INTERNATIONAL IEC
STANDARD 61523-3

First edition
2004-09

IEEE 149/7™

Delay and power calculation standards —

Part 3:
Standard Delay Format (SDF) for the
electronic design process

Reference number
I EC @ I E E E IEC 61523-3(E):2004
A IEEE Std. 1497(E):2001

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

Publication numbering

As from 1 January 1997 all IEC publications are issued with a designation in the
60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.

Consolidated editions

The IEC is now publishing consolidated versions of its publications. For example,
edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the
base publication incorporating amendment 1 and the base publication incorporating
amendments 1 and 2.

Further information on IEC publications

The technical content of IEC publications is kept under constant review by the IEC,
thus ensuring that the content reflects current technology. Information relating to
this publication, including its validity, is available in the IEC Catalogue of
publications (see below) in addition to new editions, amendments and corrigenda.
Information on the subjects under consideration and work in progress undertaken
by the technical committee which has prepared this publication, as well as the list
of publications issued, is also available from the following:

. IEC Web Site (www.iec.ch)

. Catalogue of IEC publications

The on-line catalogue on the IEC web site (www.iec.ch/searchpub) enables you to
search by a variety of criteria including text searches, technical committees
and date of publication. On-line information is also available on recently issued
publications, withdrawn and replaced publications, as well as corrigenda.

. IEC Just Published

This summary of recently issued publications (www.iec.ch/online_news/ justpub)
is also available by email. Please contact the Customer Service Centre (see
below) for further information.

. Customer Service Centre

If you have any questions regarding this publication or need further assistance,
please contact the Customer Service Centre:

Email: custserv@iec.ch
Tel: +41 229190211
Fax: +41 22919 03 00

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

http://www.iec.ch/
http://www.iec.ch/searchpub
http://www.iec.ch/online_news/ justpub
mailto:custserv@iec.ch

INTERNATIONAL IEC
STANDARD 61523-3

First edition
2004-09

IEEE 149/™

Delay and power calculation standards —

Part 3:
Standard Delay Format (SDF) for the
electronic design process

© IEEE 2004 — Copyright - all rights reserved

IEEE is a registered trademark in the U.S. Patent & Trademark Office, owned by the Institute of Electrical and Electronics Engineers, Inc.

No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland
Telephone: +41 22919 02 11 Telefax: +41 22 919 0300 E-mail: inmail@iec.ch Web: www.iec.ch

The Institute of Electrical and Electronics Engineers, Inc, 3 Park Avenue, New York, NY 10016-5997, USA
Telephone: +1 732 562 3800 Telefax: +1 732 562 1571 E-mail: stds-info@ieee.org Web: www.standards.ieee.org

Commission Electrotechnique Internationale
International Electrotechnical Commission
MexayHapoaHas 3nekTpoTexHuyeckaa Komuccus
®

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

mailto:stds-info@ieee.org

—2- IEC 61523-3:2004(E)
|EEE 1497-2001(E)

CONTENTS
FOREWORD ..ottt sttt sttt st et et b et b e st et b et be e 3
TEEE INtrOAUCHION.cuiiiiiiiiiiiiiiiietecee et sttt st st st ne e 7
Lo OVEIVIBW .ottt ettt s et a et b e sa e bt et sa ettt a e ae et be et eae 8
I B o701 OO PSP 8
1.2 Organization of this StaNdardceoeiiiiiiii e 8
2. REIBIEIICES ...ttt ettt sttt et et et eae 9
3. COMVENLIONS ...oviiiniitiieett ettt ettt sttt et ettt e s bt bt e bt ebeeas e e et e s bt et e s aeeueesse e eatesaeebesae s estebesaeebeeueene 9
3.1 TerminOlOZY COMVENTIONS. ...c..eiteitirtieteeuteutentetetesteateateeteeseeseesseneensassesseabesseesesseeneenseneesesseaseeneenes 9
3.2 SyNLACIC COMVENTIONS.eeuteuietitertieteeteetteutentetesteeteaseeteeseeneensensentesseateabeeseeseeneensensesessesseeseeneenes 9
4. SDF 1N the deSIZN PIOCESS -....eeveeueeuieuieieterteeteettettettentatestesteatesteebeeneessesenseaseseeebeeseeneeneenseseseeeneeneenes 12
4.1 Sharing of tIMING Accoeiuiiiiiiieee ettt sttt et eae et et e b e seeeeeeneens 12
4.2 Using multiple SDF files in 0Ne deSIZN......c.couiiiiiiiiiiieieiceieiee et 12
4.3 Timing data and CONSIIAINESeeuiiieieiiieieite ettt sttt ettt e esbesee e eeeeneens 13
4.4 TiMING CNVITOMIMEIILSeeutiuieuietetesterteeteestenteseententesteetesseeseeseeseansessesseasesseeseeneensensenseasesseaseaneenes 13
4.5 Back-annotation of timing data for design analysisccccoeveriririeiieieneere e 13
4.6 Forward-annotation of timing constraints for design Synthesis..........coceeeeeieiereniniencnenceenne. 15
4.7 Timing models Supported by SDF........ccooiiiiiiiii e 16
5. Defining the standard delay fOrmat............cocoooieiiiiiiiiiiie e 18
5.1 SDF fIl€ COMEENLeouiiiniiiiiiiitirtctitenteeete ettt sttt sttt ettt st ebe e 18
5.2 HEAAET SECHIOM ... ettt ettt ettt ettt s b et sttt be et ebe e 20
5.3 CRIIS ettt ettt et ee 25
S DAY S -ttt h et a st et ebe bttt e bt ene st et en b et e bt ebeeaeeneenean 28
5.5 TIHMING CHECKS ...ttt ettt et ettt b e eae e et et e et et e sbesaeeaeenean 46
5000 LADRIS .ottt ettt sttt 60
5.7 TIMING ENVIFOMMENEecuiiuiiiieiiteitieteett et eteete e stesteateeteeseeseesteneensessesseabeaseeseeneensensensensesseeneenean 62
Annex A (normative) Syntax Of SDFcooiiiiiiiii e 74
Annex B (informative) SDF file XampPIesc.cccvevvieiieiiiieiiieieeie ettt ettt ere e eae e sae e 84
Annex C (informative) List of PartiCIPants...........ccccveuieiiiieiieriicie ettt sre v s v seaesaeesee s 89

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

IEC 61523-3:2004(E) —3-
|EEE 1497-2001(E)

INTERNATIONAL ELECTROTECHNICAL COMMISSION

DELAY AND POWER CALCULATION STANDARDS -

Part 3: Standard Delay Format (SDF)
for the electronic design process

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization
comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to
promote international co-operation on all questions concerning standardization in the electrical and
electronic fields. To this end and in addition to other activities, IEC publishes International Standards,
Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter
referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National
Committee interested in the subject dealt with may participate in this preparatory work. International,
governmental and non-governmental organizations liaising with the IEC also participate in this preparation.
IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with
conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an
international consensus of opinion on the relevant subjects since each technical committee has
representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly
indicated in the latter.

5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with an IEC Publication.

6) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC/IEEE 61523-3 has been processed through IEC technical
committee 93: Design automation.

The text of this standard is based on the following documents:

IEEE Std FDIS Report on voting
1497 (2001) 93/191/FDIS 93/196/RVD

Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives.

The committee has decided that the contents of this publication will remain unchanged until
2006.

IEC 61523 consists of the following parts, under the general title Delay and power
calculation standards:

IEC 61523-1, Part 1: Integrated circuit delay and power calculation systems

A [Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved.|

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

—4- IEC 61523-3:2004(E)
|EEE 1497-2001(E)

IEC 61523-2, Part 2: Pre-layout delay calculation specification of CMOS ASIC libraries
IEC/IEEE 61523-3, Part 3: Standard Delay Format (SDF) for the electronic process

A [Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved.|

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 61523-3:2004(E) —5-
|EEE 1497-2001(E)

IEC/IEEE Dual Logo International Standards

This Dual Logo International Standard is the result of an agreement between the IEC and the Institute of
Electrical and Electronics Engineers, Inc. (IEEE). The original IEEE Standard was submitted to the IEC for
consideration under the agreement, and the resulting IEC/IEEE Dual Logo International Standard has been
published in accordance with the ISO/IEC Directives.

IEEE Standards documents are developed within the |IEEE Societies and the Standards Coordinating
Committees of the IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards
through a consensus development process, approved by the American National Standards Institute, which
brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers
are not necessarily members of the Institute and serve without compensation. While the IEEE administers the
process and establishes rules to promote fairness in the consensus development process, the IEEE does not
independently evaluate, test, or verify the accuracy of any of the information contained in its standards.

Use of an IEC/IEEE Dual Logo International Standard is wholly voluntary. The IEC and IEEE disclaim liability for
any personal injury, property or other damage, of any nature whatsoever, whether special, indirect,
consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance upon
this, or any other IEC or IEEE Standard document.

The IEC and IEEE do not warrant or represent the accuracy or content of the material contained herein, and
expressly disclaim any express or implied warranty, including any implied warranty of merchantability or fitness
for a specific purpose, or that the use of the material contained herein is free from patent infringement.
IEC/IEEE Dual Logo International Standards documents are supplied “AS IS”.

The existence of an IEC/IEEE Dual Logo International Standard does not imply that there are no other ways to
produce, test, measure, purchase, market, or provide other goods and services related to the scope of the
IEC/IEEE Dual Logo International Standard. Furthermore, the viewpoint expressed at the time a standard is
approved and issued is subject to change brought about through developments in the state of the art and
comments received from users of the standard.

Every IEEE Standard is subjected to review at least every five years for revision or reaffirmation. When a
document is more than five years old and has not been reaffirmed, it is reasonable to conclude that its contents,
although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to
determine that they have the latest edition of any IEEE Standard.

In publishing and making this document available, the IEC and IEEE are not suggesting or rendering
professional or other services for, or on behalf of, any person or entity. Neither the IEC nor IEEE is undertaking
to perform any duty owed by any other person or entity to another. Any person utilizing this, and any other
IEC/IEEE Dual Logo International Standards or IEEE Standards document, should rely upon the advice of a
competent professional in determining the exercise of reasonable care in any given circumstances.

Interpretations — Occasionally questions may arise regarding the meaning of portions of standards as they relate
to specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will
initiate action to prepare appropriate responses. Since |IEEE Standards represent a consensus of concerned
interests, it is important to ensure that any interpretation has also received the concurrence of a balance of
interests. For this reason, IEEE and the members of its societies and Standards Coordinating Committees are
not able to provide an instant response to interpretation requests except in those cases where the matter has
previously received formal consideration.

Comments for revision of IEC/IEEE Dual Logo International Standards are welcome from any interested party,
regardless of membership affiliation with the IEC or IEEE. Suggestions for changes in documents should be in
the form of a proposed change of text, together with appropriate supporting comments. Comments on standards
and requests for interpretations should be addressed to:

Secretary, IEEE-SA Standards Board, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331, USA and/or
General Secretary, IEC, 3, rue de Varembé, PO Box 131, 1211 Geneva 20, Switzerland.

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the
Institute of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright
Clearance Center. To arrange for payment of licensing fee, please contact Copyright Clearance Center,
Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy
portions of any individual standard for educational classroom use can also be obtained through the Copyright
Clearance Center.

NOTE - Attention is called to the possibility that implementation of this standard may require use of subject
matter covered by patent rights. By publication of this standard, no position is taken with respect to the
existence or validity of any patent rights in connection therewith. The IEEE shall not be responsible for
identifying patents for which a license may be required by an IEEE standard or for conducting inquiries into the
legal validity or scope of those patents that are brought to its attention.

A [Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved.|

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

-6- IEC 61523-3:2004(E)
|EEE 1497-2001(E)

IEEE Standard for Standard Delay
Format (SDF) for the Electronic

Design Process

Sponsor

Design Automation Standards Committee
of the
IEEE Computer Society

Approved 5 December 2001
IEEE-SA Standards Board

Abstract: The Standard Delay Format (SDF) is defined in this standard. SDF is a textual file format
for representing the delay and timing information of electronic systems. While both human and
machine readable, in its most common usage it will be machine written and machine read in support
of timing analysis and verification tools, and of other tools requiring delay and timing information.
The primary audience for this standard is the implementors of tools supporting the format, but
anyone with a need to understand the format’s contents will find it useful.

Keywords: computer, computer languages, delay, delay backannotation, digital systems, electron-
ic systems, hardware, hardware design, SDF, timing, timing analysis, timing backannotation, timing
verification

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 61523-3:2004(E) —7-
|EEE 1497-2001(E)

IEEE Introduction

The Standard Delay Format (SDF) was designed to serve as a simple textual medium for communicating
timing information and constraints between EDA tools. The original version was designed by Rajit C. Chan-
dra in 1990 while at Cadence Design Systems, and was intended as a means of communicating macrocell
and interconnect delays from Gate Ensemble to Verilog-XL, Veritime and other stand-alone tools requiring
timing data.

Because it was originally targeted for annotation to tools using the Verilog language, many SDF constructs
are analogous to those in Verilog specify blocks. Those already familiar with the Verilog specify block will
find many of the SDF constructs familiar, such as SETUP and PATHPULSE. SDF also includes constructs
for annotating interconnect delays, and can be used for forward annotation by specifying path delay con-
straints from timing analysis to floorplanners, and synthesis and layout tools.

SDF was first introduced into the EDA marketplace in 1991 where it won quick acceptance. Cadence placed
SDF in the public domain in 1992 when it turned control over to Open Verilog International (OVI), and OVI
delivered the first SDF standard, version 2.0, in June, 1993 (SDF version 1.0 was used by Cadence). OVI has
since introduced version 2.1 in February, 1994, and version 3.0 in May, 1995. VHDL (IEEE 1076) also takes
advantage of SDF through the VITAL standard.

In 1996 the OVI Board of Directors began an effort to establish SDF as an IEEE standard. With the approval
of the IEEE Design Automation Standards Committee (DASC), the OVI Logic Modeling Technical Sub-
committee became the IEEE SDF Study Group. With the approval of the Project Authorization Request
(PAR) by the IEEE Standards Board on February 10, 1997, this group became the IEEE SDF Working
Group.

This IEEE SDF standard builds upon OVI SDF version 3.0, and will be known as version 4.0. The changes
from OVI 3.0 to IEEE 4.0 are small (LABEL construct added, NETDELAY construct restored), but the
change from OVI standard to IEEE standard is significant, and so this is recognized by a new version
number.

Objective

The starting point for the IEEE P1497 SDF Working Group was the OVI LRM version 3.0 SDF standard,
with the goal of soliciting further enhancements and improving the quality and rigor of the LRM. Since SDF
is already in widespread use, no modifications that would invalidate current usage were considered.

Acknowledgments

This standard is based on work originally developed by Cadence Design Systems, Inc. (in SDF 1.0) and
Open Verilog International (in SDF 2.0, 2.1 and 3.0). The IEEE is grateful to Cadence Design Systems and
Open Verilog International for permission to use their materials as the basis for this standard.

A [Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved.|

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

-8-— IEC 61523-3:2004(E)
|EEE 1497-2001(E)

DELAY AND POWER CALCULATION STANDARDS —
Part 3: Standard Delay Format (SDF)

for the electronic design process

1. Overview

1.1 Scope

The Standard Delay Format (SDF) is an existing OVI standard for the representation and interpretation of
timing data for use at any stage of the electronic design process. The ASCII data in the SDF file is
represented in a tool and language independent way and includes path delays, timing constraint values, inter-
connect delays and high level technology parameters. This standard describes the IEEE version of the SDF
standard.

This standard should serve as a complete specification of the Standard Delay Format (SDF). It contains:

— Detailed information on how SDF is used in the design process.
— Detailed semantic descriptions of all SDF constructs.

— The formal syntax.

— Examples.

1.2 Organization of this standard

A synopsis of the clauses and annexes of this standard is presented as a quick reference. There are five
clauses and two annexes. All the clauses and annexes are normative parts of this standard, with the exception
of Annex B (informative).

Clause 1: Overview —Content overview.
Clause 2: References—References to other applicable standards that are assumed or required for SDF.

Clause 3: Definitions and conventions—Introduction to syntactic style and the major syntactic
components.

Clause 4: SDF in the design process— The role and use of SDF in the design process.

Clause 5: Defining the Standard Delay Format—The content of an SDF file. For each part of the file, the
purpose is discussed, the syntax is specified, the semantics are explained, and examples are presented.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 61523-3:2004(E) —9-
|EEE 1497-2001(E)

Annex A: Syntax of SDF—SDF file syntax description. The syntax of the contents of an SDF file is
described in this annex.

Annex B: SDF file examples — Informative examples of SDF files.

2. References

This standard shall be used in conjunction with the following publications. When the following standards are
superseded by an approved revision, the revision shall apply.

IEEE Std 1076, 2000 Edition, IEEE Standard VHDL Language Reference Manual.!

IEEE Std 1364-2001, IEEE Standard Verilog® Hardware Description Language.

3. Conventions

3.1 Terminology conventions

The verb “shall” is used throughout this standard to indicate mandatory requirements, whereas the verb
“can” is used to indicate optional features that can be used at discretion. If “can” is used, however, one must
follow the requirements set forth by the format definition. The verb “shall” denotes different meanings to
different readers of this standard:

a)

b)

)

To the developers of tools that process SDF, the verb “shall” denotes a requirement that the standard
imposes. The resulting implementation is required to enforce the requirements and to issue an error
if the requirement is not met by the input.

To the human reader of SDF, the verb “shall” denotes that those characteristics of SDF are natural
consequences of the format definition. The characteristics thereby implied in the SDF source text
can be depended upon.

To the developer of tools that write SDF, and to the human writer of SDF, the verb “shall” denotes
that those characteristics of SDF are natural consequences of the format definition. Adherence to the
constraint implied by the characteristic is required.

3.2 Syntactic conventions

3.2.1 Syntactic conventions

The formal syntax of SDF is described using Backus-Naur Form (BNF). In addition, the following conven-
tions are used:

a)

b)

Lowercase italic words, some containing embedded underscores, are used to denote syntactic
tokens. For example:

module_declaration
Boldface words are used to denote reserved keywords, operators, and punctuation marks as a
required part of the syntax. For example:

IOPATH

(
)

I[EEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box 1331, Piscataway,
NJ 08855-1331, USA (http://standards.ieee.org/).

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

~10- IEC 61523-3:2004(E)
|EEE 1497-2001(E)

c) A vertical bar separates alternative items unless it appears in boldface, in which case it stands for
itself. In most cases each alternative appears on a separate line. For example:

character ::=
alphanumeric
Jescaped_character

When the alternatives are very simple, as in the case of single characters, then they can appear on a
single line or on consecutive multiple lines. For example:

decimal_digit ::=0/1/2/3/4/5/6/7/8/9

d) Square brackets enclose optional items. For example:
real_number ::= integer [. integer |

e) Braces enclose a repeated item unless it appears in boldface, in which case it stands for itself. The
item can appear zero or more times; the repetitions occur from left to right as with an equivalent left-
recursive rule. Thus, this rules says that a CELL can contain any number of timing specifications:

cell ::= (CELL celltype cell_instance { timing_spec })

A constant-width font is used for examples, file names, and while referring to constants, especially O,
1, x, and z values.

3.2.2 Lexical tokens

An SDF file is a stream of lexical tokens in free format, each of which consists of one or more characters.
Spaces and newlines serve only to separate tokens.

3.2.3 White space

Tabs, spaces, and newlines are considered white space. White space is never significant except when used
within quoted strings or to separate lexical tokens.

3.2.4 Comments
Comments can be placed in SDF files using either the “C” or “C++" style.

“C”-style comments begin with /* and end with */. Nesting of “C”-style comments is not permitted. “C”-
style comments can appear anywhere except within lexical tokens or quoted strings.

“C++"-style comments begin with // and continue until the end of the current line (the next newline charac-
ter). Annotators shall ignore the double-slash and any text after them on any line in the file.

3.2.5 Identifiers

Identifiers can consist of alphanumeric characters and special characters. Alphanumeric characters consist of
the letters of the alphabet, the numeric base-10 digits, the underscore (*_"), and the dollar sign (‘$’). Special
characters must be escaped (preceded with the backslash (‘\’) character) in order to be used in an identifier.
The special characters are:

T"H#S % &« ()*+,-./is5<=>2@[\]"“{]|}~
Any character can be escaped with a backslash, and the backslash is only required for special characters.

