

IEC 61523-1
Edition 2.0 2012-06

INTERNATIONAL
STANDARD

Delay and power calculation standards –
Part 1: Integrated circuit delay and power calculation systems

IE
C

 6
15

23
-1

:2
01

2(
E

)
 IE

E
E

 S
td

 1
48

1-
20

09

IEEE Std 1481™

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 THIS PUBLICATION IS COPYRIGHT PROTECTED
 Copyright © 2009 IEEE

All rights reserved. IEEE is a registered trademark in the U.S. Patent & Trademark Office, owned by the Institute of
Electrical and Electronics Engineers, Inc.

Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from the IEC Central
Office.

Any questions about IEEE copyright should be addressed to the IEEE. Enquiries about obtaining additional rights to
this publication and other information requests should be addressed to the IEC or your local IEC member National
Committee.

IEC Central Office Institute of Electrical and Electronics Engineers, Inc.
3, rue de Varembé 3 Park Avenue
CH-1211 Geneva 20 New York, NY 10016-5997
Switzerland United States of America
Tel.: +41 22 919 02 11 stds.info@ieee.org
Fax: +41 22 919 03 00 www.ieee.org
info@iec.ch
www.iec.ch

About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigenda or an amendment might have been published.

Useful links:

IEC publications search - www.iec.ch/searchpub
The advanced search enables you to find IEC publications
by a variety of criteria (reference number, text, technical
committee,…).
It also gives information on projects, replaced and
withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished
Stay up to date on all new IEC publications. Just Published
details all new publications released. Available on-line and
also once a month by email.

Electropedia - www.electropedia.org
The world's leading online dictionary of electronic and
electrical terms containing more than 30 000 terms and
definitions in English and French, with equivalent terms in
additional languages. Also known as the International
Electrotechnical Vocabulary (IEV) on-line.

Customer Service Centre - webstore.iec.ch/csc
If you wish to give us your feedback on this publication
or need further assistance, please contact the
Customer Service Centre: csc@iec.ch.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

mailto:stds.info@ieee.org
mailto:info@iec.ch
http://www.iec.ch/
http://www.iec.ch/searchpub
http://webstore.iec.ch/justpublished
http://www.electropedia.org/
http://webstore.iec.ch/csc
mailto:csc@iec.ch

IEC 61523-1
Edition 2.0 2012-06

INTERNATIONAL
STANDARD

Delay and power calculation standards –
Part 1: Integrated circuit delay and power calculation systems

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION XS
ICS 25.040; 35.060

PRICE CODE

ISBN 978-2-83220-107-7

 Warning! Make sure that you obtained this publication from an authorized distributor.

IEEE Std 1481™

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

Contents
1 Overview...1

1.1 Scope..1
1.2 Purpose...2
1.3 Introduction..2

2 Normative references..3
3 Definitions..4
4 Acronyms and abbreviations...13
5 Typographical conventions...14

5.1 Syntactic elements..14
5.2 Conventions...15

6 DPCS flow..16
6.1 Overview..16

6.1.1 Procedural interface...17
6.1.2 Global policies and conventions..17

6.2 Flow of control...17
6.3 DPCM—application relationships...18

6.3.1 Technology library...18
6.3.2 Subrule...18

6.4 Interoperability...18
7 Delay calculation language (DCL)...19

7.1 Character set...19
7.2 Lexical elements..19

7.2.1 Whitespace..19
7.2.2 Comments..19
7.2.3 Tokens..19
7.2.4 Header names..31
7.2.5 Preprocessing directives..31

7.3 Context...31
7.3.1 Space...31
7.3.2 Plane..31
7.3.3 Context operation..31
7.3.4 Library parallelism..31
7.3.5 Application parallelism..32

7.4 Data types...32
7.4.1 Base types..32
7.4.2 Native data types...32
7.4.3 Mathematical calculation data types...32
7.4.4 Pointer data types..33
7.4.5 Aggregate data types...33

7.5 Identifiers...39
7.5.1 Name spaces of identifiers..39
7.5.2 Storage durations of objects..39
7.5.3 Scope of identifiers..40
7.5.4 Linkages of identifiers...41

7.6 Operator descriptions...41
7.6.1 String prefix operator..41
7.6.2 Explicit string prefix operator...41
7.6.3 Embedded string prefix operator...42
7.6.4 String prefix semantics..42
7.6.5 Assignment operator..42
7.6.6 New operator...42
7.6.7 SCOPE operator(s)..43

– ii –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

7.6.8 Launch operator...44
7.6.9 Purity operator...44
7.6.10 Force operator..45

7.7 Timing propagation..45
7.7.1 Timing checks..46
7.7.2 Test mode operators...46

7.8 Expressions..48
7.8.1 Array subscripting...49
7.8.2 Statement calls...49
7.8.3 General syntax...49
7.8.4 Method statement calls..49
7.8.5 Assign variable reference..50
7.8.6 Store variable reference...50
7.8.7 Mathematical expressions...50
7.8.8 Mathematical operators...51
7.8.9 Discrete math expression...52
7.8.10 INT discrete...52
7.8.11 PINLIST discrete...53
7.8.12 Logical expressions and operators..53
7.8.13 MODE expressions..53
7.8.14 Embedded C code expressions..55
7.8.15 Computation order...56

7.9 DCL mathematical statements...58
7.9.1 Statement names..58
7.9.2 Clauses...58
7.9.3 Modifiers...62
7.9.4 Prototypes..64
7.9.5 Statement failure..67
7.9.6 Type definition statements...67
7.9.7 Interfacing statements..68
7.9.8 DCL to C communication...70
7.9.9 Constant statement..71
7.9.10 Calculation statements...71
7.9.11 METHOD statement..74

7.10 Predefined types...75
7.10.1 ACTIVITY_HISTORY_TYPE...75
7.10.2 HISTORY_TYPE..76
7.10.3 LOAD_HISTORY_TYPE...77
7.10.4 CELL_LIST_TYPE...77
7.10.5 TECH_TYPE...78
7.10.6 DELAY_REC_TYPE..78
7.10.7 SLEW_REC_TYPE..78
7.10.8 CHECK_REC_TYPE..78
7.10.9 CCDB_TYPE..79
7.10.10 CELL_DATA_TYPE...79
7.10.11 PCDB_TYPE...79
7.10.12 PIN_ASSOCIATION..79
7.10.13 PATH_DATA_TYPE...80
7.10.14 STD STRUCT...80

7.11 Predefined variables...80
7.11.1 ARGV..80
7.11.2 CONTROL_PARM...81

7.12 Built-in function calls...81
7.12.1 ABS...81
7.12.2 Complex number components...81
7.12.3 EXPAND...82

ii
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009

IEC 61523-1:2012
IEEE Std 1481-2009 – iii –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

7.12.4 Array functions..82
7.12.5 Messaging functions..82

7.13 Tables...84
7.13.1 TABLEDEF statement...85
7.13.2 Table visibility rules..87
7.13.3 TABLE statement..87
7.13.4 LOAD_TABLE statement...91
7.13.5 UNLOAD_TABLE statement...93
7.13.6 WRITE_TABLE statement..94
7.13.7 ADD_ROW statement...94
7.13.8 DELETE_ROW statement..95

7.14 Built-in library functions..96
7.14.1 Numeric conversion functions...96
7.14.2 Tech_family functions...98
7.14.3 Trigonometric functions..99
7.14.4 Context manipulation functions..99
7.14.5 Debug controls..101
7.14.6 Utility functions...102
7.14.7 Table functions..102
7.14.8 Subrule controls...103

7.15 Library control statements...104
7.15.1 Meta-variables...105
7.15.2 TECH_FAMILY..105
7.15.3 RULENAME...105
7.15.4 CONTROL_PARM...105
7.15.5 SUBRULE statement..105
7.15.6 Path list expansion rules..106
7.15.7 SUBRULES statement..107
7.15.8 Control file..107
7.15.9 TECH_FAMILY statement..109
7.15.10 SUBRULE and SUBRULES statements...109

7.16 Modeling..110
7.16.1 Types of modeling...110
7.16.2 Model organization..111
7.16.3 MODELPROC statement..112
7.16.4 SUBMODEL statement...113
7.16.5 Modeling statements..114
7.16.6 TEST_BUS statement...124
7.16.7 INPUT statement...124
7.16.8 OUTPUT statement...128
7.16.9 DO statement...129
7.16.10 PROPERTIES statement...153
7.16.11 SETVAR statement..154

7.17 Embedded C code..155
7.18 Definition of a subrule...155
7.19 Pragma...156

7.19.1 IMPORT_EXPORT_TAG...156
8 Power modeling and calculation...157

8.1 Power overview..157
8.2 Caching state information..158

8.2.1 Initializing the state cache...158
8.2.2 State cache lifetime...158

8.3 Caching load and slew information...158
8.3.1 Loading the load and slew cache...159
8.3.2 Load and slew cache lifetime..159

iii
Copyright © 2010 IEEE all rights reserved.

– iv –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

8.4 Simulation switching events..159
8.5 Partial swing events...160
8.6 Power calculation...160
8.7 Accumulation of power consumption by the design..162
8.8 Group Pin List syntax and semantics...162

8.8.1 Syntax..162
8.8.2 Semantics...162
8.8.3 Example...163

8.9 Group Condition List syntax and semantics..163
8.9.1 Syntax..163
8.9.2 Semantics...163
8.9.3 Example...164

8.10 Sensitivity list syntax and semantics..164
8.10.1 Syntax..164
8.10.2 Semantics...164
8.10.3 Example...165

8.11 Group condition language..165
8.11.1 Syntax..165
8.11.2 Semantics...166
8.11.3 Condition expression operator precedence..168
8.11.4 Condition expressions referencing pin states and transitions..168
8.11.5 Semantics of nonexistent pins...168

9 Application and library interaction...170
9.1 behavior model domain..170
9.2 vectorTiming and vectorPower model domains..170

9.2.1 Power unit conversion...170
9.2.2 Vector power calculation...171

10 Procedural interface (PI)...172
10.1 Overview..172

10.1.1 DPCM..172
10.1.2 Application..172
10.1.3 libdcmlr...172

10.2 Control and data flow...173
10.3 Architectural requirements...173
10.4 Data ownership technique..173

10.4.1 Persistence of data passed across the PI..173
10.4.1 Data cache guidelines for the DPCM..174
10.4.2 Application/DPCM interaction..174
10.4.3 Application initializes message/memory handling..174
10.4.4 Application loads and initializes the DPCM...174
10.4.5 Application requests timing models for cell instances..175

10.5 Model domain issues..175
10.5.1 Model domain selection..175
10.5.2 Model domain determination..175
10.5.3 DPCM invokes application modeling callback functions...175
10.5.4 Application requests propagation delay..176
10.5.5 DPCM calls application EXTERNAL functions...177

10.6 Reentry requirements...177
10.7 Application responsibilities when using a DPCM...177

10.7.1 Standard Structure rules..177
10.7.2 User object registration...177
10.7.3 Selection of early and late slew values..178
10.7.4 Semantics of slew values...178
10.7.5 Slew calculations...179

iv
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009

IEC 61523-1:2012
IEEE Std 1481-2009 – v –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

10.8 Application use of the DPCM..179
10.8.1 Initialization of the DPCM..179
10.8.2 Context creation..180
10.8.3 Dynamic linking..180
10.8.4 Subrule initialization...181
10.8.5 Use of the DPCM..181
10.8.6 Application control..181
10.8.7 Application execution..182
10.8.8 Termination of DPCM...182

10.9 DPCM library organization..182
10.9.1 Multiple technologies..182
10.9.2 Model names...183
10.9.3 DPCM error handling..183

10.10 C level language for EXPOSE and EXTERNAL functions..183
10.10.1 Integer return code...183
10.10.2 The Standard Structure pointer..184
10.10.3 Result structure pointer...184
10.10.4 Passed arguments...184
10.10.5 DCL array indexing...184
10.10.6 Conversion to C data types..184
10.10.7 include files...185

10.11 PIN and BLOCK data structure requirements..186
10.12 DCM_STD_STRUCT Standard Structure...186

10.12.1 Alternate semantics for Standard Structure fields...189
10.12.2 Reserved fields..190
10.12.3 Standard Structure value restriction..190

10.13 DCMTransmittedInfo structure..190
10.14 Environment or user variables...190
10.15 Procedural interface (PI) functions summary..190

10.15.1 Expose functions...191
10.15.2 External functions..199
10.15.3 Deprecated functions...202

10.16 Implicit functions...205
10.16.1 libdcmlr...205
10.16.2 Run-time library utility functions..206
10.16.3 Memory control functions...206
10.16.4 Message and error control functions...208
10.16.5 Calculation functions...208
10.16.6 Modeling functions..208

10.17 PI function table description..209
10.17.1 Arguments..209
10.17.2 DCL syntax..210
10.17.3 C syntax...210

10.18 PI function descriptions...210
10.18.1 Interconnect loading related functions..210
10.18.2 Interconnect delay related functions..217
10.18.3 Functions accessing netlist information..221
10.18.4 Functions exporting limit information..229
10.18.5 Functions getting/setting model information..231
10.18.6 Functions importing instance name information...244
10.18.7 Process information functions...246
10.18.8 Miscellaneous standard interface functions..247
10.18.9 Power-related functions...257

10.19 Application context..265
10.19.1 pathData association..265

v
Copyright © 2010 IEEE all rights reserved.

– vi –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

10.20 Application and library interaction..265
10.20.1 behavior model domain...266
10.20.2 vectorTiming and vectorPower model domains..267
10.20.3 Power unit conversion...267
10.20.4 Vector power calculation...267

10.21 Parasitic analysis..268
10.21.1 Assumptions..268
10.21.2 Parasitic networks..268
10.21.3 Basic definitions..268
10.21.4 Parasitic element data structure...270
10.21.5 Coordinates..274
10.21.6 Parasitic subnets..274
10.21.7 Pin parasitics..282
10.21.8 Modeling internal nodes..285
10.21.9 Load and interconnect models...287
10.21.10 Obtaining parasitic networks...291
10.21.11 Persistent storage of load and interconnect models...292
10.21.12 Calculating effective capacitances and driving resistances...295
10.21.13 Parasitic estimation..298
10.21.14 Threshold voltages...303
10.21.15 Obtaining aggressor window overlaps..304

10.22 Noise analysis...311
10.22.1 Types of noise..312
10.22.2 Noise models...313
10.22.3 Noise waveforms...315
10.22.4 Noise network models...322
10.22.5 Calculating composite noise at cell inputs..327
10.22.6 Calculating composite noise at cell outputs..330
10.22.7 Setting noise budgets...334
10.22.8 Reporting noise violations...335

10.23 Delay and slew calculations for differential circuits..338
10.23.1 Sample figures...338
10.23.2 appGetArrivalOffsetsByName..339
10.23.3 API extensions for function modeling...340
10.23.4 Explicit APIs for user-defined primitives..348
10.23.5 APIs for hierarchy...350
10.23.6 Built-in APIs for function modeling..350
10.23.7 API Extensions for VECTOR modeling..351
10.23.8 APIs for XWF..352
10.23.9 Extensions and changes to voltages and temperature APIs...356
10.23.10 Operating conditions...358
10.23.11 On-chip process variation..360
10.23.12 Accessing properties and attributes...367
10.23.13 APIs for attribute within a PIN object...387
10.23.14 Connectivity..395
10.23.15 Control of timing arc existence and state..397
10.23.16 Modeling cores..402
10.23.17 Default pin slews and interface version calls..407
10.23.18 API to access library required resources...408
10.23.19 Resource types...410
10.23.20 Library extensions for phase locked loop processing..411
10.23.21 API definitions for external conditions...412
10.23.22 Extensions for listing pins...416
10.23.23 Memory BIST mapping...417
10.23.24 dpcmGetCellTestProcedure...419

vi
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009

IEC 61523-1:2012
IEEE Std 1481-2009 – vii –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

10.24 Interconnect delay calculation intraface..419
10.24.1 Control and data flows..420
10.24.2 Model generation functions...421
10.24.3 Calculation functions...423
10.24.4 Cell calculation functions..424
10.24.5 ICM initialization..429

10.25 DCL run-time support..435
10.25.1 Array manipulation functions..435
10.25.2 Memory management..438
10.25.3 Structure manipulation functions..439
10.25.4 Initialization functions...443

10.26 Calculation functions...455
10.26.1 delay..455
10.26.2 slew..456
10.26.3 check..457

10.27 Modeling functions..459
10.27.1 modelSearch..459
10.27.2 Mode operators..461
10.27.3 Arrival time merging...462
10.27.4 Edge propagation communication to the application..462
10.27.5 Edge propagation communication to the DPCM..466
10.27.6 newTimingPin...466
10.27.7 newDelayMatrixRow..467
10.27.8 newNetSinkPropagateSegments..468
10.27.9 newNetSourcePropagateSegments..470
10.27.10 newPropagateSegment..471
10.27.11 newTestMatrixRow...471
10.27.12 newAltTestSegment...472
10.27.13 Interactions between interconnect modeling and modeling functions..............................473

10.28 Deprecated functions..473
10.28.1 Parasitic handling..474
10.28.2 Array manipulation functions..482
10.28.3 Memory management..484
10.28.4 Initialization functions...487

10.29 Standard Structure (std_stru.h) file..499
10.30 Standard macros (std_macs.h) file...519
10.31 Standard interface structures (dcmintf.h) file..527
10.32 Standard loading (dcmload.h) file..531
10.33 Standard debug (dcmdebug.h) file...534
10.34 Standard array (dcmgarray.h) file..561
10.35 Standard user array defines (dcmuarray.h) file..566
10.36 Standard platform-dependency (dcmpltfm.h) file..570
10.37 Standard state variables (dcmstate.h) file..576

11 Parasitics...580
11.1 Introduction..580
11.2 Targeted applications for SPEF..580
11.3 SPEF specification...580

11.3.1 Grammar..580
11.3.2 Escaping rules..582
11.3.3 File syntax..583
11.3.4 Comments..589
11.3.5 File semantics..589

11.4 Examples..609
11.4.1 Basic *D_NET file..609
11.4.2 Basic *R_NET file...612
11.4.3 *R_NET with poles and residues plus name mapping..613

vii
Copyright © 2010 IEEE all rights reserved.

– viii –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

11.4.4 *D_NET with triplet par_value...615
11.4.5 *R_NET with poles and residues plus triplet par_value...618
11.4.6 Merging SPEF files..619
11.4.7 A SPEF file header section with *VARIATION_PARAMETERS definition.......................624
11.4.8 CAP and RES statements with sensitivity information in a SPEF file..................................624

 Annex A (normative) Implementation requirements..625
 Annex B (informative) IEEE List of Participants..629

IEC 61523-1:2012
IEEE Std 1481-2009

IEC 61523-1:2012
IEEE Std 1481-2009 – ix –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

Table of Tables
Table 1—Keywords..20
Table 2—DCL predefined references to Standard Structure fields..23
Table 3—DCL compiler generated predefined identifiers..27
Table 4—Edge types and conversions ...29
Table 5—Propagation mode conversions...29
Table 6—Calculation mode conversions..29
Table 7—TEST_TYPE conversions...30
Table 8—Purity operator..45
Table 9—Timing resolution modes..45
Table 10—Test mode operators table...46
Table 11—Mathematical operators...51
Table 12—Logical operators..53
Table 13—Mathematical operator precedence (high to low)...56
Table 14—Logical operator precedence (high to low)...56
Table 15—Type definition for ACTIVE_HISTORY_TYPE..75
Table 16—Permitted activityCode values..76
Table 17—Type definition for HISTORY_TYPE..76
Table 18—Rule history info message types...76
Table 19—Table History inform message types ..77
Table 20—Permitted kind values..77
Table 21—LOAD_HISTORY TYPE..77
Table 22—CELL_LIST_TYPE..78
Table 23—TECH_TYPE..78
Table 24—DELAY_REC_TYPE ...78
Table 25—SLEW_REC_TYPE ...78
Table 26—CHECK_REC_TYPE...79
Table 27—CCDB_TYPE..79
Table 28—CELL_DATA_TYPE..79
Table 29—CCDB_TYPE ...79
Table 30—PIN_ASSOCIATION ...80
Table 31—PATH_DATA_TYPE..80
Table 32—STD_STRUCT..80
Table 33—ARGV...81
Table 34—CONTROL_PARM...81
Table 35—Library function floor...96
Table 36—Library function ifloor ...97
Table 37—Library function ceil...97
Table 38—Library Function iceil...97
Table 39—Library function rint..97
Table 40—Library function round ...97
Table 41—Library function trunc ..98
Table 42—Library function itrunc ...98
Table 43—Library function map_tech_family ..98
Table 44—Library function current_tech_type ...98
Table 45—Library function subrule_tech_type ...98
Table 46—Library function subrule_tech_type..99
Table 47—Library function get_technology_list..99
Table 48—Library function cos..99
Table 49—Library function sin ...99
Table 50—Library function tan ...99
Table 51—Library function new_plane ...100
Table 52—Library function get_plane_name ..100
Table 53—Library function get_space_name...100

ix
Copyright © 2010 IEEE all rights reserved.

– x –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

Table 54—Library function get_max_spaces ..100
Table 55—Library function get_max_planes...100
Table 56—Library_function get_space_coordinate ..101
Table 57—Library_function get_plane_coordinate ...101
Table 58—Library function set_busy_wait ...101
Table 59—Library function change_debug_level ...102
Table 60—Library function get_caller_stack ..102
Table 61—Library function GET_LOAD_HISTORY...102
Table 62—Library function GET_CELL_LIST ..102
Table 63—Library function GET_ROW_COUNT ...103
Table 64—Library function STEP_TABLE ..103
Table 65—Library function GET_LOAD_PATH...103
Table 66—Library function GET_RULE_NAME ..104
Table 67—Library function ADD_RULE..104
Table 68—Data type clause..118
Table 69—Arc data types..119
Table 70—Validity of predefined identifiers for STORE clause..128
Table 71—Logic operators (valid for behavior, vectorTiming, and vectorPower model domains).............133
Table 72—Logical equivalence operators (valid for behavior model domain)..134
Table 73—Unary bitwise operators (valid for behavior, vectorTiming, and vectorPower model domains)
..134
Table 74—Binary bitwise operators (valid for behavior, vectorTiming, and vectorPower model domains)
..134
Table 75—Binary operators (valid for behavior model domain)...134
Table 76—Node primitives for control operators (valid for behavior model domain)................................135
Table 77—Node primitives for edge operators (continued) (valid for behavior, vectorTiming, and
vectorPower model domains)...135
Table 78—Node primitives for precedence control operators (valid for behavior model domain).............136
Table 79—Node primitives for constant operators (valid for behavior, vectorTiming, vectorPower model
domains)...136
Table 80—Node primitives for user-defined operators..136
Table 81—Node primitives for miscellaneous operators...137
Table 82—Binary reduction operators..138
Table 83—Bitwise reduction operators ...139
Table 84―Logical reduction operators..140
Table 85—Array of bits operators..141
Table 86—Edge operators..142
Table 87—Higher function nodes...143
Table 88—Constant value nodes..146
Table 89—Miscellaneous operators ..146
Table 90—User-defined operators..147
Table 91—Valid modifier enumerations for given node primitive operators...148
Table 92—Syntax for a GroupPinString ..162
Table 93—Syntax for a GroupConditionString..163
Table 94—Syntax for a SensitivityPinString..164
Table 95—Syntax for a condition_expression..165
Table 96—PinName_Identifier semantics ...167
Table 97—PinName_Level semantics..167
Table 98—PinName_State semantics...167
Table 99—Condition expression operators..168
Table 100—Interaction between multiple technologies and application..183
Table 101—Return code most significant byte..183
Table 102—Return code least significant bytes...184
Table 103—Data types defined in DCL and C...184
Table 104—Header files...185
Table 105—Predefined macro names...186

x
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009

IEC 61523-1:2012
IEEE Std 1481-2009 – xi –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

Table 106—Alternate semantics for Standard Structure fields..189
Table 107—Expose functions...191
Table 108—External functions...199
Table 109—Deprecated functions..203
Table 110—libdcmlr functions...205
Table 111—Module control functions..206
Table 112—Memory control functions...207
Table 113—Message and error control functions...208
Table 114—Calculation functions..208
Table 115—Modeling functions...209
Table 116—PI function table example...209
Table 117—Standard Structure field semantics..210
Table 118—appGetTotalLoadCapacitanceByPin...211
Table 119—appGetTotalLoadCapacitanceByName...211
Table 120—appGetTotalPinCapacitanceByPin..212
Table 121—appGetTotalPinCapacitanceByName..212
Table 122—appGetSourcePinCapacitanceByPin̶̶̶̶ ...213
Table 123—appGetSourcePinCapacitanceByName...213
Table 124—dpcmGetDefCellSize..214
Table 125—appGetCellCoordinates...214
Table 126—appGetCellOrientation..215
Table 127—dpcmGetEstLoadCapacitance...215
Table 128—dpcmGetEstWireCapacitance...216
Table 129—dpcmGetEstWireResistance..216
Table 130—dpcmGetPinCapacitance...217
Table 131—dpcmGetCellIOlists..217
Table 132—appGetRC..218
Table 133—dpcmGetDelayGradient..219
Table 134—dpcmGetSlewGradient..219
Table 135—dpcmGetEstimateRC..220
Table 136—dpcmGetDefPortSlew...220
Table 137—dpcmGetDefPortCapacitance..221
Table 138—appGetNumDriversByPin...221
Table 139—appGetNumDriversByName...222
Table 140—appForEachParallelDriverByPin..222
Table 141—appForEachParallelDriverByName..224
Table 142—appGetNumPinsByPin..225
Table 143—appGetNumPinsByName..225
Table 144—appGetNumSinksByPin..226
Table 145—appGetNumSinksByName..226
Table 146—dpcmAddWireLoadModel..227
Table 147—dpcmGetWireLoadModel...228
Table 148—dpcmGetWireLoadModelForBlockSize...229
Table 149—appGetInstanceCount..229
Table 150—dpcmGetCapacitanceLimit...230
Table 151—dpcmGetSlewLimit...230
Table 152—dpcmGetXovers..231
Table 153—dpcmGetFunctionalModeArray..231
Table 154—dpcmGetBaseFunctionalMode..232
Table 155—appGetCurrentFunctionalMode..233
Table 156—dpcmGetControlExistence..233
Table 157—dpcmSetLevel...234
Table 158—dpcmGetLibraryAccuracyLevelArrays..235
Table 159—dpcmSetLibraryAccuracyLevel..236
Table 160—dpcmGetExposePurityAndConsistency..236
Table 161—DCM_Purity..237

xi
Copyright © 2010 IEEE all rights reserved.

