

IEC 61588
Edition 2.0� 2009-02

INTERNATIONAL
STANDARD

Precision clock synchronization protocol for networked measurement and
control systems

IE
C

 6
15

88
:2

00
9(

E
)

IE
EE

 S
td

. 1
58

8(
E

):2
00

8

IEEE 1588™

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

 THIS PUBLICATION IS COPYRIGHT PROTECTED
 Copyright © 2008 IEEE

All rights reserved. IEEE is a registered trademark in the U.S. Patent & Trademark Office, owned by the Institute of
Electrical and Electronics Engineers, Inc.
Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from the IEC Central Office.
Any questions about IEEE copyright should be addressed to the IEEE. Enquiries about obtaining additional rights
to this publication and other information requests should be addressed to the IEC or your local IEC member National
Committee.

IEC Central Office The Institute of Electrical and Electronics Engineers, Inc
3, rue de Varembé 3 Park Avenue
CH-1211 Geneva 20 US-New York, NY10016-5997
Switzerland USA
Email: inmail@iec.ch Email: stds-info@ieee.org
Web: www.iec.ch Web: www.ieee.org

About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigenda or an amendment might have been published.
� Catalogue of IEC publications: www.iec.ch/searchpub
The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,…).
It also gives information on projects, withdrawn and replaced publications.
� IEC Just Published: www.iec.ch/online_news/justpub
Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available
on-line and also by email.
� Electropedia: www.electropedia.org
The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions
in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical
Vocabulary online.
� Customer Service Centre: www.iec.ch/webstore/custserv
If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service
Centre FAQ or contact us:
Email: csc@iec.ch
Tel.: +41 22 919 02 11

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

IEC 61588
Edition 2.0� 2009-02

INTERNATIONAL
STANDARD

Precision clock synchronization protocol for networked measurement and
control systems

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION XL
ICS 25.040.40; 35.110, 35.240.50

PRICE CODE

ISBN 2-8318-1026-3

IEEE 1588™

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Foreword...xi
IEEE introduction... xiv
1. Overview .. 1

1.1 Scope ... 1
1.2 Purpose .. 2
1.3 Layout of the document ... 2

2. Normative references.. 3

3. Definitions, acronyms, and abbreviations .. 4
3.1 Definitions ... 4
3.2 Acronyms and abbreviations ... 7

4. Conventions.. 8
4.1 Descriptive lexical form syntax ... 8
4.2 Word usage.. 9
4.3 Behavioral specification notation .. 10

5. Data types and on-the-wire formats in a PTP system... 11
5.1 General .. 11
5.2 Primitive data type specifications .. 11
5.3 Derived data type specifications .. 12
5.4 On-the-wire formats .. 15

6. Clock synchronization model ... 16
6.1 General .. 16
6.2 Principle assumptions about the network and implementation recommendations............................. 16
6.3 PTP systems... 17
6.4 PTP message classes.. 17
6.5 PTP device types ... 18
6.6 Synchronization overview ... 29
6.7 PTP communications overview ... 37

7. Characterization of PTP entities ... 41
7.1 Domains... 41
7.2 PTP timescale .. 41
7.3 PTP communications ... 42
7.4 PTP communication media.. 46
7.5 PTP ports ... 47
7.6 PTP device characterization .. 53
7.7 PTP timing characterization .. 61

8. PTP data sets .. 63
8.1 General specifications for data set members ... 63
8.2 Data sets for ordinary and boundary clocks... 65
8.3 Data sets for transparent clocks ... 74

9. PTP for ordinary and boundary clocks ... 76
9.1 General protocol requirements for PTP ordinary and boundary clocks... 76
9.2 State protocol... 76
9.3 Best master clock algorithm .. 83
9.4 Grandmaster clocks ... 92
9.5 Message processing semantics .. 93
9.6 Changes in the local clock ... 107

10. PTP for transparent clocks.. 107
10.1 General requirements for both end-to-end and peer-to-peer transparent clocks 107
10.2 End-to-end transparent clock requirements ... 108

CONTENTS

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– i –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

10.3 Peer-to-peer transparent clock requirements.. 108

11. Clock offset, path delay, residence time, and asymmetry corrections .. 108
11.1 General specifications.. 108
11.2 Computation of clock offset in ordinary and boundary clocks .. 109
11.3 Delay request-response mechanism... 110
11.4 Peer delay mechanism ... 112
11.5 Transparent clock residence time correction for PTP version 2 events ... 117
11.6 Asymmetry correction for PTP version 2 event messages... 120

12. Synchronization and syntonization of clocks ... 122
12.1 Syntonization ... 122
12.2 Synchronization ... 123

13. PTP message formats ... 124
13.1 General .. 124
13.2 General message format requirements... 124
13.3 Header.. 124
13.4 Suffix ... 128
13.5 Announce message .. 128
13.6 Sync and Delay_Req messages.. 130
13.7 Follow_Up message .. 130
13.8 Delay_Resp message ... 130
13.9 Pdelay_Req message ... 131
13.10 Pdelay_Resp message.. 131
13.11 Pdelay_Resp_Follow_Up message.. 132
13.12 Signaling message ... 132
13.13 Management message.. 133

14. TLV entity specifications ... 133
14.1 General requirements... 133
14.2 Experimental TLVs ... 134
14.3 Vendor and standard organization extension TLVs... 135

15. Management ... 135
15.1 General .. 135
15.2 PTP management mechanism.. 136
15.3 Processing of management messages .. 136
15.4 Management message format .. 137
15.5 Management TLVs .. 138

16. General optional features.. 158
16.1 Unicast message negotiation (optional) ... 158
16.2 Path trace (optional)... 163
16.3 Alternate timescales (optional) .. 165

17. State configuration options... 169
17.1 General .. 169
17.2 Data types for options.. 169
17.3 Grandmaster clusters (optional)... 170
17.4 Alternate master (optional) .. 172
17.5 Unicast discovery (optional).. 173
17.6 Acceptable master table (optional) .. 175

18. Compatibility requirements .. 177
18.1 Compatibility between version 2 and future versions.. 177
18.2 Compatibility between version 1 and version 2... 177
18.3 Message formats and data types .. 178
18.4 Naming changes .. 183
18.5 Restrictions on mixed version 1 and version 2 systems... 183

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– ii –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

19. Conformance .. 184
19.1 Conformance objective.. 184
19.2 PTP conformance requirements... 184
19.3 PTP profiles ... 185

Annex A (informative) Using PTP... 187

Annex B (informative) Timescales and epochs in PTP.. 197

Annex C (informative) Examples of residence and asymmetry corrections... 200

Annex D (normative) Transport of PTP over User Datagram Protocol over Internet Protocol Version 4 . 219

Annex E (normative) Transport of PTP over User Datagram Protocol over Internet Protocol Version 6.. 221

Annex F (normative) Transport of PTP over IEEE 802.3 /Ethernet... 223

Annex G (normative) Transport of PTP over DeviceNET ... 225

Annex H (normative) Transport of PTP over ControlNET .. 228

Annex I (normative) Transport of PTP over IEC 61158 Type 10 .. 230

Annex J (normative) Default PTP profiles ... 237

Annex K (informative) Security protocol (experimental) .. 241

Annex L (informative) Transport of cumulative frequency scale factor offset (experimental) 264

Annex M (informative) Bibliography... 268
Annex N (informative) List of partcipants... 270

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– iii –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

TABLES

Table 1 ⎯Primitive PTP data types ... 12

Table 2 ⎯domainNumber.. 41

Table 3 ⎯networkProtocol enumeration ... 46

Table 4 ⎯Non-EUI-64 addressTechnology enumeration .. 51

Table 5 —clockClass specifications... 55

Table 6 —clockAccuracy enumeration .. 56

Table 7 —timeSource enumeration.. 57

Table 8 ⎯PTP state enumeration... 73

Table 9 ⎯Delay mechanism enumeration ... 74

Table 10 ⎯PTP portState definition .. 77

Table 11 ⎯Event applicability in boundary clocks.. 83

Table 12 ⎯Information sources for data set comparison algorithm .. 88

Table 13 ⎯Updates for state decision code M1 and M2 ... 91

Table 14 ⎯Updates for state decision code M3... 91

Table 15 ⎯Updates for state decision code P1, and P2 ... 91

Table 16 ⎯Updates for state decision code S1 .. 92

Table 17 ⎯Source identity comparisons.. 95

Table 18 ⎯Common message header .. 124

Table 19 ⎯Values of messageType field... 125

Table 20 ⎯Values of flagField .. 126

Table 21 ⎯correctionField semantics .. 127

Table 22 ⎯References for sequenceId value exceptions ... 127

Table 23 ⎯controlField enumeration... 128

Table 24 ⎯Values of logMessageInterval field... 128

Table 25 ⎯Announce message fields .. 129

Table 26 ⎯Sync and Delay_Req message fields ... 130

Table 27 ⎯Follow_Up message fields .. 130

Table 28 ⎯Delay_Resp message fields ... 130

Table 29 ⎯Pdelay_Req message fields ... 131

Table 30 ⎯Pdelay_Resp message fields.. 131

Table 31 ⎯Pdelay_Resp_Follow_Up message fields.. 132

Table 32 ⎯Acceptance of signaling messages .. 132

Table 33 ⎯Signaling message fields ... 133

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– iv–

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table 34 ⎯tlvType values ... 134

Table 35 ⎯Organization specific TLV fields .. 135

Table 36 ⎯Acceptance of management messages... 136

Table 37 ⎯Management message fields.. 137

Table 38 ⎯Values of the actionField... 138

Table 39 ⎯Management TLV fields.. 139

Table 40 ⎯managementId values .. 140

Table 41 ⎯CLOCK_DESCRIPTION management TLV data field.. 141

Table 42 ⎯clockType specification... 142

Table 43 ⎯USER_DESCRIPTION management TLV data field ... 144

Table 44 ⎯INITIALIZE management TLV data field .. 145

Table 45 ⎯INITIALIZATION_KEY enumeration ... 145

Table 46 ⎯Fault log severityCode enumeration.. 145

Table 47 ⎯FAULT_LOG management TLV data field .. 146

Table 48 ⎯TIME management TLV data field ... 147

Table 49 ⎯CLOCK_ACCURACY management TLV data field ... 147

Table 50 ⎯DEFAULT_DATA_SET management TLV data field... 148

Table 51 ⎯PRIORITY1 management TLV data field... 148

Table 52 ⎯PRIORITY2 management TLV data field... 149

Table 53 ⎯DOMAIN management TLV data field... 149

Table 54 ⎯SLAVE_ONLY management TLV data field ... 149

Table 55 ⎯CURRENT_DATA_SET management TLV data field .. 149

Table 56 ⎯PARENT_DATA_SET management TLV data field ... 150

Table 57 ⎯TIME_PROPERTIES_DATA_SET management TLV data field...................................... 151

Table 58 ⎯UTC_PROPERTIES management TLV data field.. 152

Table 59 ⎯TRACEABILITY_PROPERTIES management TLV data field... 152

Table 60 ⎯TIMESCALE_PROPERTIES management TLV data field ... 152

Table 61 ⎯PORT_DATA_SET management TLV data field... 153

Table 62 ⎯LOG_ANNOUNCE_INTERVAL management TLV data field... 154

Table 63 ⎯ANNOUNCE_RECEIPT_TIMEOUT management TLV data field................................... 154

Table 64 ⎯LOG_SYNC_INTERVAL management TLV data field .. 154

Table 65 ⎯DELAY_MECHANISM management TLV data field ... 155

Table 66 ⎯LOG_MIN_PDELAY_REQ_INTERVAL management TLV data field............................ 155

Table 67 ⎯VERSION_NUMBER management TLV data field... 155

Table 68 ⎯TRANSPARENT_CLOCK_DEFAULT_DATA_SET management TLV data field 156

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– v –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table 69 ⎯PRIMARY_DOMAIN management TLV data field... 156

Table 70 ⎯TRANSPARENT_CLOCK_PORT_DATA_SET management TLV data field................. 157

Table 71 ⎯MANAGEMENT_ERROR_STATUS TLV format.. 157

Table 72 ⎯managementErrorId enumeration .. 158

Table 73 ⎯REQUEST_UNICAST_TRANSMISSION TLV format .. 160

Table 74 ⎯GRANT_UNICAST_TRANSMISSION TLV format .. 161

Table 75 ⎯CANCEL_UNICAST_TRANSMISSION TLV format .. 161

Table 76 ⎯ACKNOWLEDGE_CANCEL_UNICAST_TRANSMISSION TLV format 162

Table 77 ⎯UNICAST_NEGOTIATION_ENABLE management TLV data field 162

Table 78 ⎯PATH_TRACE TLV format ... 164

Table 79 ⎯PATH_TRACE_LIST management TLV data field ... 164

Table 80 ⎯PATH_TRACE_ENABLE management TLV data field .. 164

Table 81 ⎯ALTERNATE_TIME_OFFSET_INDICATOR TLV format ... 166

Table 82 —ALTERNATE_TIME_OFFSET_ENABLE management TLV data field 167

Table 83 —ALTERNATE_TIME_OFFSET_NAME management TLV data field.............................. 167

Table 84 —ALTERNATE_TIME_OFFSET_MAX_KEY management TLV data field 168

Table 85 —ALTERNATE_TIME_OFFSET_PROPERTIES management TLV data field 168

Table 86 ⎯GRANDMASTER_CLUSTER_TABLE management TLV data field 171

Table 87 ⎯Alternate master attributes... 173

Table 88 ⎯ALTERNATE_MASTER management TLV data field.. 173

Table 89 ⎯UNICAST_MASTER_TABLE management TLV data field ... 174

Table 90 ⎯UNICAST_MASTER_MAX_TABLE_SIZE management TLV data field 175

Table 91 ⎯Operation of acceptable master table option ... 176

Table 92 ⎯ACCEPTABLE_MASTER_TABLE management TLV data field..................................... 176

Table 93 ⎯ACCEPTABLE_MASTER_MAX_TABLE_SIZE management TLV data field............... 177

Table 94 ⎯ACCEPTABLE_MASTER_TABLE_ENABLED management TLV data field 177

Table 95 ⎯Version 1 stratum to version 2 class .. 178

Table 96 ⎯Version 2 clockClass to version 1 stratum .. 178

Table 97 ⎯Version 1 to version 2 translation of grandmasterIsPreferred field 179

Table 98 ⎯Version 2 to version 1 translation of the priority1 field .. 179

Table 99 ⎯Version 1 clock identifier to version 2 clockAccuracy.. 179

Table 100 ⎯Version 2 clockAccuracy to version 1 clock identifier... 179

Table 101 ⎯Version 1 to version 2 translation of grandmasterIsBoundaryClock field...................... 180

Table 102 ⎯Version 2 to version 1 translation of the priority2 field.. 180

Table 103 ⎯Version 1 control field and version 2 messageType field mappings 180

Table 104 ⎯Translation of flagField from version 1 to version 2 .. 181

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– vi –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table 105 ⎯Translation of flagField from version 2 to version 1 .. 181

Table 106 ⎯Version 2 fields with no version 1 counterpart ... 182

Table 107 ⎯Version 1 fields with no version 2 counterpart ... 183

Table 108 ⎯Name correspondence... 183

Table 109 ⎯Mixed system restrictions ... 184

Table B.1⎯Relationships between timescales... 199

Table C.1⎯Interpretation of Figure C.1 key values .. 202

Table C.2⎯Interpretation of Figure C.2 key values .. 203

Table C.3⎯Interpretation of Figure C.3 key values .. 205

Table C.4⎯Interpretation of Figure C.4 key values .. 207

Table C.5⎯Interpretation of Figure C.5 key values .. 209

Table C.6—Interpretation of Figure C.6 key values .. 210

Table C.7—Interpretation of Figure C.7 key values .. 211

Table C.8—Interpretation of Figure C.8 key values .. 213

Table C.9—Interpretation of Figure C.9 key values .. 215

Table C.10—Interpretation of Figure C.10 key values... 217

Table C.11—Interpretation of Figure C.11 key values... 218

Table D.1⎯IPv4 multicast addresses... 219

Table D.2⎯transportSpecific field values ... 220

Table E.1⎯IPv6 multicast addresses ... 222

Table F.1⎯Multicast MAC addresses ... 223

Table F.2⎯Ethernet transport specific field... 224

Table G.1⎯DeviceNet clockIdentity octets 0 through 7.. 226

Table G.2⎯DeviceNet headers for all PTP message packets .. 226

Table H.1⎯ControlNet clockIdentity octets 2 through 7... 228

Table I.1⎯Mapping of messages... 231

Table I.2⎯IEEE 802.3 DLPDU syntax ... 232

Table I.3⎯Multicast MAC address.. 233

Table I.4⎯LT (Length/Type)... 234

Table I.6⎯Mapping of the parameter and attribute names .. 235

Table I.7⎯Translation of flagField from PTP version 2 to PROFINET.. 236

Table K.1⎯flagField.SECURE flag .. 242

Table K.2⎯AUTHENTICATION TLV .. 260

Table K.3⎯algorithmId values .. 261

Table K.4⎯ICV and pad length... 261

Table K.5⎯AUTHENTICATION_CHALLENGE TLV .. 262

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– vii –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table K.6⎯challengeType values ... 262

Table K.7⎯SECURITY_ASSOCIATION_UPDATE TLV.. 263

Table K.8⎯addressType values... 263

Table L.1⎯CUM_FREQ_SCALE_FACTOR_OFFSET TLV format .. 266

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– viii –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

FIGURES

Figure 1 ⎯Mealy state transition diagram .. 10

Figure 2 ⎯Model of an ordinary clock ... 19

Figure 3 ⎯Model of a boundary clock.. 21

Figure 4 ⎯Model of an end-to-end transparent clock ... 22

Figure 5 ⎯End-to-end residence time correction model ... 23

Figure 6 ⎯Combined ordinary and end-to-end transparent clock... 25

Figure 7 ⎯Model of a peer-to-peer transparent clock... 27

Figure 8 ⎯Peer-to-peer residence time and link delay correction model.. 28

Figure 9 ⎯Combined ordinary and peer-to-peer transparent clock. ... 30

Figure 10 ⎯Simple master−slave clock hierarchy ... 32

Figure 11 ⎯Pruned mesh topology .. 33

Figure 12 ⎯Basic synchronization message exchange .. 34

Figure 13 ⎯Link delay measurement... 35

Figure 14 ⎯Timestamp generation model.. 36

Figure 15 ⎯Hierarchical topology ... 37

Figure 16 ⎯Linear topology... 38

Figure 17 ⎯Multiply connected topology.. 39

Figure 18 ⎯Bridging disparate technologies.. 40

Figure 19 ⎯Definition of latency constants ... 45

Figure 20 ⎯Propagation asymmetry .. 47

Figure 21 ⎯Port model .. 48

Figure 22 ⎯Scaled log variance hysteresis .. 60

Figure 23 ⎯State machine for a full implementation... 78

Figure 24 ⎯State machine for a slave-only implementation.. 79

Figure 25 ⎯STATE_DECISION_EVENT logic ... 81

Figure 26 ⎯State decision algorithm ... 87

Figure 27 ⎯Data set comparison algorithm, part 1 .. 89

Figure 28 ⎯Data set comparison algorithm, part 2 .. 90

Figure 29 ⎯Receipt of Announce message logic ... 96

Figure 30 ⎯Receipt of Sync message logic ... 98

Figure 31 ⎯Receipt of Follow_Up message logic ... 100

Figure 32 ⎯Receipt of Delay_Req message logic ... 101

Figure 33 ⎯Receipt of Delay_Resp message logic.. 103

Figure 34 ⎯Delay request-response path length measurement .. 110

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– ix–

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Figure 35 ⎯Peer delay link measurement .. 113

Figure 36 ⎯Permitted mixed system configuration ... 183

Figure 37 ⎯Profile print form .. 186

Figure C.1⎯Master, end-to-end, and slave one-step clocks; no asymmetry correction 201

Figure C.2⎯Master, end-to-end, and slave one-step clocks; with asymmetry correction 202

Figure C.3⎯Master two-step and end-to-end transparent and slave one-step clocks; with asymmetry
correction.. 204

Figure C.4⎯Master and end-to-end transparent, two-step, and one-step, slave clocks; with asymmetry
correction.. 206

Figure C.5⎯One-step master, two-step end-to-end transparent, and one-step slave clocks; with asymmetry
correction.. 208

Figure C.6—One-step peer responder, end-to-end transparent, and peer requestor clocks; with asymmetry
correction.. 210

Figure C.7—One-step peer responder, two-step end-to-end transparent, and one-step peer requestor clocks;
with asymmetry correction ... 211

Figure C.8—Two-step peer responder, two-step end-to-end transparent, and one-step peer requestor clocks:
option 1; with asymmetry correction.. 212

Figure C.9—Two-step peer responder, two-step end-to-end transparent, and one-step peer requestor clocks:
option 2; with asymmetry correction.. 214

Figure C.10—Two-step peer responder, one-step end-to-end transparent, and one-step peer requestor
clocks: option 2; with asymmetry correction.. 216

Figure C.11—One-step peer master, two-step peer-to-peer transparent, and one-step peer slave clocks; time
computation .. 217

Figure G.1⎯ Event message timestamp point ... 225

Figure I.1⎯PROFINET region combined with domains ... 231

Figure K.1⎯PTP secure message processing .. 252

Figure K.2⎯Challenge processing... 254

Figure K.3⎯Secure transmit processing.. 256

Figure K.4⎯Secure event processing .. 258

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– x –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

INTERNATIONAL ELECTROTECHNICAL COMMISSION

PRECISION CLOCK SYNCHRONIZATION PROTOCOL

 FOR NETWORKED MEASUREMENT AND CONTROL SYSTEMS

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization
comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to
promote international co-operation on all questions concerning standardization in the electrical and
electronic fields. To this end and in addition to other activities, IEC publishes International Standards,
Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter
referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National
Committee interested in the subject dealt with may participate in this preparatory work. International,
governmental and non-governmental organizations liaising with the IEC also participate in this preparation.
IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with
conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an
international consensus of opinion on the relevant subjects since each technical committee has
representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly
indicated in the latter.

5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with an IEC Publication.

6) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC/IEEE 61588 has been processed through subcommittee 65C:
Industrial networks, of IEC technical committee 65: Industrial-process measurement,
control and automation.

This second edition cancels and replaces the first edition published in 2004. It constitutes a
technical revision.

The text of this standard is based on the following documents:

IEEE Std FDIS Report on voting

1588 (2008) 65C/510/FDIS 65C/517/RVD

Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.

The committee has decided that the contents of this publication will remain unchanged
until 2013.

– xi – IEC 61588:2009(E)
IEEE 1588-2008(E)

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

IEC/IEEE Dual Logo International Standards
This Dual Logo International Standard is the result of an agreement between the IEC and the Institute of
Electrical and Electronics Engineers, Inc. (IEEE). The original IEEE Standard was submitted to the IEC for
consideration under the agreement, and the resulting IEC/IEEE Dual Logo International Standard has been
published in accordance with the ISO/IEC Directives.

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating
Committees of the IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards
through a consensus development process, approved by the American National Standards Institute, which
brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers
are not necessarily members of the Institute and serve without compensation. While the IEEE administers the
process and establishes rules to promote fairness in the consensus development process, the IEEE does not
independently evaluate, test, or verify the accuracy of any of the information contained in its standards.

Use of an IEC/IEEE Dual Logo International Standard is wholly voluntary. The IEC and IEEE disclaim liability for
any personal injury, property or other damage, of any nature whatsoever, whether special, indirect,
consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance upon
this, or any other IEC or IEEE Standard document.

The IEC and IEEE do not warrant or represent the accuracy or content of the material contained herein, and
expressly disclaim any express or implied warranty, including any implied warranty of merchantability or fitness
for a specific purpose, or that the use of the material contained herein is free from patent infringement.
IEC/IEEE Dual Logo International Standards documents are supplied “AS IS”.

The existence of an IEC/IEEE Dual Logo International Standard does not imply that there are no other ways to
produce, test, measure, purchase, market, or provide other goods and services related to the scope of the
IEC/IEEE Dual Logo International Standard. Furthermore, the viewpoint expressed at the time a standard is
approved and issued is subject to change brought about through developments in the state of the art and
comments received from users of the standard.

Every IEEE Standard is subjected to review at least every five years for revision or reaffirmation. When a
document is more than five years old and has not been reaffirmed, it is reasonable to conclude that its contents,
although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to
determine that they have the latest edition of any IEEE Standard.

In publishing and making this document available, the IEC and IEEE are not suggesting or rendering
professional or other services for, or on behalf of, any person or entity. Neither the IEC nor IEEE is undertaking
to perform any duty owed by any other person or entity to another. Any person utilizing this, and any other
IEC/IEEE Dual Logo International Standards or IEEE Standards document, should rely upon the advice of a
competent professional in determining the exercise of reasonable care in any given circumstances.

Interpretations – Occasionally questions may arise regarding the meaning of portions of standards as they relate
to specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will
initiate action to prepare appropriate responses. Since IEEE Standards represent a consensus of concerned
interests, it is important to ensure that any interpretation has also received the concurrence of a balance of
interests. For this reason, IEEE and the members of its societies and Standards Coordinating Committees are
not able to provide an instant response to interpretation requests except in those cases where the matter has
previously received formal consideration.

Comments for revision of IEC/IEEE Dual Logo International Standards are welcome from any interested party,
regardless of membership affiliation with the IEC or IEEE. Suggestions for changes in documents should be in
the form of a proposed change of text, together with appropriate supporting comments. Comments on standards
and requests for interpretations should be addressed to:

Secretary, IEEE-SA Standards Board, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331, USA and/or
General Secretary, IEC, 3, rue de Varembé, PO Box 131, 1211 Geneva 20, Switzerland.

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the
Institute of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright
Clearance Center. To arrange for payment of licensing fee, please contact Copyright Clearance Center,
Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy
portions of any individual standard for educational classroom use can also be obtained through the Copyright
Clearance Center.

NOTE – Attention is called to the possibility that implementation of this standard may require use of subject
matter covered by patent rights. By publication of this standard, no position is taken with respect to the
existence or validity of any patent rights in connection therewith. The IEEE shall not be responsible for
identifying patents for which a license may be required by an IEEE standard or for conducting inquiries into the
legal validity or scope of those patents that are brought to its attention.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– xii –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

IEEE Standard for a Precision Clock
Synchronization Protocol for
Networked Measurement and Control
Systems

Sponsor

Technical Committee on Sensor Technology (TC-9)
of the

IEEE Instrumentation and Measurement Society

Approved 27 March 2008

IEEE-SA Standards Board

Abstract: A protocol is provided in this standard that enables precise synchronization of clocks in
measurement and control systems implemented with technologies such as network
communication, local computing, and distributed objects. The protocol is applicable to systems
communicating via packet networks. Heterogeneous systems are enabled that include clocks of
various inherent precision, resolution, and stability to synchronize. System-wide synchronization
accuracy and precision in the sub-microsecond range are supported with minimal network and
local clock computing resources. Simple systems are installed and operated without requiring the
management attention of users because the default behavior of the protocol allows for it.

Keywords: boundary clock, clock, distributed system, master clock, measurement and control
system, real-time clock, synchronized clock, transparent clock

•

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– xiii –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

IEEE Introduction

 This standard defines a protocol enabling precise synchronization of clocks in measurement and control
systems implemented with technologies such as network communication, local computing, and distributed
objects. The clocks communicate with each other over a communication network. The protocol generates a
master−slave relationship among the clocks in the system. All clocks ultimately derive their time from a
clock known as the grandmaster clock. In its basic form, this protocol is intended to be administration free.

History

Measurement and control applications are increasingly using distributed system technologies such as
network communication, local computing, and distributed objects. Without a standardized protocol for
synchronizing the clocks in these devices, it is unlikely that the benefits will be realized in the multivendor
system component market. Existing protocols for clock synchronization are not optimum for these
applications. For example, Network Time Protocol (NTP) targets large distributed computing systems with
millisecond synchronization requirements. The protocol proposed in this standard specifically addresses the
following needs of measurement and control systems:

⎯ Spatially localized

⎯ Microsecond to sub-microsecond accuracy and precision

⎯ Administration free

⎯ Accessible for both high-end devices and low-cost, low-end devices

Notice to users

Laws and regulations

Users of these documents should consult all applicable laws and regulations. Compliance with the
provisions of this standard does not imply compliance to any applicable regulatory requirements.
Implementers of the standard are responsible for observing or referring to the applicable regulatory
requirements. IEEE does not, by the publication of its standards, intend to urge action that is not in
compliance with applicable laws, and these documents may not be construed as doing so.

Copyrights

This document is copyrighted by the IEEE. It is made available for a wide variety of both public and
private uses. These include both use, by reference, in laws and regulations, and use in private self-
regulation, standardization, and the promotion of engineering practices and methods. By making this
document available for use and adoption by public authorities and private users, the IEEE does not waive
any rights in copyright to this document.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– xiv –

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Updating of IEEE documents

Users of IEEE standards should be aware that these documents may be superseded at any time by the
issuance of new editions or may be amended from time to time through the issuance of amendments,
corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the
document together with any amendments, corrigenda, or errata then in effect. In order to determine whether
a given document is the current edition and whether it has been amended through the issuance of
amendments, corrigenda, or errata, visit the IEEE Standards Association Web site at
http://ieeexplore.ieee.org/xpl/standards.jsp, or contact the IEEE at the address listed previously.

For more information about the IEEE Standards Association or the IEEE standards development process,
visit the IEEE-SA Web site at http://standards.ieee.org.

Errata

Errata, if any, for this and all other standards can be accessed at the following URL:
http://standards.ieee.org/reading/ieee/updates/errata/. Users are encouraged to check this URL for errata
periodically.

Interpretations

Current interpretations can be accessed at the following URL: http://standards.ieee.org/reading/ieee/interp/.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken with respect to the existence
or validity of any patent rights in connection therewith. A patent holder or patent applicant has filed a
statement of assurance that it will grant licenses under these rights without compensation or under
reasonable rates, with reasonable terms and conditions that are demonstrably free of any unfair
discrimination to applicants desiring to obtain such licenses. Other Essential Patent Claims may exist for
which a statement of assurance has not been received. The IEEE is not responsible for identifying Essential
Patent Claims for which a license may be required, for conducting inquiries into the legal validity or scope
of Patents Claims, or determining whether any licensing terms or conditions are reasonable or non-
discriminatory. Further information may be obtained from the IEEE Standards Association.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– xv –

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IMPORTANT NOTICE: This standard is not intended to assure safety, security, health, or
environmental protection in all circumstances. Implementers of the standard are responsible for
determining appropriate safety, security, environmental, and health practices or regulatory
requirements.

This IEEE document is made available for use subject to important notices and legal disclaimers. These
notices and disclaimers appear in all publications containing this document and may be found under the
heading “Important Notice” or “Important Notices and Disclaimers Concerning IEEE Documents.”
They can also be obtained on request from IEEE or viewed at http://standards.ieee.org/IPR/disclaimers.html.
.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

PRECISION CLOCK SYNCHRONIZATION

PROTOCOL FOR NETWORKED MEASUREMENT

AND CONTROL SYSTEMS

1. Overview

1.1 Scope

This standard defines a protocol enabling precise synchronization of clocks in measurement and control
systems implemented with technologies such as network communication, local computing, and distributed
objects. The protocol is applicable to systems communicating by local area networks supporting multicast
messaging including, but not limited to, Ethernet. The protocol enables heterogeneous systems that include
clocks of various inherent precision, resolution, and stability to synchronize to a grandmaster clock. The
protocol supports system-wide synchronization accuracy in the sub-microsecond range with minimal
network and local clock computing resources. The default behavior of the protocol allows simple systems
to be installed and operated without requiring the administrative attention of users. The standard includes
mappings to User Datagram Protocol (UDP)/Internet Protocol (IP), DeviceNet, and a layer-2 Ethernet
implementation. It includes formal mechanisms for message extensions, higher sampling rates, correction
for asymmetry, a clock type to reduce error accumulation in large topologies, and specifications on how to
incorporate the resulting additional data into the synchronization protocol. The standard permits
synchronization accuracies better than 1 ns. The protocol has features to address applications where
redundancy and security are a requirement. The standard defines conformance and management capability.
There is provision to support unicast as well as multicast messaging. The standard includes an annex on
recommended practices. Annexes defining communication-medium-specific implementation details for
additional network implementations are expected to be provided in future versions of this standard.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 1 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

1.2 Purpose

Measurement and control applications are increasingly employing distributed system technologies such as
network communication, local computing, and distributed objects. Many of these applications will be
enhanced by having an accurate system-wide sense of time achieved by having local clocks in each sensor,
actuator, or other system device. Without a standardized protocol for synchronizing these clocks, it is
unlikely that the benefits will be realized in the multivendor system component market. Existing protocols
for clock synchronization are not optimum for these applications. For example, the Network Time Protocol
(NTP) targets large distributed computing systems with millisecond synchronization requirements. The
protocol in this standard specifically addresses the needs of measurement and control and operational
systems in the fields of test and measurement, industrial automation, military systems, manufacturing
systems, power utility systems, and certain telecommunications applications. These applications need:

⎯ Spatially localized systems with options for larger systems

⎯ Microsecond to sub-microsecond accuracy

⎯ Administration-free operation

⎯ Applicability for both high-end devices and low-cost, low-end devices

⎯ Provisions for the management of redundant and fault-tolerant systems

Several different application areas such as industrial automation, telecommunication, semiconductor
manufacturing, military systems, and utility power generation have emerged that require the standard to be
revised.

1.3 Layout of the document

This standard, which defines the Precision Time Protocol (PTP), is divided into 19 clauses:

 Clause Purpose
1 Provides the scope and benefits of this standard
2 Lists references to other standards
3 Provides definitions that are either not found in other standards or have been modified for

use with this standard
4 Provides conventions for the notation used in this standard
5 Defines the data types used in this standard
6 Provides an overview of PTP
7 Defines characteristics of PTP entities
8 Defines PTP data sets
9 Defines PTP for ordinary and boundary clocks
10 Defines PTP for transparent clocks
11 Specifies PTP time computations and corrections
12 Specifies how to syntonize and synchronize clocks
13 Defines the format of messages passed between participating clocks
14 Specifies type, length, value (TLV) formats
15 Specifies management TLVs
16 Defines general optional features of this standard
17 Defines state configuration options of this standard
18 Defines forward and backward compatibility between versions
19 Defines requirements for conformance

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 2 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Annexes are provided as follows:

 Annex Purpose
Annex A Using PTP
Annex B Defines timescales and epochs in PTP
Annex C Examples of timing computations and message fields

 Annex D Defines mappings of PTP to User Datagram Protocol (UDP) over Internet Protocol
version 4 (IPv4)

Annex E Defines mappings of PTP to UDP over Internet Protocol version 6 (IPv6)
Annex F Defines mappings of PTP over IEEE 802.3
Annex G Defines mappings of PTP to DeviceNetTM1

Annex H Defines mappings of PTP to ControlNetTM2

Annex I Defines mappings of PTP to PROFINETTM3

Annex J Default PTP Profile
Annex K Defines an experimental security option
Annex L Defines an experimental cumulative frequency TLV
Annex M Bibliography

2. Normative references
The following referenced documents are indispensable for the application of this document (i.e., they must
be understood and used, so each referenced document is cited in text and its relationship to this document is
explained). For dated references, only the edition cited applies. For undated references, the latest edition of
the referenced document (including any amendments or corrigenda) applies.

IEC 61158-3-2:2007, Industrial communication networks—Fieldbus specifications—Part 3-2: Data-
link layer service definition—Type 2 elements.4

IEC 61158-4-2:2007, Industrial communication networks—Fieldbus specifications—Part 4-2: Data-
link layer protocol specification—Type 2 elements.

IEC 61158-5-2:2007, Industrial communication networks—Fieldbus specifications—Part 5-2: Appli-
cation layer service definition—Type 2 elements.

IEC 61158-5-10:2007, Industrial communication networks—Fieldbus specifications—Part 5-10:
Application layer service definition—Type 10 elements.

IEC 61158-6-2:2007, Industrial communication networks—Fieldbus specifications—Part 6-2: Appli-
cation layer protocol specification—Type 2 elements.

IEC 61158-6-10:2007, Industrial communication networks—Fieldbus specifications—Part 6-10:
Application layer protocol specification—Type 10 elements.

1DeviceNet™ is a trade name of Open DeviceNet Vendor Association, Inc. This information is given for the convenience of users of
this standard and does not constitute an endorsement by the IEEE or IEC of these products. Equivalent products may be used if they
can be shown to lead to the same results.
2ControlNet™ is a trade name of ControlNet International, Ltd. This information is given for the convenience of users of this standard
and does not constitute an endorsement by the IEEE or IEC of these products. Equivalent products may be used if they can be shown
to lead to the same results.
3PROFINET™ is the trade name of the non-profit organization PROFIBUS Nutzerorganisation e.V. (PNO). This information is given
for the convenience of users of this standard and does not constitute an endorsement by the IEEE or IEC of these products.
Equivalent products may be used if they can be shown to lead to the same results.
4IEC publications are available from the Sales Department of the International Electrotechnical Commission, Case Postale 131, 3, rue
de Varembé, CH-1211, Genève 20, Switzerland/Suisse (http://www.iec.ch/). IEC publications are also available in the United States
from the Sales Department, American National Standards Institute, 25 West 43rd Street, 4th Floor, New York, NY 10036, USA
(http://www.ansi.org/).

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 3 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

IEC 61784-1:2007, Industrial communication networks—Profiles—Part 1: Fieldbus profiles.

IEC 61784-2:2007, Industrial communications networks—Profiles—Part 2: Additional fieldbus profiles for
real-time networks based on ISO/IEC 8802-3.

IEC 62026-3:2008, Low-voltage switchgear and controlgear—Controller-device interfaces (CDIs)—Part 3:
DeviceNet.

IEEE Std 802®, IEEE Standard for Local and Metropolitan Area Networks: Overview and Architecture.5, 6

IEEE Std 802.1ABTM, IEEE Standard for Local and Metropolitan Area Networks—Part 1AB: Station and
Media Access Control Connectivity Discovery.

IEEE Std 802.1QTM-2005, IEEE Standard for Local and Metropolitan Area Networks—Part 1Q: Virtual
bridged local area networks.

IEEE Std 802.3TM-2005, IEEE Standard for Information Technology—Telecommunications and information
exchange between systems—Local and metropolitan area networks—Specific requirements—Part 3: Carrier sense
multiple access with collision detection (CSMA/CD) access method and Physical Layer specifications.

ISO/IEC 10646:2003, Information technology—Universal Multiple-Octet Coded Character Set (UCS)7.

3. Definitions, acronyms, and abbreviations

3.1 Definitions

For the purposes of this document, the following terms and definitions apply.

3.1.1 accuracy: The mean of the time or frequency error between the clock under test and a perfect
reference clock, over an ensemble of measurements. Stability is a measure of how the mean varies with
respect to variables such as time, temperature, and so on. The precision is a measure of the deviation of the
error from the mean.

3.1.2 atomic process: A process is atomic if the values of all inputs to the process are not permitted to
change until all of the results of the process are instantiated, and the outputs of the process are not visible to
other processes until the processing of each output is complete.

3.1.3 boundary clock: A clock that has multiple Precision Time Protocol (PTP) ports in a domain and
maintains the timescale used in the domain. It may serve as the source of time, i.e., be a master clock, and
may synchronize to another clock, i.e., be a slave clock.

3.1.4 clock: A node participating in the Precision Time Protocol (PTP) that is capable of providing a
measurement of the passage of time since a defined epoch.

5IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, Piscataway, NJ 08854,
USA (http://standards/ieee.org/).
6 The IEEE standards or products referred to in this clause are trademarks of the Institute of Electrical and Electronics Engineers, Inc.
7ISO/IEC publications are available from the ISO Central Secretariat, 1 chemin de la Voie-Creuse, CP 56, CH-1211, Genève 20,
Switzerland/Suisse (http://www.iso.ch/). ISO/IEC publications are also available in the United States from Global Engineering
Documents, 15 Inverness Way East, Englewood, Colorado 80112, USA (http://global.ihs.com/). Electronic copies are available in the
United States from the American National Standards Institute, 25 West 43rd Street, 4th Floor, New York, NY 10036, USA
(http://www.ansi.org/).

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 4 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

NOTE—In the case of PTP ordinary and boundary clocks that are properly synchronized, the epoch is the epoch of the
timescale in use. In the case of PTP transparent clocks, the epoch is locally defined and not necessarily aligned with the
timescale.8

3.1.5 default: When applied to attribute values and options means the configuration of a Precision Time
Protocol (PTP) device as it is delivered from the manufacturer.

3.1.6 direct communication: A communication of Precision Time Protocol (PTP) information between
two ordinary or boundary clocks with no intervening boundary clock.

3.1.7 domain: A logical grouping of clocks that synchronize to each other using the protocol, but that are
not necessarily synchronized to clocks in another domain.

3.1.8 end-to-end transparent clock: A transparent clock that supports the use of the end-to-end delay
measurement mechanism between slave clocks and the master clock.

3.1.9 epoch: The origin of a timescale.

3.1.10 event: An abstraction of the mechanism by which signals or conditions are generated and
represented.

3.1.11 foreign master: An ordinary or boundary clock sending Announce messages to another clock that
is not the current master recognized by the other clock.

3.1.12 fractional frequency offset: The fractional frequency offset (FFO) between a measured frequency
and a reference frequency is defined as follows:

where FO is the measured frequency and FR is the reference frequency.

3.1.13 grandmaster clock: Within a domain, a clock that is the ultimate source of time for clock
synchronization using the protocol.

3.1.14 holdover: A clock previously synchronized/syntonized to another clock (normally a primary
reference or a master clock) but now free-running based on its own internal oscillator, whose frequency is
being adjusted using data acquired while it had been synchronized/syntonized to the other clock. It is said
to be in holdover or in the holdover mode, as long as it is within its accuracy requirements.

3.1.15 link: A network segment between two Precision Time Protocol (PTP) ports supporting the peer
delay mechanism of this standard. The peer delay mechanism is designed to measure the propagation time
over such a link.

3.1.16 management node: A device that configures and monitors clocks.

3.1.17 master clock: In the context of a single Precision Time Protocol (PTP) communication path, a
clock that is the source of time to which all other clocks on that path synchronize.

3.1.18 message timestamp point: A point within a Precision Time Protocol (PTP) event message serving
as a reference point in the message. A timestamp is defined by the instant a message timestamp point
passes the reference plane of a clock.

8Notes in text, tables, and figures are given for information only and do not contain requirements needed to implement the standard.

()
FR

FRFO
FFO −=

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 5 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

3.1.19 multicast communication: A communication model in which each Precision Time Protocol (PTP)
message sent from any PTP port is capable of being received and processed by all PTP ports on the same
PTP communication path.

3.1.20 node: A device that can issue or receive Precision Time Protocol (PTP) communications on a
network.

3.1.21 one-step clock: A clock that provides time information using a single event message.

3.1.22 ordinary clock: A clock that has a single Precision Time Protocol (PTP) port in a domain and
maintains the timescale used in the domain. It may serve as a source of time, i.e., be a master clock, or may
synchronize to another clock, i.e., be a slave clock.

3.1.23 parent clock: The master clock to which a clock is synchronized.

3.1.24 peer-to-peer transparent clock: A transparent clock that, in addition to providing Precision Time
Protocol (PTP) event transit time information, also provides corrections for the propagation delay of the
link connected to the port receiving the PTP event message. In the presence of peer-to-peer transparent
clocks, delay measurements between slave clocks and the master clock are performed using the peer-to-
peer delay measurement mechanism.

3.1.25 phase change rate: The observed rate of change in the measured time with respect to the reference
time. The phase change rate is equal to the fractional frequency offset between the measured frequency and
the reference frequency. See also: fractional frequency offset.

3.1.26 portNumber: An index identifying a specific Precision Time Protocol (PTP) port on a PTP node.

3.1.27 precision: See: accuracy.

3.1.28 Precision Time Protocol (PTP): The protocol defined by IEEE Std 1588-2008/IEC 61588:2009. As an adjective, it
indicates that the modified noun is specified in or interpreted in the context of IEEE Std 1588-2008/IEC 61588:2009.

3.1.29 primary reference: A source of time and or frequency that is traceable to international standards.
See also: traceability.

3.1.30 profile: The set of allowed Precision Time Protocol (PTP) features applicable to a device.

3.1.31 Precision Time Protocol (PTP) communication: Information used in the operation of the
protocol, transmitted in a PTP message over a PTP communication path.

3.1.32 Precision Time Protocol (PTP) communication path: The signaling path portion of a particular
network enabling direct communication among ordinary and boundary clocks.

3.1.33 Precision Time Protocol (PTP) message: One of the message types defined in IEEE Std 1588-2008/
IEC 61588:2009.

3.1.34 Precision Time Protocol (PTP) node: A PTP ordinary, boundary, or transparent clock or a device
that generates or parses PTP messages.

3.1.35 Precision Time Protocol (PTP) port: A logical access point of a clock for PTP communications to
the communications network.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 6 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

3.1.36 recognized standard time source: A recognized standard time source is a source external to
Precision Time Protocol (PTP) that provides time and/or frequency as appropriate that is traceable to the
international standards laboratories maintaining clocks that form the basis for the International Atomic
Time (TAI) and Universal Coordinated Time (UTC) timescales. Examples of these are Global Positioning
System (GPS), NTP, and National Institute of Standards and Technology (NIST) timeservers.

3.1.37 requestor: The port implementing the peer-to-peer delay mechanism that initiates the mechanism
by sending a Pdelay_Req message.

3.1.38 responder: The port responding to the receipt of a Pdelay_Req message as part of the operation of
the peer-to-peer delay mechanism.

3.1.39 stability: See: accuracy.

3.1.40 synchronized clocks: Two clocks are synchronized to a specified uncertainty if they have the same
epoch and their measurements of the time of a single event at an arbitrary time differ by no more than that
uncertainty.

3.1.41 syntonized clocks: Two clocks are syntonized if the duration of the second is the same on both,
which means the time as measured by each advances at the same rate. They may or may not share the same
epoch.

3.1.42 timeout: A mechanism for terminating requested activity that, at least from the requester’s
perspective, does not complete within the specified time.

3.1.43 timescale: A linear measure of time from an epoch.

3.1.44 traceability: A property of the result of a measurement or the value of a standard whereby it can be
related to stated references, usually national or international standards, through an unbroken chain of
comparisons all having stated uncertainties. (adapted from the ISO/IEC Guide 99:2007. [B15]9)

3.1.45 translation device: A boundary clock or, in some cases, a transparent clock that translates the
protocol messages between regions implementing different transport and messaging protocols, between
different versions of IEEE Std 1588-2008/IEC 61588:2009, or different Precision Time Protocol (PTP) profiles.

3.1.46 transparent clock: A device that measures the time taken for a Precision Time Protocol (PTP)
event message to transit the device and provides this information to clocks receiving this PTP event
message. See also: end-to-end transparent clock; peer-to-peer transparent clock.

3.1.47 two-step clock: A clock that provides time information using the combination of an event message
and a subsequent general message. See also: one-step clock.

3.2 Acronyms and abbreviations

ARB arbitrary
BMC best master clock
CAN Controller Area Network
CP Communication Profile [according to IEC 61784-1:200710]
CPF Communication Profile Family [according to IEC 61784-1:2007]
DS differentiated service
E2E end-to-end

9The numbers in square brackets correspond to those of the bibliography in Annex M.
10Information on references can be found in Clause 2.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 7 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

GPS Global Positioning System
IANA Internet Assigned Numbers Authority
ICV integrity check value
ID identification
IPv4, IPv6 Internet Protocol version 4 / 6
JD Julian Date
JDN Julian Day Number
MAC media access control [according to IEEE Std 802.3-2005]
MJD Modified Julian Day
NIST National Institute of Standards and Technology (see www.nist.gov)
NTP Network Time Protocol (see IETF RFC 1305 [B7])
OUI organizational unique identifier (allocated by the IEEE)

NOTE—The OUI is typically used in specifications or the implementation of
devices for the purpose of identification. It identifies the organization that owns
the OUI-dependent subidentifier and may not necessarily be the organization
that defines the specification or provides the hardware. The IEEE OUI listing
can be obtained at http://standards.ieee.org/regauth/oui/index.shtml.

P2P peer-to-peer
PHY physical layer [according to IEEE Std 802.3-2005]
POSIX Portable Operating System Interface (see ISO/IEC 9945:2003 [B16])
PPS pulse per second
PTP Precision Time Protocol
SA security associations
SNTP Simple Network Time Protocol
SOF Start of Frame
TAI International Atomic Time
TC traffic class
TLV type, length, value [according to IEEE Std 802.1AB]
ToS type of service
UCMM UnConnect Message Manager
UDP/IP User Datagram Protocol (see IETF RFC 768 [B5]) / Internet Protocol

(see IETF RFC 791 [B6])
UTC Coordinated Universal Time

4. Conventions

4.1 Descriptive lexical form syntax

4.1.1 Lexical form syntax

A lexical form refers to:

a) A name

b) A data type

The conventions illustrated in the following list regarding lexical forms are used in this standard:
⎯ Type names: e.g., ClockQuality (no word separation, initial letter of each word capitalized)

⎯ Enumeration members and global constants: e.g., ATOMIC_CLOCK (underscore word
separation, all letters capitalized)

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 8 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

⎯ Fields within messages, instances of structures, and variables: e.g., secondsField, clockQuality,
clockIdentity (two-word field names at a minimum, no word separation, initial word not
capitalized, initial letter capitalization on subsequent words)

⎯ Members of a structure: e.g., clockQuality.clockClass (structure name followed by a period
followed by the member name)

⎯ Data set name: e.g., defaultDS, parentDS, portDS, currentDS, timePropertiesDS (no word
separation, initial letter of each word not capitalized followed by the letters DS)

⎯ Data set members: e.g., defaultDS.clockQuality.clockClass (Data set name followed by a period
followed a type name followed by a period followed by the variable name)

⎯ Message names: e.g., Sync, Delay_Req (underscore word separation, initial letter of each word
capitalized)

⎯ <localNameForSomething>: text enclosed in angle brackets < > is used where the standard
needs to refer to something whose syntax or lexical form is dependent on the local
implementation and language

When a lexical form appears in text, as opposed to in a type, or a format definition, the form is to be
interpreted as singular, plural, or possessive as appropriate to the context of the text.

4.2 Word usage

4.2.1 Shall

The word “shall,” which is equivalent to “is required to,” is used to indicate mandatory requirements,
strictly to be followed in order to conform to the standard and from which no deviation is permitted.

4.2.2 Recommended

The word “recommended” is used to indicate flexibility of choice with a strong preference alternative.

4.2.3 Must

The word “must” indicates an unavoidable situation.

4.2.4 Should

The word “should,” which is equivalent to “is recommended that,” is used to indicate:
⎯ Among several possibilities, one is recommended as particularly suitable, without mentioning or

excluding others

⎯ That a certain course of action is preferred but not required

⎯ That (in the negative form) a certain course of action is deprecated but not prohibited

4.2.5 May

The word “may,” which is equivalent to “is permitted,” is used to indicate a course of action permissible
within the limits of the standard.

4.2.6 Can

The word “can,” which is equivalent to “is able to,” is used to indicate possibility and capability, whether
material or physical.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 9 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

4.2.7 Optional

Clauses and text marked optional are not required to be implemented. If the option is implemented, then all
specifications of the clause or text, respectively, shall be implemented according to this standard.

NOTE— This definition is recursive, which means that options within options obey these same rules.

4.2.8 Reserved

The word “reserved” indicates:
⎯ If used in an assignment of values to an enumeration or an attribute that the values indicated are

reserved for use in future editions of this standard and shall not be used for any other purpose.

⎯ If used in a field of a message that the field is reserved for use in future editions of this standard.
The field shall be present in the message with the size specified. No interpretation of reserved
fields is to be made for this edition of this standard, and the fields shall not be used for any other
purpose.

4.3 Behavioral specification notation

State transition diagrams are used to specify behavioral characteristics as illustrated in Figure 1. Each state
transition diagram is composed of the following components:

⎯ Named boxes, representing states

⎯ Directed arrows, indicating transitions from one state to the next.

Each transition is labeled with:

a) The enabling event or predicate label for a transition

b) The transition action label for a transition

Figure 1 ⎯Mealy state transition diagram
The notation used describes state transition diagrams using the Mealy style, where actions are associated
with the transition from one state to another.

Events, for example “event_1,” “event_2,” and “event_3,” identify the inputs to the state machine. They
can be operation requests and responses, or internal occurrences such as timer expirations.

event_1OR event_2
result_1 event_3

result_2

(i)

(d)

state_1
or

state_2
state_1

state_2
result_3

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 10 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Predicates, for example “event_1 OR event_2,” identify enabling conditions for transitions. The first
predicate encountered, evaluated from left to right, which is TRUE, selects the transition to execute and
therefore the next state.

Transition actions, for example “result_1,” are the actions that are executed before transitioning to the next
state.

The next state identifies the state for the state machine after the selected transition action completes. The
value of the current state changes as the transition to the next state occurs.

A bold line for a state box indicates that the box represents multiple states. Any transition shown that
begins and terminates in such a state box indicates that there has been no change in state.

Transitions, for example the transition resulting in result_3, which have no indicated enabling conditions,
occur via unspecified mechanisms. Unless otherwise stated, in PTP, the events giving rise to these
mechanisms are implementation-specific and outside the scope of the standard.

A transition into a state machine, for example “(i),” is indicated by a transition arrow that has no source
state. A transition out of a state machine, for example “(d),” is indicated by a transition arrow with no
destination state.

NOTE—For example, As a result of either event_1 or event_2 becoming TRUE, state_1 is replaced with the value of
the next state. In this example, the next state is state_2, which is specified as the name of the state box that is the target
of the transition arrow. Before the transition, result_1 occurs. “event_3” can occur in either state_1 or state_2. The state
is unchanged, but an action, result_2, occurs as the result of event_3.

5. Data types and on-the-wire formats in a PTP system

5.1 General

The data types specified for the various PTP variables and message fields define logical properties that are
necessary for correct operation of the protocol or interpretation of PTP message content.

Implementations are free to use any internal representation of PTP data types; however, the internal
representation shall not change the semantics of any quantity visible via PTP communications or the
semantics of any specified operation of the protocol.

5.2 Primitive data type specifications

All nonprimitive PTP data types are derived from the primitive types listed in Table 1. These types are not
tied to any specific programming language. The essential properties of each type shall be as follows:

⎯ Integer: All integer types are of finite length as indicated by the number associated with each,
e.g., UInteger48, and as signed or unsigned as indicated by the absence or presence of a leading
U. Numbers with these data types obey the laws of arithmetic within the range represented by
the length. Arithmetic operations are treated as modulo the capacity of the data type; e.g., the
sum of two UInteger48 values is computed modulo 2+48. Signed integers are represented in
two’s complement form.

⎯ Enumeration: All enumerations are of finite field length as indicated by the number associated
with each, e.g., Enumeration4. Unless otherwise stated in this standard, the only interpretations
of the bit pattern in the enumeration field are the associations between the bit patterns and the
assigned meanings of the enumeration.

⎯ Boolean: The only interpretation is as logical values within the context of Boolean algebra.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 11 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

⎯ Nibble and Octet: These are 4 and 8 bit fields, respectively. The only interpretations are those
explicitly defined within this standard.

Table 1 ⎯Primitive PTP data types
Data type Definition
Boolean TRUE or FALSE.
Enumeration4 4-bit enumerated value
Enumeration8 8-bit enumerated value
Enumeration16 16-bit enumerated value
UInteger4 4-bit unsigned integer
Integer8 8-bit signed integer
UInteger8 8-bit unsigned integer
Integer16 16-bit signed integer
UInteger16 16-bit unsigned integer
Integer32 32-bit signed integer
UInteger32 32-bit unsigned integer
UInteger48 48-bit unsigned integer
Integer64 64-bit signed integer
Nibble 4-bit field not interpreted as a number
Octet 8-bit field not interpreted as a number

5.3 Derived data type specifications

5.3.1 General

Arrays of any of the primitive data types are represented in the format <data type>[lengthField] <label>,
where <lengthField> indicates the number of instances of the data type in the array and <label> is the
lexical name for the array data type so defined.

Structures consisting of an ordered list of members are indicated with the following syntax:

struct <StructureName>
{
 <DataType1> <memberName1>;

 <DataType2> <memberName2>;

 …
};

where <StructureName> is the lexical name for the data type so defined, <DataType1> is the data type of
the first member, <memberName1> is the lexical name of the first member, and so forth.

The syntax typedef <DataType> <TypeName> is interpreted as defining a derived data type with the same
properties as the data type defined by <DataType> but with a new name given by <TypeName>.

The syntax typedef <DataType> [lengthField] <TypeName> is interpreted as defining a derived data type
consisting of an array of elements of type <DataType>, but with a new name given by <TypeName>.

5.3.2 TimeInterval

The TimeInterval type represents time intervals.

struct TimeInterval
{
 Integer64 scaledNanoseconds;
};

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 12 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

The scaledNanoseconds member is the time interval expressed in units of nanoseconds and multiplied by
2+16.

Positive or negative time intervals outside the maximum range of this data type shall be encoded as the
largest positive and negative values of the data type, respectively.

For example, 2.5 ns is expressed as 0000 0000 0002 800016.

5.3.3 Timestamp

The Timestamp type represents a positive time with respect to the epoch.

struct Timestamp
{
 UInteger48 secondsField;
 UInteger32 nanosecondsField;
};

The secondsField member is the integer portion of the timestamp in units of seconds.

The nanosecondsField member is the fractional portion of the timestamp in units of nanoseconds.

The nanosecondsField member is always less than 109.

For example:

+2.000000001 seconds is represented by secondsField = 0000 0000 000216 and nanosecondsField= 0000 000116.

5.3.4 ClockIdentity

The ClockIdentity type identifies a clock.

typedef Octet[8] ClockIdentity;

5.3.5 PortIdentity

The PortIdentity type identifies a PTP port.

struct PortIdentity
{
 ClockIdentity clockIdentity;
 UInteger16 portNumber;
};

5.3.6 PortAddress

The PortAddress type represents the protocol address of a PTP port.

struct PortAddress
{
 Enumeration16 networkProtocol;
 UInteger16 addressLength;
 Octet[addressLength] addressField;
};

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 13 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

The value of the networkProtocol member shall be taken from the networkProtocol enumeration; see 7.4.1.
The addressLength is the length in octets of the address. The range shall be 1 to 16 octets.

The addressField member holds the protocol address of a port in the format defined by the mapping annex
of the protocol as identified by the networkProtocol member. The most significant octet of the addressField
is mapped into the octet of the addressField member with index 0.

5.3.7 ClockQuality

The ClockQuality represents the quality of a clock.

struct ClockQuality
{
 UInteger8 clockClass;
 Enumeration8 clockAccuracy;
 UInteger16 offsetScaledLogVariance;
};

5.3.8 TLV

The TLV type represents TLV extension fields.

struct TLV
{
 Enumeration16 tlvType;
 UInteger16 lengthField;
 Octet[lengthField] valueField;
};

The length of all TLVs shall be an even number of octets.

5.3.9 PTPText

The PTPText data type is used to represent textual material in PTP messages.

struct PTPText
{
 UInteger8 lengthField;
 Octet[lengthField] textField;
};

The textField member shall be encoded as UTF-8 symbols as specified by ISO/IEC 10646:2003. The most
significant octet of the leading text symbol shall be the element of the array with index 0.

NOTE—A single UTF-8 symbol can be 1–4 octets long. Therefore, the lengthField value can be larger than the number
of symbols.

5.3.10 FaultRecord

The FaultRecord type is used to construct fault logs.

struct FaultRecord
{
 UInteger16 faultRecordLength;
 Timestamp faultTime;
 Enumeration8 severityCode;
 PTPText faultName;
 PTPText faultValue;

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 14 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

 PTPText faultDescription;
};

The faultRecordLength member shall indicate the number of octets in the FaultRecord not including the 2
octets of the faultRecordLength member.

5.4 On-the-wire formats

5.4.1 General

PTP protocol data units consist of the PTP messages defined in Clause 13 through Clause 17 based on the
data types defined in 5.2, 5.3, and 17.2. The internal ordering of the fields of the PTP protocol data units is
specified in 5.4.2 to 5.4.4.

5.4.2 Primitive data types

Numeric primitive data types defined in 5.2 shall be formatted with the most significant octet nearest the
beginning of the protocol data unit followed in order by octets of decreasing significance.

The Boolean data type TRUE shall be formatted as a single bit equal to 1 and FALSE as a single bit equal
to 0.

Enumerations of whatever length shall be formatted as though the assigned values are unsigned integers of
the same length; e.g., Enumeration16 shall be formatted as though the value had type UInteger16.

5.4.3 Arrays of primitive types

All arrays shall be formatted with the member having the lowest numerical index closest to the start of the
protocol data unit followed by successively higher numbered members. In octet arrays, the octet with the
lowest numerical index is termed the most significant octet.

When a field containing more than one octet is used to represent a numeric value, the most significant octet
shall be nearest the start of the protocol data unit, followed by successively less significant octets.

When a single octet contains multiple fields of primitive data types, the bit positions within the octet of
each of the primitive types as defined in the message field specification shall be preserved. For example,
the first field of the header of the PTP messages is a single octet composed of two fields, one of type
Nibble bits 4-7, and one of type Enumeration4 bits 0-3 (see 13.3.1).

5.4.4 Derived data types

Derived data types defined as structs shall be formatted with the first member of the struct closest to the
beginning of the protocol data unit followed by each succeeding member. Each member shall be formatted
according to its data type.

Derived data types defined as typedefs shall be formatted according to its referenced data type.

5.4.5 Mapping of PTP protocol data units into their on-the-wire formats

Unless otherwise specified, PTP protocol data units shall be mapped to and from their on-the-wire format
based on the rules of the underlying physical layer transport. Any exceptions are specified in one of the
transport-specific annexes of this standard or in an applicable PTP profile.

NOTE⎯PTP protocol mechanisms operate in the upper layers of the protocol stack (i.e., PTP is an “application” that
uses the services of the network or link layer). The physical layer transport dictates the on-the-wire format.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 15 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

6. Clock synchronization model

6.1 General

This clause provides a model for understanding the operation of the Precision Time Protocol. The exact
specifications of these interactions are found in subsequent clauses.

The PTP standard specifies a clock synchronization protocol. This protocol is applicable to distributed
systems consisting of one or more nodes, communicating over a network. Nodes are modeled as containing
a real-time clock that may be used by applications within the node for various purposes such as generating
timestamps for data or ordering events managed by the node. The protocol provides a mechanism for
synchronizing the clocks of participating nodes to a high degree of accuracy and precision. This standard
specifies:

a) The Precision Time Protocol

b) The node, system, and communication properties necessary to support PTP.

6.2 Principle assumptions about the network and implementation
recommendations

The following principle assumptions and recommendations should be followed in order to ensure correct
operation of the protocol. These are discussed in greater detail in later clauses:

a) PTP assumes that the network eliminates cyclic forwarding of PTP messages within each
communication path (e.g., by using a spanning tree protocol). PTP eliminates cyclic forwarding of
PTP messages between communication paths.

b) PTP is tolerant of an occasional missed message, duplicated message, or message that arrived out of
order. However, PTP assumes that such impairments are relatively rare.

c) PTP was designed assuming a multicast communication model. PTP also supports a unicast
communication model as long as the behavior of the protocol is preserved. PTP assumes that
Announce messages are periodically sent by one port and delivered to all other ports of ordinary or
boundary clocks within a communication path. If the communication path consists of more than two
ports, the assumption is that Announce messages are either sent in multicast or the Announce
information is replicated to all ports in the communication path using unicast messages. PTP ports
discover other ports within a communication path through the receipt of multicast Announce
messages. When multicast communication is not available, another form of discovery (e.g., by
configuration) is required; see for example 17.5. PTP management messages sent to all ports also
require either multicast messaging or replication of the management message to all ports within the
communication path.

d) Like all message-based time transfer protocols, PTP time accuracy is degraded by asymmetry in the
paths taken by event messages; see 7.4.2. Specifically the time offset error is 1/2 of the asymmetry.
Asymmetry is not detectable by PTP; however, if known, PTP corrects for asymmetry. Asymmetry
can be introduced in the physical layer, e.g., via transmission media asymmetry, by bridges and
routers, and in large systems by the forward and reverse paths traversed by event messages taking
different routes through the network. Systems should be configured and components selected to
minimize these effects guided by the required timing accuracy. In single subnet systems with
distances of a few meters, asymmetry is not usually a concern for time accuracies above a few
10s of ns.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 16 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

e) If two-step clocks are used, then the network has to be designed such that the general message takes
the same path as the event message through a transparent clock. Failure to do this will result in a
condition where the transparent clock does not calculate path delay properly. This condition is
undetectable and may introduce additional jitter and wander, but it will not break the protocol.

f) PTP assumes that the number of boundary clocks forming the master−slave synchronization
hierarchy from the grandmaster clock to any slave clock is less than 255; see 9.3.2.5.

g) Network components, for example bridges, introduce timing jitter and wander that if uncorrected can
degrade time transfer accuracy. Since the jitter and wander are often traffic dependent, the network
traffic patterns should be designed to minimize the traffic and to minimize the variation in the traffic
load. It is also recommended that PTP event messages be sent in high priority compared with other
data; see A.5.3.3. Whenever possible such devices should be replaced by PTP boundary or
transparent clocks.

h) The network’s protocol is structured such that a message timestamp point can be defined.

6.3 PTP systems

A PTP system is a distributed, networked system consisting of a combination of PTP and non-PTP devices.
PTP devices include ordinary clocks, boundary clocks, end-to-end transparent clocks, peer-to-peer
transparent clocks, and management nodes. Non-PTP devices include bridges, routers, and other
infrastructure devices, and possibly devices such as computers, printers, and other application devices.

The protocol is a distributed protocol that specifies how the real-time clocks in the system synchronize with
each other. These clocks are organized into a master−slave synchronization hierarchy with the clock at the
top of the hierarchy⎯the grandmaster clock⎯determining the reference time for the entire system. The
synchronization is achieved by exchanging PTP timing messages, with the slaves using the timing
information to adjust their clocks to the time of their master in the hierarchy.

Devices in a PTP system communicate with each other via a communication network. The network may
include translation devices between segments implementing different network communication protocols.

The protocol executes within a logical scope called a domain. Unless otherwise specified, all PTP
messages, data sets, state machines, and all other PTP entities are always associated with a particular
domain. A given physical network and individual devices connected to the network can be associated with
multiple domains. Within this standard, the time established within one domain by the protocol is
independent of the time in other domains.

6.4 PTP message classes

The protocol defines event and general PTP messages. Event messages are timed messages in that an
accurate timestamp is generated at both transmission and receipt as specified in 6.6.5. General messages do
not require accurate timestamps.

The set of event messages consists of:

a) Sync (see 13.6)

b) Delay_Req (see 13.6)

c) Pdelay_Req (see 13.9)

d) Pdelay_Resp (see 13.10)

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 17 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

The set of general messages consists of:
⎯ Announce (see 13.5)

⎯ Follow_Up (see 13.7)

⎯ Delay_Resp (see 13.8)

⎯ Pdelay_Resp_Follow_Up (see 13.11)

⎯ Management (see Clause 15)

⎯ Signaling (see 13.12)

The Sync, Delay_Req, Follow_Up, and Delay_Resp messages are used to generate and communicate the
timing information needed to synchronize ordinary and boundary clocks using the delay request-response
mechanism.

The Pdelay_Req, Pdelay_Resp, and Pdelay_Resp_Follow_Up messages are used to measure the link delay
between two clock ports implementing the peer delay mechanism. The link delay is used to correct timing
information in Sync and Follow_Up messages in systems composed of peer-to-peer transparent clocks.
Ordinary and boundary clocks that implement the peer delay mechanism can synchronize using the
measured link delays and the information in the Sync and Follow_Up messages.

The Announce message is used to establish the synchronization hierarchy.

The management messages are used to query and update the PTP data sets maintained by clocks. These
messages are also used to customize a PTP system and for initialization and fault management.
Management messages are used between management nodes and clocks.

The signaling messages are used for communication between clocks for all other purposes. For example,
signaling messages can be used for negotiation of the rate of unicast messages between a master and its
slaves.

All messages can be extended by means of a standard type, length, value (TLV) extension mechanism. For
example, the PATH_TRACE message extensions can be used to detect rogue frames; see 16.2.1 for more
detail on rogue frames.

6.5 PTP device types

6.5.1 General

There are five basic types of PTP devices, as follows:

a) Ordinary clock

b) Boundary clock

c) End-to-end transparent clock

d) Peer-to-peer transparent clock

e) Management node

All five types implement one or more aspects of the protocol.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 18 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Two mechanisms are used in PTP to measure the propagation delay between PTP ports. The first one, the
delay request-response mechanism, uses the messages Sync, Delay_Req, Delay_Resp, and if required,
Follow_Up; see 11.3. The second one, the peer delay mechanism, uses the messages Pdelay_Req,
Pdelay_Resp, and if required, Pdelay_Resp_Follow_Up; see 11.4. Ports on ordinary and boundary clocks
can be implemented using either mechanism. Ports on end-to-end transparent clocks are independent of
these mechanisms. Ports on peer-to-peer transparent clocks use the peer delay mechanism. These two
mechanisms do not interwork on the same communication path. In addition, the peer delay mechanism is
restricted to topologies where each peer-to-peer port communicates PTP messages with at most one other
such port; see 11.4.4.

The use of the various clock types is limited as follows:
⎯ Ordinary and boundary clocks with ports implementing the peer delay mechanism, and peer-to-

peer transparent clocks, can only be connected in topologies where ports implementing the peer
delay mechanism communicate PTP messages to and from a single port also implementing the
peer delay mechanism; see 11.4.4. Except in carefully designed networks, this will preclude the
use of end-to-end transparent clocks and bridges that do not support PTP using the peer delay
mechanism, e.g., a conventional bridge.

⎯ Ordinary and boundary clock ports implementing the delay request-response mechanism, and
end-to-end transparent clocks, can be connected in any topology that excludes ports using the
peer delay mechanism. This precludes the use of peer-to-peer transparent clocks in such a
system.

⎯ A boundary clock with ports supporting each of the two mechanisms may be used to bridge
between regions supporting the different mechanisms.

6.5.2 Ordinary clocks

The model of an ordinary clock is illustrated in Figure 2.