Note that if a character normally has any special meaning in an identifier, this is lost when the character is
escaped.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

IEC 61523-3:2004(E) —11-
|EEE 1497-2001(E)

3.2.6 Quoted strings

A quoted string is a string of any legal SDF characters, including white space, that are enclosed between
double-quotes (‘"’). Except for the double-quote itself, special characters lose their special meaning in a
quoted string. The double-quote character may be included in a quoted string by escaping it [preceding it
with the backslash (‘\’) character].

3.2.7 Bit specifications

A bit specification is indicated by an identifier with trailing paired square brackets (‘[” and ‘]’). A single bit
is indicated by a single integer between the square brackets, while a bit range is indicated by two integers
separated by a colon (‘:”).

3.2.8 Hierarchy divider character

Either the period (°.”) or the slash (°/”) can be established as the hierarchy divider character, as described in
5.2.7. This character only has this special meaning when used to separate identifiers. An escaped hierarchy
divider character loses its meaning as a hierarchy divider.

3.2.9 Data values

A number shall be an integer or a real number. Real numbers can be expressed in scientific notation, and can
be signed or unsigned, but signed real numbers are not legal in all contexts.

A value consists of a real_number in parentheses, a friple in parentheses or an empty pair of parentheses.
Empty parentheses indicate that no value is supplied for a particular data item. This is used primarily where
a construct has a list of data items and it is desired to supply a value for an item further down the list but not
for earlier items. The empty parentheses mark the places of the earlier items. An annotator shall take no
action when it encounters empty parentheses. In particular, it shall not interpret this in the same way as a
value of zero.

A triple consists of one, two or three colon-separated real_numbers. Each real_number corresponds to a data
value in one of three data sets, commonly used (in order) as values under best case/minimum, nominal/typi-
cal and worst case/maximum operating conditions. If a real_number is omitted, then a value is not included
for that data set. At least one real_number is required. Both colons must always be present.

Apart from allowing negative numbers (signed_real_number instead of real_number), rvalue and rtriple are
essentially the same as value and triple.

For specifying delay values, delval extends rvalue by allowing two or three rvalue constructs to be grouped
in a further set of parentheses. When this is used, the first rvalue specifies the delay, as if a single rvalue were
given. The second specifies the pulse rejection limit, or “r-limit,” associated with this delay. The third speci-
fies the X-limit, or “e-limit.” This allows pulse control data to be associated in a uniform way with all types
of delays in SDF, i.e., IOPATH, PORT, INTERCONNECT, NETDELAY, and DEVICE delays. Note that
since any rvalue can be an empty pair of parentheses, each type of delay data can be annotated or omitted as
the need arises.

The meaning of delval constructs in an delval_list is different for lists of length one, two, three, six, or
twelve. Lists of length four or five are interpreted in the same way as lists of length six with trailing empty
parentheses. Similarly, lists of length seven to eleven are interpreted in the same way as lists of length twelve
with trailing empty parentheses. A complete discussion of the use of delval_list is included in 5.4.1.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

-12 - IEC 61523-3:2004(E)
IEEE 1497-2001(E)
3.2.10 Operators
Operators are single-, double-, or triple-character sequences and are used in expressions.

The equality operators used in SDF conditional port expressions and timing check conditions return a logical
value representing the result of the comparison, which is 1 for TRUE and 0 for FALSE, but can also be X.

a == b (logical equality) will be TRUE (1) only if a and b are of known logical state (0 or 1) and equal and
FALSE (0) only if a and b are known and not equal. If either a or b is X or Z, then the result shall be X.

a != b (logical inequality) will be TRUE (1) only if a and b are known and not equal and FALSE (0) only
if @ and b are known and equal. If either a or b is X or Z, then the result will be X.

a === Db (case equality) will be TRUE (1) if a and b are of the exact same logical state, including the X
and Z states, and FALSE (0) otherwise.

a !== b (case inequality) will be TRUE (1) if a and b are of different logical states, including the X and Z
states, and FALSE (0) otherwise.

4. SDF in the design process

4.1 Sharing of timing data

By accessing an SDF file, Electronic Design Automation (EDA) tools are assured of consistent, accurate,
and up-to-date data. This means that EDA tools can use data created by other tools as input to their own pro-
cesses. Sharing data in this way, layout tools can use design constraints identified during timing analysis,

and simulation tools can use the post-layout delay data.

The EDA tools create, read from (to update their design), and write to SDF files.

4.2 Using multiple SDF files in one design

SDF files support hierarchical timing annotation. A design hierarchy might include several different ASICs
(and/or cells or blocks within ASICs), each with its own SDF file (see Figure 1).

SDF File
for ASIC 1

SDF File SDF File
for ASIC 2 for System
Interconnect

System Module \ |
\

ASIC 1

Figure 1—Multiple SDF files in a hierarchical design

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 61523-3:2004(E) ~13-
|EEE 1497-2001(E)

4.3 Timing data and constraints

SDF contains constructs for the description of computed timing data for back-annotation and the specifica-
tion of timing constraints for forward-annotation. There is no restriction on using both sets of constructs in
the same file. Indeed, some design synthesis tools (such as floorplanners) may need access to computed tim-
ing data as well as the timing constraints intended to be meet.

Subclauses 4.5 and 4.6 discuss the use of SDF for backward- and forward-annotation of timing information.

4.4 Timing environments

SDF includes constructs for describing the intended timing environment in which a design operates. For
example, a waveform to be applied at clock inputs and the arrival time of primary inputs can be specified
using SDF.

4.5 Back-annotation of timing data for design analysis

Figure 2 shows the use of SDF in back-annotating timing data to an analysis tool. An advantage of this
approach is that once an SDF file has been created for a design, all analysis and verification tools can access
the same timing data, which ensures consistency. Note, however, that different tools can have different
restrictions in the way in which the data in an SDF file is used. For example, static timing analysis tools may
be able to take into account path delays that have a negative value, whereas dynamic timing simulation tools
may have to interpret such negative delays as zero. Even though by using SDF the timing data used by each
tool is the same, differences in tool capabilities can nevertheless result in small differences in analysis
results.

pre-layout post-layout
O

interconnect
estimation rules

actual interconnect
data (post-route)

technology and
cell characterization
data

Timing
Calculator <

SDF File design description
(timing data) (netlist)

annotator
cell timing
models (Verilog, Analysis -
VHDL, etc.) Tool

library-specific data -«— ; —» design-specific data

Figure 2—SDF files in timing back-annotation

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

14— IEC 61523-3:2004(E)
|EEE 1497-2001(E)

4.5.1 The timing calculator

A timing calculator tool is responsible for generating the SDF file. To do this, the timing calculator shall
examine the specific design for which it has been instructed to calculate timing data. Figure 2 shows how the
timing calculator reads in the design description (netlist). The timing calculator must locate, within the
design, each region for which a timing model exists and calculate values for the parameters of that timing
model. Strategies for computation vary from technology to technology, but an example would be the
location of each occurrence of a physical primitive from an ASIC library and the calculation of its timing
properties at its boundary (pin-to-pin timing). Knowledge of the timing models can be obtained by accessing
them directly (not shown) or can be built into the timing calculator and/or cell characterization data.

As the timing characteristics of ASICs are strongly influenced by interconnect effects, Figure 2 shows the
timing calculator using estimation rules (pre-layout) or actual interconnect data (post-layout). Thus, SDF is
suitable for both pre-layout and post-layout application.

The timing data for the design is written by the timing calculator into the SDF file. SDF imposes no restric-
tions on the precision to which the data is represented. Therefore, the accuracy of the data in the SDF file
shall be dependent on the accuracy of the timing calculator and the information made available to it, such as
pre-layout interconnect estimation methods or post-layout interconnect data extracted from the device
topology.

4.5.2 The annotator

The SDF file is brought into the analysis tool through an annotator. The job of the annotator is to match data
in the SDF file with the design description and the timing models. Each region in the design identified in the
SDF file must be located and its timing model found. Data in the SDF file for this region shall be applied to
the appropriate parameters of the timing model.

The annotator can be instructed to apply the data in the SDF file to a specific region of the design, other than
at the top level of the design hierarchy. In this case, it shall search for regions identified in the SDF file
starting at this point in the hierarchy. The file must clearly have been prepared with such usage in mind,
otherwise the annotator will be unable to match the data found in the file with the design viewed from this
point in hierarchy.

The foregoing implies that the annotator must have access to the design description and the timing models.
Frequently, such access is provided via the internal representations maintained by the analysis tool. The
annotator then becomes a part of the tool. As an alternative, the annotator can operate independently of the
analysis tool and convert the data in the SDF file into a format suitable for the tool to read directly. If such an
annotator is unable to match the SDF file to the design description and the timing models, then the effect of
inconsistencies can be unpredictable. Also, certain constructs of SDF cannot be supported without access to
the design description (for example, wildcard cell instance specifications).

Definition of all timing relationships, including delays and timing checks shall reside with the timing model.
SDF annotation shall not be used to specify timing relationships, but only to communicate timing values.

4.5.3 Consistency between SDF file and design description

An SDF file contains timing data for a specific design. The contents of the file identifies regions of the
design and provides timing data that applies to the timing properties of that region. The analysis tool or
annotator cannot operate if the regions identified in the SDF file do not correspond exactly with the design
description. Therefore, changes to the design generally require the timing calculator to be rerun and a new
SDF file to be written.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 61523-3:2004(E) —15-—
|EEE 1497-2001(E)

Of equal importance to the logic of the design is the naming of design objects. Even if the same cells are
present and are connected in the same way, annotation cannot succeed if the names by which these cells and
nets are known differ in the SDF file and design description. The naming of objects must be consistent in
these two places.

During annotation, inconsistencies between the SDF file and the design description shall be considered
errors.

4.5.4 Consistency between SDF file and timing models

An SDF file contains only timing data. It does not contain instructions to the analysis tool concerning how to
model the timing properties of the design. The SDF keywords and constructs that surround the data in the
file describe the timing relationships between elements in the design only so that the data can be identified
by the annotator and applied to the timing model in the correct way. It is assumed that the timing models
used by the design are described to the analysis tool by some means other than the SDF file. Thus, when
using SDF, it is crucial that the data in the SDF file be consistent with the timing models.

For example, if the SDF file identifies an occurrence of a 2-input NAND gate ASIC library cell in the design
and states that the input-output path delay from the A input to the Y output is 0.34ns, then it is imperative
that the timing model for this cell has an input port A, an output port Y and that the cell’s delays are
described in terms of pin-to-pin delays (as opposed to distributed delays or a single all-inputs-to-the-output
delay).

Some analysis tools and the corresponding annotators can extend the timing models in certain ways. Specif-
ically, an interconnect timing model is often not explicitly stated in the cell timing models or in the design
description. The tool and/or annotator cooperate to add this information when the design and timing are
loaded or merged in the tool. In this case, the SDF file shall contain data that has no obvious placeholders in
the models. Nevertheless, the data must be consistent with the capabilities of the tool to model circuit timing
using that data. For example, if interconnect timing is described in the SDF file in a point-to-point fashion,
but the analysis tool can only represent interconnect timing as delay at cell inputs, then the tool can reject
this data or perform a mapping to input delays, possibly losing information in the process.

During annotation, inconsistencies between the SDF file and the timing models are considered errors.

4.6 Forward-annotation of timing constraints for design synthesis

In addition to the back-annotation of timing data for analysis, SDF supports the forward-annotation of
timing constraints to logic synthesis, floorplanner, and layout and routing tools. Timing constraints are the
requirements imposed on the overall timing properties of the design, often modified and broken down by
previous steps in the design process. Figure 3 shows a typical scenario of SDF in a design synthesis
environment.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

~ 16— IEC 61523-3:2004(E)
|EEE 1497-2001(E)

timing Analysis
models Tool

user
constraints

SDF File
(synthesis

constraints)

Synthesis
Layout & Routing
Floorplanning

Figure 3—SDF files in constraint forward-annotation

For example, the initial requirement might be that the primary clock should run at 50 MHz. A static timing
analysis of the design might identify the critical paths and the available “slack” time on these paths and pass
constraints for these paths to the floorplanner, and layout and routing (physical synthesis) tools so that the
final design is not degraded beyond the requirement. Alternatively, if after layout and routing, the require-
ment cannot be met, constraints for the problem paths might be constructed and passed back to a logic
synthesis tool so that it can “try again” and leave more slack for physical synthesis.

Constraints can also be originated by an analysis tool alone. Consider a synchronous system in which the
clock distribution system is to be synthesized. A static timing analysis may be able to determine the maxi-
mum permissible skew over the distribution network and provide this as a constraint to clock synthesis. In
turn, this tool may break down the skew constraint into individual path constraints and forward this to phys-
ical synthesis.

NOTE—The term timing constraint is also in use to describe what in SDF are called timing checks. When viewed as
statements of the form “this condition must be met or the circuit won’t work,” they are indeed the same. Perhaps the only
distinction is that timing checks are applied to an analysis tool, which is only in a position to check to see if they are met
and indicate a violation if they are not, whereas constraints are applied to a synthesis tool, which may adapt its operation
to ensure that the specified condition is met.

In this standard, timing check implies a test that an analysis tool performs to make sure that a circuit, as pres-
ently constructed, shall operate reliably. The terms timing constraint or constraint imply a restriction on the
timing properties of a design specified to a tool that constructs or modifies some aspect of the design (e.g.,
logic, layout, or routing).

4.7 Timing models supported by SDF

The importance of the consistency of an SDF file with the timing models has been stressed in 4.5.4. SDF
provides a variety of ways to describe the timing of a circuit, allowing considerable flexibility in the design
of the timing models. Subclauses 4.7.1 through 4.7.5 describe some modeling methodologies supported by
SDF and establishes a consistent terminology used later in describing SDF itself.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

IEC 61523-3:2004(E) 17—
|EEE 1497-2001(E)

4.7.1 Modeling circuit delay
SDF supports both a pin-to-pin and a distributed delay modeling style.

A pin-to-pin modeling style is generally one in which each physical cell in an ASIC library has its timing
properties described at its boundary, i.e., with direct reference only to the ports of the cell. The timing model
is frequently distinct from the functional part of the model and has the appearance of a “shell,” intercepting
transitions entering and leaving the functional model and applying appropriate delays to output transitions.

— The IOPATH construct shall apply delay data to input-to-output path delays across cells described in
this way.

— The COND construct shall allows any path delay to be made conditional, that is, the delay value
applies only when the specified condition is true. This allows for state-dependency of path delays
where the path appears more than once in the timing model with conditions to identify the applicable
circuit state.

— A distributed modeling style is generally one in which the timing properties of the cell are embedded
in the description of the cell as a network of modeling primitives. The primitives provided by analy-
sis tools such as simulators and timing analyzers usually have simple timing capabilities built into
them, such as the ability to delay an output signal transition. The delay properties of the cell are con-
structed by the careful arrangement of modeling primitives and their delays. The DEVICE construct
shall apply delay data to modeling primitives in distributed delay models.

4.7.2 Modeling output pulse propagation

SDF supports the specification of how short pulses propagate to the output of a cell described using a pin-to-
pin delay model. A limit can be established for the shortest pulse that shall affect the output and a larger limit
can be established for the shortest pulse that shall appear with its true logical value, rather than appearing as
a “glitch” to the unknown state.

— The PATHPULSE construct shall allow these limits to be specified as time values.

— The PATHPULSEPERCENT construct shall allow these limits to be specified as percentages of the
path delay.

4.7.3 Modeling timing checks
SDF timing check constructs permit values for the following categories of timing checks to be specified:

— setup

— hold

— recovery

— removal

— maximum skew

— minimum pulse width
— minimum period

— no-change

Library models can specify timing checks with respect to both external ports and internal signals. Conditions
for ports and signals of timing checks can be specified using the COND construct. Negative values are
permitted on timing checks where this is meaningful, although analysis tools that cannot use negative values
can substitute a value of zero.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

— 18— IEC 61523-3:2004(E)
|EEE 1497-2001(E)

4.7.4 Modeling interconnect delays
SDF supports three styles of interconnect delay modeling.

— The INTERCONNECT construct shall allow interconnect delays to be specified on a point-to-point
source/load basis. This is the most specific method for specifying interconnect delays. It provides the
greatest power and flexibility in defining unique source/load delays.

— The PORT construct shall allow interconnect delays to be specified to load ports without regard to
which source the signal arrives from. This is equivalent to the INTERCONNECT construct for
wires/nets that have only one driver or source. However, for nets with more than one driver it is not
be possible to represent the unique delay from each source.

— The NETDELAY construct shall allow the delays to all the load ports of a net to be given the same
interconnect delay value. This is the least specific method for specifying interconnect delay, as it is
not possible to specify either sources or loads.

4.7.5 Using internal nodes

SDF allows ports to be specified which are neither external connections of an ASIC library physical primi-
tive nor connections between levels in the design hierarchy. Such internal nodes may have no corresponding
terminal or net in the physical design but may instead be artifacts of the way the timing and/or functional
model is constructed. For specific tools, the use of internal nodes can increase the flexibility and accuracy of
the models. However, because the annotator must be able to match data in the SDF file to the models, SDF
files referencing internal nodes cannot be portable to tools that do not share the same concept of internal
nodes or have models constructed with or without different internal nodes.

5. Defining the standard delay format
Clause 5 describes the content of an SDF file. For each part of the file, the purpose is discussed, the syntax is

specified, the semantics are explained, and examples are presented. A complete, formal definition of the file
syntax is contained in Annex A.

5.1 SDF file content

SDF files shall be ASCII text files. Every SDF file shall contain a header section followed by one or more
cells. The syntax is given in Syntax 1.

delay_file .=
(DELAYFILE sdf _header cell { cell })

Syntax 1: Syntax for delay format

The header section, sdf_header, shall contain information relevant to the entire file such as the design name,
tool used to generate the SDF file, parameters used to identify the design and operating conditions (see 5.2).

Each cell, cell, shall identify part of the design (a “region” or “scope”) and contain data for delays, timing
checks, constraints and the timing environment (see 5.3). A cell can be a physical primitive from the ASIC
library, a modeling primitive for a specific analysis tool or some user-created part of the design hierarchy. In
fact, a cell can encompass the entire design.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 61523-3:2004(E) ~19-
|EEE 1497-2001(E)

Example (1):

(DELAYFILE // Header Section
(SDFVERSION *'4.0")
(DESIGN "BIGCHIP™)
(DATE “"March 12, 1995 09:46'")
(VENDOR "Southwestern ASIC")
(PROGRAM "Fast program'™)
(VERSION "1.2a'")
(DIVIDER /)
(VOLTAGE 5.5:5.0:4.5)
(PROCESS "best:nom:worst'™)

(TEMPERATURE -40:25:125)
(TIMESCALE 100 ps)

(CELL /7 Cell 1
(CELLTYPE "BIGCHIP')
(INSTANCE top)
(DELAY
(ABSOLUTE
(INTERCONNECT mck b/c/clk (.6:.7:.9))
(INTERCONNECT d[0] b/c/d (.4:.5:.6))

)
)
)
(CELL // Cell 2
(CELLTYPE *"AND2'")
(INSTANCE top/b/d)
(DELAY
(ABSOLUTE
(IOPATH a y (1.5:2.5:3.4) (2.5:3.6:4.7))
(IOPATH b y (1.4:2.3:3.2) (2.3:3.4:4.3))
)
)
)
(CELL // Cell 3
(CELLTYPE "DFF'™)
(INSTANCE top/b/c)
(DELAY
(ABSOLUTE
(IOPATH (posedge clk) g (2:3:4) (6:6:7))
(PORT clr (2:3:4) (5:6:7))
)
)
(TIMINGCHECK
(SETUPHOLD d (posedge clk) (3:4:5) (-1:-1:-1))
(WIDTH clk (4.4:7.5:11.3))
)
)
(CELL // Cell4d.. Cell n
)

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

20— IEC 61523-3:2004(E)
|EEE 1497-2001(E)

5.2 Header section

The header section of an SDF file shall contain information that relates to the file as a whole. Except for the
SDF version, other items in the header sections shall be optional. The header section syntax defines a strict
order for header items and those that are present shall follow this order. The items in the header section are
also referred to as entries or fields.

