the vhpiCbRelease callback is associated with that trigger object. 
If the VHPI program provides NULL, the vhpiCbRelease callback is associated with all objects for 
which forcing is permitted as trigger objects. In either case, when the callback is executed, the value of the 
obj member of the callback data structure passed to the callback function is a handle that refers to the 
trigger object upon which the trigger event occurred.

The trigger event for a vhpiCbRelease callback is one of:
— Execution, without error, of the vhpi_put_value function with a mode value of 

vhpiRelease to release forcing of the trigger object of the callback.
— Execution of a simple release assignment (see 10.5.2) in which the target or a subelement of the 

target is represented by the trigger object of the callback.
— Execution, without error, of an implementation-defined release directive, issued from an interactive 

user or a command source, applied to the trigger object of the callback.

21.3.2.5 vhpiCbTransaction

A VHPI program that registers a vhpiCbTransaction callback shall provide in the obj member of the 
callback data structure a handle that refers to a trigger object of class driver or signal. When the 
callback is executed, the value of the obj member of the callback data structure passed to the callback 
function is a handle that refers to the trigger object.

The trigger event for a vhpiCbTransaction callback is the trigger object becoming active (see 
14.7.3.1).

21.3.3 Foreign model callbacks

21.3.3.1 General

A foreign model callback is a callback that allows a foreign model to achieve an effect similar to that of a 
wait statement.

21.3.3.2 vhpiCbTimeOut and vhpiCbRepTimeOut

The vhpiCbTimeOut callback is a one-time callback, whereas the vhpiCbRepTimeOut callback is a 
repetitive callback.

A VHPI program that registers a vhpiCbTimeOut or a vhpiCbRepTimeOut callback shall provide in 
the time member of the callback data structure a pointer to a time structure that specifies a timeout interval. 
The trigger event for these callbacks is the expiry of the timeout interval after the callback was registered. In 
the case of the vhpiCbRepTimeOut callback, further trigger events occur upon expiry of successive 
intervals equal to the timeout interval, for as long as the simulation is not complete. Execution of 
vhpiCbTimeOut and vhpiCbRepTimeOut callbacks is described in 14.7.5.3.
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The values of the obj and value members of the callback data structure for a vhpiCbTimeOut or 
vhpiCbRepTimeOut callback are ignored by the tool.

NOTE 1—A foreign model that registers a vhpiCbTimeOut callback is similar in effect to a nonpostponed process 
that executes a wait statement with a timeout clause. A foreign model can achieve an effect similar to a postponed pro-
cess executing a wait statement with a timeout clause by registering a vhpiCbTimeOut callback that, in turn, registers 
a vhpiCbStartOfPostponed callback.

NOTE 2—A vhpiCbTimeOut or a vhpiCbRepTimeOut callback cannot be registered or enabled by a 
vhpiCbEndOfTimeStep or vhpiCbRepEndOfTimeStep callback function (see 21.3.6.8).

21.3.3.3 vhpiCbSensitivity

The vhpiCbSensitivity callback is a repetitive callback.

A VHPI program that registers a vhpiCbSensitivity callback shall provide in the obj member of the 
callback data structure handle that refers to either an object of class signal or an object of class 
anyCollection representing a collection of objects of class signal. In the former case, the trigger 
event for the callback is an event on the signal represented by the object of class signal. In the latter case, 
the set of signals represented by the objects of class signal is referred to as the sensitivity set of the 
callback, and the trigger event for the callback is an event on any of the signals in the sensitivity set of the 
callback.

If the VHPI program registering the callback provides in the time member of the callback data structure a 
value other than NULL, the tool, upon triggering the callback function, provides in the time member of the 
callback structure passed to the callback function a pointer to a time structure representing the time at which 
the trigger event occurred. The tool does not dereference the value provided by the VHPI program in the 
time member of the callback data structure. If the VHPI program provides the value NULL in the time
member of the callback data structure, the value of the time member of the callback structure passed to the 
callback function is NULL.

If the VHPI program registering the callback provides in the value member of the callback data structure a 
value other than NULL, one of the following occurs:

— If the VHPI program provides in the obj member of the callback data structure a handle that refers 
to an object of class signal, the tool ignores the value of the value member of the callback data 
structure.

— Otherwise, the tool, upon triggering the callback function, provides in the value member of the 
callback structure passed to the callback function a pointer to sensitivity-set bitmap, that is, a value 
structure indicating on which signals in the sensitivity set of the callback an event occurred. The 
value structure represents a one-dimensional array of integers using the format vhpiIntVecVal. 
The number of elements in the array is given by the expression , where s denotes the sensi-
tivity set. The bits of the elements correspond in an implementation-defined manner to the members 
of the sensitivity set. A bit corresponding to a given signal in the sensitivity set is 1 if there is an 
event on the given signal, or 0 otherwise. A VHPI program may use the sensitivity-set bitmap mac-
ros (see B.2) to determine whether the bit corresponding to a signal is 1 or 0.

The tool does not dereference the value provided by the VHPI program in the value member of the 
callback data structure. 

If the VHPI program provides the value NULL in the value member of the callback data structure, the 
value of the value member of the callback structure passed to the callback function is NULL.

NOTE—A foreign model that registers a vhpiCbSensitivity callback is similar in effect to a nonpostponed 
process that executes a wait statement that is sensitive to the signals. A foreign model can achieve an effect similar to a 
postponed process executing a wait statement that is sensitive to signals by registering a vhpiCbSensitivity

s 32�

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



- 363 - IEC 61691-1-1:2011(E)�
IEEE Std 1076-2008

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

callback that, in turn, registers a vhpiCbStartOfPostponed callback. The values of the signals during execution of 
the latter callback may be different from the values that caused the former callback to trigger.

21.3.4 Statement callbacks

21.3.4.1 General

A statement callback is a callback whose trigger event relates to execution of one or more statements of 
suspension or resumption of a process. A statement callback is a repetitive callback.

The values of the time and value members of the callback data structure for a statement callback are 
ignored by the tool.

21.3.4.2 vhpiCbStmt

A VHPI program that registers a vhpiCbStmt callback shall provide in the obj member of the callback 
data structure a handle that refers to a trigger object of class seqStmt, branch, or eqProcessStmt in 
the design hierarchy information model.

The trigger event for a vhpiCbStmt callback is determined as follows:
— If the trigger object is of class seqStmt other than an object of class loopStmt, the trigger event 

occurs immediately before execution of the statement represented by the trigger object.
— If the trigger object is of class loopStmt, the trigger event occurs immediately before execution of 

the loop statement represented by the trigger object. Subsequent trigger events occur in each 
iteration, if any, of the loop statement after the first iteration. In the case of a loop statement without 
an iteration scheme, subsequent trigger events occur immediately before execution of the sequence 
of statements enclosed in the loop statement. In the case of a loop statement with a while iteration 
scheme, subsequent trigger events occur immediately before evaluation of the condition in the 
iteration scheme. In the case of a loop statement with a for iteration scheme, subsequent trigger 
events occur immediately before assignment of a value to the loop parameter.

— If the trigger object is of class branch and is associated with an object of class ifStmt, the trigger 
event occurs immediately before evaluation of the condition represented by the trigger object.

— If the trigger object is of class branch and is associated with an object of class caseStmt, the 
trigger event occurs immediately before execution of the sequence of statements in the case 
statement alternative represented by the trigger object.

— If the trigger object is of class processStmt, the trigger event occurs immediately before 
execution of the first statement in the statement part of the process statement represented by the 
trigger object.

— If the trigger object is of class concProcCallStmt, the trigger event occurs immediately before 
execution of the first statement in the statement part of the subprogram body called by the concurrent 
procedure call statement represented by the trigger object.

— If the trigger object is of class eqProcessStmt and not of class processStmt or 
concProcCallStmt, the trigger event occurs at the same time as a trigger event would occur 
immediately before execution of the first statement in the equivalent process statement of the 
statement represented by the trigger object, were the equivalent process statement executed instead 
of the statement represented by the trigger object.

If the trigger object is of class processStmt or concProcCallStmt, when the callback is executed, 
the value of the obj member of the callback data structure passed to the callback function is a handle that 
refers to an object representing the first statement in the statement part of the called subprogram body or 
process statement, respectively. Otherwise, the value of the obj member of the callback data structure 
passed to the callback function is a handle that refers to the trigger object.
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A tool may perform optimizations that render an object representing a statement inaccessible. It is an error if 
the handle in the obj member of the registration callback data structure refers to such an object. A tool may 
perform optimizations that alter the order of execution of statements in a statement part. A VHPI program 
that depends on the order of execution of vhpiStmt callbacks associated with statements whose execution 
order is so altered is erroneous.

21.3.4.3 vhpiCbResume

A VHPI program that registers a vhpiCbResume callback shall provide in the obj member of the 
callback data structure a handle that refers to a trigger object of class eqProcessStmt in the design 
hierarchy information model. A vhpiCbResume callback is triggered as described in 14.7.5.3.

If the process represented by the trigger object was suspended as a result of executing an explicit wait 
statement, or the process represented by the trigger object is a process statement in which a sensitivity list 
appears after the reserved word process, when the callback is executed, the value of the obj member of the 
callback data structure passed to the callback function is a handle that refers to an object representing the 
sequential statement to be executed upon resumption of the process. Otherwise, the value of the obj
member of the callback data structure passed to the callback function is a handle that refers to the trigger 
object.

An implementation may optimize execution of a wait statement in such a way as to obviate some or all 
resumptions and repeated suspensions of a process provided that, when an event occurs on any signal in the 
sensitivity set and that event would result in the condition evaluating to TRUE, the process does resume. A 
VHPI program that depends on triggering of vhpiCbResume callbacks for resumptions so obviated is 
erroneous.

21.3.4.4 vhpiCbSuspend

A VHPI program that registers a vhpiCbSuspend callback shall provide in the obj member of the 
callback data structure a handle that refers to a trigger object of class eqProcessStmt in the design 
hierarchy information model. A vhpiCbSuspend callback is triggered as described in 14.7.5.2 and 
14.7.5.3.

If the process represented by the trigger object is suspended as a result of executing an explicit wait 
statement, when the callback is executed, the value of the obj member of the callback data structure passed 
to the callback function is a handle that refers to an object representing the wait statement. Otherwise, the 
value of the obj member of the callback data structure passed to the callback function is a handle that refers 
to the trigger object.

An implementation may optimize execution of a wait statement in such a way as to obviate some or all 
resumptions and repeated suspensions of a process provided that, when an event occurs on any signal in the 
sensitivity set and that event would result in the condition evaluating to TRUE, the process does resume. A 
VHPI program that depends on triggering of vhpiCbSuspend callbacks for repeated suspensions so 
obviated is erroneous.

21.3.4.5 vhpiCbStartOfSubpCall

A VHPI program that registers a vhpiCbStartOfSubpCall callback shall provide in the obj member 
of the callback data structure a handle that refers to a trigger object of class subpCall in the design 
hierarchy information model, or to a trigger object of class subpDecl in the library information model. 
The trigger event of a vhpiStartOfSubpCall callback occurs immediately after elaboration of the 
interface list of the called subprogram and association of actual parameters with the formal parameters (see 
14.6). If the trigger object is of class subpDecl, the trigger event occurs for any call to the subprogram 
represented by the trigger object.
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When the callback is executed, if the trigger object is of class subpCall, the value of the obj member of 
the callback data structure passed to the callback function is a handle that refers to the trigger object. 
Otherwise, the value of the obj member is a handle to an object of class subpCall that represents the call 
to the subprogram represented by the trigger object.

NOTE—A VHPI program may obtain a handle to a subprogram call by iterating on the sequential statements of a 
region, such as a process or a dynamically elaborated instance of a subprogram.

21.3.4.6 vhpiCbEndOfSubpCall

A VHPI program that registers a vhpiCbEndOfSubpCall callback shall provide in the obj member of 
the callback data structure a handle that refers to a trigger object of class subpCall in the design hierarchy 
information model. The trigger event of a vhpiEndOfSubpCall callback occurs immediately after 
completion of execution of the statements of the called subprogram. In the case of the called subprogram 
being a function, the trigger event occurs before the result of the function is used as the value of the function 
call. In the case of the called subprogram being a procedure, the trigger event occurs before any formal 
variable parameters of mode out or inout passed by copy are copied back into the associated actual 
parameters.

When the callback is executed, the value of the obj member of the callback data structure passed to the 
callback function is a handle that refers to the trigger object.

NOTE 1—A VHPI program may obtain a handle to a subprogram call by iterating on the sequential statements of a 
region, such as a process or a dynamically elaborated instance of a subprogram.

NOTE 2—A VHPI program may, in a vhpiCbEndOfSubpCall callback, use the vhpi_put_value function to 
update the result of a function or the values of formal variable parameters of mode out or inout.

21.3.5 Time callbacks

21.3.5.1 General

A time callback is a callback whose trigger event relates to progress of simulation time.

The values of the obj and value members of the callback data structure for a time callback are ignored by 
the tool.

21.3.5.2 vhpiCbAfterDelay and vhpiCbRepAfterDelay

The vhpiCbAfterDelay callback is a one-time callback, whereas the vhpiCbRepAfterDelay
callback is a repetitive callback.

A VHPI program that registers a vhpiCbAfterDelay or a vhpiCbRepAfterDelay callback shall 
provide in the time member of the callback data structure a pointer to a time structure that specifies a 
timeout interval. The trigger event for these callbacks is the expiry of the timeout interval after the callback 
was registered. In the case of the vhpiCbRepAfterDelay callback, further trigger events occur upon 
expiry of successive intervals equal to the timeout interval, for as long as the simulation is not complete. 
Execution of vhpiCbAfterDelay and vhpiCbRepAfterDelay callbacks is described in 14.7.5.3.

NOTE—A vhpiCbAfterDelay or a vhpiCbRepAfterDelay callback cannot be registered or enabled by a 
vhpiCbEndOfTimeStep or vhpiCbRepEndOfTimeStep callback function (see 21.3.6.8).
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21.3.6 Simulation phase callbacks

21.3.6.1 General

A simulation phase callback is a callback whose trigger event relates to steps of the simulation cycle (see 
14.7.5.3). Simulation phase callbacks identified by enumeration constants whose names include the letters 
“Rep” are repetitive callbacks; the remaining simulation phase callbacks are one-time callbacks.

The values of the obj, time, and value members of the callback data structure for a simulation phase 
callback are ignored by the tool.

21.3.6.2 vhpiCbNextTimeStep and vhpiCbRepNextTimeStep

The trigger event for a vhpiCbNextTimeStep or vhpiCbRepNextTimeStep callback is occurrence 
of substep 1) of step b) of a simulation cycle that is not a delta cycle (see 14.7.5.3).

21.3.6.3 vhpiCbStartOfNextCycle and vhpiCbRepStartOfNextCycle

The trigger event for a vhpiCbStartOfNextCycle or vhpiCbRepStartOfNextCycle callback is 
occurrence of step b) of the initialization phase (see 14.7.5.2) or occurrence of substep 2) of step b) of a 
simulation cycle (see 14.7.5.3).

21.3.6.4 vhpiCbStartOfProcesses and vhpiCbRepStartOfProcesses

The trigger event for a vhpiCbStartOfProcesses or vhpiCbRepStartOfProcesses callback is 
occurrence of step e) of the initialization phase (see 14.7.5.2) or occurrence of substep 1) of step f) of a 
simulation cycle (see 14.7.5.3).

21.3.6.5 vhpiCbEndOfProcesses and vhpiCbRepEndOfProcesses

The trigger event for a vhpiCbEndOfProcesses or vhpiCbRepEndOfProcesses callback is 
occurrence of step h) of the initialization phase (see 14.7.5.2) or occurrence of substep 4) of step f) of a 
simulation cycle (see 14.7.5.3).

21.3.6.6 vhpiCbLastKnownDeltaCycle and vhpiCbRepLastKnownDeltaCycle

The trigger event for a vhpiCbLastKnownDeltaCycle or vhpiCbLastKnownDeltaCycle
callback is occurrence of substep 1) of step h) of a simulation cycle (see 14.7.5.3).

21.3.6.7 vhpiCbStartOfPostponed and vhpiCbRepStartOfPostponed

The trigger event for a vhpiCbStartOfPostponed or vhpiCbRepStartOfPostponed callback is 
occurrence of step i) of the initialization phase (see 14.7.5.2) or occurrence of substep 3) of step h) of a 
simulation cycle (see 14.7.5.3).

21.3.6.8 vhpiCbEndOfTimeStep and vhpiCbRepEndOfTimeStep

The trigger event for a vhpiCbEndOfTimeStep or vhpiCbRepEndOfTimeStep callback is 
occurrence of substep 6) of step h) of a simulation cycle (see 14.7.5.3).

It is an error if a vhpiCbEndOfTimeStep or vhpiCbRepEndOfTimeStep callback causes activity 
on a driver or a signal (see 14.7.3.1) or registers or enables a vhpiCbAfterDelay, 
vhpiCbRepAfterDelay, vhpiCbTimeout, or vhpiCbRepTimeOut callback.
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NOTE—The restrictions on scheduling activity and registering future callbacks prevent a vhpiCbEndOfTimeStep
or vhpiCbRepEndOfTimeStep callback from affecting the time of the next simulation cycle (see 14.7.5.1). A call-
back can cause activity using the vhpi_schedule_transaction function or the vhpi_put_value function 
with a mode value of vhpiDepositPropagate or vhpiForcePropagate. A vhpiCbEndOfTimeStep or 
vhpiCbRepEndOfTimeStep callback cannot legally use those functions for that purpose.

21.3.7 Action callbacks

21.3.7.1 General

An action callback is a callback whose trigger event relates to occurrence of phases of tool execution and 
other aspects of tool execution. The vhpiCbQuiescence, vhpiEnterInteractive, 
vhpiExitInteractive, and vhpiSigInterrupt callbacks are repetitive callbacks; the remaining 
action callbacks are one-time callbacks.

The values of the obj, time, and value members of the callback data structure for an action callback are 
ignored by the tool.

NOTE—A VHPI program may register an action callback whose trigger event cannot subsequently occur. For example, 
the VHPI program may register an action callback whose trigger event is occurrence of a given phase of tool execution 
after all occurrences of the phase have completed. Registration of such a callback is not an error.

21.3.7.2 vhpiCbStartOfTool and vhpiCbEndOfTool

The trigger event of a vhpiCbStartOfTool callback occurs immediately prior to completion of the 
vhpiRegistrationPhase phase of tool execution (see 20.2). The trigger event of a 
vhpiCbEndOfTool callback occurs during the vhpiTerminationPhase phase of tool execution (see 
20.10).

21.3.7.3 vhpiCbStartOfAnalysis and vhpiCbEndOfAnalysis

The trigger event of a vhpiCbStartOfAnalysis callback occurs upon commencement of the 
vhpiAnalysisPhase phase of tool execution, and the trigger event of a vhpiCbEndOfAnalysis
callback occurs immediately prior to completion of the vhpiAnalysisPhase phase of tool execution 
(see 20.3).

If a tool supports the vhpiAnalysisPhase phase of tool execution, it shall support the 
vhpiCbStartOfAnalysis and vhpiCbEndOfAnalysis callbacks.

21.3.7.4 vhpiCbStartOfElaboration and vhpiCbEndOfElaboration

The trigger event of a vhpiCbStartOfElaboration callback occurs upon commencement of the 
vhpiElaborationPhase phase of tool execution, and the trigger event of a 
vhpiCbEndOfElaboration callback occurs immediately prior to completion of the 
vhpiElaborationPhase phase of tool execution (see 20.4).

If a tool supports the vhpiElaborationPhase phase of tool execution, it shall support the 
vhpiCbStartOfElaboration and vhpiCbEndOfElaboration callbacks.

21.3.7.5 vhpiCbStartOfInitialization and vhpiCbEndOfInitialization

The trigger event of a vhpiCbStartOfInitialization callback occurs upon commencement of the 
vhpiInitializationPhase phase of tool execution, and the trigger event of a 
vhpiCbEndOfInitialization callback occurs immediately prior to completion of the 
vhpiInitializationPhase phase of tool execution (see 14.7.5.2 and 20.5).
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If a tool supports the vhpiInitializationPhase phase of tool execution, it shall support the 
vhpiCbStartOfInitialization and vhpiCbEndOfInitialization callbacks.

21.3.7.6 vhpiCbStartOfSimulation and vhpiCbEndOfSimulation

The trigger event of a vhpiCbStartOfSimulation callback occurs upon commencement of the 
vhpiSimulationPhase phase of tool execution, and the trigger event of a 
vhpiCbEndOfSimulation callback occurs immediately prior to completion of the 
vhpiSimulationPhase phase of tool execution (see 14.7.5.3 and 20.6).

It is an error if a vhpiCbEndOfSimulation callback calls the vhpi_put_value function or the 
vhpi_schedule_transaction function either to update the projected output waveform of a driver or 
to update the value of an object.

If a tool supports the vhpiSimulationPhase phase of tool execution, it shall support the 
vhpiCbStartOfSimulation and vhpiCbEndOfSimulation callbacks.

NOTE—A vhpiCbEndOfSimulation callback may access the library and design hierarchy information models 
and may read the values of objects using the vhpi_get_value function. Furthermore, it may request a control action 
using vhpi_control, for example, to reset, restart, or terminate simulation.

21.3.7.7 vhpiCbQuiescense

The trigger event of a vhpiCbQuiescense callback occurs during substep 7) of step h) of a simulation 
cycle as described in 14.7.5.3.

NOTE—A vhpiCbQuiescense callback may cause further simulation cycles by updating the projected output 
waveform of a driver either by calling the vhpi_schedule_transaction function or by calling the 
vhpi_put_value transaction with a mode value of vhpiDepositPropagate or vhpiForcePropagate.

21.3.7.8 vhpiCbEnterInteractive

The trigger event of a vhpiCbEnterInteractive callback occurs immediately prior to a tool entering 
a mode of operation in which it accepts directives from an interactive command source. The circumstances 
under which a tool enters such a mode and the operation of the tool in that mode are implementation-
defined.

21.3.7.9 vhpiCbExitInteractive

The trigger event of a vhpiCbExitInteractive callback occurs immediately upon to a tool leaving a 
mode of operation in which it accepts directives from an interactive command source and resuming tool 
execution as described in Clause 20. The circumstances under which a tool leaves such a mode are 
implementation-defined.

21.3.7.10 vhpiCbSigInterrupt

The trigger event of a vhpiCbSigInterrupt callback occurs in response to an implementation-defined 
interrupt event.

NOTE—The interrupt event may be an event that occurs asynchronously with respect to tool execution or an exception 
event.
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21.3.8 Save, restart, and reset callbacks

21.3.8.1 General

The trigger events of callbacks described in this subclause (21.3.8) relate to occurrence of the save, restart, 
and reset phases of tool execution.

The vhpiCbStartOfRestart and vhpiCbEndOfRestart callbacks are one-time callbacks; the 
remainder are repetitive callbacks.

The values of the obj, time, and value members of the callback data structure for a save, restart, or reset 
callback are ignored by the tool.

21.3.8.2 vhpiCbStartOfSave and vhpiCbEndOfSave

The trigger event of a vhpiCbStartOfSave or vhpiCbEndOfSave callback occurs during the 
vhpiSavePhase phase of tool execution (see 20.7).

If a tool supports the vhpiSavePhase phase of tool execution, it shall support the 
vhpiCbStartOfSave and vhpiCbEndOfSave callbacks.

NOTE 1—A vhpiCbStartOfSave or vhpiCbEndOfSave callback that registers a vhpiCbStartOfRestart
or vhpiCbEndOfRestart callback should not use the user_data member of the callback data structure to convey 
a pointer to saved data, since the data may be restored to a different location when the simulation is restarted. Instead, the 
callback should use the user_data member to convey an identification number for data saved using the 
vhpi_put_data and vhpi_get_data functions.

NOTE 2—A VHPI program whose vhpiCbStartOfSave callback modifies data in preparation for saving (for 
example, by converting pointers to relocatable addresses) may register a vhpiCbEndOfSave callback to reverse the 
modification to allow continued simulation.

NOTE 3—The order in which vhpiCbStartOfSave and vhpiCbEndOfSave callbacks are executed is not 
required to be the same as the order in which the callbacks were registered, except that all enabled 
vhpiCbStartOfSave callbacks are executed before any vhpiCbEndOfSave callbacks.

NOTE 4—No callbacks are triggered between completion of all enabled vhpiCbStartOfSave callbacks and 
triggering of any vhpiCbEndOfSave callbacks.

NOTE 5—During execution of a vhpiCbStartOfSave or vhpiCbEndOfSave callback, the current simulation 
time returned by the vhpi_get_time function is either 0 ns, if the save was requested during the initialization phase, 
or the time of the current simulation cycle, if the save was requested during a simulation cycle.

21.3.8.3 vhpiCbStartOfRestart and vhpiCbEndOfRestart

The trigger event of a vhpiCbStartOfRestart or vhpiCbEndOfRestart callback occurs during 
the vhpiRestartPhase phase of tool execution (see 20.8).

It is an error if a vhpiCbStartOfRestart callback is registered other than during the 
vhpiSavePhase of tool execution.

If a tool supports the vhpiRestartPhase phase of tool execution, it shall support the 
vhpiCbStartOfRestart and vhpiCbEndOfRestart callbacks.

NOTE 1—A VHPI program whose vhpiCbStartOfRestart callback restores data using the vhpi_get_data
function may register a vhpiCbEndOfRestart callback to reinstate callbacks required for continued simulation of 
the restored model.

NOTE 2—No callbacks are triggered between completion of all enabled vhpiCbStartOfRestart callbacks and 
triggering of any vhpiCbEndOfRestart callbacks.
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NOTE 3—During execution of a vhpiCbStartOfRestart callback, the current simulation time returned by the 
vhpi_get_time function is either 0 ns, if the restart was requested during the initialization phase, or the time of the 
current simulation cycle, if the restart was requested during a simulation cycle. During execution of a 
vhpiCbEndOfRestart callback, the current simulation time returned by the vhpi_get_time function is either 
0 ns, if the save of the model restarted was requested during the initialization phase of execution of the restarted model, 
or the time of the simulation cycle during which the save of the restarted model was requested, if the save was requested 
during a simulation cycle.

21.3.8.4 vhpiCbStartOfReset and vhpiCbEndOfReset

The trigger event of a vhpiCbStartOfReset or vhpiCbEndOfReset callback occurs during the 
vhpiResetPhase phase of tool execution (see 20.9).

If a tool supports the vhpiResetPhase phase of tool execution, it shall support the 
vhpiCbStartOfReset and vhpiCbEndOfReset callbacks.

NOTE 1—A VHPI program whose vhpiCbStartOfReset callback resets the state of private data may register a 
vhpiCbEndOfReset callback to reinstate callbacks or register new callbacks required for repeated simulation of the 
model.

NOTE 2—No callbacks are triggered between completion of all enabled vhpiCbStartOfReset callbacks and trig-
gering of any vhpiCbEndOfReset callbacks.

NOTE 3—During execution of a vhpiCbStartOfReset callback, the current simulation time returned by the 
vhpi_get_time function is either 0 ns, if the reset was requested during the initialization phase, or the time of the 
current simulation cycle, if the reset was requested during a simulation cycle. During execution of a vhpiCbEndO-
fReset callback, the current simulation time returned by the vhpi_get_time function is 0 ns.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



- 371 - IEC 61691-1-1:2011(E)�
IEEE Std 1076-2008

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

22. VHPI value access and update

22.1 General

This clause describes the data structures and operations provided in the VHPI for reading and updating values of objects 
in a VHDL model.

22.2 Value structures and types

22.2.1 General

The VHPI header file (see Annex B) defines a number of data types that are used by VHPI function. They 
are described in this subclause (22.2).

It is an error if a VHPI program uses a given type described in this clause to represent a VHDL scalar type, 
and there are position numbers in the scalar type that exceed the range of position numbers that can be 
represented in the given type.

22.2.2 vhpiEnumT and vhpiSmallEnumT

A value of type vhpiEnumT or vhpiSmallEnumT represents a value of a VHDL enumeration type. A 
value of type vhpiEnumT shall be represented with at least 32 bits, and a value of type 
vhpiSmallEnumT shall be represented with at least 8 bits. The value represented by a given value of 
either type is an enumeration value whose position number is the given value, interpreted as an unsigned 
binary number.

22.2.3 vhpiIntT and vhpiLongIntT

A value of type vhpiIntT or vhpiLongIntT represents a value of a VHDL integer type. A value of 
type vhpiIntT shall be represented with at least 32 bits, and a value of type vhpiLongIntT shall be 
represented with at least 64 bits. The value represented by a given value of either type is the given value, 
interpreted as a signed twos-complement binary number.

22.2.4 vhpiCharT

A value of type vhpiCharT represents a value of a VHDL character type. The value shall be represented 
with at least 8 bits. The value represented by a given value of type vhpiCharT is a character value whose 
position number is the given value, interpreted as an unsigned binary number.

22.2.5 vhpiRealT

A value of type vhpiRealT represents a value of a VHDL floating-point type. The value shall be 
represented with at least 64 bits. The value represented by a given value of type vhpiRealT is the given 
value, interpreted according to the chosen representation for floating-point types (see 5.2.5.1).

22.2.6 vhpiPhysT and vhpiSmallPhysT

A value of type vhpiPhysT is called a physical structure and represents a value of a physical type. The 
position number of a physical structure is the signed integer represented by the concatenation of the high
and low members of the physical structure to form a 64-bit twos-complement binary number, with the 
high member as the most significant part and the low member as the least significant part.
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A value of type vhpiSmallPhysT also represents a value of a physical type. The value shall be 
represented with at least 32 bits. The position number of the value of type vhpiSmallPhysT is the value 
interpreted as a signed twos-complement binary number.

If a physical structure or value of type vhpiSmallPhysT occurs as part of a value structure or as an 
element of an array pointed to by a value structure, its position number determines the value represented by 
the value structure or value of type vhpiSmallPhysT, as described in 22.2.8. Otherwise, the physical 
structure or value of type vhpiSmallPhysT represents a value of a physical type. The value is the product 
of the position number of the physical structure or value of type vhpiSmallPhysT and a unit determined 
from the context in which the physical structure or value of type vhpiSmallPhysT occurs.

22.2.7 vhpiTimeT

A value of type vhpiTimeT is called time structure and represents a time value. The position number of a 
time structure is the signed integer represented by the concatenation of the high and low members of the 
time structure to form a 64-bit twos-complement binary number, with the high member as the most 
significant part and the low member as the least significant part. 

If a time structure occurs as part of a value structure or as an element of an array pointed to by a value 
structure, its position number determines the value represented by the value structure, as described in 22.2.8. 
Otherwise, the time structure represents a value of type TIME defined in package STANDARD. The value 
is the product of the position number of the time structure and the resolution limit of the tool.

NOTE—A VHPI program can determine the resolution limit with the function call 
vhpi_get_phys(vhpiResolutionLimit, NULL).

22.2.8 vhpiValueT

A value of type vhpiValueT is called a value structure and represents a scalar value, a one-dimensional 
array of scalar values, or a value of any type represented in an implementation-defined internal 
representation.

The format member of a value structure specifies the format of the value structure, that is, a value of type 
vhpiFormatT that determines how the value is represented. The value member of the value structure is 
a union that contains the value in the appropriate representation. The following formats are specified by this 
standard:�

vhpiBinStrVal The value structure represents a scalar value. The position number of the scalar value 
is represented in the str member of the value member using a pointer to a string 
of binary digit characters interpreted as a binary number.

vhpiOctStrVal The value structure represents a scalar value. The position number of the scalar value 
is represented in the str member of the value member using a pointer to a string 
of octal digit characters interpreted as an octal number.

vhpiDecStrVal The value structure represents a scalar value. The position number of the scalar value 
is represented in the str member of the value member using a pointer to a string 
of decimal digit characters interpreted as a decimal number.

vhpiHexStrVal The value structure represents a scalar value. The position number of the scalar value 
is represented in the str member of the value member using a pointer to a string 
of hexadecimal digit characters interpreted as a hexadecimal number.

vhpiEnumVal The value structure represents an enumeration value. The enumeration value is 
represented in the enumv member of the value member using a value of type 
vhpiEnumT.
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vhpiSmallEnumVal The value structure represents an enumeration value. The enumeration value is 
represented in the smallenumv member of the value member using a value of 
type vhpiSmallEnumT.

vhpiIntVal The value structure represents an integer value. The integer value is represented in 
the intg member of the value member using a value of type vhpiIntT.

vhpiLongIntVal The value structure represents an integer value. The integer value is represented in 
the longintg member of the value member using a value of type 
vhpiLongIntT.

vhpiLogicVal The value structure represents a logic value of type STD_ULOGIC or STD_LOGIC 
defined in the package IEEE.STD_LOGIC_1164. The logic value is represented in 
the enumv member of the value member using a value of type vhpiEnumT.

vhpiRealVal The value structure represents a floating-point value. The floating-point value is 
represented in the real member of the value member using a value of type 
vhpiRealT.

vhpiStrVal The value structure represents a string of characters. The string is represented in the 
str member of the value member using a pointer to a null-terminated array of 
characters.

vhpiCharVal The value structure represents a character value. The character value is represented in 
the ch member of the value member using a value of type vhpiCharT.

vhpiTimeVal The value structure represents a time value. The time value is represented in the 
time member of the value member using a time structure.

vhpiPhysVal The value structure represents a physical value. The physical value is represented in 
the phys member of the value member using a physical structure.

vhpiSmallPhysVal The value structure represents a physical value. The physical value is represented in 
the smallphys member of the value member using a value of type 
vhpiSmallPhysT.

vhpiObjTypeVal This format is used by a VHPI program to specify that the tool provide the value of 
an object in a format that is appropriate for the type of the object (see 22.4).

vhpiPtrVal The value structure represents an access value. The access value is represented in the 
ptr member of the value member using a pointer.

vhpiEnumVecVal The value structure represents a one-dimensional array of enumeration values. The 
array value is represented in the enumvs member of the value member using a 
pointer to an array of values of type vhpiEnumT.

vhpiSmallEnumVecVal The value structure represents a one-dimensional array of enumeration values. The 
array value is represented in the smallenumvs member of the value member 
using a pointer to an array of values of type vhpiSmallEnumT.

vhpiIntVecVal The value structure represents a one-dimensional array of integer values. The array 
value is represented in the intgs member of the value member using a pointer to 
an array of values of type vhpiIntT.

vhpiLongIntVecVal The value structure represents a one-dimensional array of integer values. The array 
value is represented in the longintgs member of the value member using a 
pointer to an array of values of type vhpiLongIntT.

vhpiLogicVecVal The value structure represents a one-dimensional array of logic values of type 
STD_ULOGIC or STD_LOGIC defined in the package IEEE.STD_LOGIC_1164. 
The array value is represented in the enumvs member of the value member using a 
pointer to an array of values of type vhpiEnumT.

vhpiRealVecVal The value structure represents a one-dimensional array of floating-point values. The 
array value is represented in the reals member of the value member using a 
pointer to an array of values of type vhpiRealT.
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An implementation may specify further formats and the way in which values are represented for those 
formats.

If a value structure is used by a VHPI program as an argument to the vhpi_get_value function and the 
format of the value structure specifies an array, string, or internal representation, the VHPI program shall set 
the bufSize member of the value structure to the number of bytes of storage allocated by the VHPI 
program for storage of the value (see 23.19).

If the format of a value structure used to represent a value specifies an array or string representation, the 
numElems member of the value structure specifies the number of elements in the array or string 
representation of the value represented by the value structure. If the value is represented as a string, the 
number of elements excludes the null termination character of the string.

If the format of a value structure used to represent a value specifies a physical type or time type 
representation, the unit member of the value structure specifies a unit of the physical or time type. The 
position number of the value represented by the value structure is the product of the position number of the 
unit and the position number of the physical or time structure or value of type vhpiSmallPhysT used to 
represent the value.

NOTE 1—A VHPI program that allocates buffer storage for a string to be written by a call to the vhpi_get_value
function shall allow storage for the null termination character. The value written to the bufSize member of the value 
structure should be at least one more than the length of the string.

NOTE 2—The vhpiRawDataVal format allows a VHPI program to read the value of an object without requiring the 
tool to reformat the value. An implementation may allow a VHPI program to read the value of an object in its internal 
representation and subsequently to set the value of an object of the same type using the value, thus avoiding the 
performance impact of reformatting.

22.3 Reading object values

A VHPI program may read the value of certain objects in the design hierarchy information model using the 
vhpi_get_value function (see 23.19). The objects for which it is legal to read the value are:

— An object of class name
— An object of class driver
— An object of class transaction
— An object of class port
— An object of class literal

vhpiTimeVecVal The value structure represents a one-dimensional array of time values. The array 
value is represented in the times member of the value member using a pointer to 
an array of time structures.

vhpiPhysVecVal The value structure represents a one-dimensional array of physical values. The array 
value is represented in the physs member of the value member using a pointer to 
an array of physical structures.

vhpiSmallPhysVecVal The value structure represents a one-dimensional array of physical values. The array 
value is represented in the smallphyss member of the value member using a 
pointer to an array of values of type vhpiSmallPhysT.

vhpiPtrVecVal The value structure represents a one-dimensional array of access values. The array 
value is represented in the ptrs member of the value member using a pointer to an 
array of pointers.

vhpiRawDataVal The value structure represents a value in the ptr member of the value member 
using a pointer to an implementation-defined internal representation.
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— An object of class expr for which the Staticness property has the value vhpiLocallyS-
tatic or vhpiGloballyStatic

It is an error if a VHPI program uses the vhpi_get_value function to read the value of an object whose 
type is other than a scalar type or a one-dimensional array type whose element type is a scalar type, unless 
the format specified in the value structure is vhpiRawDataVal or an implementation-defined format (see 
22.2.8). Furthermore, it is an error if a VHPI program uses the vhpi_get_value function to read the 
value of an object of class name that does not represent a locally static name.

The effect of reading the value of a given object of class aliasDecl is the same as the effect of reading 
the value of the target object of the aliasedName association with the given object as the reference object.

A VHPI program may read the value of an object during the elaboration phase provided the object has been 
elaborated. A VHPI program may read the value of a formal parameter of a subprogram provided the formal 
parameter has been dynamically elaborated as part of a call to the subprogram. A VHPI program may read 
the value of an object during the initialization and simulation phases.

For an object of class constant, variable, or driver, or for an object of class signal other than an 
object of class outPort, an object of class portDecl representing a port of mode out or an object of 
class sigParamDecl representing a signal parameter of mode out, the vhpi_get_value function 
yields the current value of the VHDL object represented by the object. For an object of class outPort or 
an object of class portDecl representing a port of mode out, the 
vhpi_get_value function yields the driving value of the VHDL object represented by the object. For an 
object of class sigParamDecl representing a signal parameter of mode out, the vhpi_get_value
function yields the driving value of the driver for the signal parameter. For an object of class 
transaction, the vhpi_get_value function yields the value component of the transaction 
represented by the object.

For an object of class file, if the file is open, the vhpi_get_value function yields a string whose value 
is the file logical name. Otherwise, the vhpi_get_value function raises an error with severity 
vhpiWarning.

For an object of class literal, the vhpi_get_value function returns the value of the literal 
represented by the object.

For an object of class expr, the vhpi_get_value function returns the value of the expression 
represented by the object.

NOTE 1—A VHPI program can read the value of an object of composite type by navigating associations in the 
information model to acquire handles to subelements for which reading the value using the vhpi_get_value
function is legal.

NOTE 2—A VHPI program can, as an alternative to using the vhpi_get_value function, read the value of an object 
representing a literal by reading the IntVal, RealVal, PhysVal, or StrVal property, as appropriate, of the object.

22.4 Formatting values

For each type of object whose value can be read using the vhpi_get_value function, there is a native 
format, defined as follows.
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If a VHPI program calls the vhpi_get_value function with the format member of the value structure 
set to vhpiObjTypeVal, the function yields the value of the object formatted using the native format and 
updates the format member with the value of type vhpiFormatT corresponding to the native format 
used. For types for which there is more than one native format, the function may return the value in either 
format, provided the range of position numbers in the type or element type (as appropriate) is representable 
in the format.

A tool shall support reading of the value of an object using the native format of the object, the 
vhpiObjTypeVal format, and the vhpiRawDataVal format. An implementation may also support 
reading of the value of an object using other formats.

Object type Native format

Any integer type vhpiIntVal or vhpiLongIntVal

Any enumeration type other than 
CHARACTER, or the type STD_LOGIC or 
STD_ULOGIC defined in 
IEEE.STD_LOGIC_1164

vhpiEnumVal or vhpiSmallEnumVal

CHARACTER vhpiCharVal

STD_LOGIC or STD_ULOGIC defined in 
IEEE.STD_LOGIC_1164

vhpiLogicVal

Any physical type other than TIME vhpiPhysVal or vhpiSmallPhysVal

TIME vhpiTimeVal

Any floating-point type vhpiRealVal

Any access type vhpiPtrVal

Any one-dimensional array type whose 
element type is an integer type

vhpiIntVecVal or 
vhpiLongIntVecVal

Any one-dimensional array type whose 
element type is an enumeration type other than 
CHARACTER or the type STD_LOGIC or 
STD_ULOGIC defined in 
IEEE.STD_LOGIC_1164

vhpiEnumVecVal or 
vhpiSmallEnumVecVal

Any one-dimensional array type whose 
element type is CHARACTER

vhpiStrVal

Any one-dimensional array type whose 
element type is STD_LOGIC or STD_ULOGIC 
defined in IEEE.STD_LOGIC_1164

vhpiLogicVecVal

Any one-dimensional array type whose 
element type is any physical type other than 
TIME

vhpiPhysVecVal or 
vhpiSmallPhysVecVal

Any one-dimensional array type whose 
element type is TIME

vhpiTimeVecVal

Any one-dimensional array type whose 
element type is any floating-point type

vhpiRealVecVal

Any one-dimensional array type whose 
element type is any access type

vhpiPtrVecVal
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22.5 Updating object values

22.5.1 General

A VHPI program may update the value of certain objects in the design hierarchy information model using 
the vhpi_put_value function (see 23.28). The objects for which it is legal to update the value are:

— An object of one of the following subclasses of objDecl: genericDecl, sigDecl, varDecl, 
portDecl, sigParamDecl, or varParamDecl

— An object of class aliasDecl whose target object of the aliasedName association is an object 
for which it is legal to update the value

— An object of one of the following subclasses of prefixedName: indexedName, sliceName, 
or selectedName, provided the target object of the prefix association is an object for which it 
is legal to update the value

— An object of class derefObj
— An object of class driver
— An object of class port
— An object of class funcCall

The effect of a call to the vhpi_put_value function to update an object of class genericDecl is not 
specified by this standard.

The effect of updating the value of a given object of class aliasDecl is the same as the effect of updating 
the value of the target object of the aliasedName association with the given object as the reference object.

A VHPI program may use the vhpi_put_value function to update the value of the following objects 
during the elaboration phase provided the object to be updated has been elaborated or created:

— A signal or port of a foreign architecture
— A variable that is elaborated as part of elaboration of a shared variable, of a protected type, of a for-

eign architecture
— A driver created using the vhpi_create function
— The return value of a foreign function

A VHPI program may update the value of an object during the initialization and simulation phases. A VHPI 
program may update the value of a formal parameter of a subprogram provided the formal parameter is of 
mode out or inout and has been dynamically elaborated as part of a call to the subprogram. It is an error if a 
VHPI program updates the value of a formal parameter of mode in.

The VHPI header file defines the enumeration type vhpiPutValueModeT with enumeration constants 
corresponding to update modes as follows:�

vhpiDeposit The value of an object is updated, with no propagation of signal values.

vhpiDepositPropagate The value of an object is updated, and, if the object is a signal on a net, the updated 
value is propagated to other signals on the net.

vhpiForce An object is forced to a given value, with no propagation of signal values.

vhpiForcePropagate An object is forced to a given value, and, if the object is a signal on a net, the updated 
value is propagated to other signals on the net.

vhpiRelease The forcing of an object is released.

vhpiSizeConstraint The constraint of the type of an object is set.
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For objects of class other than signal, the effect of an update with update mode 
vhpiDepositPropagate is the same as an update with update model vhpiDeposit, and the effect of 
an update with update mode vhpiForcePropagate is the same as an update with update model 
vhpiForce.

If the vhpi_put_value function is called with an update mode of vhpiRelease, no value structure is 
required, and the value of the value_p argument is ignored.

It is an error if a VHPI program uses the vhpi_put_value function to update the value of an object 
whose type is other than a scalar type or a one-dimensional array type whose element type is a scalar type, 
unless the format specified in the value structure is vhpiRawDataVal or the update mode is 
vhpiRelease. Furthermore, it is an error if a VHPI program uses the vhpi_put_value function to 
update the value of an object of class name that does not represent a locally static name.

22.5.2 Updating an object of class variable

A call to the vhpi_put_value function to update the value of an object of class variable shall use an 
update mode of vhpiDeposit, vhpiDepositPropage, vhpiForce, or vhpiForcePropagate.

A call to the vhpi_put_value function to update the value of an object of class variable with an 
update mode of vhpiForce or vhpiForcePropagate causes the variable represented by the object to 
become forced and to be updated with the value represented by the value structure provided to the 
vhpi_put_value function. The value of a variable that is forced is not updated by a variable assignment 
statement or by association as an actual parameter with a formal variable parameter. The variable remains 
forced until a subsequent update with an update mode of vhpiRelease, which causes the variable to be 
released, that is, no longer to be forced.

Subelements of a variable of composite type may be separately forced. If a variable of composite type is 
forced, all of its subelements are forced. If a variable of composite type is released, all of the subelements of 
the variable are released.

For a formal variable parameter, if the parameter is passed by reference, forcing or releasing the formal 
parameter causes the actual parameter to be forced or released, respectively, and forcing or releasing the 
actual parameter causes the formal parameter to be forced or released, respectively. Otherwise, if the 
parameter is passed by copy, forcing or releasing the formal parameter has no effect on whether the actual 
parameter is forced or released, and forcing or releasing the actual parameter has no effect on whether the 
formal parameter is forced or released.

A call to the vhpi_put_value function to update the value of an object of class variable with an 
update mode of vhpiDeposit or vhpiDepositPropagate causes the variable represented by the 
object to be updated with the value represented by the value structure provided to the vhpi_put_value
function, provided the variable is not forced.

NOTE—If a forced variable is updated with an update mode of vhpiDeposit or vhpiDepositPropagate, the 
update has no effect.

22.5.3 Updating an object of class signal

A call to the vhpi_put_value function to update the value of an object of class signal shall use an 
update mode of vhpiDeposit, vhpiDepositPropage, vhpiForce, vhpiForcePropagate, or 
vhpiRelease.

A call to the vhpi_put_value function to update the value of one of the following objects:
— An object of class portDecl representing a port of mode out
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— An object of class sigParamDecl representing a signal parameter of mode out
— An object of class outPort

causes the driving value of the signal represented by the object to be updated; a call to update an object of 
class signal other than one of the object described in the preceding list causes the effective value of the 
signal represented by the object to be updated.

A call to the vhpi_put_value function to update the driving value of a signal with an update mode of 
vhpiForce causes the signal to become driving-value forced. The variable containing the driving value of 
the signal is updated with the value represented by the value structure provided to the vhpi_put_value
function. Similarly, a call to the vhpi_put_value function to update the effective value of a signal with 
an update mode of vhpiForce causes the signal to become effective-value forced. The variable containing 
the current value of the signal is updated with the value represented by the value structure provided to the 
vhpi_put_value function.

A call to the vhpi_put_value function to update the driving value of a signal with an update mode of 
vhpiForcePropagate schedules a driving-value force for the signal, with the driving force value for 
the signal being the value represented by the value structure provided to the vhpi_put_value function. 
The effect is to cause the signal to become driving-value forced during the next signal update phase of a 
simulation cycle (see 14.7.3). Similarly, a call to the vhpi_put_value function to update the effective 
value of a signal with an update mode of vhpiForcePropagate schedules an effective-value force for 
the signal, with the effective force value for the signal being the value represented by the value structure 
provided to the vhpi_put_value function. The effect is to cause the signal to become effective-value 
forced during the next signal update phase of a simulation cycle.

If more than one driving-value force or more than one effective-value force is scheduled for a given signal 
before that signal is updated, the effect is not specified by this standard.

A signal that is driving-value forced remains so until a subsequent update of the signal with an update mode 
of vhpiRelease, which causes the signal to be driving-value released, that is, no longer to be driving-
value forced, or until the signal becomes driving-value released during the signal update phase of a 
simulation cycle. Similarly, a signal that is effective-value forced remains so until a subsequent update of the 
signal with an update mode of vhpiRelease, which causes the signal to be effective-value released, that 
is, no longer to be effective-value forced, or until the signal becomes effective-value released during the 
signal update phase of a simulation cycle.

Subelements of a signal of composite type may be separately forced. If a signal of composite type is forced, 
all of its subelements are forced. If a signal of composite type is released, all of the subelements of the signal 
are released.

A call to the vhpi_put_value function to update the driving value of a signal with an update mode of 
vhpiDeposit causes the variable containing the driving value of the signal to be updated with the value 
represented by the value structure provided to the vhpi_put_value function, provided the signal is not 
driving-value forced. Similarly, a call to the vhpi_put_value function to update the effective value of a 
signal with an update mode of vhpiDeposit causes the variable containing the current value of the signal 
to be updated with the value represented by the value structure provided to the vhpi_put_value
function, provided the signal is not effective-value forced.

A call to the vhpi_put_value function to update the driving value of a signal with an update mode of 
vhpiDepositPropagate schedules a driving-value deposit for the signal, with the driving deposit 
value for the signal being the value represented by the value structure provided to the vhpi_put_value
function. The effect is to update the variable containing the driving value of the signal during the next signal 
update phase of a simulation cycle (see 14.7.3). Similarly, a call to the vhpi_put_value function to 
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update the effective value of a signal with an update mode of vhpiDepositPropagate schedules an 
effective-value deposit for the signal, with the effective deposit value for the signal being the value 
represented by the value structure provided to the vhpi_put_value function. The effect is to update the 
variable containing the current value of the signal during the next signal update phase of a simulation cycle.

If more than one driving-value deposit or more than one effective-value deposit is scheduled for a given 
signal before that signal is updated, the effect is not specified by this standard.

NOTE—If both a deposit and a force are scheduled for a given signal, the force takes precedence over the deposit. 
Furthermore, if a forced signal is updated with an update mode of vhpiDeposit, the update has no effect.

22.5.4 Updating an object of class driver

A call to the vhpi_put_value function to update the value of an object of class driver shall use an 
update mode of vhpiDeposit, vhpiDepositPropage, vhpiForce, vhpiForcePropagate, or 
vhpiRelease.

A call to the vhpi_put_value function to update the value of an object of class driver with an update 
mode of vhpiForce causes the driver represented by the object to become forced. The variable containing 
the current value of the driver is updated with the value represented by the value structure provided to the 
vhpi_put_value function.

A call to the vhpi_put_value function to update the value of an object of class driver with an update 
mode of vhpiForcePropagate schedules a force for the driver represented by the object, with the force 
value for the driver being the value represented by the value structure provided to the vhpi_put_value
function. The effect is to cause the driver to become forced during the next signal update phase of a 
simulation cycle (see 14.7.3).

If more than one force is scheduled for a given driver before that driver is updated, the effect is not specified 
by this standard.

A driver that is forced remains so until a subsequent update of the driver with an update mode of 
vhpiRelease, which causes the driver to be released, that is, no longer to be forced.

A call to the vhpi_put_value function to update the value of an object of class driver with an update 
mode of vhpiDeposit causes the variable containing the current value of the driver represented by the 
object to be updated with the value represented by the value structure provided to the vhpi_put_value
function, provided the driver is not forced.

A call to the vhpi_put_value function to update the value of an object of class driver with an update 
mode of vhpiDepositPropagate schedules a deposit for the driver represented by the object, with the 
deposit value for the driver being the value represented by the value structure provided to the 
vhpi_put_value function. The effect is to update the variable containing the current value of the driver 
during the next signal update phase of a simulation cycle (see 14.7.3). 

If more than one deposit is scheduled for a given driver before that driver is updated, the effect is not 
specified by this standard.

NOTE—If both a deposit and a force are scheduled for a given driver, the force takes precedence over the deposit. 
Furthermore, if a forced driver is updated with an update mode of vhpiDeposit, the update has no effect.

22.5.5 Updating an object of class funcCall

For an object of class funcCall representing a function call to a foreign function, the execution function 
of the foreign function shall define the result returned by the function call.
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If the result subtype of the function is an unconstrained type, the execution function shall set the constraint 
of the object of class funcCall using the vhpi_put_value function with an update mode of 
vhpiSizeConstraint, and subsequently use a call or calls to the vhpi_put_value function to 
define the result. For the call to the vhpi_put_value function that sets the constraint, the numElems
member of the value structure is the number of elements in the result array. Other members of the value 
structure are ignored.

If the result subtype of the function is a type for which values can be represented in a single value structure, 
the execution function may define the result using a single call to the vhpi_put_value function to 
update the object of class funcCall. If the result subtype of the function is a one-dimensional array type 
whose element type is a scalar type, the execution function may define the result using a single call to the 
vhpi_put_value function to update the object of class funcCall, or may define the result using 
multiple calls to the vhpi_put_value function, as described in the following paragraph.

If the result subtype of the function is a type for which values cannot be represented in a single value 
structure, the execution function shall define the result using multiple calls to the vhpi_put_value
function. The execution function shall navigate associations from the object of class funcCall to objects 
of class name that represent elements of the result for which values can be represented in a single value 
structure, and call the vhpi_put_value function for each such object to update the value of the element 
represented by the object.

A call to the vhpi_put_value function to define the result shall use an update mode of vhpiDeposit, 
vhpiDepositPropage, vhpiForce, or vhpiForcePropagate. The effect, in each case, is to 
update the object immediately. A call to the vhpi_put_value function with update mode 
vhpiRelease to define the result has no effect.

If the result subtype of the function is a composite type, it is an error if the call or calls to the 
vhpi_put_value function that define the result before the execution function returns do not define the 
values of all elements of the result.

An implementation may allow a VHPI program to update the value of an object of class funcCall
representing a function call to a function other than a foreign function; the effect is not specified by this 
standard.

22.6 Scheduling transactions on drivers

A VHPI program may schedule a transaction on a driver or transactions on drivers in a collection of drivers 
using the vhpi_schedule_transaction function (see 23.34). The effect of scheduling a transaction
on a driver is to modify the projected output waveform of the driver according to the rules described in 
10.5.2.2. The value provided for each driver in a value structure to the vhpi_schedule_transaction
function is used as the value component of a transaction assigned to the driver. The time component of the 
transaction and the delay mechanism are determined as described in 23.34.

If the value_p argument provided to the vhpi_schedule_transaction function is NULL, a null 
transaction is scheduled for the driver, or for each driver in the collection, as appropriate, represented by the 
object referred to by the handle provided in the drivHdl argument. It is an error if a null transaction is 
scheduled for a driver that is not a driver for a guarded signal. The effect of scheduling a null transaction on 
a driver defined by a sequential assignment statement or using the function vhpi_create is described in 
10.5.2.2. The effect of using the vhpi_schedule_transaction function to schedule a null 
transaction on a driver defined by a concurrent signal assignment statement is not specified by this standard.

If the value_p argument is not NULL, it shall point to a value structure or an array of value structures that 
are used to specify values of transactions. The number of value structures is specified by the numValues
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argument. In certain cases, a single value structure shall be provided, with the numValues argument being 
1, as follows:

— If the drivHdl argument is a handle that refers to an object of class driver representing a driver 
for a scalar signal, the value structure shall represent a scalar value that can legally be assigned to the 
driver, and that value is used as the value of the transaction for the driver.

— If the drivHdl argument is a handle that refers to an object of class driver representing a driver 
for a resolved signal of an array type whose element type is a scalar type, the value structure shall 
represent an array of scalar values that can legally be assigned to the signal, and that value is used as 
the value of the transaction for the driver.

— If the drivHdl argument is a handle that refers to an object of class driverCollection repre-
senting a collection of drivers for elements of a signal of an array type whose element type is a scalar 
type, the value structure shall represent an array of scalar values, each of which can legally be 
assigned to an element of the signal. There shall be as many elements in the array as there are mem-
bers of the collection. The value of an element of the array with a given index is used as the value of 
the transaction for the driver in the collection with the given index.

In other cases, an array of value structures shall be provided and is used as follows.

For a given driver, either represented by an object of class driver referred to by the handle provided as the 
drivHdl argument or in a collection of drivers represented by an object of class driverCollection
referred to by that handle, the type of the signal driven by the driver is referred to as the driver type. For 
certain subelements of the driver type, and for the driver type itself, the value or values represented by a 
subarray of one or more contiguous value structures or by the entire array of value structures are formed into 
a transaction subvalue of the type of the subelement or of the driver type, respectively. The transaction 
subvalue for the driver type is used as the value of the transaction for the given driver.

For a subelement that is a scalar record element, the transaction subvalue is formed from the value 
represented by a single value structure. That value shall be a scalar value that can legally be assigned to a 
signal of the type of the scalar record element.

For a subelement that is an array whose element type is a scalar type, the transaction subvalue is formed 
from the value represented by a single value structure. That value shall be an array of scalar values, each of 
which can legally be assigned to a signal of the element type of the subelement. There shall be as many 
elements in the array as there are elements in the subelement.

For a subelement or a driver type that is an array whose element type is other than a scalar type, the 
transaction subvalue is formed from the concatenation of distinct subarrays corresponding to each element 
of the array. The subarrays occur contiguously in the array of value structures in the same order as elements 
in the array and are concatenated in that order to form the transaction subvalue for the array.

For a subelement or driver type that is a record, the transaction subvalue is formed from the concatenation of 
distinct subarrays corresponding to each element of the record. The subarrays occur contiguously in the 
array of value structures in the same order as the order in which the elements are declared in the record type 
definition for the type of the subelement or driver type, as appropriate, and are concatenated in that order to 
form the transaction subvalue for the array.

If the drivHdl argument is a handle that refers to an object of class driver, the array of value structures 
is used to form the transaction subvalue for the driver type of the driver represented by the object, and the 
transaction subvalue is used as the value of the transaction for the driver. It is an error if the number of value 
structures is insufficient to form the transaction subvalue.

If the drivHdl argument is a handle that refers to an object of class driverCollection, a transaction 
subvalue is formed from a distinct subarray for each member of the collection represented by the object. The 
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subarrays occur contiguously in the array of value structures in the same order as the order in which the 
members occur in the collection. The transaction subvalue for each member is used as the value of the 
transaction for the member. It is an error if the number of value structures is insufficient to form the 
transaction subvalues.

NOTE—An object of class driver represents a driver for a basic signal.
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23. VHPI function reference

23.1 General

This clause describes each of the functions in the VHPI. It describes the arguments required to be passed to 
each function, the operation performed by the function, and the result value returned by the function to a 
VHPI program.

Where a given VHPI function called by a thread of control in a VHPI program returns a pointer to a string or 
a structure, either as the result of the function or in a location pointed to by an argument of the function, the 
string or structure is either permanent or transient. Unless otherwise specified, the default is for such a string 
or structure to be transient. In the case of a string, the string is represented as a null-terminated array of 
characters. A permanent string or structure is allocated by the tool in storage that is not subsequently 
overwritten during the invocation of the tool. A VHPI program may store a pointer to a permanent string or 
structure for subsequent reference to the string or structure. A transient string or structure is allocated by the 
tool in storage that may subsequently be overwritten. The value of the string or structure persists at least 
until the earlier of

— the next call to the given VHPI function by the same thread of control, or
— return to the tool by the thread of control that called the given VHPI function.

If a VHPI program needs to refer to the value of a transient string or structure beyond the interval for which 
it persists, the VHPI program shall copy the value.

23.2 vhpi_assert

Reports an error message.

Synopsis:

int vhpi_assert(vhpiSeverityT severity, char *formatmsg, ...);

Description:

The vhpi_assert function performs an operation that is equivalent to the VHDL report statement. The 
character string pointed to by the formatmsg argument is a format string that may contain conversion 
codes as defined for the C printf function in ISO/IEC 9899:1999/Cor 1:2001. The format string and 
subsequent arguments to the vhpi_assert function are interpreted in the same way as specified in  ISO/
IEC 9899:1999/Cor 1:2001 for the C printf function to form a formatted character string that corresponds 
to the string expression value in a report statement, and the value of the severity argument corresponds 
to the severity expression value in report statement.

Return value:

0 if the operation completes without error, or 1 otherwise.

NOTE—Execution of the vhpi_assert function may cause a simulation to stop, depending on the value of the 
severity argument and on the simulator.

Example:

In the following VHPI program, the vhpi_assert function is used to report an error message if the value 
of a signal named clk is not '1'.
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int check_clock_signal(vhpiHandleT scopeHdl) {
  vhpiHandleT clkHdl;
  vhpiValueT value;
  /* look up a VHDL object of name clk at the scope instance */
  /* get a handle to the clk named object */
  clkHdl = vhpi_handle_by_name("clk", scopeHdl);
  if (!clkHdl) return 1;
  value.format = vhpiLogicVal;
  vhpi_get_value(clkHdl, &value);
  if (value.logic == vhpiBit0) {
    vhpi_assert(vhpiError, "clock not high: %d", value.logic);
    return 1;
  }
  return 0;
}

23.3 vhpi_check_error

Retrieves information about an error raised by a VHPI function.

Synopsis:

int vhpi_check_error (vhpiErrorInfoT *error_info_p);

Description:

The vhpi_check_error function checks whether the immediately previous call to a VHPI function 
raised an error. The error_info_p argument is either a pointer to an error information structure in 
which error information is returned or NULL. If the value of error_info_p is not NULL, the 
vhpi_check_error function writes information about the error into the error information structure. 
Memory for the structure shall be allocated by the VHPI program that calls vhpi_check_error before 
the call.

If no error was raised by the previous call to a VHPI function and the value of the error_info_p is not 
NULL, the values written into members of the structure, if any, are not specified. Otherwise, if an error 
occurred and the value of the error_info_p is not NULL, the members of the structure are written as 
follows:

— severity: The severity level of the error.
— message: A pointer to a string that describes the error.
— str: A pointer to a string whose content is implementation defined.
— file: A pointer to a string containing the name of the VHDL source file that contains the VHDL 

item corresponding to the VHPI handle passed to the VHPI function that raised the error; or NULL if 
no such VHDL source file can be identified.

— line: The number of the line in the VHDL source file containing the VHDL item corresponding to 
the VHPI handle passed to the VHPI function that raised the error; or –1 if no such line can be 
identified.

Return value:

0 if no error occurred on the previous call to a VHPI function, or 1 otherwise.

NOTE 1—An implementation might use the str member of the error information structure to return such information 
as a mnemonic abbreviation of the error description or the name of a product that raised the error.
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NOTE 2—An implementation may provide error information in a log file or a standard output stream. Such provision is 
independent of the use of the vhpi_check_error by a VHPI program function to retrieve error information.

Examples:

In the following VHPI program, the vhpi_check_error function is used to determine whether a 
previous function raised an error. If it did, the severity information provided by the vhpi_check_error
function is used to determine what recovery action to take.

vhpiErrorInfoT err;

if (vhpi_check_error(&err)) {
  switch (err.severity) {
  case vhpiError:
  case vhpiFailure:
  case vhpiInternal:
    return;
  case vhpiSystem:
    if (errno == ...)
      return;
    break;
  default:
    /* examine and decide if need termination */
    ...
  }
}

Given the following VHDL model in the file myvhdl.vhd

entity TOP is
end TOP;

architecture MY_VHDL of TOP is
   constant VAL: INTEGER := 0;
   signal S1, S2, S3: BIT;
begin
   u1: C_AND (S1, S2, S3);
   process (S1)
      variable VA: INTEGER:= VAL;
   begin
      VA := MYFUNC(S1);
   end process;
end MY_VHDL;

the following VHPI program uses the vhpi_check_error function to determine whether the call to 
vhpi_iterator succeeded. The VHPI program also uses the vhpi_check_error function to check 
whether the call to vhpi_handle succeded during each iteration of the while loop. If the call raised an 
error with severity greater than vhpiWarning, the VHPI program uses the file name and line number 
information, if provided, in an error message.

/* hdl is a handle to the root instance */
void traverse_hierarchy(vhpiHandleT hdl) {
  vhpiHandleT subHdl, itr, duHdl;
  vhpiErrorInfoT err;
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  itr = vhpi_iterator(vhpiInternalRegions, hdl);
  /* if error code is != 0 do not continue */
  if (vhpi_check_error(NULL)) return;

  if (itr)
    while (subHdl = vhpi_scan(itr)) {
      duHdl = vhpi_handle(vhpiDesignUnit, subHdl);
      if (vhpi_check_error(&err)) {
        if (err.severity > vhpiWarning)
          if (err.file != NULL)
            vhpi_printf("An error occurred during call to "
                        "traverse_hierarchy at filename %s line %d\n",
                        err.file, err.line);
          else
            vhpi_printf("An error occurred during call to "
                        "traverse_hierarchy\n");
        return;
      }
      switch (vhpi_get(vhpiKindP, subHdl)) {
        ...
      }
    }
}

Since the internal region of the process object in the information model does not have a one-to-one 
association with a design unit object, the VHPI program produces the following output:

An error occurred during call to traverse_hierarchy at file myvhdl.vhd line 8

23.4 vhpi_compare_handles

Compares handles.

Synopsis:

int vhpi_compare_handles (vhpiHandleT handle1, vhpiHandleT handle2);

Description:

Determines whether the arguments handle1 and handle2 refer to the same object.

Return value:

1 if handle1 and handle2 refer to the same object, or 0 otherwise.

NOTE—Handle equivalence cannot be checked with the C comparison operator ==, since two handles with different 
representations may nonetheless refer to the same object.

Example:

The following function in a VHPI program searches for a declaration of a signal named clk in a given 
scope. It uses the vhpi_compare_handles function to compare a handle to an object named clk with 
handles to successive signal declarations in the scope.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



- 389 - IEC 61691-1-1:2011(E)�
IEEE Std 1076-2008

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

vhpiHandleT find_clock_signal(vhpiHandleT scopeHdl) {
  vhpiHandleT sigHdl, clkHdl, itrHdl;
  int found = 0;

  clkHdl = vhpi_handle_by_name("clk", scopeHdl);
  itrHdl = vhpi_iterate(vhpiSigDecl, scopeHdl);
  while (sigHdl = vhpi_scan(itrHdl)) {
    if (vhpi_compare_handles(sigHdl, clkHdl)) {
      found = 1;
      break;
    } else
      vhpi_release_handle(sigHdl);
  }
  vhpi_release_handle(itrHdl);
  if found
    return(sigHdl);
  else
    return(NULL);
}

23.5 vhpi_control

Issues a control request to the VHPI tool.

Synopsis:

int vhpi_control (vhpiSimControlT command, ...);

Description:

The value of the command argument specifies the control action requested. Subsequent arguments specify 
additional information required by the tool to perform the control action.

This standard specifies three control actions, corresponding to the enumeration values vhpiStop, 
vhpiFinish, and vhpiReset of type vhpiSimControlT. If a tool implements any of these control 
actions, the effect shall be as follows:

— If command is vhpiStop, after control returns to the tool from the callback function from which 
the vhpi_control function was invoked, the tool stops simulation then accepts further directives 
from an interactive user or a command source. Additional arguments to vhpi_control beyond 
the command argument may be interpreted by the tool in an implementation-defined manner. The 
tool shall provide an implementation-defined default action if no additional arguments are provided.

— If command is vhpiFinish, after control returns to the tool from the callback function from 
which the vhpi_control function was invoked, the tool enters the termination phase (see 20.10). 
Additional arguments to vhpi_control beyond the command argument may be interpreted by 
the tool in an implementation-defined manner. The tool shall provide an implementation-defined 
default action if no additional arguments are provided.

— If command is vhpiReset, after control returns to the tool from the callback function from which 
the vhpi_control function was invoked, the tool enters the reset phase (see 20.9). Additional 
arguments to vhpi_control beyond the command argument may be interpreted by the tool in an 
implementation-defined manner. The tool shall provide an implementation-defined default action if 
no additional arguments are provided.
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For each of these control actions, if implemented, the number of steps of the simulation cycle performed by 
the tool between return of control to the tool and the tool performing the requested control action is 
implementation defined, except that no new simulation cycle is commenced before the control action is 
performed.

If command is a value other than one of vhpiStop, vhpiFinish, or vhpiReset, the tool performs an 
implementation-defined control action, which may make use of additional arguments beyond the command
argument. The tool may perform the requested control action immediately or may queue the request to be 
performed at an implementation-defined time after control returns to the tool from the callback function 
from which the vhpi_control function was invoked.