Figure 2 ⎯Model of an ordinary clock

An ordinary clock communicates with the network via two logical interfaces based on a single physical
port. The event interface is used to send and receive event messages, which are timestamped by the
timestamp generation block based on the value of the local clock. The general interface is used to send and

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 19 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

receive general messages. An ordinary clock in a domain supports a single copy of the protocol and has a
single PTP state. The ordinary clock can be the grandmaster clock in a system, or it can be a slave clock in
the master−slave hierarchy.

An ordinary clock maintains two types of data sets, referred to as clock data sets and port data sets,
respectively.

The clock data sets are as follows:

a) defaultDS: Attributes describing the ordinary clock.

b) currentDS: Attributes related to synchronization.

c) parentDS: Attributes describing the parent (the clock to which the ordinary clock synchronizes) and
the grandmaster (the clock at the root of the master−slave hierarchy).

d) timePropertiesDS: Attributes of the timescale.

The port data sets contain attributes of the port, including the PTP state.

The protocol engine:
⎯ Sends and receives PTP messages.

⎯ Maintains the data sets.

⎯ Executes the state machine associated with the port.

⎯ If the port is in the slave state (synchronizes to a master), it computes the master’s time based on
the received PTP timing messages and timestamps that were generated.

The control loop in the local clock adjusts the clock to agree with the time of its master if the ordinary
clock port is in the slave state. If the port is in the master state, the local clock is free running or possibly
synchronized to an external source of time such as the Global Positioning System (GPS). If the port is in
the master state and the ordinary clock is the grandmaster clock of the domain, then the local clock is
typically synchronized to an external source of time traceable to TAI and UTC such as the GPS system.

In some applications such as industrial automation, an ordinary clock may also be associated with an
application device such as a sensor or an actuator. In a telecommunications application, an ordinary clock
may be associated with a timing demarcation device. The local clock provides time support to such a
device as illustrated in Figure 2.

6.5.3 Boundary clocks

The model of a boundary clock is illustrated in Figure 3.

The boundary clock typically has several physical ports with each physical port communicating with the
network via two logical interfaces: event and general. Each port of a boundary clock is like the port of an
ordinary clock with the following exceptions:

a) The clock data sets are common to all ports of the boundary clock.

b) The local clock is common to all ports of the boundary clock.

c) Each protocol engine has the additional function of resolving the states of all ports to determine
which port provides the time signal used to synchronize the local clock.

The messages related to synchronization, establishing the master−slave hierarchy, and signaling (see 6.4),
terminate in the protocol engine of a boundary clock and are not forwarded. Management messages are

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 20 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

forwarded by other ports on the boundary clock subject to restrictions to limit the propagation of these
messages within the system.

The boundary clock model of Figure 3 is applicable only to PTP messages. For all non-PTP messages, the
boundary clock behaves as a normal network component, e.g., bridge, repeater, or router.

A boundary clock is typically used only as a network element and is not normally associated with
application devices such as sensors or actuators.

Figure 3 ⎯Model of a boundary clock

6.5.4 End-to-end transparent clocks

The model of an end-to-end transparent clock is illustrated in Figure 4.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 21 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Figure 4 ⎯Model of an end-to-end transparent clock

The end-to-end transparent clock forwards all messages just as a normal bridge, router, or repeater.
However, for PTP event messages, the residence time bridge, shown in Figure 4, measures the residence
time of PTP event messages (the time the message takes to traverse the transparent clock). These residence
times are accumulated in a special field, the correctionField, of the PTP event message or the associated
follow-up message (Follow_Up or Pdelay_Resp_Follow_Up). This correction is based on the difference in
the timestamp generated when the event message enters and leaves the transparent clock. Any updates to
checksums required by the network protocol are made. Note that the value of the correction update and
checksums are specific to each output port and message since the residence times are not necessarily the
same for all paths through the transparent clock or for successive messages on the same path. The
correction process is illustrated for an arbitrary pair of ports in Figure 5.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 22 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Figure 5 ⎯End-to-end residence time correction model

The timestamps used in computing the residence time are based on timestamps generated from the local
clock. Since these accumulated residence times are used by a slave to adjust the time provided by a master,
it is important that any errors resulting from differences in the rates of the master and the transparent clocks
be negligible for the accuracy required by the application. Since it is possible that the rates of the master
and local clocks (essentially the definition of the second on the two clocks) can differ by 0.02%, the error
introduced can be 0.02% of the measured residence time. Thus, for a residence time of 1 ms, the maximum
error is 200 ns. This error may be unacceptably large, and there are several possible ways of reducing it.

One way, the method discussed extensively in 11.3, is to make the rate of the local clock equal to that of
the master, i.e., syntonize the local clock to the master. This is done by observing the timing information,
corrected for any upstream residence times, in received Sync and, if present, Follow_Up messages. This is
illustrated in Figure 4 in block RC (rate control). The grandmaster time, corrected for any upstream
residence times, is input to the Rate estimation and control block in RC (shown by the arrow labeled
“Grandmaster time”). The corresponding local time is also input to this block. The Rate estimation and
control block uses the sequences of master and corresponding local times to estimate the ratio of the master
and local clock rates. The Rate estimation and control block then uses this estimated rate ratio to adjust
(i.e., control) the local clock rate. Note that the adjustment of the local clock rate need not be a physical
changing of the oscillator frequency (i.e., an analog implementation); it is equally acceptable to use a fixed
frequency local oscillator, compute the ratio of the master and local rates, and multiply the timestamps
taken with the local clock by this ratio (i.e., a digital implementation). The key aspect of the scheme
illustrated by RC is that it operates closed loop; i.e., the local times used in the rate estimation and
residence time measurement are relative to the rate-adjusted local oscillator. This means that rate
adjustments to an oscillator at one node influence the adjustments at downstream nodes, because the
residence time is used to adjust the master times at downstream nodes.

A second way to reduce the effect of residence time error that may be useful in some applications is to use
free-running local clocks. This is illustrated in the block RE (rate estimation) in Figure 4. In this case, the
frequency of the local oscillator is not adjusted, but it is allowed to free-run. Each clock measures the local
residence time of the Sync message based on the free-running clock. This measured residence time is added
to the correctionField of the Sync or Follow_Up message as discussed in 11.3. Each local clock also
computes the ratio of the rate of the local free-running clock to the rate of the grandmaster. This ratio is
computed based on the timestamps in received Sync and Follow_Up messages corrected by adding the
correctionField. Even though the correctionField does not reflect the exact residence time, the resulting
ratio will still have greatly reduced jitter compared with simply using the raw timestamps, and it will still
have the correct mean value. In addition, if the residence time is sufficiently large relative to the rate ratio
measurement interval, the worst-case phase error accumulation over a succession of transparent clocks will
be less than that using the first method (above), but at the expense of greater phase accumulation for many
non-worst-case scenarios. The local value of the rate ratio must be maintained in each clock for use in
correcting the residence times for Delay_Req messages, as discussed below. In addition, each local clock

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 23 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

computes the difference between the residence time corrected by this ratio and the uncorrected residence
times. These differences must also be accumulated and passed to the slave clock. If this method is to be
used, it should be specified in a profile (see 19.3) along with a profile-specific TLV used for the
accumulation. With this method, the slave must add these accumulated differences to the correctionField of
received Sync or Follow_Up messages before computing the offset of the slave clock from the
grandmaster. End-to-end transparent clocks also correct for the residence time of Delay_Req messages.
However, since with this method the oscillators are free-running, the measured value of the residence time
of the Delay_Req message must be corrected using the ratio of the local clock rate to that of the
grandmaster that was computed and saved as mentioned earlier. This is the only change in the operation of
the clock for the Delay_Req messages. With this technique, Pdelay_Resp messages are treated exactly like
Sync messages and must have a TLV specified for this purpose. The Pdelay_Req messages are handled
exactly like the Delay_Req messages.

NOTE 1—Before deciding which method to use, it is important to evaluate the likely errors compared with the
application error budget. For example, if the total residence time over all clocks between a master and slave is 10 ms,
then the maximum error in not correcting for the local clock rate at each intermediate clock is no worse than 200 ppm
of this value, or 2 �s. For many designs, the total residence time will be considerably less, and either mechanism is
likely to produce satisfactory results.

NOTE 2—Implementers of PTP nodes need to consider the resources required to support multiple domains. The
inability to process the protocol in a timely fashion due to resource limitations may lead to deterioration in the
synchronization performance, thrashing, or failure of the protocol. Users need to be aware of this limitation when
selecting nodes and designing their systems.

An end-to-end transparent clock may be used as a network element, or it may be associated with
application devices such as sensors or actuators. In the latter case, an ordinary clock is combined with the
transparent clock to provide real-time support for the application device. A model of such a combined
device is illustrated in Figure 6.

In Figure 6, when the ordinary clock is a slave, the timing information includes the ingress timestamp.
When it is a master, it includes the egress timestamp. The residence time bridge delivers the incoming PTP
timing messages, the Announce messages, the ingress timestamp generated by the incoming Sync message,
and any internal timing corrections to the protocol engine of the ordinary clock. The protocol engine
computes the correct time based on this information and sends it as input to the local clock. If the ordinary
clock were a master, it would originate Sync and Follow_Up messages with the message timestamps
referenced to the local clock of the ordinary clock, and based on internal timing corrections and the egress
timestamp. In practice the end-to-end transparent and ordinary clock functions would share a common
physical clock.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 24 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Figure 6 ⎯Combined ordinary and end-to-end transparent clock

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 25 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

6.5.5 Peer-to-peer transparent clocks

The model of a peer-to-peer transparent clock is illustrated in Figure 7.

The peer-to-peer transparent clock differs from the end-to-end transparent clock in the way it corrects and
handles the PTP timing messages. In all other respects, it is identical with the end-to-end transparent clock.

The peer-to-peer transparent clock has an additional per port block as indicated in Figure 7. This block is
used to compute the link delay between each port and a similarly equipped port on another node sharing the
link, i.e., the link peer. The link peer exists in another clock supporting the peer delay mechanism since
non-peer-to-peer devices are not expected between peer-to-peer transparent clocks. The computation of link
delay is based on an exchange of Pdelay_Req, Pdelay_Resp, and possibly Pdelay_Resp_Follow_Up
messages with the link peer. As a result of these exchanges, the link delay is known for each port of the
peer-to-peer transparent clock. Unlike the end-to-end transparent clock, which corrects and forwards all
PTP timing messages, the peer-to-peer transparent clock only corrects and forwards Sync and Follow_Up
messages. The appropriate correctionField in these messages is updated for both the residence time of the
Sync message within the peer-to-peer transparent clock and the link delay on the port receiving the Sync
message.

This correction process is illustrated in Figure 8. The egress PTP timing message contains the residence
time and link delay corrections for the actual ingress link traversed by a Sync packet. A change in Sync
packet routing through a system of peer-to-peer clocks may result in the Sync packet entering the peer-to-
peer transparent clock from a different link. Since the peer-to-peer transparent clock corrects the residence
and path times based on the actual link and internal path taken by each Sync packet, the egress timing
information is always correct to within the accuracy of the measurements. Therefore, the timing
information provided to the slave always reflects the actual path through the network of peer-to-peer
transparent clocks. By contrast, in the case of the end-to-end corrections, the slave waits for a new path
delay value based on the combined Sync and Delay_Resp messages, which takes more time since the
messages need to traverse the entire new path before correct values are present at the slave.

The measurement of path delay using the peer delay mechanism does not interwork with path delay
measurements based on the delay request-response mechanism. As a result, a peer-to-peer transparent clock
can only work with clock ports supporting the peer delay mechanism. With peer-to-peer transparent clocks,
the master only needs to issue Sync and Follow_Up messages and respond to Pdelay_Req messages. It does
not receive Delay_Req messages, and therefore, the processing workload is independent of the number of
peer-to-peer clocks served by a given port. Likewise, end-to-end transparent clocks support only the delay
request-response mechanism and not the peer delay mechanism. If a network contains peer-to-peer
transparent clocks in one region and end-to-end transparent clocks in another region, the regions can be
connected only through a boundary clock.

The timestamps used in computing the residence and link delay times are based on timestamps generated
from the local clocks. Since these accumulated residence and link delay times are used by a slave to adjust
the time provided by a master, it is important that any errors resulting from differences in the rates of the
master and the transparent clocks be negligible for the accuracy required by the application. Since it is
possible that the rates of the master and local clocks (essentially the definition of the second on the two
clocks) can differ by 0.02%, the error introduced can be 0.02% of the measured residence time. Thus, for a
residence time of 1 ms, the maximum error is 200 ns. This error may be unacceptably large, and there are
several possible ways of reducing it.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 26 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Figure 7 ⎯Model of a peer-to-peer transparent clock

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 27 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Figure 8 ⎯Peer-to-peer residence time and link delay correction model

One way of reducing the maximum error, the method discussed extensively in 11.4, is to make the rate of
the local clock equal to that of the master, i.e., syntonize the local clock to the master, by observing the
timing information in received Sync and, if present, Follow_Up messages, corrected for any upstream
residence and link delay times. This is illustrated in Figure 7 in block RC (rate control). The grandmaster
time, corrected for any upstream residence and link delay times, is input to the Rate estimation and control
block in RC (shown by the arrow labeled “grandmaster time”). The corresponding local time is also input
to this block. The rate estimation and control block uses the sequences of the grandmaster and
corresponding local times to estimate the ratio of the grandmaster and local clock rates. The rate estimation
and control block then uses this estimated rate ratio to adjust (i.e., control) the local clock rate. Note that the
adjustment of the local clock rate need not be a physical changing of the oscillator frequency (i.e., an
analog implementation); it is equally acceptable to use a fixed frequency local oscillator, compute the ratio
of the master and local rates, and multiply the timestamps taken with the local clock by this ratio (i.e., a
digital implementation). The key aspect of the scheme illustrated by RC is that it operates closed loop; i.e.,
the local times used in the rate estimation and residence time measurement are relative to the rate-adjusted
local oscillator. This means that rate adjustments to an oscillator at one node influence the adjustments at
downstream nodes, because the residence time is used to adjust the master times at downstream nodes.

A second way to reduce the effect of residence time error that may be useful in some applications is to use
free-running local clocks. This is illustrated in the block RE1 (master rate ratio estimation) in Figure 7. In
this case, the frequency of the local oscillator is not adjusted but is allowed to free-run. Each clock
measures the local residence time of the Sync message based on the free-running clock. This measured
residence time is added to the correctionField of the Sync or Follow_Up message as discussed in 11.4.
Each local clock also computes the ratio of the rate of the local free-running clock to the rate of the
grandmaster. This ratio is computed based on the timestamps in received Sync and Follow_Up messages
corrected by adding the correctionField. Even though the correctionField does not reflect the exact
residence time, the resulting ratio will still have greatly reduced jitter compared with simply using the raw
timestamps and will still have the correct mean value. In addition, if the residence time is sufficiently large
relative to the rate ratio measurement interval, the worst-case phase error accumulation over a succession of
transparent clocks will be less than that using the first method (above), but at the expense of greater phase
accumulation for many non-worst-case scenarios. In addition, each local clock computes the difference
between the residence time corrected by this ratio and the uncorrected residence times. These differences
must also be accumulated and passed to the slave clock. If this method is to be used, it should be specified
in a profile; see 19.3, along with a profile-specific TLV used for the accumulation. With this method, the
slave must add these accumulated differences to the correctionField of received Sync or Follow_Up
messages before computing the offset of the slave clock from the grandmaster.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 28 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

With both of these methods, the correctionField of either the Sync or Follow_Up message must also be
corrected for the link delay as discussed in 11.4. The link delays are measured using the peer delay
mechanism (see 6.6.4). If the peer-to-peer transparent clocks are syntonized to the master as shown in block
RC, the peer delay measurement is also done using syntonized clocks. However, if the rate of the
transparent clock relative to the grandmaster is measured and used as in block RE1, the peer delay
measurement is done using the free-running local clocks. In this case, there is an error in the link delay
equal to the elapsed time between the receipt of the Pdelay_Req message and the sending of the
Pdelay_Resp message, t3–t2 (see 6.6.4 and Figure 13) multiplied by the fractional frequency offset between
the transparent clock and its neighbor. To eliminate this component of error in link delay, the frequency
offset between the transparent clock and its neighbor can be measured using the timestamp information
contained in successive Pdelay_Resp, and possibly Pdelay_Resp_Follow_Up messages. This is illustrated
in the block RE2 (neighbor rate ratio estimation) in Figure 7. Note that to make this measurement, it is
necessary to transmit the Pdelay_Req receipt time (t2) and Pdelay_Resp transmit time (t3) separately (see
11.4.3).

A peer-to-peer transparent clock may be used as a network element, or it may be associated with
application devices such as sensors or actuators. In the latter case, an ordinary clock is combined with the
transparent clock to provide real-time support for the application device. A model of such a combined
device is illustrated in Figure 9.

In Figure 9, when the ordinary clock is a slave, the timing information includes the ingress timestamp.
When it is a master, it includes the egress timestamp. When the clock is a slave, the residence time bridge
delivers the incoming PTP timing messages, the Announce messages, and the ingress timestamp generated
by the incoming Sync message, and any internal timing corrections to the protocol engine of the ordinary
clock. The protocol engine computes the correct time based on these messages and sends it as input to the
local clock. If the ordinary clock were a master, then it would originate Sync and Follow_Up messages
with the sending timestamps referenced to the local clock of the ordinary clock based on internal timing
corrections and the egress timestamp. In practice the peer-to-peer transparent and ordinary clock functions
would share a common physical clock.

6.5.6 Management nodes

A management node is a PTP device that:

a) Has one or more physical connections to the network

b) Serves as an human or programmatic interface to PTP management messages

c) May be combined with any of the clock types

6.6 Synchronization overview

6.6.1 General

There are two phases in the normal execution of the protocol:
⎯ Establishing the master-slave hierarchy

⎯ Synchronizing the clocks

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 29 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Figure 9 ⎯Combined ordinary and peer-to-peer transparent clock.

6.6.2 Establishing the master−slave hierarchy

6.6.2.1 General

Within a domain, each port of an ordinary and boundary clock executes an independent copy of the
protocol state machine. For “state decision events,” each port examines the contents of all Announce
messages received on the port. Using the best master clock algorithm, the Announce message contents and

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 30 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

the contents of the data sets associated with the ordinary or boundary clock are analyzed to determine the
state of each port of the clock.

6.6.2.2 PTP state machine

Each port of an ordinary and boundary clock maintains a separate copy of the PTP state machine. This state
machine defines the allowed states of the port and the transition rules between states. The principal “state
decision events” determining the master−slave hierarchy are the receipt of an Announce message and the
end of an announceInterval (the interval between Announce messages). The port states determining the
master−slave hierarchy are as follows:

a) MASTER: The port is the source of time on the path served by the port.

b) SLAVE: The port synchronizes to the device on the path with the port that is in the MASTER state.

c) PASSIVE: The port is not the master on the path nor does it synchronize to a master.

6.6.2.3 Best master clock algorithm

The best master clock algorithm compares data describing two clocks to determine which data describes the
better clock. This algorithm is used to determine which of the clocks described in several Announce
messages received by a local clock port is the best clock. It is also used to determine whether a newly
discovered clock—a foreign master—is better than the local clock itself. The data describing a foreign
master is contained in the grandmaster fields of an Announce message. The data describing the local clock
is contained in the defaultDS data set of the clock.

The best master clock algorithm is composed of two separate algorithms:
⎯ Data set comparison algorithm

⎯ State decision algorithm

The data set comparison algorithm is based on pair-wise comparisons of attributes with the following
precedence:

a) priority1: A user configurable designation that a clock belongs to an ordered set of clocks from which
a master is selected

b) clockClass: An attribute defining a clock’s TAI traceability

c) clockAccuracy: An attribute defining the accuracy of a clock

d) offsetScaledLogVariance: An attribute defining the stability of a clock

e) priority2: A user configurable designation that provides finer grained ordering among otherwise
equivalent clocks

f) clockIdentity: A tie-breaker based on unique identifiers

In addition to this precedence order, the “distance” measured by the number of boundary clocks between
the local clock and the foreign master is used when two Announce messages reflect the same foreign
master. The distance is indicated in the stepsRemoved field of Announce messages. This condition can
occur in PTP systems with cyclic paths not removed by a protocol outside of PTP. The data set comparison
algorithm unambiguously selects one of the two clocks as “better” or as “topologically better. ”

The state decision algorithm determines whether the next state of the port—the recommended state—will
be MASTER, SLAVE, or PASSIVE based on the results of the data set comparison algorithm and whether
the local clock’s class is less than 128; see 7.6.2.4. This recommended state is then evaluated by the port

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 31 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

protocol engine based on the current state of the protocol state machine to determine the actual next port
state.

6.6.2.4 Simple master−slave hierarchy

The process establishing a master−slave hierarchy among the ordinary and boundary clocks in a domain is
illustrated in Figure 10.

Figure 10 ⎯Simple master−slave clock hierarchy

In this example, ordinary clock-1 is at the root of the hierarchy and is called the grandmaster clock. Port-1
of boundary clock-1 is a slave (as indicated by the S) to the grandmaster clock. All other ports on boundary
clock-1 are masters to the clocks connected to them. Thus, port-1 of boundary clock-2 is a slave to
boundary clock-1 and so forth. Only ordinary and boundary clocks maintain this form of state, and only
boundary clocks establish the branch points in the master−slave hierarchy (i.e., paths 1, 2, 3, 4, and 5 may
contain transparent clocks, but these clocks do not participate in the master−slave hierarchy and do not
maintain this form of state).

6.6.2.5 Pruning mesh topologies

Figure 11 illustrates the case where a mesh network is reduced to a tree-structured master−slave hierarchy
by the protocol. This occurs when the underlying bridging or routing protocols do not eliminate cyclic
paths. In Figure 11, ordinary clock-1 is assumed to have been selected as the grandmaster clock by the best
master clock algorithm. In the boundary clocks, the port states have been selected by the best master clock
algorithm as shown to construct the tree. The pruned paths are shown in dashed lines. For each boundary
clock, one port is selected by the best master clock algorithm as the slave port. The other ports are set to
either the master or the passive state. The best master clock algorithm ensures that a single master port is
selected on each segment.

6.6.3 Synchronizing ordinary and boundary clocks

In a PTP system, ordinary or boundary clocks synchronize by exchanging PTP timing messages on the
communication path linking the two clocks. For example, in Figure 10, boundary clock-1 synchronizes to
ordinary clock-1 by exchanging messages on communication path-1.

The basic pattern of synchronization message exchange is illustrated in Figure 12.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 32 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Figure 11 ⎯Pruned mesh topology

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 33 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Figure 12 ⎯Basic synchronization message exchange

The message exchange pattern is as follows:

a) The master sends a Sync message to the slave and notes the time t1 at which it was sent.

b) The slave receives the Sync message and notes the time of reception t2.

c) The master conveys to the slave the timestamp t1 by:

1) Embedding the timestamp t1 in the Sync message. This requires some sort of hardware
processing for highest accuracy and precision.

2) Embedding the timestamp t1 in a Follow_Up message.

d) The slave sends a Delay_Req message to the master and notes the time t3 at which it was sent.

e) The master receives the Delay_Req message and notes the time of reception t4.

f) The master conveys to the slave the timestamp t4 by embedding it in a Delay_Resp message.

At the conclusion of this exchange of messages, the slave possesses all four timestamps. These timestamps
may be used to compute the offset of the slave’s clock with respect to the master and the mean propagation
time of messages between the two clocks, which in Figure 12 is the mean of t-ms and t-sm.

The computation of offset and propagation time assumes that the master-to-slave and slave-to-master
propagation times are equal. Any asymmetry in propagation time introduces an error in the computed value
of the clock offset. The computed mean propagation time differs from the actual propagation times due to
the asymmetry.

Master
time

Slave
time

t1

t4

t3

t2

Timestamps
known by slave

t2

t1, t2

t1, t2, t3

t1, t2, t3, t4

t-ms

t-sm

Sync

Follow_Up

Delay_Req

Delay_Resp

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 34 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

6.6.4 Measuring link propagation delay in clocks supporting peer-to-peer path correction

The mechanism for measuring the link delay between two ports that implement the peer delay mechanism
(see 6.5.5) is illustrated in Figure 13. This measurement is conducted by all ports implementing the
mechanism. Thus, both ports sharing a link independently make the measurement and, as a result, both
ports know the link delay. This allows the corrections outlined in 6.5.5 to be made irrespective of the
direction taken by a Sync message. It is important that this measurement occur even on ports otherwise
blocked by non-PTP algorithms used to eliminate cyclic topologies, so that up-to-date link delay
measurements are available for all links in the event of a change in the path taken by a Sync message (see
6.5.5).

The link delay measurement starts with port-1 issuing a Pdelay_Req message and generating a timestamp t1
for the Pdelay_Req message. Port-2 receives the Pdelay_Req message and generates a timestamp t2 for this
message. Port-2 returns a Pdelay_Resp message and generates a timestamp t3 for this message. To
minimize errors due to any frequency offset between the two ports, Port-2 returns the Pdelay_Resp
message as quickly as possible after the receipt of the Pdelay_Req message.

Port-2 either:
1. returns the difference between the timestamps t2 and t3 in the Pdelay_Resp message
2. returns the difference between the timestamps t2 and t3 in a Pdelay_Resp_Follow_Up message
3. returns the timestamps t2 and t3 in the Pdelay_Resp and Pdelay_Resp_Follow_Up messages,

respectively

Port-1 generates a timestamp t4 upon receiving the Pdelay_Resp message. Port-1 then uses these four
timestamps to compute the mean link delay.

Port-1
time

Port-2
time

t1

t4

t3

t2

t-ms

t-sm

Pdelay_Req

Pdelay_Resp

Pdelay_Resp_Follow_Up

Figure 13 ⎯Link delay measurement

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 35 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Any asymmetry in the propagation times t-ms and t-sm introduces an error into the computed value of the
link delay. If the mechanism producing the timestamps t1, t2, t3, and t4 does not share the same definition of
a second as the grandmaster clock issuing the Sync messages, a small but possibly significant error is
introduced in the link delay measurement. The source of this error is a small difference between the
frequency of the oscillators in the grandmaster and peer-to-peer clocks. In addition, if there is a difference
between the frequency of the oscillators in the two peer-to-peer clocks, there is a small but possibly
significant error due to the turnaround time, t3 t2, in the peer-to-peer clock. If this error is significant, then
the oscillator in the peer-to-peer clock can be frequency synchronized (i.e., syntonized) to that of the
grandmaster, or the error can be computed and corrected based on the evaluated frequency difference
between the two oscillators.

6.6.5 Generation of message timestamps

A timestamp event is generated at the time of transmission and reception of any event message. The
timestamp event occurs when the message’s timestamp point crosses the boundary between the node and
the network.

The generation of the timestamps, indicated in Figure 12 and Figure 13, is modeled in Figure 14.

Figure 14 ⎯Timestamp generation model

PTP timing messages are issued from the PTP application code in one clock and received and processed by
the PTP application code in another clock. These messages typically have a preamble specified by the
physical layer of the communication protocol in use on the network. The preamble is followed by one or
more protocol specific headers and then user data such as the PTP payload. For every such transport
mechanism, this standard specifies a particular point in PTP timing messages, often the start of frame
signal, as a distinguished point termed the message timestamp point. As a PTP message traverses the
protocol stack in a node, the timestamps are generated when the message timestamp point passes a defined
point in the stack. This point may be in the application layer, illustrated by “C” in Figure 14, in the kernel
or interrupt service routines, illustrated by “B”, or in the physical layer of the protocol stack illustrated by
“A”. In general, the closer this point is to the actual network connection, the smaller the timing errors
introduced by fluctuations in the time taken to traverse the lower layers. In cases where timestamps are
generated in the physical layer, some sort of hardware assist circuitry, illustrated by the dotted lines, is
often employed. In this case, the timestamp is conveyed to the PTP code via a path outside of the normal
path followed by the PTP timing message itself. To ensure that the timestamps are associated with the
correct message, the hardware assist often captures additional information from the PTP timing message
that is passed with the timestamp to the PTP code.

Implementations that generate PTP timestamps at the physical layer must take the mapping to the on-the-
wire format (see 5.4) into account when designing packet recognizers, timestamp generators, and any other
form of hardware assist to PTP that is done at the physical layer.

IEC 61588/IEEE 1588
code

(application layer)

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 36 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

It is possible to design devices where the timestamps are generated between the media access control
(MAC) layer and the physical layer (PHY) or even within the PHY. In such devices, it is likely that all or
part of the PTP code will be embedded and executed within low-level silicon without the use of an
operating system.

6.7 PTP communications overview

6.7.1 PTP communication topology

6.7.1.1 General

In systems composed solely of boundary and ordinary clocks, the operation of PTP produces an acyclic
graph structure for PTP messages irrespective of the actual underlying network connectivity, following
techniques described by Perlman [B22].

In all other cases, PTP assumes that the underlying bridging or routing protocols ensure that PTP message
forwarding avoids loops. In particular, the protocol assumes that multicast PTP messages are not looped
indefinitely within the communication path. The protocol does not assume that a multicast message sent by
one PTP port is received on only one of the recipient boundary clock’s ports. The protocol does not assume
that only a single copy of a multicast message sent by one PTP port is received on another PTP port;
however, receipt of duplicate copies may impact the precision of time transfer and therefore networks
should be designed to avoid this behavior.

6.7.1.2 Hierarchical topology

Different applications favor different topologies. For many systems, the hierarchical topology illustrated in
Figure 15 is preferred.

Figure 15 ⎯Hierarchical topology

With the exception of the “cyclic” path shown in dashed lines, the other devices in Figure 15 form a tree
structured hierarchy with the boundary clocks forming the branch points in the tree. Since boundary clocks
can have many ports, this topology allows large numbers of devices to be synchronized with only a few
boundary clocks between any slave and the grandmaster. In this example, assume that the dashed path is
not present. If boundary clock-1 is selected as the grandmaster as shown, the maximum number of
intervening boundary clocks is 1. The worst case would be if one of the ordinary clocks, say clock-3, is
selected as the grandmaster. Then the maximum number of boundary clocks to the most distant slave, say
clock-6, would be 3.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 37 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

As noted in 6.2, the protocol expects the underlying topology to avoid forwarding loops. In Figure 15, if the
dashed path is present, a loop exists involving three boundary clocks. The operation of the best master
clock and state decision algorithms noted in 6.6.2 breaks this loop for PTP messages.

6.7.1.3 Linear topology

Some applications require long linear topologies as shown in Figure 16, rather than the star or hierarchical
topologies of Figure 15. Figure 16 shows two long linear chains of end-to-end transparent clocks with
boundary clock-1 as the grandmaster.

Synchronization between an ordinary and a boundary clock involves an exchange of PTP timing messages
between the two clocks, for example over path-A. These PTP timing messages are not visible by other
clocks in the system. Based on the PTP timing messages, the slave of such a master−slave pair executes
some sort of servo mechanism to reduce the clock offset errors.

Transparent clocks forward PTP timing messages through the clock in the manner of an ordinary bridge or
router but, in addition, measure the time spent by a PTP timing message within the transparent clock. These
“residence” times are accumulated in the correctionField in the PTP timing messages, which allows the
slave to correct the timestamps, effectively removing the timing fluctuations that would otherwise be
introduced by the bridges. The penalty is that the master, in this example boundary clock-1, has to process
PTP timing messages (i.e., Delay_Req) from all slaves in the linear chain, rather than just from an adjacent
boundary clock.

NOTE—This scaling penalty on the master can be avoided by using peer-to-peer transparent clocks or boundary
clocks.

Figure 16 ⎯Linear topology

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 38 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

6.7.1.4 Rapid reconfiguration in multiply connected topologies

In many applications, devices are placed in a multiply connected topology, for example, a mesh, as
illustrated in Figure 17 or a ring in which alternate paths are logically removed to produce an acyclic
topology by a protocol outside of PTP. In the event of a path failure, these external protocols reconfigure
the network to restore connectivity. Since PTP operates on top of this underlying, rapidly reconfiguring
network, PTP might have to readjust the corrections for path length between master and slave after a
reconfiguration.

The peer-to-peer transparent clock is designed for use in this environment.

Figure 17 ⎯Multiply connected topology

Shown in Figure 17 are several peer-to-peer transparent clocks connected in a mesh topology. The
operation of the peer-to-peer transparent clock depends on some external protocol eliminating cyclic paths
in the network. As in the case of end-to-end transparent clocks, the peer-to-peer transparent clocks are
usually associated with an ordinary clock for use in a sensor or other device. The difference between the
two types of clocks is in the way that the path length corrections are made.

Suppose that initially the path between ordinary clock-1-1 (the grandmaster) and ordinary clock-1-2 (the
slave) was A, B, G, E, D as determined by some non-PTP protocol. A Sync message from ordinary clock-
1-1 would be corrected by peer-to-peer clock-1-1 for residence time in the peer-to-peer clock and for link
delay A. Likewise peer-to-peer clock-2-1 would further correct for its residence time and link delay B, and
so on, so that ordinary clock-1-2 receives a Sync message corrected for residence times in peer-to-peer
clocks 1-1, 2-1, 2-2, and 1-2 and link delays A, B, G, and E. Ordinary clock-1-2, which also supports the
peer link delay mechanism, corrects for the last link delay D.

Assume that the network is reconfigured such that the new path between these two clocks is now A, C, D.
Peer-to-peer clock-1-1 does the same correction as before. However, in this case, peer-to-peer clock-1-2
now receives the Sync message directly from peer-to-peer clock-1-1 and, therefore, corrects for its
residence time and link delay C, which it has previously measured. It is this prior measurement of link
delays on all links, whether active or not, that allows this rapid reconfiguration.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 39 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

6.7.1.5 Bridging between different network protocols

There is no requirement that all of the PTP communication paths use the same underlying communication
media or technology. Boundary clocks are used to bridge between different network transport technologies,
as illustrated in Figure 18.

In Figure 18, boundary clock-1 and ordinary clocks-1, clock-3, and clock-5 are assumed to communicate
via network paths labeled A implementing one technology, for example, UDP/IP. Boundary clock-2 and
ordinary clock-clock-2, clock-4, and clock-6 communicate via network paths labeled B implementing a
second technology, for example, DeviceNet. One of the boundary clocks, boundary clock-2 in Figure 18, is
a bridge that supports technology A on port-2 and technology B on the remaining ports.

Figure 18 ⎯Bridging disparate technologies

In most cases, such bridging involves not only a change in network transport protocols, as in the above
example between UDP/IP and DeviceNet, but also possibly other PTP characteristics such as update rates.
In this case, the boundary clock is the only device that maintains sufficient PTP state to perform the
bridging function. In some cases, the only bridging function required is translating packet formats or other
physical layer issues. In these cases, it is possible to design transparent clocks to perform the bridging since
no PTP state information is required.

6.7.2 System startup

To provide more orderly behavior when a clock comes on line, an ordinary or boundary clock listens for
Announce messages from a master for a configurable time interval. If no Announce message is received
within this time, the clock assumes it is the master until such time as a “better” clock appears.

An additional mechanism to support more orderly reconfiguration of systems when clocks are added or
deleted, clock characteristics change, or connection topology changes is embodied in the PRE_MASTER
state. In this state, a clock port behaves exactly as it would if it were in the MASTER state except that it
does not place certain classes of messages on the port communication path. A clock port remains in this
PRE_MASTER state long enough to allow changes to propagate from points in the system between the
local clock and possible masters visible from the port.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 40 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

7. Characterization of PTP entities

7.1 Domains

A domain consists of one or more PTP devices communicating with each other as defined by the protocol.
A domain shall define the scope of PTP message communication, state, operations, data sets, and timescale.
PTP devices may participate in multiple domains; however, unless otherwise specified in this standard, the
operation of the protocol and the timescale in different domains is independent.

NOTE 1—The mechanism for limiting PTP operation and communications to a domain may involve, for example,
communication-specific techniques such as router table configuration, limiting the physical connectivity, and reliance
on application layer processing of the domainNumber field of PTP messages.

NOTE 2—Implementers of PTP nodes need to consider the resources required to support multiple domains. This is
particularly true for ordinary and boundary clocks, which maintain much more state than transparent clocks. The
inability to process the protocol in a timely fashion due to resource limitations may lead to deterioration in the
synchronization performance, thrashing, or failure of the protocol. Users need to be aware of this limitation when
selecting nodes and designing their systems.

The domain is identified by an integer, the domainNumber, in the range of 0 to 255 as specified in Table 2.

Table 2 ⎯domainNumber

Value (decimal) Definition
0 Default domain
1 Alternate domain 1
2 Alternate domain 2
3 Alternate domain 3
4-127 User-defined domains
128-255 Reserved

The domain with domainNumber 0 is known as the default domain. The value of the domainNumber shall
be configurable subject to limits established by a PTP profile.

7.2 PTP timescale

7.2.1 General

The timescale for a domain is established by the grandmaster clock.

There are two types of timescales supported by PTP:
⎯ The timescale PTP: In normal operation, the epoch is the PTP epoch and the timescale is

continuous; see 7.2.4. The unit of measure of time is the SI second as realized on the rotating
geoid.

⎯ The timescale ARB (arbitrary): In normal operation, the epoch is set by an administrative
procedure. The epoch is permitted to be reset during normal operation. Between invocations of
the administrative procedure, the timescale is continuous. Additional invocations of the
administrative procedure may introduce discontinuities in the overall timescale.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 41 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

7.2.2 Epoch

The epoch is the origin of the timescale of a domain.

The PTP epoch is 1 January 1970 00:00:00 TAI, which is 31 December 1969 23:59:51.999918 UTC.

NOTE 1—The PTP epoch coincides with the epoch of the common Portable Operating System Interface (POSIX)
algorithms for converting elapsed seconds since the epoch to the ISO 8601:2004 printed representation of time of day;
see ISO/IEC 9945:2003 [B16] and ISO 8601:2004 [B17].

NOTE 2—See Annex B for information on converting between common timescales.

7.2.3 UTC Offset

When the epoch is PTP, it is possible to calculate UTC time using the value of timePropertiesDS.
currentUtcOffset. The value of timePropertiesDS.currentUtcOffset shall be as follows:
timePropertiesDS.currentUtcOffset = TAI UTC.

NOTE—As of 0 hours 1 January 2006 UTC, UTC was behind TAI by 33 seconds. At that moment the PTP-defined
value of currentUtcOffset became +33 seconds (Service de la Rotation Terrestre, Observatoire de Paris [B23]).

7.2.4 Measurement of time within a domain

Within a domain, time shall be measured as elapsed time since the epoch.

7.3 PTP communications

7.3.1 Messaging model

Although the standard is written based on the multicast model, it is permissible to create an implementation
based on a unicast model provided that the behavior of the protocol is preserved.

7.3.2 Message attributes

All PTP-related communications occur via PTP messages. PTP messages have the following attributes:
⎯ Message class

⎯ Message sourcePortIdentity

⎯ Message type

⎯ Message sequenceId

⎯ Flags defining options

7.3.3 Message class

7.3.3.1 Event messages

The event message class consists of the following message types:

a) Sync: A Sync message is transmitted by a master to its slaves. It either contains the time of its
transmission or is followed by a Follow_Up message containing this time. It may be used by a
receiving node to measure the packet transmission delay from the master to the slave. The
appearance of a Sync message at the reference plane (see Figure 19) of a PTP port is an event to
which a local clock shall assign a timestamp, the <syncEventIngressTimestamp> or
<syncEventEgressTimestamp>, based on the value of the local clock.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 42 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

b) Delay_Req: A Delay_Req message is a request for the receiving node to return the time at which the
Delay_Req message was received, using a Delay_Resp message. The appearance of a Delay_Req
message at the reference plane of a PTP port is an event to which a local clock shall assign a
timestamp, the <delayReqEventIngressTimestamp> or <delayReqEventEgressTimestamp>, based
on the value of the local clock.

c) Pdelay_Req: A Pdelay_Req message is transmitted by a PTP port to another PTP port as part
of the peer delay mechanism (see 11.4) to determine the delay on the link between them.
The appearance of a Pdelay_Req message at the reference plane of a PTP port is an event to
which a local clock shall assign a timestamp, the <pdelayReqEventIngressTimestamp> or
<pdelayReqEventEgressTimestamp>, based on the value of the local clock.

d) Pdelay_Resp: A Pdelay_Resp message is transmitted by a PTP port in response to the receipt of a
Pdelay_Req message. There are several options for conveying timestamp information in the
Pdelay_Resp message:

1) The difference between the time of transmission of the Pdelay_Resp message and the time of
receipt of the corresponding Pdelay_Req message is conveyed in the Pdelay_Resp message.

2) The difference between the time of transmission of the Pdelay_Resp message and the time of
receipt of the corresponding Pdelay_Req message is conveyed in a Pdelay_Resp_Follow_Up
message that follows the Pdelay_Resp message.

3) The time of receipt of the corresponding Pdelay_Req message is conveyed in the Pdelay_Resp
message, and the time of transmission of the Pdelay_Resp message is conveyed in a
Pdelay_Resp_Follow_Up message that follows the Pdelay_Resp message.

The appearance of a Pdelay_Resp message at the reference plane of a PTP port is an event to
which a local clock shall assign a timestamp, the <pdelayRespEventIngressTimestamp> or
<pdelayRespEventEgressTimestamp>, based on the value of the local clock.

Event messages shall be assigned the timestamps defined above as specified in 7.3.4.

7.3.3.2 General messages

The general message class consists of the following message types:

a) Announce: Announce messages provide status and characterization information of the transmitting
node and its grandmaster. This information is used by the receiving node when executing the best
master clock algorithm.

b) Follow_Up: In a two-step ordinary or boundary clock (see 3.1.47), the Follow_Up message
communicates the value of the <syncEventEgressTimestamp> for a particular Sync message.

c) Delay_Resp: The Delay_Resp message communicates the value of the
<delayReqEventIngressTimestamp> to the slave port issuing the Delay_Req message.

d) Pdelay_Resp_Follow_Up: In a two-step clock supporting the peer delay mechanism, the
Pdelay_Resp_Follow_Up message carries the transmit timestamp
<pdelayRespEventEgressTimestamp> generated by a PTP port at the transmission of a Pdelay_Resp
message.

e) Management: Management messages communicate information and commands used to manage
clocks.

f) Signaling: Signaling messages carry information, requests, and commands between clocks.

General messages are not required to be timestamped.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 43 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

7.3.4 Generation of event message timestamps

7.3.4.1 Event message timestamp point

Unless otherwise specified in a transport-specific annex to this standard, the message timestamp point for
an event message shall be the beginning of the first symbol after the Start of Frame (SOF) delimiter.

7.3.4.2 Event timestamp generation

All PTP event messages are timestamped on egress and ingress. The timestamp shall be the time at which
the event message timestamp point passes the reference plane marking the boundary between the PTP node
and the network.

NOTE 1—If an implementation generates event message timestamps using a point other than the message timestamp
point, then the generated timestamps should be appropriately corrected by the time interval between the actual time of
detection and the time the message timestamp point passed the reference plane. Failure to make these corrections
results in a time offset between the slave and master clocks.

NOTE 2—In general the timestamps may be generated at a point removed from the reference plane. Furthermore, the
time offset from the reference plane is likely to be different for inbound and outbound event messages. To meet the
requirement of this subclause, the generated timestamps should be corrected for these offsets. Figure 19 illustrates these
offsets. Based on this model, the appropriate corrections are as follows:

 <egressTimestamp> = <egressMeasuredTimestamp> + egressLatency
 <ingressTimestamp> = <ingressMeasuredTimestamp> ingressLatency

where the actual timestamps <egressTimestamp> and <ingressTimestamp> measured at the reference plane are
computed from the detected, i.e., measured, timestamps by their respective latencies. Failure to make these corrections
results in a time offset between the slave and master clocks.

7.3.5 Message sourcePortIdentity

Each PTP message contains a sourcePortIdentity field that identifies the egress port; see 13.3.2.8.

7.3.6 Message types

Each PTP message contains a messageType field that names the PTP message; see 13.3.2.2.

NOTE—PTP message headers also contain an additional field named “controlField” (see 13.3.2.10), which is provided
to maintain backward compatibility with hardware designs based on version 1 of this standard.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 44 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Figure 19 ⎯Definition of latency constants

7.3.7 Message sequenceId

With the exceptions noted below, each port on a PTP ordinary, boundary, or transparent clock shall
maintain a separate sequenceId pool for each message type sent to a destination address. Multicast
addresses are considered to be single destination addresses, and each unicast address is considered to be a
destination address.

The sequenceId of the message shall be one greater than the sequenceId of the previous message of the
same message type sent to the same message destination address by the transmitting port, subject to the
constraints of the rollover of the UInteger16 data type used for the sequenceId field.

Two PTP messages bearing the same values for the messageType and domainNumber fields and
transmitted from the same transmitting protocol address of a PTP node are identical if the values of the
sequenceId fields are identical, consistent with the rollover properties defined above for the sequenceId.

Separate pools of sequenceId shall not be maintained for the following message types:
⎯ Pdelay_Resp

⎯ Follow_Up

⎯ Delay_Resp

⎯ Pdelay_Resp_Follow_Up

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 45 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

⎯ Management messages that are a response to another management message

⎯ For these exceptions, the sequenceId value is specified in 13.3.2.9 and in 15.4.1.2.

7.3.8 Flag-based Indicators

7.3.8.1 unicastFlag

A TRUE value for the flag unicastFlag (see 13.3.2.6) indicates that the message was transmitted as a
unicast message.

7.3.8.2 alternateMasterFlag

A TRUE value for the flag alternateMasterFlag (see 13.3.2.6) indicates that the message is transmitted from
a port not in the MASTER state.

7.3.8.3 twoStepFlag

A TRUE value for the flag twoStepFlag (see 13.3.2.6) indicates that the message was sent from a two-step
clock.

7.4 PTP communication media

7.4.1 Network transport protocol

PTP communications occur on paths using transport protocols defined by the mapping annexes of this
standard. The identification of the transport protocol in use for a communication path shall be indicated by
 the networkProtocol enumeration of Table 3.

Table 3 ⎯networkProtocol enumeration

Name Value (hex) Applicable
annex

Reserved 0000 —
UDP/IPv4 0001 Annex D
UDP/IPv6 0002 Annex E
IEEE 802.3 0003 Annex F
DeviceNet 0004 Annex G
ControlNet 0005 Annex H
PROFINET 0006 Annex I
Reserved for assignment by the Precise Networked Clock Working Group
of the IM/ST Committee

0007-EFFF —

Reserved for assignment in a PTP profile F000-FFFD —
Unknown Protocol FFFE —
Reserved FFFF —
NOTE—Enumeration assignments for other transport mechanisms may be obtained by application to the Precise
Networked Clock Working Group of the IM/ST Committee.

7.4.2 Communication path asymmetry

Messages from master to slave and slave to master shall traverse the same network path in any system
containing two-step clocks on such paths. Messages from requestor to responder and from responder to
requestor shall traverse the same network path in any system containing two-step clocks on such paths.
They should traverse the same path in all systems to minimize asymmetry.

The Precision Time Protocol requires that the transmission time of certain messages be measured between a
master and a slave clock and between the slave and its master. For the peer delay mechanism it is required
that the transmission time between a responder and a requestor and between the requestor and the

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 46 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

responder be measured. Typically, these times are not the same. PTP characterizes the transmission times
as follows:

⎯ <meanPathDelay>

⎯ delayAsymmetry

The basis for these attributes is illustrated in Figure 20.

Master clock
or

Responder

Slave clock
or

Requestor

tms tsm

A B

Figure 20 ⎯Propagation asymmetry

The <meanPathDelay> is the mean value of tms and tsm; i.e., <meanPathDelay> = (tms + tsm)/2. The value of
delayAsymmetry is required for the computations of the actual delay in the master-to-slave or responder-to-
requestor direction, tms, used in Clause 11. In many cases, the value of delayAsymmetry is below the error
budget of the synchronization application.

The attribute delayAsymmetry is defined as follows:

tms = <meanPathDelay> + delayAsymmetry
tsm = <meanPathDelay> delayAsymmetry

In other words, delayAsymmetry is defined to be positive when the master-to-slave or responder-to-
requestor propagation time is longer than the slave-to-master or requestor-to-responder propagation time.

The measurement of delayAsymmetry is out of scope of this standard. However, if known, the propagation
asymmetry shall be modeled as specified in this subclause for purposes of correcting timing computations;
see 11.6.

7.5 PTP ports

7.5.1 General

The nodes in a PTP system interface with the network via entities called ports, as shown in Figure 21.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 47 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Event interface

Timestamp
generation

General interface

Port-n

Messages

Local time

Timestamps

PTP node
(multiple-ports)

Network

Figure 21 ⎯Port model

Each port on a PTP ordinary, boundary, or transparent clock is modeled as supporting two interfaces, event
and general, as shown in Figure 21. The model shows that timestamps are generated for event messages
(see 7.3.4.2) but are not required for general messages.

NOTE—Figure 21 is a model. Unless otherwise stated in this standard, there is nothing precluding implementations
that, for example, have a single interface, timestamp all messages, and sort out the event messages later.

Each PTP port implements a single version of the protocol and uses a single transport protocol. More than
one PTP port can connect to the network via a single physical port.

The attributes of PTP ports are described in 7.5.2 to 7.5.5.

7.5.2 PortIdentity

7.5.2.1 General

A PTP port is identified by an attribute portIdentity of type PortIdentity; see 5.3.5. The value is maintained
in the portIdentity member of the portDS data set; see 8.2.5.2.1. A portIdentity consists of two attributes, as
follows:

⎯ portIdentity.clockIdentity

⎯ portIdentity.portNumber

7.5.2.2 clockIdentity

7.5.2.2.1 General

The clockIdentity is an 8-octet array.

The clockIdentity values shall be taken from either the IEEE EUI-64 individual assigned numbers as
specified in 7.5.2.2.2, or from the value set specified in 7.5.2.2.3.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 48 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

The value of the clockIdentity should be taken from the IEEE EUI-64 individual assigned numbers11; see
7.5.2.2.2.

7.5.2.2.2 IEEE EUI-64 clockIdentity values

The most significant 3 octets of the clockIdentity shall be an OUI. The least significant two bits of the most
significant octet of the OUI shall both be 0. The least significant bit of the most significant octet of the OUI
is used to distinguish clockIdentity values specified by this subclause from those specified in 7.5.2.2.3.

NOTE 1—The values of the least and next-to-least significant bits of the most significant octet of the OUI indicate,
respectively, whether the address is a group or individual address and whether the address is administered universally
by the IEEE or locally.

A clockIdentity shall be an EUI-64 or shall be an EUI-64 constructed from a EUI-48.

For devices that use an IEEE EUI-64 for the clockIdentity value:
⎯ The OUI shall be owned by the organization creating an instance of a clockIdentity under the

terms of this subclause.

⎯ The organization owning the OUI shall ensure that the remaining 5 octets of the EUI-64 are
unique within the scope of clockIdentity values assigned by the organization.

⎯ The 8 octets of the IEEE EUI-64 shall be assigned in order to the 8-octet array clockIdentity
with the most significant octet of the IEEE EUI-64 assigned to the clockIdentity octet array
member with index 0.

Example:

The OUI for Company X is ACDE4816. If Company X wished to generate a EUI-64 clockIdentity, a legal
value would be as follows: ACDE48234567ABCD16, where the 5-octet array 234567ABCD16 would be
guaranteed by Company X to be unique among all Company X EUI-64 assigned numbers used as
clockIdentity values. The byte and bit representations of the clockIdentity are illustrated below from the
IEEE Registration Authority:11

OUI Extension identifier Field
addr+0

AC
addr+1

DE
addr+2

48
addr+3

23
addr+4

45
addr+5

67
addr+6

AB
addr+7

CD
order
hex

10101100 11011110 01001000 00100011 01000101 01100111 10101011 11001101 bits
| | | | |
| | group address bit | |
| most significant byte least significant byte |
most significant bit least significant bit

Implementers may alternatively use an EUI-48 to create the EUI-64 clockIdentity. In this case:
⎯ The EUI-48 shall be an Ethernet MAC address owned by the organization creating the instance

of a clockIdentity under the terms of this subclause. The organization owning the MAC address
shall guarantee that the MAC address is used in generating only a single instance of a
clockIdentity, for example, by requiring that the MAC address be a MAC address embedded in
the device identified by the clockIdentity.

⎯ The mapping rules for constructing the EUI-64 from the EUI-48 shall be those specified by the
IEEE Registration Authority.

11IEEE EUI-64, IEEE EUI-48, and IEEE MAC-48 assigned numbers may be obtained from the IEEE Registration Authority website:
http://standards.ieee.org/regauth/. Tutorials on these assigned numbers may be found on this website.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 49 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

⎯ The 8 octets of the created IEEE EUI-64 shall be assigned in order to the 8-octet array
clockIdentity with the most significant octet of the IEEE EUI-64 assigned to the clockIdentity
octet array member with index 0.

NOTE 2—When using an EUI-48, the first 3 octets, i.e., the OUI portion, of the IEEE EUI-48 are assigned in order to
the first 3 octets of the clockIdentity with the most significant octet of the IEEE EUI-64, i.e., the most significant octet
of the OUI portion, assigned to the clockIdentity octet array member with index 0. Octets with index 3 and 4 have hex
values FF and FE, respectively. The remaining 3 octets of the IEEE EUI-48 are assigned in order to the last 3 octets of
the clockIdentity].

NOTE 3—The IEEE Registration Authority has deprecated the use of MAC-48 in any new design.11

Example:

If Company X wished to use an EUI-48 based on the MAC address in an owned device of
ACDE4823456716 as part of the clockIdentity, the resulting clockIdentity would be as follows:
ACDE48FFFE23456716. The byte and bit representations of the clockIdentity are illustrated below from
IEEE Registration Authority:11

OUI Extension identifier Field
addr+0

AC
addr+1

DE
addr+2

48
Addr+3

FF
addr+4

FE
addr+5

23
addr+6

45
addr+7

67
order
hex

10101100 11011110 01001000 11111111 11111110 00100011 01000101 01100111 bits
| | | | |
| | group address bit | |
| most significant byte least significant byte |
most significant bit least significant bit

Interpretations or functional behaviors dependent on an IEEE Std 1588:2008/IEC 61588:2009 clockIdentity
value except for those interpretations and functional behaviors defined in this standard shall not be permitted.

NOTE 4— The clockIdentity value is used by PTP as a unique identifier and not as a network address. Although a
network address may possibly be inferred from the clockIdentity for technologies using the underlying IEEE assigned
numbers for that purpose, such an interpretation is out of the scope of this standard.

7.5.2.2.3 Non-IEEE EUI-64 clockIdentity values

For devices that do not use IEEE EUI-64- or EUI-48-based clockIdentity values:
⎯ The most significant octet shall be set to FF16. The least significant bit of this octet is used to

distinguish clockIdentity values specified by this subclause from those specified in 7.5.2.2.2.

⎯ The next 8 bits, i.e., with octet index 1, shall be assigned a value from the non-EUI-64
addressTechnology enumeration of Table 4.

⎯ Octets with indices 2 through 7 shall be assigned values such that the value of the resulting 6-
octet array is unique within the protocol technology defined by the octets with index 0 and 1.
Technologies using this option, and for which the unique technology-specific identifier is less
than 6 octets, shall left-justify the device’s unique technology-specific identifier in the field and
pad the unused octets with zeroes. In other words, the clockIdentity octet with index 2 shall be
significant in all technologies using this option.

⎯ The assignment of protocol technology-specific unique identifiers shall be the responsibility of
the standards or industry body governing the specifications of the applicable technology.

The 16-bit values for the non-IEEE administered numbers, the non-EUI-64 addressTechnology, shall be as
defined in Table 4.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 50 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table 4 ⎯Non-EUI-64 addressTechnology enumeration

Octet[0]
(hex)

Octet[1]
(hex)

Communication protocol

00 Reserved
01 DeviceNet
02 ControlNet
03 PROFINET
04 to FD Reserved for assignment by the Precise Networked

Clock Working Group of the IM/ST Committee
FE Version 1 devices

FF

FF Closed system outside the scope of this standard

NOTE 1—The clockIdentity is used by PTP as a unique identifier and not as a network address. Although a network
address may possibly be inferred from the clockIdentity for technologies using the underlying IEEE assigned numbers
for that purpose, such interpretation is out of the scope of this standard.

NOTE 2—Protocols listed in Table 4 use addresses not readily mapped into the EUI-64 framework. IEEE Std 1588:2008/
IEC 61588:2009 version 1 devices use Ethernet MAC addresses for version 1 UUID fields. The translation between version 1
and version 2 in boundary clocks is simplified by including specific provision for version 1 devices in this table; see 18.3.7.

Example:

The XYZ Association is the standards organization governing the XYZ network protocol of a future or
current annex to this standard. The XYZ Association is assigned a value FF05 (hex) from Table 4. Suppose
that one of its member companies, Company Y, obtained from the XYZ Association, the 6-octet unique
clockIdentity: 23456789ABCD16. The resulting 8-octet clockIdentity would be as follows:
FF0523456789ABCD16. The byte and bit representations are illustrated as follows:11

OUI Extension identifier Field
addr+0

FF
addr+1

05
addr+2

23
Addr+3

45
addr+4

67
addr+5

89
addr+6

AB
addr+7

CD
order
hex

11111111 00000101 00100011 01000101 01100111 10001001 10101011 11001101 bits
| | | | |
| | group address bit | |
| most significant byte least significant byte |
most significant bit least significant bit

7.5.2.2.4 Reserved clockIdentity value

The clockIdentity value of all ones shall be reserved for designating all clocks in a domain.

NOTE-⎯This is consistent with the rules specified by the IEEE Registration Authority.11

7.5.2.3 portNumber

The value of the portNumber for a port on a PTP node supporting a single PTP port shall be 1. The values
of the port numbers for the N ports on a PTP node supporting N PTP ports shall be 1, 2, …N, respectively.
The all-zeros and all-ones portNumber values are reserved. The all-ones portNumber, with value FFFF16, is
used as the “all-ports” indicator in Management messages (see 15.3.1) and in Signaling messages (see
13.12.1). The all-zeros portNumber is used in data set comparison between portIdentity and clockIdentity
(see 7.5.2.4 and Table 12), designating the internal portNumber of the clock. The all-zero portNumber may
also be used to represent a NULL portNumber value; e.g., it can represent an uninitialized or invalid
portNumber value.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 51 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

7.5.2.4 Ordering of clockIdentity and portIdentity values

Two clockIdentity values X and Y are compared as follows:

a) If every octet in X is equal to the corresponding octet in Y, then X = Y.

b) Otherwise, consider the most significant position in which the octets differ, and treat the octets in that
position as unsigned integers. If the octet belonging to X is smaller than the octet belonging to Y,
then X < Y; otherwise X > Y.

Two portIdentities A and B of type PortIdentity with attributes clockIdentity and portNumber are compared
as follows:

a) If A.clockIdentity is less than B.clockIdentity, then A < B.

b) Otherwise, if A.clockIdentity is greater than B.clockIdentity, then A > B.

c) Otherwise, if the value of A.portNumber is less than the value of B.portNumber, then A < B.

d) Otherwise, if the value of A.portNumber is greater than the value of B.portNumber, then A > B.

e) Otherwise, A = B.

A portIdentity A of type PortIdentity with attributes clockIdentity and portNumber and a clockIdentity B of
type ClockIdentity are compared as follows:

a) If A.clockIdentity is less than B.clockIdentity, then A < B.

b) Otherwise, if A.clockIdentity is greater than B.clockIdentity, then A > B.

c) Otherwise, B < A.

7.5.3 State

There are two kinds of PTP ports: stateful and stateless. PTP stateful ports support the state mechanism of
9.2. Stateful PTP ports are characterized by the current state of the PTP state machine associated with the
port. Stateless PTP ports do not support the PTP state machine and do not have this state attribute.

NOTE—This definition of stateful and stateless PTP ports does not rule out state mechanisms other than that of 9.2 that
may apply to a PTP port.

7.5.4 Path delay measurement mechanism

There are two mechanisms for measuring the propagation time of an event message. These mechanisms are
as follows:

⎯ Delay request-response mechanism (see 11.3), which measures the propagation time between
two stateful PTP ports

⎯ Peer delay mechanism (see 11.4), which measures the propagation time between two ports
supporting the peer delay mechanism

NOTE—The peer delay mechanism may be supported on both stateful and stateless PTP ports.

7.5.5 versionNumber

The versionNumber attribute indicates the version of this standard implemented on the port. For this edition
of the standard, the versionNumber attribute has the value 2.

NOTE—A change in the versionNumber indicates that the formats or semantics of PTP messages or the operation of
the protocol has changed such that earlier versions will not correctly interpret PTP messages. Defining new TLVs or

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 52 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

previously reserved PTP message fields will not necessarily result in a change of versionNumber but only in a change
to the date of the current edition of the standard. Nodes conforming to an earlier edition of the standard will not be able
to take advantage of the new capabilities created by such TLVs or definition of previously reserved fields. Although
out of the scope of the current edition, future editions may specify autonegotiation or other techniques to enable the
inclusion of nodes implemented with earlier versions of the standard. In this edition, Clause 18 defines the translation
between version 1 and version 2.

7.6 PTP device characterization

7.6.1 PTP device type

There are five types of PTP devices, as follows:
⎯ Ordinary clock

⎯ Boundary clock

⎯ End-to-end transparent clock

⎯ Peer-to-peer transparent clock

⎯ Management node

All PTP devices are identified by a clockIdentity attribute.

In addition, ordinary and boundary clocks are characterized by the following attributes:
⎯ priority1

⎯ priority2

⎯ clockClass

⎯ clockAccuracy

⎯ timeSource

⎯ offsetScaledLogVariance

⎯ numberPorts

Ordinary and boundary clocks may keep statistics on the performance of their parent using the following
attributes:

⎯ observedParentOffsetScaledLogVariance

⎯ observedParentClockPhaseChangeRate

7.6.2 PTP device attributes

7.6.2.1 clockIdentity

The clockIdentity value for a clock or management node shall be as specified in 7.5.2.2.

7.6.2.2 priority1

The attribute priority1 is used in the execution of the best master clock algorithm; see 9.3.2. Lower values
take precedence. The initialization value of priority1 is specified in a PTP profile. The value of priority1
shall be configurable to any value in the range 0 to 255, unless restricted by limits established by an
applicable PTP profile.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 53 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

NOTE— The operation of the best master clock algorithm selects clocks from a set with a lower value of priority1 over
clocks from a set with a greater value of priority1.

7.6.2.3 priority2

The attribute priority2 is used in the execution of the best master clock algorithm; see 9.3.2. Lower values
take precedence. The initialization value of priority2 is specified in a PTP profile. The value of priority2
shall be configurable to any value in the range 0 to 255, unless restricted by limits established by an
applicable PTP profile.

NOTE— In the event that the operation of the best master clock algorithm fails to order the clocks based on the values
of priority1, clockClass, clockAccuracy, and scaledOffsetLogVariance, the priority2 attribute allows the creation of up
to 256 priorities to be evaluated before the tiebreaker. The tiebreaker is based on the clockIdentity.

7.6.2.4 clockClass

The clockClass attribute of an ordinary or boundary clock denotes the traceability of the time or frequency
distributed by the grandmaster clock. The interpretation and allowed values of clockClass shall be based on
the definitions in Table 5.

NOTE 1—The clockClass number ranges 68 through 122 and 133 through 170 are reserved for definition in an
alternate PTP profile. For example, it is expected that these ranges will be used by PTP profiles defining applications
that distribute only frequency. The break at 128 allows these PTP profiles to select whether a clock not selected as
master by the best master clock algorithm has its port in the PASSIVE or SLAVE states, respectively.

NOTE 2—A node that is designed to synchronize its clock with the current master clock whenever it is not selected as
a master should never set its clockClass number to be less than 128. For example, a clock with the time set by a user
using the management message TIME (see 15.5.3.2.1) and is subsequently synchronized to the current master should
set the clockClass number to 187 instead of 6 or 7. Also see Table 7 for a description of "HAND_SET”.

NOTE 3—The clockClass number range 216 through 232 is expected to be used by PTP profiles that require clocks to
be given preference based on some application-specific precedence. For example, controllers might take precedence
over sensors in an industrial application.

Unless otherwise specified in an PTP profile, degradation alternative B shall be selected.

Unless a clock is specifically designed to maintain clock accuracy during circumstances that result in the
execution of the POWERUP event (see 9.2.6.2), the execution of this event shall preclude assigning a
clockClass value of 6, 7, 13, or 14.

In a given domain, clocks with clockClass values less than 128 should be inherently at least as stable (low
variance) as any clock with a clock class value greater than its own.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 54 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table 5 —clockClass specifications
clockClass
(decimal)

Specification

0 Reserved to enable compatibility with future versions.
1–5 Reserved.
6 Shall designate a clock that is synchronized to a primary reference time source. The timescale distributed shall

be PTP. A clockClass 6 clock shall not be a slave to another clock in the domain.
7 Shall designate a clock that has previously been designated as clockClass 6 but that has lost the ability to

synchronize to a primary reference time source and is in holdover mode and within holdover specifications. The
timescale distributed shall be PTP. A clockClass 7 clock shall not be a slave to another clock in the domain.

8 Reserved.
9–10 Reserved to enable compatibility with future versions.
11–12 Reserved.
13 Shall designate a clock that is synchronized to an application-specific source of time. The timescale distributed

shall be ARB. A clockClass 13 clock shall not be a slave to another clock in the domain.
14 Shall designate a clock that has previously been designated as clockClass 13 but that has lost the ability to

synchronize to an application-specific source of time and is in holdover mode and within holdover
specifications. The timescale distributed shall be ARB. A clockClass 14 clock shall not be a slave to another
clock in the domain.

15–51 Reserved.
52 Degradation alternative A for a clock of clockClass 7 that is not within holdover specification. A clock of

clockClass 52 shall not be a slave to another clock in the domain.
53–57 Reserved.
58 Degradation alternative A for a clock of clockClass 14 that is not within holdover specification. A clock of

clockClass 58 shall not be a slave to another clock in the domain.
59–67 Reserved.
68–122 For use by alternate PTP profiles.
123–127 Reserved.
128–132 Reserved.
133–170 For use by alternate PTP profiles.
171–186 Reserved.
187 Degradation alternative B for a clock of clockClass 7 that is not within holdover specification. A clock of

clockClass 187 may be a slave to another clock in the domain.
188–192 Reserved.
193 Degradation alternative B for a clock of clockClass 14 that is not within holdover specification. A clock of

clockClass 193 may be a slave to another clock in the domain.
194–215 Reserved.
216–232 For use by alternate PTP profiles.
233–247 Reserved.
248 Default. This clockClass shall be used if none of the other clockClass definitions apply.
249–250 Reserved.
251 Reserved for version 1 compatibility; see Clause 18.
252–254 Reserved.
255 Shall be the clockClass of a slave-only clock; see 9.2.2.

If the inherent characteristics of a clock change such that the clockClass or clockAccuracy designations no
longer apply, the clock shall either:

⎯ Upgrade or degrade its clockClass and clockAccuracy in such a way as to correctly specify the
current clock characteristics

⎯ Be placed in the FAULTY state

7.6.2.5 clockAccuracy

The clockAccuracy characterizes a clock for the purpose of the best master clock (BMC) algorithm. The
value of clockAccuracy shall be taken from the enumeration in Table 6. The value of this attribute shall be
estimated by the clock to a precision consistent with the value of the selected enumeration, e.g., for 2316 a
precision of plus or minus 0.5 �s. This estimate shall be based on the timeSource attribute (7.6.2.6), the
elapsed time since last synchronized to this time source, and the holdover specifications of the clock. If the

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 55 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

information to determine this estimate is not available, then the enumeration specification Unknown shall
be used.

The clockAccuracy indicates the expected accuracy of a clock when it is the grandmaster, or in the event it
becomes the grandmaster.

The ordering of clock accuracy in the operation of the best master clock algorithm (see 9.3.2) is specified
as follows. When comparing clock accuracies, clock A shall be deemed better than clock B if the value of
the clockAccuracy of A is lower than that of B.

NOTE— The range from 80 to FD16 is reserved for use by alternate PTP profiles. It is expected that this range will be
used by PTP profiles defining applications that distribute only frequency to define accuracy specifications appropriate
for frequency distribution.

Table 6 —clockAccuracy enumeration
Value (hex) Specification
00-1F Reserved
20 The time is accurate to within 25 ns
21 The time is accurate to within 100 ns
22 The time is accurate to within 250 ns
23 The time is accurate to within 1 �s
24 The time is accurate to within 2.5 �s
25 The time is accurate to within 10 �s
26 The time is accurate to within 25 �s
27 The time is accurate to within 100 �s
28 The time is accurate to within 250 �s
29 The time is accurate to within 1 ms
2A The time is accurate to within 2.5 ms
2B The time is accurate to within 10 ms
2C The time is accurate to within 25 ms
2D The time is accurate to within 100 ms
2E The time is accurate to within 250 ms
2F The time is accurate to within 1 s
30 The time is accurate to within 10 s
31 The time is accurate to >10 s
32–7F Reserved
80–FD For use by alternate PTP profiles
FE Unknown
FF Reserved

7.6.2.6 timeSource

This information-only attribute indicates the source of time used by the grandmaster clock. The value is not
used in the selection of the grandmaster clock. The values shall be as specified in Table 7. These values
represent categories. For example, the GPS entry would include not only the GPS system of the U.S.
Department of Defense but also the European Galileo system and other present and future satellite-based
timing systems.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 56 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table 7 —timeSource enumeration
Value (hex) a timeSource Description
10 ATOMIC_CLOCK Any device, or device directly connected to such a

device, that is based on atomic resonance for
frequency and that has been calibrated against
international standards for frequency and, if the PTP
timescale is used, time

20 GPS Any device synchronized to a satellite system that
distribute time and frequency tied to international
standards

30 TERRESTRIAL_RADIO Any device synchronized via any of the radio
distribution systems that distribute time and frequency
tied to international standards

40 PTP Any device synchronized to a PTP-based source of
time external to the domain

50 NTP Any device synchronized via NTP or Simple Network
Time Protocol (SNTP) to servers that distribute time
and frequency tied to international standards

60 HAND_SET Used for any device whose time has been set by means
of a human interface based on observation of an
international standards source of time to within the
claimed clock accuracy

90 OTHER Other source of time and/or frequency not covered by
other values

A0 INTERNAL_OSCILLATOR Any device whose frequency is not based on atomic
resonance nor calibrated against international
standards for frequency, and whose time is based on a
free-running oscillator with epoch determined in an
arbitrary or unknown manner

F0–FE For use by alternate PTP profiles
FF Reserved
a All unused values in Table 7 are reserved.