Most entries are for documentation purposes and do not affect the meaning of the data in the rest of the file.
However, the SDF version, hierarchy dividers and time scales shall, if present, change the way in which the
file is interpreted. The SDF header syntax is given in Syntax 2.

sdf_header =
sdf _version [design_name] [date] [vendor] [program_name] [program_version]
[hierarchy_divider] [voltage] [process] [temperature] [time_scale]

Syntax 2: Syntax for the SDF header section

5.2.1 SDF version

The SDF version shall identify the version of the Standard Delay Format specification to which the file con-
forms. Syntax 3 gives the syntax for SDF version.

sdf _version ::=
(SDFVERSION gstring)

Syntax 3: Syntax for the SDF version

gstring shall be a character string, in double quotes. The first substring within gstring that matches one of the
strings “1.0,” “2.0,” “2.1,” “3.0,” or “4.0” shall identify the SDF version. A matching substring shall be
present. Other characters before and after this substring shall be permitted and shall be ignored by readers
when determining the SDF version.

Example (2):
(SDFVERSION “IEEE 1497 4.0™)

Version strings “1.0,” “2.0,” “2.1,” and “3.0” are versions of the OVI SDF standard. This standard is back-
ward compatible with the predecessor OVI version 3.0. The SDFVERSION statement is required.

5.2.2 Desigh name
The design name shall be an optional field that specifies the name of the design to which the timing data in

the file shall apply. It shall be for documentation purposes and shall not affect the meaning of the data in the
file. The design name has the form given in Syntax 4.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 61523-3:2004(E) 21—
|EEE 1497-2001(E)

design_name ::=
(DESIGN gstring)

Syntax 4: Syntax for design name

gstring shall be a name that identifies the design.
5.2.3 Date

The date shall be an optional field that specifies the currency of the data in the file. It shall be for documenta-
tion purposes and shall not affect the meaning of the data in the file. The syntax for date is given in Syntax 5.

date ::=
(DATE gstring)

Syntax 5: Syntax for the date

gstring can be any legal string, but it is intended to be a character string that represents the date and/or time
when the data in the SDF file was generated.

Example (3):
(DATE “Friday, September 17, 1993 - 7:30 p.m.”™)
5.2.4 Vendor
The vendor field shall be an optional field that specifies the name of the company manufacturing the device
to which the data in the file applies or who originated the program that created the file. It shall be for docu-

mentation purposes and shall not affect the meaning of the data in the file. The syntax for vendor field is
described in Syntax 6.

vendor .=
(VENDOR gstring)

Syntax 6: Syntax for the vendor

gstring can be any legal string, but it is intended to be a character string containing the name of the vendor
whose tools generated the SDF file.

Example (4):
(VENDOR “Acme Semiconductor’)
5.2.5 Program name
The program name shall be an optional field that specifies the name of the program that created the file. It

shall be for documentation purposes and shall not affect the meaning of the data in the file. The program
name has the syntax shown in Syntax 7.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

—22- IEC 61523-3:2004(E)
|EEE 1497-2001(E)

program_name .=
(PROGRAM gstring)

Syntax 7: Syntax for program name

gstring can be any legal string, but it is intended to be a character string containing the name of the program
used to generate the SDF file.

Example (5):
(PROGRAM ““timcalc™)
5.2.6 Program version
The program version shall be an optional field that specifies the version of the program that created the file.

It shall be for documentation purposes and shall not affect the meaning of the data in the file. The syntax for
program version is given in Syntax 8.

program_version =
(VERSION g¢string)

Syntax 8: Syntax for program version

gstring can be any legal string, but it is intended to be a character string containing the program version
number used to generate the SDF file.

Example (6):
(VERSION *“version 1.3™)
5.2.7 Hierarchy divider
The hierarchy divider shall be an optional field that specifies which of the two permissible characters shall

be used in the file to separate elements of a hierarchical path. The hierarchy divider has the form given in
Syntax 9.

hierarchy_divider ::=
(DIVIDER /hchar)

Syntax 9: Syntax for hierarchy divider

hchar shall be either a period (°.”), or a slash (*/*). It shall not be in quotes.
Example (7):

(DIVIDER /)

(INSTANCE a/b/c)

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 61523-3:2004(E) —23-
|EEE 1497-2001(E)

In Example (7), the hierarchy divider is specified to be the slash (‘/°) character and hierarchical paths use
slash rather than period (‘.") to separate elements.

If the SDF file does not contain a hierarchy divider then the default hierarchy divider shall be the period (*.").
See also the descriptions of identifier and hierarchical_identifier in A.1.

5.2.8 Voltage
The voltage shall be an optional field that specifies the operating voltage or voltages for which the data in the

file was computed. It shall be for documentation purposes and shall not affect the meaning of the data in the
SDF file. The syntax for voltage is given in Syntax 10.

voltage :=
(VOLTAGE rtriple)
| (VOLTAGE signed_real_number)

Syntax 10: Syntax for the voltage

rtriple or signed_real_number shall indicate the operating voltage (in volts) at which the design timing was
calculated or the constraints are to apply.

Example (8):

(VOLTAGE 5.5:5.0:4.5)
Although this information cannot used by the annotator, it shall be borne in mind that the order of delay and
timing check limit values in triples is minimum:typical:maximum. Since minimum delays usually occur at
the highest supply voltage, it is more consistent with the use of triples elsewhere in the file if the highest
voltage is specified first in the voltage and the lowest voltage is specified last.

5.2.9 Process

The process shall be an optional field that specifies the process factor for which the data in the file was
computed. It shall be for documentation purposes and shall not affect the meaning of the data in the file. The
syntax for process is described in Syntax 11.

process =
(PROCESS gstring)

Syntax 11: Syntax for process

gstring shall be a character string which specifies the process operating envelope.
Example (9):

(PROCESS “best=0.65:nom=1.0:worst=1.8"")

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

24— IEC 61523-3:2004(E)
|EEE 1497-2001(E)

5.2.10 Temperature
The temperature shall be an optional field that specifies the operating temperature for which the data in the

file was computed. It shall be for documentation purposes and shall not affect the meaning of the data in the
file. The syntax for temperature is given in Syntax 12.

temperature .=
(TEMPERATURE rtriple)
| (TEMPERATURE signed_real_number)

Syntax 12: Syntax for temperature

rtriple or signed_real_number shall indicate the operating ambient temperature(s) of the design in degrees
Celsius (centigrade).

Example (10):
(TEMPERATURE -25.0:25.0:85.0)
5.2.11 Timescale

The timescale shall be an optional field that specifies the units used for all time values in the SDF file. The
syntax for time scale is shown in Syntax 13.

time_scale ;=
(TIMESCALE timescale_number timescale_unit)
timescale_number :=1]10|100| 1.0 | 10.0 | 100.0

timescale_unit = s | ms | us | ns | ps | fs

Syntax 13: Syntax for the timescale

TIMESCALE accepts a number followed by a unit. The number can be 1, 10, 100, 1.0, 10.0, or 100.0. The
unit can be s, ms, us, ns, ps, or fs, representing seconds, milliseconds, microseconds, nanoseconds, picosec-
onds, and femtoseconds, respectively. One or more space characters can optionally separate the number and
the unit.

Example (11):

(TIMESCALE 100 ps)

(10PATH (posedge clk) q (2:3:4) (5:6:7))

Example (11) indicates that all time values in the file are to be multiplied by 100 picoseconds. Thus, the val-
ues supplied in the IOPATH are (0.2ns:0.3ns:0.4ns) and (0.5ns:0.6ns:0.7ns).

If the SDF file does not contain a timescale then all time values in the file shall be assumed to be in nanosec-
onds. This has the same effect as a timescale of 1ns.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 61523-3:2004(E) — 25—
|EEE 1497-2001(E)

5.3 Cells

A cell shall identify a particular “region” or “scope” within a design and shall contain timing data to be
applied there. For example, a cell may identify a unique occurrence of an ASIC physical primitive, such as a
2-input NAND gate, in the design and provide values for its timing properties, such as the input-to-output
path delays. The cells can also identify all occurrences of a particular ASIC library physical primitive, such
as a certain type of gate or flip-flop. Data shall be applied to all such library-specific regions in the design.
The syntax for a cell is given in Syntax 14.

cell .=
(CELL celltype cell_instance { timing_spec })

Syntax 14: Syntax for cell

The celltype and cell_instance fields shall identify a region of the design. The timing_spec field shall contain
the timing data.

Example (12):

(CELL
(CELLTYPE “DFF™)
(INSTANCE a/b/c)
(DELAY
(ABSOLUTE
(IOPATH (posedge clk) g (2:3:4) (5:6:7))
)

)
)

An SDF file shall contain any number of cells (other than zero). The order of the cells shall be significant
only if they have overlapping effect, in other words, if data from two different cells applies to the same tim-
ing property in the design. In this situation, the cells shall be processed strictly from the beginning of the file
towards the end and the data they contain shall be applied in sequence to whatever region is appropriate to
that cell. If data is applied to a timing property previously referenced by an SDF file, the new data shall be
applied over the old and the final value shall be the cumulative effect according to whether the data is applied
as a replacement for the old value (ABSOLUTE and TIMINGCHECK sections) or is added to it (INCRE-
MENTAL section).

5.3.1 Cell type

The CELLTYPE shall indicate the name of the cell. The syntax for cell type is described in Syntax 15.

celltype ::=
(CELLTYPE gstring)

Syntax 15: Syntax for cell type

gstring shall be a character string. If the region of the design identified by this cell is an occurrence of a
physical primitive from an ASIC library, then gstring shall be the name by which the cell is known in the
library.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

— 26— IEC 61523-3:2004(E)
|EEE 1497-2001(E)

Example (13):
(CELLTYPE ““DFF™)

In Example (13), the cell identifies an occurrence of a cell which has the name “DFF” (perhaps a D-type flip-
flop).

If the cell identifies a region of the design which is a user-created level in the hierarchy, or, for example, the
very top level, then gstring shall be the user-created name for that part of the design.

Example (14):

(CELLTYPE ““TOP’")
In Example (14), the cell identifies a user-created design block which the user has named “TOP”.
If the cell identifies a modeling primitive, in other words something that is not part of the physical design but
is part of the implementation of a model in a particular analysis tool, then gstring shall be the name by which
the modeling primitive is known in that tool.
Example (15):

(CELLTYPE “buf”)

In Example (15), the cell identifies a “buf” modeling primitive in an analysis tool, perhaps a buf “gate” in a
Verilog model.

5.3.2 Cell instance

The cell instance shall identify the region or scope of the design for which the cell contains timing data. The
name by which this region is known in the design shall be consistent with the CELLTYPE for the cell. If the
annotator locates the region and finds that its name does not match the CELLTYPE, it shall indicate an
error. The cell instance has the form given in Syntax 16.

cell_instance ::=
(INSTANCE [hierarchical_identifier |)
| (INSTANCE *)

Syntax 16: Syntax for cell instance

The first form of the cell instance identifies an unique occurrence in the design of the region named in the
cell type. If, for example, the cell is a physical primitive from an ASIC library, then a single occurrence of
that cell on the chip shall be identified. To do this, the cell instance provides a complete path through the
design hierarchy to the cell or region of interest.

The hierarchical path shall start at the level in the design at which the annotator shall be instructed to apply
the SDF file. Frequently, this is the topmost level. The path is extended down through the hierarchy by add-
ing further levels to hierarchical_identifier.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 61523-3:2004(E) —27-
|EEE 1497-2001(E)

Example (16):

(CELL
(CELLTYPE "DFF'™)
(INSTANCE al.bl.cl)

)

In Example (16), the complete hierarchical path is specified as al.b1.c1 following the INSTANCE key-
word. The region identified is cell/block c1 within block b1, which is in turn within block al. The SDF file
must be applied at the level containing al. The period character separates levels or elements of the path. The
example assumes that the hierarchy divider in the SDF header specified the hierarchy divider as the period
character or, since period is the default, the entry was absent.

The timing data in the timing specifications of this cell shall apply only to the identified region of the design.
If hierarchical_identifier is not specified, the default shall be the region (hierarchical level) in the design at
which the annotator is instructed to apply the SDF file (see 4.5.2). This can be useful for gathering all inter-
connect information into a top-level cell.

The second form of the cell instance can be used to associate timing data with all occurrences of the speci-
fied cell type. Instead of a hierarchical path, the wildcard character (‘*’) after the INSTANCE keyword shall
be specified.

Cells using the wildcard cell instance specification are processed in sequence just like any other cells. No
special action shall be taken to consolidate data in this cell with cells with the same cell type earlier or later
in the file.

Example (17):

(CELL
(CELLTYPE "DFF")
(INSTANCE *)

)

In Example (17), every DFF cell instances shall receive the timing data. Note, however, that only cells con-
tained within the region to which the annotator is instructed to apply the SDF file shall be affected.

5.3.3 Timing specifications

Each cell in the SDF file shall include zero or more timing specifications that contain the actual timing data
associated with that cell. There are four types of timing specifications that are identified by the DELAY,
TIMINGCHECK, TIMINGENYV, and LABEL keywords. Syntax 17 describes the syntax for timing
specification.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

— 28— IEC 61523-3:2004(E)
|EEE 1497-2001(E)

timing_spec =
del_spec
| tc_spec
| Ibl_spec
| te_spec
del_spec .=
(DELAY deltype { deltype })
tc_spec .=
(TIMINGCHECK tchk_def { tchk_def'})
te_spec .=
(TIMINGENY te_def { te_def })
Ibl_spec .=
(LABEL /bl_type { Ibl_type })

Syntax 17: Syntax for timing specification

The DELAY keyword shall introduce delays that contain delay data and narrow-pulse propagation data for
back-annotation. Delays are described in 5.4.

The TIMINGCHECK keyword shall introduce timing checks that contain timing check limit data for back-
annotation. Timing checks are described in 5.5.

The LABEL keyword shall set the values of timing model variables upon that delays and timing constraint
values depend. Labels are described in 5.6.

The TIMINGENYV keyword shall introduce timing environments that contain timing environment data and
constraint data for forward-annotation. Timing environments are described in 5.7.

Any number of delays, timing checks and timing environments can be contained in a cell and they can occur
in any order. However, it is recommended, for efficiency reasons, to put all delay and pulse propagation data
in a single delay, all timing check data in a single timing check, and all timing environment and constraint
data in a single timing environment for each cell.

5.4 Delays

Timing specifications that start with the DELAY keyword shall associate delay values with input-to-output
paths, input ports, interconnects, and device outputs. They can also provide narrow-pulse propagation data
for input-to-output paths. The syntax for delay specification is given in Syntax 18.

del_spec ::=
(DELAY deltype { deltype })

Syntax 18: Syntax for delay specification

One or more deltypes can appear in del_spec. Each deltype shall be PATHPULSE or PATHPULSEPER-
CENT, specifying how pulses shall propagate across paths in this cell, or ABSOLUTE or INCREMENT
delay definitions, containing delay values to be applied to the region identified by the cell. Syntax 19
describes the syntax for delay type.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 61523-3:2004(E) —29—
|EEE 1497-2001(E)

deltype ::=
absolute_deltype
| increment_deltype
| pathpulse_deltype
| pathpulsepercent_deltype

Syntax 19: Syntax for delay type

5.4.1 Specifying delay values

In Syntax 25, each construct uses delval_list to specify the operating delay values to be applied. A.1.4 pro-
vides a formal definition of delval_list along with related syntax constructs. Below, delval_list is discussed
in the context of specifying delay and pulse control data for the various delay constructs in SDF.

The delay data in each delay definition is specified in a list of delval tokens. The syntax for delay value list is
given in Syntax 20.

delval_list ::=
delval
| delval delval
| delval delval delval
| delval delval delval delval [delval] [delval]
| delval delval delval delval delval delval
delval [delval | [delval] [delval] [delval] [delval]

Syntax 20: Syntax for delay values list

The number of delval tokens in the delval_list can be one, two, three, six or twelve. The interpretation of the
positional delay values varies with the length of the list. The semantics of delval_list for each possible num-
ber of delval tokens shall be as follows:

If twelve delval tokens are specified in delval_list, then each shall correspond, in sequence, to the
delay value applicable when the port (output port for IOPATH and INTERCONNECT) makes the
following transitions:

0—1, 1—-0, 0—Z, Z—1, 1-7Z, 7Z—0, 0—=X, X—1, 1-=X, X—0, X-—Z,
7—X

If fewer than twelve delval tokens are specified in delval_list, then the delays for each transition of
the port shall be found from the values given in Table 1. For the column denoting three delval tokens
in a delval_list, the 7—>Z transition refers to the third delval token, which represents the delay to Z
from both the 0 and 1 states.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

~30- IEC 61523-3:2004(E)
|EEE 1497-2001(E)

Table 1—Deriving 12 delay values

Number of delval tokens in delval_list

Transition 2 3 6
0—1 0—1 0—1 0—1
1—0 1—0 1—0 1—0
00—z 0—1 ?—Z 0—Z
Z—1 0—1 0—1 zZ—1
1—7 1—0 ?—>Z 1—Z
Z—0 1—0 1—0 Z—0
0—X 0—1 min(0—1, ?—Z) | min(0—1,0—2)
X—1 0—1 0—1 max(0—1, Z—>1)
1—>X 1—0 min(1—0, ?—Z2) | min(1—>0, 1—>2)
X—0 1—0 1—0 max(1—>0, Z—0)
X—Z max(0—>1, 1—>0) 7—Z max(0—Z, 1—>2)
Z—X min(0—1, 1—0) | min(0—1,1—0) | min(Z—0, Z—1)

— If only two delval tokens are specified, the first (rising) is denoted in Table 1 by 01 and the second
(falling) by 10.

— If three delval tokens are specified, the first and second are denoted in Table 1 and the third, the Z
transition value, by -Z.

— If six delval tokens are specified, they are denoted, in sequence, by 0—1, 1—0,0—=Z, Z—1, 1=Z
and Z—0 in Table 1.

— If a single delval token is specified, it shall apply to all twelve possible transitions. This is not shown
in Table 1.

In a delval_list, any delval tokens can be null, that is, the parentheses enclosing the signed_real_number or
rtriple are empty (see A.1.4). The meaning of this is the same as missing numbers in an r#riple: no data is
supplied and values shall not be changed by the annotator. Such null delval tokens act as placeholders to
allow specification of delval tokens further down the list.

In a delval_list consisting of six or twelve delval tokens, the trailing delval tokens can be omitted, in which
case the omitted values are interpreted as if they were present but null. For example, a list of four delval
tokens provides data for the 0—1, 1—0,0—Z, and Z—1 transitions, but not for the 1—=2, Z—0 transitions.
Note that omitting three delval tokens would not be interpreted as a delval_list of six delval tokens with the
three trailing delval tokens omitted, since the three remaining delval tokens would instead be interpreted as a
delval_list of three delval tokens, as provided in Table 1.

Example (18):

(IOCPATH i3 01 O O (2:4:5) (4:5:6) (2:4:5) (4:5:6))

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

IEC 61523-3:2004(E) —-31-
|EEE 1497-2001(E)

In Example (18), 0—1 and 1—0 delay values are not specified and may not even be present in the timing
model. A delval_list consisting of nothing but null delval tokens is permitted by the syntax and shall have no
effect.

Each delval is either an rvalue or a group of two or three rvalues enclosed in parentheses. The syntax for
delay value has the form given in Syntax 21.

delval .=
rvalue
| (rvalue rvalue)
| (rvalue rvalue rvalue)

Syntax 21: Syntax for delay value

When a single rvalue is used, it specifies the delay value, the pulse rejection limit (r-limit), and the X filter
limit (e-limit). When two rvalues in parentheses are used, the first rvalue specifies the delay, and the second
specifies both the r-limit and the e-limit. When three rvalues are used, the first specifies the delay, the second
specifies the r-limit, and the third specifies the e-limit. This allows pulse control data to be associated in a
uniform way with all types of delays in SDF. Note that since any rvalue can be an empty pair of parentheses,
each type of delay data can be annotated or omitted as the need arises. It provides an advantage over the
PATHPULSE and PATHPULSEPERCENT methods of annotating pulse limit value, because both the delays
and pulse limits can be specified in a single construct. Pulse limits are described in greater detail in 5.4.2

Each rvalue shall be either a single signed_real_number or an rtriple, containing three signed_real_numbers
separated by colons, in parentheses. The syntax for rvalue is shown in Syntax 22.

rvalue =
([signed_real_number])

| ([rtriple])

Syntax 22: Syntax for rvalue

The use of single signed_real_number and rtriples shall not be mixed in the same SDF file. All
signed_real_numbers can have negative, zero, or positive values.

The use of triples in SDF allows three sets of data in the same file. Each number in the triple is an alternative
value for the data and is typically selected from the triple by the annotator or analysis tool on an instruction
from the user. The prevailing use of the three numbers is to represent minimum, typical, and maximum val-
ues computed at three process/operating conditions for the entire design. Any one or two (but not all three)
of the numbers in a triple can be omitted if the separating colons are left in place. This shall indicate that no
value has been computed for that data, and the annotator shall not make any changes if that number is
selected from the triple. For absolute delays, this is not the same as entering a value of 0.0.