If a VHPI program calls the vhpi_control function before the tool has performed a control action 
requested by a prior call to the function, the order in which the control actions are performed is 
implementation defined, except that control actions corresponding to vhpiStop, vhpiFinish, and 
vhpiReset are performed in the order in which they are requested.

Return value:

0 if the operation completes without error, or 1 otherwise.

Errors:

It is an error if vhpi_control is called with the command argument having the value vhpiStop, 
vhpiFinish, or vhpiReset while the tool is any execution phase other than the simulation phase.

If a tool does not implement a control action requested using vhpi_control, the vhpi_control
function shall raise an error.

NOTE—In response to a call to vhpi_control with the argument vhpiFinish, the tool does not perform any 
vhpiCbEndOfSimulation callbacks.

Example:

The following VHPI program performs some operations and then calls vhpi_control with 
vhpiFinish to terminate tool execution.

void user_app() {
  /* Application traverse hierarchy */
  ...
  /* Application collect information */
  ...
  vhpi_control(vhpiFinish);
}

23.6 vhpi_create

Creates an object of class processStmt, driver, driverCollection, or anyCollection; or 
appends an object to a collection.

Synopsis:

vhpiHandleT vhpi_create (vhpiClassKindT kind,
                         vhpiHandleT handle1, vhpiHandleT handle2);
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Description:

The kind argument specifies the class of object to be created.

If the value of kind is vhpiProcessStmtK, handle1 shall refer to an object of class archBody
whose IsForeign property has the value vhpiTrue, and handle2 shall be NULL. The function creates 
an object of class processStmt associated with the object referred to by handle1.

If the value of kind is vhpiDriverK, handle1 shall refer to an object of class basicSignal, and 
handle2 shall either refer to an object of class processStmt whose IsForeign property has the 
value vhpiTrue or be NULL. The function creates an object of class driver associated with the object 
referred to by handle1. The value of the IsForeign property of the created object is vhpiTrue. If 
handle2 is not NULL, the object of class driver is also associated with the object referred to by 
handle2; otherwise the object of class driver is not associated with a target object of class 
processStmt.

For an object of class processStmt created by a call to the vhpi_create function, the value of the 
IsForeign property is vhpiTrue, the values of the IsPassive and IsPostponed properties are 
vhpiFalse. The values of properties representing line numbers are vhpiUndefined. The values of 
name properties are not specified by this standard. Associations representing declarations, specifications, 
statements, and the sensitivity list of the process have no target objects.

If the value of kind is vhpiDriverCollectionK, handle1 shall either be NULL or refer to an object 
of class driverCollection, and handle2 shall refer to an object of class driver or 
driverCollection. If handle1 is NULL, the function creates a new collection object of class 
driverCollection and appends one or more objects of class driver as members to the collection. If 
handle1 is not NULL, the function appends one or more objects of class driver as members to the 
collection object referred to by handle1. In either case, if handle2 refers to an object of class driver, 
that object is the single object appended as a member to the collection by the function. Otherwise, if 
handle2 refers to an object of class driverCollection, all of the members in the collection referred 
to by handle2 are appended, in the order in which they occur in the collection referred to by handle2, to 
the new collection or to the collection referred to by handle1.

If the value of kind is vhpiAnyCollectionK, handle1 shall either be NULL or refer to an object of 
class anyCollection, and handle2 shall refer to an object of any class. If handle1 is NULL, the 
function creates a new collection object of class anyCollection and appends one or more objects as 
members to the collection. If handle1 is not NULL, the function appends one or more objects as members 
to the collection object referred to by handle1. In either case, if handle2 refers to an object of some 
class other than collection, that object is the single object appended as a member to the collection by 
the function. Otherwise, if handle2 refers to an object of class collection, all of the members in the 
collection referred to by handle2 are appended, in the order in which they occur in the collection referred 
to by handle2, to the new collection or to the collection referred to by handle1.

Return value:

A handle to the newly created object or collection or to the augmented collection, as appropriate, if the 
operation completes without error, or NULL otherwise.

Errors:

It is an error if vhpi_create is called with kind having the value vhpiProcessStmtK or 
vhpiDriverK other than during the elaboration, initialization, or simulation phases of tool execution (see 
Clause 20).
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It is an error if vhpi_create is called with kind having the value vhpiDriverK and handle2 being 
not NULL, and the process represented by the object referred to by handle2 already has a driver for the 
basic signal represented by the object referred to by handle1.

It is an error if the members of a collection object of class driverCollection are not all drivers of 
subelements of the same declared signal.

Example:

In the following VHPI program, the function vhpi_create is used to create a process in a foreign 
architecture and to create a driver for each signal declared in the architecture.

void create_vhpi_driver(vhpiHandleT archHdl) {
  vhpiHandleT drivHdl, sigItr, sigHdl, processHdl;
  vhpiHandleT arr_driv[MAX_DRIVERS];
  int i = 0;

  if (!vhpi_get(vhpiIsForeignP, archHdl))
    return;
  /* create a VHPI process */
  processHdl = vhpi_create(vhpiProcessK, archHdl, NULL);
  /* iterate on the signals declared in the architecture and create a
     VHPI driver for each of them */
  sigItr = vhpi_iterator(vhpiSigDecls, archHdl);
  if (!sigItr) return;
  while (sigHdl = vhpi_scan(sigItr)) {
    drivHdl = vhpi_create(vhpiDriverK, sigHdl, processdl);
    arr_driv[i] = drivHdl;
    i++;
  }
}

In the following VHPI program, the function vhpi_create is used to create a collection of drivers for the 
basic signals of a signal.

void create_vhpi_collection(vhpiHandleT sigHdl) {
  vhpiHandleT itBasic, basicH, itDriver, driverH;
  vhpiHandleT h = NULL;

  itBasic =  vhpi_iterator(vhpiBasicSignals, sigHdl);
  while (basicH = vhpi_scan(itBasic)) {
    itDriver = vhpi_iterator(vhpiDrivers, basicH)
    while (driverH = vhpi_scan(itDriver) {
      h = vhpi_create(vhpiDriverCollectionK, h, driverH);
    }
  }
}

23.7 vhpi_disable_cb

Disables a registered callback.
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Synopsis:

int vhpi_disable_cb (vhpiHandleT cb_obj);

Description:

If the object referred to by the cb_obj argument is an enabled callback, the function disables it, thus 
preventing call of the callback function when the callback trigger event occurs.

Return value:

0 if the operation completes without error, or 1 otherwise.

Errors:

If the object is a disabled or mature callback, the function leaves the callback unchanged and raises an error 
condition with severity vhpiWarning.

See also:

vhpi_register_cb, vhpi_enable_cb, vhpi_get_cb_info, vhpi_remove_cb.

23.8 vhpi_enable_cb

Enables a registered callback.

Synopsis:

int vhpi_enable_cb (vhpiHandleT cb_obj);

Description:

If the object referred to by the cb_obj argument is a disabled callback, the function enables it, thus 
allowing call of the callback function when the callback trigger event occurs.

Return value:

0 if the operation completes without error, or 1 otherwise.

Errors:

If the object is an enabled or mature callback, the function leaves the callback unchanged and raises an error 
condition with severity vhpiWarning.

See also:

vhpi_register_cb, vhpi_disable_cb, vhpi_get_cb_info, vhpi_remove_cb.

Example:

In the following VHPI program, the function vhpi_enable_cb is used to enable a callback that was 
registered but is disabled.
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static vhpiHandleT mylastcbk = 0;

void activate_cbk(vhpiHandle cbHdl) {
  vhpiStateT cbState;
  cbState = vhpi_get(vhpiStateP, cbHdl);
  if (cbState == vhpiDisable)
    vhpi_enable_cb(cbHdl);
}

void register_cbk() {
  vhpiCbDataT cbData;
  vhpiHandleT cbHdl;
  int flags;
  flags = vhpiDisableCb | vhpiReturnCb;
  cbData.reason = vhpiCbEndOfSimulation;
  cbData.cb_rtn = myf;
  cbHdl = vhpi_register_cb(&cbData, flags);
  mylastcbk = cbHdl;
}

int main (int argc, char *argv[] ){
  register_cbk();
  ...
  activate_cbk(mylastcbk);
  return(0);
}

23.9 vhpi_format_value

Changes the format used to represent a value.

Synopsis:

int vhpi_format_value (vhpiValueT *in_value_p,
                       vhpiValueT *out_value_p);

Description:

The in_value_p argument is a pointer to a value structure, referred to in this description as the input 
value structure, representing the value to be represented in a new format. The out_value_p argument is a 
pointer to a value structure, referred to in this description as the output value structure, specifying the new 
format and containing storage into which the newly formatted value is written. Storage for both value 
structures is allocated by the VHPI program before calling the function.

The function converts the value that is represented in the input value structure to the format specified in the 
format member of the output value structure. If the newly formatted value is a scalar, the function writes 
the newly formatted value to the value member of the output value structure. If the newly formatted value 
is represented as an array, string, or using internal representation and the value of the value member of the 
output value structure is NULL, the function does not write the newly formatted value, but returns the 
minimum number of bytes of storage that would be required to write the value.

If the newly formatted value is represented as an array, string, or using internal representation, the VHPI 
program, before calling vhpi_format_value, shall allocate storage for the newly formatted value and 
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shall write the size in bytes and the address of the storage into the bufSize and value members, 
respectively, of the output value structure. In that case, the function writes the newly formatted value to the 
storage pointed to by the value member of the output value structure (see 22.2).

If the newly formatted value is represented as a physical or time value or an array of physical or time values, 
the VHPI program, before calling vhpi_format_value, shall write the position number of a scale factor 
into the unit member of the output value structure.

The value format conversions that can be performed by the vhpi_format_value function are 
implementation defined.

Return value:

0 if the newly formatted value is a scalar and the operation completes without error; or the minimum size in 
bytes of storage required to represent the value in the specified format if the newly formatted value is 
represented as an array, string, or using internal representation and either the value member of the output 
value structure is NULL or the size provided in the bufSize member of the output value structure is 
insufficient; or a negative integer otherwise.

Errors:

It is an error if either in_value_p or out_value_p is NULL. It is an error if the newly formatted value 
is outside of the range of values that can be represented. It is an error if the combination of the format
members of the input and output value structures specify a value format conversion that cannot be 
performed.

It is an error if the amount of storage allocated for a value represented as an array, string, or using internal 
representation is insufficient for the newly formatted value.

See also:

vhpi_get_value.

Example:

In the following VHPI program, the vhpi_format_value function is called first to convert a real value 
to an integer value, and second to convert a time value from a precision of fs to a precision of ns.

vhpiValueT value, newValue;
vhpiValueT * valuep, newValuep;
vhpiErrInfoT errInfo;

valuep = &value;
newValuep = &newValue;
value.format = vhpiRealVal;
if (vhpi_get_value(objHdl, valuep))
  vhpi_check_error(&errInfo);
newValue.format = vhpiIntVal;
if (vhpi_format_value(valuep, newValuep))
  vhpi_check_error(&errInfo);

value.format = vhpiTimeVal;
vhpi_get_value(objHdl, valuep);
newValue.unit = vhpiNS; /* physical position of ns */
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newValue.format = vhpiTimeVal;
if (vhpi_format_value(valuep, newValuep))
  vhpi_check_error(&errInfo);

23.10 vhpi_get

Gets the value of an integer or Boolean property of an object.

Synopsis:

vhpiIntT vhpi_get(vhpiIntPropertyT property, vhpiHandleT object);

Description:

The property argument is an enumeration constant that corresponds to an integer or Boolean property. 
The object argument is a handle to an object that has the corresponding integer or Boolean property. The 
function reads the value of the property of the object.

Return value:

The value of the property if the property can be read, or vhpiUndefined otherwise.

See also:

vhpi_get_phys, vhpi_get_real, vhpi_get_str.

NOTE—Some integer properties may legally have the same value as vhpiUndefined. In such cases, a VHPI pro-
gram should use the vhpi_check_error function to determine whether an error was raised by vhpi_get rather 
than simply testing the return value of vhpi_get.

23.11 vhpi_get_cb_info

Gets information about a registered callback.

Synopsis:

int vhpi_get_cb_info (vhpiHandleT object, vhpiCbDataT *cb_data_p);

Description:

The object argument is a handle to an object of class callback. The cb_data_p argument is a pointer 
to a callback data structure. The VHPI program calling vhpi_get_cb_info shall allocate memory for 
the callback data structure before the call.

The function retrieves information about the callback object referred to by object and writes the 
information into the callback data structure pointed to by cb_data_p. The information returned in the 
callback data structure is equivalent to that provided in a callback data structure to the 
vhpi_register_cb function when the callback was registered. The values of the reason, cb_rtn, 
and user_data members of the callback data structure written by vhpi_get_cb_info are the same as 
the values of the reason, cb_rtn, and user_data members, respectively, of the registration callback 
data structure.

If the registration callback data structure included a valid handle in the obj member, the obj member of 
the callback data structure written by vhpi_get_cb_info is a handle that refers to the same object as 
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that referred to by the obj member of the registration callback data structure; otherwise, the value of the 
obj member of the callback data structure written by vhpi_get_cb_info is not specified.

If the registration callback data structure included a pointer to a time structure in the time member, the 
time member of the callback data structure written by vhpi_get_cb_info is a pointer to a time 
structure, allocated by the tool, with the same value as the time structure pointed to by the time member of 
the registration callback data structure; otherwise, the time member of the callback data structure written 
by vhpi_get_cb_info is NULL.

If the registration callback data structure included a pointer to a value structure in the value member, the 
value member of the callback data structure written by vhpi_get_cb_info is a pointer to a value 
structure, allocated by the tool, with the same value as the value structure pointed to by the value member 
of the registration callback data structure; otherwise, the value member of the callback data structure 
written by vhpi_get_cb_info is NULL.

Return value:

0 if the operation completes without error, or 1 otherwise.

Errors:

A VHPI program that releases a handle that is the value of the obj member of the callback data structure 
written by vhpi_get_cb_info is erroneous.

See also:

vhpi_register_cb, vhpi_enable_cb, vhpi_disable_cb, vhpi_remove_cb.

23.12 vhpi_get_data

Gets saved data for restart.

Synopsis:

size_t vhpi_get_data(int32_t id,
                     void * dataLoc, size_t numBytes);

Description:

The id argument is an identification number for a saved data set. The dataLoc argument is the address to 
which data read from the saved data set is written. The numBytes argument is the number of bytes of data 
to read.

The function reads a number of bytes, given by numBytes, from the saved data set identified by id and 
writes the data to the address pointed to by dataLoc. The VHPI program calling vhpi_get_data shall 
allocate storage pointed to by dataLoc before the call.

The first call to vhpi_get_data with a given value for id during a given occurrence of the restart phase 
of tool execution reads bytes from the saved data set starting from the first location of the saved data set. 
Subsequent calls to vhpi_get_data with the same id value during the same occurrence of the restart 
phase read bytes starting from the location immediately after the last location read by the immediately 
preceding call with the given id value.
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If a data set contains unread bytes of data, a call to vhpi_get_data reads the lesser of numBytes of 
data or the number of unread bytes that remain. If fewer than numBytes bytes remain, the bytes of storage 
pointed to by dataLoc, beyond those written with read data and up to a total of numBytes bytes of data 
in total, are written with the value 0.

A VHPI program may read fewer bytes of a saved data set than were saved in the data set.

Return value:

The number of bytes actually read, or 0 if the read failed.

Errors:

It is an error if vhpi_get_data is called other than from a vhpiCbStartOfRestart or 
vhpiCbEndOfRestart callback.

It is an error if the id value is not valid for the occurrence of the restart phase of tool execution during which 
the vhpi_get_data function is called.

If fewer than numBytes bytes remain to be read, the vhpi_get_data function raises an error condition 
with severity vhpiWarning.

See also:

vhpi_put_data.

NOTE—Since a call to vhpi_get_data may read fewer bytes than requested, the VHPI program should check the 
number of bytes actually read rather than assuming all requested bytes are read.

Example:

In the following VHPI program, the vhpi_get_data function is used first to read the number of linked 
list elements in a saved data set and second to read that number of linked list elements. The VHPI program 
function that calls vhpi_get_data is a vhpiCbStartOfRestart callback (see example in 23.27).

/* type definitions for private data structures to save used by the
   foreign models or applications */
struct myStruct{
  struct myStruct *next;
  int d1;
  int d2;
}

void consumer_restart(vhpiCbDataT *cbDatap) {
  int status;
  int cnt = 0;
  struct myStruct *wrk;
  int dataSize = 0;

  /* get the id for this restart callback */
  int id = (int) cbDatap->user_data;
  /* get the number of structures */
  status = vhpi_get_data(id, (char *)&cnt, sizeof(int));
  if (status != sizeof(int))
    vhpi_assert(vhpiError, "Data read is not an int %d\n", status);

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



- 399 - IEC 61691-1-1:2011(E)�
IEEE Std 1076-2008

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

  /* allocate memory to receive the data that is read in */
  firstWrk = calloc(cnt, sizeof(struct myStruct));

  /* retrieve the data for the first structure */
  dataSize = cnt * sizeof(struct myStruct);
  status = vhpi_get_data(id, (char *)wrk, dataSize);
  if (status != dataSize)
    vhpi_assert(vhpiError, "Cannot read %d data structures\n", cnt );

  /* fix up the next pointers in the link list:
     recreate the linked list */
  for (wrk = firstWrk; cnt >0; cnt--) {
    wrk->next = wrk++;
    wrk = wrk->next;
  }
} /* end of consumer_restart */

23.13 vhpi_get_foreignf_info

Gets information about a foreign model or application.

Synopsis:

int vhpi_get_foreignf_info (vhpiHandleT hdl,
                            vhpiForeignDataT *foreignDatap);

Description:

The hdl argument is a handle to an object of class foreignf, and the foreignDatap argument is a 
pointer to a foreign data structure. The function retrieves information about the foreign model or application 
represented by the object referred to by hdl and writes the information into the foreign data structure 
pointed to by foreignDatap. The VHPI program calling vhpi_get_foreignf_info shall allocate 
memory for the foreign data structure before the call.

The value of the kind member identifies whether the object referred to by hdl is a foreign architecture, 
function, procedure, or application (see 20.2). If the object referred to by hdl is a foreign architecture and 
an elaboration function was specified during registration of the foreign architecture, the value of the elabf
member is a pointer to the elaboration function; otherwise the value of the elabf member is NULL. The 
value of the execf member is a pointer to the execution or registration function, as appropriate, specified 
during registration for the object referred to by hdl.

The value of the libraryName member is a pointer to a permanent string whose value is the object library 
path denoting the physical object library, identified during registration, that contains the entry points for the 
foreign model or application.

The value of the modelName member is a pointer to a permanent string whose value is the model name or 
application name, as appropriate, of the foreign model or application. If the object referred to by hdl is a 
foreign model that was registered other than using standard direct binding (20.2.4.3), the model name of the 
foreign model is the model name specified during registration of the foreign model. If the object referred to 
by hdl is a foreign model that was registered using standard direct binding, the model name of the foreign 
model is the simple name of the architecture body or the designator of the subprogram, as appropriate, of the 
foreign model. If the object referred to by hdl is a foreign application, the value of the modelName
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member is a pointer to a permanent string whose value is the application name specified during registration 
of the foreign application.

Return value:

0 if the operation completes without error, or 1 otherwise.

Errors:

If the tool has registered but not bound the elaboration, execution, or registration function of a foreign model 
or application or library of foreign models when a VHPI program calls vhpi_get_foreignf_info
with a handle referring to the foreign model or application or library of foreign models, the 
vhpi_get_foreignf_info function raises an error with severity vhpiWarning.

See also:

vhpi_register_foreignf, vhpi_iterator(vhpiForeignfs, NULL).

23.14 vhpi_get_next_time

Gets the time of the next simulation cycle.

Synopsis:

int vhpi_get_next_time (vhpiTimeT  *time_p);

Description:

The time_p argument is a pointer to a time structure in which to write the time of the next simulation 
cycle. The time structure shall be allocated by the VHPI program that calls vhpi_get_next_time
before the call. The function writes to the time structure the value of Tn, the time of the next simulation cycle 
(see 14.7.5.1).

Return value:

vhpiNoActivity if Tn = TIME'HIGH and there are no active drivers, process resumptions, or registered 
and enabled vhpiCbAfterDelay, vhpiCbRepAfterDelay, vhpiCbTimeOut, or 
vhpiCbRepTimeOut callbacks to occur at Tn; a non-zero value other than vhpiNoActivity if an 
error occurs; or 0 otherwise.

Errors:

vhpi_get_next_time shall be called during step m) (see 14.7.5.2) of the initialization phase or during 
the simulation phase of model execution. It is an error if it is called at any other time.

See also:

vhpi_get_phys(vhpiResolutionLimitP, NULL), vhpi_get_time.

NOTE 1—A VHPI program can use the vhpi_format_value function to change the way in which the time value is 
expressed.

NOTE 2—If the next simulation cycle is a delta cycle, the time of the next simulation cycle is the same as the current 
simulation time.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



- 401 - IEC 61691-1-1:2011(E)�
IEEE Std 1076-2008

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

Example:

In the following VHPI program, the function vhpi_get_next_time is used to get the time of the next 
simulation cycle for display in an informative message.

vhpiTimeT time;

switch (vhpi_get_next_time(&time)) {
case vhpiNoActivity:
  vhpi_printf("simulation is over, %d %d\n", time.high, time.low);
  break;
case 0:
  vhpi_printf("time = %d %d\n", time.high, time.low);
  break;
default:
  vhpi_check_error(&errInfo);
  break;
}

23.15 vhpi_get_phys

Gets the value of a physical property of an object.

Synopsis:

vhpiPhysT vhpi_get_phys (vhpiPhysPropertyT property,
                         vhpiHandleT object);

Description:

The property argument is an enumeration constant that corresponds to a physical property. The object
argument is a handle to an object that has the corresponding physical property. The function reads the value 
of the property of the object.

Return value:

The value of the property if the property can be read, or an unspecified value otherwise.

See also:

vhpi_get, vhpi_get_real, vhpi_get_str.

Example:

In the following VHPI program, the vhpi_get_phys function is used to read the right bound of the range 
constraint of a physical type declaration.

vhpiHandleT type; /* a physical type declaration */;
vhpiHandleT range = vhpi_handle(vhpiConstraint, type);
vhpiPhysT phys = {0,0};

phys = vhpi_get_phys(vhpiPhysRightBoundP, range));
vhpi_printf(" right bound of physical type is %d %d \n",
            phys.low, phys.high);
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23.16 vhpi_get_real

Gets the value of a real property of an object.

Synopsis:

vhpiRealT vhpi_get_real (vhpiRealPropertyT property, vhpiHandleT 
object);

Description:

The property argument is an enumeration constant that corresponds to a real property. The object
argument is a handle to an object that has the corresponding real property. The function reads the value of 
the property of the object.

Return value:

The value of the property if the property can be read, or an unspecified value otherwise.

See also:

vhpi_get, vhpi_get_phys, vhpi_get_str.

Example:

In the following VHPI program, the vhpi_get_real function is used to read the right bound of the range 
constraint of a floating-point type declaration.

vhpiHandleT type; /* a float type declaration */;
vhpiHandleT range = vhpi_handle(vhpiConstraint, type);

vhpi_printf(" right bound of floating type is %f\n",
            vhpi_get_real(vhpiFloatRightBoundP, range));

23.17 vhpi_get_str

Gets the value of a string property of an object.

Synopsis:

const vhpiCharT * vhpi_get_str (vhpiStrPropertyT property,
                                vhpiHandleT object);

Description:

The property argument is an enumeration constant that corresponds to a string property. The object
argument is a handle to an object that has the corresponding string property. The function reads the value of 
the property of the object.

Return value:

A pointer to a string that is the value of the property, if the property can be read, or NULL otherwise.
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See also:

vhpi_get, vhpi_get_phys, vhpi_get_real.

NOTE—Some string property values may include special characters (for example, the character \ in an extended 
identifier). VHPI programs that use such property values should ensure that special characters are not inadvertently 
misinterpreted, for example, as escape characters, in subsequent operations.

Example:

In the following VHPI program, the vhpi_get_str function is used to read the name of the definition of 
a component instance.

char name[MAX_LENGTH];
vhpiHandleT inst = vhpi_handle_by_name(":u1", NULL);

strcpy(name, vhpi_get_str(vhpiDefNameP, inst));
vhpi_printf("instance u1 is a %s\n", name);

23.18 vhpi_get_time

Gets the current simulation time.

Synopsis:

void vhpi_get_time (vhpiTimeT  *time_p, long *cycles);

Description:

The time argument is a pointer to a time structure in which to write the current simulation time or NULL. 
The cycles argument is a pointer to location in which to write the number of delta cycles or NULL. The 
VHPI program calling vhpi_get_time shall allocate memory for the time structure and number of delta 
cycles, if required, before the call.

If the time argument is not NULL, the function writes the current simulation time to the time structure.

If the cycles argument and the time argument are both not NULL, the function writes the number of delta 
cycles that have occurred at the current time, Tc, to the location pointed to by the cycles argument. If the 
cycles argument is not NULL and the time argument is NULL, the function writes the total number of 
simulation cycles that have occurred in the current invocation of the simulation phase of tool execution to 
the location pointed to by the cycles argument. In either case, the number is expressed as a value of the C 
type long.

Errors:

It is an error if vhpi_get_time is called while the tool is any execution phase other than the initialization 
or simulation phases. It is an error if the time and cycles arguments are both NULL.

See also:

vhpi_get_phys(vhpiResolutionLimitP, NULL), vhpi_get_next_time.

NOTE—A VHPI program can use the vhpi_format_value function to change the way in which the time value is 
expressed.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



IEC 61691-1-1:2011(E) - 404 - �
IEEE Std 1076-2008

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

Example:

In the following VHPI program, the vhpi_get_time function is used to get the current simulation time 
without the count of delta cycles.

vhpiTimeT time;

vhpi_get_time(&time, NULL);
vhpi_printf("time = %d %d\n", time.high, time.low);

23.19 vhpi_get_value

Gets the formatted value of an object that has a value.

Synopsis:

int vhpi_get_value (vhpiHandleT expr, vhpiValueT *value_p);

Description:

The expr argument is a handle to an object of a class that has the vhpi_get_value operation. The 
value_p argument is a pointer to a value structure specifying the format and containing storage into which 
the formatted value is written. Storage for the value structure is allocated by the VHPI program before 
calling the function.

The function reads the value of the object referred to by expr (see 22.3) and represents it in the format 
specified in the format member of the value structure (see 22.2). If the formatted value is a scalar, the 
function writes the formatted value to the value member of the value structure. If the formatted value is 
represented as an array, string, or using internal representation and the value of the value member of the 
value structure is NULL, the function does not write the formatted value, but returns the minimum number of 
bytes of storage that would be required to write the value.

If the formatted value is represented as an array, string, or using internal representation, the VHPI program, 
before calling vhpi_get_value, may allocate storage for the formatted value and write the size in bytes 
and the address of the storage into the bufSize and value members, respectively, of the value structure. 
In that case, the function writes the formatted value to the storage pointed to by the value member of the 
value structure (see 22.2).

If the format specified in the format member of the value structure is vhpiObjTypeVal, the 
representation of the formatted value depends on the type of the object referred to by objHdl (see 22.4). 
The function writes to the format member of the value structure the value of type vhpiFormatT
corresponding to the type.

If the formatted value is represented as a physical or time value or an array of physical or time values, the 
function writes to the unit member of the value structure the position number of a scale factor. If the object 
referred to by expr is a physical or time literal, the scale factor is the position number of the unit of the 
literal; otherwise, the scale factor is 1.

Return value:

0 if the formatted value is a scalar and the operation completes without error, or if the formatted value is 
represented as an array, string, or using internal representation, the value member of the value structure is 
not NULL, the size provided in the bufSize member of the value structure is sufficient and the operation 
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completes without error; or the minimum size in bytes of storage required to represent the value in the 
specified format if the formatted value is represented as an array, string, or using internal representation and 
either the value member of the value structure is NULL or the size provided in the bufSize member of 
the value structure is insufficient; or a negative integer otherwise.

Errors:

It is an error if the vhpi_get_value function is passed a handle that refers to a VHDL object for which 
reading is not permitted (see 6.5.2). In particular, it is an error if the vhpi_get_value function is passed 
a handle to an object that has the Access property and the value of that property does not have the 
vhpiRead flag set. It is an error if the vhpi_get_value function is passed a handle to an object of class 
expr that represents an expression that is not static.

It is an error if the format member of the value structure specifies a format that cannot be used to represent 
the value. It is an error if the formatted value is outside of the range of values that can be represented.

It is an error if the amount of storage allocated for a value represented as an array, string, or using internal 
representation is insufficient for the formatted value.

A tool may perform optimizations that make the value of an object inaccessible. It is an error if the handle 
expr refers to such an object.

See also:

vhpi_put_value, vhpi_schedule_transaction, vhpi_format_value.

23.20 vhpi_handle

Gets a handle to an object that is the target of a one-to-one association.

Synopsis:

vhpiHandleT vhpi_handle (vhpiOneToOneT type,
                         vhpiHandleT referenceHandle);

Description:

The type argument is an enumeration value that corresponds to a one-to-one association role. The 
referenceHandle argument is a handle to a reference object, that is, an object of the class that is the 
reference class of the one-to-one association.

If the association corresponding to the value of type has a multiplicity of 1, or if the association has a 
multiplicity of 0..1 and a target object is associated with the reference object, the function returns a handle to 
the target object of the association. If the association has a multiplicity of 0..1 and no object is associated 
with the reference object, the function returns NULL.

Return value:

A handle to the target object if one exists, or NULL otherwise.

Example:
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In the following VHPI program, the function vhpi_handle is used to get handles to a parent region and 
design unit.

vhpiHandleT get_instance_info(vhpiHandleT scopeHdl) {
  vhpiHandleT upScopeHdl, duHdl;

  /* climb the hierarchy one level */
  /* traverse an association with an explicitly named role */
  upScopeHdl = vhpi_handle(vhpiUpperRegion, scopeHdl);
  if (vhpi_get(vhpiKindP, upScopeHdl) == vhpiCompInstStmtK) {
    /* traverse an association with an implicitly named role */
    duHdl = vhpi_handle(vhpiDesignUnit, upScopeHdl);
    return(duHdl);
  } else
    return(NULL);
} /* end get_instance_info() */

23.21 vhpi_handle_by_index

Gets a handle to an object that is a target of an ordered one-to-many association.

Synopsis:

vhpiHandleT vhpi_handle_by_index (vhpiOneToManyT itRel,
                                  vhpiHandleT parent, int32_t indx);

Description:

The itRel argument is an enumeration value that corresponds to an ordered one-to-many association role. 
The parent argument is a handle to a reference object, that is, an object of the class that is the reference 
class of the one-to-many association. The indx argument is the index of a target object in the one-to-many 
association.

If the one-to-many association has a number of target objects that is greater than the value of indx, the 
function returns a handle to the target object whose position in the set of target objects, starting from 0, is 
given by the value of indx; otherwise, the function returns NULL.

Return value:

A handle to the target object if one exists, or NULL otherwise.

See also:

vhpi_iterator, vhpi_scan.

NOTE 1—Those one-to-many associations that are ordered are specified as ordered associations in Clause 19.

NOTE 2—The result of calling vhpi_handle_by_index is equivalent to calling vhpi_iterator with the same 
first and second arguments, followed by indx + 1 successive calls to vhpi_scan applied to the resulting iterator.

Example:

In the following VHPI program, the vhpi_handle_by_index function is used to access the constraints 
of a given element of a composite object.
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vhpiHandleT find_indexed_constraint(vhpiHandleT parentHdl, int index) {
  vhpiHandleT subtypeHdl, typeHdl, subHdl;

  subtypeHdl = vhpi_handle(vhpiType, parentHdl);
  typeHdl = vhpi_handle(vhpiBaseType, subtypeHdl);
  if (vhpi_get(vhpiIsCompositeP, typeHdl)) {
    /* get the given indexed array element or indexed record field 
       of the parent object */
    subHdl = vhpi_handle_by_index(vhpiConstraints, parentHdl, index);
    return subHdl;
  }
  else
    return NULL;
}

In the following VHPI program, the vhpi_handle_by_index function is used to access the first formal 
parameter of a called subprogram. The formal parameter declarations associated with a subprogram call 
object are ordered according to the declaration of the parameters in the subprogram’s interface list. A handle 
to the subprogram call object is acquired from a callback information structure.

void exec_proc(vhpiCbDataT cbDatap) {
  vhpiHandleT subpCallHdl, formal1, formalIt;
  int val = 0;
  vhpiValueT value;

  value.format = vhpiIntVal;
  value.value->integer = &val;
  subpCallHdl = cbDatap->obj;

  /* get a handle to the first formal parameter
     of the subprogram call */
  formal1 = vhpi_handle_by_index(vhpiParamDecls, subpCallHdl, 0);

  switch(vhpi_get(vhpiModeP, formal1)) {
  case vhpiIN:
    vhpi_get_value(formal1, &value);
    break;
  case vhpiOUT:
    vhpi_put_value(formal1, &value);
    break;
  default:
    break;
  }
}

Given the following VHDL declarations:

type my_1D_array is array (2 to 5) of bit;
type my_2D_array is array (2 to 5, 3 to 5) of integer;

variable A: my_1D_array := ('1', '0', '1', '0');
variable M: my_2D_array := ((1, 2, 3),
                            (4, 5, 6),
                            (7, 8, 9),
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                            (10, 11, 12));

type myrecord is record
  I: integer;
  B: bit;
  AR: my_1D_array;
end record;
type myrecord_ptr is access myrecord;
type mybit_vector_ptr is access bit_vector;

variable R: myrecord := (9, '0', B"1111");
variable R_p: myrecord_ptr;
variable BV_p: mybit_vector_ptr;

the following statements in a VHPI program use the vhpi_handle_by_index function to access 
elements of the VHDL variables, as described by the comments:

/* if Ahdl is an handle to variable A, hdl is a handle to A(2) */
hdl = vhpi_handle_by_index(vhpiIndexedNames, Ahdl, 0)

/* if Mhdl is an handle to variable M, hdl is handle to M(2,3) */
hdl = vhpi_handle_by_index(vhpiIndexedNames, Mhdl, 0)

/* if Rhdl is an handle to variable R, hdl is a handle to R.I */
hdl = vhpi_handle_by_index(vhpiSelectedNames, Rhdl, 0)

/* if Rhdl is an handle to variable R, subeltHdl is a handle to R.AR */
subeltHdl = vhpi_handle_by_index(vhpiSelectedNames, Rhdl, 2)
/* and hdl is a handle to R.AR(4} */
hdl = vhpi_handle_by_index(vhpiIndexedNames, subeltHdl, 2)

/* if BV_phdl is an handle to variable BV_p,
   hdl is a handle to BV_p(0) */
hdl = vhpi_handle_by_index(vhpiIndexedNames, BV_phdl, 0)

/* if R_phdl is an handle to variable R_p, hdl is a handle to R_p.I */
hdl = vhpi_handle_by_index(vhpiSelectedNames, R_phdl, 0)

23.22 vhpi_handle_by_name

Gets a handle to an object that is identified by its name.

Synopsis:

vhpiHandleT vhpi_handle_by_name (const char *name, vhpiHandleT scope);

Description:

The name argument is a pointer to a string referred to as the search string. The scope argument is a handle 
to an object of class region that represents an instantiated declarative region in the design hierarchy 
information model; or a handle to an object of class lexicalScope that represents an uninstantiated 
scope in the library information model; or NULL. If the scope argument is not NULL, the object referred to 
by the handle is referred to as the scope object.
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The function uses the search string to locate an object that has the FullName property and whose value for 
that property is matched by the search string. In determining whether a search string matches the value of a 
FullName property, letters are compared without regard to case, unless the letters occur in an extended 
identifier, in which case the case of letters is significant.

The search string may be of the form described in 19.4.6 for the value of the DefName property of an object 
in the library information model, except that for each occurrence of a subprogram name or enumeration 
literal within the search string, a signature may be inserted immediately following the subprogram name or 
enumeration literal. Such a search string is referred to as an absolute library search string and matches a 
FullName property that is the same string excluding any signatures. If the search string is an absolute 
library search string and the scope argument is not NULL, the scope object shall be of class 
lexicalScope. In that case, the vhpi_handle_by_name function limits the search to those objects 
representing named entities contained, directly or indirectly, in the declarative region represented by the 
scope object. Otherwise, if the scope argument is NULL, the vhpi_handle_by_name function searches 
in the entire library information model. In either case, for each signature in the search string, if any, the 
search is further limited to those objects representing named entities contained, directly or indirectly, in the 
declarative region represented by the object whose Name property matches the subprogram name or 
enumeration literal immediately preceding the signature and whose SignatureName property matches the 
signature.

The search string may be of the form described in 19.4.7 for the value of the FullName property of an 
object in the design hierarchy information model, except that for each occurrence of a subprogram name or 
enumeration literal within the search string, a signature may be inserted immediately following the 
subprogram name or enumeration literal. Such a search string is referred to as an absolute design hierarchy 
search string, and matches a FullName property that is the same string excluding any signatures. If the 
search string is an absolute design hierarchy search string and the scope argument is not NULL, the scope 
object shall be of class region or decl. In that case, the vhpi_handle_by_name function limits the 
search to those objects representing named entities contained, directly or indirectly, in the instantiated region 
or elaborated declaration, as appropriate, represented by the scope object. Otherwise, if the scope argument 
is NULL, the vhpi_handle_by_name function searches in the entire design hierarchy information 
model. In either case, for each signature in the search string, if any, the search is further limited to those 
objects representing named entities contained, directly or indirectly, in the instantiated region represented by 
the object whose Name property matches the subprogram name or enumeration literal immediately 
preceding the signature and whose SignatureName property matches the signature.

A search string in a form other than that of an absolute design hierarchy search string or an absolute library 
search string is referred to as a relative search string. If the search string is a relative search string and the 
scope argument is not NULL, the effect of the call to the vhpi_handle_by_name function is the same 
as that of a call to the function with the same scope argument and a modified relative search string, formed 
by concatenating the following two strings in the following order:

— The value of the FullName property of the scope object, into which is inserted, immediately after 
each occurrence of a subprogram name or enumeration literal, the value of the SignatureName
property of the object representing the subprogram or enumeration literal denoted by the subprogram 
name or enumeration literal, and

— The relative search string.

A search that locates more than one object is ambiguous. The tool may detect that the search is ambiguous 
and return NULL. If the tool does not detect that the search is ambiguous, it returns a handle to one of the 
located objects chosen in an implementation-defined manner.

Return value:

A handle to a located object, if any, or NULL otherwise.
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Errors:

It is an error if the search string is a relative search string and the scope argument is NULL.

It is an error if the search string is a relative search string and the modified relative search string is neither a 
well-formed absolute library search string nor a well-formed absolute design hierarchy search string.

See also:

vhpi_get_str(vhpiNameP, ...), vhpi_get_str(vhpiFullNameP, ...).

Example:

In the following VHPI program, the vhpi_handle_by_name function is used to search for a signal of a 
given simple name within a design hierarchy.

vhpiHandleT findsignal(char *sigName) {
  vhpiHandleT subitr, hdl, subhdl, sigHdl;
  /* first search for the signal in the design hierarchy, starting at
     the root instance level and recursively descending into the
     sub-instances
  */
  itr = vhpi_handle(vhpiRootInst, NULL);
  if (itr) {
    sigHdl = vhpi_handle_by_name(sigName, hdl);
    if (sigHdl)
      return sigHdl;
    else {
      subitr = vhpi_iterator(vhpiInternalRegions, hdl);
      if (subitr)
        while (subhdl = vhpi_scan(subitr)) {
          sigHdl = vhpi_handle_by_name(sigName, subhdl);
          if (sigHdl)
            return sigHdl;
        }
    }
  }
  /* if not found in the design hierarchy, search for the signal
     in the instantiated packages
  */
  itr = vhpi_iterator(vhpiPackInsts, NULL);
  if (itr)
    while (hdl = vhpi_scan(itr)) {
      sigHdl = vhpi_handle_by_name(sigName, hdl);
      if (sigHdl)
        return sigHdl;
    }
  return NULL;
}

23.23 vhpi_is_printable

Determines whether a given character is a graphic character.
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Synopsis:

int vhpi_is_printable( char ch )

Description:

The function tests whether the character code that is the value of the ch argument represents a graphic 
character (see 15.2).

Return value:

1 if the character is a graphic character, or 0 otherwise.

23.24 vhpi_iterator

Creates an iterator for a one-to-many association.

Synopsis:

vhpiHandleT vhpi_iterator (vhpiOneToManyT type,
                           vhpiHandleT referenceHandle);

Description:

The type argument is an enumeration value that corresponds to a one-to-many association role. The 
referenceHandle argument is a handle to a reference object, that is, an object of the class that is the 
reference class of the one-to-many association.

If the one-to-many association has one or more target objects, the function creates a new object of class 
iterator, initializes the iterator set of the object to be the set of target objects in the one-to-many 
association, initializes the iteration position of the object to refer to the first element in the iterator set, and 
returns a handle that refers to the object of class iterator. Otherwise, the function returns NULL.

If the one-to-many association is ordered, the elements in the iterator set are ordered in the same order as the 
target objects of the one-to-many association to which they refer. Otherwise, the order of elements in the 
iterator set is not specified by this standard.

Return value:

A handle to the object of class iterator, if such an object is created, or NULL otherwise.

See also:

vhpi_scan.

NOTE—Since each call to the vhpi_iterator function creates a new object of class iterator, handles returned 
by separate calls to the function are distinct, and comparison of such handles using the vhpi_compare_handles
function always yields vhpiFalse.

Example:

In the following VHPI program, the vhpi_iterator function is used to create an iterator for all signals 
in a scope.
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void find_signals(vhpiHandleT scopeHdl) {
  vhpiHandleT sigHdl,itrHdl;

  /* find all signals in the scope and print their names */

  itrHdl = vhpi_iterator(vhpiSigDecl, scopeHdl);
  if (!itrHdl) return;
  while (sigHdl = vhpi_scan(itrHdl)) {
    vhpi_printf("Found signal %s\n", vhpi_get_str(vhpiNameP, sigHdl));
    vhpi_release_handle(sigHdl);
  }
}

23.25 vhpi_printf

Writes a message to one or more tool output files.

Synopsis:

int vhpi_printf (const char *format, ...);

Description:

The format argument is a pointer to a format string that may contain conversion codes as defined for the C 
printf function in  ISO/IEC 9899:1999/Cor 1:2001. The format string and subsequent arguments to the 
vhpi_printf function are interpreted in the same way as specified in  ISO/IEC 9899:1999/Cor 1:2001 
for the C printf function to form a formatted character string that is written to one or more tool output 
files. The file or files to which the string is written is determined in an implementation-defined manner.

Return value:

The number of characters written to the file, or –1 if an error occurred.

See also:

vhpi_is_printable.

NOTE—The file or files to which vhpi_printf writes may include a standard output stream or a tool log file.

Example:

In the following VHPI program, the vhpi_printf function is used to print a character string with non-
graphic characters represented using textual representations of the corresponding enumeration literal of the 
VHDL standard CHARACTER type.

int PrintMyNastyVHDLString( char* VHDLString, int Length ) {
  int i;
  unsigned char ch;
  int needcomma=0;
  for (i=0; i<Length; i++) {
    ch = (unsigned char)VHDLString[i];
    if (vhpi_is_printable(ch)) {
      vhpi_printf("%c", ch );
      needcomma=1;
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    } else {
      if (needcomma)
        vhpi_printf(",");
      vhpi_printf("%s", VHPI_GET_PRINTABLE_STRINGCODE(ch));
      if (i!=(Length-1))
        vhpi_printf(",");
      needcomma=0;
    }
  }
  return 0;
}

A call to the function PrintMyNastyVHDLString with the string yielded by the following VHDL 
expression:

"HELLO" & NUL & C128 & DEL

would cause the following character string to be written to the file:

HELLO,NUL,C128,DEL

23.26 vhpi_protected_call

Calls a function to operate on a shared variable of a protected type.

Synopsis:

int vhpi_protected_call (vhpiHandleT varHdl,
                         vhpiUserFctT userFct, void *userData);

Description:

The varHdl argument is a handle to an object of class varDecl for which the properties IsShared and 
IsProtectedType both have the value vhpiTrue. The userFct argument is a pointer to a function 
to be called with exclusive access to the object referred to by varHdl. The userData argument is a 
pointer to be passed to the function pointed to by the userFct argument.

The vhpi_protected_call function blocks (suspends execution while retaining all state), if necessary, 
until exclusive access to the object referred to by varHdl is secured. The vhpi_protected_call
function then calls the function pointed to by userFct. The first argument passed to the function is the 
value of the varHdl argument, and the second argument passed to the function is the value of the 
userData argument. Upon return of the function, exclusive access to the object referred to by varHdl is 
rescinded.

The function pointed to by the userFct argument is assumed to have the prototype

int userFct (vhpiHandleT varHdl, void *userData);

Return value:

The value returned by the function pointed to by the userFct argument.
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Errors:

A VHPI program that performs a read or write access to a shared variable of a protected type other than from 
within a function invoked by a call to the vhpi_protected_call function with the first argument being 
a handle to the variable is erroneous.

NOTE 1—The effects of acquiring and rescinding exclusive access to a variable of protected type using the 
vhpi_protected_call function are equivalent to the effects of acquiring and rescinding exclusive access using 
calls to protected-type methods within a VHDL model (see 4.3 and 14.6).

NOTE 2—The value of the userData argument may be NULL.

Example:

In the following VHPI program, the vhpi_protected_call function is used to acquire exclusive 
access to a variable named Foo, which has a private variable named result. A pointer to the function 
Myfunc is passed to the vhpi_protected_call function. The function Myfunc reads the value of the 
result variable, invokes a function to perform an operation on the value, and writes a new value to the 
variable.

#define FAIL -1;
typedef struct { int Value;
                 int Size;
                 in Op;} MyData;

/* user function which is called on the protected variable handle */
int Myfunc( vhpiHandleT protectedVarDeclHdl, void* ClientData ) {
  int status=0;
  vhpiHandleT resultH;
  MyData* Data=(MyData*)ClientData;

  /* result is a private variable declaration for the protected type */
  resultH = vhpi_handle_by_name("result", protectedVarDeclHdl);
  if (!resultH)
    return(FAIL);

  /* access the current value of result */
  status = vhpi_get_value( resultH, Data->Value );
  if (status) {
    vhpi_printf("error in reading protected variable\n");
    return (status);
  }
  switch (Data->Op) {
  case op1:
    op1CB(Data->Value);
    break;
  case ...
  default:
    Bombout();
  }
  /* set result to a new value */
  status = vhpi_put_value( resultH, Data->Value, vhpiDeposit );
  /* do some more error checking */
  if (status)
    vhpi_printf("error in writing to protected variable\n");
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  return status;
}

int op1CB( int value ) {
  ...
}

int main (int argc, char *argv[]) {
  /* get a handle to the protected variable declaration named "Foo" */
  vhpiHandleT protectedVarDeclHdl
    = vhpi_handle_by_name("Foo", vpi_handle(vhpiRootInst, NULL));
  MyData Data;
  int status = 0;

  Data.Op = op1;
  Data.Size = 100;
  bzero(Data.Value, Data.Size );

  if (protectedVarDeclHdl)
    status = vhpi_protected_call(protectedVarDeclHdl,Myfunc,Data);

  if (status)
    vhpi_printf("Unable to perform operation op1 "
                "with protected variable Foo\n");
  return(status);
}

23.27 vhpi_put_data

Saves data for restart.

Synopsis:

size_t vhpi_put_data (int32_t id,
                      void * dataLoc, size_t numBytes);

Description:

The id argument is an identification number for a saved data set. The dataLoc argument is the address 
from which data is read to be written to the saved data set. The numBytes argument is a positive number, 
being the number of bytes of data to write.

The function reads a number of bytes, given by numBytes, from the address pointed to by dataLoc and 
writes the data to the saved data set identified by id.

The first call to vhpi_put_data with a given value for id during a given occurrence of the save phase of 
tool execution writes bytes to the saved data set starting at the first location of the saved data set. Subsequent 
calls to vhpi_put_data with the same id value during the same occurrence of the save phase write bytes 
starting at the location immediately after the last location written by the immediately preceding call with the 
given id value.

A tool shall allow VHPI programs to call vhpi_put_data an unbounded number of times with a given 
identification number and with an unbounded number of different identification numbers, subject to 
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resource constraints of the host system. The order in which sequences of calls to vhpi_put_data with 
different identification numbers are interleaved is not significant.

Return value:

The number of bytes actually written, or 0 if the write failed.

Errors:

It is an error if vhpi_put_data is called other than from a vhpiCbStartOfSave or 
vhpiCbEndOfSave callback.

It is an error if the id value is not valid for the occurrence of the save phase of tool execution during which 
the vhpi_put_data function is called.

See also:

vhpi_get_data.

NOTE—A VHPI program can acquire an identification number with the function call vhpi_get(vhpiIdP, 
NULL). Each call of this form returns a unique non-zero identification number.

Example:

In the following VHPI program, the vhpi_put_data function is used first to write the number of linked 
list elements in a saved data set and second to write that number of linked list elements. The VHPI program 
function that calls vhpi_put_data is a vhpiCbEndOfSave callback. It registers a 
vhpiCbStartOfRestart callback to retrieve the data upon restart (see example in 23.12).

/* type definitions for private data structures to save used by the
   foreign models or applications */
struct myStruct{
  struct myStruct *next;
  int d1;
  int d2;
}

void consumer_save(vhpiCbDataT *cbDatap) {
  char *data;
  vhpiCbDataT cbData; /* a cbData structure */
  int cnt = 0;
  struct myStruct *wrk;
  vhpiHandleT cbHdl; /* a callback handle */
  int id =0;
  int savedBytesCount = 0;

  /* get the number of structures */
  wrk = firstWrk;
  while (wrk) {
    cnt++;
    wrk = wrk->next;
  }
  /* request an id */
  id = vhpi_get(vhpiIdP, NULL);
  /* save the number of data structures */
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  savedBytesCount = vhpi_put_data(id, (char*)&cnt, sizeof(int));
  /* reinitialize wrk pointer to point to the first structure */
  wrk = firstWrk;
  /* save the different data structures, the restart routine will have
     to fix the pointers */
  while (wrk) {
    savedBytesCount += vhpi_put_data(id, (char *)wrk,
                                     sizeof(struct myStruct));
    wrk = wrk->next;
  }
  /* check if everything has been saved */
  assert(savedBytesCount == sizeof(int)
                            + cnt * (sizeof(struct myStruct)));
  /* now register the callback for restart and pass the id to retrieve
     the data, the user_data member of the callback data structure is
     one easy way to pass the id to the restart operation */
  cbData.user_data = (void *)id;
  cbData.reason = vhpiCbStartOfRestart;
  cbData.cb_rtn = consumer_restart;
  vhpi_register_cb(&cbData, vhpiNoReturn);
} /* end of consumer_save */

23.28 vhpi_put_value

Updates the value of an object or provides the return value of a foreign function call.

Synopsis:

int vhpi_put_value (vhpiHandleT object,
                    vhpiValueT *value_p, vhpiPutValueModeT mode);

Description:

The object argument is a handle to an object of class objDecl, name, or driver, or a handle to an 
object of class funcCall for which the associated subpBody object has the value vhpiTrue for the 
IsForeign property. The value_p argument is a pointer to a value structure, if required, specifying the 
value to be used to update the object or the return value of the foreign function call. The mode argument 
specifies how the update of the object is to be performed. The function updates the object value according to 
the rules of 22.5

Return value:

0 if the operation completes without error, or a non-zero value otherwise.

Errors:

It is an error if the vhpi_put_value function is passed a handle that refers to a VHDL object for which 
updating is not permitted (see 6.4.2.2, 6.4.2.5, and 6.5.2). In particular, it is an error if the 
vhpi_put_value function is passed a handle to an object that has the Access property and the value of 
that property does not have the vhpiWrite flag set.
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It is an error if the vhpi_put_value function is called with an update mode of 
vhpiForcePropagate or vhpiDepositPropagate to update a member of a resolved composite 
signal.

It is an error if the vhpi_put_value function is called during substep 6) of step h) of the simulation cycle 
to cause activity on a driver or a signal (see 14.7.5.3 and 21.3.6.8).

See also:

vhpi_get_value, vhpi_schedule_transaction.

NOTE—A VHPI program shall not use a format for which not all values of the object’s type can be represented (see 
22.2), even if the value with which the object is to be updated can be represented using that format. For example, it 
would be an error to update an object of a physical type whose position numbers exceeded the bounds of 32-bit represen-
tation using the vhpiSmallPhysVal format.

23.29 vhpi_register_cb

Registers a callback.

Synopsis:

vhpiHandleT vhpi_register_cb (vhpiCbDataT *cb_data_p, int32_t flags);

Description:

The cb_data_p argument is a pointer to a callback data structure. The flags argument is a value that 
specifies how the callback is to be registered. The function uses the information in the callback data 
structure to register a callback function according to the rules of Clause 21.

Annex B defines two callback flags, vhpiReturnCb and vhpiDisableCb. A call to the function is said 
to set a callback flag if the value of the flags argument has a 1 bit at the bit position corresponding to 
the 1 bit in the value of the callback flag; otherwise the call to the function is said to clear the callback flag.

If a call to the function sets the vhpiReturnCb flag, the function returns a handle to an object of class 
callback that represents the registered callback. If a call to the function clears the vhpiReturnCb flag, 
the function returns NULL.

If a call to the function sets the vhpiDisableCb flag, the function sets the registered callback to the 
disabled state. If a call to the function clears the vhpiDisableCb flag, the function sets the registered 
callback to the enabled state.

Upon completion of the vhpi_register_cb function, the tool does not retain references to the storage 
pointed to by the cb_data_p argument or to storage pointed to by pointers within the callback data 
structure. Furthermore, if the obj member of the callback data structure contains a handle, the VHPI 
program may release the handle after the vhpi_register_cb function returns without affecting 
registration of the callback.

Return value:

A handle that refers to the registered callback, or NULL.
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Errors:

If a VHPI program attempts to register a callback with a callback reason that is not supported by the VHPI 
tool, the vhpi_register_cb function raises an error indicating that the callback reason is not 
implemented.

See also:

vhpi_get_cb_info, vhpi_remove_cb, vhpi_enable_cb, vhpi_disable_cb.

NOTE—A VHPI program that registers a callback with the vhpiDisableCb flag set may find it useful also to set the 
vhpiReturnCb flag and to save the returned handle. The program can subsequently use the handle to enable the call-
back without having to navigate associations to acquire a handle to the callback.

Example:

In the following VHPI program, the vhpi_register_cb function is used to register a value change 
callback for each signal within a component instance.

/* the callback function */
void vcl_trigger(const vhpiCbDataT *cbDatap) {
  char *sigName;
  int toggleCount = (int)(cbDatap->user_data);

  cbDatap->user_data = (char *)(++toggleCount);
  sigName= vhpi_get_str(vhpiFullNameP, cbDatap->obj);
  vhpi_printf("Signal %s changed value %d, at time %d\n",
              sigName, cbDatap->value.int, cbDatap->time.low);
  return;
}

/* this is the name of the function which registers signal
   value change callbacks to monitor all signals in an instance*/
static void monitorSignals(vhpiHandleT instHdl) {
  static vhpiCbDataT cbData;
  vhpiValueT value;
  vhpiTimeT time;
  int flags;

  value.format = vhpiIntVal;
  cbData.reason = vhpiCbValueChange;
  cbData.cb_rtn = vcl_trigger;
  cbData.value = &value;
  cbData.time = &time;
  cbData.user_data = 0;
  flags = 0; /* do not return a callback handle and do not disable
                the callback at registration */
  /* register the callback function */
  sigIt = vhpi_iterator(vhpiSigDecls, instHdl);
  if(!sigIt) return;
  while(sigHdl = vhpi_scan(sigIt)) {
    cbData.obj = sigHdl;
    vhpi_register_cb(&cbData, flags);
  }
}
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23.30 vhpi_register_foreignf

Registers a foreign model or application.

Synopsis:

vhpiHandleT vhpi_register_foreignf (vhpiForeignDataT *foreignDatap);

Description:

The foreignDatap argument is a pointer to a foreign data structure. The function registers a foreign 
model or application according to the rules of (20.2) using the information in the foreign data structure.

The value of the kind member shall be the value of an enumeration constant of type 
vhpiForeignKindT defined in Annex B and identifies whether a foreign architecture, function, 
procedure, or application is registered. For registration of a foreign architecture, the value of the elabf
member shall be a pointer to the elaboration function, if required, or NULL otherwise; and the value of the 
execf member shall be a pointer to the execution function. For registration of a foreign procedure or 
function, the value of the elabf member shall be NULL and the value of the execf member shall be a 
pointer to the execution function.

The value of the libraryName member shall be a pointer to a string whose value is the object library 
name. For registration of a foreign model or application, the value of the modelName member shall be a 
pointer to a string whose value is the model name or application name, respectively.

Return value:

A handle that refers to an object of class foreignf that represents the foreign model or application, if the 
operation completes without error; or NULL otherwise.

Errors:

It is an error of the vhpi_register_foreignf function is called other than during the registration 
phase of tool execution.

It is an error if the value of the kind member of the foreign data structure is vhpiLibF.

See also:

vhpi_get_foreignf_info, vhpi_iterator(vhpiForeignfs, NULL).

Example:

In the following VHPI program, the vhpi_register_foreignf function is used to register 
dynamically linked elaboration and execution functions for a foreign model.

void dynlink(char * foreignName, char * libName) {
  /* foreignName is the name of the foreign model to link in */
  /* libName is the logical name of the C dynamic library where the
     model resides */
  static vhpiForeignDataT archData = {vhpiArchF};
  char dynLibName[MAX_STR_LENGTH];
  char platform[6];
  char extension[3];
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  char fname[MAX_STR_LENGTH];
  char elabfname[MAX_STR_LENGTH];
  char execfname[MAX_STR_LENGTH];

  sprintf(platform, getenv("SYSTYPE"));
  if (!strcmp(platform, "SUNOS"))
    strcpy(extension, "so");
  else if (!strcmp(platform, "HP-UX"))
    strcpy(extension, "sl");

  sprintf(dynLibName, "%s.%s", libName, extension);
  sprintf(fname, "%s", foreignName);
  sprintf(elabfname, "elab_%s", foreignName);
  sprintf(execfname, "sim_%s", foreignName);
  archData->libraryName = libname;
  archData->modelName = fName;
  /* find the function pointer addresses */
  archData->elabf = (void(*)()) dynlookup(dynLibName, elabfName);
  archData->execf = (void(*)()) dynlookup(dynLibName, execfName);

  vhpi_register_foreignf(&archData);
}

In the following VHPI program, the vhpi_register_foreignf function is used to register each 
foreign model contained in a C library.

extern void register_my_C_models();
       /* this is the name of the bootstrap
          function that shall be the ONLY
          visible symbol of the C library.
       */

void register_my_C_models() {
  static vhpiForeignDataT foreignDataArray[] = {
    {vhpiArchF, "lib1", "C_AND_gate", "elab_and", "sim_and"},
    {vhpiFuncF, "lib1", "addbits", 0, "ADD"},
    {vhpiProcF, "lib1", "verify", 0, "verify"},
    0
  };
  /* start by the first entry in the array of
     the foreign data structures */
  vhpiForeignDatap foreignDatap = &(foreignDataArray[0]);
  /* iterate and register every entry in the table */
  while (*foreignDatap)
    vhpi_register_foreignf(foreignDatap++);
}

23.31 vhpi_release_handle

Releases a handle.
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Synopsis:

int vhpi_release_handle (vhpiHandleT object);

Description:

The object argument is a handle that refers to an object. The function releases the handle (see 17.4).

Return value:

0 if the operation completes without error, or 1 otherwise.

Example:

In the following VHPI program, the vhpi_release_handle function is used to release each handle, 
returned by the vhpi_scan function applied to an iterator, up to but excluding the first handle that refers to 
an object of class blockStmt.

vhpiHandleT rootHdl, itrHdl;

rootHdl = vhpi_handle(vhpiRootInst, null);
itrHdl = vhpi_iterator(vhpiInternalRegions, rootHdl);
if (itrHdl) {
  while (instHdl = vhpi_scan(itrHdl)) {
    if (vhpi_get(vhpiKindP, instHdl) == vhpiBlockStmtK)
      break;
    /* free this instance handle */
    vhpi_release_handle(instHdl);
  }
}

23.32 vhpi_remove_cb

Removes a previously registered callback.

Synopsis:

int vhpi_remove_cb (vhpiHandleT cb_obj);

Description:

The cb_obj argument is a handle to a registered callback. The function removes the callback. Upon return, 
the handle is invalid.

Return value:

0 if the operation completes without error, or 1 otherwise.

See also:

vhpi_register_cb, vhpi_get_cb_info, vhpi_enable_cb, vhpi_disable_cb.
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23.33 vhpi_scan

Gets a handle to an object in an iterator and advances the iterator.

Synopsis:

vhpiHandleT vhpi_scan (vhpiHandleT iterator);

Description:

The iterator argument is a handle that refers to an iterator object of class iterator. If the iteration 
position of the iterator object refers to no element of the iterator set of the iterator object, the function 
releases the handle that is the value of the iterator argument and returns NULL. Otherwise, the function 
returns a handle to that element referred to by the iterator position of the iterator object and updates the 
iterator position to refer to the subsequent element in the iterator set, if any, or to no object otherwise.

Return value:

A handle to an object of the iterator set, or NULL.

See also:

vhpi_iterator.

NOTE—If a VHPI program no longer requires an iterator that is not exhausted, the program should release the handle 
that refers to the iterator so that the tool may reclaim memory resources allocated for the iterator.

Example:

In the following VHPI program, the vhpi_scan function is used to acquire handles to successive signals 
within a given scope.

vhpiHandleT find_signals(vhpiHandleT scopeHdl) {
  vhpiHandleT sigHdl,itrHdl;
  int found = 0;

  itrHdl = vhpi_iterator(vhpiSigDecl, scopeHdl);
  if (!itrHdl) return;
  while (sigHdl = vhpi_scan(itrHdl)) {
    vhpi_printf("Found signal %s\n", vhpi_get_str(vhpiNameP, sigHdl));
    /* done with handle */;
    vhpi_release_handle(sigHdl);
  }
}

23.34 vhpi_schedule_transaction

Schedules a transaction on a driver or transactions on a collection of drivers.

Synopsis:

int vhpi_schedule_transaction (vhpiHandleT  drivHdl,
                               vhpiValueT  *value_p,
                               uint32_t    numValues,
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                               vhpiTimeT   *delayp,
                               vhpiDelayModeT delayMode,
                               vhpiTimeT    *pulseRejp);

Description:

The drivHdl argument is a handle that refers to an object of class driver or driverCollection. 
The value_p argument is a pointer to a value structure or to an array of value structures, or NULL. The 
numValues argument is the number of value structures. The function schedules a transaction or 
transactions on the driver or drivers referred to by the drivHDL argument using the value or values 
specified by the value_p and numValues arguments, according to the rules of 22.6.

The delayp argument is a pointer to a time structure that specifies the relative delay. The time component 
of the transaction or transactions scheduled by the function is the sum of the current simulation time and the 
relative delay. If the value is less than the resolution limit of the tool, the transaction or transactions are 
scheduled with zero delay.

The delayMode argument is an enumeration constant that specifies the delay mechanism. The value of the 
delayMode argument shall be one of vhpiInertial, in which case the delay is construed to be inertial 
delay, or vhpiTransport, in which case the delay is construed to be transport delay (see 10.5.2.1).

The pulseRejp argument is a pointer to a time structure that specifies the pulse rejection limit or NULL.

If the delayMode argument is vhpiInertial and the pulseRejp argument is not NULL, the value of 
the time structure pointed to by the pulseRejp argument is the pulse rejection limit. The value shall not be 
greater than the delay. If the delayMode is vhpiInertial and the pulseRejp argument is NULL, the 
pulse rejection limit is equal to the delay. If the delayMode argument is vhpiTransport, the 
pulseRejp argument is ignored by the tool.

Return value:

0 if the operation completes without error, or a non-zero value otherwise.

Errors:

It is an error if the vhpi_schedule_transaction function is called other than during step f) of the 
simulation cycle or to schedule a transaction with non-zero delay during substeps 1) through 4) of step h) of 
the simulation cycle (see 14.7.5.3).

It is an error if the vhpi_schedule_transaction function is passed a handle to an object of class 
driver for which the Access property does not have the vhpiWrite flag set. Similarly, it is an error if 
the vhpi_schedule_transaction function is passed a handle to an object of class 
driverCollection and there is a member of the collection represented by the object for which the 
Access property does not have the vhpiWrite flag set.

See also:

vhpi_put_value, vhpi_get_value.

NOTE 1—An object of class driver is associated with a basic signal, which cannot be a composite non-resolved signal. 
To schedule a transaction for a composite non-resolved signal, a VHPI program may either schedule transactions indi-
vidually for the driver of each of the subelements or may schedule a transaction on a collection comprising the drivers of 
the subelements.

NOTE 2—A VHPI program shall not use a format for which not all values of the type of the driver’s signal can be rep-
resented (see 22.2), even if the value of the transaction can be represented using that format. For example, it would be an 
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error to schedule a transaction on a driver for a signal of an integer type whose position numbers exceeded the bounds of 
32-bit representation using the vhpiIntVal format.

Example:

In the following recursive VHPI program, the vhpi_schedule_transaction function is used to 
schedule transactions with the value '0' on each driver for each basic-signal subelement of type BIT of a 
signal. Handles to individual driver elements are acquired using iterators.

int schedule_transaction_value(vhpiHandleT sigHdl) {
  vhpiHandleT baseTypeHdl, driverIt, driverHdl;
  char *name;
  vhpiValueS value;
  vhpiTimeS delay;

  delay.low = 1000;/* delay is 1 ns */
  delay.high = 0;

  baseTypeHdl = vhpi_handle(vhpiBaseType, sigHdl);

  /* check the signal type */
  switch (vhpi_get(vhpiKindP, baseTypeHdl)) {
  case vhpiRecordTypeDeclK :
    {
      vhpiHandleT itsel, selh;
      if (!vhpi_get(vhpiIsResolved, sigHdl)) {
        /* signal not resolved at the composite level */
        itsel = vhpi_iterator(vhpiSelectedNames, sigHdl);
        while (selh = vhpi_scan(itsel))
          schedule_transaction_value(selh);
      } else { 
        vhpi_printf("unimplemented\n");
        return -1;
      }
    }
    break;

  case vhpiArrayTypeDeclK:
    { /* get the element subtype */
      vhpiHandleT eltSubtypeHdl, bitIt, bitHdl;
      vhpiHandleT colHdl = NULL;
      int countdrivs = 0;
      if (vhpi_get(vhpiIsResolved, sigHdl)) {
        vhpi_printf("unimplemented\n");
        return -1;
      }
      /* signal not resolved at the composite level */
      elemSubtypeHdl = vhpi_handle(vhpiElemType, baseTypeDecl);
      baseTypeHdl = vhpiHandle(vhpiBaseType, elemSubtypeHdl);
      name = vhpi_get_str(vhpiNameP, baseTypeHdl);
      if (!strncmp(name, "BIT")) {
        bitIt = vhpi_iterator(vhpiIndexedNames, sigHdl);
        while (bitHdl = vhpi_scan(bitIt)) {  
          assert (vhpi_get(vhpiIsBasicP, bitHdl) == vhpiTrue);
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          driverIt = vhpi_iterator(vhpiDrivers, bitHdl);
          while (driverHdl = vhpi_scan(driverIt)) {
            countdrivs++;
            colHdl = vhpi_create(vhpiDriverCollectionK,
                                 colHdl, driverHdl);
          }
        }
        value.format = vhpiLogicVecVal;
        value.numElems = countDrivs;
        while (countdrivs) {
          value.value.logics++ = vhpiBit0;
          countdrivs--;
        }
        vhpi_schedule_transaction(colHdl, &value, 1, 
                                  &delay, vhpiInertial, 0);
      } else {
        vhpi_printf("unimplemented\n");
        return -1;
      }
    }
    break;

  case vhpiEnumTypeDeclK:
    {
      name = vhpi_get_str(vhpiNameP, baseTypeHdl);
      if (!strncmp(name, "BIT")) {
        value.format = vhpiLogicVal;
        value.logic = vhpiBit0;
        assert (vhpi_get(vhpiIsBasicP, sigHdl) == vhpiTrue);
        driverIt = vhpi_iterator(vhpiDrivers, sigHdl);
        while (driverHdl = vhpi_scan(driverIt))
          countdrivs++; 
        assert (countDrivs == 1);
        vhpi_schedule_transaction(driverHdl, &value, 1, 
                                  &delay, vhpiInertial, 0);
      } else {
        vhpi_printf("unimplemented\n");
        return -1;
      }
    }
    break;

  default:
    vhpi_printf("unimplemented\n");
    return (-1);
    break;
  }
}

The VHPI program could be used to schedule transactions on subelements of a VHDL signal declared as 
follows:

type R is record
  B: BIT;
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  BARR: BIT_VECTOR (0 to 7);
end record;
signal S: R;

23.35 vhpi_vprintf

Writes a message to one or more tool output files.