NOTE 1—The values for clockClass, clockAccuracy, and timeSource should be consistent. For example, a class 6 atomic clock
synchronized directly to the GPS system might claim an accuracy of 25 ns, while the same atomic clock not synchronized to GPS
but set via a user interface by a user observing a National Institute of Standards and Technology (NIST) server via the Web might
claim to be class 6 but with an accuracy of 10 s.

NOTE 2—The range from F0 to FE16 is reserved for use by alternate PTP profiles. It is expected that this range will be used by
PTP profiles defining applications that distribute only frequency to define the nature of sources appropriate for frequency
distribution.

NOTE 3—These designations may or may not carry over a power-fail restart but in any case should reflect the current status of the
node. For example, a simple quartz oscillator at turn on would be INTERNAL_OSCILLATOR. If later the epoch was set by hand,
it would be HAND_SET, whereas if it later synchronized to GPS, it would be GPS. If it had a battery-backed up real-time clock,
this status could survive a power-fail restart although the clockAccuracy and perhaps clockClass would be degraded.

7.6.2.7 numberPorts

The attribute, numberPorts, shall indicate the number of PTP ports on the PTP device.

7.6.3 PTP variance

7.6.3.1 General

Two variance estimates, as specified in 7.6.3.2, characterize ordinary and boundary clocks in a PTP system:
⎯ Each such clock shall maintain an estimate, the offsetScaledLogVariance (see 7.6.3.5), of its

inherent precision. This is the precision of the timestamps included in messages issued by the
clock when it is not synchronized to another clock using the protocol.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 57 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

⎯ If such a clock, clock_A, is synchronized to another using the PTP protocol, it may maintain an
estimate, the observedParentOffsetScaledLogVariance (see 7.6.4.3), of the precision of the
clock to which it is synchronized as observed by clock_A.

7.6.3.2 Variance algorithm

The PTP variance, from which offsetScaledLogVariance and observedParentOffsetScaledLogVariance are
derived, is based on the theory of Allan deviation as follows.

The Allan deviation ()τσ y is estimated as follows (see ITU-T Recommendation G.810 [B19]):

() () () 2
1

2

1

2
122 2

22
1 +−×
−

=
−

=
++

N

k
kkky xxx

N τ
τσ

where kx , 1kx + , and 2kx + are time residual measurements made at times kt , τ+kt , and τ2t k + . τ is
the sample period between measurements, and N is the number of data samples. The term “residual”
implies that any consistent systematic effects have been removed from the data.

The Allan deviation as stated is a second-order statistic on the variation of the frequency of the oscillator
used as the basis of the time base.
The PTP variance is defined by

222

3
1

yPTP στσ ×=

An unbiased estimate of the PTP variance shall be computed as follows:

() ()+−×
−

=
−

=
++

2

1

2
12

2 2
22

1
3
1 N

k
kkkPTP xxx

N
σ

where kx , 1kx + , and 2kx + are time residual measurements, made at times kt , τ+kt , and τ2t k + ,
between the time provided by the measured clock and a local reference clock, and N is the number of data
samples. For a PTP variance, the quantity , the sample period, shall be the value defined in the applicable
PTP profile. Subclauses 8.2.1.3.1.3 and 8.2.3.4 specify variances to be computed using the specifications in
this clause. If these variances are computed during execution, data are only available in multiples of the
syncInterval; see 7.7.2.3. In this case, should be a multiple of the syncInterval.

Implementations may compute a conservative estimate of the PTP variance rather than computing the exact
value given here. Note that this may be necessary in implementations with limited computational or
memory resources.

NOTE—The dependence of the Allan deviation on the sample period provides information on the type of the
underlying noise processes. The Allan deviation is not sensitive to constant offsets in time or in frequency, even though
those offsets may be important in some applications of this standard. In addition, the Allan deviation does not provide a
useful diagnostic when the noise spectrum contains “bright lines”—power-line-induced variations at 60 Hz, for
example. Finally, the Allan deviation is computed as an average over the ensemble of observations, and it is most
useful when the data are statistically stationary. The deviation does not provide a good measure of the frequency or
amplitude of occasional glitches, even though such events may be important in some applications of this standard.

7.6.3.3 Variance representation

PTP variances shall be represented as follows:

a) An estimate of the variance 2
PTPσ specified in 7.6.3.2 is computed in units of seconds squared.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 58 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

b) The logarithm to the base 2 of this estimate is computed. The computation of the logarithm need not
be more precise than the precision of the estimate of the variance.

c) The logarithm is multiplied by 28 to produce a scaled value.

d) This scaled value is modified per the hysteresis specification of this subclause to produce the reported
value.

e) The reported value is represented as a 2’s complement Integer16. The value 800016 is added to the
reported value represented in this form, and any overflow is ignored. The result, i.e., the offset scaled
reported value, is cast as a UInteger16.

f) This offset scaled reported value, represented as UInteger16, shall be the value of the log variances
specified in 7.6.3.1.

NOTE 1—For example, suppose the PTP variance value is 1.414 × 2-73 = 1.497 × 10-22 s2. Therefore, log2(1.414 ×
2−73) = −73 + 0.5 = −72.5. If this were expressed as an Integer16, it would truncate to −72. To retain some precision, the
value is scaled by 28 to yield a scaledLogVariance of −18560, i.e. B78016, which retains 8 bits more precision. To this
is added 800016 to yield the offset scaled reported value 378016.

NOTE 2—The smallest variance that can be represented is 2-128 or ~3 × 10-39 s2, which results in an
offsetScaledLogVariance of 000016. The maximum variance that can be represented is ~2 +127.99609, which results in an
offsetScaledLogVariance of FFFF16.

NOTE 3—This representation ensures that the ordering of variances algorithm of 7.6.3.4 produces identical results in
all implementations. This result cannot be guaranteed with a floating-point representation.

The largest possible positive number, FFFF16, for the offsetScaledLogVariance attribute shall indicate that
the variance is either too large to be represented or has not been computed.

Since variance values are used in the selection of the best master clock (see 9.3.2), implementations in
which variance values are computed during operation shall include hysteresis in the estimation of the
variances to preclude thrashing in the process of selecting the master clock. The magnitude of this
hysteresis applied to the 28 scaled values of the log2 of the reported estimates shall be
PTP_SCALED_LOG_VARIANCE_HYSTERESIS, as shown in Figure 22. This hysteresis shall be applied
to the scaled values of the logarithm of the estimate used to generate the offset scaled values of the
logarithm of the estimate that is actually reported and used in the computations of the best master clock
algorithm (see 9.3). Sufficient local state needs to be maintained to allow correct implementations of the
hysteresis properties for both increasing and decreasing trends in the actual variance estimate. The value of
PTP_SCALED_LOG_VARIANCE_HYSTERESIS is 27.

NOTE— A value of 27 corresponds to a change in the value of the actual log2(actual estimate) of 1/2. Fluctuations in
computed log2(estimated variance) below 1/2 are not to be reported because of this hysteresis requirement.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 59 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

28x log2(actual estimate)

28 x
 lo

g 2(
re

po
rte

d
es

tim
at

e)

PTP_SCALED_LOG_VARIANCE_HYSTERESIS

Figure 22 ⎯Scaled log variance hysteresis

7.6.3.4 Ordering of variances

The ordering of variances shall be computed on the offset, scaled, logarithmic representation of the
variance.

7.6.3.5 Computation of defaultDS.offsetScaledLogVariance

The computation of the value of defaultDS.offsetScaledLogVariance shall be based on the characteristics
of the local clock as measured by a perfect clock. The value of defaultDS.offsetScaledLogVariance shall be
as follows:

⎯ A static constant determined by the manufacturer

⎯ Computed based on measured or modeled behavior of the components of the local clock and its
environment

The value of defaultDS.offsetScaledLogVariance shall be computed and represented as described in 7.6.3.2
and 7.6.3.3.

The value of defaultDS.offsetScaledLogVariance shall be an estimate of the variations of the local clock
from a linear timescale when it is not synchronized to another clock using the protocol. The reference clock
when not synchronized to another clock may be an atomic clock, a GPS receiver, a stable local oscillator, a
suite of clocks synchronized via NTP, etc. These sources may contribute to the variance estimate.

The value of defaultDS.offsetScaledLogVariance shall be the variance applicable to an ensemble of
measurements that include error contributions from:

⎯ Synchronization to its reference clock

⎯ Variation in clock phase change rate, and noise characteristics of the local oscillator

⎯ Sampling quantization errors, fluctuations in inbound and outbound latency, and other
fluctuations of the local clock

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 60 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

7.6.4 Parent clock statistics

7.6.4.1 General

A clock in the slave state may maintain statistics on the observed performance of its parent. The two
optional statistics are as follows:

⎯ parentDS.observedParentOffsetScaledLogVariance

⎯ parentDS.observedParentClockPhaseChangeRate

7.6.4.2 parentDS.parentStats

The value of parentDS.parentStats shall indicate whether the values of
parentDS.observedParentOffsetScaledLogVariance and parentDS.observedParentClockPhaseChangeRate
have been measured and are valid. A TRUE value shall indicate valid data.

7.6.4.3 parentDS.observedParentOffsetScaledLogVariance

The parentDS.observedParentOffsetScaledLogVariance of a local clock shall be the variance of the parent
clock’s phase as measured by the local clock. This measurement is optional.

The value of parentDS.observedParentOffsetScaledLogVariance shall be computed and represented per
7.6.3.2 and 7.6.3.3.

7.6.4.4 parentDS.observedParentClockPhaseChangeRate

The parentDS.observedParentClockPhaseChangeRate shall be an estimate of the parent clock’s phase
change rate as measured by the slave clock; see 3.1.25. The reported value shall be the fractional frequency
offset multiplied by 2+40. If the estimate exceeds the capacity of its data type, this value shall be set to the
largest or smallest allowable value, as appropriate. A positive sign indicates that the parent clock is faster
than the clock of the slave clock. This measurement is optional.

NOTE 1—The minimum phase change rate that can be expressed is 2 40 or approximately 1 ps per s.

NOTE 2—This value is dependent on the measurement time interval used. When this value is critical for an application
domain, the time interval should be specified in the applicable PTP profile.

7.6.5 defaultDS.numberPorts

The attribute defaultDS.numberPorts shall be the number of ports on a device that supports PTP.

7.7 PTP timing characterization

7.7.1 General

Subclause 7.7 specifies the timing and timeout attributes of the protocol.

7.7.2 Message transmission intervals

7.7.2.1 General interval specification

For each of the message types Announce, Sync, Delay_Req, and Pdelay_Req, the mean time interval
between successive messages shall be represented as the logarithm to the base 2 of this time interval
measured in seconds on the local clock of the device sending the message. The values of these logarithmic
attributes shall be selected from integers in the range −128 to 127 subject to further limits established in an
applicable PTP profile. These intervals are communicated via the logMessageInterval field of PTP
messages. The interpretation of the logMessageInterval depends on the message type; see 13.3.2.11. Except
for Delay_Req messages (see 9.5.11.2), a node shall, with 90% confidence, issue messages with intervals
within ±30% of the stated value of this attribute.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 61 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

7.7.2.2 Announce message transmission interval

The portDS.logAnnounceInterval shall specify the mean time interval between successive Announce
messages, i.e., the announceInterval.

The portDS.logAnnounceInterval should be uniform throughout a domain. The behavior of domains in
which this is not so is outside the scope of this standard.

NOTE 1—The value of portDS.logAnnounceInterval is a compromise between the desired responsiveness to changes
in the network in determining the master−slave hierarchy in a domain and the communication and computation load
imposed by transmission of these messages.

NOTE 2—It may be desirable for the portDS.logAnnounceInterval to be different in regions of different
communication technologies, e.g., wired and wireless technologies. Systems where the portDS.logAnnounceInterval
varies from region to region will still operate correctly. However, it is possible that the regions with short intervals will
experience more reconfiguration while waiting for the slower regions to select masters using the best master clock
algorithm than would be the case in a system with uniform values of the interval.

7.7.2.3 Sync (multicast) message transmission interval

The portDS.logSyncInterval shall specify the mean time interval between successive Sync messages, i.e.,
the syncInterval, when transmitted as multicast messages.

NOTE 1—It may be desirable for the portDS.logSyncInterval to be different in regions of different communication
technologies, e.g., wired and wireless technologies.

NOTE 2—The value of portDS.logSyncInterval is a compromise between the stability and precision of the local clocks
and the communication and computation load imposed by transmission of these messages.

7.7.2.4 Delay_Req message transmission interval

The portDS.logMinDelayReqInterval shall specify the minimum permitted mean time interval between
successive Delay_Req messages, i.e., the minDelayRequestInterval, sent by a slave to a specific port on the
master; see 9.5.11.2.

This value is determined and advertised by a master clock based on the ability of the master clock to
process the Delay_Req message traffic. The value shall be an integer with the minimum value being
portDS.logSyncInterval, i.e., at the same rate as Sync messages, and a maximum value of
logSyncInterval+5, i.e., 1 Delay_Req message every 32 Sync messages.

NOTE— The value of portDS.logDelayReqInterval is a compromise between the responsiveness in changes to path
delay and the communication and computation load imposed by transmission of these messages.

7.7.2.5 Pdelay_Req message transmission interval

The portDS.logMinPdelayReqInterval shall specify the minimum permitted mean time interval between
successive Pdelay_Req messages, i.e., the minPdelayReqInterval, sent over a link.

NOTE—The value of portDS.logMinPdelayReqInterval is a compromise between the fluctuation in link delay and
startup time and the communication and computation load imposed by transmission of these messages.

7.7.3 PTP timeouts

7.7.3.1 portDS.announceReceiptTimeout

The value of portDS.announceReceiptTimeout shall specify the number of announceInterval that has to
pass without receipt of an Announce message before the occurrence of the event
ANNOUNCE_RECEIPT_TIMEOUT_EXPIRES; see 9.2.6.11. The range shall be 2 to 255 subject to
further restrictions of a PTP profile. The minimum value should be 3.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 62 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

The product (portDS.announceReceiptTimeout) × 2portDS.logAnnounceInterval should be uniform throughout a
domain. The behavior of domains where this is not so is outside the scope of this standard.
NOTE—The value of portDS.announceReceiptTimeout is a compromise between rapid response to failed devices or
network paths and undue thrashing of the best master clock algorithm in determining the master−slave hierarchy due to
occasional missed Announce messages.

8. PTP data sets

8.1 General specifications for data set members

8.1.1 Introduction to data sets

8.1.1.1 Introduction to data set specifications

Each data set member specification includes:
⎯ The formal name for the member

⎯ A reference or definition of the semantics associated with the member

⎯ Initialization and configuration properties, see 8.1.3

8.1.1.2 Ordinary and boundary clocks

For each ordinary clock and boundary clock, the following “clock data sets” shall be maintained locally as
the basis for protocol decisions and for providing values for message fields:

⎯ defaultDS (see 8.2.1)

⎯ currentDS (see 8.2.2)

⎯ parentDS (see 8.2.3)

⎯ timePropertiesDS (see 8.2.4)

⎯ portDS (one data set for each port of an ordinary or boundary clock; see 8.2.5)

8.1.1.3 Transparent clocks

For each transparent clock, the following “transparent clock data sets” should be maintained locally as the
basis for protocol decisions and for providing values for message fields:

⎯ transparentClockDefaultDS data set (see 8.3.2)

⎯ transparentClockPortDS data set (one data set for each port; see 8.3.3)

8.1.2 Initialization classification

8.1.2.1 General

Every member of a data set is classified as static, dynamic, or configurable.

8.1.2.1.1 Static members

The values of static members are inherent physical or operational properties of the clock or of the protocol.

8.1.2.1.2 Dynamic members

The values of dynamic members are not directly changed by users but may change as follows:

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 63 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

⎯ As a result of protocol operations. For example, the portDS.portState may change as a result of
protocol events. A management message may cause an event that results in a change in
portDS.portState but only indirectly via the action of the state machine. In some designs,
portDS.portState can be set by a management message.

⎯ Due to changes in the internal properties of the clock. For example, the
defaultDS.offsetScaledLogVariance may change due to temperature effects on the local
oscillator.

⎯ Due to interactions with timing systems external to PTP. For example, a clock that is able to
synchronize to the GPS system may change the value of its defaultDS.clockQuality, time, or
timePropertiesDS data set members when it first locks to GPS.

8.1.2.1.3 Configurable members

The values of configurable members can only be changed using management messages or implementation-
specific configuration means.

Unless otherwise stated in this standard, when the value of a configurable member is updated, the update
value shall take effect immediately upon update.

Unless otherwise stated in this standard, the update values for configurable members shall be restricted in
range to the most restrictive of the range values specified in Clause 7 or specified in the applicable PTP
profile.

NOTE—For example, the value of the defaultDS.domainNumber can be changed via a management message but is
otherwise unaffected by the protocol or internal changes in the clock.

8.1.3 Clock data set initialization properties

8.1.3.1 General initialization specifications

The initialization properties of a data set member shall be determined by its classifications as static,
dynamic, or configurable.

Data set members shall be initialized before leaving the INITIALIZATION state of an ordinary or
boundary clock and before beginning normal operation of a transparent clock as specified in 8.1.3.2,
8.1.3.3, and 8.1.3.4.

8.1.3.2 Initialization of static data set members

Static members shall be initialized to the implementation-specific value meeting the specifications for the
member.

8.1.3.3 Initialization of dynamic data set members

Dynamic members shall be initialized to the first of the following values that applies:

a) The value mandated in the specification for the data set member

b) The value that represents the properties of the clock or protocol at the time of initialization

NOTE—For example, the defaultDS.clockQuality value may depend on whether the clock is synchronized
to GPS at initialization.

c) The value in nonvolatile read−write storage if implemented

NOTE—For example, an implementation may store the value of currentDS.meanPathDelay in nonvolatile
storage on the assumption that the network is unlikely to be reconfigured frequently.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 64 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

d) Implementation-specific value

If dynamic member values are maintained in nonvolatile read−write memory, the manufacturer should
preload this memory with the applicable value from item a), item b), or item d).

The values from item a), item b), or item d) are called the dynamic data set initialization values.

8.1.3.4 Initialization of configurable data set members

Configurable members shall be initialized to the first one of the following values that applies:

a) The value indicated in the member specifications as the initialization value not subject to PTP profile
specification

b) Last value configured by management messages or implementation-specific means and maintained
in nonvolatile read−write storage if implemented

c) The default initialization value for the member as specified in the PTP profile implemented by the
device

If the configured values are maintained in nonvolatile read−write memory, the manufacturer should pre-
load this memory with the applicable initialization value from item a) or item c).

The values from item a) or item c) are called the configurable data set initialization values.

8.1.3.5 Operation of nonvolatile read−write storage of data set members

The current values of one or more dynamic or configurable data set members may be maintained in
nonvolatile read−write storage.

NOTE—For example, this may allow more rapid configuration of systems after a power outage.

The contents of nonvolatile read−write memory shall be reset to the applicable dynamic or configurable
data set initialization values (8.1.3.3 and 8.1.3.4) upon receipt of the management message
RESET_NON_VOLATILE_STORAGE or the implementation-specific equivalent.

The current values of the applicable dynamic and configurable data set members shall be copied into
nonvolatile read−write memory:

⎯ On receipt of the management message SAVE_IN_NON_VOLATILE_STORAGE or the
implementation-specific equivalent

⎯ At implementation-specific times

8.2 Data sets for ordinary and boundary clocks

8.2.1 defaultDS data set member specifications

8.2.1.1 General

The members of this data set are as follows:
⎯ defaultDS.twoStepFlag

⎯ defaultDS.clockIdentity

⎯ defaultDS.numberPorts

⎯ defaultDS.clockQuality

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 65 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

⎯ defaultDS.priority1

⎯ defaultDS.priority2

⎯ defaultDS.domainNumber

⎯ defaultDS.slaveOnly

8.2.1.2 Static members of the defaultDS data set

8.2.1.2.1 defaultDS.twoStepFlag

The value of defaultDS.twoStepFlag shall be TRUE if the clock is a two-step clock; otherwise, the value
shall be FALSE.

8.2.1.2.2 defaultDS.clockIdentity

The value of defaultDS.clockIdentity shall be the clockIdentity (see 7.6.2.1) of the local clock.

8.2.1.2.3 defaultDS.numberPorts

The value of defaultDS.numberPorts shall be the number of PTP ports on the device. For an ordinary clock,
this value shall be 1.

8.2.1.3 Dynamic members of the defaultDS data set

8.2.1.3.1 defaultDS.clockQuality

8.2.1.3.1.1 defaultDS.clockQuality.clockClass

The value of defaultDS.clockQuality.clockClass shall follow the clockClass specifications of 7.6.2.4.

The initialization value of defaultDS.clockQuality.clockClass shall be selected as follows:

a) The value is dependent on the initialization value of the defaultDS data set member
defaultDS.slaveOnly (see 8.2.1.4.4), which shall be initialized prior to initialization of the
defaultDS.clockQuality.clockClass member.

b) If defaultDS.slaveOnly is TRUE, the initialization value shall be 255 as specified in 7.6.2.4.

c) If defaultDS.slaveOnly is FALSE and a PTP profile specifies the clockClass to be 52, 58, 187, 193,
or in the ranges 68 through 122, 133 through 170, or 216 through 232, then the PTP profile specified
clockClass value shall be used for initialization.

d) If defaultDS.slaveOnly is FALSE and if the device is designed as a clockClass 6 or 13, the
clockClass initialization value shall be 6 or 13, respectively, if these represent the clockClass of the
clock upon exiting the INITIALIZING state. If the clockClass 6 or 13, respectively, does not
represent the clock upon exiting the INITIALIZING state, the clockClass initialization value shall be
as follows:

1) Either 52, 187, or 248, as specified in a PTP profile, for a clock designed as class 6.

2) Either 58, 193, or 248, as specified in a PTP profile, for a clock designed as class 13.

e) Else, the value shall be 248.

NOTE—A clock that is designed to be clockClass 6 or 13 can include implementation-specific measures to ensure it
meets the specifications of 7.6.2.4 for these clockClasses before initializing the defaultDS.clockClass member. For
example, the clock can synchronize to the GPS system as part of the activities in the INITIALIZING state prior to

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 66 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

initializing the defaultDS.clockClass member. If such a clock is unable to meet the specifications of 7.6.2.4 prior to
leaving the INITIALIZING state, then one of the degradation or the default alternatives for the clock is used.

8.2.1.3.1.2 defaultDS.clockQuality.ClockAccuracy

The value of defaultDS.clockQuality.ClockAccuracy is the clockAccuracy member of the
defaultDS.clockQuality member; see 5.3.7.

The initialization value of defaultDS.clockQuality.clockAccuracy shall be selected as follows:

a) The value is dependent on the initialization value of the defaultDS.clockQuality.clockClass (see
8.2.1.3.1.1), which shall be initialized prior to initialization of clockAccuracy.

b) The clockAccuracy initialization value shall represent the clockAccuracy of the clock at the time of
initialization as specified in 7.6.2.5.

8.2.1.3.1.3 defaultDS.clockQuality.offsetScaledLogVariance

The value of defaultDS.clockQuality.offsetScaledLogVariance is the offsetScaledLogVariance member of
the defaultDS.clockQuality member; see 5.3.7.
The initialization value of the defaultDS.clockQuality.offsetScaledLogVariance shall reflect the inherent
characteristics of the local clock at the time of initialization as specified in 7.6.3.5.

8.2.1.4 Configurable members of the defaultDS data set

8.2.1.4.1 defaultDS.priority1

The value of defaultDS.priority1 is the priority1 attribute (see 7.6.2.2) of the local clock.

8.2.1.4.2 defaultDS.priority2

The value of defaultDS.priority2 is the priority2 attribute (see 7.6.2.3) of the local clock.

8.2.1.4.3 defaultDS.domainNumber

The value of defaultDS.domainNumber is the domain attribute (see 7.1) of the local clock.

8.2.1.4.4 defaultDS.slaveOnly

The value of defaultDS.slaveOnly shall be TRUE if the clock is a slave-only clock; see 9.2.2. The value
shall be FALSE if the clock is a non-slave-only clock; see 9.2.3.

8.2.2 currentDS data set member specifications

8.2.2.1 General

The members of this data set are as follows:
⎯ currentDS.stepsRemoved

⎯ currentDS.offsetFromMaster

⎯ currentDS.meanPathDelay

All members of the currentDS data set are dynamic.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 67 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

8.2.2.2 currentDS.stepsRemoved

The value of currentDS.stepsRemoved is the number of communication paths traversed between the local
clock and the grandmaster clock.

The initialization value shall be 0.

NOTE—For example, currentDS.stepsRemoved for a slave clock on the same PTP communication path as the
grandmaster clock has a value of 1, indicating that a single path was traversed.

8.2.2.3 currentDS.offsetFromMaster

The value of currentDS.offsetFromMaster is an implementation-specific representation of the current value
of the time difference between a master and a slave as computed by the slave; i.e., <offsetFromMaster> =
<Time on the slave clock> <Time on the master clock> (see 11.2). The data type should be TimeInterval.
The initialization value shall be either:

⎯ The value in non-volatile read-write storage if implemented

⎯ Implementation-specific

8.2.2.4 currentDS.meanPathDelay

The value of currentDS.meanPathDelay is an implementation-specific representation of the current value of
the mean propagation time between a master and slave clock as computed by the slave, i.e.,
<meanPathDelay>; see 11.3 and 11.4. The data type should be TimeInterval. The initialization value shall
be either:

⎯ The value in nonvolatile read−write storage if implemented

⎯ Implementation-specific

8.2.3 parentDS data set member specifications

8.2.3.1 General

The members of this data set are as follows:
⎯ parentDS.parentPortIdentity

⎯ parentDS.parentStats

⎯ parentDS.observedParentOffsetScaledLogVariance

⎯ parentDS.observedParentClockPhaseChangeRate

⎯ parentDS.grandmasterIdentity

⎯ parentDS.grandmasterClockQuality

⎯ parentDS.grandmasterPriority1

⎯ parentDS.grandmasterPriority2

The values of the parentDS data set shall be initialized after the values in the defaultDS data set.

All members of the parentDS data set are dynamic.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 68 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

8.2.3.2 parentDS.parentPortIdentity

 The value of parentDS.parentPortIdentity is the portIdentity of the port on the master that issues the Sync
messages used in synchronizing this clock.

The initialization value shall be as follows:
⎯ The parentDS.parentPortIdentity.clockIdentity member is the value of the

defaultDS.clockIdentity field.

⎯ The parentDS.portNumber member is 0.

8.2.3.3 parentDS.parentStats

The value of parentDS.parentStats shall be TRUE if all of the following conditions are satisfied:
⎯ The clock has a port in the SLAVE state.

⎯ The clock has computed statistically valid estimates of the
parentDS.observedParentOffsetScaledLog Variance and the
parentDS.observedParentClockPhaseChangeRate members.

⎯ Otherwise the value shall be FALSE.

The initialization value shall be FALSE.

8.2.3.4 parentDS.observedParentOffsetScaledLogVariance

The value of parentDS.observedParentOffsetScaledLogVariance shall be an estimate of the parent clock’s
PTP variance as observed by the slave clock, computed and represented as described in 7.6.3.5. The
computation of this value is optional, but if not computed, the value of parentDS.parentStats shall be
FALSE.

The initialization value shall be FFFF16; see 7.6.3.3.

8.2.3.5 parentDS.observedParentClockPhaseChangeRate

The value of parentDS.observedParentClockPhaseChangeRate shall be an estimate of the parent clock’s
phase change rate as observed by the slave clock as defined in 7.6.4.4. If the estimate exceeds the capacity
of its data type (see 15.5.3.5.1.4), this value shall be set to 7FFF FFFF16 or 8000 000016, as appropriate. A
positive sign indicates that the parent clock’s phase change rate is greater than the rate of the slave clock.
The computation of this value is optional, but if not computed, the value of parentDS.parentStats shall be
FALSE.

The initialization value shall be 7FFF FFFF16 irrespective of whether the computation is implemented in
the local clock.

A value equal to 7FFF FFFF16 indicates that either the value exceeds the capacity of the data type or that
the value has not been computed.

NOTE— This value is dependent on the measurement time interval used. When this value is critical for an application
domain, the time interval should be specified in the applicable PTP profile.

8.2.3.6 parentDS.grandmasterIdentity

The value of parentDS.grandmasterIdentity is the clockIdentity attribute (see 7.6.2.1) of the grandmaster
clock.

The initialization value shall be the defaultDS.clockIdentity member.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 69 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

8.2.3.7 parentDS.grandmasterClockQuality

The value of parentDS.grandmasterClockQuality is the clockQuality attribute (see 7.6.2.4, 7.6.2.5, and
7.6.3) of the grandmaster clock.

The initialization value shall be the value of the defaultDS.clockQuality member.

8.2.3.8 parentDS.grandmasterPriority1

The value of parentDS.grandmasterPriority1 is the priority1 attribute (see 7.6.2.2) of the grandmaster clock.

The initialization value shall be the value of the defaultDS.priority1 member.

8.2.3.9 parentDS.grandmasterPriority2

The value of parentDS.grandmasterPriority2 is the priority2 attribute (see 7.6.2.3) of the grandmaster clock.

The initialization value shall be the value of the parentDS.priority2 member.

8.2.4 timePropertiesDS data set member specifications

8.2.4.1 General

The members of this data set are as follows:
⎯ timePropertiesDS.currentUtcOffset

⎯ timePropertiesDS.currentUtcOffsetValid

⎯ timePropertiesDS.leap59

⎯ timePropertiesDS.leap61

⎯ timePropertiesDS.timeTraceable

⎯ timePropertiesDS.frequencyTraceable

⎯ timePropertiesDS.ptpTimescale

⎯ timePropertiesDS.timeSource

All members of the currentDS data set are dynamic.

The timePropertiesDS.ptpTimescale member shall be initialized before the other members of this data set.

8.2.4.2 timePropertiesDS.currentUtcOffset

In PTP systems whose epoch is the PTP epoch, the value of timePropertiesDS.currentUtcOffset is the offset
between TAI and UTC; otherwise the value has no meaning. The value shall be in units of seconds.

The initialization value shall be selected as follows:

a) If the timePropertiesDS.ptpTimescale (see 8.2.4.8) is TRUE, the value is the value obtained from a
primary reference if the value is known at the time of initialization, else.

b) The value shall be the current number of leap seconds (7.2.3) when the node is designed.

NOTE— A clock that is designed to be clockClass 6 can include implementation-specific measures to ensure it meets
the specifications of 7.6.2.4 for clockClass 6 and therefore has access to the UTC offset value before initializing the
timePropertiesDS.currentUtcOffset member. For example, the clock can synchronize to the GPS system as part of the
activities in the INITIALIZATION state prior to initializing the currentUtcOffset member.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 70 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

8.2.4.3 timePropertiesDS.currentUtcOffsetValid

The value of timePropertiesDS.currentUtcOffsetValid is TRUE if the timePropertiesDS.currentUtcOffset is
known to be correct.

The initialization value shall be TRUE if the value of timePropertiesDS.currentUtcOffset is known to be
correct; otherwise, it shall be FALSE.

8.2.4.4 timePropertiesDS.leap59

In PTP systems whose epoch is the PTP epoch, a TRUE value for timePropertiesDS.leap59 shall indicate
that the last minute of the current UTC day contains 59 seconds.

If the epoch is not PTP, the value shall be set to FALSE.

The initialization value shall be selected as follows:

a) If the timePropertiesDS.ptpTimescale (see 8.2.4.8) is TRUE, the value shall be the value obtained
from a primary reference if known at the time of initialization, else.

b) The value shall be FALSE.

8.2.4.5 timePropertiesDS.leap61

In PTP systems whose epoch is the PTP epoch, a TRUE value for timePropertiesDS.leap61 shall indicate
that the last minute of the current UTC day contains 61 seconds.

If the epoch is not PTP, the value shall be set to FALSE.

The initialization value shall be selected as follows:

a) If the timePropertiesDS.ptpTimescale (see 8.2.4.8) is TRUE, the value is the value obtained from a
primary reference if known at the at the time of initialization, else.

b) The value shall be FALSE.

8.2.4.6 timePropertiesDS.timeTraceable

The value of timePropertiesDS.timeTraceable is TRUE if the timescale and the value of
timePropertiesDS.currentUtcOffset are traceable to a primary reference; otherwise, the value shall be
FALSE.

The initialization value shall be selected as follows:

a) If the timePropertiesDS.ptpTimescale (see 8.2.4.8) is TRUE and the time and the value of
timePropertiesDS.currentUtcOffset are traceable to a primary reference at the time of initialization,
the value shall be TRUE, else.

b) The value shall be FALSE.

8.2.4.7 timePropertiesDS.frequencyTraceable

The value of timePropertiesDS.frequencyTraceable is TRUE if the frequency determining the timescale is
traceable to a primary reference; otherwise, the value shall be FALSE.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 71 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

The initialization value shall be selected as follows:

a) If the frequency is traceable to a primary reference at the time of initialization the value shall be
TRUE, else.

b) The value shall be FALSE.

8.2.4.8 timePropertiesDS.ptpTimescale

The value of timePropertiesDS.ptpTimescale is TRUE if the clock timescale of the grandmaster clock (see
7.2.1) is PTP and FALSE otherwise.

The initialization value shall be selected as follows:

a) If the clock timescale (see 7.2.1) is PTP and this is known at the time of initialization, the value shall
be set to TRUE, else.

b) The value shall be FALSE, indicating that the timescale is ARB.

8.2.4.9 timePropertiesDS.timeSource

The value of timePropertiesDS.timeSource is the source of time used by the grandmaster clock.

The initialization value shall be selected as follows:

a) If the timeSource (see 7.6.2.6) is known at the time of initialization, the value shall be set to that
value, else.

b) The value shall be INTERNAL_OSCILLATOR.

8.2.5 portDS data set member specifications

8.2.5.1 General

For the single port of an ordinary clock and for each port of a boundary clock, the following “port data set”
shall be maintained as the basis for protocol decisions and for providing values for message fields. The
number of such data sets shall be the value of defaultDS.numberPorts.

The members of this data set are as follows:
⎯ portDS.portIdentity

⎯ portDS.portState

⎯ portDS.logMinDelayReqInterval

⎯ portDS.peerMeanPathDelay

⎯ portDS.logAnnounceInterval

⎯ portDS.announceReceiptTimeout

⎯ portDS.logSyncInterval

⎯ portDS.delayMechanism

⎯ portDS.logMinPdelayReqInterval

⎯ portDS.versionNumber

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 72 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

8.2.5.2 Static members of the portDS data set

8.2.5.2.1 portDS.portIdentity

The value of portDS.portIdentity shall be the PortIdentity attribute of the local port; see 7.5.2.

8.2.5.3 Dynamic members of the portDS data set

8.2.5.3.1 portDS.portState

The value of portDS.portState shall be the value of the current state of the protocol engine associated with
this port (see 9.2) and shall be taken from the enumeration in Table 8.

Table 8 ⎯PTP state enumeration

PTP state enumeration Value (hex)
INITIALIZING 01
FAULTY 02
DISABLED 03
LISTENING 04
PRE_MASTER 05
MASTER 06
PASSIVE 07
UNCALIBRATED 08
SLAVE 09
— All other values reserved

The initialization value shall be INITIALIZING.

8.2.5.3.2 portDS.logMinDelayReqInterval

The value of portDS.logMinDelayReqInterval is the logarithm to the base 2 of the minDelayReqInterval;
see 7.7.2.4. The initialization value is implementation-specific consistent with 7.7.2.4.

8.2.5.3.3 portDS.peerMeanPathDelay

If the value of the portDS.delayMechanism member is peer-to-peer (P2P), the value of
portDS.peerMeanPathDelay shall be an estimate of the current one-way propagation delay on the link, i.e.,
<meanPathDelay>, attached to this port computed using the peer delay mechanism; see 11.4. The data type
should be TimeInterval. If the value of the portDS.delayMechanism member is end-to-end (E2E), this
member’s value shall be zero. The initialization value shall be zero.

8.2.5.4 Configurable members of the portDS data set

8.2.5.4.1 portDS.logAnnounceInterval

The value of portDS.logAnnounceInterval shall be the logarithm to the base 2 of the mean
announceInterval; see 7.7.2.2.

8.2.5.4.2 portDS.announceReceiptTimeout

The value of portDS.announceReceiptTimeout shall be an integral multiple of announceInterval; see
7.7.3.1.

NOTE—The announceInterval is equal to the value of 2portDS.logAnnounceInterval.

8.2.5.4.3 portDS.logSyncInterval

The value of portDS.logSyncInterval shall be the logarithm to the base 2 of the mean SyncInterval for
multicast messages; see 7.7.2.3.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 73 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

NOTE—The rates for unicast transmissions are negotiated separately on a per port basis and are not constrained by this
subclause.

8.2.5.4.4 portDS.delayMechanism

The value of portDS.delayMechanism shall indicate the propagation delay measuring option used by the
port in computing <meanPathDelay>. The value shall be taken from the enumeration in Table 9. The
initialization value is implementation-specific unless otherwise stated in a PTP profile.

Table 9 ⎯Delay mechanism enumeration

Delay mechanism Value (hex) Specification
E2E 01 The port is configured to use the delay request-response mechanism.
P2P 02 The port is configured to use the peer delay mechanism.
DISABLED FE The port does not implement the delay mechanism; see NOTE.
NOTE—This value shall not be set by a clock except when the applicable PTP profile specifies that the clock syntonize
only and that neither path delay mechanism is to be used.

NOTE—Subclause 9.1 permits reconfiguration. Autoconfiguration is allowed but is out of scope.

8.2.5.4.5 portDS.logMinPdelayReqInterval

The value of portDS.logMinPdelayReqInterval shall be the logarithm to the base 2 of the
minPdelayReqInterval; see 7.7.2.5.

8.2.5.4.6 portDS.versionNumber

The value of portDS.versionNumber shall indicate the PTP version in use on the port.

8.3 Data sets for transparent clocks

8.3.1 General

Optionally, a transparent clock shall maintain a single copy of each default and port data sets.

NOTE—Unlike ordinary and boundary clocks, a transparent clock does not maintain separate data sets for each
domain. With the exception of syntonization, transparent clocks are domain independent.

8.3.2 transparentClockDefaultDS data set member specifications

8.3.2.1 General

The members of this data set are as follows:
⎯ transparentClockDefaultDS.clockIdentity

⎯ transparentClockDefaultDS.numberPorts

⎯ transparentClockDefaultDS.delayMechanism

⎯ transparentClockDefaultDS.primaryDomain

8.3.2.2 Static members of the transparentClockDefaultDS data set

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 74 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

8.3.2.2.1 transparentClockDefaultDS.clockIdentity

The value of transparentClockDefaultDS.clockIdentity shall be the clockIdentity attribute (see 7.6.2.1) of
the local clock.

8.3.2.2.2 transparentClockDefaultDS.numberPorts

The value of transparentClockDefaultDS.numberPorts shall be the number of PTP ports of the device.

8.3.2.3 Configurable members of the transparentClockDefaultDS data set

8.3.2.3.1 transparentClockDefaultDS.delayMechanism

If the transparent clock is an end-to-end transparent clock, the value of the
transparentClockDefaultDS.delayMechanism shall be E2E; see Table 9. If the transparent clock is a peer-
to-peer transparent clock, the value shall be P2P.

8.3.2.3.2 transparentClockDefaultDS.primaryDomain

The value of transparentClockDefaultDS.primaryDomain shall be the domainNumber of the primary
syntonization domain; see 10.1. The initialization value shall be 0.

8.3.3 transparentClockPortDS data set member specifications

8.3.3.1 General

The members of this data set are as follows:
⎯ transparentClockPortDS.portIdentity

⎯ transparentClockPortDS.logMinPdelayReqInterval

⎯ transparentClockPortDS.faultyFlag

⎯ transparentClockPortDS.peerMeanPathDelay

8.3.3.2 Static members of the portDS data set

8.3.3.2.1 transparentClockPortDS.portIdentity

The value of transparentClockPortDS.portIdentity shall be the PortIdentity attribute of the local port; see
7.5.2.

8.3.3.3 Dynamic members of the portDS data set

8.3.3.3.1 transparentClockPortDS.logMinPdelayReqInterval

The value of transparentClockPortDS.logMinPdelayReqInterval shall be the logarithm to the base 2 of the
minPdelayReqInterval; see 7.7.2.5.

8.3.3.3.2 transparentClockPortDS.faultyFlag

The value of transparentClockPortDS.faultyFlag shall be TRUE if the port is faulty and FALSE if the port
is operating normally. The initialization value shall be FALSE.

8.3.3.3.3 transparentClockPortDS.peerMeanPathDelay

If the value of the transparentClockDefaultDS.delayMechanism member is P2P, the value of
transparentClockPortDS.peerMeanPathDelay shall be the estimate of the current one-way propagation
delay, i.e., <meanPathDelay> on the link attached to this port computed using the peer delay mechanism;
see 11.4. If the value of the transparentClockDefaultDS.delayMechanism member is E2E, the value shall
be zero. The data type should be TimeInterval. The initialization value shall be zero.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 75 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

9. PTP for ordinary and boundary clocks

9.1 General protocol requirements for PTP ordinary and boundary clocks

Ordinary and boundary clocks:

a) May operate within more than one domain; see 7.1. The operation of each domain shall be
independent of the others.

b) When required by the state machine of 9.2, shall synchronize per 12.2.

c) Shall correct for path delay using one of the following options:

1) Delay request-response mechanism; see 11.3

2) Peer delay mechanism; see 11.4

A port may implement both the delay request-response and the peer delay mechanisms provided only one
mechanism is active at any time. The method of selection is outside the scope of this standard.
Autoconfiguration is not prohibited.

Clocks synchronize only to the clock selected using the best master algorithm.

An ordinary or boundary clock that receives an Announce, Sync, Follow_Up, or Delay_Resp message in
which the value of the header flag, alternateMasterFlag, is TRUE shall discard the message except as
provided in Clause 17.

An ordinary clock shall contain a single PTP port obeying the requirements of 9.2.

A boundary clock shall contain multiple PTP ports each obeying the requirements of 9.2.

9.2 State protocol

9.2.1 General state requirements

All ordinary and boundary clocks shall implement the state machine and state behavior of 9.2.

9.2.2 Slave-only ordinary clocks

An ordinary clock may be designed to be a slave-only or a non-slave-only clock. An implementation may
optionally provide the ability to configure to a slave-only mode via the management message
SLAVE_ONLY or by implementation-dependent means. A slave-only clock shall implement the state
machine illustrated in Figure 24.

NOTE—A slave-only clock can never enter the MASTER state. Systems should therefore contain at least one non-
slave-only clock. A slave-only clock uses a different state machine than a non-slave-only clock and has a different
clockClass number; see 7.6.2.4.

9.2.3 Non-slave-only clocks

A boundary clock shall not be a slave-only clock. Boundary clocks and ordinary clocks not designed or
configured as slave-only shall implement the state machine illustrated in Figure 23.

9.2.4 State definitions

The behavior of the states of a port associated with the state machines of Figure 23 and Figure 24 shall be
as defined in Table 10 with the exception of the provisions for unicast messages specified in 16.1.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 76 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

With the exception of the DISABLED state, a port may make use of any information received in PTP
messages provided such use does not violate the requirements of the protocol.

9.2.5 State machines

The state machines of this subclause shall determine the allowed transitions for PTP stateful ports.
Subclause 4.3 specifies the notation used in Figure 23 and Figure 24.

Table 10 ⎯PTP portState definition

PTP portState Description
INITIALIZING While a port is in the INITIALIZING state, the port initializes its data sets, hardware, and

communication facilities. No port of the clock shall place any PTP messages on its
communication path. If one port of a boundary clock is in the INITIALIZING state, then all ports
shall be in the INITIALIZING state.

FAULTY The fault state of the protocol. A port in this state shall not place any PTP messages except for
management messages that are a required response to another management message on its
communication path. In a boundary clock, no activity on a faulty port shall affect the other ports
of the device. If fault activity on a port in this state cannot be confined to the faulty port, then all
ports shall be in the FAULTY state.

DISABLED The port shall not place any messages on its communication path. In a boundary clock, no
activity at the port shall be allowed to affect the activity at any other port of the boundary clock.
A port in this state shall discard all PTP received messages except for management messages.

LISTENING The port is waiting for the announceReceiptTimeout to expire or to receive an Announce
message from a master. The purpose of this state is to allow orderly addition of clocks to a
domain. A port in this state shall not place any PTP messages on its communication path except
for Pdelay_Req, Pdelay_Resp, Pdelay_Resp_Follow_Up, or signaling messages, or management
messages that are a required response to another management message.

PRE_MASTER The port shall behave in all respects as though it were in the MASTER state except that it shall
not place any messages on its communication path except for Pdelay_Req, Pdelay_Resp,
Pdelay_Resp_Follow_Up, signaling, or management messages.

MASTER The port is behaving as a master port.
PASSIVE The port shall not place any messages on its communication path except for Pdelay_Req,

Pdelay_Resp, Pdelay_Resp_Follow_Up, or signaling messages, or management messages that
are a required response to another management message.

UNCALIBRATED One or more master ports have been detected in the domain. The appropriate master port has
been selected, and the local port is preparing to synchronize to the selected master port. This is a
transient state to allow initialization of synchronization servos, updating of data sets when a new
master port has been selected, and other implementation-specific activity.

SLAVE The port is synchronizing to the selected master port.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 77 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Figure 23 ⎯State machine for a full implementation

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 78 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Figure 24 ⎯State machine for a slave-only implementation

In both Figure 23 and Figure 24, when a fault is cleared or a previously disabled port is enabled, the state
machine makes a transition to the INITIALIZING state.

NOTE—Before making the subsequent transition to the LISTENING state, an implementation is not required to
perform all the steps that it would after an INITIALIZE command or a power-up or reset. It is required to achieve the
effect of performing those steps.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 79 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

9.2.6 Events initiating PTP state transitions

9.2.6.1 General

The specifications for each event initiating a transition in the state machines of Figure 23 and Figure 24 are
defined in 9.2.6.

9.2.6.2 POWERUP

The POWERUP event shall be instantiated by turning on the power to the device. It may also be
instantiated by implementation-specific reset mechanisms, e.g., a reset button.

9.2.6.3 INITIALIZE

The INITIALIZE event shall be instantiated by the receipt of the INITIALIZE management message or its
equivalent if required by the initializationKey field of this message.

9.2.6.4 DESIGNATED_ENABLED

The DESIGNATED_ENABLED event shall be instantiated by the receipt of the ENABLE_PORT
management message.

9.2.6.5 DESIGNATED_DISABLED

The DESIGNATED_DISABLED event shall be instantiated by the receipt of the DISABLE_PORT
management message.

9.2.6.6 FAULT_CLEARED

The FAULT_CLEARED event shall be instantiated by the clearing of the fault condition or conditions that
prevents correct operation of the port.

NOTE—The clearing of all detected fault conditions may result from the actions of management messages or internal
procedures.

9.2.6.7 FAULT_DETECTED

The FAULT_DETECTED event shall be instantiated by the occurrence of an internal condition that
prevents the correct operation of the port.

9.2.6.8 STATE_DECISION_EVENT

The STATE_DECISION_EVENT is the mechanism for using the data in received Announce messages to
determine which is the best master clock, and whether the local clock port or ports needs to change state.
Every clock shall implement a mechanism generating the STATE_DECISION_EVENT, and the
occurrence of this event shall implement the logic illustrated in Figure 25. In Figure 25, the best master
clock algorithm is illustrated as the default best master clock algorithm specified in this standard. If an
optional best master clock algorithm is specified (see 9.3.1), the portion of the figure within the box labeled
best master clock algorithm may differ.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 80 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Figure 25 ⎯STATE_DECISION_EVENT logic

The STATE_DECISION_EVENT shall:
⎯ Logically occur simultaneously on all ports of a clock

⎯ Occur at least once per Announce message transmission interval

⎯ Not occur when any port is in the INITIALIZING state

For nodes implementing the default best master clock algorithm (see 9.3.1), prior to or as the first action of
the STATE_DECISION_EVENT logic, each port N not in the DISABLED or FAULTY states shall
compute an updated value of Erbest (see 9.3.2.3), reflecting the receipt of Announce messages since the last
STATE_DECISION_EVENT. Following the computation of the set of Erbest for all ports, the clock shall
compute Ebest.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 81 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

For all nodes, the clock shall complete the following tasks, in the order given:

a) Apply the best master clock algorithm

b) Update the appropriate data sets

c) Instantiate the recommended state event in the state machine

d) Make the required state changes in all ports

These tasks shall be carried out atomically; see 3.1.2. This input information shall include the set of Erbest
values. These tasks shall be executed as defined in 9.3.

9.2.6.9 Recommended state

The recommended state event results from the exercise of the best master clock algorithm initiated by a
STATE_DECISION_EVENT.

9.2.6.10 QUALIFICATION_TIMEOUT_EXPIRES

The expiration of the <qualificationTimeoutInterval> defines the QUALIFICATION_TIMEOUT_EXPIRES event.
This timeout mechanism determines the interval a clock spends in the PRE_MASTER state.

The <qualificationTimeoutInterval> shall start when the port enters the PRE_MASTER state. The
expiration shall occur after an interval computed as follows:

The qualificationTimeoutInterval shall be N multiplied by the announceInterval (see 7.7.2.2), in seconds,
where:

a) If the recommended state = MASTER event was based on decision points M1 or M2 of Figure 26, N
shall be 0

b) If the recommended state = MASTER event was based on decision point M3 of Figure 26, N shall be
the value incremented by 1 (one) of the currentDS.stepsRemoved field.

9.2.6.11 ANNOUNCE_RECEIPT_TIMEOUT_EXPIRES

Each protocol engine shall support a timeout mechanism defining the announceReceiptTimeoutInterval,
with a value of portDS.announceReceiptTimeout multiplied by the announceInterval; see 7.7.3.1.

The ANNOUNCE_RECEIPT_TIMEOUT_EXPIRES event occurs at the expiration of this timeout plus a
random number uniformly distributed in the range (0,1) announceIntervals.

This timeout mechanism for a port shall start or be restarted when any of the following occur:

a) For a port in the UNCALIBRATED or SLAVE states, when an Announce message is received from
the parent clock as indicated by the parentDS.parentPortIdentity

b) At the expiration of the current portDS.announceReceiptTimeoutInterval unless otherwise specified
in Clause 9

c) When entering the LISTENING, UNCALIBRATED, SLAVE, or PASSIVE state

d) For a port in the PASSIVE state when an Announce message is received from the clock that
transmitted the Announce message that caused the port to be in the PASSIVE state, as indicated by a
comparison of the sourcePortIdentity fields of the respective messages

This timeout mechanism for a port shall be stopped and not restarted when entering the INITIALIZING,
PRE_MASTER, FAULTY, DISABLED, or MASTER states.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 82 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

In addition to the state changes of Figure 23 and Figure 24, ports in the LISTENING, PASSIVE,
UNCALIBRATED, or SLAVE states when the ANNOUNCE_RECEIPT_TIMEOUT_EXPIRES event
occurs shall update data sets prior to entering the MASTER state as follows:

⎯ For an ordinary clock, update the port’s data sets to the MASTER state configuration (see
9.3.5), as specified for decision M1

⎯ For a boundary clock with no other port in the SLAVE state, update the port’s data sets to the
MASTER state configuration (see 9.3.5), as specified for decision M1

⎯ For a boundary clock with a different port in the SLAVE state, update the port’s data sets to the
MASTER state configuration (see 9.3.5) as specified for decision M3

9.2.6.12 SYNCHRONIZATION_FAULT

The SYNCHRONIZATION_FAULT event instantiation is implementation-specific. This event should be
instantiated whenever a clock is in the SLAVE state and the implementation detects implementation
circumstances that require re-execution of functions that occur in the UNCALIBRATED state to ensure
correct synchronization.

9.2.6.13 MASTER_CLOCK_SELECTED

MASTER_CLOCK_SELECTED event instantiation is implementation-specific. This event should be
instantiated whenever a clock in the UNCALIBRATED state has satisfied all implementation- and
protocol-mandated requirements necessary to ensure synchronization when in the SLAVE state.

9.2.7 Applying PTP events to the ports of a boundary clock

For a boundary clock, the events initiating a transition in the state machines of Figure 23 and Figure 24 (see
9.2.6) shall be applied to the device’s port state machines as specified in Table 11.

Table 11 ⎯Event applicability in boundary clocks

Event name Port applicability
POWERUP All ports
INITIALIZE All ports
FAULT_DETECTED All ports affected by the fault
FAULT_CLEARED All ports affected by the fault
STATE_DECISION_EVENT All ports.
Recommended state, see NOTE All ports.
ANNOUNCE_RECEIPT_TIMEOUT_EXPIRES or
QUALIFICATION_TIMEOUT_EXPIRES

The port signaling the expiring timeout mechanism.

DESIGNATED_ENABLED or
DESIGNATED_DISABLED

The ports specified by the initiating management message.

MASTER_CLOCK_SELECTED The port signaling the event.
SYNCHRONIZATION_FAULT The port signaling the event.
NOTE—recommended state is a condition resulting from the exercise of the best master clock algorithm initiated by a
STATE_DECISION_EVENT

9.3 Best master clock algorithm

9.3.1 Selection of the best master clock algorithm

PTP permits the use of two forms of best master clock algorithm:
⎯ By default, the mechanism specified in 9.3.2, 9.3.3, and 9.3.4

⎯ If specified in a PTP profile, an alternate best master clock algorithm

Any alternate best master clock algorithm shall meet the following requirements:

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 83 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

a) The output of the algorithm shall provide the recommended state required for operation of the PTP
state machines and state decision events of 9.2.5, 9.2.6.8, and 9.2.6.9. The recommended states shall
meet the requirements of 9.2.4. Optionally, the alternate algorithm may be a dynamic algorithm, or it
may be a static algorithm that simply configures the recommended state values on the ports of the
node on which it is running.

b) The output of the algorithm shall provide the state decision codes for use in updating data sets (see
9.3.5) and any data required for implementing the updates based on these codes. These decision
codes shall be as follows:

1) M1: The port is in the MASTER state because it is on a clockClass 1 through 127 node and is
the grandmaster port of the system.

2) M2: The port is in the MASTER state because it is on a clockClass 128 or higher node and is the
grandmaster port of the system.

3) M3: The port is in the MASTER state, but it is not a port on the grandmaster clock of the
system.

4) S1: The port is in the SLAVE state.

5) P1: The port is in the PASSIVE state because it is on a clockClass 1 through 127 node and is
either not on the grandmaster clock of the system or is PASSIVE to break a timing loop.

6) P2: The port is in the PASSIVE state because it is on a clockClass 128 or higher node and is
PASSIVE to break a timing loop

The BMC algorithm is run locally on all ports of every ordinary and boundary clock in a domain. Since it
runs continuously, it continually readapts to changes in the network or the clocks.

9.3.2 BMC algorithm

9.3.2.1 Overview and definition of terms

Subclause 9.3.2 specifies the way that a local clock determines which of all the clocks (including itself) is
the “best.” From that it determines the next state of all its ports; see Table 10. The algorithm runs
independently on each clock in a domain. In other words, clocks do not negotiate which should be master
and which should be slave—instead, each computes only the state of its own ports. The algorithm avoids
configurations with two masters, or none, or ones that thrash.

The best master clock algorithm, BMC, consists of two parts:

a) A data set comparison algorithm that determines which of two clock ports is better. This algorithm is
specified in 9.3.4.

b) An algorithm that computes a recommendation for the state of each port involved. This algorithm is
specified in 9.3.3. The recommendation is called “recommended state” in
Figure 23, Figure 24, and Figure 26.

This determination is based on information contained in Announce messages received at the ports of a
given clock and on the defaultDS data set values of the given clock.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 84 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

9.3.2.2 General BMC specifications

The BMC algorithm on an ordinary or boundary clock C0 characterized by a defaultDS data set D0 and
other data sets, and with “N” ports shall be as follows:

a) For each port ”r” of C0, qualified Announce messages (see 9.3.2.5) received from ports of other
clocks connected to the communication path used by port “r” shall be compared.

b) For each port “r” of C0, the best of these messages Erbest shall be determined using the data set
comparison algorithm.

c) For the set of N ports of clock C0, the best of all messages, Ebest, shall be determined from the N Erbest
messages using the data set comparison algorithm.

d) For each of the N ports of clock C0, the messages Ebest and Erbest and the defaultDS data set D0 shall
be used with the state decision algorithm to determine the BMC event applicable to the state machine
(see 9.2.5) of each port.

e) Except for the provisions of the master cluster option (see 17.3) a port shall discard all Announce
messages with alternateMasterFlag TRUE in the exercise of the best master clock algorithm under
the terms of 9.3.2. These messages shall not be entered into the foreignMasterDS for consideration
by the best master clock algorithm. The alternate master option (see 17.4) specifies other uses for
Announce messages with this flag set to TRUE.

9.3.2.3 Computation of Erbest

Each port may determine Erbest independently of activity on other ports. The determination of Ebest, the
application of the state decision algorithm, and the instantiation of any state changes required by the
application of the results of these determinations shall be atomic; see 3.1.2.

In computing Erbest a port “r” shall:

a) Consider only qualified Announce messages (see 9.3.2.5) received on port “r.”

b) Include at least two qualified Announce messages from a foreign master clock if such messages
exist. In this case, “r” shall delete from its implementation-specific foreignMasterDS data set (see
9.3.2.4) all such records that were considered but not selected as Erbest.

c) If port “r” is in the SLAVE state, include the results of the previous computation of Erbest on port “r.”
However, if a more recent qualified Announce message is received on port “r” from the same
sending port, the values from that message shall be considered instead. If an
ANNOUNCE_RECEIPT_TIMEOUT_EXPIRES event occurs (see 9.2.6.11) for the clock selected
during the previous computation of Erbest on port “r,” then the previous computation of Erbest on port
“r” shall not be included.

NOTE—Announce messages should be included from as many foreign master clocks as port resources permit.

9.3.2.4 foreignMasterDS data set specifications

9.3.2.4.1 General

Each port shall maintain an implementation-specific foreignMasterDS data set for the purposes of
qualifying Announce messages. Each entry of the data set contains two members:

⎯ foreignMasterDS.foreignMasterPortIdentity

⎯ foreignMasterDS.foreignMasterAnnounceMessages

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 85 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

9.3.2.4.2 foreignMasterDS.foreignMasterPortIdentity

The value of foreignMasterDS.foreignMasterPortIdentity shall be the sourcePortIdentity field value of an
Announce message received from the foreign master.

9.3.2.4.3 foreignMasterDS.foreignMasterAnnounceMessages

The value of foreignMasterDS.foreignMasterAnnounceMessages shall be the number of Announce
messages from the foreign master indicated by the foreignMasterDS.foreignMasterPortIdentity member
that have been received within a time window of duration FOREIGN_MASTER_TIME_WINDOW.

9.3.2.4.4 FOREIGN_MASTER_TIME_WINDOW and FOREIGN_MASTER_THRESHOLD

The values of these two attributes determine the criteria for accepting an Announce message from a
previously silent master clock for consideration in the operation of the best master clock algorithm. The
values of these attributes shall be:

⎯ FOREIGN_MASTER_TIME_WINDOW: 4 announceInterval.

⎯ FOREIGN_MASTER_THRESHOLD: 2 Announce messages received within the
FOREIGN_MASTER_TIME_WINDOW.

9.3.2.4.5 Size of foreignMasterDS data set

The implementation-specific foreignMasterDS data set shall have a minimum capacity of five foreign
master records.

9.3.2.5 Qualification of Announce messages

An Announce message S received by a port “r” shall be qualified for consideration by the BMC algorithm
as follows:

a) If S was sent from port “r” or from any other port on the clock containing port “r” (see 9.5.2), S shall
not be qualified.

b) If S is not the Announce message most recently received on port “r” from a given clock, S shall not
be qualified.

c) If the sender of S is a foreign master clock F, and fewer than FOREIGN_MASTER_THRESHOLD
nonidentical Announce messages from F have been received within the most recent
FOREIGN_MASTER_TIME_WINDOW interval, S shall not be qualified.
NOTE—The purpose of this window and threshold is to qualify only stable potential masters and prevent
spurious transitions of the best master.

d) If the stepsRemoved field of S is 255 or greater, S shall not be qualified.

NOTE—This provision ensures that rogue frames are extinguished. This is a mandatory backup to the use
of the PATH_TRACE option for this purpose; see 16.2. This stepsRemoved-based mechanism may cause
the failure of PTP if the size of the network is such that there are possible loops involving 255 boundary
clocks. This is extremely unlikely in practical applications.

e) Otherwise, S shall be qualified.

9.3.3 State decision algorithm

The state decision algorithm used in the best master clock algorithm shall be as defined by Figure 26. After
a decision is reached by use of this algorithm, the data sets of the local clock shall be updated as specified
in 9.3.5.

D0 represents the characteristics of clock C0 as specified in the data sets of C0.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 86 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Comparisons of D0 with Ebest or Erbest shall be made using the data set comparison algorithm. For the
decision block in Figure 26, “Ebest better by topology than Erbest,” comparisons of Ebest with Erbest shall be
made using the data set comparison algorithm.

The determination of whether D0 is clockClass 1 through 127 shall be made based on the value of the
defaultDS.clockQuality.clockClass member of D0.

The values for recommended state used in the protocol engine state machines of Figure 23 and Figure 24
shall be the values for recommended state given in Figure 26.

Figure 26 ⎯State decision algorithm

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 87 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

9.3.4 Data set comparison algorithm

The best master clock algorithm compares one clock with another by comparing data sets that represent
those clocks. The data set comparison algorithm shall be as defined by Figure 27 and Figure 28. The data
sets are indicated in these figures as set A and set B. The sources for data set values are given in Table 12.
If in comparing any two of the data sets D0, Ebest, or Erbest, one of the data sets is the empty set, then the
nonempty set is deemed the better set. D0 is never the empty set; however, Ebest or Erbest or both may be the
empty set.

NOTE— The general process followed in this comparison is as follows:

a) Find which clock derives its time from the better grandmaster. Choosing this, rather than which is the better
clock, is essential for the stability of the algorithm.

b) If those properties are equivalent, use tie-breaking techniques.

Table 12 ⎯Information sources for data set comparison algorithm

When considering this
property as designated in
Figure 27 and Figure 28

If the data set is Ebest or Erbest, use these fields of
the associated Announce message

If the data set is D0, use
these fields of the local
clock defaultDS data set

GM priority1 grandmasterPriority1 defaultDS.priority1
GM identity grandmasterIdentity defaultDS.clockIdentity
GM class grandmasterClockQuality.clockClass defaultDS.clockQuality.

clockClass
GM accuracy grandmasterClockQuality.clockAccuracy defaultDS.clockQuality.

clockAccuracy
GM
offsetScaledLogVariance

grandmasterClockQuality.offsetScaledLogVariance defaultDS.clockQuality.
offsetScaledLogVariance

GM priority2 grandmasterPriority2 defaultDS.priority2
Steps Removed stepsRemoved The value 0
Identity of Senders sourcePortIdentity defaultDS.clockIdentity
Identity of Receiver parentDS.portIdentity (of portDS data set of port

receiving message)
defaultDS.clockIdentity

Port Number of Receivers parentDS.portIdentity.portNumber (of portDS data set
of port receiving message)

The value 0

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 88 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Figure 27 ⎯Data set comparison algorithm, part 1

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 89 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Return
A better by

topology than B

Return
B better by

topology than A

X

A = B

Compare
Identities of
Senders of

A and B

A < B

A = B

A > B

Compare Steps
Removed of

A and B

Compare Steps
Removed of

A and B

A + 1 < BA > B + 1 Return
A better than B

Return
B better than A

A within 1 of B

Compare Identities
of Receiver of B and

Sender of B

Compare Identities
of Receiver of A and

Sender of A

Compare
Port Numbers of

Receivers of
A and B

A < BA > B

A = B

error-2 error-1error-1

Receiver > Sender

Receiver < Sender

A > B

Receiver > Sender

Receiver < Sender

A < B

Receiver = Sender Receiver = Sender

Figure 28 ⎯Data set comparison algorithm, part 2

NOTE—The error returns shown in Figure 28 are not used in the state decision algorithm of Figure 26. These returns
are precluded by the terms of 9.3.2.5 but may be useful for diagnostic or error detection. The error conditions occur
when terms of that clause are violated. Error-1 indicates that one of the messages was transmitted and received on the
same port. Error-2 indicates that the messages are duplicates or that they are an earlier and later message from the same
grandmaster.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 90 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

9.3.5 Update of data sets

The update of the currentDS, parentDS, portDS, and timePropertiesDS data sets shall be as defined in
Table 13 through Table 16 for the state decision codes, which are indicated by “State Decision Code” in
Figure 26 for the default best master clock algorithm and by 9.3.1 for a PTP profile-defined alternate.

Member portDS.portState of the portDS data set shall be updated as changes are made by the protocol state
machine of Figure 23 and Figure 24 associated with each port in accordance with 9.2.6.8.

Data set fields that are not included in Table 13 through Table 16 are not updated.

Table 13 ⎯Updates for state decision code M1 and M2

Update this field From the indicated field of the defaultDS data set of the clock
unless otherwise stated

currentDS data set
currentDS.stepsRemoved set to 0
currentDS.offsetFromMaster set to 0
currentDS.meanPathDelay set to 0
parentDS data set
parentDS.parentPortIdentity parentDS.clockIdentity member set to the value of

defaultDS.clockIdentity field.
parentDS.parentPortIdentity.portNumber member is 0

parentDS.grandmasterIdentity defaultDS.clockIdentity
parentDS.grandmasterClockQuality defaultDS.clockQuality
parentDS.grandmasterPriority1 defaultDS.priority1
parentDS.grandmasterPriority2 defaultDS.priority2
timePropertiesDS data set
timePropertiesDS.currentUtcOffset Follow rules in 9.4
timePropertiesDS.currentUtcOffsetValid Follow rules in 9.4
timePropertiesDS.leap59 Follow rules in 9.4
timePropertiesDS.leap61 Follow rules in 9.4
timePropertiesDS.timeTraceable Follow rules in 9.4
timePropertiesDS.frequencyTraceable Follow rules in 9.4
timePropertiesDS.ptpTimescale Follow rules in 9.4
timePropertiesDS.timeSource Follow rules in 9.4
portDS Data Set
portDS.portState State resulting from the application of the recommended state from

Figure 26 to the state machine of Figure 23 or Figure 24 as
appropriate

Table 14 ⎯Updates for state decision code M3

Update this field From the indicated source
portDS data set
portDS.portState State resulting from the application of the recommended

state from Figure 26 to the state machine of Figure 23 or
Figure 24 as appropriate

Table 15 ⎯Updates for state decision code P1, and P2

Update this field From the indicated source
portDS data set
portDS.portState State resulting from the application of the recommended

state from Figure 26 to the state machine of Figure 23 or
Figure 24 as appropriate

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 91 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table 16 ⎯Updates for state decision code S1

Update this field From the indicated source
currentDS data set
currentDS.stepsRemoved 1 + value of stepsRemoved of Ebest
parentDS data set
parentDS.parentPortIdentity sourcePortIdentity of Ebest
parentDS.grandmasterIdentity grandmasterIdentity of Ebest
parentDS.grandmasterClockQuality grandmasterClockQuality of Ebest
parentDS.grandmasterPriority1 grandmasterPriority1 of Ebest
parentDS.grandmasterPriority2 grandmasterPriority2 of Ebest
timePropertiesDS data set
timePropertiesDS.currentUtcOffset currentUtcOffset field of Ebest

timePropertiesDS.currentUtcOffsetValid The logical value of the currentUtcOffsetValid bit of the
flagField of Ebest

timePropertiesDS.leap59 The logical value of the leap59 bit of the flagField of Ebest
timePropertiesDS.leap61 The logical value of the leap61 bit of the flagField of Ebest
timePropertiesDS.timeTraceable The logical value of the timeTraceable bit of the flagField

of Ebest
timePropertiesDS.frequencyTraceable The logical value of the frequencyTraceable bit of the

flagField of Ebest
timePropertiesDS.ptpTimescale The logical value of the ptpTimescale bit of the flagField

of Ebest
timePropertiesDS.timeSource The value of the timeSource field of Ebest
portDS data set
portDS.portState State resulting from the application of the recommended

state from Figure 26 to the state machine of Figure 23 or
Figure 24 as appropriate

NOTE— Ebest is an Announce message.

9.4 Grandmaster clocks

The grandmaster clock determines the timescale and related timescale properties of the domain.

NOTE—A clock in the MASTER state as a result of M1 or M2 of the state decision algorithm of Figure 26 is the
grandmaster clock.

If the timescale is PTP, and the clock is class 6, 7, or 52, the timePropertiesDS data set members shall be
set as follows:

⎯ timePropertiesDS.leap59 and timePropertiesDS.leap61: if known, to the value obtained from a
primary reference, else to FALSE

⎯ timePropertiesDS.currentUtcOffset: if known, to the value obtained from a primary reference,
else to the current number of leap seconds, 7.2.3, when the node is designed

⎯ timePropertiesDS.currentUtcOffsetValid: to TRUE if the value of currentUtcOffset is known to
be correct, else to FALSE

⎯ timePropertiesDS.ptpTimescale: to TRUE

⎯ timePropertiesDS.timeTraceable: to TRUE if the time is traceable to a primary reference, else to
FALSE

⎯ timePropertiesDS.frequencyTraceable: to TRUE if the frequency is traceable to a primary
reference, else to FALSE

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 92 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

⎯ timePropertiesDS.timeSource: if known, to the appropriate value from Table 7, else to
INTERNAL_OSCILLATOR

If the timescale is ARB, then for all clockClasses except 6, 7, or 52, unless otherwise specified, the
timePropertiesDS data set members shall be set as follows:

⎯ timePropertiesDS.leap59 and timePropertiesDS.leap61: to FALSE

⎯ timePropertiesDS.currentUtcOffset: to the current number of leap seconds, 7.2.3, when the node
is designed

⎯ timePropertiesDS.currentUtcOffsetValid: to TRUE if the value of currentUtcOffset is known to
be correct, else to FALSE

⎯ timePropertiesDS.ptpTimescale: to FALSE

⎯ timePropertiesDS.timeTraceable: to TRUE if the time traceable to a primary reference, else to
FALSE

⎯ timePropertiesDS.frequencyTraceable: to TRUE if the frequency is traceable to a primary
reference, else to FALSE

⎯ timePropertiesDS.timeSource: if known, to the appropriate value from Table 7, else to
INTERNAL_OSCILLATOR

If either timePropertiesDS.leap59 or timePropertiesDS.leap61 is TRUE, it shall be set to TRUE during the
interval prior to midnight (UTC) of the end of the current day and the later of the times:

⎯ When the grandmaster determined that the value is TRUE

⎯ 12 h prior to midnight (UTC) of the current day

The values of these variables shall be set to FALSE starting with the first Announce message in which the
updated value of timePropertiesDS.currentUtcOffset appears.