NOTE—The amount of data included in a delay definition shall be consistent with the ability of the analysis tool to
model that kind of delay. For example, if the modeling primitives of a particular tool can accept only three delay values,
perhaps rising, falling, and Z transitions, it is inappropriate to annotate different values for 0—1 and Z—1 transitions or
for 1—Z and 0—Z transitions. It is recommended that in such situations annotators combine the information given in
some documented manner and issue a warning.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

—32- IEC 61523-3:2004(E)
|EEE 1497-2001(E)

5.4.2 Pulse limits

Every delay can have associated with it both a pulse rejection limit (r-limit), and an X filter limit (e-limit).
By default, SDF annotation shall set the r-limit and the e-limit equal to the delay. Only an explicit annotation
to the contrary can set these values to something other than the delay. Inertial delays are when both limits are
equal to the delay, while transport delays are when both limits are equal to zero.

Before a pulse is scheduled to emerge from a port, the pulse is checked to see if it violates either the r-limit
or the e-limit. The r-limit is a lower value on the permitted width of the pulse. Any pulse narrower than this
limit is rejected, and no pulse will emerge from the port. The e-limit is also a lower value on the permitted
width of a pulse, except that instead of being rejected the pulse is filtered to X, unless, of course, the width is
also smaller than the r-limit, in which case it is rejected. Figure 4 shows how a pulse scheduled to emerge
from a port is checked against both the r-limit and the e-limit.

rejected unrejected
pulse pulse

r-limit ' ' r-limit

X-filtered unfiltered

pulse pulse
L =
e-limit e-limit

Figure 4—Pulse limits (r-limit and e-limit)

Figure 5 shows how pulses are filtered when the r-limit is 13 and the e-limit is 21. The first pulse presented
to the output port, being shorter than 13, shall be rejected. The second pulse, being at least 13, but shorter
than 21, shall appear at the output as an X. The third pulse, being at least 21, shall be passed through the out-
put unfiltered.

<13

-—!

Pulse presented to output port \]

Result after filtering

13-21

-
| |

Pulse presented to output port \ /
Result after filtering W
=21

Pulse presented to output port \: /:
Result after filtering \ /

Figure 5—Pulse filtering

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 61523-3:2004(E) ~-33-
IEEE 1497-2001(E)

The leading and trailing edges of a pulse at an output port may be due to delays from different input ports,
and it is the pulse limits associated with the delay used for the trailing pulse edge that shall be used for deter-
mining whether the pulse is passed, filtered to X, or rejected.

Figure 6 shows a 2-input AND gate with rise/fall delays, r-limits, and e-limits. Both inputs are simulta-
neously high for only a very short period of time. One transitions high just before the other transitions low.
Because of differences in the path delays for a rise transition from a to y and for a fall transition from b to y,
the pulse that arrives at the output is 10 time units shorter than the overlap of the high states at @ and b. The
path from b to y is the one causing the trailing pulse edge, and so its r-limit and e-limit are the ones that
apply. The pulse presented to the output is 14 time units, which is larger than the r-limit of 13 for the b to 'y
path, so the pulse is not rejected. But it is smaller than the e-limit of 21, and so the pulse is filtered to X.

‘14
a — y: delay=45/37; r-limit=15; e-limit=24
b — y: delay=43/35; r-limit=13; e-limit=21

Figure 6—2-input AND
Note that the order in which the inputs changed shall be of no consequence; pulse propagation shall be con-
trolled by the data associated with the path through which the transition propagates that ends the output
pulse.

5.4.3 Absolute delays

The ABSOLUTE keyword shall introduce delay data to replace existing delay values in the design during
annotation. The syntax for absolute delay is given in Syntax 23.

absolute_deltype ::=
(ABSOLUTE del_def { del_def})

Syntax 23: Syntax for absolute delay

The delay definition, del_def, shall contain the actual data and describe where it belongs in the design.
Example (19):

(CELL (CELLTYPE '"'DFF'™)
(INSTANCE a.b.c)
(DELAY
(ABSOLUTE
(10PATH (posedge clk) g (22:28:33) (25:30:37))
(PORT clr (32:39:49) (35:41:47))
)
)

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

34— IEC 61523-3:2004(E)
|EEE 1497-2001(E)

Negative delay values can be specified for absolute delays to accommodate certain styles of ASIC cell char-
acterization. However, note that not all analysis tools can make use of the negative delays, and for those that
cannot the SDF annotator shall set them to zero.

5.4.4 Increment delays

The INCREMENT keyword shall introduce delay data that is added to existing delay values in the design
during annotation. The syntax for increment delay is described in Syntax 24.

increment_deltype ::=
(INCREMENT del_def { del_def})

Syntax 24: Syntax for the increment delay

The delay definition, del_def, shall contain the actual data and describe where it belongs in the design. The
same delay definition constructs shall be used for increment and absolute delays.

Example (20):

(CELL (CELLTYPE "DFF")
(INSTANCE a.b.c)

(DELAY
(INCREMENT
(10PATH (posedge clk) g (-4::2) (-7::5))
(PORT clr (2:3:4) (5:6:7))
)
)

)

Negative delay values can be specified for increment delays, in which case, the value existing in the design
shall be reduced. If any negative increment results in negative delays, note that not all analysis tools can
make use of negative delays and may set them to zero.

5.4.5 Specifying delays

Both absolute and increment delays shall be described by the same group of delay definition constructs. The
syntax for a delay definition is shown in Syntax 25.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 61523-3:2004(E) —35-—
|EEE 1497-2001(E)

del_def ::=
iopath_def

| cond_def
| condelse_def
| port_def
| interconnect_def
| netdelay_def
|

device_def
iopath_def ::=

(IOPATH port_spec port_instance { retain_def } delval_list)
retain_def .=

(RETAIN retval_list)
cond_def =

(COND [gstring] conditional_port_expr iopath_def)
condelse_def =

(CONDELSE iopath_def’)
port_def .=

(PORT port_instance delval_list)
interconnect_def ::=

(INTERCONNECT port_instance port_instance delval_list)
netdelay_def ::=

(NETDELAY net_spec delval_list)
device_def ::=

(DEVICE [port_instance | delval_list)

Syntax 25: Syntax for delay definition

5.4.6 Input-output path delays

The input-output path delays shall represent the delays on a legal path from an input/bidirectional port to an
output/bidirectional port of a device. Each delay value shall be associated with a unique input port-output
port pair. The syntax for input-output path delay from Syntax 25 is given in Syntax 26.

iopath_def .=

(IOPATH port_spec port_instance { retain_def } delval_list)
retain_def ::=

(RETAIN retval_list)

Syntax 26: Syntax for input/output path delay

The fields shall be interpreted as follows:

— The input-output path delay shall be specified using the keyword IOPATH.

— port_spec shall be an input or a bidirectional port and can have an edge identifier.

— port_instance shall be an output or a bidirectional port. It cannot have an edge identifier. Delay data
for the different transitions at the path output port shall be supplied using an ordered list of delay val-
ues as described in Table 1 (see 5.4.1).

— retain_def'is discussed in 5.4.9.

— delval_list shall specify the delay data from port_spec to port_instance.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

— 36— IEC 61523-3:2004(E)
|EEE 1497-2001(E)

This form of IOPATH has no conditions (state dependency) associated with it, and so it annotates indepen-
dent of the conditions defined within timing models. If the timing model includes conditions for the path
delay between the two specified ports, the specified delval shall still applied. If the model includes more than
one delay path, each distinguished by its condition, then the data shall apply to all of them. This shall have
the same effect as specifying all paths (using the COND or CONDELSE keyword with IOPATH as
described below) with the same IOPATH delay delval_list.

The only exception is when port_spec includes an edge identifier, in which case IOPATH will only annotate
when the timing model includes an equivalent edge identifier. See 5.5.2 for similar information regarding

timing checks.

Example (21):

./ o
'2/ o2

Figure 7—Input/output path delay

(INSTANCE X.y.Zz)
(DELAY
(ABSOLUTE
(IOPATH (posedge il1) ol (2:3:4) (4:5:6))
(IOPATH 12 01 (2:4:5) (5:6:7))
(IOPATH 13 01 O O (2:4:5) (4:5:6) (2:4:5) (4:5:6))
)
)

The IOPATH construct can also be used to specify the r-limit and e-limit for each transition delay.
Example (22):

(INSTANCE X.y.z)
(DELAY
(ABSOLUTE
(IOPATH (posedge il) ol ((12:25:37) (5:12:17)))
(I0PATH 12 01 ((4:6:8) (2:3:4) (4:5:6)) ((6:7:9) (3:4:5)
G5:6:7)))
(I0PATH 13 01 O O (2:4:5) (4:5:6) (6:6:7) (7:8:9))
)

)

In Example (22), the first IOPATH specifies a min/typ/max limit that sets both the r-limit and the e-limit for
all transition delays. All delays are set using the 12:25:37 triple, while all r-limits and e-limits are set using
the 5:12:17 limit.

The second IOPATH specifies min/typ/max r-limits and e-limits for the rise and fall transition delays. The
rise delay is set using the 4:6:8 triple, the rise r-limit is set using the 2:3:4 triple, and the rise e-limit is set
using the 4:5:6 triple. The fall delay is set using the 5:7:9 triple, the fall r-limit is set using the 3:4:5 triple,
and the fall e-limit is set using the 5:6:7 triple.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 61523-3:2004(E) —37-
|EEE 1497-2001(E)

The third IOPATH specifies no pulse limits at all, and so the r-limits and e-limits for each transition delay
default to the delay values. The rise delay and its r-limit and e-limit are unchanged. The same is true for the
fall delay. The 0—Z delay and its r-limit and e-limit are set using the 2:4:5 triple. The Z—>1 delay and its r-
limit and e-limit are set using the 4:5:6 triple. The 1—Z delay and its r-limit and e-limit are set using the
5:6:7 triple. And the Z—>0 delay and it’s r-limit and e-limit are set using the 7:8:9 triple.

5.4.7 Conditional path delays

The conditional path delay shall specify conditional (state-dependent) input-to-output path delays. The syn-
tax for conditional path delay from Syntax 25 is given in Syntax 27.

cond_def =
(COND [gstring] conditional_port_expr iopath_def)

Syntax 27: Syntax for conditional path delay

The fields shall be interpreted as follows:

— The conditional path delay shall be specified using the keyword COND.

— gstring shall be an optional symbolic name as a placeholder for annotators that operate by matching
named placeholders in the model to SDF constructs. See 5.4.8 for a full explanation.

— conditional_port_expr shall be the description of the state dependency of the path delay. The syntax
of conditional_port_expr is shown in A.1.5. The expression shall evaluate to a logical signal, rather
than a boolean. The analysis tool shall treat a logical zero as FALSE and any other logical value (1,
X, or Z) as TRUE. A particular conditional path delay in the timing model shall be used only if the
condition is TRUE.

— iopath_def shall have the same meaning as in IOPATH as described in 5.4.6, except that the annota-
tor shall locate a path delay with a condition matching the one specified and apply the data only to
that. Other path delays from the same input port to the same output port but with different conditions
in the timing model shall not receive the delay data.

— Annotators can differ in their capabilities to match a condition in SDF to conditions in the timing
model. Where the analysis tool uses the same syntax as SDF, the annotator shall require an exact
character-for-character match in the string representations of the conditions.

The annotator must locate in the timing model a path delay with conditions matching those specified in the
SDF file. Other path delays between the same ports but with different conditions shall not receive the data.
SDF IOPATH constructs with no conditions match any path delay in the model that is between the ports
specified in the SDF file.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

— 38— IEC 61523-3:2004(E)
|EEE 1497-2001(E)

Example (23):

) >

Figure 8 —Conditional path delay

(INSTANCE x)
(DELAY
(ABSOLUTE
(COND b (IOPATH a y (0.21) (0.54)))
(COND ~b (I0PATH a y (0.27) (0.34)))
(COND a (IOPATH b y (0.42) (0.44)))
(COND ~a (IOPATH b y (0.37) (0.45)))
)
)

The CONDELSE keyword shall specify default delays for conditional paths. The default delay is the delay
that shall be used if none of the conditions specified for the path in the model are TRUE but a signal must
still be propagated over the path. The syntax for default delay for conditional path from Syntax 25 is given in
Syntax 28.

condelse_def ::=
(CONDELSE iopath_def)

Syntax 28: Syntax for default delay for conditional path

This construct shall be used only when the cell timing model includes an explicit mechanism for providing
default delays. The annotator shall match this SDF construct to such a mechanism in the model. The annota-
tor shall not attempt to locate conditions for the path which have not been specified in COND constructs.

5.4.8 Condition labels

Some annotators, particularly those annotating to VITAL models in VHDL simulators, automatically trans-
form the names used in SDF constructs into symbolic names using a set of simple rules, locate those
symbolic names within the analysis tool models, and apply values from the SDF file to the variables associ-
ated with those symbolic names. The automatic transformation rules cannot guarantee that unique names
will always result. This problem is most commonly encountered in situations involving conditional expres-
sions, and for this reason conditional expressions can be optionally preceded by a gstring.

A tool can use the gstring symbolic name directly, or it can modify it in a clearly documented way. For
example, if the gstring was tdtoq and appeared with an IOPATH construct, a tool might use the gstring by
itself as the symbolic name and look up tdtoq. Alternatively, the tool might precede it with the name of the
construct and instead look up IOPATH_tdtoq. The mapping algorithm of the tool’s annotator must be
clearly documented and available to users, and must include the way in which the gstring is used in con-
structing the name. The description should also explain what happens if the gstring is absent in a conditional
construct and what happens in certain timing checks where a match with two or more gstrings is possible.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 61523-3:2004(E) 39—
|EEE 1497-2001(E)

Associating a gstring with conditional expressions is only a partial solution, since even symbolic names
associated with unconditional IOPATH delays and timing checks can be non-unique, and so a more general
approach using the LABEL construct, described in 5.6, is recommended.

5.4.9 Output retain delays

In an IOPATH, the keyword RETAIN shall specify the time for which an output/bidirectional port shall
retain its previous logic value after a change at a related input/bidirectional port. RETAIN is commonly used
on paths from the address or select inputs to the data outputs of memory and register file circuits. The syntax
for output retain delay is described in Syntax 26.

The keyword RETAIN shall specify the delay data used for retaining the value of the output or bidirectional
port. Delay data for different transitions at the path output port are supplied using the retval_list ordered list
of values, a truncated form of delval_list (described in 5.4.1) that can have up to three delays. The retain
delay shall be specified only as part of input-output path delay, conditional path delay or default delay for a
conditional path.

This construct shall be used only where the cell timing model being annotated is capable of providing retain
delays. The annotator shall match this SDF construct to such a mechanism in the model.

Example (24):

retain time

addr X

—m: ~—retain time

-~
" IOPATH delay

Figure 9—Output retain delay

(10PATH addr[13:0] dout[7:0]
(RETAIN (4:5:7) (5:6:9)) // RETAIN delays
(15:20:25) (18:22:27)) // 10PATH delays

)

Example (24) includes the retain time of bus dout[7:0] with respect to changes on the bus
addr[13:0]. It is assumed that the timing model for this cell contains path delays from addr to dout
and is capable of handling retain delays. In response to a transition on bus addr, output dout will transi-
tion to the X state. The first RETAIN delval, (4:5:7), is the rise time and shall be used for dout going
from low to X. The second RETAIN delval, (5:6:9), is the fall time and shall be used for dout going
from high to X. Output dout will next transition from X to it’s final state. The first IOPATH delval,
(15:20:25), shall be used when dout transitions from X to low. The second IOPATH delval,
(18:22:27), shall be used when dout transitions from X to high.

5.4.10 Port delays
The port delays shall specify interconnect delays (actual or estimated) that are modeled as delay at input

ports. The start point for the delay path (the driving output port) is not specified. The syntax for a port delay
from Syntax 25 is given again in Syntax 29.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

— 40— IEC 61523-3:2004(E)
|EEE 1497-2001(E)

port_def ::=
(PORT port_instance delval_list)

Syntax 29: Syntax for port delay

The fields shall be interpreted as follows:

— The port delay shall be specified using the keyword PORT.
— port_instance shall be an input or bidirectional port.
— delval_list shall be the port delay of the port_instance.

C
di
a y rl
slla y
en
r2
s2|a y

Figure 10—Port delay

Analysis tools shall apply delay values obtained from SDF PORTSs before timing checks are applied. Thus,
this construct models delay in the physical interconnect between the driver and the driven cell port.

5.4.11 Interconnect delays

The interconnect delay shall specify the propagation delay across a net connecting a driving module port
(the source) to a driven module port (the load). Either or both ports can be bidirectional. Both source and
load ports for the delay path shall be specified. The syntax for interconnect delay from Syntax 25 is given
again in Syntax 30.

interconnect_def .=
(INTERCONNECT port_instance port_instance delval_list)

Syntax 30: Syntax for interconnect delay

The fields shall be interpreted as follows:

— The interconnect delay shall be specified using the keyword INTERCONNECT.
— The first port_instance shall be an output or bidirectional port (driver port).

— The second port_instance is an input or bidirectional port (driven port).

— delval_list shall be the interconnect delay between the output and input ports.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 61523-3:2004(E) 41—
|EEE 1497-2001(E)

Example (25):

. i3
il i1
a
y s1 |a y
en
j2
i2 s2 |a y
k1 >
a y| m
en i4

(INSTANCE top)

(DELAY
(ABSOLUTE
(INTERCONNECT il.y i3.jl.a (0.01:0.02:0.03))
(INTERCONNECT il.y i3.j2.a (0.03:0.04:0.05))
(INTERCONNECT il.y i4.a (0.05:0.06:0.07))
(INTERCONNECT i2.kl.y i3.jl.a (0.04:0.05:0.06))
(INTERCONNECT i2.kl.y i3.j2.a (0.02:0.03:0.04))
(INTERCONNECT i2.kl.y i4.a (0.02:0.03:0.04))

))
)

Although INTERCONNECT constructs are the most general way in which interconnect delays can be
expressed, some analysis tools may not be able to model independent delay values over each driver-to-driven
path on a net with more than one driver. Such tools shall map interconnect delays into equivalent input port
delays, sometimes losing information in the process. Even tools which can model independent delays over
each path may do so less efficiently than input port delays. Writers of SDF files shall bear this in mind when
choosing whether to use PORT or INTERCONNECT constructs or a combination of both to model inter-
connect delay.

5.4.12 Net delays

The net delays shall specify the propagation delays from all sources to all loads of a net. Neither start nor
end points for the delay path are specified, and the delays from all the source ports to all the destination ports
will have the same value. Using a NETDELAY entry would be the same as using INTERCONNECT delay
entries for each source/load pair on the net and giving them all the same value. The syntax for a port delay
from Syntax 25 is given again in Syntax 31.

netdelay_def ::=
(NETDELAY net_spec delval_list)

Syntax 31: Syntax for net delay

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

— 42— IEC 61523-3:2004(E)
|EEE 1497-2001(E)

Example (26):

dff2
wi
dff1
— D Q
dff3
—> QB
L{D Q—

Figure 12—Net delay

(INSTANCE x)
(DELAY
(ABSOLUTE
(NETDELAY wl (2.5:3:3.5) (2.9:4:5))
)

)

In Example (26), the net has been identified by name. It could also have been identified by any of the ports
attached to it.

5.4.13 Device delays

The device delay shall represent the delay of all paths through a cell to the specified output port. This con-
struct shall be used primarily with distributed timing models where the cell to which it is applied is a model-
ing primitive. If it is used at a higher level in the hierarchy, then the effect shall be same as applying the
delay data to all input-to-output paths across the cell that terminate at the specified port. If there are no path
delays to the port, then the delay is annotated to all gate primitives driving the port, regardless of their actual
hierarchical level within the model. The syntax for a device delay from Syntax 25 is shown in Syntax 32.

device_def ::=
(DEVICE [port_instance | delval_list)

Syntax 32: Syntax for device delay

The fields shall be interpreted as follows:

— The device delay shall be specified using the keyword DEVICE.

— port_instance shall be optional. If present, it shall specify the output port to which the delay data
shall be applied. If a cell has more than one output, several device delays in a single cell can be spec-
ified, each indicating the desired output port using port_instance, and with a different delay data to
each output. If port_instance is omitted, all paths to all output ports of the region identified in the
cell shall receive the same delay data.