– xii –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

Table 162—DCM_Consistency..237
Table 163—dpcmGetRailVoltageArray..237
Table 164—dpcmGetBaseRailVoltage...238
Table 165—appGetCurrentRailVoltage..238
Table 166—dpcmGetWireLoadModelArray..239
Table 167—dpcmGetBaseWireLoadModel..239
Table 168—appGetCurrentWireLoadModel..240
Table 169—dpcmGetBaseTemperature..240
Table 170—dpcmGetBaseOpRange...241
Table 171—dpcmGetOpRangeArray...241
Table 172—appGetCurrentTemperature...242
Table 173—appGetCurrentOpRange..242
Table 174—dpcmGetTimingStateArray...243
Table 175—appGetCurrentTimingState...244
Table 176—dpcmGetCellList...244
Table 177—appGetCellName...245
Table 178—appGetHierPinName...245
Table 179—appGetHierBlockName...246
Table 180—appGetHierNetName..246
Table 181—dpcmGetThresholds..246
Table 182—appGetThresholds...247
Table 183—appGetExternalStatus..248
Table 184—appGetVersionInfo..248
Table 185—appGetResource..249
Table 186—dpcmGetRuleUnitToSeconds..249
Table 187—dpcmGetRuleUnitToOhms...249
Table 188—dpcmGetRuleUnitToFarads..250
Table 189—dpcmGetRuleUnitToHenries...251
Table 190—dpcmGetRuleUnitToWatts..251
Table 191—dpcmGetRuleUnitToJoules...252
Table 192—dpcmGetTimeResolution..252
Table 193—dpcmGetParasiticCoordinateTypes...253
Table 194—dpcmIsSlewTime..253
Table 195—dpcmDebug...254
Table 196—dpcmGetVersionInfo...254
Table 197—dpcmHoldControl...255
Table 198—dpcmFillPinCache...255
Table 199—dpcmFreePinCache...256
Table 200—appRegisterCellInfo..256
Table 201—dpcmGetCellPowerInfo..257
Table 202—dpcmGetCellPowerWithState...258
Table 203—dpcmGetAETCellPowerWithSensitivity..259
Table 204—Integer LSB example..259
Table 205—Mask encoding..259
Table 206—dpcmGetPinPower..260
Table 207—dpcmAETGetSettlingTime...260
Table 208—dpcmAETGetSimultaneousSwitchTime...261
Table 209—dpcmGroupGetSettlingTime...261
Table 210—dpcmGroupGetSimultaneousSwitchTime..262
Table 211—dpcmCalcPartialSwingEnergy..262
Table 212—dpcmSetInitialState...263
Table 213—dpcmFreeStateCache..264
Table 214—appGetStateCache...264
Table 215—dpcmGetNetEnergy...265
Table 216—parasiticElement structure...270
Table 217—Parasitic element variables..271

xii
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009

IEC 61523-1:2012
IEEE Std 1481-2009 – xiii –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

Table 218—DCM_ElementTypes...271
Table 219—Node variables..272
Table 220—Value variables..272
Table 221—Coordinate structure..274
Table 222—parasiticSubnet structure...274
Table 223—DCM_NodeTypes...275
Table 224—dpcmCreateSubnetStructure...279
Table 225—dpcmGetDefaultInterconnectTechnology...281
Table 226—dpcmScaleParasitics..281
Table 227—dpcmGetSinkPinParasitics..284
Table 228—dpcmGetSourcePinParasitics..284
Table 229—dpcmGetPortNames..285
Table 230—Application timing arcs...287
Table 231—dpcmBuildLoadModels..288
Table 232—dpcmBuildInterconnectModels...289
Table 233—appGetInterconnectModels...290
Table 234—appGetLoadModels...290
Table 235—appGetParasiticNetworksByPin..291
Table 236—appGetParasiticNetworksByName...292
Table 237—dpcmPassivateLoadModels..293
Table 238—dpcmPassivateInterconnectModels...293
Table 239—dpcmRestoreLoadModels...294
Table 240—dpcmRestoreInterconnectModels...294
Table 241—appGetCeff..295
Table 242—dpcmCalcCeff...296
Table 243—dpcmCalcSteadyStateResistanceRange..296
Table 244—dpcmCalcTristateResistanceRange...297
Table 245—appSetCeff...298
Table 246—dpcmCalcCouplingCapacitance..300
Table 247—dpcmCalcSubstrateCapacitance..300
Table 248—dpcmCalcSegmentResistance...301
Table 249—Manufacturing layer type values...301
Table 250—dpcmGetLayerArray...302
Table 251—dpcmGetRuleUnitToMeters..302
Table 252—dpcmGetRuleUnitToAmps...303
Table 253—appGetDriverThresholds...303
Table 254—appGetAggressorOverlapWindows..305
Table 255—appSetAggressorInteractWindows..307
Table 256—appGetOverlapNWFs..308
Table 257—appSetDriverInteractWindows..309
Table 258—dpcmCalcOutputResistances..310
Table 259—DCM_NoiseTypes...312
Table 260—docmGetLibraryNoiseTypesArray..312
Table 261—appNewNoiseCone...314
Table 262—NWF type..316
Table 263—PWF type..317
Table 264—PWFdriverModel..318
Table 265—dpcmGetPWFarray...318
Table 266—dpcmCreatePWF...319
Table 267—dpcmCopyNWFarray..320
Table 268—dpcmCopyPWF...320
Table 269—dpcmCreatePWFdriverModel...321
Table 270—dpcmGetPWFdriverModelArray..321
Table 271—dpcmGetSinkPinNoiseParasitics..324
Table 272—dpcmGetSourcePinNoiseParasitics...325
Table 273—dpcmBuildNoiseInterconnectModels...325

xiii
Copyright © 2010 IEEE all rights reserved.

– xiv –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

Table 274—dpcmBuildNoiseLoadModels...326
Table 275—driverPinNoise..328
Table 276—dpcmCalcInputNoise..329
Table 277—relatedPinNoise...331
Table 278—dpcmCalcOutputNoise..332
Table 279—appForEachNoiseParallelDriver...333
Table 280—dpcmSetParallelRelatedNoise...334
Table 281—appSetParallelOutputNoise...334
Table 282—dpcmSetNoiseLimit..335
Table 283—noiseViolationInfo...335
Table 284—appSetNoiseViolation...337
Table 285—dpcmGetNoiseViolationDetails..337
Table 286—appGetArrivalOffsetsByName..339
Table 287—appGetArrivalOffsetArraysByName..340
Table 288—Arc ordering..343
Table 289—PathDataBlock->modifiers enumeration values for priority operation....................................343
Table 290—DCM_TestTypes...348
Table 291—dpcmPerformPrimitive..348
Table 292—appGetArcStructure..349
Table 293—dpcmGetNodeSensitivity..349
Table 294—dpcmModelMoreFunctionDetail..350
Table 295—XWF APIs...353
Table 296—appSetXWF...354
Table 297—appGetXWF..355
Table 298—dpcmCalcXWF...356
Table 299—dpcmGetCellRailVoltageArray...356
Table 300—dpcmGetBaseCellRailVoltageArray...357
Table 301—dpcmGetBaseCellTemperature...358
Table 302—dpcmGetOpPointArray...359
Table 303—dpcmGetBaseOpPoint...359
Table 304—dpcmSetCurrentOpPoint...360
Table 305—DCM_ProcessVariations...361
Table 306—New predefined identifiers..362
Table 307—DCM_CalculationModes..363
Table 308—dpcmSetCurrentProcessPoint..363
Table 309—dpcmGetBaseProcessPoint...364
Table 310—dpcmGetProcessPointRange...364
Table 311—dpcmGetRailVoltageRangeArray..365
Table 312—dpcmGetCellRailVoltageRangeArray...366
Table 313—dpcmGetTemperatureRange...366
Table 314—dpcmGetCellTemperatureRange...367
Table 315—dpcmGetPinPinTypeArray..368
Table 316—dpcmGetPinPinType...369
Table 317—dpcmGetPinSignalTypeArray...369
Table 318—dpcmGetPinSignalType..371
Table 319—dpcmGetPinActionArray..371
Table 320—dpcmGetPinAction..372
Table 321—dpcmGetPinPolarityArray..372
Table 322—dpcmGetPinPolarity..373
Table 323—dpcmGetPinEnablePin..373
Table 324—dpcmGetPinConnectClass..374
Table 325—dpcmGetPinScanPosition..374
Table 326—dpcmGetPinStuckArray..375
Table 327—dpcmGetPinStuck...375
Table 328—dpcmGetDifferentialPairPin...376
Table 329—dpcmGetPathLabel..376

xiv
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009

IEC 61523-1:2012
IEEE Std 1481-2009 – xv –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

Table 330—dpcmGetPowerStateLabel..377
Table 331—dpcmGetCellTypeArray..377
Table 332—dpcmGetCellType...379
Table 333—dpcmGetCellSwapClassArray..379
Table 334—dpcmGetCellSwapClass..380
Table 335—dpcmGetCellRestrictClassArray...381
Table 336—dpcmGetCellRestrictClass..382
Table 337—dpcmGetCellScanTypeArray..382
Table 338—dpcmGetCellScanType...383
Table 339—dpcmGetCellNonScanCell..383
Table 340—DCM_PinMappingTypes..385
Table 341—appSetVectorOperations..385
Table 342—DCM_VectorOperations...386
Table 343—dpcmGetLevelShifter..386
Table 344—dpcmGetPinTiePolarity...387
Table 345—dpcmGetPinReadPolarity..388
Table 346—dpcmGetPinWritePolarity...388
Table 347—dpcmGetSimultaneousSwitchTimes...388
Table 348—appGetSwitchingBits..389
Table 349—dpcmGetFrequencyLimit..390
Table 350—appGetPinFrequency...390
Table 351—dpcmGetBasePinFrequency..391
Table 352—dpcmGetPinJitter..391
Table 353—dpcmGetInductanceLimit...392
Table 354—dpcmGetOutputSourceResistances...392
Table 355—appSetPull...393
Table 356—DCM_PullType...393
Table 357—dpcmGetPull...393
Table 358—dpcmGetPinDriveStrength..394
Table 359—dpcmGetCellVectorPower..395
Table 360—dpcmGetPinConnectivityArrays...395
Table 361—dpcmGetLibraryConnectClassArray..396
Table 362—dpcmGetLibraryConnectivityRules ...396
Table 363—DCM_ConnectRules...397
Table 364—dpcmGetExistenceGraph..398
Table 365—dpcmGetTimingStateGraphs...399
Table 366—dpcmGetTimingStateStrings...401
Table 367—dpcmGetVectorEdgeNumbers..402
Table 368—appSetSignalDivision..403
Table 369—appSetSignalMultiplication..404
Table 370—appSetSignalGeneration..406
Table 371—dpcmGetDefPinSlews...407
Table 372—appGetInterfaceVersion..408
Table 373—Valid interface version strings...408
Table 374—dpcmSetResource..409
Table 375—dpcmGetAllResources..409
Table 376—DCM_ResourceTypes...410
Table 377—appGetExternalDelayByPin..412
Table 378—Description of multiArcMultiEdgePath (XXXX are do not care bits).....................................413
Table 379—appGetExternalDelayByName..414
Table 380—appGetLogicLevelByName..415
Table 381—DCM_LogicLevel...415
Table 382—appGetLogicLevelByPin..416
Table 383—dpcmGetPinIndexArrays..416
Table 384—dpcmGetSupplyPins..417
Table 385—DCM_BistInversion..418

xv
Copyright © 2010 IEEE all rights reserved.

– xvi –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

Table 386—dpcmGetPhysicalBISTMap..418
Table 387—dpcmGetLogicalBISTMap..418
Table 388—dpcmGetCellTestProcedure..419
Table 389—icmBuildLoadModels...422
Table 390—icmBuildInterconnectModels..422
Table 391—icmCalcInterconnectDelaySlew..423
Table 392—icmCalcCellDelaySlew...424
Table 393—ccmCalcDelaySlew...425
Table 394—ccmEarlyLateIdentical..426
Table 395—ccmGetICMcontrolParams...427
Table 396—icmCalcOutputResistances...427
Table 397—icmCalcTotalLoadCapacitances..428
Table 398—icmCalcXWF..429
Table 399—icmInit...429
Table 400—dcmRT_new_DCM_ARRAY...435
Table 401—DCM_ATYPE enumeration..436
Table 402—DCM_AINIT enumeration..436
Table 403—DCM_ArrayInitUserFunction...437
Table 404—dcmRT_sizeof_DCM_ARRAY..437
Table 405—dcmRT_claim_DCM_ARRAY...438
Table 406—dcmRT_disclaim_DCM_ARRAY..438
Table 407—dcmRT_disclaim_DCM_STRUCT...439
Table 408—dcmRT_disclaim_DCM_STRUCT...440
Table 409—dcmRT_longlock_DCM_STRUCT..440
Table 410—dcmRT_longunlock_DCM_STRUCT..441
Table 411—dcmRT_getNumDimensions...442
Table 412—dcmRT_getNumElementsPer..442
Table 413—dcmRT_getNumElements...442
Table 414—dcmRT_getElementType...443
Table 415—dcmRT_arraycmp..443
Table 416—dcmRT_InitRuleSystem..444
Table 417—dcmRT_BindRule...445
Table 418—dcmRT_AppendRule...446
Table 419—dcmRT_UnbindRule...447
Table 420—dcmRT_FindFunction...448
Table 421—dcmRT_FindAppFunction..448
Table 422—dcmRT_QuietFindFunction..449
Table 423—dcmRT_MakeRC..449
Table 424—dcmRT_HardErrorRC...450
Table 425—dcmRT_SetMessageIntercept...450
Table 426—dcmRT_IssueMessage...451
Table 427—dcmRT_new_DCM_STD_STRUCT..451
Table 428—dcmRT_delete_DCM_STD_STRUCT...452
Table 429—dcmRT_setTechnology...452
Table 430—dcmRT_getTechnology...453
Table 431—dcmRT_getAllTechs...453
Table 432—dcmRT_freeAllTechs..453
Table 433—dcmRT_isGeneric...454
Table 434—dcmRT_takeMappingOfNugget..454
Table 435—dcmRT_registerUserObject...454
Table 436—dcmRT_DeleteRegisteredUserObjects...455
Table 437—dcmRT_DeleteOneUserObject...455
Table 438—delay..456
Table 439—slew...456
Table 440—check...457
Table 441—modelSearch..459

xvi
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009

IEC 61523-1:2012
IEEE Std 1481-2009 – xvii –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

Table 442—Mode propagation operators...461
Table 443—Mode computation operators for delay and slew..461
Table 444—Mode operator enumerators for check..462
Table 445—Edge propagation enumeration pairs..463
Table 446—Edge propagation communication with DPCM..466
Table 447—newTimingPin...467
Table 448—newDelayMatrixRow..467
Table 449—newNetSinkPropagateSegments...468
Table 450—newNetSourcePropagateSegments...470
Table 451—newPropagateSegment..471
Table 452—newTestMatrixRow...472
Table 453—newAltTestSegment..472
Table 454—appGetPiModel...474
Table 455—appGetPolesAndResidues...475
Table 456—appGetCeffective..476
Table 457—appGetRLCnetworkByPin..476
Table 458—appGetRLCnetworkByName..477
Table 459—dpcmCalcPiModel..478
Table 460—dpcmCalcPolesAndResidues..478
Table 461—dpcmCalcCeffective..479
Table 462—dpcmSetRLCmember..480
Table 463—dpcmAppendPinAdmittance...481
Table 464—dpcmDeleteRLCnetwork..482
Table 465—dcm_copy_DCM_ARRAY...483
Table 466—dcm_new_DCM_ARRAY..483
Table 467—dcm_sizeof_DCM_ARRAY...483
Table 468—dcm_lock_DCM_ARRAY..484
Table 469—dcm_unlock_DCM_ARRAY..484
Table 470—dcm_lock_DCM_STRUCT..485
Table 471—dcm_unlock_DCM_STRUCT..485
Table 472—dcm_getNumDimensions..485
Table 473—dcm_getNumElementsPer..486
Table 474—dcm_getNumElements..486
Table 475—dcm_getElementType...486
Table 476—dcm_arraycmp..487
Table 477—dcmCellList...487
Table 478—dcmSetNewStorageManager..488
Table 479—dcmMalloc..488
Table 480—dcmFree..489
Table 481—dcmRealloc...489
Table 482—dcmBindRule..489
Table 483—dcmAddRule...490
Table 484—dcmUnbindRule..490
Table 485—dcmFindFunction..490
Table 486—dcmFindAppFunction...491
Table 487—dcmQuietFindFunction...491
Table 488—dcmMakeRC...492
Table 489—dcmHardErrorRC..492
Table 490—dcmSetMessageIntercept..492
Table 491—dcmIssueMessage...493
Table 492—dcm_rule_init..493
Table 493—DCM_new_DCM_STD_STRUCT...494
Table 494—DCM_delete_DCM_STD_STRUCT..495
Table 495—dcm_setTechnology..495
Table 496—dcm_getTechnology..496
Table 497—dcm_getAllTechs..496

xvii
Copyright © 2010 IEEE all rights reserved.

– xviii –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

Table 498—dcm_freeAllTechs...496
Table 499—dcm_isGeneric..497
Table 500—dcm_mapNugget...497
Table 501—dcm_takeMappingOfNugget..498
Table 502—dcm_registerUserObject...498
Table 503—dcm_DeleteRegisteredUserObjects..498
Table 504—dcm_DeleteOneUserObject..499
Table 505—Design flow values..591
Table 506—conn_attr...595
Table 507—Variation effect equations...598

xviii
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009

IEC 61523-1:2012
IEEE Std 1481-2009 – xix–

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

Table of BNF Syntax
Syntax 7.1: token..19
Syntax 7.2: identifier..22
Syntax 7.3: double_quoted_character...23
Syntax 7.4: constant..28
Syntax 7.5: string_literal...30
Syntax 7.6: operator..30
Syntax 7.7: punctuator..30
Syntax 7.8: native_type..32
Syntax 7.9: mathematical_type...33
Syntax 7.10: pointer_data_type..33
Syntax 7.11: aggregate_type...34
Syntax 7.12: aggregate_access...34
Syntax 7.13: array_type..36
Syntax 7.14: var..37
Syntax 7.15: cast...39
Syntax 7.16: new_operator...42
Syntax 7.17: scope_change...44
Syntax 7.18: launch..44
Syntax 7.19: FORCE operator..45
Syntax 7.20: array_index..49
Syntax 7.21: statement_call..49
Syntax 7.22: method_statement_call..50
Syntax 7.23: assign_variable_reference...50
Syntax 7.24: store_variable_reference..50
Syntax 7.25: expression..51
Syntax 7.26: discrete_expression..52
Syntax 7.27: logical_expression...53
Syntax 7.28: pin_range_list..54
Syntax 7.29: c_statement_reference...55
Syntax 7.30: passed_clause..58
Syntax 7.31: result_prototype...59
Syntax 7.32: conditional_result..60
Syntax 7.33: local_clause...61
Syntax 7.34: default_clause..62
Syntax 7.35: default_clause (result variable)..62
Syntax 7.36: prototype_modifier..65
Syntax 7.37: common_prototype..65
Syntax 7.38: tabledef_prototype...66
Syntax 7.39: load_table_prototype...66
Syntax 7.40: add_row_prototype..66
Syntax 7.41: delay_prototype...67
Syntax 7.42: check_prototype..67
Syntax 7.43: submodel_prototype..67
Syntax 7.44: typedef...68
Syntax 7.45: expose_statement...68
Syntax 7.46: external_statement...69
Syntax 7.47: internal_statement..70
Syntax 7.48: constant_statement..71
Syntax 7.49: calculation_body..71
Syntax 7.50: calc_statement...71
Syntax 7.51: assign_statement..72
Syntax 7.52: delay_statement...72
Syntax 7.53: slew_statement..73

xix
Copyright © 2010 IEEE all rights reserved.

– xx –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

Syntax 7.54: check_statement..74
Syntax 7.55: check_statement..74
Syntax 7.56: ABS..81
Syntax 7.57: IMAG_PART...81
Syntax 7.58: REAL_PART...82
Syntax 7.59: EXPAND...82
Syntax 7.60: IS_EMPTY..82
Syntax 7.61: NUM_DIMENSIONS...82
Syntax 7.62: NUM_ELEMENTS...82
Syntax 7.63: ISSUE_MESSAGE...83
Syntax 7.64: PRINT_VALUE..84
Syntax 7.65: SOURCE_STRANDS_MSB...84
Syntax 7.66: SOURCE_STRANDS_LSB..84
Syntax 7.67: SINK_STRANDS_MSB...84
Syntax 7.68: SINK_STRANDS_LSB..84
Syntax 7.69: tabledef_statement...85
Syntax 7.70: table_statement..88
Syntax 7.71: load_table_statement...91
Syntax 7.72: unload_table_statement...93
Syntax 7.73: unload_table_statement...94
Syntax 7.74: add_row_statement..94
Syntax 7.75: delete_row_statement..95
Syntax 7.76: subrule_statement..105
Syntax 7.77: subrules_statement..107
Syntax 7.78: tech_family_statement...109
Syntax 7.79: tech_family_statement...111
Syntax 7.80: model_procedure...112
Syntax 7.81: submodel_procedure..113
Syntax 7.82: path_separator_stmt...114
Syntax 7.83: path_statement...115
Syntax 7.84: path_list...116
Syntax 7.85: clkflg_clause..117
Syntax 7.86: ckttype_clause...118
Syntax 7.87: object_type_clause...118
Syntax 7.88: data_type_sequence...118
Syntax 7.89: bus_statement..120
Syntax 7.90: test_statement..121
Syntax 7.91: compare_list..121
Syntax 7.92: compare_clause...121
Syntax 7.93: edges_clause..122
Syntax 7.94: test_type_clause...122
Syntax 7.95: cycleadj_clause..123
Syntax 7.96: checks_clause..123
Syntax 7.97: methods_list...123
Syntax 7.98: store_clause...124
Syntax 7.99: test_bus_statement...124
Syntax 7.100: input_statement..125
Syntax 7.101: methods_clause..125
Syntax 7.102: store_clause...126
Syntax 7.103: output_statement..128
Syntax 7.104: do_statement – BREAK and CONTINUE..130
Syntax 7.105: do_statement..131
Syntax 7.106: statement_reference...131
Syntax 7.107: statement_reference...132
Syntax 7.108: node_sequence...132
Syntax 7.109: function_assignment_expression...151

xx
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009

IEC 61523-1:2012
IEEE Std 1481-2009 – xxi –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

Syntax 7.110: vector_sequence...152
Syntax 7.111: import_export_sequence..153
Syntax 7.112: properties_statement..154
Syntax 7.113: setvar_statement..154
Syntax 7.114: embedded_C_code...155
Syntax 7.115: subrule...155
Syntax 7.116: pragma_declare..156
Syntax 11.1: Alphanumeric characters...581
Syntax 11.2: SPEF names...582
Syntax 11.3: SPEF_file...583
Syntax 11.4: header_def...583
Syntax 11.5: unit_def..584
Syntax 11.6: name_map..584
Syntax 11.7: power_def..584
Syntax 11.8: external_def...585
Syntax 11.9: conn_attr..585
Syntax 11.10: define_def..585
Syntax 11.11: variation_def..586
Syntax 11.12: internal_def..586
Syntax 11.13: d_net..586
Syntax 11.14: conn_sec..587
Syntax 11.15: cap_sec...587
Syntax 11.16: res_sec...587
Syntax 11.17: induc_sec...587
Syntax 11.18: r_net...588
Syntax 11.19: load_desc...588
Syntax 11.20: d_pnet..588
Syntax 11.21: pconn_sec..588
Syntax 11.22: pcap_sec...589
Syntax 11.23: pres_sec...589
Syntax 11.24: pinduc_sec...589
Syntax 11.25: r_pnet...589

xxi
Copyright © 2010 IEEE all rights reserved.