The update of timePropertiesDS.currentUtcOffset, timePropertiesDS.leap59, and timePropertiesDS.leap61
shall occur within ±2 announceIntervals of midnight (UTC).

NOTE 1—The number of leap seconds, and hence currentUtcOffset, changes at midnight (UTC) by international
standards. In practical implementations, the actual update of currentUtcOffset and the setting of
timePropertiesDS.leap59 or timePropertiesDS.leap61 to FALSE may occur slightly before or after midnight (UTC) due
to variations in code execution time. The requirement of the ±2 announceInterval update is easily implemented in
masters and ensures, even in very large topologies, that the information is propagated to all slaves prior to noon of the
following UTC day. This avoids confusion as to which midnight the indicated jump in UTC is to occur.

NOTE 2—Grandmaster clocks that use a recognized standard time source should distribute the PTP timescale.

9.5 Message processing semantics

9.5.1 Messaging behavior of ordinary and boundary clocks

Subclause 9.5 specifies the behavior for the following events that may occur in an ordinary clock, or for
each PTP port of a boundary clock:

⎯ Receipt of a message

⎯ Transmission of a message

The behavior resulting from these events may depend on the current state of the PTP port of an ordinary
clock or boundary clock as specified in 9.2.5.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 93 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Except for management messages, all multicast PTP messages shall terminate at boundary and ordinary
clocks.

A boundary clock that is also a bridge or router forwards all unicast PTP messages according to the
forwarding rules of the network. Any other behavior is out of the scope of this standard.

Execution of the protocol shall not result in any communication on the communication paths, except as
specified in subclause 9.5.

Any state or data changes or data set updates of the local clock resulting from the occurrence of any event
or qualifying sequence of events shall be atomic; see 3.1.2. A qualifying sequence of events is defined to be
the receipt of multiple Announce messages (see 7.7.2.2) within the same announceInterval.

Requests to issue a PTP message resulting from state or data change or the occurrence of an event shall be
processed in first-in-first-out (FIFO) order by message class. A logically separate FIFO ordering shall be
maintained for event and general messages. Once a message request is queued, the message shall be issued
irrespective of any subsequent event occurrences.

Only PTP messages where the domainNumber field of the PTP message header (see 13.3.2.5) is identical to
the defaultDS.domainNumber shall be accepted for processing by the protocol.

9.5.2 Receipt by a clock of any message from itself

9.5.2.1 General

The Precision Time Protocol makes no use of messages received by the same clock that sent them, and
implementations should prevent such messages from being considered by the protocol. Subclauses 9.5.2.2
and 9.5.2.3 specify what to do when such messages are received.

9.5.2.2 Ordinary clocks and any single port of a boundary clock

A message received at the same port that issued the message shall be ignored. An exception may be made
for implementation-specific diagnostic purposes beyond the scope of this standard.

This situation may be identified by comparing the sourcePortIdentity field members of the received
message and the corresponding members of the portDS.portIdentity field of the ingress port. The
possibilities and interpretations are shown in Table 17.

NOTE— This condition may occur due to normal or abnormal properties of communication paths.

9.5.2.3 Additional constraints for boundary clocks

A port “N” on a boundary clock might directly receive Announce messages issued by a different port “M”
of the same boundary clock. This occurs if both ports N and M communicate to the same communication
path. This is an abnormal situation not detected by the best master clock algorithm. When this condition is
detected in a set of the ports, the boundary clock shall place all of the involved ports except the port with
the lowest portNumber, say N, in the PASSIVE state until such time as the normal operation of the protocol
no longer determines that port N is to be in the MASTER state.

This situation may be identified by comparing the sourcePortIdentity field members of the received
message and the corresponding members of the portDS.portIdentity field of the ingress port. The
possibilities and interpretations are shown in Table 17.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 94 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table 17 ⎯Source identity comparisons

Given a message m arriving at port n of clock c, where the portDS.portIdentity field of n has members
clockIdentity a and portNumber n:
If sourcePortIdentity of m contains: The interpretation is:
clockIdentity a,
portNumber n

m was sent from port n on clock c.

clockIdentity f a,
portNumber n

m was sent from a port on a clock other than c.

clockIdentity a,
portNumber q n

m was sent from clock c, but from a port other than n.

9.5.3 Receipt of an Announce message from another clock

The logic for processing an Announce message shall be as defined in Figure 29. The states indicated in this
figure refer to the current state of the port receiving the Announce message.

If the port receiving an Announce message is in the INITIALIZING or DISABLED states, the message
shall be discarded. If the port receiving an Announce message is in the FAULTY state, the message shall
be discarded except for implementation-specific purposes that otherwise meet the requirements of 9.2.

If the members of the sourcePortIdentity field of the received Announce message are identical with the
corresponding members of the parentDS.parentPortIdentity of the data set of the receiving clock, then the
message is from the current parent clock, i.e., the master clock to which the clock is synchronized.

When an Announce message from port F is received by port N from the communication path associated
with N, port F is designated as a foreign master clock if any of the following is true:

⎯ The port N is not in the SLAVE state

⎯ The port N is in the SLAVE state and the members of the sourcePortIdentity field of the
received message are not all identical with the corresponding members of the
parentDS.parentPortIdentity of the data set of the receiving clock.

If an Announce message is received from a foreign master clock, the implementation-specific
foreignMasterDS data set (see 9.3.2.4) of the ingress port shall be updated as follows:

a) If the members of the sourcePortIdentity field of the received Announce message are identical with
the corresponding members of a foreignMasterDS.foreignMasterPortIdentity of the data set of the
ingress port, then the foreignMasterAnnounceMessages field of that record shall be incremented.

b) If the members of the sourcePortIdentity field of the received Announce message are not identical to
the corresponding members of a foreignMasterDS.foreignMasterPortIdentity of the data set of the
ingress port, then a new record shall be created in the data set with the
foreignMasterDS.foreignMasterPortIdentity field set to the value of the sourcePortIdentity field of
the received Announce message and with the foreignMasterDS.foreignMasterAnnounceMessages
field value set to 0. Implementation-specific limitations on the capacity of the foreignMasterDS data
set limits the number of such records. If the foreignMasterDS is full, then the Announce message
shall be discarded.

If an Announce message is received from the current parent clock, the data sets for the ingress port shall be
updated according to Table 16, except that the source of each field shall be the received Announce message
rather than Ebest.

NOTE—The maximum number of records that can be stored in the foreignMasterDS data set (see 9.3.2.4.5) does not
affect the correctness of protocol operation but may affect the speed of convergence in selecting the masters and slaves.
Higher capacities permit a node to process and eliminate from consideration more foreign masters in each
announceInterval rather than wait until space is available in the data set for succeeding messages from any remaining
foreign masters.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 95 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Figure 29 ⎯Receipt of Announce message logic

9.5.4 Receipt of a Sync message from another clock

The logic for processing a Sync message shall be as defined in Figure 30. The states indicated in this figure
refer to the current state of the port receiving the Sync message.

If the port receiving a Sync message is in the INITIALIZING or DISABLED states, the message shall be
discarded. If the port receiving a Sync message is in the FAULTY state, the message shall be discarded
except for implementation-specific purposes that otherwise meet the requirements of 9.2.

The <syncEventIngressTimestamp> meeting the requirements of 7.3.4 shall be generated for the reception
of the Sync message.

Received Sync messages should be processed as soon as possible after receipt.

If the members of the sourcePortIdentity field of the received Sync message are identical with the
corresponding members of the parentDS.parentPortIdentity field of the data set of the receiving clock, then
the message is from the current master clock.

When the Sync message is received and all of the following conditions are met:
⎯ The port receiving the Sync message is in the SLAVE or UNCALIBRATED state

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 96 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

⎯ The twoStepFlag bit of the flagField of the received Sync message is FALSE (indicating that a
Follow_Up message will not be received)

⎯ The Sync message was received from the current master clock

then:
⎯ The Sync message correctionField shall be adjusted for asymmetry per 11.6.2

⎯ The local clock should be synchronized, per 12.2, based on the contents of the received Sync
message and the <syncEventIngressTimestamp>

When the Sync message is received and all of the following conditions are met:
⎯ The port receiving the Sync message is in the SLAVE or UNCALIBRATED state

⎯ The twoStepFlag bit of the flagField of the received Sync message is TRUE (indicating that a
Follow_Up message will be received)

⎯ The Sync message was received from the current master clock

then:
⎯ The Sync message correctionField shall be adjusted for asymmetry per 11.6.2.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 97 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Figure 30 ⎯Receipt of Sync message logic

9.5.5 Receipt of a Follow_Up message from another clock

The logic for processing a Follow_Up message shall be as defined in Figure 31. The states indicated in this
figure refer to the current state of the port receiving the Follow_Up message.

If the port receiving a Follow_Up message is in the INITIALIZING or DISABLED states, the message
shall be discarded. If the port receiving a Follow_Up message is in the FAULTY state, the message shall be
discarded except for implementation-specific purposes that otherwise meet the requirements of 9.2.

If the members of the sourcePortIdentity field of the received Follow_Up message are identical with the
corresponding members of the sourcePortIdentity field of a prior Sync message and the sequenceId field of
the received Follow_Up message matches the sequenceId field of the same prior Sync message, then the
Follow_Up message and the Sync message are associated.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 98 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

If the members of the sourcePortIdentity field of the associated Sync message are identical with the
corresponding members of the parentDS.parentPortIdentity member of the data set of the receiving clock,
then the message is from the current master clock.

Follow_Up messages should be processed as soon as possible after receipt.

When the associated Sync message is received and all of the following conditions are met:
⎯ The port receiving the Follow_Up message is in the SLAVE or UNCALIBRATED state

⎯ The Sync message was received from the current master clock

⎯ The Follow_Up message is associated with this Sync message

then the local clock should be synchronized, per 12.2, based on the contents of the received Follow_Up
message and associated Sync message and the <syncEventIngressTimestamp> of the associated Sync
message.

9.5.6 Receipt of a Delay_Req message from another clock

The logic for processing a Delay_Req message shall be as defined in Figure 32. The states indicated in this
figure refer to the current state of the port receiving the Delay_Req message.

If the port receiving the Delay_Req message is in the INITIALIZING or DISABLED states, the message
shall be discarded. If the port receiving a Delay_Req message is in the FAULTY state, the message shall be
discarded except for implementation-specific purposes that otherwise meet the requirements of 9.2.

Unless otherwise specified in this standard, if the port receiving the Delay_Req message is not in the
MASTER state, the message shall be discarded.

The <delayReqEventIngressTimestamp> meeting the requirements of 7.3.4 shall be generated upon receipt
of the Delay_Req message.

If the port receiving the Delay_Req message is in the MASTER state, the port shall transmit a Delay_Resp
message subject to the conditions of 11.3 and 9.5.12.

Delay_Req messages should be processed as soon as possible after receipt.

9.5.7 Receipt of a Delay_Resp message from another clock

The logic for processing a Delay_Resp message shall be as defined in Figure 33. The states indicated in this
figure refer to the current state of the port receiving the Delay_Resp message.

If the port receiving a Delay_Resp message is in the INITIALIZING or DISABLED states, the message
shall be discarded. If the port receiving a Delay_Resp message is in the FAULTY state, the message shall
be discarded except for implementation-specific purposes that otherwise meet the requirements of 9.2.

If the members of the requestingSourcePortIdentity field of the received Delay_Resp message are identical
with the corresponding members of the sourcePortIdentity field of a prior Delay_Req message issued by
the receiving clock, and the requestingSequenceId field of the received Delay_Resp message matches the
sequenceId field of the same prior Delay_Req message, then the Delay_Resp message and the Delay_Req
message are associated.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 99 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

INITIALIZING
or DISABLED

Follow_Up message
received

FAULTY

SLAVE or
UNCALIBRATED

Follow_Up is
associated with
Sync message

No

No

Yes

No

Yes

exit

implementation specific

exit

exit

Yes

Yes

synchronize local clock

exitNo

exit

message is from
the current master

clock

No exit

Yes

Figure 31 ⎯Receipt of Follow_Up message logic

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 100 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

INITIALIZING
or DISABLED

Delay_Req message
received

FAULTY

MASTER

No

No

Yes

exit

implementation specific

exit

exit

Yes

Yes

transmit Delay_Resp

exitNo

Figure 32 ⎯Receipt of Delay_Req message logic

If the members of the sourcePortIdentity field of the received Delay_Resp message are identical with the
corresponding members of the parentDS.parentPortIdentity member of the data set of the receiving clock,
then the Delay_Resp message is from the current master clock.

Delay_Resp messages should be processed as soon as possible after receipt.

When the port receives a Delay_Resp message subsequent to transmitting the associated Delay_Req
message, and all of the following conditions are met:

⎯ The port receiving the Delay_Resp message is in the SLAVE or UNCALIBRATED state

⎯ The Delay_Resp message was received from the current master clock

⎯ The Delay_Resp message is associated with the transmitted Delay_Req message

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 101 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

then the receiving clock should:

a) Execute the delay request-response mechanism actions required by 11.3, based on the contents of the
received Delay_Resp message and associated Delay_Req message.

b) Update the value of portDS.logMinDelayReqInterval member of the data set to the value of the
logMessageInterval member of the Delay_Resp message.

9.5.8 Transmission of an Announce message

Unless otherwise stated in this standard, a port shall not transmit an Announce message except as required
by this subclause.

A port in the MASTER state shall periodically transmit an Announce message.

Such Announce messages shall be transmitted as a multicast (see 7.3.1), such that the logarithm to the base
2 of the mean value of the interval in seconds between message transmissions is the value of the
portDS.logAnnounceInterval of the data set of the transmitting clock. A node shall, with 90% confidence,
issue messages with intervals within ±30% of the value of the interval computed from
portDS.logAnnounceInterval.

An optional unicast transmission at negotiated transmission intervals may be used for Announce messages
subject to the terms of Clause 16.

NOTE—The capacity of the node to maintain this data for each unicast address may limit the number of unicast
contracts negotiated under Clause 16. In some environments, multicast transmissions may not be feasible. A unicast
transmission is permitted provided the operation of the protocol is preserved; see 7.3.1.

9.5.9 Transmission of a Sync message

9.5.9.1 General specification

Unless otherwise stated in this standard, a port shall not transmit a Sync message except as required by
9.5.9.2 to 9.5.9.4.

9.5.9.2 General requirements

A port in the MASTER state shall periodically transmit a Sync message. Such Sync messages shall be
transmitted as a multicast (see 7.3.1), such that the logarithm to the base 2 of the mean value of the interval
in seconds between message transmissions is the value of the portDS.logSyncInterval of the data set of the
transmitting clock. A node shall, with 90% confidence, issue messages with intervals within ±30% of the
value of the interval computed from portDS.logSyncInterval.

An optional unicast transmission at negotiated transmission intervals may be used for Sync messages
subject to the terms of Clause 16.

NOTE—The capacity of the node to maintain this data for each unicast address may limit the number of unicast
contracts negotiated under Clause 16. In some environments, multicast transmissions may not be feasible. A unicast
transmission is permitted provided the operation of the protocol is preserved; see 7.3.1.

The fields of the transmitted Sync message shall conform to the requirements of Clause 13.

The <syncEventEgressTimestamp> meeting the requirements of 7.3.4 shall be generated upon transmission
of the Sync message.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 102 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Figure 33 ⎯Receipt of Delay_Resp message logic

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 103 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

9.5.9.3 One-step clocks

The originTimestamp field of the Sync message shall be an estimate no worse than ±1 s of the
<syncEventEgressTimestamp> excluding any fractional nanoseconds.

The originTimestamp field of the Sync message should be the <syncEventEgressTimestamp> excluding
any fractional nanoseconds. The sum of the Sync message correctionField and originTimestamp field shall
be the value of the <syncEventEgressTimestamp> including any fractional nanoseconds.

9.5.9.4 Two-step clocks

The originTimestamp field of the Sync message shall be 0 or an estimate no worse than ±1 s of the
<syncEventEgressTimestamp>.

The correctionField of the Sync message shall be set to 0.

A two-step clock shall transmit both a Sync and a Follow_Up message.

The port shall capture the sequenceId value of the Sync message as an input to the sequenceId field of the
Follow_Up message. The mechanism for obtaining the value for the preciseOriginTimestamp and
correctionField fields of the associated Follow_Up message shall be started.

9.5.10 Transmission of a Follow_Up message

Unless otherwise stated in this standard, a port shall issue a Follow_Up message only if required by 9.5.9.4.
The Sync message whose transmission requires the transmission of a Follow_Up message is the associated
Sync message.

The Follow_Up message should be transmitted as soon as possible after the transmission of the associated
Sync message and shall be transmitted prior to the transmission of a subsequent Sync message to the same
destination address.

The sequenceId field of the Follow_Up message shall be the value of the sequenceId field of the associated
Sync message.

The preciseOriginTimestamp field of the Follow_Up message shall be an estimate no worse than ±1 s of
the <syncEventEgressTimestamp> of the associated Sync message excluding any fractional nanoseconds.

The preciseOriginTimestamp field of the Follow_Up message should be the <syncEventEgressTimestamp>
of the associated Sync message excluding any fractional nanoseconds. The sum of the correctionField in
the Follow_Up and associated Sync messages added to the preciseOriginTimestamp field of the Follow_Up
message shall be the precise value of the <syncEventEgressTimestamp> of the associated Sync message
including any fractional nanoseconds.

If the Follow_Up message is associated with an optional unicast Sync message per 9.5.9.2, then the
Follow_Up message shall also be transmitted as a unicast message to the same unicast address as the
associated Sync message. These unicast Follow_Up messages shall meet all other requirements of this
subclause.

9.5.11 Transmission of a Delay_Req message

9.5.11.1 General requirements

A clock shall issue a Delay_Req message on a port only if all of the following conditions are met:
⎯ The port is in the SLAVE or UNCALIBRATED state

⎯ The device is configured to execute the delay request-response mechanism; see 8.2.5.4.4

⎯ The device is permitted to do so according to the timing requirements of 9.5.11.2

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 104 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Delay_Req messages shall be transmitted as multicast except if:

a) The optional unicast provisions of Clause 16 are used

b) Specified otherwise by a profile

The fields of this Delay_Req message shall conform to the requirements of 11.3.

NOTE 1— If the clock uses a PTP profile that specifies syntonize-only, then the clock is not required to send
Delay_Req messages. In this case, maintaining delay request state information is not required.

NOTE 2— For clocks that use the peer delay mechanism, see 9.5.13.

9.5.11.2 Timing requirements

The transmission of Delay_Req messages from a port shall be limited as follows:
⎯ The initial Delay_Req message may be transmitted when required.

⎯ Subsequent Delay_Req messages shall be transmitted such that with 90% confidence, the mean
value of the interval in seconds between message transmissions is not less than the value of the
2portDS.logMinDelayReqInterval seconds.

NOTE— The portDS.logMinDelayReqInterval value is the logMessageInterval field of the last Delay_Resp message
received in response to a Delay_Req message issued by the port.

While meeting the mean interval between Delay_Req message transmission specification, the transmission
times for Delay_Req messages shall use one of the following timing options:

⎯ Transmission times shall be selected such that the interval between successive Delay_Req
messages is taken from a random distribution. Unless otherwise specified in the applicable PTP
profile, the random distribution shall be a uniform random distribution with a minimum value of
0 and a maximum value of {2logMinDelayReqInterval+1} seconds. A new random value for the
transmission interval shall be computed for each message transmitted. The granularity of this
distribution is implementation specific but shall be no greater than 2logSyncInterval 4 s. This option
should be used when using the multicast communication model and may be used with a unicast
model; see 7.3.1. For example, for a value of logMinDelayReqInteval = logSyncInterval (see
7.7.2.4), the distribution has a minimum value of 0, a maximum value of {2logSyncInterval+1} = 2
syncInterval; i.e., the distribution has a maximum value of 2 syncInterval, and the resulting
mean transmission interval is 1 syncInterval.

⎯ Delay_Req messages should be transmitted as soon as possible following the receipt of a Sync
message. This option may be used with a unicast model; see 7.3.1. It shall not be used when
using the multicast model unless specified in the applicable PTP profile.

9.5.12 Transmission of a Delay_Resp message

Unless otherwise stated in this standard, a port shall issue a Delay_Resp message when it is associated with
the receipt of a Delay_Req message as required by 9.5.6 and meets the other requirements of 9.5.11.

The Delay_Req message whose transmission may require the transmission of a Delay_Resp message is the
associated Delay_Req message.

A clock shall issue a Delay_Resp message on a port when all of the following conditions are met:
⎯ The port is in the MASTER state or is required as the result of an optional unicast contract

(Clause 16)

⎯ The device is configured to execute the delay request-response mechanism; see 8.2.5.4.4

⎯ The transmission is the result of the receipt of the associated Delay_Req message; see 9.5.6

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 105 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Delay_Resp messages shall be transmitted as multicast if the associated Delay_Req message was sent as
multicast.

Delay_Resp messages shall be transmitted as unicast if the associated Delay_Req message was sent as
unicast.

The fields of this Delay_Resp message shall conform to the requirements of 11.3.

The receiveTimestamp field of the Delay_Resp shall be the <delayReqEventIngressTimestamp> of the
associated Delay_Req message.

Prior to transmitting the Delay_Resp message, the port shall in order:

a) Compute the updated value for the logMinDelayReqInterval field; see 7.7.2.4.

b) Use this computed value to update the value of portDS.logMinDelayReqInterval member of the data
set of the port transmitting the Delay_Resp message; see 8.2.5.3.2.

c) Ensure the message field values are the current values as specified in 11.3.2.

d) Insert the value as specified in Table 24 into logMessageInterval field of the message.

The Delay_Resp message should be transmitted as soon as possible after the receipt of the associated
Delay_Req message.

9.5.13 Transmission of a Pdelay_Req message

9.5.13.1 General requirements

A clock shall issue a Pdelay_Req message on a port only if all of the following conditions are
met:

⎯ The device is configured to execute the peer delay mechanism; see 8.2.5.4.4

⎯ The device is permitted by the timing requirements of 9.5.13.2.

The fields of this Pdelay_Req message shall conform to the requirements of 11.4.3.

NOTE— If the clock uses a PTP profile that specifies syntonize-only, then the clock is not required to invoke the peer
delay or delay request-response mechanism. In this case, maintaining peer delay mechanism state information is not
required.

9.5.13.2 Timing requirements

The transmission of a Pdelay_Req messages from a requesting port shall be limited as follows:
⎯ The initial Pdelay_Req message may be transmitted when required.

⎯ Subsequent Pdelay_Req messages shall be transmitted such that the logarithm to the base 2 of
the mean value of the interval in seconds between message transmissions is no smaller than the
interval computed from the value of the portDS.logMinPdelayReqInterval member of the data
set of the transmitting clock.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 106 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

9.5.14 Transmission of Pdelay_Resp message

Pdelay_Resp messages should be transmitted as soon as possible after the receipt of the associated
Pdelay_Req message.

9.5.15 Transmission of Pdelay_Resp_Follow_Up message

Pdelay_Resp_Follow_Up messages should be transmitted as soon as possible after the transmission of the
associated Pdelay_Resp message.

9.6 Changes in the local clock

Changes due to 1) internal properties of the local clock, for example, a disruption of a local oscillator; or 2)
interaction outside of PTP, for example, changes in information received from a GPS receiver, to which the
local clock is directly synchronized, may result in updates to the data sets.

All resulting changes to data sets shall be treated atomically with respect to any other activity accessing the
data sets, including the activity specified in 9.2.6.8.

10. PTP for transparent clocks

10.1 General requirements for both end-to-end and peer-to-peer transparent
clocks

All transparent clocks shall forward all non-PTP messages according to the addressing rules of the network.

For all transparent clocks, all PTP version 1 messages:
⎯ Shall be forwarded according to the addressing rules of the network

⎯ Transparent clocks should not make any residence time or path delay corrections to PTP version
1 messages

⎯ Residence time and path delay correction of PTP version 1 messages is not precluded but is out
of the scope of this standard

All transparent clocks should syntonize to a grandmaster clock per Clause 12.

Syntonization to multiple domains should be supported.

For clocks implementing syntonization, the term “primary syntonization domain” is defined to be
domainNumber 0, or if the default is configured to a new domain, the configured default domain.

If the transparent clock implements syntonization it shall do so as follows:

a) By default it shall syntonize to a master clock of the primary syntonization domain.

b) The primary syntonization domain may be configured to a domain other than domainNumber 0.

c) If syntonization to multiple domains is implemented, separate syntonization to a master clock in each
of the multiple domains shall be maintained.

d) All residence time and link delay corrections made to event messages by a transparent clock shall be
based on residence time and link delay measurements that in precedence order:

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 107 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

1) Are made with a clock syntonized to the same domain as indicated in the domainNumber field
of the ingress event message

2) Are made with a clock syntonized to the primary syntonization domain

If the transparent clock does not implement syntonization, all residence time and link delay corrections
made to event messages by a transparent clock shall be based on residence time and link delay
measurements made with the unsyntonized free-running clock.

10.2 End-to-end transparent clock requirements

All PTP version 2 messages shall be forwarded according to the addressing rules of the network.

The processing of all PTP version 2 event messages and any affected general messages shall meet the
residence transit time correction requirements of 11.5.

An end-to-end transparent clock shall not implement peer delay mechanism of 11.4.

10.3 Peer-to-peer transparent clock requirements

The peer delay mechanism of 11.4 shall be implemented.

All PTP version 2 Announce, Sync, Follow_Up, Management, and Signaling messages shall be forwarded
according to the addressing rules of the network.

The processing of all PTP version 2 Sync and Follow_Up messages shall meet the residence transit time
correction requirements of 11.5 and the path delay correction requirements of 11.4.5.

All PTP version 2 Delay_Req and Delay_Resp messages should be discarded.

11. Clock offset, path delay, residence time, and asymmetry corrections

11.1 General specifications

The specifications in Clause 11 provide mechanisms for conveying timestamps generated at the sources of
event messages along with any corrections needed to ensure that the recipient of the event message receives
the most accurate timestamp possible. The actual distribution of the time information between the
originTimestamp or preciseOriginTimestamp and the correctionField fields is implementation dependent,
providing the distribution shall be such that a receiving device performing the computations on timestamp
fields and correctionField, as specified in the following clauses, obtains the most accurate timestamp
possible.

Clause 11 specifies:

a) The computation of the offset in time between a slave and a master clock, i.e., <offsetFromMaster>.

b) The delay request-response mechanism: This mechanism measures the <meanPathDelay> between a
pair of ports, each of which supports the state machine of 9.2.5.

c) The peer delay mechanism: This mechanism measures the <meanPathDelay> between a pair of
ports, each of which supports the peer delay mechanism.

d) The correction for <meanPathDelay> in peer-to-peer transparent clocks.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 108 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

e) The correction of event messages in transparent clocks based on the measurement of the residence
time within a transparent clock, and

f) The correction of timestamps for path asymmetry.

NOTE 1—The recommendation that the timestamps themselves be the best possible estimate of the time enables
simple devices that only need approximate time to ignore the correctionField.

NOTE 2—The latitude in the distribution of time between the timestamp and the correctionField allows flexibility in
the device design. For example, a device may generate an approximate time when a message is assembled and insert
the resulting required correction into the appropriate correctionField. An unavoidable circumstance is the representation
of fractional nanoseconds. Fractional nanoseconds cannot be represented in the Timestamp data type and are
transmitted in a correctionField, leaving it to the receiving device to combine the two to get the actual timestamp.

Examples of these correction mechanisms are in Annex C.

11.2 Computation of clock offset in ordinary and boundary clocks

The time error between a slave and a master ordinary or boundary clock is defined as follows:
<offsetFromMaster> = <Time on the slave clock> <Time on the master clock>, where all times are
measured at the same instant.

The <offsetFromMaster> value shall be computed by the slave as follows:

a) Upon receipt of a Sync message, the slave shall generate a timestamp
<syncEventIngressTimestamp> corrected for latency per 7.3.4. If the delayAsymmetry (see 7.4.2) of
the path connected to the ingress port is known, the corrections of 11.6 shall be made.

b) If the twoStepFlag bit of the flagField of the of the Sync message, is FALSE, indicating that a
Follow_Up message will not be received, then the

 <offsetFromMaster> = <syncEventIngressTimestamp> <originTimestamp>
<meanPathDelay> correctionField of Sync message.

c) If the twoStepFlag bit of the flagField of the of the Sync message is TRUE, indicating that a
Follow_Up message will be received, then the

 <offsetFromMaster> = <syncEventIngressTimestamp> <preciseOriginTimestamp>
<meanPathDelay> correctionField of Sync message correctionField of Follow_Up
message.

where
⎯ The <originTimestamp> shall be the value of the originTimestamp field in the received Sync

message.

⎯ The <preciseOriginTimestamp> shall be the value of the preciseOriginTimestamp field in the
received Follow_Up message.

⎯ If the port is configured to use the delay request-response mechanism, then the
<meanPathDelay> shall be that specified in 11.3.

⎯ If the port is configured to use the peer delay mechanism, then the <meanPathDelay> shall be
that specified in 11.4.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 109 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

11.3 Delay request-response mechanism

11.3.1 Delay request-response mechanism general requirements

The delay request-response mechanism measures the <meanPathDelay> between a pair of PTP ports, each
of which supports the state machine of 9.2.5. The delay request-response mechanism uses the messages
Sync, Delay_Req, Delay_Resp and possibly Follow_Up as shown in the timing diagram of Figure 34. This
mechanism shall be executed independently in each supported domain of the two clocks.

The timestamps t1 and t2 for the Sync message and t3 and t4 for the Delay_Req message of Figure 34 shall
be measured as defined in 7.3.4.2. Timestamps t1 and t4 shall be measured using the time of the master
node, and the timestamps t2 and t3 shall be measured using the time of the slave node.

If the delayAsymmetry (see 7.4.2) of the paths connected to the ingress and egress ports is known, the
corrections of 11.6 shall be implemented.

NOTE—The nominal value of the <meanPathDelay> is computed as <meanPathDelay> = [(t2 – t1) + (t4 – t3)]/2 = [(t2 –
t3) + (t4 – t1)]/2.

Figure 34 ⎯Delay request-response path length measurement

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 110 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

11.3.2 Delay request-response mechanism operational specifications

The actual value of the <meanPathDelay> shall be measured and computed as follows for each instance of
a delay request-response measurement:

a) The master node prepares and issues a Sync message per 9.5.9. If the node is a two-step clock, it also
prepares and issues a Follow_Up message per 9.5.9.4.

b) The slave node shall:

1) Upon receipt of the Sync message from the master generate timestamp t2.

2) If asymmetry corrections are required, modify the correctionField of the received Sync message
per 11.6.2.

3) If required to send a Delay_Req message based on the timing requirements of subclause
9.5.11.2:

i) Prepare a Delay_Req message with the correctionField (see 13.3.2.7) set to 0. The
originTimestamp shall be set to 0 or an estimate no worse than ±1 s of the egress time of
the Delay_Req message.

ii) If asymmetry corrections are required, modify the correctionField per 11.6.3.

iii) Send the Delay_Req message and generate and save timestamp t3.

c) Upon receipt of the Delay_Req message, the master node shall :

1) Generate timestamp t4

2) Prepare a Delay_Resp message

3) Copy the sequenceId field from the Delay_Req message to the sequenceId field of the
Delay_Resp message

4) Copy the sourcePortIdentity field from the Delay_Req message to the requestingPortIdentity
field of the Delay_Resp message

5) Copy the domainNumber field from the Delay_Req message to the domainNumber field of the
Delay_Resp message

6) Set the correctionField of the Delay_Resp message to 0

7) Add the correctionField of the Delay_Req message to the correctionField of the Delay_Resp
message

8) Set the receiveTimestamp field of the Delay_Resp message to the seconds and nanoseconds
portion of the time t4

9) Subtract any fractional nanosecond portion of t4 from the correctionField of the Delay_Resp
message

10) Issue the Delay_Resp message

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 111 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

d) Upon receipt of the Delay_Resp message by the slave:

1) If the received Sync message indicated that a Follow_Up message will not be received, the
<meanPathDelay> shall be computed as: <meanPathDelay> = [(t2 - t3) + (receiveTimestamp of
Delay_Resp message – originTimestamp of Sync message) – correctionField of Sync message –
correctionField of Delay_Resp message]/2.

2) If the received Sync message indicated that a Follow_Up message will be received, the
<meanPathDelay> shall be computed as: <meanPathDelay> = [(t2 - t3) + (receiveTimestamp of
Delay_Resp message – preciseOriginTimestamp of Follow_Up message) – correctionField of
Sync message– correctionField of Follow_Up message – correctionField of Delay_Resp
message]/2.

NOTE— The delay request-response path length measurement normally uses the timestamps and correctionField of the
most recent Sync and corresponding Follow_Up message prior to the Delay_Req message. However, the delay request-
response measurement may use any Sync and corresponding Follow_Up message, although this will reduce the
accuracy of the computed <meanPathDelay>.

11.4 Peer delay mechanism

11.4.1 Peer delay mechanism general requirements

The peer delay mechanism measures the port-to-port propagation time, i.e., the link delay, between two
communicating ports supporting the peer delay mechanism.

This measurement should be made on all ports of a device including those that are blocked by lower level
protocols. The addressing or other mechanisms to support this requirement are network specific and are
specified in the relevant annexes to this standard.

The link delay measurement shall be made independently by each port implementing the peer delay
mechanism.

NOTE—This requirement means that the link delay is known by ports on both ends of a link. This allows path length
corrections to be made immediately upon reconfiguration of the network.

In ordinary and boundary clocks, the peer delay mechanism shall be independent of whether the port is a
master or a slave.

The peer delay mechanism uses the messages Pdelay_Req, Pdelay_Resp, and possibly
Pdelay_Resp_Follow_Up, as shown in the timing diagram of Figure 35.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 112 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Node-A
Delay Requestor

 time

Node-B
Delay Responder

time

t1

t4

t3

t2

tAB

tBA

Pdelay_Req

Pdelay_Resp

Pdelay_Resp_Follow_Up

Figure 35 ⎯Peer delay link measurement

The timestamps t1 and t2 for the Pdelay_Req message and t3 and t4 for the Pdelay_Resp message of
Figure 35 are measured as defined in 7.3.4. If the delayAsymmetry (see 7.4.2) of the links connected to the
ingress and egress ports are known, the corrections of 11.6 shall be implemented.

The timestamps t1 and t4 shall be measured by Node-A as follows:
⎯ If Node-A is a peer-to-peer transparent clock, the timescale used is specified in 10.1.

⎯ If Node-A is an ordinary or boundary clock, the timescale used is that of the domain of the
clock.

Timestamps t2 and t3 shall be measured by Node-B as follows:
⎯ If Node-B is a peer-to-peer transparent clock, the timescale used is specified in 10.1.

⎯ If Node-B is an ordinary or boundary clock, the timescale used is that of the domain of the
clock.

NOTE—The nominal value of the <meanPathDelay> is computed as <meanPathDelay> = [(t2 – t1) + (t4 – t3)]/2 = [(t2 –
t3) + (t4 – t1)]/2. The actual value is specified in 11.4.3.

11.4.2 Peer delay message timing

The transmission of a Pdelay_Req message from a requesting port shall be limited as follows:
⎯ The initial Pdelay_Req message may be transmitted when required.

⎯ Subsequent Pdelay_Req messages shall be transmitted such that the logarithm to the base 2 of
the mean value of the interval in seconds between message transmissions is not less than the
value of the portDS.logMinPdelayReqInterval member of the data set of the requestor clock.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 113 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Pdelay_Resp messages should be transmitted as soon as possible after the receipt of the associated
Pdelay_Req message.

Pdelay_Resp_Follow_Up messages should be transmitted as soon as possible after the transmission of the
associated Pdelay_Resp message.

11.4.3 Peer delay mechanism operational specifications

The actual value of the meanPathDelay shall be measured and computed as follows for each instance of a
peer delay request-response measurement:

a) The delay requestor, Node-A:

1) Prepares a Pdelay_Req message. The correctionField (see 13.3.2.7) shall be set to 0.

i) If Node-A is an ordinary or boundary clock, then the domainNumber field of the header
shall be set to the domain of Node-A.

ii) If Node-A is a syntonized peer-to-peer transparent clock, the domainNumber field of the
header should be set to the domain being measured, either the primary syntonization
domain, or one of the alternate domains if syntonization to multiple domains is
implemented on Node-A.

iii) If Node-A is not a syntonized peer-to-peer transparent clock, the domainNumber field of
the header shall be set to 0.

2) If asymmetry corrections are required, shall modify the correctionField per 11.6.4.

3) Shall set the originTimestamp to 0 or an estimate no worse than ±1 s of the egress timestamp, t1,
of the Pdelay_Req message.

4) Shall send the Pdelay_Req message and generate and save timestamp t1.

b) If the delay responder, Node-B, is a one-step clock, it shall:

1) Generate timestamp t2 upon receipt of the Pdelay_Req message

2) Prepare a Pdelay_Resp message

3) Copy the sequenceId field from the Pdelay_Req message to the sequenceId field of the
Pdelay_Resp message

4) Copy the sourcePortIdentity field from the Pdelay_Req message to the requestingPortIdentity
field of the Pdelay_Resp message

5) Copy the domainNumber field from the Pdelay_Req message to the domainNumber field of the
Pdelay_Resp message

6) Copy the correctionField from the Pdelay_Req message to the correctionField of the
Pdelay_Resp message

7) Then:

i) Set to 0 the requestReceiptTimestamp field of the Pdelay_Resp message

ii) Issue the Pdelay_Resp message and generate timestamp t3 upon sending

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 114 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

iii) After t3 is generated but while the Pdelay_Resp message is leaving the responder, shall
add the turnaround time t3 − t2 to the correctionField of the Pdelay_Resp message and
make any needed corrections to checksums or other content-dependent fields of the
Pdelay_Resp message

NOTE—The data type of the correctionField allows the time interval t3 − t2 to be expressed to a fraction of a
nanosecond if needed and this accuracy is supported by the Responder.

c) If the delay responder is a two-step clock, it shall:

1) Generate timestamp t2 upon receipt of the Pdelay_Req message

2) Prepare a Pdelay_Resp and a Pdelay_Resp_Follow_Up message

3) Copy the correctionField from the Pdelay_Req message to the correctionField of the
Pdelay_Resp_Follow_Up message, and set correctionField of the Pdelay_Resp message to 0

4) Copy the sequenceId field from the Pdelay_Req message to the sequenceId field of the
Pdelay_Resp and the Pdelay_Resp_Follow_Up messages

5) Copy the sourcePortIdentity field from the Pdelay_Req message to the requestingPortIdentity
field of the Pdelay_Resp and the Pdelay_Resp_Follow_Up messages

6) Copy the domainNumber field from the Pdelay_Req message to the domainNumber field of the
Pdelay_Resp and Pdelay_Resp_Follow_Up messages

7) Then either:

i) Set to 0 the requestReceiptTimestamp fields of the Pdelay_Resp message

ii) Issue the Pdelay_Resp message and generate timestamp t3 upon sending

iii) In the Pdelay_Resp_Follow_Up message, set the responseOriginTimestamp field to 0,
and add the turnaround time t3 − t2 to the correctionField

iv) Issue the Pdelay_Resp_Follow_Up message

8) Or,

i) In the Pdelay_Resp message, set the requestReceiptTimestamp field to the seconds and
nanoseconds portion of the time t2, and subtract any fractional nanosecond portion of t2
from the correctionField

ii) Issue the Pdelay_Resp message and generate timestamp t3 upon sending

iii) In the Pdelay_Resp_Follow_Up message, set the responseOriginTimestamp field to the
seconds and nanoseconds portion of the time t3, and add any fractional nanosecond
portion of t3 to the correctionField

iv) Issue the Pdelay_Resp_Follow_Up message

d) The delay requestor, Node-A, shall:

1) Generate timestamp t4 upon receipt of the Pdelay_Resp message

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 115 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

2) If asymmetry corrections are required, modify the correctionField of the Pdelay_Resp message
per 11.6.5

3) If the twoStepFlag of the received Pdelay_Resp message is FALSE, indicating that no
Pdelay_Resp_Follow_Up message will be received, compute the <meanPathDelay> as:
<meanPathDelay> = [(t4 − t1) − correctionField of Pdelay_Resp]/2

4) If the twoStepFlag of the received Pdelay_Resp message is TRUE indicating that a
Pdelay_Resp_Follow_Up will be received, compute the <meanPathDelay> as follows:
<meanPathDelay> = [(t4 − t1) − (responseOriginTimestamp − requestReceiptTimestamp) −
correctionField of Pdelay_Resp − correctionField of Pdelay_Resp_Follow_Up]/2

The delay responder, Node-B upon receipt of a Pdelay_Req message, shall issue the associated
Pdelay_Resp message as quickly as possible, consistent with the other requirements of this subclause, to
minimize the turnaround time t3 − t2.

NOTE—Errors introduced by excessive values of the turnaround time are reduced by syntonization per 10.1.

11.4.4 Restriction on the use of the peer delay mechanism

A delay requestor, Node-A, may receive 0, 1, or multiple Pdelay_Resp messages for each transmitted
Pdelay_Req.

Multiple responses can be detected by observing that the sourcePortIdentity field of the Pdelay_Resp
messages differ.

NOTE—Multiple responses can occur if there is an end-to-end transparent clock or an ordinary bridge or other similar
multicast and multiport devices between Node-A and multiple Node-B devices. Although the multiple responses can be
distinguished, there is no mechanism in this standard that allows the path length associated with each of the responses
from the multiple Node-B devices to be correctly assigned to a received Sync message.

The following actions should be taken in these cases:

a) When no Pdelay_Resp is received, Node-A should periodically retransmit a Pdelay_Req message to
check for the appearance of a Node-B. The retransmission rate in this case is implementation-
specific.

b) When a single Pdelay_Resp is received, the protocol of 11.4 should be executed as specified.

c) When multiple Pdelay_Resp messages are received, Node-A shall either:

1) Enter the FAULTY state if an ordinary or boundary clock, or a fault condition if a peer-to-peer
transparent clock. In this case, the device may periodically retransmit a Pdelay_Req message to
check for the resolution of this condition. The retransmission rate in this case is implementation-
specific. In this case, Sync and Follow_Up messages received on the port shall be discarded

2) Take implementation-specific measures to resolve the issue

11.4.5 Path delay correction in transparent clocks

11.4.5.1 Peer-to-peer transparent clocks

A port on a peer-to-peer transparent clock upon receiving a Sync message shall:

a) If the clock is a one-step peer-to-peer clock, add the value of the <meanPathDelay>, as measured by
peer delay mechanism for the link connected to the ingress port on which the Sync message was
received to the correctionField of the Sync message prior to the completion of the transmission of the
Sync message on each of the egress ports.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 116 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

b) If the clock is a two-step peer-to-peer clock, add the value of the <meanPathDelay>, as measured by
peer delay mechanism, for the link connected to the ingress port on which the Sync message was
received to the correctionField of the associated Follow_Up message prior to the transmission of the
Follow_Up message on each of the egress ports. The <meanPathDelay> shall be added subsequent to
any residence time corrections; see 11.5.2.2.

NOTE 1—To correctly associate Sync and Follow_Up messages requires that the transparent clock maintain a record
of the sourcePortIdentity, and sequenceId fields of the Sync message for comparison with the sourcePortIdentity and
sequenceId fields of Follow_Up messages.

NOTE 2—The data type of the correctionField allows the <meanPathDelay> to be expressed to a fraction of a
nanosecond if this accuracy is supported by the transparent clock.

11.4.5.2 End-to-end transparent clocks

An end-to-end transparent clock shall not correct for path delay on either ingress or egress ports.

11.5 Transparent clock residence time correction for PTP version 2 events

11.5.1 Residence time computation

A transparent clock shall generate an ingress timestamp for all version 2 event messages (see 7.3.4.2),
indicating the time of receipt of the event message on the ingress port.

A transparent clock shall generate an egress timestamp for all version 2 event messages (see 7.3.4.2),
indicating the time of transmission of the event message on the egress port.

NOTE—In general the egress timestamp has a different value on each egress port of the transparent clock.

All timestamps shall be measured in the domain as specified in 10.1.

If the delayAsymmetry (see 7.4.2) of the paths connected to the ingress and egress ports is known, the
corrections of 11.6 shall be implemented.

The residence time for each such event message shall be computed for each egress port as follows:
<residenceTime> = egress timestamp – ingress timestamp.

11.5.2 Residence time correction for Sync messages

11.5.2.1 One-step transparent clocks

The <residenceTime> shall be added to the correctionField of the Sync event message by the egress port of
the clock as the Sync event message is being transmitted. The egress port shall make any needed
corrections to checksums or other content dependent fields of the message.

NOTE—The data type of the correctionField allows the <residenceTime> to be expressed to a fraction of a nanosecond
if this accuracy is supported by the transparent clock.

No modification of any received Follow_Up messages shall be made.

11.5.2.2 Two-step transparent clocks

If the twoStepFlag of the received Sync message is FALSE indicating that no Follow_Up message will be
received, then:

a) The twoStepFlag of the received Sync message shall be set to TRUE to indicate that a Follow_Up
message will follow. The Sync message should be transmitted on the egress port as soon as possible,
with any needed corrections to checksums or other content-dependent fields of the message. This
modified Sync message shall be used to generate the egress timestamp for the computation of
residence time for the Sync message.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 117 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

b) A Follow_Up message shall be prepared for transmission on the egress port as follows:

1) The originTimestamp of the received Sync message shall be copied into the
preciseOriginTimestamp field of the Follow_Up message.

2) The sequenceId of the received Sync message shall be copied into the sequenceId of the
Follow_Up message.

3) The sourcePortIdentity of the received Sync message shall be copied to the sourcePortIdentity of
the Follow_Up message.

4) The domainNumber of the received Sync message shall be copied to the domainNumber of the
Follow_Up message.

5) The logMessageInterval of the received Sync message shall be copied to the logMessageInterval
of the Follow_Up message.

6) The header flagField of the received Sync message shall be copied to the flagField of the
Follow_Up message but with the twoStepFlag set to TRUE.

7) The correctionField of the Follow_Up message shall be set to the <residenceTime>. For peer-to-
peer transparent clocks, this shall be done prior to any corrections for <meanPathDelay>; see
11.4.5.1.

NOTE—The data type of the correctionField allows the <residenceTime> to be expressed to a fraction of a nanosecond
if this accuracy is supported by the transparent clock.

If the twoStepFlag of the received Sync message is TRUE, indicating that a Follow_Up message will be
received, then:

a) The received Sync message shall be transmitted from the egress port. This Sync message shall be
used to generate the egress timestamp for the computation of residence time for the Sync message.

b) The <residenceTime> shall be added to the correctionField of the Follow_Up message associated
with the Sync message prior to transmission on the egress port.

NOTE—To correctly associate Sync and Follow_Up messages requires that the transparent clock maintain a record of
the sourcePortIdentity, and sequenceId fields of the Sync message for comparison with the sourcePortIdentity and
sequenceId fields of Follow_Up messages. The data type of the correctionField allows the <residenceTime> to be
expressed to a fraction of a nanosecond if this accuracy is supported by the transparent clock.

11.5.3 Residence time correction for Delay_Req messages

11.5.3.1 General specification

Subclause 11.5.3 applies to end-to-end transparent clocks. Peer-to-peer transparent clocks do not support
Delay_Req messages.

11.5.3.2 One-step end-to-end transparent clocks

The <residenceTime> shall be added to the correctionField of the Delay_Req message by the egress port of
the clock as the Delay_Req message is being transmitted. The egress port shall make any needed
corrections to checksums or other content-dependent fields of the message.

NOTE—The data type of the correctionField allows the <residenceTime> to be expressed to a fraction of a nanosecond
if this accuracy is supported by the transparent clock.

No modification of any received Delay_Resp messages shall be made.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 118 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

11.5.3.3 Two-step end-to-end transparent clocks

The received Delay_Req message shall be transmitted from the egress port. This Delay_Req message shall
be used to generate the egress timestamp for the computation of <residenceTime> for the Delay_Req
message.

The <residenceTime> shall be added to the correctionField of the Delay_Resp message associated with the
Delay_Req message prior to transmission of the Delay_Resp message on the egress port.

NOTE—To correctly associate Delay_Req and Delay_Resp messages requires that the transparent clock maintain a
record of the sourcePortIdentity, and sequenceId fields of the Delay_Req message for comparison with the
requestingPortIdentity and sequenceId fields of Delay_Resp messages. The data type of the correctionField allows the
<residenceTime> to be expressed to a fraction of a nanosecond if this accuracy is supported by the transparent clock.

11.5.4 Residence time correction for Pdelay_Req and Pdelay_Resp messages

11.5.4.1 General

Subclause 11.5.4 applies to end-to-end transparent clocks. Pdelay_Req and Pdelay_Resp messages
terminate at peer-to-peer transparent clocks.

NOTE—Peer-to-peer clocks are normally used only in a homogeneous system of peer-to-peer clocks. The provisions of
11.5.4 allow the use of end-to-end transparent clocks in systems based on future versions of the standard that might
specify how to implement mixed systems with one-to-many connections between peer-to-peer clocks.

11.5.4.2 One-step end-to-end transparent clocks

The <residenceTime> of the Pdelay_Req message shall be added to the correctionField of the Pdelay_Req
message by the egress port of the clock as the Pdelay_Req message is being transmitted. The egress port
shall make any needed corrections to checksums or other content-dependent fields of the message.

No modification of any received Pdelay_Resp_Follow_Up or Pdelay_Resp messages shall be made for the
<residenceTime> of a Pdelay_Req message.

The <residenceTime> of a Pdelay_Resp shall be added to the correctionField of the Pdelay_Resp message
by the egress port of the clock as the Pdelay_Resp message is being transmitted. The egress port shall make
any needed corrections to checksums or other content-dependent fields of the message.

No modification of any received Pdelay_Resp_Follow_Up messages shall be made for the
<residenceTime> of a Pdelay_Resp message.

11.5.4.3 Two-step end-to-end transparent clocks

The <residenceTime> of the Pdelay_Req message shall be measured and saved for incorporation into the
correctionField of a Pdelay_Resp_Follow_Up message associated with the Pdelay_Req message.

The <residenceTime> of a Pdelay_Resp message associated with the Pdelay_Req message shall be
measured and saved for incorporation into the correctionField of the Pdelay_Resp_Follow_Up message
associated with the Pdelay_Req message.

If the twoStepFlag of the received Pdelay_Resp message associated with the Pdelay_Req message is
FALSE, indicating that no Pdelay_Resp_Follow_Up message will be received, then:

a) The twoStepFlag of the received Pdelay_Resp message shall be set to TRUE to indicate that a
Pdelay_Resp_Follow_Up message will follow. The Pdelay_Resp message should be transmitted as
soon as possible, with any needed corrections to checksums or other content-dependent fields of the
message. This modified Pdelay_Resp message shall be used to generate the egress timestamp for the
computation of the <residenceTime> for the Pdelay_Resp message.

b) A Pdelay_Resp_Follow_Up message shall be prepared for transmission as follows:

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 119 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

1) Copy the sequenceId of the received Pdelay_Resp message into the sequenceId of the
Pdelay_Resp_Follow_Up message.

2) Copy the requestingPortIdentity field from the Pdelay_Resp message to the
requestingPortIdentity field of the Pdelay_Resp_Follow_Up message.

3) Set the responseOriginTimestamp to 0.

4) Copy the domainNumber field from the Pdelay_Resp message to the domainNumber field of
the Pdelay_Resp_Follow_Up message.

5) The correctionField of the Pdelay_Resp_Follow_Up message shall be set to the sum of the
<residenceTime> of the Pdelay_Resp and the <residenceTime> of the Pdelay_Req message
associated with the Pdelay_Resp message.

If the twoStepFlag of the received Pdelay_Resp message is TRUE, indicating that a
Pdelay_Resp_Follow_Up message will be received, then:

a) The received Pdelay_Resp message shall be transmitted from the egress port. This Pdelay_Resp
message shall be used to generate the egress timestamp for the computation of residence time for the
Pdelay_Resp message.

b) The sum of the <residenceTime> of the Pdelay_Resp and the <residenceTime> of the Pdelay_Req
message associated with the Pdelay_Resp message shall be added to the correctionField of the
Pdelay_Resp_Follow_Up message associated with the Pdelay_Req message prior to transmission on
the egress port.

NOTE 1—To correctly associate Pdelay_Req, Pdelay_Resp, and Pdelay_Resp_Follow_Up messages requires that the
transparent clock maintain a record of the sourcePortIdentity, and sequenceId fields of the Pdelay_Req message for
comparison with the requestingPortIdentity and sequenceId fields of Pdelay_Resp and Pdelay_Resp_Follow_Up
messages.

NOTE 2—The data type of the correctionField allows the <residenceTime> to be expressed to a fraction of a
nanosecond if this accuracy is supported by the transparent clock.

11.6 Asymmetry correction for PTP version 2 event messages

11.6.1 General specification

If the delayAsymmetry (see 7.4.2) of the paths connected to the ingress and egress ports of a clock is
known, then PTP messages shall be corrected as specified below.

11.6.2 Asymmetry correction for Sync messages

Sync messages:

a) Shall not be corrected for asymmetry for the path connected to an egress port.

b) For a boundary or ordinary clock, upon receipt on an ingress port shall be corrected for asymmetry of
the path connected to the ingress port by adding the value of the ingress path delayAsymmetry to the
correctionField of the received Sync message prior to any use of the correctionField in a
computation.

c) For a transparent clock, upon receipt on an ingress port shall be corrected for asymmetry of the path
connected to the ingress port prior to transmission of the Sync message on an egress port of the
transparent clock.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 120 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

1) If the transparent clock is a one-step clock, the correction shall be made by adding the value of
the ingress path delayAsymmetry to the correctionField of the received Sync message prior to
transmission on an egress port.

2) If the transparent clock is a two-step clock, the correction shall be made by adding the value of
the ingress path delayAsymmetry to the correctionField of the Follow_Up message associated
with the received Sync message prior to transmission of the Follow_Up message on an egress
port.

NOTE— This Follow_Up message may be generated by a two-step clock upstream from the end-to-end transparent
clock or it may be generated by the end-to-end transparent clock itself. This requires that the transparent clock maintain
a record of the sourcePortIdentity, and sequenceId fields of the Sync message for comparison with the
sourcePortIdentity and sequenceId fields of Follow_Up messages.

11.6.3 Asymmetry correction for Delay_Req messages

Delay_Req messages:

a) Shall not be corrected for asymmetry for the path connected to an ingress port.

b) For a boundary or ordinary clock, prior to transmission on an egress port the correctionField of the
transmitted Delay_Req message shall be modified by subtracting the value of the egress path
delayAsymmetry from the correctionField of the transmitted Delay_Req message.

c) For an end-to-end transparent clock, upon receipt on an ingress port and prior to the subsequent
transmission of the Delay_Req message on an egress port:

1) If the end-to-end transparent clock is an one-step clock, the correction shall be made by
subtracting the value of the egress path delayAsymmetry from the correctionField of the
received Delay_Req message prior to transmission on an egress port.

2) If the end-to-end transparent clock is a two-step clock, the correction shall be made by
subtracting the value of the egress path delayAsymmetry of the path connected from the egress
port of the Delay_Req message from the correctionField of the Delay_Resp message associated
with the original Delay_Req message prior to transmission of the Delay_Resp message.

11.6.4 Asymmetry correction for Pdelay_Req messages

Pdelay_Req messages:

a) Shall not be corrected for asymmetry for the path connected to an ingress port.

b) For a boundary clock, ordinary clock, or peer-to-peer transparent clock, prior to transmission on an
egress port, the correctionField of the transmitted Pdelay_Req message shall be modified by
subtracting the value of the egress path delayAsymmetry from the correctionField of the transmitted
Pdelay_Req message.

c) For an end-to-end transparent clock, upon receipt on an ingress port and prior to the subsequent
transmission of the Pdelay_Req message on an egress port:

1) If the end-to-end transparent clock is an one-step clock, the correction shall be made by
subtracting the value of the egress path delayAsymmetry from the correctionField of the
received Pdelay_Req message prior to transmission on an egress port.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 121 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

2) If the end-to-end transparent clock is a two-step clock, the correction shall be made by
subtracting the value of the egress path delayAsymmetry of the path connected to the egress port
of the Pdelay_Req message from the correctionField of the Pdelay_Resp_Follow_Up message
associated with the original Pdelay_Req message prior to transmission of the
Pdelay_Resp_Follow_Up message.

NOTE—This Pdelay_Resp_Follow_Up message may be generated by a two-step clock upstream from the end-to-end
transparent clock, or it may be generated by the end-to-end transparent clock itself. This requires that the transparent
clock maintain a record of the sourcePortIdentity, and sequenceId fields of the Delay_Req message for comparison
with the requestingSourcePortIdentity and sequenceId fields of Delay_Resp messages.

11.6.5 Asymmetry correction for Pdelay_Resp messages

Pdelay_Resp messages:

a) Shall not be corrected for asymmetry for the path connected to an egress port.

b) For a boundary, ordinary, or peer-to-peer transparent clock, upon receipt on an ingress port shall be
corrected for asymmetry of the path connected to the ingress port by adding the value of the ingress
path delayAsymmetry to the correctionField of the received Pdelay_Resp message prior to any use of
the correctionField in a computation.

c) For an end-to-end transparent clock, upon receipt on an ingress port shall be corrected for asymmetry
of the path connected to the ingress port prior to transmission of the Pdelay_Resp message on an
egress port of the end-to-end transparent clock.

1) If the end-to-end transparent clock is an one-step clock, the correction shall be made by adding
the value of the ingress path delayAsymmetry to the correctionField of the received
Pdelay_Resp message prior to transmission on an egress port.

2) If the end-to-end transparent clock is a two-step clock, the correction shall be made by adding
the value of the ingress path delayAsymmetry to the correctionField of the
Pdelay_Resp_Follow_Up message associated with the transmitted Pdelay_Resp message prior
to transmission of the Pdelay_Resp_Follow_Up message on an egress port.

NOTE—This Pdelay_Resp_Follow_Up message may be generated by a two-step clock upstream from the end-to-end
transparent clock, or it may be generated by the end-to-end transparent clock itself. This requires that the transparent
clock maintain a record of the requestingPortIdentity, and sequenceId fields of the Pdelay_Resp message for
comparison with the requestingPortIdentity and sequenceId fields of Pdelay_Resp_Follow_Up messages.

12. Synchronization and syntonization of clocks

12.1 Syntonization

12.1.1 General specification

Within a domain, any clock with a port in the SLAVE state, and any transparent clock, should syntonize to
the grandmaster.

12.1.2 Syntonization based on Sync messages

A clock, A, may syntonize to another clock, B, as follows.

For a sequence of Sync, and possibly Follow_Up messages from clock B, clock A computes
<correctedMasterEventTimestamp> and <syncEventIngressTimestamp> as follows:

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 122 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

a) Upon receipt of a Sync message, clock A generates and records a timestamp
<syncEventIngressTimestamp> corrected for latency per 7.3.4. If the delayAsymmetry (see 7.4.2) of
the path connected to the ingress port is known, the corrections of 11.6 shall be made.

b) If the twoStepFlag bit of the flagField of the of the Sync message is FALSE indicating that a
Follow_Up message will not be received, then the <correctedMasterEventTimestamp> =
<originTimestamp> + <meanPathDelay> + correctionField of Sync message.

c) If the twoStepFlag bit of the flagField of the of the Sync message is TRUE indicating that a
Follow_Up message will be received, then the <correctedMasterEventTimestamp> =
<preciseOriginTimestamp> + <meanPathDelay> + correctionField of Sync message +
correctionField of Follow_Up message.

where
⎯ The <originTimestamp> is the value of the originTimestamp field in the received Sync

message.

⎯ The <preciseOriginTimestamp> is the value of the preciseOriginTimestamp field in the received
Follow_Up message.

⎯ If the port is configured to use the delay request-response mechanism, then the
<meanPathDelay> shall be that specified in 11.3.

⎯ If the port is configured to use the peer delay mechanism, then the <meanPathDelay> is that
specified in 11.4.

The rate of change of clock A’s time is then adjusted using the sequence of
<syncEventIngressTimestamps> and the sequence of <correctedMasterEventTimestamps> to align it to the
rate of change of the grandmaster’s time.

NOTE—As one example, the ratio of the master frequency to the frequency of clock A can be estimated as the ratio of
the elapsed time of clock A to the elapsed time of the master clock between a received timestamp and a second
received timestamp some number of syncInterval later ; i.e.,

0

0

TimestampasterEventcorrectedMTimestampasterEventcorrectedM
stampngressTimesyncEventIstampngressTimesyncEventI

><−><
><−><

N

N

where N is the number of syncInterval separating the timestamps (N > 0). The frequency of clock A can then be
adjusted by this factor.

12.1.3 Syntonization based on other mechanisms

In some networks, there may be physical signals accessible to clocks that can be used to syntonize two
clocks. Such signals may be used provided the syntonization of clock A to clock B matches the
synchronization hierarchy established by the best master clock algorithm (see 9.3), which means that Sync
messages proceed from clock B to clock A. These means are out of the scope of this standard.

12.2 Synchronization

Within a domain, an ordinary or boundary clock with a port in the Slave state shall synchronize to its
master in the synchronization hierarchy established by the best master clock algorithm. The specific means
for synchronization are out of the scope of this standard but shall result in the minimization of the
<offsetFromMaster> value computed by the slave per 11.2.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 123 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

13. PTP message formats

13.1 General

The formats and definitions in this clause define how the originator fills in the fields of PTP messages.
What the receiver does with them is defined elsewhere in this standard.

In the tables in this clause, the “octets” column indicates the size of the field in octets. The “offset” column
indicates the offset of the first octet of the field from the start of the PTP defined fields of the message.

13.2 General message format requirements

All messages shall have a header, body, and suffix. The suffix may have zero length.

Reserved fields shall be transmitted with all bits of the field 0 and ignored by the receiver.

Unless otherwise specified, all field values either:
⎯ Shall be an inherent characteristic of the message and specified in this clause

⎯ Shall be instantiated by the device originating the message, the originating node, based on the
data sets or protocol operation of the originating device

⎯ In the case of two-step transparent clocks, any generated Follow_Up or
Pdelay_Resp_Follow_Up messages shall, except for adjustments required for the operation of
the transparent clock, appear as though the messages were generated by the originator of the
Sync and Pdelay_Resp messages respectively; see Clause 11

The data type of the field shall be the type indicated in brackets in the title of each subclause.

13.3 Header

13.3.1 General header specifications

The common header for all PTP messages shall be as specified in Table 18.

Table 18 ⎯Common message header

Bits
7 6 5 4 3 2 1 0 Octets Offset

transportSpecific messageType 1 0
reserved versionPTP 1 1

messageLength 2 2
domainNumber 1 4

reserved 1 5
flagField 2 6

correctionField 8 8
reserved 4 16

sourcePortIdentity 10 20
sequenceId 2 30
controlField 1 32

logMessageInterval 1 33

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 124 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

13.3.2 Header specifications

13.3.2.1 transportSpecific (Nibble)

The transportSpecific field may be used by a lower layer transport protocol and is defined by the mapping
specification of that protocol in a transport annex (normative Annexes D through I) of this standard.

13.3.2.2 messageType (Enumeration4)

The value messageType shall indicate the type of the message as defined in Table 19.

Table 19 ⎯Values of messageType field

Message type Message class Value (hex)
Sync Event 0
Delay_Req Event 1
Pdelay_Req Event 2
Pdelay_Resp Event 3
Reserved — 4-7
Follow_Up General 8
Delay_Resp General 9
Pdelay_Resp_Follow_Up General A
Announce General B
Signaling General C
Management General D
Reserved — E-F

The most significant bit of the messageType field divides this field in half between event and general
messages.

NOTE—The reserved nibble immediately following messageType is reserved for future expansion of the messageType
field.

13.3.2.3 versionPTP (UInteger4)

The value of the versionPTP field shall be the value of the portDS.versionNumber member of the data set
of the originating node.

13.3.2.4 messageLength (UInteger16)

The value of the messageLength shall be the total number of octets that form the PTP message. The
counted octets start with the first octet of the header and include and terminate with the last octet of any
suffix or, if there are no suffix members with the last octet of the message as defined in this clause.

NOTE—The message length does not include any padding bits specified in Annex D.

13.3.2.5 domainNumber (UInteger8)

For ordinary or boundary clocks, the value of domainNumber shall be the value of the
defaultDS.domainNumber member of the data set of the originating ordinary or boundary clock.

For peer delay mechanism messages originating from a peer-to-peer transparent clock, the value shall be
the value defined in 11.4.3.

For management messages, the value shall be the value defined in 15.4.1.1.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 125 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

13.3.2.6 flagField (Octet[2])

The value of the bits of the flagField array shall be as defined in Table 20. For message types where the bit
is not defined in Table 20, the values shall be FALSE.

Table 20 ⎯Values of flagField

Octet
Bit

Message
types Name Description

0 0 Announce,
Sync,
Follow_Up,
Delay_Resp

alternateMasterFlag FALSE if the port of the originator is in the
MASTER state. Conditions to set the flag to TRUE
are specified in 17.3 and 17.4.

0 1 Sync,
Pdelay_Resp

twoStepFlag For a one-step clock, the value of twoStepFlag
shall be FALSE.

For a two-step clock, the value of twoStepFlag
shall be TRUE.

0 2 ALL unicastFlag TRUE, if the transport layer protocol address to
which this message was sent is a unicast address.
FALSE, if the transport layer protocol address to
which this message was sent is a multicast address.

0 5 ALL PTP profile Specific 1 As defined by an alternate PTP profile; otherwise
FALSE.

0 6 ALL PTP profile Specific 2 As defined by an alternate PTP profile; otherwise
FALSE.

0 7 ALL reserved See NOTE.
1 0 Announce leap61 The value of timePropertiesDS.leap61.
1 1 Announce leap59 The value of timePropertiesDS.leap59
1 2 Announce currentUtcOffsetValid The value of timePropertiesDS.currentUtcOffsetValid.
1 3 Announce ptpTimescale The value of timePropertiesDS.ptpTimescale.
1 4 Announce timeTraceable The value of timePropertiesDS.timeTraceable.
1 5 Announce frequencyTraceable The value of timePropertiesDS.frequencyTraceable.

NOTE—This bit is reserved for the experimental security mechanism of Annex K.

All unused flags are reserved.

13.3.2.7 correctionField (Integer64)

The correctionField is the value of the correction measured in nanoseconds and multiplied by 216. For
example, 2.5 ns is represented as 000000000002800016.

A value of one in all bits, except the most significant, of the field shall indicate that the correction is too big
to be represented.

The value of the correctionField depends on the message type as described in Table 21.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 126 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table 21 ⎯correctionField semantics

Message type correctionField description
Sync Corrections for fractional nanoseconds, residence time in transparent clocks (see 11.5.2),

path delay in peer-to-peer clocks (see 11.4.5.1), and asymmetry corrections (see 11.6.2)
Delay_Req Corrections for fractional nanoseconds, residence time in transparent clocks (see 11.5.3),

and asymmetry corrections (see 11.6.3)
Pdelay_Req Corrections for fractional nanoseconds, residence time in transparent clocks (see 11.5.4),

and asymmetry corrections (see 11.6.4)
Pdelay_Resp Corrections for fractional nanoseconds, residence time in transparent clocks (see 11.5.4),

and asymmetry corrections (see 11.6.5)
Follow_Up Corrections for fractional nanoseconds, residence time in transparent clocks (see 11.5.2),

path delay in peer-to-peer clocks (see 11.4.5.1), and asymmetry corrections (see 11.6.2)
Delay_Resp Corrections for fractional nanoseconds, residence time in transparent clocks (see 11.5.3),

and asymmetry corrections (see 11.6.3)
Pdelay_Resp_Follow_Up Corrections for fractional nanoseconds, residence time in transparent clocks (see 11.5.4),

and asymmetry corrections (see 11.6.4 and 11.6.5)
Announce Zero
Signaling Zero
Management Zero

13.3.2.8 sourcePortIdentity (PortIdentity)

The value of the sourcePortIdentity field shall be the value of the portDS.portIdentity member of the data
set of the port that originated this message.

13.3.2.9 sequenceId (UInteger16)

The value of the sequenceId field shall be assigned by the originator of the message in conformance with
7.3.7 except in the case of Follow_Up, Delay_Resp, Pdelay_Resp, and Pdelay_Resp_Follow_Up messages
and management messages that are a response to another management message. The sequenceId field
values for these exceptions are defined in the references listed in Table 22.

Table 22 ⎯References for sequenceId value exceptions

Message type Reference
Follow_Up 9.5.10, 11.5.2.2
Delay_Resp 11.3.2
Pdelay_Resp 11.4.3
Pdelay_Resp_Follow_Up 11.4.3
Management 15.4.1.2

13.3.2.10 controlField (UInteger8)

The value of controlField depends on the message type defined in the messageType field (see 13.3.2.2) and
shall have the value specified in Table 23. The use of this field by the receiver is deprecated.

NOTE—This field is provided for compatibility with hardware designed to conform to version 1 of this standard.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 127 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table 23 ⎯controlField enumeration

Message type controlField value (hex)
Sync 00
Delay_Req 01
Follow_Up 02
Delay_Resp 03
Management 04
All others 05
Reserved 06-FF

13.3.2.11 logMessageInterval (Integer8)

The value of the logMessageInterval field is determined by the type of the message and shall be as defined
in Table 24.

Table 24 ⎯Values of logMessageInterval field

Message type Value of logMessageInterval
Announce The value of the portDS.logAnnounceInterval member of the data set

Sync, Follow_Up The value of the portDS.logSyncInterval member of the data set in a multicast message,
and 7F16 in a unicast message

Delay_Resp The value of the portDS.logMinDelayReqInterval member of the data set in a multicast
message, and 7F16 in a unicast message

Delay_Req 7F16
Signaling 7F16

Management 7F16
Pdelay_Req 7F16

 Pdelay_Resp, 7F16
Pdelay_Resp_Follow_Up 7F16

13.4 Suffix

An application layer message is suffixed by a contiguous sequence of zero or more entities of data type
TLV. The meaning of the entities is described in Clause 14. The first octet of TLV entity “n+1” shall
immediately follow the final octet of TLV entity “n”. The interpretation of a TLV should not depend on its
position in the message. Nodes should append no TLV entity to event messages.