— delval_list shall be the delay data. The number of triples in delval_list shall correspond to the capa-
bilities of the modeling primitives of the target analysis tool. For example, gate level primitives in
Verilog HDL can accept one, two, or in some cases, three delay values, but never six or twelve.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 61523-3:2004(E) — 43—
|EEE 1497-2001(E)

Example (27):

rs1
nand1
bufa
sb |a nand
yl 9
b
bufb nd2
nand2
bufa
a nand
y
rb [b qb
bufb nd2
rslatch

Figure 13—RS latch in distributed delay style

(CELL
(CELLTYPE “buf’)
(INSTANCE rsil.nandl.bufa)
(DELAY
(ABSOLUTE
(DEVICE (1:3:8) (4:5:7))
)

)

)
(CELL
(CELLTYPE *“buf’)
(INSTANCE rsl1.nandl.bufb)
(DELAY
(ABSOLUTE
(DEVICE (2:4:9) (6:8:12))
)

)
)

In Example (27), an RS latch is implemented from two nd2 macrocells. An nd2 is a 2-input NAND
macrocell constructed in a distributed delay style from two BUF primitives, bufa and bufb, and a NAND
primitive, nand. Two Nnd2 macrocells are cross-coupled to create the RS latch, which is given the name
rslatch. This is instantiated at a higher level of the design as rs1. The SDF file demonstrates the annota-
tion of delays to BUF primitives rs1l.nandl.bufa and rsl.nandl.bufb,in effect defining unique
delays for the a-to-y and b-to-y paths. The first annotation has the effect of defining the sb-to-gb
input-to-output path delay of the RS latch; the second contributes to the rb-to-q delay. The delay on bufa
also contributes to the sb-to-gb delay. This example also makes clear the difficulty of accurately annotating
delay values that yield the correct pin-to-pin delay. As presented here, the sb-to-gb delay is 0. If a delay is
annotated to Sb-to-gb to yield the correct Sb-to-qb delay, it will also affect the sb-to-q delay. Determining
the correct delay values to annotate to each gate primitive can be a difficult task, and in many cases no non-
imaginary set of delay values satisfy the delay specification of the device.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

— 44— IEC 61523-3:2004(E)
|EEE 1497-2001(E)

Example (28):
rs1

nand1

sb nand
miprt
nd2

e

nand2

nand

rb qb
nd2
rslatch

Figure 14—RS latch in a pin-to-pin modeling style

(CELL
(CELLTYPE “rslatch™)
(INSTANCE rs1)

(DELAY
(ABSOLUTE
(DEVICE q (1:3:8) (4:5:7))
(DEVICE gb (2:4:9) (6:8:12))
)
)

)

Example (28) assumes a path delay modeling style. The same RS latch is described using nd2 macrocells
that contain slightly less detail, as they are no longer implemented using BUF primitives. With no BUF
primitives to which to annotate delays, there can be no unique pin-to-pin delays using a distributed delay
style. Typically the path delay modeling style defines unique delays for the sb-to-q, sb-to-gb, rb-
to-q and rb-to-qgb paths. This SDF file does not take full advantage of this, however. One delay is anno-
tated to both the sb-to-q and rb-to-q paths, the other to both the sb—to-gb and rb-to-qb paths. It
shall have exactly the same effect as the following:

(CELL
(CELLTYPE “rslatch™)
(INSTANCE rs1)

(DELAY
(ABSOLUTE
(IOPATH sb gq (1:3:8) (4:5:7))
(10PATH rb q (1:3:8) (4:5:7))
(10PATH sb gb (2:4:9) (6:8:12))
(IOPATH rb gb (2:4:9) (6:8:12))
)
)

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

IEC 61523-3:2004(E) — 45—
|EEE 1497-2001(E)

5.4.14 Pathpulse

PATHPULSE specifies pulse propagation limits (the r-limit and the e-limit) associated with a legal path
between an input port and an output port of a device. These limits shall determine whether a pulse presented
at an output port will emerge unfiltered, be filtered to X, or be rejected.

pathpulse_deltype ::=

(PATHPULSE [input_output_path | value [value)
input_output_path =

port_instance port_instance

Syntax 33: Syntax for pathpulse

— The first port_instance of input_output_path shall be an input or a bidirectional port. The second
port_instance of input_ouput_path shall be an output or a bidirectional port.

— If input_output_path is omitted, then the data supplied shall refer to all input-to-output paths in the
region identified by the cell. The annotator shall locate all paths that are able to model narrow-pulse
propagation in the applicable timing model and apply the supplied data.

— The first value, in time units, shall be the pulse rejection limit, also known as the r-limit. This limit
shall define the narrowest pulse that can appear at the output port of the specified path. Any pulse
narrower than the specified value shall not appear at the output, but shall be rejected.

— The second value, in time units, shall be the X or error limit, also known as the e-limit. This limit
shall define the minimum pulse width necessary to drive the output of the specified path to a known
state; a narrower pulse shall cause the output to enter the unknown (X) state or shall be rejected (if
smaller than the r-limit). Note that the e-limit shall be greater than the r-limit to carry any signifi-
cance.

If only one value is specified, both limits shall be set to that value. In all cases value can be either a single
number or a triple, but shall not be negative.

Example (29):

(INSTANCE x)
(DELAY
(ABSOLUTE
(I0PATH a y (45) (37))
(1I0PATH b y (43) (35))
)
(PATHPULSE a y (13) (24))
(PATHPULSE b y (15) (21))

)

Using the PATHPULSE construct is more verbose and takes more time to annotate than expressing the
pulse limits more compactly using the IOPATH construct.

Example (30):

(INSTANCE x)
(DELAY
(ABSOLUTE

(IOPATH a vy ((45) (13) (24)) (@7 (13) 2%))
(IOPATH b y ((43) (15) (21)) ((35) (15 (21)))
)

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

— 46— IEC 61523-3:2004(E)
|EEE 1497-2001(E)

An additional advantage of the IOPATH construct is that it can specify unique pulse limits for each transi-
tion delay. PATHPULSE can only annotate a single r-limit/e-limit value pair across all transition delays.

Example (31):

(INSTANCE x)
(DELAY
(ABSOLUTE
(I0PATH a y ((45) (13) (24)) ((37) (11) (19)))
(1I0PATH b y ((43) (14) (20)) ((35) (10) (17)))
)
)

5.4.15 Pathpulsepercent

PATHPULSEPERCENT shall have the same interpretation as PATHPULSE except that the values are
expressed as a percentage of the cell path delay from the input to the output.

pathpulsepercent_deltype ::=
(PATHPULSEPERCENT [input_output_path | value [value 1)

Syntax 34: Syntax for pathpulsepercent

Neither value shall be greater than 100.0. As discussed in 5.4.14, the second value (e-limit) shall be greater
than the first value (r-limit) for it to be meaningful.

Example (32):

(INSTANCE x)
(DELAY
(ABSOLUTE
(10PATH a y (45) (37))
)

(PATHPULSEPERCENT a y (25) (35))
)

In Example (32), the r-limit is specified as 25% of the delay time from a to y and the e-limit is specified as
35% of this delay. If more than one delval is specified in the delval_list of IOPATH, the analysis tool shall
select that corresponding del_val to the transition that ended the pulse. So, for a low-to-high transition out-
put pulse, which ends with a high-to-low transition, the percentages are applied to the high-to-low delay of
the path. In the previous example, where the high-to-low delay is 37, the r-limit is 25% of 37 and the e-limit
is 35% of 37. The data used for pulse control comes from the path that caused the pulse to terminate (in the
same way as for the PATHPULSE construct).

5.5 Timing checks

Timing specifications that start with the TIMINGCHECK keyword shall associate timing check limit val-
ues with specific cell instances. The syntax for timing specification is described in Syntax 35.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 61523-3:2004(E) — 47—
|EEE 1497-2001(E)

tc_spec =

(TIMINGCHECK tchk_def { tchk_def})

Syntax 35: Syntax for timing specification

Any number of fchk_def constructs can appear in a fc_spec. Each tchk_def shall be one of the following tim-
ing checks, containing timing check limit values as defined in Syntax 36:

Timing checks specify limits in the way in which a signal can change or two signals can change in relation to
each other for reliable circuit operation. EDA analysis tools use this information in different ways:

— Simulation tools issue warnings about signal transitions that violate timing checks.

— Timing analysis tools identify delay paths that might cause timing check violations and shall deter-
mine the constraints for those paths.

— Synthesis tools use timing check values to determine if their results meet timing requirements.

The syntax for timing checks is given in Syntax 36.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

— 48— IEC 61523-3:2004(E)
|EEE 1497-2001(E)

tchk_def =

setup_timing_check
| hold_timing_check
| setuphold_timing_check
| recovery_timing_check
| removal_timing_check
| recrem_timing_check
| skew_timing_check
| bidirectskew_timing_check
| width_timing_check
| period_timing_check
| nochange_timing_check
setup_timing_check ::=

(SETUP port_tchk port_tchk value)
hold_timing_check =

(HOLD port_tchk port_tchk value)
setuphold_timing_check =

(SETUPHOLD port_tchk port_tchk rvalue rvalue)

| (SETUPHOLD port_spec port_spec rvalue rvalue [scond] [ccond])

recovery_timing_check ::=

(RECOVERY port_tchk port_tchk value)
removal_timing_check ::=

(REMOVAL port_tchk port_tchk value)
recrem_timing_check ::=

(RECREM port_tchk port_tchk rvalue rvalue)

| (RECREM port_spec port_spec rvalue rvalue [scond | [ccond])

skew_timing_check =

(SKEW port_tchk port_tchk rvalue)
bidirectskew_timing_check =

(BIDIRECTSKEW port_tchk port_tchk value value)
width_timing_check ::=

(WIDTH port_tchk value)
period_timing_check ::=

(PERIOD port_tchk value)
nochange_timing_check ::=

(NOCHANGE port_tchk port_tchk rvalue rvalue)

Syntax 36: Syntax for timing checks

5.5.1 Conditional timing checks

The COND keyword shall allow the specification of conditional timing checks. Its use is different from the
specification of conditional input-output path delays described in 5.4.7 in that the condition is associated
with the specification of a port rather than the entry as a whole. The syntax for conditional timing check is
given in Syntax 37.

port_tchk ::=
port_spec
| (COND [gstring] timing_check_condition port_spec')

Syntax 37: Syntax for conditional timing check

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 61523-3:2004(E) —49 -
|EEE 1497-2001(E)

gstring shall be an optional symbolic name placeholder for annotators that operate by matching named
placeholders in the model to SDF constructs. See 5.4.8 for detailed explanation.

timing_check_condition is the description of the state dependency of the timing check. The syntax of
timing_check_condition is shown in A.1.6. This expression shall evaluate to a logical signal, rather than a
boolean. The analysis tool shall treat a logical zero as FALSE and any other logical value (1, X, or Z) as
TRUE. A particular conditional timing check in the timing model shall be used only if the condition is
TRUE.

The annotator must locate in the timing model a timing check with conditions matching those specified in
SDF file. Other timing checks of the same kind but with different conditions shall not receive the data. SDF
timing checks with no conditions match any timing check in the model of the same kind and between the
ports specified in the SDF entry.

An alternative syntax can be used for SETUPHOLD and RECREM timing checks. This associates the con-
ditions with the stamp and check events in the analysis tool rather than the port_spec. A stamp event defines
the beginning of a measured interval, and a check defines the end of a measured interval. Separate conditions
can be supplied for the stamp and check events using the SCOND and CCOND keywords. SCOND or
CCOND or both SCOND and CCOND shall take precedence over COND.

The syntax for stamp condition and check condition is given in Syntax 38.

scond ::=

(SCOND [gstring] timing_check_condition)
ccond .=

(CCOND [gstring | timing_check_condition')

Syntax 38: Syntax for stamp and check conditions

For the setup phase of a setuphold timing check, the stamp condition shall apply to the data port and the
check condition to the clock or gate port. For the hold phase, the stamp condition shall apply to the clock or
gate port and the check condition to the data port.

These conditions restore flexibility in expressing conditions that is lost when SETUP and HOLD are com-
bined into SETUPHOLD, or when RECOVERY and REMOVAL are combined into RECREM. For
example, here are separate SETUP and HOLD statements for the same clock and data signals, but with the
condition attached to the clock in one case, and to the data in the other:

(SETUP d (COND enb clk) (5))
(HOLD (COND enb d) clk (7))

These conditions cannot be combined into a single SETUPHOLD as shown here:

(SETUPHOLD (COND enb d) (COND enb clk) (5) (7))
This is because there is no way to specify that the condition shall only apply to signal clk for SETUP
checks, and only to signal d for HOLD checks. The SCOND and CCOND fields provide this capability. By

definition, the CCOND field defines a condition for the check event (the second event):

(SETUPHOLD d clk (5) (7) (CCOND enb))

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

~50— IEC 61523-3:2004(E)
|EEE 1497-2001(E)

5.5.2 Edge Specifications

Any port_spec can be qualified with an edge identifier as it is given in Syntax 39.

port_spec .=
port_instance
| port_edge
port_edge ;=
(edge_identifier port_instance)

Syntax 39: Syntax for port specification

A port specification with an edge identifier is called an edge specification. When the annotator is locating a
timing check at specified ports in the timing model, it shall match the edge specification as well as the port
names. A port without an edge specification in SDF shall match all edge specifications in the model.

Example (33):

(CELL (CELLTYPE "DFF™)
(INSTANCE a.b.c)
(TIMINGCHECK
(SETUP din (posedge clk) (3:4:5.5))
(HOLD din (posedge clk) (4:5.5:7))

)

Example (33) shows a cell with setup and hold timing checks specified on data port din with respect to the
rising edge of the clock signal.

5.5.3 Specifying timing check limit values

In the syntax descriptions of the timing check constructs, either rvalue or value is used to specify the timing
check limit. The rvalue can be negative, zero, or positive, and negative values are only legal in SETUP-
HOLD, RECREM, and NOCHANGE constructs. The value shall be zero or positive.

Each rvalue or value shall be a single value (signed_real_number or real_number, respectively) or three
values separated by colons (an rtriple or triple, respectively), representing three sets of data for minimum,
typical, and maximum delay conditions.

The use of triples in SDF allows three sets of data in the same file. Each number in the triple is an alternative
value for the data and is typically selected from the triple by the annotator or analysis tool on an instruction
from the user. The prevailing use of the three numbers is to represent minimum, typical, and maximum val-
ues computed at three process/operating conditions for the entire design. Any one or any two (but not all
three) of the numbers in a triple shall be omitted if the separating colons are left in place. This shall indicate
that no value has been computed for that data, and the annotator shall not make any changes if that number is
selected from the triple.

SETUPHOLD, RECREM, and NOCHANGE timing checks shall have two rvalues, the first for the setup
limit and the second for the hold limit.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 61523-3:2004(E) —51—
|EEE 1497-2001(E)

5.5.4 Setup timing checks

Setup and hold timing checks are used to define a time interval during which a data signal must remain
stable in order for a transition of a clock or gate signal to store the data successfully in a storage device (flip-
flop or latch). The setup time limit shall define the part of the interval before the clock transition; the hold
time limit shall define the part of the interval after the clock transition. Any change to the data signal within
this interval shall result in a timing violation. To shift the interval with respect to the clock transition, either
the setup time or the hold time can be negative; however, their sum shall always remain greater than zero.
Syntax 40 gives the syntax for a setup timing check.

setup_timing_check ::=
(SETUP port_tchk port_tchk value)

Syntax 40: Syntax for setup timing check

The fields shall be interpreted as follows:

— The timing check beginning with keyword SETUP shall specify limit values for a setup timing
check.

— The first port_tchk shall identify the data port. If it includes an edge specification, then the value shall
be used for a setup timing check with respect to only the specified transition at the data port.

— The second port_tchk shall identify the clock or gate port and shall normally include an edge specifi-
cation to identify the active edge of the clock or the active-to-inactive transition of the gate.

— value shall be the setup time limit between the data and clock ports and shall not be negative.

Example (34):

Figure 15—Setup time

(INSTANCE x.a)
(TIMINGCHECK

(SETUP din (posedge clk) (12))
)

As with all port_tchks, the COND construct can be used to specify conditions associated with the setup tim-
ing check.

5.5.5 Hold timing checks

The syntax for hold timing check is given in Syntax 41.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

—52— IEC 61523-3:2004(E)
|EEE 1497-2001(E)

hold_timing_check =
(HOLD port_tchk port_tchk value)

Syntax 41: Syntax for hold timing check

The fields shall be interpreted as follows:

— The timing check beginning with keyword HOLD shall specify limit values for a hold timing check.
— The first port_tchk shall identify the data port.

— The second port_tchk shall identify the clock port.

— value shall be the HOLD time between the data and clock events and shall not be negative.

See 5.5 .4 for a description of the use of hold timing checks and more information about the use of edge spec-
ifications in this context.

Example (35):

Figure 16—Hold time

(INSTANCE x.a)
(TIMINGCHECK
(HOLD din (posedge clk) (9.5))

)

As with all port_tchks, the COND construct can be used to specify conditions associated with the hold tim-
ing check.

5.5.6 SetupHold timing checks

Syntax 42 describes the syntax for setuphold timing check.

setuphold_timing_check ::=
(SETUPHOLD port_tchk port_tchk rvalue rvalue)
| (SETUPHOLD port_spec port_spec rvalue rvalue [scond] [ccond])

Syntax 42: Syntax for setuphold timing check

The fields shall be interpreted as follows:

— The timing check beginning with the keyword SETUPHOLD shall specify setup and hold limits in a
single timing check.

— The first port_tchk or port_spec shall identify the data port.

— The second port_tchk or port_spec shall identify the clock port.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 61523-3:2004(E) ~ 53—
IEEE 1497-2001(E)

— The first rvalue shall be the setup time and the second rvalue shall be the hold time. Either can be
negative, but the sum of the two rvalues shall be greater than zero.
— The optional scond and ccond are the stamp and check conditions as described in 5.5.1.

As with all port_tchks, the COND construct can be used in the first form of the setuphold timing check to
specify conditions associated with the ports.

See 5.5.4 for the use of setup and hold timing checks and edge specifications in this context.

Example (36):

"setup - hold
Figure 17—Setup and hold time

(INSTANCE x.a)
(TIMINGCHECK

(SETUPHOLD (COND ~reset din) (posedge clk) (12) (9.5))
)

This SDF entry shall match setup and hold timing checks in the model that are conditional on ~reset at the
time the din port changes. At this time in the analysis tool, ~reset must evaluate to TRUE, i.e., the
reset signal must be in the zero, X or Z states, for the checks to be performed.

Example (37):

(INSTANCE x.a)
(TIMINGCHECK

(SETUPHOLD din (posedge clk) (12) (9.5) (CCOND ~reset))
)

This SDF entry, using the second syntax form, shall match setup and hold timing checks in the model that
are conditional on ~reset at the time of the check event. For the setup phase of the check, this shall be
when the clK port undergoes a posedge transition. For the hold phase of the check, this shall be when the
din port undergoes any transition.

5.5.7 Recovery timing checks

The RECOVERY shall specify limit values for recovery timing checks. A recovery timing check is a limit
of the time between the release of an asynchronous control signal from the active state and the next active
clock edge, for example between clearbar and the clock for a flip-flop. If the active edge of the clock occurs
too soon after the release of the clearbar, the state of the flip-flop shall become uncertain—it could be the
value set by the clearbar, or it could be the value clocked into the flip-flop from the data input. In other
respects, a recovery check is similar to a setup check. The syntax for recovery timing check is given in
Syntax 43.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

— 54— IEC 61523-3:2004(E)
|EEE 1497-2001(E)

recovery_timing_check .=
(RECOVERY port_tchk port_tchk value)

Syntax 43: Syntax for recovery timing check

— The first port_tchk refers to the asynchronous control signal and shall normally have an edge identi-
fier associated with it to indicate which transition corresponds to the release from the active state.

— The second port_tchk refers to the clock (flip-flops) or gate (latches). This shall also normally have
an edge identifier to indicate the active edge of the clock or the closing edge of the gate.

— value is the recovery limit value and must not be negative. It is the time it takes a device to recover
after an extraordinary operation, such as set or reset, so that it can reliably return to normal opera-
tion, such as clocking in of new data.

Example (38):

clearbar /
clk o

recovery«—>

Figure 18 —Recovery time

(INSTANCE x.b)
(TIMINGCHECK

(RECOVERY (posedge clearbar) (posedge clk) (11.5))
)

As with all port_tchks, the COND construct can be used to specify conditions associated with the recovery
timing check.