Synopsis:

int vhpi_vprintf (const char *format, va_list args);

Description:

The format argument is a pointer to a format string that may contain conversion codes as defined for the C 
vprintf function in ISO/IEC 9899:1999/Cor 1:2001. The format string and the va_list argument to the 
vhpi_vprintf function are interpreted in the same way as specified in ISO/IEC 9899:1999/Cor 1:2001 
for the C vprintf function to form a formatted character string that is written to one or more tool output 
files. The file or files to which the string is written is determined in an implementation-defined manner.

Return value:

The number of characters written to the file, or –1 if an error occurred.

See also:

vhpi_is_printable.

NOTE—The file or files to which vhpi_vprintf writes may include a standard output stream or a tool log file.
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24. Standard tool directives

24.1 Protect tool directives

24.1.1 General

Protect tool directives14 allow exchange of VHDL descriptions in which portions are encrypted. This allows 
an author of a VHDL description to provide the description to one or more users in such a way that the users’ 
tools can process the description, but the text of the description is not disclosed to the users.

A protect directive is a tool directive in which the identifier is the word protect. A protect directive directs 
the tool to perform encryption or decryption of a portion of the text of a VHDL design file. Protect directives 
are used to form protection envelopes, which include specification of cryptographic methods and keys to be 
used by a tool. An encryption envelope contains protect directives and a portion of the description, called the 
source text, that is to be encrypted. A decryption envelope contains protect directives and previously 
encrypted text to be decrypted.

Protection envelopes permit encryption and decryption of portions of descriptions using symmetric and 
asymmetric ciphers. A symmetric cipher involves use of the same key, called the secret key, for both 
encryption and decryption. An asymmetric cipher involves use of a public key for encryption and a 
corresponding private key for decryption.

Protection envelopes also permit encryption using digital envelopes, in which a portion of a description is 
encrypted using a symmetric cipher with an automatically generated session key, and then the session key is 
encrypted. Decryption of the protected envelope involves first decrypting the session key, followed by 
decrypting the portion of the description with the symmetric cipher using the decrypted session key.

The encrypted portion of a description may also be digitally signed by an author to allow checking that the 
encrypted text is unaltered. This involves computation of a digest by application of a hash function to the 
unencrypted text. The digest is then encrypted using an asymmetric cipher with the private key of the author. 
The decryption tool decrypts the description and recomputes the digest on the decrypted text. The 
decryption also decrypts the encrypted digest using the author’s public key and compares the two digests. If 
they are the same, the description is unaltered; otherwise, it has been altered and should not be trusted.

Encrypted text, keys, and digests are encoded in decryption envelopes. An encoding method transforms the 
octets of encrypted information into graphic characters so that the information can be stored or transmitted 
without being altered by agents that interpret non-graphic characters.

An encryption envelope may contain a decryption envelope that is to be further encrypted. The result of 
encrypting the encryption envelope is a decryption envelope that contains an encrypted decryption envelope 
nested within it. The depth to which such decryption envelopes may be nested is implementation defined, 
but shall be no less than eight (that is, an innermost decryption envelope enclosed recursively within seven 
nested decryption envelopes).

The operation of encrypting an encryption envelope involves creating a corresponding decryption envelope 
as described in this subclause (24.1).  The operation of decrypting a decryption envelope involves recreating 
the source text of the encryption envelope from which the decryption envelope was created.

14Material derived from the document titled “A Mechanism for VHDL Source Protection” © 2004, Cadence Design Systems Inc. Used, 
modified, and reprinted by permission.
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As part of the analysis phase of tool execution (see Clause 20), a tool may perform encryption or decryption 
of a design file. The means by which it is determined whether the tool performs such processing is 
implementation defined.

It is an error if a protect tool directive appears other than as part of an encryption envelope or a decryption 
envelope. The effect of a protect tool directive, other than a protect decrypt license directive or a protect 
runtime license directive, is limited to the immediately enclosing protection envelope.

This standard does not specify any means by which encryption keys are exchanged among authors, users, 
and tools. It is assumed that the tools performing encryption and decryption have access to the required keys 
specified in protection envelopes. It is an error if a protection envelope requires use of a specified key and a 
tool processing the protection envelope does not have access to the key. Similarly, it is an error if a 
protection envelope requires use of one or more of a set of keys and a tool processing the protection 
envelope does not have access to any of the keys.

The graphic characters in a protect directive form a sequence of lexical elements that conform to the 
following grammar:

protect_directive ::=
      `protect keyword_expression { , keyword_expression }

keyword_expression ::=
        keyword
      | keyword = literal
      | keyword = keyword_list

keyword_list ::= ( keyword_expression { , keyword_expression } )

keyword ::= identifier

A protect directive containing more than one keyword expression is equivalent to a sequence of protect 
directives, each containing one keyword expression. The protect directives appear in the sequence in the 
same order as the keyword expressions in the original protect directive.

The directive identifier protect and the various keywords defined for each protect directive are shown in 
boldface in this subclause (24.1). The individual protect directives are described in 24.1.2, and the literals 
used to identify ciphers, hash functions, and encodings are described in 24.1.3. Rules for forming and 
processing encryption and decryption envelopes are described in 24.1.4 and 24.1.5, respectively.

Example:

The protect directive

`protect data_keyowner="ACME Corp.", data_keyname="secret-1", 
data_method="aes192-cbc"

is equivalent to the following sequence of protect directives:

`protect data_keyowner="ACME Corp."
`protect data_keyname="secret-1"
`protect data_method="aes192-cbc"
NOTE—Products that include cryptographic algorithms may be subject to government regulations in some jurisdictions. 
Users of this standard are advised to seek the advice of competent counsel to determine their obligations under those 
regulations.
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24.1.2 Protect directives

24.1.2.1 Protect begin directive

protect_begin_directive :: =   `protect begin

A protect begin directive is part of an encryption envelope and indicates the beginning of the text of a 
description to be encrypted. The text to be encrypted, if any, begins with the first character after the end of 
the line containing the protect begin directive and ends with the character immediately preceding the next 
protect end directive.

24.1.2.2 Protect end directive

protect_end_directive :: =  ` protect end

A protect end directive is part of an encryption envelope and indicates the end of the text of a description to 
be encrypted.

24.1.2.3 Protect begin protected directive

protect_begin_protected_directive :: =  ` protect begin_protected

A protect begin protected directive forms the beginning of a decryption envelope.

24.1.2.4 Protect end protected directive

protect_end_protected_directive :: =  ` protect end_protected

A protect end protected directive forms the end of a decryption envelope.

24.1.2.5 Protect author directive

protect_author_directive :: =
      ` protect author = string_literal

A protect author directive identifies the author of the portion of the VHDL description in the enclosing 
encryption or decryption envelope. The string literal identifies the author.

If a protect author directive appears in an encryption envelope, other than in the source text, then the 
directive shall appear unchanged in the corresponding decryption envelope. If a protect author directive 
appears in a decryption envelope, it has no effect on decryption of the decryption envelope.

24.1.2.6 Protect author info directive

protect_author_info_directive :: =
      ` protect author_info = string_literal

A protect author info directive provides descriptive information about the author of the portion of the VHDL 
description in the enclosing encryption or decryption envelope. The string literal provides the descriptive 
information.

If a protect author info directive appears in an encryption envelope, other than in the source text, then the 
directive shall appear unchanged in the corresponding decryption envelope. If a protect author info directive 
appears in a decryption envelope, it has no effect on decryption of the decryption envelope.
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24.1.2.7 Protect encrypt agent directive

protect_encrypt_agent_directive :: =
      ` protect encrypt_agent = string_literal

A protect encrypt agent directive identifies the tool that created the enclosing decryption envelope. The 
string literal identifies the tool. An encryption tool shall include a protect encrypt agent directive in each 
decryption envelope it creates. The directive has no effect on decryption of the decryption envelope.

24.1.2.8 Protect encrypt agent info directive

protect_encrypt_agent_info_directive :: =
      ` protect encrypt_agent_info = string_literal

A protect encrypt agent info directive provides descriptive information about the tool that created the 
enclosing decryption envelope. The string literal provides the descriptive information. The directive has no 
effect on decryption of the decryption envelope.

24.1.2.9 Protect key keyowner directive

protect_key_keyowner_directive :: =  ` protect key_keyowner = string_literal

A protect key keyowner directive identifies the owner of a key or key pair used to encrypt a session key. The 
string literal identifies the person, organization, or tool that owns the key or key pair.

24.1.2.10 Protect key keyname directive

protect_key_keyname_directive :: =  ` protect key_keyname = string_literal

A protect key keyname directive identifies a particular key or key pair of a given key owner used to encrypt 
a session key. The string literal is the name of the key or key pair. If a key owner has more than one key, the 
key name may be used jointly with the key owner identified in a protect key keyowner directive to identify a 
given key or key pair.

24.1.2.11 Protect key method directive

protect_key_method_directive :: =  ` protect key_method = string_literal

A protect key method directive identifies the cipher used to encrypt a session key. The string literal 
identifies the cipher (see 24.1.3.2).

24.1.2.12 Protect key block directive

protect_key_block_directive :: =  ` protect key_block

A protect key block directive specifies use of a digital envelope. A protect key block directive appearing in 
an encryption envelope specifies that the encryption tool shall generate a session key to encrypt the portion 
of the VHDL description in the encryption envelope, and that the session key be encrypted. The 
corresponding decryption envelope shall contain a corresponding key block containing the encrypted 
session key. A protect key block directive appearing in a decryption envelope indicates that an encrypted 
session key immediately follows.
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24.1.2.13 Protect data keyowner directive

protect_data_keyowner_directive :: =  ` protect data_keyowner = string_literal

A protect data keyowner directive identifies the owner of a key or key pair used to encrypt a portion of a 
VHDL description. The string literal identifies the person, organization, or tool that owns the key or key 
pair.

24.1.2.14 Protect data keyname directive

protect_data_keyname_directive :: =  ` protect data_keyname = string_literal

A protect data keyname directive identifies a particular key or key pair of a given key owner used to encrypt 
a portion of a VHDL description. The string literal is the name of the key or key pair. If a key owner has 
more than one key, the key name may be used jointly with the key owner identified in a protect data 
keyowner directive to identify a given key or key pair.

24.1.2.15 Protect data method directive

protect_data_method_directive :: =  ` protect data_method = string_literal

A protect data method directive identifies the cipher used to encrypt a portion of a VHDL description. The 
string literal identifies the cipher (see 24.1.3.2).

24.1.2.16 Protect data block directive

protect_data_block_directive :: =  ` protect data_block

A protect data block directive appearing in a decryption envelope indicates that an encrypted portion of a 
VHDL description immediately follows.

24.1.2.17 Protect digest keyowner directive

protect_digest_keyowner_directive :: =  ` protect digest_keyowner = string_literal

A protect digest keyowner directive identifies the owner of a key pair used to encrypt a digest of a portion of 
a VHDL description. The string literal identifies the person, organization, or tool that owns the key pair.

24.1.2.18 Protect digest keyname directive

protect_digest_keyname_directive :: =  ` protect digest_keyname = string_literal

A protect digest keyname directive identifies a particular key pair of a given key owner used to encrypt a 
digest of a portion of a VHDL description. The string literal is the name of the key pair. If a key owner has 
more than one key, the key name may be used jointly with the key owner identified in a protect digest 
keyowner directive to identify a given key pair.

24.1.2.19 Protect digest key method directive

protect_digest_key_method_directive :: =  ` protect digest_key_method = string_literal

A protect digest key method directive identifies the cipher used to encrypt a digest of a portion of a VHDL 
description. The string literal identifies the cipher (see 24.1.3.2).
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24.1.2.20 Protect digest method directive

protect_digest_method_directive :: =  ` protect digest_method = string_literal

A protect digest method directive identifies a hash function used to compute a digest of a portion of a VHDL 
description. The string literal identifies the hash function (see 24.1.3.3).

24.1.2.21 Protect digest block directive

protect_digest_block_directive :: =  ` protect digest_block

A protect digest block directive specifies use of a digital signature. A protect digest block directive 
appearing in an encryption envelope specifies that the encryption tool shall compute a digest of the portion 
of the VHDL description in the encryption envelope, and that the digest be encrypted. The corresponding 
decryption envelope shall contain a corresponding digest block containing the encrypted digest. A protect 
digest block directive appearing in a decryption envelope indicates that an encrypted digest immediately 
follows.

24.1.2.22 Protect encoding directive

protect_encoding_directive :: =
      ` protect encoding = ( encoding_type_description
                                        [ , encoding_line_length_description ] [ , encoding_bytes_description ] )

encoding_type_description ::= enctype = string_literal

encoding_line_length_description ::= line_length = integer

encoding_bytes_description ::= bytes = integer

A protect encoding directive describes an encoding used for encrypted text in a decryption envelope.

If a protect encoding directive appears in an encryption envelope, other than in the source text, then the 
encryption tool shall use the encoding method to encode encrypted text in the corresponding decryption 
envelope. If an encryption envelope contains no protect encoding directive, a tool may choose an encoding 
method in an implementation-defined manner.

A protect encoding directive in a decryption envelope describes the encoding used in the immediately 
following key block, data block, or digest block.

The string literal following the enctype keyword identifies the encoding method (see 24.1.3.1).

The integer following the line_length keyword specifies the maximum number of characters, after 
encoding, that are permitted in each line of encoded text. For an encoding type other than "raw", a tool that 
encodes text shall insert end-of-line separators into the encoded text as follows:

a) If the standard or specification describing the encoding method specifies a fixed or maximum num-
ber of characters per line, the tool shall ensure that each line contains the fixed number, or no more 
than the maximum number, of characters. In this case, an encoding line length description has no 
effect.

b) If the standard or specification describing the encoding method does not specify a number of charac-
ters per line, then
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— If a protect encoding directive in an encryption envelope contains an encoding line length 
description, the tool shall ensure that each line contains no more than the specified number of 
characters.

— Otherwise, the tool may choose a maximum line length in an implementation-defined manner 
and ensure that each line contains no more than that number of characters.

For the "raw" encoding type, an encoding line length description has no effect.

The integer following the bytes keyword specifies the number of octets, before encoding and insertion of 
end-of-line separators, in the unencoded text.

A directive in an encryption envelope may contain an encoding bytes description, but such an encoding 
bytes description has no effect. A protect encoding directive in a decryption envelope shall contain an 
encoding bytes description. Moreover, the directive shall contain an encoding line length description if the 
standard or specification describing the encoding method does not specify a number of characters per line.

24.1.2.23 Protect viewport directive

protect_viewport_directive :: =
      ` protect viewport = ( viewport_object_description , viewport_access_description )

viewport_object_description ::= object = string_literal

viewport_access_description ::= access = string_literal

A protect viewport directive describes a declared object or objects in a VHDL description for which certain 
operations are to be permitted by a tool.

The value of the string literal following the object keyword identifies the declared object or objects. The 
value shall be in the form of the DefName property (see 19.4.6) of a VHPI object representing a declared 
object, but with the leading commercial at character, library name and period omitted. The declared objects 
identified are those declared objects for which both of the following hold:

— The declared object is declared in the source text of the protection envelope containing the protect 
viewport directive.

— The DefName property of the VHPI object representing the declared object, with the leading 
commercial at character, library name and period omitted, is the same as the value of the string 
literal, not counting differences in the use of corresponding uppercase and lowercase letters in basic 
identifiers.

If more than one declared object is identified, the operations are to be permitted for all of those declared 
objects.

The string literal following the access keyword specifies which operations are permitted for the identified 
declared object or objects, as follows:

— "R": Read-only access—The object may be read by any part of the VHDL description, by a VHPI 
program, or by a tool. It is an error if the object is updated other than by part of the VHDL 
description contained within the protection envelope containing the protect viewport directive.

— "W": Write-only access—The object may be updated by any part of the VHDL description, by a 
VHPI program, or by a tool. It is an error if the object is read other than by part of the VHDL 
description contained within the protection envelope containing the protect viewport directive.

— "RW": Read-write access—The object may be read and updated.
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It is an error if any other string literal, other than one that differs only in the use of corresponding uppercase 
and lowercase letters, appears in a viewport access description.

If a protect viewport directive appears in an encryption envelope, other than in the source text, then the 
directive shall appear unchanged in the corresponding decryption envelope.

If a decryption tool is presented with more than one protect viewport directive for a given declared object, it 
is an error if the viewport access descriptions do not all specify the same access.

NOTE 1—The object description may identify more than one object if there are overloaded subprograms, each of which 
declares an object of a given name. The values of the DefName properties of those objects may be identical.

NOTE 2—A protect viewport directive can be placed in the source text of an encryption envelope to avoid disclosing 
information about the viewport to the tool user and to avoid modification of the directive. The directive is interpreted by 
the decryption tool after decrypting the decryption envelope. A duplicate viewport directive may also be placed outside 
the source text in the encryption envelope to serve as documentation for the tool user. The requirement that the two 
directives specify the same access can be used to detect alteration of the non-encrypted directive.

24.1.2.24 Protect license directives

protect_decrypt_license_directive ::= ` protect decrypt_license = license_description

protect_runtime_license_directive ::= ` protect runtime_license = license_description

license_description ::=
      ( library = string_literal , entry = string_literal , feature = string_literal ,
        [ exit = string_literal , ] match = integer )

A protect license directive provides information to be used by a tool to acquire one or more licenses. A 
protect decrypt license directive describes acquisition information for a license that allows a decryption tool 
to proceed with decryption of the enclosing VHDL description. A protect runtime license directive describes 
acquisition information for a license that allows a decryption tool to proceed with execution of the enclosing 
VHDL description.

The string literal following the library keyword identifies an object library. The mapping between the string 
value and a host physical object library is not defined by this standard. If the host system cannot locate the 
physical object library identified by the string value, acquisition of the license fails.

The string literal following the entry keyword identifies an entry point in the object library that can be called 
to acquire a license. It is an error if the host system cannot locate an entry point using the string value. The 
string literal following the exit keyword, if present, identifies an entry point in the object library that can be 
called to release a license. It is an error if the exit keyword and a string value are specified and the host 
system cannot locate an entry point using the string value.

A tool acquires a license described by a license description by calling the license acquisition entry point, 
passing as a parameter the value of the string literal that follows the feature keyword. The acquisition entry 
point shall return an integer value. The decryption tool shall compare the returned integer value with the 
value of the integer following the match keyword. If the values are equal, the tool is granted the license; 
otherwise, the tool is denied the license and may use the return value of the acquisition entry point in an 
error message or may pass the return value as a status value to the host system environment.

If a protect decrypt license directive or protect runtime license directive appears in an encryption envelope, 
other than in the source text, the directive shall appear unchanged in the corresponding decryption envelope.

If a protect decrypt license directive or protect runtime license directive appears in a decryption envelope or 
within a decrypted portion of a VHDL description, a decryption tool shall acquire the license described by 
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the directive. For a protect decrypt license directive, if the tool is granted the license, it may proceed with 
further analysis of the VHDL description and may decrypt any enclosing decryption envelope and 
subsequent decryption envelopes in the VHDL description. Upon completion of decryption, the tool shall 
call the license release entry point. If the tool fails to acquire the license or is denied the license, the tool 
shall not proceed with any further analysis or decryption of the VHDL description. For a protect runtime 
license directive, if the tool is granted the license, it may proceed to execute the VHDL description. Upon 
termination of execution, the tool shall call the license release entry point. If the tool fails to acquire the 
license or is denied the license, the tool shall not execute the VHDL description.

NOTE—A protect decrypt license directive may appear as part of the source text in an encryption envelope. In that case, 
it is encrypted as part of the source text. If a decryption tool successfully decrypts the text, it shall still acquire the 
decryption license. If acquisition fails or is denied, the tool was not supposed to have decrypted the source text and shall 
not proceed with further analysis.

24.1.2.25 Protect comment directive

protect_comment_directive :: =  ` protect comment = string_literal

A protect comment directive provides information for the enlightenment of the human reader. If a protect 
comment directive appears in an encryption envelope, whether preceding or in the source text, then the 
directive shall appear unchanged in the corresponding decryption envelope. A protect comment directive 
appearing in the source text in an encryption envelope shall not be encrypted as part of the source text. If a 
protect comment directive appears in a decryption envelope, it has no effect on decryption of the decryption 
envelope.

24.1.3 Encoding, encryption, and digest methods

24.1.3.1 Encoding methods

This standard defines the following strings in encoding type descriptions and the corresponding encoding 
methods:

The encoding methods identified by required encoding type strings shall be implemented by a tool. A tool 
may implement an encoding method identified by an optional encoding type string, but if it does implement 
such a method, it shall use the corresponding encoding type string to identify that method.

A tool may implement further encoding methods and use other encoding type strings to identify those 
methods. Any further encoding method implemented by a tool should produce only printing graphic 
characters in the encoded text. Moreover, the tool, given the number of octets in the unencoded text, should 
be able to determine the exact number of characters of encoded text required to be decoded to yield the 
unencoded text. The effect of use of an encoding method that does not meet these conditions is not specified 
by this standard.

Encoding type string Required/optional Encoding methods

"uuencode" Required IEEE Std 1003.1™-2004 [B9] (uuencode Historical 
Algorithm) 

"base64" Required IETF RFC 2045 [B19] {also IEEE Std 1003.1-2004 [B9] 
(uuencode-m)} 

"quoted-printable" Optional IETF RFC 2045 [B19]

"raw" Optional Identity transformation; no encoding is performed, and 
the data may contain non-printing characters.
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It is an error if a protect directive identifies an encoding method that is not implemented by a tool processing 
the protect directive.

NOTE—The text produced by "raw" encoding may contain characters that signify the end of a line in some implementa-
tions. Transmission of a VHDL description containing such characters between host systems may involve translation of 
the characters, thus changing the content, length, or both, of the encrypted text. A change in the length of the text may 
cause an error when the text is read by a decryption tool.

24.1.3.2 Encryption methods

This standard defines the following strings in encryption method descriptions and the corresponding ciphers:�

The ciphers identified by required encryption method strings shall be implemented by a tool. A tool may 
implement a cipher identified by an optional encryption method string, but if it does implement such a 
cipher, it shall use the corresponding encryption method string to identify that cipher. A tool may implement 
further ciphers and use other encryption method strings to identify those ciphers.

Encryption method 
string

Required/
optional

Cipher Cipher type

"des-cbc" Required DES in CBC mode (FIPS PUB 46-3 [B4], �
FIPS PUB 81 [B5]).

Symmetric

"3des-cbc" Optional Triple DES in CBC mode (ANSI X9.52 [B2], �
FIPS PUB 46-3 [B4]).

Symmetric

"aes128-cbc" Optional AES in CBC mode with 128-bit key �
(FIPS PUB 197 [B7]).

Symmetric

"aes192-cbc" Optional AES in CBC mode with 192-bit key �
(FIPS PUB 197 [B7]).

Symmetric

"aes256-cbc" Optional AES in CBC mode with 256-bit key�
(FIPS PUB 197 [B7]).

Symmetric

"blowfish-cbc" Optional Blowfish in CBC mode (Schneier [B24]). Symmetric

"twofish128-cbc" Optional Twofish in CBC mode with 128-bit key �
(Schneier et al. [B25]).

Symmetric

"twofish192-cbc" Optional Twofish in CBC mode with 192-bit key �
(Schneier et al. [B25]).

Symmetric

"twofish256-cbc" Optional Twofish in CBC mode with 256-bit key �
(Schneier et al. [B25]).

Symmetric

"serpent128-cbc" Optional Serpent in CBC mode with 128-bit key �
(Anderson [B1]).

Symmetric

"serpent192-cbc" Optional Serpent in CBC mode with 192-bit key �
(Anderson [B1]).

Symmetric

"serpent256-cbc" Optional Serpent in CBC mode with 256-bit key �
(Anderson [B1]).

Symmetric

"cast128-cbc" Optional CAST-128 in CBC mode (IETF RFC 2144 [B20]). Symmetric

"rsa" Optional RSA (IETF RFC 2437 [B21]). Asymmetric

"elgamal" Optional ElGamal [B3]. Asymmetric

"pgp-rsa" Optional OpenPGP RSA key (IETF RFC 2440 [B22]). Asymmetric
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If a symmetric cipher is used in cipher-block chaining (CBC) mode, requiring an initialization vector, the 
encryption tool shall generate the initialization vector and include it as the first block of the encrypted 
information. It is recommended that the initialization vector be randomly generated for each use of the 
cipher.

It is an error if a protect directive identifies a cipher that is not implemented by a tool processing the protect 
directive.

NOTE—Use of a symmetric cipher to encrypt a session key in a digital envelope is not a common use case. Nonetheless, 
should such a cipher be used for that purpose, an initialization vector must be generated and included as the first block of 
encrypted information in the decrypt key block.

24.1.3.3 Digest methods

This standard defines the following strings in digest method descriptions and the corresponding hash 
functions:�

The hash functions identified by required digest method strings shall be implemented by a tool. A tool may 
implement a hash function identified by an optional digest method string, but if it does implement such a 
hash function, it shall use the corresponding digest method string to identify that hash function. A tool may 
implement further hash functions and use other digest method strings to identify those hash functions.

It is an error if a protect directive identifies a hash function that is not implemented by a tool processing the 
protect directive.

24.1.4 Encryption envelopes

24.1.4.1 General

An encryption envelope contains a portion of a VHDL description to be encrypted, along with protection 
directives that specify how the text of that portion is to be encrypted. A tool that performs such encryption is 
called an encryption tool. An encryption tool processes a design file containing one or more encryption 
envelopes and produces a design file in which each encryption envelope is replaced by a corresponding 
decryption envelope, and other text is unchanged. The tool may store the resulting design file in an 
implementation-defined manner.

encryption_envelope ::=
      { encrypt_specification }
      protect_begin_directive
            source_text
      protect_end_directive

encrypt_specification ::=
        encrypt_author_specification
      | encrypt_key_specification

Digest method string Required/optional Hash function

"sha1" Required Secure Hash Algorithm 1 (SHA-1) (FIPS PUB 180-3 [B6]).

"md5" Required Message Digest Algorithm 5 (IETF RFC 1321 [B18]).

"md2" Optional Message Digest Algorithm 2 (IETF RFC 1319 [B17]).

"ripemd-160" Optional RIPEMD-160 (ISO/IEC 10118-3 [B23]).
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      | encrypt_data_specification
      | encrypt_digest_specification
      | encrypt_license_specification
      | protect_encoding_directive
      | protect_viewport_directive

encrypt_author_specification ::=
        protect_author_directive [ protect_author_info_directive ]
      | protect_author_info_directive [ protect_author_directive ]

encrypt_license_specification ::=
        protect_decrypt_license_directive [ protect_runtime_license_directive ]
      | protect_runtime_license_directive [ protect_decrypt_license_directive ]

The protect directives in an encryption envelope may be combined into protect directives with multiple 
keyword expressions (see 24.1.1), provided the equivalent sequence of protect directives each containing 
one keyword expression conforms to the rules for forming an encryption envelope.

An encryption envelope may contain protect comment directives within or between any specifications or 
directives, or within the source text. Such protect comment directives do not form part of a specification or 
part of the source text, but are included unchanged in the corresponding decryption envelope.

The source text in an encryption envelope is a sequence of lexical elements and separators (see 15.3). The 
encryption tool performs no analysis on the lexical elements, other than determining that the text is properly 
composed of lexical elements and separators, identifying protect comment directives, and locating the first 
protect end directive, which indicates the end of the source text.

It is an error if an encryption envelope contains more than one of each of an encrypt author specification, an 
encrypt license specification, an encrypt data specification, an encrypt digest specification, or a protect 
encoding directive.

NOTE 1—Encryption envelopes cannot be nested. All characters between a protect begin directive and the first subse-
quent protect end directive, including any characters that would otherwise form an encryption envelope, but excluding 
any protect comment directives, are treated as text to be encrypted.

NOTE 2—The text to be encrypted may include a decryption envelope. Since all characters between the protect begin 
and protect end directives of an encryption envelope, other than characters in a protect comment directive, form text to 
be encrypted, any protect directives in the decryption envelope are not interpreted when processing the encryption enve-
lope. The result of encrypting the text is a decryption envelope containing a nested encrypted decryption envelope.

NOTE 3—If an implementation uses one or more characters to signify the end of a line, any such characters occurring 
between protect begin and protect end directives are included as part of the text to be encrypted. If the corresponding 
decryption envelope is decrypted on another implementation that signifies the end of a line differently, the number of 
lines in the resulting text may be different. See 15.3.

24.1.4.2 Encrypt key specifications

encrypt_key_specification ::=
      { encrypt_key_directive }
      protect_key_block_directive

encrypt_key_directive
        protect_key_keyowner_directive
      | protect_key_keyname_directive
      | protect_key_method_directive
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An encrypt key specification shall contain at most one of each of the encrypt key directives. If any encrypt 
key directive appears, then both a protect key keyowner directive and a protect key method directive shall 
appear.

If an encrypt key specification occurs in an encryption envelope, then the encryption tool shall form a digital 
envelope in the corresponding decryption envelope. The tool shall use a symmetric cipher to encrypt the 
source text and shall choose a session key in an implementation-defined manner for use with that cipher. 
The tool shall also include a decrypt key block in the corresponding decryption envelope that contains the 
encoded encrypted session key and the protect directives required to decode and decrypt the session key.

If no encrypt key directives appear in an encrypt key specification, then the encryption tool chooses a cipher 
and a key in an implementation-defined manner to encrypt the session key. Otherwise, the encryption tool 
shall use the cipher and key identified by the encrypt key directives to encrypt the session key. If the cipher 
is an asymmetric cipher, the public key of the identified key pair is used.

If more than one encrypt key specification occurs in an encryption envelope, the encryption tool shall 
choose only one session key to encrypt the source text. The tool shall include a decrypt key block, as 
described in this subclause, for each encrypt key specification appearing in the encryption envelope.

24.1.4.3 Encrypt data specifications

encrypt_data_specification ::=
      encrypt_data_directive
      { encrypt_data_directive }

encrypt_data_directive ::=
        protect_data_keyowner_directive
      | protect_data_keyname_directive
      | protect_data_method_directive

If an encryption envelope contains one or more encrypt key specifications, then any encrypt data 
specification in that envelope shall contain exactly one protect data method directive and no other encrypt 
data directive. The protect data method directive, if present, shall identify a symmetric cipher, and that 
cipher is used to encrypt the source text using the session key chosen by the tool.

If an encryption envelope contains no encrypt key specification, then any encrypt data specification in that 
envelope shall contain exactly one protect data keyowner directive and exactly one protect data method 
directive, and at most one protect data keyname directive. The protect data method directive may identify a 
symmetric cipher or an asymmetric cipher. The encryption tool shall use the cipher and key identified by the 
encrypt data directives to encrypt the source text. If the cipher is an asymmetric cipher, the public key of the 
identified key pair is used.

If an encryption envelope contains no encrypt data specification, then the encryption tool chooses a cipher in 
an implementation-defined manner to encrypt the source text. If the encryption envelope contains one or 
more encrypt key specifications, then the tool uses the chosen session key with the chosen cipher. 
Otherwise, the tool chooses a key in an implementation-defined manner for use with the chosen cipher.

The encryption tool shall include a decrypt data block in the corresponding decryption envelope containing 
the encoded encrypted source text and the protect directives required to decode and decrypt the source text.

24.1.4.4 Encrypt digest specifications

encrypt_digest_specification ::=
      { encrypt_digest_directive }
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      protect_digest_block_directive

encrypt_digest_directive ::=
        protect_digest_keyowner_directive
      | protect_digest_keyname_directive
      | protect_digest_key_method_directive
      | protect_digest_method_directive

An encrypt digest specification shall contain at most one of each of the encrypt digest directives. If a protect 
digest keyowner directive appears, then a protect digest key method directive shall appear and a protect 
digest keyname directive may appear. It is an error if a protect digest keyname directive appears and there is 
no protect digest keyowner directive.

If an encrypt digest specification occurs in an encryption envelope, then the encryption tool shall form a 
digital signature in the corresponding decryption envelope. The tool shall use a hash function to compute a 
digest of the source text and shall encrypt the digest with an asymmetric cipher using a private key. The tool 
shall also include a decrypt digest block in the corresponding decryption envelope that contains the encoded 
encrypted digest and the protect directives required to decode and decrypt the digest.

If no protect digest method directive appears in an encrypt digest specification, then the encryption tool 
chooses a hash function in an implementation-defined manner to compute the digest. Otherwise, the 
encryption tool shall use the hash function identified by the protect digest method directive to compute the 
digest.

If no protect digest keyowner directive and protect digest key method directive appear in an encrypt digest 
specification, then the encryption tool chooses a cipher and a key in an implementation-defined manner to 
encrypt the digest. Otherwise, the encryption tool shall use the cipher and key identified by the directives to 
encrypt the digest.

24.1.5 Decryption envelopes

24.1.5.1 General

A decryption envelope contains an encrypted portion of a VHDL description, along with protection 
directives that specify how the text of that portion is to be decrypted. A tool that performs such decryption is 
called a decryption tool. A decryption tool processes a design file containing one or more decryption 
envelopes and produces a design file with each decryption envelope replaced by the decrypted text, and with 
other text unchanged. The resulting design file may be further analyzed and interpreted by the tool or may be 
stored in an implementation-defined manner, provided the decrypted text is not disclosed to the user of the 
tool.

decryption_envelope ::=
      protect_begin_protected_directive
      [ decrypt_author_specification ]
      [ decrypt_license_specification ]
      decrypt_encrypt_agent_specification
      { protect_viewport_directive }
      { decrypt_key_block }
      decrypt_data_block
      [ decrypt_digest_block ]
      protect_end_protected_directive

decrypt_author_specification ::=
        protect_author_directive [ protect_author_info_directive ]

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



- 443 - IEC 61691-1-1:2011(E)�
IEEE Std 1076-2008

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

      | protect_author_info_directive [ protect_author_directive ]

decrypt_license_specification ::=
        protect_decrypt_license_directive [ protect_runtime_license_directive ]
      | protect_runtime_license_directive [ protect_decrypt_license_directive ]

decrypt_encrypt_agent_specification ::=
        protect_encrypt_agent_directive [ protect_encrypt_agent_info_directive ]
      | protect_encrypt_agent_info_directive  protect_encrypt_agent_directive

The protect directives in a decryption envelope may be combined into protect directives with multiple 
keyword expressions (see 24.1.1), provided the equivalent sequence of protect directives each containing 
one keyword expression conforms to the rules for forming a decryption envelope.

A decryption envelope may contain protect comment directives, including those that appear in any part of 
the corresponding encryption envelope, within or between any specifications or directives. Such protect 
comment directives do not form part of a specification.

The encoded text in a decrypt key block, a decrypt data block, or a decrypt digest block is a sequence of 
characters (see 24.1.3.1).

If a decrypted portion of a design file contains further decryption envelopes, the decryption tool shall further 
process those decryption envelopes as described in this subclause (24.1.5).

24.1.5.2 Decrypt key blocks

decrypt_key_block ::=
      protect_key_keyowner_directive
      [ protect_key_keyname_directive ]
      protect_key_method_directive
      protect_encoding_directive
      protect_key_block_directive
      encoded_text

A decrypt key block in a decryption envelope contains an encoded encrypted session key for a digital 
envelope. A decryption tool shall determine in an implementation-defined manner whether it has access to 
the key identified by the protect key keyowner directive and the protect key keyname directive (if present). 
If the cipher identified by the protect key method directive is an asymmetric cipher, the tool determines 
whether is has access to the private key of the identified key pair.

If more than one decrypt key block appears in a decryption envelope, the decryption tool shall determine 
whether it has access to the key identified by any of the decrypt key blocks. If may choose any of the decrypt 
key blocks for which it has access to the identified key to obtain the session key.

For a given protect key block, if the tool has access to the identified key, it uses the encoding identified by 
the protect encoding directive to decode the encoded text to obtain the encrypted session key. The tool then 
uses the cipher identified by the protect key method directive with the identified key to decrypt the session 
key.

24.1.5.3 Decrypt data blocks

decrypt_data_block ::=
      [ protect_data_keyowner_directive
      [ protect_data_keyname_directive ] ]

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



IEC 61691-1-1:2011(E) - 444 - �
IEEE Std 1076-2008

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

      protect_data_method_directive
      protect_encoding_directive
      protect_data_block_directive
      encoded_text

A decrypt data block in a decryption envelope contains an encoded encrypted portion of a VHDL 
description. If the decryption envelope contains one or more decrypt key blocks, the key used for decryption 
is a session key, and a decryption tool shall obtain the session key as described in 24.1.5.2. It is an error if 
the decryption envelope contains one or more decrypt key blocks and the decrypt data block contains a 
protect data keyowner directive.

If the decryption envelope contains no decrypt key blocks, then the decrypt data block shall contain a protect 
data keyowner directive and may contain a protect data keyname directive. The key identified by the protect 
data keyowner directive and the protect data keyname directive (if present) is the key used to decrypt the 
encrypted portion of the VHDL description. If the cipher identified by the protect data method directive is an 
asymmetric cipher, the private key of the identified key pair is used. It is an error if the decryption tool does 
not have access to the identified key.

The decryption tool uses the encoding identified by the protect encoding directive to decode the encoded 
text to obtain the encrypted portion of the VHDL description. The tool then uses the cipher identified by the 
protect data method directive with the session key or identified key, as appropriate, to decrypt the portion of 
the VHDL description.

24.1.5.4 Decrypt digest blocks

decrypt_digest_block ::=
      protect_digest_keyowner_directive
      [  protect_digest_keyname_directive ]
      protect_digest_key_method_directive
      protect_digest_method_directive
      protect_encoding_directive
      protect_digest_block_directive
      encoded_text

A decrypt digest block in a decryption envelope contains an encoded digital signature of a portion of a 
VHDL description. A decryption tool shall determine in an implementation-defined manner whether it has 
access to the public key of the key pair identified by the protect digest keyowner directive and the protect 
digest keyname directive (if present). It is an error if the tool does not have access to the key. Otherwise, the 
tool shall verify the digital signature as follows:

a) The tool shall compute a digest of the decrypted portion of the VHDL description (see 24.1.5.3) 
using the hash function identified by the decrypt digest method directive.

b) The tool shall use the encoding identified by the protect encoding directive to decode the encoded 
text to obtain the encrypted signature digest, and then use the cipher identified by the protect digest 
key method directive with the identified public key to decrypt the signature digest.

c) It is an error if the computed digest differs from the signature digest.

24.1.6 Protection requirements for decryption tools

Since the purpose of encrypting portions of a VHDL description is to prevent disclosure of those portions to 
a user, a decryption tool, after processing a decryption envelope, shall conform to the following restriction, 
unless otherwise permitted in an implementation-defined manner by the effect of acquiring a license (see 
24.1.2.24):
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— A decryption tool shall not display or store in any form accessible to the user or other tools any parts 
of decrypted portions of a VHDL description, decrypted keys, or decrypted digests.

— If a decryption tool transforms a decrypted portion of a VHDL description (for example, by 
synthesizing a circuit and describing it in VHDL or any other representation), then these 
requirements shall apply to the transformed portion also.

— If a decryption tool provides a means for the tool user to gain access to a representation of a VHDL 
description or an elaboration of a VHDL description (for example, by means of a user interface or an 
applications programming interface such as VHPI), then the tool shall not provide access to any 
representation of a decrypted portion of a VHDL description other than a representation of an object 
specified by a protect viewport directive.

— Any message (for example, an error message) generated by a decryption tool shall not include 
information that discloses content of a decrypted portion of a VHDL description, a decrypted key, or 
a decrypted digest. For example, a message shall not include a name or hierarchical path name 
identifying part of a decrypted portion of a VHDL description.

— If a decryption tool executes an assertion statement (see 10.3) that causes an assertion violation, or 
executes a report statement (see 10.4), the message shall not include the name of the design unit 
containing the statement, the rules of 10.3 and 10.4 notwithstanding.

— The value of any 'INSTANCE_NAME or 'PATH_NAME predefined attribute (see 16.2) formed by 
the decryption tool shall not include any element that is a name or label defined in a decrypted 
portion of a VHDL description, the rules of 16.2 notwithstanding.

— If a decrypted portion of a VHDL description includes an instantiation of a declaration that is 
declared in a portion of the VHDL description that is not encrypted, a decryption tool may provide 
access to a representation of the design subhierarchy whose root is the instance, provided the means 
of providing access does not contradict other requirements of this subclause. For example, a VHPI 
tool may return a handle to a VHPI object representing such an instance and allow navigation of 
associations from that reference object, provided the target objects represent parts of the design 
subhierarchy.
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Annex A

(informative) 

Description of accompanying files

A.1 General

This annex describes the machine-readable elements that accompany this standard document. They are 
included in an archive file available for download from the IEEE Web site.15 

A.2 Package bodies

A.2.1 General

VHDL source files for the packages residing in library IEEE described in this standard are in the ieee
directory of the archive file. The bodies of the standard mathematical packages are not normative. They are 
provided as a guideline to implementers, to suggest ways in which implementers may implement the 
packages. The bodies of the standard multivalue package and the standard synthesis packages, on the other 
hand, are normative specifications of the semantics of the packages.

A.2.2 Standard mathematical packages

The VHDL source files for the standard mathematical packages are:
— math_real.vhdl: package declaration for MATH_REAL
— math_real-body.vhdl: package body for MATH_REAL
— math_complex.vhdl: package declaration for MATH_COMPLEX
— math_complex-body.vhdl: package body for MATH_COMPLEX

A.2.3 Standard multivalue logic package

The VHDL source files for the standard multivalue logic package are:
— std_logic_1164.vhdl: package declaration for STD_LOGIC_1164
— std_logic_1164-body.vhdl: package body for STD_LOGIC_1164
— std_logic_textio.vhdl: package declaration for STD_LOGIC_TEXTIO

A.2.4 Standard synthesis packages

The VHDL source files for the standard synthesis packages are:
— numeric_bit.vhdl: package declaration for NUMERIC_BIT
— numeric_bit-body.vhdl: package body for NUMERIC_BIT
— numeric_std.vhdl: package declaration for NUMERIC_STD
— numeric_std-body.vhdl: package body for NUMERIC_STD

15The archive file is available at http://standards.ieee.org/downloads/1076/1076-2008/.
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— numeric_bit_unsigned.vhdl: package declaration for NUMERIC_BIT_UNSIGNED
— numeric_bit_unsigned-body.vhdl: package body for NUMERIC_BIT_UNSIGNED
— numeric_std_unsigned.vhdl: package declaration for NUMERIC_STD_UNSIGNED
— numeric_std_unsigned-body.vhdl: package body for NUMERIC_STD_UNSIGNED

A.2.5 Fixed-point and floating-point packages

The VHDL source files for the fixed-point and floating-point packages are:
— fixed_float_types.vhdl: package declaration for FIXED_FLOAT_TYPES
— fixed_generic_pkg.vhdl: package declaration for FIXED_GENERIC_PKG
— fixed_generic_pkg-body.vhdl: package body for FIXED_GENERIC_PKG
— fixed_pkg.vhdl: package instantiation declaration for FIXED_PKG
— float_generic_pkg.vhdl: package declaration for FLOAT_GENERIC_PKG
— float_generic_pkg-body.vhdl: package body for FLOAT_GENERIC_PKG
— float_pkg.vhdl: package instantiation declaration for FLOAT_PKG

A.3 Testbench files

A.3.1 General

VHDL source files for testbenches for the standard packages are in the testbench directory of the archive 
file. These testbenches are not normative, and do not exhaustively test the packages. They are provided as an 
aid to implementers developing alternative implementations of the package bodies.

A.3.2 Testbenches for the standard mathematical packages

The VHDL source files for the testbenches for the standard mathematical packages are:
— real_tests.vhd: testbench for MATH_REAL
— complex_tests.vhd: testbench for MATH_COMPLEX

A.4 VHPI files

A.4.1 Machine-readable information model

The VHPI information model was developed using a specialized software tool16 and is represented in XMI 
2.1 format. The XMI file, vhpi_uml.xml, is provided in the vhpi_uml directory of the archive file.

The archive file also contains a browsable HTML model report of the information model, generated using 
the specialized software tool. The main index file of the report is vhpi_uml.html, located in the html
directory within the vhpi_uml directory.

16The following information is given for the convenience of users of this standard and does not consittute an endorsement by the IEEE 
of this product. Equivalent products may be used if they can be shown to lead to the same results. The specialized software tool is 
MagicDraw® provided by No Magic, Inc.® MagicDraw is available for free download from www.magicdraw.com. Other UML tools 
may be able to read the XMI representation of the information model, though they might not be able to interpret the representation of 
the diagrams.
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A.4.2 VHPI header file

The VHPI header file, vhpi_user.h, is provided in the code directory of the archive file.

A.4.3 VHPI definitions file

A.4.3.1 General

The VHPI definitions file, vhpi_def.c, is provided in the code directory of the archive file. This C 
source file contains a definition for the vhpi_is_printable function (see 23.3) and other definitions 
described in this subclause (A.4.3). The file is informative and is provided as a guide to implementers of 
VHPI tools.

A.4.3.2 VHPICharCodes

An array of strings of graphic characters corresponding to character codes.

Synopsis:

static const char* VHPICharCodes[256] = {
  "NUL",  "SOH",  "STX",  "ETX",  "EOT",  "ENQ",  "ACK",  "BEL",
  "BS",   "HT",   "LF",   "VT",   "FF",   "CR",   "SO" ,  "SI",
  "DLE",  "DC1",  "DC2",  "DC3",  "DC4",  "NAK",  "SYN",  "ETB",
  "CAN",  "EM",   "SUB",  "ESC",  "FSP",  "GSP",  "RSP",  "USP",
  " ",    "!",    "\"",   "#",    "$",    "%",    "&",    "'",
  "(",    ")",    "*",    "+",    ",",    "-",    ".",    "/",
  "0",    "1",    "2",    "3",    "4",    "5",    "6",    "7",
  "8",    "9",    ":",    ";",    "<",    "=",    ">",    "?",
  "@",    "A",    "B",    "C",    "D",    "E",    "F",    "G",
  "H",    "I",    "J",    "K",    "L",    "M",    "N",    "O",
  "P",    "Q",    "R",    "S",    "T",    "U",    "V",    "W",
  "X",    "Y",    "Z",    "[",    "\\",   "]",    "^",    "_",
  "`",    "a",    "b",    "c",    "d",    "e",    "f",    "g",
  "h",    "i",    "j",    "k",    "l",    "m",    "n",    "o",
  "p",    "q",    "r",    "s",    "t",    "u",    "v",    "w",
  "x",    "y",    "z",    "{",    "|",    "}",    "~",    "DEL",
  "C128", "C129", "C130", "C131", "C132", "C133", "C134", "C135",
  "C136", "C137", "C138", "C139", "C140", "C141", "C142", "C143",
  "C144", "C145", "C146", "C147", "C148", "C149", "C150", "C151",
  "C152", "C153", "C154", "C155", "C156", "C157", "C158", "C159",
  " ",    "¡",    "¢",    "£",    "¤",    "¥",    "¦",    "§",
  "¨",    "©",    "ª",    "«",    "¬",    "-",    "®",    "¯",
  "°",    "±",    "²",    "³",    "´",    "μ",    "¶",    "·",
  "¸",    "¹",    "º",    "»",    "¼",    "½",    "¾",    "¿",
  "À",    "Á",    "Â",    "Ã",    "Ä",    "Å",    "Æ",    "Ç",
  "È",    "É",    "Ê",    "Ë",    "Ì",    "Í",    "Î",    "Ï",
  "Ð",    "Ñ",    "Ò",    "Ó",    "Ô",    "Õ",    "Ö",    "×",
  "Ø",    "Ù",    "Ú",    "Û",    "Ü",    "Ý",    "Þ",    "ß",
  "à",    "á",    "â",    "ã",    "ä",    "å",    "æ",    "ç",
  "è",    "é",    "ê",    "ë",    "ì",    "í",    "î",    "ï",
  "ð",    "ñ",    "ò",    "ó",    "ô",    "õ",    "ö",    "÷",
  "ø",    "ù",    "ú",    "û",    "ü",    "ý",    "þ",    "ÿ" };
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Description:

Each element of the array is a null-terminated string whose value is a printable representation of the 
character code that is the index of the element. For character codes representing graphic characters (see 
15.2), the string contains just the graphic character. For other character codes, the string contains a 
representation in uppercase letters of the enumeration literal of type STD.STANDARD.CHARACTER 
whose position number is the character code.

A.4.3.3 VHPI_GET_PRINTABLE_STRINGCODE

Gets a string of graphic characters corresponding to a character code.

Synopsis:

#define VHPI_GET_PRINTABLE_STRINGCODE( ch ) VHPICharCodes[unsigned char ch]

Description:

The macro takes as its argument a character code in the range 0 to 255 and substitutes an expression that 
uses the character code to index an element of the VHPICharCodes array (see A.4.3). The type of the 
expression is a pointer to a null-terminated string.

A.4.4 VHPI sensitivity-set functions file

The VHPI sensitivity-set function file, vhpi_sens.c, is provided in the code directory of the archive 
file. This C source file contains definitions of functions that implement the sensitivity-set macros (see B.2). 
The file also contains a main program that can be used to perform regression testing of the functions. The 
file is informative and is provided as a guide to implementers of VHPI tools.
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Annex B

(normative) 

VHPI header file

B.1 General

The VHPI header file, vhpi_user.h, shall be included by a VHPI tool. A tool provider should provide 
the header file with the tool.

Several definitions in the VHPI header file are marked as deprecated. They are included for compatibility 
with earlier versions of the VHPI than that defined by this standard. VHPI programs that conform to this 
standard should not use definitions so marked. The function vhpi_get_foreign_info, which is 
marked as deprecated, is defined to be the same as the vhpi_get_foreignf_info function. The 
deprecated function will be removed in a future revision of this standard.

The content of the vhpi_user.h file is as follows:

/* --------------------------------------------------------------------
/*
/* Copyright © 2008 by IEEE. All rights reserved.
/*
/* This source file is an essential part of IEEE Std 1076-2008,
/* IEEE Standard VHDL Language Reference Manual. This source file may
/* not be copied, sold, or included with software that is sold without
/* written permission from the IEEE Standards Department. This source
/* file may be copied for individual use between licensed users. This
/* source file is provided on an AS IS basis. The IEEE disclaims ANY
/* WARRANTY EXPRESS OR IMPLIED INCLUDING ANY WARRANTY OF
/* MERCHANTABILITY AND FITNESS FOR USE FOR A PARTICULAR PURPOSE. The
/* user of the source file shall indemnify and hold IEEE harmless from
/* any damages or liability arising out of the use thereof.
/*
/*   Title     :  vhpi_user.h
/*             :
/*   Developers:  IEEE P1076 Working Group, VHPI Task Force
/*             :
/*   Purpose   :  This header file describes the procedural interface
/*             :  to access VHDL compiled, instantiated and run-time
/*             :  data. It is derived from the UML model. For conformance
/*             :  with the VHPI standard, a VHPI application or program
/*             :  shall reference this header file.
/*             :
/*   Note      :  The contents of this file may be modified in an
/*             :  implementation to provide implementation-defined
/*             :  functionality, as described in B.3.
/*             :
/* --------------------------------------------------------------------
/* modification history :
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/* --------------------------------------------------------------------
/* $Revision: 1387 $
/* $Date: 2009-01-10 17:45:30 +1030 (Sat, 10 Jan 2009) $
/* --------------------------------------------------------------------
 */

#ifndef VHPI_USER_H
#define VHPI_USER_H
#include <stddef.h>
#include <stdarg.h>
/* Ensure that size-critical types are defined on all OS platforms. */
#if defined (_MSC_VER)
typedef unsigned __int64 uint64_t;
typedef unsigned __int32 uint32_t;
typedef unsigned __int8 uint8_t;
typedef signed __int64 int64_t;
typedef signed __int32 int32_t;
typedef signed __int8 int8_t;
#elif defined(__MINGW32__)
#include <stdint.h>
#elif defined(__linux)
#include <inttypes.h>
#else
#include <sys/types.h>
#endif

#ifdef  __cplusplus
extern "C" {
#endif

/*--------------------------------------------------------------------*/
/*--------------------------- Portability Help -----------------------*/
/*--------------------------------------------------------------------*/
/* Use to export a symbol */
#if defined (_MSC_VER)
#ifndef PLI_DLLISPEC
#define PLI_DLLISPEC __declspec(dllimport)
#define VHPI_USER_DEFINED_DLLISPEC 1
#endif
#else
#ifndef PLI_DLLISPEC
#define PLI_DLLISPEC
#endif
#endif

/* Use to import a symbol */
#if defined (_MSC_VER)
#ifndef PLI_DLLESPEC
#define PLI_DLLESPEC __declspec(dllexport)
#define VHPI_USER_DEFINED_DLLESPEC 1
#endif
#else
#ifndef PLI_DLLESPEC
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#define PLI_DLLESPEC
#endif
#endif

/* Use to mark a function as external */
#ifndef PLI_EXTERN
#define PLI_EXTERN
#endif

/* Use to mark a variable as external */
#ifndef PLI_VEXTERN
#define PLI_VEXTERN extern
#endif

#ifndef PLI_PROTOTYPES
#define PLI_PROTOTYPES
/* object is defined imported by the application */
#define XXTERN PLI_EXTERN PLI_DLLISPEC
/* object is exported by the application */
#define EETERN PLI_EXTERN PLI_DLLESPEC
#endif

/* basic typedefs */
#ifndef VHPI_TYPES
#define VHPI_TYPES
typedef uint32_t *vhpiHandleT;
typedef uint32_t vhpiEnumT;
typedef uint8_t vhpiSmallEnumT;
typedef int32_t vhpiIntT;
typedef int64_t vhpiLongIntT;
typedef unsigned char vhpiCharT;
typedef double vhpiRealT;
typedef int32_t vhpiSmallPhysT;    
typedef struct vhpiPhysS
{
  int32_t high;
  uint32_t low;
} vhpiPhysT;

/********************** time structure ****************************/
typedef struct vhpiTimeS
{
  int32_t high;
  uint32_t low;
} vhpiTimeT;

/********************** value structure **************************/

/* value formats */
typedef enum {
  vhpiBinStrVal        = 1, /* do not move */
  vhpiOctStrVal        = 2, /* do not move */
  vhpiDecStrVal        = 3, /* do not move */
  vhpiHexStrVal        = 4, /* do not move */
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  vhpiEnumVal          = 5,
  vhpiIntVal           = 6,
  vhpiLogicVal         = 7,
  vhpiRealVal          = 8,
  vhpiStrVal           = 9,
  vhpiCharVal          = 10,
  vhpiTimeVal          = 11,
  vhpiPhysVal          = 12,
  vhpiObjTypeVal       = 13,
  vhpiPtrVal           = 14,
  vhpiEnumVecVal       = 15,
  vhpiIntVecVal        = 16,
  vhpiLogicVecVal      = 17,
  vhpiRealVecVal       = 18,
  vhpiTimeVecVal       = 19,
  vhpiPhysVecVal       = 20,
  vhpiPtrVecVal        = 21,
  vhpiRawDataVal       = 22,
  vhpiSmallEnumVal     = 23,
  vhpiSmallEnumVecVal  = 24,
  vhpiLongIntVal       = 25,
  vhpiLongIntVecVal    = 26,
  vhpiSmallPhysVal     = 27,
  vhpiSmallPhysVecVal  = 28

#ifdef VHPIEXTEND_VAL_FORMATS
  VHPIEXTEND_VAL_FORMATS
#endif

} vhpiFormatT;

/* value structure */
typedef struct vhpiValueS
{
  vhpiFormatT format;  /* vhpi[Char,[Bin,Oct,Dec,Hex]Str,
                               [Small]Enum,Logic,Int,Real,
                               [Small]Phys,Time,Ptr,
                               [Small]EnumVec,LogicVec,IntVect,RealVec,
                               [Small]PhysVec,TimeVec,
                               PtrVec,ObjType,RawData]Val */
  size_t bufSize;  /* the size in bytes of the value buffer;
                      this is set by the user */
  int32_t numElems;
  /* different meanings depending on the format:
     vhpiStrVal, vhpi{Bin...}StrVal: size of string
     array type values: number of array elements
     scalar type values: undefined
  */

  vhpiPhysT unit;
  union
    {
      vhpiEnumT enumv, *enumvs;
      vhpiSmallEnumT smallenumv, *smallenumvs;
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      vhpiIntT  intg, *intgs;
      vhpiLongIntT  longintg, *longintgs;
      vhpiRealT real, *reals;
      vhpiSmallPhysT smallphys, *smallphyss;
      vhpiPhysT phys, *physs;
      vhpiTimeT time, *times;
      vhpiCharT ch, *str;
      void *ptr, **ptrs;
    } value;
} vhpiValueT;

#endif

/* Following are the constant definitions. They are divided into
   three major areas:

 1) object types

 2) access methods

 3) properties

*/
#define vhpiUndefined -1

/*************** OBJECT KINDS *******************/
typedef enum {
        vhpiAccessTypeDeclK = 1001,
        vhpiAggregateK = 1002,
        vhpiAliasDeclK = 1003,
        vhpiAllK = 1004,
        vhpiAllocatorK = 1005,
        vhpiAnyCollectionK = 1006,
        vhpiArchBodyK = 1007,
        vhpiArgvK = 1008,
        vhpiArrayTypeDeclK = 1009,
        DEPRECATED_vhpiAssertStmtK = 1010,
        vhpiAssocElemK = 1011,
        vhpiAttrDeclK = 1012,
        vhpiAttrSpecK = 1013,
        DEPRECATED_vhpiBinaryExprK = 1014,
        vhpiBitStringLiteralK = 1015,
        vhpiBlockConfigK = 1016,
        vhpiBlockStmtK = 1017,
        vhpiBranchK = 1018,
        vhpiCallbackK = 1019,
        vhpiCaseStmtK = 1020,
        vhpiCharLiteralK = 1021,
        vhpiCompConfigK = 1022,
        vhpiCompDeclK = 1023,
        vhpiCompInstStmtK = 1024,
        vhpiCondSigAssignStmtK = 1025,
        vhpiCondWaveformK = 1026,
        vhpiConfigDeclK = 1027,
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        vhpiConstDeclK = 1028,
        vhpiConstParamDeclK = 1029,
        vhpiConvFuncK = 1030,
        vhpiDerefObjK = 1031,
        vhpiDisconnectSpecK = 1032,
        vhpiDriverK = 1033,
        vhpiDriverCollectionK = 1034,
        vhpiElemAssocK = 1035,
        vhpiElemDeclK = 1036,
        vhpiEntityClassEntryK = 1037,
        vhpiEntityDeclK = 1038,
        vhpiEnumLiteralK = 1039,
        vhpiEnumRangeK = 1040,
        vhpiEnumTypeDeclK = 1041,
        vhpiExitStmtK = 1042,
        vhpiFileDeclK = 1043,
        vhpiFileParamDeclK = 1044,
        vhpiFileTypeDeclK = 1045,
        vhpiFloatRangeK = 1046,
        vhpiFloatTypeDeclK = 1047,
        vhpiForGenerateK = 1048,
        vhpiForLoopK = 1049,
        vhpiForeignfK = 1050,
        vhpiFuncCallK = 1051,
        vhpiFuncDeclK = 1052,
        vhpiGenericDeclK = 1053,
        vhpiGroupDeclK = 1054,
        vhpiGroupTempDeclK = 1055,
        vhpiIfGenerateK = 1056,
        vhpiIfStmtK = 1057,
        vhpiInPortK = 1058,
        vhpiIndexedNameK = 1059,
        vhpiIntLiteralK = 1060,
        vhpiIntRangeK = 1061,
        vhpiIntTypeDeclK = 1062,
        vhpiIteratorK = 1063,
        vhpiLibraryDeclK = 1064,
        DEPRECATED_vhpiLoopStmtK = 1065,
        vhpiNextStmtK = 1066,
        vhpiNullLiteralK = 1067,
        vhpiNullStmtK = 1068,
        DEPRECATED_vhpiOperatorK = 1069,
        vhpiOthersK = 1070,
        vhpiOutPortK = 1071,
        vhpiPackBodyK = 1072,
        vhpiPackDeclK = 1073,
        vhpiPackInstK = 1074,
        vhpiParamAttrNameK = 1075,
        vhpiPhysLiteralK = 1076,
        vhpiPhysRangeK = 1077,
        vhpiPhysTypeDeclK = 1078,
        vhpiPortDeclK = 1079,
        DEPRECATED_vhpiProcCallStmtK = 1080,
        vhpiProcDeclK = 1081,
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        vhpiProcessStmtK = 1082,
        DEPRECATED_vhpiProtectedTypeK = 1083,
        vhpiProtectedTypeBodyK = 1084,
        vhpiProtectedTypeDeclK = 1085,
        vhpiRealLiteralK = 1086,
        vhpiRecordTypeDeclK = 1087,
        vhpiReportStmtK = 1088,
        vhpiReturnStmtK = 1089,
        vhpiRootInstK = 1090,
        vhpiSelectSigAssignStmtK = 1091,
        vhpiSelectWaveformK = 1092,
        vhpiSelectedNameK = 1093,
        vhpiSigDeclK = 1094,
        vhpiSigParamDeclK = 1095,
        vhpiSimpAttrNameK = 1096,
        vhpiSimpleSigAssignStmtK = 1097,
        vhpiSliceNameK = 1098,
        vhpiStringLiteralK = 1099,
        vhpiSubpBodyK = 1100,
        vhpiSubtypeDeclK = 1101,
        DEPRECATED_vhpiSubtypeIndicK = 1102,
        vhpiToolK = 1103,
        vhpiTransactionK = 1104,
        vhpiTypeConvK = 1105,
        DEPRECATED_vhpiUnaryExprK = 1106,
        vhpiUnitDeclK = 1107,
        vhpiUserAttrNameK = 1108,
        vhpiVarAssignStmtK = 1109,
        vhpiVarDeclK = 1110,
        vhpiVarParamDeclK = 1111,
        vhpiWaitStmtK = 1112,
        vhpiWaveformElemK = 1113,
        vhpiWhileLoopK = 1114,
        vhpiQualifiedExprK = 1115,
        vhpiUseClauseK = 1116,
        vhpiConcAssertStmtK = 1117,
        vhpiConcProcCallStmtK = 1118,
        vhpiForeverLoopK = 1119,
        vhpiSeqAssertStmtK = 1120,
        vhpiSeqProcCallStmtK = 1121,
        vhpiSeqSigAssignStmtK = 1122,
        vhpiProtectedTypeInstK = 1123
#ifdef VHPIEXTEND_CLASSES
        VHPIEXTEND_CLASSES
#endif
        } vhpiClassKindT;

/********* methods used to traverse 1 to 1 relationships **************/
typedef enum {
        vhpiAbstractLiteral = 1301,
        vhpiActual = 1302,
        vhpiAll = 1303,
        vhpiAttrDecl = 1304,
        vhpiAttrSpec = 1305,
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        vhpiBaseType = 1306,
        vhpiBaseUnit = 1307,
        DEPRECATED_vhpiBasicSignal = 1308,
        vhpiBlockConfig = 1309,
        vhpiCaseExpr = 1310,
        vhpiCondExpr = 1311,
        vhpiConfigDecl = 1312,
        vhpiConfigSpec = 1313,
        vhpiConstraint = 1314,
        vhpiContributor = 1315,
        vhpiCurCallback = 1316,
        DEPRECATED_vhpiCurEqProcess = 1317,
        vhpiCurStackFrame = 1318,
        vhpiDerefObj = 1319,
        DEPRECATED_vhpiDecl = 1320,
        vhpiDesignUnit = 1321,
        vhpiDownStack = 1322,
        DEPRECATED_vhpiElemSubtype = 1323,
        vhpiEntityAspect = 1324,
        vhpiEntityDecl = 1325,
        vhpiEqProcessStmt = 1326,
        vhpiExpr = 1327,
        vhpiFormal = 1328,
        vhpiFuncDecl = 1329,
        vhpiGroupTempDecl = 1330,
        vhpiGuardExpr = 1331,
        vhpiGuardSig = 1332,
        vhpiImmRegion = 1333,
        vhpiInPort = 1334,
        vhpiInitExpr = 1335,
        DEPRECATED_vhpiIterScheme = 1336,
        vhpiLeftExpr = 1337,
        vhpiLexicalScope = 1338,
        vhpiLhsExpr = 1339,
        vhpiLocal = 1340,
        vhpiLogicalExpr = 1341,
        DEPRECATED_vhpiName = 1342,
        DEPRECATED_vhpiOperator = 1343,
        vhpiOthers = 1344,
        vhpiOutPort = 1345,
        vhpiParamDecl = 1346,
        DEPRECATED_vhpiParamExpr = 1347,
        vhpiParent = 1348,
        vhpiPhysLiteral = 1349,
        vhpiPrefix = 1350,
        vhpiPrimaryUnit = 1351,
        vhpiProtectedTypeBody = 1352,
        vhpiProtectedTypeDecl = 1353,
        vhpiRejectTime = 1354,
        vhpiReportExpr = 1355,
        vhpiResolFunc = 1356,
        vhpiReturnExpr = 1357,
        DEPRECATED_vhpiReturnTypeMark = 1358,
        vhpiRhsExpr = 1359,
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        vhpiRightExpr = 1360,
        vhpiRootInst = 1361,
        vhpiSelectExpr = 1362,
        vhpiSeverityExpr = 1363,
        vhpiSimpleName = 1364,
        vhpiSubpBody = 1365,
        vhpiSubpDecl = 1366,
        DEPRECATED_vhpiSubtype = 1367,
        vhpiSuffix = 1368,
        vhpiTimeExpr = 1369,
        vhpiTimeOutExpr = 1370,
        vhpiTool = 1371,
        vhpiType = 1372,
        DEPRECATED_vhpiTypeMark = 1373,
        vhpiUnitDecl = 1374,
        vhpiUpStack = 1375,
        vhpiUpperRegion = 1376,
        vhpiUse = 1377,
        vhpiValExpr = 1378,
        DEPRECATED_vhpiValSubtype = 1379,
        vhpiElemType = 1380,
        vhpiFirstNamedType = 1381,
        vhpiReturnType = 1382,
        vhpiValType = 1383,
        vhpiCurRegion = 1384,
        vhpiSignal = 1385,
        vhpiLibraryDecl = 1386,
        vhpiSimNet = 1387,
        vhpiAliasedName = 1388,
        vhpiCompDecl = 1389,
        vhpiProtectedTypeInst = 1390,
        vhpiGenIndex = 1391

#ifdef VHPIEXTEND_ONE_METHODS
        VHPIEXTEND_ONE_METHODS

#endif

} vhpiOneToOneT;