NOTE—Appending TLV entities to an event message is likely to change the transmission delay suffered by the
messages in passing through non-PTP bridges.

13.5 Announce message

13.5.1 General Announce message specifications

The fields of Announce messages shall be as specified in Table 25.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 128 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table 25 ⎯Announce message fields

Bits
7 6 5 4 3 2 1 0

Octets Offset

header (see 13.3) 34 0
originTimestamp 10 34
currentUtcOffset 2 44

reserved 1 46
grandmasterPriority1 1 47

grandmasterClockQuality 4 48
grandmasterPriority2 1 52
grandmasterIdentity 8 53

stepsRemoved 2 61
timeSource 1 63

13.5.2 Announce message field specifications

13.5.2.1 originTimestamp (Timestamp)

The value of originTimestamp shall be 0 or an estimate no worse than ±1 s of the local time of the
originating clock when the Announce message was transmitted.

13.5.2.2 currentUtcOffset (Integer16)

The value of currentUtcOffset shall be the value of the timePropertiesDS.currentUtcOffset member of the
data set.

13.5.2.3 grandmasterPriority1 (UInteger8)

The value of grandmasterPriority1 shall be the value of the parentDS.grandmasterPriority1 member of the
data set.

13.5.2.4 grandmasterClockQuality (ClockQuality)

The value of grandmasterClockQuality shall be the value of the parentDS.grandmasterClockQuality
member of the data set.

13.5.2.5 grandmasterPriority2 (UInteger8)

The value of grandmasterPriority2 shall be the value of the parentDS.grandmasterPriority2 member of the
data set.

13.5.2.6 grandmasterIdentity (ClockIdentity)

The value of grandmasterIdentity shall be the value of the parentDS.grandmasterIdentity member of the
data set.

13.5.2.7 stepsRemoved (UInteger16)

The value of stepsRemoved shall be the value of currentDS.stepsRemoved of the data set of the clock
issuing this message.

13.5.2.8 timeSource (Enumeration8)

The value of timeSource shall be the value of the timePropertiesDS.timeSource member of the data set.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 129 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

13.6 Sync and Delay_Req messages

13.6.1 General Sync and Delay_Req message specifications

The fields of Sync and Delay_Req messages shall be as specified in Table 26.

Table 26 ⎯Sync and Delay_Req message fields

Bits
7 6 5 4 3 2 1 0

Octets Offset

header (see 13.3) 34 0
originTimestamp 10 34

13.6.2 Sync and Delay_Req message field specifications

13.6.2.1 originTimestamp (Timestamp)

The value of the originTimestamp field shall be as specified in 9.5.9 and 11.3.

13.7 Follow_Up message

13.7.1 General Follow_Up message specifications

The fields of the Follow_Up message shall be as specified in Table 27.

Table 27 ⎯Follow_Up message fields

Bits
7 6 5 4 3 2 1 0

Octets Offset

header (see 13.3) 34 0
preciseOriginTimestamp 10 34

13.7.2 Follow_Up message field specifications

13.7.2.1 preciseOriginTimestamp (Timestamp)

The value of the preciseOriginTimestamp shall be as specified in 9.5.10 and 11.3.

13.8 Delay_Resp message

13.8.1 General Delay_Resp message specifications

The fields of the Delay_Resp message shall be as specified in Table 28.

Table 28 ⎯Delay_Resp message fields

Bits
7 6 5 4 3 2 1 0

Octets Offset

header (see 13.3) 34 0
receiveTimestamp 10 34

requestingPortIdentity 10 44

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 130 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

13.8.2 Delay_Resp message field specifications

13.8.2.1 receiveTimestamp (Timestamp)

The value of the receiveTimestamp shall be as specified in 9.5.12 and 11.3.

13.8.2.2 requestingPortIdentity (PortIdentity)

The value of the requestingPortIdentity shall be as specified in 11.3.

13.9 Pdelay_Req message

13.9.1 General Pdelay_Req message specifications

The fields of the Pdelay_Req message shall be as specified in Table 29.

Table 29 ⎯Pdelay_Req message fields

Bits
7 6 5 4 3 2 1 0

Octets Offset

header (see 13.3) 34 0
originTimestamp 10 34

reserved 10 44

NOTE⎯The reserved field in the Pdelay_Req message is to make the message length match the length of the
Pdelay_Resp message. In some networks and bridges, messages with unequal lengths have different transit times that
introduce asymmetry errors.

13.9.2 Pdelay_Req message field specifications

13.9.2.1 originTimestamp (Timestamp)

The value of the originTimestamp shall be as specified in 11.4.3.

13.10 Pdelay_Resp message

13.10.1 General Pdelay_Resp message specifications

The fields of the Pdelay_Resp message shall be as specified in Table 30.

Table 30 ⎯Pdelay_Resp message fields

Bits
7 6 5 4 3 2 1 0

Octets Offset

header (see 13.3) 34 0
requestReceiptTimestamp 10 34

requestingPortIdentity 10 44

13.10.2 Pdelay_Resp message field specifications

13.10.2.1 requestReceiptTimestamp (Timestamp)

The value of the requestReceiptTimestamp shall be as specified in 11.4.3.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 131 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

13.10.2.2 requestingPortIdentity (PortIdentity)

The value of the requestingPortIdentity shall be as specified in 11.4.3.

13.11 Pdelay_Resp_Follow_Up message

13.11.1 General Pdelay_Resp_Follow_Up message specifications

The fields of the Pdelay_Resp_Follow_Up message shall be as specified in Table 31.

Table 31 ⎯Pdelay_Resp_Follow_Up message fields

Bits
7 6 5 4 3 2 1 0

Octets Offset

header (see 13.3) 34 0
responseOriginTimestamp 10 34

requestingPortIdentity 10 44

13.11.2 Pdelay_Resp_Follow_Up message field specifications

13.11.2.1 responseOriginTimestamp (Timestamp)

The value of the responseOriginTimestamp shall be as specified in 11.4.3.

13.11.2.2 requestingPortIdentity (PortIdentity)

The value of the requestingPortIdentity shall be as specified in 11.4.3.

13.12 Signaling message

13.12.1 Receipt of a signaling message from another node

Based on the indicated fields of a received signaling message, the message shall be accepted and applied as
indicated in Table 32.

Table 32 ⎯Acceptance of signaling messages

targetPortIdentity.clockIdentity
equal to

targetPortIdentity.portNumber
equal to

TLV
specification
indicates
applicability to:

Apply Action to:

Clock clock All 1’s
Port all ports
Clock clock

defaultDS.clockIdentity

portDS.portNumber
Port target port
Clock clock All 1’s
Port all ports
Clock clock

All 1’s

portDS.portNumber
Port target port

Messages that are not accepted shall be ignored.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 132 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

13.12.2 Transmission of a signaling message

A port shall issue a signaling message when:
⎯ Required by a TLV on a received signaling message

⎯ Required by an optional or mandatory feature of this standard

⎯ Required by implementation-specific considerations outside the scope of this standard

The signaling message is used to transport a sequence of one or more TLV entities. Signaling messages are
transmitted from one clock to one or more other clocks.

The common fields of a signaling message shall be as specified in Table 33.

Table 33 ⎯Signaling message fields

Bits
7 6 5 4 3 2 1 0

Octets Offset

header (see 13.3) 34 0
targetPortIdentity 10 34

One or more TLVs M 44

13.12.2.1 targetPortIdentity (PortIdentity)

The targetPortIdentity field shall be of type PortIdentity. The value of the targetPortIdentity shall be the
portIdentity (see 7.5.2) of the port to which this message is addressed.

NOTE—See 13.12.1.

13.13 Management message

Management messages are defined in Clause 15.

14. TLV entity specifications

14.1 General requirements

All TLV extensions shall have the data type, TLV; see 5.3.8.

PTP nodes that cannot parse a TLV extension shall ignore it and shall attempt to parse the next TLV in the
message.

In the tables in Clause 14, the “octets” column indicates the size of the field in octets. The “TLV offset”
column indicates the offset of the first octet of the field from the start of the TLV.

14.1.1 tlvType (Enumeration16)

The tlvType shall identify the TLV.

The values shall be as specified in Table 34.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 133 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table 34 ⎯tlvType values

tlvType values Value (hex) Defined in clause
Reserved 0000 —
Standard TLVs
MANAGEMENT 0001 15.5.3
MANAGEMENT_ERROR_STATUS 0002 15.5.4
ORGANIZATION_EXTENSION 0003 14.3

Optional unicast message negotiation TLVs 16.1
REQUEST_UNICAST_TRANSMISSION 0004 —
GRANT_UNICAST_TRANSMISSION 0005 —
CANCEL_UNICAST_TRANSMISSION 0006 —
ACKNOWLEDGE_CANCEL_UNICAST_TRANSMISSION 0007 —
Optional path trace mechanism TLV 16.2
PATH_TRACE 0008 —
Optional alternate timescale TLV 16.3
ALTERNATE_TIME_OFFSET_INDICATOR 0009 —
Reserved for standard TLVs 000A – 1FFF —
Experimental TLVs 14.2
Security TLVs Annex K
AUTHENTICATION 2000 —
AUTHENTICATION_CHALLENGE 2001 —
SECURITY_ASSOCIATION_UPDATE 2002 —
Cumulative frequency scale factor offset Annex L
CUM_FREQ_SCALE_FACTOR_OFFSET 2003 —
Reserved for Experimental TLVs 2004 – 3FFF —
Reserved 4000 – FFFF —

Experimental TLV values shall be reserved for assignment by the Precise Networked Clock Working
Group of the IM/ST Committee; see 14.2.

14.1.2 lengthField (UInteger16)

The value of lengthField is the length of the value field of the TLV in octets; see 5.3.8.

14.1.3 valueField (tlvType specific)

The format and meaning of the valueField member of the TLV is defined in subsequent clauses for each
tlvType defined in this standard.

14.2 Experimental TLVs

Experimental TLVs are intended to facilitate operational experience with extensions that are likely to
evolve into future standard extensions. Organizations or companies may apply to the Precise Networked
Clock Working Group of the IM/ST Committee for an experimental tlvType value. Experimental tlvType
values, the proposed format and semantics of the TLV, and contact information for the party responsible
for the TLV will be public information.

Experimental TLV values are not permanent. They may be reassigned:
⎯ If the TLV is made a standard TLV

⎯ If it is clear to all parties that it is no longer needed

⎯ After a period of five years from the date of assignment

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 134 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

14.3 Vendor and standard organization extension TLVs

14.3.1 General

Vendor and standard organization extension TLVs can be used by vendors and standard organizations,
respectively, to extend the protocol for their specific needs.

14.3.2 TLV member specifications

All organization-specific TLV extensions shall have the format specified in Table 35.

Table 35 ⎯Organization specific TLV fields

Bits Octets TLV
Offset

7 6 5 4 3 2 1 0
tlvType 2 0

lengthField 2 2
organizationId 3 4

organizationSubType 3 7
dataField N 10

14.3.2.1 tlvType (Enumeration16)

The tlvType shall be ORGANIZATION_EXTENSION for extensions defined by vendors and standards
organization.

14.3.2.2 lengthField (UInteger16)

The value of the lengthField is 6+N, where N is an even number; see 5.3.8.

14.3.2.3 organizationId (Octet[3])

The value shall be the value of the OUI assigned to the vendor or standards organization by the IEEE.12

The octets shall be assigned in order to the 3-octet array with the most significant octet of the OUI assigned
to the octet array member with index 0. The organization identified by the OUI shall ensure that
organizationalSubType fields (14.3.2.4) are unique within the scope defined by the organizationId value.

PTP nodes that do not recognize a particular organizationId or organizationSubType shall disregard the
contents of the TLV except for the lengthField field.

14.3.2.4 organizationSubType (Enumeration24)

The organizationSubType field defines a subtype within the scope of the organizationId field. The
organizationSubType values are assigned by the vendor or standards organization identified by the
organizationId.

14.3.2.5 data (organizationSubType and organizationId specific)

The format and meaning of the data field shall be defined by the owner of the pair {organizationId,
organizationSubType}.

15. Management

15.1 General

Management messages are used to access attributes and to generate certain events defined in this standard.

12 An OUI may be obtained from the IEEE Registration Authority, http://standards.ieee.org/regauth/. Tutorials on these assigned
numbers may be found on this Web site.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 135 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

15.1.1 Selection of management mechanisms

One of the following three PTP management mechanisms shall be used:
⎯ By default, the mechanism specified in 15.2.

⎯ An alternate management mechanism providing equivalent functionality as specified in a PTP
profile.

⎯ No specified management mechanism. The PTP profile shall specify the defined fixed values
or/and state that there is an implementation-specific means to address all configurable variables;
see 8.1.2.1.3.

15.2 PTP management mechanism

This management mechanism is defined by the remainder of Clause 15 and any management TLVs defined
in optional clauses of this standard.

15.3 Processing of management messages

15.3.1 Receipt of a management message from another node

Based on the indicated fields of a received management message, the message shall be accepted and
applied as indicated in Table 36.

Table 36 ⎯Acceptance of management messages

targetPortIdentity.clockIdentity equal to: targetPortIdentity.portNumber
equal to:

managementId
applicability
(Table 40)

Apply
Action to:

clock clock All 1’s
port all ports
clock clock

defaultDS.clockIdentity

portDS.portNumber
port target port
clock clock All 1’s
port all ports
clock clock

All 1’s

portDS.portNumber
port target port

NOTE 1⎯When a “GET” message is addressed to “all ports,” the responding node sends a separate reply for each port.

Management messages not accepted shall be ignored.

NOTE 2—The CLOCK_DESCRIPTION TLV can be used to discover any clock in the system supporting PTP
management messages.

15.3.2 Transmission of a management message

The management message is used to transport a single management TLV entity. Management messages are
used to transmit information from a clock to a node manager and from a node manager to one or more
clocks; see 15.3.1.

15.3.3 Boundary clock forwarding of management messages

A boundary clock shall forward multicast management messages received on one port via other ports
according to the following rules based on the state of the ports and the value of the boundaryHops field of
the received management message:

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 136 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

a) Only multicast management messages received on a port in the MASTER, SLAVE,
UNCALIBRATED, or PRE_MASTER states shall be forwarded.

b) If the received boundaryHops field value is 0, the management message shall not be retransmitted.
Otherwise, the boundary clock shall decrement the value of the boundaryHops field of the
management message by 1 before retransmitting the message

c) If the received boundaryHops field value is greater than 0, the management message shall be
retransmitted only via ports in the MASTER, SLAVE, UNCALIBRATED, or PRE_MASTER
states.

15.4 Management message format

15.4.1 Common fields

The common fields of a management message shall be as specified in Table 37.

Table 37 ⎯Management message fields

Bits
7 6 5 4 3 2 1 0

Octets Offset

header (see 13.3) 34 0
targetPortIdentity 10 34

startingBoundaryHops 1 44
boundaryHops 1 45

reserved actionField 1 46
reserved 1 47

managementTLV M 48

15.4.1.1 domainNumber of the header

The domainNumber of the message common header (see 13.3) of a management message shall specify the
target domain.

15.4.1.2 sequenceId of the header

The sequenceId of the message common header (see 13.3) of a response management message shall be set
to the sequenceId of the received management message causing the response. Otherwise the sequenceId
shall be as specified in 7.3.7.

15.4.1.3 targetPortIdentity (PortIdentity)

The targetPortIdentity field shall be the portIdentity of the port or node on which the management message
acts.

NOTE—The port identified by targetPortIdentity is not necessarily the port on which the management message was
received.

In the case of a management message transmitted by a clock to a manager, the targetPortIdentity field shall
be set to the sourcePortIdentity of the management message to which it is a response.

15.4.1.4 startingBoundaryHops (UInteger8)

The value of the startingBoundaryHops field is implementation-dependent for messages that are not issued
in response to a request from another management message. For management messages that are issued in
response to a request from another management message, the value of startingBoundaryHops shall be the
value computed from the startingBoundaryHops and boundaryHops fields of the requesting message as
(startingBoundaryHops minus boundaryHops).

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 137 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

NOTE—When a management message is received, the absolute value of this difference indicates the number of
retransmissions by boundary clocks that the message experienced.

15.4.1.5 boundaryHops (UInteger8)

The value of the boundaryHops field indicates the remaining number of successive retransmissions of the
management message by boundary clocks receiving the message per 15.3.3. The value of boundaryHops
shall be identical to the value of the field startingBoundaryHops when first transmitted by the issuing clock.

15.4.1.6 actionField (Enumeration4)

The value of the actionField shall indicate the action to be taken on receipt of the message as defined in
Table 38.

Table 38 ⎯Values of the actionField

Action Action taken Value
(hex)

GET The management message shall carry a single management TLV. The managementId
field of the TLV indicates the specific information that needs to be retrieved.

The current values of the data identified by the managementId shall be returned in a
management TLV with the actionField value set to RESPONSE. If an error occurs, a
management error status TLV shall be returned with the actionField value set to
RESPONSE.

0

SET The management message shall carry a single management TLV. The data in the TLV
shall be used to update the current value of the data identified by the managementId
field. Attempts to set a static or nonconfigurable value shall return a management error
status TLV; see 15.5.4. If the update is successful, a management message with the
actionField value set to RESPONSE shall be returned. If an error occurs, a
management error status TLV shall be returned with the actionField value set to
RESPONSE. If the data identified by the managementId consists of several fields, the
update shall be considered as an atomic actionField and the failure to update any item
shall be considered an error in the execution of the SET. TLVs with data definitions
that mix configurable and nonconfigurable data are not permitted.

1

RESPONSE The data in the TLV shall be the current values of the data identified by the
managementId field of the management message with the GET or SET actionField.
The value of the managementId shall be identical to that in the requesting message. If
the actionField required by the GET or SET actionFields could not be fully executed,
the response shall be a management error status TLV; see 15.5.4.

2

COMMAND The event indicated by the managementId field shall be initiated. The results of this
command shall be acknowledged by a management message with actionField set to
ACKNOWLEDGE.

3

ACKNOWLEDGE An acknowledge management message is a response to a command management
message. The value of the managementId shall be identical to that in the command
message. If the command could not be executed, the acknowledge message shall be a
management error status TLV.

4

Reserved 5-F

15.4.1.7 managementTLV

Management messages shall be suffixed with zero or one TLV.

15.5 Management TLVs

15.5.1 Management TLV introduction

15.5.1.1 General

Subclause 15.5 details the structure of the management TLV and the management error status TLV.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 138 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

There are two forms of management TLVs: those that manipulate data sets or individual data set members
and those that initiate events.

15.5.1.1.1 Management of data sets

PTP-defined configurable attributes, whether maintained in the data sets of Clause 8 or in implementation-
specific form, are read and updated by management messages with the actionField value GET and SET,
respectively. The TLV data structures for these messages contain only configurable variables.

PTP-defined static, dynamic, and configurable attributes maintained in data sets of Clause 8 or in
implementation-specific form are read by management messages with the actionField value GET. SET may
not be used with these messages.

15.5.1.1.2 Management of events

For TLVs that initiate events, the actionField value of the management message is COMMAND. The event
and initiation semantics are defined or referenced for each TLV managementId.

15.5.2 Management TLV field format

Management TLV shall have the format specified in Table 39.

Table 39 ⎯Management TLV fields

Bits
7 6 5 4 3 2 1 0

Octets TLV
Offset

tlvType 2 0
lengthField 2 2

managementId 2 4
dataField N 6

15.5.2.1 tlvType (Enumeration16)

The tlvType shall be MANAGEMENT.

15.5.2.2 lengthField (UInteger16)

The value of the lengthField is 2+N, where N is an even number; see 5.3.8.

15.5.2.3 managementId (Enumeration16)

The values of the managementId field are defined in Table 40. TLV semantics for each managementId
value shall be as defined in subclauses of 15.5, and Clause 16 and Clause 17 of this standard.

The entries in the allowed actions column of Table 40 indicate the permissible values of the actionField
field in the management message common fields; see 15.4.1.6. The receipt of a management with a
disallowed actionField value shall:

⎯ Cause the contents of the management TLV to be disregarded

⎯ Return a management error status TLV (see 15.5.4), NOT_SUPPORTED

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 139 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table 40 ⎯managementId values

managementId name managementId value
(hex)

Allowed actions Applies to

Applicable to all node types 0000 – 1FFF
NULL_MANAGEMENT 0000 GET, SET,

COMMAND
port

CLOCK_DESCRIPTION 0001 GET port
USER_DESCRIPTION 0002 GET, SET clock
SAVE_IN_NON_VOLATILE_STORAGE 0003 COMMAND clock
RESET_NON_VOLATILE_STORAGE 0004 COMMAND clock
INITIALIZE 0005 COMMAND clock
FAULT_LOG 0006 GET clock
FAULT_LOG_RESET 0007 COMMAND clock
Reserved 0008 – 1FFF — —
Applicable to ordinary and boundary clocks 2000 – 3FFF — —
DEFAULT_DATA_SET 2000 GET clock
CURRENT_DATA_SET 2001 GET clock
PARENT_DATA_SET 2002 GET clock
TIME_PROPERTIES_DATA_SET 2003 GET clock
PORT_DATA_SET 2004 GET port
PRIORITY1 2005 GET, SET clock
PRIORITY2 2006 GET, SET clock
DOMAIN 2007 GET, SET clock
SLAVE_ONLY 2008 GET, SET clock
LOG_ ANNOUNCE_INTERVAL 2009 GET, SET port
ANNOUNCE_RECEIPT_TIMEOUT 200A GET, SET port
LOG_ SYNC_INTERVAL 200B GET, SET port
VERSION_NUMBER 200C GET, SET port
ENABLE_PORT 200D COMMAND port
DISABLE_PORT 200E COMMAND port
TIME 200F GET, SET clock
CLOCK_ACCURACY 2010 GET, SET clock
UTC_PROPERTIES 2011 GET, SET clock
TRACEABILITY_PROPERTIES 2012 GET, SET clock
TIMESCALE_PROPERTIES 2013 GET, SET clock
UNICAST_NEGOTIATION_ENABLE 2014 GET, SET port
PATH_TRACE_LIST 2015 GET clock
PATH_TRACE_ENABLE 2016 GET, SET clock
GRANDMASTER_CLUSTER_TABLE 2017 GET, SET clock
UNICAST_MASTER_TABLE 2018 GET, SET port
UNICAST_MASTER_MAX_TABLE_SIZE 2019 GET port
ACCEPTABLE_MASTER_TABLE 201A GET, SET clock
ACCEPTABLE_MASTER_TABLE_ENABLED 201B GET, SET port
ACCEPTABLE_MASTER_MAX_TABLE_SIZE 201C GET clock
ALTERNATE_MASTER 201D GET, SET port
ALTERNATE_TIME_OFFSET_ENABLE 201E GET, SET clock
ALTERNATE_TIME_OFFSET_NAME 201F GET, SET clock
ALTERNATE_TIME_OFFSET_MAX_KEY 2020 GET clock
ALTERNATE_TIME_OFFSET_PROPERTIES 2021 GET, SET clock
Reserved 2022 – 3FFF — —
Applicable to transparent clocks 4000 to 5FFF — —
TRANSPARENT_CLOCK_DEFAULT_DATA_SET 4000 GET clock
TRANSPARENT_CLOCK_PORT_DATA_SET 4001 GET port
PRIMARY_DOMAIN 4002 GET, SET clock
Reserved 4003 – 5FFF — —
Applicable to ordinary, boundary, and transparent clocks 6000 – 7FFF — —
DELAY_MECHANISM 6000 GET, SET port
LOG_MIN_ PDELAY_REQ_INTERVAL 6001 GET, SET port
Reserved 6002 – BFFF — —
This range is to be used for implementation-specific identifiers C000 – DFFF — —
This range is to be assigned by an alternate PTP profile E000 – FFFE — —
Reserved FFFF — —

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 140 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

NOTE—The implementation-specific range of managementIds are assigned by manufacturers to define management
functions unique to their own devices. There is no expectation of interoperability, and users must ensure that such
TLVs are directed to the appropriate device.

15.5.3 Management TLV data field specifications for each managementId

15.5.3.1 TLV data fields applicable to all clocks

15.5.3.1.1 NULL_MANAGEMENT

The management TLV data field is of zero length. No action affecting data sets or state shall result from
receiving this TLV. The receipt of a NULL_MANAGEMENT message shall adhere to the requirements of
the actionField; see 15.4.1.6.

NOTE—Null management messages are typically used to test implementations by exercising the management handlers
without producing any change in protocol operation. For example, such a message can be sent to test whether received
management messages are being recorded in an implementation-specific event log.

15.5.3.1.2 CLOCK_DESCRIPTION

The targetPortIdentity.portNumber member of the field (see 15.4.1.3) of the management message carrying
this TLV shall indicate the port to which the physicalAddress, protocolAddress, and profileIdentity apply.

All other fields of this TLV apply to the entire node and shall be returned by a query directed at any port on
the node.

The data field shall be as specified in Table 41.

Table 41 ⎯CLOCK_DESCRIPTION management TLV data field
Bits

7 6 5 4 3 2 1 0
Octets TLV

data
offset

clockType 2 0
physicalLayerProtocol L 2
physicalAddressLength 2 2+L

physicalAddress S 4+L
protocolAddress N 4+L+S

manufacturerIdentity 3 4+L+S+
N

reserved 1 4+L+S+
N+3

productDescription P 4+L+S+
N+4

revisionData Q 4+L+S+
N+4+P

userDescription R 4+
L+S+N+
4+P+Q

profileIdentity 6 4+
L+S+N+
4+P+Q+

R
pad M 4+

L+S+N+
4+P+Q+

R+6

15.5.3.1.2.1 clockType (Boolean[16])

The value clockType shall indicate the type of PTP node as defined in Table 42. A TRUE value of a bit in
the clockType field indicates that the description applies to the node.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 141 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

NOTE—Several elements may be TRUE, for example, an ordinary clock combined with an end-to-end transparent
clock. This is a static value not part of the clock data sets of Clause 8.

Table 42 ⎯clockType specification

Array index (hex) Description
0 The node implements an ordinary clock
1 The node implements a boundary clock
2 The node implements a peer-to-peer transparent clock
3 The node implements an end-to-end transparent clock
4 The node implements a management node
5 – F Reserved

15.5.3.1.2.2 physicalLayerProtocol (PTPText)

The value of physicalLayerProtocol shall indicate the physical layer protocol defining the physicalAddress
member. This is a static value not part of the clock data sets of Clause 8.

The maximum number of symbols in this field shall be 32; see 5.3.9.

15.5.3.1.2.3 physicalAddressLength (UInteger16)

The value of physicalAddressLength is the number of octets in the physicalAddress field. The range shall
be 1 to 16 octets. This is a static value not part of the clock data sets of Clause 8.

15.5.3.1.2.4 physicalAddress (Octet[physicalAddressLength])

The value of physicalAddress shall be the physical address of the port indicated by the
targetPortIdentity.portNumber member of the field, for example, the MAC address for an IEEE 802.3 end
station. If no physical address exists for a specific network technology, the value shall be of zero length.

This is a static value not part of the clock data sets of Clause 8.

15.5.3.1.2.5 protocolAddress (PortAddress)

The value of protocolAddress shall be the protocol address of the port indicated by the
targetPortIdentity.portNumber member of the field. This is a static value (it can not be modified using the
protocol) and is not part of the clock data sets of Clause 8.

15.5.3.1.2.6 manufacturerIdentity (Octet[3])

The value of manufacturerIdentity shall be an OUI owned by the manufacturer of the node.

For example:
The OUI for Company X is ACDE48 (hex). The byte and bit representations of the manufacturerIdentity of
Company X are illustrated below.

OUI

addr+0
AC

addr+1
DE

addr+2
48

order
hex

10101100 11011110 01001000 bits

| | | | |
| | group address bit | |
| most significant byte least significant byte |
Most significant bit least significant bit

This is a static value not part of the clock data sets of Clause 8.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 142 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

15.5.3.1.2.7 productDescription (PTPText)

The productDescription field shall indicate, in order:

a) The name of the manufacturer of the node, manufacturerName, followed by a semicolon (;)

b) The model number of the node, modelNumber, followed by a semicolon(;)

c) An identifier of the instance of this mode, instanceIdentifier, such as the MAC address or the
serial number

The maximum number of symbols in the productDescription.textField field (see 5.3.9) shall be 64.

This is a static value, not part of the clock data sets of Clause 8.

The content and meaning of the manufacturerName, modelNumber, and the instanceIdentifier strings are
determined by the manufacturer.

15.5.3.1.2.8 revisionData (PTPText)

The value shall indicate the revisions for node hardware (HW), firmware (FW), and software (SW). This
information shall be semicolon (;) separated text fields in the order HW;FW;SW. Nonapplicable elements
shall be indicated by a text fields of zero length. This is a static value not part of the clock data sets of
Clause 8.

The maximum number of symbols in the revisionData.textField field (see 5.3.9) shall be 32.

15.5.3.1.2.9 userDescription (PTPText)

The userDescription field shall indicate, in order:

a) A user-defined name of the device, e.g., Sensor-1, followed by a semicolon (;)

b) A user-defined physical location of the device, e.g., Rack-2 Shelf-3

Either field may be absent, e.g., (;Rack-2 Shelf-3) or (Sensor-1). By default no text is required. This is a
configurable value not part of the clock data sets of Clause 8.

The maximum number of symbols in the userDescription.textField field (see 5.3.9) shall be 128.

15.5.3.1.2.10 profileIdentity (Octet[6])

The value of profileIdentity shall identify the PTP profile implemented by the port indicated by the
targetPortIdentity.portNumber member of the field.

The value of the profileIdentity shall be assigned by the creator of the profile as defined in 19.3.3.

This is a static value not part of the clock data sets of Clause 8.

For example:
Annex J.4.1 defines the profileIdentity of the “Default PTP profile for use with the peer delay mechanism”
as the 6-octet field 001B1900020016. The bit and byte representation of this profileIdentity are shown as
follows:

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 143 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

OUI profileIndex field
addr+0

00
addr+1
1B

addr+2
19

addr+3
00

addr+4
02

addr+5
00

order
hex

00000000 00011011 00011001 00000000 00000010 00000000 bits
 | | | | |
 | | group address bit | |
 | most significant byte least significant byte |
 Most significant bit least significant bit

15.5.3.1.2.11 pad (Octet[M])

The pad field shall be an octet array of length M, where M is either 1 or 0. If M is 1, all bits in the octet
shall be 0; see 15.5.2.2.

15.5.3.1.3 USER_DESCRIPTION

The data field shall be as specified in Table 43.

Table 43 ⎯USER_DESCRIPTION management TLV data field

Bits Octets TLV
data
offset

7 6 5 4 3 2 1 0
userDescription L 0

pad M L

15.5.3.1.3.1 userDescription (PTPText)

This TLV is used to configure the value of the user description returned by the CLOCK_DESCRIPTION
TLV.

The userDescription field shall indicate, in order:

a) A user-defined name of the device, e.g., Sensor-1, followed by a semicolon (;)

b) A user-defined physical location of the device, e.g., Rack-2 Shelf-3

Either field may be absent, e.g., (;Rack-2 Shelf-3) or (Sensor-1). No text is required.

The maximum number of symbols in the userDescription.textField field (see 5.3.9) shall be 128.

15.5.3.1.3.2 pad (Octet[M])

The pad field shall be an octet array of length M, where M is either 1 or 0. If M is 1, all bits in the octet
shall be 0; see 15.5.2.2.

15.5.3.1.4 SAVE_IN_NON_VOLATILE_STORAGE

The data field is of zero length. The receipt of this TLV shall cause the current values of the applicable
dynamic and configurable data set members to be copied into nonvolatile read−write memory as specified
in 8.1.3.5.

15.5.3.1.5 RESET_NON_VOLATILE_STORAGE

The data field is of zero length. The receipt of this TLV shall cause the contents of nonvolatile read−write
memory to be reset to the applicable dynamic or configurable data set initialization values as specified in
8.1.3.5.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 144 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

15.5.3.1.6 INITIALIZE

The data field shall be as specified in Table 44.

Table 44 ⎯INITIALIZE management TLV data field

Bits Octets TLV
data
offset

7 6 5 4 3 2 1 0
initializationKey 2 0

15.5.3.1.6.1 initializationKey (Enumeration16)

The value of the initializationKey field of this message shall be as defined in Table 45.

Table 45 ⎯INITIALIZATION_KEY enumeration

INITIALIZATION_KEY Value (hex) Definition
INITIALIZE_EVENT 0000 In an ordinary and boundary clock, the receipt of an INITIALIZE

message with this key shall cause the INITIALIZE event (see 9.2.6.3)
to occur. In other nodes, this shall cause any implementation-specific
initialization procedures to execute.

Reserved 0001–7FFF Reserved. No action shall occur as a result of receiving an
INITIALIZE message with this initializationKey.

Implementation-specific 8000–FFFF The result is implementation-specific.

15.5.3.1.7 FAULT_LOG

The data field of the FAULT_LOG TLV shall be as specified in Table 47. The FAULT_LOG TLV returns
a list of fault records. Each fault record is specified by the FaultRecord structure; see 5.3.10.

The value of FaultRecord.faultTime shall indicate the time the fault occurred as indicated by the local clock
of the node. A value of all 1’s for the fields in the timestamp shall indicate that the occurrence time is not
available.

The value of the FaultRecord.severityCode member shall be selected from the enumeration in Table 46.

Table 46 ⎯Fault log severityCode enumeration

Value (hex) FaultRecord.SeverityCode description
00 Emergency: system is unusable
01 Alert: immediate action needed
02 Critical: critical conditions
03 Error: error conditions
04 Warning: warning conditions
05 Notice: normal but significant condition
06 Informational: informational messages
07 Debug: debug-level messages

08–FF Reserved

The values of FaultRecord.faultName, FaultRecord.faultValue, and FaultRecord.faultDescription members
are implementation-specific and may be of zero length; i.e., the lengthField member of the PTPText struct
is 0.

The FaultRecord.faultName shall be a name for the fault unique within the implementation.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 145 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

The FaultRecord.faultValue shall be any value that may be associated with the fault that is necessary for
fault diagnosis.

The FaultRecord.faultDescription shall be any supplementary description of the fault.

The size of the fault log is implementation-specific. The fault log is maintained by the clock until a
FAULT_LOG_RESET TLV is received (see 15.5.3.1.8).

Table 47 ⎯FAULT_LOG management TLV data field

Bits Octets TLV
Data

Offset
7 6 5 4 3 2 1 0

 numberOfFaultRecords 2 0
faultRecord N 2

pad M 2+N

15.5.3.1.7.1 numberOfFaultRecords (UInteger16)

The value of the numberOfFaultRecords field shall be the number of fault records to be returned.

15.5.3.1.7.2 faultRecord (FaultRecord[numberOfFaultRecords])

The value of the faultRecord field shall be an array of fault records.

15.5.3.1.7.3 pad (Octet[M])

The pad field shall be an octet array of length M, where M is either 1 or 0. If M is 1, all bits in the octet
shall be 0; see 15.5.2.2.

15.5.3.1.8 FAULT_LOG_RESET

The TLV carries no data.

The FAULT_LOG_RESET command shall cause the FAULT_LOG to be cleared.

15.5.3.2 TLV data fields applicable to ordinary and boundary clocks

15.5.3.2.1 TIME

This TLV may be used to set the time. Time originates in the grandmaster clock and is distributed by PTP
to other clocks in the domain.

The time in the grandmaster clock is normally determined by interacting with a primary reference, e.g.,
GPS, by means outside the scope of this standard. When this TLV is sent to a node other than the
grandmaster with an actionField of SET, the node should return a management error status TLV. When the
actionField is GET, the node should return the current value of time.

NOTE—If the time is set in a clock other than the grandmaster, it will be overwritten upon receipt of the next Sync
message and will therefore exist only as a transient.

When sent to a settable grandmaster clock, the normal rules for GET and SET apply; see 15.4.1.6.

The data field shall be as specified in Table 48.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 146 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table 48 ⎯TIME management TLV data field

Bits
7 6 5 4 3 2 1 0

Octets TLV
data
offset

currentTime 10 0

15.5.3.2.1.1 currentTime (Timestamp)

The value of currentTime is the value to be set in the target clock.

NOTE—Since this TLV is transmitted over the network, the accuracy to which the time can be set is limited by
network fluctuations. For this reason, no provision is made for setting the time to a precision of fractions of a
nanosecond. In most cases, the actual precision is on the order of milliseconds or worse depending on the source of the
information used in populating the data field and on the characteristics of the network.

15.5.3.2.2 CLOCK_ACCURACY

This TLV may be used to set the accuracy of the target clock.

NOTE— The accuracy and the time in the grandmaster clock is normally determined by interacting with a primary or
application-specific time source, e.g., GPS, by means outside the scope of this standard. If the time is set in the
grandmaster by means of the TIME TLV, then the accuracy should also be set. Since the clockAccuracy attribute is
considered in the operation of the BMC algorithm, the setting of the clockAccuracy attribute in any clock by means of
this TLV can result in a change of grandmaster the next time the BMC algorithm is performed.

When sent to a settable grandmaster clock, the normal rules for GET and SET apply; see 15.4.1.6.

The data field shall be as specified in Table 49.

Table 49 ⎯CLOCK_ACCURACY management TLV data field

Bits
7 6 5 4 3 2 1 0

Octets TLV
data
offset

clockAccuracy 1 0
reserved 1 1

15.5.3.2.2.1 clockAccuracy (Enumeration8)

The value of clockAccuracy shall be the value of the defaultDS.clockQuality.clockAccuracy member of the
data set. The value shall be selected from the clockAccuracy enumeration; see Table 6.

15.5.3.2.3 ENABLE_PORT

The TLV carries no data.

In an ordinary and boundary clock, the receipt of an ENABLE_PORT message shall cause the
DESIGNATED_ENABLED event, see 9.2.6.4, to occur.

15.5.3.2.4 DISABLE_PORT

The TLV carries no data.

In an ordinary and boundary clock, the receipt of an DISABLE_PORT message shall cause the
DESIGNATED_DISABLED event (see 9.2.6.5) to occur.

15.5.3.3 TLV data fields applicable to the defaultDS data set of ordinary and boundary clocks

15.5.3.3.1 DEFAULT_DATA_SET

The data field shall be as specified in Table 50.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 147 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table 50 ⎯DEFAULT_DATA_SET management TLV data field

Bits
7 6 5 4 3 2 1 0

Octets TLV
data
offset

0 0 0 0 0 0 SO TSC 1 0
reserved 1 1

numberPorts 2 2
priority1 1 4

clockQuality 4 5
priority2 1 9

clockIdentity 8 10
domainNumber 1 18

reserved 1 19

15.5.3.3.1.1 TSC (Boolean)

The value of TSC shall be the value of the defaultDS.twoStepFlag member of the data set.

15.5.3.3.1.2 SO (Boolean)

The value of SO shall be the value of the defaultDS.slaveOnly member of the data set.

15.5.3.3.1.3 numberPorts (UInteger16)

The value of numberPorts shall be the value of the defaultDS.numberPorts member of the data set.

15.5.3.3.1.4 priority1 (UInteger8)

The value of priority1 shall be the value of the defaultDS.priority1 member of the data set.

15.5.3.3.1.5 clockQuality (ClockQuality)

The value of clockQuality shall be the value of the defaultDS.clockQuality member of the data set.

15.5.3.3.1.6 priority2 (UInteger8)

The value of priority2 shall be the value of the defaultDS.priority2 member of the data set.

15.5.3.3.1.7 clockIdentity (ClockIdentity)

The value of clockIdentity shall be the value of the defaultDS.clockIdentity member of the data set.

15.5.3.3.1.8 domainNumber (UInteger8)

The value of domainNumber shall be the value of the defaultDS.domainNumber member of the data set.

15.5.3.3.2 PRIORITY1

The data field shall be as specified in Table 51.

Table 51 ⎯PRIORITY1 management TLV data field

Bits
7 6 5 4 3 2 1 0

Octets TLV
data
offset

priority1 1 0
reserved 1 1

15.5.3.3.2.1 priority1 (UInteger8)

The value of priority1 shall be the value of the defaultDS.priority1 member of the data set.

15.5.3.3.3 PRIORITY2

The data field shall be as specified in Table 52.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 148 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table 52 ⎯PRIORITY2 management TLV data field

Bits
7 6 5 4 3 2 1 0

Octets TLV
data
offset

priority2 1 0
reserved 1 1

15.5.3.3.3.1 priority2 (UInteger8)

The value of priority2 shall be the value of the defaultDS.priority2 member of the data set.

15.5.3.3.4 DOMAIN

The data field shall be as specified in Table 53.

Table 53 ⎯DOMAIN management TLV data field

Bits
7 6 5 4 3 2 1 0

Octets TLV
data
offset

domainNumber 1 0
reserved 1 1

15.5.3.3.4.1 domainNumber (UInteger8)

The value of domainNumber shall be the value of the defaultDS.domainNumber member of the data set.

15.5.3.3.5 SLAVE_ONLY

The data field shall be as specified in Table 54.

Table 54 ⎯SLAVE_ONLY management TLV data field

Bits
7 6 5 4 3 2 1 0

Octets TLV
data
offset

0 0 0 0 0 0 0 SO 1 0
reserved 1 1

15.5.3.3.5.1 SO (Boolean)

The value of SO shall be the value of the defaultDS.slaveOnly member of the data set.

15.5.3.4 TLV data fields applicable to the currentDS data set of ordinary and boundary clocks

15.5.3.4.1 CURRENT_DATA_SET

The data field shall be as specified in Table 55.

Table 55 ⎯CURRENT_DATA_SET management TLV data field

Bits
7 6 5 4 3 2 1 0

Octets TLV
data
offset

stepsRemoved 2 0
offsetFromMaster 8 2
meanPathDelay 8 10

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 149 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

15.5.3.4.1.1 stepsRemoved (UInteger16)

The value of stepsRemoved shall be the value of the currentDS.stepsRemoved member of the data set.

15.5.3.4.1.2 offsetFromMaster (TimeInterval)

The value of offsetFromMaster shall be the value of the currentDS.offsetFromMaster member of the data
set.

15.5.3.4.1.3 meanPathDelay (TimeInterval)

The value of meanPathDelay shall be the value of the currentDS.meanPathDelay member of the data set.

15.5.3.5 TLV data fields applicable to the parentDS data set of ordinary and boundary clocks

15.5.3.5.1 PARENT_DATA_SET

The data field shall be as specified in Table 56.

Table 56 ⎯PARENT_DATA_SET management TLV data field

Bits
7 6 5 4 3 2 1 0

Octets TLV
data
offset

parentPortIdentity 10 0
0 0 0 0 0 0 0 PS 1 10

reserved 1 11
observedParentOffsetScaledLogVariance 2 12
observedParentClockPhaseChangeRate 4 14

grandmasterPriority1 1 18
grandmasterClockQuality 4 19

 grandmasterPriority2 1 23
grandmasterIdentity 8 24

15.5.3.5.1.1 parentPortIdentity (PortIdentity)

The value of parentPortIdentity shall be the value of the parentDS.parentPortIdentity member of the data
set.

15.5.3.5.1.2 PS (Boolean)

The value of PS shall be the value of the parentDS.parentStats member of the data set.

15.5.3.5.1.3 observedParentOffsetScaledLogVariance (UInteger16)

The value of observedParentOffsetScaledLogVariance shall be the value of the
parentDS.observedParentOffsetScaledLogVariance member of the data set.

15.5.3.5.1.4 observedParentClockPhaseChangeRate (Integer32)

The value of observedParentClockPhaseChangeRate shall be the value of the
parentDS.observedParentClockPhaseChangeRate member of the data set.

15.5.3.5.1.5 grandmasterPriority1 (UInteger8)

The value of grandmasterPriority1 shall be the value of the parentDS.grandmasterPriority1 member of the
data set.

15.5.3.5.1.6 grandmasterIdentity (ClockIdentity)

The value of grandmasterIdentity shall be the value of the parentDS.grandmasterIdentity member of the
data set.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 150 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

15.5.3.5.1.7 grandmasterPriority2 (UInteger8)

The value of grandmasterPriority2 shall be the value of the parentDS.grandmasterPriority2 member of the
data set.

15.5.3.5.1.8 grandmasterClockQuality (ClockQuality)

The value of grandmasterClockQuality shall be the value of the parentDS.grandmasterClockQuality
member of the data set.

15.5.3.6 TLV data fields applicable to the timePropertiesDS data set of ordinary and boundary
clocks

15.5.3.6.1 TIME_PROPERTIES_DATA_SET

The data field shall be as specified in Table 57.

Table 57 ⎯TIME_PROPERTIES_DATA_SET management TLV data field

Bits
7 6 5 4 3 2 1 0

Octets TLV
data
offset

currentUtcOffset 2 0
0 0 FTRA TTRA PTP UTCV LI-59 LI-61 1 2

timeSource 1 3

15.5.3.6.1.1 currentUtcOffset (Integer16)

The value of currentUtcOffset shall be the value of the timePropertiesDS.currentUtcOffset member of the
data set.

15.5.3.6.1.2 LI-61 (Boolean)

The value of LI-61 shall be the value of the timePropertiesDS.leap61 member of the data set.

15.5.3.6.1.3 LI-59 (Boolean)

The value of LI-59 shall be the value of the timePropertiesDS.leap59 member of the data set.

15.5.3.6.1.4 UTCV (Boolean)

The value of UTCV shall be the value of the timePropertiesDS.currentUtcOffsetValid member of the data
set.

15.5.3.6.1.5 PTP (Boolean)

The value of PTP shall be the value of the timePropertiesDS.ptpTimescale member of the data set.

15.5.3.6.1.6 TTRA (Boolean)

The value of TTRA shall be the value of the timePropertiesDS.timeTraceable member of the data set.

15.5.3.6.1.7 FTRA (Boolean)

The value of FTRA shall be the value of the timePropertiesDS.frequencyTraceable member of the data set.

15.5.3.6.1.8 timeSource (Enumeration8)

The value of timeSource shall be the value of the timePropertiesDS.timeSource member of the data set.

15.5.3.6.2 UTC_PROPERTIES

The data field shall be as specified in Table 58.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 151 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table 58 ⎯UTC_PROPERTIES management TLV data field

Bits
7 6 5 4 3 2 1 0

Octets TLV
data
offset

currentUtcOffset 2 0
0 0 0 0 0 UTCV LI-59 LI-61 1 2

reserved 1 3

15.5.3.6.2.1 currentUtcOffset (Integer16)

The value of currentUtcOffset shall be the value of the timePropertiesDS.currentUtcOffset member of the
data set.

15.5.3.6.2.2 LI-61 (Boolean)

The value of LI-61 shall be the value of the timePropertiesDS.leap61 member of the data set.

15.5.3.6.2.3 LI-59 (Boolean)

The value of LI-59 shall be the value of the timePropertiesDS.leap59 member of the data set.

15.5.3.6.2.4 UTCV (Boolean)

The value of UTCV shall be the value of the timePropertiesDS.currentUtcOffsetValid member of the data
set.

15.5.3.6.3 TRACEABILITY_PROPERTIES

The data field shall be as specified in Table 59

Table 59 ⎯TRACEABILITY_PROPERTIES management TLV data field

Bits
7 6 5 4 3 2 1 0

Octets TLV
data
offset

0 0 FTRA TTRA 0 0 0 0 1 0
reserved 1 1

15.5.3.6.3.1 TTRA (Boolean)

The value of TTRA shall be the value of the timePropertiesDS.timeTraceable member of the data set.

15.5.3.6.3.2 FTRA (Boolean)

The value of FTRA shall be the value of the timePropertiesDS.frequencyTraceable member of the data set.

15.5.3.6.4 TIMESCALE_PROPERTIES

The data field shall be as specified in Table 60.

Table 60 ⎯TIMESCALE_PROPERTIES management TLV data field

Bits
7 6 5 4 3 2 1 0

Octets TLV
data
offset

0 0 0 0 PTP 0 0 0 1 0
timeSource 1 1

15.5.3.6.4.1 PTP (Boolean)

The value of PTP shall be the value of the timePropertiesDS.ptpTimescale member of the data set.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 152 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

15.5.3.6.4.2 timeSource (Enumeration8)

The value of timeSource shall be the value of the timePropertiesDS.timeSource member of the data set.

15.5.3.7 TLV data fields applicable to the portDS data set of ordinary and boundary clocks

15.5.3.7.1 PORT_DATA_SET

The data field shall be as specified in Table 61.

Table 61 ⎯PORT_DATA_SET management TLV data field

Bits
7 6 5 4 3 2 1 0

Octets TLV
data
offset

portIdentity 10 0
portState 1 10

logMinDelayReqInterval 1 11
peerMeanPathDelay 8 12
logAnnounceInterval 1 20

announceReceiptTimeout 1 21
logSyncInterval 1 22
delayMechanism 1 23

logMinPdelayReqInterval 1 24
reserved versionNumber 1 25

15.5.3.7.1.1 portIdentity (PortIdentity)

The value of portIdentity shall be the value of the portDS.portIdentity member of the data set.

15.5.3.7.1.2 portState (Enumeration8)

The value of portState shall be the value of the portDS.portState member of the data set.

15.5.3.7.1.3 logMinDelayReqInterval (Integer8)

The value of logMinDelayReqInterval shall be the value of the portDS.logMinDelayReqInterval member of
the data set.

15.5.3.7.1.4 peerMeanPathDelay (TimeInterval)

The value of peerMeanPathDelay shall be the value of the portDS.peerMeanPathDelay member of the data
set.

15.5.3.7.1.5 logAnnounceInterval (Integer8)

The value of logAnnounceInterval shall be the value of the portDS.logAnnounceInterval member of the
data set.

15.5.3.7.1.6 announceReceiptTimeout (UInteger8)

The value of announceReceiptTimeout shall be the value of the portDS.announceReceiptTimeout member
of the data set.

15.5.3.7.1.7 logSyncInterval (Integer8)

The value of logSyncInterval shall be the value of the portDS.logSyncInterval member of the data set.

15.5.3.7.1.8 delayMechanism (Enumeration8)

The value of delayMechanism shall be the value of the value of the portDS.delayMechanism member of the
data set.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 153 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

15.5.3.7.1.9 logMinPdelayReqInterval (Integer8)

The value of logMinPdelayReqInterval shall be the value of the value of the
portDS.logMinPdelayReqInterval member of the data set.

15.5.3.7.1.10 versionNumber (UInteger4)

The value of versionNumber shall be the value of the portDS.versionNumber member of the data set.

15.5.3.7.2 LOG_ANNOUNCE_INTERVAL

The data field shall be as specified in Table 62.

Table 62 ⎯LOG_ANNOUNCE_INTERVAL management TLV data field

Bits
7 6 5 4 3 2 1 0

Octets TLV
data
offset

logAnnounceInterval 1 0
reserved 1 1

15.5.3.7.2.1 logAnnounceInterval (Integer8)

The value of logAnnounceInterval shall be the value of the portDS.logAnnounceInterval member of the
data set.

15.5.3.7.3 ANNOUNCE_RECEIPT_TIMEOUT

The data field shall be as specified in Table 63.

Table 63 ⎯ANNOUNCE_RECEIPT_TIMEOUT management TLV data field

Bits
7 6 5 4 3 2 1 0

Octets TLV
data
offset

announceReceiptTimeout 1 0
reserved 1 1

15.5.3.7.3.1 announceReceiptTimeout (UInteger8)

The value of announceReceiptTimeout shall be the value of the portDS.announceReceiptTimeout member
of the data set.

15.5.3.7.4 LOG_SYNC_INTERVAL

The data field shall be as specified in Table 64.

Table 64 ⎯LOG_SYNC_INTERVAL management TLV data field

Bits
7 6 5 4 3 2 1 0

Octets TLV
data
offset

logSyncInterval 1 0
reserved 1 1

15.5.3.7.4.1 logSyncInterval (Integer8)

The value of logSyncInterval shall be the value of the portDS.logSyncInterval member of the data set.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 154 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

15.5.3.7.5 DELAY_MECHANISM

The value of the DELAY_MECHANISM data field shall be the value of portDS.delayMechanism as
specified in Table 65.

Table 65 ⎯DELAY_MECHANISM management TLV data field

Bits
7 6 5 4 3 2 1 0

Octets TLV
data
offset

delayMechanism 1 0
reserved 1 1

15.5.3.7.5.1 delayMechanism (Enumeration8)

The value of delayMechanism shall be the value of the portDS.delayMechanism member of the data set for
ordinary or boundary clocks. For transparent clocks, the value shall be the value of the
transparentClockDefaultDS.delayMechanism member of the transparentClockDefaultDS data set if
implemented; otherwise, the value shall be obtained from the implementation-specific storage of this value.

15.5.3.7.6 LOG_MIN_PDELAY_REQ_INTERVAL

The data field shall be as specified in Table 66.

Table 66 ⎯LOG_MIN_PDELAY_REQ_INTERVAL management TLV data field

Bits
7 6 5 4 3 2 1 0

Octets TLV
data
offset

logMinPdelayReqInterval 1 0
reserved 1 1

15.5.3.7.6.1 logMinPdelayReqInterval (Integer8)

The value of logMinPdelayReqInterval shall be the value of the portDS.logMinPdelayReqInterval member
of the data set.

15.5.3.7.7 VERSION_NUMBER

The data field shall be as specified in Table 67; see 7.5.5.

Table 67 ⎯VERSION_NUMBER management TLV data field

Bits
7 6 5 4 3 2 1 0

Octets TLV
data
offset

reserved versionNumber 1 0
reserved 1 1

15.5.3.7.7.1 versionNumber (UInteger4)

The value of versionNumber shall be the value of the portDS.versionNumber member of the data set.

15.5.3.8 TLV data fields applicable to the defaultDS data set of transparent clocks

15.5.3.8.1 TRANSPARENT_CLOCK_DEFAULT_DATA_SET

The data field shall be as specified in Table 68.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 155 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table 68 ⎯TRANSPARENT_CLOCK_DEFAULT_DATA_SET management TLV data field

Bits
7 6 5 4 3 2 1 0

Octets TLV
data
offset

clockIdentity 8 0
numberPorts 2 8

delayMechanism 1 10
primaryDomain 1 11

15.5.3.8.1.1 clockIdentity (ClockIdentity)

The value of clockIdentity shall be the value of the defaultDS.clockIdentity member of the data set.

15.5.3.8.1.2 numberPorts (UInteger16)

The value of numberPorts shall be the value of the defaultDS.numberPorts member of the data set.

15.5.3.8.1.3 delayMechanism (Enumeration8)

The value of delayMechanism shall be the value of the defaultDS.delayMechanism member of the data set.

15.5.3.8.1.4 primaryDomain (UInteger8)

The value of primaryDomain shall be the value of the defaultDS.primaryDomain member of the data set.

15.5.3.9 DELAY_MECHANISM

The same TLV applicable to the portDS data set of ordinary or boundary clocks shall be used; see
15.5.3.7.5.

15.5.3.9.1 PRIMARY_DOMAIN

The data field shall be as specified in Table 69.

Table 69 ⎯PRIMARY_DOMAIN management TLV data field

Bits
7 6 5 4 3 2 1 0

Octets TLV
data
offset

primaryDomain 1 0
reserved 1 1

15.5.3.9.1.1 primaryDomain (UInteger8)

The value of primaryDomain shall be the value of the transparentClockDefaultDS.primaryDomain member
of the transparentClockDefaultDS data set if implemented; otherwise, the value shall be obtained from the
implementation-specific storage of this value.

15.5.3.10 TLV data fields applicable to the transparentClockPortDS data set of transparent clocks

15.5.3.10.1 TRANSPARENT_CLOCK_PORT_DATA_SET

The data field shall be as specified in Table 70.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 156 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table 70 ⎯TRANSPARENT_CLOCK_PORT_DATA_SET management TLV data field

Bits
7 6 5 4 3 2 1 0

Octets TLV
data
offset

portIdentity 10 0
0 0 0 0 0 0 0 FLT 1 10

logMinPdelayReqInterval 1 11
peerMeanPathDelay 8 12

15.5.3.10.1.1 portIdentity (PortIdentity)

The value of portIdentity shall be the value of the transparentClockPortDS.portIdentity member of the data
set.

15.5.3.10.1.2 FLT (Boolean)

The value of FLT shall be the value of the transparentClockPortDS.faultyFlag member of the data set.

15.5.3.10.1.3 logMinPdelayReqInterval (Integer8)

The value of logMinPdelayReqInterval shall be the value of the transparentClockPortDS.logMinPdelayReqInterval
member of the data set.

15.5.3.10.1.4 peerMeanPathDelay (TimeInterval)

The value of peerMeanPathDelay shall be the value of the transparentClockPortDS.peerMeanPathDelay
member of the data set.

15.5.3.10.2 LOG_MIN_PDELAY_REQ_INTERVAL

The same TLV applicable to the portDS data set of ordinary or boundary clocks shall be used; see
15.5.3.7.6.

15.5.4 MANAGEMENT_ERROR_STATUS TLV

15.5.4.1.1 General

This TLV is returned in either response or acknowledge management messages; see 15.4.1.6. The
MANAGEMENT_ERROR_STATUS TLV format shall be as specified in Table 71.

Table 71 ⎯MANAGEMENT_ERROR_STATUS TLV format

Bits
7 6 5 4 3 2 1 0

Octets TLV
Offset

tlvType 2 0
lengthField 2 2

managementErrorId 2 4
managementId 2 6

reserved 4 8
displayData N 12

pad M 12+N

15.5.4.1.2 tlvType

The value of tlvType shall be MANAGEMENT_ERROR_STATUS.

15.5.4.1.3 lengthField

The lengthField shall be 8 + N + M, where N is the length of the displayData field and M is the length of
the pad field.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 157 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

15.5.4.1.4 managementErrorId (Enumeration16)

The value of managementErrorId shall be taken from the enumeration defined in Table 72.

Table 72 ⎯managementErrorId enumeration

managementErrorId Specification Value (hex)
Reserved — 0000
RESPONSE_TOO_BIG The requested operation could not fit in a single response message. 0001
NO_SUCH_ID The managementId is not recognized. 0002
WRONG_LENGTH The managementId was identified but the length of the data was wrong. 0003
WRONG_VALUE The managementId and length were correct but one or more values were

wrong.
0004

NOT_SETABLE Some of the variables in the set command were not updated because they
are not configurable.

0005

NOT_SUPPORTED The requested operation is not supported in this node. 0006
Reserved 0007–BFFF
Implementation-specific This range is to be used for implementation-specific errors. C000–DFFF
PTP profile defined This range is to be assigned by an alternate PTP profile. E000–FFFD
GENERAL_ERROR An error occurred that is not covered by other managementErrorId

values.
FFFE

Reserved — FFFF

15.5.4.1.5 managementId (Enumeration16)

The values of the managementId field are defined in Table 40. The managementId field shall contain the
managementId corresponding to the managementId of the management TLV that was in error.

15.5.4.1.6 displayData (PTPText)

This is an optional text field to provide a human-readable explanation of the error.

The maximum number of symbols in the displayData.textField field (see 5.3.9) shall be 50.

15.5.4.1.7 pad (Octet[M])

The pad field shall be an octet array of length M, where M is either 1 or 0. If M is 1, all bits in the octet
shall be 0; see 15.5.2.2.

16. General optional features

16.1 Unicast message negotiation (optional)

16.1.1 General unicast negotiation port operation specifications

A port (the requestor) may request, by transmitting a REQUEST_UNICAST_TRANSMISSION TLV
entity, that another port (the grantor) transmit unicast Announce, Sync, Delay_Resp, or Pdelay_Resp
messages.

A request for unicast transmissions may be made, granted, acknowledged, and canceled irrespective of PTP
port state, except that these operations shall not occur in any port of an ordinary or boundary clock in the
INITIALIZING, FAULTY, or DISABLED states or in any port of a transparent clock that is in a fault
condition.

A port that receives a REQUEST_UNICAST_TRANSMISSION TLV entity shall respond
with a GRANT_UNICAST_TRANSMISSION TLV entity. The transmitted
GRANT_UNICAST_TRANSMISSION TLV entity grants or denies the request.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 158 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

A port to which a grant has been made (grantee) may inform the grantor that it no longer needs the granted
service. It does this by transmitting a CANCEL_UNICAST_TRANSMISSION TLV entity. A grantor
receiving a CANCEL_UNICAST_TRANSMISSION TLV shall always respond with an
ACKNOWLEDGE_CANCEL_UNICAST_TRANSMISSION TLV and may immediately cease to provide
the indicated service.

A grantor may inform the grantee that it is no longer able to provide the granted service. It does this by
transmitting a CANCEL_UNICAST_TRANSMISSION TLV entity.

A grantee receiving a CANCEL_UNICAST_TRANSMISSION TLV shall always respond with an
ACKNOWLEDGE_CANCEL_UNICAST_TRANSMISSION TLV and should immediately cease to use
the indicated service. The grantor should continue to provide the granted service until either an
ACKNOWLEDGE_CANCEL_UNICAST_TRANSMISSION TLV has been received or an
implementation-specific number of CANCEL_UNICAST_TRANSMISSION TLVs have been transmitted.

When the grant is of Announce or Sync messages, the grantor shall transmit the messages with a mean
inter-message period approximately equal to the granted inter-message period. Unless either the grantor or
grantee cancels the grant, the transmission shall continue for at least the duration of the grant and start at
the time of the transmission of the grant message.

When the grant is of Delay_Resp messages and Delay_Req messages are received from the grantee with a
mean inter-message period no smaller than the granted inter-message period, the grantor shall respond to
each received Delay_Req message with a Delay_Resp message. Unless either the grantor or the grantee
cancels the grant, this operation shall continue for at least the duration of the grant and start at the time of
the transmission of the grant message. If the mean period between reception of Delay_Req messages is less
than the granted inter message period, the grantor may ignore the excess Delay_Req messages.

In transmitting messages, the inter-message period shall, with 90% confidence, be within ±30% of the
inter-message period granted in the grant.

For each message type, only one grant is active at any time. The reception of a grant message granting
transmissions of a particular messageId cancels any previous agreement made with the grantor.

If a unicast contract is negotiated for a particular message type between two ports, then any multicast
messages of this type between the two ports should be ignored.

When a unicast contract is negotiated for transmitting Delay_Resp messages, then the Delay_Req messages
associated with the Delay_Resp messages shall also be unicast.

16.1.2 Unicast negotiation enable

The unicast negotiation mechanism can be enabled or disabled by means of the management message
UNICAST_NEGOTIATION_ENABLE. By default, this mechanism shall be disabled unless otherwise
specified in a PTP profile.

If disabled the node shall respond to a UNICAST_NEGOTIATION_ENABLE TLV entity. A disabled
node shall not:

⎯ Respond to a REQUEST_UNICAST_TRANSMISSION TLV entity

⎯ Transmit a REQUEST_UNICAST_TRANSMISSION TLV entity

⎯ Transmit a GRANT_UNICAST_TRANSMISSION TLV entity

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 159 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

16.1.3 Granting port operations

If the requestor issues a new transmission request before the current agreement expires, the grantor should,
if resources permit, respond to that request with a grant that is at least as generous as the unexpired portion
of the previous grant.

If the granting port considers the combination of inter-message period and duration to be unreasonable, the
port should reduce the duration of its grant in preference to reducing the rate.

16.1.4 Unicast TLVs

16.1.4.1 REQUEST_UNICAST_TRANSMISSION TLV specification

The REQUEST_UNICAST_TRANSMISSION TLV format shall be as specified in Table 73.

Table 73 ⎯REQUEST_UNICAST_TRANSMISSION TLV format

Bits
7 6 5 4 3 2 1 0

Octets TLV
offset

tlvType 2 0
lengthField 2 2

messageType reserved 1 4
logInterMessagePeriod 1 5

durationField 4 6

16.1.4.1.1 tlvType

The value of tlvType shall be REQUEST_UNICAST_TRANSMISSION.

16.1.4.1.2 lengthField

The value of the lengthField is 6.

16.1.4.1.3 messageType (Enumeration4)

The value of messageType shall indicate the message type for the unicast message transmission requested.
The coding of the enumeration is identical to that used in the messageType field of message headers; see
13.3.2.2. Requests for unicast messages other than Announce, Sync, Delay_Resp, or Pdelay_Resp
messages shall always be denied. If unicast transmission is granted for Sync or Pdelay_Resp messages by a
two-step clock, then unicast transmission shall also be used for the corresponding Follow_Up and
Pdelay_Resp_Follow_Up messages.

16.1.4.1.4 logInterMessagePeriod (Integer8)

The value of logInterMessagePeriod shall be the logarithm, to base 2, of the requested mean period, in
seconds, between the requested unicast messages.

16.1.4.1.5 durationField (UInteger32)

The value of durationField shall be the requested number of seconds for which the requested messages
shall be transmitted.

16.1.4.2 GRANT_UNICAST_TRANSMISSION TLV specification

The GRANT_UNICAST_TRANSMISSION TLV format shall be as specified in Table 74.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 160 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table 74 ⎯GRANT_UNICAST_TRANSMISSION TLV format

Bits
7 6 5 4 3 2 1 0

Octets TLV
offset

tlvType 2 0
lengthField 2 2

messageType reserved 1 4
logInterMessagePeriod 1 5

durationField 4 6
reserved 1 10

0 0 0 0 0 0 0 R 1 11

16.1.4.2.1 tlvType

The value of tlvType shall be GRANT_UNICAST_TRANSMISSION.

16.1.4.2.2 lengthField

The value of the lengthField is 8.

16.1.4.2.3 messageType (Enumeration4)

The value of messageType shall indicate the message type for the unicast message transmission granted.
The coding of the enumeration is identical to that used in the messageType field of message headers; see
13.3.2.2. The value shall be identical to the messageType field of the
REQUEST_UNICAST_TRANSMISSION TLV request.

16.1.4.2.4 logInterMessagePeriod (Integer8)

The value of logInterMessagePeriod shall be the logarithm, to base 2, of the granted mean period, in
seconds, between the requested unicast messages.

16.1.4.2.5 durationField (UInteger32)

The value of durationField shall be the number of seconds for which the messages shall be transmitted. A
value of zero shall indicate that the request has been denied.

16.1.4.2.6 R (Renewal Invited) (Boolean)

The value of R shall be TRUE when the granting port considers that the grant is likely to be renewed when
the requesting port repeats its request.

16.1.4.3 CANCEL_UNICAST_TRANSMISSION TLV specification

The CANCEL_UNICAST_TRANSMISSION TLV format shall be as specified in Table 75.

Table 75 ⎯CANCEL_UNICAST_TRANSMISSION TLV format

Bits
7 6 5 4 3 2 1 0

Octets TLV
offset

tlvType 2 0
lengthField 2 2

messageType reserved 1 4
reserved 1 5

16.1.4.3.1 tlvType

The value of tlvType shall be CANCEL_UNICAST_TRANSMISSION.

16.1.4.3.2 lengthField

The value of the lengthField is 2.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 161 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

16.1.4.3.3 messageType (Enumeration4)

The value of messageType shall indicate the type of unicast message transmission to be canceled. The
coding of the enumeration is identical to that used in the messageType field of message headers; see
13.3.2.2.

16.1.4.4 ACKNOWLEDGE_CANCEL_UNICAST_TRANSMISSION TLV specification

The ACKNOWLEDGE_CANCEL_UNICAST_TRANSMISSION TLV format shall be as specified in
Table 76.

Table 76 ⎯ACKNOWLEDGE_CANCEL_UNICAST_TRANSMISSION TLV format

Bits
7 6 5 4 3 2 1 0

Octets TLV
offset

tlvType 2 0
lengthField 2 2

messageType reserved 1 4
reserved 1 5

16.1.4.4.1 tlvType

The value of tlvType shall be ACKNOWLEDGE_CANCEL_UNICAST_TRANSMISSION.

16.1.4.4.2 lengthField

The value of the lengthField is 2.

16.1.4.4.3 messageType (Enumeration4)

The value of messageType shall indicate the type of unicast message cancellation transmission being
acknowledged. The value shall be identical to the messageType field in the
CANCEL_UNICAST_TRANSMISSION TLV to which this message is the acknowledgment.

16.1.4.5 UNICAST_NEGOTIATION_ENABLE

This message may be used to enable or disable the unicast negotiation mechanism.

A node with the unicast negotiation mechanism enabled, upon receiving a
UNICAST_NEGOTIATION_ENABLE TLV with the EN field value FALSE, shall cancel all negotiated
grants using the CANCEL_UNICAST_TRANSMISSION TLV as defined in 16.1.4.3. Until a
CANCEL_UNICAST_TRANSMISSION TLV has been transmitted to all grantees, the node shall report
that the negotiation mechanism is enabled in the response to any UNICAST_NEGOTIATION_ENABLE
TLV.

The UNICAST_NEGOTIATION_ENABLE management TLV format shall be as specified in Table 77.

Table 77 ⎯UNICAST_NEGOTIATION_ENABLE management TLV data field

Bits
7 6 5 4 3 2 1 0

Octets TLV
data
offset

0 0 0 0 0 0 0 EN 1 0
reserved 1 1

16.1.4.5.1 EN (Boolean)

A value of EN of TRUE shall indicate that the unicast transmission mechanism is operational; otherwise, it
indicates that the mechanism is not operational.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 162 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

16.2 Path trace (optional)

16.2.1 General

Subclause 16.2 specifies a mechanism, using a TLV, for tracing the route of a PTP Announce message
through the timing system. It is an optional mechanism that may be implemented in boundary clocks.

Upon receipt, a boundary clock scans the pathSequence member of the TLV, to see whether its own
clockIdentity is present, which would indicate that a loop is present. The boundary clock appends its
clockIdentity to the tail of the pathSequence member of the TLV, and it appends the TLV to outgoing
Announce messages.

One of the principal uses of this mechanism is to detect Announce messages endlessly circulating in loops
of boundary clocks, so-called rogue frames. If such a loop is detected, the received Announce message
shall be discarded. Such loops are eliminated by spanning tree protocols executing on the underlying
network; see 6.2.

NOTE—The mechanism of 9.3.2.5 provides a safeguard against rogue frames introduced by failure or transients in the
operation of spanning tree protocols.

In general, a boundary clock may receive Announce messages from multiple sources: the current parent
clock and any number of foreign master clocks. The <pathTraceList> (16.2.3) should be maintained only
for Announce messages from the current parent. Application of this mechanism to messages other than
Announce messages from the current parent is outside the scope of this standard.

16.2.2 Path trace enable

An implementation-specific enable control shall be maintained. If enabled, the path trace mechanism shall
be operational. If disabled, the path trace mechanism shall be inactive except for the processing of the
PATH_TRACE_ENABLE management TLV. By default, the path trace mechanism shall be disabled
unless otherwise specified in a PTP profile.