5.5.8 Removal timing checks

The REMOVAL shall specify limit values for removal timing checks. A removal timing check is a limit of
the time between an active clock edge and the release of an asynchronous control signal from the active
state, for example between the clock and the clearbar for a flip-flop. If the release of the clearbar occurs too
soon after the active edge of the clock, the state of the flip-flop shall become uncertain—it could be the value
set by the clearbar, or it could be the value clocked into the flip-flop from the data input. In other respects, a
removal check is similar to a hold check. The syntax for removal timing check is described in Syntax 44.

removal_timing_check ::=
(REMOVAL port_tchk port_tchk value')

Syntax 44: Syntax for removal timing check

— The first port_tchk refers to the asynchronous control signal and shall normally have an edge identi-
fier associated with it to indicate which transition corresponds to the release from the active state.

— The second port_tchk refers to the clock (flip-flops) or gate (latches). This shall also normally have
an edge identifier to indicate the active edge of the clock or the closing edge of the gate.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 61523-3:2004(E) — 55—
|EEE 1497-2001(E)

— value is the removal limit value and must not be negative. It is the time for which an extraordinary
operation, such as set or reset, must persist to insure that a device shall ignore any normal operation,
such as clocking in of new data.

Example (39):

clearbar /
clk [

| |
| |
-

removal

Figure 19—Removal time

(INSTANCE x.b)
(TIMINGCHECK

(REMOVAL (posedge clearbar) (posedge clk) (6-3))
)

As with all port_tchks, the COND construct can be used to specify conditions associated with the recovery
timing check.

5.5.9 Recovery/removal timing checks

The RECREM construct shall specify both recovery and removal limits in a single entry. The syntax for
recovery/removal timing check is given in Syntax 45.

recrem_timing_check ::=
(RECREM port_tchk port_tchk rvalue rvalue)
| (RECREM port_spec port_spec rvalue rvalue [scond] [ccond])

Syntax 45: Syntax for recovery/removal timing check

— The first port_tchk or port_spec identifies the asynchronous control port.

— The second port_tchk or port_spec identifies the clock (for flip-flops) or gate (for latches) port.

— As with all port_tchks, the COND construct can be used in the first form of the recovery/removal
timing check to specify conditions associated with the ports.

— The first rvalue is the recovery time and the second rvalue is the removal time. Either can be nega-
tive; however, their sum must be greater than zero.

— The optional scond and ccond are the “stamp” and “check” conditions as described in 5.5.1.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

— 56— IEC 61523-3:2004(E)
|EEE 1497-2001(E)

Example (40):

clk [

.~
recovery ~> removal

Figure 20—Recovery and removal time

(INSTANCE x.b)
(TIMINGCHECK

(RECREM (posedge clearbar) (posedge clk) (1.5) (0.8))
)

Example (40) specifies a recovery time of 1.5 and a removal time of 0.8. The recovery time limit (1.5 time
units) defines the part of the interval before the clock transition; the removal time limit (0.8 time units)
defines the part of the interval after the clock transition. Any change to the clearbar signal within this interval
results in a timing violation.

5.5.10 Skew timing checks
The SKEW construct shall specify limit values for unidirectional signal skew timing checks. A signal skew

limit is the maximum allowable delay between two signals, which if exceeded causes devices to behave
unreliably. Syntax 46 shows the formal syntax for unidirectional skew timing check.

skew_timing_check =
(SKEW port_tchk port_tchk rvalue)

Syntax 46: Syntax for skew timing check

— The first port_tchk shall be either the stamp or check event, depending upon whether rvalue is posi-
tive or negative.

— The second port_tchk shall be either the stamp or check event, depending upon whether rvalue is
positive or negative.

— rvalue is the maximum skew limit.

The unidirectional SKEW construct shall annotate values for skew checks where the skew can only be mea-
sured in one direction. If rvalue is positive, then skew is measured from the first port_tchk to the second. A
negative rvalue reverses the sense of the check so that the skew is measured from the second port_tchk to the
first.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 61523-3:2004(E) —-57-—
|EEE 1497-2001(E)

Example (41):

— |
!
'Skew|
clk2 |

Figure 21 —Skew timing check

(INSTANCE x)
(TIMINGCHECK

(SKEW (posedge clkl) (posedge clk2) (6))
)

As with all port_tchks, the COND construct can be used to specify conditions.
5.5.11 Bidirectional skew timing checks
The BIDIRECTSKEW construct shall specify limit values for bidirectional signal skew timing checks. A

signal skew limit is the maximum allowable delay between two signals, which if exceeded causes devices to
behave unreliably. Syntax 47 shows the formal syntax for the bidirectional skew timing check.

bidirectskew_timing_check ::=
(BIDIRECTSKEW port_tchk port_tchk value value)

Syntax 47: Syntax for bidirectional skew timing check

The first port_tchk shall be either the stamp or check event, depending upon whether it transitions
first of second.

The second port_tchk shall be either the stamp or check event, depending upon whether it transitions
first or second.

value is the maximum skew limit when the first porz_tchk transitions first.

value is the maximum skew limit when the second port_tchk transitions first.

The bidirectional BIDIRECTSKEW construct shall annotate values for skew checks where the skew can be
measured in either direction. Either port_tchk can transition first. Both limits must be positive.

Example (42):

Figure 22— Skew timing check

(INSTANCE x)
(TIMINGCHECK

(BIDIRECTSKEW (posedge clkl) (posedge clk2) (6) (7))
)

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

— 58— IEC 61523-3:2004(E)
|EEE 1497-2001(E)

When clk1 transitions first, the delay before the clk2 transition is measured against the first value, 6.
When c K2 transitions first, the delay before the c k1 transition is measured against the second value, 7.

As with all port_tchks, the COND construct can be used to specify conditions.

5.5.12 Width timing checks

The WIDTH shall specify limits for a minimum pulse width timing check. The minimum pulse width tim-
ing check is the minimum allowable time for the positive (high) or negative (low) phase of each cycle. If a

signal has unequal phases, you can specify a separate width check for each phase. The syntax for width tim-
ing check is given in Syntax 48.

width_timing_check ::=
(WIDTH port_tchk value)

Syntax 48: Syntax for width timing check

— port_tchk refers to the port at which the minimum pulse width timing check is applied. If it includes
an edge specification, then the data shall apply to the width check for the phase of the signal begin-
ning with this edge (see example below). If port_tchk does not include an edge specification, then
the data applies to both high and low phases of the signal.

— value is the minimum pulse width limit and cannot be negative.

Example (43):

~ . Width | /
Figure 23—Width timing check

(INSTANCE x.b)

(TIMINGCHECK
(WIDTH (posedge clk) (30))
(WIDTH (negedge clk) (16.5))

)

In Example (43), the first minimum pulse width check is for the phase beginning with the positive clock
edge, i.e., the high phase of the clock, and the second minimum pulse width check is for the phase beginning
with the negative clock edge, i.e., the low phase.

As with all port_tchks, the COND construct can be used to specify conditions associated with the minimum
pulse width timing check.

5.5.13 Period timing checks
The PERIOD shall specify limit values for a minimum period timing check. The minimum period timing

check is the minimum allowable time for one complete cycle of the signal. The syntax for period timing
check is given in Syntax 49.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 61523-3:2004(E) ~ 59—
IEEE 1497-2001(E)

period_timing_check ::=
(PERIOD port_tchk value)

Syntax 49: Syntax for period timing check

— port_tchk refers to the port at which the minimum period timing check is applied. If it includes an
edge specification, then the data shall apply to the period check between consecutive edges of this
direction (see example below). If port_tchk does not include an edge specification, then the data
applies both to period checks between consecutive rising edges and between consecutive falling
edges if they are present in the timing model.

— value is the minimum period limit and cannot be negative.

Example (44):

Figure 24—Period timing check

(INSTANCE x.b)
(TIMINGCHECK

(PERIOD (posedge clk) (46.5))
)

In Example (44), the data applies to a minimum period check between consecutive rising edges.

As with all port_tchks, the COND construct can be used to specify conditions associated with the minimum
period timing check.

5.5.14 No change timing checks

The NOCHANGE shall specify limit values for a nochange timing check. The nochange timing check is a
signal check relative to the width of a control pulse. A “setup” period is established before the start of the
control pulse and a “hold” period after the pulse. The signal checked against the control signal must remain
stable during the setup period, the entire width of the pulse and the hold period. A typical use of a nochange
timing check is to model the timing of memory devices, when address lines must remain stable during a
write pulse with margins both before and after. The syntax for any nochange timing check is given in
Syntax 50.

nochange_timing_check ::=
(NOCHANGE port_tchk port_tchk rvalue rvalue)

Syntax 50: Syntax for nochange timing check

— The first port_tchk refers to the control port, which is typically a write enable input to a memory or
register file device. An edge specification must be included for the control port.

— The second port_tchk refers to the port checked against the control port, which is typically an address
or select input to a memory or register file device. An edge specification can be included.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

~- 60— IEC 61523-3:2004(E)
|EEE 1497-2001(E)

— The first rvalue is the minimum time that the data/address must be present (stable) before the speci-
fied edge of the control signal (setup).

— The second rvalue is the minimum time that the data/address must remain stable after the opposite
edge of the control signal (hold).

Example (45):

Figure 25—Nochange timing check

(INSTANCE x)
(TIMINGCHECK

(NOCHANGE (negedge write) addr (4.5) (3.5))
)

Example (45) defines a period beginning 4.5 time units before the falling edge of write and ending 3.5
time units after the subsequent rising edge of write. During this time period, the addr signal must not
change.

As with all port_tchks, the COND construct can be used to specify conditions associated with the nochange
timing check.

5.6 Labels

Labels enable the direct annotation of variables such as Verilog specparams and VHDL generics. The use of
labels has the potential to improve four aspects of SDF annotation. Labels can be looked up faster than port
names and conditions, improving SDF annotation performance. For Verilog, it is the only way to annotate
behavioral delays. For VHDL, it provides unambiguous annotation to generics. And new SDF constructs
will not be needed when new capabilities are added to Verilog or VHDL or other HDLs, because labels can
be used to annotate timing values to the new features.

Ibl_spec ::=
(LABEL /bl_type { Ibl_type })
Ibl_type =
(INCREMENT [bl_def { Ibl_def})
| (ABSOLUTE /bl_def{ Ibl_def})
Ibl_def =
(identifier delval_list)

Syntax 51: Syntax for label specification

Labels are supported via the LABEL construct, which can appear inside a CELL construct at the same level
as the DELAY, TIMINGCHECK, and TIMINGENV constructs. Label values are expressed as a
delval_list, and can be either incremental or absolute.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 61523-3:2004(E) —61-
|EEE 1497-2001(E)

Values in a delval_list in excess of what is required by that being annotated are ignored. For example, if
there are six values in a delval_list that is being annotated to a Verilog gate primitive, then the first three val-
ues in the delval_list are used and the last three values in the delval_list are ignored. SDF annotators can
issue a warning when this circumstance occurs.

As already mentioned previously, an SDF file shall contain any number of cells (other than zero). The order
of the cells shall be significant only if they have overlapping effect, in other words, if data from two different
cells applies to the same timing property in the design. In this situation, the cells shall be processed strictly
from the beginning of the file towards the end and the data they contain shall be applied in sequence to what-
ever region is appropriate to that cell. If data is applied to a timing property previously referenced by an SDF
file, the new data shall be applied over the old and the final value shall be the cumulative effect according to
whether the data is applied as a replacement for the old value (ABSOLUTE section) or is added to it
(INCREMENTAL section).

Example (46):
SDF file:

(CELL (CELLTYPE ''DFF')
(INSTANCE cache.mem3.bndrx.1103)

(LABEL
(ABSOLUTE
(TCLK Q (7.54:12.14:19.78) (6.97:13.66:18.47))
(TCLK QB (8.16:13.74:20.25) (7.63:14.83:21.42))
(TSETUP_D CLK (3:4:5.6))
(THOLD_D CLK (4:5.6:7))
)))
Verilog specify block annotated to by the above SDF:
specify
specparam
TCLK_Q = 0,
TCLK_QB = 0,
TSETUP_D CLK = O,
THOLD_D CLK = 0;
(CLK => Q) = TCLK_Q;

(CLK => QB = TCLK_QB;
$setuphold (CLK, D, TSETUP_D CLK, THOLD D CLK);
endspecify

VITAL model annotated to by the above SDF (only the most relevant portions are shown, and the actual dec-
laration of the generics is not included):

VitalPathDelay (Q, "Q", Q_int,

Paths => (0 => (CLK ipd”’LAST_EVENT, TCLK Q, TRUE)));
VitalPathDelay (QB, "QB'", QB_int,

Paths => (0 => (CLK_ipd”LAST_EVENT, TCLK _QB, TRUE)));
VitalSetupHoldCheck (D, "D”, CLK, "CLK",

SetupHigh => TSETUP_D_CLK,

SetupLow => TSETUP_D CLK,

HoldHigh => THOLD_D_CLK,

HoldLow => THOLD D CLK);

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

62— IEC 61523-3:2004(E)
|EEE 1497-2001(E)

For LABEL constructs, SDF annotators shall enforce all rules concerning negative values. SDF annotators
must check that negative LABEL values result in legal timing values for all contexts where the label appears
in the timing model. Specifically, the SDF annotator would have to detect and issue a warning whenever the
label is used in a timing model in such a way so as to yield a negative value where negative values are not
legal, such as delays and some timing checks.

5.7 Timing environment

Timing specifications that start with the TIMINGENYV keyword shall associate constraint values with
critical paths in the design and provide information about the timing environment in which the circuit shall
operate. Constructs in this subclause are used in forward-annotation and not back-annotation. The syntax for
timing environment is shown in Syntax 52.

te_spec .=
(TIMINGENYV te_def { te_def})

Syntax 52: Syntax for timing environment

Any number of te_defs shall appear in a fe_spec. Each te_def shall be a PATHCONSTRAINT, PERIOD-
CONSTRAINT, SUM, DIFF, or SKEWCONSTRAINT constraint, containing constraint values for the
design or an ARRIVAL, DEPARTURE, SLACK, or WAVEFORM timing environment, containing infor-
mation about the timing environment in which the circuit shall operate. Syntax 53 describes the syntax for
timing definition.

te_def ::=
cns_def /I constraints
| tenv_def // timing environment

Syntax 53: Syntax for timing definition

5.7.1 Constraint constructs

Constraint constructs shall provide information about the timing properties that a design is required to have
in order to meet certain design objectives. A tool that is synthesizing some aspect of the design (logic synthe-
sis, layout, etc.) shall adapt its strategy to try to ensure that the constraints are met and issue warning
messages in the event that they cannot be met. The syntax for constraint definition is given in Syntax 54.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 61523-3:2004(E) ~- 63—
IEEE 1497-2001(E)

cns_def .=
path_constraint
| period_constraint
| sum_constraint
| diff _constraint
| skew_constraint
path_constraint .=
(PATHCONSTRAINT [name] port_instance port_instance { port_instance }
rvalue rvalue))
period_constraint .=
(PERIODCONSTRAINT port_instance value [exception])
sum_constraint .=
(SUM constraint_path constraint_path { constraint_path } rvalue [rvalue 1)
diff_constraint =
(DIFF constraint_path constraint_path value [value])

skew_constraint =
(SKEWCONSTRAINT port_spec value)

Syntax 54: Syntax for constraint definition

Subclauses 5.7.1.1 through 5.7.1.5 describes the SDF constraint constructs.
5.7.1.1 Path constraints

The PATHCONSTRAINT shall represent delay constraints for paths. Path constraints are the critical paths
in a design identified during timing analysis. Layout tools can use these constraints to direct the physical
design. The constraint specifies the maximum allowable delay for a path, which is typically identified by two
ports, one at each end of the path. You can also specify intermediate ports to uniquely identify the path. The
syntax for path constraint is shown in Syntax 55.

path_constraint ::=
(PATHCONSTRAINT [name] port_instance port_instance { port_instance }
rvalue rvalue’)
name =
(NAME gstring)

Syntax 55: Syntax for path constraint

name is optional and allows a symbolic name to be associated with the path. This name shall be used by the
tool to identify the path to the user when information about the path (problems, failures, etc.) is to be pro-
vided. The name is assumed to be more convenient for this purpose than the list of port instances.

— The first port_instance is the start of the path.

— The last port_instance is the end of the path. You can specify intermediate points along the path by
using additional port_instances in this entry.

— The first rvalue is the maximum rise delay between the start and end points of the path.

— The second rvalue is the maximum fall delay between the start and end points of the path.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

— 64— IEC 61523-3:2004(E)
|EEE 1497-2001(E)

Example (47):

X
Yy a
z b
ot i
—i2 0D 1
i3 | o °
|

Figure 26 —Path constraint

(INSTANCE x)
(TIMINGENV

(PATHCONSTRAINT y.z.i3 y.z.02 a.b.ol (25.1) (15.6))
)

5.7.1.2 Period constraints

The PERIODCONSTRAINT construct allows a path constraint value to be specified for groups of paths in
a synchronous circuit. All paths in the group shall be from the common clock input of some flip-flops to the
data inputs of the flip-flops that share the common clock. This can be used to derive the frequency at which a
circuit must operate as a constraint on how long signals can take after a clock edge to reach the register data
inputs. The syntax for period constraint is given in Syntax 56.

period_constraint .=

(PERIODCONSTRAINT port_instance value [exception])
exception .=

(EXCEPTION cell_instance { cell_instance })

Syntax 56: Syntax for period constraint

— port_instance identifies the common clock signal which is the start of all constrained paths. Whereas
the start of PATHCONSTRAINT is normally an input port, port_instance here is normally the out-
put port of the device that drives the clock of the flip-flops. Only flip-flops directly connected to this
output are in constrained paths. Paths that pass through other buffers before reaching a flip-flop
clock are also considered in the group constrained by this entry.

— value is the maximum allowable delay for each path in the group. Included in this delay is the clock-
to-output delay of the flip-flop driven from port_instance, the setup time of the flip flop that ends the
path, and the delay through any combinational logic before arrival at the data input of a flip-flop. Not
included is the difference in the timing of the clock of that flip-flop that ends the path from the clock
that starts the path. These two times shall cause the value supplied in PERIODCONSTRAINT to
be different (typically smaller) than the intended clock period at which the circuit shall operate.
Since only one value can be supplied for all paths in this group, some data may be lost in combining
many PATHCONSTRAINT constructs into one PERIODCONSTRAINT.

— exception is optional and allows paths to be excluded from the group by the identification of a cell
through which they pass. One or more cell instances can be listed after the EXCEPTION keyword.
The hierarchical path to these cell instances is relative to the scope or design region identified by the
cell. Therefore, the PERIODCONSTRAINT must appear at a hierarchical level that includes the
cell instance that drives the common clock inputs of the flip-flops and any cell instances to be placed
in the exception list.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 61523-3:2004(E) — 65—
|EEE 1497-2001(E)

Example (48):

X
dff1 dff2
—> QB —> QB
dff3
D Q—
—> QB
bufa
s @ y
mycircuit

Figure 27 —Period constraint

(INSTANCE x)
(TIMINGENV
(PERIODCONSTRAINT bufa.y (10)
(EXCEPTION (INSTANCE dff3))
)

)

Any tool that makes use of PERIODCONSTRAINT constructs in SDF must be able to traverse the design
topology and recognize flip-flops and their clock and data inputs.

5.7.1.3 Sum constraints

The SUM shall represent a constraint on the sum of the delay over two or more paths in a design. The syntax
for sum constraint is described in Syntax 57.

sum_constraint ;.=
(SUM constraint_path constraint_path { constraint_path } rvalue [rvalue])
constraint_path ::=
(port_instance port_instance)

Syntax 57: Syntax for sum constraint

— Each constraint_path specifies a path to be included in the sum. You must specify at least two paths,
but can specify more.

— In each constraint_path the first port_instance is the beginning of the path and the second
port_instance is the end of the path.

— rvalue is the constraint value. The total (sum) of the individual delays associated with each
constraint_path must be less than rvalue. If two rvalues are supplied, the first applies to the rising
transition at the end of the path and the second applies to the falling.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

— 66— IEC 61523-3:2004(E)
|EEE 1497-2001(E)

Example (49):

X
a
y
m
b
n z »
. i
i i1
i1 o1 I o o1 _ o1
—i2 - 02 i2
—i3

Figure 28 —Sum constraint

(INSTANCE x)
(TIMINGENV

(SUM (m.n.ol y.z.il) (y-z-02 a.b.i2) (67.3))
)

Example (49) constrains the sum of the delays along the two nets shown as heavy lines in the diagram to be
less than 67.3 time units.