/******* methods used to traverse 1 to many relationships ************/
typedef enum {
        vhpiAliasDecls = 1501,
        vhpiArgvs = 1502,
        vhpiAttrDecls = 1503,
        vhpiAttrSpecs = 1504,
        vhpiBasicSignals = 1505,
        vhpiBlockStmts = 1506,
        vhpiBranchs = 1507,
        /* 1508 */
        vhpiChoices = 1509,
        vhpiCompInstStmts = 1510,
        DEPRECATED_vhpiCondExprs = 1511,
        vhpiCondWaveforms = 1512,
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        vhpiConfigItems = 1513,
        vhpiConfigSpecs = 1514,
        vhpiConstDecls = 1515,
        vhpiConstraints = 1516,
        DEPRECATED_vhpiContributors = 1517,
        /* 1518 */
        vhpiDecls = 1519,
        vhpiDepUnits = 1520,
        vhpiDesignUnits = 1521,
        vhpiDrivenSigs = 1522,
        vhpiDrivers = 1523,
        vhpiElemAssocs = 1524,
        DEPRECATED_vhpiEntityClassEntrys = 1525,
        vhpiEntityDesignators = 1526,
        vhpiEnumLiterals = 1527,
        vhpiForeignfs = 1528,
        vhpiGenericAssocs = 1529,
        vhpiGenericDecls = 1530,
        vhpiIndexExprs = 1531,
        vhpiIndexedNames = 1532,
        vhpiInternalRegions = 1533,
        vhpiMembers = 1534,
        vhpiPackInsts = 1535,
        vhpiParamAssocs = 1536,
        vhpiParamDecls = 1537,
        vhpiPortAssocs = 1538,
        vhpiPortDecls = 1539,
        vhpiRecordElems = 1540,
        vhpiSelectWaveforms = 1541,
        vhpiSelectedNames = 1542,
        DEPRECATED_vhpiSensitivitys = 1543,
        vhpiSeqStmts = 1544,
        vhpiSigAttrs = 1545,
        vhpiSigDecls = 1546,
        vhpiSigNames = 1547,
        vhpiSignals = 1548,
        DEPRECATED_vhpiSpecNames = 1549,
        vhpiSpecs = 1550,
        vhpiStmts = 1551,
        vhpiTransactions = 1552,
        DEPRECATED_vhpiTypeMarks = 1553,
        vhpiUnitDecls = 1554,
        vhpiUses = 1555,
        vhpiVarDecls = 1556,
        vhpiWaveformElems = 1557,
        vhpiLibraryDecls = 1558,
        vhpiLocalLoads = 1559,
        vhpiOptimizedLoads = 1560,
        vhpiTypes = 1561,
        vhpiUseClauses = 1562,
        vhpiGenerateStmts = 1563,
        vhpiLocalContributors = 1564,
        vhpiOptimizedContributors = 1565,
        vhpiParamExprs = 1566,
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        vhpiEqProcessStmts = 1567,
        vhpiEntityClassEntries = 1568,
        vhpiSensitivities = 1569

#ifdef VHPIEXTEND_MANY_METHODS
        VHPIEXTEND_MANY_METHODS
#endif

} vhpiOneToManyT;

/* Note: The following macro is defined for compatibility with
   prototype implementations that use the incorrectly spelled
   enumeration value. The macro is deprecated and will be removed
   in a future revision of the standard.
*/
#define vhpiSensitivitys DEPRECATED_vhpiSensitivitys

/****************** PROPERTIES *******************/
/******* INTEGER or BOOLEAN PROPERTIES **********/
typedef enum {
        vhpiAccessP = 1001,
        vhpiArgcP = 1002,
        vhpiAttrKindP = 1003,
        vhpiBaseIndexP = 1004,
        vhpiBeginLineNoP = 1005,
        vhpiEndLineNoP = 1006,
        vhpiEntityClassP = 1007,
        vhpiForeignKindP = 1008,
        vhpiFrameLevelP = 1009,
        vhpiGenerateIndexP = 1010,
        vhpiIntValP = 1011,
        vhpiIsAnonymousP = 1012,
        vhpiIsBasicP = 1013,
        vhpiIsCompositeP = 1014,
        vhpiIsDefaultP = 1015,
        vhpiIsDeferredP = 1016,
        vhpiIsDiscreteP = 1017,
        vhpiIsForcedP = 1018,
        vhpiIsForeignP = 1019,
        vhpiIsGuardedP = 1020,
        vhpiIsImplicitDeclP = 1021,
        DEPRECATED_vhpiIsInvalidP = 1022,
        vhpiIsLocalP = 1023,
        vhpiIsNamedP = 1024,
        vhpiIsNullP = 1025,
        vhpiIsOpenP = 1026,
        vhpiIsPLIP = 1027,
        vhpiIsPassiveP = 1028,
        vhpiIsPostponedP = 1029,
        vhpiIsProtectedTypeP = 1030,
        vhpiIsPureP = 1031,
        vhpiIsResolvedP = 1032,
        vhpiIsScalarP = 1033,
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        vhpiIsSeqStmtP = 1034,
        vhpiIsSharedP = 1035,
        vhpiIsTransportP = 1036,
        vhpiIsUnaffectedP = 1037,
        vhpiIsUnconstrainedP = 1038,
        vhpiIsUninstantiatedP = 1039,
        vhpiIsUpP = 1040,
        vhpiIsVitalP = 1041,
        vhpiIteratorTypeP = 1042,
        vhpiKindP = 1043,
        vhpiLeftBoundP = 1044,
        DEPRECATED_vhpiLevelP = 1045,
        vhpiLineNoP = 1046,
        vhpiLineOffsetP = 1047,
        vhpiLoopIndexP = 1048,
        vhpiModeP = 1049,
        vhpiNumDimensionsP = 1050,
        DEPRECATED_vhpiNumFieldsP = 1051,
        vhpiNumGensP = 1052,
        vhpiNumLiteralsP = 1053,
        vhpiNumMembersP = 1054,
        vhpiNumParamsP = 1055,
        vhpiNumPortsP = 1056,
        vhpiOpenModeP = 1057,
        vhpiPhaseP = 1058,
        vhpiPositionP = 1059,
        vhpiPredefAttrP = 1060,
        /* 1061 */
        vhpiReasonP = 1062,
        vhpiRightBoundP = 1063,
        vhpiSigKindP = 1064,
        vhpiSizeP = 1065,
        vhpiStartLineNoP = 1066,
        vhpiStateP = 1067,
        vhpiStaticnessP = 1068,
        vhpiVHDLversionP = 1069,
        vhpiIdP = 1070,
        vhpiCapabilitiesP = 1071,
        vhpiAutomaticRestoreP = 1072,
        vhpiCompInstKindP = 1073,
        vhpiIsBuiltInP = 1074,
        vhpiIsDynamicP = 1075,
        vhpiIsOperatorP = 1076,
        vhpiNumFieldsP = 1077

#ifdef VHPIEXTEND_INT_PROPERTIES
        VHPIEXTEND_INT_PROPERTIES
        
#endif

} vhpiIntPropertyT;

/******* STRING PROPERTIES **********/
typedef enum {
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        vhpiCaseNameP = 1301,
        vhpiCompNameP = 1302,
        vhpiDefNameP = 1303,
        vhpiFileNameP = 1304,
        vhpiFullCaseNameP = 1305,
        vhpiFullNameP = 1306,
        vhpiKindStrP = 1307,
        vhpiLabelNameP = 1308,
        vhpiLibLogicalNameP = 1309,
        vhpiLibPhysicalNameP = 1310,
        vhpiLogicalNameP = 1311,
        vhpiLoopLabelNameP = 1312,
        vhpiNameP = 1313,
        DEPRECATED_vhpiOpNameP = 1314,
        vhpiStrValP = 1315,
        vhpiToolVersionP = 1316,
        vhpiUnitNameP = 1317,
        vhpiSaveRestartLocationP = 1318,
        vhpiCompInstNameP = 1319,
        vhpiInstNamesP = 1320,
        vhpiSignatureNameP = 1321,
        vhpiSpecNameP = 1322

#ifdef VHPIEXTEND_STR_PROPERTIES
        VHPIEXTEND_STR_PROPERTIES
 
#endif
} vhpiStrPropertyT;

/******* REAL PROPERTIES **********/
typedef enum {
        vhpiFloatLeftBoundP = 1601,
        vhpiFloatRightBoundP = 1602,
        vhpiRealValP = 1603

#ifdef VHPIEXTEND_REAL_PROPERTIES
        VHPIEXTEND_REAL_PROPERTIES
#endif

} vhpiRealPropertyT;

/******* PHYSICAL PROPERTIES **********/
typedef enum {
        vhpiPhysLeftBoundP = 1651,
        vhpiPhysPositionP = 1652,
        vhpiPhysRightBoundP = 1653,
        vhpiPhysValP = 1654,
        DEPRECATED_vhpiPrecisionP = 1655,
        DEPRECATED_vhpiSimTimeUnitP = 1656,
        vhpiResolutionLimitP = 1657,
        vhpiTimeP = 1658

#ifdef VHPIEXTEND_PHYS_PROPERTIES
        VHPIEXTEND_PHYS_PROPERTIES
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#endif

} vhpiPhysPropertyT;

/******************* PROPERTY VALUES ************************/

/* vhpiCapabilitiesP */
typedef enum {
    vhpiProvidesHierarchy             = 1,
    vhpiProvidesStaticAccess          = 2,
    vhpiProvidesConnectivity          = 4,
    vhpiProvidesPostAnalysis          = 8,
    vhpiProvidesForeignModel          = 16,
    vhpiProvidesAdvancedForeignModel  = 32,
    vhpiProvidesSaveRestart           = 64,
    vhpiProvidesReset                 = 128,
    vhpiProvidesDebugRuntime          = 256,
    vhpiProvidesAdvancedDebugRuntime  = 512,
    vhpiProvidesDynamicElab           = 1024

} vhpiCapabibilityT;

/* vhpiOpenModeP */
typedef enum {
        vhpiInOpen         =       1001,
        vhpiOutOpen        =       1002,
        vhpiReadOpen       =       1003,
        vhpiWriteOpen      =       1004,
        vhpiAppendOpen     =       1005
} vhpiOpenModeT;

/* vhpiModeP */
typedef enum {
        vhpiInMode         =       1001,
        vhpiOutMode        =       1002,
        vhpiInoutMode      =       1003,
        vhpiBufferMode     =       1004,
        vhpiLinkageMode    =       1005
} vhpiModeT;

/* vhpiSigKindP */
typedef enum {
        vhpiRegister       =       1001,
        vhpiBus            =       1002,
        vhpiNormal         =       1003
} vhpiSigKindT;

/* vhpiStaticnessP */
typedef enum {
        vhpiLocallyStatic  =       1001,
        vhpiGloballyStatic =       1002,
        vhpiDynamic        =       1003
} vhpiStaticnessT;
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/* vhpiPredefAttrP */
typedef enum {
        vhpiActivePA       =       1001,
        vhpiAscendingPA    =       1002,
        vhpiBasePA         =       1003,
        vhpiDelayedPA      =       1004,
        vhpiDrivingPA      =       1005,
        vhpiDriving_valuePA=       1006,
        vhpiEventPA        =       1007,
        vhpiHighPA         =       1008,
        vhpiImagePA        =       1009,
        vhpiInstance_namePA=       1010,
        vhpiLast_activePA  =       1011,
        vhpiLast_eventPA   =       1012,
        vhpiLast_valuePA   =       1013,
        vhpiLeftPA         =       1014,
        vhpiLeftofPA       =       1015,
        vhpiLengthPA       =       1016,
        vhpiLowPA          =       1017,
        vhpiPath_namePA    =       1018,
        vhpiPosPA          =       1019,
        vhpiPredPA         =       1020,
        vhpiQuietPA        =       1021,
        vhpiRangePA        =       1022,
        vhpiReverse_rangePA=       1023,
        vhpiRightPA        =       1024,
        vhpiRightofPA      =       1025,
        vhpiSimple_namePA  =       1026,
        vhpiStablePA       =       1027,
        vhpiSuccPA         =       1028,
        vhpiTransactionPA  =       1029,
        vhpiValPA          =       1030,
        vhpiValuePA        =       1031
} vhpiPredefAttrT;

/* vhpiAttrKindP */
typedef enum {
  vhpiFunctionAK    = 1,
  vhpiRangeAK       = 2,
  vhpiSignalAK      = 3,
  vhpiTypeAK        = 4,
  vhpiValueAK       = 5
#ifdef VHPIEXTEND_ATTR
  VHPIEXTEND_ATTR
#endif
} vhpiAttrKindT;

/* vhpiEntityClassP */
typedef enum {
        vhpiEntityEC         =     1001,
        vhpiArchitectureEC   =     1002,
        vhpiConfigurationEC  =     1003,
        vhpiProcedureEC      =     1004,
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        vhpiFunctionEC       =     1005,
        vhpiPackageEC        =     1006,
        vhpiTypeEC           =     1007,
        vhpiSubtypeEC        =     1008,
        vhpiConstantEC       =     1009,
        vhpiSignalEC         =     1010,
        vhpiVariableEC       =     1011,
        vhpiComponentEC      =     1012,
        vhpiLabelEC          =     1013,
        vhpiLiteralEC        =     1014,
        vhpiUnitsEC          =     1015,
        vhpiFileEC           =     1016,
        vhpiGroupEC          =     1017
} vhpiEntityClassT;

/* vhpiAccessP */
typedef enum {
        vhpiRead             =     1,
        vhpiWrite            =     2,
        vhpiConnectivity     =     4,
        vhpiNoAccess         =     8
} vhpiAccessT;

/* value for vhpiStateP property for callbacks */
typedef enum {
        vhpiEnable,
        vhpiDisable,
        vhpiMature /* callback has occurred */
} vhpiStateT;
/* enumeration type for vhpiCompInstKindP property */
typedef enum {
        vhpiDirect,
        vhpiComp,
        vhpiConfig
} vhpiCompInstKindT;

/* the following values are used only for the
   vhpiResolutionLimitP property and for setting the unit field
   of the value structure; they represent the physical position
   of a given VHDL time unit */
/* time unit physical position values {high, low} */
PLI_VEXTERN PLI_DLLISPEC const vhpiPhysT  vhpiFS;
PLI_VEXTERN PLI_DLLISPEC const vhpiPhysT  vhpiPS;
PLI_VEXTERN PLI_DLLISPEC const vhpiPhysT  vhpiNS;
PLI_VEXTERN PLI_DLLISPEC const vhpiPhysT  vhpiUS;
PLI_VEXTERN PLI_DLLISPEC const vhpiPhysT  vhpiMS;
PLI_VEXTERN PLI_DLLISPEC const vhpiPhysT  vhpiS;
PLI_VEXTERN PLI_DLLISPEC const vhpiPhysT  vhpiMN;
PLI_VEXTERN PLI_DLLISPEC const vhpiPhysT  vhpiHR;

/* IEEE std_logic values */
#define vhpiU                  0   /* uninitialized */
#define vhpiX                  1   /* unknown */
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#define vhpi0                  2   /* forcing 0 */
#define vhpi1                  3   /* forcing 1 */
#define vhpiZ                  4   /* high impedance */
#define vhpiW                  5   /* weak unknown */
#define vhpiL                  6   /* weak 0 */
#define vhpiH                  7   /* weak 1 */
#define vhpiDontCare           8   /* don't care */

/* IEEE std bit values */
#define vhpibit0               0   /* bit 0 */
#define vhpibit1               1   /* bit 1 */

/* IEEE std boolean values */
#define vhpiFalse              0   /* false */
#define vhpiTrue               1   /* true */

/************** vhpiPhaseP property values *************/
typedef enum {
       vhpiRegistrationPhase   = 1,
       vhpiAnalysisPhase       = 2,
       vhpiElaborationPhase    = 3,
       vhpiInitializationPhase = 4,
       vhpiSimulationPhase     = 5,
       vhpiTerminationPhase    = 6,
       vhpiSavePhase           = 7,
       vhpiRestartPhase        = 8,
       vhpiResetPhase          = 9
} vhpiPhaseT ;

/**************** PLI error information structure ****************/

typedef enum {
        vhpiNote        = 1,
        vhpiWarning     = 2,
        vhpiError       = 3,
        vhpiFailure     = 6,
        vhpiSystem      = 4,
        vhpiInternal    = 5
} vhpiSeverityT;

typedef struct vhpiErrorInfoS
{
  vhpiSeverityT    severity;
  char       *message;
  char       *str;
  char       *file; /* Name of the VHDL file where the VHPI error
                            originated */
  int32_t     line; /* Line number in the VHDL file */
} vhpiErrorInfoT;

/********************* callback structures ************************/
/* callback user data structure */

typedef struct vhpiCbDataS
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{
  int32_t reason;            /* callback reason */
  void (*cb_rtn) (const struct vhpiCbDataS *);  /* call routine */
  vhpiHandleT obj;             /* trigger object */
  vhpiTimeT *time;             /* callback time */
  vhpiValueT *value;           /* trigger object value */
  void *user_data;             /* pointer to user data to be passed
                                  to the callback function */
} vhpiCbDataT;

/************************* CALLBACK REASONS *************************/
/*********************** Simulation object related ******************/
/* These are repetitive callbacks */
#define vhpiCbValueChange          1001
#define vhpiCbForce                1002
#define vhpiCbRelease              1003
#define vhpiCbTransaction          1004 /* optional callback reason */

/************************** Statement related ***********************/
/* These are repetitive callbacks */
#define vhpiCbStmt                 1005
#define vhpiCbResume               1006
#define vhpiCbSuspend              1007
#define vhpiCbStartOfSubpCall      1008
#define vhpiCbEndOfSubpCall        1009

/************************** Time related ****************************/
/* the Rep callback reasons are the repeated versions
   of the callbacks */

#define vhpiCbAfterDelay           1010
#define vhpiCbRepAfterDelay        1011

/*********************** Simulation cycle phase related *************/
#define vhpiCbNextTimeStep         1012
#define vhpiCbRepNextTimeStep      1013
#define vhpiCbStartOfNextCycle     1014
#define vhpiCbRepStartOfNextCycle  1015
#define vhpiCbStartOfProcesses     1016
#define vhpiCbRepStartOfProcesses  1017
#define vhpiCbEndOfProcesses       1018
#define vhpiCbRepEndOfProcesses    1019
#define vhpiCbLastKnownDeltaCycle  1020
#define vhpiCbRepLastKnownDeltaCycle 1021
#define vhpiCbStartOfPostponed     1022
#define vhpiCbRepStartOfPostponed  1023
#define vhpiCbEndOfTimeStep        1024
#define vhpiCbRepEndOfTimeStep     1025

/************************** Action related **************************/
/* these are one time callback unless otherwise noted */
#define vhpiCbStartOfTool          1026
#define vhpiCbEndOfTool            1027
#define vhpiCbStartOfAnalysis      1028

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



- 469 - IEC 61691-1-1:2011(E)�
IEEE Std 1076-2008

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

#define vhpiCbEndOfAnalysis        1029
#define vhpiCbStartOfElaboration   1030
#define vhpiCbEndOfElaboration     1031
#define vhpiCbStartOfInitialization 1032
#define vhpiCbEndOfInitialization  1033
#define vhpiCbStartOfSimulation    1034
#define vhpiCbEndOfSimulation      1035
#define vhpiCbQuiescense           1036 /* repetitive */
#define vhpiCbPLIError             1037 /* repetitive */
#define vhpiCbStartOfSave          1038
#define vhpiCbEndOfSave            1039
#define vhpiCbStartOfRestart       1040
#define vhpiCbEndOfRestart         1041
#define vhpiCbStartOfReset         1042
#define vhpiCbEndOfReset           1043
#define vhpiCbEnterInteractive     1044 /* repetitive */
#define vhpiCbExitInteractive      1045 /* repetitive */
#define vhpiCbSigInterrupt         1046 /* repetitive */

/* Foreign model callbacks */
#define vhpiCbTimeOut              1047 /* non repetitive */
#define vhpiCbRepTimeOut           1048 /* repetitive */
#define vhpiCbSensitivity          1049 /* repetitive */

/************************* CALLBACK FLAGS ***************************/
#define vhpiReturnCb  0x00000001
#define vhpiDisableCb 0x00000010

/************** vhpiAutomaticRestoreP property values *************/
typedef enum {
       vhpiRestoreAll       = 1,
       vhpiRestoreUserData  = 2,
       vhpiRestoreHandles   = 4,
       vhpiRestoreCallbacks = 8
} vhpiAutomaticRestoreT ;

/******************** FUNCTION DECLARATIONS *********************/

XXTERN int vhpi_assert (vhpiSeverityT severity,
                        char *formatmsg,
                        ...);

/* callback related */

XXTERN vhpiHandleT vhpi_register_cb (vhpiCbDataT *cb_data_p,
                                     int32_t flags);

XXTERN int vhpi_remove_cb (vhpiHandleT cb_obj);

XXTERN int vhpi_disable_cb (vhpiHandleT cb_obj);

XXTERN int vhpi_enable_cb (vhpiHandleT cb_obj);
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XXTERN int vhpi_get_cb_info (vhpiHandleT object,
                             vhpiCbDataT *cb_data_p);

/* utilities for sensitivity-set bitmaps */
/* The replacement text for these macros is implementation defined */
/* The behavior is specified in G.1 */
#define VHPI_SENS_ZERO(sens)        vhpi_sens_zero(sens)
#define VHPI_SENS_SET(obj, sens)    vhpi_sens_set(obj, sens)
#define VHPI_SENS_CLR(obj, sens)    vhpi_sens_clr(obj, sens)
#define VHPI_SENS_ISSET(obj, sens)  vhpi_sens_isset(obj, sens)
#define VHPI_SENS_FIRST(sens)       vhpi_sens_first(sens)

/* for obtaining handles */

XXTERN vhpiHandleT vhpi_handle_by_name (const char *name,
                                        vhpiHandleT scope);

XXTERN vhpiHandleT vhpi_handle_by_index (vhpiOneToManyT itRel,
                                         vhpiHandleT parent,
                                         int32_t indx);

/* for traversing relationships */

XXTERN vhpiHandleT vhpi_handle (vhpiOneToOneT type,
                                vhpiHandleT referenceHandle);

XXTERN vhpiHandleT vhpi_iterator (vhpiOneToManyT type,
                                  vhpiHandleT referenceHandle);

XXTERN vhpiHandleT vhpi_scan (vhpiHandleT iterator);

/* for processsing properties */

XXTERN vhpiIntT vhpi_get (vhpiIntPropertyT property,
                          vhpiHandleT object);

XXTERN const vhpiCharT * vhpi_get_str (vhpiStrPropertyT property,
                                       vhpiHandleT object);

XXTERN vhpiRealT vhpi_get_real (vhpiRealPropertyT property,
                                vhpiHandleT object);

XXTERN vhpiPhysT vhpi_get_phys (vhpiPhysPropertyT property,
                                vhpiHandleT object);

/* for access to protected types */

typedef int (*vhpiUserFctT)();

XXTERN int vhpi_protected_call (vhpiHandleT varHdl,
                                vhpiUserFctT userFct,
                                void *userData);

/* value processing */

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



- 471 - IEC 61691-1-1:2011(E)�
IEEE Std 1076-2008

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

/* vhpi_put_value modes */
typedef enum {
  vhpiDeposit,
  vhpiDepositPropagate,
  vhpiForce,
  vhpiForcePropagate,
  vhpiRelease,
  vhpiSizeConstraint
} vhpiPutValueModeT;

typedef enum {
  vhpiInertial,
  vhpiTransport
} vhpiDelayModeT;

XXTERN int vhpi_get_value (vhpiHandleT expr,
                           vhpiValueT *value_p);

XXTERN int vhpi_put_value (vhpiHandleT object,
                           vhpiValueT *value_p,
                           vhpiPutValueModeT mode);

XXTERN int vhpi_schedule_transaction (vhpiHandleT drivHdl,
                                      vhpiValueT *value_p,
                                      uint32_t numValues,
                                      vhpiTimeT *delayp,
                                      vhpiDelayModeT delayMode,
                                      vhpiTimeT *pulseRejp);

XXTERN int vhpi_format_value (const vhpiValueT *in_value_p,
                              vhpiValueT *out_value_p);

/* time processing */

XXTERN void vhpi_get_time (vhpiTimeT *time_p,
                           long *cycles);

#define vhpiNoActivity -1

XXTERN int vhpi_get_next_time (vhpiTimeT *time_p);

/* simulation control */

typedef enum {
  vhpiStop     = 0,
  vhpiFinish   = 1,
  vhpiReset    = 2
#ifdef VHPIEXTEND_CONTROL
  VHPIEXTEND_CONTROL
#endif
} vhpiSimControlT;

XXTERN int vhpi_control (vhpiSimControlT command,
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                         ...);

/* I/O routine */

XXTERN int vhpi_printf (const char *format,
                                           ...);
XXTERN int vhpi_vprintf (const char *format, va_list args);

/* utilities to print VHDL strings */

XXTERN int vhpi_is_printable( char ch );

/* utility routines */

XXTERN int vhpi_compare_handles (vhpiHandleT handle1,
                                 vhpiHandleT handle2);

XXTERN int vhpi_check_error (vhpiErrorInfoT *error_info_p);

XXTERN int vhpi_release_handle (vhpiHandleT object);

/* creation functions */

XXTERN vhpiHandleT vhpi_create (vhpiClassKindT kind,
                                vhpiHandleT handle1,
                                vhpiHandleT handle2);

/* Foreign model data structures and functions */

typedef enum {
   vhpiArchF   = 1,
   vhpiFuncF   = 2,
   vhpiProcF   = 3,
   vhpiLibF    = 4,
   vhpiAppF    = 5
} vhpiForeignKindT;

typedef struct vhpiForeignDataS {
    vhpiForeignKindT kind;
    char * libraryName;
    char * modelName;
    void (*elabf)(const struct vhpiCbDataS *cb_data_p);
    void (*execf)(const struct vhpiCbDataS *cb_data_p);
} vhpiForeignDataT;

XXTERN vhpiHandleT vhpi_register_foreignf
                (vhpiForeignDataT *foreignDatap);

/* vhpi_get_foreign_info is DEPRECATED and is replaced
   by the function vhpi_get_foreignf_info */
XXTERN int vhpi_get_foreignf_info (vhpiHandleT hdl,
                                   vhpiForeignDataT *foreignDatap);
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/* for saving and restoring foreign models data */

XXTERN size_t vhpi_get_data (int32_t id,
                             void *dataLoc,
                             size_t numBytes);

XXTERN size_t vhpi_put_data (int32_t id,
                             void *dataLoc,
                             size_t numBytes);

#ifdef VHPIEXTEND_FUNCTIONS
       VHPIEXTEND_FUNCTIONS
#endif

/**************************** Typedef for VHPI registration functions
 ****************************/

typedef void (*vhpiRegistrationFctT)();

#undef PLI_EXTERN
#undef PLI_VEXTERN

#ifdef VHPI_USER_DEFINED_DLLISPEC
#undef VHPI_USER_DEFINED_DLLISPEC
#undef PLI_DLLISPEC
#endif
#ifdef VHPI_USER_DEFINED_DLLESPEC
#undef VHPI_USER_DEFINED_DLLESPEC
#undef PLI_DLLESPEC
#endif

#ifdef PLI_PROTOTYPES
#undef PLI_PROTOTYPES
#undef XXTERN
#undef EETERN
#endif

#ifdef  __cplusplus
}
#endif

#endif /* VHPI_USER_H */

B.2 Macros for sensitivity-set bitmaps

B.2.1 General

The macros for manipulating sensitivity-set bitmaps, defined in the header file, are described in this 
subclause (B.2).
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The definitions of the macros in the header file invoke functions defined in the file vhpi_sens.c (see 
A.4.4). A tool provider may replace the definitions with implementation-specific definitions that have the 
effect described in this subclause (B.2). Such definitions may invoke implementation-defined functions or 
may be in the form of in-line code.

B.2.2 VHPI_SENS_ZERO

Clears a sensitivity-set bitmap.

Synopsis:

VHPI_SENS_ZERO(sens)

Description:

The argument sens is a pointer to a sensitivity-set bitmap. The macro clears all of the bits in the sensitivity-
set bitmap to 0.

B.2.3 VHPI_SENS_SET

Sets a bit in a sensitivity-set bitmap.

Synopsis:

VHPI_SENS_SET(obj, sens)

Description:

The argument obj is an integer representing the index of a signal in a sensitivity set, and the argument 
sens is a pointer to a sensitivity-set bitmap. The macro sets to 1 the bit in the sensitivity-set bitmap 
corresponding to the signal with the given index.

B.2.4 VHPI_SENS_CLR

Clears a bit in a sensitivity-set bitmap.

Synopsis:

VHPI_SENS_CLR(obj, sens)

Description:

The argument obj is an integer representing the index of a signal in a sensitivity set, and the argument 
sens is a pointer to a sensitivity-set bitmap. The macro clears to 0 the bit in the sensitivity-set bitmap 
corresponding to the signal with the given index.

B.2.5 VHPI_SENS_ISSET

Determines whether a specific bit in a sensitivity-set bitmap is set.

Synopsis:
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VHPI_SENS_ISSET(obj, sens)

Description:

The argument obj is an integer representing the index of a signal in a sensitivity set, and the argument 
sens is a pointer to a sensitivity-set bitmap. The macro yields an integer that is the value of the bit in the 
sensitivity-set bitmap corresponding to the signal with the given index.

B.2.6 VHPI_SENS_FIRST

Determines whether any bit in a sensitivity-set bitmap is set.

Synopsis:

VHPI_SENS_FIRST(sens)

Description:

The argument sens is a pointer to a sensitivity-set bitmap. If any of the bits in the sensitivity-set bitmap 
corresponding to signals in a sensitivity set is 1, the macro yields an integer that is the least index of the 
signals for which the corresponding bit is set. Otherwise, the macro yields the value vhpiUndefined.

B.3 Implementation-specific extensions

A tool provider may provide implementation-defined functionality in addition to that described by this 
standard. Where such functionality requires declarations in the vhpi_user.h header file, those 
declarations shall be provided by definitions of the following macros:�

The macros shall be defined before compilation of the vhpi_user.h file and shall be defined in such a 
way that their instantiation in the vhpi_user.h file results in legal C declarations.

VHPIEXTEND_VAL_FORMATS Enumeration constants for implementation-defined value formats.

VHPIEXTEND_CLASSES Enumeration constants for implementation-defined classes.

VHPIEXTEND_ONE_METHODS Enumeration constants for implementation-defined one-to-one 
associations.

VHPIEXTEND_MANY_METHODS Enumeration constants for implementation-defined one-to-many 
associations.

VHPIEXTEND_INT_PROPERTIES Enumeration constants for implementation-defined integer properties.

VHPIEXTEND_STR_PROPERTIES Enumeration constants for implementation-defined string properties.

VHPIEXTEND_REAL_PROPERTIES Enumeration constants for implementation-defined real properties.

VHPIEXTEND_PHYS_PROPERTIES Enumeration constants for implementation-defined physical properties.

VHPIEXTEND_ATTR Enumeration constants for implementation-defined attribute kinds.

VHPIEXTEND_CONTROL Enumeration constants for implementation-defined control actions.

VHPIEXTEND_FUNCTIONS Prototypes for implementation-defined functions.
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The range of enumeration values from 1000 to 2000, inclusive, of enumeration constants of types 
vhpiClassKindT, vhpiOneToOneT, vhpiOneToManyT, vhpiIntPropertyT, 
vhpiStrPropertyT, vhpiRealPropertyT, and vhpiPhysPropertyT are reserved and shall not 
be used for implementation defined functionality.
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Annex C

(informative) 

Syntax summary

This annex provides a summary of the syntax for VHDL. Productions are ordered alphabetically by left-
hand nonterminal name. The number listed to the right indicates the clause or subclause where the 
production is given.

absolute_pathname ::= . partial_pathname [§  8.7]

abstract_literal ::= decimal_literal | based_literal [§ 15.5.1]

access_type_definition ::= access subtype_indication [§ 5.4.1]

actual_designator ::= [§ 6.5.7.1]
        [ inertial ] expression
      | signal_name
      | variable_name
      | file_name
      | subtype_indication
      | subprogram_name
      | instantiated_package_name
      | open

actual_parameter_part ::= parameter_association_list [§ 9.3.4]

actual_part ::= [§ 6.5.7.1]
        actual_designator
      | function_name ( actual_designator )
      | type_mark ( actual_designator )

adding_operator ::= + | – | & [§ 9.2]

aggregate ::= [§ 9.3.3.1]
      ( element_association { , element_association } )

alias_declaration ::= [§ 6.6.1]
      alias alias_designator [ : subtype_indication ] is name [ signature ] ;

alias_designator ::= identifier | character_literal | operator_symbol [§ 6.6.1]

allocator ::= [§ 9.3.7]
        new subtype_indication
      | new qualified_expression

architecture_body ::= [§ 3.3.1]
      architecture identifier of entity_name is
            architecture_declarative_part
      begin
            architecture_statement_part
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      end [ architecture ] [ architecture_simple_name ] ;

architecture_declarative_part ::= [§ 3.3.2]
      { block_declarative_item }

architecture_statement_part ::= [§ 3.3.3]
      { concurrent_statement }

array_constraint ::= [§ 5.3.2.1]
        index_constraint [ array_element_constraint ]
      | ( open ) [ array_element_constraint ]

array_element_constraint ::= element_constraint [§ 5.3.2.1]

array_element_resolution ::= resolution_indication [§ 6.3]

array_type_definition ::= [§ 5.3.2.1]
       unbounded_array_definition | constrained_array_definition

assertion ::= [§ 10.3]
      assert condition
            [ report expression ]
            [ severity expression ]

assertion_statement ::= [ label : ] assertion ; [§ 10.3]

association_element ::= [§ 6.5.7.1]
      [ formal_part => ] actual_part

association_list ::= [§ 6.5.7.1]
      association_element { , association_element }

attribute_declaration ::= [§ 6.7]
      attribute identifier : type_mark ;

attribute_designator ::= attribute_simple_name [§ 8.6]

attribute_name ::= [§ 8.6]
      prefix [ signature ] ' attribute_designator [ ( expression ) ]

attribute_specification ::= [§ 7.2]
      attribute attribute_designator of entity_specification is expression ;

base ::= integer [§ 15.5.3]

base_specifier ::= B | O | X | UB | UO | UX | SB | SO | SX | D [§ 15.8]

based_integer ::= [§ 15.5.3]
      extended_digit { [ underline ] extended_digit }

based_literal ::= [§ 15.5.3]
      base # based_integer [ . based_integer ] # [ exponent ]

basic_character ::= [§ 15.2]

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



- 479 - IEC 61691-1-1:2011(E)�
IEEE Std 1076-2008

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

      basic_graphic_character | format_effector

basic_graphic_character ::= [§ 15.2]
      upper_case_letter | digit | special_character| space_character

basic_identifier ::= letter { [ underline ] letter_or_digit } [§ 15.4.2]

binding_indication ::= [§ 7.3.2.1]
      [ use entity_aspect ]
      [ generic_map_aspect ]
      [ port_map_aspect ]

bit_string_literal ::= [ integer ] base_specifier " [ bit_value ] " [§ 15.8]

bit_value ::= graphic_character { [ underline ] graphic_character } [§ 15.8]

block_configuration ::= [§ 3.4.2]
      for block_specification
            { use_clause }
            { configuration_item }
      end for ;

block_declarative_item ::= [§ 3.3.2]
        subprogram_declaration
      | subprogram_body
      | subprogram_instantiation_declaration
      | package_declaration
      | package_body
      | package_instantiation_declaration
      | type_declaration
      | subtype_declaration
      | constant_declaration
      | signal_declaration
      | shared_variable_declaration
      | file_declaration
      | alias_declaration
      | component_declaration
      | attribute_declaration
      | attribute_specification
      | configuration_specification
      | disconnection_specification
      | use_clause
      | group_template_declaration
      | group_declaration
      | PSL_Property_Declaration
      | PSL_Sequence_Declaration
      | PSL_Clock_Declaration

block_declarative_part ::= [§ 11.2]
      { block_declarative_item }

block_header ::= [§ 11.2]
      [ generic_clause
      [ generic_map_aspect ; ] ]
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      [ port_clause
      [ port_map_aspect ; ] ]

block_specification ::= [§ 3.4.2]
        architecture_name
      | block_statement_label
      | generate_statement_label [ ( generate_specification ) ]

block_statement ::= [§ 11.2]
      block_label :
            block [ ( guard_condition ) ] [ is ]
                  block_header
                  block_declarative_part
            begin
                  block_statement_part
            end block [ block_label ] ;

block_statement_part ::= [§ 11.2]
      { concurrent_statement }

case_generate_alternative ::= [§ 11.8]
      when [ alternative_label : ] choices =>
            generate_statement_body

case_generate_statement ::= [§ 11.8]
      generate_label :
            case expression generate
                  case_generate_alternative
                  { case_generate_alternative }
            end generate [ generate_label ] ;

case_statement ::= [§ 10.9]
      [ case_label : ]
            case [ ? ] expression is
                  case_statement_alternative
                  { case_statement_alternative }
            end case [ ? ] [ case_label ] ;

case_statement_alternative ::= [§ 10.9]
      when choices =>
            sequence_of_statements

character_literal ::= ' graphic_character ' [§ 15.6]

choice ::= [§ 9.3.3.1]
        simple_expression
      | discrete_range
      | element_simple_name
      | others

choices ::= choice { | choice } [§ 9.3.3.1]

component_configuration ::= [§ 3.4.3]
      for component_specification
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            [ binding_indication ; ]
            { verification_unit_binding_indication ; }
            [ block_configuration ]
      end for ;

component_declaration ::= [§ 6.8]
      component identifier [ is ]
            [ local_generic_clause ]
            [ local_port_clause ]
      end component [ component_simple_name ] ;

component_instantiation_statement ::= [§ 11.7.1]
      instantiation_label :
            instantiated_unit
                  [ generic_map_aspect ]
                  [ port_map_aspect ] ;

component_specification ::= [§ 7.3.1]
      instantiation_list : component_name

composite_type_definition ::= [§ 5.3.1]
        array_type_definition
      | record_type_definition

compound_configuration_specification ::= [§ 7.3.1]
      for component_specification binding_indication ;
            verification_unit_binding_indication ;
            { verification_unit_binding_indication ; }
      end for ;

concurrent_assertion_statement ::= [§ 11.5]
      [ label : ] [ postponed ] assertion ;

concurrent_conditional_signal_assignment ::= [§ 11.6]
      target  <=  [ guarded ] [ delay_mechanism ] conditional_waveforms ;

concurrent_procedure_call_statement ::= [§ 11.4]
      [ label : ] [ postponed ] procedure_call ;

concurrent_selected_signal_assignment ::= [§ 11.6]
      with expression select [ ? ]
            target <= [ guarded ] [ delay_mechanism ] selected_waveforms ;

concurrent_signal_assignment_statement ::= [§ 11.6]
        [ label : ] [ postponed ] concurrent_simple_signal_assignment
      | [ label : ] [ postponed ] concurrent_conditional_signal_assignment
      | [ label : ] [ postponed ] concurrent_selected_signal_assignment

concurrent_simple_signal_assignment ::= [§ 11.6]
      target <= [ guarded ] [ delay_mechanism ] waveform ;

concurrent_statement ::= [§ 11.1]
        block_statement
      | process_statement
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      | concurrent_procedure_call_statement
      | concurrent_assertion_statement
      | concurrent_signal_assignment_statement
      | component_instantiation_statement
      | generate_statement
      | PSL_PSL_Directive

condition ::= expression [§ 10.2]

condition_clause ::= until condition [§ 10.2]

condition_operator     ::=     ?? [§ 9.2.1]

conditional_expressions ::= [§ 10.5.3]
      expression when condition
      { else expression when condition }
      [ else expression ]

conditional_force_assignment ::= [§ 10.5.3]
      target <= force [ force_mode ] conditional_expressions ;

conditional_signal_assignment ::= [§ 10.5.3]
        conditional_waveform_assignment
      | conditional_force_assignment

conditional_variable_assignment ::= [§ 10.6.3]
      target  :=  conditional_expressions ;

conditional_waveform_assignment ::= [§ 10.5.3]
      target  <=  [ delay_mechanism ] conditional_waveforms ;

conditional_waveforms ::= [§ 10.5.3]
      waveform when condition
      { else waveform when condition }
      [ else waveform ]

configuration_declaration ::= [§ 3.4.1]
      configuration identifier of entity_name is
            configuration_declarative_part
            { verification_unit_binding_indication ; }
            block_configuration
      end [ configuration ] [ configuration_simple_name ] ;

configuration_declarative_item ::= [§ 3.4.1]
        use_clause
      | attribute_specification
      | group_declaration

configuration_declarative_part ::= [§ 3.4.1]
      { configuration_declarative_item }

configuration_item ::= [§ 3.4.2]
        block_configuration
      | component_configuration
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configuration_specification ::= [§ 7.3.1]
        simple_configuration_specification
      | compound_configuration_specification

constant_declaration ::= [§ 6.4.2.2]
      constant identifier_list : subtype_indication [ := expression ] ;

constrained_array_definition ::= [§ 5.3.2.1]
      array index_constraint of element_subtype_indication

constraint ::= [§ 6.3]
        range_constraint
      | array_constraint
      | record_constraint

context_clause ::= { context_item } [§ 13.4]

context_declaration ::= [§ 13.3]
      context identifier is
            context_clause
      end [ context ] [ context_simple_name ] ;

context_item ::= [§ 13.4]
        library_clause
      | use_clause
      | context_reference

context_reference ::= [§ 13.4]
      context selected_name { , selected_name } ;

decimal_literal ::= integer [ . integer ] [ exponent ] [§ 15.5.2]

delay_mechanism ::= [§ 10.5.2.1]
        transport
      | [ reject time_expression ] inertial

design_file ::= design_unit { design_unit } [§ 13.1]

design_unit ::= context_clause library_unit [§ 13.1]

designator ::= identifier | operator_symbol [§ 4.2.1]

direction ::= to | downto [§ 5.2.1]

disconnection_specification ::= [§ 7.4]
      disconnect guarded_signal_specification after time_expression ;

discrete_range ::= discrete_subtype_indication | range [§ 5.3.2.1]

element_association ::= [§ 9.3.3.1]
      [ choices => ] expression

element_constraint ::= [§ 6.3]
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        array_constraint
      | record_constraint

element_declaration ::= [§ 5.3.3]
      identifier_list : element_subtype_definition ;

element_resolution ::= array_element_resolution | record_resolution [§ 6.3]

element_subtype_definition ::= subtype_indication [§ 5.3.3]

entity_aspect ::= [§ 7.3.2.2]
        entity entity_name [ ( architecture_identifier ) ]
      | configuration configuration_name
      | open

entity_class ::= [§ 7.2]
        entity
      | architecture
      | configuration
      | procedure
      | function
      | package
      | type
      | subtype
      | constant
      | signal
      | variable
      | component
      | label
      | literal
      | units
      | group
      | file
      | property
      | sequence

entity_class_entry ::= entity_class [ <> ] [§ 6.9]

entity_class_entry_list ::= [§ 6.9]
      entity_class_entry { , entity_class_entry }

entity_declaration ::= [§ 3.2.1]
      entity identifier is
            entity_header
            entity_declarative_part
      [ begin
            entity_statement_part ]
      end [ entity ] [ entity_simple_name ] ;

entity_declarative_item ::= [§ 3.2.3]
        subprogram_declaration
      | subprogram_body
      | subprogram_instantiation_declaration
      | package_declaration
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      | package_body
      | package_instantiation_declaration
      | type_declaration
      | subtype_declaration
      | constant_declaration
      | signal_declaration
      | shared_variable_declaration
      | file_declaration
      | alias_declaration
      | attribute_declaration
      | attribute_specification
      | disconnection_specification
      | use_clause
      | group_template_declaration
      | group_declaration
      | PSL_Property_Declaration
      | PSL_Sequence_Declaration
      | PSL_Clock_Declaration

entity_declarative_part ::= [§ 3.2.3]
      { entity_declarative_item }

entity_designator ::= entity_tag [ signature ] [§ 7.2]

entity_header ::= [§ 3.2.3]
      [ formal_generic_clause ]
      [ formal_port_clause ]

entity_name_list ::= [§ 7.2]
        entity_designator { , entity_designator }
      | others
      | all

entity_specification ::= [§ 7.2]
      entity_name_list : entity_class

entity_statement ::= [§ 3.2.4]
        concurrent_assertion_statement
      | passive_concurrent_procedure_call_statement
      | passive_process_statement
      | PSL_PSL_Directive

entity_statement_part ::= [§ 3.2.4]
      { entity_statement }

entity_tag ::= simple_name | character_literal | operator_symbol [§ 7.2]

enumeration_literal ::= identifier | character_literal [§ 5.2.2.1]

enumeration_type_definition ::= [§ 5.2.2.1]
      ( enumeration_literal { , enumeration_literal } )

exit_statement ::= [§ 10.2]
      [ label : ] exit [ loop_label ] [ when condition ] ;
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exponent ::= E [ + ] integer | E – integer [§ 15.5.2]

expression ::= [§ 9.1]
        condition_operator primary
      | logical_expression

extended_digit ::= digit | letter [§ 15.5.3]

extended_identifier ::= \ graphic_character { graphic_character } \ [§ 15.4.3]

external_name ::= [§  8.7]
        external_constant_name
      | external_signal_name
      | external_variable_name

external_constant_name ::= [§  8.7]
      << constant external_pathname : subtype_indication >>

external_signal_name ::= [§  8.7]
      << signal external_pathname : subtype_indication >>

external_variable_name ::= [§  8.7]
      << variable external_pathname : subtype_indication >>

external_pathname ::= [§  8.7]
        package_pathname
      | absolute_pathname
      | relative_pathname

factor ::= [§ 9.1]
        primary [ ** primary ]
      | abs primary
      | not primary
      | logical_operator primary

file_declaration ::= [§ 6.4.2.5]
      file identifier_list : subtype_indication [ file_open_information ] ;

file_logical_name ::= string_expression [§ 6.4.2.5]

file_open_information ::= [§ 6.4.2.5]
      [ open file_open_kind_expression ] is file_logical_name

file_type_definition ::= [§ 5.5.1]
      file of type_mark

floating_type_definition ::= range_constraint [§ 5.2.5.1]

for_generate_statement ::= [§ 11.8]
      generate_label :
            for generate_parameter_specification generate
                  generate_statement_body
            end generate [ generate_label ] ;
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force_mode ::= in | out [§ 10.5.2.1]

formal_designator ::= [§ 6.5.7.1]
        generic_name
      | port_name
      | parameter_name

formal_parameter_list ::= parameter_interface_list [§ 4.2.2.1]

formal_part ::= [§ 6.5.7.1]
        formal_designator
      | function_name ( formal_designator )
      | type_mark ( formal_designator )

full_type_declaration ::= [§ 6.2]
      type identifier is type_definition ;

function_call ::= [§ 9.3.4]
      function_name [ ( actual_parameter_part ) ]

function_specification ::= [§ 4.2.1]
      [ pure | impure ] function designator
            subprogram_header
            [ [ parameter ] ( formal_parameter_list ) ] return type_mark

generate_specification ::= [§ 3.4.2]
        static_discrete_range
      | static_expression
      | alternative_label

generate_statement ::= [§ 11.8]
        for_generate_statement
      | if_generate_statement
      | case_generate_statement

generate_statement_body ::= [§ 11.8]
            [ block_declarative_part
      begin ]
            { concurrent_statement }
      [ end [ alternative_label ] ; ]

generic_clause ::= [§ 6.5.6.2]
      generic ( generic_list ) ;

generic_list ::= generic_interface_list [§ 6.5.6.2]

generic_map_aspect ::= [§ 6.5.6.2]
      generic map ( generic_association_list )

graphic_character ::= [§ 15.2]
      basic_graphic_character | lower_case_letter | other_special_character

group_constituent ::= name | character_literal [§ 6.10]
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group_constituent_list ::= group_constituent { , group_constituent } [§ 6.10]

group_declaration ::= [§ 6.10]
      group identifier : group_template_name ( group_constituent_list ) ;

group_template_declaration ::= [§ 6.9]
      group identifier is ( entity_class_entry_list ) ;

guarded_signal_specification ::= [§ 7.4]
      guarded_signal_list : type_mark

identifier ::= basic_identifier | extended_identifier [§ 15.4.1]

identifier_list ::= identifier { , identifier } [§ 5.3.3]

if_generate_statement ::= [§ 11.8]
      generate_label :
            if [ alternative_label : ] condition generate
                  generate_statement_body
            { elsif [ alternative_label : ] condition generate
                  generate_statement_body }
            [ else [ alternative_label : ] generate
                  generate_statement_body ]
            end generate [ generate_label ] ;

if_statement ::= [§ 10.8]
      [ if_label : ]
            if condition then
                  sequence_of_statements
            { elsif condition then
                  sequence_of_statements }
            [ else
                  sequence_of_statements ]
            end if [ if_label ] ;

incomplete_type_declaration ::= type identifier ; [§ 5.4.2]

index_constraint ::= ( discrete_range { , discrete_range } ) [§ 5.3.2.1]

index_subtype_definition ::= type_mark range <> [§ 5.3.2.1]

indexed_name ::= prefix ( expression { , expression } ) [§ 8.4]

instantiated_unit ::= [§ 11.7.1]
        [ component ] component_name
      | entity entity_name [ ( architecture_identifier ) ]
      | configuration configuration_name

instantiation_list ::= [§ 7.3.1]
        instantiation_label { , instantiation_label }
      | others
      | all
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integer ::= digit { [ underline ] digit } [§ 15.5.2]

integer_type_definition ::= range_constraint [§ 5.2.3.1]

interface_constant_declaration ::= [§ 6.5.2]
      [ constant ] identifier_list : [ in ] subtype_indication [ := static_expression ]

interface_declaration ::= [§ 6.5.1]
        interface_object_declaration
      | interface_type_declaration
      | interface_subprogram_declaration
      | interface_package_declaration

interface_element ::= interface_declaration [§ 6.5.6.1]

interface_file_declaration ::= [§ 6.5.2]
      file identifier_list : subtype_indication

interface_function_specification ::= [§ 6.5.4]
      [ pure | impure ] function designator
            [ [ parameter ] ( formal_parameter_list ) ] return type_mark

interface_incomplete_type_declaration ::= type identifier [§ 6.5.3]

interface_list ::= [§ 6.5.6.1]
      interface_element { ; interface_element }

interface_object_declaration ::= [§ 6.5.2]
        interface_constant_declaration
      | interface_signal_declaration
      | interface_variable_declaration
      | interface_file_declaration

interface_package_declaration ::= [§ 6.5.5]
      package identifier is
            new uninstantiated_package_name interface_package_generic_map_aspect

interface_package_generic_map_aspect ::= [§ 6.5.5]
        generic_map_aspect
      | generic map ( <> )
      | generic map ( default )

interface_procedure_specification ::= [§ 6.5.4]
      procedure designator
            [ [ parameter ] ( formal_parameter_list ) ]

interface_signal_declaration ::= [§ 6.5.2]
      [ signal ] identifier_list : [ mode ] subtype_indication [ bus ] [ := static_expression ]

interface_subprogram_declaration ::= [§ 6.5.4]
      interface_subprogram_specification [ is interface_subprogram_default ]

interface_subprogram_default ::= subprogram_name | <> [§ 6.5.4]
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interface_subprogram_specification ::= [§ 6.5.4]
      interface_procedure_specification | interface_function_specification

interface_type_declaration ::= [§ 6.5.3]
      interface_incomplete_type_declaration

interface_variable_declaration ::= [§ 6.5.2]
      [ variable ] identifier_list : [ mode ] subtype_indication [ := static_expression ]

iteration_scheme ::= [§ 10.10]
        while condition
      | for loop_parameter_specification

label ::= identifier [§ 11.8]

letter ::= upper_case_letter | lower_case_letter [§ 15.4.2]

letter_or_digit ::= letter | digit [§ 15.4.2]

library_clause ::= library logical_name_list ; [§ 13.2]

library_unit ::= [§ 13.1]
        primary_unit
      | secondary_unit

literal ::= [§ 9.3.2]
        numeric_literal
      | enumeration_literal
      | string_literal
      | bit_string_literal
      | null

logical_expression ::= [§ 9.1]
        relation { and relation }
      | relation { or relation }
      | relation { xor relation }
      | relation [ nand relation ]
      | relation [ nor relation ]
      | relation { xnor relation }

logical_name ::= identifier [§ 13.2]

logical_name_list ::= logical_name { , logical_name } [§ 13.2]

logical_operator ::= and | or | nand | nor | xor | xnor [§ 9.2.1]

loop_statement ::= [§ 10.10]
      [ loop_label : ]
            [ iteration_scheme ] loop
                  sequence_of_statements
            end loop [ loop_label ] ;

miscellaneous_operator ::= ** | abs | not [§ 9.2.1]
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mode ::= in | out | inout | buffer | linkage [§ 6.5.2]

multiplying_operator ::= * | / | mod | rem [§ 9.2.1]

name ::= [§ 8.1]
        simple_name
      | operator_symbol
      | character_literal
      | selected_name
      | indexed_name
      | slice_name
      | attribute_name
      | external_name

next_statement ::= [§ 10.11]
      [ label : ] next [ loop_label ] [ when condition ] ;

null_statement ::= [ label : ] null ; [§ 10.14]

numeric_literal ::= [§ 9.3.2]
        abstract_literal
      | physical_literal

object_declaration ::= [§ 6.4.2.1]
        constant_declaration
      | signal_declaration
      | variable_declaration
      | file_declaration

operator_symbol ::= string_literal [§ 4.2.1]

package_body ::= [§ 4.8]
      package body package_simple_name is
            package_body_declarative_part
      end [ package body ] [ package_simple_name ] ;

package_body_declarative_item ::= [§ 4.8]
        subprogram_declaration
      | subprogram_body
      | subprogram_instantiation_declaration
      | package_declaration
      | package_body
      | package_instantiation_declaration
      | type_declaration
      | subtype_declaration
      | constant_declaration
      | variable_declaration
      | file_declaration
      | alias_declaration
      | attribute_declaration
      | attribute_specification
      | use_clause
      | group_template_declaration
      | group_declaration
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package_body_declarative_part ::= [§ 4.8]
      { package_body_declarative_item }

package_declaration ::= [§ 4.7]
      package identifier is
            package_header
            package_declarative_part
      end [ package ] [ package_simple_name ] ;

package_declarative_item ::= [§ 4.7]
        subprogram_declaration
      | subprogram_instantiation_declaration
      | package_declaration
      | package_instantiation_declaration
      | type_declaration
      | subtype_declaration
      | constant_declaration
      | signal_declaration
      | variable_declaration
      | file_declaration
      | alias_declaration
      | component_declaration
      | attribute_declaration
      | attribute_specification
      | disconnection_specification
      | use_clause
      | group_template_declaration
      | group_declaration
      | PSL_Property_Declaration
      | PSL_Sequence_Declaration

package_declarative_part ::= [§ 4.7]
      { package_declarative_item }

package_header ::= [§ 4.7]
      [ generic_clause
      [ generic_map_aspect ; ] ]

package_instantiation_declaration ::= [§ 4.9]
      package identifier is new uninstantiated_package_name
            [ generic_map_aspect ] ;

package_pathname ::=
      @ library_logical_name . { package_simple_name . } object_simple_name [§  8.7]

parameter_specification ::= [§ 10.10]
      identifier in discrete_range

partial_pathname ::= { pathname_element . } object_simple_name [§  8.7]

pathname_element ::= [§  8.7]
        entity_simple_name
      | component_instantiation_label
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      | block_label
      | generate_statement_label [ ( static_expression ) ]
      | package_simple_name

physical_literal ::= [ abstract_literal ] unit_name [§ 5.2.4.1]

physical_type_definition ::= [§ 5.2.4.1]
      range_constraint
            units
                  primary_unit_declaration
                  { secondary_unit_declaration }
            end units [ physical_type_simple_name ]

port_clause ::= [§ 6.5.6.3]
      port ( port_list ) ;

port_list ::= port_interface_list [§ 6.5.6.3]

port_map_aspect ::= [§ 6.5.7.3]
      port map ( port_association_list )

prefix ::= [§ 8.1]
        name
      | function_call

primary ::= [§ 9.1]
        name
      | literal
      | aggregate
      | function_call
      | qualified_expression
      | type_conversion
      | allocator
      | ( expression )

primary_unit ::= [§ 13.1]
        entity_declaration
      | configuration_declaration
      | package_declaration
      | package_instantiation_declaration
      | context_declaration
      | PSL_Verification_Unit

primary_unit_declaration ::= identifier ; [§ 5.2.4.1]

procedure_call ::= procedure_name [ ( actual_parameter_part ) ] [§ 10.7]

procedure_call_statement ::= [ label : ] procedure_call ; [§ 10.7]

procedure_specification ::= [§ 4.2.1]
      procedure designator
            subprogram_header
            [ [ parameter ] ( formal_parameter_list ) ]
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process_declarative_item ::= [§ 11.3]
        subprogram_declaration
      | subprogram_body
      | subprogram_instantiation_declaration
      | package_declaration
      | package_body
      | package instantiation_declaration
      | type_declaration
      | subtype_declaration
      | constant_declaration
      | variable_declaration
      | file_declaration
      | alias_declaration
      | attribute_declaration
      | attribute_specification
      | use_clause
      | group_template_declaration
      | group_declaration

process_declarative_part ::= [§ 11.3]
      { process_declarative_item }

process_sensitivity_list ::= all | sensitivity_list [§ 11.3]

process_statement ::= [§ 11.3]
      [ process_label : ]
            [ postponed ] process [ ( process_sensitivity_list ) ] [ is ]
                  process_declarative_part
            begin
                  process_statement_part
            end [ postponed ] process [ process_label ] ;

process_statement_part ::= [§ 11.3]
      { sequential_statement }

protected_type_body ::= [§ 5.6.3]
      protected body
            protected_type_body_declarative_part
      end protected body [ protected_type_simple name ]

protected_type_body_declarative_item ::= [§ 5.6.3]
        subprogram_declaration
      | subprogram_body
      | subprogram_instantiation_declaration
      | package_declaration
      | package_body
      | package_instantiation_declaration
      | type_declaration
      | subtype_declaration
      | constant_declaration
      | variable_declaration
      | file_declaration
      | alias_declaration
      | attribute_declaration
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      | attribute_specification
      | use_clause
      | group_template_declaration
      | group_declaration

protected_type_body_declarative_part ::= [§ 5.6.3]
      { protected_type_body_declarative_item }

protected_type_declaration ::= [§ 5.6.2]
      protected
            protected_type_declarative_part
      end protected [ protected_type_simple_name ]

protected_type_declarative_item ::= [§ 5.6.2]
        subprogram_declaration
      | subprogram_instantiation_declaration
      | attribute_specification
      | use_clause

protected_type_declarative_part ::= [§ 5.6.2]
      { protected_type_declarative_item }

protected_type_definition ::= [§ 5.6.1]
        protected_type_declaration
      | protected_type_body

qualified_expression ::= [§ 9.3.5]
        type_mark ' ( expression )
      | type_mark ' aggregate

range ::= [§ 5.2.1]
        range_attribute_name
      | simple_expression direction simple_expression

range_constraint ::= range range [§ 5.2.1]

record_constraint ::= [§ 5.3.3]
      ( record_element_constraint { , record_element_constraint } )

record_element_constraint ::= record_element_simple_name element_constraint [§ 5.3.3]

record_element_resolution ::= record_element_simple_name resolution_indication [§ 6.3]

record_resolution ::= record_element_resolution { , record_element_resolution } [§ 6.3]

record_type_definition ::= [§ 5.3.3]
      record
            element_declaration
           { element_declaration }
      end record [ record_type_simple_name ]

relation ::= [§ 9.1]
      shift_expression [ relational_operator shift_expression ]
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relational_operator ::= = | /= | < | <= | > | >= | ?= | ?/= | ?< | ?<= | ?> | ?>= [§ 9.2.1]

relative_pathname ::= { ^ . } partial_pathname [§  8.7]

report_statement ::= [§ 10.4]
      [ label : ]
            report expression
                  [ severity expression ] ;

resolution_indication ::= [§ 6.3]
      resolution_function_name | ( element_resolution )

return_statement ::= [§ 10.13]
      [ label : ] return [ expression ] ;

scalar_type_definition ::= [§ 5.2.1]
        enumeration_type_definition
      | integer_type_definition
      | floating_type_definition
      | physical_type_definition

secondary_unit ::= [§ 13.1]
        architecture_body
      | package_body

secondary_unit_declaration ::= identifier = physical_literal ; [§ 5.2.4.1]

selected_expressions ::= [§ 10.5.4]
      { expression when choices , }
       expression when choices

selected_force_assignment ::= [§ 10.5.4]
      with expression select [ ? ]
            target <= force [ force_mode ] selected_expressions ;

selected_name ::= prefix . suffix [§ 8.3]

selected_signal_assignment ::= [§ 10.5.4]
        selected_waveform_assignment
      | selected_force_assignment

selected_variable_assignment ::= [§ 10.6.4]
      with expression select [ ? ]
            target := selected_expressions ;

selected_waveform_assignment ::= [§ 10.5.4]
      with expression select [ ? ]
            target <= [ delay_mechanism ] selected_waveforms ;

selected_waveforms ::= [§ 10.5.4]
      { waveform when choices , }
      waveform when choices

sensitivity_clause ::= on sensitivity_list [§ 10.2]
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sensitivity_list ::= signal_name { , signal_name } [§ 10.2]

sequence_of_statements ::= [§ 10.1]
      { sequential_statement }

sequential_statement ::= [§ 10.1]
        wait_statement
      | assertion_statement
      | report_statement
      | signal_assignment_statement
      | variable_assignment_statement
      | procedure_call_statement
      | if_statement
      | case_statement
      | loop_statement
      | next_statement
      | exit_statement
      | return_statement
      | null_statement

shift_expression ::= [§ 9.1]
      simple_expression [ shift_operator simple_expression ]

shift_operator ::= sll | srl | sla | sra | rol | ror [§ 9.2.1]

sign ::= + | – [§ 9.2.1]

signal_assignment_statement ::= [§ 10.5.1]
        [ label : ] simple_signal_assignment
      | [ label : ] conditional_signal_assignment
      | [ label : ] selected_signal_assignment

signal_declaration ::= [§ 6.4.2.3]
      signal identifier_list : subtype_indication [ signal_kind ] [ := expression ] ;

signal_kind ::= register | bus [§ 6.4.2.3]

signal_list ::= [§ 7.4]
        signal_name { , signal_name }
      | others
      | all

signature ::= [ [ type_mark { , type_mark } ] [ return type_mark ] ] [§ 4.5.3]

simple_configuration_specification ::= [§ 7.3.1]
      for component_specification binding_indication ;
      [ end for ; ]

simple_expression ::= [§ 9.1]
      [ sign ] term { adding_operator term }

simple_force_assignment ::= [§ 10.5.2.1]
      target <= force [ force_mode ] expression ;
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simple_name ::= identifier [§ 8.2]

simple_release_assignment ::= [§ 10.5.2.1]
      target <= release [ force_mode ] ;

simple_signal_assignment ::= [§ 10.5.2.1]
        simple_waveform_assignment
      | simple_force_assignment
      | simple_release_assignment

simple_waveform_assignment ::= [§ 10.5.2.1]
      target <= [ delay_mechanism ] waveform ;

simple_variable_assignment ::= [§ 10.6.2.1]
      target := expression ;

slice_name ::= prefix ( discrete_range ) [§ 8.5]

string_literal ::= " { graphic_character } " [§ 15.7]

subprogram_body ::= [§ 4.3]
      subprogram_specification is
            subprogram_declarative_part
      begin
            subprogram_statement_part
      end [ subprogram_kind ] [ designator ] ;

subprogram_declaration ::= [§ 4.2.1]
      subprogram_specification ;

subprogram_declarative_item ::= [§ 4.3]
        subprogram_declaration
      | subprogram_body
      | subprogram_instantiation_declaration
      | package_declaration
      | package_body
      | package_instantiation_declaration
      | type_declaration
      | subtype_declaration
      | constant_declaration
      | variable_declaration
      | file_declaration
      | alias_declaration
      | attribute_declaration
      | attribute_specification
      | use_clause
      | group_template_declaration
      | group_declaration

subprogram_declarative_part ::= [§ 4.3]
      { subprogram_declarative_item }

subprogram_header ::= [§ 4.2.1]
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      [ generic ( generic_list )
      [ generic_map_aspect ] ]

subprogram_instantiation_declaration ::= [§ 4.4]
      subprogram_kind identifier is new uninstantiated_subprogram_name [ signature ]
            [ generic_map_aspect ] ;

subprogram_kind ::= procedure | function [§ 4.3]

subprogram_specification ::= [§ 4.2.1]
      procedure_specification | function_specification

subprogram_statement_part ::= [§ 4.3]
      { sequential_statement }

subtype_declaration ::= [§ 6.3]
      subtype identifier is subtype_indication ;

subtype_indication ::= [§ 6.3]
      [ resolution_indication ] type_mark [ constraint ]

suffix ::= [§ 8.3]
        simple_name
      | character_literal
      | operator_symbol
      | all

target ::= [§ 10.5.2.1]
        name
      | aggregate

term ::= [§ 9.1]
      factor { multiplying_operator factor }

timeout_clause ::= for time_expression [§ 10.2]

tool_directive ::= ` identifier { graphic_character } [§ 15.11]

type_conversion ::= type_mark ( expression ) [§ 9.3.6]

type_declaration ::= [§ 6.2]
        full_type_declaration
      | incomplete_type_declaration

type_definition ::= [§ 6.2]
        scalar_type_definition
      | composite_type_definition
      | access_type_definition
      | file_type_definition
      | protected_type_definition

type_mark ::= [§ 6.3]
        type_name
      | subtype_name
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unbounded_array_definition ::= [§ 5.3.2.1]
      array ( index_subtype_definition { , index_subtype_definition } )
            of element_subtype_indication

use_clause ::= [§ 12.4]
      use selected_name { , selected_name } ;

variable_assignment_statement ::= [§ 10.6.1]
        [ label : ] simple_variable_assignment
      | [ label : ] conditional_variable_assignment
      | [ label : ] selected_variable_assignment

variable_declaration ::= [§ 6.4.2.4]
      [ shared ] variable identifier_list : subtype_indication [ := expression ] ;

verification_unit_binding_indication ::= [§ 7.3.4]
      use vunit verification_unit_list

verification_unit_list ::= verification_unit_name { , verification_unit_name } [§ 7.3.4]

wait_statement ::= [§ 10.2]
      [ label : ] wait [ sensitivity_clause ] [ condition_clause ] [ timeout_clause ] ;

waveform ::= [§ 10.5.2.1]
        waveform_element { , waveform_element }
      | unaffected

waveform_element ::= [§ 10.5.2.2]
        value_expression [ after time_expression ]
      | null [ after time_expression ]
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Annex D

(informative) 

Potentially nonportable constructs

This annex lists those VHDL constructs whose use may result in nonportable descriptions.

A description is considered portable if it

a) Compiles, elaborates, initializes, and simulates to termination of the simulation cycle on all 
conformant implementations, and

b) The time-variant state of all signals and variables in the description are the same at all times during 
the simulation,

under the condition that the same stimuli are applied at the same times to the description. The stimuli applied 
to a model include the values supplied to generics and ports at the root of the design hierarchy of the model, 
if any.

Note that the content of files generated by a description are not part of the state of the description, but that 
the content of files consumed by a description are part of the state of the description.

The use of the following constructs may lead to nonportable VHDL descriptions:

— Resolution functions that do not treat all inputs symmetrically

— The comparison of floating-point values

— Events on floating-point-valued signals

— The use of explicit type conversion to convert floating-point values to integer values

— Any value that does not fall within the minimum guaranteed range for the type

— The use of architectures and subprogram bodies implemented via the foreign language interface (the 
'FOREIGN attribute)

— Processes that communicate via file I/O, including TEXTIO

— Impure functions

— Linkage ports

— Ports and generics in the root of a design hierarchy

— Use of a time resolution greater than 1 fs

— Shared variables

— Procedure calls passing a single object of an array or record type to multiple formals where at least 
one of the formals is of mode out or inout

— Models that depend on a particular format of T'IMAGE

— Declarations of integer or physical types that have a secondary unit whose position number is outside 
of the range –(2**31–1) to 2**31–1

— The predefined attributes 'INSTANCE_NAME or 'PATH_NAME, if the behavior of the model is 
dependent on the values returned by the attributes

— Use of a conversion specifier F, a, or A in the value for the FORMAT parameter of a call to the 
predefined function TO_STRING
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Annex E

(informative) 

Changes from IEEE Std 1076-2002

This annex lists those clauses that have been changed from IEEE Std 1076-2002, during its revision. The 
clause numbers are from this present revision. Note that purely editorial changes, such as typographic error 
corrections and changes made to conform to IEEE terminological rules, are not listed.

Clause 1
— 1.3.5: Describes incorporation of PSL.

Clause 3
— 3.2.2: Descriptions of generic (formerly 1.1.1.1) and ports (formerly 1.1.1.2) moved to 6.5.6.2 and 

6.5.6.3, respectively.
— 3.2.3: Addition of subprogram instantiations, package declarations and instantiations, and PSL 

declarations in entity declarative part.
— 3.2.4: Addition of PSL directives in entity statement part.
— 3.3.1: Change to scope of architecture body.
— 3.3.2: Addition of subprogram instantiations, package declarations and instantiations, and PSL 

declarations in block declarative part.
— 3.4.1: Addition of verification unit binding indication in configuration declaration.
— 3.4.2: Rules for configuring generate statements extended to include if-generate and case-generate 

statements; addition of specification that discrete range in a generate specification be static.
— 3.4.3: Addition of verification unit binding indication in component configuration.