16.2.3 Path trace list

An implementation-specific list <pathTraceList> of members of type ClockIdentity shall be maintained.
The initialization value shall be the empty list.

16.2.4 Change of state

The <pathTraceList> (see 16.2.3) shall be initialized to the empty list whenever the clock updates data sets
based on decision code M1 or M2; see 9.3.5.

16.2.5 Receipt of an Announce message

The following additional specifications shall apply to the processing of received Announce messages; see
9.5.3. A port of a boundary clock receiving an Announce message shall:

a) Scan any PATH_TRACE TLV present for a clockIdentity field equal to the clockIdentity field of the
defaultDS data set.

b) If the TLV is present and a match is found, the message shall be discarded.

c) If the TLV is present and no match is found, the clock shall copy the pathSequence member of the
TLV to the <pathTraceList>; see 16.2.3.

16.2.6 Transmission of an Announce message

The following additional specifications shall apply to the transmission of Announce messages; see 9.5.8.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 163 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

A port sending an Announce message shall append a PATH_TRACE TLV to the message. The value of the
data field of the PATH_TRACE TLV shall be the <pathTraceList> (see 16.2.3) with the clock’s
clockIdentity appended to the tail of the list. If the resulting Announce message size exceeds the maximum
frame size permitted by the network technology, the PATH_TRACE TLV shall not be appended.

16.2.7 PATH_TRACE TLV specification

The PATH_TRACE TLV format shall be as specified in Table 78.

Table 78 ⎯PATH_TRACE TLV format

Bits
7 6 5 4 3 2 1 0

Octets TLV
offset

tlvType 2 0
lengthField 2 2

pathSequence 8N 4

16.2.7.1 tlvType

The value of tlvType shall be PATH_TRACE.

16.2.7.2 lengthField

The value of the lengthField is 8N.

16.2.7.3 pathSequence (ClockIdentity[N])

The value of pathSequence is a list of clock identities.

16.2.8 PATH_TRACE_LIST management message

This management message TLV may be used to retrieve the current <pathTraceList> (see 16.2.3) from an
ordinary or boundary clock. The data field shall be as specified in Table 79.

Table 79 ⎯PATH_TRACE_LIST management TLV data field

Bits
7 6 5 4 3 2 1 0

Octets TLV
data
offset

pathSequence 8N 0

16.2.8.1 pathSequence (ClockIdentity[N])

The value of pathSequence is the list of clock identities in the <pathTraceList>; see 16.2.3.

16.2.9 PATH_TRACE_ENABLE management message

This management message may be used to enable or disable the path trace mechanism. The
PATH_TRACE_ENABLE TLV data field shall be as specified in Table 80.

Table 80 ⎯PATH_TRACE_ENABLE management TLV data field

Bits
7 6 5 4 3 2 1 0

Octets TLV
data
offset

0 0 0 0 0 0 0 EN 1 0
reserved 1 1

16.2.9.1 EN (Boolean)

A value of EN of TRUE shall indicate that the path trace mechanism is operational; otherwise, it indicates
that the mechanism is not operational.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 164 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

16.3 Alternate timescales (optional)

16.3.1 General

The grandmaster may indicate the offset of an alternate time from its node time by transmitting an
ALTERNATE_TIME_OFFSET_INDICATOR TLV entity.

Multiple alternate timescales may be maintained. Nodes that are designed to support this option when they are the
grandmaster shall maintain resources to support an implementation-specific number of alternate timescales. Each
supported alternate timescale shall be identified by the value of the keyField fields in the TLVs of this option and
shall be described by the field displayName in the ALTERNATE_TIME_OFFSET_INDICATOR TLV. The key
values shall be consecutive beginning with 0 and ending with the value <maxKey>. Each supported alternate
timescale may be enabled or disabled.

NOTE—There is no requirement that the key values transmitted by nodes from different manufacturers correspond to
the same alternate timescale.

A node shall transmit an ALTERNATE_TIME_OFFSET_INDICATOR TLV entity for each enabled
alternate timescale in all Announce messages. If an alternate timescale is disabled, the node shall not
transmit this ALTERNATE_TIME_OFFSET_INDICATOR TLV entity.

An alternate timescale may have discontinuities (for example, at the beginning and end of daylight savings
time).

The alternate time offset indicator shall not be used to indicate the offset or pending changes in the offset of
UTC from the PTP timescale.

If a discontinuity (jump) is about to occur, the node shall indicate this in a contiguous sequence of at least
portDS.announceReceiptTimeout+1 Announce messages transmitted immediately before the discontinuity.
The time and magnitude of this discontinuity shall be indicated using the jumpSeconds and
timeOfNextJump fields specified in Table 81.

If the jumpSeconds field of a received ALTERNATE_TIME_OFFSET_INDICATOR TLV entity is non-
zero, indicating a forthcoming discontinuity, and the time of the receiving node is greater than the value of
timeOfNextJump field of the received TLV, the node shall ignore the TLV.

The properties of the alternate timescale mechanism may be managed using the
ALTERNATE_TIME_OFFSET_ENABLE, ALTERNATE_TIME_OFFSET_NAME, and the
ALTERNATE_TIME_OFFSET_PROPERTIES management TLVs.

16.3.2 Forwarding by boundary clocks

Boundary clocks that are not the grandmaster and that implement the alternate timescale option shall
forward the information contained in all ALTERNATE_TIME_OFFSET_INDICATOR TLV entities
contained in the most recent Announce message received from its master in any Announce message that it
transmits.

NOTE—All boundary clocks in the system between the slave and its grandmaster should implement the alternate
timescale option.

16.3.3 ALTERNATE_TIME_OFFSET_INDICATOR TLV specification

16.3.3.1 General

The ALTERNATE_TIME_OFFSET_INDICATOR TLV format shall be as specified in Table 81.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 165 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table 81 ⎯ALTERNATE_TIME_OFFSET_INDICATOR TLV format

Bits
7 6 5 4 3 2 1 0

Octets TLV
offset

tlvType 2 0
lengthField 2 2

keyField 1 4
currentOffset 4 5
jumpSeconds 4 9

timeOfNextJump 6 13
displayName L 19

pad M 19+L

16.3.3.2 tlvType

The value of tlvType shall be ALTERNATE_TIME_OFFSET_INDICATOR.

16.3.3.3 keyField (UInteger8)

The value of keyField shall indicate the alternate timescale reported in this TLV entity.

16.3.3.4 currentOffset (Integer32)

The value of currentOffset shall be the offset of the alternate time, in seconds, from the node’s time. The
alternate time is the sum of this value and the node’s time.

16.3.3.5 jumpSeconds (Integer32)

The value of jumpSeconds shall be the size of the next discontinuity, in seconds, of the alternate time. A
value of zero indicates that no discontinuity is expected. A positive value indicates that the discontinuity
will cause the currentOffset of the alternate time to increase.

16.3.3.6 timeOfNextJump (UInteger48)

The value of timeOfNextJump shall be the value of the seconds portion of the transmitting node’s time at
the time that the next discontinuity will occur. The discontinuity occurs at the start of the second indicated
by the value of timeOfNextJump.

16.3.3.7 displayName (PTPText)

The value of displayName shall be the text name of the alternate timescale.

NOTE—Commonly used acronyms should be used, e.g., NTP, PT, PST, PDT for Network Time Protocol, Pacific
Time, Pacific Standard Time, and Pacific Daylight Savings Time, respectively.

The maximum number of symbols in the displayName.textField field (see 5.3.9) shall be 10.

16.3.3.8 pad (Octet[M])

The pad field shall be an octet array of length M where M is either 1 or 0. If M is 1, all bits in the octet shall
be 0; see 15.5.2.2.

16.3.4 ALTERNATE_TIME_OFFSET_ENABLE management message

The ALTERNATE_TIME_OFFSET_ENABLE management TLV allows the indicated alternate timescale
to be enabled or disabled in a clock.

The maintenance of this data is implementation-specific.

The ALTERNATE_TIME_OFFSET_ENABLE management TLV data format shall be as specified in
Table 82.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 166 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table 82 —ALTERNATE_TIME_OFFSET_ENABLE management TLV data field

Bits
7 6 5 4 3 2 1 0

Octets TLV
data
offset

keyField 1 0
0 0 0 0 0 0 0 EN 1 1

16.3.4.1 keyField (UInteger8)

The value of keyField shall indicate the alternate timescale enabled or disabled by this TLV entity. A value
of FF16 shall indicate that all alternate timescales maintained by the grandmaster clock are to be enabled or
disabled. If the value is not associated with a maintained alternate timescale, the contents shall be
disregarded and a MANAGEMENT_ERROR_STATUS TLV shall be returned.

16.3.4.2 EN (Boolean)

If EN is TRUE, the ALTERNATE_TIMESCALE_OFFSET_INDICATOR TLV for the timescale indicated
by the keyField value shall be attached to Announce messages. If EN is FALSE, the TLV shall not be
attached.

16.3.5 ALTERNATE_TIME_OFFSET_NAME TLV specification (optional)

The ALTERNATE_TIME_OFFSET_NAME management TLV allows a clock to be configured with the
timescale offset description attributes for an alternate timescale.

The maintenance of this data is implementation-specific.

The ALTERNATE_TIME_OFFSET_NAME management TLV data format shall be as specified in
Table 83.

Table 83 —ALTERNATE_TIME_OFFSET_NAME management TLV data field

Bits
7 6 5 4 3 2 1 0

Octets TLV
data
offset

keyField 1 0
displayName L 1

pad M 1+L

16.3.5.1 keyField (UInteger8)

The value of keyField shall indicate the alternate timescale updated or queried by this TLV entity.

If the value is FF16 or is not associated with any maintained alternate timescale, the TLV shall be ignored
and a MANAGEMENT_ERROR_STATUS TLV returned.

16.3.5.2 displayName (PTPText)

The value of displayName shall be the textual name of the alternate timescale; see 16.3.3.7.

16.3.5.3 pad (Octet[M])

The pad field shall be an octet array of length M, where M is either 1 or 0. If M is 1, all bits in the octet
shall be 0; see 15.5.2.2.

16.3.6 ALTERNATE_TIME_OFFSET_MAX_KEY management TLV

The ALTERNATE_TIME_OFFSET_MAX_KEY management TLV allows a management node to
determine the number of alternate timescales maintained.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 167 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

The maintenance of this data is implementation-specific.

The ALTERNATE_TIME_OFFSET_MAX_KEY management TLV data format shall be as specified in
Table 84.

Table 84 —ALTERNATE_TIME_OFFSET_MAX_KEY management TLV data field

Bits
7 6 5 4 3 2 1 0

Octets TLV
offset

maxKey 1 0
reserved 1 1

16.3.6.1 maxKey (UInteger8)

The value of maxKey shall indicate the value of the largest key.

16.3.7 ALTERNATE_TIME_OFFSET_PROPERTIES management TLV (optional)

The ALTERNATE_TIME_OFFSET_PROPERTIES management TLV allows a clock to be configured
with the timescale offset attributes for an alternate timescale.

If this TLV is received with and action value of SET, the update of currentOffset, jumpSeconds, and
timeOfNextJump shall be atomic. If any of these values fail to update a MANAGEMENT_ERROR_STATUS
TLV shall be returned.

The maintenance of this data is implementation-specific.

The ALTERNATE_TIME_OFFSET_PROPERTIES management TLV data format shall be as specified in
Table 85.

Table 85 —ALTERNATE_TIME_OFFSET_PROPERTIES management TLV data field

Bits
7 6 5 4 3 2 1 0

Octets TLV
offset

keyField 1 0
currentOffset 4 1
jumpSeconds 4 5

timeOfNextJump 6 9
reserved 1 15

16.3.7.1 keyField (UInteger8)

The value of keyField shall indicate the alternate timescale updated or queried by this TLV entity.

If the value is FF16 or is not associated with any maintained alternate timescale, the TLV shall be ignored
and a MANAGEMENT_ERROR_STATUS TLV returned.

16.3.7.2 currentOffset (Integer32)

The value of currentOffset shall be the offset of the alternate time; see 16.3.3.4.

16.3.7.3 jumpSeconds (Integer32)

The value of jumpSeconds shall be the size of the next discontinuity; see 16.3.3.5.

16.3.7.4 timeOfNextJump (UInteger48)

The value of timeOfNextJump shall be the time that the next discontinuity will occur; see 16.3.3.6.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 168 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

17. State configuration options

17.1 General

This clause specifies additional optional features that may be used in conjunction with a best master clock
algorithm to enhance performance or to exert more control over the selection of port state.

Many applications require one or more of the following capabilities:
⎯ Automatic recovery from a break in the communication network

⎯ Automatic recovery from the failure of a clock

⎯ Explicit control over the selection of port state

This standard provides several features designed to meet these requirements.

The operation of the best master clock algorithm and state machine in ordinary and boundary clocks
(Clause 9) ensures that a master−slave hierarchy is established with the best clock present in the system
being the grandmaster. This provides automatic recovery from both network failure and failure of
individual clocks. The rate of recovery is dependent on the announceInterval and the topology of the
network.

Peer-to-peer transparent clocks (Clause 10) provide for rapid recovery in the event of network
reconfiguration. Since the peer delay mechanism (see 11.4) measures the path delays on all links in the
event of a reconfiguration, the needed path delay correction information is immediately available.

NOTE—These options should be used with care. For example, if some clocks connected to a communication path are
configured to use the Acceptable Master Table and some are not, it is possible that more than one port will consider
itself to be the best master. If clocks connected to a communication path are configured with incompatible Acceptable
Master Tables, it is possible that more than one port will consider itself to be the best master. Similar misconfiguration
inconsistencies can occur with the configuration mechanism of any of these options.

17.2 Data types for options

17.2.1 General

The data type specifications of 17.2 shall be used for any implemented option of Clause 17 that references
one of the following:

⎯ PortAddressQueryTable

⎯ AcceptableMaster

⎯ AcceptableMasterTable

⎯ All specifications of Clause 5 apply to the data types defined in 17.2.

17.2.2 PortAddressQueryTable

The PortAddressQueryTable type represents a list of port addresses along with the query interval.

struct PortAddressQueryTable
{
 UInteger16 maxTableSize;
 Integer8 logQueryInterval;

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 169 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

 UInteger16 actualTableSize;
 PortAddress[actualTableSize] portAddress;
};

The value of maxTableSize is implementation-specific and shall be the maximum permitted value of
actualTableSize.

17.2.3 AcceptableMaster

struct AcceptableMaster
{
 PortAddress acceptableAddress;
 UInteger8 alternatePriority1;
};

17.2.4 AcceptableMasterTable

struct AcceptableMasterTable
{

UInteger16 maxTableSize;
 UInteger16 actualTableSize;
 AcceptableMaster[actualTableSize] acceptableMaster;
};

The value of maxTableSize is implementation-specific and shall be the maximum permitted value of
actualTableSize.

17.3 Grandmaster clusters (optional)

17.3.1 General specification

The grandmaster cluster option requires unicast transmissions between members of the grandmaster cluster.
When the normal operation of the best master clock algorithm is used, the time to recover from the failure
of a grandmaster clock depends on the announceInterval. If the required time to change from one
grandmaster to another is incompatible with the multicast announceInterval, the mechanism of 17.3 may be
used to decrease the time required to select a new grandmaster. If this option is implemented, the unicast
negotiation option (see 16.1) shall also be implemented.

Two to five ordinary or boundary clocks may be designated as a grandmaster cluster. For correct operation,
each clock in the cluster should be configured with values of defaultDS.priority1 such that the
defaultDS.priority1 values of all members of the cluster are less than the defaultDS.priority1 values of all
other clocks in the domain.

NOTE—Although designed for use in improving the changeover of grandmaster clocks, in some topologies, this
mechanism may be useful for designating clusters of master clocks below the grandmaster in the master−slave
hierarchy. The configuring of master clusters for such use is outside of the scope of this standard.

17.3.2 Operation of the grandmaster cluster

Each clock in the cluster shall:

a) Maintain a configured table of potential grandmasters, the <grandmasterClusterTable>, with data
type PortAddressQueryTable; see 17.2.2. The portAddress members of the table shall each hold the
protocol address of one port of a member of the grandmaster cluster to enable unicast transmission
between members.

b) Use the unicast message negotiation option (see 16.1) to periodically request unicast Announce
messages from all the ports listed in the portAddress members of the <grandmasterClusterTable>.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 170 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

c) If the port is transmitting a unicast Announce message under the terms of this subclause and is in the
MASTER state, set the flagField.alternateMasterFlag to FALSE; otherwise set the
flagField.alternateMasterFlag to TRUE.

d) Insert the value of the logQueryInterval member of the <grandmasterClusterTable> into the
logInterMessageInterval field of the REQUEST_UNICAST_TRANSMISSION TLV.

e) Request a renewal prior to the expiration of each negotiated unicast transmission.

f) Use the received unicast Announce messages from the cluster members, irrespective of the value of
alternateMasterFlag, to exercise the best master clock algorithm to determine the portState of each of
its ports.

If the <grandmasterClusterTable> is empty (actualTableSize is 0), this option shall be inactive except for
the processing of the GRANDMASTER_CLUSTER_TABLE management TLV. The default value of
actualTableSize shall be 0 unless otherwise specified in a PTP profile.

The maintenance of this information is implementation-specific and is not part of the node’s data sets of
Clause 8.

17.3.3 GRANDMASTER_CLUSTER_TABLE management TLV data field specification

17.3.3.1 General specifications

The receipt of a GRANDMASTER_CLUSTER_TABLE TLV with tableSize 0 shall cause the receiving
clock to clear all members from the array of port addresses in the <grandmasterClusterTable>.

If the tableSize member of the GRANDMASTER_CLUSTER_TABLE TLV is nonzero and no port
address of the receiving node is contained in the list of grandmasterClusterMembers of the TLV, the
management message shall be rejected and the <grandmasterClusterTable> shall not be updated. For this
case, the managementErrorId shall be WRONG_VALUE.

If the PortAddress array in the grandmasterClusterMember of the TLV cannot be fully stored, the
<grandmasterClusterTable> shall not be altered and the management message shall be rejected. For this
case, the managementErrorId shall be WRONG_LENGTH if due to length mismatch, and
GENERAL_ERROR for other failures.

Otherwise, upon receipt of a management message with managementId of
GRANDMASTER_CLUSTER_TABLE and action field value of SET, the clock shall replace the current
portAddress members of the <grandmasterClusterTable> with the grandmasterClusterMembers of the
management message. The member identifying the recipient clock shall not be entered into the
<grandmasterClusterTable>. If any member fails to update, a MANAGEMENT_ERROR_STATUS TLV
shall be returned with the managementErrorId GENERAL_ERROR.

17.3.4 GRANDMASTER_CLUSTER_TABLE management TLV

The management TLV data field shall be as specified in Table 86.

Table 86 ⎯GRANDMASTER_CLUSTER_TABLE management TLV data field

Bits
7 6 5 4 3 2 1 0

Octets TLV
data
offset

logQueryInterval 1 0
tableSize 1 1

grandmasterClusterMembers L 2
pad M 2+L

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 171 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

17.3.4.1 logQueryInterval (Integer8)

The value of logQueryInterval shall be the logarithm to the base 2 of the mean interval in seconds between
unicast Announce messages from cluster members.

17.3.4.2 tableSize (UInteger8)

The value of tableSize shall be the number of entries in the grandmasterClusterMembers array. The
maximum number of entries shall be 5.

17.3.4.3 grandmasterClusterMembers (PortAddress[tableSize])

The PortAddress elements of the masterClusterMembers array shall carry the respective protocol addresses
of the members of the <grandmasterClusterTable> of 17.3.2.

17.3.4.4 pad (Octet[M])

The pad field shall be an octet array of length M, where M is either 1 or 0. If M is 1, all bits in the octet
shall be 0; see 15.5.2.2.

17.4 Alternate master (optional)

17.4.1 General

This option allows alternate masters that are not currently the best master to exchange PTP timing
information with slave ports, and for a slave port to acquire knowledge of the characteristics of the
transmission path between itself and each alternate master. This will allow a slave switchover to an
alternate master with a small phase excursion when the best master fails.

17.4.2 Transmission of messages by alternate masters

A port shall transmit multicast Announce messages subject to the restrictions in Table 87. A port
transmitting Announce messages under the terms of 17.4 shall set the alternateMasterFlag (see 13.3.2.6) to
TRUE. These messages shall be transmitted at the interval defined by logAnnounceInterval; see 8.2.5.4.1.

A port shall transmit multicast Sync and, if a two-step clock, Follow_Up messages subject to the
restrictions in Table 87. A port transmitting Sync or Follow_Up message under the terms of 17.4 shall set
alternateMasterFlag to TRUE. These messages shall be transmitted at the interval defined by
<logAlternateMulticastSyncInterval> in Table 87.

NOTE—A slave node that does not want to use information from alternate masters merely ignores all messages with
alternateMasterFlag TRUE.

A port shall maintain the configurable attributes specified in Table 87. The maintenance of this information
is implementation-specific and is not part of the node’s data sets of Clause 8.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 172 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table 87 ⎯Alternate master attributes

Name Type Description
<numberOfAlternateMasters> UInteger8 A port, port-A not in the MASTER state, shall transmit multicast

Announce messages when the number of other ports that:
• Are currently transmitting qualified (see 9.3.2.5)

Announce messages with flagField.alternateMasterFlag
TRUE that are being received by port-A

• Would be chosen using the best master algorithm as
best master in preference to port-A

is less than <numberOfAlternateMasters>. The default value for
<numberOfAlternateMasters> shall be 0.

<transmitAlternateMulticastSync> Boolean If TRUE and the port is currently transmitting multicast
Announce messages with alternateMasterFlag TRUE, the port
shall also transmit multicast Sync and, if a two-step clock,
Follow_Up messages.

<logAlternateMulticastSyncInterval> Integer8 The logarithm to the base 2 of the mean period in seconds
between Sync messages transmitted under the terms of 17.4.

NOTE—The default value of <numberOfAlternateMasters> causes multicast Announce messages to be transmitted
only when the port is in the MASTER state.

17.4.3 ALTERNATE_MASTER management TLV data field

The alternate master attributes in Table 87 may be updated using a management message with
managementId ALTERNATE_MASTER.

If the ALTERNATE_MASTER management TLV is received with an action value of SET, the updates of
<logAlternateMulticastSyncInterval> and <numberOfAlternateMasters> shall be atomic. If either update
fails to update, a MANAGEMENT_ERROR_STATUS TLV shall be returned.

The ALTERNATE_MASTER management TLV data format shall be as specified in Table 88.

Table 88 ⎯ALTERNATE_MASTER management TLV data field

Bits
7 6 5 4 3 2 1 0

Octets TLV
data
offset

0 0 0 0 0 0 0 S 1 0
logAlternateMulticastSyncInterval 1 1

numberOfAlternateMasters 1 2
reserved 1 3

17.4.3.1.1 S (Boolean)

The value of S shall be the value of <transmitAlternateMulticastSync>.

17.4.3.1.2 logAlternateMulticastSyncInterval (Integer8)

The value of logAlternateMulticastSyncInterval shall be the value of <logAlternateMulticastSyncInterval>.

17.4.3.1.3 numberOfAlternateMasters (UInteger8)

The value of numberOfAlternateMasters shall be the value of <numberOfAlternateMasters>.

17.5 Unicast discovery (optional)

17.5.1 General

The unicast discovery option allows PTP to be used over a network that does not provide multicast (for
example, many IP networks). A slave port is configured with the addresses of potential masters. The slave

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 173 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

may request that these masters transmit unicast Announce, Sync, and Delay_Resp messages to it. If this
option is implemented, the unicast negotiation option (see 16.1) shall also be implemented.

17.5.2 Operation of unicast discovery

An ordinary or boundary clock shall maintain a configured table of masters, the <unicastMasterTable>.
This table shall have the data type PortAddressQueryTable; see 17.2.2. The portAddress members of the
table each hold the protocol address of a remote port with which this node shall attempt to establish
communication.

The node shall use the unicast message negotiation option (see 16.1) to periodically request unicast
Announce messages from all the ports listed in the <unicastMasterTable>. If a request is not granted by a
port, the request shall be repeated after the delay indicated by the logQueryInterval member of the table.

A port shall maintain the configurable attributes specified by data type PortAddressQueryTable. The
maintenance of these attributes is implementation-specific.

If the <unicastMasterTable> is empty (<unicastMasterTable>.actualTableSize is 0), this option shall have
no effect except for the processing of the UNICAST_MASTER_TABLE and
UNICAST_MASTER_MAX_TABLE_SIZE management TLVs.

The default value of <unicastMasterTable>.actualTableSize is 0 unless otherwise specified in a PTP
profile.

The value of <unicastMasterTable>.logQueryInterval shall be the logarithm to the base 2 of the mean
interval in seconds between requests from a node for a unicast Announce message.

The <unicastMasterTable>.portAddress members shall carry the respective protocol address of each
member of the <unicast Master Table>.

17.5.3 UNICAST_MASTER_TABLE management TLV data field

The UNICAST_MASTER_TABLE management TLV data field shall be as specified in Table 89.

If this TLV is received with and action value of SET, the update of logQueryInterval, tableSize, and
unicastMasterTable shall be atomic. If any of these values fail to update a
MANAGEMENT_ERROR_STATUS TLV shall be returned.

A receipt of a UNICAST_MASTER_TABLE TLV with the value of tableSize field 0 shall cause the
receiving port to clear all <unicastMasterTable>.portAddress members from the <unicastMasterTable>.

Table 89 ⎯UNICAST_MASTER_TABLE management TLV data field

Bits
7 6 5 4 3 2 1 0

Octets TLV
data
offset

logQueryInterval 1 0
tableSize 2 1

unicastMasterTable L 3
pad M 3+L

17.5.3.1 logQueryInterval (Integer8)

The value of logQueryInterval shall be the value of <unicastMasterTable>.logQueryInterval.

17.5.3.2 tableSize (UInteger16)

The value of tableSize shall be the value of <unicastMasterTable>.actualTableSize and shall be no greater
than the value of <unicastMasterTable>.maxTableSize.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 174 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

17.5.3.3 unicastMasterTable (PortAddress[tableSize])

The PortAddress members of the unicastMasterTable array shall carry the respective protocol address of
each member of the <unicastMasterTable> of 17.5.2.

17.5.3.4 pad (Octet[M])

The pad field shall be an octet array of length M, where M is either 1 or 0. If M is 1, all bits in the octet
shall be 0; see 15.5.2.2.

17.5.4 UNICAST_MASTER_MAX_TABLE_SIZE management TLV data field

The UNICAST_MASTER_MAX_TABLE_SIZE management TLV data field shall be as specified in
Table 90.

Table 90 ⎯UNICAST_MASTER_MAX_TABLE_SIZE management TLV data field

Bits
7 6 5 4 3 2 1 0

Octets TLV
data
offset

maxTableSize 2 0

17.5.4.1 maxTableSize (UInteger16)

The value of maxTableSize shall be the value of the <unicastMasterTable>.maxTableSize of the
<unicastMasterTable>.

17.6 Acceptable master table (optional)

17.6.1 General

The Acceptable master table option allows slave ports to be configured to refuse to synchronize to clocks
not on the acceptable master list.

NOTE—This may be used to rule out synchronization to suspected rogue or spurious masters.

17.6.2 Operation of the acceptable master table

An ordinary or boundary clock shall maintain a configured table, the <acceptableMasterTable> of type
AcceptableMasterTable, and a per port configurable Boolean value <acceptableMasterTableEnabled>.

The default value of <acceptableMasterTableEnabled> shall be FALSE unless otherwise specified in a PTP
profile.

The default value of <acceptableMasterTable>.actualTableSize is 0 unless otherwise specified in a PTP
profile.

The <acceptableMasterTable>.acceptableMaster members shall carry the respective protocol address and
alternatePriority1 values of each member of the <acceptableMasterTable>.

The maintenance of this information is implementation-specific and is not part of the node’s data sets of
Clause 8.

The operation of the acceptable master table option on each port shall be as specified in Table 91.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 175 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table 91 ⎯Operation of acceptable master table option

<acceptableMasterTableEnabled> Operational specification

FALSE The <acceptableMasterTable> is not used on this port. The normal operation of the
protocol is in effect. The port shall process
ACCEPTABLE_MASTER_TABLE_ENABLED management TLVs.

TRUE The port indicated by the value of Erbest determined by the best master clock
algorithm (see 9.3) shall be a member of the Acceptable Master Table.

If qualified Announce messages (see 9.3.2.5) are being received from more than
one member of the <acceptableMasterTable>, the data set comparison
algorithm of 9.3.4 shall be used to select Erbest to determine the port selected as
the master from the members of this table.

If the alternatePriority1 member of the AcceptableMaster member of the table
for a port is 0, the alternatePriority1 member shall have no effect on the
computation of Erbest. If the value of the alternatePriority1 member is greater
than 0, the value of priority1 in the Announce message from the remote port
shall be replaced by the value of the alternatePriority1 member of this table for
the purposes of computing Erbest.

17.6.3 ACCEPTABLE_MASTER_TABLE management TLV data field

The ACCEPTABLE_MASTER_TABLE management TLV data field shall be as specified in Table 92.

If this TLV is received with and action value of SET, the update of tableSize, and acceptableMasterTable
shall be atomic. If either of these values fail to update, a MANAGEMENT_ERROR_STATUS TLV shall
be returned.

Table 92 ⎯ACCEPTABLE_MASTER_TABLE management TLV data field

Bits
7 6 5 4 3 2 1 0

Octets TLV
data
offset

tableSize 2 0
acceptableMasterTable L 2

pad M 2+L

17.6.3.1 tableSize (Integer16)

The value of tableSize shall be the value of <acceptableMasterTable>.actualTableSize and shall be no
greater than the value of <acceptableMasterTable>.maxTableSize.

17.6.3.2 acceptableMasterTable (acceptableMaster[tableSize])

The acceptableMaster members of the acceptableMasterTable array shall carry the respective protocol
address and alternatePriority1 values of each member of the <acceptableMasterTable> of 17.6.2.

17.6.3.3 pad (Octet[M])

The pad field shall be an octet array of length M, where M is either 1 or 0. If M is 1, all bits in the octet
shall be 0; see 15.5.2.2.

17.6.4 ACCEPTABLE_MASTER_MAX_TABLE_SIZE management TLV data field

The ACCEPTABLE_MASTER_MAX_TABLE_SIZE management TLV data field shall be as specified in
Table 93.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 176 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table 93 ⎯ACCEPTABLE_MASTER_MAX_TABLE_SIZE management TLV data field

Bits
7 6 5 4 3 2 1 0

Octets TLV
data
offset

maxTableSize 2 0

17.6.4.1 maxTableSize (UInteger16)

The value of maxTableSize shall be the value of <acceptableMasterTable>.maxTableSize of the
<acceptableMasterTable>.

17.6.5 ACCEPTABLE_MASTER_TABLE_ENABLED management TLV data field

The management TLV data field shall be as specified in Table 94.

Table 94 ⎯ACCEPTABLE_MASTER_TABLE_ENABLED management TLV data field

Bits
7 6 5 4 3 2 1 0

Octets TLV
data
offset

0 0 0 0 0 0 0 EN 1 0
reserved 1 1

17.6.5.1 EN (Boolean)

The value of EN shall be the value of <acceptableMasterTableEnabled>.

18. Compatibility requirements

18.1 Compatibility between version 2 and future versions

A node that receives PTP messages with a versionNumber greater than 2 (see 7.5.5) shall discard the
message.

18.2 Compatibility between version 1 and version 2

A node is not required to support translation between version 1 and version 2. If translation is supported, it
shall be implemented per 18.3 and 18.4.

PTP nodes implemented under version 1 of this standard should communicate with nodes implemented
under version 2 of this standard via a boundary clock designed for this purpose. Such a boundary clock:

a) Communicates with the version 1 nodes via a port that implements the messaging and protocol
requirements of version 1

b) Communicates with the version 2 node via a port that implements the messaging and protocol
requirements of version 2

c) Internally resolves differences in the operation of the two protocol versions, including translating
message formats and resolving differences in the values of attributes as specified in the following
subclauses (18.3, 18.4, and 18.5).

Transparent clock translation devices are outside the scope of this standard.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 177 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Translation devices shall send version 1 messages only on PTP ports for which the value of
portDS.versionNumber is set to 1. Version 1 messages received on a port for which the
portDS.versionNumber attribute is set to 2 shall be ignored.

NOTE 1— Automatic detection of the version used within a communication path is outside the scope of this standard.

NOTE 2— Multicast management message forwarding between version 1 and version 2 ports is outside the scope of
this standard.

Specific requirements and restrictions on translating between version 1 and version 2 boundary or ordinary
clock nodes are covered in the following subclauses (18.3, 18.4, and 18.5).

18.3 Message formats and data types

18.3.1 Domains

The translating device shall:

a) Map the version 1 subdomain value _DFLT to version 2 domainNumber value 0 and vice versa

b) Map the version 1 subdomain value _ALT1 to version 2 domainNumber value 1 and vice versa

c) Map the version 1 subdomain value _ALT2 to version 2 domainNumber value 2 and vice versa

d) Map the version 1 subdomain value _ALT3 to version 2 domainNumber value 3 and vice versa

The mappings of domains other than those specified above is outside the scope of this standard.

18.3.2 Version 1 Stratum and version 2 clockClass

The translating device shall map version 1 stratum values to version 2 clockClass values as specified in
Table 95.

Table 95 ⎯Version 1 stratum to version 2 class

Version 1 stratum Version 2 clockClass
0 6
1 9
2 10
3 248
4 251
255 255

Except as provided in Table 98, the translating device shall map version 2 clockClass value to version 1
stratum values as specified in Table 96.

Table 96 ⎯Version 2 clockClass to version 1 stratum

Version 2 clockClass Version 1 stratum
6 0
7 0
9 1
10 2
13-248 3
251 4
255 255

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 178 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

18.3.3 Version 1 preferred and version 2 priority1

The translating device shall map the version 1 grandmasterIsPreferred field into the version 2 priority1 field
as shown in Table 97.

Table 97 ⎯Version 1 to version 2 translation of grandmasterIsPreferred field

grandmasterIsPreferred priority1
0 128
1 127

The translating device shall map the version 2 priority1 field into the version 1 grandmasterIsPreferred, and
grandmasterClockStratum fields as shown in Table 98.

Table 98 ⎯Version 2 to version 1 translation of the priority1 field

V2 V1
priority1 grandmasterIsPreferred grandmasterClockStratum
0−126 1 0
127 1 Per Table 96
128 0 Per Table 96
>128 0 255

18.3.4 version 1 clock identifier and version 2 clockAccuracy and timeSource

The mapping of version 1 clockIdentifer and version 2 clockAccuracy and timeSource does not preserve
the semantics of these attributes.

The translating device shall map version 1 clock identifier to version 2 clockAccuracy values as specified
in Table 99. The values of the version 2 timeSource attribute shall be set as shown in Table 99.

Table 99 ⎯Version 1 clock identifier to version 2 clockAccuracy

Version 1 clock identifier Version 2 clockAccuracy Version 2 timeSource
ATOM 2216 ATOMIC_CLOCK
GPS 2216 GPS
NTP 2F16 NTP
HAND 3016 HAND_SET
INIT FD16 OTHER
DFLT FE16 INTERNAL_OSCILLATOR

The translating device shall map version 2 clockAccuracy to version 1 clock identifier values as specified
in Table 100. Version 2 timeSource values shall be disregarded when translating to version 1.

Table 100 ⎯Version 2 clockAccuracy to version 1 clock identifier

Version 2 clockAccuracy Version 1 clock identifier
20−2216 ATOM
23−2F16 NTP
3016 HAND
31−FD16 INIT
FE16 DFLT

18.3.5 Version 1 grandmasterIsBoundaryClock fields and version 2 priority2 fields

The translating device shall map the version 1 grandmasterIsBoundaryClock field into the version 2
priority2 fields as shown in Table 101.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 179 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table 101 ⎯Version 1 to version 2 translation of grandmasterIsBoundaryClock field

grandmasterIsBoundaryClock priority2
FALSE 128
TRUE 127

The translating device shall map the version 2 priority2 field into the version 1
grandmasterIsBoundaryClock field as shown in Table 102.

Table 102 ⎯Version 2 to version 1 translation of the priority2 field

V2 priority2 V1 grandmasterIsBoundaryClock
0−127 TRUE
128−255 FALSE

18.3.6 Version 1 control and version 2 messageType fields

The translating device mapping between the version 1 control field and the version 2 messageType field
shall be as shown in Table 103.

Table 103 ⎯Version 1 control field and version 2 messageType field mappings

Message Message
class

Version 2 messageType
value

Version 1 control
value

Version 1
messageType

Sync Event 016 0016 0116
Delay_Req Event 116 0116 0116
Pdelay_Req Event 216 N/A N/A
Pdelay_Resp Event 316 N/A N/A
Reserved 4-716 N/A N/A
Follow_Up General 816 0216 0216
Delay_Resp General 916 0316 0216
Pdelay_Resp_Follow_Up General A16 N/A N/A
Announce General B16 N/A N/A
Signaling General C16 N/A N/A
Management General D16 0416 0216
Reserved E−F16 N/A N/A
Reserved N/A 05−FF16 All other values

18.3.7 Version 2 sourcePortIdentity and version 1 sourceCommunicationTechnology, sourceUuid,
and sourcePortId

Version 1 sourceCommunicationTechnology, which had a value 1 for all conformant devices, maps into
version 2 Communication Technology “version 1 devices” in Table 4 and vice versa.

NOTE—Although version 1 Table 2 enumerated many values of sourceCommunicationTechnology, the only transport
mapping defined in version 1 was to Ethernet (version 1 Annex D), which corresponds to the
sourceCommunicationTechnology value 1.

Version 1 sourceUuid maps into Octets 2−7 of the clockIdentity member of the sourcePortIdentity field,
per 7.5.2.2.3.

Version 2 clockIdentity member of the sourcePortIdentity:
⎯ If from 7.5.2.2.3: Octets 2−7 map into the clockUuid, and Communication Protocol maps into

the version 1 defined communicationId for the same protocol.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 180 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

⎯ If from 7.5.2.2.2: the version 1 communicationId shall be 0. The six least significant octets of
the EUI-64 version 2 clockIdentity shall be mapped into the 6 octets of the version 1 clockUuid
field.

Version 1 sourcePortId maps into version 2 portNumber member of the sourcePortIdentity field and vice
versa.

18.3.8 Version 2 grandmasterIdentity and version 1 grandmasterCommunicationTechnology,
grandmasterClockUUID, and grandmasterPortId

The mapping rules are identical to the mapping rules of 18.3.7.

18.3.9 Version 2 parentPortIdentity and version 1 parentCommunicationTechnology,
parentClockUuid, and parentPortId

The mapping rules are identical to the mapping rules of 18.3.7.

18.3.10 FlagField of common headers

The translation of common header flags from version 1 to version 2 shall be as specified in Table 104.

Table 104 ⎯Translation of flagField from version 1 to version 2

Version 2 flagField bit Set to value of version 1 attribute
currentUtcOffsetValid TRUE if stratum = 1 or 2 and identifier is not INIT or DFLT. Otherwise FALSE
leap61 PTP_LI_61
leap59 PTP_LI_59
alternateMasterFlag FALSE
twoStepFlag PTP_ASSIST
timeTraceable TRUE if stratum = 1 or 2 and identifier is not INIT or DFLT. Otherwise FALSE
frequencyTraceable TRUE if stratum = 1 or 2 and identifier is not INIT or DFLT. Otherwise FALSE
ptpTimescale TRUE if identifier is not INIT or DFLT. Otherwise FALSE
unicastFlag FALSE
All other flagField Set to FALSE

The translation of common header flags version 2 to version 1 shall be as specified in Table 105.

Table 105 ⎯Translation of flagField from version 2 to version 1

Version 1 flags Set to value of version 2 flagField bit
Disregard the information currentUtcOffsetValid
PTP_LI_61 leap61
PTP_LI_59 leap59
If ALTERNATE_MASTER is TRUE, the version
2 message shall not be transmitted into the version
1 region.

alternateMasterFlag

PTP_ASSIST twoStepFlag
If unicastFlag is TRUE, the version 2 message
shall not be transmitted into the version 1 region.

unicastFlag

PTP_SYNC_BURST FALSE
PARENT_STATS FALSE
PTP_EXT_SYNC FALSE
PTP_BOUNDARY_CLOCK FALSE
Disregard the information All other flags

18.3.11 Version 2 logMessageInterval and version 1 syncInterval of Sync messages

The logMessageInterval of version 2 Announce, Delay_Req, and Delay_Resp messages are ignored in
translating into version 1.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 181 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

The logMessageInterval of a version 2 Sync or Follow_Up message is translated into the syncInterval of
version 1 Sync messages.

The syncInterval of a version 1 Sync message is translated into the logMessageInterval for version 2
Announce, Sync, and Follow_Up messages.

The syncInterval of a version 1 Sync message incremented by +5 is translated into the logMessageInterval
for version 2 Delay_Req and Delay_Resp messages.

NOTE—It is necessary to increment the version 1 syncInterval by +5 to obtain the logMessageInterval for version 2
Delay_Req and Delay_Resp messages to meet the requirements of 7.7.2.4.

18.3.12 Version 2 fields of type ClockQuality and version 1 stratum, identifier, and variance fields

Version 2 field grandmasterClockQuality is mapped between the version 1 counterparts as follows:
⎯ Version 2 clockClass member to grandmasterClockStratum mapping is per 18.3.2.

⎯ Version 2 clockAccuracy member to grandmasterClockIdentifier mapping is per 18.3.4.

⎯ Version 2 offsetScaledLogVariance member maps directly to the grandmasterClockVariance
after correcting for the offset of 800016; see 7.6.3.3.

18.3.13 Version 2 fields of type Timestamp and version 1 epochNumber and fields of type
TimeRepresentation

Version 2 nanosecondsField member UInteger32 maps to version 1 nanoseconds member Integer32.

Version 1 nanoseconds member if positive maps to version 2 nanosecondsField member. If negative, an
error should be generated since negative timestamps are not permitted in version 2.

The least significant 32 bits of the version 2 secondsField field UInteger48 map directly to the version 1
seconds field and vice versa.

The most significant 16 bits of the version 2 secondsField field UInteger48 map directly to the version 1
epochNumber and vice versa.

18.3.14 Version 2 fields that have no version 1 counterpart

For each version 2 field shown in Table 106, the translating device shall take the actions specified.

Table 106 ⎯Version 2 fields with no version 1 counterpart

Version 2 field Message Version 2 to version 1 Version 1 to version 2
transportSpecific Common

header
Disregard information Set per applicable Annex D through

Annex I
messageLength Common

header
Disregard information Set per 13.3.2.4

correctionField Common
header

Outside of the scope of this
standard

Set to 0

18.3.15 Version 1 fields that have no version 2 counterpart

For each version 1 field shown in Table 107, the translating device shall take the actions specified in
translating to version 2.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 182 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table 107 ⎯Version 1 fields with no version 2 counterpart

Version 1 field Message Action
versionNetwork
messageType

Common header Disregard information

utcReasonable
localClockVariance
localClockStratum
localClockIdentifier

Sync and
Delay_Req

Disregard information

associatedSequenceId Follow_Up Maps to sequenceId of common header in version 2
requestingSourceSequenceId Delay_Resp Maps to sequenceId of common header in version 2
managementMessageKey
parameterLength
messageParameters

Management Map between version 1 and version 2 format and semantics for
each management message.

18.4 Naming changes

Table 108 shows the correspondence between version 1 and version 2 names for the same quantity for
cases in which the semantics remain unchanged.

NOTE—Quantities for which semantics have changed are covered in previous clauses.

Table 108 ⎯Name correspondence

Version 1 name Version 2 name
estimatedMasterVariance portDS.observedParentOffsetScaledLogVariance
estimatedMasterDrift portDS.observedParentClockPhaseChangeRate

18.5 Restrictions on mixed version 1 and version 2 systems

The translations specifications of Clause 18 permit mixed version 1 and 2 systems with the restrictions
specified in this subclause.

Mixed version 1 and version 2 systems should be configured as shown in Figure 36 subject to the
restrictions in any one of the rows of Table 109. Version 1 stratum 3 clocks shall not be used in the
implementation of mixed version 1 and version 2 systems.

Other system configurations and limitations may be possible but are outside of the scope.

A

B

B

B B

Figure 36 ⎯Permitted mixed system configuration

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 183 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Shown in Figure 36 is a region A implementing one version of PTP connected to one or more regions
implementing a second version of PTP.

Table 109 ⎯Mixed system restrictions

Region A characteristics Region B characteristics Restrictions
Version 2 clocks Version 1 clocks No clockClass 6 or 7 or stratum 1 or 2 clocks

in the system.
Version 2 clocks Version 1 clocks Region A contains at least one clockClass 6

or 7 clock with priority1 <128.
Version 2 clocks Version 1 clocks Any stratum 1 or 2 clocks are contained in a

single B region.
Version 1 clocks Version 2 clocks Region B clocks all have priority1>128
Version 1 clocks Version 2 clocks Region B clocks all have priority1>127 and there

is a region A clock with preferred = TRUE.
Version 1 clocks Version 2 clocks Any clockClass 6 or 7 clocks and any clocks with

priority1<128 are contained in a single B region.

19. Conformance

19.1 Conformance objective

The philosophy underlying the conformance requirements of this clause is to:
⎯ Raise the level of interoperability of systems built to this standard

⎯ Encourage the manufacture of PTP components with the broadest possible range of applicability

⎯ Provide opportunity for continued technical improvement and differentiation

19.2 PTP conformance requirements

19.2.1 General conformance specification

Conformance requirements are specified in terms of nodes.

Nodes shall conform to all clauses of this standard with the exception of:
⎯ Clauses specifically marked “optional”.

⎯ For applications that distribute only frequency and do not require the measurement of the path
delays, an alternate PTP profile may specify that the path delay mechanisms of 11.3 and 11.4
shall not be implemented or activated.

For each option implemented, the node shall conform to the clause specifying the option.

19.2.2 Transport conformance specification

A node that uses a transport protocol for which the mapping is defined in an annex of this standard shall
conform to that annex.

The transport of PTP packets using a transport protocol for which there is no mapping defined in this
standard shall be defined by a mapping defined and published by the standards organization, or its
designee, with jurisdiction over the transport. The publication specifying this mapping shall be referenced
by a PTP profile.

NOTE— The organization defining a transport mapping has to secure an enumeration value for the transport; see 7.4.1.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 184 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

19.2.3 PTP profile conformance specification

A node claiming compliance shall specify at least one PTP profile to which it complies. One of the two
default PTP profiles shall be used in the absence of a suitable alternate PTP profile. The default PTP
profiles are specified in Annex J.

If a particular attribute or option is not specified in the selected PTP profile, then the node shall conform to
the value or choice specified in the default PTP profile that specifies the same path delay mechanism.

All PTP devices should support one of the default PTP profiles.

19.3 PTP profiles

19.3.1.1 General

The purpose of a PTP profile is to allow organizations to specify specific selections of attribute values and
optional features of PTP that, when using the same transport protocol, inter-work and achieve a
performance that meets the requirements of a particular application.

A PTP profile is a set of required options, prohibited options, and the ranges and defaults of configurable
attributes. Profiles specifications shall be consistent with the specifications in 19.2.1 and 19.2.2.

19.3.1.2 PTP profile recommendations

A PTP profile should define:

⎯ Which of the best master clock algorithm options (see 9.3.1) is to be implemented.

⎯ Which of the configuration management options (see 15.1.1) is to be implemented.

⎯ Which of the path delay mechanisms, delay request-response (see 11.3) or peer delay (see 11.4)
is to be implemented.

⎯ The range and default values of all PTP configurable attributes and data set members.

⎯ The transport mechanisms required, permitted, or prohibited.

⎯ The node types required, permitted, or prohibited.

⎯ The options required, permitted, or prohibited.

A PTP profile shall extend the standard only by:

a) The use of the TLV mechanism of 14.3.

b) The specification of an optional best master clock algorithm; see 9.3.1.

c) The specification of an optional management mechanism; see 15.1.1.

d) The provisions of 19.2.2.

e) The provisions of 7.3.1.

19.3.2 Specific PTP profiles

A PTP profile may be developed by external organizations, including:

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 185 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

a) A recognized standards organization with jurisdiction over the industry, e.g., the IEC, IEEE, IETF,
ANSI, or ITU

b) An industry trade association or other similar organization recognized within the industry as having
standards authority for the industry

c) Other organizations as appropriate

The PTP profile development organization should consult the Precise Networked Clock Synchronization
Working Group of the IM/ST Committee for technical review.

19.3.3 PTP profile specifications

A PTP profile shall be identified by the following text printed at the beginning of the profile document as
shown in Figure 37.
The items indicated in Figure 37 are defined as follows:

⎯ profileName: This field shall be the text title of the profile as designated by the organization
specifying the profile. See J.3.1 for an example.

⎯ profileVersion: This field shall be the version of the profile as designated by the organization
specifying the profile. The version designation shall consist of two fields: A primaryVersion
(UInteger16) and a revisionNumber (UInteger8). The profileVersion shall be printed as
“Version primaryVersion.revisionNumber”.

⎯ profileIdentifier: This field shall be a EUI-48. The OUI portion of the EUI-48 shall be owned by
the organization specifying the profile. This organization shall ensure that the profileIdentifier is
unique to each profile and version specified by the organization. The remaining octets of the
EUI-48 shall be the primaryVersion and revisionNumber in that order. See J.3.1 for an example.

⎯ organizationName: This field shall be the textual name of the organization specifying the profile
and owning the OUI of the Profile Identifier.

⎯ sourceIdentification: This field shall be a URL, e-mail, or regular mail address to which
enquiries concerning the profile or requests for copies may be sent.

Figure 37 ⎯Profile print form

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 186 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Annex A

(informative)

Using PTP

A.1 Overview
PTP provides a simple methodology for accurately synchronizing clocks in a distributed system. When
designing such a system, the following questions need to be answered:

Physical layout issues:
⎯ How physically dispersed are the clocks?

⎯ What network technology is to be used?

Logical issues:
⎯ Is the system a single collection of clocks, or are the clocks divided into logical groupings each

with their own sense of time?

Component issues:
⎯ How accurately do the clocks need to be synchronized?

⎯ What is the source of time for the system? Should it be traceable to UTC?

Local implementation issues:
⎯ How are timing requirements to be met?

⎯ How do other applications sharing the communication network affect PTP?

⎯ How do accuracy requirements affect the implementation?

⎯ What are the design issues for local oscillators?

System implementation issues:
⎯ How is the system partitioned?

⎯ Which options are used?

⎯ Which profiles are used?

Performance issues:
⎯ How do network delays and fluctuations affect timing accuracy?

⎯ How does clock oscillator stability affect timing accuracy?

Conformance testing issues:
⎯ Features to aid in conformance and performance testing,

⎯ Features to aid in calibrating device timing.

Subclauses A.2 through A.9 address each of these topics.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 187 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

A.2 Physical layout
Clocks communicate with each other over a network. Typically, the selection of the network technology is
based on the primary application. PTP works on any packet-based system. PTP is designed to work in a
multicast environment, although it is possible to design unicast PTP components and systems. Ethernet is
an ideal network for implementing PTP, and the rest of this annex uses Ethernet as an example.

All networks have limitations on distance, number of allowed nodes, and traffic. If the clocks to be
synchronized are dispersed beyond the range of the network technology, then the system should be
designed as separate “islands of time” with provision outside of PTP for synchronizing these islands.

For example, if the system consists of two compact sites separated by several miles, PTP can be used
within each site, with site-to-site synchronization provided by another technology such as GPS.

Within a site, distance, traffic, and number of node issues are usually addressed by special network
components. For Ethernet, localized nodes typically communicate via bridges. For larger and more
complex systems, routers are used to separate the system into regions using only bridges. In general, each
level of separation using these devices introduces additional statistical delay and delay fluctuation in the
message transmission times between nodes.

PTP is designed to minimize the effects of delay and delay fluctuation. To get the best PTP performance,
the network topology should have as a constraint the minimization of the number of such separating
devices between clocks with the most critical synchronization requirements.

Boundary clocks can be used to improve the performance across separations in the network defined by
routers, or in place of ordinary bridges. Transparent clocks can also be used in place of ordinary bridges
particularly in situations where many devices are connected in a linear topology.

Bridges not implementing PTP may introduce considerable timing jitter and path asymmetry. Although
such bridges may be included in a system implementing PTP, these bridges should not be used unless
timing errors introduced by their jitter and path asymmetry are tolerable for the application, or can be
reduced by an appropriate filtering algorithm.

A.3 Logical layout
Most applications consist of a single set of clocks to be synchronized. For this case, all the clocks can be
placed in a single domain. If the default values specified in this standard and the applicable conformant
PTP profile are used, then generally no configuration of the clocks is necessary.

If the application requires several groups of clocks, with each group maintaining a different self-consistent
time base, then one of two solutions may be used:

⎯ If the rest of the application is segmented into the same groups, it may be possible to use
separate noncommunicating networks; in which case, each group can use the default domain.
Network routers are often used for this purpose.

⎯ If the groups have to share a common network, then each group may be assigned to a different
domain. This logically divides the clocks as desired. Depending on the mapping to the
underlying physical addressing of the network, the processing load on each clock may or may
not be affected.

With the exception of the assignment of PTP nodes to a domain, PTP defines an administration-free system
in the default case. Within a domain, PTP nodes may be added or removed without any requirement for
modification of address tables, etc., provided components use the recommended multicast communication
model. Addition or removal of PTP nodes may cause a different clock to become the grandmaster clock in

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 188 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

the system. This may cause a transient in the time base as the system automatically recalibrates for the new
delay patterns to the new grandmaster clock.

This standard provides several configuration options for users that require more control over the selection
of master clocks, or over different timing and other attributes that govern system performance. For
example, the use of the priority1 attribute allows system designers to designate up to 254 devices in a
priority order for grandmaster clock selection.

A.4 Component issues
The primary issue in the selection of PTP system components is the required synchronization accuracy.

⎯ Clocks should be selected that are designed to support those features of the protocol required for
a given accuracy.

⎯ Network components and physical design decisions also affect the accuracy as outlined in the
previous clauses.

Properly designed Ethernet PTP systems can readily achieve sub-microsecond accuracy.

A second issue is the technique for establishing the PTP system epoch. In every domain, the epoch is
defined by the grandmaster clock that is selected according to the best master clock algorithm.

If TAI or UTC traceable time is a requirement, then the grandmaster clock must maintain a PTP time base.

If the lowest value of clockClass is 6, 7, 52, or 187 for the grandmaster in a domain, the time base is PTP.
From the PTP timescale, UTC can be computed using the value of currentUtcOffset distributed by PTP.
Such systems may or may not maintain the epoch after a power outage; see 7.6.2.4.

If the lowest value of clockClass is 13, 14, 58, 193, or 216 or greater for the grandmaster in a domain, the
time base is either ARB or a time base established by the user; see 7.6.2.4. Such systems may or may not
maintain the epoch after a power outage.

A master clock may fail in such a way that its time or frequency become incorrect. Detection of this
problem and recovery from it are outside the scope of this standard. Some information such as the parent
statistics maintained in the parentDS data set is available to aid in detecting a “false-ticking” master.
Implementers are advised to consider information from as many clocks as possible, and to weigh the
information from each clock according to that clock’s inherent stability.

The DISABLE_PORT management message is available to aid in recovering from a false-ticking master.
Note that disabling or demoting a master has side effects (especially if it is a boundary clock), so the
decision to do that may depend on factors besides its timekeeping quality. That decision is outside the
scope of this standard.

A.5 Local implementation issues

A.5.1 General

This subclause provides some guidelines for implementers of PTP ordinary, boundary, and transparent
clocks. Although not within the scope of this standard, implementations should take care that services built
on top of clocks synchronized via PTP (or any other protocol) do not degrade the accuracy.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 189 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

A.5.2 Timing issues

Implementations must meet the message processing and timing requirements and must also meet whatever
timing requirements are needed to operate any servomechanism that synchronizes the local clock based on
information in PTP messages.

Implementations must ensure that adequate computing and memory resources are available to meet these
requirements. Implementations must also ensure that the resources needed by the PTP implementation have
adequate priority over other applications sharing these resources to meet the PTP and servomechanism
timing requirements. PTP tasks should be assigned the highest priority in an implementation, similar to
priorities assigned to the protocol stack and other operating system resources.

PTP implementations normally require resources for a short time in every syncInterval. The selection of the
syncInterval for a system must be consistent with the available resources in all system components.

The use of network resources by other applications can affect PTP accuracy as discussed in A.5.3.

A.5.3 Accuracy issues

A.5.3.1 General

The achievable accuracy of a PTP system is limited by the following:
⎯ The delay fluctuation in the protocol stacks of clocks

⎯ The delay asymmetry

⎯ The delay fluctuation in network components

⎯ Timestamping accuracy

⎯ Stability issues

A.5.3.2 Protocol stack delay fluctuation

The simplest implementations of PTP operate as ordinary applications at the top of the network protocol
stack. Timestamps are generated at the application level. Protocol stack delay fluctuation causes errors in
these timestamps. These errors are typically in the hundred microseconds to milliseconds range depending
on the operating system.

Implementations may generate timestamps at the interrupt level rather than at the application level. In this
case, delay fluctuation typically can be reduced to tens of microseconds depending on other use of
interrupts by other applications, and on the traffic patterns on the network.

The greatest reduction in errors due to protocol stack delay fluctuation is achieved with hardware assist
techniques that generate timestamps at the physical layer of the protocol stack. Delay fluctuation at this
point is typically in the nanoseconds range. For example, in an Ethernet system, these errors result from the
phase lock characteristics of the PHY chips that recover the clock and data synchronization from the
incoming data streams. The effect of this delay fluctuation may be reduced by suitable design of the clock
servo algorithms.

A.5.3.3 Network component delay fluctuation

Network components introduce fluctuation in the propagation time of messages. This directly affects the
accuracy of the currentDS.offsetFromMaster and currentDS.meanPathDelay values.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 190 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Network bridges and routers are subject to store-and-forward delay fluctuation. Typical Ethernet bridges
have input and output buffers communicating over a very high-speed back plane or switch fabric. Each port
typically connects directly to an end device or another Ethernet bridge. The dominant contribution to delay
fluctuation arises from the output buffering and queuing. If the output subnet is always available, this delay
fluctuation is typically in the nanoseconds range and reducible by averaging techniques. Intensive traffic
directed at a node containing a clock may cause increased delay fluctuation due to this output buffering.
This increased delay fluctuation is much more difficult to reduce. The proper design of PTP systems must
recognize this effect and take measures to reduce the impact.

Most bridges and routers support traffic prioritization. High-priority traffic suffers less fluctuation in
propagation time. PTP event messages should be sent with high priority compared with other data
whenever possible. See Annex D through Annex I for specific priority recommendations for each transport
protocol.

A.5.4 Timestamp accuracy

The resolution of the clock generating the timestamps required by PTP must be consistent with the desired
accuracy. Note that this resolution contributes to the PTP variance; see 7.6.3.

A.5.5 Stability issues

As noted in previous subclauses of this annex, the delay fluctuation introduced into the computation of the
currentDS.offsetFromMaster and currentDS.meanPathDelay members may be reduced by suitable design
of any synchronization servo algorithms of the local clock. Engineering trade-offs must be made between
the averaging times (number of samples) and the responsiveness to effects other than delay fluctuation,
such as oscillator stability.

The fundamental time stability of the local clock must be consistent with the required syncInterval and
accuracy specifications. The algorithms used to reduce delay fluctuation do not correct for drifts of the
local clocks during time intervals that are small compared with the averaging intervals of the algorithms.
Servos cannot correct for random drifts occurring within a syncInterval.

At high accuracy, the specifications on the stability of the local oscillators driving the local clock can be
quite difficult to meet. The trade-off is between cost and stability. Local oscillators typically are quartz
crystals. The frequency of quartz crystals typically drifts due to thermal, mechanical, and aging effects. Of
these effects, thermal ones are the most difficult to deal with in most applications.

For example, a typical thermal specification for uncompensated crystals is 1 PPM per degree Celsius. A 1°
temperature rise over a syncInterval of 2 s produces an error on the order of 2 �s. Accuracies in the tens of
nanosecond range, therefore, imply that some combination of better thermal specifications on the crystal,
reduced syncInterval, and better thermal management be used to reduce the thermal drift by two orders of
magnitude.

PTP allows syncInterval to be reduced to a fraction of a second depending on the PTP profile selected, with
the corresponding increase in computation and network bandwidth requirements.

Thermal specifications on crystals become increasingly expensive below 1 PPM/degree. Control of the
thermal environment must be carefully managed, particularly in high accuracy implementations. Very long
averaging times typically require oven-controlled crystals or the use of more stable oscillators. Thermal
drift during the short intervals and averaging times typical of PTP systems can often be managed by
attention to heat dissipation in surrounding devices, cooling patterns within the node, increasing the thermal
mass of the oscillator, and similar techniques. See Sullivan, Allan et al. [B24] for a thorough discussion of
clock characterization.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 191 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

A.6 System implementation issues
A PTP system is the collection of PTP components that operate together to meet the requirements of an
application. An interoperable PTP system is one where the protocol operates as specified in this standard,
the selection and configuration of nodes is such that the protocol is successful in constructing a
master−slave timing hierarchy, and the nodes with a port in the SLAVE state are able to synchronize to a
node with a port in the MASTER state. An optimal PTP system is one that is interoperable, manageable,
and meets the synchronization requirements of the application. Ensuring that a system built with
conformant PTP nodes is optimal is an issue for the system integrator. The following recommendations
facilitate the construction of interoperable systems:

⎯ Use a single transport throughout the domain, or divide the domain into regions, each of which
uses a single transport. Regions are connected using boundary clocks.

⎯ Use a single management approach throughout the system. Either the management message
mechanism of this standard or an alternate management mechanism specified in a PTP profile
are acceptable.

⎯ Use the same choice of best master clock algorithm throughout the domain. There is no
assurance that regions of a domain implementing different choices of best master clock
algorithm can be made to interoperate, even when connected by a boundary clock. Use either
the best master clock algorithm defined in this standard or an alternate specified in a PTP
profile.

⎯ Use the same selection of state configuration options (Clause 17) throughout the domain. If state
configuration options are used, it is the responsibility of the system integrator to ensure that the
selected configuration produces an interoperable system. There is no assurance that regions of a
domain implementing different choices of configuration options and configuration can be made
to interoperate, even when connected by a boundary clock.

⎯ Use a single path delay mechanism (see 11.3 and 11.4) throughout the domain, or divide the
domain into regions with each using a single path delay mechanism. Regions are connected
using one or more boundary clocks.

⎯ Use an interoperable set of attribute and configurable data set values throughout the domain, or
divide the domain into regions with each using a single such interoperable set. Regions are
connected using one or more boundary clocks.

⎯ Use the same default value for each attribute and configurable data set member on all nodes in
the system.

⎯ Use the same required maximum and required minimum range values for each attribute on all
nodes in the system.

⎯ Some options must be present and active on every node in a system for the option to work as
designed and to avoid interoperability problems. An example is the experimental security
option. Other options are effective on the subset of nodes implementing them, even if other
nodes in the system do not support the option. Furthermore, the presence of such nodes does not
interfere with nodes not implementing the option. An example is the unicast option.

⎯ Use only nodes implementing the same PTP profile throughout the domain, or divide the
domain into regions with each using a like PTP profile. Regions are connected using a boundary
clock capable of resolving the PTP profile differences. There is no assurance that the
specifications of two PTP profiles admit to the design of a boundary clock that resolves the
differences. For example, it is not possible to ensure that regions using self-configuration with
the best master clock algorithm of this standard can interoperate with regions that use
configuration of the master−slave hierarchy.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 192 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

⎯ Use only nodes implementing the same version of this standard throughout the domain, or
divide the domain into regions with each using a like version (version 1, version 2, or a future
version). Connect these regions using a boundary clock.

A.7 Performance
The following requirements should be met to achieve optimal clock synchronization performance:

a) Network delay between master and slave should be symmetric.

b) A clock may contain asymmetric delays in its timestamping mechanism or protocol path. If these
asymmetries are not negligible, they should be correctly accounted for; see 11.6.

c) Network delay between master and slave should be constant over the time interval between
Delay_Req messages.

d) Delay fluctuation due to network components and due to the protocol stack within clocks should be
reduced by two techniques:

1) The timestamps used in PTP should be generated as close to the physical layer as practical for a
given clock implementation. In cases where the most accurate timestamps can be generated only
after a message has actually been transmitted, the actual value is communicated in the Follow_
Up message from the master or the Pdelay_Resp_Follow_Up message from the peer-to-peer
transparent clock.

NOTE—See Eidson, et al. [B4], IETF RFC 1589 [B8], and IETF RFC 2783 [B13] for mechanisms to aid in
generating these timestamps.

2) Remaining delay fluctuation introduced by the protocol stack and by network components not
isolated by a boundary or transparent clock can be reduced by averaging. The averaging
algorithms are outside the scope of this standard.

e) The computing power of clocks implementing the protocol must be great enough, and the number of
clocks must be small enough, to meet the timing constraints. Implementers of boundary and ordinary
clocks, for example, need to consider the resources required to process Delay_Req messages from
slaves communicating with the node. The inability to process these messages due to resource
limitations may lead to deterioration in the synchronization performance due to missed
measurements of the path delays. Users need to be aware of this limitation when selecting nodes and
designing their systems.

f) The inherent stability and precision of a clock’s oscillator must be adequate; see A.5.4 and A.5.5.

A.8 Recommendations to aid in conformance testing
To aid in:

⎯ Testing the performance of a PTP system

⎯ Calibrating PTP devices

⎯ Verifying conformance

all PTP ordinary and boundary clocks should provide a 1 pulse per second (PPS) signal with the rising edge
of the pulse coincident with each increment in the seconds field of the clock. If implemented and not
coincident, then the device specifications should include the time offset of the 1 PPS signal from the

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 193 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

seconds increment event time. This signal may be an accessible internal test point and need not be visible
as an external output of the device in which the clock is embedded, e.g., a sensor.

A.9 Recommendation for implementations in unicast networks or networks with
non-PTP bridges and routers

A.9.1 General

PTP masters and slaves will be introduced into networks where bridges and routers do not support the PTP
standard. Furthermore, many networks do not support multicast.

The unicast communication model can be used to overcome many of these problems. Subclause 7.3.1
allows the use of a unicast model provided that the behavior of the protocol is preserved.

This subclause describes issues that must be specified in an alternate PTP profile when using a unicast
communication model, to produce an implementation that is likely to work in such networks while
satisfying a wide range of timing requirements. Some wide-area network requirements, such as security and
resilience, are outside of the scope of this discussion.

A.9.2 Boundary clocks and transparent clocks in a unicast model

In the multicast model, ordinary and boundary clocks automatically create a synchronization hierarchy
without prior knowledge of network topology. It is guaranteed that, except for management messages,
boundary clocks terminate all PTP messages. Furthermore, if only PTP bridges, routers, transparent clocks,
and boundary clocks are present, the messages used by the peer delay mechanism are guaranteed to
terminate in the neighbor peer-to-peer clock, thus ensuring correct operation of the mechanism. In the
unicast model, however, the above conditions do not hold.

To preserve the protocol behavior, the following functions must be preserved when using the unicast
model:

⎯ The correct creation of the synchronization hierarchy

⎯ The correct exchange of timing messages and associated general messages needed for
synchronization

⎯ The correct operation of the peer delay or delay request-response mechanisms for determining
path latency

⎯ A management mechanism for configuring the clocks

One way to achieve these functions is by requiring that all ordinary, boundary, and peer-to-peer transparent
clocks be configured in advance, with the unicast protocol addresses of the neighboring clocks visible from
each port. As one exception to the previous sentence, the addresses of slave-only clocks using the delay
request-response mechanism do not need to be preconfigured in other clocks if unicast option 16.1 is used.
If the peer delay mechanism is to be used, the configuration must ensure that only a single peer-to-peer
clock is visible from each port; see 11.4.4.

Clock ports may be neighbors even when there are bridges, routers, or transparent clocks between the ports.
Clock ports are not neighbors if a boundary clock is between the ports. In the event of a network
reconfiguration, the neighbor relationships may change; in which case, two ports may communicate in
unicast across a boundary clock. If a mechanism for learning topology changes is available, clocks can stop
all unicast communications between non-neighbors, leading to an optimized synchronization hierarchy and
better utilization of the network resources. If such a learning mechanism is not available, then depending on

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 194 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

the network topology, it may be advisable to use end-to-end transparent clocks instead of boundary clocks
or peer-to-peer transparent clocks. In all cases, the implementation has to provide a mechanism to break
forwarding loops for achieving correct operation of the protocol.

A.9.3 Unicast options

The configuration options of Clause 17 can be used to configure each port with the needed unicast protocol
addresses.

The unicast option of 16.1 can be used to establish unicast communications for Announce, Sync,
Delay_Resp, and Pdelay_Resp messages, and any associated general messages.

Alternatively, unicast contracts between two nodes can be created using a management procedure. These
contracts consist of the unicast address information and of respective specified packet rates for Sync,
Announce, and Delay_Req messages.

The path trace option of 16.2 can be used in defining a mechanism for breaking forwarding loops.

Since the management mechanism of 15.2 depends on the use of the multicast model and on forwarding by
boundary clocks, an alternative management mechanism for configuring the clocks must be specified as
permitted in 15.1.1.

A.9.4 Unicast conformance

A.9.4.1 General

Subclause 19.2.3 specifies that to claim conformance, a node must comply with a PTP profile in addition to
conforming to the PTP standard. This profile must specify any differences from the specifications of the
default PTP profiles of Annex J. Subclause A.9.4.2 contains examples of some of the specifications that are
needed to implement a unicast model to meet the requirements discussed in A.9.1 and A.9.2. Not discussed
are possible alternate best master clock algorithms and an alternate unicast-based management mechanism.

A.9.4.2 PTP options and attribute values

The unicast options defined in 16.1 and 17.5 need to be supported and operational by default. All other
options of 15.5.4.1.7 and Clause 17 are permitted but need to be inactive by default.

The unicast communication model is used by default as permitted by 7.3.1. If the multicast communication
model is also implemented, it must be inactive by default. Multicast communication is a recommended
option for exploiting future multicast support in these networks and for allowing interoperability with
equipment supporting the PTP default profiles.

The timing of unicast messages is determined by the values of the logInterMessagePeriod field in the
unicast negotiation REQUEST_UNICAST_TRANSMISSION TLV.