5.7.1.4 Diff constraints

DIFF shall represent a constraint on the difference in the delay over two paths in a design. The syntax for
diff constraint is given in Syntax 58.

diff_constraint ::=
(DIFF constraint_path constraint_path value [value])

Syntax 58: Syntax for diff constraint

— constraint_path specifies a path between two ports. You must specify exactly two paths.

— In each constraint_path the first port_instance is the beginning of the path and the second
port_instance is the end of the path.

— value is the constraint value and must be a positive number or zero. The absolute value of the differ-
ence of the individual delays in the two circuit paths must be less than value. If two values are
supplied, the first applies to the rising transition at the end of the path and the second to the falling.

Example (50):

(INSTANCE x)
(TIMINGENV

(DIFF (m.n.ol1 y.z.i1) (y.z.02 a.b.i2) (8.3))
)

5.7.1.5 Skew constraints

SKEWCONSTRAINT shall represent a constraint on the spread of delays from a common driver to all
driven inputs. Only the driving output port can be specified in this construct. All inputs connected to this out-
put are implied end-points for constrained paths. Only paths over interconnect can be constrained as these
implied paths cannot pass through any active devices. The syntax for skew constraint is shown in Syntax 59.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 61523-3:2004(E) —67-
|EEE 1497-2001(E)

skew_constraint ::=
(SKEWCONSTRAINT port_spec value)

Syntax 59: Syntax for skew constraint

— port_spec refers to the port driving the net.

— value is the constraint value and must be a positive number or zero (although zero clock skew might
be a hard constraint for a layout tool to meet!). The delays from the output specified by port_spec to
all inputs that it drives shall not differ from each other by more than value. This does not place a con-
straint on the actual value of the delays, just their “spread.”

Example (51):

top
clockbufs
cb b bufby [bufc
buf?
block2
dff1 dff2
94 o—p o
[> QB I-> QB
shiftreg
mycircuit

Figure 29— Skew constraint

(CELL
(CELLTYPE “buf’)
(INSTANCE top.clockbufs)
(TIMINGENV
(SKEWCONSTRAINT (posedge y) (7.5))
)

)

In Example (51), a buffer cell of cell type buf is used to drive some clock inputs in a circuit. It is buried in
the design hierarchy by being instantiated as bufb in a user block called clockbufs, which in turn is part
of the block top. In the excerpt from an SDF file, this buffer is identified in a CELL and its output is speci-
fied in a SKEWCONSTRAINT. The effect is to request that the arrival of the positive edge of the clock
shall not deviate by more than 7.5 time units between all the inputs driven by the heavily drawn net in the
diagram. Neither the inputs nor the net name need to be specified in the SDF file. Note that the driven inputs
can be anywhere in the design, irrespective of the hierarchical organization.

5.7.2 Timing environment constructs

Timing environment constructs provide information about the timing environment in which the circuit shall
operate. This can be used by analysis tools to determine whether or not a design will operate correctly given
the back-annotation timing data given elsewhere in the file. It can also be used to compute constraints to be
forward-annotated to subsequent stages in the design synthesis process. The syntax for timing environment
constructs is described in Syntax 60.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

—- 68— IEC 61523-3:2004(E)
|EEE 1497-2001(E)

tenv_def ==
arrival_env
| departure_env
| slack_env
| waveform_env
arrival_env ::=
(ARRIVAL [port_edge | port_instance rvalue rvalue rvalue rvalue)
departure_env .=
(DEPARTURE [port_edge | port_instance rvalue rvalue rvalue rvalue)
slack_env ;=
(SLACK port_instance rvalue rvalue rvalue rvalue [real_number])
waveform_envy =
(WAVEFORM port_instance real_number edge_list)

Syntax 60: Syntax for timing environment

Subclause 5.7.2.1 through 5.7.2.4 describes the SDF timing environment constructs.
5.7.2.1 Arrival time

The ARRIVAL construct defines the time at which a primary input signal is to be applied during the
intended circuit operation. Tools use this information to analyze the circuit for timing behavior and to com-
pute constraints for logic synthesis and layout. The syntax for arrival time is given in Syntax 61.

arrival_env :=
(ARRIVAL [port_edge | port_instance rvalue rvalue rvalue rvalue)

Syntax 61: Syntax for arrival time

— port_edge identifies a port and signal edge that form the time reference for the arrival time specifica-
tion. The port must be an input port. The port_edge is required if the primary input signal is a fan-out
from a sequential element, in which case, port_edge is usually referred to an active edge of a clock
signal. Otherwise, the port_edge can be omitted. All ARRIVAL constructs that do not have the
port_edge refer to the same implicit time reference point. This reference time shall be treated as the
time O of all WAVEFORM constructs. Note that, to fully specify a timing environment, a WAVE-
FORM statement shall be required for each clock signal.

— port_instance specifies the port at which the arrival time is to be defined. It must be an input or bidi-
rectional port that is a primary (external) input of the top-level module.

— Four rvalues carry the arrival-time data in this order: earliest rising, latest rising, earliest falling and
latest falling arrival times. All values are relative to the time reference, either by a port_edge, or by
the implicit reference point. The earliest arrival times must be less than the latest arrival times for the
same transition.

Multiple ARRIVAL statements can be defined for the same input to represent signal paths of different refer-
ence port_edges.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 61523-3:2004(E) ~69 -
IEEE 1497-2001(E)

Example (52):

(INSTANCE top)
(TIMINGENV

)

(ARRIVAL (posedge MCLK) D[15:0] (10) (40) (12) (45))

Example (52) specifies that rising transitions at D[15:0] are to be applied no sooner than 10 time units
and no later than 40 time units after the rising edge of the reference clock MCLK. Falling transitions are to be
applied no sooner than 12 time units and no later than 45 time units after the edge.

5.7.2.2 Departure time

The DEPARTURE construct defines the time at which a primary output signal is to occur during the
intended circuit operation. Tools use this information to analyze the circuit for timing behavior and to com-
pute constraints for logic synthesis and layout. The syntax for departure time is given in Syntax 62.

departure_env =
(DEPARTURE [port_edge | port_instance rvalue rvalue rvalue rvalue)

Syntax 62: Syntax for departure time

port_edge identifies a port and signal edge that form the time reference for the departure time speci-
fication. The port must be an input port. The port_edge is required if the primary output is a fan-out
from a sequential element, in which case, port_edge is usually referred to an active edge of a clock
signal. Otherwise, the port_edge can be omitted. All DEPARTURE constructs that do not have the
port_edge refer to the same implicit time reference point. This reference time shall be treated as the
time O of all WAVEFORM constructs. Note that, to fully specify a timing environment, a WAVE-
FORM statement shall be required for each clock signal.

port_instance specifies the port at which the departure time is to be defined. It must be an output or
bidirectional port that is a primary (external) output of the top-level module.

Four rvalues carry the departure-time data in this order: earliest rising, latest rising, earliest falling,
and latest falling departure times. All values are relative to the time reference, either by a port_edge,
or by the implicit reference point. The earliest departure times must be less than the latest departure
times for the same transition.

Multiple DEPARTURE statements can be defined for the same output to represent signal paths of different
reference port_edges.

Example (53):

(INSTANCE top)
(TIMINGENV

)

(DEPARTURE (posedge SCLK) A[15:0] (8) (20) (12) (34))

Example (53) specifies that rising transitions at primary output A[15:07] are to occur no sooner than 8
time units and no later than 20 time units after the rising edge of the reference clock SCLK. Falling transi-
tions are to occur no sooner than 12 time units and no later than 34 time units after the edge.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

-70- IEC 61523-3:2004(E)
|EEE 1497-2001(E)

5.7.2.3 Slack time

The SLACK construct is used to specify the available slack or margin in a delay path. This is a comparison
of the calculated delay over a path to the delay constraints imposed upon that path. Positive slack indicates
that the constraints are met with room to spare. Negative slack indicates a failure to construct the circuit
according to the constraints. A layout or logic synthesis tool can use slack information to make trade-offs in
cell placement and routing or re-synthesis of parts of the circuit. The objective shall be to eliminate negative
slack and achieve an even distribution of positive slack. The syntax for slack time is given in Syntax 63.

slack_env ;=
(SLACK port_instance rvalue rvalue rvalue rvalue [real_number |)

Syntax 63: Syntax for slack time

— port_instance specifies the input port at which slack/margin information is given in this entry. Paths
terminating at this port have at least the indicated slack/margin. It is not possible in this construct to
specify individual paths. The values given must be the minimum of all paths that converge to the
specified port_instance. However, the slack/margin shall be given at various places on the same
path.

— Four rvalues carry the slack margin data. In order, they are the rising setup slack, the falling setup
slack, the rising hold slack, and the falling hold slack. “Rising” and “falling” indicate the direction
of transitions at the specified port_instance to which data applies. The setup slack is the additional
delay that could be tolerated in all paths ending at this port without causing design constraints to be
violated. Similarly, the hold slack is the reduction of the delay that could be tolerated in all these
paths. If rtriples are used in these rvalues, then each number belongs to the data set for that position
in the triple. Since the prevailing use of these data sets is to carry data for minimum, typical, and
maximum delays, setup slack rtriples shall have the unusual property of decreasing in value from
left to right.

— real_number is optional and, if present, represents the clock period on which the slack/margin values
are based. The clock period refers to the one specified by a WAVEFORM construct.

Example (54):

(CELL
(CELLTYPE *““cpu’™)
(INSTANCE macro.A016)
(TIMINGENV

(SLACK B (3) (3 (M (M)
)
)

In Example (54), the rising and falling setup slack times are both 3, while the rising and falling hold slack
times are both 7. This means that the delay of all data paths to port macro.AO16 could be increased by 3
time units without violating any setup requirements of devices on this net. And the delay could be decreased
by 7 time units without violating any hold requirements of devices on this net.

Multiple SLACK constructs are allowable for the same port_instance and are distinct if real_number is
different.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 61523-3:2004(E) —71-
|EEE 1497-2001(E)

5.7.2.4 Waveform time

The WAVEFORM construct shall allow the specification of a periodic waveform that shall be applied to a
circuit during its intended operation. Typically, this shall be used to define a clock signal. Tools can use this
information in analyzing the circuit for timing behavior and to compute constraints for logic synthesis and
layout. The syntax for a waveform specification is described in Syntax 64.

waveform_env =
(WAVEFORM port_instance real_number edge_list)
edge_list ::=
pos_pair { pos_pair }
| neg_pair { neg_pair}
pos_pair ::=
(posedge signed_real_number [signed_real_number])
(negedge signed_real_number [signed_real_number])
neg_pair .=
(negedge signed_real_number [signed_real_number])
(posedge signed_real_number [signed_real_number |)

Syntax 64: Syntax for waveform specification

— port_instance identifies the port in the circuit at which the waveform shall appear. It must be an input
or bidirectional port. If the port is not a primary input of the circuit, i.e., if it is driven by the output
of some other circuit element in the scope of the analysis, then the signal driven in the circuit shall
be ignored and the specified waveform shall replace it in the analysis. The hierarchical path to this
port is relative to the scope or design region identified by the cell.

— real_number specifies the period of the waveform. The waveform described repeats indefinitely at
this interval.

— edge_list describes a single period of the waveform. It consists of a list of edge pairs, which can be
either posedge followed by negedge or negedge followed by posedge. Thus, the total number of
edges in the list shall be even and edges shall alternate between posedge and negedge. In addition to
the direction of the transition, each edge gives the time at which the transition takes place relative to
the start of each period. Offsets must increase monotonically throughout the edge_list and must not
exceed the period. If one signed_real_number is supplied, then this precisely defines the transition
offset. If two signed_real_numbers are supplied, then they define an uncertainty region in which the
transition shall take place. The first signed_real_number gives the beginning of the uncertainty
region and the second signed_real_number gives its end. Tools using this construct with two
signed_real_numbers shall assume that a single transition of the specified direction occurs some-
where in the uncertainty region, but shall make no assumptions about exactly where. Tools unable to
model this edge uncertainty shall issue a warning message and use the mean of the two
signed_real_numbers to locate the transition.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

—72- IEC 61523-3:2004(E)
|EEE 1497-2001(E)

Example (55):
Period = 15

1707 Z)

0 5 10 15

Figure 30— Specification of a waveform of period 15

(CELL
(CELLTYPE *“cpu’)
(INSTANCE top)
(TIMINGENV
(WAVEFORM clka 15 (posedge 0 2) (negedge 5 7))
)

)

Example (55) shows the specification of a waveform of period 15 to be applied to port top.clka. Within
each period, a rising edge occurs at somewhere between 0 and 2 and a falling edge somewhere between 5
and 7. Tools unable to deal with uncertainty in waveforms shall place the rising edge at 1 and the falling edge
at 6 and issue a warning.

Example (56):
Period = 25

|EEE

| | | |
0 5 10 15 20 25 3
Figure 31—Specification of a waveform of period 25

(CELL
(CELLTYPE “cpu’)
(INSTANCE top)
(TIMINGENV
(WAVEFORM clkb 25
(negedge 0) (posedge 5)
(negedge 10) (posedge 15)
)
)
)

Example (56) shows the specification of a waveform of period 25 to be applied to port top.clkb. Within
each period, a falling edge occurs at 0, a rising edge at 5, a falling edge at 10, and a rising edge at 15.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 61523-3:2004(E) —-73-
|EEE 1497-2001(E)

Example (57):
Period = 50

.

[T R R T
-20-10 0 10 20 30 40

Figure 32— Specification of a waveform of period 50 with negative numbers

(CELL
(CELLTYPE *““cpu’)
(INSTANCE top)
(TIMINGENV
(WAVEFORM clkb 50
(negedge -10) (posedge 20)

)
)

Example (57) shows that negative numbers can be used in defining a waveform.

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

— 74—

Annex A

(normative)

Syntax of SDF

A.1 Formal syntax definition

The formal syntax of SDF is described using Backus-Naur (BNF).

IEC 61523-3:2004(E)
|EEE 1497-2001(E)

Lexical elements are shown italicized. All leaf characters are shown in bold. Keywords are shown in upper-

case bold (for example, IOPATH) for easy identification, but are case insensitive.

A.1.1 SDF delay file and header

delay_file := (DELAYFILE sdf_header cell { cell })
sdf_header ::=

sdf _version [design_name] [date] [vendor] [program_name | [program_version | [

hierarchy_divider |
[voltage | [process] [temperature] [time_scale]

sdf _version ::=
(SDFVERSION gstring)

design_name ::=
(DESIGN gstring)

date ::=
(DATE gstring)

vendor .=
(VENDOR g¢string)

program_name ::=
(PROGRAM g¢string)

program_version .=
(VERSION gstring)

hierarchy_divider ::=
(DIVIDER /char)

voltage ::=
(VOLTAGE rtriple)
| (VOLTAGE signed_real_number)

process =
(PROCESS gstring)

temperature .=
(TEMPERATURE rtriple)
| (TEMPERATURE signed_real_number)

time_scale .=
(TIMESCALE timescale_number timescale_unit)

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 61523-3:2004(E) ~75-
|EEE 1497-2001(E)

timescale_number ::=1|10]100 | 1.0 | 10.0 | 100.0

timescale_unit >=s | ms | us | ns | ps | fs

A.1.2 Cells

cell ::=
(CELL celltype cell_instance { timing_spec })

celltype =
(CELLTYPE gstring)

cell_instance .=
(INSTANCE [hierarchical_identifier |)
| (INSTANCE *)

A.1.3 Timing specifications

timing_spec .=
del_spec
| te_spec
| Ibl_spec
| te_spec

del_spec ::=
(DELAY deltype { deltype })

tc_spec .=
(TIMINGCHECK tchk_def { tchk_def'})

te_spec .=
(TIMINGENYV te_def{ te_def})

Ibl_spec ::=
(LABEL /bl_type { Ibl_type })

deltype ::=
| absolute_deltype
| increment_deltype
| pathpulse_deltype
| pathpulsepercent_deltype

pathpulse_deltype ::=
(PATHPULSE [input_output_path | value [value 1)

pathpulsepercent_deltype ::=
(PATHPULSEPERCENT [input_output_path | value [value])

absolute_deltype ::=
(ABSOLUTE del_def { del_def'})

increment_deltype ::=
(INCREMENT del_def { del_def'})

input_output_path .=
port_instance port_instance

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

~-76- IEC 61523-3:2004(E)
|EEE 1497-2001(E)

del_def ::=
iopath_def

| cond_def
| condelse_def
| port_del
| interconnect_def
| netdelay_def
|

device_def
iopath_def ::=

(IOPATH port_spec port_instance { retain_def '} delval_list)
retain_def ::=

(RETAIN retval_list)
cond_def =

(COND [gstring | conditional_port_expr iopath_def’)

condelse_def ::=
(CONDELSE iopath_def’)

port_def ;=
(PORT port_instance delval_list)

interconnect_def .=
(INTERCONNECT port_instance port_instance delval_list)

netdelay_def ::=
(NETDELAY net_spec delval_list)

device_def ::=
(DEVICE [port_instance] delval_list)

tchk_def ::=
setup_timing_check

| hold_timing_check

| setuphold_timing_check

| recovery_timing_check

| removal_timing_check

| recrem_timing_check

| skew_timing_check

| bidirectskew_timing_check

| width_timing_check

| period_timing_check

| nochange_timing_check

setup_timing_check ::=
(SETUP port_tchk port_tchk value)

hold_timing_check =
(HOLD port_tchk port_tchk value)

setuphold_timing_check =
(SETUPHOLD port_tchk port_tchk rvalue rvalue)
| (SETUPHOLD port_spec port_spec rvalue rvalue [scond] [ccond])

recovery_timing_check =
(RECOVERY port_tchk port_tchk value)

removal_timing_check ::=
(REMOVAL port_tchk port_tchk value)

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 61523-3:2004(E) —77-
|EEE 1497-2001(E)

recrem_timing_check ::=
(RECREM port_tchk port_tchk rvalue rvalue)
| (RECREM port_spec port_spec rvalue rvalue [scond] [ccond])

skew_timing_check =
(SKEW port_tchk port_tchk rvalue’)

bidirectskew_timing_check =
(BIDIRECTSKEW port_tchk port_tchk value value)

width_timing_check ::=
(WIDTH port_tchk value)

period_timing_check ::=
(PERIOD port_tchk value)

nochange_timing_check ::=
(NOCHANGE port_tchk port_tchk rvalue rvalue)

port_tchk =
port_spec
| (COND [gstring | timing_check_condition port_spec')

scond ::=

(SCOND [gstring] timing_check_condition)
ccond =

(CCOND [gstring | timing_check_condition)
te_def ;=

cns_def

| tenv_def

cns_def ;=

path_constraint
| period_constraint
| sum_constraint
| diff_constraint
| skew_constraint

path_constraint ::=
(PATHCONSTRAINT [name] port_instance port_instance { port_instance }
rvalue rvalue))

period_constraint .=
(PERIODCONSTRAINT port_instance value [exception |)

sum_constraint .=
(SUM constraint_path constraint_path { constraint_path } rvalue [rvalue)

diff_constraint .=
(DIFF constraint_path constraint_path value [value])

skew_constraint ;=
(SKEWCONSTRAINT port_spec value)

exception :=
(EXCEPTION cell_instance { cell_instance })

name =
(NAME [gstring])

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

— 78— IEC 61523-3:2004(E)
|EEE 1497-2001(E)

constraint_path =
(port_instance port_instance)

tenv_def ::=
arrival_env
| departure_env
| slack_env
| waveform_env

arrival_env :=
(ARRIVAL [port_edge | port_instance rvalue rvalue rvalue rvalue)

departure_env .=
(DEPARTURE [port_edge | port_instance rvalue rvalue rvalue rvalue')

slack_env ::=
(SLACK port_instance rvalue rvalue rvalue rvalue [real_number |)

waveform_env .=
(WAVEFORM port_instance real_number edge_list)

edge_list ::=
pos_pair { pos_pair }
| neg_pair { neg_pair}

pos_pair ::=
(posedge signed_real_number [signed_real_number])
(negedge signed_real_number [signed_real_number])

neg_pair ;=
(negedge signed_real_number [signed_real_number])
(posedge signed_real_number [signed_real_number])

Ibl_type =
(INCREMENT /bl_def { Ibl_def'})
| (ABSOLUTE /bl _def { Ibl_def})