Clause 4
— 4.2.1: Addition of subprogram header; description of uninstantiated and generic-mapped 

subprograms.
— 4.2.2.2: Changes for VHPI; changes to subtype rules.
— 4.2.2.3: Changes to subtype rules.
— 4.3: Addition of subprogram instantiations, package declarations and instantiations, and PSL 

declarations in subprogram declarative part; additional rules relating to uninstantiated subprograms.
— 4.4: New subclause describing subprogram instantiation declarations.
— 4.5.2: Extension to operator overloading rules.
— 4.5.3: Extension to rule relating to appearance of a signature.
— 4.6: Revision relating to new array subtype rules; other clarifications and corrections.
— 4.7: Addition of package header; description of uninstantiated and generic-mapped packages; 

addition of subprogram instantiations, package declarations and instantiations, and PSL declarations 
in package declarative part; rules relating to packages appearing other than as a design unit.

— 4.8: Addition of subprogram instantiations, package declarations and instantiations, PSL 
declarations, and attribute declarations and specifications in package body declarative part; rules 
relating to packages appearing other than as a design unit.

— 4.9: New subclause describing package instantiation declarations.
— 4.10: Addition of profile conformance, distinguished from lexical conformance.
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Clause 5
— 5.1: Clarification of predefined operations; definition of unconstrained, partially constrained, and 

fully constrained composite subtypes.
— 5.2.1: Clarification of range constraints and range bounds of scalar types.
— 5.2.2: Clarification of enumeration literal declaration.
— 5.2.4.2: Change to definition of resolution limit.
— 5.2.6: New subclause describing predefined operations on scalar types.
— 5.3.2.1: Extensions to array type definitions; addition of array constraints, extending index 

constraints.
— 5.3.2.2: Extension and clarification of rules relating to index ranges and array subtypes.
— 5.3.2.3: Addition of new predefined array types.
— 5.3.2.4: New subclause describing predefined operations on array types.
— 5.3.3: Extensions to rules for record type definitions; addition of record constraints.
— 5.4.1: Clarification and revision of type rules.
— 5.5.1: Clarification and revision of type rules.
— 5.5.2: Addition of FLUSH operation; minor revisionof type rule.
— 5.6.2: Addition of subprogram instantiation in protected type declarative part; clarification of type 

rules.
— 5.6.3: Addition of subprogram instantiations, and package declarations and instantiations in 

protected type body declarative part.
— 5.7: New subclause describing string representations, formerly in 16.4.

Clause 6
— 6.1: Addition of subprogram instantiations, package instantiations, PSL verification units, and PSL 

declarations in declarations; clarification of the definition of a declaration; added definition of a 
designator.

— 6.2: Additional rules for generic types and type declarations.
— 6.3: Extension of subtype indication relating to constraints and resolution functions.
— 6.4.1: Change in terminology for generics.
— 6.4.2.2: Clarifications.
— 6.4.2.3: Revision of rules relating to resolved signals; clarification of type rules.
— 6.4.2.4: Revision of rules relating to appearance of variable declarations.
— 6.5: Former 4.3.2 promoted to this subclause.
— 6.5.1: Revision of definition of interface declaration.
— 6.5.2: Descriptions of interface objects demoted into this new subclause; revisions to rules relating to 

interface constants; revision of rules relating to modes.
— 6.5.3: New subclause describing interface type declarations.
— 6.5.4: New subclause describing interface subprogram declarations.
— 6.5.5: New subclause describing interface package declarations.
— 6.5.6.1: Revisions relating to new classes of interface declarations and new places where interface 

lists may appear.
— 6.5.6.2: New subclause containing descriptions from former 1.1.1 and 1.1.1.1; extensions relating to 

generic types, subprograms, and packages.
— 6.5.6.3: New subclause containing descriptions from former 1.1.1 and 1.1.1.2; extension relating to 

non-static expression associated with a port; extension relating to port modes.
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— 6.5.7.1: Extensions relating to new classes of interface declarations and new places where 
association lists may appear; extensions to actual designators; clarifications of rules for type 
conversions and conversion functions.

— 6.5.7.2: New subclause containing descriptions from former 5.2.1.2; extensions relating to new 
classes of generics and new places where generic map aspects may appear.

— 6.5.7.3: New subclause containing descriptions from former 5.2.1.2.
— 6.6: Former 4.3.3 promoted to this subclause.
— 6.6.2: Extension to type rules; addition of rules relating to external names.
— 6.6.3: Clarification of rules relating to types.
— 6.7: Clarification of type rules.
— 6.11: New subclause describing PSL clock declarations.

Clause 7
— 7.2: Additional entity classes defined; revision of rules relating to specification of named entities; 

revision of rules relating to decoration of packages.
— 7.3.1: Addition of verification unit binding indication in configuration specification.
— 7.3.2: Extensions relating to new classes of interface declarations; clarification of error condition; 

descriptions in former 5.2.1.2 moved to 6.5.7.
— 7.3.3: Clarification.
— 7.3.4: New subclause describing verification unit binding indications.
— 7.4: Clarification of type rules.

Clause 8
— 8.1: Addition of character literals and external names; deleted rule relating to access-typed prefix.
— 8.3: Revision of expanded name rules relating to architecture bodies; addition of protected type 

definition in expanded name; clarification of prefix for a method name.
— 8.6: Clarification of predefined attribute names.
— 8.7: New subclause describing external names.

Clause 9
— 9.1: Addition of operators.
— 9.2.1: Addition of operators and predefined operations.
— 9.2.2: Extensions relating to operand types and unary forms.
— 9.2.3: Addition of matching relational operators.
— 9.2.4: Clarification of rule for index ranges.
— 9.2.5: Correction of terminology relating to index ranges.
— 9.2.7: Extension relating to operand types.
— 9.2.9: New subclause describing condition operator.
— 9.3.2: Revision of rules relating to null string literals; correction of terminology relating to index 

ranges.
— 9.3.3.1: Clarification of rules relating to discrete range choices.
— 9.3.3.3: Extensions relating to expressions of the type of the aggregate; revision and correction of 

terminology in rules relating to index ranges.
— 9.3.4: Additional rule relating to uninstantiated subprograms; clarification of parameter index range 

rules.
— 9.3.5: Revision of rule describing effect of type qualification.
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— 9.3.6: Extension allowing conversion between array types with different index types; addition of 
rules relating to null arrays; extension relating to array types with undefined index ranges.

— 9.3.7: Extension to rules relating to constraints.

— 9.4.2: Addition of operations defined in STD_LOGIC_1164; revision and extension to rules 
describing locally static primaries, constraints, and subtypes.

— 9.4.3: Revision and extension to rules describing globally static primaries, constraints and subtypes.

Clause 10

— 10.2: Generalization of type of a condition; extended applicability of rules for forming sensitivity 
list.

— 10.3: Revision of rules relating to messages and severity level.

— 10.4: Revision of rules relating to messages and severity level.

— 10.5: Addition of force and release assignment; addition of simple, conditional and selected signal 
assignment.

— 10.5.2: New subclause containing descriptions from former 8.4, describing simple signal assignment, 
force and release.

— 10.5.2.2: Former 8.4.1; clarification of subtype rules; addition of rules relating to force and release.

— 10.5.3: New subclause containing descriptions from former 9.5.1 describing conditional signal 
assignment, force and release.

— 10.5.4: New subclause containing descriptions from former 9.5.2 describing selected signal 
assignment, force and release, and matching selected signal assignment.

— 10.6: Addition of simple, conditional, and selected variable assignment.

— 10.6.2: New subclause containing descriptions from former 8.5, describing simple variable 
assignment; clarification of subtype rules; extension dealing with VHPI force; deleted text originally 
intended to be non-normative; addition of rule relating to aggregate targets.

— 10.6.2.2: Former 8.5.1; revision of rules relating to composite target.

— 10.6.3: New subclause describing conditional variable assignment.

— 10.6.4: New subclause describing selected variable assignment.

— 10.7: Extension relating to uninstantiated subprograms; revision of rules relating to index ranges of 
parameters.

— 10.9: Addition of matching case statement; revision of rules relating to choices and expression 
subtype.

— 10.13: Revision to rules relating to result subtype.

Clause 11

— 11.1: Addition of PSL directive as a concurrent statement.

— 11.3: Addition of all in a process sensitivity list; addition of subprogram instantiations, and package 
declarations and instantiations in process declarative part.

— 11.5: Addition of rule disambiguating assertions.

— 11.6: Revision of concurrent signal assignment rules; former 9.5.1 moved to 10.5.3; former 9.5.2 
moved to 10.5.4.

— 11.7.2: Revision of rules for equivalent block statements.

— 11.7.3: Revision of rules for equivalent block statements.

— 11.8: Addition of if-generate and case-generate statements.
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Clause 12
— 12.1: Revision of rules relating to declaration of architecture bodies.
— 12.2: Revision of rules relating to scope of architecture names; additional rules relating to 

uninstantiated declarations and PSL verification units.
— 12.3: Revision of visibility rule determining more than one meaning; additional rules relating to 

packages, architecture names, subprogram and package instantiation, alternative labels of generate 
statements, PSL verification units, PSL declarations and PSL directives; revision of rules for 
visibility of interface objects; revision of visibility by selection rules; revision of homograph 
definition and hiding rules.

— 12.4: Revision of rules relating identified declarations; revision of rules relating to direct visibility; 
additional rule relating to context declarations.

— 12.5: Additional rule relating to subprogram instantiation.

Clause 13
— 13.1: Addition of package instantiation declaration, context declaration and PSL verification unit as 

primary units; additional rule relating to context declarations.
— 13.2: Additional rules relating to context declarations; addition of library IEEE and new packages.
— 13.3: New subclause describing context declarations.
— 13.4: Addition of context references.

Clause 14
— 14.2: Additional rules relating to VHPI and PSL verification units; extension to rule relating to top-

level generics; additional rules relating to package instantiations; revision to order of elaboration of 
drivers; additional rules relating to external names.

— 14.3.1: Additional rules relating to package and subprogram headers.
— 14.3.2: Revision of order of elaboration.
— 14.3.3: Revision of order of elaboration; additional rules for new classes of generics.
— 14.3.4: Revision of order of elaboration.
— 14.3.5: Revision of order of elaboration; additional rules relating to association with non-static 

expressions; clarification of subtype rules.
— 14.4.1: Additional rules relating to VHPI.
— 14.4.2: Additional rule relating to PSL declarations.
— 14.4.2.2: Additional rules relating to subprogram instantiations.
— 14.4.2.3: Revision of rules relating to composite type declarations.
— 14.4.2.4: Additional rules relating to constraints.
— 14.4.2.5: Revision of rules relating to composite object declarations; clarified applicability of rules.
— 14.4.2.6: Revision of rule relating to composite alias declarations.
— 14.4.2.9: New subclause describing elaboration of packages.
— 14.4.3.2: Revision of rules relating to composite attributes.
— 14.5.1: Additional rules relating to VHPI and to PSL directives.
— 14.5.3: Additional rules relating to if-generate and case-generate statements.
— 14.5.5: Revision to order of elaboration of drivers.
— 14.6: Revision of order of elaboration of parameters; additional rules relating to VHPI.
— 14.7.1: Additional rule relating to PSL directives; revision of rules relating to kernel variables.
— 14.7.2: Revision and extension of rules relating to kernel variables, to update of drivers, and to 

VHPI.
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— 14.7.3: Revision and extension of rules relating to force and release, update of drivers and signals, 
kernel variables, and VHPI.

— 14.7.4: Additional rules relating to VHPI.
— 14.7.5: Former 12.6.4 partitioned into subclauses.

— 14.7.5.1: New subclause containing description of initialization from former 12.6.4; revised rules for 
determining Tn factored out.

— 14.7.5.2: New subclause containing description of initialization from former 12.6.4; additional rules 
for VHPI and for force and release; revision of rules relating to order of signal update; additional 
rules relating to PSL directives.

— 14.7.5.3: New subclause containing description of the simulation cycle from former 12.6.4; 
additional rules for VHPI and for force and release; revision of rules relating to order of signal 
update; additional rules relating to PSL directives.

Clause 15
— Clause 15: Former 13.10 deleted.

— 15.2: Additional rules relating to tool directives and to PSL; revision of character set usage; 
clarification of case correspondence.

— 15.3: Additional rules relating to tool directives and to PSL; additional delimiters.
— 15.8: Addition of length, signed and unsigned bases, decimal base, and non-digit characters.

— 15.9: Addition of delimited comments.

— 15.10: Additional reserved words defined; additional rules for PSL.
— 15.11: New subclause describing tool directives .

Clause 16
— 16.2: Additional rule relating to predefined attributes that are functions; clarification of atribute 

kinds; revision of rules for 'VALUE, 'IMAGE, 'POS, 'LENGTH, 'ASCENDING, and 
'LAST_VALUE; revision of rules for attributes of arrays; addition of 'SUBTYPE and 'ELEMENT; 
additional rules for 'PATH_NAME and 'INSTANCE_NAME.

— 16.3: Additional types and operations defined.

— 16.4 Additional operations defined; description of string representation moved to 5.7.
— 16.5: New subclause describing standard environment package.

— 16.6: New subclause describing standard mathematical packages, formerly in IEEE 1076.2-1996 
[B11].

— 16.7: New subclause describing standard multivalue logic package, formerly in IEEE 1164-1993 
[B16].

— 16.8: New subclause describing standard synthesis packages, formerly in IEEE 1076.3-1997 [B12].

— 16.9: New subclause describing standard synthesis context declarations.
— 16.10: New subclause describing fixed-point packages.

— 16.11: New subclause describing floating-point packages.

Clauses 17–23
— New clauses describing VHPI.

Clause 24
— New clause describing standard tool directives.
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Annex A
— New annex describing accompanying files.

Annex B
— New annex describing VHPI header files and extension mechanisms.

Annex C
— Formerly Annex A; revision of productions and addition of new productions.

Annex D
— Formerly Annex C; additional item relating to format specifiers.

Annex F
— Formerly Annex E; deletion of entries.

Annex G
— New annex describing use of standard packages.

Annex H
— New annex describing use of protect directive.

Annex I
— Formerly Annex B; revision of entries and addition of new entries.

Annex J
— Formerly Annex F; revision of entries and addition of new entries.
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Annex F

(informative) 

Features under consideration for removal

The following features are being considered for removal from a future version of the language.17

Accordingly, modelers should refrain from using them when possible:
— None

17To comment on these, or any other features of VHDL, please visit http://www.eda.org/vasg.
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Annex G

(informative) 

Guide to use of standard packages

G.1 Using the MATH_REAL and MATH_COMPLEX packages

G.1.1 General

The information in this clause is intended to be a brief guide to using the MATH_REAL and 
MATH_COMPLEX packages, but it is not a normative part of the standard. As a standard, this set of 
packages provides a means of building models that interoperate and port to different tools, provided that the 
user adheres to a set of guidelines required by the standard and the strict typing imposed by the VHDL 
language.

G.1.2 Package bodies for MATH_REAL and MATH_COMPLEX

The collection of machine-readable files that forms part of this standard includes package bodies for 
MATH_REAL and MATH_COMPLEX. These package bodies are intended to provide a guideline for 
implementors. They are not a normative part of this standard, but suggest ways in which implementors may 
implement the MATH_REAL and MATH_COMPLEX packages. Implementors may also use the package 
bodies as a guideline to verify their implementation of the packages.

G.1.3 Predefined data types, operators, and precision for MATH_REAL

The MATH_REAL package is built on top of the standard data type (REAL), operators, and precision 
requirements for floating-point operations defined in STD.STANDARD.

G.1.4 Use and constraints of pseudo-random number generator in MATH_REAL

The pseudo-random number generator provided with the package is platform independent. In order to 
generate a chain of pseudo-random numbers, the seed values shall be set only in the first call to the function. 
A different chain of numbers is started every time the seed values are set. If multiple chains of pseudo-
random numbers are required, then different sets of seed values have to be used for every chain.

G.1.5 Precision across different platforms

It is important to note that the math package results may be slightly different on different platforms because 
of variations in hardware support for floating-point arithmetic. These differences might not be immediately 
apparent to the average VHDL user. However, since most workstations use the IEEE 754 floating-point 
format, the variations are likely to be limited in practice.

G.1.6 Handling of overflow/underflow conditions

The detection of underflow/overflow is optional and implementation dependent.
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G.1.7 Testbench for the packages

A non-exhaustive testbench for the packages MATH REAL and MATH COMPLEX can be found in the 
collection of machine-readable files that forms part of this standard.

G.1.8 Overloading side effect

Note that there is a side effect of adding functions for COMPLEX_POLAR when numerical expressions are 
used. Numerical parameters for these functions are ambiguous, unless a qualifier is used to disambiguate 
them. For example, SIN((0.0, 0.0)) is ambiguous. One has to say either SIN(COMPLEX'(0.0, 0.0)) or 
SIN(COMPLEX_POLAR'(0.0, 0.0)).

G.1.9 Synthesizability of functions

Synthesizability of the functions defined in the mathematical packages is beyond the scope of this standard.

G.2 Using the STD_LOGIC_1164 package

G.2.1 General

This subclause is intended to be a brief guide to using the STD_LOGIC_1164 package. This package 
provides a means of building models that interoperate, provided that the user adheres to a set of guidelines 
required by the strict typing imposed by the VHDL language.

G.2.2 Value system

The value system in STD_LOGIC_1164 was developed to model a variety of digital device technologies. 
The base type of the logic system is named “std_ulogic” where the “u” in the name signifies “unresolved.” 
Each of the elements comprising the type have a specified semantic and a commonly used application. In 
order for models to properly interoperate, one must interpret the meaning of each of the elements as 
provided by the standard.

Value Name Usage

'U' Uninitialized state Used as a default value

'X' Forcing unknown Bus contentions, error conditions, etc.

'0' Forcing zero Transistor driven to GND

'1' Forcing one Transistor driven to VCC

'Z' High impedance 3-state buffer outputs

'W' Weak unknown Bus terminators

'L' Weak zero Pull down resistors

'H' Weak one Pull up resistors

'–' Don’t care Used for synthesis and advanced modeling
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G.2.3 Handling strengths

Behavioral modeling techniques rarely require knowledge of the strength of a signal’s value. Therefore, a 
number of “strength stripper” functions have been designed to transform 'Z', 'W', 'L', 'H', and '-' into their 
corresponding “forcing” strength counterparts.

Once in forcing strength, the model can simply respond to X's, 0's, l's, and 'U's as the need may arise. This 
strength stripping is done by using one of the following functions:�

G.2.4 Use of the uninitialized value

The 'U' value is located in the first position of the type. Therefore, any object declared to be of this base type 
will be automatically initialized to 'U' unless expressly assigned a default expression.

Uninitialized values were designed to provide a means of detecting system values that have not changed 
from their uninitialized state since the time of system initialization. Hence, the logical tables for AND, OR, 
NAND, NOR, XOR, XNOR, and NOT have been designed to propagate 'U' states whenever encountered.

The propagation of 'U's through a circuit gives the designer an understanding of where the system has failed 
to be properly initialized.

G.2.5 Behavioral modeling for 'U' propagation

For behavioral modeling where 'U' propagation is desired, the function TO_UX01 will provide a reduction 
in the state system, as far as the modeler is concerned, thereby easing the modeler’s task.

G.2.6 'U's related to conditional expressions

Case statements, “if” expressions, and selected signal assignments need to separately treat 'U' states and 
provide a path for 'U' state propagation in order to propagate 'U's.

G.2.7 Structural modeling with logical tables

The logical tables are designed to generate output values in the range 'U', 'X', '0', and '1'. Therefore, once an 
element of the nine-state system passes through any of the logical tables, it will be converted to forcing 
strength. If the need arises for a weak or floating strength to be propagated through the remainder of a circuit 
or to an output port, then the model developer shall be certain to assign the appropriate value accordingly.

G.2.8 X-handling: assignment of X’s

In assignments, the 'X' and '–' values differ minimally. The value '–', also known as “output don’t care,” 
explicitly means that synthesis tools are allowed to generate either a '0' or a '1', whichever leads to minimal 
circuitry, whereas 'X' usually appears during transitions or as a result of bus contentions or to flag model 
generated internal error conditions, such as in the following waveform assignment:

To_X01 (...) converts 'L' and 'H' to '0' and '1' respectively. All others are converted to 'X'.

To_UX0 1 (...) converts 'L' and 'H' to '0' and '1' respectively. 'U's are propagated and all others are 
converted to 'X'.
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S <= 'X' after 1 ns, '1' after 5 ns;

where the current value of S becomes indeterminate after 1 ns and then reaches '1' after 5 ns have elapsed.

G.2.9 Modeling with don’t care’s

G.2.9.1 Use of the don’t care state in synthesis models

For synthesis, a VHDL program is a specification of the functionality of a design. VHDL can also be used to 
model (in order to simulate) real circuits. The former deals with logical function of the circuit, while the 
latter is concerned with function of a circuit from an electrical point of view. The nine-state logic type usage 
for synthesis is based on the assumption that the VHDL models will be logical function specifications and, 
therefore, attempt to restrict the usage of the logic type to logical function. The motivation for allowing the 
user to reference the values 'U' and 'X' (which do not specify the behavior of the circuit to be built, i.e., one 
can not build a circuit which “drives an 'X'”) is to allow such simulation artifacts to remain in models for 
synthesis for the sake of convenience. By having synthesis remove these references, the user is assuming 
only the kind of usage (of 'U' and 'X') that catches error states that should never occur in hardware.

G.2.9.2 Semantics of '-'

In designing the resolution function and the various logic tables in the package body, '–' is almost 
exclusively a syntactic shorthand for 'X', provided for compatibility with synthesis tools. This is evident 
from the fact that '–' becomes 'X' as soon as it is operated upon and when it is converted to subtype X01 or 
UX01. The “output don’t care” value represents either a '1' or a '0' as the output of combinatorial circuitry, 
with respect to state encoding in particular.

G.2.10 Resolution function

In digital logic design, there are a number of occasions in which driving outputs of more than one device are 
connected together. The most common of which is TRI-STATE 18 buses in which memory data ports are 
connected to each other and to controlling microprocessors. Another common case is one in which multiple 
drivers are parallel driving a heavily loaded signal path. In each of these cases, the VHDL language requires 
that the signals used to interconnect those devices be “resolved” signal types.

Focusing on resolution: when two signals’ values are driving the same “wire,” some resulting value will be 
observed on that wire. For example, if two parallel buffers both drive '1' onto a signal, then the signal will be 
'1'. If a TRI-STATE driver is in the high-impedance state 'Z' and another driver is in the forcing one '1' state, 
then the combination of those two signal values will result in a value of '1' appearing on the wire.

The resolution function built into STD_LOGIC_1164 operates on the principal that weak values dominate 
over high-impedance values and forcing values dominate over weak values.

G.2.11 Using STD_ULOGIC vs. STD_LOGIC

In deciding whether to use the resolved signal or unresolved signal type, a number of considerations need to 
be made:

a) Does the simulator run slower when using a resolved type than when using an unresolved type, or is 
the simulator optimized for the STD_LOGIC data types?

18TRI-STATE is a registered trademark of National Semiconductor Corporation. This information is given for the convenience of users 
of this standard and does not constitute an endorsement by the IEEE of these products. Equivalent products may be used if they can be 
shown to lead to the same results.
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b) How many sources are there for a signal?

Each of these is considered, in order, as follows:

In the absence of other considerations, the choice between an unresolved and a resolved signal type should 
depend on whether the signal is intended to have only one source, or whether multiple sources are intended. 
In the former case, a scalar signal should be of type STD_ULOGIC, since inadvertent connection of multiple 
sources can be detected during analysis or elaboration. Similarly, a vector signal should be of type 
STD_ULOGIC_VECTOR, for the same reason. In the latter case a scalar signal should be of type 
STD_LOGIC, and a vector signal should be of type STD_LOGIC_VECTOR.

The same considerations apply to ports, regardless of the actual signals to which they are connected. An 
input port can be of either an unresolved or a resolved type, as the question of sources is not relevant. An 
output or bidirectional port with one internal source should be of type STD_ULOGIC or 
STD_ULOGIC_VECTOR. An output or bidirectional port with multiple internal sources should be of type 
STD_LOGIC or STD_LOGIC_VECTOR. The values contributed by the internal sources are resolved to 
determine the value driven by the port. Since STD_LOGIC is a subtype of STD_ULOGIC, ports and signals 
of these types can be interconnected freely. Similarly, since STD_LOGIC_VECTOR is a subtype of 
STD_ULOGIC_VECTOR, ports and signals of these vector types can be interconnected freely.

G.3 Notes on the synthesis package functions

G.3.1 General

This subclause provides notes on functions included in the NUMERIC_BIT, NUMERIC_STD, 
NUMERIC_BIT_UNSIGNED, and NUMERIC_STD_UNSIGNED packages. Except where otherwise 
indicated, notes applying to operations on type UNSIGNED in NUMERIC_BIT and NUMERIC_STD also 
apply to operations on BIT_VECTOR in NUMERIC_BIT_UNSIGNED and STD_ULOGIC_VECTOR in 
NUMERIC_STD_UNSIGNED.

The appearance of a code fragment in this subclause does not require a synthesis tool conforming to this 
standard to accept the construct represented by that fragment.

G.3.2 General considerations

G.3.2.1 Mixing SIGNED and UNSIGNED operands

The NUMERIC_BIT and NUMERIC_STD packages do not provide functions for mixing SIGNED and 
UNSIGNED operands. To do so would make it necessary to use qualified expressions to disambiguate 
commonly occurring forms. For example, with the declarations

variable S: SIGNED (3 downto 0);
variable U: UNSIGNED (4 downto 0);

if the arithmetic and relational functions allowed mixing of SIGNED and UNSIGNED operands, it would be 
necessary to rewrite the expressions

S >= "0000"

and
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U + "1"

as

S >= SIGNED'("0000")

and

U + UNSIGNED'("1")

To apply a binary operation from the NUMERIC_BIT or NUMERIC_STD package to a combination of 
SIGNED and UNSIGNED operands, the user must explicitly convert one of the operands to the other type 
(see G.3.6.2).

G.3.2.2 Mixing vector and element operands

The packages do not declare functions that combine a vector with an operand that belongs to the element 
type of the vector, other than the + and – functions. For example, with the declarations

signal A, B, S: SIGNED(3 downto 0);
signal C: BIT;

a user shall not write

S <= A * B(3);

or

S <= A * C;

or

S <= A / '1';

For the first and third example, a user may write instead

S <= A * B(3 downto 3);

and

S <= A / "1";

For the second example, the user may concatenate C with a 0-length vector

S <= A * (C & "");

G.3.3 Arithmetic operator functions

G.3.3.1 Overflow of maximum negative value

When the SIGNED operand to an abs (function A.1) or unary – (function A.2) function has the maximum 
negative value for the number of elements that it has, the result is the maximum negative value of the same 
size. This means, for example, that
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- SIGNED'("1000")

evaluates to

"1000"

Similarly, in functions A.22 and A.25, when the first operand to the / operator has the maximum negative 
value for the number of elements that it has, and when the second operand is either an INTEGER with the 
value –1 or a SIGNED operand with a value equivalent to –1, the result is the same as the first operand, 
rather than its complement:

SIGNED'("1000") / "11111"       evaluates to "1000"
SIGNED'("10000") / (-1)         evaluates to "10000"

To prevent overflow, a user may add an extra bit to the representation. For example, with the declarations

variable DIVIDEND: SIGNED (4 downto 0);
variable DIVISOR: INTEGER range -8 to 7;
variable QUOTIENT: SIGNED (5 downto 0);

one may write

QUOTIENT := (DIVIDEND(4) & DIVIDEND) / DIVISOR;

G.3.3.2 Lack of carry and borrow

When both operands of a binary arithmetic function + or – are either SIGNED or UNSIGNED, the function 
returns a value with the same number of elements (bits) as the larger of the two operands. If one operand is 
SIGNED or UNSIGNED and the other is INTEGER or NATURAL, the function returns a value with the 
same number of elements as the vector operand. Thus, these functions do not return an extra bit to represent 
a carry, borrow, or overflow value, nor do they generate a warning if a carry, borrow, or overflow occurs.

The choice not to generate a carry or borrow (and not to generate a warning) makes it easier to represent 
counter operations in the VHDL source code via assignments such as

A := A + 1;

or

B <= B - "1";

To obtain the appropriate carry, borrow, or overflow value, a user may add an extra bit to the vector operand. 
For example, with the declarations

signal U: UNSIGNED (4 downto 0);
signal S: SIGNED (5 downto 0);
signal SUM: UNSIGNED (5 downto 0);
signal DIFFERENCE: SIGNED (6 downto 0);

one may write

SUM <= ('0' & U) + 1;
DIFFERENCE <= (S(5) & S) - "1";
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G.3.3.3 Return value for metalogical and high-impedance operands

If an operand to a NUMERIC_STD or NUMERIC_STD_UNSIGNED arithmetic function contains a 
metalogical or high-impedance value, the function returns a vector in which every element has the value 'X'. 
The function does not report a warning or error.

G.3.4 Relational operator functions

G.3.4.1 Justification of vector operands

The relational operator functions defined in the synthesis packages have a behavior different from the 
default behavior defined by this standard for vector types. The default behavior compares the vector 
elements left to right after the operands are left-justified, whereas the relational operator functions defined in 
the synthesis packages treat their operands as representing binary integers.

Table G.1 compares results for the predefined relational operators applied to BIT_VECTORs with the 
relational operators defined in the packages for SIGNED and UNSIGNED values. The results of relational 
operators defined in the NUMERIC_BIT_UNSIGNED package for BIT_VECTORs and in the 
NUMERIC_STD_UNSIGNED package for STD_ULOGIC_VECTORs are the same as the results for 
UNSIGNED.�

G.3.4.2 Expansion of vector operands compared to integers

When a relational operator compares a SIGNED or UNSIGNED operand value with an INTEGER or 
NATURAL value, the function has the effect of converting the SIGNED or UNSIGNED operand to its 
equivalent universal integer value and then doing the corresponding comparison of integer values. For 
example

(SIGNED'("111") > -8) = TRUE

and

(UNSIGNED'("111") < 8) = TRUE

That is, the INTEGER value may be larger in magnitude than any value that can be represented by the 
number of elements in the SIGNED or UNSIGNED value.

Table G.1—Relational operators examples

Expression Predefined operation on… Package operation on…

BIT_VECTOR UNSIGNED SIGNED

"001" = "00001" FALSE TRUE TRUE

"001" > "00001" TRUE FALSE FALSE

"100" < "01000" FALSE TRUE TRUE

"010" < "10000" TRUE TRUE FALSE

"100" < "00100" FALSE FALSE TRUE
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G.3.4.3 Return value for metalogical and high-impedance operands

If an operand to any of the NUMERIC_STD or NUMERIC_STD_UNSIGNED relational operator functions 
for =, <, <=, >, or >= contains a metalogical or high-impedance value, the function returns the value FALSE. 
If an operand to the NUMERIC_STD or NUMERIC_STD_UNSIGNED relational operator function /= 
contains a metalogical or high-impedance value, the  function returns the value TRUE.

G.3.5 Shift functions

G.3.5.1 Multiplication by a power of 2 with remaindering

The SHIFT_LEFT function for an UNSIGNED parameter provides for multiplication by a power of 2 
remaindered by the maximum size of the vector parameter. In particular, if ARG is UNSIGNED and 
contains neither metalogical or high-impedance values, and if the integer values fall within the range 
allowed for INTEGERs:

TO_INTEGER (SHIFT_LEFT (ARG, COUNT)) =
   TO_INTEGER (ARG) * (2 ** COUNT) rem (2 ** ARG'LENGTH)

G.3.5.2 Division by a power of 2

The SHIFT_RIGHT function for an UNSIGNED parameter provides for division by a power of 2. That is, if 
ARG is UNSIGNED and contains neither metalogical or high-impedance values, and if the integer values 
fall with the range allowed for INTEGERs:

TO_INTEGER (SHIFT_RIGHT (ARG, COUNT) = TO_INTEGER (ARG) / (2 ** COUNT)

G.3.6 Type conversion functions

G.3.6.1 Overflow in conversion to INTEGER

The TO_INTEGER function does not contain code to check that the SIGNED or UNSIGNED parameter has 
an equivalent universal integer value that belongs to the range defined for the INTEGER or NATURAL 
subtypes. If TO_INTEGER is called with a parameter value that is too large, the simulation tool may 
therefore detect an overflow. A user should avoid applying TO_INTEGER to parameter subtypes for which 
the number of elements is greater than the number of bits used to represent INTEGERs in the user’s 
simulation and synthesis tools.

G.3.6.2 Conversion between SIGNED and UNSIGNED

The packages do not provide functions for converting directly between the SIGNED and UNSIGNED types. 
Such conversions must be performed by the user. There are several ways to convert between SIGNED and 
UNSIGNED types. In performing such conversions, a user must determine how to handle any possible 
differences in the ranges supported by SIGNED and UNSIGNED objects having the same number of 
elements. For example, suppose the VHDL source code contains the declarations

signal S: SIGNED(3 downto 0);
signal BIG_S: SIGNED(4 downto 0);
signal U: UNSIGNED(3 downto 0);
constant S1: SIGNED(3 downto 0) := "1000"; -- equivalent to -8
constant U1: UNSIGNED(3 downto 0) := "1100"; -- equivalent to +12

a) A user can use a VHDL type conversion to convert one form to another:
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S <= SIGNED (U1);   -- U1 (= +12) gets converted to S (= -4)
U <= UNSIGNED (S1); -- S1 (= -8)  gets converted to U (= +8)

b) A user can add an extra bit to represent the sign when converting from UNSIGNED to SIGNED:
BIG_S <= SIGNED (‘0’ & U1); -- U1 (= +12) gets converted
                            -- to BIG_S (= +12)

c) Finally, a user can generate an error or warning when the value of one cannot be represented in the 
number of elements available in the other:
assert S >= "0000"
   report "Cannot convert negative value."
   severity WARNING;
U <= UNSIGNED (S);

G.3.7 Logical operator functions

G.3.7.1 Application to SIGNED and UNSlGNED

The functions that define the application of the logical operators and, or, nand, nor, xor, and xnor to 
SIGNED and UNSIGNED operand values are equivalent to functions that apply the same logical operators 
to STD_LOGIC_VECTOR (or STD_ULOGIC_VECTOR) parameters. This equivalence includes the 
handling of metalogical and high-impedance element values. That is, for example, if S1 and S2 are SIGNED 
values of equal length:

S1 nand S2 = SIGNED (STD_LOGIC_VECTOR (S1) nand STD_LOGIC_VECTOR (S2))

G.3.7.2 Index range of return values

For the functions and, or, nand, nor, xor, and xnor defined in the NUMERIC_STD package, the index 
range for the return values has the form “n – 1 downto 0,” where n is the number of elements in the return 
value.

In the NUMERIC_BIT package, the corresponding functions are defined implicitly by the type declarations 
for the SIGNED and UNSIGNED types, so that the index range of the return values is as defined by this 
standard (see 9.2.2).

G.3.8 The STD_MATCH function

The behavior of the STD_MATCH functions in the NUMERIC_STD package differs from that of the = 
functions for the same types of parameters. The STD MATCH function compares its parameters element by 
element, and treats the value '–' as matching any other STD_ULOGIC value. The = function interprets its 
operands, however, as representing the equivalent integer values, and returns TRUE if the equivalent integer 
values are equal.

G.4 Using the fixed-point package

G.4.1 General

Fixed point is a step between integer math and floating point. This has the advantage of being almost as fast 
as NUMERIC_STD arithmetic, but able to represent numbers that are less than 1.0. A fixed-point number 
has an assigned width and an assigned location for the binary point. As long as the number is big enough to 
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provide enough precision, fixed point is fine for most digital signal processing (DSP) applications. Because 
it is based on integer math, it is extremely efficient, as long as the data does not vary too much in magnitude.

The fixed-point package defines two types: “unresolved_ufixed” is the unsigned fixed point, and 
“unresolved_sfixed” is the signed fixed point.

type unresolved_ufixed is array (INTEGER range <>) of STD_ULOGIC;
type unresolved_sfixed is array (INTEGER range <>) of STD_ULOGIC;

There are also aliases of these types, “U_ufixed” and “U_sfixed”. The package defines subtypes, “ufixed” 
and “sfixed”, with resolved elements:

subtype ufixed is (resolved) unresolved_ufixed;
subtype sfixed is (resolved) unresolved_sfixed;

Example:

   use ieee.fixed_pkg.all;
   ...
   signal a, b: sfixed (7 downto -6);
   signal c: sfixed (8 downto -6);
begin
   ...
   c <= a + b;

The fixed-point data types define the location of the binary point by using negative indices within a 
descending index range. The binary point is assumed to be between the 0 and –1 index. Thus, given a 
declaration

signal y: ufixed (4 downto -5)

the data type represents unsigned fixed point, 10 bits wide, with 5 bits after the binary point. Then assigning 
y = 6.5 in decimal, or = 00110.10000 in binary, can be written:

y <= "0011010000";

The signed data type uses 2s-complement representation, just like the NUMERIC_STD package.

Any non-null index range is valid. Thus:

signal z: ufixed (-2 downto -3);
signal y: sfixed (3 downto 1);
...
z <= "11";  -- 0.011 = 0.375
y <= "111"; -- 1110.0 = -2

G.4.2 Literals and type conversions

Conversion functions have been created for INTEGER, REAL, SIGNED, and UNSIGNED types. These 
conversion functions can be called with two different sets of parameters, one set giving the index bounds of 
the result directly, and the other consisting of a single parameter whose index bounds are used. For example, 
to convert from a real number to a signed fixed-point result:
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a <= to_sfixed (-3.125, 7, -6);
b <= to_sfixed (inp1, b); -- returns "inp1" sized the same as "b"

Likewise, to convert from a real number to an unsigned fixed-point result:

y <= to_ufixed (6.5, 4, -5);

where 4 is the upper index, and –5 is the lower index; or similarly:

y <= to_ufixed (6.5, y'high, y'low);

or:

y <= to_ufixed (6.5, y);

The to_signed and to_unsigned conversion functions are also overloaded to take the two forms of 
parameters specifying the result bounds. Rounding and saturation rules apply on these functions.

G.4.3 Sizing rules

The data widths in the fixed-point package are designed so that there is no possibility of an overflow. This is 
a departure from the NUMERIC_STD model, which simply throws away underflow and overflow bits. The 
index range of the result of an operation is defined in Table G.2.

Example:

Given the unsigned declarations:

Table G.2—Index range of result of an operation

Operation Result range

A + B Max(A'left, B'left) + 1 downto Min(A'right, B'right)

A – B Max(A'left, B'left) + 1 downto Min(A'right, B'right)

A * B A'left + B'left + 1 downto A'right + B'right

A rem B Min(A'left, B'left) downto Min(A’right, B'right)

Signed A/B A'left – B'right + 1 downto A'right – B'left

Signed A mod B Min(A'left, B'left) downto Min(A'right, B'right)

Signed reciprocal(A) –A'right downto –A'left – 1

abs A A'left + 1 downto A'right

– A A'left + 1 downto A'right

Unsigned A/B A'left – B'right downto A'right – B'left – 1

Unsigned A mod B B'left downto Min(A'right, B'right)

Unsigned reciprocal(A) –A'right + 1 downto –A'left
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signal x: ufixed (7 downto -3);
signal y: ufixed (2 downto -9);

Multiplying x by y gives a result of type ufixed (7+2+1 downto –3+(–9)), or ufixed (10 downto –12).

Given the signed declarations:

signal x: sfixed (-1 downto -3);
signal y: sfixed (3 downto 1);

Dividing x by y gives a result of type sfixed (–1–1+1 downto –3–3), or sfixed (–1 downto –6).

It is not necessary to memorize the size rules. Instead, the resize function can be used, or the functions 
ufixed_high, ufixed_low, sfixed_high, and sfixed_low can be used to return the bounds of an operand.

Example:

   variable a: sfixed (5 downto -3);
   variable b: sfixed (7 downto -9);
   variable adivb: sfixed (sfixed_high (5, -3, '/', 7, -9)
                           downto sfixed_low (5, -3, '/', 7, -9));
begin
   adivb <= a / b; -- signed fixed-point divide

Alternatively:

signal adivb:
         sfixed (sfixed_high (a'high, a'low, '/', b'high, b'low)
                 downto sfixed_low (a'high, a'low, '/', b'high, b'low));

or:

signal adivb: sfixed(sfixed_high (a, '/', b)
                     downto sfixed_low (a, '/', b));

The resize function can be used to fix the size of the output. However, rounding and saturate rules are 
applied:

x <= resize (x * y, x'high, x'low);

The increase in result size can cause problems in some designs, such as an accumulator, that is, a fixed-
width number to which other numbers are added repeatedly. To implement an accumulator in the fixed-point 
packages, the resize function can be applied to the result of the addition, or the add_carry procedure can be 
used, as follows:

signal ACC: ufixed (7 downto -3);
...
add_carry ( L => ACC, R => X, C_in => '0', Result => ACC, C_out => open);

The divide function is defined as follows:

function divide (l, r: sfixed;
                 round_style: BOOLEAN := fixed_round_style;
                 guard_bits: NATURAL := fixed_guard_bits) return sfixed;
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The output is sized with the same rules as the / operator. The function allows the number of guard bits and 
the rounding operation to be overridden. Note that the output size is calculated so that overflow is not 
possible.

The reciprocal function is defined in a similar manner to the divide function:

function reciprocal (arg: ufixed;
                     round_style: BOOLEAN := fixed_round_style;
                     guard_bits: NATURAL := fixed_guard_bits)
                     return ufixed;

This function performs the operation “1/arg”, with the output vector following the sizing rules as previously 
noted. The function is very useful for dividing by a constant. For example:

A := B / Cons;

can be rewritten as:

A := B * reciprocal (Cons);

because a multiplier typically uses less logic than a divider, this change can save significant hardware 
resources.

G.4.4 Rounding and saturation

Many of the fixed-point operations include parameters to control rounding and saturation behavior. An 
example is the resize operation, which may be called as follows:

X <= resize (arg => X + 1,
             left_index => X'high, right_index => X'low,
             overflow_style => fixed_wrap,
             round_style => fixed_truncate );

In the FIXED_PKG package, round_style defaults to fixed_round, which turns on the rounding routines. If 
round_style is fixed_truncate, the number is truncated. Rounding returns the representable value that is 
nearest the original value before dropping the remainder. If the remainder places the original value exactly 
in the middle of two representable values, the one with its least significant bit 0 is returned. The rounding 
operation is implemented by examining the least significant bit of the unrounded value and the bits of the 
remainder. If the most significant bit of the remainder is 1, and either the least significant bit of the 
unrounded value is 1 or any bits other than the most significant of the remainder (or both), then the 
unrounded value is rounded up; otherwise it is returned as is. While this has the advantage of maintaining 
accuracy, like floating-point round-nearest behavior, it has the disadvantage that all of the bits of the 
remainder must be examined to do rounding, increasing the hardware complexity.

In the FIXED_PKG package, overflow_style defaults to fixed_saturate: if the true result is too large to 
represent, the returned result is the maximum possible number. The alternative for overflow_style is 
fixed_wrap, where the top bits are simply truncated. Unlike in NUMERIC_STD, the sign bit is not 
preserved when wrapping. Thus, it is possible to get a positive result when resizing a negative number in this 
mode.

Finally, a guard_bits parameter on many operations defaults to the value of fixed_guard_bits, which is 3 in 
FIXED_PKG. Guard bits are used in the rounding routines. If guard_bits is 0, rounding is turned off. 
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Otherwise, the extra bits are added to the end of the numbers in the division and to_real functions to make 
the numbers more accurate.

G.4.5 Overloading

The following operations are defined for ufixed:

+, –, *, /, rem, mod, =, /=, <, >, >=, <=, sll, srl, rol, ror, sla, sra

The following operations are defined for sfixed:

+, –, *, /, rem, mod, =, /=, <, >, >=, <=, sll, srl, rol, ror, sla, sra, abs, – (unary)

All of the binary operators are overloaded for REAL and INTEGER data types. In the case of a REAL, the 
range of the fixed-point number is used to convert the real number into fixed point before the operation is 
performed.  In the case of an INTEGER, the number is converted into fixed point with the range of 
fixed'HIGH downto 0. Thus, the fixed-point operand must be of a format large enough to accommodate the 
converted input or a “vector-truncated” warning is produced. In these functions, overflow_style is set to 
fixed_saturate.

The overloaded definitions allow, as an example:

signal x: sfixed (4 downto -5);
signal y: real;
...
z := x + y;

In the case where an operation is performed that includes both a fixed-point number and an integer or real, 
the sizing rules are modified. For a real number, the real is converted to a fixed-point number that is the 
same size as the fixed-point argument. Thus, the preceding example is equivalent to:

z := x + sfixed(y, 4, -5);

result in a type of sfixed (5 downto –5) for z. A similar rule holds for integers.

Shift operators are functionally the same as those for NUMERIC_STD. An arithmetic shift (sra or sla) on an 
unsigned number is the same as a logical shift. An arithmetic shift on a signed number is the same as a 
logical shift if the number is shifted left, but replicates the sign bit if the number is shifted right.

The scalb function can be used to losslessly multiply or divide any number by a power of two, for example:

   constant half: ufixed (2 downto -2) := "00010"; -- 000.10
   variable two: ufixed (5 downto 0);
   variable someval: ufixed (5 downto -5);
begin
   two := scalb(half, 2); -- returns "00010.", or 2.0
   someval := resize (scalb (half, X), someval'high, someval'low);

All of the standard relational operators are implemented. The operators =, /=, <, >, >=, <= perform in a 
similar way to the NUMERIC_STD functions. If values of two different lengths are given, then the inputs 
are resized before the comparison is made.
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The maximum and minimum functions do a comparison operation and return the appropriate value. These 
functions are overloaded for INTEGER and REAL parameters.  The sizes of the parameters do not need to 
match.  The output is resized to the maximum of the left index and minimum of the right index.

The find_leftmost and find_rightmost functions find the leftmost or rightmost occurrence of a given bit 
value in a fixed-point number and return the index of the occurrence. The functions are declared as:

function find_leftmost  (arg: ufixed; y: STD_ULOGIC) return INTEGER;
function find_rightmost (arg: ufixed; y: STD_ULOGIC) return INTEGER;

and similarly for sfixed parameters. The parameter y can be any STD_ULOGIC value. The functions use the 
"?=” operator to compare bits in arg with y, so strength of values is ignored. If the value is not found by the 
find_leftmost function, arg'low – 1 is returned. Similarly, if the value is not found by the find_rightmost 
function, arg'high + 1 is returned. Note that find_leftmost(arg, '1') for a ufixed parameter or for a positive 
sfixed parameter returns the integer log (base 2) of arg.

The To_01, To_X01, To_X01Z, To_UX01, and Is_X functions are similar to the STD_LOGIC_1164 and 
NUMERIC_STD functions of the same names.

Most synthesis tools do not support any I/O format other than std_logic_vector and std_logic. Thus, 
functions are included to convert between std_logic_vector and ufixed or sfixed, and vice versa, for 
example:

uf7_3 <= to_ufixed (slv7, uf7_3'high, uf7_3'low);

and

slv7 <= to_slv (uf7_3);

READ, WRITE, HREAD, HWRITE, OREAD, and OWRITE routines are also defined for fixed-point data 
types. A “.” separator is added between the integer part and the fractional part of the fixed-point number. 
Therefore the result of to_ufixed (6.5, 4, –5) would be written as "00110.10000". This string can also be read 
back into a variable of type ufixed(4 downto –5).

The functions to_string, to_ostring, and to_hstring are also provided. These are very useful in assertion and 
report statements, for example:

assert x = y
   report to_string(x) & " /= " & to_string(y)
   severity error;

Alternatively, the numbers can be shown in real format:

assert x = y
   report to_string(to_real(x)) & " /= " & to_string(to_real(y))
   severity error;

In order to provide a measure of compatibility with tools commonly used to define DSP algorithms, the 
package provides the To_SFix and To_UFix conversion functions. These functions convert from a 
STD_LOGIC_VECTOR value to a ufixed or sfixed value, respectively. The index bounds for the result are 
described in terms of the vector length and the number of post-binary-point bits. For example, a DSP tool 
might describe an unsigned fixed-point number as ufix[14,10], which specifies a 14-bit word with a 10-bit 
fraction. This translates to the unsigned fixed-point type ufixed(3 downto –10). Similarly, sfix[14, 10] 
translates to the signed fixed-point type sfixed(3 downto –10).
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G.4.6 Package generics

The fixed-point packages are defined by an uninstantiated package with generic constants, as follows:

library IEEE; ...
use IEEE.fixed_float_types.all;
package fixed_generic_pkg is
   generic (
      fixed_round_style    : fixed_round_style_type
         := fixed_round;
      fixed_overflow_style : fixed_overflow_style_type
         := fixed_saturate;
      fixed_guard_bits     : NATURAL := 3;
      no_warning           : BOOLEAN := FALSE
      );
   ...

Since it is an uninstantiated package, fixed_generic_pkg cannot be used directly. Rather, it must be 
instantiated and the instance used. The library IEEE contains a standard instance, named fixed_pkg, 
declared as:

library IEEE;
package fixed_pkg is new IEEE.fixed_generic_pkg
   generic map (
      fixed_round_style    => IEEE.fixed_float_types.fixed_round,
      fixed_overflow_style => IEEE.fixed_float_types.fixed_saturate,
      fixed_guard_bits     => 3,
      no_warning           => FALSE
      );

This is where the actual generics are specified. Note that the user can declare a separate instantiation of the 
fixed-point package if different defaults are required. For example, if an application does not require 
rounding (because it takes up too much logic), requires wrapping of numbers rather than saturation, requires 
no guard bits on divisions, and does not require “metavalue detected” warnings, the package may be 
instantiated as follows:

library IEEE;
package my_fixed_pkg is new IEEE.fixed_generic_pkg
   generic map (
      fixed_round_style    => IEEE.fixed_float_types.fixed_truncate,
      fixed_overflow_style => IEEE.fixed_float_types.fixed_wrap,
      fixed_guard_bits     => 0,
      no_warning           => TRUE
      );

This package instance can be analyzed and used in other design units. Note that the ufixed and sfixed types 
declared in the different package instances are distinct types, so type conversions may be needed to translate 
between them, as shown in the following example:

library IEEE; use IEEE.std_logic_1164.all, IEEE.fixed_pkg.all;
entity sin is
   port (arg: in ufixed (1 downto -16);
         clk, rst: in STD_ULOGIC;
         res: out ufixed (1 downto -11));
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end entity sin;

architecture structure of sin is
   component fixed_sin is
      port (arg: in work.my_fixed_pkg.ufixed (1 downto -16);
            clk, rst: in STD_ULOGIC;
            res: out work.my_fixed_pkg.ufixed (1 downto -11));
   end component fixed_sin;
begin
   U1: component fixed_sin
      port map (arg => work.my_fixed_pkg.ufixed(arg), -- convert arg
                clk => clk, rst => rst,
                IEEE.fixed_pkg.ufixed (res) => res);
end architecture structure;

G.4.7 Issues

The fixed-point math packages are based on the NUMERIC_STD package and use signed and unsigned 
arithmetic from within that package. This makes them highly efficient because the NUMERIC_STD 
package is well supported by simulation and synthesis tools.

An ascending index range is treated as an error by the fixed-point routines. Thus, if a number is declared as 
ufixed(–1 to 5), an error will occur when the number is operated upon.

String literals also cause problems. For example, in the following:

z <= a + "011011";

the index range of the string literal is defined by VHDL rules to be INTEGER'left to INTEGER'left + 5. 
Infeasible index values such as these also cause errors to occur.

Care is required in cases such as the following:

   signal a: sfixed (3 downto -3);
   signal b: sfixed (2 downto -4);
begin
   b <= a;

In this example, the two vectors have the same length, and so the assignment is legal. However, the change 
in index range implies a shift in the position of the binary point, thus changing the value represented. For 
example, if a represents the value 6.5, after the assignment, b represents the value 3.25. Such direct 
assignments are only correct if the index ranges are the same. Otherwise, the resize function should be used.

G.4.8 Catalog of operations

G.4.8.1 Operators

"+" Adds two fixed-point numbers together, overloaded for REAL and INTEGER. See output sizing rules (G.4.3).

"–" Subtracts fixed-point numbers. Overloaded for REAL and INTEGER. See output sizing rules (G.4.3). Unary 
version (–var1) returns a value that is one bit larger than the input. Note that unary – is only implemented on 
sfixed.
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"*" Multiply two fixed-point numbers together. Overloaded for REAL and INTEGER. See output sizing rules 
(G.4.3).

"/" Divides two fixed-point numbers. Overloaded for REAL and INTEGER. See output sizing rules (G.4.3). Uses 
3 guard bits and rounds the result by default. If this is not the desired functionality, then use the divide function 
or modify the package generics.

"abs" Absolute value. Returns a result one bit larger than the input. The argument and result are both sfixed.

"mod" Modulo. Returns the signed remainder. See output sizing rules (G.4.3). Overloaded for REAL and INTEGER.

"rem" Remainder. Returns the unsigned remainder. See output sizing rules (G.4.3). Overloaded for REAL and 
INTEGER.

"sll" Shift left logical. Left argument is ufixed or sfixed, right argument is INTEGER. A negative right argument 
causes a logical right shift.

"srl" Shift right logical. Left argument is ufixed or sfixed, right argument is INTEGER. A negative right argument 
causes a logical left shift.

"rol" Rotate logical left. Left argument is ufixed or sfixed, right argument is INTEGER. A negative right argument 
causes a rotate right.

"ror" Rotate logical right. Left argument is ufixed or sfixed, right argument is INTEGER. A negative right argument 
causes a rotate left.

"sla" Shift left arithmetic. Left argument is ufixed or sfixed, right argument is INTEGER. A negative right argument 
causes right arithmetic shift. Note that a right arithmetic shift on an sfixed replicates the sign bit. A left shift 
does not replicate the least significant bit. Note also that “x sla int” will multiply (or divide) x by a power of 2.

"sra" Shift right arithmetic. Left argument is ufixed or sfixed, right argument is INTEGER. A negative right 
argument causes left arithmetic shift. Note that a right arithmetic shift on an sfixed replicates the sign bit. A 
left shift does not replicate the least significant bit. Note that “x sra int” will divide (or multiply) X by a power 
of 2.

"=" Equal. Overloaded for REAL and INTEGER. Returns FALSE if any 'X' is found. Integers are converted to 
fixed point with to_fixed (arg, max(a'high+1, 0), 0), Reals are converted with to_fixed (arg, a'high+1, a'low) 
and rounded.

"/=" Not equal. Overloaded for REAL and INTEGER. Returns TRUE if any 'X' is found. Integers are converted to 
fixed point with to_fixed (arg, max(a'high+1, 0), 0), reals are converted with to_fixed (arg, a'high+1, a'low) 
and rounded.

"<" Less than. Overloaded for REAL and INTEGER. Returns FALSE if any 'X' is found. Integers are converted to 
fixed point with to_fixed (arg, max(a'high+1, 0), 0), reals are converted with to_fixed (arg, a'high+1, a'low) 
and rounded.

">" Greater than. Overloaded for REAL and INTEGER. Returns FALSE if any 'X' is found. Integers are converted 
to fixed point with to_fixed (arg, max(a'high+1, 0), 0), reals are converted with to_fixed (arg, a'high+1, a'low) 
and rounded.

"<=" Less than or equal. Overloaded for REAL and INTEGER. Returns FALSE if any 'X' is found. Integers are 
converted to fixed point with to_fixed (arg, max(a'high+1, 0), 0), reals are converted with to_fixed (arg, 
a'high+1, a'low) and rounded.

">=" Greater than or equal. Overloaded for REAL and INTEGER. Returns FALSE if any 'X' is found. Integers are 
converted to fixed point with to_fixed (arg, max(a'high+1, 0), 0), reals are converted with to_fixed (arg, 
a'high+1, a'low) and rounded.

"?=" Performs an operation similar to the NUMERIC_STD "?=" function, but returns a STD_ULOGIC value.

"?/=" Performs an operation similar to the NUMERIC_STD "?=" function, but returns a STD_ULOGIC value.

"?<" Returns 'X' if a metavalue is in either number, '1' if L is less than R, otherwise '0'.

"?<=" Returns 'X' if a metavalue is in either number, '1' if L is less than or equal to R, otherwise '0'.

"?>" Returns 'X' if a metavalue is in either number, '1' if L is greater than R, otherwise '0'.
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G.4.8.2 Functions

"?>=" Returns 'X' if a metavalue is in either number, '1' if L is greater than or equal to R, otherwise '0'.

"and" Logical and. Similar to the STD_LOGIC_1164 operators. Binary operators require operands to have the same 
index ranges. Index range of the result is the same as those of the operands.

"nand" Logical nand. Similar to the STD_LOGIC_1164 operators. Binary operators require operands to have the same 
index ranges. Index range of the result is the same as those of the operands.

"or" Logical or. Similar to the STD_LOGIC_1164 operators. Binary operators require operands to have the same 
index ranges. Index range of the result is the same as those of the operands.

"nor" Logical nor. Similar to the STD_LOGIC_1164 operators. Binary operators require operands to have the same 
index ranges. Index range of the result is the same as those of the operands.

"xor" Logical exclusive or. Similar to the STD_LOGIC_1164 operators. Binary operators require operands to have 
the same index ranges. Index range of the result is the same as those of the operands.

"xnor" Logical exclusive nor. Similar to the STD_LOGIC_1164 operators. Binary operators require operands to have 
the same index ranges. Index range of the result is the same as those of the operands.

"not" Logical not. Similar to the STD_LOGIC_1164 operator. Index range of the result is the same as that of the 
operand.

find_leftmost Find leftmost occurrence of a given bit value. Inputs: arg (ufixed or sfixed), y : std_ulogic. Returns 
the integer index of the first occurrence of y in the vector arg starting from the left. Arg'low–1 is 
returned if y is not found. Note that find_leftmost(arg, '1') for a ufixed parameter or for a positive 
sfixed parameter returns the integer log base 2 of the input arg.

find_rightmost Find rightmost occurrence of a given bit value. Inputs: arg (ufixed or sfixed), y : std_ulogic. Returns 
the integer index of the first occurrence of y in the vector arg starting from the right. Arg'high+1 is 
returned if y is not found.

divide Arithmetic divide. Functionally identical to the "/" operator, but with two extra parameters. Inputs: l, 
r (both ufixed or sfixed), parameters: guard_bits : NATURAL, round_style : 
fixed_round_style_type. See output sizing rules (G.4.3). Guard bits are extra bits that are added to 
the end of the divide routine to maintain precision when rounding. The round style is either 
fixed_round or fixed_truncate. If rounding is set to fixed_truncate, then the guard bits are ignored.

reciprocal Performs a 1/arg function. Inputs: arg (ufixed or sfixed), guard_bits : NATURAL, round_style : 
fixed_round_style_type. See output sizing rules (G.4.3). Guard bits are extra bits that are added to 
the end of the divide routine to maintain precision when rounding. The round style is either 
fixed_round or fixed_truncate. If rounding is set to fixed_truncate, then the guard bits are ignored.

remainder Arithmetic remainder. Inputs: l, r (both ufixed or sfixed), parameters: guard_bits : NATURAL, 
round_style : fixed_round_style_type. See output sizing rules (G.4.3). Guard bits are extra bits that 
are added to the end of the remainder routine to maintain precision when rounding. The round style 
is either fixed_round or fixed_truncate. If rounding is set to fixed_truncate, then the guard bits are 
ignored.

modulo Arithmetic modulo. Inputs: l, r (both ufixed or sfixed), Parameters: guard_bits : NATURAL, 
round_style : fixed_round_style_type. See output sizing rules (G.4.3). Guard bits are extra bits that 
are added to the end of the remainder routine to maintain precision when rounding. The round style 
is either fixed_round or fixed_truncate. If rounding is set to fixed_truncate, then the guard bits are 
ignored.

minimum Returns the minimum of the two inputs (both either ufixed or sfixed) by performing a ">" operation.

maximum Returns the maximum of the two inputs (both either ufixed or sfixed) by performing a ">" operation.

std_match Performs a NUMERIC_STD.STD_MATCH function (allows use of '–' values for the inputs).
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G.4.8.3 Conversion functions

add_carry This procedure which takes in two parameters (L and R) as well as a carry in (C_IN). It has output 
parameters for a carry out (C_OUT) and a result of the same length as the combined width of L and 
R. Note that this routine can be used as an accumulator.

scalb Inputs are ufixed or sfixed, with an INTEGER or signed input. The Scalb function moves the index 
of the fixed-point number, having the effect of multiplying or dividing by a power of two.

Resize Changes the size of a ufixed or sfixed (larger or smaller). Inputs: arg (ufixed or sfixed); 
left_index and right_index (INTEGER), or size_res (same type as arg). Other parameters: 
round_style, saturate_style. Output: resized ufixed or sfixed.

To_ufixed Converts to the ufixed type.

To_ufixed (std_ulogic_vector) Inputs: arg (std_ulogic_vector); left_index and 
right_index (INTEGER), or size_res (ufixed). 
This function converts a std_ulogic_vector to a 
ufixed with the same width. A warning is 
produced if the width is incorrect.

To_ufixed (unsigned) Inputs: arg (unsigned); left_index and right_index 
(INTEGER), or size_res (ufixed). Other 
parameters: overflow_style, round_style. 
Converts an unsigned to a ufixed.

To_ufixed (unsigned) Inputs: arg (unsigned). Converts an unsigned to a 
ufixed of the same size with the left_index being 
arg'length–1 and the right_index being 0.

To_ufixed (REAL) Inputs: arg (REAL); left_index and right_index 
(INTEGER), or size_res (ufixed). Other 
parameters: overflow_style, round_style. 
Converts a REAL to a ufixed. If the input is 
negative, then an error occurs and 0 is returned.

To_ufixed (INTEGER) Inputs: arg (NATURAL); left_index and 
right_index (INTEGER), or size_res (ufixed). 
Other parameters: overflow_style, round_style. 
Converts an INTEGER to a ufixed.
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To_sfixed Converts to the sfixed type.

To_sfixed (std_ulogic_vector) Inputs: arg (std_ulogic_vector); left_index and 
right_index (INTEGER), or size_res (sfixed). 
This function converts a std_ulogic_vector to an 
sfixed with the same width. A warning is 
produced if the width is incorrect.

To_sfixed (signed) Inputs: arg (signed); left_index and right_index 
(INTEGER), or size_res (sfixed). Other 
parameters: overflow_style, round_style. 
Converts a signed to an sfixed.

To_sfixed (signed) Inputs: arg (signed). Converts a signed to an 
sfixed of the same size with the left_index being 
arg'length–1 and the right_index being 0.

To_sfixed (REAL) Inputs: arg (REAL); left_index and right_index 
(INTEGER), or size_res (sfixed). Other 
parameters: overflow_style, round_style. 
Converts a REAL to an sfixed.

To_sfixed (INTEGER) Inputs: arg (INTEGER); left_index and 
right_index (INTEGER), or size_res (sfixed). 
Other parameters: overflow_style, round_style. 
Converts a INTEGER to an sfixed.

To_sfixed (ufixed) Inputs: arg (ufixed). Converts a ufixed into an 
sfixed by adding a sign bit.

To_unsigned Inputs: arg (ufixed); and size (NATURAL), or size_res (unsigned). Other parameters: 
round_style, saturate_style. Converts a ufixed to an unsigned. This does not produce a 
“vector truncated” warning as the NUMERIC_STD functions do.

To_signed Inputs: arg (sfixed); and size (NATURAL), or size_res (signed). Other parameters: 
round_style, saturate_style. Converts an sfixed to a signed. This does not produce a 
“vector truncated” warning as the NUMERIC_STD functions do.

To_real Inputs: arg (ufixed or sfixed). Converts a fixed-point number to a real number.

To_integer Inputs: arg (ufixed or sfixed). Other parameters: round_style, saturate_style. Converts a 
fixed-point number to an integer.

To_slv Inputs: arg (ufixed or sfixed). Converts a fixed-point number to a std_logic_vector of the 
same length.

To_std_logic_vector Alias of to_slv.

To_stdlogicvector Alias of to_slv.

To_sulv Inputs: arg (ufixed or sfixed). Converts a fixed-point number to a std_ulogic_vector of the 
same length.

To_std_ulogic_vector Alias of to_sulv.

To_stdulogicvector Alias of to_sulv.

To_01 Inputs s (ufixed or sfixed). Other parameters: XMAP: std_ulogic. Converts metavalues in 
the vector S to the XMAP state (defaults to 0).

Is_X Inputs arg (ufixed or sfixed). Returns a BOOLEAN which is TRUE if there are any 
metavalues in the vector arg.

To_x01 Inputs arg (ufixed or sfixed). Converts any metavalues found in the vector arg to be 'X' , 
'0', or '1'.
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G.4.8.4 Sizing functions

Each of these functions take as a parameter a character that describes the operation to be performed, as 
shown in Table G.3:

Table G.3—Operations described by characters

To_ux01 Inputs arg (ufixed or sfixed). Converts any metavalues found in the vector arg to be 'U', �
'X' , '0', or 1'.

To_x01z Inputs arg (ufixed or sfixed). Converts any metavalues found in the vector arg to be 'Z', �
'X' , '0', or '1'.

Character Operation

'+' "+"

'–' "–"

'*' "*"

'/' "/", divide

'1' reciprocal

'M', 'm' "mod", modulo

'R', 'r' "rem", remainder

'A', 'a' "abs"

'N', 'n' unary "–"

others index

Ufixed_high Inputs: left_index, right_index: INTEGER (bounds of the left argument) or size_res: ufixed; 
operation: character; left_index2, right_index2: INTEGER (bounds of the left argument) or 
size_res2: ufixed. This function is used to compute the high index bound of the result of an unsigned 
operation. Any values for the operation character other than those defined in Table G.3 cause the 
left_index to be returned.

Ufixed_low Inputs: left_index, right_index: INTEGER (bounds of the left argument) or size_res: ufixed; 
operation: character; left_index2, right_index2: INTEGER (bounds of the left argument) or 
size_res2: ufixed. This function is used to compute the low index bound of the result of an unsigned 
operation. Any values for the operation character other than those defined in Table G.3 cause the 
left_index to be returned.

Sfixed_high Inputs: left_index, right_index: INTEGER (bounds of the left argument) or size_res: ufixed; 
operation: character; left_index2, right_index2: INTEGER (bounds of the left argument) or 
size_res2: ufixed. This function is used to compute the high index bound of the result of a signed 
operation. Any values for the operation character other than those defined in Table G.3 cause the 
left_index to be returned.

Sfixed_low Inputs: left_index, right_index: INTEGER (bounds of the left argument) or size_res: ufixed; 
operation: character; left_index2, right_index2: INTEGER (bounds of the left argument) or 
size_res2: ufixed. This function is used to compute the low index bound of the result of a signed 
operation. Any values for the operation character other than those defined in Table G.3 cause the 
left_index to be returned.

To_ufix Similar to to_ufixed, but with NATURAL arguments representing the length of the result and the 
number of post-binary-point bits. Thus, for example, to_ufix ("00100", 5, 3) = 00.100, or 0.5.
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G.4.8.5 Textio functions

To_sfix Similar to to_sfixed, but with NATURAL arguments representing the length of the result and the 
number of post-binary-point bits. The sign bit is assumed to take an additional place beyond the 
specified length. Thus, for example, to_sfix("00100", 4, 3) = 00.100 or 0.5.

Ufix_high Similar to ufixed_high, but with NATURAL arguments representing the length of the result and the 
number of post-binary-point bits.

Ufix_low Similar to ufixed_low, but with NATURAL arguments representing the length of the result and the 
number of post-binary-point bits.

Sfix_high Similar to sfixed_high, but with NATURAL arguments representing the length of the result and the 
number of post-binary-point bits.

Sfix_low Similar to sfixed_low, but with NATURAL arguments representing the length of the result and the 
number of post-binary-point bits.

Write Similar to the TEXTIO write procedure. Automatically inserts a binary point where needed. If 
the range of the input number does not include the 0 index, then the number is extended until it 
does before writing.

Read Similar to the TEXTIO read procedure. If a binary point is encountered, then it is tested to 
ensure that it is in the correct place.

Bwrite Alias for write.

Binary_write Alias for write.

Bread Alias for read.

Binary_read Alias for read.

Owrite Octal write. The pre- and post-binary-point parts of the number are written separately, with a 
binary point between them. Each side is padded to a multiple of 3 bits to form an octal digit.

Oread Octal read. The number read is interpreted as separate pre- and post-binary-point parts, with an 
optional binary point between them. If a “.” is found in the input string, then the index is 
checked to ensure that the binary point is in the correct place.

Octal_write Alias for owrite.

Octal_read Alias for oread.