Suggested values for the logInterMessagePeriod field of the REQUEST_UNICAST_TRANSMISSION
TLV are as follows:

⎯ For requesting unicast Announce messages: The default initialization value of
logInterMessagePeriod is 1 (once every 2 s). The configurable range is −3 (8 every 1 s) to 3
(once every 8 s).

⎯ For requesting unicast Sync messages: The default initialization value of logInterMessagePeriod
is −4 (16 every 1 s). The configurable range is −7 (128 every 1 s) to 1 (once every 2 s).

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 195 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

⎯ For requesting unicast Delay_Resp messages: The default initialization value of
logInterMessagePeriod is −4 (16 every 1 s). The configurable range is −7 (128 every
1 s) to 6 (once every 64 s).

The durationField value in each REQUEST_UNICAST_TRANSMISSION TLV has a default initialization
value of 300 (300 s) and a configurable range of 10 to 1000.

The maintenance and configuration of these default and configuration range values is implementation-
specific.

In implementing the GRANT_UNICAST_TRANSMISSION TLV mechanism, the granted values should
be the same as requested in the received REQUEST_UNICAST_TRANSMISSION TLV as long as the
requests are in the configurable range.

NOTE—Since the transport may be unreliable, the requesting port should repeat the request after an implementation-
specific timeout if no grant TLV has been received. For receiving continuous service, a requester should reissue a
request in advance of the end of the grant period. The recommended advance should include sufficient margin for
reissuing the request at least two more times if no grant is received.

The values of defaultDS.announceReceiptTimeout, defaultDS.priority1, defaultDS.priority2, defaultDS.slaveOnly,
and are identical to those specified in J.3.

The physical requirements are identical to those specified in J.3.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 196 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Annex B

(informative)

Timescales and epochs in PTP

B.1 General considerations
A more detailed discussion of many of the topics in this annex may be found in Allan et al. [B1], Allan et
al. [B2], IETF RFC 1305 (1992) [B7], ISO 8601:2004 [B17], <http://tycho.usno.navy.mil/time.html>
[B18], and Sullivan et al. [B24].

Within a domain, the characteristics of the time are determined by the grandmaster clock of the domain.
The grandmaster determines:

a) The rate at which time advances. The grandmaster frequency accuracy is measured by how well a
time interval determined between any two events, as measured by the grandmaster, corresponds to
the same interval measured using a clock consistent with the internationally defined second. The
internationally defined second (SI) is the measure of time defining the TAI timescale maintained by
the Bureau International des Poids et Mesures near Paris.

b) The origin, or epoch, of the timescale.

The possible timescales and epochs available for use by the PTP grandmaster clock are as follows:
⎯ PTP timescale: Indicated by a timePropertiesDS.ptpTimescale value of TRUE. The epoch is the

PTP epoch.

⎯ ARB timescale: Indicated by a timePropertiesDS.ptpTimescale value of FALSE. The epoch is
specific to the implementation.

B.2 UTC, TAI and the PTP epoch
TAI and UTC are international standards for time based on the SI second as realized on the rotating geoid.
UTC is implemented by a suite of atomic clocks and forms the timekeeping basis for other timescales in
common use.

UTC is the timescale of most engineering and commercial interest. The UTC representation is specified by
ISO 8601:2004 [B17] as YYYY-MM-DD for the date and hh:mm:ss for the time in each day. The rate at
which UTC time advances is identical to the rate of TAI. The UTC time differs from the TAI time by a
constant offset. This offset is modified on occasion by adding or subtracting leap seconds. TAI advances
continuously, whereas UTC experiences a discontinuity with each leap-second introduction.

Starting on 0 h on 1 January 1972 UTC (Modified Julian Day (MJD) 41 317.0),13 the world’s standard time
systems began the implementation of leap seconds to allow only integral second correction between UTC
Seconds and TAI, both of which are expressed in days, hours, minutes, and seconds. On this date,
TAI UTC was 10 s. Prior to 1 January 1972, corrections to the offset between UTC and TAI were made
in fractions of a second.

13 The Julian Date (JD) is the Julian Day number (JDN) followed by the fraction of the day elapsed since the preceding Greenwich
mean noon. The JDN is a day count with the origin, JD = 0, at Greenwich mean noon on 1 January 4713 BC. The Modified Julian
Date, MJD, is the Julian Date less 2 400 000.5, which shifts the origin to midnight on 17 November 1858. For example, at 0 h on 1
January 1900, JD = 2 415 020.5 and MJD = 15 020.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 197 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Leap-second corrections, which are applied to UTC but not to TAI, are made preferably following second
23:59:59 of the last day of June or December. The first such correction, a single, positive leap-second
correction, was made following 23:59:59 on 30 June 1972 UTC, and UTC was 11 s behind TAI following
that instant.

NOTE—As of 0 h on 1 January 2006 UTC, TAI UTC = +33 s.

In computer systems, the common POSIX-based time conversion algorithms are typically used to produce
the correct ISO 8601:2004 [B17] printed representations for both TAI and UTC. UTC is behind TAI by the
number of leap seconds.

The PTP epoch is set such that a direct application of the POSIX algorithm to a PTP timescale timestamp
converts the PTP timestamp to the ISO 8601:2004 [B17] printed representation of TAI. PTP also
distributes the current number of leap seconds <currentLeapSeconds> in the currentUtcOffset field of
Announce messages. Subtracting <currentLeapSeconds> from a PTP timestamp prior to applying the
POSIX algorithm results in the ISO 8601:2004 printed representation of UTC. Conversely, applying the
inverse POSIX algorithm and adding <currentLeapSeconds> converts from the ISO 8601:2004 printed
form of UTC to the form required to generate a PTP timestamp.

For example, the POSIX algorithm applied to a PTP timestamp value of 8 s yields 00:00:08 1970:01:01 (8 s
after midnight on 1 January 1970 TAI). At this time, the value of currentUtcOffset was approximately 8 s.
Subtracting 8 s from the PTP timestamp value 8 yields a value of 0. The POSIX algorithm applied to the
value 0 yields 00:00:00 1970:01:01 (the beginning of the first second of 1 January 1970 UTC), which is the
expected UTC value. Note that from 7.2.2, the PTP epoch is approximately 8 s before this time. Thus, a
direct application of the POSIX algorithms to a PTP timescale timestamp yields the print form of TAI for
that time.

B.3 Standard time sources
There are two standard time sources of particular interest in implementing PTP systems for which UTC
traceable time is required by the application.

The first time source is the set of systems implementing the NTP protocol, widely used in synchronizing
computer systems within a campus and around the world. A set of NTP servers, to which NTP clients
synchronize, is maintained. These servers themselves are synchronized to timeservers traceable to
international standards. UTC time precision from NTP systems is usually in the millisecond range. NTP
provides the current time, the current number of leap seconds (supported only in NTP version 4), and
warning flags marking the introduction of a leap-second correction, which is inserted at the end of the
current UTC day. NTP does not correct the number of NTP seconds since the NTP epoch whenever a leap-
second correction is made. (In other words, the NTP clock effectively stops during a leap second, and the
time interval occupied by a leap second is effectively “forgotten” once it has been inserted.) The NTP
epoch is 0 h on 1 January 1900. NTP was set at 0 h on 1 January 1972 to 2 272 060 800.0, to agree with
UTC. Currently, NTP represents seconds as a 32-bit unsigned integer. NTP therefore rolls over every 232 s

 136 years, with the first such rollover occurring in approximately the year 2036.

The second system of interest is the global positioning satellite system (GPS) maintained by the U.S.
Department of Defense. UTC time precision from the GPS system is usually in the 10 ns to 100 ns range.
GPS system transmissions represent the time as {GPS Weeks, GPS SecondsInLastWeek}, i.e., the number
of weeks since the GPS epoch and the number of seconds since the beginning of the current week. From
this, GPS Seconds, i.e., the number of seconds since the GPS epoch, can be computed. GPS provides the
current time, the current number of leap seconds, and warning flags marking the introduction of a leap-
second correction. From GPS time, UTC and TAI times may be computed using the information contained
in the GPS transmissions. The GPS epoch began at 0 h on 6 January 1980 (MJD 44 244). GPS weeks are
represented in the satellite transmissions modulo 1024 weeks = 19.7 years. The first such rollover occurred
between the weeks of 15 August and 22 August 1999. Many, but not all, commercial systems are believed
to have correctly managed this rollover.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 198 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Either of these systems may be conveniently used to provide time to a clockClass 6 clock. Relationships
between the timescales discussed and examples of times in each system for interesting instants are given in
Table B.1. In Table B.1, PTP Seconds refers to the seconds portion of the time distributed by the PTP
timescale and as noted is referenced to 1 January 1970 TAI.

Table B.1⎯Relationships between timescales

From To Formula
NTP Seconds PTP Seconds PTP Seconds = NTP Seconds 2 208 988 800 +

currentUtcOffset
PTP Seconds NTP Seconds NTP Seconds = PTP Seconds + 2 208 988 800

currentUtcOffset
GPS Seconds = (GPS Weeks × 7 × 86 400)
+ GPSSecondsInLastWeek
(GPS week number must include 1024 ×
number of rollovers)

PTP Seconds PTP Seconds = GPS Seconds + 315 964 819

PTP Seconds GPS Seconds GPS Seconds = PTP Seconds 315 964 819

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 199 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Annex C

(informative)

Examples of residence and asymmetry corrections

C.1 General
This annex provides several examples illustrating the exchange of timing messages and the application of
the corrections for residence time, path delay, and asymmetry in transparent clocks.

The transit times of event messages between clocks and the residence time within transparent clocks are
shown and are not assumed to be the same in both directions.

In each case, the figures only include the critical fields of the timing messages. The clock at the left side of
the figure is always assumed to be the master or, in the case of measurement of link delay, the peer-to-peer
responder.

The times shown in the boxes representing each of the clocks are expressed as local time in the device.
Times are represented in the figures as seconds:nanoseconds.fractional nanoseconds. For example, 144:7.3
is 144.0000000073 s. Bear in mind that the timestamp fields of messages cannot hold fractional
nanoseconds. Fractional nanoseconds can only be carried in the correctionField, which in the figures is
expressed as nanoseconds.fractional nanoseconds.

The relationship of the clocks in the devices is given so that times relative to the master can be computed if
desired. This relation is expressed in the form time = Tm + offset, where Tm is the master time and offset is
the offset between the respective clock and the respective master. The times shown in the message boxes
are the times that would be entered by the clock transmitting the message. For example, in Figure C.1, the
Sync egress and ingress timestamps for the Sync message as it travels from the master, through the end-to-
end transparent clock to the slave are given as 144:7.3, (144:7.3 + 0.65 + 100.3), (144:7.3 +0.65 +100.3
+207.4), and (144:7.3 + 0.65 +207.4 +0.5 +25.2) = 144:241.05. The first is the egress timestamp t1 leaving
the master clock. The second, the ingress at the transparent clock, is computed by summing t1, 0.65, which
is the transit time between the master and the transparent clock, and 100.3, which is the assumed offset
between the local clocks in the master and the transparent clock. This computation results in the ingress
timestamp as generated by the transparent clock. The computation of the other terms is similar. The ingress
and egress timestamps for the Delay_Req message are computed in the same way. Note that the egress time
from the slave clock is given as 144:651.1 relative to the slave clock, which is 144:651.1 − 25.2 =
144:625.9 relative to the master clock.

The computation in the slave or requestor clocks illustrates the process of combining timestamps,
correctionField, and asymmetry corrections to compute offsets and path delays. These values are always
compared with the assumed values used in the figures to illustrate the operation of the protocol.

The lettered callouts in the figure are referenced to specific clauses in the standard to show the principal
point being illustrated.

With the exception of Figure C.1, all examples show the corrections for both residence time and
asymmetry.

NOTE—Hex numbers are represented by 0x in the figures in this annex for clarity.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 200 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

C.2 Computations using the delay request-response mechanism

C.2.1 Master, end-to-end transparent, and slave all one-step clocks showing
residence time corrections

Figure C.1 illustrates the measurement and computation of meanPathDelay and offsetFromMaster in a
system composed of two ordinary clocks, one a master and one a slave, separated by an end-to-end
transparent clock. All are one-step clocks. In Figure C.1, no asymmetry corrections are illustrated.

Figure C.1⎯Master, end-to-end, and slave one-step clocks; no asymmetry correction

The interpretations of key values for Figure C.1 are given in Table C.1.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 201 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table C.1⎯Interpretation of Figure C.1 key values

Key Reference Comments
a 9.5.9.3 and

11.3.2
Sum of timestamp and correctionField is t1.

b 11.5.2.1 Residence time (207.4) has been added to the correctionField.
c 11.3.2 Timestamp set to 0 or an estimate (144:300) of the egress timestamp. The correctionField is set

to 0.
d 11.3.2 Note that requestingPortIdentity and sequenceId are those of the slave clock. The

receiveTimestamp is t4 excluding fractional nanoseconds. The correctionField is the
correctionField from the Delay_Req message (which was incremented in the transparent clock
by the residence time (see 11.5.3.2) MINUS the fractional nanoseconds portion of t4 (0.85).

e 11.3.2 The first term is the difference (t2 – t3). The second term is the difference in the receive and
origin timestamps. The last two terms are the correctionField. Note that the computed
meanPathDelay matches the actual assumed mean path delay from the figure.

f 11.2 The terms in order are t2, originTimestamp, meanPathDelay, and Sync correctionField. Note that
the computed offset is in error by –0.15 due to the uncorrected asymmetry in the transit times.

g 11.5.3.2 The residence time (237.5) has been added to the correctionField by the transparent clock.

C.2.2 Master, end-to-end transparent, and slave all one-step clocks showing
residence time and asymmetry computations

Figure C.2 shows the same set of clocks, but in this figure, the asymmetry corrections are made.

Figure C.2⎯Master, end-to-end, and slave one-step clocks; with asymmetry correction

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 202 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

The interpretations of key values for Figure C.2 are given in Table C.2.

Table C.2⎯Interpretation of Figure C.2 key values

Key Reference Comments
a 9.5.9.3 and

11.3.2
Sum of timestamp and correctionField is t1.

b 11.5.2.1
and 11.6.2

Residence time (207.4) and the ingress path asymmetry (0.05) have been added to the
correctionField

c 11.3.2 Timestamp set to 0 or an estimate, 144:300, of the egress timestamp. See “i” for correctionField.
d 11.3.2 Note that requestingPortIdentity and sequenceId are those of the slave clock. The

receiveTimestamp is t4 excluding fractional nanoseconds. The correctionField is the
correctionField from the Delay_Req message MINUS the fractional nanoseconds portion of t4
(0.85).

e 11.3.2 The first term is the difference (t2 – t3). The second term is the difference in the receive and
origin timestamps. The last two terms are the correctionField modified as explained in “g”. Note
that the computed meanPathDelay matches the actual assumed mean path delay from the figure.

f 11.2 The terms in order are t2, originTimestamp, meanPathDelay, and Sync correctionField (modified
as explained in “g”). Note that the computed offset is exactly as assumed due to the application
of asymmetry corrections.

g 11.6.2 The ingress asymmetry (−0.20) on the path for the port receiving the Sync is added to the Sync
correctionField before it is used in any computation. Thus, this term (−0.20) appears added to the
Sync correctionField (207.75) in both computations.

h 7.4.2 The asymmetry in the transit times is modeled as defined in 7.4.2. Thus, for the path between the
master and the transparent clock, the mean transit time is 0.60 ns. For the master to slave
direction, the actual transit time is 0.65 ns = 0.60 + (0.05), indicating that the correct asymmetry
value is (0.05). In contrast to the other path, the master−slave direction is shorter (0.7 compared
with 0.9) yielding a negative asymmetry value (−0.2).

i 11.6.3 The egress path asymmetry (−0.2) has been subtracted from the correctionField.
j 11.6.3 and

11.5.3.2
The transparent clock added the residence time (237.5) to and subtracted the egress path
asymmetry (0.05) from the original correctionField value (0.2) or 0.2 + 237.5 – 0.05 = 237.65.

C.2.3 Master two-step and end-to-end transparent and slave one-step clocks
showing residence time and asymmetry computations

Figure C.3 illustrates a two-step master clock interacting with one-step, end-to-end transparent and slave
clocks. A comparison of the content of the Sync and Follow_Up messages and the computations of
meanPathDelay and offsetFromMaster in Figure C.3, and Figure C.2 shows the effect of using the
Follow_Up message.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 203 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Figure C.3⎯Master two-step and end-to-end transparent and slave one-step clocks; with
asymmetry correction

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 204 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

The interpretations of key values for Figure C.3 are given in Table C.3.

Table C.3⎯Interpretation of Figure C.3 key values

Key Reference Comments
a 9.5.9.4 and

11.3.2
The originTimestamp is an estimate (144:0) of t1 and the correctionField is 0.

b 11.5.2.1
and 11.6.2

Residence time (207.4) and the ingress path asymmetry (0.05) have been added to the
correctionField.

c 11.3.2 Timestamp set to 0 or an estimate (144:300) of the egress timestamp. See “i” for correctionField.
d 11.3.2 Note that requestingPortIdentity and sequenceId are those of the slave clock. The

receiveTimestamp is t4 excluding fractional nanoseconds. The correctionField is the
correctionField from the Delay_Req message MINUS the fractional nanoseconds portion of t4
(0.85).

e 11.3.2 The first term is the difference (t2 – t3). The second term is the difference in the receive and
preciseOrigin timestamps. The last three terms are the correctionField of the Sync message
modified as explained in “g,” the correctionField of the Follow_Up and Delay_Resp messages,
respectively. Note that the computed meanPathDelay matches the actual assumed mean path
delay from the figure.

f 11.2 The terms in order are t2, preciseOriginTimestamp, meanPathDelay, Sync correctionField
(modified as explained in “g”), and Follow_Up correctionField. Note that the computed offset is
exactly as assumed due to the application of asymmetry corrections.

g 11.6.2 The ingress asymmetry (−0.20) on the path for the port receiving the Sync is added to the Sync
correctionField before it is used in any computation. Thus, this term (−0.20) appears added to the
Sync correctionField (207.45) in both computations.

h 7.4.2 The asymmetry in the transit times is modeled as defined in 7.4.2. Thus, for the path between the
master and the transparent clock, the mean transit time is 0.60 ns. For the master to slave
direction, the actual transit time is 0.65 ns = 0.60 + (0.05) indicating that the correct asymmetry
value is (0.05). In contrast to the other path, the master−slave direction is shorter (0.7 compared
with 0.9) yielding a negative asymmetry value (−0.2).

i 11.6.3 The egress path asymmetry (−0.2) has been subtracted from the correctionField.
j 11.6.3 and

11.5.3.2
The transparent clock added the residence time (237.5) to and subtracted the egress path
asymmetry (0.05) from the original correctionField value (0.2) or 0.2 + 237.5 – 0.05 = 237.65.

k 11.5.2.1 No modification to the Follow_Up is made.
m 9.5.10 The sum of the correctionField and preciseOriginTimestamp is the egress time t1.
n 9.5.10 The sequenceId and sourcePortIdentity fields match those of the Sync message.

C.2.4 Master and end-to-end transparent two-step, and slave one-step, clocks
showing residence time and asymmetry computations

Figure C.4 illustrates a two-step master clock interacting with a two-step, end-to-end transparent clock and
a one-step slave clock. A comparison of the content of the Sync and Follow_Up messages and the
computations of meanPathDelay and offsetFromMaster in Figure C.4, Figure C.3, and Figure C.3 shows
the effect of using the Follow_Up message.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 205 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Figure C.4⎯Master and end-to-end transparent, two-step, and one-step, slave clocks; with
asymmetry correction

The interpretations of key values for Figure C.4 are given in Table C.4.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 206 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table C.4⎯Interpretation of Figure C.4 key values
Key Reference Comments
a 9.5.9.4 and

11.3.2
The originTimestamp is an estimate (144:0) of t1, and the correctionField is 0.

b 11.5.2.2
and 11.6.2

The residence time (207.4) and the ingress path asymmetry (0.05) corrections are made in the
Follow_Up message; see “k.”

c 11.3.2 Timestamp set to 0 or an estimate (144:300) of the egress timestamp. See “i” for the
correctionField.

d 11.3.2 Note that requestingPortIdentity and sequenceId are those of the slave clock. The
receiveTimestamp is t4 excluding fractional nanoseconds. The correctionField is the
correctionField from the Delay_Req, 0.2, message MINUS the fractional nanoseconds portion of
t4 (0.85).

e 11.3.2 The first term is the difference (t2 – t3). The second term is the difference in the receive and
preciseOrigin timestamps. The last three terms are the correctionField of the Sync message
modified as explained in “g,” the correctionField of the Follow_Up and Delay_Resp messages,
respectively. Note that the computed meanPathDelay matches the actual assumed mean path
delay from the figure.

f 11.2 The terms in order are t2, preciseOriginTimestamp, meanPathDelay, Sync correctionField
(modified as explained in “g”), and Follow_Up correctionField. Note that the computed offset is
exactly as assumed due to the application of asymmetry corrections.

g 11.6.2 The ingress asymmetry (−0.20) on the path for the port receiving the Sync is added to the Sync
correctionField before it is used in any computation. Thus, this term (−0.20) appears added to the
Sync correctionField (0.0) in both computations.

h 7.4.2 The asymmetry in the transit times is modeled as defined in 7.4.2. Thus, for the path between the
master and the transparent clock, the mean transit time is 0.60 ns. For the master to slave
direction, the actual transit time is 0.65 ns = 0.60 + (0.05) indicating that the correct asymmetry
value is (0.05). In contrast to the other path, the master−slave direction is shorter (0.7 compared
with 0.9) yielding a negative asymmetry value (−0.2).

i 11.6.3 The egress path asymmetry (−0.2) has been subtracted from the correctionField.
j 11.6.3 and

11.5.3.3
No corrections are made to the Delay_Req message. See “p” for the corrections for residence
time and egress asymmetry.

k 11.5.2.2
and 11.6.2

The residence time (207.4) and the ingress path asymmetry (0.05) corrections are added to the
correctionField (0.3) of the Follow_Up message.

m 9.5.10 The sum of the correctionField and preciseOriginTimestamp is the egress time t1.
n 9.5.10 The sequenceId and sourcePortIdentity fields match those of the Sync message.
p 11.6.3 and

11.5.3.3
The transparent clock added the residence time of the associated Delay_Req message (237.5) to
and subtracted the egress path asymmetry (0.05) from the original correctionField value of the
Delay_Resp (−0.65) or −0.65 + 237.5 – 0.05 = 236.8.

C.2.5 Master one-step, end-to-end transparent two-step, and one-step slave
clocks showing residence time and asymmetry computations

Figure C.5 illustrates a one-step master clock interacting with a two-step end-to-end transparent and a one-
step slave clock. A comparison of the content of the Sync and Follow_Up messages and the computations
of meanPathDelay and offsetFromMaster in Figure C.5, Figure C.4, Figure C.3, and Figure C.2 shows the
effect of using the Follow_Up message.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 207 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Figure C.5⎯One-step master, two-step end-to-end transparent, and one-step slave clocks;
with asymmetry correction

The interpretations of key values for Figure C.5 are given in Table C.5.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 208 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table C.5⎯Interpretation of Figure C.5 key values
Key Reference Comments
a 9.5.9.3 and

11.3.2
Sum of timestamp and correctionField is t1.

b 11.5.2.2
and 11.6.2

The residence time (207.4) and the ingress path asymmetry (0.05) corrections are made in the
Follow_Up message; see “k.”

c 11.3.2 Timestamp set to 0 or an estimate (144:300) of the egress timestamp. See “i” for the
correctionField.

d 11.3.2 Note that requestingPortIdentity and sequenceId are those of the slave clock. The
receiveTimestamp is t4 excluding fractional nanoseconds. The correctionField is the
correctionField from the Delay_Req, 0.2, message MINUS the fractional nanoseconds portion of
t4 (0.85).

e 11.3.2 The first term is the difference (t2 – t3). The second term is the difference in the receive and
preciseOrigin timestamps. The last three terms are the correctionField of the Sync message
modified as explained in “g,” the correctionField of the Follow_Up and Delay_Resp messages,
respectively. Note that the computed meanPathDelay matches the actual assumed mean path
delay from the figure.

f 11.2 The terms in order are t2, preciseOriginTimestamp, meanPathDelay, Sync correctionField
(modified as explained in “g”), and Follow_Up correctionField. Note that the computed offset is
exactly as assumed due to the application of asymmetry corrections.

g 11.6.2 The ingress asymmetry (−0.20) on the path for the port receiving the Sync is added to the Sync
correctionField before it is used in any computation. Thus, this term (−0.20) appears added to the
Sync correctionField (0.3) in both computations.

h 7.4.2 The asymmetry in the transit times is modeled as defined in 7.4.2. Thus, for the path between the
master and the transparent clock, the mean transit time is 0.60 ns. For the master to slave
direction, the actual transit time is 0.65 ns = 0.60 + (0.05) indicating that the correct asymmetry
value is (0.05). In contrast to the other path, the master−slave direction is shorter (0.7 compared
with 0.9) yielding a negative asymmetry value (−0.2).

i 11.6.3 The egress path asymmetry (−0.2) has been subtracted from the correctionField.
j 11.6.3 and

11.5.3.3
No corrections are made to the Delay_Req message. See “p” for the corrections for residence
time and egress asymmetry.

k 11.5.2.2
and 11.6.2

The residence time (207.4) is entered in the correctionField, and subsequently, the ingress path
asymmetry (0.05) correction is added to the correctionField of the Follow_Up message.

m 11.5.2.2 The originTimestamp of the Sync message is copied into the preciseOriginTimestamp. The
domainNumber (not shown), sourcePortIdentity, and sequenceId fields of the Sync message are
copied into the corresponding fields of the Follow_Up message.

n 11.5.2.2 The twoStepFlag is set to TRUE.
p 11.6.3 and

11.5.3.3
The transparent clock added the residence time of the associated Delay_Req message (237.5) to
and subtracted the egress path asymmetry (0.05) from the original correctionField value of the
Delay_Resp (−0.65) or −0.65 + 237.5 – 0.05 = 236.8.

C.3 Computations using the peer delay mechanism

C.3.1 One-step peer requestor, end-to-end transparent, and peer responder
clocks showing residence time and asymmetry computations

Figure C.6 illustrates a one-step peer requestor clock interacting with a one-step end-to-end transparent and
peer responder clocks.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 209 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Figure C.6—One-step peer responder, end-to-end transparent, and peer requestor clocks;
with asymmetry correction

The interpretations of key values for Figure C.6 are given in Table C.6.

Table C.6—Interpretation of Figure C.6 key values
Key Reference Comments
a 11.4.3 The originTimestamp is 0 or an estimate of the egress timestamp t1.
b 11.4.3 and

11.6.4
The correctionField is 0 – (–0.2) = 0.2, where (–0.2) is the asymmetry on the egress path.

c 11.5.4.2 and
11.6.4

The correctionField is modified by adding the residence time in the end-to-end transparent clock
and by subtracting the asymmetry on the egress path. 0.2 + 237.5 – (0.05) = 237.65.

d 11.4.3 requestReceiptTimestamp = 0. requestingPortIdentity and sequenceId fields are copied from the
sourcePortIdentity and sequenceId fields of the Pdelay_Req message.

e 11.4.3 The correctionField is the sum of the correctionField of the Pdelay_Req message and the
turnaround time (t3 – t2), i.e., 237.65 + (144:400.1 – 144:238.95) = 398.80.

f 11.5.4.2 and
11.6.5

The correctionField is modified by adding the residence time 207.4 and the ingress asymmetry
0.05 to the original correctionField. 398.80 + 207.4 +0.05 = 606.25.

g 11.4.3 and
11.6.5

Prior to computing the meanPathDelay, the correctionField of the Pdelay_Resp message is
modified by adding the ingress asymmetry 0.2. i.e., 606.25 + (– 0.2) = 606.05. meanPathDelay
= [(t4 – t1) – correctionField of Pdelay_Resp]/2 = [(144:633.85 – 144:25.2) – 606.05]/2 = 1.3.

C.3.2 One-step peer requestor, two-step end-to-end transparent, and one-step
peer responder clocks showing residence time and asymmetry
computations

Figure C.7 illustrates a one-step peer requestor clock interacting with two-step end-to-end transparent and
one-step peer responder clocks.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 210 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Figure C.7—One-step peer responder, two-step end-to-end transparent, and one-step peer
requestor clocks; with asymmetry correction

The interpretations of key values for Figure C.7 are given in Table C.7.

Table C.7—Interpretation of Figure C.7 key values
Key Reference Comments
a 11.4.3 The originTimestamp is 0 or an estimate of the egress timestamp t1.
b 11.4.3 and

11.6.4
The correctionField is 0 – (–0.2) = 0.2, where (–0.2) is the asymmetry on the egress path.

c 11.5.4.2 and
11.6.4

The correctionField is not modified. See “j” for corrections for residence time of Pdelay_Req
and egress path asymmetry.

d 11.4.3 requestReceiptTimestamp = 0. requestingPortIdentity and sequenceId fields are copied from the
sourcePortIdentity and sequenceId fields of the Pdelay_Req message.

e 11.4.3 The correctionField is the sum of the correctionField of the Pdelay_Req message and the
turnaround time (t3 – t2), i.e., 0.2 + (144:400.1 – 144:238.95) = 161.35.

f 11.5.4.3 and
11.6.5

The PTP fields of the Pdelay_Resp are not modified except for the twoStepFlag, which is set to
TRUE. See “j” for corrections for the residence time of the Pdelay_Resp message and ingress
path asymmetry.

g 11.4.3 and
11.6.5

Prior to computing the meanPathDelay, the correctionField of the Pdelay_Resp message is
modified by adding the ingress asymmetry 0.2. i.e., 161.35 + (- 0.2) = 161.05. meanPathDelay
= [(t4 – t1) – (responseOriginTimestamp – requestReceiptTimestamp) – correctionField of
Pdelay_Resp – correctionField of Pdelay_Resp_Follow_Up]/2 = [(144:633.85 – 144:25.2) – (0
– 0) – (161.35 – 0.2)) – 444.90]/2 = 1.3.

h 11.5.4.3 The sourcePortIdentity, sequenceId, and requestingPortIdentity fields of the Pdelay_Resp
message are copied into the same fields of the Pdelay_Resp_Follow_Up message. The TWO-
STEP flag is set to TRUE. The responseOriginTimestamp is set to 0.

j 11.5.4.3,
11.6.4, and
11.6.5

The correctionField is the sum of the residence times of the Pdelay_Req and Pdelay_Resp
messages minus the egress asymmetry for the Pdelay_Req plus the ingress asymmetry for the
Pdelay_Resp messages, i.e., 237.5 + 207.4 – (0.05) + (0.05) = 444.90.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 211 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

C.3.3 One-step peer requestor, two-step end-to-end transparent, and two-step
peer responder clocks showing residence time and asymmetry
computations—option 1

Figure C.8 illustrates a one-step peer requestor clock interacting with two-step end-to-end transparent and
two-step peer responder clocks. The two-step responder uses the first option of 11.4.3 in generating the
Pdelay_Resp and Pdelay_Resp_Follow_Up messages.

Figure C.8—Two-step peer responder, two-step end-to-end transparent, and one-step peer
requestor clocks: option 1; with asymmetry correction

The interpretations of key values for Figure C.8 are given in Table C.8.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 212 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table C.8—Interpretation of Figure C.8 key values
Key Reference Comments
a 11.4.3 The originTimestamp is 0 or an estimate of the egress timestamp t1.
b 11.4.3 and

11.6.4
The correctionField is 0 – (–0.2) = 0.2, where (–0.2) is the asymmetry on the egress path.

c 11.5.4.2 and
11.6.4

The correctionField is not modified. See “m” for corrections for residence time of Pdelay_Req
and egress path asymmetry.

d 11.4.3 requestReceiptTimestamp = 0. requestingPortIdentity and sequenceId fields are copied from
the sourcePortIdentity and sequenceId fields of the Pdelay_Req message.

e 11.4.3 The correctionField is set to 0.
f 11.5.4.3 and

11.6.5
The PTP fields of the Pdelay_Resp are not modified. See “m” for corrections for the residence
time of the Pdelay_Resp message and ingress path asymmetry.

g 11.4.3 and
11.6.5

Prior to computing the meanPathDelay the correctionField of the Pdelay_Resp message is
modified by adding the ingress asymmetry 0.2. i.e., 606.25 + (- 0.2) = 606.05. meanPathDelay
= [(t4 – t1) – (responseOriginTimestamp – requestReceiptTimestamp) – correctionField of
Pdelay_Resp – correctionField of Pdelay_Resp_Follow_Up]/2 = [(144:633.85 – 144:25.2) – (0
– 0) – 0 – 606.05]/2 = 1.3.

h 11.5.4.3 The sourcePortIdentity, sequenceId, and requestingPortIdentity fields of the Pdelay_Resp
message are copied into the same fields of the Pdelay_Resp_Follow_Up message. The TWO-
STEP flag is set to TRUE. The responseOriginTimestamp is set to 0.

k 11.5.4.3,
11.6.4, and
11.6.5

The correctionField is the sum of the correctionField of the Pdelay_Req message and the
turnaround time, i.e., (t3 – t2). 0.2 + (144:400.1 – 144:238.95) = 161.35.

m 11.5.4.3,
11.6.4, and
11.6.5

The correctionField is the sum of the original correctionField and the residence times of the
Pdelay_Req and Pdelay_Resp messages minus the egress asymmetry for the Pdelay_Req plus
the ingress asymmetry for the Pdelay_Resp messages, i.e., 161.35 +237.5 + 207.4 – (0.05) +
(0.05) = 606.25.

C.3.4 One-step peer requestor, two-step end-to-end transparent, and two-step
peer responder clocks showing residence time and asymmetry
computations—option 2

Figure C.9 illustrates a one-step peer requestor clock interacting with two-step end-to-end transparent and
two-step peer responder clocks. The two-step responder uses the second option of 11.4.3 in generating the
Pdelay_Resp and Pdelay_Resp_Follow_Up messages.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 213 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Figure C.9—Two-step peer responder, two-step end-to-end transparent, and one-step peer
requestor clocks: option 2; with asymmetry correction

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 214 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

The interpretations of key values for Figure C.9 are given in Table C.9.

Table C.9—Interpretation of Figure C.9 key values
Key Reference Comments
a 11.4.3 The originTimestamp is 0 or an estimate of the egress timestamp t1.
b 11.4.3 and

11.6.4
The correctionField is 0 – (–0.2) = 0.2, where (–0.2) is the asymmetry on the egress path.

c 11.4.3,
11.5.4.3, and
11.6.4

The correctionField of the Pdelay_Req message is not modified.

d 11.4.3 requestingPortIdentity and sequenceId fields are copied from the sourcePortIdentity and
sequenceId fields of the Pdelay_Req message. The TWO-STEP flag is set to TRUE.

e 11.4.3 The correctionField is 0 less the fractional nanoseconds portion of t2, i.e., 0 – 0.95 = –0.95.
f 11.4.3,

11.5.4.3, and
11.6.5

The requestReceiptTimestamp is set to the seconds and nanoseconds portion of t2, 144:238.

g 11.4.3 and
11.6.5

Prior to computing the meanPathDelay, the correctionField of the Pdelay_Resp message is
modified by adding the ingress asymmetry – 0.2. i.e., – (0.95) + (–0.2) = –1.15. meanPathDelay
= [(t4 – t1) – (responseOriginTimestamp – requestReceiptTimestamp) – correctionField of
Pdelay_Resp – correctionField of Pdelay_Resp_Follow_Up]/2 = [(144:633.85 – 144:25.2) –
(144:400 – 144:238) – (– 0.95 + (– 0.20)) – (445.2)]/2 = 1.3.

h 11.4.3 The sourcePortIdentity, sequenceId, and requestingPortIdentity fields of the Pdelay_Resp
message are copied into the same fields of the Pdelay_Resp_Follow_Up message. The TWO-
STEP flag is set to TRUE.

k 11.4.3 and
11.6.5

The correctionField is set to the correctionField of the Pdelay_Req message plus the fractional
nanoseconds portion of t3, i.e., 0.2 + 0.1 = 0.3.

m 11.5.4.3,
11.6.4, and
11.6.5

The correctionField is the sum of the original correctionField and the residence times of the
Pdelay_Req and Pdelay_Resp messages minus the egress asymmetry for the Pdelay_Req plus
the ingress asymmetry for the Pdelay_Resp messages, i.e., 0.3 +237.5 + 207.4 – (0.05) + (0.05)
= 445.2.

p 11.4.3 The responseOriginTimestamp is set to the seconds and nanoseconds portion of t3, 144:400.

C.3.5 One-step peer requestor, one-step end-to-end transparent, and two-step
peer responder clocks showing residence time and asymmetry
computations—option 2

Figure C.10 illustrates a one-step peer requestor clock interacting with one-step end-to-end transparent and
two-step peer responder clocks. The two-step responder uses the second option of 11.4.3 in generating the
Pdelay_Resp and Pdelay_Resp_Follow_Up messages.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 215 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Figure C.10—Two-step peer responder, one-step end-to-end transparent, and one-step
peer requestor clocks: option 2; with asymmetry correction

The interpretations of key values for Figure C.10 are given in Table C.10.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 216 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table C.10—Interpretation of Figure C.10 key values
Key Reference Comments
a 11.4.3 The originTimestamp is 0 or an estimate of the egress timestamp t1.
b 11.4.3 and

11.6.4
The correctionField is 0 – (–0.2) = 0.2, where (–0.2) is the asymmetry on the egress path.

c 11.5.4.2
and 11.6.4

The correctionField is the sum of the original correctionField and residence time of the
Pdelay_Req message less egress path asymmetry. 0.2 + 237.5 – 0.05 = 237.65.

d 11.4.3 requestingPortIdentity and sequenceId fields are copied from the sourcePortIdentity and
sequenceId fields of the Pdelay_Req message. The TWO-STEP flag is set to TRUE.

e 11.4.3 The correctionField is set to 0 less the fractional nanoseconds portion of t2. = –0.95.
f 11.5.4.2

and 11.6.5
The correctionField is the sum of the original correctionField and the residence time of the
Pdelay_Resp message + the ingress asymmetry for the Pdelay_Resp messages. –0.95 + 207.4 +
(0.05) = 206.5.

g 11.4.3 and
11.6.5

Prior to computing the meanPathDelay, the correctionField of the Pdelay_Resp message is
modified by adding the ingress asymmetry – 0.2. i.e., 206.5 + (–0.2) = 206.3. meanPathDelay =
[(t4 – t1) – (responseOriginTimestamp – requestReceiptTimestamp) – correctionField of
Pdelay_Resp – correctionField of Pdelay_Resp_Follow_Up]/2 = [(144:633.85 – 144:25.2) –
(144:400 – 144:238) – (206.5 + (– 0.2)) – (237.75)]/2 = 1.3.

h 11.4.3 The sourcePortIdentity, sequenceId, and requestingPortIdentity fields of the Pdelay_Resp
message are copied into the same fields of the Pdelay_Resp_Follow_Up message. The TWO-
STEP flag is set to TRUE.

k 11.4.3 and
11.6.5

The correctionField is set to the correctionField of the Pdelay_Req message plus the fractional
nanoseconds portion of t3, i.e., 237.65 + 0.1 = 237.75.

m 11.4.3 The responseOriginTimestamp is set to the seconds and nanoseconds portion of t3, 144:400.
n 11.4.3 and

11.6.5
The requestReceiptTimestamp is set to the seconds and nanoseconds portion of t2, 144:238.

C.3.6 One-step peer master, two-step peer-to-peer transparent, and one-step
peer slave clocks showing time transfer from master to slave

Figure C.11 illustrates a one-step peer master clock interacting with two-step peer-to-peer transparent and
one-step peer slave clocks to transfer time from the master to the slave.

Figure C.11—One-step peer master, two-step peer-to-peer transparent, and one-step peer
slave clocks; time computation

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 217 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

The interpretations of key values for Figure C.11 are given in Table C.11.

Table C.11—Interpretation of Figure C.11 key values
Key Reference Comments
a 9.5.9.3 The originTimestamp is the seconds and nanoseconds portion of the egress timestamp t1. The

sum of the originTimestamp and the correctionField is the exact value of t1.
b 11.4.3 The meanPathDelay values for both links are determined using the peer delay mechanism to be

0.60 and 0.70, respectively.
c 11.5.2.2 The TWO-STEP flag is set to TRUE prior to transmitting the Sync message.
d 11.5.2.2,

11.4.5.1, and
11.6.2

sourcePortIdentity and sequenceId fields are copied from the sourcePortIdentity and
sequenceId fields of the Sync message. The preciseOriginTimestamp field is set to the value of
the originTimestamp field. The correctionField is first set to the residence time 207.4 of the
Sync message. This value is then further corrected by adding the meanPathDelay on the Sync
ingress port path, 207.4 + 0.6. The result is then further corrected by adding the Sync ingress
port path asymmetry, 207.4 + 0.6 + 0.05 = 208.05.

e 11.2 The offsetFromMaster = t2 – preciseOriginTimestamp – meanPathDelay on ingress link –
correctionField of Sync message – correctionField of Follow_Up message. OffsetFromMaster
= 144:241.05 – 144:7 – 0.70 – (0.3 + (–0.20)) – 208.05 = 25.2.

f 11.6.2 The correctionField of the received Sync message is modified by adding the value of the
ingress path asymmetry prior to any use in computation “e.” 0.3 + (– 0.20) = 0.1.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 218 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Annex D

(normative)

Transport of PTP over User Datagram Protocol over Internet Protocol

Version 4

D.1 General
This annex specifies those portions of the PTP standard that are specific to implementations that transport
messages over the User Datagram Protocol (UDP) as defined in IETF RFC 768 (1980) [B5], and Internet
Protocol version 4 (IPv4), as defined in IETF RFC 791 (1981) [B6]. The specifications in this annex shall
apply to all PTP implementations using UDP/IPv4 as a communication service.

The first octet of the PTP message shall immediately follow the final octet of the UDP header.

The transmitting or intermediate node may set the UDP checksum to 0.

When using this transport with unicast transmission, modifications to PTP event packets by transparent
clocks may corrupt applications that incorrectly use the PTP destination port.

NOTE—The UDP destination ports below are reserved values assigned to PTP, and no interference should occur.
However, it is known that some applications in use disregard these assignments. It is these applications that are
vulnerable to the action of transparent clocks.

D.2 UDP port numbers
The UDP destination port of an event message shall be 31914.

The UDP destination port of a multicast general message shall be 320.

The UDP destination port of a unicast general message that is addressed to a clock shall be 320.

The UDP destination port of a unicast general message that is addressed to a manager shall be the UDP
source port value of the PTP message to which this is a response.

D.3 IPv4 multicast addresses
PTP messages shall use the multicast message specified in Table D.1.

Table D.1⎯IPv4 multicast addresses

IANA assigned name15 Message types Address

PTP-primary All except peer delay mechanism messages 224.0.1.129

PTP-pdelay Peer delay mechanism messages 224.0.0.107

14 The Internet Assigned Numbers Authority (IANA) assigned the dedicated ports numbers shown to PTP; see
http://www.iana.org/assignments/port-numbers.
15 The Internet Assigned Numbers Authority (IANA) assigned the dedicated multicast addresses along with the IANA names to PTP.
These names appear in the IANA listings identifying multicast addresses and names.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 219 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

For messages sent to the PTP-pdelay address, the Time to Live (TTL) field shall be set to 1.

D.4 transportSpecific field values
The transportSpecific field (see 13.3.2.1) shall be interpreted as specified in Table D.2.

Table D.2⎯transportSpecific field values
Bit Name Meaning
0 hardwareCompatibility Some Version 1 implementations of hardware assist timestamping check the length of

the incoming packet before qualifying the timestamp and require the UDP payload of the
PTP event messages to be at least 124 octets in length. Nodes using such hardware shall
set bit 0 equal to “1” in all Announce and PTP event messages transmitted from the
node.

The receiver of any PTP Announce or event message with bit 0 equal to “1” shall extend
the UDP payload of all PTP event messages transmitted to the receiving node, so that the
UDP payload length equals 124 octets. The padding octets shall have all bits zero. This
padding shall be added to all transmitted PTP event messages to the receiving node, for a
time duration equal to the value of portDS.announceReceiptTimeout seconds since the
last PTP Announce or event message received from that node with bit 0 equal to “1.”
The padding shall be added irrespective of whether the PTP event messages are
transmitted using a multicast or a unicast model.

If the transmitter is not making a request for padding, the bit shall be transmitted as zero.
Except as required for backward compatibility with some version 1 hardware, nodes
shall disregard the padding octets.

See NOTE.
1−3 reserved The bit shall be transmitted as zero and ignored by the receiver.

NOTE⎯This specification can result in nodes that do not require the padding receiving padded event messages.

D.5 Optional values
For PTP event messages, the value of the differentiated service (DS) field in the Type of Service (ToS)
field should be set to the highest traffic class selector codepoint available.

NOTE—When the layer 2 transport mechanism allows for multiple priorities, it is recommended that the highest
priority be used for event messages.

D.6 IPv4 Options
IPv4 options shall not be used.

D.7 Protocol addresses
For any quantity of data type PortAddress (see 5.3.6, when the networkProtocol member value is
UDP/IPv4, see 7.4.1:

⎯ The addressLength member value shall be 4.

⎯ The addressField member value shall be the IPv4 address of the port represented as four groups
of two hexadecimal digits. For example, the IPv4 address 207.142.131.235 expressed in the
usual text notation appears as the octet array CF8E83EB16.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 220 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Annex E

(normative)

Transport of PTP over User Datagram Protocol over Internet Protocol

Version 6

E.1 General
This annex specifies those portions of the PTP standard that are specific to implementations that transport
messages over the User Datagram Protocol (UDP) as defined in IETF RFC 768 (1980) [B5], and Internet
Protocol version 6 (IPv6), as defined in IETF RFC 2460 (1998) [B12]. The specifications in this annex
shall apply to all PTP implementations using UDP/IPv6 as a communication service.

The first octet of the PTP message shall immediately follow the final octet of the UDP header.

A transmitting node shall extend the UDP payload of all PTP messages by two octets beyond the end of the
PTP message. The contents of the UDP checksum field or the final two octets of the UDP payload may be
modified by the initiator or an intermediate node to ensure that the UDP checksum remains uncompromised
after any modification of PTP fields. This modification to update the UDP checksum may be implemented
using the mechanism defined in IETF RFC 1624 (1994) [B9]. Other than for purposes of calculating the
UDP checksum, the contents of the UDP field beyond the end of the PTP fields shall be ignored by the
receiver.

E.2 UDP port numbers
The UDP destination port value of an event message shall be 31916.

The UDP destination port value of a multicast general message shall be 320.

The UDP destination port value of a unicast general message that is addressed to a clock shall be 320.

The UDP destination port value of a unicast general message that is addressed to a manager shall be the
UDP source port value of the PTP message to which this is a response.

16 The Internet Assigned Numbers Authority (IANA) assigned the dedicated ports numbers shown to PTP; see
http://www.iana.org/assignments/port-numbers.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 221 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

E.3 IPv6 multicast addresses

Table E.1⎯IPv6 multicast addresses
IANA assigned name Message types Address (hex)
PTP-primary All except peer delay mechanism

messages
FF0X:0:0:0:0:0:0:181 see NOTE

PTP-pdelay Peer delay mechanism messages FF02:0:0:0:0:0:0:6B

NOTE⎯The hexadecimal values for “X” in the PTP-primary address are defined in IETF RFC 4291 (2006) [B14].
These are as follows:
 0 reserved
 1 Interface-Local scope
 2 Link-Local scope
 3 reserved
 4 Admin-Local scope
 5 Site-Local scope
 6 (unassigned)
 7 (unassigned)
 8 Organization-Local scope
 9 (unassigned)
 A (unassigned)
 B (unassigned)
 C (unassigned)
 D (unassigned)
 E Global scope
 F reserved

For messages sent to the PTP-pdelay address, the Hop Limit (HL) field shall be set to 1.

E.4 transportSpecific field values
All bits of the transportSpecific field (see 13.3.2.1) shall be transmitted as zero and shall be ignored by the
receiver.

E.5 Optional values
For PTP event messages, the value of the Differentiated Service (DS) field in the Traffic Class (TC) field
should be set to the highest traffic class selector codepoint available.

NOTE 1— When the layer 2 transport mechanism allows for multiple priorities, the highest priority should be used for
event messages.

NOTE 2— The use of IPv6 Extension Headers is outside the scope of this standard.

E.6 Protocol addresses
For any quantity of data type PortAddress (see 5.3.6), when the networkProtocol member value is
UDP/IPv6, see 7.4.1:

⎯ The addressLength member value shall be 16.

⎯ The addressField member value shall be the IPv6 address of the port represented as 16
groups of two hexadecimal digits. For example, the IPv6 address
2001:0DB8:85A3:08D3:1332:8A2E:0270:7225 expressed in the usual text notation per
IETF RFC 4291 (2006) [B14] appear as the octet array
20010DB885A308D313328A2E02707225.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 222 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Annex F

(normative)

Transport of PTP over IEEE 802.3 /Ethernet

F.1 General
This annex specifies those portions of the PTP standard that are specific to implementations that transport
messages directly over Ethernet frames as specified in IEEE Std 802.3-2005.

The first octet of the PTP message shall occupy the first octet of the client data field.

F.2 Ethertype
The specifications in this annex shall apply to all PTP implementations directly using Ethernet format
packets with the 88F716 Ethertype as a communication service.

F.3 Multicast MAC Addresses
By default PTP messages shall use MAC addresses as specified in Table F.1.

Table F.1⎯Multicast MAC addresses
Message types Address (hex)
All except peer delay mechanism messages 01-1B-19-00-00-00
Peer delay mechanism messages 01-80-C2-00-00-0E

The OUI value of 00-1B-19 represents the value assigned to this standard by the IEEE/RAC. The MAC
address value of 01-1B-19-00-00-00 represents a multicast address derived from the pool of multicast
addresses within that space.

The MAC address of 01-80-C2-00-00-0E represents a multicast address derived from the pool of multicast
addresses administered by IEEE Std 802.1AB. It is permissible, however, to use address 01-1B-19-00-00-
00 or address 01-80-C2-00-00-0E for all PTP messages, if such use is defined in a PTP profile.

To ensure peer delay measurements on ports blocked by (Rapid/Multiple) Spanning Tree Protocols, a
reserved address, 01-80-C2-00-00-0E, shall be used as a Destination MAC Address for PTP peer delay
mechanism messages.

NOTE 1—Per 8.6.3 of IEEE Std 802.1Q-2005, frames containing reserved addresses in their destination address field
are not relayed by the bridge.

NOTE 2—At its July 17−20, 2006 meeting the IEEE 802.1 Working Group approved a motion that included the
following text: “re-designate the reserved address currently identified for use by 802.1AB as an address that can be
used by protocols that require the scope of the address to be limited to an individual LAN” and “The reserved multicast
address that IEEE Std.1588:2008/IEC 6588:2009 should use is 01-80-C2-00-00-0E.” This address is not reserved
exclusively for PTP, but rather it is a shared address.

Per port, peer delay measurements shall use the egress port’s MAC Address as the source MAC Address in
PTP peer delay mechanism messages.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 223 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

F.4 transportSpecific field values
The transportSpecific field (see 13.3.2.1) shall be interpreted as a subtype of the Ethertype as defined in
Table F.2.

If the device recognizes the subtype, then the message is passed to the PTP layer. If the device does not
recognize the subtype, then the message is treated as any other message with an unrecognized Ethertype.

Table F.2⎯Ethernet transport specific field
Enumeration Value (hex) Specification
DEFAULT 0 All PTP layer 2 Ethernet transmissions not covered by another enumeration

value.
ETHERNET_AVB 1 This value is reserved for use in connection with the standard being developed

by the IEEE 802.1 AVB Task Group as P802.1AS .
Reserved 2–F Reserved for assignment in future versions of this standard.

F.5 Optional values
When the Ethernet transport mechanism allows for multiple priorities, the highest priority should be used
for event messages.

NOTE—For Ethernet, IEEE Std 802.1Q-2005 discusses the implementation of priorities.

F.6 Protocol addresses
For any quantity of data type PortAddress (see 5.3.6), when the networkProtocol member value is IEEE
802.3, see 7.4.1:

⎯ The addressLength member value shall be 6.

⎯ The addressField member value shall be the six octet source address field of the Ethernet
header.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 224 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Annex G

(normative)

Transport of PTP over DeviceNET

G.1 Protocol
This annex specifies those portions of the PTP standard that are specific to DeviceNet implementations.
The specifications in this annex shall apply to all PTP implementations using DeviceNet as a
communication network. For additional information on DeviceNet, consult the DeviceNet specification
provided by ODVA (Open DeviceNet Vendors Association, http://www.odva.org).

 NOTE— DeviceNet is also covered by IEC 62026-3:2008

G.2 Event message timestamp point
The event message timestamp point (see 7.3.4.1) shall correspond to the trailing edge of the sixth bit of the
end of frame field of the first fragmented packet of a PTP event message as shown in Figure G.1.

Figure G.1⎯ Event message timestamp point

G.3 clockIdentity
The clockIdentity octets [0] through [7] (see 7.5.2.2.3) shall be the combination of the node’s vendor
identification (vendor ID) and serial number uniquely associated with the node.

Example:
⎯ The vendor ID for Company X is AC7B16. If Company X wished to create a DeviceNet device,

a legal value for the clockIdentity would be: 0201AC7BF2235C0116 where the 4 octet array
F2235C0116 would be guaranteed by Company X to be unique among all Company X assigned
DeviceNet numbers.

Table G.1 depicts the layout of the clockIdentity for octets 2 through 7. Octets [0] and [1] are specified in
7.5.2.2.3.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 225 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table G.1⎯DeviceNet clockIdentity octets 0 through 7
technology vendorId serialNumber Field

0
02

1
01

2
AC

3
7B

4
F2

5
23

6
5C

7
01

order
hex

00000010 00000010 10101100 00111011 11110010 00100011 01011100 00000001 bits
| | | |
| most significant byte least significant byte |
most significant bit least significant bit

G.4 PTP message formats
PTP messages are transmitted with the most significant byte of a data type transmitted first followed
sequentially by bytes in order of decreasing significance. The first octet of the PTP message shall
immediately follow the final octet of the DeviceNet header.

These data are sent using multiple DeviceNet packets (frames) following the standard DeviceNet Explicit
Message fragmentation logic. All PTP messages are fragmented on DeviceNet. The DeviceNet header is
present in all packets.

DeviceNet headers for all PTP message packets are specified in Table G.2. This header is present in each
DeviceNet frame of the PTP message.

Table G.2⎯DeviceNet headers for all PTP message packets
Octet

0
Octet

1
Octet

2
Type

(informative)
Field name

h0h1 j0j1 k0k1 octet |
octet |
octet

Fragment = 1, XID = 0, Source MACID |
Fragment Type, Fragment Count |
R/R = 1, Service Code = UCMM Service Code

G.5 DeviceNet addressing for PTP
All PTP messages shall be transmitted by an UnConnect Message Manager (UCMM) capable device as an
Unconnected Response Message (Message Group 3, Message ID5) and by a Group 2 Only server as an
Unconnected Response Message (Message Group 2, Message ID 3). Thus, each node on the subnet has its
own unique multicast address (Controller Area Network (CAN) identifier). The same multicast address is
used for all Domains.

All PTP messages shall have the Request/Response bit in the DeviceNet header set to TRUE.

The PTP multicast addresses are shared with other DeviceNet functions, some of which are point-to-point
messages. To distinguish a PTP message, the transmitting node shall place its own node address in the
Destination Node field of the DeviceNet message header. The message is then further identified as a PTP
message by the UCMM service code.

The UCMM service code field shall be 88 (5816) for the event class of messages and 89 (5916) for the
General class of messages.

For any quantity of data type PortAddress (see 5.3.6), when the networkProtocol member value is
DeviceNet, see 7.4.1:

⎯ The addressLength member value shall be 2.

⎯ The addressField member value shall be the DeviceNet mac ID.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 226 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

G.6 transportSpecific field values
All bits of the transportSpecific field (see 13.3.2.1) shall be transmitted as zero and shall be ignored by the
receiver.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 227 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Annex H

(normative)

Transport of PTP over ControlNET

H.1 Protocol
This annex specifies those portions of the PTP standard that are specific to ControlNet implementations.
The specifications in this annex shall apply to all PTP implementations using ControlNet as a
communication network. For additional information on ControlNet, consult the ControlNet specification
provided by ControlNet International.17

NOTE— ControlNet is also covered by IEC 61158, type 2 elements.

H.2 clockIdentity
The clockIdentity octets [2] thru [7] (see 7.5.2.2.3) shall be the combination of the node’s vendor ID and
serial number uniquely associated with the node.

Example:
⎯ The vendor ID for Company X is AC7B16 . If Company X wished to create a ControlNet device,

a legal value for the clockIdentity would be 0202AC7BF2235C0116, where the 4 octet array
F2235C0116 would be guaranteed by Company X to be unique among all Company X assigned
ControlNet numbers.

Table H.1 depicts the layout of the clockIdentity for octets 2 through 7. Octets [0] and [1] are specified in
7.5.2.2.3.

Table H.1⎯ControlNet clockIdentity octets 2 through 7

technology vendorId serialNumber field

0

02

1

02

2

AC

3

7B

4

F2

5

23

6

5C

7

01

octet
order
hex

00000010 00000010 10101100 01111011 11110010 00100011 01011100 00000001 bits
 | | | |
 | most significant byte least significant byte |
 most significant bit least significant bit

H.3 PTP message formats
PTP messages are transmitted with the most significant byte of a data type transmitted first followed
sequentially by bytes in order of decreasing significance. The first octet of the PTP message shall
immediately follow the final octet of the ControlNet LPacket header.

H.4 ControlNet addressing for PTP
The Destination address field for a PTP LPacket shall be 255(FF16) (Broadcast).

17 http://www.controlnet.org.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 228 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

The Fixed Tag field for a PTP LPacket shall be 141 (8D16) for event messages and 142(8E16) for general of
messages.

For any quantity of data type PortAddress (see 5.3.6), when the networkProtocol member value is
ControlNet, see 7.4.1:

⎯ The addressLength member value shall be 2.

⎯ The addressField member value shall be the controlNet node number of the device.

H.5 transportSpecific field values
All bits of the transportSpecific field (see 13.3.2.1) shall be transmitted as zero and shall be ignored by the
receiver.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 229 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Annex I

(normative)

Transport of PTP over IEC 61158 Type 10

I.1 Background
PROFINET (IEC 61158 Type 10) specifies a fieldbus communication system. More specific information
on how this fieldbus communication system is used to interoperate in a system is given in the
communication profiles IEC 61784-1:2007 and IEC 61784-2:2007.

IEC 61784-1:2007 and IEC 61784-2:2007 specify Communication Profile Families (CPFs) and, within a
CPF, one or more Communication Profiles (CPs). A CP refers to IEC 61158 Types. IEC 61784-1:2007
specifies various fieldbuses. IEC 61784-2:2007 specifies various real-time Ethernet fieldbuses.
PROFIBUSTM18 and PROFINET are specified in CPF 3. CP 3/4, CP 3/5, and CP 3/6 specify PROFINET in
IEC 61784-2:2007.

The IEC 61158 Type 10 protocol is specified in IEC 61158-6-10:2007. IEC 61158 Type 10 services are
specified in IEC 61158-5-10:2007.

This annex specifies the protocol over Layer 2 for the CP 3/4, CP 3/5, and CP 3/6 of IEC 61784-2:2007,
also known as PROFINET. These CPs refer to IEC 61158-5-10:2007, IEC 61158-6-10:2007, and other
standards.

Figure I.1 illustrates a PTP region and an IEC 61158 Type 10 region. A boundary clock is used to translate
between the protocol in the two regions.

The protocol of this annex is functionally equivalent to transparent and ordinary clock functionality of PTP
over Layer 2 in the main subclauses and annexes of this standard. However, the protocol of this annex has a
different encoding of the PTP messages to meet the encoding specifications for CP 3/4, CP 3/5, and CP 3/6
of IEC 61784-2:2007 within IEC 61158. This annex is not applicable to CP 3/1, CP 3/2, and CP 3/3 of
IEC 61784-1:2007.

NOTE— Existing ASICs support the PTP over Layer 2 of CP 3/4, CP 3/5, and CP 3/6 of IEC 61784-2:2007.

The encoding of this annex shall be used for implementations required to meet the encoding specifications
for CP 3/4, CP 3/5, and CP 3/6 of IEC 61784-2:2007 within IEC 61158.

18PROFIBUS™ is the trade name of the non-profit organization PROFIBUS Nutzerorganisation e.V. (PNO). This information is given
for the convenience of users of this standard and does not constitute an endorsement by the IEEE of these products. Equivalent
products may be used if they can be shown to lead to the same results.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 230 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Figure I.1⎯PROFINET region combined with domains

I.2 Message specification
The mappings of the different message names are provided in Table I.1.

Table I.1⎯Mapping of messages
Names for PROFINET Names for PTP
SyncPDU Sync
FollowUpPDU Follow_Up
AnnouncePDU Announce
Not used Delay_Req
Not used Delay_Resp
DelayReqPDU Pdelay_Req
DelayResPDU Pdelay_Resp
DelayFuResPDU Pdelay_Resp_Follow_Up
Not used Signaling
Not used Management

IEEE Std 1588/IEC 61588
region

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 231 –

 Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

The coding of the PROFINET messages and the used acronyms, abbreviations, and conventions shall be
used according IEC 61158-5-10:2007 and IEC 61158-6-10:2007.

For any quantity of data type PortAddress (see 5.3.6), when the networkProtocol member value is
PROFINET, see 7.4.1:

⎯ The addressLength member value shall be 6, and

⎯ The addressField member value shall be the 6 octet source address of the Ethernet header.

I.3 DLPDU of the IEC 61158 TYPE10

I.3.1 Abstract syntax of the DLPDU

Table I.2 gives an outline of the abstract syntax of the DLPDU according to IEEE Std 802.3-2005.

The encoding and decoding of the fields in Table I.2 shall be according to IEEE Std 802.3-2005 for the
DLPDU.

Table I.2⎯IEEE 802.3 DLPDU syntax
DLPDU
name

DLPDU structure

DLPDU Preamble a, StartFrameDelimiter, DestinationAddress, SourceAddress, DLSDU b, DLPDU_Padding c,
FrameCheckSequence

DLSDU LT, FIDAPDU
FIDAPDU FrameID, SyncPDU ^ AnnouncePDU ^ FollowUpPDU ^ DelayReqPDU ^ DelayResPDU ^

DelayFuResPDU
NOTE—According to IEEE Std 802.3-2005, the DLPDUs have a minimum length of 64 octets (excluded Preamble,
Start Frame Delimiter).
a The field contains at least 7 octets.
b The minimum DLSDU size is 2 octets.
c The number of padding octets shall be in the range of 0–46 depending on the DLSDU size. The value shall be set to
zero.

I.3.2 Coding of the DLPDU field DestinationAddress

The DLPDU field shall be coded as data type Octet[6]. The value of the field DestinationAddress shall be
an IEEE 802 MAC address.

For PTP over PROFINET-PDUs, the value shall be set according to Table I.3.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 232 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table I.3⎯Multicast MAC address
Group MAC address Meaning

01-0E-CF-00-04-00 In conjunction with AnnouncePDU and FrameID (=FF0016) used
for clock synchronization

01-0E-CF-00-04-01 In conjunction with AnnouncePDU and FrameID (=FF0116) used
for time synchronization

01-0E-CF-00-04-xx In conjunction with AnnouncePDU and FrameID (=FFxx16) used
for synchronization

01-0E-CF-00-04-1F In conjunction with AnnouncePDU and FrameID (=FF1F16) used
for synchronization

01-0E-CF-00-04-20 In conjunction with SyncPDU with follow up and FrameID
(=002016) used for clock synchronization

01-0E-CF-00-04-21 In conjunction with SyncPDU with follow up and FrameID
(=002116) used for time synchronization

01-0E-CF-00-04-xx In conjunction with SyncPDU with follow up and FrameID
(=00xx16) used for synchronization

01-0E-CF-00-04-3F In conjunction with SyncPDU with follow up and FrameID
(=003F16) used for synchronization

01-0E-CF-00-04-40 In conjunction with FollowUpPDU and FrameID (=FF2016) used
for clock synchronization

01-0E-CF-00-04-41 In conjunction with FollowUpPDU and FrameID (=FF2116) used
for time synchronization

01-0E-CF-00-04-xx In conjunction with FollowUpPDU and FrameID (=FFxx16) used
for synchronization

01-0E-CF-00-04-5F In conjunction with FollowUpPDU and FrameID (=FF3F16) used
for synchronization

01-0E-CF-00-04-80 In conjunction with SyncPDU and FrameID (=008016) used for
clock synchronization

01-0E-CF-00-04-81 In conjunction with SyncPDU and FrameID (=008116) used for
time synchronization

01-0E-CF-00-04-xx In conjunction with SyncPDU and FrameID (=00xx16) used for
synchronization

01-0E-CF-00-04-9F In conjunction with SyncPDU and FrameID (=009F16) used for
synchronization

01-80-C2-00-00-0E see NOTE 3 In conjunction with DelayReqPDU and FrameID (=FF4016),
DelayResPDU with follow up and FrameID (=FF4116),
DelayFuResPDU and FrameID (=FF4216) and DelayResPDU
without follow up and FrameID (=FF4316) used for peer-to-peer
delay measurement

NOTE 1—Octet 1 contains the Individual/Group Address Bit (LSB).

NOTE 2—The addresses in this table that begin with 01-0E-CF are based on the OUI owned by PROFIBUS
Nutzerorganisation e.V.

NOTE 3—The MAC address of 01-80-C2-00-00-0E represents a multicast address derived from the pool of
multicast addresses administered by IEEE Std 802.1AB. See F.3 for detail on this address.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 233 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

I.3.3 Coding of the field LT

The LT field shall be coded with the values according to IEEE Std 802.3-2005 (Unsigned16). This
specification uses the values according to Table I.4.

Table I.4⎯LT (Length/Type)
Value (hex) Meaning
8892 PROFINET

I.3.4 Coding of the field FrameID

The FrameID field shall be coded as data type Unsigned16 with the values according to Table I.5. This
field identifies the structure and the type of the APDU.

Table I.5⎯FrameID
Value (hex) Meaning Use
0000–001F Reserved —
0020 SyncPDU SyncPDU with follow up used for clock synchronization

(isochronous application)
0021 SyncPDU SyncPDU with follow up used for time synchronization
0022–00FF Reserved
0080 SyncPDU SyncPDU without follow up used for clock synchronization

(isochronous application)
0081 SyncPDU SyncPDU without follow up used for time synchronization
0082–00FF Reserved —
FF00 AnnouncePDU (clock) AnnouncePDU is used for clock synchronization (isochronous

application)
FF01 AnnouncePDU (time) AnnouncePDU is used for time synchronization
FF02–FF1F Reserved
FF20 FollowUpPDU (clock) FollowUpPDU is used for clock synchronization
FF21 FollowUpPDU (time) FollowUpPDU is used for time synchronization
FF22–FF3F Reserved —
FF40 DelayReqPDU DelayReqPDU is used for path delay measurement
FF41 DelayResPDU DelayResPDU is used for path delay measurement with follow up
FF42 DelayFuResPDU DelayFuResPDU is used for path delay measurement
FF43 DelayResPDU DelayResPDU is used for path delay measurement without follow

up
FF44–FFFF Reserved —

I.4 Encoding specifications
A bridge can convert the two formats at the edge. The mapping of the different formats and the different
parameter and attribute names are provided in Table I.6. The translation of flagField (see 13.3.2.6) to
PROFINET is provided in Table I.7.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 234 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table I.6⎯Mapping of the parameter and attribute names
Names for PROFINET Message type Names for PTP version 2

No counterpart — transportSpecific
FrameID SyncPDU

FollowUpPDU
AnnouncePDU
DelayReqPDU
DelayResPDU
DelayFuResPDU

messageType

No counterpart — versionPTP
No counterpart — messageLength
SubdomainUUID SyncPDU

FollowUpPDU
AnnouncePDU
DelayReqPDU
DelayResPDU
DelayFuResPDU

domainNumber

According to Table 136 SyncPDU flagField
SequenceId SyncPDU

FollowUpPDU
AnnouncePDU
DelayReqPDU
DelayResPDU
DelayFuResPDU

sequenceId

No counterpart — controlField
MasterSourceAddress SyncPDU

FollowUpPDU
AnnouncePDU

clockIdentity

Is specified in PROFINET — logMessageInterval
Seconds SyncPDU seconds (Bit 0–31)
NanoSeconds SyncPDU Nanoseconds
EpochNumber SyncPDU seconds (Bit 32–47)
CurrentUTCOffset SyncPDU currentUtcOffset
ClockAccuracy SyncPDU

AnnouncePDU
clockAccuracy

ClockClass SyncPDU
AnnouncePDU

clockClass

MasterPriority1 SyncPDU
AnnouncePDU

priority1

MasterPriority2 SyncPDU
AnnouncePDU

priority2

ClockVariance SyncPDU
AnnouncePDU

offsetScaledLogVariance

No counterpart — stepsRemoved
No counterpart — grandmasterIdentity
No counterpart — parentPortIdentity
RequestSourceAddress DelayReqPDU

DelayResPDU
DelayFuResPDU

clockIdentity

RequestPortID DelayReqPDU
DelayResPDU
DelayFuResPDU

portNumber

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 235 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table I.7⎯Translation of flagField from PTP version 2 to PROFINET
Names for PROFINET Names for PTP version 2

Last minute has 61 s flagField.leap61
Last minute has 59 s flagField.leap59
Signaled by the AnnouncePDU flagField.alternateMasterFlag
Coded in FrameID flagField.twoStepFlag
TRUE for time synchronization and ClockStratum = 1 or 2 flagField.timeTraceable
TRUE for ClockStraum = 1 or 2 flagField.frequencyTraceable
FALSE for clock synchronization (ARP)
TRUE for time synchronization if identifier is not INIT or
DFLT. Otherwise FALSE

flagField.ptpTimescale

FALSE for clock synchronization (ARP)
TRUE for time synchronization if identifier is not INIT or
DFLT. Otherwise FALSE

flagField.currentUtcOffsetValid

FALSE flagField.unicastFlag
Set to FALSE All other flagField

The coding of the IEC 61158 Type 10 parameter, attributes, and the used acronyms, abbreviations, and
conventions shall be used according IEC 61158-5-10:2007 and IEC 61158-6-10:2007.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 236 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Annex J

(normative)

Default PTP profiles

J.1 General
Each default PTP profile specifies a selection of options and attributes. Each selection specifies a system
that works without requiring user configuration.