– xxii –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

Table of Figures
Figure 1—High-level DPCS architecture linkage structure...16
Figure 2—Function graph form..110
Figure 3—DPCM/application procedural interface..173
Figure 4—PIN and PINLIST..186
Figure 5—Parallel drivers example..223
Figure 6—Subnet node mapping..278
Figure 7—Differential buffer chain..338
Figure 8—Timing models for a differential buffer chain ..338
Figure 9—Arrival offsets for differential signals ..338
Figure 10—Priority operation...344
Figure 11—Precedence...345
Figure 12—Strand ranges ..346
Figure 13—Various methods of using XWF to model waveforms for slew computation352
Figure 14—Propagation of XWF “handles” by application...353
Figure 15—Application, CCM and ICM control and data flows...421
Figure 16—Clock separation..458
Figure 17—Bias calculation...458
Figure 18—Clock pulse width..459
Figure 19—Sample MODELPROC results..469
Figure 20—Additional MODELPROC results...470
Figure 21—Capacitance value example...474
Figure 22—Equation for poles and residues..475
Figure 23—Example RC network..481
Figure 24—SPEF targeted applications..580

xxii
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009

IEC 61523-1:2012
IEEE Std 1481-2009 – xxiii –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – xxiv – IEC 61523-1:2012
 IEEE Std 1481-2009

Published by IEC under license from IEEE. © 2009 IEEE. All rights reserved.

Delay and power calculation standards -

Part 1: Integrated circuit delay and power calculation systems

FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising

all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation.

IEEE Standards documents are developed within IEEE Societies and Standards Coordinating Committees of the
IEEE Standards Association (IEEE-SA) Standards Board. IEEE develops its standards through a consensus
development process, which brings together volunteers representing varied viewpoints and interests to achieve
the final product. Volunteers are not necessarily members of IEEE and serve without compensation. While IEEE
administers the process and establishes rules to promote fairness in the consensus development process, IEEE
does not independently evaluate, test, or verify the accuracy of any of the information contained in its
standards. Use of IEEE Standards documents is wholly voluntary. IEEE documents are made available for use
subject to important notices and legal disclaimers (see http://standards.ieee.org/IPR/disclaimers.html for more
information).

IEC collaborates closely with IEEE in accordance with conditions determined by agreement between the two
organizations.

2) The formal decisions of IEC on technical matters express, as nearly as possible, an international consensus of
opinion on the relevant subjects since each technical committee has representation from all interested IEC
National Committees. The formal decisions of IEEE on technical matters, once consensus within IEEE Societies
and Standards Coordinating Committees has been reached, is determined by a balanced ballot of materially
interested parties who indicate interest in reviewing the proposed standard. Final approval of the IEEE
standards document is given by the IEEE Standards Association (IEEE-SA) Standards Board.

3) IEC/IEEE Publications have the form of recommendations for international use and are accepted by IEC
National Committees/IEEE Societies in that sense. While all reasonable efforts are made to ensure that the
technical content of IEC/IEEE Publications is accurate, IEC or IEEE cannot be held responsible for the way in
which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
(including IEC/IEEE Publications) transparently to the maximum extent possible in their national and regional
publications. Any divergence between any IEC/IEEE Publication and the corresponding national or regional
publication shall be clearly indicated in the latter.

5) IEC and IEEE do not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC and IEEE are not responsible
for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or IEEE or their directors, employees, servants or agents including individual
experts and members of technical committees and IEC National Committees, or volunteers of IEEE Societies
and the Standards Coordinating Committees of the IEEE Standards Association (IEEE-SA) Standards Board,
for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect,
or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this
IEC/IEEE Publication or any other IEC or IEEE Publications.

8) Attention is drawn to the normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that implementation of this IEC/IEEE Publication may require use of
material covered by patent rights. By publication of this standard, no position is taken with respect to the
existence or validity of any patent rights in connection therewith. IEC or IEEE shall not be held responsible for
identifying Essential Patent Claims for which a license may be required, for conducting inquiries into the legal
validity or scope of Patent Claims or determining whether any licensing terms or conditions provided in
connection with submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable or
non-discriminatory. Users of this standard are expressly advised that determination of the validity of any patent
rights, and the risk of infringement of such rights, is entirely their own responsibility.

– xxiv –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

International Standard IEC 61523-1/ IEEE Std 1481-2009 has been processed through IEC
technical committee 93: Design automation, under the IEC/IEEE Dual Logo Agreement.

This second edition cancels and replaces the first edition, published in 2001, and constitutes
a technical revision.

The text of this standard is based on the following documents:

IEEE Std FDIS Report on voting

IEEE Std 1481-2009 93/318/FDIS 93/325/RVD

Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.

The IEC Technical Committee and IEEE Technical Committee have decided that the contents
of this publication will remain unchanged until the stability date indicated on the IEC web site
under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the
publication will be

• reconfirmed,
• withdrawn,
• replaced by a revised edition, or
• amended.

IEC 61523-1:2012
IEEE Std 1481-2009

IEC 61523-1:2012
IEEE Std 1481-2009 – xxv –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481TM-2009
(Revision of

IEEE Std 1481-1999)

IEEE Standard for Integrated
Circuit (IC) Open Library
Architecture (OLA)

Sponsor

Design Automation Standards Committee

of the

IEEE Computer Society

9 December 2009

IEEE-SA Standards Board

– xxvi –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

Royalty-free nonexlcusive permission has been granted by International Business Machines
(IBM) Corporation for all written contributions made by IBM under the direction of Harry J. Beatty
III.

Royalty-free permission has been granted by Silicon Integration Initiative, Inc. (Si2) to reprint
material from Specification for the Open Library Architecture (OLA), Version 2.0-00, March 1,
2003.

Abstract: Ways for integrated circuit designers to analyze chip timing and power consistently
across a broad set of electric design automation (EDA) applications are covered in this standard.
Methods by which integrated circuit vendors can express timing and power information once per
given technology are also covered. In addition, the means by which EDA vendors can meet their
application performance and capacity needs are discussed.

Keywords: chip delay, electronic design automation (EDA), integrated circuit (IC) design, power
calculation

IEEE is a registered trademark in the U.S. Patent & Trademark Office, owned by the Institute of Electrical and Electronics
Engineers, Incorporated.

IEC 61523-1:2012
IEEE Std 1481-2009

IEC 61523-1:2012
IEEE Std 1481-2009 – xxvii –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Introduction

The objective of the delay and power calculation system (DPCS) is to make it possible for integrated circuit
designers to consistently calculate chip delay and power across electronic design automation (EDA)
applications and for integrated circuit vendors to express delay and power information only once per
technology while enabling sufficient EDA application accuracy.

This is accomplished by a coordinated set of standards that support a standard method to describe timing
and power characteristics of integrated circuit design units (cells and higher level design elements); a
standard method for EDA applications to calculate chip design instance specific delay, slew, and power for
logic and interconnects; and standard file formats to exchange chip parasitic and cluster information.

Notice to users

Laws and regulations

Users of these documents should consult all applicable laws and regulations. Compliance with the
provisions of this standard does not imply compliance to any applicable regulatory requirements.
Implementers of the standard are responsible for observing or referring to the applicable regulatory
requirements. IEEE does not, by the publication of its standards, intend to urge action that is not in
compliance with applicable laws, and these documents may not be construed as doing so.

Copyrights

This document is copyrighted by the IEEE. It is made available for a wide variety of both public and
private uses. These include both use, by reference, in laws and regulations, and use in private self-
regulation, standardization, and the promotion of engineering practices and methods. By making this
document available for use and adoption by public authorities and private users, the IEEE does not waive
any rights in copyright to this document.

Updating of IEEE documents

Users of IEEE standards should be aware that these documents may be superseded at any time by the
issuance of new editions or may be amended from time to time through the issuance of amendments,
corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the
document together with any amendments, corrigenda, or errata then in effect. In order to determine whether
a given document is the current edition and whether it has been amended through the issuance of
amendments, corrigenda, or errata, visit the IEEE Standards Association Web site at
http://ieeexplore.ieee.org/xpl/standards.jsp, or contact the IEEE at the address listed previously.

For more information about the IEEE Standards Association or the IEEE standards development process,
visit the IEEE-SA Web site at http://standards.ieee.org.

Errata

Errata, if any, for this and all other standards can be accessed at the following URL:
http://standards.ieee.org/reading/ieee/updates/errata/. Users are encouraged to check this URL for errata
periodically.

This introduction is not part of IEEE Std 1481-2009, IEEE Standard for Integrated Circuit (IC) Open Library
Architecture (OLA).

– xxviii –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

Interpretations

Current interpretations can be accessed at the following URL: http://standards.ieee.org/reading/ieee/interp/.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken with respect to the existence
or validity of any patent rights in connection therewith. A patent holder or patent applicant has filed a
statement of assurance that it will grant licenses under these rights without compensation or under
reasonable rates, with reasonable terms and conditions that are demonstrably free of any unfair
discrimination to applicants desiring to obtain such licenses. Other Essential Patent Claims may exist for
which a statement of assurance has not been received. The IEEE is not responsible for identifying Essential
Patent Claims for which a license may be required, for conducting inquiries into the legal validity or scope
of Patents Claims, or determining whether any licensing terms or conditions are reasonable or non-
discriminatory. Further information may be obtained from the IEEE Standards Association.

xxvi
Copyright © 2010 IEEE all rights reserved.

– xx
IEC 61523-1:2012

IEEE Std 1481-2009

IEC 61523-1:2012
IEEE Std 1481-2009 ix –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

– xxx –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

Integrated Circuit (IC)
Open Library Architecture (OLA)

IMPORTANT NOTICE: This trial-use standard is not intended to ensure safety, security, health, or
environmental protection in all circumstances. Implementers of the trial-use standard are responsible
for determining appropriate safety, security, environmental, and health practices or regulatory
requirements.

This IEEE document is made available for use subject to important notices and legal disclaimers. These
notices and disclaimers appear in all publications containing this document and may be found under the
heading “Important Notice” or “Important Notices and Disclaimers Concerning IEEE Documents.”
They can also be obtained on request from IEEE or viewed at
http://standards.ieee.org/IPR/disclaimers.html.

1 Overview

The delay and power calculation system (DPCS) is a coordinated set of standards that support a standard
method to describe timing and power characteristics of integrated circuit (IC) design units (cells and higher
level design elements); a standard method for electronic design automation (EDA) applications to calculate
chip design instance specific delay, slew, and power for logic and interconnects; and standard file formats
to exchange chip parasitic and cluster information. The standard specifications covered in this document
include

— A description language for timing and power modeling, called the delay calculation language
(DCL).

— A software procedural interface (PI) for communications between EDA applications and compiled
libraries of DCL descriptions.

— A standard file exchange format for parasitic information about the chip design: Standard Parasitic
Exchange Format (SPEF).

— Informative usage examples

— Informative notes

Notes and examples are informative. All other components of this specification are considered normative
unless otherwise directed.

1.1 Scope

The scope of this standard focuses on delay and power calculation for integrated circuit design with support
for modeling logical behavior and signal integrity.

1
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 1 –

Delay and power calculation
standards – Part 1:
Integrated circuit delay and
power calculation systems

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

1.2 Purpose

To improve the IEEE 1481-1999 standard system for integrated circuit designers to more accurately and
more completely analyze semiconductor designs across EDA applications and for integrated circuit vendors
to express logical behavior, signal integrity, delay, and power information only once per technology while
enabling sufficient EDA application accuracy.

1.3 Introduction

The DPCS standard covers delay and power calculation for integrated circuit design with support for
modeling logical behavior and signal integrity, which makes it possible for integrated circuit designers to
analyze chip timing and power consistently across a broad set of EDA applications, for integrated circuit
vendors to express timing and power information once (for a given technology), and for EDA vendors to
meet their application performance and capacity needs. The intended use for this standard is IC timing and
power. This standard may be applied to both unit logic cells supplied by the IC vendor and logical macros
defined by the IC designer. Although this standard is written toward the integrated circuit supplier and EDA
developer, its application applies equally well to representation of timing and power for designer-defined
macros (or hierarchical design elements).

These specifications make it possible to achieve consistent timing and power results, but they do not
guarantee it. They provide for a single executable software program that computes delay and power based
on IC vendor-supplied algorithms (or designer-supplied algorithms for macros) but does not guarantee
EDA applications can correctly communicate the design-specific information required for these algorithms.
By specifying standard exchange formats for parasitic data and floorplanning information, this standard
provides a marked improvement over design environments with no such standards. However, it is the
responsibility of the EDA application to correctly correlate the information between these standard
exchange files and the actual design. This standard also does not detail how the information contained
within the standard exchange files shall be obtained.

As feature sizes for chips have shrink below 0.25 μm, interconnect delay effects have begun to outweigh
those of the logic cells. This means placement of cells and wire routing of the interconnects become as
important a factor as the type of cell drivers and receivers on the interconnect. As a result, EDA logic
design applications (such as synthesis) have begun to interact closely with physical design applications
(such as floorplanning and layout). Applications that before could consider only simple delay and power
models now need to deal with complex, interrelated delay and power algorithms. Plus, due to the
complexities of the delay and power algorithms, the integrated circuit vendor needs to have control of
application calculations and not be restricted by the limitations of a broad set of applications demanded by
the customers (the designers).

Over the past few years, it has become increasingly apparent that modern very large-scale integration
(VLSI) design is no longer bounded only by timing and area constraints. Power has become significantly
more important. In an era of hand-held devices, ranging from mobile computing to wireless communication
systems, managing and controlling power takes on an important role. Several benefits can be attained from
low-power designs in addition to extended battery life. Low-power devices often run at a lower junction
temperature, which leads to higher reliability and lower cost cooling systems. There are also several
challenges for calculation and modeling of power (and delay) in deep submicron (less then 0.25 μm)
designs. EDA tools can now accurately calculate and model power by using this DPCS standard.

2
Copyright © 2010 IEEE all rights reserved.

– 2 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

2 Normative references

The following referenced documents are indispensable for the application of this document (i.e., they must
be understood and used, so each referenced document is cited in text and its relationship to this document is
explained). For dated references, only the edition cited applies. For undated references, the latest edition of
the referenced document (including any amendments or corrigenda) applies.

ISO/IEC 9899:1990, Programming Languages – C.1

ISO/IEC 14882:2003, Programming Languages – C++.

1 ISO publications are available from the ISO Central Secretariat, Case Postale 56, 1 ch. de la Voie Creuse, CH-1211,
Gen¯ve 20, Switzerland / Suisse (http://www.iso.ch/). IEC publications are available from the Sales Department of
the International Electrotechnical Commission, Case Postale 131, 3 rue de Varembé, CH-1211, Genève 20,
Switzerland/Suisse (http://www.iec.ch/).

3
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 3 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

3 Definitions

For the purposes of this document, the following terms and definitions apply. The IEEE Standards
Dictionary: Glossary of Terms & Definitions should be referenced for terms not defined in this clause.2

application, electronic design automation (EDA) application: Any software program that interacts with
the delay and power calculation module (DPCM) through the procedural interface (PI) to compute
instance-specific timing values. Examples include batch delay calculators, synthesis tools, floor-planners,
static timing analyzers, and so on. See also: delay and power calculation module; procedural interface.

arc: See: timing arc.

argument:The value or the address of a data item passed to a function or procedure by the caller.

back-annotation: The annotation of information from further downstream steps (toward fabrication) in the
design process. See also: back-annotation file.

back-annotation file: A file containing information to be read by a tool for the purpose of back-annotation,
for example, Physical Design Exchange Format (PDEF) and Standard Parasitic Exchange Format (SPEF)
files. See also: back-annotation; timing annotation.

bidirectional: A pin or port that can place logic signals onto an interconnect and receive logic signals from
it (i.e., act both as a driver and as a receiver).

bias: The time difference between the data arrival time and a specified signal edge (e.g., of a clock). Also,
the BIAS clause used in a CHECK statement.

C-effective: A capacitance value, often computed as an approximation to a resistor/inductor/capacitor
(RLC) network or a model, that characterizes the admittance of an interconnect structure at a particular
driver. The reduction of real parasitics and pin capacitances to a C-effective allows the calculation of delay
and slew values from cell characterization data that assumes a pure capacitive output load.

bus: In Physical Design Exchange Format (PDEF), a physical collection of nets and/or pnets or of pins
and/or nodes. If the items collected in the PDEF bus are logical, the PDEF bus may or may not correspond
to a logical bus described in the netlist.

cell: A primitive in an integrated circuit library. For the purposes of this specification, “primitive” means
the timing properties of the cell are directly described in the delay and power calculation module (DPCM)
without reference back to the application for the internal structure of the cell. This primitiveness typically is
a result of the characterization of that cell by the semiconductor vendor, but it may instead be a result of the
construction of a timing model for a sub-circuit by the application and its loading into the DPCM at run-
time. The term “cell” can arise in the context of the abstraction of a type of cell available in the library or in
the concrete selection and placement of a cell in the final design. If the context is not clear, the terms “cell
type” and “cell instance” (or just “instance”) shall be used. See also: cell type; instance.

cell type: Name used to identify a particular cell in the library.

cluster: A grouping of cell instances and/or clusters that are constrained to each other due to physical
location or some other shared characteristic(s). It is not valid to have a cell instance explicitly made a
member of more than one cluster. See also: region.

column: In a Physical Design Exchange Format (PDEF) datapath cluster, a cluster of cell, spare_cell,

2 The IEEE Standards Dictionary: Glossary of Terms & Definitions is available at http://shop.ieee.org/.

4
Copyright © 2010 IEEE all rights reserved.

– 4 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

and/or cluster instances placed or constrained to be placed in the vertical (y-axis) direction. See also: row;
datapath.

constraint: A timing property of a design that is supplied as a goal or objective to an electronic design
automation (EDA) tool, such as logic synthesis, floorplanning, or layout. The tool shall not start out with a
fixed design implementation; it shall build or modify the design to meet the constraint. See also: timing
check.

datapath: A type of electronic design automation cluster that contains rows and/or columns of cluster, cell,
skip, and/or spare_cell instances. A PDEF datapath typically corresponds to structured logic. See also: row;
column.

delay: The time taken for a digital signal to propagate between two points.

delay and power calculation module (DPCM): A delay and power calculation system (DPCS)-compliant
software component supplied by a semiconductor vendor that is responsible for computing instance-
specific timing data under control of an electronic design automation (EDA) application. The DPCM is
loaded into memory at run time and linked to the application via the procedural interface (PI). A DPCM
typically is created from delay calculation language (DCL) subrules compiled by the DCL compiler and
linked together with run-time support modules.

delay and power calculation system (DPCS): The complete system detailed in this specification: the
delay calculation language (DCL) language, the procedural interface (PI) for delay and power calculations,
and text formats for physical design and parasitic information.

delay arc: See: timing arc.

delay calculation language (DCL): The programming language used to calculate instance-specific timing
data. DCL contains high-level constructs that can refer to the aspects of the design topology that influence
timing and also express the sequence of calculations necessary to compute the desired delay and timing
check limit values.

delay calculation language (DCL) compiler: A software program, used in conjunction with a C compiler,
that reduces DCL from ASCII text to computer executable format. See also: delay and power calculation
module.

delay equation: Any mathematical expression describing cell delay or interconnect delay.

driver: A pin of a cell instance that, in the current context, is placing or can place a signal onto an
interconnect structure.

early mode: The very first edge that propagates through a given cone of logic.

fanout: The pin count of a net (the number of pins connected to the net), minus one. This definition
includes all input, output, and bidirectional pins on the net with the sole exception of one pin (assumed to
be related to the particular timing arc currently of interest). Although less fundamental than pin count,
fanout is frequently used in the definition of wire load models.

forward annotation: The annotation of information from further upstream (earlier in the design flow) in
the design process. See also: forward annotation file.

forward annotation file: A file containing information to be read by a tool for the purpose of forward
annotation, for example, an Standard Delay Format (SDF) file containing PATHCONSTRAINTS. See also:
forward annotation.

5
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 5 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

function, procedural interface (PI) function: One of the C functions that comprise the delay and power
calculation system (DPCS) procedural interface.

gap: In Physical Design Exchange Format (PDEF), spacing between rows and/or columns in a datapath.

gate: In Physical Design Exchange Format (PDEF), the physical abstraction of a library primitive.

hard macro: A cluster whose cell placements relative to each other are fixed. Often the interconnect
routing between the cells is also fixed and a parasitics file describing the interconnect is available for the
hard macro. The location of the hard macro in the floorplan may or may not be fixed.

hard region: A cluster that has defined physical boundaries in a floorplan. All cells contained in the cluster
shall be placed within the boundaries of the cluster.

hierarchical instance: The concrete appearance of a design unit at some hierarchical level. Because higher
level design units may be instantiated multiple times, a single such appearance may give rise to multiple
instances of the lower level design units within it. Where instances are referred to as “occurrences”,
hierarchical instances are referred to simply as instances.

hold timing check: A timing check that establishes only the end of the stable interval for a setup/hold
timing check. If no setup timing check is provided for the same arc, transitions, and state, the stable interval
is assumed to begin at the reference signal transition and a negative value for the hold time is not
meaningful. See also: setup/hold timing check.

hold time: See: setup/hold timing check; nochange timing check.

implementation-defined behavior: Behavior, for a correct program construct and correct data, that
depends on the software implementation and that each implementation shall document. The range of
possible behaviors is delineated by the standard.

implementation limits: Restrictions imposed by an implementation.

input: A pin or port that shall only receive logic signals from a connected net or interconnect structure.

instance, cell instance: A particular, concrete appearance of a cell in the fully expanded (flattened,
unfolded, elaborated) design description of an integrated circuit, also referred to elsewhere as an
“occurrence.” An instance is a “leaf” of the unfolded design hierarchy. In Physical Design Exchange
Format (PDEF), this is a physical cluster or a logical cell. See also: cell; cell type; cluster,; hierarchical
instance.

interconnect: A collective term for structures (in an integrated circuit) that propagate a signal between the
pins of cell instances with as little change as possible. These structures include metal and polysilicon
segments, vias, fuses, anti-fuses, and so on. But interconnect shall not include such structures if they occur
as part of the fixed layout of a cell.

late mode: The very last edge that propagates through a given cone of logic.

layer: In Physical Design Exchange Format (PDEF), a particular level of interconnect on which a logical or
physical pin is located.

library (integrated circuit): A collection of circuit functions, implemented in a particular integrated circuit
technology, which an integrated circuit designer or electronic design automation (EDA) synthesis
application can select in order to implement a design. See also: cell.

6
Copyright © 2010 IEEE all rights reserved.

– 6 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

library (software): A collection of object code units that may be linked, either statically or at run time,
with other libraries and/or object code to produce a software program.

library control statements: These statements control the logical organization and loading of subrules in a
technology library. See also: technology library.

load-dependent delay: That part of a delay through a cell instance attributed to the admittance (load)
presented to the arc sink pin and the internal impedance of the output.

mesh table: A multidimension table that defines every type of delay model in terms of discrete points. Each
point represents a delay value in terms of several cell parameters or interconnect parameters. The delay
calculation module is expected to interpolate between these points based on a mathematical expression
defined by the technology file.