Ibl_def =
(identifier delval_list)

port_spec .:=
port_instance
| port_edge

port_edge .=
(edge_identifier port_instance)

edge_identifier .=
posedge
| negedge
| 01
| 10
| 0z
| ozl
| 1z
| 20

port_instance .=
port
| hierarchical_identifier hchar port

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 61523-3:2004(E) -79-
|EEE 1497-2001(E)

port =
scalar_port
| bus_port

scalar_port =
hierarchical_identifier
| hierarchical_identifier | integer |

bus_port =
hierarchical_identifier | integer : integer |

net_spec .=
port_instance
| net_instance

net_instance .=
net
| hierarchical_identifier hier_divider_char net

net ::=
scalar_net
| bus_net

scalar_net ;=
hierarchical_identifier
| hierarchical_identifier | integer |

bus_net =
hierarchical_identifier | integer : integer |

A.1.4 Data values

value ::=
([real_number])
| ([#riple])
triple .=
real_number : [real_number] : [real_number]
| [real_number] : real_number : [real_number]
| [real_number] : [real_number] : real_number
rvalue =
([signed_real_number])
| ([rtriple])
rtriple ==
signed_real_number : [signed_real_number] : [signed_real_number]
| [signed_real_number] : signed_real_number : [signed_real_number]
| [signed_real_number] : [signed_real_number] : signed_real_number
delval ::=

rvalue
| (rvalue rvalue)
| (rvalue rvalue rvalue)

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

—80 -

delval_list ;=
delval
| delval delval
| delval delval delval
| delval delval delval delval [delval] [delval]
| delval delval delval delval delval delval
delval [delval] [delval] [delval] [delval] [delval]

retval_list ;=
delval
| delval delval
| delval delval delval

A.1.5 Conditions for path delays

conditional_port_expr ;=
simple_expression
| (conditional_port_expr)
| unary_operator (conditional_port_expr)
| conditional_port_expr binary_operator conditional_port_expr

simple_expression ::=
(simple_expression)
| unary_operator (simple_expression)
| port
| unary_operator port
| scalar_constant
| unary_operator scalar_constant
| simple_expression ? simple_expression : simple_expression
| {simple_expression [concat_expression] }
| { simple_expression { simple_expression [concat_expression]} }

concat_expression =
, simple_expression

A.1.6 Conditions for timing checks

timing_check_condition .=
scalar_node
| inversion_operator scalar_node
| scalar_node equality_operator scalar_constant

scalar_node .=
scalar_port
| scalar_net

scalar_net ;=
hierarchical_identifier

A.1.7 Fundamental lexical elements

IEC 61523-3:2004(E)
|EEE 1497-2001(E)

White space is normally permitted between lexical tokens, but not within the definitions in A.1.7.

identifier ::= character { character }
hierarchical_identifier :=identifier { hchar identifier }

gstring =" { any_character } "

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 61523-3:2004(E) -81-—
|EEE 1497-2001(E)

integer := decimal_digit { decimal_digit }

real_number ;=
integer
| integer [. integer]
| integer | .integer] e [sign] integer

signed_real_number .= [sign | real_number

sign = +| -

hchar == .|/

character ::=
alphanumeric

| escaped_character

escaped_character =
\ character
| \special_character
| \"

any_character ::=
character
| special_character
| \"

decimal_digit::=0]1|2|3]|4|5|6|7|8]|9

alphanumeric .=
alblc|d|e|f|g|hli|j|k[l[m[nfo[p|q|r|s[tfu|v|w]|[x]|y]|z
I AIS?IC|DIE|FIGIHIIIJIKILIMINIOIPIQIRISITIUIVIWIXIYIZ

| c_iecimal_digit

special_character =

H# % [&« (DI =1 s I<t=1> 12 1@ TN AT~

A.1.8 Constants for expressions

scalar_constant .=
0 /l'logical zero
| b0
| B0
| 1b0
| 1B0
| 1 /l'logical one
| bl
| Bl
| 1b1
| 1B1

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

82— IEC 61523-3:2004(E)
|EEE 1497-2001(E)

A.1.9 Operators for expressions

unary_operator .=
+ /I arithmetic identity
- /I arithmetic negation
! /l'logical negation

|
|
|~ /I bit-wise unary negation
| & /I reduction unary AND
| ~& /I reduction unary NAND
|| // reduction unary OR
|~ /l reduction unary NOR
|~ /I reduction unary XOR
| A~ /I reduction unary XNOR
|~ /I reduction unary XNOR (alternative)
inversion_operator .=
! /I logical negation
|~ /I bit-wise unary negation
binary_operator =
+ /I arithmetic sum
- /I arithmetic difference
* /I arithmetic product
/ /I arithmetic quotient
% /I modulus

== /I logical equality
1= /l'logical inequality
=== /I case equality

1== /I case inequality

|

|

|

|

|

|

|

| && /l'logical AND

[l /I logical OR

| < // relational

| <= // relational

| > I/ relational

| >= /l relational

| & /I bit-wise binary AND

|| /I bit-wise binary inclusive OR
| A /I bit-wise binary exclusive OR
| A~ /I bit-wise binary equivalence

| ~ /I bit-wise binary equivalence (alternative)
| > /I right shift

| << /I left shift

equality_operator ::=
== /l'logical equality
| != /' logical inequality
| === /I case equality
| = /I case inequality

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

IEC 61523-3:2004(E) - 83—
IEEE 1497-2001(E)

A.1.10 Precedence rules of SDF operators

!~ highest precedence

[| lowest precedence

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

— 84— IEC 61523-3:2004(E)
|EEE 1497-2001(E)

Annex B

(informative)

SDF file examples

B.1 SDF file example 1

This SDF file example is based on the schematic shown in Figure B.1.

B1
P1 C1
i1 C2
z .

i i1 S Z

! i2

B2
C1

i, ,_ ©2 P2

i Li'] S Z i

! i2
D1 P3
iz i

Figure B.1—SDF example schematic

(DELAYFILE

(SDFVERSION ""4.0")
(DESIGN ''system')
(DATE "'Saturday September 30 08:30:33 PST 1990")
(VENDOR "'Yosemite Semiconductor'™)
(PROGRAM "'delay_calc™)
(VERSION "1.5")
(DIVIDER /)
(VOLTAGE 5.5:5.0:4.5)
(PROCESS "'worst'™)
(TEMPERATURE 55:85:125)
(TIMESCALE 1ns)
(CELL

(CELLTYPE *'system')

(INSTANCE)

(DELAY

(ABSOLUTE

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 61523-3:2004(E)
|EEE 1497-2001(E)

(INTERCONNECT P1/z
(INTERCONNECT P1/z
(INTERCONNECT B1/C1/z
(INTERCONNECT B1/C2/z
(INTERCONNECT B2/C1/z
(INTERCONNECT B2/C2/z
(INTERCONNECT B2/C2/z
(INTERCONNECT D1/z
(INTERCONNECT D1/z

)
)

)
(CELL
(CELLTYPE "INV'")
(INSTANCE B1/C1)
(DELAY
(ABSOLUTE

— 85 —

B1/C1/i (.145::
B1/C2/i2 (.135::
B1/C2/il (.095::
B2/C1/i1 (.145::
B2/C2/il1 (.075::

P2/i (-055::
D1/i (-255::
B2/C2/i2 (.155::
P3/i (-155::

.145)
.135)
.095)
.145)
.075)
.055)
.255)
.155)
.155)

(I0PATH i z (.345::.345) (.325::.325))

)
)
)
(CELL
(CELLTYPE "OR2')
(INSTANCE B1/C2)
(DELAY

(ABSOLUTE
(10PATH

z (.300::.300) (.325::.325))

il
(1I0PATH 12 2z (-300::.300) (-325::.325))

)
)

)
(CELL
(CELLTYPE "INV')
(INSTANCE B2/C1)
(DELAY
(ABSOLUTE

(I0PATH i z (.345::.345) (.325::.325))

)
)

)
(CELL
(CELLTYPE "AND2'")
(INSTANCE B2/C2)
(DELAY
(ABSOLUTE
(10PATH

z (-300::.300) (-325::.325))

il
(IOPATH i2 z (.300::.300) (.325::.325))

)
)
)
(CELL
(CELLTYPE "INV'")
(INSTANCE D1)

(DELAY
(ABSOLUTE

(IOPATH 1 z (-380::.380) (-380::.380))

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

(.125::
(-130::
(-095::
(-125::
(.075::
(-075::
(-275::
(-175::
(-130::

.125))
.130))
.095))
.125))
.075))
.075))
.275))
.175))
.130))

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

— 86— IEC 61523-3:2004(E)
|EEE 1497-2001(E)

B.2 SDF file example 2

This example shows how you can use the COND construct with the IOPATH and TIMINGCHECK
constructs.

(DELAYFILE
(SDFVERSION "4.0™)
(DESIGN ""top'™)
(DATE "Feb 21, 1992 11:30:10")
(VENDOR "'Cool New Tools™)
(PROGRAM "'Delay Obfuscator'™)
(VERSION "'v1.0")
(DIVIDER .)
(VOLTAGE :5:)
(PROCESS "typical™)
(TEMPERATURE :25:)
(TIMESCALE 1ns)
(CELL
(CELLTYPE "CDS_GEN_FD_P_SD_RB_SB _NO™)
(INSTANCE top.ffl)

(DELAY
(ABSOLUTE
(COND (TE == 0 && RB == 1 && SB == 1)
(10PATH (posedge CP) Q (2:2:2) (3:3:3))
)
)
(ABSOLUTE

(COND (TE == 0 && RB == 1 && SB == 1)
(10PATH (posedge CP) QN (4:4:4) (5:5:5))

)
)
(ABSOLUTE
(COND (TE == 1 & RB == 1 && SB == 1)
(IOPATH (posedge CP) Q (6:6:6) (7:7:7))
)
)
(ABSOLUTE
(COND (TE == 1 & RB == 1 && SB == 1)
(10PATH (posedge CP) QN (8:8:8) (9:9:9))
)
)
(ABSOLUTE
(10PATH (negedge RB) Q (1:1:1) (1:1:1)))
(ABSOLUTE
(10PATH (negedge RB) QN (1:1:1) (1:1:1)))
(ABSOLUTE
(IOPATH (negedge SB) Q (1:1:1) (1:1:1)))
(ABSOLUTE

(IOPATH (negedge SB) QN (1:1:1) (1:1:1)))
)

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 61523-3:2004(E) -87-
|EEE 1497-2001(E)

(DELAY
(ABSOLUTE
(PORT D (0:0:0) (0:0:0) (5:5:5)))
(ABSOLUTE
(PORT CP (0:0:0) (0:0:0) (0:0:0))Y)
(ABSOLUTE
(PORT RB (0:0:0) (0:0:0) (0:0:0) Y)
(ABSOLUTE
(PORT SB (0:0:0) (0:0:0) (0:0:0))Y)
(ABSOLUTE
(PORT TI (0:0:0) (0:0:0) (0:0:0))Y)
(ABSOLUTE
(PORT TE (0:0:0) (0:0:0) (0:0:0) >)
)
(TIMINGCHECK
(SETUP D (COND D_ENABLE (posedge CP)) (1:1:1))
(HOLD D (COND D_ENABLE (posedge CP)) (1:1:1))
(SETUPHOLD T1 (COND TI_ENABLE (posedge CP)) (1:1:1) (1:1:1))
(WIDTH (COND ENABLE (posedge CP)) (1:1:1))
(WIDTH (COND ENABLE (hegedge CP)) (1:1:1))
(WIDTH (hegedge SB) (1:1:1))
(WIDTH (hegedge RB) (1:1:1))
(RECOVERY (posedge RB) (COND SB (negedge CP)) (1:1:1))
(RECOVERY (posedge SB) (COND RB (negedge CP)) (1:1:1))
)

B.3 SDF file example 3

This example shows how State Dependent Path Delays can be annotated using COND and IOPATH

constructs.

(DELAYFILE
(SDFVERSION "4.0")
(DESIGN ""top'™)
(DATE "Nov 25, 1991 17:25:18")
(VENDOR "'Slick Trick Systems'™)
(PROGRAM "Viability Tester'™)
(VERSION "'v3.0")

(DIVIDER

)

(VOLTAGE :5:)
(PROCESS "typical™)
(TEMPERATURE :25:)
(TIMESCALE 1ns)

(CELL

(CELLTYPE "XOR2'™)
(INSTANCE top.x1)
(DELAY

(INCREMENT
(COND i1 (IOPATH 12 01 (2:2:2) (2:2:2)))
)

(INCREMENT
(COND i2 (I0PATH il ol (2:2:2) (2:2:2)))
)

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

— 88— IEC 61523-3:2004(E)
|EEE 1497-2001(E)

(INCREMENT
(COND ~il1 (IOPATH i2 ol (3:3:3) (3:3:3)))

)
(INCREMENT

(COND ~i2 (IOPATH 11 ol (3:3:3) (3:3:3)))
)

)

B.4 SDF file example 4

This example shows how to forward annotate timing constraints. The key to specifying SDF constraints is to
identify INSTANCE-PINS of library cells. In the following example, 12 is an instance and HO1 is a PIN
(port) on that instance.

(DELAYFILE
(SDFVERSION "4.0")
(DESIGN ""testchip™)
(DATE "Dec 17, 1991 14:49:48")
(VENDOR "'Big Chips Inc.")
(PROGRAM "‘Chip Analyzer™)
(VERSION "1.3b")
(DIVIDER .)
(VOLTAGE :3.8:)
(PROCESS "'worst'™)
(TEMPERATURE : 37:)
(TIMESCALE 10ps)
(CELL
(CELLTYPE "XOR'™)
(INSTANCE)
(TIMINGENV
(PATHCONSTRAINT 12_.H01 11_.NO1 (989:1269:1269) (989:1269:1269))
(PATHCONSTRAINT 12_.H01 13_.NO1 (904:1087:1087) (904:1087:1087))

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

IEC 61523-3:2004(E) ~89-
|EEE 1497-2001(E)

Annex C

(informative)

List of Participants

The IEEE P1497 SDF Working Group organization

Many individuals from many different organizations participated directly or indirectly in the standardization process.
All members of the IEEE P1497 SDF Working Group are located in the United States and had voting privileges. All
motions had to be approved by this group to be implemented.

At the time this standard was approved, the IEEE P1497 SDF Working Group had the following membership:
Ted Elkind, Chair

John R. Amouroux Chris Browy Pierrick Pedron
Brien Anderson Naveen Gupta Steve Wadsworth

The IEEE P1497 core working group gratefully acknowledges the invaluable contributions of the following
individuals, either on the OVI Logic Modeling Technical Subcommittee, in the early stages of the IEEE P1497 SDF
Working Group, or in some other valuable role:

Tim Ayres Scott Cranston Maq Mannan
Ekambaram Balaji Graham Davies Steve Meyer
Bruce Bandali Vassilios Gerousis Ashwini Mulgaonkar
Victor Berman Prabhu Krishnamurthy Steven Sliman
Shir-Shen Chang Hector Lai Yatin Trivedi

Jimmy Lin

The following members of the balloting committee voted on this standard. Balloters may have voted for approval,
disapproval, or abstention.

John R. Amouroux Timothy R. Davis Osamu Karatsu
Stephen A. Bailey David S. Doman Jake Karrfalt

Victor Berman Ted Elkind Paul J. Menchini

J Bhasker William A. Hanna Joseph J. Stanco
Dennis B. Brophy Anne C. Harris Alec G. Stanculescu
Kent Dalton Rich Hatcher Stuart Sutherland

Mitsuaki Ishikawa

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

—-90 -

When the IEEE-SA Standards Board approved this standard on 5 December 2001, it had the following membership:

Donald N. Heirman, Chair
JamesT. Carlo, Vice Chair
Judith Gorman, Secretary

Satish K. Aggarwal James H. Gurney
Mark D. Bowman Richard J. Holleman
Gary R. Engmann Lowell G. Johnson
Harold E. Epstein Robert J. Kennelly

H. Landis Floyd Joseph L. Koepfinger*
Jay Forster*® Peter H. Lips

Howard M. Frazier L. Bruce McClung
Ruben D. Garzon Daleep C. Mohla

*Member Emeritus

Also included is the following nonvoting IEEE-SA Standards Board liaison:

Alan Cookson, NIST Representative
Donald R. Volzka, TAB Representative

Catherine K. N. Berger
Andrew D. Ickowicz
IEEE Sandards Project Editors

[Published by IEC under licence from IEEE. © 2004 IEEE. All rights reserved. |

IEC 61523-3:2004(E)
IEEE 1497-2001(E)

James W. Moore
Robert F. Munzner
Ronald C. Petersen
Gerald H. Peterson
John B. Posey
Gary S. Robinson
Akio Tojo

Donald W. Zipse

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

I EC Standards Survey

The IEC would like to offer you the best quality standards possible. To make sure that we
continue to meet your needs, your feedback is essential. Would you please take a minute
to answer the questions overleaf and fax them to us at +41 22 919 03 00 or mail them to

the address below. Thank you!

Customer Service Centre (CSC)

International Electrotechnical Commission
3, rue de Varembé

1211 Genéve 20

Switzerland

or

Fax to: IEC/CSC at +41 22 919 03 00

Thank you for your contribution to the standards-making process.

A Prioritaire

Nicht frankieren
Ne pas affranchir

.

Non affrancare
No stamp required

REPONSE PAYEE
SUISSE

Customer Service Centre (CSC)
International Electrotechnical Commission
3, rue de Varembé

1211 GENEVA 20

Switzerland

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

Q1

Q2

Q3

Q4

Q5

Please report on ONE STANDARD and

ONE STANDARD ONLY . Enter the exact
number of the standard: (e.g. 60601-1-1)

Please tell us in what capacity(ies) you
bought the standard (tick all that apply).

| am the/a:

purchasing agent
librarian

researcher

design engineer
safety engineer
testing engineer
marketing specialist

| work for/in/as a:
(tick all that apply)

manufacturing
consultant

government
test/certification facility
public utility

education

military

This standard will be used for:

(tick all that apply)

general reference

product research

product design/development
specifications

tenders

quality assessment
certification

technical documentation
thesis

manufacturing

This standard meets my needs:

(tick one)

not at all
nearly
fairly well
exactly

ocooodooood

Ooodoo

Q6

Q7

Qs

Q9

If you ticked NOT AT ALL in Question 5
the reason is: (tick all that apply)

standard is out of date
standard is incomplete
standard is too academic
standard is too superficial
title is misleading

I made the wrong choice

Please assess the standard in the
following categories, using

the numbers:

(1) unacceptable,

(2) below average,

(3) average,

(4) above average,

(5) exceptional,

(6) not applicable

HMeliNeSS ..o
quality of Writing.........coooviiviiiiiiinn,
technical contents...............cooeveienenne.
logic of arrangement of contents
tables, charts, graphs, figures...............
Other .o

| read/use the: (tick one)

French text only
English text only
both English and French texts

oo

Please share any comment on any
aspect of the IEC that you would like
us to know:

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

LICENSED TO MECON Limited. - RANCHI/BANGALORE
FOR INTERNAL USE AT THISLOCATION ONLY, SUPPLIED BY BOOK SUPPLY BUREAU.

cope Prix X

For price, see current catalogue

ISBN 2-8318-7493-9

7828317874937

ICS 35.240.50

Typeset and printed by the IEC Central Office
GENEVA, SWITZERLAND

FHOTVONVYE/IHON VY - ‘Pl NOD3IW OL d3ISN3DIT

‘NY3dNg AlddNS MO0d A9 A317ddNS ‘ATNO NOILYDO1SIHL 1V 3ISN TYNI3LNI ¥0od

	CONTENTS
	Foreword
	IEEE Introduction
	1. Overview
	1.1 Scope
	1.2 Organization of this standard

	2. References
	3. Conventions
	3.1 Terminology conventions
	3.2 Syntactic conventions

	4. SDF in the design process
	4.1 Sharing of timing data
	4.2 Using multiple SDF files in one design
	4.3 Timing data and constraints
	4.4 Timing environments
	4.5 Back-annotation of timing data for design analysis
	4.6 Forward-annotation of timing constraints for design synthesis
	4.7 Timing models supported by SDF

	5. Defining the standard delay format
	5.1 SDF file content
	5.2 Header section
	5.3 Cells
	5.4 Delays
	5.5 Timing checks
	5.6 Labels
	5.7 Timing environment

	Annex A (normative) Syntax of SDF
	Annex B (informative) SDF file examples
	Annex C (informative) List of Participants