Hwrite Hex write. The pre- and post-binary-point parts of the number are written separately, with a 
binary point between them. Each side is padded to a multiple of 4 bits to form a hex digit.

Hread Hex read. The number read is interpreted as separate pre- and post-binary-point parts, with an 
optional binary point between them. If a “.” is found in the input string, then the index is 
checked to ensure that the binary point is in the correct place.

Hex_write Alias for hwrite.

Hex_read Alias for hread.

To_string Returns a string that can be padded and left or right justified, for example:

assert a = 1.5 report "Result was " & to_string (a) severity 
error;

To_bstring Alias for to_string.

To_binary_string Alias for to_string.
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G.5 Using the floating-point package

While floating-point numbers are widely used in software applications, they are less common in custom 
hardware. This is because floating point takes up almost three times the hardware resources of fixed-point 
math. The advantage of floating point, however, is that relative precision is maintained across a wide 
dynamic range, whereas fixed-point numbers are limited to a smaller dynamic range with fixed absolute 
precision.

G.5.1  Floating-point numbers

Floating-point numbers are well defined by IEEE 754 (32 and 64 bit) and IEEE 854 (variable width) 
specifications. Floating point has been used in processors and intellectual property (IP) for years, and is a 
well-understood format. The format is a sign magnitude system, where the sign is processed separately from 
the magnitude.

There are many concepts in floating point that make it different from common signed and unsigned number 
notations. To illustrate, consider a 32-bit floating-point number:

S   EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF�
31  30    23 22                    0�
+/- exp.     fraction

Basically, a floating-point number comprises a sign bit (+ or –), a normalized exponent, and a fraction. To 
convert this number back into an integer, the following equation can be used:

To_ostring Similar to to_string, but returns an octal value with a binary point. The padding rules of the 
owrite procedure apply to this function.

To_octal_string Alias for to_ostring.

To_hstring Similar to to_string, but returns a hex value with a binary point. The padding rules of the hwrite 
procedure apply to this function.

To_hex_string Alias for to_hstring.

From_string Translates a string (with a binary point in it) to a fixed-point number. Some examples are:

   signal a: ufixed (3 downto -3);
begin
   a <= from_string ("0000.000", a'high, a'low);
   a <= from_string ("0001.000", a);
   a <= from_string ("0000.100"); -- Works only if
                                  -- size is exact.

Note that this is typically not synthesizable, as it uses the STRING type. A synthesizable 
alternative is “a <= "0000000";”.

From_bstring Alias for from_string.

From_binary_string Alias for from_string.

From_ostring Same as from_string, but uses octal numbers. The oread padding rules apply in this function.

From_octal_string Alias for from_ostring.

From_hstring Same as from_string, but uses hex numbers. The hread padding rules apply in this function.

From_hex_string Alias for from_hstring.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



IEC 61691-1-1:2011(E) - 538 - �
IEEE Std 1076-2008

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

S * 2**(exponent – exponent_base) * (1.0 + fraction/fraction_base)

where the “exponent_base” is 2**((maximum exponent/2) – 1), and “fraction_base” is the maximum 
possible fraction (unsigned) plus one. For example, using a 32-bit representation:

0 10000001 101000000000000000000000�
= +1 * 2**(129 – 127) * (1.0 + 5242880/8388608) = +1 * 4.0 * 1.625 = 6.5

There are also “denormal numbers,” which are numbers smaller than can be represented in this way. A 
denormal number is indicated with an exponent of 0. In this case, the term 1.0 is not added to the scaled 
fraction. For example:

1 00000000 100000000000000000000000�
= –1 * 2**(– 126) * (4194304/8388608) = –1 * 2**(–126) * 0.5 = –2**(–127)

Next, there are several floating-point “constants”:

0 00000000 000000000000000000000000 = +0.0

1 00000000 000000000000000000000000 = –0 (which = +0)

0 11111111 000000000000000000000000 = positive infinity

1 11111111 000000000000000000000000 = negative infinity

A number with an infinite (all ones) exponent and anything other than an all-zero fraction is said to be a 
NaN, or “Not a Number.” There are two types of NaN: signaling and non-signaling. The floating-point 
package defines a NaN with a fraction whose most significant bit is 1 to be a signaling NAN and any other 
NaN to be a quiet NaN.

In summary, a floating-point number falls into one of the following classes (or states):
— nan: Signaling NaN
— quiet_nan: Quiet NaN
— neg_inf: Negative infinity
— neg_normal: Negative normalized non-zero
— neg_denormal: Negative denormalized
— neg_zero: –0.0
— pos_zero: +0.0
— pos_denormal: Positive denormalized
— pos_normal: Positive normalized non-zero
— pos_inf: Positive infinity
— isx: at least one input is unknown

These states correspond to enumeration values of the type valid_fpstate defined in the package, and are used 
to examine and create numbers needed for floating-point operations. The state isx is included to indicate the 
presence of one or more metavalues ('X', 'U', and so on) in a floating-point number. Any arithmetic 
operation on such a number will return a number with all bits 'X'.

The package also defines functions that return constant values represented in specified sizes:
— zerofp: +0.0
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— nanfp: Signaling NaN

— qnanfp: Quiet NaN

— pos_inffp: Positive infinity

— neginf_fp: Negative infinity

— neg_zerofp: –0.0

Rounding can take four different forms:

— round_nearest: Round to nearest

— round_inf: Round toward positive infinity

— round_neginf: Round toward negative infinity

— round_zero: Round toward zero (truncate)

These forms correspond to enumeration values of the type round_type defined in the package 
IEEE.fixed_float_types. Parameters of the type control rounding behavior. In the case of rounding to the 
nearest value, if the remainder is exactly ½, the result is rounded so that the least significant bit is 0. The 
implementation of this form of rounding requires two comparison operations, but they can be consolidated. 
Rounding toward negative infinity rounds down, and rounding toward positive infinity rounds up. Rounding 
toward zero simply truncates the remainder, with no actual rounding.

G.5.2 Use model

An example of use of the floating-point package is:

   use IEEE.float_pkg.all;
   ...
   signal x, y, z: float (5 downto -10);
begin
   y <= to_float (3.1415, y); -- Uses y for sizing only
   z <= "0011101010101010";   -- 1/3
   x <= z + y;

The package defines three floating-point types:

— float32: 32-bit IEEE 754 single precision floating point

— float64: 64-bit IEEE 754 double precision floating point

— float128: 128-bit IEEE 854 extended precision floating point

The package also allows specification of a custom floating-point width by constraining the float type, as 
shown in the preceding example.

The 32-bit floating-point type is defined as follows:

subtype float32 is float (8 downto –23);

A negative index is used to separate the fraction part of the floating-point number from the exponent. The 
top bit ('high) is the sign bit, the next bits ('high–1 downto 0) are the exponent, and the bits with negative 
indices (–1 downto 'low) are the fraction. Thus, for a 32-bit representation, the number is represented as 
follows:
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0 00000000 00000000000000000000000�
8 7      0 -1                  -23�
± exp.      fraction

where the sign is bit 8, the exponent is contained in bits 7 down to 0 (8 bits, with bit 7 being the most 
significant), and the mantissa is contained in bits –1 down to –23 (32 – 8 – 1 = 23 bits, where bit –1 is the 
most significant).

The negative index format turns out to be a very natural format for the floating-point number, as the fraction 
is always assumed to be a number between 1.0 and 2.0 (unless the number is denormalized). Thus, the 
implied “1.0” can be assumed on the positive side of the index, and the negative side represents a fraction of 
less than one. The format is similar to that used in the fixed-point package, where everything to the right of 
the zero index is assumed to be less than 1.0.

Valid values for float_exponent_width and float_fraction_width are 3 or more. Thus, the smallest (width-
wise) number that can be represented is float (3 downto –3), a 7-bit floating-point number.

The base type defined in the package is unresolved_float (aliased to u_float). The type float is a subtype of 
unresolved_float, with resolved elements. The operations defined in the package can be used with either 
type interchangeably. The subtypes float32, float64, and float128 are subtypes of float with specified index 
ranges. The package also defines subtypes unresolved_float32 (aliased to u_float32), unresolved_float64 
(aliased to u_float64), and unresolved_float128 (aliased to u_float128) as subtypes of unresolved_float with 
specified index ranges.

Operators for all of the standard math and compare operations are defined in this package. In the float_pkg 
package, these operators implement all aspects of IEEE floating-point operations. For most designs, full 
IEEE support is not necessary. Thus, functions have been created that allow a design to be parameterized, 
for example:

x <= add (l => z, r => y,
          denormalize => FALSE, -- turn off denormal numbers
                                -- (default=TRUE)
          check_error => FALSE, -- turn off NaN and overflow checks
                                -- (default=TRUE)
          round_style => round_zero, -- truncate
                                     -- (default=round_nearest)
          guard_bits => 0);     -- extra bits to maintain precision
                                -- (default=3)

The add function performs just like the + operator; however, it allows the user the flexibility needed for 
hardware synthesis. Other similar functions are subtract (–), multiply (*), divide (/), modulo (mod), and 
remainder (rem). All of these operators and functions assume that both of the inputs are the same width. 
Other functions with similar parameters are reciprocal (1/x) and dividebyp2 (divide by a power of 2). The 
abs and unary – operators need no parameters, as they only affect the sign of the floating-point number.

Comparison operators work similarly; however there is only one extra parameter for these functions, 
namely, the check_error parameter, which allows NaN and infinity testing to be turned off for the 
comparison. These functions are called EQ (=), NE (/=), LT (<), GT (>), GE (>=), and LE (<=).

Conversion functions also work in a similar manner. Functions named to_float are available to convert the 
types REAL, INTEGER, signed, unsigned, ufixed, and sfixed. All of these functions take as parameters 
either the exponent_width and fraction_width, or a size_res input, which uses the input value for its size 
only. The functions to_real, to_integer, to_signed, to_unsigned, to_ufixed, and to_sfixed are also overloaded 
in the package with both size and size_res inputs. Further, there is a similar resize function to convert from 
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one float size to another. Note that, as in the fixed_pkg package, an ascending index range (specified with 
to) for a float type is illegal.

The package includes a number of functions recommended by IEEE Std 754-1985 and IEEE Std 854-1987. 
They are described in G.5.4.4.

Two functions, named break_number and normalize, are also provided. Break_number takes a floating-point 
number and returns a SIGNED exponent (biased by –1), a ufixed fixed-point fraction, and a std_ulogic sign. 
Normalize takes a SIGNED exponent, a fixed-point fraction, and a sign and returns a floating-point number. 
These functions are useful for operating on the fraction of a floating-point number without having to 
perform the shifts on every operation.

To_slv (aliased as to_std_logic_vector and to_StdLogicVector) and to_float are used to convert between 
std_logic_vector and floating-point types. These may be used on the interfaces of designs. The result of 
to_slv is a std_logic_vector with the length of the input floating-point type.

Procedures for reading and writing floating-point numbers are also included in the package. Procedures 
read, write, oread, owrite (octal), bread, bwrite (binary), hread, and hwrite (hex) are defined. To_string, 
to_ostring, and to_hstring are also provided for string results. Floating-point numbers are written in a format 
such as “0:000:000” (for a 7-bit number). They can be read as a simple string of bits, or with a “.” or “:” 
separator.

The following example illustrates use of the package:

library IEEE; use IEEE.std_logic_1164.all;
entity xxx is
   port (a, b: in std_logic_vector (31 downto 0);
         sum: out std_logic_vector (31 downto 0);
         clk, reset: in std_ulogic);
end entity xxx;

use IEEE.float_pkg.all;
architecture RTL of xxx is
   signal afp, bfp, sumfp: float32;
begin
   afp <= to_float (a, afp'high, -afp'low); -- SLV to float, with bounds
   bfp <= to_float (b, bfp); -- SLV to float, using bfp'range
   addreg : process (clk, reset) is
   begin
      if reset = '1' then
         sumfp <= (others => '0');
      elsif rising_edge (clk) then
         sumfp <= afp + bfp;
         -- this is the same as saying:
         --   sumfp <= add (l => afp, r => bfp,
         --                 round_style => round_nearest,
         --                                  -- best, but most hardware
         --                 guard_bits => 3, -- Use 3 guard bits,
         --                                  -- best for round_nearest
         --                 check_error => TRUE,
         --                                  -- NaN processing turned on
         --                 denormalize => TRUE);
         --                                  -- Turn on denormal numbers
      end if;
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   end process addreg;
   sum <= to_slv (sumfp);
end architecture xxx;

G.5.3 Package generics

Several aspects of floating-point arithmetic can take up a great deal of hardware. Depending on the 
application, not all aspects are needed, so the float_generic_pkg package is designed using generic constants 
to allow choice among aspects. The float_generic_pkg cannot be used directly, but must first be instantiated 
to provide actual values for the generic constants. The declaration of the float_generic_pkg is:

library IEEE; ...
use IEEE.fixed_float_types.all; ...
package float_generic_pkg is
   generic (
      float_exponent_width : NATURAL    := 8;
      float_fraction_width : NATURAL    := 23;
      float_round_style    : round_type := round_nearest;
      float_denormalize    : BOOLEAN    := TRUE;
      float_check_error    : BOOLEAN    := TRUE;
      float_guard_bits     : NATURAL    := 3;
      no_warning           : BOOLEAN    := FALSE;
      package fixed_pkg is new IEEE.fixed_generic_pkg
                             generic map (<>)
      );
   ...

The generic constants are used as follows:
— float_exponent_width: Default for conversion routines. For example, the value for a 32-bit floating-

point number would be 8.
— float_fraction_width: Default for conversion routines. For example, the value for a 32-bit floating-

point number would be 23.
— float_round_style: Specifies the rounding style to be used, as described in G.5.1.
— float_denormalize: Activates (TRUE) or deactivates (FALSE) use of denormal numbers.
— float_check_error: Activates (TRUE) or deactivates (FALSE) NaN and infinity processing. With 

processing activated, checks are done at the beginning of every operation. If checks have been done 
previously, processing does not need to be repeated for each operation.

— float_guard_bits: Specifies is the number of extra bits used in each operation to maintain precision. If 
the number of guard bits is zero, then rounding is automatically turned off.

— no_warning: Deactivates (TRUE) or activates (FALSE) “metavalue” warnings.
— fixed_pkg: The package defining fixed-point types for conversion functions.

There is also a standard instantiation, float_pkg, with actual values for the generics, defined as:

library IEEE;
package float_pkg is new IEEE.float_generic_pkg
   generic map (
      float_exponent_width => 8,
      float_fraction_width => 23,
      float_round_style => IEEE.fixed_float_types.round_nearest,
      float_denormalize => TRUE,
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      float_check_error => TRUE,
      float_guard_bits => 3,
      no_warning => FALSE,
      fixed_pkg => IEEE.fixed_pkg
      );

Note that the user can can declare a separate instantiation of the floating-point package if different actual 
generics are required. For example, if an application does not require rounding (because it takes up too much 
logic), requires 17-bit floating-point numbers with only 5 bits of exponent, does not require denormal 
numbers or NaN and infinity processing, and does not require “metavalue detected” warnings, the package 
may be instantiated as follows:

library IEEE;
package my_float_pkg is new IEEE.float_generic_pkg
   generic map (
      float_exponent_width => 5,   -- 5 bits of exponent
      float_fraction_width => 11,  -- Default will be
                                   -- float(5 downto -11)
      float_round_style => IEEE.fixed_float_types.round_zero,
                                   -- Truncate, don't round
      float_denormalize => FALSE,  -- no denormal numbers
      float_guard_bits => 0,       -- Unused by round_zero, set to 0
      float_check_error => FALSE,  -- Turn NaN and overflow off
      no_warning => TRUE,          -- turn warnings off
      fixed_pkg => WORK.my_fixed_pkg
      );

This package instance can be analyzed and used in other design units. Those design units can include a use 
clause such as “use work.my_float_pkg.all;” to make the floating-point function visible. Note that the types 
declared in the different package instances are distinct types, so type conversions may be needed to translate 
between them, as shown in the following example:

use IEEE.float_pkg.all, IEEE.std_logic_1164.all;
entity sin is
   port (arg: in float (5 downto -11);
         clk, rst: in std_ulogic;
         res: out float (5 downto -11));
end entity sin;

architecture structure of sin is
   component float_sin is
      port (arg: in work.my_float_pkg.float (5 downto -11);
            clk, rst: in std_ulogic;
            res: out work.my_float_pkg.float (5 downto -11));
   end component fixed_sin;
begin
   U1: component float_sin
      port map (arg => work.my_float_pkg.float(arg), -- convert arg
                clk => clk, rst => rst,
                IEEE.float_pkg.float (res) => res);
end architecture structure;
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G.5.4 Catalog of operations

G.5.4.1 Operators

"+" Add two floating-point numbers together. Overloaded for REAL and INTEGER. In float_pkg, rounding is set 
to round_nearest, 3 guard bits are used, and denormal number and NaN processing are turned on. If this is not 
the desired functionality, use the add function. Will accept floating-point numbers of any valid width on either 
input.

"–" Subtracts floating-point numbers. Overloaded for REAL and INTEGER. In float_pkg, rounding is set to 
round_nearest, 3 guard bits are used, and denormal number and NaN processing are turned on. If this is not the 
desired functionality, use the subtract function. Will accept floating-point numbers of any valid width on either 
input.

"*" Multiply two floating-point numbers together. Overloaded for REAL and INTEGER. In float_pkg, rounding is 
set to round_nearest, 3 guard bits are used, and denormal number and NaN processing are turned on. If this is 
not the desired functionality, use the multiply function. Will accept floating-point numbers of any valid width 
on either input.

"/" Divides two floating-point numbers. Overloaded for REAL and INTEGER. In float_pkg, rounding is set to 
round_nearest, 3 guard bits are used, and denormal number and NaN processing are turned on. If this is not the 
desired functionality, use the divide function. Will accept floating-point numbers of any valid width on either 
input.

"abs" Absolute value. Changes only the sign bit.

"–" Unary minus. Changes only the sign bit.

"mod" Modulo. Overloaded for REAL and INTEGER. In float_pkg, rounding is set to round_nearest, 3 guard bits are 
used, and denormal number and NaN processing are turned on. If this is not the desired functionality, use the 
modulo function. Will accept floating-point numbers of any valid width on either input.

"rem" Remainder. Overloaded for REAL and INTEGER. In float_pkg, rounding is set to round_nearest, 3 guard bits 
are used, and denormal number and NaN processing are turned on. If this is not the desired functionality, use 
the remainder function. Will accept floating-point numbers of any valid width on either input.

"=" Equal. Overloaded for REAL and INTEGER. In float_pkg, NaN processing is turned on. If this is not the 
desired functionality, then use the eq function.

"/=" Not equal. Overloaded for REAL and INTEGER. In float_pkg, NaN processing is turned on. If this is not the 
desired functionality, then use the ne function.

"<" Less than. Overloaded for REAL and INTEGER. In float_pkg, NaN processing is turned on. If this is not the 
desired functionality, then use the lt function.

">" Greater than. Overloaded for REAL and INTEGER. In float_pkg, NaN processing is turned on. If this is not 
the desired functionality, then use the gt function.

"<=" Less than or equal to. Overloaded for REAL and INTEGER. In float_pkg, NaN processing is turned on. If this 
is not the desired functionality, then use the le function.

">=" Greater than or equal to. Overloaded for REAL and INTEGER. In float_pkg, NaN processing is turned on. If 
this is not the desired functionality, then use the ge function.

"?=" Similar to "=", but returns a STD_ULOGIC value.

"?/=" Similar to "/=", but returns a STD_ULOGIC value.

"?<" Similar to "<", but returns a STD_ULOGIC value.

"?>" Similar to ">", but returns a STD_ULOGIC value.

"?<=" Similar to "<=", but returns a STD_ULOGIC value.

"?>=" Similar to ">=", but returns a STD_ULOGIC value.
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G.5.4.2 Functions

"and" Logical and. Similar to the STD_LOGIC_1164 operators.

"nand" Logical nand. Similar to the STD_LOGIC_1164 operators.

"or" Logical or. Similar to the STD_LOGIC_1164 operators.

"nor" Logical nor. Similar to the STD_LOGIC_1164 operators.

"xor" Logical exclusive or. Similar to the STD_LOGIC_1164 operators.

"xnor" Logical exclusive nor. Similar to the STD_LOGIC_1164 operators.

"not" Logical not. Similar to the STD_LOGIC_1164 operator.

add The add function is similar to the "+" operator; however, it allows the user to vary all of the 
parameters.

subtract The subtract function is similar to the "–" operator; however, it allows the user to vary all of the 
parameters.

multiply The multiply function is similar to the "*" operator; however, it allows the user to vary all of the 
parameters.

divide The divide function is similar to the "/" operator; however, it allows the user to vary all of the 
parameters.

remainder The remainder function is similar to the "rem" operator; however, it allows the user to vary all of the 
parameters.

modulo The modulo function is similar to the "mod" operator; however, it allows the user to vary all of the 
parameters.

reciprocal Returns 1/arg. Inputs: l, r: float; round_style: round_type; guard: NATURAL; check_error: 
BOOLEAN; denormalize: BOOLEAN. Works similarly to the divide function.

dividebyp2 Divide by a power of two. Inputs: l, r: float; round_style: round_type; guard: NATURAL; 
check_error: BOOLEAN; denormalize: BOOLEAN. Takes the exponent from R and multiplies L by 
that amount. Returns an error if R is not a power of 2.

mac Multiply accumulate. Inputs: l, r, c: float; round_style: round_type; guard: NATURAL; check_error: 
BOOLEAN; denormalize: BOOLEAN. Performs the function L*R+C.  The addition stage is 
integrated into the multiplier stage; thus, this operation takes less logic than separate calls to 
multiply and add.

sqrt Square root. Inputs: arg: float; round_style: round_type; guard: NATURAL; check_error: 
BOOLEAN; denormalize: BOOLEAN. Returns the square root of arg, as defined by �
IEEE Std 754-1985.

Is_Negative Returns TRUE if if the floating-point number is negative, or FALSE otherwise.

eq The eq function is similar to the "=" operator; however, it allows the user to turn NaN processing is 
on or off.

ne The ne function is similar to the "/=" operator; however, it allows the user to turn NaN processing is 
on or off.

lt The lt function is similar to the "<" operator; however, it allows the user to turn NaN processing is 
on or off.

gt The gt function is similar to the ">" operator; however, it allows the user to turn NaN processing is 
on or off.
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G.5.4.3 Conversion functions

le The le function is similar to the "<=" operator; however, it allows the user to turn NaN processing is 
on or off.

ge The ge function is similar to the ">=" operator; however, it allows the user to turn NaN processing is 
on or off.

std_match Same as the NUMERIC_STD std_match function. Overloaded for type float.

maximum Returns the larger of two numbers.

minimum Returns the smaller of two numbers.

Resize Changes the size of a float (larger or smaller). Inputs: arg (float); exponent_width and 
fraction_width (NATURAL), or size_res; round_style: round_type; Check_error: 
BOOLEAN; denormalize_in: BOOLEAN; denormalize: BOOLEAN. In this function, 
denormalize_in is TRUE if the input number can be denormal, and denormalize is TRUE 
if the output number can be denormal.

To_slv Inputs: arg (float). Converts a floating-point number to a std_logic_vector of the same 
length.

To_std_logic_vector Alias for to_slv.

To_stdlogicvector Alias for to_slv.

To_sulv Inputs: arg (float). Converts a floating-point number to a std_ulogic_vector of the same 
length.

To_std_ulogic_vector Alias for to_sulv.

To_stdulogicvector Alias for to_sulv.

To_float Converts to the float type. The default size returned by these functions is set by 
float_exponent_width and float_fraction_width.

To_float (std_logic_vector) Std_logic_vector to float. Inputs: arg (std_logic_vector); 
exponent_width and fraction_width (NATURAL), or 
size_res (float).

To_float (INTEGER) Integer to float. Inputs: arg (INTEGER); exponent_width 
and fraction_width (NATURAL), or size_res (float); 
round_style: round_type.

To_float (REAL) Real to float. Inputs: arg (REAL); exponent_width and 
fraction_width (NATURAL), or size_res (float); 
round_style: round_type; denormalize: BOOLEAN.

To_float(ufixed) Ufixed to float. Inputs: arg(ufixed); exponent_width and 
fraction_width (NATURAL), or size_res (float); 
round_style: round_type; denormalize: BOOLEAN.

To_float(sfixed) Sfixed to float. Inputs: arg(sfixed); exponent_width and 
fraction_width (NATURAL), or size_res (float); 
round_style: round_type; denormalize: BOOLEAN.

To_float (signed) Signed to float. Inputs: arg (signed); exponent_width and 
fraction_width (NATURAL), or size_res (float); 
round_style: round_type.

To_float (unsigned) Unsigned to float. Inputs: arg (signed); exponent_width and 
fraction_width (NATURAL), or size_res (float); 
round_style: round_type.
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G.5.4.4 IEEE 754 and IEEE 854 recommended functions and predicates

To_unsigned Float to unsigned. Inputs: arg (float); size: NATURAL. Parameters: round_style: 
round_type; check_error: BOOLEAN. This does not produce a “vector truncated” 
warning as the NUMERIC_STD functions do. Returns a zero if the number is negative. 
Returns a saturated value if the input is too big.

To_signed Float to signed. Inputs: arg (float); size: NATURAL. Parameters: round_style: 
round_type; check_error: BOOLEAN. This does not produce a “vector truncated” 
warning as the NUMERIC_STD functions do. Returns a saturated value if the number is 
too big.

To_ufixed Float to ufixed. Inputs: arg (float); left_index and right_index (NATURAL), or size_res 
(ufixed). Parameters overflow_style: BOOLEAN; round_style: BOOLEAN; check_error: 
BOOLEAN; and denormalize: BOOLEAN.

To_sfixed Float to sfixed. Inputs: arg (float); left_index and right_index (NATURAL), or size_res 
(ufixed). Parameters overflow_style: BOOLEAN; round_style: BOOLEAN; check_error: 
BOOLEAN; and denormalize: BOOLEAN.

To_real Float to REAL. inputs: arg (float). Parameters: check_error: BOOLEAN; denormalize: 
BOOLEAN.

To_integer Float to integer. inputs: arg (float). Parameters: round_style: round_type; check_error: 
BOOLEAN.

realtobits Inputs: arg (REAL). Converts a real number to a std_ulogic_vector in the same format as a 
float64 floating-point number.

bitstoreal Inputs: arg (std_ulogic_vector). Converts a std_ulogic_vector in the same format as a 
float64 floating-point number to a real number.

To_01 Inputs (arg: float). Parameters: xmap: std_ulogic. Converts metavalues in the vector arg to 
the xmap state (defaults to '0').

Is_X Inputs (arg: float). Returns a BOOLEAN which is TRUE if there are any metavalues in the 
vector arg.

To_x01 Inputs (arg: float). Converts any metavalues found in the vector arg to be 'X' , and non-
metavalues to '0' or '1'.

To_x01z Inputs (arg: float). Converts any metavalues other than 'Z' found in the vector arg to be �
'X' , and non-metavalues to '0' or '1'.

To_ux01 Inputs (arg: float). Converts any metavalues other than 'U' found in the vector arg to be �
'X' , and non-metavalues to '0' or '1'.

Break_number Procedure to break a floating-point number into its parts. Inputs: arg: float; denormalize: 
BOOLEAN; check_error: BOOLEAN. Output: fract: unsigned or ufixed fraction (with a 
'1' in the most significant bit); expon: the signed exponent (biased by –1, so add 1 to get 
the true exponent); sign: the sign bit.

Normalize Function to take a fixed-point number and an exponent and return a floating-point number. 
Inputs: fract: ufixed; expon: signed (assumed to be biased by –1); sign: std_ulogic. 
Parameters: exponent_width and fraction_width (NATURAL), or size_res (float); 
round_style: round_type; denormalize: BOOLEAN; nguard: NATURAL. There is also a 
version of this function in which fract is an unsigned.

copysign(x, y) Returns x with the sign of y.

scalb(y, n) Returns y*(2**n) (where n is an INTEGER or SIGNED) without computing 2**n.

logb(x) Returns the unbiased exponent of x.
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G.5.4.5 Functions returning constants

For each of the following, parameters are exponent_width and fraction_width, or size_res. The default size 
is set by the float_exponent_width and float_fraction_width generics.

G.5.4.6 Textio functions

nextafter(x, y) Returns the next representable number after x in the direction of y.

finite(x) BOOLEAN, TRUE if X is not positive or negative infinity

isnan(x) BOOLEAN, TRUE if X is a signaling or quiet NaN.

unordered(x, y) BOOLEAN, returns TRUE of either x or y are some type of NaN.

classfp Find the classification of a floating-point number. Inputs: arg (float). Returns a value of the type 
valid_fpstate. Note that IEEE Std 754-1985 and IEEE Std 854-1987 recommend the name “class” 
for this function. However, the floating-point package calls the function “classfp” to avoid conflict 
with “class” as a reserved word in a future extension of VHDL.

zerofp Returns a floating-point positive zero.

nanfp Returns a floating-point signaling NaN.

qnanfp Returns a floating-point quiet NaN.

pos_inffp Returns a floating-point positive infinity.

neg_inffp Returns a floating-point negative infinity.

neg_zerofp Returns a floating-point negative zero (which by definition is equal to a floating-point positive zero).

write Similar to the TEXTIO write procedure. Automatically puts in a “:” after the sign and the 
exponent.

read Similar to the TEXTIO read procedure. If a decimal point or colon is encountered, then it is 
tested to be sure that it is in the correct place.

bwrite Alias for write.

binary_write Alias for write.

bread Alias for read.

binary_read Alias for read.

owrite Octal write. If the number of bits is not divisible by three, then padding bits are added.

octal_write Alias for owrite.

oread Octal read. If the number of bits to be read is not divisible by three, then the number read is 
resized to fit.

octal_read Alias for oread.

hwrite Hex write. If the number of bits is not divisible by four, then padding bits are added.

hex_write Alias for hwrite.
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hread Hex read. If the number of bits to be read is not divisible by four, then the number read is 
resized to fit.

hex_read Alias for hread.

to_string Returns a string that can be padded and left or right justified, for example:

assert (a = 1.5) report "Result was " & to_string (a)
   severity error;

to_bstring Alias for to_string.

to_binary_string Alias for to_string.

to_ostring Similar to to_string, but returns a padded octal value.

to_octal_string Alias for to_ostring.

to_hstring Similar to to_string, but returns a padded hex value.

to_hex_string Alias for to_hstring.

from_string Allows translation of a string (with a binary point in it) into a floating-point number, for 
example:

   signal a: float (3 downto -3);
begin
   a <= from_string ("0000.000", a'high, -a'low);
   a <= from_string ("0001.000", a);

Note that this is typically not synthesizable (as it uses the type string). An alternative 
assignment that is synthesizable is “A <= "0000000";”.

from_bstring Alias for from_string.

from_binary_string Alias for from_string.

from_ostring Same as from_string, but uses octal numbers.

from_octal_string Alias for from_ostring.

from_hstring Same as from_string, but uses hex numbers.

from_hex_string Alias for from_hstring.
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Annex H

(informative) 

Guide to use of protect directives

H.1 General

The protect tool directives described in Clause 24 allow authors of VHDL descriptions (so called intellectual 
property, or IP) to provide IP to users in such a way that the users cannot read the source text of the IP. The 
protect tool directives provide some underlying mechanisms for such protected IP exchange. This annex 
provides a guide to how those mechanisms may be used to ensure that IP exchange is secure and not subject 
to compromise. Note, however, that once IP has been delivered to a user’s tool, the strength of protection 
against disclosure of the IP is entirely dependent on the tool.

The protect tool directives are used to form a cryptographic protocol in which IP is sent from the author to 
one or more user’s tools, with the users considered untrusted third parties. Cryptographic protocols can be 
constructed to support the following use cases, among others:

— Delivery of IP from an author to any instance of a given decryption tool, and not for use on other 
decryption tools

— Delivery of IP from an author to a specific instance of a given decryption tool, and not for use on 
other instances of that decryption tool or any other decryption tool

— Delivery of IP from an author to a specific user for decryption by any of that user’s decryption tools, 
and not for use by other users

— Delivery of IP from an author to several specific instances of a given decryption tool, and not for use 
on other instances of that decryption tool or any other decryption tool

— Delivery of IP from an author to several specific users for decryption by any of those users’ decryp-
tion tools, and not for use by other users

— Use by a decryption tool of IP delivered by several authors
— Use by a user of IP delivered by several authors

Central to implementation of these use cases is embedding of appropriate encryption keys in tools. For 
example, decryption of IP can be limited to a specific instance of a given tool by embedding a given key in 
that instance only. Decryption can be limited to any instance of a given tool by embedding a given key in 
each instance, and not in any other tools. Decryption can be limited to a given user by providing that user 
with a key to be embedded in the user’s tools.

The way in which keys may be embedded in tools and exchanged among authors, users, and tools is not 
specified by this standard. Nonetheless, secure exchange of keys is an integral part of any cryptographic 
protocol. This is discussed further in H.5. First, however, follows a discussion of various use cases, 
assuming the necessary keys are in place.

H.2 Simple protection envelopes

H.2.1 Symmetric cipher and secret key

The simplest form of IP delivery involves a symmetric cipher using a secret key shared by the IP author and 
the decryption tool. The author forms an encryption envelope in which is specified the symmetric cipher and 
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the secret key to use. For example, the following encryption envelope specifies the AES symmetric cipher 
using a secret key owned by a given user. Both the encrypting tool and the decrypting tool are assumed to 
have access to the secret key.

`protect data_keyowner="ACME IP User", data_method="aes192-cbc"
`protect begin
IP source text
...
`protect end

The encryption tool generates a decryption envelope specifying the cipher and secret key:

`protect begin_protected
`protect encrypt_agent="Encryptomatic", encrypt_agent_info="2.3.4a"
`protect data_keyowner="ACME IP User", data_method="aes192-cbc"
`protect encoding = (enctype="base64", line_length=40, bytes=4006), data_block
encoded encrypted IP
...
`protect end_protected

The user’s decryption tool uses the key owner information to access the secret key and decrypts the IP using 
the AES cipher with that key.

H.2.2 Default cipher and key

The rules for protection envelopes allow specification of the cipher and key to be omitted, in which case, the 
cipher and key are chosen in an implementation-defined manner. One possible way for this mechanism to be 
used is to imply encryption using a default cipher with a key provided by the tool vendor and embedded in 
the encryption and decryption tools. For example, an encryption envelope using this scheme contains only 
the directives bracketing the IP source code:

`protect begin
IP source text
...
`protect end

The encryption tool includes information about the cipher and key it chooses in the decryption envelope:

`protect begin_protected
`protect encrypt_agent="Encryptomatic", encrypt_agent_info="2.3.4a"
`protect data_keyowner="Electrowizz Co", data_keyname="crypto-101"
`protect data_method="des-cbc"
`protect encoding = (enctype="base64", line_length=40, bytes=4006), data_block
encoded encrypted IP
...
`protect end_protected

H.2.3 Specification of encoding method

An encryption envelope may also include specification of the encoding method to use for encrypted 
information in the decryption envelope produced by the encryption tool. In the absence of an encoding 
directive in the encryption envelope, the encryption tool chooses a method, as in the preceding example. An 
example including an encoding directive is:

`protect data_keyowner="ACME IP User", data_method="aes192-cbc"
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`protect encoding = (enctype="quoted-printable", line_length=60)
`protect begin
IP source text

...

`protect end

H.3 Digital envelopes

H.3.1 Encryption for a single user

A digital envelope allows an author to provide IP to one or more selected tools or users. A common use case 
is encryption using an asymmetric cipher for a single user’s decryption tool. The private key is embedded in 
the user’s tool, and the public key is published. While the IP could be encrypted using the public key, using 
a simple decryption envelope as described in H.2, asymmetric encryption is computationally expensive. 
Instead, the author can specify that a digital envelope be used, with a symmetric cipher used to encrypt the 
IP, and the key for the symmetric cipher encrypted using the decryption tool’s public key. The encryption 
envelope is specified as follows:

`protect key_keyowner="ACME IP User", key_method="rsa", key_block
`protect data_method="aes192-cbc"
`protect begin
IP source text

...

`protect end

In this case, the presence of the key keyowner and key method directives specifies that the encryption tool 
use a digital envelope. The data method directive specifies the particular symmetric for encrypting the IP. 
The encryption tool chooses a session key (that is, the key used to encrypt and decrypt the IP). In the 
decryption envelope, it includes a key block containing the encrypted session key and a data block 
containing the encrypted IP, as follows:

`protect begin_protected
`protect encrypt_agent="Encryptomatic", encrypt_agent_info="2.3.4a"
`protect key_keyowner="ACME IP User", key_method="rsa"
`protect encoding = (enctype="base64", line_length=40, bytes=256), key_block
encoded encrypted session key

...

`protect data_method="aes192-cbc"
`protect encoding = (enctype="base64", line_length=40, bytes=4006), data_block
encoded encrypted IP

...

`protect end_protected

The manner in which the encryption tool chooses the session key is implementation-defined. It may, for 
example, be a default key used for all digital envelopes; however, that would be cryptographically weak. A 
better approach is to generate a session key randomly for use in that digital envelope only. Schemes for 
generation of random keys are published in the open literature and implemented in widely available software 
libraries.
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H.3.2 Encryption for multiple users

A variation on the preceding use case allows provision of IP to multiple users’ tools. The IP is encrypted 
using a session key and a symmetric cipher, as before, but the session key is encrypted multiple times, once 
for each user’s tool. The encryption envelope specifies the users’ keys, as follows:

`protect key_keyowner="ACME IP User1", key_method="rsa", key_block
`protect key_keyowner="ACME IP User2", key_method="elgamal", key_block
`protect key_keyowner="ACME IP User3", key_method="aes192-cbc", key_block
`protect data_method="aes192-cbc"
`protect begin
IP source text
...
`protect end

The decryption envelope generated by the encryption tool is:

`protect begin_protected
`protect encrypt_agent="Encryptomatic", encrypt_agent_info="2.3.4a"
`protect key_keyowner="ACME IP User1", key_method="rsa"
`protect encoding = (enctype="base64", line_length=40, bytes=256)
`protect key_block
encoded encrypted session key
...
`protect key_keyowner="ACME IP User2", key_method="elgamal"
`protect encoding = (enctype="base64", line_length=40, bytes=256)
`protect key_block
encoded encrypted session key
...
`protect key_keyowner="ACME IP User3", key_method="aes192-cbc"
`protect encoding = (enctype="base64", line_length=40, bytes=24)
`protect key_block
encoded encrypted session key
...
`protect data_method="aes192-cbc"
`protect encoding = (enctype="base64", line_length=40, bytes=4006)
`protect data_block
encoded encrypted IP
...
`protect end_protected

Each user’s decryption tool examines the key blocks in the decryption envelope to find one encrypted using 
a key to which the tool has access. It then uses that key to decrypt the session key, and then uses the session 
key to decrypt the IP.

This example also illustrates a further variation. The cipher used to encrypt a session key need not be an 
asymmetric cipher. If a digital envelope is used as a means of providing IP to multiple users, the choice of 
cipher and key for session key encryption can be made independently for each user.

H.4 Digital signatures

A digital signature allows detection of alteration of the IP provided by an author. A scenario in which 
alteration might be attempted involves provision of IP to a user, encrypted with the public key of the user’s 
tool. A malicious third party may have access to the public key, since it published by the user. The third 
party could spoof the IP author, for example, by intercepting the media on which IP is delivered, and provide 
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a substitute decryption envelope containing malicious IP. The malicious IP would also be encrypted with the 
public key of the user’s tool. If the user were unaware of the substitution, he or she would invoke the 
decryption tool to decrypt the malicious IP using the tool’s private key. Use of the malicious IP might cause 
damage to the user’s business and consequential damage to the IP author.

Scenarios such as this can be avoided by having the IP author sign the IP. Signing involves application of a 
hash function to the IP text to compute a digest of the IP. The hash function has the property that application 
to different texts produces different digests. Moreover, it is not possible to reconstruct the text from a digest. 
The digest is encrypted using the author’s private key and provided along with the IP. The only way the 
encrypted digest can be properly decrypted is with the author’s public key, which the author has published.

The user’s tool receiving the IP recomputes the digest using the same hash function on the received IP. The 
tool also decrypts the author’s digest using the author’s public key, and compares that digest with the 
recomputed digest. If they are the same, the user has confidence that the received IP is unaltered. If they 
differ, the delivery has been modified. In that case, the user should not trust the received IP.

The author includes digest directives in the encryption envelope to specify that a digital signature be used. 
The digest directives can specify a hash function to use and key for encrypting the digest. If either of these 
specifications is omitted, the encryption tool chooses the hash function or key in an implementation-defined 
manner. A typical choice would be to use a default hash function or a default key previously identified by 
the author. An example encryption envelope specifying a digital signature is:

`protect key_keyowner="ACME IP User", key_method="rsa", key_block
`protect data_method="aes192-cbc"
`protect digest_keyowner="ACME IP Author", digest_key_method="rsa"
`protect digest_method="sha1", digest_block
`protect begin
IP source text

...

`protect end

The decryption envelope produced by the tool is:

`protect begin_protected
`protect key_keyowner="ACME IP User", key_method="rsa"
`protect encoding = (enctype="base64", line_length=40, bytes=256), key_block
encoded encrypted session key

...

`protect data_method="aes192-cbc"
`protect encoding = (enctype="base64", line_length=40, bytes=4006), data_block
encoded encrypted IP

...

`protect digest_keyowner="ACME IP Author", digest_key_method="rsa"
`protect digest_method="sha1"
`protect encoding = (enctype="base64", line_length=40, bytes=16), digest_block
encoded encrypted digest

...

`protect end_protected

While this example shows a digital signature used with a digital envelope, that is not a requirement. A digital 
signature can augment a simple protection envelope as described in H.2.
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H.5 Key exchange

Protection of IP from disclosure relies on security of encryption keys. Should a key become known to an 
unauthorized party, the encrypted IP can be decrypted and disseminated. In conventional encryption, the 
intended recipient of a message is assumed to have an interest in the security of an encrypted message and is 
trusted to keep keys secret. In the context of protected IP exchange, the true recipient is the user’s tool, not 
the user. The IP author might not trust the user not to examine or use the IP in unauthorized ways. 
Nonetheless, the author must provide the IP to the user’s tools so that the user can gain the benefit of the IP. 
Moreover, exchange of keys between the author and the user’s tools may need to be mediated by the user. 
These considerations make key exchange more complicated than in many conventional applications of 
cryptography.

Many applications that require secure exchange of keys rely on public key infrastructure (PKI). Parties to 
communication generate, or are given, key pairs for use with asymmetric ciphers. Each party keeps their 
private key secret, and publishes their public key, for example, in a directory. In order to establish that a 
public key does, in fact, belong to a given party, the public key is digitally signed by a trusted authority. The 
signed public key is represented in the form of a digital certificate, containing the key and the signature. The 
trusted authority is called a certification authority (CA). Many PKI systems have a hierarchy of CAs, 
allowing a certificate signed by a subordinate CA to be signed by a superior CA, allowing trust to be 
distributed hierarchically. One or more root CAs are required to be globally trusted.

Key exchange for IP protection may be built upon public key infrastructure. For example, a vendor of a 
decryption tool may embed a private key of a key pair in the tool and register the public key with a CA. The 
tool can then generate a key pair for the tool’s user, keeping the private key secret and signing the public key 
with both the vendor’s private key and the user’s private key. This allows verification that the public key 
originates with the instance of the vendor’s tool owned by the tool user. That public key may then be used by 
IP authors to provide IP for that use of that tool only. Similar mechanisms might also be employed within 
tools to allow exchange of private keys among tools without disclosure to the tools’ user.

In addition to providing for secure key exchange, a decryption tool must take measures to ensure that stored 
keys are not disclosed to the tool user (see 24.1.6). If a tool user could read a tool’s stored keys, the user 
could decrypt IP independently of the tool. One way of ensuring security of a tool’s keys is for the tool to 
encrypt its key store using a secret key embedded in the tool in a disguised manner, and to provide for 
update and re-encryption of the secret key in case it is compromized.
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Annex I

(informative) 

Glossary

For the purposes of this document, the following terms and definitions apply. These and other terms within 
IEEE standards are found in The Authoritative Dictionary of IEEE Standards Terms [B8].

This glossary contains brief, informal descriptions for a number of terms and phrases used to define this 
language. The complete, formal definition of each term or phrase is provided in the main body of the 
standard.

For each entry, the relevant clause or subclause numbers in the text are given. Some descriptions refer to 
multiple clauses in which the single concept is discussed; for these, the clause number containing the 
definition of the concept is given in italics. Other descriptions contain multiple clause numbers when they 
refer to multiple concepts; for these, none of the clause numbers are italicized.

absolute design hierarchy search string: A search string provided to the vhpi_handle_by_name
function that represents the full name of an object in the design hierarchy information model. (23.2)

absolute library search string: A search string provided to the vhpi_handle_by_name function that 
represents the full name of an object in the library information model. (23.2)

abstract class: A class that cannot be the most specialized class of any object. (17.2.1)

abstract literal: A literal of the universal_real abstract type or the universal_integer abstract type. (15.3, 
15.5.1)

access mode: The mode in which a file object is opened, which can be either read-only or write-only. The 
access mode depends on the value supplied to the Open_Kind parameter. (5.5.2, 16.3)

access type: A type that provides access to an object of a given type. Access to such an object is achieved by 
an access value returned by an allocator; the access value is said to designate the object. (5.1, 5.4)

access value: A value of an access type. This value is returned by an allocator and designates an object 
(which shall be a variable) of a given type. A null access value designates no object. An access value can 
only designate an object created by an allocator; it cannot designate an object declared by an object 
declaration. (5.1, 5.4)

action callback: A callback whose trigger event relates to occurrence of phases of tool execution and other 
aspects of tool execution. (21.3.7)

active driver: A driver that acquires a new value during a simulation cycle regardless of whether the new 
value is different from the previous value. (14.7.3.1, 14.7.5)

actual: An expression, a port, a signal, a variable, a subtype, a subprogram, or a package associated with a 
formal port, formal parameter, or formal generic. (5.3.2.2, 6.4.2.3, 6.5.6.2, 6.5.6.3, 6.5.7.1, 6.5.7.2, 6.5.7.3, 
7.3.2)
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aggregate: (A) The kind of expression, denoting a value of a composite type. The value is specified by 
giving the value of each of the elements of the composite type. Either a positional association or a named 
association shall be used to indicate which value is associated with which element. (B) A kind of target of a 
variable assignment statement or signal assignment statement assigning a composite value. The target is 
then said to be in the form of an aggregate. (9.3.2, 9.3.3, 9.3.5, 9.3.6, 9.4.3)

alias: An alternate name for a named entity. (6.6)

allocator: An operation used to create anonymous, variable objects accessible by means of access values. 
(5.4, 9.3.7)

analysis: The syntactic and semantic analysis of source code in a VHDL design file and the insertion of 
intermediate form representations of design units into a design library. (13.1, 13.2, 13.5)

analysis phase: That phase of tool execution in which analysis of a design file occurs. (Clause 13, 20.3)

anonymous: The undefined simple name of an item, which is created implicitly. The base type of a numeric 
type or an array type is anonymous; similarly, the object denoted by an access value is anonymous. (6.2)

application context: The application context of a class specifies whether objects of the class may exist in 
either or both of the library information model or the design hierarchy information model, and as a 
consequence, when the object is accessible to VHPI programs. (19.8)

application name: An identifier that, jointly with an object library name, uniquely identifies a foreign 
application. (20.2.2)

appropriate: A prefix is said to be appropriate for a type if the type of the prefix is the type considered, or if 
the type of the prefix is an access type whose designated type is the type considered. (8.1)

architecture body: A body associated with an entity declaration to describe the internal organization or 
operation of a design entity. An architecture body is used to describe the behavior, dataflow, or structure of 
a design entity. (Clause 3, 3.3)

array object: An object of an array type. (Clause 5)

array type: A type, the value of which consists of elements that are all of the same subtype (and hence, of 
the same type). Each element is uniquely distinguished by an index (for a one-dimensional array) or by a 
sequence of indexes (for a multidimensional array). Each index shall be a value of a discrete type and shall 
lie in the correct index range. (5.3.2)

ascending range: A range L to R. (5.2.1)

ASCII: American Standard Code for Information Interchange. The package Standard contains the definition 
of the type CHARACTER, the first 128 values of which represent the ASCII character set. (5.2.2.2, 16.3)

assertion violation: A violation that occurs when the condition of an assertion statement evaluates to false. 
(10.3)

associated driver: The single driver for a signal in the (explicit or equivalent) process statement containing 
the signal assignment statement. (14.7.2)
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associated individually: A property of a formal port, generic constant, or parameter of a composite type 
with respect to some association list. A composite formal whose association is defined by multiple 
association elements in a single association list is said to be associated individually in that list. The formats 
of such association elements shall denote non-overlapping subelements or slices of the formal. (6.5.7.1)

associated in whole: When a single association element of a composite formal supplies the association for 
the entire formal. (6.5.7.1)

association element: An element that associates an actual or local with a local or formal. (6.5.7.1)

association list: A list that establishes correspondences between formal or local port or parameter names 
and local or actual names or expressions. (6.5.7.1)

association relationship: A relationship between objects in an information model that has semantic 
significance. (17.2.1)

asymmetric cipher: A cipher requiring one key of a key pair for encryption of information and the other 
key of the pair for decryption. The owner of the key pair keeps one key of the pair private (the private key) 
and publishes the other key (the public key). (24.1.1, 24.1.3.2)

attribute: A definition of some characteristic of a named entity. Some attributes are predefined for types, 
ranges, values, signals, and functions. The remaining attributes are user defined and are always constants. 
(6.7)

based literal: An abstract literal expressed in a form that specifies the base explicitly. The base is restricted 
to the range 2 to 16. (15.5.3)

base specifier: A lexical element that indicates whether a bit string literal is to be interpreted as a binary, 
octal, decimal, or hexadecimal value. (15.8)

base type: The type from which a subtype defines a subset of possible values, otherwise known as a 
constraint. This subset is not required to be proper. The base type of a type is the type itself. The base type of 
a subtype is found by recursively examining the type mark in the subtype indication defining the subtype. If 
the type mark denotes a type, that type is the base type of the subtype; otherwise, the type mark is a subtype, 
and this procedure is repeated on that subtype. (5.1) See also: subtype.

basic operation: An operation that is inherent in one of the following:
— An assignment (in an assignment statement or initialization)
— An allocator
— A selected name, an indexed name, or a slice name
— A qualification (in a qualified expression), an explicit type conversion, a formal or actual designator 

in the form of a type conversion, or an implicit type conversion of a value of type universal_integer
or universal_real to the corresponding value of another numeric type, or

— A numeric literal (for a universal type), the literal null (for an access type), a string literal, a bit string 
literal, an aggregate, or a predefined attribute (5.1)

basic signal: A signal that determines the driving values for all other signals. A basic signal is
— Either a scalar signal or a resolved signal
— Not a subelement of a resolved signal
— Not an implicit signal of the form S'STABLE(T), S'QUIET(T), or S'TRANSACTION, and
— Not an implicit signal GUARD (14.7.3.2)
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belong:  (A) (to a range): A property of a value with respect to some range. The value V is said to belong to 
a range if the relations (lower bound <= V) and (V <= upper bound) are both true, where lower bound and 
upper bound are the lower and upper bounds, respectively, of the range. (5.2.1, 5.3.2) (B) (to a subtype): A 
property of a value with respect to some subtype. A value is said to belong to a subtype of a given type if it 
belongs to the type and satisfies the applicable constraint. (5.1, 5.3.2)

binding: The process of associating a design entity and, optionally, an architecture with an instance of a 
component. A binding can be specified in an explicit or a default binding indication. (3.4, 7.3.2, 7.3.3, 
14.4.3.3, 14.5.4)

bit string literal: A literal formed by a sequence of extended digits enclosed between two quotation (") 
characters and preceded by a base specifier. The type of a bit string literal is determined from the context. 
(9.3.2, 15.8)

block: (A) The representation of a portion of the hierarchy of a design. A block is either an external block or 
an internal block. (3.1, 3.3.2, 3.4.1, 3.4.2, 3.4.3, 6.5.6.2, 6.5.6.3) (B) The act of suspending the execution of 
a process for the purposes of guaranteeing exclusive access to either a file object or an object of a protected 
type. (5.5.2, 14.6)

bound: A label that is identified in the instantiation list of a configuration specification. (7.3.1)

box: (A) The symbol <> in an index subtype definition, which stands for an undefined range. Different 
objects of the type need not have the same bounds and direction. (5.3.2.1) (B) The symbol <> as the 
subprogram default in a formal generic subprogram declaration, and which stands for a subprogram with the 
same name and parameter and result type profile as the formal subprogram visible at the place of 
instantiation of the enclosing uninstantiated declaration. (6.5.4) (C) The symbol <> in an interface package 
generic map aspect indicating that the actual instantiated package may have any actual generics. (6.5.5)

buffer: One possible port mode. A port of mode buffer contributes its driving value to the network 
containing the port; the design entity containing the port is also allowed to read its driving value. (6.5.2, 
6.5.6.3)

bus: One kind of guarded signal. A bus floats to a user-specified value when all of its drivers are turned off. 
(6.4.2.3, 6.5.2)

callback: A mechanism for a VHPI program to gain control during tool execution. (Clause 21)

callback data structure: A C struct of type vhpiCbDataT that specifies a callback. It is used to register a 
callback and to acquire information about a callback and is passed to a callback function upon invocation of 
the function. (21.2.2, 21.2.5, 21.2.6)

callback function: A function in a VHPI program, identified to the tool by registration, that is called by the 
tool upon occurrence of a nominated trigger event. (21.1)

callback reason: A specification of an occurrence that may trigger invocation of a callback function. (21.1)

capability set: A permissible subset of the VHPI information model and functions provided by a tool. (17.3)

change: The current value of a signal of type T is said to change as the result of an update if and only if 
application of the predefined “=” operator for type T to the current value of the signal and the value of the 
signal prior to the update evaluates to FALSE. (14.7.3.4)
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character literal: A literal of the CHARACTER type. Character literals are formed by enclosing one of the 
graphic characters (including the space and nonbreaking space characters) between two apostrophe (') 
characters. (15.3, 15.6)

character type: An enumeration type with at least one of its enumeration literals as a character literal. 
(5.2.2, 5.2.2.2)

chosen implementation: An implementation of floating-point types that conforms to either IEEE Std 754-
1985 or to IEEE Std 854-1987 and with a minimum representation size of 64 bits. (5.2.5.1)

cipher: An algorithm for encrypting and decrypting information. A cipher is either symmetric, requiring a 
single secret key for both encryption and decryption, or asymmetric, requiring one key of a key pair for 
encryption and the other key of the pair for decryption. (24.1.1, 24.1.3.2)

class: An abstract data type within an information model. (17.2.1)

closely related types: Two type marks that denote the same type or two numeric types. Two array types are 
closely related if they have the same dimensionality and if the element types are closely related. Explicit 
type conversion is only allowed between closely related types. (9.3.6)

comment: Informative text added to a description. (15.9)

complete: A loop that has finished executing. Similarly, an iteration scheme of a loop is complete when the 
condition of a while iteration scheme is FALSE or all of the values of the discrete range of a for iteration 
scheme have been assigned to the iteration parameter. (10.10)

complete context: A declaration, a specification, a statement, or, in certain cases, a discrete range or an 
expression; complete contexts are used in overload resolution. (12.5)

composite type: A type whose values have elements. There are two classes of composite types: array types
and record types. (5.1, 5.3)

concurrent region: A block declarative region (including an external block and any block equivalent to a 
generate statement), or a package declarative region (including a generic-mapped package equivalent to a 
package instantiation) declared immediately within a concurrent region. (8.7)

concurrent statement: A statement that executes asynchronously, with no defined relative order. 
Concurrent statements are used for dataflow and structural descriptions. (Clause 11)

configuration: A construct that defines how component instances in a given block are bound to design 
entities in order to describe how design entities are put together to form a complete design. (3.1, 3.4. 7.3)

conforming profiles: Two subprogram declarations are said to have conforming profiles if and only if both 
are procedures or both are functions, the parameter and result type profiles of the subprograms are the same 
and, at each parameter position, the corresponding parameters have the same class and mode. (4.10)

connected: A formal port associated with an actual port or signal. A formal port associated with the 
reserved word open is said to be unconnected. (6.5.6.3)

constant: An object whose value cannot be changed. Constants are either explicitly declared, subelements 
of explicitly declared constants, or interface constants. Constants declared in packages can also be deferred 
constants. (6.4.2.2)
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constraint: A subset of the values of a type. The set of possible values for an object of a given type that can 
be subjected to a condition is called a constraint. A value is said to satisfy the constraint if it satisfies the 
corresponding condition. There are index constraints and range constraints. (5.1)

contributor: A contributor of a given signal is a driver, signal, expression, or conversion whose value 
determines the value of the given signal. (19.12.2)

conversion function: A function used to convert values flowing through associations. For interface objects 
of mode in, conversion functions are allowed only on actuals. For interface objects of mode out or buffer, 
conversion functions are allowed only on formals. For interface objects of mode inout or linkage, 
conversion functions are allowed on both formals and actuals. Conversion functions have a single 
parameter. A conversion function associated with an actual accepts the type of the actual and returns the 
type of the formal. A conversion function associated with a formal accepts the type of the formal and returns 
the type of the actual. (6.5.7.1)

convertible: A property of an operand with respect to some type. An operand is convertible to some type if 
there exists an implicit conversion to that type. (9.3.6)

current value: The value component of the single transaction of a driver whose time component is not 
greater than the current simulation time. (14.4.1, 14.7.2, 14.7.3. 14.7.4)

decimal literal: An abstract literal that is expressed in decimal notation. The base of the literal is implicitly 
10. The literal may optionally contain an exponent or a decimal point and fractional part. (15.5.2)

declaration: A construct that defines a declared entity and associates an identifier (or some other notation) 
with it. This association is in effect within a region of text that is called the scope of the declaration. Within 
the scope of a declaration, there are places where it is possible to use the identifier to refer to the associated 
declared entity; at such places, the identifier is said to be the simple name of the named entity. The simple 
name is said to denote the associated named entity. (Clause 6)

declarative part: A syntactic component of certain declarations or statements (such as entity declarations, 
architecture bodies, and block statements). The declarative part defines the lexical area (usually introduced 
by a reserved word such as is and terminated with another reserved word such as begin) within which 
declarations may occur. (3.2.3, 3.3.2, 3.4.1, 4.8, 11.2, 11.3, 11.7.2, 11.7.3)

declarative region: A semantic component of certain declarations or statements. Certain declarative regions 
include disjoint parts; for example, the declarative region of a package declaration, which, if there is an 
associated package body, extends to the end of that package body. (12.1)

decorate: To associate a user-defined attribute with a named entity and to define the value of that attribute. 
(7.2)

decryption envelope: A collection of protect tool directives that specify ciphers and keys used to decrypt a 
portion of a VHDL description. The decryption envelope also contains the encoded encrypted portion of the 
VHDL description. (24.1.5)

decryption tool: A tool that processes decryption envelopes in a VHDL description to yield the original 
source text. The decryption tool may perform subsequent analysis and interpretation of the description, but 
shall not disclose the decrypted text to the user of the tool. (24.1.5)

default expression: A default value that is used for a formal generic constant, port, or parameter if the 
interface object is unassociated. A default expression is also used to provide an initial value for signals and 
their drivers. (6.4.2.3, 6.5.7)
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deferred constant: A constant that is declared without an assignment symbol (:=) and expression in a 
package declaration. A corresponding full declaration of the constant shall exist in the package body to 
define the value of the constant. (6.4.2.2)

delimited comment: A comment that starts with a solidus (slash) character immediately followed by an 
asterisk character and extends up to the first subsequent occurrence of an asterisk character immediately 
followed by a solidus character. (15.9)

delta cycle: A simulation cycle in which the simulation time at the beginning of the cycle is the same as at 
the end of the cycle. That is, simulation time is not advanced in a delta cycle. Only nonpostponed processes 
can be executed during a delta cycle. (14.7.5.1)

denote: A property of the identifier given in a declaration. Where the declaration is visible, the identifier 
given in the declaration is said to denote the named entity declared in the declaration. (6.1)

depend: (A) (on a library unit): A design unit that explicitly or implicitly mentions other library units in a 
use clause. These dependencies affect the allowed order of analysis of design units. (13.5) (B) (on a signal 
value): A property of a signal with respect to some other signal. The current value of an implicit signal R is 
said to depend on the current value of another signal S if R denotes an implicit signal S'STABLE(T), 
S'QUIET(T), or S'TRANSACTION, or if R denotes an implicit GUARD signal and S is any other implicit 
signal named within the guard condition that defines the current value of R. The current value of an interface 
signal R is said to depend on the current value of an implicit signal S if R denotes a port of mode in and S is 
the actual associated with that port. (14.7.4)

deposit: An update of the current value of a variable other than by assignment, of a driver other than by 
advancement of a transaction to the first position in the driver’s projected output waveform, or of a signal 
other than resulting from update of other parts of the net of which the signal is a part. A deposited value 
remains only until a subsequent update of the variable, driver, or signal. (14.7.2, 14.7.3, 22.5.2, 22.5.3, 
22.5.4)

descending range: A range L downto R. (5.2.1)

design entity: An entity declaration together with an associated architecture body. Different design entities 
may share the same entity declaration, thus describing different components with the same interface or 
different views of the same component. (3.1)

design file: One or more design units in sequence. (13.1)

design hierarchy: The complete representation of a design that results from the successive decomposition 
of a design entity into subcomponents and binding of those components to other design entities that may be 
decomposed in a similar manner. (3.1)

design hierarchy information model: The information model that represents the elaborated VHDL model. 
(17.2.1)

design library: A host-dependent storage facility for intermediate-form representations of analyzed design 
units. (13.2)

design unit: A construct that can be independently analyzed and stored in a design library. A design unit is 
either an entity declaration, an architecture body, a configuration declaration, a package declaration, a 
package body, a package instantiation declaration, a context declaration, or a PSL verification unit. (13.1)

designate: A property of access values that relates the value to some object when the access value is non-
null. A non-null access value is said to designate an object. (5.4.1)
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designated subtype: For an access type, the subtype defined by the subtype indication of the access type 
definition. (5.4.1)

designated type: For an access type, the base type of the subtype defined by the subtype indication of the 
access type definition. (5.4.1)

designator: (A) Syntax that forms part of an association element. A formal designator specifies which 
formal parameter, port, or generic (or which subelement or slice of a parameter, port, or generic) is to be 
associated with an actual by the given association element. An actual designator specifies which actual 
expression, signal, variable, subtype, subprogram, or package is to be associated with a formal (or 
subelement or subelements of a formal). An actual designator may also specify that the formal in the given 
association element is to be left unassociated (with an actual designator of open). (6.5.7.1) (B) An identifier, 
character literal, or operator symbol that defines an alias for some other name. (6.6.1) (C) A simple name 
that denotes a predefined or user-defined attribute in an attribute name, or a user-defined attribute in an 
attribute specification. (7.2, 8.6) (D) A simple name, character literal, or operator symbol, and possibly a 
signature, that denotes a named entity in the entity name list of an attribute specification. (7.2) (E) An 
identifier or operator symbol that defines the name of a subprogram. (4.2.1) (F) An identifier, character 
literal, or operator symbol associated with a named entity by a declaration. (6.1)

digest: A summary of information, computed using a hash function. (24.1.1)

digital envelope: An encryption scheme in which information is encrypted using a symmetric cipher with a 
session key chosen by an encryption tool, and then the session key is encrypted. Decryption of the protected 
envelope involves first decrypting the session key, followed by decrypting the information with the 
symmetric cipher using the decrypted session key. (24.1.1)

digital signature: A scheme that allows verification that information is received unaltered from the 
originator of the information. The originator computes a digest of the information using a hash function and 
encrypts the digest with an asymmetric cipher using the private key of a key pair. The recipient decrypts the 
digest using the public key of the originator, recomputes the digest by applying the hash function to the 
received information, and compares the two digests. If they differ, the received information differs from the 
originator’s information. (24.1.1)

directly visible: A visible declaration that is not visible by selection. A declaration is directly visible within 
its immediate scope, excluding any places where the declaration is hidden. A declaration occurring 
immediately within the visible part of a package can be made directly visible by means of a use clause. 
(12.3, 12.4) See also: visible.

disabled callback: A callback for which the callback function will not be called if the trigger event occurs. 
(21.1)

discrete array: A one-dimensional array whose elements are of a discrete type. (9.2.3)

discrete range: A range whose bounds are of a discrete type. (5.3.2.1, 5.3.2.2)

discrete type: An enumeration type or an integer type. Each value of a discrete type has a position number 
that is an integer value. Indexing and iteration rules use values of discrete types. (5.2.1)

don’t care value:  The enumeration literal '–' of the type STD_ULOGIC defined in the package 
STD_LOGIC_1164. (16.8.2.2)

driver: A container for a projected output waveform of a signal. The value of the signal is a function of the 
current values of its drivers. Each process that assigns to a given signal implicitly contains a driver for that 
signal. A signal assignment statement affects only the associated driver(s). (14.5.5, 14.7.2, 14.7.3, 14.7.4)
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driving value: The value a signal provides as a source of other signals. (14.7.3)

driving-value forced signal: A signal whose driving value is set to a given value and cannot be changed by 
a deposit or update of other parts of the net of which the signal is a part. (14.7.3.2, 22.5.3)

dynamic object: An object in an information model that, once created, may cease to exist at a later time 
during execution of the tool. (17.2.1)

effective value: The value obtained by evaluating a reference to the signal within an expression. (14.7.3)

effective-value forced signal: A signal whose effective value is set to a given value and cannot be changed 
by a deposit or update of other parts of the net of which the signal is a part. (14.7.3.3, 22.5.3)

elaboration: The process by which a declaration achieves its effect. Prior to the completion of its 
elaboration (including before the elaboration), a declaration is not yet elaborated. (Clause 14)

elaboration function: A function in a foreign architecture that performs elaboration of the foreign 
architecture. (20.4.1)

elaboration phase: That phase of tool execution in which static elaboration of a design hierarchy occurs. 
(14.2, 20.4)

element: A constituent of a composite type. (5.1) See also: subelement.

enabled callback: A callback for which the callback function will be called if the trigger event occurs. 
(21.1)

encoding method: An algorithm that transforms the octets of information into graphic characters so that the 
information can be stored or transmitted without being altered by agents that interpret non-graphic 
characters. (24.1.1, 24.1.3.1)

encryption envelope: A collection of protect tool directives that specify ciphers and keys used to encrypt an 
enclosed portion of a VHDL description. (24.1.4)

encryption tool: A tool that processes encryption envelopes in a VHDL description and produces a VHDL 
description containing the corresponding decryption envelopes. (24.1.4)

entity declaration: A definition of the interface between a given design entity and the environment in which 
it is used. It may also specify declarations and statements that are part of the design entity. A given entity 
declaration may be shared by many design entities, each of which has a different architecture. Thus, an 
entity declaration can potentially represent a class of design entities, each with the same interface. (3.1, 3.2)

enumeration literal: A literal of an enumeration type. An enumeration literal is either an identifier or a 
character literal. (5.2.2.1, 9.3.2)

enumeration type: A type whose values are defined by listing (enumerating) them. The values of the type 
are represented by enumeration literals. (5.2.1, 5.2.2)

erroneous: An error condition that cannot always be detected. (1.3.3)

error: A condition that makes the source description illegal. If an error is detected at the time of analysis of 
a design unit, it prevents the creation of a library unit for the given design unit. A runtime error causes 
simulation to terminate. (1.3.3, 13.5)
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error information structure: A C struct of type vhpiErrorInfoT that represents error information 
provided by the tool to a VHPI program upon occurrence of an error. (23.3)

event: A change in the current value of a signal, which occurs when the signal is updated with its effective 
value. (14.7.3.4)

execute: (A) When first the design hierarchy of a model is elaborated, then its nets are initialized, and finally 
simulation proceeds with repetitive execution of the simulation cycle, during which processes are executed 
and nets are updated. (B) When a process performs the actions specified by the algorithm described in its 
statement part. (Clause 14, 14.7)

execution function: A function in a foreign model that performs initialization (in the case of a foreign 
architecture) or dynamic elaboration (in the case of a foreign subprogram). (20.4.2, 20.5)

expanded name: A selected name (in the syntactic sense) that denotes one or all of the primary units in a 
library or any named entity within a primary unit. (8.3, 10.2) See also: selected name.