(to) model a cell: The creation of a specific elaboration of a model using modelSearch.

modeling procedures: Describe the action of a circuit with respect to timing and power. These actions
include creating segments and nodes, determining the propagation properties, and setting the delay and
slew equations to use.

modeling statements: Delay calculation language (DCL) statements that map cell configurations to
modeling procedures.

net, net instance: An abstraction expressing the idea of an electrical connection between various points in a
design. In a hierarchical representation of the design, nets can occur at all levels and may connect to pins of
lower hierarchical levels (including cell instances), ports of the current hierarchical level, and each other. In
a flattened (unfolded and elaborated) design, electrically connected nets are collapsed and each net instance
corresponds to a unique interconnect structure in the implementation.

nochange timing check: A timing check similar to a setup/hold timing check except the setup and hold
times are referred to opposite transitions of the reference signal. The stable interval is extended to include
the period between these transitions, i.e., the time for which the reference signal stays in a specified state.
This timing check is frequently applied to memory and latch-banks to establish the stability of the address
or select inputs before, during, and after the write pulse.

node: A conceptual point (through which logic signals pass) that has been identified as an aid to modeling
the timing properties of a cell but may not correspond to any physical structure. In Physical Design
Exchange Format (PDEF), this is a physical pin that does not correspond to a logical structure.

nugget: A data structure used in the procedural interface (PI) for rapid switching between technologies.

output: A pin or port shall only place logic signals onto a connected net or interconnect structure.

parameter: A data item required for the calculation of some result.

parasitics: Electrical properties of a design (resistance, capacitance and impedance) that arise due to the
nature of the materials used to implement the design.

period timing check: A timing check that specifies the allowable time between successive periods of a
signal.

periphery: The outer part of an integrated circuit where instances of cell types designed specifically to
interface the internal circuitry to the “outside world” are placed. This part includes “pad” cells (which are
input and output buffers) and power and ground pads; it may also include test circuitry, such as boundary

7
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 7 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

scan cells.

pi-model: A simplification of a general resistor/inductor/capacitor (RLC) network that represents the
driving-point admittance for an interconnect.

pin: A terminal point where an interconnect structure makes electrical contact with the fixed structures of a
cell instance or the conceptual point where a net connects to a lower level in the design hierarchy.

pin count: The number of cell instance pins that an interconnect structure visits, including all input, output,
and bidirectional pins. Pin count is the number of “places” the interconnect goes to on the chip.

pnet: A physical net that has no correspondence to the logical function of the design, such as a route
segment that is reserved for future routes across a hard macro, or a power net not described in the design
netlist.

pole: The complex frequency where a Laplace Transform is infinite. Combined with residues, this is a
convenient mathematical notation for the impedance or transfer function of a passive circuit, such as an
resistor/inductor/capacitor (RLC) circuit, because poles above this frequency can be ignored in calculations
without significant loss of accuracy.

port: A conceptual point at that a cell or a hierarchical design unit makes its interface available to higher
levels in the design hierarchy.

primary input: The point where a logic signal arrives at the boundary of the design as currently known to
an electronic design automation (EDA) application. For a complete integrated circuit design, for example,
this point is the metal pad of an input or bidirectional pad cell.

primary output: The point where a logic signal leaves the design as currently known to an electronic
design automation (EDA) application. For a complete integrated circuit design, for example, this point is
the metal pad of an output or bidirectional pad cell.

procedural interface (PI): The set of C functions used by an application and a delay and power calculation
module (DPCM) to exchange information and determine the timing calculation for a design.

pulse width timing check: A timing check that specifies the minimum time a signal shall remain in a
specified state once it has transitioned to that state.

receiver: A pin of a cell instance that is receiving or can receive a signal from an interconnect structure.

recovery/removal timing check: A timing check that establishes an interval with respect to a reference
signal transition during which an asynchronous control signal may not change from the active to inactive
state. This timing check is frequently applied to flip flops and latches to establish a stable interval for the
set and reset inputs with respect to the active edge of the clock or the active-to-inactive transition of the
gate.

Two limit values are necessary to define the stable interval. The recovery time is the time before the
reference signal transition when the stable interval begins. The removal time is the time after the reference
signal transition when the stable interval ends.

If the asynchronous control signal goes inactive during the stable interval, it is unknown whether the flip
flop or latch takes on the state of the data input, remains set, or is reset.

recovery time: See: recovery/removal timing check.

8
Copyright © 2010 IEEE all rights reserved.

– 8 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

recovery timing check: A timing check that establishes only the beginning of the stable interval for a
recovery/removal timing check. If no removal timing check is provided for the same arc, transitions, and
state, the stable interval is assumed to end at the reference signal transition and a negative value for the
recovery time is not meaningful. See also: recovery/removal timing check.

region: A region pertains to a particular physical section or block of a floor plan. See also: cluster.

removal time: See: recovery/removal timing check.

removal timing check: A timing check that establishes only the end of the stable interval for a
recovery/removal timing check. If no recovery timing check is provided for the same arc, transitions, and
state, the stable interval is assumed to begin at the reference signal transition and a negative value for the
removal time is not meaningful. See also: recovery/removal timing check.

residue: The value that has the complex pole. See also: pole.

resistance times capacitance (RC) time constant: The product of some resistance and some capacitance
(having the dimensions of time) or a time constant computed in some other way.

return code: A value returned by a function indicating whether the function completed successfully. If the
function did not complete successfully, it may return a nonzero return code; the exact value may indicate
one of several possible severity conditions: informational, warning, error, severe, terminal error, etc.

route, global route: In Physical Design Exchange Format (PDEF), the physical description of interconnect
routing between logical and physical pins of cell, spare_cell, and/or cluster instances.

row: In a Physical Design Exchange Format (PDEF) datapath cluster, a cluster of cell, spare_cell and/or
cluster instances placed or constrained to be placed in the vertical (Y-axis) direction. See also: column;
datapath.

scalar: An integer constant.

sequence point: A certain point in the execution sequence of a program where all side effects of previous
evaluations are complete and no side effects of subsequent evaluations have occurred. (Refer to ISO/IEC
9899:1990, Section 5.1.2.3, page 7.3)

segment: A portion of an interconnect structure treated as a unit for the purposes of extracting or estimating
its electrical properties. See also: parasitics.

setup/hold timing check: A timing check that establishes an interval with respect to a reference signal
transition during which some other signal may not change value. This timing check is frequently applied to
flip flops and latches to establish a stable interval for the data input with respect to the active edge of the
clock or the active-to-inactive transition of the gate.

Two limit values are necessary to define the stable interval. The setup time is the time before the reference
signal transition when the stable interval begins and shall be negative if the stable interval begins after the
reference signal transition. The hold time is the time after the reference signal transition when the stable
interval ends and shall be negative if the stable interval ends before the reference signal transition.
If the data signal changes during the stable interval, then the reliability of the resulting state of the flip flop
or latch is unknown.

setup time: See: setup/hold timing check; nochange timing check.

3 Information on references can be found in Clause 2.

9
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 9 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

setup timing check: A timing check that establishes only the beginning of the stable interval for a
setup/hold timing check. If no hold timing check is provided for the same arc, transitions, and state, the
stable interval is assumed to end at the reference signal transition and a negative value for the setup time is
not meaningful. See also: setup/hold timing check.

shared port: An output or bidirectional port where some other output port of the cell derives its logic
function. The output load at a shared port affects not only the delay to that port itself but also the delay to
any ports sharing it.

sink, sink pin: The sink pin is the end of a delay arc (i.e., the destination of the logic signal). For arcs
across cell instances, the sink is the driver pin. For arcs across an interconnect, the sink is the receiver pin.

size metric: A value used to estimate properties of interconnect wholly contained in a region. The metric
may be freely chosen (for example, square microns or gate sites), but it needs to be consistent between the
cells and the wire load models. See also: wire load model.

skew timing check: A timing check that specifies the maximum time between two signal transitions. This
timing check is frequently applied to dual-clock flip flops to specify the maximum separation of the active
edges of the two phases of the clock.

skip: In Physical Design Exchange Format (PDEF), spacing between the ordered cell, spare_cell, and/or
cluster instances in rows and/or columns of a datapath.

slew: A measure of the shape of the waveform constituting a logic state transition. A slew value can have
the dimensions of time, in which case it is a slew time, or the dimensions of voltage per time, in which case
it is a slew rate. The delay and power calculation system (DPCS) allows either interpretation if used
consistently.

slew-dependent delay: That part of an input-to-output delay that can be attributed to the signal at the input
of the arc taking longer to make a transition than is considered ideal.

slew rate: A measure of how quickly a signal takes to make a transition (i.e., a voltage-per-unit time). Slew
rate is inversely related to slew time and is sometimes used incorrectly where slew time is intended.

slew time: A measure of how long a signal takes to make a transition (i.e., the rise time or fall time). Slew
time is inversely related to slew rate. The way a slew time value is abstracted from the continuous
waveform at a cell pin varies with different cell characterization methods.

soft region: A cluster that does not have a specified physical location in a floorplan. It may have constraints
on how closely the cells within the cluster are placed relative to each other. A soft region may be located
within a hard region.

source, source pin: The source pin is the start of a delay arc (i.e., the origin of the logic signal). For arcs
across cell instances, the source is the receiver pin. For arcs across interconnect, the source is the driver pin.

spare_cell: A cell instance that is presently not part of the logical function of a design and therefore is not
included in the design’s logical netlist. A spare_cell is typically reserved for future logic modifications to be
implemented through changes in the interconnect layers of the chip.

Standard Structure: A particular C structure, defined in std_stru.h, which contains fields used to pass
data over the procedural interface (PI) (thus avoiding large numbers of arguments). Most functions of the
PI have a pointer to a Standard Structure as their first argument.

technology data: Data used to calculate the timing properties of a cell instance based on its context in the

10
Copyright © 2010 IEEE all rights reserved.

– 10 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

design. This term includes information that is not cell type specific and data specific for each cell type in
the library. The kind of data used varies with the timing calculation methodology. General data and cell
data may be contained in the same file or in separate files. Cell data also may be merged with the timing
models of each cell, for example, when a tool performs its own timing calculation.

technology library: A technology library is a program written in delay calculation language (DCL)
consisting of one or more subrules, each of which may contain references to other subrules (yet to be
loaded). There is no hierarchical limit to the nesting of subrules within the scope of a technology library.
Subrules can also be segmented into technology families, which alters the way they are made available to
the application.

time-of-flight: The time delay between a signal leaving a driving pin or primary input port and reaching a
receiving pin or primary output. Time-of-flight is generally dominated by the time taken to charge the
distributed capacitance of the interconnect and the capacitance of the driven pins through the distributed
impedance of the interconnect. The internal impedance of the driving port affects the load-dependent delay
but not (directly) the time-of-flight.

timing annotation (file):The annotation of a design in one tool with timing data computed by another tool.
If timing calculation is performed as an offline process (separately from the application using the timing
data), the process of reading the timing data into the tool is known as timing annotation. A timing
annotation file stores the data written by the timing calculator and is later read by an application.

timing arc: A pair of ports, pins, or nodes possess some timing relationship such as the propagation delay
of a signal from one to the other or a timing check between them. Delay arcs may be between two distinct
ports or nodes of a cell or over the interconnect from driver pins to receiver pins.

timing calculation, delay calculation: The process of calculating values for the delays and timing checks
associated with the physical primitives (cells) of an integrated circuit design, or part of an integrated circuit
design, and their interconnections.

timing check: A timing property of a circuit (frequently a cell) that describes a relationship in time between
two input signal events. This relationship needs to be satisfied for the circuit to function correctly.

timing model: A timing model represents the timing behavior of a cell for applications such as simulation
and timing analysis. For black-box timing behavior, it represents the definition of pin-to-pin delays between
any pair of pins as well as internal nodes. In addition, for sequential cells it provides the definition of
timing checks and constraints on any pair of pins and/or internal nodes.

transition: The change of a logic signal from one state to another (as in “... a transition at the input shall
cause ...”) or the pair of logic states between which a transition may occur (as in “... the delay for a low-to-
high transition ...”).

unloaded delay: The conceptual delay value for a delay arc of a cell when the output pin is unloaded
(unconnected) and the signal at the input pin conforms to some ideal waveform.

undefined behavior: Behavior for which the standard imposes no requirements (e.g., use of an erroneous
program construct). Permissible undefined behavior may occur in the following range:

a) Ignoring a situation completely with unpredictable results

b) Behaving during translation or program execution in a documented manner characteristic of the
environment (with or without the issuance of a diagnostic message)

c) Terminating a translation or execution (with the issuance of a diagnostic message)

11
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 11 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

NOTE—Many erroneous program constructs do not engender undefined behavior; they are required to be diagnosed.4

unspecified behavior: Behavior (for a correct program construct and correct data) that depends on the
implementation. The implementation is not required to document which behavior occurs. Usually the range
of possible behaviors is delineated by the standard.

via: In Physical Design Exchange Format (PDEF), a physical connection between two different levels of
interconnect or between a level of interconnect and a physical or logical pin.

wire load model: A statistical model for the estimation of interconnect properties as a function of the
geometric measures available before the completion of layout and routing. Typical model properties include
fanout, capacitance, length, and resistance. See also: size metric.

4 Notes in text, tables, and figures of a standard are given for information only and do not contain requirements needed to
implement this standard.

12
Copyright © 2010 IEEE all rights reserved.

– 12 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

4 Acronyms and abbreviations

This clause lists the acronyms and abbreviations used in this standard:

API application programming interface

ASIC application specific integrated circuit

AWE asymptotic waveform evaluation

BNF Backus-Naur form

CGHT clock gating hold test

CGST clock gating setup test

CST clock separation test

DCL delay calculation language

DHT data hold test

DPCM delay and power calculation module

DPCS delay and power calculation system

DPW data pulse width

DST data setup test

EDA electronic design automation

EDIF Electronic Design Interchange Format

HDL hardware description language

IC

PDEF

integrated circuit

Physical Design Exchange Format

PI procedural interface

PVT process/voltage/temperature

RLC resistor/inductor/capacitor

RC resistance times capacitance

SDF Standard Delay Format

SPEF Standard Parasitic Exchange Format

SPICE Simulation Program with Integrated Circuit Emphasis

VHDL VHSIC Hardware Description Language

VHSIC very-high-speed integrated circuit

VLSI very-large-scale integration

13
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 13 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

5 Typographical conventions

This clause describes the typographical conventions used within this specification.

5.1 Syntactic elements

a) Italicized, lowercase words, some containing embedded underscores, are used to denote syntactic
categories (terminals and nonterminals), for example,rule_name

b) Boldface words are used to denote reserved keywords, operators, and punctuation marks as a
required part of the syntax.

 MODEL_SLEW, *D_NET or :

c) The ::= operator separates the two parts of a Backus-Naur form (BNF) syntax definition. The
syntax category appears to the left of this operator and the syntax description appears to the right
of the operator. For example, the following step shows the four options for a suffix_bus_delim.

d) A vertical bar separates alternative items (use one only) unless it appears in boldface, in which
case it stands for itself, for example,

suffix_bus_delim ::=] | } |) | >

e) Square brackets enclose optional items unless it appears in boldface, in which case it stands for
itself. For example,

r_net ::= *R_NET net_ref total_cap [routing_conf] {driver_reduc} *END

indicates routing_conf is an optional syntax item for r_net, whereas

suffix_bus_delim ::=] | } |) | >

indicates the closing square bracket is part of the suffix_bus_delim character set.

f) Braces enclose a repeated item unless it appears in boldface, in which case it stands for itself. The
item may appear zero or more times; the repetitions occur from left to right as with an equivalent
left-recursive rule. An item which may appear one or more times is listed first, followed by the
item enclosed in braces, such as

pos_integer ::= <digit>{<digit>}

g) Parentheses enclose items within a group (use one only) unless it appears in boldface, in which
case it is a literal token. In the following example:

bus ::= (BUS physical_name {attribute} ({net_ref} | {pin_ref} {node_ref}))

the first set of parentheses are part of the syntax for a bus and the second set groups the items
net_ref OR the combination of a pin_ref and node_ref.

h) Angle brackets enclose items when no spacing is allowed between the items, such as within an
identifier. In the following example:

identifier ::= <identifier_char>{<identifier_char>}

14
Copyright © 2010 IEEE all rights reserved.

– 14 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

the actual character(s) of the identifier cannot have any spacing.

i) A hyphen (-) is used to denote a range. For example:

 upper ::= A – Z

indicates that upper can be an uppercase letter (from A to Z).

5.2 Conventions

Conventions used in the main text are as follows:

a) Italicized font is used when a term is being defined.

b) Monospace font is used for examples, file names, and references to constants such as 0, 1, or x
values.

15
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 15 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

6 DPCS flow

The goals of the DPCS architecture are to make it possible in a multivendor, multitool environment for the
following to occur:

a) Integrated circuit designers to calculate timing and power consistently

b) Integrated circuit vendors to express timing and power information once for a given technology
while enabling sufficient EDA application accuracy

6.1 Overview

To meet these goals, the DPCS shall have total control of delay and power calculation, support arbitrary
expressions for delay and power values, and have very high performance. In addition, the DPCS
architecture shall permit integrated circuit vendors to supply data (equations, coefficients, or algorithms)
for delay and power calculation to their customers independent of the release of design tools by EDA
vendors.

Figure 1 shows a high-level representation of the DPCS architecture and relationships among several key
components for calculating delay and power in an integrated circuit design environment.

Figure 1—High-level DPCS architecture linkage
structure

The DPCM contains code (compiled from DCL source) that enables an application to compute power,
delays, and timing constraints (for example, setup and hold tests) efficiently:

a) The PI is used by both an application and the DPCM to control delay and power calculations.

b) The Standard Delay Format (SDF) contains constructs for describing computed timing data (for
back annotation) and specifying timing constraints (for forward annotation). In integrated circuit
design, it is common for a delay calculator application to calculate delays from postlayout data and
write out the results in SDF.

c) The Physical Design Exchange Format (PDEF) contains constructs to describe physical design
information. It can be used as a back-annotation medium for passing physical design information
from back-end applications (floorplanning and layout) to those on the front end; it can also be
used to communicate physical constraints from frontend applications (synthesis, timing analysis,

16
Copyright © 2010 IEEE all rights reserved.

– 16 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

and partitioning) to those on the back end.

d) SPEF contains constructs to convey information between parasitic extractors and applications that
utilize the extracted circuit information.

Figure 1 also illustrates the following key points about applications that require delay and power
information:

— Applications shall be written (or modified) to use the DPCS-defined PI for all delay and power
calculations.

— The application is fully responsible for mapping between design instances and cell types.

— The application is fully responsible for the state of the design. The DPCM is responsible for
calculating delay and power and uses the PI to acquire all required design specific information,
including such data as models of parasitic effects (often contained in SDF, PDEF, or SPEF files).

— The DPCM is composed of one or more subrules. Subrules are compiled C code constructed from
an ASCII description following the rules of the DCL. A subrule may implement zero or more
timing and power models. The DPCM is dynamically linked with the application during
execution.

— Errors in timing and power models may be incrementally corrected by the release of one or more
subrules.

6.1.1 Procedural interface

A crucial part of the DPCS standard is the PI between an application and the DPCM. This PI enables the
same DPCM to function with multiple applications. Details of the PI are described in Clause 10.

To enable an application to be independent of implementation-specific characteristics of a DPCM, code that
implements the functions dcmRT_InitRuleSystem and/or dcmRT_BindRule shall not be statically linked
with the application. Figure 1 illustrates the required linkage structure. The code for the three functions
mentioned previously shall reside in a shared object-code library named libdcmappl+ that is
dynamically linked to the application at run time. There may be implementation-dependent procedure calls
between libdcmapp+ and the DPCM, but this architecture isolates the application from such details.

NOTE—When the EDA application is statically linked, the link editor shall be told which external symbols need be
resolved with dynamically loaded code and how to locate that code. The specification of how to locate the code shall
allow the application to choose from among multiple implementations of libdcmapp+.

6.1.2 Global policies and conventions

The DPCM assumes a single locus of control between it and the application. The DPCM also assumes the
application understands any data returned as part of a call as well as any data passed to the DPCM by the
application that is passed on to the application as part of a callback. For example, if an application passes a
pointer to a port structure as one argument in a call to the DPCM, the DPCM assumes it can pass that same
pointer as an argument to a callback function.

In general, the DPCM shall not cache any design-specific data values between calls, because the DPCM
cannot know when any such data might become invalid. The DPCM can cache within a single application
call.

6.2 Flow of control

During execution, the flow of control within the DPCS moves between the application and the DPCM,
which subject to the following two constraints:

17
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 17 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

— There is no “abnormal” flow of control across its PI; that is, all function calls return control
through the normal procedure-return mechanism.

— A DPCM shall not terminate the execution of the application to which it is linked.

6.3 DPCM—application relationships

The DPCM has been designed to allow easy integration of dynamically linked executable modules that
performs delay and power calculation. The library developer decides how the components of the
technology library should be architected and implemented, and organized into physical units called
subrules. Subrules may be segmented into technology families, which defines the way they are made
available to the application (see 10.8) The run-time system assembles these subrules into a unified DPCM.
The application then views the DPCM as a single module from which it can request services.

6.3.1 Technology library

A technology library is a program written in DCL consisting of one or more subrules, each of which may
contain references to other subrules (yet to be loaded). There is no hierarchical limit to the nesting of
subrules within a technology library.

6.3.2 Subrule

A subrule contains a combination of definitions and prototypes used to implement a portion of a technology
definition. A subrule is a separate compilation unit and consists of one or more of the following
components:

a) C preprocessor directives

b) Embedded C code

c) DCL statements

6.4 Interoperability

Consideration has been given to having multiple implementations to supporting systems for this standard
(compiler, run-time linker, and run-time library) and the desire to support at least a minimal level of
interoperability among such implementations.

In particular, an application can concurrently access subrules constructed in multiple implementations by
doing the following:

a) Limiting all subrules in a particular technology family to a single implementation

b) Appending an implementation-specific suffix to the dcm prefix for all PI calls whose names begin
with dcm

c) Requiring the application to

1) Track which technology families use which implementation

2) Use the appropriately named PI calls

3) Maintain separate implementation-specific Standard Structures

18
Copyright © 2010 IEEE all rights reserved.

– 18 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

7 Delay calculation language (DCL)

This subclause describes the language for delay modeling and calculation used in this standard.

7.1 Character set

The DCL character set shall be the same as that defined in Section 5.2.1 (“Character sets”) of
ISO/IEC 9899:1990, excluding trigraph sequences and multibyte characters. The alphabetic escape
sequences such as “\n,” representing newline, shall be the same as those defined in Section 5.2.2
(“Character display semantics”) of ISO/IEC 9899:1990.

7.2 Lexical elements

This subclause describes the lexical elements used to define the DCL syntax and semantics.

7.2.1 Whitespace

Whitespace is a contiguous sequence of one or more characters in the set: space, horizontal_tab, newline,
carriage_return, vertical_tab and form_feed.

7.2.2 Comments

A comment shall be either of the following:

a) A character sequence that starts with /* and ends with the first occurrence of the character
sequence */. Within a comment, the character sequence /* shall not be recognized as starting a
nested comment.

b) A character sequence that starts with // and ends with the first occurrence of either the newline or
carriage_return characters.

7.2.3 Tokens

The syntax for tokens in DCL is given in Syntax 7.1.

token ::=
keyword
| identifier
| double_quoted_character_sequence
| constant
| string_literal
| operator
| punctuator
| header_name

Syntax 7.1: token

Tokens other than string_literal and double_quoted_character_sequence shall not contain embedded
whitespace.

7.2.3.1 Keyword

DCL reserves many tokens as keywords (see Table 1). These keywords shall be used only in the context as
defined by DCL. No keyword shall be used as an identifier (see 7.2.3.2).