J.2 General requirements
Nodes shall implement all requirements in the respective PTP profile that specify default values or choices
such that these default values or choices apply without requiring user configuration, i.e., as delivered from
the manufacturer.

J.3 Delay Request-Response Default PTP profile

J.3.1 Identification

The identification values for this PTP profile (see 19.3.3) are as follows:

PTP Profile
Default PTP profile for use with the delay request-response mechanism.
Version 1.0
Profile identifier: 00-1B-19-00-01-00

This profile is specified by the Precise Networked Clock Synchronization Working Group of the IM/ST
Committee.
A copy may be obtained by ordering IEEE Std 1588:2008/IEC 61588:2009 from either the IEEE Standards
Organization (<http://standards.ieee.org/>) or from the International Electrotechnical Commission
(<http://www.iec.ch/>).

J.3.2 PTP attribute values

All nodes shall support the ranges and shall have the default initialization values for attributes as follows:
⎯ defaultDS.domainNumber: The default initialization value shall be 0.

⎯ portDS.logAnnounceInterval: The default initialization value shall be 1. The configurable range
shall be 0 to 4.

⎯ portDS.logSyncInterval: The default initialization value shall be 0. The configurable range shall
be −1 to +1.

⎯ portDS.logMinDelayReqInterval: The default initialization value shall be 0. The configurable
range shall be 0 to 5.

⎯ portDS.announceReceiptTimeout: The default initialization value shall be 3. The configurable
range shall be in the range 2 to 10.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 237 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

⎯ defaultDS.priority1: The default initialization value shall be 128.

⎯ defaultDS.priority2: The default initialization value shall be 128.

⎯ defaultDS.slaveOnly: If this parameter is configurable, the default value shall be FALSE.

⎯ transparentClockdefaultDS.primaryDomain: The default initialization value shall be 0.

⎯ , see 7.6.3.2: The default initialization value shall be 1.0 s.

For each defined range, manufacturers are free to allow wider ranges.

J.3.3 PTP Options

All options of 15.5.4.1.7 and Clause 17 are permitted. By default, these options shall be inactive unless
specifically activated by a management procedure.

Node management shall implement the management message mechanism of this standard.

The best master clock algorithm shall be the algorithm specified by 9.3.2.

The delay request-response mechanism shall be the default path delay measurement mechanism. The peer
delay mechanism may also be implemented.

NOTE— Only a single mechanism is allowed per link. Boundary clocks should be used between links that use different
path delay mechanisms.

J.3.4 Clock physical requirements

J.3.4.1 Frequency accuracy

Every grandmaster clock shall maintain a frequency deviating no more than 0.01% from the SI second.

J.3.4.2 Frequency adjustment range

Any clock in the SLAVE state shall be able to correct its frequency to match any master clock meeting the
requirements of J.3.4.1

NOTE—The frequency adjustment range should be at least ±0.025%.

J.4 Peer-to-Peer Default PTP profile

J.4.1 Identification

The identification values for this PTP profile (see 19.3.3) are as follows:

PTP Profile
Default PTP profile for use with the peer delay mechanism.
Version 2.0
Profile identifier: 00-1B-19-00-02-00

This profile is specified by the Precise Networked Clock Synchronization Working Group of the IM/ST
Committee.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 238 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

A copy may be obtained by ordering IEEE Std 1588:2008/IEC 61588:2009 from either the IEEE Standards

(<http://www.iec.ch/>).

J.4.2 PTP attribute values

All nodes shall support the ranges and shall have the default initialization values for attributes as follows:
⎯ defaultDS.domainNumber: The default initialization value shall be 0.

⎯ portDS.logAnnounceInterval: The default initialization value shall be 1. The configurable range
shall be 0 to 4.

⎯ portDS.logSyncInterval: The default initialization value shall be 0. The configurable range shall
be −1 to +1.

⎯ portDS.logMinPdelayReqInterval: The default initialization value shall be 0. The configurable
range shall be 0 to 5.

⎯ portDS.announceReceiptTimeout: The default initialization value shall be 3. The configurable
range shall be in the range 2 to 10.

⎯ defaultDS.priority1: The default initialization value shall be 128.

⎯ defaultDS.priority2: The default initialization value shall be 128.

⎯ defaultDS.slaveOnly: If this parameter is configurable the default value shall be FALSE.

⎯ transparentClockdefaultDS.primaryDomain: The default initialization value shall be 0.

⎯ , see 7.6.3.2: The default initialization value shall be 1.0 s.

For each defined range, manufacturers are free to allow wider ranges.

J.4.3 PTP Options

All options of 15.5.4.1.7 and Clause 17 are permitted. By default, these options shall be inactive unless
specifically activated by a management procedure.

Node management shall implement the management message mechanism of this standard.

The best master clock algorithm shall be the algorithm specified by 9.3.2.

The peer delay mechanism shall be the default path delay measurement mechanism. The delay request-
response mechanism may also be implemented.

NOTE—Only a single mechanism is allowed per link. Boundary clocks should be used between links that use different
path delay mechanisms.

J.4.4 Clock physical requirements

J.4.4.1 Frequency accuracy

Every grandmaster clock shall maintain a frequency deviating no more than 0.01% from the SI second.

Organization (<http://standards.ieee.org/>) or from the International Electrotechnical Commission

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 239 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

J.4.4.2 Frequency adjustment range

Any clock in the SLAVE state shall be able to correct its frequency to match any master clock meeting the
requirements of J.4.4.1.

NOTE—The frequency adjustment range should be at least ±0.025%.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 240 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Annex K

(informative)

Security protocol (experimental)

K.1 General
This annex defines an experimental security extension to PTP; see 14.2. Since this annex is not normative,
the requirements are not expressed by the term “shall.” Instead the words “is (are) required to” are used.
Implementers of this extension are advised to interpret the words “is (are) required to” in this annex as
“shall” in order to implement correctly the extension in the event that this annex becomes normative in
future editions of the standard.

The PTP security extension and protocol provide group source authentication, message integrity, and replay
attack protection for PTP messages.

The PTP security protocol is composed of two basic mechanisms, as follows:

⎯ An integrity protection mechanism, which uses the message authentication code to verify that a
received message was transmitted by an authenticated source, was not modified in transit, and it
is fresh (i.e., not a message replay). Replay protection is implemented using counters.

⎯ A challenge-response mechanism, which is used to affirm the authenticity of new sources and to
maintain the freshness of the trust relations.

K.2 Protocol overview
The PTP security protocol uses symmetric message authentication code functions. It provides group source
authentication, message integrity, and replay protection. The security protocol does not provide
nonrepudiation. The protocol supports HMAC-SHA1-96 and HMAC-SHA256-128, and it allows the
addition of other message authentication codes in the future. The implementation of these algorithms is
required to be in accordance with the references IETF RFC 2104 [B10], IETF RFC 2404 [B11], NIST SHS
Standard [B20], and NIST HMAC Standard [B21].

The participants in the protocol share secret symmetric keys. The keys can be shared by the whole domain
or by subsets of the domain. The key distribution can be done either by manual configuration or by an
automatic key management protocol; the PTP security extension supports both. Key distribution is out of
the scope of this specification.

The participants in the PTP security protocol communicate through security associations (SAs). An SA
contains a source (source port, protocol address), a destination (destination port, protocol address), a key, a
random lifetimeId, and a replay counter. The SA is unidirectional, and it protects traffic going from the
source to the destination. Each node maintains a table of incoming SAs, which it uses for verification of
incoming traffic, and a table of outgoing SAs, which it uses for protection of outgoing traffic. An SA can
be shared by a single sender and multiple receivers. The sender holds a single copy of the SA, and each one
of the receivers has its own copy of it. The receivers’ copies might contain at the same time different values
of the SAs replay protection counter, but all of them are smaller than the replay counter stored at the same
time in the sender’s copy of the SA.

The SA is created by the sender, and it is communicated to the receivers. The sender can choose to create a
single SA for each source and all destinations, i.e., to create an SA with the source being one of its interface
unicast addresses, and the destination being “all,” or it can choose to create an SA per a source and

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 241 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

destination, i.e., create multiple SAs with the same interface source address and different multicast and
unicast destinations. This is an implementation-specific decision. If a single SA for all destinations is used,
then the replay protection counter wraps much faster, increasing the rate of the SA’s update. If multiple
SAs are used for multiple destinations, then the outgoing SA table is larger. The receivers of messages on
the SA do not care which SA implementation method is used by the sender.

The integrity check value (ICV) is the result of applying the message authentication code function specified
by the algorithm ID with the appropriate key identified by key ID to the entire packet, including the
security AUTHENTICATION TLV. Only nodes who know the shared secret key can modify the message
and its ICV, respectively; hence, any message tamper attempt by an attacker who does not have the secret
key will be detected when the receiver fails to verify the ICV.

The replay protection mechanism relies on a random lifetime ID and replay protection counter, which are
part of the SA. The replay counter is incremented by two whenever a packet is sent through this SA. The
receiver verifies that the lifetime ID in the packet matches the lifetime ID of the sender’s SA in its
incoming SA table, and that the counter in the packet is larger than the value stored in the SA.

K.3 General requirements
The PTP security protocol uses a flag bit in the PTP message header to indicate that the message carries the
security AUTHENTICATION TLV. The PTP header flagField (see 13.3.2.6) is extended by one bit as
defined in Table K.1.

Table K.1⎯flagField.SECURE flag
Octet Bit Message

type
Name Description

0 7 All SECURE TRUE if the message is suffixed by the security AUTHENTICATION TLV
and FALSE otherwise.

Each secured transmitted PTP message is required to set the flagField.SECURE flag to TRUE and to
include the security AUTHENTICATION TLV extension defined in K.15. This extension is required to be
the final TLV extension appended to the PTP message.

NOTE— To facilitate hardware implementation of the security protocol, the ICV field should be the last field in the
messages.

In this annex, the action specified in certain cases is to “silently discard” a received message. This means
that the message is discarded without further processing and that no internal or external resources are
allocated as a result of processing this message. However, the event may be recorded in a statistics counter
or in any other similar action that does not allocate new system resources. This definition limits the ability
of a denial-of-service attack to exhaust system or network resources.

Some PTP systems require support of a mixture of secure and nonsecure clocks. One example is a PTP
system composed of two grandmasters clocks (one used as backup) supporting the security protocols, a
group of ordinary clocks that supports the security protocol, and a group of slave-only clocks that do not
support the security protocol. The administrator of this PTP system may want to allow the nonsecure slave-
only clocks to synchronize to the secure grandmaster. As defined in this annex, all communication between
clocks must be secure. Therefore, although the slave clocks can parse Announce and Sync messages sent
by the grandmaster, the grandmaster clock discards the unsecure Delay_Req messages received from the
slave-only clocks. It is expected that extensions of this annex either within a profile or in the next version
of this standard will introduce other “security policies” to enable mixtures of secure and nonsecure clocks.
Examples of such extensions include allowing a clock to process and reply to nonsecure Delay_Req and
Pdelay_Req messages or to process and reply to nonsecure management Get requests, up to a limited rate
of messages.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 242 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

K.4 The challenge-response exchange
The challenge-response exchange is a three-way mutual authentication protocol, which two nodes use to
affirm their authenticity and freshness. A node trusts integrity and replay information it receives from
another node only after it successfully executes a challenge-response with that node.

Each clock maintains a list of incoming security associations. Incoming SAs can be either static, i.e.,
configured in advance, or created on the fly once the clock receives a PTP message from a port that does
not match the sourcePortIdentity and protocol address of any member of the current set of incoming SAs.

The incoming SA’s trust state is set to UNTRUSTED once the clock initializes and once new SAs are
created. The trust state is set to TRUSTED only after it successfully executes the challenge-response test
per K.10. Each incoming SA maintains a timer that measures the period that has passed since the last time
it received an authenticated message. When this time expires, the incoming SA trust state is set to
UNTRUSTED. If the SA is not static, the SA is discarded once the timeout expires.

A clock initiates a challenge-response exchange when it receives a message from an untrusted source. The
incoming message must have the flagField.SECURE flag set to TRUE, must include the security
AUTHENTICATION TLV, and must pass integrity check value (ICV) test per K.6. If the message
received does not match an incoming SA, a new dynamic incoming SA is created as long as resources
permit. The incoming SA maintains challenge state and a challenge timer. The challenge state is set to
CHALLENGING when a challenge request is sent and a reply is pending. No new challenge request is sent
through the SA as long as the challenge state is CHALLENGING. If a challenge reply is not received, the
challenge timer expires and the challenge state is set to IDLE.

The challenge-response exchange uses the AUTHENTICATION_CHALLENGE TLV. The
AUTHENTICATION_CHALLENGE TLV includes a field that defines the challenge type: challengeRequest,
challengeResponseRequest, and challengeResponse. The AUTHENTICATION_CHALLENGE TLV must be
appended as the first TLV of the security signaling message. Signaling messages used for the challenge
exchange are required to be used only for security protocol operations. A challenge-response exchange is also
initiated to update security association parameters as defined in K.5.

K.5 The security association update exchange
The replay protection requires that the replay counter does not roll over. Outgoing SAs maintain both
current and next randomly generated nonzero lifetime IDs. When the replay counter of the outgoing SA
rolls over, the SA switches from the current lifetime ID to the next lifetime ID and generates a new next
lifetime ID.

Incoming SAs maintain current and next lifetime IDs as well. The incoming SA switches to the next
lifetime ID once it receives first authenticated messages with that lifetime ID in the security
AUTHENTICATION TLV. The incoming SA copies the replay-counter value from the
AUTHENTICATION TLV and initiates a challenge-response exchange to determine the new next lifetime
ID.

The next lifetime ID is delivered in challenge-response and challenge-response-request messages using the
SECURITY_ASSOCIATION_UPDATE TLV. Multiple TLVs can be used if the responder holds a
different outgoing SA for each outgoing address (unicast, multicast, and p-multicast) communicating with
the requestor.

The security association update exchange includes provisions to exchange next key IDs to update the
security association key once a given key is about to expire. The key IDs should be replaced often enough
to protect from replay attack due to lifetime ID reuse. The shared secret keys must be updated accordingly
by shared key distribution mechanism to maintain enough valid keys.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 243 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Incoming SAs maintain current and next key IDs. The incoming SA switches to the next key ID once it
receives the first authenticated message with that key ID in the security AUTHENTICATION TLV. The
incoming SA initiates a challenge-response exchange to determine the new next key ID. The next key ID is
delivered in challenge-response and challenge-response-request messages using the
SECURITY_ASSOCIATION_UPDATE TLV.

K.6 The integrity check value (ICV) test
The ICV is the result of applying the message authentication code function specified by the algorithm ID
with the appropriate key identified by key ID. See also K.15.7 for algorithm-specific processing rules.

The ICV field of the security AUTHENTICATION TLVs is computed as follows for each PTP message
sent through an outgoing security association:

a) The secret key specified by the key ID of the outgoing SA is used as the key value required by the
hash algorithm.

b) The hash algorithm specified by the algorithm ID associated with the key ID is used to compute the
ICV value. The algorithm ID is retrieved from the key list data set indexed by the key ID.

c) Using the selected hash algorithm and secret key, the ICV value is computed over all PTP message
fields beginning with the first octet of the common header and ending with and including the last
octet of the security AUTHENTICATION TLV. Prior to this computation, the value of all bits of the
ICV field must be set to 0.

The ICV of incoming messages is calculated and compared with the ICV carried in the security
AUTHENTICATION TLV. The check is performed as follows:

a) If the key specified by keyId in the AUTHENTICATION TLV is not valid or is unknown, the ICV
check fails.

b) If the algorithmId in the AUTHENTICATION TLV is not equal to the algorithm ID associated with
the keyId in the key list data set, the ICV check fails.

c) Using the message authentication code function selected by the algorithm and secret key, the ICV
value is computed over all PTP message fields beginning with the first octet of the common header
and ending with and including the last octet of the security extension TLV. Prior to this computation,
the value of all bits of the ICV field of the security AUTHENTICATION TLV must be set to 0. The
ICV test fails if the computed ICV does not match the ICV carried in the AUTHENTICATION TLV
of the incoming message.

Otherwise, the ICV test passes.

K.7 The security association lookup
Received PTP messages are matched against the incoming security association to determine whether they
are received from a trusted source. A received message matches a security association if the sourcePortId of
the PTP header and the source protocol address match the source port and source address of the incoming
security association, and the destination port (if specified) and destination address of the message match the
incoming security association destination port and protocol address. The security association lookup
indicates whether a matching security association exists, and returns the trust state of the security
association.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 244 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

K.8 keyId check
This test verifies that the keyId of an incoming message matches the incoming security association value.
The keyId of a PTP message received from a trusted source (which also passed the ICV test) is compared
against the corresponding value of the SA.

The incoming keyId is compared with the SA sa.keyId. If the two are identical, the test passes. If the keyId
matches the sa.nextKeyId maintained by the SA’s sa.nextKeyId is copied to the SA’s sa.keyId, the
sa.nextKeyId is set to zero, and a security update exchange is initiated. Messages that do not match either
sa.keyId or sa.nextKeyId are silently discarded.

As long as the incoming SA sa.nextKeyId is zero, and the challenge state is not CHALLENGING, the
incoming SA association initiates a security update exchange each time a new message is successfully
received by the SA.

K.9 The replay protection mechanism
The replay protection mechanism relies on the fact that the probability of the sourcePortIdentity, lifetimeId,
and replayCounter triplet appearing twice is extremely low (practically zero). The probability depends on
the shared keys lifetime, and it is smaller, the higher the key exchange frequency is.

The lifetimeId and replayCounter fields are set by the outgoing security association. The sa.replayCounter
is incremented by 2 for each message sent via the outgoing SA. When the sa.replayCounter rolls over, the
lifetimeId is replaced by another random lifetimeId. The values of sa.replayCounter and sa.lifetimeId are
sent in the security AUTHENTICATION TLV.

The replay protection test is performed on packets received from a trusted incoming SA. The incoming
lifetimeId is compared with the incoming SA’s sa.lifetimeId. If the two are identical, the incoming
replayCounter field is compared with the incoming SA’s sa.replayCounter. If the incoming replayCounter
field is smaller or equal to the incoming SA’s sa.replayCounter, the message is silently discarded. If the
lifetimeId field matches the sa.nextLifetimeId maintained by the incoming SA, the replayCounter field of
the incoming AUTHENTICATION TLV is copied to the incoming SA’s sa.replayCounter, the incoming
SA’s sa.nextLifetimeId is copied to the incoming SA’s sa.lifetimeId, the sa.nextLifetimeId is set to zero,
and a security update exchange is initiated. Messages that do not match either the sa.lifetimeId or the
sa.nextLifetimeId are silently discarded.

As long as the incoming SA’s sa.nextLifetimeId is zero, and the challenge state is not CHALLENGING,
the incoming SA initiates a security update exchange each time a new message is successfully received by
the SA.

K.10 The challenge-response check
The challenge-response exchange uses random nonce to verify authenticity and freshness of the source. The
AUTHENTICATION_CHALLENGE TLV includes a request nonce and a reply nonce. The sender of the
challenge request and challenge-response-request sets the request nonce to a random number. The receiver
of challenge-response or challenge-response-request matches the request nonce it sent in the request to the
reply. If the response nonce in the incoming challenge message does not match the nonce sent in the
request nonce field of the challenge message, the challenge-response check fails and the challenge message
is silently discarded.

Challenge messages must pass the ICV test and for trusted sources must also pass the replay protection test.
If either of these tests fails, the challenge message is silently discarded.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 245 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

K.11 Shared key distribution
The distribution of the shared keys to populate and update the security key list data set of each PTP node in
a system is out of the scope of this standard.

K.12 Generation of secret keys
The generation of secret keys is out of the scope of this standard. An optional mechanism for generation of
secret key for use with HMAC-SHA1-96 and HMAC-SHA256-128 and populating the shared secret key
data set is described below. The general approach is described first.

Let H(x) be the n-bit hash of the message x. Let k be an n-bit key to be generated. Let p be a password, ss
be a short-term salt, and sl be long-term salt. The variables ss, sl, p, and x are all arbitrary character strings.
Although p must be kept secret, sl and ss are public values. Typically, sl might be the name of the network
or the organization that runs it (e.g., “Physics Lab”), and sl would be the dates of the crypto-period or a key
name (e.g., “Jan-June 2007”). Let || represent concatenation. Then:

k = H(sl | |ss | |p)

for i = 1, 2 ,…1000

k i = H(k (i - 1))

The final value of k, i.e., k1000, can be truncated as desired to form the final key. The long-term salt, sl,
could be initialized once in all stations, and never changed thereafter; it prevents an attack dictionary
generated for another network with a different name from being reused on this network. The short-term salt
should be changed whenever the key is changed; this prevents an attack dictionary computed for a previous
key from being reused to attack a new key.

In particular, for the PTP security protocol, the following steps can be taken to generate secret keys:

For each keyId:

a) Select a password of varying length for each key.

b) Select a short-term salt.

c) Select a long-term salt.

d) Concatenate the long-term salt, short-term salt, and password to a single message.

e) Hash the message using SHA-1.

f) Rehash the resulting message hash for 1000 times.

g) The resulting 20 octet output of SHA-1 is the 20 octet shared secret key as defined in K.13.2.3.

K.13 Security data set

K.13.1 General

The security data set defined in this subclause is provided for illustration only and does not mandate
specific implementation.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 246 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

The security data set is composed of a list of incoming and outgoing security associations, a list of keys,
and a list of defaultDS data set parameters. Unless otherwise specified, the default value for all members is
zero.

K.13.2 Key list

A key list must be maintained in a PTP node implementing the security protocol. Each key list entry is
composed of kl.keyId, kl.algorithmId, kl.securityKey, kl.startTime, kl.expirationTime, and kl.valid bit.

K.13.2.1 kl.keyId (UInteger16)

The kl.keyId is a unique identifier of the secret key. The value zero is required to not be used to indicate a
valid key.

K.13.2.2 kl.algorithmId (UInteger8)

The kl.algorithmId indicates the algorithm to be used with the secret key.

K.13.2.3 kl.securityKey (Octet[N])

The kl.securityKey field holds the security key. The value N depends on the algorithm used. For SHA-1
and SHA-256, N = 20.

K.13.2.4 kl.startTime (Timestamp)

The kl.startTime indicates when the key will be active. This key is activated by setting the valid bit to
TRUE. The key should not be used prior to klStartTime.

K.13.2.5 kl.expirationTime (Timestamp)

The kl.expirationTime indicates when the key will expire. Once the key expires, the validity bit is set to
FALSE and the key is no longer used. A zero kl.expirationTime value indicates that the key is permanent
and therefore does not expire. One permanent key should be distributed to all clocks. The permanent key
should be used when all other communication with this clock fails and is limited to establishing a security
association and then change to a nonpermanent key.

K.13.2.6 kl.valid (Boolean)

If kl.valid is set to FALSE, the key is not valid and is required to not be used by the security protocol.

K.13.3 Security associations

The security associations are maintained in two lists, the incoming and outgoing security association lists.
Each security association is composed of sa.srcPort, sa.srcAddress, sa.destPort, sa.destAddress,
sa.replayCounter, sa.lifetimeId, sa.keyId, sa.nextLifetimeId, sa.nextKeyId, sa.trustState, sa.trustTimer,
sa.trustTimeout, sa.challengeState, sa.requestNonce, sa.responseNonce, sa.challengeTimer,
sa.challengeTimeout, sa.responseRequired, sa.challengeRequired, and sa.typeField as defined below.

K.13.3.1 sa.srcPort (PortIdentity)

The sa.srcPort is matched to the sourcePortIdentity field in the PTP header. For outgoing SAs, it indicates
one of the ports of the clock, and for incoming SAs, it equals the portIdentity of the clock that sent the
message. For outgoing SAs, the sa.srcPort’s portNumber member may be set to all-ones value to indicate
the SA is used for all ports of the clock. For incoming SAs, the portNumber member or clockIdentity
member are required to not be set to all-ones values.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 247 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

K.13.3.2 sa.srcAddress (Octet[N])

The sa.srcAddress is matched against the source protocol address of the PTP message. For outgoing SAs,
the sa.srcAddress may be set to all-ones values, indicating that the SA matches all addresses. For incoming
SAs, the sa.srcAddress is required to not equal all-ones values. The source protocol address of the received
PTP message is matched against the sa.srcAddress parameter of incoming SAs. The source protocol
address of PTP messages sent is matched against the sa.srcAddress parameter of outgoing SAs. For IPv4
encapsulations N = 4, for IPv6 N = 16, and for Ethernet N = 6.

K.13.3.3 sa.destPort (PortIdentity)

For outgoing SAs, the sa.destPort equals the portIdentity of the port this message is sent to, and for
incoming SAs, it equals the identity of one of the clock’s ports. For outgoing SAs, sa.destPort may be set to
all-ones to indicate “all clocks and all ports.” The sa.destPort portNumber may be set to all-ones to indicate
the SA is used for “all ports of a particular clock.” For example, Sync and Announce messages sent to the
multicast address are sent to all clocks and all ports.

K.13.3.4 sa.destAddress (Octet[N])

The sa.destAddress equals the destination protocol address of the PTP message. For outgoing SAs, it is the
addresses of the clock the message is sent to, and for incoming SAs, it equals one of the clock’s unicast
addresses or one of the PTP multicast addresses. For outgoing SAs, the sa.destAddress can be set to all-
ones values indicating that the SA matches all addresses. For IPv4 encapsulations N = 4, for IPv6 N = 16
and for Ethernet N = 6.

K.13.3.5 sa.replayCounter (UInteger32)

For outgoing SA, the sa.replayCounter is incremented by 2 each time the PTP message is sent through the
SA. For incoming SA, the sa.replayCounter stores the value of the replayCounter field of the last
successfully authenticated incoming AUTHENTICATION TLV in the incoming SA’s sa.replayCounter.
This value is used in the replay protection mechanism.

K.13.3.6 sa.lifetimeId (UInteger16)

For outgoing SA the sa.lifetimeId is a random number used to mark all packets sent through the SA. For
incoming SAs, the sa.lifetimeId is compared with the lifetimeId field in the incoming AUTHENTICATION
TLV. The value zero indicates that sa.lifetimeId has not yet been set.

K.13.3.7 sa.keyId (UInteger16)

The sa.keyId indicates which key is used for computation of the ICV. For incoming SAs, it is determined
during the challenge-response exchange.

K.13.3.8 sa.nextLifetimeId (UInteger16)

When the sa.replayCounter of an outgoing SA rolls over, the value of sa.nextLifetimeId is copied to
sa.lifetimeId and a new random nonzero value is generated. The sa.nextLifetimeId of an incoming SA is
determined during the challenge-response exchange. The value zero indicates that sa.nextLifetimeId has
not yet been set.

K.13.3.9 sa.nextKeyId (UInteger16)

The sa.nextKeyId indicates the key that is going to be used after this key expires. For incoming SAs, it is
determined during the challenge-response exchange. The value zero indicates that sa.nextKeyId has not
been set yet.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 248 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

K.13.3.10 sa.trustState (Enumeration)

The sa.trustState of incoming SA is set to TRUSTED following successful challenge-response exchange
and is set to UNTRUSTED due to timeout or initialization event. An outgoing SA’s sa.trustState is not
used.

K.13.3.11 sa.trustTimer (UInteger16)

The sa.trustTimer of incoming SAs is set to the sa.trustTimeout value each time a successfully
authenticated PTP message is received by the SA. It is decremented by one every period by the
securityEvent task. When the sa.trustTimer reaches zero, the SA’s sa.trustState is set to UNTRUSTED. An
outgoing SA’s sa.trustTimer is fixed at zero.

K.13.3.12 sa.trustTimeout (UInteger16)

If within sa.trustTimeout periods of a security event no successfully authenticated message is received
through the SA, the incoming SA is timed-out. An outgoing SA’s sa.trustTimeout is fixed at zero.

K.13.3.13 sa.challengeState (Enumeration)

The incoming SA’s sa.challengeState indicates whether the SA is waiting for a reply for a challenge
request. It can be set to CHALLENGING or IDLE values. An outgoing SA’s sa.challengeState is fixed.

K.13.3.14 sa.challengeTimer (UInteger16)

The sa.challengeTimer of incoming SAs is set to sa.challengeTimeout once a challenge-request or
challenge-response-request is sent by the SA. The sa.challengeTimer is decremented each period by the
securityEvent task. When the sa.challengeTimer reaches zero, the SA’s sa.challengeState is set to IDLE.
An outgoing SA’s sa.challengeTimer is fixed at zero.

K.13.3.15 sa.challengeTimeout (UInteger16)

If within sa.challengeTimeout periods of the securityEvent, a challenge-response or challenge-response-
request is not received, the challenge state is changed to IDLE. An outgoing SA’s sa.trustTimeout is fixed
at zero.

K.13.3.16 sa.requestNonce (UInteger32)

The sa.requestNonce values is the requestNonce field sent in challenge requests and compared with the
nonce in responses. It is a randomly generated nonzero number used in the challenge-response exchange.

K.13.3.17 sa.responseNonce (UInteger32)

The sa.responseNonce is the requestNonce received in challenge requests and maintained in the SA to
facilitate generation of the challenge-response.

K.13.3.18 sa.challengeRequired (Boolean)

The sa.challengeRequired value is set to TRUE when a challenge request needs to be sent to update
incoming security association.

K.13.3.19 sa.responseRequired (Boolean)

The sa.responseRequired value is set to TRUE when a challenge-response needs to be sent.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 249 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

K.13.3.20 sa.typeField (Enumeration)

The sa.typeField can be set to STATIC or DYNAMIC values. Static SAs are preconfigured associations,
are maintained during clock initialization, and are kept in nonvolatile memory. Dynamic SAs are created
for communication with clocks for which static SA were not set in advance.

The following attributes are maintained in nonvolatile memory and in initialization events:
⎯ Outgoing SA: sa.srcPort, sa.srcAddress, sa.destPort, sa.destAddress and sa.keyId.

⎯ Incoming SA: sa.srcPort, sa.srcAddress, sa.destPort, sa.destAddress, sa.trustTimeout,
sa.challengeTimeout.

K.13.4 defaultDS data set security variables

The defaultDS data set includes the following two security parameters: defaultDS.securityEnabled and
defaultDS.numberSecurityAssociations.

K.13.4.1 defaultDS.securityEnabled (Boolean)

If the defaultDS.securityEnabled value is set to TRUE, all PTP communication is required to use the
security protocol extension.

K.13.4.2 defaultDS.numberSecurityAssociations (UInteger16)

The defaultDS.numberSecurityAssociations is the maximum number of security associations supported by
the clock, including all incoming and outgoing SAs as well as both static and dynamic SAs.

K.14 Protocol operation

K.14.1 General

This subclause illustrates the operation of the security protocol. The processing of PTP messages received
and transmitted and challenge processing are illustrated. A security event periodic process for handling
timeouts and for sending challenge messages is also described. Subclause K.14.6 details transparent clock
processing rules.

K.14.2 Receive message processing

Figure K.1 illustrates the processing of incoming PTP messages when defaultDS.securityEnabled is set to
TRUE. This subclause does not mandate specific implementation as long as the results of the tests are
consistent. The processing steps are as follows:

a) Silently discard incoming messages received without the flagField.SECURE bit set to TRUE.

b) Silently discard incoming messages received without the appended security AUTHENTICATION
TLV.

c) Silently discard incoming messages that do not pass the integrity check verification test per K.6.

d) Lookup the matching incoming SA per K.7.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 250 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

e) If no matching SA is found and there are available SAs, generate a new SA. If there are no available
SAs, silently discard the message.

f) If the sa.trustState is UNTRUSTED:

1) If the incoming message is a challenge message, continue processing as defined in K.14.3.

2) Else set the sa.challengeRequired bit in the SA and drop message.

g) If the trust state is TRUSTED:

1) If the keyId test per K.8 fails, silently discard message.

2) If the replay protection test per K.9 fails, silently discard message.

3) If the incoming message is a challenge message, continue processing as defined in K.14.3.

4) If the incoming SA’s sa.nextLifetimeId or sa.nextKeyId are zero, set the sa.challengeRequired
bit in the SA to TRUE.

5) Trigger the trust timer.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 251 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Figure K.1⎯PTP secure message processing

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 252 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

K.14.3 Challenge processing

Figure K.2 illustrates the processing of incoming challenge messages. The challenge processing is a
continuation of the general incoming message processing as described in K.14.2.

Incoming challenge message processing includes the following steps:

a) If the message is a challengeRequest, set the incoming SA’s sa.responseRequired member to TRUE,
store the requestNonce field in the SA’s sa.responseNonce member, and exit.

b) If the message is a challengeResponse or challengeResponseRequest and the incoming SA’s
sa.challengeState is not CHALLENGING (i.e., the SA does not expect a response), or if the
challenge-response check per K.10 fails, silently discard message.

c) Else (successful challenge-response):

1) Set the sa.trustState to TRUSTED.

2) Set the sa.challengeState to IDLE.

3) Copy the lifetimeId field from the AUTHENTICATION TLV to the incoming SA’s
sa.lifetimeId.

4) Copy the replayCounter field from the AUTHENTICATION TLV to the incoming SA’s
sa.replayCounter.

5) Copy the nextLifetimeId field from the SECURITY_ASSOCIATION_UPDATE TLV to the
relevant incoming SAs’ sa.nextLifetimeId selected by addressType.

6) Copy the nextKeyId from the SECURITY_ASSOCIATION_UPDATE TLV to the relevant
incoming SAs’ sa.nextKeyId selected by the addressType.

7) Trigger trust timeout.

d) If the challenge message is response-request, set the sa.responseRequired bit in the incoming SA to
TRUE and store the requestNonce in the incoming SA’s sa.responseNonce field.

e) Discard the message and exit.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 253 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Figure K.2⎯Challenge processing

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 254 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

K.14.4 Secure transmit processing

Figure K.3 illustrates the additional processing of outgoing PTP messages. All messages are appended with
the AUTHENTICATION TLV. The ICV calculation is required to follow K.6. The steps include:

a) Set the flagField.SECURE flag to TRUE.

b) Append the AUTHENTICATION TLV.

1) Copy the sa.replayCounter from the outgoing SA to the TLV’s replayCounter.

2) Copy the sa.lifetimeId from the outgoing SA to the TLV’s lifetimeId field.

3) Copy the sa.keyId from the outgoing SA to the TLV’s keyId field.

4) Copy the kl.algorithmId that corresponds to the sa.keyId from the key list data set to the TLV’s
algorithmId field.

c) Calculate the ICV, and place it in the ICV field of the AUTHENTICATION TLV.

d) Advance the SA’s sa.replayCounter by 2.

e) If the SA’s sa.replayCounter rolls over, then:

1) Copy the SA’s sa.nextLifetimeId to the sa.lifetimeId field.

2) Generate a new random non zero sa.nextLifetimeId. Ensure that the sa.nextLifetimeId value is
different from sa.lifetimeId value; otherwise, generate a new nonzero random value until a
nonequal value is generated.

3) Set the sa.replayCounter to zero.

f) Send the message

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 255 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Figure K.3⎯Secure transmit processing

K.14.5 Secure event processing

The secure event is a periodic event that handles timeouts and sends challenge messages. The secure event
should be triggered frequently enough to handle timeouts. The secure event process should be triggered at
least every time the decision event process is triggered. The secure event process is required to be carried
out atomically; see 3.1.2.

Figure K.4 illustrates the secure event processing steps for each incoming SA. The steps of the secure event
processing for incoming SA are as follows:

a) If the sa.challengeState is CHALLENGING and the sa.challengeTimeout has expired, change
sa.challengeState to IDLE.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 256 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

b) If the sa.challengeState is IDLE and both sa.challengeRequired and sa.responseRequired bits are
TRUE, then:

1) Build the SECURITY_ASSOCIATION_UPDATE TLV from all matching outgoing SAs.

2) Generate the random sa.requestNonce.

3) Build the AUTHENTICATION_CHALLENGE TLV. Copy the SA’s sa.requestNonce to the
TLV’s requestNonce field and the SA’s sa.responseNonce to the TLV’s responseNonce.

4) Set the challengeType to challengeResponseRequest, and send the message.

5) Set the sa.challengeState to CHALLENGING.

c) If the sa.challengeState is IDLE, the sa.challengeRequired bit is TRUE, and the sa.responseRequired
bit is FALSE

1) Generate the random sa.requestNonce.

2) Build the AUTHENTICATION_CHALLENGE TLV. Copy the SA’s sa.requestNonce to the
TLV’s requestNonce field and the SA’s sa.responseNonce to the TLV’s responseNonce.

3) Set the challengeType to challengeRequest and send the message.

4) Set the sa.challengeState to CHALLENGING.

d) If the sa.challengeState is CHALLENGING, and the sa.responseRequired bit is TRUE, OR the
sa.challengeState is IDLE and the sa.responseRequired bit is TRUE and the sa.challengeRequired bit
is FALSE,

1) Build the SECURITY_ASSOCIATION_UPDATE TLV from all matching outgoing SAs.

2) Build the AUTHENTICATION_CHALLENGE TLV. Set the TLV’s requestNonce field to zero
and copy the SA’s sa.responseNonce to the TLV’s responseNonce.

3) Set the challengeType to challengeResponseRequest and send the message.

e) If the sa.trustTimeout expired, set sa.trustState to UNTRUSTED.

f) Set the sa.responseRequired and sa.challengeRequired bits to FALSE.

g) Exit.

The secure event process should also handle key expiration, activation, and renewal. The secure event
should not timeout keys unless it has access to accurate time to allow it to determine whether a key is about
to expire or has already expired. The secure event process should activate keys once their start time is due.
Whenever the secure event process does not have access to sufficiently accurate time, all keys are
activated. The security event process ensures that outgoing SAs exchange new sa.keyIds prior to key
expiration through the security association update exchange defined in K.5. When the key is about to
expire, or the key needs to be replaced for some other reason, the security event process copies the
outgoing SA’s sa.nextKeyId to the sa.keyId field and sets the sa.nextKeyId to the key that would be used
once the current one expires.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 257 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Figure K.4⎯Secure event processing

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 258 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

K.14.6 Secure transparent clock processing rules

This subclause details additional transparent clock processing rules required to support secure PTP
communications. PTP transparent clocks are either security-unaware, security-aware, or security-capable
clocks, as defined below.

A security-unaware transparent clock ignores the value of the flagField.SECURE flag in a message. A
secure PTP message modified by a security-unaware transparent clock will fail the PTP receiver’s ICV test
and would be silently discarded. A security-unaware transparent clock must not be deployed within a
secure communication path.

A security-aware transparent clock does not modify PTP messages with flagField.SECURE flag set to
TRUE. PTP secure messages are forwarded according to the addressing rules of the network. Security-
aware transparent clock can be deployed in environments that use both secure and nonsecure PTP
communications (e.g., over different domains).

A security-capable transparent clock can either participate in the PTP security protocol if the defaultDS
data set defaultDS.securityEnabled is set to TRUE or behave as a security-aware clock if
defaultDS.securityEnabled is set to FALSE. A security-capable transparent clock is required to follow all
secure protocol processing rules for all PTP messages addressed to it and for all messages it originates. A
security-capable transparent clock is required to follow the transparent clock processing rules defined in
Clause 10 and Clause 11. In addition, if defaultDS.securityEnabled is set to TRUE, the following additional
processing rules are required to be followed:

a) If the flagField.SECURE flag is set to FALSE, the regular processing rules of transparent clocks are
required to be followed. Further processing rules below are applicable to PTP messages with
flagField.SECURE flag set to TRUE.

b) The transparent clock is required to perform the ICV test as defined in K.6 for all PTP event
messages. If the ICV test fails, the transparent clock is required to silently discard the PTP message.

c) A two-step transparent clock is required to perform an ICV test for Delay_Resp and Follow_Up
messages. If the ICV test fails, the transparent clock is required to silently discard the PTP message.

d) A two-step clock generating a Follow_Up message per 11.5.2.2 is required to copy the Sync message
security AUTHENTICATION TLV to the Follow_Up message. The two-step clock is required to
increment the replayCounter field of the AUTHENTICATION TLV by one.

e) The transparent clock is required to recalculate the ICV value of the PTP message after it completes
modifying the PTP message fields (correctionField, twoStepFlag, etc.) according to the procedure
defined in K.6. The transparent clock is required to update the ICV field of the security
AUTHENTICATION TLV with the calculated correct ICV.

In addition, if the defaultDS data set defaultDS.securityEnabled attributes is set to TRUE, the transparent
clock is required to not syntonize to a master clock unless it accomplishes a full trust relation with that
clock.

Transparent clocks are not required to support security association data set for the purpose of secure
residence time and path delay corrections. Security-capable transparent clocks are required to support and
maintain security associations only for the purpose of management, syntonization, and peer-to-peer
messaging.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

– 259 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

K.15 Authentication TLV

K.15.1 General

The AUTHENTICATION TLV is required to be appended to all PTP messages with the
flagField.SECURE flag set (see Table K.2). The field values of the TLV are required to be determined as
defined in this subclause. Reserved fields are required to be set to zero on transmit and ignored on receipt.

Table K.2⎯AUTHENTICATION TLV

Bits Octets
7 6 5 4 3 2 1 0

tlvType = AUTHENTICATION 2
lengthField 2
lifetimeId 2

replayCounter 4
 keyId 2

algorithmId 1
reserved 1

pad M
ICV (Integrity Check Value) N

K.15.2 tlvType

The tlvType value is AUTHENTICATION.

K.15.3 lengthField

The length of the TLV depends on the ICV and pad lengths. For all extensions defined in this standard, the
length is 26 decimal.

K.15.4 lifetimeId (UInteger16)

The lifetimeId is a fixed number determined by the SA. The lifetimeId is checked as part of the replay
protection mechanism. The lifetimeId is required to not be set to the value 0.

K.15.5 replayCounter (UInteger32)

The replayCounter is incremented by two for each packet sent through the SA. The replayCounter is
checked as part of the replay protection mechanism.

K.15.6 keyId (UInteger16)

The key identifier (keyId) field is used to select which of possibly many shared secret keys is used.

K.15.7 algorithmId (UInteger8)

The possible values for algorithmId are required to be taken from the enumeration of Table K.3.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 260 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table K.3⎯algorithmId values
algorithmId Value (hex)
NULL 0
HMAC-SHA1-96 1
HMAC-SHA256-96 2
Reserved 3−80
Implementation-specific 81−FF

All PTP nodes supporting security extensions are required to support the HMAC-SHA1-96 algorithm.

HMAC processing is defined in NIST SHS [B20] and in NIST HMAC [B21]. It defines output truncation
and padding procedures. Both SHA1 and SHA256 use a block size of 512 bits. The message is padded
before hash computation begins with zero-valued bytes to ensure that the padded message is a multiple of
512 bits. The output of SHA1 is truncated from 160 bits to 96 bits, and the output of SHA256 is truncated
from 256 bits to 128 bits to generate the ICV value. Truncation selects the leftmost bits of the generated
hash.

The NULL algorithm does not provide integrity protection and is defined for testing purposes only. The
ICV field is of length zero for the NULL algorithm.

K.15.8 pad (Octet[M])

The value of the pad field is required to be set to zero and ignored on receipt. The pad field length M is per
algorithmId is listed in Table K.4.

NOTE— The pad field length was selected such that the AUTHENTICATION TLV length is fixed for all algorithmIds
defined in this version of the standard. Fixed-length AUTHENTICATION TLV facilitates hardware implementation.
However, future algorithmIds may define ICV and pad lengths that are not summed to this fixed length.

K.15.9 ICV (Octet[N])

The method of computing the ICV value is specified in K.6. The ICV length N is per algorithmId is listed
in Table K.4.

Table K.4⎯ICV and pad length
algorithmId ICV length (Bytes) pad length (Bytes)
NULL 0 16
HMAC-SHA1-96 12 4
HMAC-SHA256-128 16 0

K.16 Authentication challenge TLV

K.16.1 General

The AUTHENTICATION_CHALLENGE TLV is used for the for the authentication challenge-response
exchange.

The extension is illustrated in Table K.5. The AUTHENTICATION_CHALLENGE TLV is required to be
sent in signaling messages. The AUTHENTICATION_CHALLENGE TLV is required to be appended as
the first TLV in the message.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 261 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Table K.5⎯AUTHENTICATION_CHALLENGE TLV
Bits Octets

7 6 5 4 3 2 1 0
tlvType = AUTHENTICATION_CHALLENGE 2

lengthField 2
challengeType 1

reserved 1
requestNonce 4

responseNonce 4

K.16.2 tlvType

The tlvType field is AUTHENTICATION_CHALLENGE.

K.16.3 lengthField

The lengthField value is 14.

K.16.4 challengeType (UInteger8)

The possible values of challengeType are required to be taken from the enumeration of Table K.6.

Table K.6⎯challengeType values
challengeType Value (hex)
challengeRequest 0
challengeResponseRequest 1
challengeResponse 2
reserved 3-FF

K.16.5 requestNonce (UInteger32)

The requestNonce is a random number generated by the sender of challenge-requests or challenge-
response-requests. The requestNonce should be set to 0 in challenge-response messages.

K.16.6 responseNonce (UInteger32)

The challenge responder copies the requestNonce from the challengeRequest and
challengeResponseRequest messages to the responseNonce in challenge-response-Request and
challengeResponses. The responseNonce is set to zero in challengeRequest messages.

K.17 Security association update TLV

K.17.1 General

The SECURITY_ASSOCIATION_UPDATE TLV is used for the delivery of the security association
lifetimeId value to be used once the replay counter of the current security association experiences a
rollover. The nextKeyId value is to be used once the key is replaced. The security association update TLV
is required to be sent in challenge-response and challenge-response-request signaling messages. The TLV

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 262 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

can be used to deliver the updated security association relevant to all addresses (unicast, multicast, and p-
delay multicast) or deliver security association update information for a particular address if different
outgoing security associations are maintained by the challenge responder. Several TLVs can be sent in the
same message, each providing the updated SA for a particular address. The extension is illustrated in
Table K.7. Reserved fields are required to be set to zero on transmit and ignored on receipt.

Table K.7⎯SECURITY_ASSOCIATION_UPDATE TLV
Bits Octets

7 6 5 4 3 2 1 0
tlvType = SECURITY_ASSOCIATION_UPDATE 2

lengthField 2
addressType 1

reserved 1
nextKeyId 2

nextLifetimeId 2

K.17.2 tlvType

The tlvType field is SECURITY_ASSOCIATION_UPDATE.

K.17.3 lengthField

The lengthField value is 10.

K.17.4 addressType (UInteger8)

The possible values of addressType are required to be taken from the enumeration of Table K.8.

Table K.8⎯addressType values
addressType Value (hex)
All 0
Multicast 1
P-Multicast 2
Unicast 3
Reserved 4−FF

K.17.5 nextKeyId (UInteger16)

The nextKeyId indicates the security key the outgoing security association will use once the current key
expires or replaced. The nextKeyId is used to update the incoming security association.

K.17.6 nextLifetimeId (UInteger16)

The nextLifetimeId indicates the lifetimeId the outgoing security association will use once replay counter
of the current outgoing security association rollovers. The nextLifetimeId is used to update the incoming
security association.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 263 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Annex L

(informative)

Transport of cumulative frequency scale factor offset (experimental)

L.1 General
This annex defines an experimental cumulative frequency scale factor offset extension to PTP; see 14.2.
Since this annex is not normative, the requirements are not expressed by the term “shall.” Instead the words
“is (are) required to” are used. Implementers of this extension are advised to interpret the words “is (are)
required to” in this annex as “shall” in order to implement correctly the extension in the event that this
annex becomes normative in future editions of the standard.

In some compensation schemes, rather than directly adjusting the phase of a boundary clock, the frequency
is adjusted in such a way as to reduce both the phase and the frequency error. The boundary clock
computes a frequency scale factor using successive timestamps it receives from its master; specifically, it
uses the time the master sent each timestamp (the originTimestamp or preciseOriginTimestamp) and the
time it received each timestamp. In using this information, the scale factor is computed relative to the
master clock. However, if the boundary clock also knows the cumulative frequency scale factor relative to
its grandmaster, the accumulated phase error at the boundary clock can be reduced. This subclause specifies
an optional TLV that can be used to transport cumulative frequency scale factor information from a
boundary clock to its slaves. Specifically, the TLV accumulates the cumulative difference between the
frequency scale factor and 1. The difference between the frequency scale factor and 1 is referred to as the
frequency scale factor offset; the accumulation of the frequency scale factor offset over multiple boundary
clock hops is referred to as the cumulative frequency scale factor offset.

L.2 Description of a frequency compensation scheme that uses cumulative
frequency scale factor

Balasubramanian et al. [B3] describe in detail a frequency compensation scheme that uses a frequency
scale factor <frequencyScaleFactor>. A frequency compensation value is computed at each successive
boundary clock node, at each syncInterval, as follows:

1nk,nk,nk,

k,0
esationValufreqCompenFesationValufreqCompen

1esationValufreqCompen

-•=
=

 (L.1)

where Fk,n is the <frequencyScaleFactor> computed at node k and syncInterval n. The adjusted, i.e.,
compensated, frequency is synthesized by multiplying the frequency of the free-running local oscillator by
the current <freqCompensationValue>. The computation of Fk,n is specified in L.3.

Wang et al. [B25] shows that the phase error accumulation over a chain of boundary clocks using this
compensation scheme can be greatly reduced by (1) synchronizing the message exchanges between
successive pairs of boundary clocks so that a slave exchanges messages with and synchronizes to its master
immediately after the master synchronizes to its master, and (2) synthesizing the compensated frequency
using the <cumulativeFrequencyScaleFactor> rather than the <frequencyScaleFactor>. The
<cumulativeFrequencyScaleFactor>, Fcum,k,n, is given by (note that the accumulation is over the chain of
nodes, and not over time)

n,kn,1k,cumn,k,cum FFF ⋅= − (L.2)

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 264 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

The <frequencyScaleFactor> for the grandmaster, F0,n, is equal to 1 (because the grandmaster is not
synchronized to another clock via the protocol). Then

n,i

k

1in,k,cum FF
=
Π= . (L.3)

The <frequencyScaleFactorOffset> is defined as the difference between the <frequencyScaleFactor> and 1
as shown in Equation (L.4).

n,kn,k

n,kn,k

1F
1F

δ+=
−=δ

 (L.4)

Inserting Equation (L.4) into Equation (L.3) and noting that δk,n << 1 (i.e., the <frequencyScaleFactor> is
very close to 1; this may be deduced from Equation (L.6) or Equation (L.8) in L.3), the cumulative
frequency scale factor may be written as follows in Equation (L.5):

=

δ+≅
k

1i
n,kn,k,cum 1F (L.5)

Equation (L.5) shows that the <cumulativeFrequencyScaleFactor> may be obtained by a cumulative sum of
the frequency scale factor offsets (as opposed to a cumulative product of the frequency scale factors). The
cumulative sum is computationally less costly, and it is transported and accumulated in the
CUM_FREQ_SCALE_FACTOR_OFFSET TLV specified in L.4.

L.3 General specification of cumulative frequency scale factor offset

If a boundary clock and its master implement this TLV, the boundary clock is required to compute its
frequency scale factor offset on receipt of the TLV appended to either a Sync or Follow_Up message.

If the TLV is appended to the Sync message, the <frequencyScaleFactorOffset> is computed on receipt of
each Sync message as (the node index k is omitted for simplicity, as all the variables of this subclause are
referenced to the same node) shown in Equation (L.6) and Equation (L.7):

1n,2n,2

n,2nn,11n,1n,1
n TT

)TdT()TT(
F

−

−

−
−++−

= (L.6)

1Fnn −=δ (L.7)

where

δn is the <frequencyScaleFactorOffset> on receipt of the nth Sync message
Fn is the <frequencyScaleFactor> on receipt of the nth Sync message
T1,n is the originTimestamp contained in the nth Sync message
T2,n is the timestamp for receipt of the nth Sync message
dn is the sum of the following:
⎯ The current (i.e., at the time of receipt of the nth Sync message) measured propagation time on

the path on which the nth Sync message is received

⎯ The correctionField of the nth Sync message

If the TLV is appended to the Follow_Up message, the <frequencyScaleFactorOffset> is computed on
receipt of each Follow_Up message as follows in Equation (L.8) and Equation (L.9):

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 265 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

1n,2n,2

n,2nn,11n,1n,1
n TT

)TdT()TT(
F

−

−

−
−++−

= (L.8)

1Fnn −=δ (L.9)

where

δn is the <frequencyScaleFactorOffset> on receipt of the nth Follow_Up message
Fn is the <frequencyScaleFactor> on receipt of the nth Follow_Up message
T1,n is the preciseOriginTimestamp contained in the nth Follow_Up message
T2,n is the timestamp for receipt of the nth Sync message
dn is the sum of the following:
⎯ The current (i.e., at the time of receipt of the nth Sync message) measured propagation time on

the path on which the nth Sync message and corresponding Follow_Up are received

⎯ The correctionField of the nth Sync message

⎯ The correctionField of the Follow_Up message corresponding to the nth Sync message

The boundary clock computes <cumulativeFrequencyScaleFactorOffset> relative to the grandmaster by
adding δn computed as above to the value of <cumulativeFrequencyScaleFactorOffset> in the
CUM_FREQ_SCALE_FACTOR_OFFSET TLV (see L.4) received most recently from the master.

If a boundary clock implements this TLV and its master does not implement this TLV, the boundary clock
is required to set the <cumulativeFrequencyScaleFactorOffset> it computes equal to δn computed as above.

NOTE— If a boundary clock does not implement this TLV, it can still use a compensation scheme that uses the non-
<cumulativeFrequencyScaleFactor>, Fn. In this case, the boundary clock ignores any
CUM_FREQ_SCALE_FACTOR_OFFSET TLV it receives from its master, and it does not send
CUM_FREQ_SCALE_FACTOR_OFFSET TLVs to its slaves.

If a boundary clock implements the CUM_FREQ_SCALE_FACTOR_OFFSET TLV, the TLV should be
sent in every Follow_Up message. The CUM_FREQ_SCALE_FACTOR_OFFSET TLV may be sent in
Sync messages only if all clocks within the communication path support the extension and pad the
Delay_Req messages to the same length to avoid asymmetry effects.

L.4 CUM_FREQ_SCALE_FACTOR_OFFSET TLV specification
The CUM_FREQ_SCALE_FACTOR_OFFSET TLV format is required to be as specified in Table L.1.

Table L.1⎯CUM_FREQ_SCALE_FACTOR_OFFSET TLV format
 Bits Octets Offset

7 6 5 4 3 2 1 0
tlvType 2 0

lengthField 2 2
cumulativeFrequencyScaleFactorOffset 4 4

L.4.1 tlvType

The value of tlvType is required to be CUM_FREQ_SCALE_FACTOR_OFFSET.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 266 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

L.4.2 cumulativeFrequencyScaleFactorOffset

The value of cumulativeFrequencyScaleFactorOffset is the most recently computed
<cumulativeFrequencyScaleFactorOffset> relative to the grandmaster of the boundary clock that sends the
Sync message that contains the TLV, multiplied by 241, and expressed as a 32 bit signed integer in two’s
complement form. After the multiplication by 241, any remaining fractional part of the
<cumulativeFrequencyOffset> is truncated; i.e., a positive <cumulativeFrequencyScaleFactorOffset> is
replaced by its floor, and a negative <cumulativeFrequencyScaleFactorOffset> is replaced by its ceiling.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 267 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Annex M

(informative)

Bibliography

[B1] Allan, D. W., Ashby, N., and Hodge, C., “Fine-tuning time in the Space Age,” IEEE Spectrum, Mar.
1998.

[B2] Allan, D. W., Ashby, N., Hodge, C. C. “The science of timekeeping,” Hewlett Packard Application
Note 1289, 1997.

[B3] Balasubramanian, S., Harris K. R., and Moldovansky, A., “A frequency compensated clock for
precision synchronization using IEEE 1588 protocol and its application to ethernet,” Workshop on IEEE
1588, Gaithersburg, MD, 2003.

[B4] Eidson, J. C., et al., “Method for recognizing events and synchronizing clocks,” U.S. Patent
5,566,180, Oct. 15, 1996.

[B5] IETF RFC 768 (1980), “User Datagram Protocol,” Postel, J., Aug. 1980.19, 20

[B6] IETF RFC 791 (1981), “Internet Protocol,” Postel, J., Sept. 1981.21

[B7] IETF RFC 1305 (1992), “Network Time Protocol (Version 3),” Mills, D. L., Mar. 1992.22

[B8] IETF RFC 1589 (1994), “A Kernel Model for Precision Timekeeping,” Mills, D. L., Mar. 1994.23

[B9] IETF RFC 1624 (1994), “Computation of the Internet Checksum via Incremental Update,”
Rijsinghani, A., ed., May 1994.24

[B10] IETF RFC 2104 (1997), “HMAC: Keyed-Hashing for Message Authentication,” Krawczyk, H.,
Bellare, M., and Canetti, R., Feb. 1997.25

[B11] IETF RFC 2404 (1998), “The Use of HMAC-SHA-1-96 within ESP and AH,” Madson, C., Nov.
1998.26

[B12] IETF RFC 2460 (1998), “Internet Protocol, Version 6 (IPv6) Specification,” Deering, S. and Hinden,
R., Dec. 1998.27

[B13] IETF RFC 2783 (2000), “Pulse-Per-Second API for UNIX-like Operating Systems,” Mogul, J. and
Stone, J., Mar. 2000.28

[B14] IETF RFC 4291 (2006), “IP Version 6 Addressing Architecture,” Hinden, R. and Deering, S., Feb.
2006.29

19 IETF publications are available from the Internet Engineering Task Force on the World Wide Web at http://www.ietf.org/rfc.html.
20 http://ietfreport.isoc.org/rfc/rfc768.txt.
21 http://ietfreport.isoc.org/rfc/rfc791.txt.
22 http://ietfreport.isoc.org/rfc/rfc1305.txt.
23 http://ietfreport.isoc.org/rfc/rfc1589.txt.
24 http://ietfreport.isoc.org/rfc/rfc1624.txt.
25 http://ietfreport.isoc.org/rfc/rfc2104.txt.
26 http://ietfreport.isoc.org/rfc/rfc2404.txt.
27 http://ietfreport.isoc.org/rfc/rfc2460.txt.
28 http://ietfreport.isoc.org/rfc/rfc2783.txt.
29 http://www.ietf.org/rfc/rfc4291.txt.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 268 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

[B15] ISO/IEC GUIDE 99:2007, International vocabulary of metrology - Basic and general concepts and
associated terms (VIM)30

[B16] ISO/IEC 9945 (all parts):2003, Information technology⎯Portable Operating System Interface (POSIX®).31

[B17] ISO 8601:2004, Data elements and interchange formats⎯Information interchange⎯Representation
of dates and times.32

[B18] Items and pointers on <http://tycho.usno.navy.mil/time.html>, a Web page maintained by the U.S.
Naval Observatory.

[B19] ITU-T Recommendation G.810, Definitions and Terminology for Synchronization Networks, ITU-T,
Geneva, Aug. 1996, Corregendum 1, Nov. 2001.33

[B20] National Institute of Standards and Technology, Secure Hash Signature Standard (SHS) (FIPS PUB 180-
2).34, 35

[B21] National Institute of Standards and Technology, The Keyed-Hash Message Authentication Code
(HMAC) (FIPS PUB 180-2).36

[B22] Perlman, R., Interconnections, Bridges and Routers. Reading, MA: Addison-Wesley, 1992.

[B23] Service de la Rotation Terrestre, Observatoire de Paris, 61, Av. De l'Observatoire 75014 PARIS
(France).

[B24] Sullivan, D. B., Allan, D. W., Howe, D. A., and Walls, F. L. eds., “Characterization of clocks and
oscillators,” NIST Technical Note 1337, Mar. 1990.

 [B25] Wang, S., Cho, J., and Garner, G. M., “Improvements to boundary clock based time synchronization
through cascaded switches,” 2006 Conference on IEEE 1588, Gaithersburg, MD, Oct. 2–4, 2006.

30 The terms and definitions taken from the International Vocabulary of Basic and General Terms in Metrology are reproduced with
the permission of the International Organization for Standardization, ISO. Copyright remains with ISO.
31 ISO/IEC publications are available from the ISO Central Secretariat, 1, ch. de la Voie-Creuse CP 56, CH-1211, Geneva 20,
Switzerland (http://www.iso.ch/) and IEC Central Office, 3, rue de Varembé, P.O. Box 131, CH-1211 Geneva 20, Switzerland.
ISO/IEC publications are also available in the United States from Global Engineering Documents, 15 Inverness Way East,
Englewood, Colorado 80112, USA (http://global.ihs.com/). Electronic copies are available in the United States from the American
National Standards Institute, 25 West 43rd Street, 4th Floor, New York, NY 10036, USA (http://www.ansi.org/).
32 ISO publications are available from the ISO Central Secretariat, 1, ch. de la Voie-Creuse CP 56, CH-1211, Geneva 20,
Switzerland (http://www.iso.ch/). ISO publications are also available in the United States from Global Engineering Documents,
15 Inverness Way East, Englewood, Colorado 80112, USA (http://global.ihs.com/). Electronic copies are available in the United
States from the American National Standards Institute, 25 West 43rd Street, 4th Floor, New York, NY 10036, USA
(http://www.ansi.org/).
33 ITU-R publications are available from the International Telecommunications Union, Place des Nations, 1211 Geneva 20,
Switzerland (http://www.itu.in/).
34 NIST publications are available from the National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8930,
Gaithersburg, MD 20899-8930 USA (http://csrc.nist.gov/).
35 http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf or http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf.
36 http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf.

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 269 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

List of Participants

At the time this standard was completed, the Precise Networked Clock Synchronization Working Group
had the following membership:

John C. Eidson, Chair
Hans Weibel, Vice Chair

Silvana Rodrigues, Secretary
John D. MacKay, Editor

Galina Antonova
Doug Arnold
Sivaram Balasubramanian
P. Stephan Bedrosian
Stewart Bryant
Chris Calley
George Claseman
Ron Cohen
Robert Cubbage
Ian Dobson
Tom Farley
John Fischer
John Fleck
Georg Gaderer
Geoffrey M. Garner

Michael Gerstenberger
Franz-Josef Götz
Bruce Hamilton
Kenneth Hann
Ken Harris
Jim Innis
Joel Keller
Jacob Kornerup
Kang Lee
Dirk S. Mohl
Anatoly Moldovansky
Laurent Montini
Paul Myers
Karen F. O'Donoghue
Jonathon D. Paul
Stephen Peterson

Antti Pietilainen
William E. Powell
Markus Renz
David Roe
David Rosselot
Stephan Schüler
Markus Seehofer
Mark Shepard
Veselin Skendzic
Dave Tonks
Richard Tse
Aljosa Vrancic
Ludwig Winkel
Taylor Wray
Gabriel Zigelboim

Acknowledgments

The working group would like to acknowledge Sara Bitan, William Burr, Ray Perlner, Albert Treytl, Steve
Singer, and Yahel Shlomi for their contributions to the security experimental extension.

Annex N

(informative)

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 270 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

The following members of the individual balloting committee voted on this standard. Balloters may have
voted for approval, disapproval, or abstention.

Ali Al Awazi
Danila Chernetsov
Ryon Coleman
Wael Diab
David Droste
Lee Eccles
John C. Eidson
Georg Gaderer
Geoffrey M. Garner
Robert Graham
Randall Groves
Bruce Hamilton
Werner Hoelzl
C. Huntley
James Innis
David V. James
Anthony Jeffree
Piotr Karocki

Yongbum Kim
Kang Lee
Arthur Marris
Jon Martens
Jonathon Mclendon
Tremont Miao
Gary Michel
Anatoly Moldovansky
Bruce Muschlitz
Jay Nemeth-Johannes
Michael S. Newman
Nick S. A. Nikjoo
Karen F. O'Donoghue
David B. Perrussel
Subburajan Ponnuswamy
William E. Powell
Jose Puthenkulam
Gordon Robinson
Robert Robinson

Silvana Rodrigues
David Roe
Charles Rogers
Peter Saunderson
Michael Seaman
Veselin Skendzic
Joseph Stanco
Kevin B. Stanton
Walter Struppler
Alourdes Sully
Michael Johas Teener
Patricia Thaler
Geoffrey Thompson
John Vergis
Stephen Webb
Fang Xu
Oren Yuen
Janusz Zalewski

When the IEEE-SA Standards Board approved this standard on 27 March 2008, it had the following
membership:

Robert M. Grow, Chair
Thomas Prevost, Vice Chair
Steve M. Mills, Past Chair
Judith Gorman, Secretary

Victor Berman
Richard DeBlasio
Andrew Drozd
Mark Epstein
Alexander Gelman
William R. Goldbach
Arnold M. Greenspan
Kenneth S. Hanus

James Hughes
Richard H. Hulett
Young Kyun Kim
Joseph L. Koepfinger*
John Kulick
David J. Law
Glenn Parsons

Ronald C. Petersen
Chuck Powers
Narayanan Ramachandran
Jon Walter Rosdahl
Anne-Marie Sahazizian
Malcolm V. Thaden
Howard L. Wolfman
Don Wright

*Member Emeritus

Also included are the following nonvoting IEEE-SA Standards Board liaisons:

Satish K. Aggarwal, NRC Representative
Michael H. Kelley, NIST Representative

Lorraine Patsco
IEEE Standards Program Manager, Document Development

Patricia A. Gerdon
IEEE Standards Program Manager, Technical Program Development

Published by IEC under licence from IEEE. © 2008 IEEE. All rights reserved.

IEC 61588:2009(E)
IEEE 1588-2008(E)

– 271 –

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

3, rue de Varembé
PO Box 131
CH-1211 Geneva 20
Switzerland

Tel: + 41 22 919 02 11
Fax: + 41 22 919 03 00
info@iec.ch
www.iec.ch

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 18,2014 at 16:39:18 UTC from IEEE Xplore. Restrictions apply.

	CONTENTS
	TABLES
	FIGURES

	FOREWORD
	Title Page
	IEEE Introduction
	1. Overview
	1.1 Scope
	1.2 Purpose
	1.3 Layout of the document

	3. Definitions, acronyms, and abbreviations
	3.1 Definitions
	3.2 Acronyms and abbreviations

	4. Conventions
	4.1 Descriptive lexical form syntax
	4.2 Word usage
	4.3 Behavioral specification notation

	5. Data types and on-the-wire formats in a PTP system
	5.1 General
	5.2 Primitive data type specifications
	5.3 Derived data type specifications
	5.4 On-the-wire formats

	6. Clock synchronization model
	6.1 General
	6.2 Principle assumptions about the network and implementation recommendations
	6.3 PTP systems
	6.4 PTP message classes
	6.5 PTP device types
	6.6 Synchronization overview
	6.7 PTP communications overview

	7. Characterization of PTP entities
	7.1 Domains
	7.2 PTP timescale
	7.3 PTP communications
	7.4 PTP communication media
	7.5 PTP ports
	7.6 PTP device characterization
	7.7 PTP timing characterization

	8. PTP data sets
	8.1 General specifications for data set members
	8.2 Data sets for ordinary and boundary clocks
	8.3 Data sets for transparent clocks

	9. PTP for ordinary and boundary clocks
	9.1 General protocol requirements for PTP ordinary and boundary clocks
	9.2 State protocol
	9.3 Best master clock algorithm
	9.4 Grandmaster clocks
	9.5 Message processing semantics
	9.6 Changes in the local clock

	10. PTP for transparent clocks
	10.1 General requirements for both end-to-end and peer-to-peer transparent clocks
	10.2 End-to-end transparent clock requirements
	10.3 Peer-to-peer transparent clock requirements

	11. Clock offset, path delay, residence time, and asymmetry corrections
	11.1 General specifications
	11.2 Computation of clock offset in ordinary and boundary clocks
	11.3 Delay request-response mechanism
	11.4 Peer delay mechanism
	11.5 Transparent clock residence time correction for PTP version 2 events
	11.6 Asymmetry correction for PTP version 2 event messages

	12. Synchronization and syntonization of clocks
	12.1 Syntonization
	12.2 Synchronization

	13. PTP message formats
	13.1 General
	13.2 General message format requirements
	13.3 Header
	13.4 Suffix
	13.5 Announce message
	13.6 Sync and Delay_Req messages
	13.7 Follow_Up message
	13.8 Delay_Resp message
	13.9 Pdelay_Req message
	13.10 Pdelay_Resp message
	13.11 Pdelay_Resp_Follow_Up message
	13.12 Signaling message
	13.13 Management message

	14. TLV entity specifications
	14.1 General requirements
	14.2 Experimental TLVs
	14.3 Vendor and standard organization extension TLVs

	15. Management
	15.1 General
	15.2 PTP management mechanism
	15.3 Processing of management messages
	15.4 Management message format
	15.5 Management TLVs

	16. General optional features
	16.1 Unicast message negotiation (optional)
	16.2 Path trace (optional)
	16.3 Alternate timescales (optional)

	17. State configuration options
	17.1 General
	17.2 Data types for options
	17.3 Grandmaster clusters (optional)
	17.4 Alternate master (optional)
	17.5 Unicast discovery (optional)
	17.6 Acceptable master table (optional)

	18. Compatibility requirements
	18.1 Compatibility between version 2 and future versions
	18.2 Compatibility between version 1 and version 2
	18.3 Message formats and data types
	18.4 Naming changes
	18.5 Restrictions on mixed version 1 and version 2 systems

	19. Conformance
	19.1 Conformance objective
	19.2 PTP conformance requirements
	19.3 PTP profiles

	Annex A (informative) Using PTP
	Annex B (informative) Timescales and epochs in PTP
	Annex C (informative) Examples of residence and asymmetry corrections
	Annex D (normative) Transport of PTP over User Datagram Protocol over Internet Protocol Version 4
	Annex E (normative) Transport of PTP over User Datagram Protocol over Internet Protocol Version 6
	Annex F (normative) Transport of PTP over IEEE 802.3 /Ethernet
	Annex G (normative) Transport of PTP over DeviceNET
	Annex H (normative) Transport of PTP over ControlNET
	Annex I (normative) Transport of PTP over IEC 61158 Type 10
	Annex J (normative) Default PTP profiles
	Annex K (informative) Security protocol (experimental)
	Annex L (informative) Transport of cumulative frequency scale factor offset (experimental)
	Annex M (informative) Bibliography
	Annex N (informative) List of Participants