explicit ancestor: The parent of the implicit signal that is defined by the predefined attributes 'DELAYED, 
'QUIET, 'STABLE, or 'TRANSACTION. It is determined using the prefix of the attribute. If the prefix 
denotes an explicit signal or a slice or subelement (or member thereof), then that is the explicit ancestor of 
the implicit signal. If the prefix is one of the implicit signals defined by the predefined attributes 
'DELAYED, 'QUIET, 'STABLE, or 'TRANSACTION, this rule is applied recursively. If the prefix is an 
implicit signal GUARD, the signal has no explicit ancestor. (4.3)

explicit signal: A signal, other than those defined by the predefined attributes 'DELAYED, 'QUIET, 
'STABLE, or 'TRANSACTION, any implicit signal GUARD, or their slices, subelements, or slices of their 
subelements. A slice, subelement, or a slice of a subelement of an explicit signal is also an explicit signal. 
(4.3)

explicitly declared constant: A constant of a specified type that is declared by a constant declaration. 
(6.4.2.2)

explicitly declared object: An object of a specified type that is declared by an object declaration. An object 
declaration is called a single-object declaration if its identifier list has a single identifier; it is called a 
multiple-object declaration if the identifier list has two or more identifiers. (6.4.1, 6.4.2) See also: implicitly 
declared object.

expression: A formula that defines the computation of a value. (9.1)

extend: A property of source text forming a declarative region with disjoint parts. In a declarative region 
with disjoint parts, if a portion of text is said to extend from some specific point of a declarative region to the 
end of the region, then this portion is the corresponding subset of the declarative region (and does not 
include intermediate declarative items between an interface declaration and a corresponding body 
declaration). (12.1)

extended digit: A lexical element that is either a digit or a letter. (15.4.3)

external block: A top-level design entity that resides in a library and may be used as a component in other 
designs. (3.1)

file type: A type that provides access to objects containing a sequence of values of a given type. File types 
are typically used to access files in the host system environment. The value of a file object is the sequence of 
values contained in the host system file. (5.1, 5.5)
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floating-point types: A scalar type whose values approximate real numbers. The representation of a 
floating-point type conforms either to IEEE Std 754-1985 or to IEEE Std 854-1987 and has a minimum size 
of 64 bits. (5.2.1, 5.2.5)

forced driver: A driver whose current value is set to a given value and cannot be changed by a deposit or a 
transaction becoming the first transaction in the driver’s projected output waveform. (14.7.2, 22.5.4)

forced variable: A variable whose value is set to a given value and cannot be changed by a deposit or 
assignment. (10.6.2.1, 22.5.2)

foreign application: A VHPI program other than a foreign model. (20.1)

foreign model: A design entity whose architecture is decorated with the 'FOREIGN attribute in the form of 
a standard indirect binding or a standard direct binding, or a subprogram similarly decorated. (20.1)

foreign model callback: A callback that allows a foreign model to achieve an effect similar to that of a wait 
statement, by being triggered after a timeout or upon an event on one or more signals. (21.3.3)

foreign subprogram: A subprogram that is decorated with the attribute 'FOREIGN, defined in package 
STANDARD. The STRING value of the attribute may specify implementation-dependent information about 
the foreign subprogram. Foreign subprograms may have non-VHDL implementations. An implementation 
may place restrictions on the allowable modes, classes, and types of the formal parameters to a foreign 
subprogram, such as constraints on the number and allowable order of the parameters. (4.3)

formal: A formal port or formal generic of a design entity, a block statement, or a formal parameter of a 
subprogram. (4.2.2, 6.5.7.1, 6.5.7.2, 6.5.7.3, 11.2)

format: The format of a value structure specifies how the value is represented. (22.2.8)

full declaration: A constant declaration occurring in a package body with the same identifier as that of a 
deferred constant declaration in the corresponding package declaration. A full type declaration is a type 
declaration corresponding to an incomplete type declaration. (4.8)

fully bound: A binding indication for the component instance implies an entity declaration and an 
architecture. (7.3.2.2)

generate parameter: A constant object whose type is the base type of the discrete range of a generate 
parameter specification. A generate parameter is declared by a generate statement. (11.8)

generic: An interface declaration in the block header of a block statement, a component declaration, or an 
entity declaration, in the package header of a package declaration, or in the subprogram header of a 
subprogram specification. Generics provide a channel for static information to be communicated to a block, 
a package, or a subprogram from its environment. Unlike explicit declarations, however, the value or 
subtype denoted by a generic can be supplied externally, either in a component instantiation statement, in a 
configuration specification, or in a package or subprogram instantiation declaration. (6.5.6.2)

generic interface list: A list that defines local or formal generics. (6.5.6.1, 6.5.6.2)

generic-mapped package: A package declared by a package declaration containing a generic clause and a 
generic map aspect. A generic-mapped package may be declared explicitly or may be equivalent to a 
package instantiation. (4.7, 4.9)
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generic-mapped subprogram: A subprogram declared by a subprogram declaration containing a generic 
list and a generic map aspect. A generic-mapped subprogram may be declared explicitly or may be 
equivalent to a subprogram instantiation. (4.2.1, 4.4)

globally static expression: An expression that can be evaluated as soon as the design hierarchy in which it 
appears is elaborated. A locally static expression is also globally static unless the expression appears in a 
dynamically elaborated context. (9.4.1)

globally static primary: A primary whose value can be determined during the elaboration of its complete 
context and that does not thereafter change. Globally static primaries can only appear within statically 
elaborated contexts. (9.4.3)

group: A named collection of named entities. Groups relate different named entities for the purposes not 
specified by the language. In particular, groups may be decorated with attributes. (6.9, 6.10)

guard: See: guard condition.

guard condition: A Boolean-valued expression associated with a block statement that controls assignments 
to guarded signals within the block. A guard condition defines an implicit signal GUARD that may be used 
to control the operation of certain statements within the block. (6.4.2.3, 11.2, 11.6)

guarded assignment: A concurrent signal assignment statement that includes the reserved word guarded, 
which specifies that the signal assignment statement is executed when a signal GUARD changes from 
FALSE to TRUE, or when that signal has been TRUE and an event occurs on one of the signals referenced 
in the corresponding GUARD condition. The signal GUARD shall be one of the implicitly declared 
GUARD signals associated with block statements that have guard conditions, or it shall be an explicitly 
declared signal of type BOOLEAN that is visible at the point of the concurrent signal assignment statement. 
(11.6)

guarded signal: A signal declared as a register or a bus. Such signals have special semantics when their 
drivers are updated from within guarded signal assignment statements. (6.4.2.3)

guarded target: A signal assignment target consisting only of guarded signals. An unguarded target is a 
target consisting only of unguarded signals. (11.6)

handle: An opaque reference to an object in the VHPI information model. (17.4.1)

hash function: A function that produces a summary of information. The likelihood of two different pieces 
of information yielding the same summary is negligible. Moreover, the original information cannot be 
determined from the summary. (24.1.1, 24.1.3.3)

hidden: A declaration that is not directly visible. A declaration is hidden in its scope by a homograph of the 
declaration. (12.3)

high-impedance value:  The enumeration literal ‘Z’ of the type STD_ULOGIC defined in the package 
STD_LOGIC_1164. (16.8.2.2)

homograph: A reflexive property of two declarations. Each of two declarations is said to be a homograph
of the other if both declarations have the same identifier and overloading is allowed for at most one of the 
two. If overloading is allowed for both declarations, then each of the two is a homograph of the other if they 
have the same identifier, operator symbol, or character literal, as well as the same parameter and result type 
profile. (3.4.2, 12.3)
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identify: A property of a name appearing in an element association of an assignment target in the form of an 
aggregate. The name is said to identify a signal or variable and any subelements of that signal or variable. 
(10.5.2.1, 10.6.2.1)

immediate scope: A property of a declaration with respect to the declarative region within which the 
declaration immediately occurs. The immediate scope of the declaration extends from the beginning of the 
declaration to the end of the declarative region. (12.2)

immediately within: A property of a declaration with respect to some declarative region. A declaration is 
said to occur immediately within a declarative region if this region is the innermost region that encloses the 
declaration, not counting the declarative region (if any) associated with the declaration itself. (12.1)

implicit label: Where a statement omits a label, an implicit label is used to construct name properties for the 
statement. The implicit label is determined by the statement’s position in the immediately enclosing 
statement part. (19.4.2)

implicitly declared object: An object whose declaration is not explicit in the source description, but is a 
consequence of other constructs; for example, signal GUARD. (6.4.1, 11.2, 16.2) See also: explicitly 
declared object.

implicit signal: Any signal S'STABLE(T), S'QUIET(T), S'DELAYED(T), or S'TRANSACTION, or any 
implicit GUARD signal. A slice or subelement (or slice thereof) of an implicit signal is also an implicit 
signal. (14.7.3, 14.7.4, 14.7.5)

imply: A property of a binding indication in a configuration specification with respect to the design entity 
indicated by the binding indication. The binding indication is said to imply the design entity; the design 
entity is indicated directly, indirectly, or by default. (7.3.2.2)

impure function: A function that may return a different value each time it is called, even when different 
calls have the same actual parameter values. A pure function returns the same value each time it is called 
using the same values as actual parameters. An impure function can update objects outside of its scope and 
can access a broader class of values than a pure function. (4.1)

in: One possible mode of a port or subprogram parameter; also, the only allowed mode of a generic constant. 
A port of mode in may be read within the design entity containing the port but does not contribute a driving 
value to the network containing the port. A subprogram parameter of mode in may be read but not modified 
by the containing subprogram. (4.2.2, 6.5.2, 6.5.6.2, 6.5.6.3)

incomplete type declaration: A type declaration that is used to define mutually dependent and recursive 
access types. (5.4.2)

incremental binding: A binding indication in a configuration declaration that either reassociates a 
previously associated local generic constant or that associates a previously unassociated local port is said to 
incrementally rebind the component instance or instances to which the binding indication applies. (7.3.2.1)

index constraint: A constraint that determines the index range for every index of an array type, and thereby 
the bounds of the array. An index constraint is compatible with an array type if and only if the constraint 
defined by each discrete range in the index constraint is compatible with the corresponding index subtype in 
the array type. An array value satisfies an index constraint if the array value and the index constraint have 
the same index range at each index position. (5.2.1, 5.3.2.2)

index range: A multidimensional array has a distinct element for each possible sequence of index values 
that can be formed by selecting one value for each index (in the given order). The possible values for a given 

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



IEC 61691-1-1:2011(E) - 570 - �
IEEE Std 1076-2008

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

index are all the values that belong to the corresponding range. This range of values is called the index 
range. (5.3.2.1)

index subtype: For a given index position of an array, the index subtype is denoted by the type mark of the 
corresponding index subtype definition. (5.3.2.1)

inertial delay: A delay model used for switching circuits; a pulse whose duration is shorter than the 
switching time of the circuit will not be transmitted. Inertial delay is the default delay mode for signal 
assignment statements. (10.5.2.1) See also: transport delay.

information model: An abstract representation of the topology and state of a VHDL model. (17.2.1)

inheritance relationship: A relationship between a subclass and a superclass whereby the subclass 
implicitly has all of the properties, operations, and associations of the superclass. The relationship may be 
directly between a subclass and a superclass or indirectly through one or more intermediate superclasses. 
(17.2.1)

initial value expression: An expression that specifies the initial value to be assigned to a variable. (6.4.2.4)

initialization phase: That phase of tool execution in which initialization of an elaborated design hierarchy 
occurs. (14.7.5.2, 20.5)

inout: One possible mode of a port or subprogram parameter. A port of mode inout may be read within the 
design entity containing the port and also contributes a driving value to the network containing the port. A 
subprogram parameter of mode inout may be both read and modified by the containing subprogram. 
(4.2.2.1, 6.5.2, 6.5.6.3)

inputs: The signals identified by the longest static prefix of each signal name appearing as a primary in each 
expression (other than time expressions) within a concurrent signal assignment statement. (11.6)

instance: A subcomponent of a design entity whose prototype is a component declaration, design entity, or 
configuration declaration. Each instance of a component may have different actuals associated with its local 
ports and generics. A component instantiation statement whose instantiated unit denotes a component 
creates an instance of the corresponding component. A component instantiation statement whose 
instantiated unit denotes either a design entity or a configuration declaration creates an instance of the 
denoted design entity. (11.7.1, 11.7.2, 11.7.3)

integer literal: An abstract literal of the type universal_integer that does not contain a base point. (15.5.1)

integer type: A discrete scalar type whose values represent integer numbers within a specified range. (5.2.1, 
5.2.3)

interface list: A list that declares the interface objects required by a subprogram, component, design entity, 
or block statement. (6.5.6)

internal block: A nested block in a design unit, as defined by a block statement. (3.1)

invalid handle: A handle that previously referred to an object that subsequently ceased to exist. (17.4.5)

ISO: International Organization for Standardization.

ISO/IEC 8859-1: The ISO Latin-1 character set. Package STANDARD contains the definition of type 
CHARACTER, which represents the ISO Latin-1 character set. (5.2.2.2, 16.3)
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kernel process: A conceptual representation of the agent that coordinates the activity of user-defined 
processes during a simulation. The kernel process causes the execution of I/O operations, the propagation of 
signal values, and the updating of values of implicit signals [such as S'STABLE(T)]; in addition, it detects 
events that occur and causes the appropriate processes to execute in response to those events. (14.7.1)

left bound: For a range L to R or L downto R, the value L. (5.2.1)

left of: When both a value V1 and a value V2 belong to a range and either the range is an ascending range 
and V2 is the successor of V1, or the range is a descending range and V2 is the predecessor of V1. (5.2.1)

left-to-right order: When each value in a list of values is to the left of the next value in the list within that 
range, except for the last value in the list. (5.2.1)

lexically conform: Two subprogram specifications are said to lexically conform if, apart from certain 
allowed minor variations, both specifications are formed by the same sequence of lexical elements, and 
corresponding lexical elements are given the same meaning by the visibility rules. Lexical conformance is 
defined similarly for deferred constant declarations. (4.10)

library: See: design library.

library information model: The information model that represents the design units that comprise a VHDL 
model after analysis and prior to elaboration. (17.2.1)

library unit: The representation in a design library of an analyzed design unit. (13.1)

lifetime of an object: The duration of existence of the object in the VHPI information model. (17.4.5)

linkage: One possible port mode. A design entity whose entity interface contains a port of mode linkage
implies that the behavior of the design entity is not expressed in terms of VHDL semantics. (6.5.2, 6.5.6.3)

literal: A value that is directly specified in the description of a design. A literal can be a bit string literal, 
enumeration literal, numeric literal, string literal, or the literal null. (9.3.2)

load: A load of a given signal is a process, port, signal, or conversion whose value depends on the value of 
the given signal. (19.12.2)

local contributor: A contributor defined by a VHDL model or created using the vhpi_create function, 
prior to any optimization of the representation of contributors and loads of a net. (19.12.2)

local generic: An interface declaration in a component declaration that serves to connect a formal generic in 
the interface list of an entity and an actual generic, value, subtype, subprogram, or package in the design unit 
instantiating that entity. (6.4.1, 6.5.7, 6.8)

local load: A load defined by a VHDL model, prior to any optimization of the representation of contributors 
and loads of a net. (19.12.2)

locally static expression: An expression that can be evaluated during the analysis of the design unit in 
which it appears. (9.4.1, 9.4.2)

locally static name: A name in which every expression is locally static (if every discrete range that appears 
as part of the name denotes a locally static range or subtype and if no prefix within the name is either an 
object or value of an access type or a function call). (8.1)
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locally static primary: One of a certain group of primaries that includes literals, certain constants, and 
certain attributes. (9.4.2)

locally static subtype: A subtype whose bounds and direction can be determined during the analysis of the 
design unit in which it appears. (9.4.2)

local port: A signal declared in the interface list of a component declaration that serves to connect a formal 
port in the interface list of an entity and an actual port or signal in the design unit instantiating that entity. 
(6.4.1, 6.5.7, 6.8)

longest static prefix: The name of a signal or a variable name, if the name is a static signal or variable 
name. Otherwise, the longest static prefix is the longest prefix of the name that is a static signal or variable 
name. (8.1) See also: static signal name.

loop parameter: A constant, implicitly declared by the for clause of a loop statement, used to count the 
number of iterations of a loop. (10.10)

lower bound: The left bound of an ascending range or the right bound of a descending range. (5.2.1)

match: A property of a signature with respect to the parameter and subtype profile of a subprogram or 
enumeration literal. The signature is said to match the parameter and result type profile if certain conditions 
are true. (4.5.3)

matching case statement: A case statement that includes the question mark delimiter, in which choices are 
compared with the expression using the “?=” operator. (10.9)

matching elements: Corresponding elements of two composite type values that are used for certain logical 
and relational operations. (9.2.3)

matching index value: In an element association with a choice that is a discrete range and an expression of 
the type of the aggregate, the index value in the range that corresponds to a given element of the expression 
value. (9.3.3.3)

mature callback: A one-time callback whose trigger event has occurred. (21.1)

member: A slice of an object, a subelement, or an object; or a slice of a subelement of an object. (5.1)

metalogical value:  One of the enumeration literals 'U', 'X', 'W', or '–' of the type STD_ULOGIC defined in 
the package STD_LOGIC_1164. (16.8.2.2)

method: An abstract operation that operates atomically and exclusively on a single object of a protected 
type. (5.6.2)

mode: The direction of information flow through the port or parameter. Modes are in, out, inout, buffer, or 
linkage. (6.5.2, 6.5.6.3)

model: The result of the elaboration of a design hierarchy. The model can be executed in order to simulate 
the design it represents. (14.1, 14.7)

model name: An identifier that, jointly with an object library name, uniquely identifies a foreign model. 
(20.2.2)

modified relative search string: A relative search string modified by the insertion of signatures. (23.22)

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



- 573 - IEC 61691-1-1:2011(E)�
IEEE Std 1076-2008

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

most specialized class: That class of which a given object is a member and for which there is no subclass of 
which the object is also a member. (17.2.1)

multiplicity: The number of permissible target objects of a navigable association. Multiplicities may be 0..1 
or 1 for a one-to-one association or 0..* or 1..* for one-to-many associations. (19.2.1)

name: A property of an identifier with respect to some named entity. Each form of declaration associates an 
identifier with a named entity. In certain places within the scope of a declaration, it is valid to use the 
identifier to refer to the associated named entity; these places are defined by the visibility rules. At such 
places, the identifier is said to be the name of the named entity. (6.1, 8.1)

named association: An association element in which the formal designator appears explicitly. (6.5.7.1, 
9.3.3.1)

named entity: An item associated with an identifier, character literal, or operator symbol as the result of an 
explicit or implicit declaration. (6.1) See also: name.

navigable: An association in the information model is navigable from a reference object to a target object if 
it is permissible to acquire a handle for the target object using the vhpi_handle function (for a one-to-one 
association) or the vhpi_iterator function (for a one-to-many association) with a handle to the 
reference object. (19.2.1)

net: A collection of drivers, signals (including ports and implicit signals), conversion functions, and 
resolution functions that connect different processes. Initialization of a net occurs after elaboration, and a net 
is updated during each simulation cycle. (14.1, 14.2, 14.7.3.4)

nonobject alias: An alias whose designator denotes some named entity other than an object. (6.6.1, 6.6.3) 
See also: object alias.

nonpostponed process: An explicit or implicit process whose source statement does not contain the 
reserved word postponed. When a nonpostponed process is resumed, it executes in the current simulation 
cycle. Thus, nonpostponed processes have access to the current values of signals, whether or not those 
values are stable at the current model time. ( 11.3)

null array: Any of the discrete ranges in the index constraint of an array that define a null range. (5.3.2.2)

null range: A range that specifies an empty subset of values. A range L to R is a null range if L > R, and 
range L downto R is a null range if L < R. (5.2.1)

null slice: A slice whose discrete range is a null range. (8.5)

null transaction: A transaction produced by evaluating a null waveform element. (10.5.2.2)

null waveform element: A waveform element that is used to turn off a driver of a guarded signal. (10.5.2.2)

numeric literal: An abstract literal or a literal of a physical type. (9.3.2)

numeric type: An integer type, a floating-point type, or a physical type. (5.2.1)

object: (A) A named entity that has a value of a given type. An object can be a constant, signal, variable, or 
file. (6.4.1) (B) An instance of a class in an information model. An object is also an instance of each 
superclass of the class. (17.2.1)
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object alias: An alias whose alias designator denotes an object (that is, a constant, signal, variable, or file). 
(6.6.1, 6.6.2) See also: nonobject alias.

object callback: A callback whose trigger event relates to the value of a variable or a signal, represented by 
a trigger object. (21.3.2)

object library: An implementation-defined library containing one or more entry points for elaboration, 
execution or registration functions. (20.2.2)

one-time callback: A callback for which the callback function is triggered at most once. (21.1)

one-to-many association: An association in which one reference object is associated with possibly more 
than one target object. (17.2.1)

one-to-one association: An association in which one reference object is associated with at most one target 
object. (17.2.1)

operation: A function that pertains to a given object or class in an information model. (17.2.1)

optimized contributor: A contributor resulting from an implementation-defined optimization of the 
representation of contributors and loads of a net. (19.12.2)

optimized load: A load resulting from an implementation-defined optimization of the representation of 
contributors and loads of a net. (19.12.2)

ordered: A constraint upon a one-to-many association that indicates that an ordering relation applies to the 
target objects of the association. (19.2.1)

ordinary case statement: A case statement that does not include the question mark delimiter, in which 
choices are compared with the expression using the “=” operator. (10.9)

out: One possible mode of a port or subprogram parameter. A port of mode out contributes a driving value 
to the network containing the port; the design entity containing the port may also read the port. A 
subprogram parameter of mode out can be modified, and, if it is a variable, its value can be read by the 
containing subprogram. The value read is the current value of the formal parameter. (4.2.2, 6.5.2, 6.5.6.3)

overloaded: Identifiers or enumeration literals that denote two different named entities. Enumeration 
literals, subprograms, and predefined operators may be overloaded. At any place where an overloaded 
enumeration literal occurs in the text of a program, the type of the enumeration literal shall be determinable 
from the context. (4.2.1, 4.5.1, 4.5.2, 4.5.3, 5.2.2.1)

parameter: A constant, signal, variable, or file declared in the interface list of a subprogram specification. 
The characteristics of the class of objects to which a given parameter belongs are also characteristics of the 
parameter. In addition, a parameter has an associated mode that specifies the direction of dataflow allowed 
through the parameter. (4.2.2.1, 4.2.2.2, 4.2.2.3, 4.2.2.4, 4.5, 4.8)

parameter and result type profile: Two subprograms that have the same parameter type profile, and either 
both are functions with the same result base type, or neither of the two is a function. (4.5.1)

parameter interface list: An interface list that declares the parameters for a subprogram. It may contain 
interface constant declarations, interface signal declarations, interface variable declarations, interface file 
declarations, or any combination thereof. (6.5.6.1)
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parameter type profile: Two formal parameter lists that have the same number of parameters, and at each 
parameter position the corresponding parameters have the same base type. (4.5.1)

parent: A process or a subprogram that contains a procedure call statement for a given procedure or for a 
parent of the given procedure. (4.3)

passive process: A process statement where neither the process itself, nor any procedure of which the 
process is a parent, contains a signal assignment statement. (11.3)

permanent: A permanent string or structure is allocated by the tool in storage that is not subsequently 
overwritten during the invocation of the tool. A VHPI program may store a pointer to a permanent string or 
structure for subsequent reference to the string or structure. (23.1)

physical literal: A numeric literal of a physical type. (5.2.4.1)

physical structure: A C struct of type vhpiPhysT that represents a value of a physical type. (22.2.6)

physical type: A numeric scalar type that is used to represent measurements of some quantity. Each value of 
a physical type has a position number that is an integer value. Any value of a physical type is an integral 
multiple of the primary unit of measurement for that type. (5.2.1, 5.2.4)

port: A channel for dynamic communication between a block and its environment. A signal declared in the 
interface list of an entity declaration, in the header of a block statement, or in the interface list of a 
component declaration. In addition to the characteristics of signals, ports also have an associated mode; the 
mode constrains the directions of dataflow allowed through the port. (6.4.2.3, 6.5.6.3)

port interface list: An interface list that declares the inputs and outputs of a block, component, or design 
entity. It consists entirely of interface signal declarations. (6.5.6.1, 6.5.6.3, 11.2)

positional association: An association element that does not contain an explicit appearance of the formal 
designator. An actual designator at a given position in an association list corresponds to the interface 
element at the same position in the interface list. (6.5.7.1, 9.3.3.1)

postponed process: An explicit or implicit process whose source statement contains the reserved word 
postponed. When a postponed process is resumed, it does not execute until the final simulation cycle at the 
current modeled time. Thus, a postponed process accesses the values of signals that are the “stable” values at 
the current simulated time. (11.3)

predefined operations: Implicitly defined subprograms and predefined operators that operate on the 
predefined types. (5.2.6, 5.3.2.4, 5.4.3, 5.5.2, 9.2)

predefined operators: Implicitly defined operators that operate on the predefined types. Every predefined 
operator is a pure function. No predefined operators have named formal parameters; therefore, named 
association cannot be used in a function whose name denotes a predefined operator. (9.2, 16.3)

primary: One of the elements making up an expression. Each primary has a value and a type. (9.1)

private key: One key of a key pair used with an asymmetric cipher for the encryption or decryption of 
information. The private key is known only to the owner of the key pair. (24.1.1)

projected output waveform: A sequence of one or more transactions representing the current and projected 
future values of the driver. (14.7.2)

property: An item of data that pertains to a given object or class in an information model. (17.2.1)
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protected type: A type whose objects are protected from simultaneous access by more than one process. 
(5.6)

protection envelope: A collection of protect tool directives that specify ciphers and keys used to encrypt or 
decrypt an enclosed portion of a VHDL description. A protection envelope is either an encryption envelope 
or a decryption envelope. (24.1.1)

public key: One key of a key pair used with an asymmetric cipher for the encryption or decryption of 
information. The public key is published by the owner of the key pair. (24.1.1)

pulse rejection limit: The threshold time limit for which a signal value whose duration is greater than the 
limit will be propagated. A pulse rejection limit is specified by the reserved word reject in an inertially 
delayed signal assignment statement. (10.5.2.1)

pure function: A function that returns the same value each time it is called with the same values as actual 
parameters. An impure function may return a different value each time it is called, even when different calls 
have the same actual parameter values. (4.2.1)

quiet: In a given simulation cycle, a signal that is not active. (14.7.3.1)

range: A specified subset of values of a scalar type. (5.2.1) See also: ascending range; belong (to a 
range); descending range; left bound; lower bound; right bound; upper bound.

range constraint: A construct that specifies the range of values in a type. A range constraint is compatible
with a subtype if each bound of the range belongs to the subtype or if the range constraint defines a null 
range. The direction of a range constraint is the same as the direction of its range. (5.2.1, 5.2.3.1, 5.2.4.1, 
5.2.5.1)

read: The value of an object is said to be read when its value is referenced or when certain of its attributes 
are referenced. (6.5.2)

real literal: An abstract literal of the type universal_real that contains a base point. (15.5.1)

record type: A composite type whose values consist of named elements. (5.3.3, 9.3.3.2)

reference: Access to a named entity. Every appearance of a designator (a name, character literal, or operator 
symbol) is a reference to the named entity denoted by the designator, unless the designator appears in a 
library clause or use clause. (12.4, 13.2)

reference class: The class of an object from which a navigable association may be navigated using the 
vhpi_handle or vhpi_iterator function. (19.2.1)

reference object: An object from which a navigable association may be navigated using the 
vhpi_handle or vhpi_iterator function. (19.2.1)

register: A kind of guarded signal that retains its last driven value when all of its drivers are turned off. 
(6.4.2.3)

registration: The means whereby a VHPI program identifies a foreign model, foreign application, or 
callback to the tool so that the tool can invoke the foreign model, application, or callback. (20.2.1, 21.2.2)

registration function: A function in a library of foreign models that performs registration of the foreign 
models in the library. (21.2.2)
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registration phase: That phase of tool execution in which the tool has begun executing, and foreign models 
and applications are identified to the tool. (20.2)

regular structure: Instances of one or more components arranged and interconnected (via signals) in a 
repetitive way. Each instance may have characteristics that depend upon its position within the group of 
instances. Regular structures may be represented through the use of the generate statement. (11.8)

relative search string: A search string provided to the vhpi_handle_by_name function that represents 
a name to be concatenated to the full name of a reference object. (23.2)

release a forced object: An update of a driver, signal, or variable that causes the object no longer to be 
forced. (22.5)

release a handle: A VHPI program that releases a handle referring to an object indicates to the tool that the 
VHPI program no longer needs the reference to the object. The tool may reclaim resources used to 
implement the reference. (17.4.3)

repetitive callback: A callback for which the callback function may be triggered multiple times. (21.1)

reset phase: That phase of tool execution in which a VHDL model is restarted from the state it was in at the 
end of initialization. (20.9)

resolution: The process of determining the resolved value of a resolved signal based on the values of 
multiple sources for that signal. (4.6, 6.4.2.3)

resolution function: A user-defined function that computes the resolved value of a resolved signal. (4.6, 
6.4.2.3)

resolution limit: The primary unit of type TIME (by default, 1 fs). Any TIME value whose absolute value is 
smaller than this limit is truncated to zero (0) time units. (5.2.4.2)

resolved signal: A signal that has an associated resolution function. (6.4.2.3)

resolved value: The output of the resolution function associated with the resolved signal, which is 
determined as a function of the collection of inputs from the multiple sources of the signal. (4.6, 6.4.2.3)

resource library: A library containing library units that are referenced within the design unit being 
analyzed. (13.2)

restart phase: That phase of tool execution in which a previously saved VHDL model is restarted from the 
point of its save. (20.8)

result subtype: The subtype of the returned value of a function. (4.2.1)

resume: The action of a wait statement upon an enclosing process when the conditions on which the wait 
statement is waiting are satisfied. If the enclosing process is a nonpostponed process, the process will 
subsequently execute during the current simulation cycle. Otherwise, the process is a postponed process, 
which will execute during the final simulation cycle at the current simulated time. (14.7.5)

right bound: For a range L to R or L downto R, the value R. (5.2.1)

right of: When a value V1 and a value V2 belong to a range and either the range is an ascending range and 
V2 is the predecessor of V1, or the range is a descending range and V2 is the successor of V1. (5.2.1)
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role name: An annotation of a navigable association that identifies that association. (19.2.1)

satisfy: A property of a value with respect to some constraint. The value is said to satisfy a constraint if the 
value is in the subset of values determined by the constraint. (5.1, 5.3.2.2)

save phase: That phase of tool execution in which the current state of a VHDL model is saved for possible 
restart. (20.7)

scalar type: A type whose values have no elements. Scalar types consist of enumeration types, integer 
types, physical types, and floating-point types. Enumeration types and integer types are called discrete types. 
Integer types, floating-point types, and physical types are called numeric types. All scalar types are ordered; 
that is, all relational operators are predefined for their values. (5.1, 5.2)

schedule a transaction: An update of a driver or a collection of drivers using the 
vhpi_schedule_transaction function to add transactions to the projected output waveforms. (22.6)

scheduled deposit: An update for a driver or signal performed using the vhpi_put_value function with 
an update mode of vhpiDepositPropagage. The deposit occurs on the driver or signal on the next 
signal update phase of a simulation cycle. (14.7.2, 14.7.3, 22.5.3, 22.5.4)

scheduled force: An update for a driver or signal performed using the vhpi_put_value function with an 
update mode of vhpiForcePropagage. The driver or signal becomes forced on the next signal update 
phase of a simulation cycle. (14.7.2, 14.7.3, 22.5.3, 22.5.4)

scope: A portion of the text in which a declaration may be visible. This portion is defined by visibility and 
overloading rules. (12.2)

secret key: A key used with a symmetric cipher for the encryption and decryption of information. (24.1.1)

selected name: Syntactically, a name having a prefix and suffix separated by a dot. Certain selected names 
are used to denote record elements or objects denoted by an access value. The remaining selected names are 
referred to as expanded names. (8.3, 10.2) See also: expanded name.

sensitivity set: The set of signals to which a wait statement is sensitive. The sensitivity set is given explicitly 
in an on clause or is implied by an until clause. (10.2)

sensitivity-set bitmap: A value structure indicating on which signals in the sensitivity set of a callback an 
event occurred. (21.3.3.3)

sequential statements: Statements that execute in sequence in the order in which they appear. Sequential 
statements are used for algorithmic descriptions. (Clause 10)

session key: A key for a symmetric cipher, chosen by an encryption tool for encryption of information in a 
digital envelope. The session key is encrypted and provided with the encrypted information. (24.1.1)

shared variable: A variable accessible by more than one process. Such variables shall be of a protected 
type. (6.4.2.4)

short-circuit operation: An operation for which the right operand is evaluated only if the left operand has a 
certain value. The short-circuit operations are the predefined logical operations and, or, nand, and nor for 
operands of types BIT and BOOLEAN. (9.2.1)
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signal: An object with a past history of values. A signal may have multiple drivers, each with a current value 
and projected future values. The term signal refers to objects declared by signal declarations or port 
declarations. (6.4.2.3)

signal transform: A sequential statement within a statement transform that determines which one of the 
alternative waveforms, if any, is to be assigned to an output signal. A signal transform is the same simple, 
conditional, or selected signal assignment statement as is contained in the concurrent signal assignment 
statement for which the statement transform is defined. (11.6)

simple name: The identifier associated with a named entity, either in its own declaration or in an alias 
declaration. (8.2)

simple package: A package declared by a package declaration containing no generic clause and no generic 
map aspect. (4.7)

simple subprogram: A subprogram declared by a subprogram declaration containing no generic list and no 
generic map aspect. (4.2.1)

simulated net: A set of of objects, represented by objects of class signal, that have the same effective and 
driving values, as appropriate, at all simulations times. (19.12.2)

simulation cycle: One iteration in the repetitive execution of the processes defined by process statements in 
a model. The first simulation cycle occurs after initialization. A simulation cycle can be a delta cycle or a 
time-advance cycle. ( 14.7.5)

simulation phase: That phase of tool execution in which execution of an elaborated and initialized design 
hierarchy occurs. (14.7.5.3, 20.6)

simulation phase callback: A callback whose trigger event relates to steps of the simulation cycle. (21.3.6)

single-line comment: A comment that starts with two adjacent hyphens and extends up to the end of the 
line. (15.9)

single-object declaration: An object declaration whose identifier list contains a single identifier; it is called 
a multiple-object declaration if the identifier list contains two or more identifiers. (6.4.2.1)

slice: A one-dimensional array of a sequence of consecutive elements of another one-dimensional array. 
(8.5)

source: A contributor to the value of a signal. A source can be a driver or port of a block with which a signal 
is associated or a composite collection of sources. (6.4.2.3)

specification: A class of construct that associates additional information with a named entity. There are 
three kinds of specifications: attribute specifications, configuration specifications, and disconnection 
specifications. (Clause 7)

standard direct binding: A form of foreign attribute value that specifies an object library path, elaboration 
function name, and execution function name for a foreign model. (20.2.4.3)

standard indirect binding: A form of foreign attribute value that specifies an object library name and a 
model name. The tool uses the foreign attribute value in conjunction with registration information to locate 
the elaboration and executions functions for the foreign model. (20.2.4.2)
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statement callback: A callback whose trigger event relates to execution of one or more statements of 
suspension or resumption of a process. (21.3.4)

statement transform: The first sequential statement in the process equivalent to the concurrent signal 
assignment statement. The statement transform defines the actions of the concurrent signal assignment 
statement when it executes. The statement transform is followed by a wait statement, which is the final 
statement in the equivalent process. (11.6)

static: See: globally static expression; globally static primary; locally static expression; locally static 
name; locally static primary; locally static subtype.

static name: A name in which every expression that appears as part of the name (for example, as an index 
expression) is a static expression (if every discrete range that appears as part of the name denotes a static 
range or subtype and if no prefix within the name is either an object or value of an access type or a function 
call). (8.1)

static object: An object in an information model that, once created, remains in existence until termination of 
the tool. (17.2.1)

static range: A range whose bounds are static expressions. (9.4)

static signal name: A static name that denotes a signal. (8.1)

static variable name: A static name that denotes a variable. (8.1)

string literal: A sequence of graphic characters, or possibly none, enclosed between two quotation marks 
(''). The type of a string literal is determined from the context. (9.3.2, 15.7)

string representation: A string that represents the value of a given type. A string representation of a value 
is returned by the TO_STRING operation. (5.7)

subaggregate: An aggregate appearing as the expression in an element association within another, 
multidimensional array aggregate. The subaggregate is an (n–1)-dimensional array aggregate, where n is the 
dimensionality of the outer aggregate. Aggregates of multidimensional arrays are expressed in row-major 
(right-most index varies fastest) order. (9.3.3.3)

subclass: The class in an inheritance relationship that inherits properties, operations, and associations. 
(17.2.1)

subelement: An element of another element. Where other subelements are excluded, the term element is 
used. (5.1)

subprogram specification: Specifies the designator of the subprogram, any formal parameters of the 
subprogram, and the result type for a function subprogram. (4.2.1)

subtype: A type together with a constraint. A value belongs to a subtype of a given type if it belongs to the 
type and satisfies the constraint; the given type is called the base type of the subtype. A type is a subtype of 
itself. Such a subtype is said to be unconstrained because it corresponds to a condition that imposes no 
restriction. A subtype S1 is compatible with a subtype S2 if the range constraint associated with S1 is 
compatible with S2. (5.1)

superclass: The class in an inheritance relationship from which properties, operations, and associations are 
inherited. (17.2.1)
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suspend: A process that stops executing and waits for an event or for a time period to elapse. (14.7.5)

symmetric cipher: A cipher requiring a single key, called the secret key, for both encryption and decryption 
of information. (24.1.1, 24.1.3.2)

synthesis tool: Any tool that interprets VHDL source code as a description of an electronic circuit in 
accordance with the terms of this standard and derives an alternate description of that circuit. (16.8.1.2)

tabular registry: A text file containing the registration information for foreign models and applications. 
(20.2.2)

target class: The class of an object to which navigation via a navigable association is permitted using the 
vhpi_handle or vhpi_iterator function. (19.2.1)

target library: A library containing the design unit in which a given component is declared. The target 
library is used to determine the visible entity declaration under certain circumstances for a default binding 
indication (7.3.3)

target object: An object to which navigation via a navigable association is permitted using the 
vhpi_handle or vhpi_iterator function. (19.2.1)

termination phase: That phase of tool execution in which the tool has completed execution and is 
terminating. (20.10)

time callback: A callback whose trigger event relates to progress of simulation time. (21.3.5)

time structure: A C struct of type vhpiTimeT that represents a non-negative time. (22.2.7)

timeout interval: The maximum time a process will be suspended, as specified by the timeout period in the 
until clause of a wait statement. (10.2)

to the left of: See: left of.

to the right of: See: right of.

tool: A program that maintains a representation of a VHDL model and provides the VHPI functions. 
(17.2.1)

transaction: A pair consisting of a value and a time. The value represents a (current or) future value of the 
driver; the time represents the relative delay before the value becomes the current value. (14.7.2)

transient: A transient string or structure is allocated by the tool in storage that may subsequently be 
overwritten. The value of the string or structure persists at least until the earlier of the next call to the given 
VHPI function by the same thread of control or the return to the tool by the thread of control that called the 
given VHPI function. If a VHPI program needs to refer to the value of a transient string or structure beyond 
the interval for which it persists, the VHPI program shall copy the value. (23.1)

transport delay: An optional delay model for signal assignment. Transport delay is characteristic of 
hardware devices (such as transmission lines) that exhibit nearly infinite frequency response: any pulse is 
transmitted, no matter how short its duration. (10.5.2.1) See also: inertial delay.

trigger event: An occurrence of a callback reason that causes a callback, if enabled, to be invoked. (21.1)
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trigger object: An object in an information model that is associated with a trigger event for a callback. 
(21.1)

type: A set of values and a set of operations. (Clause 5)

type conversion: An expression that converts the value of a subexpression from one type to the designated 
type of the type conversion. Associations in the form of a type conversion are also allowed. These 
associations have functions and restrictions similar to conversion functions but can be used in places where 
conversion functions cannot. In both cases (expressions and associations), the converted type shall be 
closely related to the designated type. (6.5.7.1, 9.3.6) See also: closely related types; conversion function.

unaffected: A waveform in a signal assignment statement that does not affect the driver of the target. 
(10.5.2.1)

unassociated formal: A formal that is not associated with an actual. (6.5.7.2, 6.5.7.3)

unconstrained subtype: A subtype that corresponds to a condition that imposes no restriction. (5.1, 6.3)

uninstantiated package: A package declared by a package declaration containing a generic clause and no 
generic map aspect. An uninstantiated package may be instantiated with a package instantiation declaration. 
(4.7, 4.9)

uninstantiated subprogram: A subprogram declared by a subprogram declaration containing a generic list 
and no generic map aspect. An uninstantiated subprogram may be instantiated with a subprogram 
instantiation declaration. (4.2.1, 4.4)

unit name: A name defined by a unit declaration (either the primary unit declaration or a secondary unit 
declaration) in a physical type declaration. (5.2.4.1)

universal_integer: An anonymous predefined integer type that is used for all integer literals. The position 
number of an integer value is the corresponding value of the type universal_integer. (5.2.3.1, 9.3.2, 9.3.6)

universal_real: An anonymous predefined type that is used for literals of floating-point types. Other 
floating-point types have no literals. However, for each floating-point type there exists an implicit 
conversion that converts a value of type universal_real into the corresponding value (if any) of the floating-
point type. (5.2.3.1, 9.3.2, 9.3.6)

update: An action on the value of a signal, variable, or file. The value of a signal is said to be updated when 
the signal appears as the target (or a element of the target) of a signal assignment statement (indirectly); 
when it is associated with an interface object of mode out, buffer, inout, or linkage; or when one of its 
subelements (individually or as part of a slice) is updated. The value of a signal is also said to be updated
when it is a subelement or slice of a resolved signal, and the resolved signal is updated. The value of a 
variable is said to be updated when the variable appears as the target (or a element of the target) of a variable 
assignment statement (indirectly), when it is associated with an interface object of mode out or linkage, or 
when one of its subelements (individually or as part of a slice) is updated. The value of a file is said to be 
updated when a WRITE or FLUSH operation is performed on the file object. (6.5.2)

upper bound: The right bound of an ascending range or the left bound of a descending range. (5.2.1)

valid handle: A handle that refers to an object that exists. (17.4.5)

value structure: A C struct of type vhpiValueT that represents a scalar value, a one-dimensional array of 
scalar values, or a value of any type represented in an implementation-defined internal representation. 
(22.2.8)
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variable: An object with a single current value. (6.4.2.4)

VHPI program: A program that calls the VHPI functions. (17.2.1)

visible: When the declaration of an identifier defines a possible meaning of an occurrence of the identifier 
used in the declaration. A visible declaration is visible by selection (for example, by using an expanded 
name) or directly visible (for example, by using a simple name). (12.3)

visible entity declaration: The entity declaration selected for default binding in the absence of explicit 
binding information for a given component instance. (7.3.3)

waveform: A series of transactions, each of which represents a future value of the driver of a signal. The 
transactions in a waveform are ordered with respect to time, so that one transaction appears before another if 
the first represents a value that will occur sooner than the value represented by the other. (10.5.2.1)

whitespace character: A space, a nonbreaking space, or a horizontal tabulation character (SP, NBSP, or 
HT). (16.4)

working library: A design library into which the library unit resulting from the analysis of a design unit is 
placed. (13.2)
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(informative) 

IEEE List of participants

At the time this standard was submitted to the IEEE-SA Standards Board for approval, the 1076 Working 
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Index�

A

abs operator 130
fixed-point 531
floating-point 540, 544

absolute design hierarchy search string 409
absolute library search string 409
absolute pathname 113, 114
abstract class (information model) 285
abstract literal 39, 131, 227, 230, 230
access (viewport) 435
access mode (file) 23, 56
access type 35, 53

definition 53, 64
elaboration 207

designated type and subtype 53
equality 121
incomplete type declaration 53
with index constraint 47
native format 376
predefined = and /= operators 74
prefix 107
with record constraint 52, 187
recursive 53
resolution function 66
string representation 61
where prohibited 20, 55, 58, 68, 74, 92

access value 53, 107
allocator. See allocator
designated object 53, 66

selected name 109
index range of designated object 48
null 35, 53, 55, 131, 132

where prohibited 137
VHPI representation 373

active
driver. See driver, active
port. See port, active
signal. See signal, active

ACTIVE attribute 205, 246, 247
globally static primary 141
of interface object 75
locally static primary 140
reading 74

actual 81

aggregate with others choice 134
designator 81

expression as 82
generic. See generic, actual
parameter part 136, 163
part 81
port. See port, actual
type of 82

ADD function 540
floating-point 545

ADD_CARRY function
fixed-point 533

adding operator 117, 118, 125
addition operator (+) 28, 125

fixed-point 530
floating-point 540, 544

advanced debug and runtime simulation capability 
set 287

advanced foreign model capability set 287
AES encryption method 438
aggregate 35, 117, 132, 132, 136, 150

array 133
assignment target 150, 160
direction 135
distinguished from parenthesized expression 

133
globally static 141
index range 135
locally static 140
record 133
where prohibited 137

Aggregate class diagram 322
alias

attribute of 96
bounds and direction 90
declaration 8, 11, 24, 30, 32, 59, 63, 89, 89, 171

elaboration 208
implicit 90, 189

designator 89
external name 200
globally static 141
index range 90
locally static name 108
locally static primary 139
nonobject 89, 90

Page numbers in boldface indicate references to clauses and subclauses. Page numbers in italics indicate 
occurrence of the term in a BNF syntax rule. In most cases, the term is further described in text following 
the syntax rule.
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object 89, 89
prefix of attribute name 113
restrictions 89
simple name for 108
SUBTYPE attribute 242
type and subtype of 89

aliasDecl class
reading an object 375
updating an object 377

AliasDecl class diagram 313
all

in attribute specification 95
in component specification 98
in disconnection specification 104
in sensitivity list 170, 171
in use clause 191

allocator 53, 54, 117, 138, 138
basic operation 35
evaluation 214
generic type 76
globally static 141
index range 48
where prohibited 137

ambiguity (overloading) 27
analysis 195

information model 285
order of 198

analysis phase 344, 351
callback 367
encryption and decryption during 430

ancestor 24
and operator 28, 119

fixed-point 532
floating-point 545

anonymous type. See type, anonymous
anyCollection class

creation 390
applicable disconnection specification 105, 176
application context (VHPI) 344
application name 347
architecture 176

attribute specification for 96
body 10, 10, 63, 195
configuration 14
declarative part 10, 11, 11
declarative region 185
existence 210
foreign. See foreign, architecture
most recently analyzed 102
scope of 186
statement part 10, 11, 12
visibility 187

arithmetic operator
floating-point 540

metalogical value 279
size of result 524
in synthesis package 518

arithmetic package 280
allowable modifications 282
compatibility with previous editions of IEEE 

Std 1076 282
array

aggregate 133
bounds 47
constraint 45, 47, 53, 65

in allocator 138
compatibility with subtype 47

dimensionality 45
discrete 50, 122
element

DefName and DefCaseName properties 
304

FullName and FullCaseName
properties 308

indexed name 111
Name and CaseName properties 300

element constraint 45
element resolution 65, 65
index range. See index, range
multidimensional 45
null 47, 49, 120

bit string literal 132
concatenation result 125
equality 121
minimum length 132
string literal 132
synthesis 281

one-dimensional 45
aggregate 133
case generate statement expression 183
case statement expression 164
concatenation operator 125
file of 55
literal 132
logical operator 119
matching element 121
matching relational operator 123
native format 376
predefined operation 50
shift operator 123
slice name 112
string representation 61
VHPI representation 373

type 44
closely related 137
partially constrained 47
predefined 49
predefined operation 50
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unconstrained 47
See also type, composite

type definition 44
elaboration 207

ASCENDING attribute 240, 244
ascending range 36, 38, 240
ASCII 225
assertion 147, 173

implicit condition conversion 130
statement 145, 147, 147

in an encrypted description 445
equivalent to concurrent assertion 173

violation 148
assignment 35, 74

of aggregate with others choice 134
metalogical value 279
operation of generic type 76
See also signal assignment statement; variable 

assignment statement
association (information model) 285, 295

in encrypted description 445
traversal 291, 292

association (interface)
composite 83
element 48, 81
individually 48, 83

with open as actual 83
list 81, 81

generic 84
parameter 136
port 87

named 81, 84, 87
parameter of predefined attribute 239
parameter of predefined operator 118

parameter 136, 163
positional 81, 84, 87
reading an object 74
updating an object 74
in whole 48, 83

asymmetric cipher 429, 441, 442, 443, 444, 553
attribute

of alias 96
declaration 9, 11, 24, 30, 32, 59, 63, 92, 92, 171

elaboration 208
type 96

designator 95, 112
globally static 141
implementation defined kind 475
index range 48
locally static 140
name 36, 107, 107, 112, 112

as actual generic subprogram 84, 113
DefName and DefCaseName properties 

306

FullName and FullCaseName
properties 309

function call 112
Name and CaseName properties 302
as resolution function 29
static 108
where prohibited 94

predefined 35, 92, 112, 187, 205, 239
function parameters 239

signal-valued 22
specification 9, 11, 13, 24, 30, 32, 58, 59, 95, 

95, 171
aggregate with others choice 134
elaboration 209
predefined attribute 97

user-defined 92, 95
globally static 141
locality of information 97
locally static 140
of object member 113
visibility 188

Attribute class diagram 322
attrName class

DefName and DefCaseName properties 306
FullName and FullCaseName properties 

309
Name and CaseName properties 302

AttrSpec class diagram 326
AttrSpecIterations class diagram 326
author 431

B

Backus-Naur form 2
base (number) 230
BASE attribute 239
base class 296
Base class diagram 342
base specifier (bit string literal) 232
base type 35, 64, 65, 239

function result 26
generic type 76
parameter 26
qualified expression 136
in signal assignment 150
type conversion 137
in variable assignment 160
See also type

base64 encoding method 437
based integer 230
based literal 230, 230, 230
basic character 225

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



IEC 61691-1-1:2011(E) - 592 - �
IEEE Std 1076-2008

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

basic debug and runtime simulation capability set 
287

basic foreign model capability set 287
basic graphic character 225
basic identifier 229, 229, 229
basic operation 35
basic signal. See signal, basic
BasicSignal class diagram 336
binary number

VHPI representation 372
binary operator 27
BINARY_READ alias

declaration 270
fixed-point 536
floating-point 548

BINARY_WRITE alias
declaration 271
fixed-point 536
floating-point 548

binding indication 17, 98, 98, 99, 99, 177
default 17, 100, 102, 177, 199
deferred binding 102, 103
generic map aspect in 84
incremental 99
open entity aspect 102
port map aspect in 87
primary 99

bit string literal 35, 131, 227, 232, 232
in aggregate 134
bounds and direction 132
index range 132

BIT type 38
declaration 255
in matching case statement 165
predefined operator 119, 122
synthesis 277, 277

bit value 232
BIT_VECTOR type 49

declaration 263
in NUMERIC_BIT_UNSIGNED package 281

BITSTOREAL function
floating-point 547

block
configuration 13, 14, 14, 17, 210

declarative region 185
implicit 16
scope extension from block 186
visibility extension from block 189

declarative item 11, 170
declarative part 169, 183
design hierarchy 7
external 7, 14

elaboration 199
header 169

elaboration 202, 210
generic map aspect 84
port map aspect 88

internal 7, 14
label

in external name 114
scope extension into configuration 186
specification 14
statement 169, 169, 169

configuration 15
declarative region 185
elaboration 200, 210
implicit condition conversion 130
represented by generate statement 211
visibility of formal 188

statement part 169, 170
visibility extension into configuration 189

block (exclusive access) 213
file operation 57
vhpi_protected_call function 413

blockStmt class
Name and CaseName properties 299

Blowfish encryption method 438
Boolean property (information model)

getting value 293, 396
BOOLEAN type 38

declaration 254
of GUARD signal 170
predefined operator 119
synthesis 277, 277

BOOLEAN_VECTOR type 49
declaration 261

borrow 519
bound (component) 99, 100, 101, 212
Boundary Scan Description Language 75
bounds

of alias 90
array 47
bit string literal 132
floating point type 42
integer type 39
physical type 40
of slice 112
string literal 132
subtype of external name 115

box (<>)
in entity class entry 93
in index subtype definition 45
in interface package generic map aspect 77, 85
in interface subprogram default 79

branch class
execution callback 363

BREAD alias
declaration 270
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fixed-point 536
floating-point 541, 548

BREAK_NUMBER function
floating-point 541, 547

buffer mode 75, 217
compared to out mode 75
See also mode

bus 68, 73
BWRITE alias

declaration 271
fixed-point 536
floating-point 541, 548

C

C fprintf function 44
C identifier 347

modification during code generation 348
C printf function 385, 412
C vprintf function 427
callback 286, 357

action 367
data structure 357, 358, 396, 418

memory allocation 359
modification 358

disabled 357, 418
disabling 358, 392
enabled 357, 418
enabling 358, 393
execution 358
flag 418
foreign model 361
function 357, 357
information 358, 396
mature 357, 393
object 359
reason 357, 359
registration 346, 357, 418
removal 358, 422
statement 363

callback class 357
Callbacks class diagram 340
capability set 286
carry 519
case generate statement 182, 183

case generate alternative 182
elaboration 211
visibility of alternative label 188

case statement 145, 164, 164
case statement alternative 164
choice

aggregate with others choice 134
equivalent to selected signal assignment 158

equivalent to selected variable assignment 162
CaseIfWaitReturnStmt class diagram 330
CaseName property 298
caseStmt class

execution callback 363
CAST encryption method 438
certification authority 556
change

signal 218
variable 161

character
literal 37, 89, 94, 96, 109, 227, 231, 231, 248, 

249
attribute specification for 97
as name 107
SignatureName property 303
visibility 189

set 225
type 37, 164, 183
VHPI representation 371, 373
whitespace 272

CHARACTER type 38, 232
declaration 256
native format 376
string representation 61

charLiteral class
SignatureName property 303

choice 132, 164
in aggregate 133
in case generate statement

array length 183
type of 183

in case statement
aggregate with others choice 134
array length 165
metalogical value 279
type of 165

locally static 134
null range 134
others

in aggregate 133, 133, 134
in case generate statement 183
in case statement 165
representing metalogical values 166
where prohibited 150, 160

choices 132, 158, 164, 182
chosen representation (floating-point type) 42
cipher 429, 432, 433, 438

asymmetric 429, 441, 443, 553
default 552
symmetric 429, 441, 551, 553

cipher-block chaining 439
class (information model) 285, 288

diagram 295
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implementation defined 475
inheritance 296

CLASSFP function
floating-point 548

clock declaration (PSL) 94
closely related type 82, 137
collection

creation using VHPI 390
of drivers

scheduling transactions using VHPI 381, 
423

Collection class diagram 343
comment

protect directive 437
in tabular registry file 346
in VHDL description 225, 227, 234

compatibility
array constraint 47
constraint 66, 207
range constraint 37
record constraint 52
subtype 37

compInstStmt class
Name and CaseName properties 299

complete context 47, 114, 137, 164, 183, 192
completion

loop iteration 166
simulation 223

component
configuration 14, 17, 17

binding indication 99
declarative region 185
implicit 16, 199
scope extension from block 186
visibility extension from block 189

declaration 11, 30, 63, 93, 93, 176
attribute specification for 96
declarative region 185
elaboration 208

instance 177
configuration 15
configuration of bound architecture 14
default binding 102
elaboration 212
equivalent block statements 177
fully bound 17
instantiated unit 176
label in external name 114
unbound 17, 115, 199

instantiation statement 169, 176, 176
elaboration 212
generic map aspect 84
port map aspect 87

scope of local generic declaration 186

scope of local port declaration 186
specification 17, 98

instantiation list 98
visibility of local generic 188
visibility of local port 188

composite
parameter 21, 22
signal. See signal, composite
type. See type, composite

Composite class diagram 313
concatenation operator (&) 125

metalogical value 279
concProcCallStmt class

execution callback 363
ConcSigAssignStmt class diagram 331
concStmt class

DefName and DefCaseName properties 304
ConcStmt class diagram 332
concurrent assertion statement 9, 169, 173, 173

ambiguity with PSL assertion directive 174
elaboration 213
sensitivity set 146

concurrent conditional signal assignment 174
concurrent procedure call statement 9, 169, 172, 172

representing a process 173
sensitivity set 146

concurrent region 114
concurrent selected signal assignment 174
concurrent signal assignment statement 169, 174, 

174
elaboration 213
sensitivity set 146

concurrent simple signal assignment 174
concurrent statement 12, 169, 169, 170, 183

elaboration 210, 213
FullName and FullCaseName properties 

307
implicit label 297
load of a signal 340

condition 145, 147, 155, 164, 166, 167, 182
guard 66, 68, 169, 170, 219, 220

implicit condition conversion 130
condition clause 145

implicit condition conversion 130
condition operator (??) 117, 118, 130

implicit application 130
parenthesized 118

conditional expressions 155, 161
conditional force assignment 155, 156
conditional signal assignment 149, 155, 155

implicit condition conversion 130
conditional variable assignment 160, 161, 161

implicit condition conversion 130
conditional waveform assignment 155, 156
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conditional waveforms 155, 174
ConfigDecl class diagram 311
configuration 7, 199

declaration 13, 13, 63, 177, 195
attribute specification for 96
declarative region 185
scope extension from block 186
visibility extension from block 189

declarative item 13
declarative part 13
elaboration 199
instance

elaboration 213
equivalent block statements 179

item 14
specification 11, 98, 98, 177

compound 98
elaboration 99, 209
implicit 17, 199, 210
simple 98

conformance 34
lexical 24, 32, 34, 59, 193
profile 34, 76, 79, 84

connected 80
connectivity capability set 286
Connectivity class diagram 337
constant 66

attribute specification for 96
declaration 8, 11, 23, 30, 32, 59, 67, 67, 67, 171

elaboration 208
deferred 32, 34, 67
explicitly declared 67
external name 115
generate parameter 183
generic. See generic, constant
globally static 141
index range 48
interface 73
locally static 139
loop parameter 167
parameter. See parameter, constant
synthesis 278
value 67

Constants class diagram 314
constrained array definition 44
constraint 35, 48, 65, 66

in access type definition 53
compatibility 66, 207
globally static 142
locally static 140
where prohibited 54
See also array, constraint; index, constraint; re-

cord, constraint
Constraint class diagram 320

context
application (VHPI) 344
clause 195, 196, 197, 197, 197

preceding context declaration 195
complete 47, 114, 137, 164, 183, 192
declaration 195, 197, 197

synthesis 283
use clause 191

item 197
reference 197

Contributor class diagram 337
contributor to a signal 338
control action 389

implementation defined 390, 475
conversion code 385, 412, 427
conversion function 82

in actual part 48
in association 215

contributor 339
load of a signal 340

in fixed-point package 523, 528
in floating-point package 540
in formal part 48
on a net 218
in parameter association 22, 23
uninstantated subprogram 20

convertible universal operand 138
COPYSIGN function

floating-point 547
cryptographic protocol 551
current time 215
current time (Tc) 355, 403

initialization 221
reset phase 370
restart phase 370
save phase 369
simulation cycle 221, 222

current value
driver 215, 217, 247

vhpiCbValueChange callback 360
signal 247

initialization 221
kernel variable 214, 218

D

data
block 433

encoding 434
method 433

deadlock 214
DEALLOCATE operation 55
deallocation 54, 139
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debug and runtime simulation capability set 287
decimal literal 230, 230, 230
decimal number

VHPI representation 372
decl class

DefName and DefCaseName properties 303, 
304

FullName and FullCaseName properties 
307

InstanceName property 310
Name and CaseName properties 298
PathName property 310

declaration 63
DefName and DefCaseName properties 304
elaboration 206
hidden 189
hidden by PSL keyword 189
Name and CaseName properties 298
PSL declaration 9, 11, 30, 63, 189

character set 226
elaboration 206
lexical element 227
in package 31

scope 186
visibility using expanded name 188

declarative part 104
attribute specification placement 96
elaboration 205

declarative region 185
concurrent 114
disjoint 185
identified by external pathname 114
library 185
root 114, 185

DeclInheritance class diagram 314
decorate with attribute 95
decryption

author specification 442
data block 442, 443, 443
digest block 442, 444, 444
encrypt agent specification 442, 443
envelope 429, 442, 442

in encryption envelope 440
key block 442, 443, 443
license 436
license specification 442, 443
tool 442, 551, 556

decryption license 436
protection requirement 444

default (generic map aspect of generic package) 77
default binding 17, 100, 102, 177, 199
default disconnection specification 105
default entity aspect 102
default expression. See expression, default

default force mode 151
default generic map aspect 102, 103
default initial value. See initial value, default
default port map aspect 102, 103
default value. See signal, default value; port, default 

value
DefCaseName property 303
deferred binding 102, 103
deferred constant 32, 34, 67
DefName property 303

search to locate object 409
in viewport object description 435

delay
disconnection 103
in waveform element 41, 152

delay mechanism 149, 150, 155, 158, 174, 424
DELAY_LENGTH subtype

declaration 261
DELAYED attribute 24, 66, 245, 247, 248

contributor to a signal 339
initialization 221
of interface object 75
of port associated with expression 205
reading 74
of signal parameter 22, 75
static name 108
updating 220

delimiter 227
delta cycle 221

number at current time 403
denormal number 538
denotation of a name 63
dependence

design unit 101, 198, 200
signal 220, 221, 222

deposit
driver 215, 222, 380
signal 215, 216, 217, 379
variable 378

derefObj class
DefName and DefCaseName properties 305
Name and CaseName properties 301
updating an object 377

DES encryption method 438
design

file 195, 195, 225
analysis 351

library 195
unit 195, 195

Name and CaseName properties 302
design entity. See entity (design)
design hierarchy 7, 113, 249, 251

elaboration 199, 352
information model 285, 344
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searching 409
designator 63, 189

attribute 92
subprogram 19, 23, 26, 76

in path name 249
designUnit class

Name and CaseName properties 302
UnitName property 303

DesignUnit class diagram 312
digest 429, 442, 444, 555

block 434
encoding 434

method 434, 439
digit 225, 225, 229, 230
digital certificate 556
digital envelope 429, 432, 441, 443, 553
digital signature 429, 434, 442, 444, 554
direct binding. See standard direct binding
direction 36

of aggregate 135
of alias 90
bit string literal 132
discrete range 46
of slice 112
string literal 132
subtype indication 66
subtype of external name 115
type conversion 137

directive
PSL directive 10, 169, 189

assertion ambiguity 174
character set 226
initialization 221
interpretation 210, 214
lexical element 227
simulation cycle 222

tool. See tool, directive
directly visible. See visibility, direct
disabled callback 357, 418
disconnection

specification 9, 11, 30, 103, 103
applicable 105, 176
default 105
elaboration 210
implicit 105
in package 31

statement 176
DisconnectionSpec class diagram 327
discrete range 14, 45, 47, 112, 132, 166

in aggregate 133
case statement choice 165
direction 46
globally static

case generate statement choice 183

locally static
case statement choice 165

static 183
type of 15, 47

discrete type 36
case generate statement expression 183
case statement expression 164

DIVIDE function
fixed-point 525, 532
floating-point 540, 545

DIVIDEBYP2 function
floating-point 540, 545

division
operator (/) 128

fixed-point 525, 531
floating-point 540, 544
universal expression 142

by power of 2 521
don’t care ('–') 278, 280, 514, 516

in matching case statement 165, 166
matching ordering operator 122
synthesis 516

driver 214
active 215, 219, 221, 222, 366, 418

vhpiCbTransaction callback 361
applicable disconnection specification 104
contributor to a signal 339
creation during elaboration 200, 213
creation using VHPI 390
current value 215, 217, 247

vhpiCbValueChange callback 360
deposit 215, 222, 380
force 215, 222, 380
initial transaction 69, 74, 200, 215
on a net 218
null transaction 29
projected output waveform 152
release 380
scheduling a transaction using VHPI 381, 423
signal parameter 22
as a source 69

driver class
creation 390
reading an object 374
updating an object 377, 380

Driver class diagram 338
driverCollection class

creation 390
DRIVING attribute 140, 141, 205, 247

of signal parameter 75
within a process 247

driving value
port

associated with expression 205
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unassociated 205
with no source 75

signal 216, 221
kernel variable 214, 218

simulated net 340
DRIVING_VALUE attribute 140, 141, 205, 247

of signal parameter 75
within a process 247

driving-value deposit. See signal, deposit
driving-value force. See signal, force
driving-value release. See signal, release
dynamic elaboration 213, 352

subprogram call callback 364
dynamic elaboration capability set 287
dynamic object (information model) 285, 289

invalidity during reset 355
dynamically elaborated declaration

FullName and FullCaseName properties 
308

E

edge detection 280
execution

function (foreign model)
in object library 347

effective value
port

associated with expression 205
unassociated 205

signal 216, 217, 221
simulated net 340

effective-value deposit. See signal, deposit
effective-value force. See signal, force
effective-value release. See signal, release
elaboration 199

dynamic 213
function (foreign model) 210, 345, 352, 400

callback registration 357
name 347
in object library 347
registration 420
in standard direct binding 351
in standard indirect binding 349

information model 285
phase 344, 351

callback 367
resolution limit selection 41
specifier 347, 350

element 36
association 132

named 133
positional 133

constraint 45, 51, 65
declaration 51
of an object 66
resolution 65, 65
selected name 109
simple name

as choice 165, 183
subtype 245
subtype definition 51

ELEMENT attribute 245
ElGamal encryption method 438
enabled callback 357, 418
encoded text 443, 444
encoding

bytes description 434
line length description 434
method 429, 434, 437, 552
type description 434

encryption
author specification 439, 440
data directive 441
data specification 440, 441, 441
digest directive 441, 442
digest specification 440, 441, 441
envelope 429, 439, 439

nesting 440
key directive 440
key specification 439, 440, 440
license specification 440
method 438
specification 439
tool 432, 439, 551

end of line
in encryption envelope 440
in error message 148
in report message 149
in TEXT file 272
in VHDL description 227

ENDFILE function 56, 274
entity

instance 179
entity (design) 7, 199

aspect 99, 101, 101
default 102

bound to a component instance 99
declaration 7, 7, 63, 176, 195

attribute specification for 96
declarative region 185
visible 102

declarative item 8
declarative part 7, 8, 8
elaboration of instance 213
existence 210
header 7, 8, 8
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implied by binding indication 101
instance 179

DefName and DefCaseName properties 
304

equivalent block statements 179
Name and CaseName properties 299

name in external name 114
name list 95
root of design hierarchy 199
scope in architecture body 186
scope of formal generic declaration 186
scope of formal port declaration 186
statement 9
statement part 7, 9, 9
verification unit binding 103
visibility 187
visibility of formal generic 188
visibility of formal port 188

entity (named)
class 93, 95

entry 93
entry list 93

designator 95, 96
specification 95
tag 96

entry point 347, 436
enumeration literal 37, 63, 131

alias 90
identified by use clause 191
implicit alias 90
SignatureName property 303
VHPI representation 371, 372

enumeration type 37
alias 90
definition 36, 37

elaboration 207
literal 131
native format 376
predefined 38
string representation 61
in use clause 191

enumLiteral class
SignatureName property 303

ENV package 196, 274
EQ function

floating-point 540, 545
eqProcessStmt class

execution callback 363
Name and CaseName properties 299

equality operator
matching (?=) 121

in case statement execution 166
fixed-point 531
floating-point 544

ordinary (=) 121
in case generate statement elaboration 211
in case statement execution 166
defined for generic type 76
fixed-point 531
floating-point 544
implicit association for generic type 203
metalogical value 278
in signal update 218

erroneous 3
error 3
error information structure 386
error message 148
evaluation

allocator 139
array aggregate 135
external name 115
function call 136
indexed name 111
literal 132
name 107
qualified expression 136
reading an object 74
record aggregate 133
simple name 108
slice name 112
universal expression 143
waveform 152

event 146
composite signal 248
in guarded assignment 174
implicit signal 220
signal 218, 222, 245, 246, 247
vhpiCbSensitivity callback 362

EVENT attribute 74, 140, 141, 205, 246, 247, 248
of interface object 75

exclusive access 24, 213
file operation 57
vhpi_protected_call function 413

execution 199, 199, 214, 220
callback 358
case statement 166
concurrent assertion statement 174
concurrent procedure call statement 173
concurrent signal assignment statement 176
concurrent statement 169
exit statement 167
force assignment 153
function (foreign model) 214, 221, 345, 352, 

353, 400
name 347, 350
registration 420
in standard direct binding 351
in standard indirect binding 349
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if statement 164
information model 285
loop statement 166
next statement 167
null statement 168
process statement 172
release assignment 153
report statement 148
return statement 168
runtime license 436
simple assignment statement 152
specifier 347, 350
tool 345
variable assignment statement 160
wait assertion statement 148
wait statement 146
waveform assignment 152

exit statement 145, 167, 167
implicit condition conversion 130

expanded bit value 232
expanded context clause 197
expanded name 34, 109, 110, 188

for declaration within a construct 109
locally static 108
in sensitivity set 146
static 107

explicit ancestor 24, 172
explicit signal 24
explicitly declared

constant 67
file 72
object 67

elaboration 208
signal 68
type 64
variable 69

exponent
in abstract literal 230
floating-point 537

exponentiation operator (**) 130
expr class

reading an object 375
expression 117, 117

actual designator 81
as actual generic 84

in binding indication 99
in assertion 147
associated with port 88

contributor 339
in binding indication 99

attribute parameter 112
in attribute specification 95
in case generate statement 182
condition 145

in constant declaration 67
default

aggregate with others choice 134
contributor to a signal 339
generic constant 77, 78, 203
interface object 74, 83
parameter 136, 163
port 80, 205
signal 68, 68

disconnection delay 103
element of aggregate 132
file logical name 72
file open kind 72
function result 168
globally static 139, 141, 183

case generate statement choice 183
in case statement 164
in indexed name 111
initial value 70, 70
locally static 38, 40, 42, 96, 139

case statement choice 165
operand 131
parenthesized 117
PSL 118
pulse rejection limit 150
in qualified expression 136
in report statement 148
in selected assignment 158, 162, 174
signal force value 149, 155
simple 36, 117, 132
static 139

default for interface object 73
in generate specification 14
generate specification in path name 114
in if generate statement 183
synthesis 278

timeout 145
type 117
in type conversion 136
universal 142
variable assignment value 160
in waveform element 152

Expression class diagram 323
extended digit 230, 232
extended identifier 229, 229, 347
external block 7, 14

elaboration 199
external file 23, 56, 72
external name 89, 107, 113, 113

alias of 200
base type 115
bounds and direction of subtype 115
constant 113
elaboration of object 200

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.