19
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 19 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 1—Keywords

ABS
ABSTRACT
ADD_ROW
AGGREGATE
ANYIN
ANYOUT
ARGV
ASSIGN
AUTOLOCK
BIAS
BIT
BINARY
BLOCK
BOTH
BREAK
BUS
BUSY
BY
CALC
CALC_MODE
CALC_MODE_SCALAR
CALL
CELL
CELL_DATA
CELL_QUAL
CGHT
CGPW
CGST
CHAR
CHECK
CHECKS
CKTTYPE
CLKFLG
COMMON
COMPARE
COMPILATION_TIME_STAMP
COMPLEX
COND_NODE
CONSISTENT
CONSTANT
CONTINUE
CONTROL_PARM
CPW
CST
CYCLEADJ
DATA
DEFAULT
DEFINES
DELAY
DELETE_ROW
DESCRIPTOR
DHT
DIFFERENTIAL_SKEW
DO

NODES
NUM_DIMENSIONS
NUM_ELEMENTS
NUMBER
ONE_TO_Z
OPTIONAL
OTHERWISE
OUTPUT
OUTPUT_PIN_COUNT
OUTPUT_PINS
OVERRIDE
PASSED
PATH
PATH_DATA
PATH_SEPARATOR
PHASE
PIN
PINLIST
PRIMITIVE
PRINT_VALUE
PRAGMA
PROCESS_VARIATION
PROCESS_VARIATION_SCALAR
PROPAGATE
PROPERTIES
PROTOTYPE_RECORD
PROXY
PURE
QUALIFIERS
READ_LOCK
REAL_PART
RECOVERY
REFERENCE
REFERENCE_EDGE
REFERENCE_EDGE_SCALAR
REFERENCE_MODE
REFERENCE_MODE_SCALAR
REFERENCE_POINT
REFERENCE_POINT_PIN_ASSOCIATION
REFERENCE_SLEW
REMOVAL
REPLACE
REPEAT
RESULT
RETRY
RISE
ROUTE
RULE_PATH
SETUP
SETVAR
SEVERE
SHARED
SHORT
SIGNAL

20
Copyright © 2010 IEEE all rights reserved.

– 20 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

DOUBLE
DPW
DST
DYNAMIC
EARLY
EARLY_MODE
EARLY_MODE_SCALAR
EARLY_SLEW
EDGES
END
ERROR
EVAL
EXCESS_64
EXCESS_128
EXPAND
EXPANDED
EXPORT
EXPOSE
EXTERNAL
FALL
FILE
FILE_PATH
FILTER
FLOAT
FOR
FORCE
FORWARD
FREE_SPACE
FROM
FROM_POINT
FROM_POINT_PIN_ASSOCIATION
FUNCTION HOLD
IMAG_PART
IMPORT
IMPORT_EXPORT_TAG
IMPURE
INCONSISTENT
INFORM
INPUT
INPUT_PIN_COUNT
INT
INTERNAL
IS_EMPTY
KEY
LAST
LATE
LATE_SLEW
LAUNCHABLE
LEADING
LOCAL
LOCK
LOCK_ATTRIBUTE_BUSY
LOCK_ATTRIBUTE_LAZY
LONG
METHOD

SIGNAL_EDGE
SIGNAL_EDGE_SCALAR
SIGNAL_MODE
SIGNAL_MODE_SCALAR
SIGNAL_POINT
SIGNAL_POINT_PIN_ASSOCIATION
SIGNAL_SLEW
SIGNED
SINK_EDGE
SINK_EDGE_SCALAR
SINK_MODE
SINK_MODE_SCALAR
SINK_STRANDS
SINK_STRANDS_LSB
SINK_STRANDS_MSB
SKEW
SLEW
SOURCE_EDGE
SOURCE_EDGE_SCALAR
SOURCE_MODE
SOURCE_MODE_SCALAR
SOURCE_STRANDS
SOURCE_STRANDS_LSB
SOURCE_STRANDS_MSB
SPACE
STATEMENTS
STEP_TABLE_BACKWARDS
STEP_TABLE_CURRENT
STEP_TABLE_END
STEP_TABLE_FORWARDS
STEP_TABLE_START
STEP_TABLE_TO_DEFAULT_RECORD
STORE
STRING
SUBMODEL
SUBRULE
SUBRULES
SUPPRESS
TABLE
TABLEDEF
TABLE_PATH
TECH_FAMILY
TERM
TEST
TEST_TYPE
TO
TO_POINT
TO_POINT_PIN_ASSOCIATION
TRANSIENT
TRAILING
UNCOMPRESSOR
UNCOMPRESS_ON_RECALL
UNCOMPRESS_ON_STORE
UNLOAD_TABLE
UNSIGNED

21
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 21 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

METHODS
MODEL
MODEL_DOMAIN
MODEL_NAME
MODELPROC
MODIFIERS
MONOLITHIC
NEW
NIL
NOCHANGE
NODE
NODE_COUNT
NODE_POINT
NODE_POINT_PIN_ASSOCIATION

UNTIL
VAR
VECTOR
VOID
WAIT
WARNING
WHEN
WHILE
WRITE_LOCK
WRITE_TABLE
Z_TO_ONE
Z_TO_ZERO
ZERO_TO_Z

All keywords shall be case sensitive. Each keyword has two valid syntactic forms: one using only
uppercase letters, and one using only lowercase letters. Table 1 shows only the uppercase syntactic form.

7.2.3.2 Identifier

An identifier is the name that represents a value, except within the 'PATH, FROM, TO, BUS, 'TEST,
INPUT, NODE and OUTPUT subclauses, where it is treated as a literal string. An identifier is a sequence
of one or more characters starting with an alphabetic character, followed by zero or more alphanumeric or
underscore (_) characters.

Syntax 7.2 presents identifiers in DCL.

identifier ::= identifier_first_character
{<identifier_character>}

identifier_first_character ::= a-z | A-Z
identifier_character ::= a-z | A-Z | 0-9 | _

Syntax 7.2: identifier

An identifier is case sensitive. An identifier shall not be one of the following:

a) A keyword

b) A reserved word in the C or C++ languages (refer to the ISO/IEC – 9899 :1990 and ISO/IEC
14882:2003)

c) Any character sequence beginning with the letters DCM in any mixture of case

NOTE—It may be desirable to ensure that some identifiers are universally unique, so as to not collide when disparate
library pieces from different companies are combined. Examples of such identifiers are METHOD names and
TECH_FAMILY names.

7.2.3.3 Double quoted character sequence

A double_quoted_character_sequence has the semantics of an identifier.

The syntax for double quoted characters in DCL is given in Syntax 7.3.

22
Copyright © 2010 IEEE all rights reserved.

– 22 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

double_quoted_character_sequence ::= "literal_character_sequence"
literal_character_sequence ::=

<literal_character>{<literal_character>}
literal_character ::= any character in the ASCII character set

except double_quote, newline, or carriage_return

Syntax 7.3: double_quoted_character

7.2.3.4 Predefined references to Standard Structure fields

DCL defines a set of identifiers to reference fields in the Standard Structure. These identifiers shall be
visible in all scopes. See Table 2.

Table 2—DCL predefined references to Standard Structure fields

Predefined identifier
(data type)

Set by DPCM or
passed in by application

Description

BLOCK
(PIN)

Passed in during model search,
Passed in calculation.

The instance block identification in the
design.

CALC_MODE
(STRING)

Passed in calculation. Indicates the type of calculation
associated with the current propagate
segment calculation: best case, worst
case, or nominal.

CALC_MODE_SCALAR
(INT)

Passed in calculation. Indicates the type of calculation
associated with the current propagate
segment calculation: best case, worst
case, or nominal.

CELL
(STRING)

Passed in during model search,
passed in calculation.

The cell of the circuit under
calculation. The unique cell
identification is the concatenation of
CELL, CELL_QUAL, and
MODEL_DOMAIN (separated by a
period).

CELL_DATA
(CELL_DATA_TYPE)

Set during model search,
passed in calculation.

Initial pointer to the caching system for
cell-based store clauses.

CELL_QUAL
(STRING)

Passed in during model search,
passed in calculation.

The cell of the circuit under
calculation. The unique cell
identification is the concatenation of
CELL, CELL_QUAL, and
MODEL_DOMAIN
(separated by a period).

CKTTYPE
(STRING)

Set by DPCM. Reserved for library developer’s use.

CLKFLG
(STRING)

Set during model search,
passed in calculation.

Holds the clock flag to be assigned to
this calculation.

CYCLEADJ
(INT)

Set during model search. Reserved for library developer’s use.

EARLY_SLEW
(FLOAT)

Passed in calculation. Holds the slew associated with the
propagate segment for the delay or
slew to be calculated. This slew
represents the SLEW of the earliest
signal to arrive at the segment for
which the DELAY or SLEW is being

23
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 23 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Predefined identifier
(data type)

Set by DPCM or
passed in by application

Description

calculated.

FROM_POINT
(PIN)

Set during model search,
passed in calculation.

Holds the from point of the propagate
segment for the delay or slew to be
calculated.

FROM_POINT_PIN_ASSOCIATI
ON
(PIN_ASSOCIATION)

Set during model search. Used during the modeling of a cell. Its
general usage is to associate library
information with the from pin.

FUNCTION
(INT)

Set during model search. Contains the function operator
enumeration value.

INPUT_PIN_COUNT
(INT)

Passed in during model search. Holds the number of input pins on the
circuit currently being modeled or
under calculation.

LATE_SLEW
(FLOAT)

Passed in calculation. Holds the slew associated with the
propagate segment for the delay or
slew to be calculated. This represents
the SLEW of the latest signal to arrive
at the segment for which the DELAY
or SLEW is being calculated.

MODEL_DOMAIN
(STRING)

Passed in during model search,
passed in calculation.

The cell of the circuit under
calculation. The unique cell
identification is the concatenation of
CELL, CELL_QUAL and
MODEL_DOMAIN (separated by a
period).

MODEL_NAME
(STRING)

Set during model search. Holds the name of the modelproc that
is currently in control.

NODE_COUNT
(INT)

Passed in during model search. Holds the number of nodes connected
to the circuit currently being modeled
or under calculation.

NODE_POINT
(PIN)

Set during model search. Holds the pin data structure associated
with the node. Generally used during a
DO statement.

NODE_POINT_PIN_ASSOCIATI
ON
(PIN_ASSOCIATION)

Set during model search. Used to associate library data with the
node.

OUTPUT_PIN_COUNT
(INT)

Passed in during model search. Holds the number of output pins
connected to the circuit currently under
calculation or model build.

PATH
(STRING)

Set during model search,
passed in calculation.

Holds the path or test statement name.

PATH_DATA
(PATH_DATA_TYPE)

Set during model search,
passed in calculation.

Holds the pointer to the path and pin
base cache

PHASE
(STRING)

Set by DPCM. Gives access to phase. This is a
combination of the SOURCE_EDGE
and SINK_EDGE. When the
SOURCE_EDGE and the
SINK_EDGE are the same value,
PHASE is set to I. If they are not the
same value, PHASE is set to O.

24
Copyright © 2010 IEEE all rights reserved.

– 24 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Predefined identifier
(data type)

Set by DPCM or
passed in by application

Description

PROCESS_VARIATION
(STRING)

Passed in during calculation. Indicates the process variation setting
to use.

PROCESS_VARIATION_SCALA
R
(INT)

Passed in during calculation. Indicates the process variation setting
to use.

REFERENCE_EDGE
(STRING)

Set during model search,
passed in calculation.

Indicates whether the calculation is for
the rising, falling, or both edges.

REFERENCE_EDGE_SCALAR
(INT)

Set during model search,
passed in calculation.

Indicates whether the calculation is for
the rising, falling, or both edges.

REFERENCE_MODE
(STRING)

Set during model search,
passed in calculation.

Indicates whether the calculation is for
early mode, late mode, or both.

REFERENCE_MODE_SCALAR
(INT)

Set during model search,
passed in calculation.

Indicates whether the calculation is for
early mode, late mode, or both.

REFERENCE_POINT
(PIN)

Set during model search,
passed in calculation.

Holds the from point of the propagate
segment for the delay or slew to be
calculated and is generally used in
TEST and TABLEDEF statements.

REFERENCE_POINT_PIN_ASSO
CIATION
(PIN_ASSOCIATION)

Set during model search. Used to associate library data with a
reference_point pin.

REFERENCE_SLEW
(FLOAT)

Passed in calculation. Holds the slew associated with the test
segment for which the check is being
analyzed. This slew represents the
SLEW of the reference or "clock." This
allows the REFERENCE_SLEW to
alter the calculations performed by the
CHECK statement. The CHECK
statement can adjust the BIAS by an
amount which is a function of the
reference’s slew.

SIGNAL_EDGE
(STRING)

Set during model search,
passed in calculation.

Indicates whether the calculation
represents the rising edge, falling edge,
or both.

SIGNAL_EDGE_SCALAR
(INT)

Set during model search,
passed in calculation.

Indicates whether the calculation
represents the rising edge, falling edge,
or both.

SIGNAL_MODE
(STRING)

Set during model search,
passed in calculation.

Indicates whether the calculation
represents early mode, late mode, or
both.

SIGNAL_MODE_SCALAR
(INT)

Set during model search,
passed in calculation.

Indicates whether the calculation
represents early, mode, late mode, or
both.

SIGNAL_POINT
(PIN)

Set during model search,
passed in calculation.

Holds the to point of the propagate
segment for the delay or slew to be
calculated and is generally used in
TEST and TABLEDEF statements.
This is used during test computations.

25
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 25 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Predefined identifier
(data type)

Set by DPCM or
passed in by application

Description

SIGNAL_POINT_PIN_ASSOCIA
TION
(PIN_ASSOCIATION)

Set during model search. Used to associate library data with the
signal pin.

SIGNAL_SLEW
(FLOAT)

Passed in calculation. Holds the slew associated with the test
segment for which the check is being
analyzed. This slew represents the
SLEW of the signal or “data.” This
allows the SIGNAL_SLEW to alter the
CHECK statement’s calculation. The
BIAS computed by the CHECK
statement can be a function of the
signal’ slew.

SINK_EDGE
(STRING)

Set during model search,
passed in calculation.

Indicates whether the calculation
represents the rising edge, falling edge,
or both.

SINK_EDGE_SCALAR
(INT)

Set during model search,
passed in calculation.

Indicates whether the calculation
represents the rising edge, falling edge,
or both.

SINK_MODE
(STRING)

Set during model search,
passed in calculation.

Indicates whether the calculation
represents early mode, late mode, or
both.

SINK_MODE_SCALAR
(INT)

Set during model search,
passed in calculation.

Indicates whether the calculation
represents early mode, late mode, or
both.

SOURCE_EDGE
(STRING)

Set during model search,
passed in calculation.

Indicates whether the calculation is for
the rising edge, falling edge, or both.

SOURCE_EDGE_SCALAR
(INT)

Set during model search,
passed in calculation.

Indicates whether the calculation is for
the rising edge, falling edge, or both.

SOURCE_MODE
(STRING)

Set during model search,
passed in calculation.

Indicates whether the calculation is for
early mode, late mode, or both.

SOURCE_MODE_SCALAR
(INT)

Set during model search,
passed in calculation.

Indicates whether the calculation is for
early mode, late mode, or both.

TO_POINT
(PIN)

Set during model search,
passed in calculation.

Holds the to point of the propagate
segment for which the delay or slew is
to be calculated. It is used during delay
and slew computations.

TO_POINT_PIN_ASSOCIATION
(PIN_ASSOCIATION)

Set during model search. Used to associate library information
with a pin representing the to_point.

7.2.3.5 Compiler generated predefined identifiers

The DCL compiler generates the values for the predefined identifiers shown in Table 3.

26
Copyright © 2010 IEEE all rights reserved.

– 26 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 3—DCL compiler generated predefined identifiers

Predefined identifier
(data type)

Description

COMPILATION_TIME_STAMP
(STRING)

The time/date stamp when this rule was compiled.

CONTROL_PARM
(STRING)

Gives access to the CONTROL_PARM value specified in the
SUBRULE statement that loaded this rule.

RULE_PATH
(STRING)

Gives access to the RULE_PATH value specified in the SUBRULE
statement that loaded this rule.

TABLE_PATH
(STRING)

Gives access to the TABLE_PATH value specified in the SUBRULE
statement that loaded this rule.

7.2.3.6 Constant

A constant is defined as a sequence of values that do not change during the execution of the program. DCL
constants can either be a simple value such as a string, a floating point, an integer, a number, or a complex
sequence of values such as an array or a structure.

The syntax for constants in DCL is given in Syntax 7.4.

27
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 27 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

constant ::= string_literal
| floating_point_constant
| double_constant
| integer_constant
| complex_constant
| aggregate_constant
| NIL

string_constant ::= '{any legal character except new_line}'
complex_constant ::= (real_part , imaginary_part)
real_part ::= floating_point_constant
imaginary_part ::= floating_point_constant
aggregate_constant ::= {array_constant_declare |

structure_constant_declare}
structure_constant_declare ::= structure_type_name

structure_constant
structure_constant ::= abstract_structure_constant |

known_structure_constant
known_structure_constant ::= { field_value {, field_value} }
abstract_structure_constant ::= name_of_structure_type :

known_structure_constant
field_value ::= string_literal

| floating_point_constant
| integer_constant
| complex_constant
| structure_constant
| array_constant
| name_of_statement

array_constant_declare ::= base_type
| structure_type_name [`*'{, `*' }] array_constant

array_constant ::= [dimension_list { , dimension_list }]
dimension_list ::= ((constant { , constant })

| ([dimension_list { , dimension_list }]))

Syntax 7.4: constant

The floating_constant, double_constant, and integer_constant tokens have the same definition as defined in
the ISO C standard.

7.2.3.6.1 Predefined constant NIL

NIL is a predefined constant of ISO C type void * with a value of (void *) 0, which shall indicate the
PINLIST, PIN, STRING, ARRAY, or VOID has no value defined.

7.2.3.6.2 Edge type enumerations

The values for the SINK_EDGE and SOURCE_EDGE predefined identifiers are enumerations of the edge
values as shown in Table 4. Use of these reserved words results in the corresponding string values in the
generated code.

The remaining edge types defined in a DCM_EdgeTypes structure: SAME, BOTH, ALL, COMPLIMENT,
and TERMINATEBOTH shall be considered illegal enumeration values for SINK_EDGE and
SOURCE_EDGE.

28
Copyright © 2010 IEEE all rights reserved.

– 28 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 4—Edge types and conversions

Keyword Definition
String
value

enum
Value

FALL
The FALL edge means a signal transitions from a high level to a low
level. The levels in DCL are arbitrary as there are no specified reference
levels because they are implied in the calculation.

'F' 1

ONE_TO_Z
ONE_TO_Z means the signal is transitioning from a high level to a
high impedance state.

'1Z' 7

RISE
The RISE edge means a signal transitions from a low level to a high
level. The levels in DCL are arbitrary as there are no specified reference
levels because they are implied in the calculation.

'R' 0

TERM TERM means the edge terminates and does not propagate. 'T' 5

Z_TO_ONE
Z_TO_ONE means the signal is transitioning from a high impedance
state to a high level.

'Z1' 8

ZERO_TO_Z
ZERO_TO_Z means the signal is transitioning from a low level to a
high impedance state.

'0Z' 9

Z_TO_ZERO
Z_TO_ZERO means the signal is transitioning from a high impedance
state to a low level.

'Z0' 10

7.2.3.6.3 Propagation type enumerations

SINK_MODE and SOURCE_MODE are converted to enumerations as shown in Table 5.

Table 5—Propagation mode conversions

Keyword Definition String value enum value

EARLY The very first edge that propagates through a given cone of logic. 'E' 0

LATE The very last edge that propagates through a given cone of logic. 'L' 1

7.2.3.6.4 Calculation mode enumeration

CALC_MODE values are converted to enumerations as shown in Table 6.

Table 6—Calculation mode conversions

Definition String value enum value

Best case 'B' 0

Worst case 'W' 1

Nominal case 'N' 2

7.2.3.6.5 Test type enumeration

TEST_TYPE values are converted enumerations as shown in Table 7.

29
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 29 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 7—TEST_TYPE conversions

Keyword Definition enum value
CGHT Clock gating hold test 7
CGPW Clock gating pulse width test 6
CGST Clock gating setup test 8
CPW Clock pulse width test 2
CST Clock separation test 3
DHT Data hold Test 10
DIFFERENTIAL_SKEW Differential skew test 15
DPW Data pulse width test 4
DST Data setup test 5
HOLD Hold test 1
NOCHANGE No change test 14
RECOVERY Recovery test 11
REMOVAL Removal test 12
SETUP Setup test 0
SKEW Skew test 13

7.2.3.7 String literal

A literal_character is any member of the character set except the single quote ('), backslash (\), or
newline_character. Each of these restricted characters may be present in a single quoted string if it is
preceded by a backslash.

The syntax for string literals in DCL is given in Syntax 7.5.

string_literal ::= '{<literal_character>}'

Syntax 7.5: string_literal

string_literals follow the same semantics as ISO C string literals (see Section 6.1.4 of ISO/IEC 9899:1990).

7.2.3.8 Operators

The syntax for DCL operators is given in Syntax 7.6.

operator ::= $ | ^ | * | / | + | = | ** | || | && | ! | == | !=
| > | < | >= | <= | -> | <- | <-> | ->X<- | <-X-> | NEW
| EVAL | :: | . | :>: | :^: | `| | `& | `~ | `> | `< | `^

Syntax 7.6: operator

7.2.3.9 Punctuator

The syntax for punctuators is given in Syntax 7.7.

punctuator ::= (|) | [|] | { | } | , | ; | : | . | # | &
| < | > | %{ | }% | ' | "

Syntax 7.7: punctuator

The punctuators (), [], %{}%, and {} shall occur in balanced pairs. Quotation marks ' and " shall also
appear in pairs surrounding the name or string they are enclosing.

30
Copyright © 2010 IEEE all rights reserved.

– 30 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

7.2.3.10 Name

A name is either an identifier or a double_quoted_character_sequence. The use of these punctuators is
incorporated within the subsequent syntax charts in this subclause.

7.2.4 Header names

Preprocessing tokens for header names shall only appear with a #include preprocessing directive. The
header name shall be defined the same as in Section 6.1.7 of ISO/IEC 9899:1990.

7.2.5 Preprocessing directives

DCL preprocessing directives are exactly the set defined in Section 6.8 of ISO/IEC 9899:1990 and have the
same semantics.

7.3 Context

Each program or library shall consist of one or more contexts. A context represents a separation of
execution into logically different streams. A context shall consist of a unique combination of a space and a
plane. Execution in one context shall not alter the computation in another context except where explicitly
directed.

7.3.1 Space

A space is a system of one or more modules linked together to form an execution system. There may be
zero or more spaces resident at any time. Spaces can be loaded or unloaded as needed. Multiple spaces may
share one or more modules from another space. The system shall not load the same module more than once.
If a module is used in more than one space, each module shall appear to the programmer as a separate and
independent copy.

7.3.2 Plane

A plane separates data associated with a space. Each space shall have one or more planes, and the data on
one plane shall be independent of any other plane except where explicitly directed. During execution as
many planes as needed may be created within a space.

7.3.3 Context operation

A context shall represent an independent view of variables and executable modules.

The Standard Structure shall contain the context identifier. The context identifier identifies the context the
associated function should be executed in.

7.3.4 Library parallelism

A context shall be able to accept the assertion of function requests from other contexts. When one context
assigns another context, a function to perform the function is executed on the assigned context using that
context’s variables. When a context has completed its assigned functions, it remains available for future
assignments.

The execution shall proceed in the order the function requests were received by the executing context. If
the function to be executed returns results, those results shall not be accessible to the requesting context
until the executing context has finished executing the requested function. One context requesting another
context to execute a function shall not block the requesting context.

31
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 31 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

7.3.5 Application parallelism

Whatever parallelization method is chosen by the application, the application developers should plan for
library implementations that might be thread based. The application is in control of its parallelization, and
the library has no responsibility in managing it. Applications can use child processes to accomplish
parallelization. It shall be an error for the application to spawn a child process for the purposes of parallel
execution of a library if the following conditions exist:

a) The application does not use shared memory. All memory used both by the application and the
library shall be shared. Furthermore, if the application asserts a memory manager on the library,
that memory manager shall supply shared memory.

b) If the library attempts to load additional modules. It shall be the responsibility of the application to
use only libraries that have loaded all their modules before the fork. DCL uses function pointers to
represent its statement types. These pointers may be undefined between processes if the load has
occurred after the fork.

It is the responsibility of the application designer to be aware of these limitations when designing the
application. The library has no knowledge of the application’s intended parallelism, and the library cannot
be prevented from loading a module or creating its own contexts.

The application may also request that the library create contexts on its behalf. The application may use
these contexts by calling an expose statement passing as the first argument a Standard Structure that
contains one of these contexts. Parallel operation may be obtained by exercising each context on a different
thread. The application shall not attempt call a context while that context is busy performing other work for
the application.

An application thread is allowed to change contexts as it executes. Application threads shall only change
contexts during a call to one of the module’s primary entry points, those statements whose pointers are
exchanged during dcmRT_bindRule, or run-time library support functions.