- 601 - IEC 61691-1-1:2011(E)�
IEEE Std 1076-2008

Published by IEC under license from IEEE. © 2008 IEEE. All rights reserved.

evaluation 115
index range 115
matching element 115
no object 115
pathname 113, 114
signal 113
subtype 115
variable 113

F

factor 117
FALLING_EDGE function 43, 280, 281
field 272, 274
file 66

access mode 23, 56
accompanying this standard 447
attribute specification for 96
declaration 8, 11, 24, 30, 32, 59, 67, 72, 72, 171

elaboration 208
explicitly declared 72
external 23, 56, 72
interface 73
logical name 72, 72
open 23, 56, 72
open information 72
operation 55

execution 213
nonportable use 501

parameter. See parameter, file
referenced by pure function 25
type 35, 55

definition 55, 64
resolution function 66
string representation 61
where prohibited 20, 44, 53, 55, 58, 68, 74, 

92
FILE_CLOSE procedure 56
FILE_OPEN procedure 55, 72
FILE_OPEN_KIND type 38

declaration 267
FILE_OPEN_STATUS type 38

declaration 267
FileInheritance class diagram 315
FIND_LEFTMOST function

fixed-point 528, 532
FIND_RIGHTMOST function

fixed-point 528, 532
FINISH procedure 275
finishing simulation 389
FINITE function

floating-point 548
fixed point package 522

FIXED_FLOAT_TYPES package 283, 539
source file 448

FIXED_GENERIC_PKG package 85, 283, 529
source files 448

FIXED_PKG package 283, 529
source file 448

fixed-point package 283
source files 448

FLOAT subtype 539, 540
FLOAT_GENERIC_PKG package 284, 542

source files 448
FLOAT_PKG package 284, 542

source file 448
floating point

package 537
floating point numbers 537
type 539

precision 513
type

bounds 42
VHPI representation 373

floating type definition 36, 42
elaboration 207

floating-point
comparison nonportable 501
package 284
signal

event nonportable 501
type 42

native format 376
predefined 42
predefined operator 127, 130
string representation 61
type conversion 137

VHPI representation 371
floating-point package

source files 448
FLUSH procedure 56, 75
for generate statement 182, 183

elaboration 211
for loop

execution callback 363
for iteration scheme 167
See also loop

force
assignment 150
driver 215, 222, 380
mode 149, 151, 155, 158
signal 150, 151, 215, 216, 217, 379
variable 378

force 149, 155, 158
forcing STD_ULOGIC value 278, 514
foreign

application 345
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callback registration 357
information 399
registration 345, 419
registry 347
uniqueness of name 348

architecture
elaboration 206, 210, 352
execution function 221
initialization 221, 353
nonportable 501
registration 420
registry 347

attribute value 349
data structure 399, 420
function

called during elaboration 206
function call 380
result 353, 380, 417

model 345
callback 361
callback registration 357
capability set 287
elaboration function 210
execution function 214
information 399
registration 345, 419
uniqueness of name 348

subprogram 24
dynamic elaboration 206, 352
execution 213
nonportable 501
pure function 25
registry 347

FOREIGN attribute 24, 96, 205, 210, 213, 345
declaration 268
for foreign model 349
placement 268

ForeignModel class diagram 341
forGenerate class

Name and CaseName properties 299
forLoop class

DefName and DefCaseName properties 304
formal 81

designator 81
generic constant. See generic, constant, formal
generic package. See generic, package
generic subprogram. See generic, subprogram
generic type. See generic, type
generic. See generic, formal
parameter list 19, 20, 76
parameter. See parameter, formal
part 81
port. See port, formal
type of 82

format
conversion 394
effector 225, 225

end of line 227
implementation defined 475
of value structure 372

formatting object value 375
fraction (floating-point) 537
FROM_BINARY_STRING alias

fixed-point 537
floating-point 549

FROM_BSTRING alias
fixed-point 537
floating-point 549

FROM_HEX_STRING alias
fixed-point 537
floating-point 549

FROM_HSTRING function
fixed-point 537
floating-point 549

FROM_OCTAL_STRING alias
fixed-point 537
floating-point 549

FROM_OSTRING function
fixed-point 537
floating-point 549

FROM_STRING function
fixed-point 537
floating-point 549

full instance based path 249
full path instance element 249
full path to instance 249
full type declaration 64
FullCaseName property 307
FullName property 307

search to local object 409
fully constrained subtype 35, 45, 52, 242

elaboration 207
funcCall class

Name and CaseName properties 300
updating an object 377, 380

function
attribute specification for 96
conversion. See conversion function
declaration 19
impure 20, 25

nonportable 501
in protected type 20

pure 20, 25
predefined operator 118
in protected type 20

resolution. See resolution function
result 168

aggregate with others choice 134
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base type 26
subtype 20

return 168
specification 19
uninstantiated 136
VHPI

implementation defined 475
function call 107, 117, 136, 136

in actual part 82
attribute name 112
distinguishing from indexed name 136
foreign function 380
formal generic function 136
in formal part 82
globally static 141
locally static 139
PSL 118
SignatureName property 303
where prohibited 94, 109

G

GE function
floating-point 540, 546

generate
label

in external name 114, 115
in path name 249

parameter 66, 67, 183
discrete range 47
globally static 141

specification 14
statement 169, 182, 182

body 182
configuration 14, 15
declarative region 185
elaboration 211
representing block statements 211

generateStmt class
Name and CaseName properties 299

GenerateStmt class diagram 332
generic

actual 26, 33, 84
of instantiated package 77
matching 77

association list
elaboration 203

clause 8, 30, 78, 78, 93, 169
elaboration 203

constant 8, 84
actual 78
elaboration 203
external name 115

formal 66, 67, 78
globally static 141
incremental binding 99
local 66, 67
locally static 139
matching 85
unassociated element 79

declaration
elaboration 203

default 20, 31
formal 26, 33, 78, 84

unassociated 103
implicit association 203
interface list 78

generic used within 78
list 19, 78
local 93

attribute 97
default association 103
external name 115

map aspect 84, 84
in binding indication 99
in block header 169
in component instantiation 176
default 102, 103
elaboration 203
implicit 77, 85
in interface package declaration 77
matching 85
in package header 30
in package instantiation 33
in subprogram header 19
in subprogram instantiation 26

package 77, 84
actual 77, 79, 99
elaboration 204
formal 79
matching 85
unassociated 79

of root design entity 199
nonportable 501

subprogram 76, 84
actual 77, 79, 99
call 79, 164
elaboration 204
formal 79
matching 85
purity 79
unassociated 79

type 58, 64, 68, 69, 71, 75
actual 76, 79, 84, 99
elaboration 203
formal 79
matching 85
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where prohibited 55
genericDecl class

updating an object 377
generic-mapped package 30, 33, 84

elaboration 200, 209
generic-mapped subprogram 20, 26, 84

elaboration 206
Generics class diagram 315
globally static

attribute 141
constraint 142
expression 139, 141, 183
primary 141
range 142
subtype 142, 183

graphic character 225, 229, 231, 232, 237, 350
printable 410

greater-than operator
matching (?>) 121

fixed-point 531
floating-point 544

ordinary (>) 121
fixed-point 531
floating-point 544
metalogical value 279

greater-than-or-equal operator
matching (?>=) 121

fixed-point 532
floating-point 544

ordinary (>=) 121
fixed-point 531
floating-point 544
metalogical value 279

group
attribute specification for 96
constituent 94

entity class 94
constituent list 94
declaration 9, 11, 13, 24, 30, 32, 59, 63, 93, 94, 

171
group template 93

declaration 9, 11, 24, 30, 32, 59, 63, 93, 93, 171
GT function

floating-point 540, 545
guard condition 66, 68, 169, 170, 219, 220

implicit condition conversion 130
GUARD signal 24, 66, 170, 174, 216

current value 214
initialization 221
net 219
in sensitivity list 175
update 219

guarded 174

guarded assignment 175
guarded signal 23, 29, 68, 74, 104, 152

applicable disconnection specification 105
in concurrent signal assignment 175
specification 103

guarded target 175

H

handle 288
comparison 289
creation 288
equivalence 288, 289, 388
release 288, 421
resource sharing 288
target identified by name 408
target of one-to-many association 406
target of one-to-one association 405
validity 289

hash function 429, 434, 439, 442, 444, 555
HEX_READ alias

declaration 271
fixed-point 536
floating-point 549

HEX_WRITE alias
declaration 272
fixed-point 536
floating-point 548

hexadecimal number
VHPI representation 372

hiding 27, 189
See also visibility

hierarchy capability set 286
HIGH attribute 239, 242, 243
high-impedance STD_ULOGIC value 278, 279, 

280, 281, 514
result of arithmetic operation 520
result of relational operation 521

homograph 15, 189
and potential visibility 191
and use clause 191
where permitted 190

HREAD procedure 272, 273
declaration 271
fixed-point 528, 536
floating-point 541, 549

HWRITE procedure 273
declaration 271
fixed-point 528, 536
floating-point 541, 548
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I

identifier 51, 108, 227, 229, 229
alias 89
architecture 10, 101, 176
attribute 92
component 93
configuration 13
context 197
entity 7
enumeration literal 37
generic package 77
generic type 76
group 94
group template 93
label 183
library logical name 196
package 30, 33
parameter specification 166
record element 51
simple name 108
subprogram 19
subtype 64
tool directive 237, 430
type 53, 64
unit (physical type) 39, 39
visibility 189

identifier list 51
constant 67
file 72
interface 73
record element 51
signal 68
variable 70

identity operator (+) 28, 127
IEEE library 139, 196

source files 447
IEEE Std 1076.2 276
IEEE Std 1076.6 277
IEEE Std 1076-1987 282
IEEE Std 1076-1993 282
IEEE Std 1076-2002 295
IEEE Std 1164 277
IEEE Std 754 42, 513, 537
IEEE Std 854 42, 537
IEEE_BIT_CONTEXT context 283
IEEE_STD_CONTEXT context 283
if generate statement 182

elaboration 211
implicit condition conversion 130
visibility of alternative label 188

if statement 145, 164, 164
equivalent to conditional signal assignment 155
equivalent to conditional variable assignment 

161
implicit condition conversion 130

ifStmt class
execution callback 363

illegal 3
IMAGE attribute 84, 240, 242

nonportable use 501
immediate scope 186, 188
immediately within (declarative region) 185
implicit

declaration
visibility 187

initial value 208, 213
label 297
signal. See signal, implicit

implicitly declared operation 139
hidden 189

imply a design entity 101
impure function 20, 25

nonportable 501
in protected type 20

in mode 75, 218
See also mode

incomplete type declaration 53, 53, 64
incremental binding 99

indication 99
index

constraint 44, 45, 47
locally static 134, 135
satisfaction 47

range 45, 47, 111, 244
of aggregate 135
aggregate with others choice 134
aggregate without others choice 135
of alias 90
bit string literal 132
of concatenation result 126
determination 47, 203, 204, 213, 242
of external name 115
in fixed-point package 530
in floating-point package 541
of logical operator result in synthesis 

package 522
parameter 21, 22, 164
port 80
of shift operator result 124
string literal 132
in type conversion 137
undefined 45, 48

subtype 45
subtype definition 44
value 111

indexed name 35, 107, 111, 111
distinguishing from function call 136
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globally static 141
locally static 108
locally static expression 140
static 107

indexedName class
DefName and DefCaseName properties 304
FullName and FullCaseName properties 

308
Name and CaseName properties 300
updating an object 377

indirect binding. See standard indirect binding
inequality operator

matching (?/=) 121
fixed-point 531
floating-point 544

ordinary (/=) 121
defined for interface type 76
fixed-point 531
floating-point 544
implicit association for generic type 203
metalogical value 279

inertial
in port association

elaboration 204
 81
in signal assignment 150

inertial delay 150, 153
infinity 538
infinity (floating-point) 538
information model 285, 295

access during registration phase 352
classes available during registration phase 346
handle 288
machine-readable 295, 448
searching 409

inheritance relationship (information model) 285
initial transaction 200, 215
initial value 35

aggregate with others choice 134
allocated object 138
default 70

aggregate with others choice 134
allocated object 138

expression 70
index range 48
of object 208

initialization 199, 221
function

callback registration 357
phase 352, 353, 354

callback 367
initialization vector 439
inout mode 75, 217

See also mode

INPUT file
declaration 270

instance based path 251
instance name 249
INSTANCE_NAME attribute 113, 140, 141, 249, 

254, 310
for encrypted description 445
nonportable use 501

InstanceName property 310
instantiation

component. See component, instance
entity. See entity, instance
subprogram. See subprogram, instantiation

integer 230, 232, 434, 436
literal 38, 230
property

getting value 293, 396
implementation defined 475

type 38
bounds 39
definition 36, 38
elaboration 207
native format 376
predefined 39
predefined operator 127, 130
string representation 61
type conversion 137

VHPI representation 371, 373
INTEGER type 39, 47

declaration 259
INTEGER_VECTOR type 49

declaration 265
interactive command mode

callback 368
interface

constant 73
declaration 73
See also generic, constant; parameter, 

constant
declaration 63, 73, 73, 78
element 78
file 73

declaration 73
See also parameter, file

function specification 76
incomplete type declaration 76
list 20, 78, 78, 79
object 73

attribute specification for 96
declaration 67, 73, 73, 73
index range 48
name in interface list 78

package 77
declaration 73, 77, 77
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generic map aspect 77
See also generic, package

procedure specification 76
signal 73

declaration 73
See also port, signal; parameter, signal

subprogram 76
declaration 76, 76
default 76, 77, 79, 203
specification 76
See also generic, subprogram

subprogram declaration 73
type 75

declaration 73, 75, 76
See also generic, type

variable 73
declaration 73
See also parameter, variable

internal representation (VHPI) 374
interrupt event

callback 368
IS_NEGATIVE function

floating-point 545
IS_X function 281

fixed-point 528, 534
floating-point 547

ISNAN function
floating-point 548

ISO C 286
ISO/IEC 8859-1 character set 38, 225
IsSimNet property 340
ISX value (floating-point) 538
iteration scheme 166
iterator 411

scanning 422
Iterator class diagram 343

J

JUSTIFY function 272
declaration 269

K

kernel process 214
key

block 432
encoding 434

default 552
exchange 430, 556
method 432

name 432, 433
owner 432, 433
store 556

keyword (protect directive) 430
expression 430
list 430

keyword (PSL) 189, 237
Kind property 288

L

label 183
alternative 14, 182
assertion statement 147, 173
attribute specification for 96
in block configuration 14
block statement 169
case statement 164
component instance 176
in configuration specification 98
exit statement 167
in external name 114, 114
generate statement 182
if statement 164
implicit 297
implicitly declared 145, 169
loop statement 166
next statement 167
null statement 168
in path name 249, 251
procedure call 163, 172
process statement 170
report statement 148
return statement 168
signal assignment 149, 174
variable assignment 160
wait statement 145

LAST_ACTIVE attribute 74, 140, 141, 205, 246, 
247

of interface object 75
LAST_EVENT attribute 74, 140, 141, 205, 246, 

247, 248
of interface object 75

LAST_VALUE attribute 74, 140, 141, 205, 247
of composite signal 248
of interface object 75

LE function
floating-point 540, 546

leader (path name) 249, 251
LEFT attribute 239, 242, 243
left bound 36, 239, 243
left of 37
left to right order 37
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LEFTOF attribute 84, 242
legal 3
length

bit string literal 233
choice in case statement 165

LENGTH attribute 244
less-than operator

matching (?<) 121
fixed-point 531
floating-point 544

ordinary (<) 121
fixed-point 531
floating-point 544
metalogical value 279

less-than-or-equal operator
matching (?<=) 121

fixed-point 531
floating-point 544

ordinary (<=) 121
fixed-point 531
floating-point 544
metalogical value 279

letter 229, 230
letter or digit 229
lexical element 187, 225, 227
lexicalScope class

DefName and DefCaseName properties 303
LexicalScope class diagram 312
library 195

clause 195, 197
declarative region 185
expanded name for contained unit 109
of foreign models 345
information model 285, 344

searching 409
logical name 114

in default binding 102
registry 347
resource 196
unit 195, 195

existence 101
scope 186

working 196
license 436

description 436
lifetime of object (information model) 289
line feed 272
line length 274

encoded text 434
LINE type

declaration 269
linkage mode 75
linkage mode

port 218, 501

See also mode
literal 117, 131, 131, 249, 430

attribute specification for 96
evaluation 132
globally static 141
locally static 139

literal class
reading an object 374

Literal class diagram 324
livelock 214
load of a signal 338
Loads class diagram 338
local

generic constant. See generic, constant, local
item name 249, 251
port. See port, local

locally static
choice 134
constraint 140
expression 38, 40, 42, 96, 139
index constraint 134

case statement expression 135
name 83, 87, 104, 108, 150, 160
primary 139, 141
range 140
subtype 141

case statement expression 165
LOGB function

floating-point 547
logic type

interpretation 277
logic value

system (STD_LOGIC_1164) 514
VHPI representation 373

logical expression 117
logical name

file 72, 72
library 113, 114, 196, 249

in default binding 102
scope 186
visibility 190

list 195, 196
object library 347

logical operator 117, 118, 119
metalogical value 279
reduction 120
short-circuit 118
in synthesis package 522
unary

parenthesized 118
logical table 515
logical value 277
longest static prefix 108, 214

in sensitivity set 146
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loop
label 249
parameter 66, 67, 167, 193

discrete range 47
elaboration 213

statement 145, 166, 166
declarative region 185
execution 213
implicit label 297

LoopNextStmt class diagram 333
loopStmt class

execution callback 363
Name and CaseName properties 299

LOW attribute 240, 242, 243
lower bound 37, 240, 243
lowercase letter 225, 225, 229

corresponding uppercase letter 226
LT function

floating-point 540, 545

M

MAC function
floating-point 545

marked transaction 153
matching

actual generic 77
case statement 164
element 121

in aggregate 134
alias 90, 208
of external name 115
port 205
signal update 218
type conversion 138
variable assignment 161

equality operator
applied to case statement choices 165

generic map aspect 85
index value 133
relational operator 120

don’t care value 278
synthesis 280

signature 28, 112
MATH_COMPLEX package 275, 513

source files 447
testbench 448, 514

MATH_REAL package 275, 513
source files 447
testbench 448, 514

mathematical operation 86
mathematical package 275

source files 447

mature callback 357, 393
MAXIMUM function 43, 50

fixed-point 528, 532
floating-point 546

MD2 digest method 439
MD5 digest method 439
member 36
message (VHPI) 412, 426
metalogical value 278, 278, 280, 281, 538

result of arithmetic operation 520
result of relational operation 521

method 27, 58, 414
name 107
Name and CaseName properties 300

MINIMUM function 43, 50
fixed-point 528, 532
floating-point 546

miscellaneous operator 118, 129
mod operator 128

fixed-point 531
floating-point 540, 544

mode 73, 75, 80
model 214

name (foreign) 347, 349
modified relative search string 409
MODULO function

fixed-point 532
floating-point 540, 545

most recently analyzed architecture 102
most-specialized class (information model) 285
multidimensional array

aggregate 134
matching element 121

multiple-object declaration 67
multiplication

by power of 2 521
multiplication operator (*) 128, 525

fixed-point 531
floating-point 540, 544
universal expression 142

multiplicity 295
MULTIPLY function

floating-point 540, 545
multiplying operator 117, 118, 127
multivalue logic package 276

source files 447
mutual exclusion

determinacy 70
portability 70

N

name 94, 107, 107, 117
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access function (VHPI) 294
actual designator 81
alias 89
architecture 14
assignment target 150
component 98, 176
denotation 63
entity 10, 13, 101
evaluation 107
expanded 109
external 89
in external name 114
formal designator 81
function 81, 136
group template 94
indexed. See indexed name
locally static 83, 87, 104, 108, 150, 160
procedure 163
resolution function 65
selected. See selected name
in sensitivity set 145
signal 104, 145, 150

locally static 176
static 108, 145, 172

simple. See simple name
slice. See slice, name
static 22, 80, 89, 107
subelement 107
subprogram 76
subtype 65
type 65
uninstantiated package 33, 77
uninstantiated subprogram 26
unit (physical type) 39, 40
variable 160

static 108
verification unit 103

name class
FullName and FullCaseName properties 

307
reading an object 374

Name class diagram 324
Name property 298
name property 297
named association

element. See element, association, named
interface. See association (interface), named

NaN (floating-point) 538
nand operator 28, 119

fixed-point 532
floating-point 545

NANFP function
floating-point 548

native format 375
NATURAL subtype

declaration 261
navigability 295
NE function

floating-point 540, 545
NEG_INFFP function

floating-point 548
NEG_ZEROFP function

floating-point 548
negation operator (–) 28

fixed-point 530
floating-point 540, 544

net 199, 218
GUARD signal 219
simulated 338

new
allocator 138
package instantiation 33
subprogram instantiation 26

next statement 145, 167, 167
implicit condition conversion 130

NEXTAFTER function
floating-point 548

NO_WARNING constant 282
nonobject alias 89, 90
nonportable construct 501
nonpostponed process 171

initialization 221
nor operator 28, 119

fixed-point 532
floating-point 545

NORMALIZE function
floating-point 541, 547

Not a Number (floating-point) 538
not operator 119

fixed-point 532
floating-point 545

NOW function 247
declaration 261
value during elaboration 206

null
array. See array, null
range 36

choice 134
for iteration scheme 167

slice 112
statement 145, 168, 168

equivalent to unaffected 151
transaction. See transaction, null
waveform 176
waveform element 152
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null
access value

where prohibited 137
 35, 53, 55, 131, 132
in null statement 168
in registry entry 347

NULL handle 296
null object 296
numeric literal 35, 131

conformance 34
numeric type 36

closely related 137
predefined operator 125, 127, 129

NUMERIC_BIT package 139, 280, 517
source files 447

NUMERIC_BIT_UNSIGNED package 139, 280, 
517

source files 448
NUMERIC_STD package 139, 280, 517

source files 447
NUMERIC_STD_UNSIGNED package 139, 280, 

517
source files 448

O

objDecl class
updating an object 377

object 66
alias 89, 89
attribute specification for 96
callback 359
declaration 63, 66, 67, 67

elaboration 208
designated by access value 53, 66

selected name 109
explicitly declared 67

elaboration 208
information model 285

lifetime 289
resource sharing 288

interface 73
library 346

in license directive 436
name 347, 349
path 350
specifier 350

value
formatting 375
reading 374
updating 377
VHPI representation 373

viewport 435

Object class diagram 316
octal number

VHPI representation 372
OCTAL_READ alias

declaration 270
fixed-point 536
floating-point 548

OCTAL_WRITE alias
declaration 271
fixed-point 536
floating-point 548

off (driver) 29
one-dimensional array. See array, one-dimensional
one-time callback 357
one-to-many association

implementation defined 475
information model 285
multiplicity 295
navigating 406, 411
traversal 292

one-to-one association
implementation defined 475
information model 285
mulitplicity 295
navigating 405
traversal 291

open
actual designator 81
in array constraint 45
in binding indication 101

open (file) 56, 72
operand 131
operation 35

arithmetic 39, 40, 42
array 50
basic 35
file 55
fixed-point 530
implicitly declared 139

hidden 189
information model 285
of interface type 76
predefined 254
scalar type 42
short-circuit 118

evaluation 119
universal_integer 142
universal_real 142

operator 118
alias 90
binary 27
overloading 20, 27
precedence 118
symbol 19
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as alias designator 89
in attribute specification 96
attribute specification for 97
as name 107, 109, 248, 249
overloading 27
as subprogram designator 19
visibility 189

unary 27
visibility 189

or operator 28, 119
fixed-point 532
floating-point 545

order of analysis 198
ordered association 295, 406, 411
ordinary case statement 164
ordinary relational operator 120
OREAD procedure 272, 273

declaration 270
fixed-point 528, 536
floating-point 541, 548

other special character 225, 225
others

in attribute specification 95
choice. See choice, others
in component specification 98
in disconnection specification 104

out mode 75, 217
compared to buffer mode 75
See also mode

OUTPUT file
declaration 270

output file (tool) 412, 426
overflow 276, 513, 518, 521, 524
overloading 187, 189

attribute specification 97
enumeration literal 37
in fixed-point package 527
in MATH_COMPLEX package 514
operator 20, 27
operator symbol 89
resolution 192

condition conversion 131
subprogram 26

OWRITE procedure 273
declaration 271
fixed-point 528, 536
floating-point 541, 548

P

package 19
body 8, 11, 23, 31, 31, 32, 59, 170, 195

declarative item 31

declarative part 31
declarative region 185
elaboration 209
implicit 26, 33

declaration 8, 11, 23, 30, 30, 32, 59, 63, 170, 
195

attribute specification for 96
declarative region 185

declarative item 30
declarative part 30
DefName and DefCaseName properties 304
elaboration 200, 209
expanded name for contained declaration 109
in external name 114
generic. See generic, package
generic-mapped 30, 33, 84

elaboration 200, 209
header 30

elaboration 202, 209
generic map aspect 84

instance
as actual generic package 84
declaration 8, 11, 23, 30, 32, 33, 33, 59, 63, 

170, 195
elaboration 209
equivalent package 33
in external name 114
in a package declaration 33

interface 77
Name and CaseName properties 299
package based path 249, 251
path instance element 249
pathname 113, 114
scope of contained declaration 186
simple 30
UML 296
uninstantiated 30, 33, 84

elaboration 209
scope of formal generic declaration 186
visibility of contained declaration 190
where prohibited 114, 191

visibility of contained declaration 187
visibility of formal generic 188

packInst class
DefName and DefCaseName properties 304
Name and CaseName properties 299

parameter 26
actual 21, 163

in function call 136
association 136, 163

elaboration 213
base type 26
class 20
composite 21, 22
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constant 21
file 23, 72
formal 20, 66, 67, 136, 163

nonportable use 501
index range 21, 22, 164
information model object 352
interface list 78

elaboration 206
mode 21
passing 21, 23, 83
protected type 21
signal 22

contributor 339
excluded from sensitivity list 171

specification 166, 182
subtype 21, 22
variable 21

force and release 378
parent 24, 146, 171, 172
parenthesized expression

distinguished from aggregate 133
globally static 141
locally static 140
in type conversion 137

partial pathname 113
partially constrained subtype 35, 45, 52

elaboration 207
passive process 172
passive statements 10
path instance element 251
path name 251
path to instance 251
PATH_NAME attribute 113, 140, 141, 251, 254, 

310
for encrypted description 445
nonportable use 501

pathname 114
element 113, 114

PathName property 310
permanent (VHPI string or structure) 385
PGP RSA encryption method 438
physical

literal 39, 131
property

getting value 294, 401
implementation defined 475

type 39
alias 90
bounds 40
definition 36, 39
elaboration 207
native format 376
predefined 41
predefined operator 128

string representation 61
in use clause 191

value
VHPI representation 371, 373

pointer to string or structure 385
port

active 205
actual 80, 87
association list

elaboration 204
clause 8, 79, 79, 93, 169

elaboration 204
connected 80
contributor 339
default expression 205
default value 74, 217, 218
dependence on implicit signal 220
driving value 217

associated expression 205
no source 75, 217
vhpiCbValueChange callback 360

effective value 218
elaboration 204
expression as an actual 79

elaboration 204
equivalent assignment 80

external name 115
formal 8, 66, 79, 87
incremental binding 99
index range 80
interface list 78
linkage mode 218, 501
list 79
load of a sginal 340
local 66, 93

attribute 97
default association 103
external name 115
restrictions 87

map aspect 87, 87, 99, 169, 176
default 102, 103
elaboration 204

mode 80
on a net 218
resolved 517
restrictions 80
of root design entity 199

nonportable 501
as a source 69
unassociated 80, 103

driving value 205
unconnected 80, 217

port class
reading an object 374
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updating an object 377
portDecl class

updating an object 377
Ports class diagram 317
POS attribute 84, 241
POS_INFFP function

floating-point 548
position number 241, 242

enumeration literal 37
integer value 38
of physical structure 371
physical value 40
of time structure 372

positional association
element. See element, association, positional
interface. See association (interface), positional

POSITIVE subtype
declaration 261

post-analysis capability set 286
postponed 170, 172, 173, 174
postponed process 171, 248

initialization 221
simulation cycle 223

potentially visible 189, 191
precedence 118
precision 275
PRED attribute 84, 242
predefined attribute. See attribute, predefined
predefined environment 239
predefined operation 254

hidden 189
identified by use clause 191
implicit alias 90

prefix 107, 107, 109, 111, 112
access type 107
appropriate 107
type 107

prefixedName class
updating an object 377

primary (expression) 117
globally static 141
locally static 139, 141
value 117

primary binding indication 99
primary unit (design unit) 63, 195

expanded name for 109
in library declarative region 185
in root declarative region 185
visibility 187

primary unit (physical type) 40
declaration 39

private key 429, 442, 443, 444, 553, 555
procedure

attribute specification for 96

call 163, 172
generic procedure 164

call statement 145, 163, 163
equivalent to concurrent procedure call 172
SignatureName property 303

declaration 19
return 168
specification 19
uninstantiated 163

process 199
creation using VHPI 390
declarative item 170
declarative part 170
declarative region 185
driver 214

creation during elaboration 200, 213
elaboration 213
equivalent to concurrent assertion 173, 213
equivalent to concurrent procedure call 172
equivalent to concurrent signal assignment 175, 

213
equivalent to concurrent statement

implicit label 297
equivalent to DELAYED attribute 220, 245
execution 214
implicit label 297
initialization 221
label 249
load of a signal 340
nonpostponed. See nonpostponed process
passive 172
postponed. See postponed process
represented by concurrent procedure call 173
resumption 146, 218, 222, 223

callback 364
sensitivity list 170, 171
statement 10, 169, 170, 170
statement part 170, 171
suspension 146, 222, 223

callback 364
processStmt class

creation 390
execution callback 363

profile 26, 90, 112, 193
conformance 34, 76, 79, 84
enumeration literal 37

projected output waveform 152, 215, 381
propagation of signal values 215
property (information model) 285

getting value 293, 396, 401, 402
property (PSL)

attribute specification for 96
simple subset 64

protect directive 429, 430, 431, 551
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author directive 431, 431, 440, 442
author info directive 431, 431, 440, 442
begin directive 431, 431, 439
begin protected directive 431, 431, 442
comment directive 437, 437, 440, 443
data block directive 433, 433, 444
data keyname directive 433, 433, 441, 443
data keyowner directive 433, 433, 441, 443
data method directive 433, 433, 441, 444
decrypt license directive 436, 440, 443
digest block directive 434, 434, 442, 444
digest key method directive 433, 433, 442, 444
digest keyname directive 433, 433, 442, 444
digest keyowner directive 433, 433, 442, 444
digest method directive 434, 434, 442, 444
encoding directive 434, 434, 440, 443, 444
encrypt agent directive 432, 432, 443
encrypt agent info directive 432, 432, 443
end directive 431, 431, 439
end protected directive 431, 431, 442
key block directive 432, 432, 440, 443
key keyname directive 432, 432, 440, 443
key keyowner directive 432, 432, 440, 443
key method directive 432, 432, 440, 443
license directive 436
runtime license directive 436, 440, 443
viewport directive 435, 435, 440, 442

protected type 35, 58
access using vhpi_protected_call

function 413
body 58, 59, 59

declarative item 59
declarative part 59
declarative region 185
elaboration 207, 208
in package 31
wait statement 147

declaration 58, 58, 58
declarative item 58
declarative part 58
declarative region 185
definition 31, 58, 64
elaboration 207
exclusive access 24, 213
expanded name for contained declaration 109
method 27, 58, 414

execution 213
name 107
Name and CaseName properties 300

object elaboration 208
parameter 21
resolution function 66

scope of contained declaration 186
shared variable 70
string representation 61
visibility of method 188
where prohibited 20, 44, 53, 55, 68, 74, 92, 151, 

160
protectedTypeInst class

DefName and DefCaseName properties 304
Name and CaseName properties 299

protection envelope 429, 551
protection requirement 444
pseudo-random number generator 513
PSL declaration. See declaration, PSL declaration
PSL directive. See directive, PSL directive
PSL expression 118
PSL function call 118
PSL incorporated into VHDL 3
PSL keyword 189, 237
PSL verification unit. See verification unit
public key 429, 441, 444, 553, 555

infrastructure (PKI) 556
pulse rejection limit 41, 150, 153, 424
pure function 20, 25

in protected type 20

Q

QNANFP function
floating-point 548

qualified expression 35, 117, 136, 136, 138
aggregate with others choice 134
generic type 76
globally static 141
locally static 140

question mark delimiter (?)
in case statement 164
in concurrent selected signal assignment 174
in selected signal assignment 158, 159
in selected variable assignment 162, 163

quiet
NaN 538
signal 216, 245

QUIET attribute 24, 66, 74, 205, 214, 216, 245, 247
contributor to a signal 339
initialization 221
of interface object 75
of signal parameter 22, 75
static name 108
update 219

quoted-printable encoding method 437
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R

random number generator 513
range 36, 45

ascending 36, 38, 240
constraint 36, 38, 39, 42, 65

compatibility with subtype 37
descending 36
globally static 142
left bound 36
locally static 140
lower bound 37
nonportable use 501
null 36

choice 134
for iteration scheme 167

right bound 37
upper bound 37

RANGE attribute 244
raw encoding method 435, 437
READ procedure

file operation 56, 57, 74
fixed-point 528, 536
floating-point 541, 548
TEXTIO operation 272

declaration 270
reading an object 74

VHPI 374
READLINE procedure 74, 272

declaration 270
read-only access 435
read-only file 56
read-write access 435
real

literal 230
property

getting value 294, 402
implementation defined 475

REAL type 42, 513
declaration 259

REAL_VECTOR type 49
declaration 266

REALTOBITS function
floating-point 547

rebound (incremental binding) 99
RECIPROCAL function

fixed-point 526, 532
floating-point 540, 545

record
aggregate 133
constraint 51, 53, 65, 187

in allocator 138
compatibility with subtype 52

element

DefName and DefCaseName properties 
305

FullName and FullCaseName
properties 309

Name and CaseName properties 300
selected name 109

element constraint 51
element resolution 65
matching element 121
resolution 65, 65, 187
type 51

declarative region 185
scope of element declaration 186
visibility of element declaration 187
See also type, composite

type definition 44, 51
elaboration 207

reference class (VHPI) 295
reference object (VHPI) 295
region class

FullName and FullCaseName properties 
307

InstanceName property 310
PathName property 310

RegionInstance class diagram 318
register 68
register signal

active 216
driving value 217

register-transfer level synthesis 277
registration function 345, 347, 348, 400

callback registration 357
name 347

registration phase 345
callback 367

registry file. See tabular registry
reject 150
relation 117
relational expression

metalogical value 278
relational operator 117, 118, 120, 527

floating-point 540
in synthesis package 520

relative pathname 113, 114
relative search string 409
release

assignment 150
driver 380
signal 150, 151, 215, 216, 217, 222, 379
variable 378

release 149
rem operator 128

fixed-point 531
floating-point 540, 544
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REMAINDER function
fixed-point 532
floating-point 540, 545

repetitive callback 357
report statement 145, 148, 148

in an encrypted description 445
equivalent to vhpi_assert function 385

representation
floating point type 42

reserved word 2, 187, 235
reset capability set 287
reset phase 354, 389

callback 370
RESIZE function

fixed-point 525, 526, 533
floating-point 540, 546

resolution function 29, 65, 68
execution 217
invocation 29
on a net 218
nonportable use 501
in STD_LOGIC_1164 package 516
uninstantiated subprogram 20

resolution indication 65, 68
corresponding to a subtype 65
where prohibited 46, 138

resolution limit 41, 275, 372
nonportable 501

RESOLUTION_LIMIT function 275
RESOLVED function 278
resolved port 517
resolved signal 29, 65, 68, 216, 516

composite 69, 153
updating a member 417

driving value 217
resolved value 29

resource library 196
resource reclamation 288
resource sharing 288
restart phase 354, 398

automatic restore 354
callback 369
saved data set 397

resumption 146, 218, 222, 223
callback 364

return statement 145, 168, 168
REVERSE_RANGE attribute 244
RIGHT attribute 239, 242, 243
right bound 37, 239, 243
RIGHTOF attribute 84, 242
RIPEMD-160 digest method 439
RISING_EDGE function 43, 280, 281
rol operator 123

fixed-point 531

role name 295
root declarative region 114, 185, 191, 196
root design entity instance

FullName and FullCaseName properties 
307

rootInst class
DefName and DefCaseName properties 304
Name and CaseName properties 299

ror operator 123
fixed-point 531

rounding 526, 539
RSA encryption method 438
runtime license 436

S

satisfaction of index constraint 47, 53
saturation 526
save phase 222, 223, 353, 415

automatic save 354
callback 369
saved data set 415

save/restart capability set 287
scalar

type 35, 36
operation 42

type definition 36, 64
VHPI representation 372

ScalarType class diagram 320
SCALB function

fixed-point 527, 533
floating-point 547

schedule
deposit 215, 216, 217, 379, 380
force 153, 215, 216, 217, 379, 380
release 153, 215, 216, 217
transaction 381

scope 63, 185
context clause 197
of declaration 185
extension into block configuration 15
immediate 186, 188
use clause 191

scope object (VHPI) 408
search string 408
secondary unit (design unit) 195

in root declarative region 185
secondary unit (physical type) 40

declaration 39
nonportable use 501

secret key 429, 551
Secure Hash Algorithm digest method 439
selected assignment
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force assignment 158, 159
selected expressions 158, 162
signal assignment 149, 158, 158
variable assignment 160, 162, 162
waveform assignment 158, 158
waveforms 158, 174

selected name 35, 108, 109, 191, 197
globally static 141
locally static 108
locally static expression 140
static 107

selectedName class
DefName and DefCaseName properties 305
FullName and FullCaseName properties 

309
Name and CaseName properties 300
updating an object 377

selection
visibility 187

sensitivity 218
clause 145
of concurrent assertion 174
of concurrent procedure call 173
of concurrent signal assignment 175
edge-detection function 277
list 74, 145, 170

all 146
process 171
resumption callback 364

set 145
bitmap 362
bitmap macro 473
functions file 450
vhpiCbSensitivity callback 362

in simulation cycle 222
separator 227
seqProcCall class

Name and CaseName properties 300
SeqSigAssignStmt class diagram 333
seqStmt class

execution callback 363
SeqStmtInheritance class diagram 334
sequence (PSL)

attribute specification for 96
sequence of statements 145, 164, 166
sequential statement 24, 145, 145, 171

equivalent to conditional signal assignment 156
equivalent to conditional variable assignment 

161
equivalent to selected signal assignment 158
equivalent to selected variable assignment 162

Serpent encryption method 438
session key 429, 432, 441, 443, 444, 553
severity level

continuing execution 148, 149
VHPI error 386

SEVERITY_LEVEL type 38, 147, 148
declaration 257

SFIX_HIGH function
fixed-point 536

SFIX_LOW function
fixed-point 536

SFIXED subtype 523
SFIXED_HIGH function

fixed-point 535
SFIXED_LOW function

fixed-point 535
SHA digest method 439
shared variable 66, 70

access using vhpi_protected_call func-
tion 413

declaration 8, 11, 70
external name 115
nonportable 501
in package 31, 32
in subprogram 24
where prohibited 70, 172

shift expression 117
shift function

in synthesis package 521
shift operator 117, 118, 123, 527

metalogical value 279
short-circuit operation 118

evaluation 119
SIDE type

declaration 269
sigDecl class

updating an object 377
sign

bit (floating-point) 537
operator 117, 118, 127

signal 66
active 29, 215, 216, 219, 221, 246, 366, 418

vhpiCbTransaction callback 361
actual port 88, 99
assignment statement 145, 149, 149

base type 150
drivers defined 214
in procedure outside a process 153

attribute specification for 96
basic 216

contributors and loads 339
change 218
composite

driving value 217
effective value 218
event 248
update 218
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contributor 338, 339
current value 247

initialization 221
kernel variable 214, 218

declaration 8, 11, 30, 67, 68, 68
elaboration 208
in package 31

default value 68, 200, 215, 216
aggregate with others choice 134
implicit 68

dependence 220, 221, 222
deposit 215, 216, 217, 379
driving value 216, 221

kernel variable 218
effective value 216, 217, 221
event 146, 218, 222, 245, 246, 247

vhpiCbSensitivity callback 362
vhpiCbValueChange callback 360

explicit 24
explicitly declared 68
external name 115
force 150, 151, 215, 216, 217, 379
GUARD. See GUARD signal
guarded 23, 29, 68, 74, 104, 152

applicable disconnection specification 105
implicit 24, 66, 216

active 216
dependence 220
event 220
initialization 221
on a net 218
update 218, 219, 219

index range 47
initial value 69
interface 73
kind 68, 68
list 103, 104
load 338
name 150

locally static 176
static 108, 145, 172

on a net 218
parameter. See parameter, signal
quiet 216, 245
release 150, 151, 215, 216, 217, 222, 379
resolved 29, 65, 68, 216, 516

composite 29, 69, 153, 217, 417
driving value 217
resolved value 29

scalar
update 218

source 69, 517
active 215
multiple 29

transform 175
update 218, 222, 379

initialization 221
value propagation 215

signal class
updating an object 378

signaling NaN 538
Signals class diagram 318
signature 28, 28

in alias declaration 89, 90
in attribute name 112
in attribute specification 96
in name attribute 249, 251
restrictions 89, 112
in subprogram declaration 26

signature (digital) 429, 434
SignatureName property 303
SIGNED type 281

conversion to UNSIGNED 521
mixed with UNSIGNED type 517

sign-extension function
metalogical value 279

sigParamDecl class
updating an object 377

SimNet association 340
simple expression 36, 117, 132
simple force assignment 149
simple name 107, 108, 108, 249

architecture 249
attribute designator 112
conformance 34
entity 114, 249, 251
evaluation 108
locally static 108
named entity 96
object 113
package 31, 113, 114, 249, 251
record element 51, 65, 132
selected name suffix 109
in sensitivity set 146
static 107
variable 249, 251

simple package 30
simple release assignment 149
simple signal assignment 149, 149, 149
simple subprogram 20
simple variable assignment 160, 160, 160
simple waveform assignment 149
SIMPLE_NAME attribute 113, 141, 248, 254
SimpleName class diagram 325
simplified bit value 232
simulated net 338
simulation cycle 199, 220, 222

callback 366
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time of next (Tn) 221, 222, 223, 353, 354, 400
simulation phase 352, 353

callback 366, 368
SimulatorKernel class diagram 341
single-object declaration 67
sla operator 123

fixed-point 531
slice 35

bounds and direction 112
DefName and DefCaseName properties 305
FullName and FullCaseName properties 

309
globally static 141
name 107, 107, 112, 112

as formal designator 48
locally static 108
locally static expression 140
static 108

Name and CaseName properties 301
null 112
of an object 66

sliceName class
DefName and DefCaseName properties 305
FullName and FullCaseName properties 

309
Name and CaseName properties 301
updating an object 377

sll operator 123
fixed-point 531

source (signal) 69, 517
active 215
multiple 29

source text 439
space character 225, 225
special character 225, 225
specification 95

elaboration 209
SpecInheritance class diagram 327
SQRT function

floating-point 545
sra operator 123

fixed-point 531
SREAD procedure 272, 273

declaration 270
srl operator 123

fixed-point 531
STABLE attribute 24, 66, 74, 205, 214, 216, 245, 

247, 248
contributor to a signal 339
initialization 221
of interface object 75
of signal parameter 22, 75
static name 108
update 219

standard direct architecture binding 350
standard direct binding 349, 350, 350
standard direct subprogram binding 350
standard indirect binding 349, 349, 349
STANDARD package 35, 196, 254
statement

callback 363
DefName and DefCaseName properties 304
Name and CaseName properties 299
transform 175

statement part
elaboration 210

static
discrete range 183
expression 139

default for interface object 73
in generate specification 14
generate specification in path name 114
in if generate statement 183
synthesis 278

name 22, 80, 89, 107
object

information model 285, 289
validity during reset 355

signal name 108, 145, 172
variable name 108

static access capability set 286
STD library 196
STD_LOGIC type

multiple sources 517
native format 376
VHPI representation 373

STD_LOGIC_1164 package 122, 139, 276, 277, 
514

source files 447
synthesis of types 277

STD_LOGIC_TEXTIO package 276
source files 447

STD_LOGIC_VECTOR type
multiple sources 517

STD_MATCH function 277, 278, 280, 281, 522
fixed-point 532
floating-point 546

STD_ULOGIC type
condition operator 131
in matching case statement 165
native format 376
predefined operator 122
single source 517
synthesis 277, 277
VHPI representation 373

STD_ULOGIC_VECTOR type
in NUMERIC_STD_UNSIGNED package 281
single source 517
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stdCallbacks package 340
stdConnectivity package 335
stdEngine package 340
stdExpr package 322
stdForeign package 341
stdHierarchy package 313
stdMeta package 341
stdSpec package 325
stdStmts package 329
stdSubprograms package 327
stdTool package 343
stdTypes package 320
stdUninstantiated package 310
STOP procedure 274
stopping simulation 389
strength 515
string

VHPI representation 373
string literal 19, 35, 131, 227, 231, 231, 431, 432, 

433, 434, 435, 436, 437
in aggregate 134
bounds and direction 132
fixed-point value 530
index range 132
where prohibited 137

string property
getting value 293, 402
implementation defined 475

string representation 61, 240, 241, 272, 273
STRING type 49, 61, 147, 148

declaration 261
STRING_READ alias

declaration 270
STRING_WRITE alias

declaration 271
StructStmt class diagram 334
StructuralRegions class diagram 319
subaggregate 134

aggregate with others choice 135
SubBody class diagram 328
subclass (information model) 285
subelement 36

name 107
subpCall class 310

DefName and DefCaseName properties 304
execution callback 364, 365
SignatureName property 303

SubpCall class diagram 329
subpDecl class

SignatureName property 303
subprogram 19

as actual generic 84
alias 90
attribute specification for 96

body 8, 11, 23, 23, 32, 59, 170
declarative region 185
elaboration 206

call 24
DefName and DefCaseName properties 

304
execution 213
execution callback 364, 365
generic subprogram 79
Name and CaseName properties 300
SignatureName property 303

declaration 8, 11, 19, 19, 23, 24, 30, 31, 58, 59, 
63, 170

declarative region 185
elaboration 206

declarative item 23
declarative part 23
foreign. See foreign, subprogram
generic. See generic, subprogram
generic-mapped 20, 26, 84

elaboration 206
header 19

elaboration 202, 206
generic map aspect 84

instantiation 20, 24, 26
declaration 8, 11, 23, 26, 26, 30, 32, 58, 59, 

63, 170
elaboration 206
equivalent subprogram 26
in a package declaration 26

interface 76
kind 23, 24, 26
overloading 26
protected type method 58
scope of formal parameter declaration 186
SignatureName property 303
simple 20
specification 19, 23

conformance 34
statement part 23, 24
uninstantiated 20, 24, 26

call 20
elaboration 206
recursive call 20
resolution function 29
scope of formal generic declaration 186
visibility of formal generic type 188

visibility of formal generic 188
visibility of formal parameter 188

SUBTRACT function
floating-point 540, 545

subtraction operator (–) 28
fixed-point 530
floating-point 540, 544
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subtype 35, 64
of alias 90
alias of 90
allocator 138
of anonymous type 38, 39, 42, 45, 52
array 45
attribute specification for 96
check

attribute specification 209
driving value of signal 218
effective value of signal 218
expression associated with port 205
port association 205

compatibility with another subtype 37
compatibility with constraint 207
declaration 8, 11, 23, 30, 32, 59, 63, 64, 64, 170

elaboration 207
of external name 115
force assignment 153
foreign function result 381
fully constrained 35, 45, 52, 242

elaboration 207
function result 168
globally static 142, 183
implicit conversion 137, 208, 209, 218
index 45
index range 48
indication 44, 45, 51, 53, 64, 65, 65, 67, 68, 70, 

72, 73, 81, 89, 113, 138
as actual generic type 84
conformance 34
direction 66
in nonobject alias 90

interface type 76
locally static 141

case statement expression 165
parameter 22, 163
partially constrained 35, 45, 52

elaboration 207
qualified expression 136
same 85
type conversion 137
unconstrained 35, 45, 52, 65
in use clause 191
variable assignment 161
waveform assignment 152

SUBTYPE attribute 242
SUCC attribute 84, 241
suffix 109
superclass (information model) 285
suspension 146, 222, 223

callback 364
SWRITE alias 274

declaration 271

symmetric cipher 429, 441, 551, 553
synthesis

context declaration 283
mathematical packages 514
numeric package 277, 517

scope 277
source files 447
terminology 277

tool 277, 445

T

tabular registry 346
entry 347
file 347

target (assignment) 149, 150, 155, 158, 160, 161, 
162, 174

target class (information model) 295
target library for default binding 102
target object (information model) 295
TEE procedure 272

declaration 271
term 117
termination phase 355, 389

callback 367
testbench file 448
TEXT type

declaration 269
TEXTIO package 57, 196, 268

nonportable use 501
three-state buffer 279
time

callback 365
VHPI representation 372, 373

time member
of callback data structure 359

time structure 372
TIME type 41, 152

declaration 260
native format 376

TIME_VECTOR type 49
declaration 266

timeout clause 145
timeout interval 146

callback 361
time callback 365

TO_01 function 281
fixed-point 528, 534
floating-point 547

TO_BINARY_STRING alias 51
fixed-point 536
floating-point 549

TO_BSTRING alias 51
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fixed-point 536
floating-point 549

TO_FLOAT function
floating-point 540, 541, 546

TO_HEX_STRING alias 51
fixed-point 537
floating-point 549

TO_HSTRING function 51
fixed-point 528, 537
floating-point 541, 549

TO_INTEGER function
fixed-point 534
floating-point 540, 547

TO_OCTAL_STRING alias 51
fixed-point 537
floating-point 549

TO_OSTRING function 51
fixed-point 528, 537
floating-point 541, 549

TO_REAL function
fixed-point 534
floating-point 540, 547

TO_SFIX function
fixed-point 528, 536

TO_SFIXED function
fixed-point 534
floating-point 540, 547

TO_SIGNED function
fixed-point 534
floating-point 540, 547

TO_SLV function
fixed-point 534
floating-point 541, 546

TO_STD_LOGIC_VECTOR alias
fixed-point 534
floating-point 541, 546

TO_STD_ULOGIC_VECTOR alias
fixed-point 534
floating-point 546

TO_STDLOGICVECTOR alias
fixed-point 534
floating-point 541, 546

TO_STDULOGICVECTOR alias
fixed-point 534
floating-point 546

TO_STRING function 43, 51
declaration 268
fixed-point 528, 536
floating-point 541, 549
string representation 62

TO_SULV function
fixed-point 534
floating-point 546

TO_UFIX function

fixed-point 528, 535
TO_UFIXED function

fixed-point 533
floating-point 540, 547

TO_UNSIGNED function
fixed-point 534
floating-point 540, 547

TO_UX01 function 281
fixed-point 528, 535
floating-point 547

TO_X01 function 281
fixed-point 528, 534
floating-point 547

TO_X01Z function 281
fixed-point 528, 535
floating-point 547

tool 285
control 389
directive 225, 227, 237, 237, 429
execution 345, 367

Tool class diagram 344
top-level interface object 199
transaction 152, 215

base type 150
marked 153
null 29, 68, 152, 153, 176, 247

activity 215
restrictions 217
scheduled using VHPI 381

scheduling using VHPI 381, 423
TRANSACTION attribute 24, 66, 74, 214, 216, 246

contributor to a signal 339
initial value 222
of interface object 75
of signal parameter 22, 75
static name 108
update 219, 220

transaction class
reading an object 374

transient (VHPI string or structure) 385
transport 150
transport delay 150
trigger 357
trigger object 357

variable 359
triple DES encryption method 438
Twofish encryption method 438
type 35

access. See access type
of actual 82
of aggregate 133
alias 90
of alias 89
of allocated object 138
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allocator 138
anonymous 38, 39, 42, 45, 52, 64
array. See array, type
of attribute expression 96
attribute specification for 96
bit string literal 132
closely related 82, 137
composite 35, 44

definition 44, 64
string representation 61

conversion 35, 117, 136, 136, 518
in actual part 48, 82, 340
in association 215
condition operator (??) 130
floating-point type 137
in formal part 48, 82
in in formal part 339
function result 168
generic type 76
globally static 141
implicit 35, 38, 42, 47, 138, 161, 203
integer type 137
locally static 140
metalogical value 279
nonportable 501
in parameter association 22, 23
qualified expression 136
in synthesis package 521

declaration 8, 11, 23, 30, 32, 59, 63, 64, 64, 170
elaboration 207

definition 64
discrete 36

case generate statement expression 183
case statement expression 164

explicitly declared 64
of expression 117
of external name 115
file. See file, type
floating-point. See floating-point, type
of formal 82
generic. See generic, type
incomplete 53
integer. See integer, type
interface 75
mark 19, 28, 44, 55, 65, 76, 81, 92, 103, 136

in use clause 191
prefix 107
protected. See protected type
record. See record, type
scalar. See scalar, type
string literal 132
in use clause 191

TypeConvAllocator class diagram 325
TypeInheritance class diagram 321

TypeSubtype class diagram 321

U

U_FLOAT alias 540
U_SFIXED alias 523
U_SIGNED alias 281
U_UFIXED alias 523
U_UNSIGNED alias 281
UFIX_HIGH function

fixed-point 536
UFIX_LOW function

fixed-point 536
UFIXED subtype 523
UFIXED_HIGH function

fixed-point 535
UFIXED_LOW function

fixed-point 535
UML notation 286, 295
unaffected 150, 151, 176
unary operator 27
unassociated 80, 85, 88

incremental binding 99
unbounded array definition 44
unconnected port 80, 217
unconstrained subtype 35, 45, 52, 65

elaboration 207
underflow 276, 513
underline 229, 230, 232
unguarded target 175
Unified Modeling Language (UML) 286, 295
uninitialized STD_ULOGIC value 278, 514, 515

in condition 515
propagation 515

uninstantiated function 136
uninstantiated package. See package, uninstantiated
uninstantiated procedure 163
uninstantiated subprogram. See subprogram, unin-

stantiated
unit (design unit)

expanded name for 109
unit (physical type) 372, 374

attribute specification for 96
identified by use clause 191
implicit alias 90
name 40
primary 40
secondary 40

UnitName property 303
universal expression 142
universal_integer type 35, 38, 47, 128, 142, 161, 

230
declaration 257
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implicit type conversion 138, 151, 168
literal 131
operation 142

universal_real type 35, 42, 142, 230
declaration 258
implicit type conversion 138, 151, 161, 168
literal 131
operation 142

unknown STD_ULOGIC value 278, 514
assignment 515

UNORDERED function
floating-point 548

UNRESOLVED_FLOAT type 540
UNRESOLVED_SFIXED type 523
UNRESOLVED_SIGNED type 281
UNRESOLVED_UFIXED type 523
UNRESOLVED_UNSIGNED type 281
UNSIGNED type 281

conversion to SIGNED 521
mixed with SIGNED type 517

update
implicit signal 218, 219, 219
mode (vhpi) 377
object 74
object value (information model) 377
projected output waveform 152
signal 218, 222

initialization 221
upper bound 37, 239, 243
uppercase letter 225, 225, 229

corresponding lowercase letter 226
use clause 9, 11, 13, 14, 24, 30, 31, 32, 58, 59, 171, 

189, 191, 191, 197
in block configuration 15
Name and CaseName properties 302
scope 186
visibility 190

useClause class
Name and CaseName properties 302

user_data member (callback data structure) 358
user-defined attribute. See attribute, user-defined
utility function 286
uuencode encoding method 437

V

VAL attribute 84, 241
VALID_FPSTATE type 538
value

defined when read 206
format 404
format conversion 394
of primary 117

reading using VHPI 371, 404
structure 371, 372, 404, 417, 423

format conversion 394
transaction 152
update using VHPI 371, 417
VHPI representation 371

VALUE attribute 84, 140, 241, 242
value member (callback data structure) 359
VarAssignAssertReportStmt class diagram 

335
varDecl class

updating an object 377
variable 66

assignment statement 145, 160, 160
base type 160
composite 161

attribute specification for 96
change 161

vhpiCbValueChange callback 360
declaration 8, 11, 23, 30, 32, 59, 67, 69, 70, 171

elaboration 208
DefName and DefCaseName properties 304
deposit 378
designated object 53

DefName and DefCaseName properties 
306

Name and CaseName properties 302
explicitly declared 69
external name 115
force 378
index range 47
interface 73
name 160

static 108
Name and CaseName properties 299
object of access type 53
parameter. See parameter, variable
persistence 70
release 378
shared 70

external name 115
where prohibited 172

variable class
updating an object 378

Variables class diagram 319
varParamDecl class

updating an object 377
verification unit 17, 103, 189, 195

binding 199
binding indication 13, 17, 98, 103, 103
character set 226
elaboration 200
explicitly bound 103
lexical element 227
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list 103
scope of declaration in design entity 186
visibility of contained declaration 190

VHPI access function 291
VHPI definitions file 449
VHPI extension 475
VHPI files 448
VHPI formal notation 295
VHPI function 385
VHPI header file 449, 451
VHPI naming convention 286
VHPI organization 285
VHPI program 285
VHPI reserved word 349
vhpi_assert function 385
vhpi_check_error function 386
vhpi_compare_handles function 388
vhpi_control function 275, 389
vhpi_create function 390
vhpi_def.c file 449
vhpi_disable_cb function 358, 392
vhpi_enable_cb function 358, 393
vhpi_format_value function 394
vhpi_get function 293, 396
vhpi_get_cb_info function 358, 396
vhpi_get_data function 397
vhpi_get_foreignf_info function 399
vhpi_get_next_time function 400
vhpi_get_phys function 294, 401
VHPI_GET_PRINTABLE_STRINGCODE macro 

450
vhpi_get_real function 294, 402
vhpi_get_str function 293, 402
vhpi_get_time function 403

result during reset phase 370
result during restart phase 370
result during save phase 369

vhpi_get_value function 374, 404
for formal parmeter 352
storage allocation 374

vhpi_handle function 291, 405
vhpi_handle_by_index function 292, 406
vhpi_handle_by_name function 294, 408
vhpi_is_printable function 410

definition 449
vhpi_iterator function 292, 411
vhpi_printf function 412
vhpi_protected_call function 413
vhpi_put_data function 354, 415
vhpi_put_value function 218, 377, 417

for formal parameter 352
where prohobited 368

vhpi_register_cb function 357, 418
vhpi_register_foreignf function 348, 419

vhpi_release_handle function 421
vhpi_remove_cb function 358, 422
vhpi_scan function 292, 422
vhpi_schedule_transaction function 423

for formal parameter 352
where prohibited 368

vhpi_sens.c file 450, 474
VHPI_SENS_CLR macro 474
VHPI_SENS_FIRST macro 475
VHPI_SENS_ISSET macro 474
VHPI_SENS_SET macro 474
VHPI_SENS_ZERO macro 474
vhpi_user.h file 449, 451
vhpi_vprintf function 426
vhpiAnalysisPhase enumeration constant 345
vhpiAppF reserved word 347
vhpiArchF reserved word 347
vhpiBinStrVal format 372
vhpiCapabilitiesP property 287
vhpiCapabilitiesT type 286
vhpiCbAfterDelay callback 221, 222, 223, 

365, 366
vhpiCbDataT type 357
vhpiCbEndOfAnalysis callback 351, 367
vhpiCbEndOfElaboration callback 199, 352, 

367
vhpiCbEndOfInitialization callback 222, 

367
vhpiCbEndOfProcesses callback 221, 222, 

366
vhpiCbEndOfReset callback 355, 370
vhpiCbEndOfRestart callback 354, 369, 398

saving registration 354
vhpiCbEndOfSave callback 353, 369
vhpiCbEndOfSimulation callback 223, 353, 

368, 390
vhpiCbEndOfSubpCall callback 365
vhpiCbEndOfTimeStep callback 223, 366
vhpiCbEndOfTool callback 355, 367
vhpiCbEnterInteractive callback 368
vhpiCbExitInteractive callback 368
vhpiCbForce callback 360
vhpiCbLastKnownDeltaCycle callback 223, 

366
vhpiCbNextTimeStep callback 222, 366
vhpiCbQuiescense callback 368
vhpiCbRelease callback 361
vhpiCbRepAfterDelay callback 221, 222, 

223, 365, 366
vhpiCbRepEndOfProcesses callback 221, 

222, 366
vhpiCbRepEndOfTimeStep callback 223, 366
vhpiCbRepLastKnownDeltaCycle callback 

223, 366
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vhpiCbRepNextTimeStep callback 222, 366
vhpiCbRepStartOfNextCycle callback 221, 

222, 366
vhpiCbRepStartOfPostponed callback 221, 

223, 366
vhpiCbRepStartOfProcesses callback 221, 

222, 366
vhpiCbRepTimeOut callback 221, 222, 223, 

361, 366
vhpiCbResume callback 222, 223, 364
vhpiCbSensitivity callback 222, 362
vhpiCbSigInterrupt callback 368
vhpiCbStartOfAnalysis callback 351, 367
vhpiCbStartOfElaboration callback 199, 

351, 367
vhpiCbStartOfInitialization callback 

221, 353, 367
vhpiCbStartOfNextCycle callback 221, 222, 

366
vhpiCbStartOfPostponed callback 221, 223, 

366
vhpiCbStartOfProcesses callback 221, 222, 

366
vhpiCbStartOfReset callback 355, 370
vhpiCbStartOfRestart callback 354, 369, 

398
saving registration 354

vhpiCbStartOfSave callback 353, 369
vhpiCbStartOfSimulation callback 223, 

353, 368
vhpiCbStartOfSubpCall callback 364
vhpiCbStartOfTool callback 345, 367
vhpiCbStmt callback 363
vhpiCbSuspend callback 221, 222, 223, 364
vhpiCbTimeOut callback 221, 222, 223, 361, 

366
vhpiCbTransaction callback 215, 218, 219, 

220, 361
vhpiCbValueChange callback 215, 218, 220, 

360
VHPICharCodes array 449
vhpiCharT type 371
vhpiCharVal format 373
vhpiDecStrVal format 372
vhpiDeposit mode 218, 377
vhpiDepositPropagate mode 377
VHPIDIRECT reserved word 350
vhpiElaborationPhase enumeration constant 

345
vhpiEnumT type 371
vhpiEnumVal format 372
vhpiEnumVecVal format 373
vhpiFalse constant 293
vhpiForce mode 218, 360, 377

vhpiForcePropagate mode 377
vhpiCbForce callback 360

vhpiFormatT type 372
vhpiFullNameP property 294
vhpiFuncF reserved word 347
vhpiHandleT type 288
vhpiHexStrVal format 372
vhpiInitializationPhase enumeration 

constant 345
vhpiIntPropertyT type 293
vhpiIntT type 293, 371
vhpiIntVal format 373
vhpiIntVecVal format 373
vhpiLibF reserved word 347
vhpiLogicVal format 373
vhpiLogicVecVal format 373
vhpiLongIntT type 371
vhpiLongIntVal format 373
vhpiLongIntVecVal format 373
vhpiObjTypeVal format 373, 376
vhpiOctStrVal format 372
vhpiOneToManyT type 292
vhpiOneToOneT type 291
vhpiPhaseT type 345
vhpiPhysPropertyT type 294
vhpiPhysT type 294, 371
vhpiPhysVal format 373
vhpiPhysVecVal format 374
vhpiProcF reserved word 347
vhpiProvidesAdvancedDebugRuntime

enumeration constant 287
vhpiProvidesAdvancedForeignModel

enumeration constant 287
vhpiProvidesConnectivity enumeration 

constant 286
vhpiProvidesDebugRuntime enumeration 

constant 287
vhpiProvidesDynamicElab enumeration 

constant 287
vhpiProvidesForeignModel enumeration 

constant 287
vhpiProvidesHierarchy enumeration con-

stant 286
vhpiProvidesPostAnalysis enumeration 

constant 286
vhpiProvidesReset enumeration constant 287
vhpiProvidesSaveRestart enumeration 

constant 287
vhpiProvidesStaticAccess enumeration 

constant 286
vhpiPtrVal format 373
vhpiPtrVecVal format 374
vhpiRawDataVal format 374, 376
vhpiRealPropertyT type 294
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vhpiRealT type 294, 371
vhpiRealVal format 373
vhpiRealVecVal format 373
vhpiRegistrationPhase enumeration con-

stant 345
vhpiRelease mode 377

vhpiCbRelease callback 361
vhpiResetPhase enumeration constant 345
vhpiRestartPhase enumeration constant 345
vhpiSavePhase enumeration constant 345
vhpiSimulationPhase enumeration constant 

345
vhpiSizeConstraint mode 377, 381
vhpiSmallEnumT type 371
vhpiSmallEnumVal format 373
vhpiSmallEnumVecVal format 373
vhpiSmallPhysT type 371
vhpiSmallPhysVal format 373
vhpiSmallPhysVecVal format 374
vhpiStrPropertyT type 293
vhpiStrVal format 373
vhpiTerminationPhase enumeration constant 

345
vhpiTimeT type 372
vhpiTimeVal format 373
vhpiTimeVecVal format 374
vhpiTrue constant 293
vhpiUndefined constant 293
vhpiValueT type 372
viewport 435

access description 435
object description 435

visibility 63, 185, 187, 198
by selection 31
context clause 197
direct 31, 188, 191

potential visibility exceptions 191
extension into block configuration 15
package body declarative item 32
potential 191
in protected type body 59
by selection 187, 191

visible entity declaration 102, 199

W

wait statement 145, 145, 145, 364
in function 147

implicit condition conversion 130
implicit in process statement 171
process with sensitivity list 147
prohibited in procedure 172
in protected type 147
resumption callback 364
suspension callback 364

waveform 149, 150, 155, 158, 174
assignment 150
element 150, 152

weak STD_ULOGIC value 278, 514
while loop

execution callback 363
while iteration scheme 167

implicit condition conversion 130
See also loop

whitespace character 272
WIDTH subtype

declaration 269
WORK library 196

where prohibited 197
working library 196
WRITE procedure 56, 75, 273, 274

declaration 271
fixed-point 528, 536
floating-point 541, 548
string representation 62

WRITELINE procedure 75, 272
declaration 271

write-only access 435
write-only file 56

X

xnor operator 28, 119
fixed-point 532
floating-point 545

xor operator 28, 119
fixed-point 532
floating-point 545

Z

zero (floating-point) 538
ZEROFP function

floating-point 548
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