7.4 Data types

DCL supports three categories of data types, which include native, aggregate, and array. The native data
types are defined in terms of the ISO/IEC 9899:1990 data types. See Table 103in ISO/IEC 9899:1990 for
details of the mapping between DCL and ISO C data types.

7.4.1 Base types

Native types are passed by value (see 7.4.2). It shall be the library’s responsibility to insure that application
data types adhere to the lifetime constraints (see 7.5.2).

NOTE—If a string received from the application on a call is passed to a different context, the originating
function shall wait until the requested context completes before returning to the application.

7.4.2 Native data types

The syntax for native data types in DCL is given in Syntax 7.8.

native_type ::= mathematical_type | pointer_data_type

Syntax 7.8: native_type

7.4.3 Mathematical calculation data types

The syntax for calculation data types in DCL is given in Syntax 7.9.

32
Copyright © 2010 IEEE all rights reserved.

– 32 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

mathematical_type ::= DOUBLE | FLOAT | INT | CHAR | SHORT
| LONG | COMPLEX

Syntax 7.9: mathematical_type

7.4.3.1 C types

Types DOUBLE, FLOAT, INT, CHAR, SHORT, and LONG assume the type definition defined by the C
programming language for the target machine.

7.4.3.2 COMPLEX type

The COMPLEX type represents a complex number consisting of a real component and an imaginary
component. The real and imaginary values are represented as two numbers of type double.

7.4.4 Pointer data types

The syntax for pointer data types in DCL is given in Syntax 7.10.

pointer_data_type ::= STRING | PIN | PINLIST | VOID

Syntax 7.10: pointer_data_type

7.4.4.1 STRING

STRING type is a pointer to the first character in a sequence of ASCII characters, which is terminated with
a zero immediately after the last character of that sequence.

7.4.4.2 PIN

PIN is a pointer to an arbitrary application structure whose first member is of type STRING.

7.4.4.3 PINLIST

PINLIST is a consecutive sequence of PIN types terminated by a zero immediately after the last valid pin in
the sequence.

7.4.4.4 VOID

VOID represents arbitrary data that are not type defined. This type is useful when interacting with C-based
applications or embedded C code that is not using DCL based structures.

7.4.5 Aggregate data types

Aggregate data include a collection of one or more data elements represented by a single identifier. There
are two classes of aggregate data types, structures, and arrays. In the case of arrays, all the data elements
shall be of the same type. In the case of structures, the data elements may vary in type. The syntax for
aggregate data types is given in Syntax 7.11.

33
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 33 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

aggregate_type ::= result_type | statement_type
result_type_statement_members ::= (

assign_statement_name
| calc_statement_name
| expose_statement_name
| external_statement_name
| internal_statement_name
| tabledef_statement_name
| typedef_statement_name
| ABSTRACT)

result_type ::= ([structure_var] [SYNC | SHARED]
result_type_statement_members [field_var] | [structure_var]
result_type_statement_members [TRANSIENT])

statement_type ::= result_type () [PURE | IMPURE]
[CONSISTENT | INCONSISTENT] [LAUNCHABLE]

Syntax 7.11: aggregate_type

The aggregate name shall represent the address of the data. Accessing aggregate data member is given in
Syntax 7.12.

aggregate_access ::=
aggregate_name [[integer_expression { , integer_expression }
] { . (field_name | statement_type_access) }]

statement_type_access ::=
field_name [[index_expression{ , integer_expression }]]
(comma_expression_list)

Syntax 7.12: aggregate_access

7.4.5.1 Result types

RESULT clauses in statements and DATA clauses in TABLEDEFs define aggregate data types that shall be
analogous to structures in the ISO/IEC 9899:1990. The name of the associated statement or table can be
used as the name of the aggregate data type. The RESULT type field ordering is defined in7.9.4 and
7.9.2.3.1 .

Example
calc(resultType): passed(int:x)
 result(double:fp=2*x+3 & integer:x+1);
calc(example): passed(resultType:x)
 result(double:x.fp*4 - 2*x);
calc(exercise): result(double:example(resultType(5)));

7.4.5.1.1 TRANSIENT attribute

Structures can be backed, where memory has been allocated by the system, or transient, which represents
structures that have their memory representation as part of the statement’s stack space. For structures
created with the transient attribute, the space resides in the statement that created the structure. When that
statement concludes, the memory is automatically returned to the system. Backed structures may be
assigned or arguments to a transient target. In these situations, no memory claim counting shall occur. The
resulting structure of a statement is a transient structure.

There are situations where TRANSIENT structure variables and non-TRANSIENT structure variables have

34
Copyright © 2010 IEEE all rights reserved.

– 34 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

to be assigned to target variables or passed as arguments. The following rules govern the assignments to
TRANSIENT structure slots:

a) TRANSIENT variables can be assigned the entire result structure of a statement reference.

b) TRANSIENT variables can be passed as parameters to arguments accepting a TRANSIENT
structure of a compatible type.

c) Non-TRANSIENT structure variables can be passed as parameters to arguments accepting a
TRANSIENT structure of a compatible type.

d) TRANSIENT variables shall not be marked field VAR.

e) Structure definitions shall not contain other structures marked transient.

7.4.5.2 Abstract type

The abstract type shall match any result type that does not have the transient attribute. The compiler shall
have a mode that verifies during the execution of the program that all variable assignments of abstract type
to a result type or passed as arguments identified as a result type are compatible with the target. Compatible
shall mean that the abstract structure may have more fields than the target, but all fields present in both are
in the identical order as those contained in the target and that each field shall match in type and have
compatible var permissions and other attributes.

7.4.5.3 Statement types

A statement type represents a reference to any statement having the compatible PASSED arguments and
RESULT sequences.

Statement types may have attributes associated with them, as follows:

— PURE indicates the associated statements are pure. It shall be an error to assign an impure
statement to a statement type possessing the pure attribute.

— CONSISTENT indicates the associated statements are consistent. It shall be an error to assign an
inconsistent statement to a statement type possessing the consistent attribute.

— IMPURE indicates the associated statements are to be treated as impure. Both impure and pure
statements maybe assigned to a statement type possessing the impure attribute. In addition, it shall
be an error to use the consistent attribute in conjunction with the impure attribute.

— INCONSISTENT indicates the associated statements are inconsistent. Both consistent and
inconsistent statements can be assigned to statement types possessing the inconsistent attribute.

— LAUNCHABLE indicates the statement maybe given to other contexts to process.

Compatible passed or result argument list shall mean the same number of arguments or results where each
argument is a matching type including var permissions and other attributes and in the order of the defining
statement to any level of structure or array nesting.

This enables the passing of statement pointers into other statements.

35
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 35 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Example: exercise() passes statementType1() to example() as a aggregate type:
calc(statementType1): passed(int:x)
 result(int:resType(x)+ 3*x);
calc(statementType2): passed(int:z)
 result(integer:resType(z)+6*z+ 1);
calc(example): passed(statementType1(): y)
 result(int: y(5));
calc(exercise):
 result(int:example(statementType1)+ example(statementType2));

7.4.5.3.1 Array types

The syntax for array types in DCL is given in Syntax 7.13.

array_type ::= [aggregate_type
| mathematical_type
| STRING | PIN | VOID]
dimension_declaration {dimension_declaration}

dimension_declaration ::= [SHARED] [array_var]
[dimension_list]

dimension_list ::= variable_dimension_list
variable_dimension_list ::= * {, *}

Syntax 7.13: array_type

An array type describes a contiguously allocated nonempty set of objects with a particular member object
type, which is called the element type. Array types are modeled by their element type, their number of
dimensions, and the number of elements in each dimension of the array.

An array dimension shall be variable. The number of elements in a variable dimension shall not be
specified when the array is declared and may vary during program execution.

The following is true for all array types:

a) Arrays can have an arbitrary number of dimensions up to a limit of 255. For any particular array,
all of its dimensions shall have the same type—fixed or variable.

b) The length of each dimension in a multidimensional array shall not depend on the index used for
any of the other dimensions of that array —“ragged” arrays shall not be supported.

c) Array indexes shall start with zero (0) in each dimension.

d) Array types shall be passed and returned as pointers to a contiguous memory region. The array
data shall be organized as defined by ISO/IEC 9899:1990.

Array types shall be constant unless declared to be VAR. A VAR array may have its elements changed
during program execution. An array type that has the VAR declaration may be passed as an argument to a
statement requiring a constant array. A constant array type shall not be passed as an argument to a statement
requiring a VAR array type.

The array VAR modifier indicates array elements may be altered by statements other than the statement that
created the array. Assignments for non-var to non-var, var to var, or var to non-var are effected through
pointer manipulation; no copying of array values is performed.

Arrays may contain other arrays. The notation for declaring an array of arrays is a list of dimension

36
Copyright © 2010 IEEE all rights reserved.

– 36 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

declarations. Each dimension declaration represents an array contain within the array with the preceding
dimension declaration.

7.4.5.3.2 Modification of data

Statements define data by sequence of types and variable names listed in either the local, result, or data
clauses. Structure types are considered to have nested defining structures in which each level of nesting
represents a type sequence of the preceding level’s result or data clause. The nesting depth continues until a
sequence of types consists solely of native types.

A statement shall have permission to modify the data it defines. A statement shall have the right to access
any data for the purpose of reading. A statement shall have permission to modify data it did not define if the
defining statement has given permission.

7.4.5.3.2.1 Var permissions

VAR indicates that permission is given to modify data by other statement. There are three levels of VAR
permission (Syntax 7.14). Structure var gives others permission to modify the contents of a structure
consistent with the defining structure’s var settings. Array var allows the contents of an array to be
modified. Field var allows the value of the identified field to be modified by statements other than the
defining statement.

structure_var ::= VAR
array_var ::= VAR
field_var ::= VAR

Syntax 7.14: var

Example
FORWARD CALC(name):
 RESULT(INT[*,*]: constIntArray & NUMBER VAR [*]: varNumVec);

7.4.5.3.3 Type conversions

Type conversions shall be performed based on the following:

a) Changing the type of an argument to the type of the expected parameter

b) Changing the type of an expression term to the type of other terms in the same expression

Only the conversions enumerated in the following subsections are valid in DCL.

7.4.5.3.3.1 Implicit conversions

The following implicit type conversions shall be performed:

a) CHAR, SHORT, INT, and LONG types

Calculations using a mixture of CHAR, SHORT, INT, and LONG shall be automatically converted
to the type with the greater number of bits. Assignments of types with a greater number of bits to a
type of a lesser number of bits shall result in a truncation. An assignment of types with a lesser
number of bits to a target of a greater number of bits shall result in the sign bit being propagated
across the unmatched bits of the longer type.

b) INT to DOUBLE or FLOAT

An INT value shall be converted to DOUBLE (FLOAT) when the expected parameter or expression

37
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 37 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

term has type DOUBLE (FLOAT). An INT value shall be converted to DOUBLE when a division
operator is present in the expression.

c) FLOAT to DOUBLE

A FLOAT value shall be converted to DOUBLE when the expression term has type DOUBLE.

d) PIN to STRING

A PIN value shall be converted to STRING when the expected parameter or expression term has
type STRING.

e) native_array_type, pointer_data_type or aggregate_type to VOID

A native_array_type, pointer_data_type or aggregate_type value shall be converted to VOID
when the expected parameter or expression term has type VOID.

7.4.5.3.3.2 Explicit conversions

The following explicit type conversions shall be performed:

a) AGGREGATE data type to AGGREGATE data type

An AGGREGATE data type shall be converted to an equivalent AGGREGATE data type when the
target parameter has the same complete structure or a contiguous subset of the same structure.

b) A complete structure shall mean the source and target have the same number of elements, each
being the same type, in the same order, with the same var permissions, with the same attributes
such as sync or shared, nested to any number of levels.

c) A contiguous subset shall mean source has more elements than the target but for the targets
element sequence the source shall match it as defined in the complete structure beginning with the
first element.

Example
CALC(resType): passed(int:x)
result(double:fp = 2*x+3 & int:x+1);
CALC(resType2): passed(int:x)
result(double:y=2**x & int:z=x-1);
CALC(example): passed(resType:x)
result(double:x.fp * 4 - 2 * x);
CALC(exercise): result(double:example(resType(5))
+example(resType2(3)));

7.4.5.3.3.3 Abstract type conversion

ABSTRACT type may be assigned or converted to any aggregate target with compatible var permissions.
There shall exist an optional run-time check to ensure the assignment of the contents of the abstract source
are compatible with the contents of the target. A structure of a know type can be the source to a target of
abstract type.

There are situations where the compiler cannot determine the intended source type, such as when accessing
a field within an abstract structure. To enable this feature, a casting operation is allowed on abstract types.

Cast syntax is described in Syntax 7.15.

38
Copyright © 2010 IEEE all rights reserved.

– 38 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

cast ::= type_definition : abstract_variable_name | nested_cast
nested_cast ::= (type_definition : abstract_variable_name)

. fieldName
| (type_definition : nested_cast) . fieldName

Syntax 7.15: cast

7.4.5.3.3.4 Transient conversions

Assignments of transient structures to backed targets shall result in a copy of the structure. Any nested
structures and arrays contained in the transient source are not copied. Assignments of backed structures to
transient targets are pointer assignments, and there shall be no modification of the source structure’s
reference count.

7.4.5.3.3.5 SHARED attribute

A data attribute of SHARED indicates that the memory reference management system shall serialize the
reference counting for these aggregates. No other serialization is required. It is the responsibility of the
library developer to ensure the algorithms employed do not attempt simultaneous update or access. The
results of simultaneous update or access could be unpredictable.

7.4.5.3.3.6 SYNC attribute

A data attribute of SYNC indicates that access for both reference management system and data references
shall be serialized. Arrays shall not have the sync attribute

7.5 Identifiers

Identifiers are named entity within the program.

7.5.1 Name spaces of identifiers

If more than one declaration of a particular identifier is visible at any point in the translation unit, the
syntactic context determines proper reference to different entities. Thus, there are separate name spaces for
various categories of identifiers, as follows:

— Identifiers declared in RESULT clauses

— Identifiers naming methods and technology families

— All other identifiers

7.5.2 Storage durations of objects

An object has a storage duration that determines its lifetime. The three storage durations are static,
automatic, and managed.

An object defined by an ASSIGN statement or whose identifier is declared with external or internal linkage
shall have static storage duration. For such an object, storage shall be reserved prior to program start-up.
The object shall exist and retain its last-stored value throughout the execution of the entire program.

An object defined by a STORE clause shall have static storage duration. For such an object, storage shall be
reserved when the enclosing MODELPROC statement is evaluated. The object shall exist and retain its
last-stored value throughout the execution of the entire program.

39
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 39 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

All identifiers and aggregate objects that are not managed shall have automatic storage duration. For such
objects, storage shall be allocated when the defining statement is called and shall persist until the defining
statement goes out of scope.

For each managed object, such as an array or structure, storage shall be allocated using the NEW operator
and shall persist as long as either the application or the DPCM maintains a claim on that object. The DPCM
shall create a temporary claim on each managed object that is passed or returned to the application. This
claim shall persist until the application either calls a DPCM function or returns control to the DPCM. At
that time, the claim may be removed by the DPCM.

7.5.3 Scope of identifiers

An identifier shall be visible (i.e., can be used) only within a region of program text referred to as its scope.
The 10 different types of scope are as follows:

a) Space

b) Plane

c) TECH_FAMILY

d) Global

e) Subrule

f) Statement-prototype

g) Statement

h) Modeling procedure

i) STATEMENTS

j) RESULT

k) PASSED

l) Discrete

When lexically identical identifiers exist in the same name space, identifiers in outer scopes shall be hidden
until the inner scope terminates. The DCL scope hierarchy is as follows:

Space
Plane
TECH_FAMILY
Global
Subrule
Statement-prototype
Statement
RESULT
PASSED
Discrete
Modeling procedure
STATEMENTS
Statement

The scope of an identifier shall start where the identifier is first declared and extend to the end of the scope
in which it was declared. An identifier shall be declared before it is referenced. Multiple MODELPROC
statements of the same name shall not occur within the same TECH_FAMILY.

40
Copyright © 2010 IEEE all rights reserved.

– 40 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

7.5.4 Linkages of identifiers

A statement identifier declared in different scopes can be made to refer to the same object or statement by a
process called linkage. There are four subrule scope options affecting linkage: EXPORT, IMPORT,
FORWARD, and OPTIONAL. Expose chaining also defines how EXPOSE identifiers are linked within a
TECH_FAMILY’s scope (see 10.8.3.1).

7.5.4.1 EXPORT

A statement identifier shall be made visible outside its declared subrule scope and within the same
TECH_FAMILY by using the EXPORT option on a statement definition.

7.5.4.2 IMPORT

A statement identifier EXPORTED in one subrule scope shall be made visible within another subrule scope
and within the same TECH_FAMILY by using the IMPORT option on a statement prototype.

7.5.4.3 FORWARD

A statement identifier referenced in a subrule scope before its definition (within the same scope) shall be
made visible by using the FORWARD option on a statement prototype.

7.5.4.4 OPTIONAL

Imported or EXPOSE statements that have the OPTIONAL modifier shall be linked with an error code
generating function if the defining function cannot be linked during execution. A DPCM error code
generator shall receive a return code of severity 2 from the reference.

7.5.4.5 Chaining of EXPOSE identifiers

EXPOSE statement identifiers with the same name in separate subrules within the same TECH_FAMILY
are chained together at run-time. The application and DPCM are presented with a single EXPOSE entry
point for this identifier. The first EXPOSE statement in a chain is always used as the reference to any
EXPOSE statement within a particular subrule (even if there is an EXPOSE statement defined within the
subrule containing the reference).

7.6 Operator descriptions

This subclause details the operators used in DCL.

7.6.1 String prefix operator

This subsection details the use of string prefix operators.

7.6.2 Explicit string prefix operator

The explicit string prefix operator is a unary operator that modifies the semantics of logical comparisons
between string operands. This operator can be used with string operands within logical expressions.

The explicit string prefix operator is the * (asterisk) character. This operator shall occur as a separate token
that precedes a string literal or an identifier having a string value.

41
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 41 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

7.6.3 Embedded string prefix operator

The embedded string prefix operator is a unary operator that modifies the semantics of logical comparisons
between string operands. This operator can be used with string operands within logical expressions, table
qualifiers, and table references.

The embedded string prefix operator is the * (asterisk) character. This operator shall occur as the first
character of the string literal, the first character of a name, or the first character of the value of an identifier.
To disable this special meaning of an asterisk, it shall be preceded with a backslash character (\).

7.6.4 String prefix semantics

The semantics of the explicit and embedded string prefix operator are identical. When the string prefix
operator is present, the logical comparison shall be performed considering only a subset of the characters in
the strings. The comparison shall start with the first character after the prefix operator, if present, in each
string and shall proceed for the length of the string with the string prefix operator. If both strings have the
prefix operator, then the comparison shall proceed for the length of the shorter string.

If the explicit string prefix operator is used and its operand contains a leading asterisk, this leading asterisk
shall not be considered an operator; it shall be treated as the first character of the string.

7.6.5 Assignment operator

For native types, except arrays, the assignment operator (=) shall assign the expression value on the right
to a variable on the left. For arrays, this operator shall make the variable on the left (which shall be an array
name) a reference to the array on the right.

7.6.6 New operator

The new operator (NEW) shall be used to create memory space for aggregate types. NEW is used when a new
instance of an array or structure is needed. After the NEW operator creates the space for an array, the values
of the individual members shall be undefined for members that are not an address and a value of zero for all
members that are an address (Syntax 7.16).

new_operator ::= NEW ([AGGREGATE] type_definition
[, destructor_name])

Syntax 7.16: new_operator

7.6.6.1 Memory management

DCL maintains a reference counting system for all aggregate types not marked TRANSIENT. The
reference count represents the number of identifiers that have a valid reference to the aggregate type. When
an aggregate type is assigned to a an identifier, the aggregate type the identifier was referencing has its
reference count decremented and the newly assigned aggregate has its reference count incremented.

When the reference count of an aggregate becomes zero, its memory is returned to the system. When an
aggregate is returned to the system, the reference counts of the other aggregate members it may contain are
decremented.

When an aggregate is passed as an argument to a statement, the reference count of that aggregate is
incremented. When the statement concludes, the reference count is decremented. This ensures for the life of
the called statement the aggregate shall be valid and not returned to the system.

42
Copyright © 2010 IEEE all rights reserved.

– 42 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Aggregates passed or returned to the application have their reference counts incremented. When the
application reenters the library at the same level or lower on the program stack, the reference count
associate with the aggregate is decremented.

7.6.6.2 AGGREGATE directive

The aggregate directive may only be used only when allocating arrays of aggregate types. When the
aggregate directive is used, the new operator creates both the array and aggregate members the array
contains. The aggregate directive does not create aggregates nested within the array aggregate members. In
situations where the array member is an aggregate type that contains one or more nested aggregates, the
nested aggregate values are nil.

7.6.6.3 Destructor statements

Destructor statements are statements that have the responsibility of returning the space of an object that no
longer has any active references remaining. These statements are only required when the objects are self-
referencing either directly or indirectly. The statement defined to be a destructor shall accept as the only
argument the aggregate defined within the new operator and have no result values. These statements are
called when the reference count for the allocated aggregate is decremented to zero.

Example
This typically occurs when a circular system of references exists and a reference to the circle exists from
another identifier. When the last identifier is removed that points to the circle the circular list remains
because those aggregates in the circle all have at least one reference, however there is no reference
remaining to the circle. To ensure proper memory utilization construct an object that contains the circular
system as a member and the object itself is not a member of a circular system itself. When creating this
object, identify a destructor statement that is designed to remove circular system member. When the last
reference to the object is removed, the destructor is called and the circular system is removed.

7.6.7 SCOPE operator(s)

Scope operators are used to change the frame of reference in a program (see Syntax 7.17). The scope
operator may change the cached data reference, the tech_family referenced, or the context referenced. The
type of reference changed depends on the data type used as the left argument preceding the operator called
the scoping prefix.

— :: Scope operator causes the identified item to be referenced from the scope contained in the prefix
without changing the current context for the duration of this call or reference. The :: scope
operator can change the recall reference, the tech_family, or the space used for a statement
reference.

— For recalling stored information or calling a method statement associated with either the
PATH_DATA or CELL_DATA. To recall information, the statement used to store the data shall be
visible to statement making the recall. To call a method statement, the method statement shall be
visible to the statement making the call. This usage of this operator takes a scoping prefix of either
a PATH_DATA or CELL_DATA type, and the right operand is either a statement’s name that
performed the caching as part of the store operation or a method statement call. The scoping prefix
PATH_DATA::statement_name or CELL_DATA::statement_name accesses cached information
associated with the statement that cached its result values as part of a store operation. The scoping
prefix PATH_DATA::method_name() or CELL_DATA:: method_name() determines what action
statement is associated with a method (7.8.4), and what the value of a store variable is, based on
the value of the corresponding predefined identifier PATH_DATA or CELL_DATA (7.2.3.4).

43
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 43 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

— To call statements in other tech_families, use a scope prefix of type TECH_TYPE. The format of a
typical cross tech_family call would look like TECH_TYPE::external_statement_name
([expression {comma_expression_list}]).

— To call statements in other spaces, use a scope prefix of type STD_STRUCT that contains the
desired space context setting. The format of a typical cross tech_family call would look like
STD_STRUCT_TYPE::external_statement_name(). This form of the scope operator the Standard
Structure used shall contain a valid TECH_FAMILY setting in the called context.

— :>:Changing Scope operator performs a similar operation to the scope operator :: but causes the
identified statement to be referenced with the context contained in the left argument. When the
called statement executes, the Standard Structure shall have the context associated with the left
argument. When the statement called completes, the context shall be returned to that of the caller
regardless of whether an error is returned.

scope_change ::= (STD_STRUCT_TYPE | TECH_TYPE) (:: | :>:)
external_statement_reference

recall ::= [(PATH_DATA | CELL_DATA) ::]
statement_name {. field_name}

Syntax 7.17: scope_change

7.6.8 Launch operator

The launch operator :^: causes a statement to be executed to another context. The context the statement is
assigned to is called the target context, and it shall process the statements in the order they were received.
The target context continues to process statements until there are no more statements left to process. When
there are no more statements left to process, the target context remains available but idle waiting on the
next statement to execute.

Any context may launch a statement on any other context at any time. There is no implied order between
the statements launched from different contexts. If a context launches a statement whose target context is
the launching context, the statement executed immediately.

The Standard Structure on the left of the operator that represents the context the function on the right side
of the operator shall have been declared SYNC. The statement identified on the right of the launch operator
may have arguments. Aggregate arguments shall be sync or shared.

The results of a statement launched, if any, shall have the sync attribute automatically associated with it.
The result structure is locked at the time of launch preventing access until the statement completes, at
which time the structure is unlocked.

Launch syntax is described in Syntax 7.18.

launch ::= std_struct_variable :^: statement_reference

Syntax 7.18: launch

7.6.9 Purity operator

A reference to an impure statement shall be treated as PURE if the reference is preceded by the purity
operator (^). The purity operator is defined in Table 8.

44
Copyright © 2010 IEEE all rights reserved.

– 44 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 8—Purity operator

Symbol Definition

^
The unary purity operator declares the statement reference immediately following it to be PURE,
thereby overriding any default assumptions based on the optimization rules. References prefixed
with the purity operator shall be optimized as a PURE reference.

7.6.10 Force operator

FORCE allows the programmer to override the conservative nature of the language in certain situations
(see Syntax 7.19). FORCE shall only be allowed on operations in which the override is limited to the action
being overridden with force. The use of FORCE asserts that the programmer is assuming responsibility for
the correctness of this action.

forcedTarget ::= FORCE (nested_reference)
forcedType ::= FORCE (type_declaration)
forcedParameter ::= FORCE (parameter_expression)

Syntax 7.19: FORCE operator

Examples

a) An aggregate member without the proper var permissions can have its value changed using the
FORCE operator, but FORCE shall not allow the assignment of a non-var aggregate member to a
var target, as errors caused from this action could appear far away from the force operator.

b) Restricted aggregates can be passed to a launch target specifying transient arguments using the
FORCE operator, but FORCE shall not allow a transient aggregate to be passed to a launch target.

c) FORCE shall allow a SYNC or SHARED aggregate to contain other restricted aggregates but not
a transient structure.

The EVAL operator converts a pin range into an one dimensional array of strings where each string
contains a name of a pin contained within the pin range. The array shall contain the same number of
elements as there are pins in the expanded pin range.

7.7 Timing propagation

Static timing includes the need to resolve timing when two or more input signals converge at a node. For
each signal, a time period (window) can be defined based on the earliest and latest possible times when that
signal can arrive at the node. The resolution process at a node determines a window for the node’s output
signal based on the windows of the input signals for that node.

DCL supports five ways (modes) to perform this resolution, which are defined in Table 9 and are used in
PROPAGATE, EDGE, and TEST clauses.

Table 9—Timing resolution modes

Symbol Definition

->
Early(output) = earliest of all early(input)
Late(output) = early(output)

<-
Late(output) = latest of all late(input)
Early(output) = late(output)

<->
Early(output) = earliest of all early(input)
Late(output) = latest of all late(input)

45
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 45 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Symbol Definition

->X<-
Early(output) = latest of all early(input)
Late(output) = latest of all late(input)

<-X->
Early(output) = earliest of all early(input)
Late(output) = earliest of all late(input)

7.7.1 Timing checks

Static timing includes the need to compare the windows of different signals at different nodes. One signal is
always chosen as the reference. The comparison done is determined by a combination of test type, test type
enumeration, and (test mode operator, see Table 10 and 7.16.5.4.3).

Table 10—Test mode operators table

Symbol Definition

->
Signal shall arrive later than reference + bias
Bias shall be computed using early signal and late reference values.

<-
Signal shall arrive earlier than reference – bias
Bias shall be computed using late signal and early reference values.

<->
Signal shall arrive earlier than reference – offset1, and signal shall arrive later than reference +
offset2

There are four possible window-edge comparisons—the early or late edge of the signal window can be
compared with the early or late edge of the reference window. The test mode operand refines the window
comparison by specifying which ends of the windows to compare, along with some additional semantics.

Typically, two windows are maintained for each signal, corresponding to rising and falling transitions. The
EDGE clause selects which window is used for the comparison.

7.7.2 Test mode operators

This subclause details the use of test mode operators.

7.7.2.1 CGHT

The CGHT is similar to the HOLD test mode operator except the reference edge shall be from a clock pin
and the signal shall be from a data pin.

7.7.2.1.1 CGPW

The CGPW mode operator () is similar to the CPW mode operator except the pin specified for the test shall
be from a clock gate (logic signal).

7.7.2.2 CGST

The CGST mode operator () is similar to the SETUP test mode operator except the reference edge shall be
from a data pin and the signal shall be from a clock pin.

7.7.2.3 CPW

The CPW test mode operator specifies the edge identified as the signal shall be offset from the edge
identified by the reference. The amount of the offset is at least as large as the bias value. The edge
identified as the signal shall occur before the edge identified as the reference for late mode and positive

46
Copyright © 2010 IEEE all rights reserved.

– 46 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

bias values. The edge identified as the signal shall arrive after the edge identified as the reference for early
mode and positive bias values. Both edges specified for this test shall be from the same pin and a clock.

7.7.2.4 CST

The CST mode operator specifies the edge identified as the signal shall be offset from the edge identified as
the reference. The amount of the offset is at least as large as the bias value. The edge identified as the signal
shall occur before the edge identified as the reference for late mode and positive bias values. The edge
identified as the signal shall arrive after the edge identified as the reference for early mode and positive bias
values. The edges specified for this test mode operator shall be from different clock pins.

7.7.2.5 DHT

The DHT mode operator specifies the separation of two data signals on the same cycle. The DHT specifies
an edge of one data signal against the another edge of another data signal. The constraint is calculated by
the CHECKS clause. As with other hold type test mode operators, this test shall ensure the
SIGNAL_EDGE comes after the REFERENCE_EDGE. The difference between this test mode operator
and DST (see 7.7.2.8) is DST implies there is a cycle adjustment made to the reference signal before the
data separation test is performed. There is no cycle adjust added to the reference in DHT.

7.7.2.6 DIFFERENTIAL_SKEW

DIFFERENTIAL_SKEW test specifies the maximum time difference between two signals on different
pins. This test is used to compare the two arrival times of a differential signal. The pins shall be either both
clock pins or data pins and must be of the opposite polarity.

7.7.2.7 DPW

The DPW test mode operator specifies the edge identified as the signal shall be offset from the edge
identified by the reference. The amount of the offset is at least as large as the bias value. The edge
identified as the signal shall occur before the edge identified as the reference for late mode and positive
bias values. The edge identified as the signal shall arrive after the edge identified as the reference for early
mode and positive bias values. Both edges specified for this test mode operator shall be from the same pin
and not a clock.

7.7.2.8 DST

The DST mode operator is used to determine the offset between two data signals. This separation is
established by the CHECKS subclause. The specified edge on the data pin specified as the SIGNAL_EDGE
shall arrive before the edge specified on the data pin specified as the REFERENCE_EDGE for positive
values of the offset.

7.7.2.9 HOLD

The HOLD test mode operator specifies (for positive bias values) the earliest edge identified, as the signal
shall arrive after the latest edge identified as the reference. The HOLD test mode operator shall be used in
conjunction with early mode or after the both modes operator. The reference edge shall be from a clock pin.

7.7.2.10 NOCHANGE

The NOCHANGE test mode operator specifies the edge identified, as the signal does not change during the
duration of the setup period, the entire pulse width, and the hold period. The edge identified as the
reference represents the earliest edge of the clock. The termination of the pulse width period is the opposite
edge of the reference. The edge identified as the signal represents the earliest edge of the data. The
nochange test mode operator requires the use of the combined early late mode operator. There are two bias

47
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 47 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

values for this test.

The bias value preceding the combined early late mode operator determines the period preceding the
reference edge. The bias value following the combined early late operator determines the period following
the opposite edge of the reference. The reference edge shall be from a clock or control pin and the signal
edges shall be from a logic pin.

7.7.2.11 RECOVERY

The RECOVERY test mode operator specifies the latest inactive edge, identified as the SIGNAL_EDGE
shall arrive before the earliest edge identified as the REFERENCE_EDGE. The bias value shall be positive.
The SIGNAL_EDGE pin shall be from a control pin. The recovery test mode operator shall be used in
conjunction with the late test mode operator or preceding the both modes operators. The
REFERENCE_EDGE shall be from a clock pin.

7.7.2.12 REMOVAL

The REMOVAL test mode operator specifies the earliest inactive edge identified, as the SIGNAL shall
arrive after the latest edge identified as the reference. The bias value shall be positive. The SIGNAL pin
shall be from a control pin. The removal test mode operator shall be used in conjunction with the late test
mode operator or following the both modes operators. The reference edge shall be from a clock pin.

7.7.2.13 SETUP

The SETUP test mode operator specifies (for positive bias values) the latest edge identified, as the SIGNAL
shall arrive before the earliest edge identified as the reference. The SETUP test mode operator shall be used
in conjunction with the late mode or preceding the both modes operators. The reference edge shall be from
a clock pin.

7.7.2.14 SKEW

The SKEW test mode operator specifies the edge identified, as the source shall occur within a window of
time either before or after the edge identified as the reference. The bias sets the magnitude of the window.
The bias value shall be positive. The use of this test mode operator with the early test mode operator
indicates that the signal can occur after the reference up to the bias limit. The use of this test mode operator
with the late mode operator indicates the signal may occur before the reference by an amount up to the bias
value. Both the signal and reference shall be from clock pins, and only the early mode or late mode
operators shall be used.

7.8 Expressions

An expression is a sequence of operators and operands that does the following:

a) Specifies the computation of a value

b) Designates an object or a function

c) Generates side effects

d) Performs a combination of these

The order of evaluation of subexpressions and the order in which side effects take place are unspecified,
except as indicated by the syntax or when explicitly specified.

48
Copyright © 2010 IEEE all rights reserved.

– 48 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

7.8.1 Array subscripting

The syntax for array subscripting is given in Syntax 7.20.

array_index ::= [integer_comma_expression_list]
{[integer_comma_expression_list]}

integer_comma_expression_list ::= expression {, expression }

Syntax 7.20: array_index

A reference to an array element shall be made using the array name followed by a nonempty list of
subscript expressions, which are separated by commas and surrounded by square brackets. Each subscript
expression shall be of integer data type and evaluate to an integer value.

NOTE—The ISO C array reference a[b][c][d] is expressed as a[b,c,d] in DCL.

Referencing arrays of arrays is a list of array indexes where each index represents an access to a different
array. The last level of nesting represents accessing the data and the previous levels are other arrays.

Example

array a is defined to be: double[b,c][d][e,f,g]:a

array access a[1,2][3][4,5] accesses a double value where a[1,2][3] accesses a two dimensional array
containing double values.

7.8.2 Statement calls

This subclause describes statement calls in DCL.

7.8.3 General syntax

The syntax for statement calls is given in Syntax 7.21.

statement_call ::= statement_name ([comma_expression_list])
statement_reference ::= statement_call [array_index]

{ [array_index] } {. field_reference}
field_reference::= result_name [([array_index]

{ [array_index] }) |([comma_expression_list])]

Syntax 7.21: statement_call

Arguments passed to a statement shall be read-only within that statement, with the sole exception of VAR
arrays (see 7.4.5.3.2.1), which shall also be writable by the statement.

7.8.4 Method statement calls

See Syntax 7.22 for method statement calls.

49
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 49 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

method_statement_call ::= method_statement_name ()
method_statement_reference ::=

method_statement_call [array_index] {. field_reference}
method_call::= method_statement_reference

| PATH_DATA:: method_statement_reference
| CELL_DATA:: method_statement_reference

Syntax 7.22: method_statement_call

A method statement call made without specifying CELL_DATA:: scope shall default to a method statement
call with the PATH_DATA:: scope.

7.8.5 Assign variable reference

See Syntax 7.23 for assign variable references.

assign_variable_reference ::= assign_statement_name
[. field_reference]

Syntax 7.23: assign_variable_reference

The value referenced shall be the last calculation for the named ASSIGN statement.

7.8.6 Store variable reference

The syntax for store variable references is given in Syntax 7.24.

store_variable_reference ::= scoped_variable_reference
| slot_variable_reference

scoped_variable_reference ::= store_reference
| PATH_DATA:: store_reference
| CELL_DATA:: store_reference

store_reference ::=
recallable_statement_name [array_index | . field_reference]

recallable_statement_name ::= calc_statement_name
| internal_statement_name
| external_statement_name
| expose_statement_name
| tabledef_statement_name

slot_variable_reference ::= array_index store_reference

Syntax 7.24: store_variable_reference

The value referenced shall be that stored during model elaboration for the current PATH_DATA or
CELL_DATA. If neither the PATH_DATA:: nor CELL_DATA:: scope operators are specified, then the use
of PATH_DATA:: shall be assumed.

7.8.7 Mathematical expressions

This subclause details the mathematical expressions allowed in DCL and gives their syntax; see
Syntax 7.25.

50
Copyright © 2010 IEEE all rights reserved.

– 50 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

expression ::=
constant
| identifier
| string_literal
| scope_change
| recall
| launch
| discrete_expression
| statement_reference
| assign_variable_reference
| store_variable_reference
| method_call
| built-in_function_call
| c_statement_reference
| variable_reference
| + expression
| expression + expression
| - expression
| expression - expression
| expression * expression
| expression / expression
| expression ** expression
| expression `| expression
| expression `& expression
| expression `^ expression
| expression `> expression
| expression `< expression
| `~ expression
| (expression)

variable_reference ::= expr_variable [{ [array_index]
{ . field_reference } }]

expr_variable ::=
assign_statement_name
| passed_argument_name
| result_field_name
| local_field_name
| predefined_variable_name

Syntax 7.25: expression

7.8.8 Mathematical operators

The mathematical operators are defined in Table 11.

Table 11—Mathematical operators

Symbol Definition
* Multiply: The left operand is multiplied by the right operand.

/ Divide: The left operand is divided by the right operand. The result of division of integer
operands results in a double result.

% Remainder: Integer division is performed between the left and right operand. The residue of that
operation is called the remainder.

+ Addition: add the right operand to the left operand using twos complement arithmetic,
unary plus:Treat the right operand as positive.

51
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 51 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Symbol Definition

-
Subtraction: The right operand is subtracted from the left operand using twos complement
arithmetic.
unary minus: Treat the right operand as negative.

** Exponentiation: The left operand is raised to the power of the right operand.
`| Bitwise OR of the left and right operands.
`& Bitwise AND of the left and right operands.
`~ Bitwise complement: complement of the right operand using ones complement arithmetic.

`> Shift right where the left operand is shifted to the right by the number of bits contain in the right
operand.

`< Shift left where the left operand is shifted to the left by the number of bits contain in the right
operand.

`^ Bitwise exclusive OR of the left and right operand.

7.8.9 Discrete math expression

Discrete math represents sums or products of expressions. Discrete math expressions compute the sum of
terms or the product of terms. The resulting type of the discrete expression is that of the
discrete_expression_body.

The syntax for discrete math expressions is given in Syntax 7.26.

discrete_expression ::= discrete_declaration discrete_operator
{ discrete_expression_body }

discrete_declaration ::= [pin_list_discrete]
| [integer_discrete]

pin_list_discrete ::=
PINLIST : loop_variable_name = pinlist_expression

integer_discrete ::= discrete_bounds
| discrete_bounds BY integer_expression

discrete_bounds ::= discrete_start discrete_end
discrete_start ::= INT : loop_variable_name = integer_expression
discrete_end ::= TO integer_expression=
discrete_operator ::= + | *
discrete_expression_body ::= expression

Syntax 7.26: discrete_expression

The discrete_operator represents the type of discrete operation being performed:

— * indicates a product operation on the loop_body expression

— + indicates a summation operation on the loop_body expression

Both the integer_discrete BY expression and the discrete_end expression shall be evaluated exactly
once, after the discrete_start expression has been evaluated.

7.8.10 INT discrete

The integer discrete expression indicates the loop variable has type INTEGER and can be incremented or
decremented only by an integer value.

52
Copyright © 2010 IEEE all rights reserved.

– 52 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

7.8.11 PINLIST discrete

The pinlist discrete expression indicates the loop variable has type PINLIST and is stepped though the list
of PINs in the PINLIST.

7.8.12 Logical expressions and operators

This subclause details the logical expressions and logical operators allowed in DCL.

The syntax for logical expressions is given in Syntax 7.27.

logical_expression ::=
prefix_expression == prefix_expression
| prefix_expression != prefix_expression
| prefix_expression >= prefix_expression
| prefix_expression <= prefix_expression
| prefix_expression < prefix_expression
| prefix_expression > prefix_expression
| ! logical_expression
| (logical_expression)
| logical_expression && logical_expression
| logical_expression || logical_expression

prefix_expression ::= *string_expression | expression

Syntax 7.27: logical_expression

The DCL logical operators are defined in Table 12.

Table 12—Logical operators

Symbol Definition
|| Or
&& And
! Not
== Equal
!= Not equal
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to

7.8.13 MODE expressions

7.8.13.1 Pin range

A pin range expression represents one or more input pins, or one or more output pins on a circuit.

7.8.13.2 Pin range syntax

The syntax for a pin range is given in Syntax 7.28.

53
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 53 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

pin_range_list ::= pin_range { , pin_range }
pin_range ::= pin_name | ANYIN| ANYOUT | pin_name – pin_name

| [pin_string] [range_expression] [pin_string]
| [pin_string] < range_expression > [pin_string]

pin_name ::= name | scalar
pin_string ::= name | scalar
range_expression ::= scalar [- scalar]

Syntax 7.28: pin_range_list

NOTE—The use of angle brackets (<>) or square brackets ([]) affects the expansion of the Pin Range (see 7.8.13.4).

7.8.13.3 Pin range semantics

The pin range semantics are as follows:

— pin_name
Represents a single pin with the specified name.

— ANYIN
Represents an unordered sequence of all input and bidirectional pins not yet explicitly enumerated
in a previous INPUT statement within the current MODELPROC or SUBMODEL sequence.

— ANYOUT
Represents an unordered sequence of all bidirectional and output pins not yet explicitly
enumerated in a previous OUTPUT statement within the current MODELPROC or SUBMODEL
sequence.

— pin_name - pin_name

Represents the set of pins determined by the following algorithm:

Let the lexically smaller pin name be PINnew
Let the lexically larger pin name be PINstop

Repeat {

Add PINnew to the set of resultant pin paths
Increment PINnew according to the Name Incrementation rule below

} until (PINnew is lexically greater than PINstop)

7.8.13.4 Constraints

The constraints are as follows:

a) The specified pin names shall have the same number of characters.
The specified pin names shall contain only characters within A to Z, a to z, and 0 to 9.

b) Name incrementation rule:

1) Names are incremented by lexically incrementing the right-most character of the name
according to the character incrementation rules below. When a character being incremented in a
name cycles back, then the character to its left (if any) is incremented.

c) Character incrementation rules:

1) A character in a name is lexically incremented through a specific range of characters. This
range depends on the initial character.

54
Copyright © 2010 IEEE all rights reserved.

– 54 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

2) If the initial character is in the range A to Z, then this character shall be incremented through
the range of characters A to Z. When the character Z is incremented, it becomes A.

3) If the initial character is in the range a to z, then this character shall be incremented through
the range of characters a to z. When the character z is incremented, it becomes a.

4) If the initial character is in the range 0 to 9, then this character shall be incremented through
the range of characters 0 to 9. When the character 9 is incremented, it becomes 0.

5) Cycling back is defined as the incrementation step in which Z becomes A, or z becomes a, or
9 becomes 0.

Examples:

A0-B7 produces names A0 A1...A7 A8 A9 B0 B1...B7
AB0-BC1 produces names AB0...AB9 AC0..AC9...AZ0...AZ9 BA0...BC0 BC1

— [pin_string] [range_expression] [pin_string]
Represents the set of pin names determined by the following algorithm.

— The first pin name is constructed from the concatenation of the preceding string (if any), an
opening square bracket, the smaller integer, a closing square bracket, and the following string (if
any). The integer is incremented by 1, and as long as the result is less than or equal to the larger
integer, another pin name is generated in the same fashion.

— The number of digits used to express the lexically lower range value controls the minimum
number of digits in the expansion of the following pin range:

Examples:

A[0-9] produces names A[0] A[1]... A[9]
[0-99]B produces names[0]B [1]B... [99]B
A[3-00] produces names A[00] A[01] A[02] A[03]
c[1-3]addr produces names c[1]addr c[2]addr c[3]addr

— [pin_string] < range_expression > [pin_string]
Represents the set of pin names determined by the following algorithm.

— The first pin name is constructed from the concatenation of the preceding string (if any), the
smaller integer, and the following string (if any). The integer is incremented by 1, and as long as
the result is less than or equal to the larger integer, another pin name is generated in the same
fashion.

— The number of digits used to express the lexically lower range value controls the minimum
number of digits in the expansion of the following pin range:

Examples

A<0-9> produces namesA0 A1... A9
X<0-99>B produces namesX0B X1B... X99B
A<3-00> produces namesA00 A01 A02 A03
c<1-3>addr produces namesc1addr c2addr c3addr

7.8.14 Embedded C code expressions

The syntax for an embedded C code expression is given in Syntax 7.29.

c_statement_reference ::= $ name | c_reference_sequence
c_reference_sequence ::= $ name (expression_list)

{ name (expression_list) }

Syntax 7.29: c_statement_reference

The C statement reference taken in its entirety shall represent a legal C construct resulting in a type

55
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 55 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

compatible with the encapsulating DCL expression or assignment.

7.8.15 Computation order

This subclause details the computation order used in DCL.

7.8.15.1 Precedence for mathematical expressions

Mathematical expressions shall be evaluated according to the operator precedence shown in Table 13.

Table 13—Mathematical operator precedence (high to low)

Operators Associativity
() [] . Left to right

:^: :: :>: Left to right
+ -

(unary operators)
Right to left

** Left to right
* / % Left to right
+ - Left to right
`> `< Left to right
: . Left to right
`& Left to right
`^ Left to right
`| Left to right

7.8.15.2 Precedence for logical expressions

Logical expressions shall be evaluated according to the operator precedence shown in Table 14.

Table 14—Logical operator precedence (high to low)

Operators Associativity
! Right to left

< <= > >= Left to right
== != Left to right
&& Left to right
|| Left to right

The && operator shall guarantee left-to-right evaluation; there is a sequence point after the evaluation of
the first operand. If the first operand evaluates to false, the second operand shall not be evaluated.

The || operator shall guarantee left-to-right evaluation; there is a sequence point after the evaluation of the
first operand. If the first operand evaluates to true, the second operand shall not be evaluated.

7.8.15.3 Passed parameters

Parameters passed in a statement or variable reference shall be evaluated in the order they appear in the
reference, which is left to right.

56
Copyright © 2010 IEEE all rights reserved.

– 56 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

7.8.15.4 WHEN clause

Logical expressions in WHEN clauses shall be evaluated in the order they appear in a statement until the
controlling expression evaluates to true. If no logical expression evaluates to true, the OTHERWISE
clause shall be evaluated.

7.8.15.4.1 Break

Break causes the inner most loop containing the associated when or otherwise to terminate.

7.8.15.4.2 Continue

Continue causes the innermost loop body associated with a when or otherwise to reexecute without doing
any logical tests and in the case of a FOR loop it shall also not execute the loop modifier sequence.

7.8.15.5 REPEAT - UNTIL clause

A sequence of conditional result expressions shall be repeatedly evaluated until the controlling logical
expression evaluates to true.

7.8.15.6 WHILE loops

When a WHILE loop is evaluated, if the logical expression evaluates true, the loop body is executed.
This process repeats until the logic expression evaluates false, at which point the loop terminates.

7.8.15.7 FOR clause

The FOR clause consists of an initializer sequence, a conditional test, a modifier sequence, and a loop body.
The initializer initializes the values prior to entering the conditional test sequence for the first time. The
conditional test evaluates the logical expression contained within the conditional test sequence, and if that
test evaluates true, it causes the loop body to be executed. Upon a successful pass through the loop body,
the modifier sequence is executed and control is passed again to the conditional test sequence.

7.8.15.8 LOCK clause

LOCK clauses control serialization. Serialization is the process of preventing simultaneous access to either
executable code or data. Simultaneous access can occur when there is more than one computing engine
sharing either code or data, or a single computing engine running more than one thread.

The LOCK clause acquires for a context the access to a section of code or data. When the access is
acquired, the locking context shall be permitted to either operate on the data or execute the code. Others not
having access rights shall be denied access.

Lock requests are made before the first expression is valued and released when the LOCK clause is exited.

7.8.15.8.1 WRITE_LOCK

WRITE_LOCK requests exclusive access to either the data for updating or the code for execution. Once
access has been granted to the context requesting the write lock, all other requests are blocked until the
write_lock is released. The write_lock may be used to lock both code or data.

7.8.15.8.2 READ_LOCK

READ_LOCK requests access to the associated structure for the purpose of reading its values. Within a

57
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 57 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

read_lock modification of the data shall not be permitted. A read_lock does not block other contexts
requesting a read_lock. A read_lock shall block other contexts requesting a write_lock or a wait. A context
requesting a read_lock shall be blocked if a write_lock by another context has already been granted.

7.8.15.8.3 WAIT

WAIT blocks the requesting context if any other context holds a write_lock or read_lock on the associated
structure. WAIT access once granted shall not block any other context from locking the data and continues
to execute regardless of any other locks imposed after the access was granted.

NOTE—The wait clause is typically used to control access to the results of a launch.

7.8.15.8.4 BUSY

BUSY evaluates the expressions within its scope if access is denied to the structure identified by the lock
clause.

7.8.15.8.5 RETRY

RETRY causes the flow of control to revert back back the start of the associated lock clause causing access
to be requested again. If the retry has no associated logical expression, the retry is unconditionally
performed. When the option logical_expression associated with the retry is present and that expression
evaluates to true, the retry is performed otherwise control resumes after the end of the lock clause scope.

7.9 DCL mathematical statements

DCL statements are divided in the following categories: clauses, modifiers, prototypes, statement failure,
interfacing statements, calculation statements, and methods.

7.9.1 Statement names

Statement names shall be unique except for the following:

— Statement definitions and if present their matching prototype

— TABLEDEF with its matching TABLE statements

— MODELPROC and its matching MODEL statement

7.9.2 Clauses

This subclause defines the PASSED and RESULT clauses.

7.9.2.1 PASSED clause

The PASSED clause is an semicolon delimited list which declares the quantity, types and names of the
required formal input parameters for a DCL statement. Its syntax is given in Syntax 7.30.

passed_clause ::= PASSED (passed_argument_list)
passed_argument_list ::= passed_type_list { ; passed_type_list }
passed_type_list ::= passed_type : variable_name
passed_type ::= native_array_type | native_type | aggregate_type
variable_name ::= name {, name }

Syntax 7.30: passed_clause

58
Copyright © 2010 IEEE all rights reserved.

– 58 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

7.9.2.2 RESULT clause

The RESULT clause is an semicolon delimited list that indicates the quantity, types and names of variables
returned from a DCL statement. There are two types of RESULT clauses: prototype and conditional.

7.9.2.3 Result prototypes

A prototype RESULT clause defines the types, names (except the unnamed RESULT variable), and order of
variables returned by a statement whose definition has not been encountered. Its syntax is given in
Syntax 7.31.

result_prototype ::= RESULT (result_type_list)
result_type_list ::= result_default_type

| result_named_list [; result_default_type]
result_default_type ::= native_array_type | native_type
result_named_list ::= result_named_type { ; result_named_type }
result_named_type ::= aggregate_type_definition :

variable_name_list

Syntax 7.31: result_prototype

7.9.2.3.1 Conditional logic

The conditional RESULT clause defines the types, the names (except the unnamed RESULT variable), and
the logical and mathematical expressions that compute values for all variables returned from a DCL
statement.

If the conditional RESULT clause uses the REPEAT RESULT()...UNTIL() syntax, the expressions in the
RESULT clause shall be repeatedly evaluated until the UNTIL logical expression evaluates to true.

A conditional RESULT clause can itself contain multiple RESULT clauses. The set of variables returned by
a DCL statement shall be the union of all variables mentioned in any of the RESULT clauses of that
statement. The order of the variables returned shall be defined by the first appearance of each variable in
any RESULT clause, scanning from the beginning to the end of the statement definition.

All result variables shall be assigned a value before returning from a statement.

The syntax for a conditional result is given in Syntax 7.32.

59
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 59 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

conditional_result ::=
RESULT (variable_sequence [; default_result_expression])
| REPEAT code_body UNTIL (logical_expression)
| outer_when_sequence

variable_sequence ::= variable_expression_list
| condition_logic
| variable_sequence ; variable_expression_list
| variable_sequence ; condition_logic

variable_expression_list ::=
(data_type : assignment) | : statement_reference
{ ; (data_type : assignment) | : statement_reference} [;]

assignment ::= variable_name = expression
default_result_expression ::= result_type : expression
conditional_logic ::=

REPEAT code_body UNTIL (logical_expression)
| when_list [, OTHERWISE opt_result_definition]
| FOR (
(initializer_sequence) , (logical_expression) ,
(modifier_sequence)) code_body
| lock_type code_body
[, BUSY code_body
[, RETRY [(logical_expression)]]

when_list ::= when_logic {, when_logic}
when_logic ::= WHEN (logical_expression) code_body [BREAK]
outer_when_sequence ::= outer_when_list , OTHERWISE code_body
outer_when_list ::=

WHEN (logical_expression) code_body
{, WHEN (logical_expression) code_body }

initializer_sequence::= [variable_expression_list]
modifier_sequence::= [variable_expression_list]
code_body ::= { [variable_sequence] }
data_type ::= aggregate_type_definition | native_type
lock_type ::= WRITE_LOCK | READ_LOCK | WAIT

Syntax 7.32: conditional_result

7.9.2.4 Default variable

A RESULT clause may have an unnamed, default variable. Such a variable shall:

— Appear last in the RESULT clause

— Be separately typed; it may not appear as part of a list with similarly typed variables

— Be the textually last variable defined for the statement

The default variable shall be referenced using the statement_name syntax rather than the statement_name
varname syntax.

Example
RESULT(INTEGER: 5)

60
Copyright © 2010 IEEE all rights reserved.

– 60 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

7.9.2.5 LOCAL clause

The LOCAL clause shall define the types and names of variables that have a local scope within a DCL
statement. Within a local clause, the values of all the local variables defined shall be initialized. The value
of a local variable may be altered in a RESULT clause.

7.9.2.5.1 LOCAL conditional logic

The conditional logic within a LOCAL clause has the same semantic definitions as those for the result
clause.

7.9.2.5.2 Local variables

Local variables are variables created within the scope of a statement, which only persist for the duration of
that statement. Local variables are only visible to the statement that defines them (Syntax 7.33).

local_clause ::= LOCAL (local_sequence)
local_sequence ::= [named_local_expression_list

| conditional_logic { ; named_local_expression_list
| conditional_logic }]

named_local_expression_list ::=
((aggregate_type : assignment) | (: statement_reference))
{ ; ((aggregate_type : assignment) | (:
statement_reference)) } [;]

Syntax 7.33: local_clause

7.9.2.5.3 Local variable definition

Local variables are defined by declaring a type within a LOCAL clause and associating it with an identifier.
Variables defined in a LOCAL clause have a lifetime limited to the duration of this statement and cannot be
redefined in a RESULT clause. Local variables may have their values changed within the associated result
or default clauses.

7.9.2.5.4 Local clause placement

Local clauses can be placed as follows (Syntax 7.34):

— The first clause within a DEFAULT clause

— Immediately preceding the first RESULT clause, outer WHEN, or REPEAT within a CALC, an
EXPOSE, or an ASSIGN statement

— Immediately preceding the first occurrence of an EARLY or LATE clause within a DELAY or
SLEW statement

— Immediately preceding the BIAS clause of a check statement

61
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 61 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

default_clause ::= [DEFAULT
([local_clause ;]default_sequence)]

calculation_body ::= [passed_clause] [local_clause]
conditional_result

delay_statement ::=[EXPORT] DELAY (name)
delay_slew_postfix_modifier :
[passed_clause] [local_clause] conditional_time ;

check_statement ::= [EXPORT] CHECK (name)
std_postfix_modifier : [passed_clause] [local_clause]
conditional_bias ;

Syntax 7.34: default_clause

7.9.2.6 DEFAULT clause

The syntax for the DEFAULT clause is given in Syntax 7.35.

default_clause ::= [DEFAULT ([local_clause] default_sequence)]
default_sequence ::= named_expression_list

[; default_expression]
named_expression_list ::= variable_name = expression

{; variable_name = expression}
default_expression ::= expression

Syntax 7.35: default_clause (result variable)

The DEFAULT clause specifies the values to be returned if a statement fails to complete successfully. If a
DEFAULT clause is used and the statement has a RESULT clause, the DEFAULT clause shall specify and
assign a value to every variable in that RESULT clause. Named variables may appear in a different order
than listed in the RESULT clause, except the unnamed (default) variable, if any, shall appear last in the
DEFAULT clause.

7.9.3 Modifiers

This subclause describes how modifiers are used in DCL.

7.9.3.1 Statement purity

A statement is pure if it always returns the same result value(s) given the same passed parameter(s).
Otherwise, a statement is impure. Statements can be explicitly made pure or impure by specifying the
PURE or IMPURE statement modifier, respectively.

If no purity modifiers are specified for a statement, the statement’'s purity shall be determined as follows:

— ASSIGN, EXPOSE, LOAD_TABLE, UNLOAD_TABLE, ADD_ROW, and DELETE_ROW
statements shall be considered to be IMPURE.

— Statements executed by means of a statement pointer shall be considered to be impure.

— All other statements shall be considered to be PURE unless those statements reference an
IMPURE statement without the PURE operator, or are declared with a VAR array parameter.

— Variables created with the NEW operator shall be considered to be impure.

NOTE 1—The behavior and results of asserting an impure statement as pure are undefined.

NOTE 2—A pure statement is a hint to the DCL compiler that the results of a statement can be saved and reused as

62
Copyright © 2010 IEEE all rights reserved.

– 62 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

long as the input parameters are the same.

7.9.3.2 Statement consistency

Consistency of a DCL statement is only meaningful within a MODELPROC statement. A statement is said
to be consistent if, given the same passed parameter(s), it shall return the same result value(s) for all
instances of the same cell modeled by a given MODELPROC. Otherwise, a statement is inconsistent.
Statements can be explicitly made consistent or inconsistent by specifying the CONSISTENT or
INCONSISTENT statement modifier, respectively.

If no consistency modifiers are specified for a statement, the statement’s consistency shall be determined as
follows.

The following statements are considered to be INCONSISTENT:

— TABLEDEF statements with the DYNAMIC option

— LOAD_TABLE statements

— UNLOAD_TABLE statements

— ADD_ROW statements

— DELETE_ROW statements

— EXTERNAL statements

— ASSIGN statements

— INTERNAL statements

— Statements with the IMPORT prototype modifier

All other statements are considered to be CONSISTENT unless the statements:

— Are impure statements

— Reference an inconsistent statement

— Reference embedded C code

— Executed by means of a statement pointer

It is an error to mark LOAD_TABLE, UNLOAD_TABLE, ADD_ROW, and DELETE_ROW statements as
CONSISTENT. They are always INCONSISTENT. It is an error to use CONSISTENT with IMPURE.
IMPURECONSISTENT is self-contradictory.

IMPORTPURE without CONSISTENT shall be understood as IMPORTPUREINCONSISTENT.
IMPORTCONSISTENT without PURE shall be understood as IMPORTPURECONSISTENT. FORWARD
PURE without CONSISTENT shall be understood as FORWARDPURECONSISTENT. FORWARD
CONSISTENT without PURE shall be understood as FORWARDPURECONSISTENT.

NOTE 1—The behavior and results of asserting an inconsistent statement as consistent are undefined.

NOTE 2—A consistent statement is a hint to the DCL compiler that the results of a statement can be saved and reused
for all cells modeled by this MODELPROC statement.

7.9.3.3 Locking modifiers

Locking modifiers control the serialization of the execution of the associated statement. The locking
modifiers serialize the access to the identified statement’s execution, and it is not associated with any
specific instance of data. Locking modifiers can serialize at the granularity of either the plane or space.
Serializing at the granularity of the plane allows only one plane within a space to be executing this

63
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 63 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

statement at any any given instance in time. Serializing at the space level allows only one plane from one
space to execute within this statement at any given instance in time.

7.9.3.3.1 AUTOLOCK

AUTOLOCK causes the serialization to begin before the first expression in the statement is evaluated and
control is released after the last expression in the statement has been evaluated.

7.9.3.3.2 LOCK

LOCK causes the expressions contained within the scope of the LOCK clause to be serialized. Serialization
begins before the first expression contained within the lock clause is evaluated, and serialization is released
when the lock clause is exited.

7.9.3.4 Context modifiers

Context modifiers control the accessibility of data. These modifiers only apply to either assign statements
or tabledef statements. These modifiers indicate the degree of data reuse with these statements. By default,
that is, without any context modification, the data contained within these statements are unique per context,
and each context contains its own separate versions of the data. When a common plane is used, the data
contained within the statement have the same values for any plane on a given space. When a common space
is used, the data values are identical for all planes on all spaces.

7.9.3.4.1 COMMON

COMMON modifiers are used for storage statements such as ASSIGN and TABLEDEF. COMMON
identifies whether the storage is unique to a context or is accessible to more than one context. COMMON
has an argument that can have either the value of SPACE or PLANE. Plane indicates that there shall be a
single instance of the data for each space, and access to the stored values is serialized per plane. SPACE
indicates there is only a single instance of the data for all spaces and all planes. All accesses to the data are
serialized and no concurrent access is allowed.

Data types associated with statements that have the COMMON attribute are assumed to be SYNC.

7.9.3.5 Access modifiers

Access modifiers control the serialization to structures.

7.9.3.5.1 SHARED

Types marked with the shared option shall be shared types.

7.9.3.5.2 SYNC

Types marked with the sync option shall be sync types.

7.9.4 Prototypes

This subclause describes how prototypes are used in DCL. Prototypes represent the structure of a statement
that is not currently defined. The prototype statement gives the structure of the statement, where this
statement might be found when the module is executed, and whether or not the presence of the definition is
required.

64
Copyright © 2010 IEEE all rights reserved.

– 64 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

7.9.4.1 Prototype modifiers

The syntax for prototype modifiers is given in Syntax 7.36. The optional modifier shall not be used with the
assign statement.

prototype_modifier ::= IMPORT| FORWARD
std_postfix_modifier ::= [optimize_ctl_postfix_modifier]

[model_ctl_postfix_modifier]
[link_control_postfix_modifier]
[lock_postfix_modifier]
[common_postfix_modifier] [(SYNC | SHARED)]

optimize_ctl_postfix_modifier ::= PURE | IMPURE
model_ctl_postfix_modifier ::= CONSISTENT | INCONSISTENT
tabledef_ctl_modifier ::= DYNAMIC | OVERRIDE
table_message_modifier ::= SUPPRESS
link_control_postfix_modifier ::= OPTIONAL
lock_postfix_modifier ::= (autolock_modifier | lock_modifier)
autolock_modifier ::= AUTOLOCK ((SPACE | PLANE))
lock_modifier ::=LOCK ((SPACE | PLANE))
common_postfix_modifier ::= COMMON _((SPACE | PLANE))

Syntax 7.36: prototype_modifier

The syntax for common prototype modifiers is given in Syntax 7.37.

common_prototype ::= prototype_modifier ASSIGN | CALC
| EXPOSE | INTERNAL | IMPORT | EXTERNAL

common_statement_prototype ::= common_prototype (name)
std_postfix_modifier : [passed_clause] result_prototype ;

Syntax 7.37: common_prototype

7.9.4.2 TABLEDEF prototype

The syntax for TABLEDEF prototype modifiers is given in Syntax 7.38.

65
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 65 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

tabledef_prototype ::= tabledef_prototype_preamble
tabledef_prototype_clauses ;

tabledef_prototype_clauses ::=
[passed_clause] qualifiers_clause data_clause [key_clause]
| [passed_clause] qualifiers_clause [key_clause] data_clause
| [passed_clause] [key_clause] qualifiers_clause data_clause

tabledef_prototype_preamble ::= prototype_modifier
TABLEDEF (name) std_postfix_modifier [tabledef_modifiers] :

tabledef_modifiers ::= [tabledef_ctl_modifier]
[table_message_modifier] [descriptor_clause]

descriptor_clause ::= DESCRIPTOR ([aggregate_modifiers] name)
aggregate_modifiers ::= SYNC | SHARED
qualifiers_clause ::= QUALIFIERS (qualifier_list)
qualifier_list ::= qualifier_name {, qualifier_name}
qualifier_name ::= assign_variable_reference |

store_variable_reference | passed_variable_name |
predefined_variable_name

data_clause ::= DATA (table_data_sequence)
table_data_sequence ::= default_data_sequence | named_data_sequence

[; default_data_sequence]
default_data_sequence ::= table_type
table_type ::= base_table_type [dimension_list]
base_table_type ::= mathematical_type | STRING
named_data_sequence ::= table_type : variable_name_list

{; table_type : variable_name_list}
key_clause ::= KEY (scalar)

Syntax 7.38: tabledef_prototype

It shall be considered an error to mark a DYNAMIC table as CONSISTENT, unless the DYNAMIC table,
once created, never changes. In this case, the DYNAMIC table can be marked PURECONSISTENT.

7.9.4.3 LOAD_TABLE, UNLOAD_TABLE and WRITE_TABLE prototypes

The syntax for LOAD_TABLE and UNLOAD_TABLE prototype modifiers is given in Syntax 7.39.

load_table_prototype ::= IMPORT load_unload_type (name)
std_postfix_modifier : [passed_clause]
TABLEDEF (tabledef_statement_name) ;

load_unload_type ::= LOAD_TABLE | UNLOAD_TABLE | WRITE_TABLE

Syntax 7.39: load_table_prototype

7.9.4.4 ADD_ROW and DELETE_ROW prototypes

The syntax for the add and delete row prototype modifiers is given in Syntax 7.40.

add_row_prototype ::= prototype_modifier add_delete_type
(name) std_postfix_modifier : TABLEDEF
(tabledef_statement_name);

add_delete_type ::= ADD_ROW | DELETE_ROW

Syntax 7.40: add_row_prototype

66
Copyright © 2010 IEEE all rights reserved.

– 66 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

7.9.4.5 DELAY and SLEW prototypes

The syntax for the DELAY and SLEW prototype modifiers is given in Syntax 7.41.

delay_prototype ::= prototype_modifier delay_slew_type (name)
std_postfix_modifier : [passed_clause] ;

delay_slew_type ::= DELAY | SLEW

Syntax 7.41: delay_prototype

7.9.4.6 CHECK prototype

The syntax for the CHECK prototype modifier is given in Syntax 7.42.

check_prototype ::= prototype_modifier CHECK (name)
std_postfix_modifier : [passed_clause] ;

Syntax 7.42: check_prototype

7.9.4.7 SUBMODEL prototype

The syntax for the SUBMODEL prototype modifiers is given in Syntax 7.43.

submodel_prototype ::= prototype_modifier SUBMODEL (name) :
[passed_clause] [result_prototype] END ;

Syntax 7.43: submodel_prototype

7.9.5 Statement failure

DCL statements can fail (i.e., not successfully complete the desired calculation). If a statement is about to
fail with error severity less than 3 and has an associated DEFAULT clause, then that clause shall be
evaluated. If the DEFAULT clause evaluation succeeds, its values shall be returned by the statement. If the
statement is about to fail and either it has no DEFAULT clause or it failed during the evaluation of the
DEFAULT clause, then a nonzero (“error”) code shall be returned.

The error code returned to the application by a nested set of failing DCL statements shall be the code
associated with the most deeply nested failing statement.

NOTE 1—See 10.9.3 .

NOTE 2—If in DCL statement S1 there is a reference to DCL statement S2 and the reference to S2 fails, if S1 has a
DEFAULT clause, then that clause is evaluated. Otherwise, statement S1 fails.

7.9.6 Type definition statements

DCL uses statements to define structure types. All DCL statements that may be referenced define a type
that matches that statement.

7.9.6.1 TYPEDEF

A TYPEDEF statement is used to define structures. The TYPEDEF statement shall not be referenced in an
expression as shown in Syntax 7.44.

67
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 67 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

typedef ::= TYPEDEF (name) [typedef_options] :
result_prototype ;

typedef_options ::= SYNC | SHARED
result_type_list ::= result_default_type | type_named_list

[; type_default_type]
type_named_list ::= type_named_type {; type_named_type}
typedef_named_type ::= aggregate_type_definition [TRANSIENT] :

variable_name_list

Syntax 7.44: typedef

7.9.6.1.1 TYPEDEF RESULT clause

The result clause of the typedef statement is a result clause prototype with the following differences:

a) TRANSIENT attribute shall not be used on structure types that have the field var attribute.

b) Structures defined may be used as member of the result clause of the method statement or the
external statement. All other statements having a result clause or a data clause shall not return
structures that are or contain transient structures as any level of nesting.

c) Structure definitions that contain the transient attribute may be used at types in local and passed
clauses.

This can help facilitate communications with other programming languages.

7.9.7 Interfacing statements

Interfacing statements specify statement names, arguments, and return values from the perspective of either
the application or the DPCM. The statement names defined by this standard are enumerated in and .

7.9.7.1 EXPOSE statement

The syntax for the EXPOSE statement is given in Syntax 7.45.

expose_statement ::= [EXPORT] EXPOSE (name) expose_modifiers :
[passed_clause] [local_clause] [conditional_result] ;

expose_modifiers ::= {method_post_fix_modifier
| FIRST | LEADING | TRAILING | LAST}

Syntax 7.45: expose_statement

The EXPOSE statement makes the exposed name visible to the application.

The default linkage for EXPOSE shall be EXPORT; it cannot be made static. This means an EXPOSE
statement can be as follows:

— Imported using the IMPORT reserved word

— Exported (by default or by the EXPORT reserved word explicitly)

— Is IMPURE INCONSISTENT by default

There can be more than one exported EXPOSE statement of the same name within a system of subrules
within a TECH_FAMILY. In this situation, all such statements shall have the same argument signatures in

68
Copyright © 2010 IEEE all rights reserved.

– 68 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

their PASSED and RESULT clauses. More than one statement may be executed when the exposed
statement is referenced.

By default, each EXPOSE statement is appended to the expose chain in the order the rules were loaded. In
contrast, when more than one MODELPROC of the same name is read, the last MODELPROC loaded is
the MODELPROC used. A conflict can exist when a calculation based on the last MODELPROC loaded
requires information from an EXPOSE call obtained from the expose chain sequence. If the expose chain is
not altered, then information for the revised MODELPROC could be mixed with the data associated with
the first MODELPROC loaded. To prevent this from happening, the expose chain placement control
modifiers FIRST, LAST, LEADING, and TRAILING control the order in which the statements are placed
on the expose chain for a given statement. Each EXPOSE statement shall contain zero or one placement
control modifiers. The EXPOSE statement syntax (see Syntax 7.45) shows the syntax for these modifiers.

7.9.7.1.1 FIRST modifier

The FIRST modifier causes the EXPOSE statement to be placed first on the chain of EXPOSE statements
having the same name and contained within the same tech_family. There shall only be one EXPOSE
statement within a tech_family with the FIRST placement control modifier.

7.9.7.1.2 LEADING modifier

The LEADING modifier causes the EXPOSE statement to be placed either first or second on the list of
EXPOSE statements having the same name and contained within the same tech_family. The EXPOSE
statement with the leading modifier is placed first on the chain of EXPOSE statements only if no other
EXPOSE statement possessing the FIRST modifier already on the chain already exists. Otherwise, the
EXPOSE statement with the LEADING modifier is placed second on the chain, just after the statement
containing the FIRST placement control modifier.

7.9.7.1.3 TRAILING modifier

The TRAILING modifier causes the EXPOSE statement to be placed either last or next to last on the chain
of EXPOSE statements having the same name and contained within the same tech_family. The EXPOSE is
placed last on the chain if no other EXPOSE statement possessing the last modifier already exists on the
chain. Otherwise, the EXPOSE statement is placed next to last on the chain, just before the statement with
the LAST placement control modifier.

7.9.7.1.4 LAST modifier

The LAST modifier causes the EXPOSE statement to be placed last on the chain of EXPOSE statements
having the same name and contained within the same tech_family. There shall only be one EXPOSE
statement within a tech_family with the LAST placement control modifier.

7.9.7.2 EXTERNAL statement

The syntax for the EXTERNAL statement is given in Syntax 7.46.

external_statement ::= [EXPORT] EXTERNAL (name)
std_postfix_modifier : [passed_clause] [result_prototype]
[default_clause] [proxy_clause] ;

proxy_clause ::= PROXY (result_type_statement_members)

Syntax 7.46: external_statement

The EXTERNAL statement makes the referenced name visible to the DPCM.

69
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 69 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

All EXTERNAL statements for a given statement name shall have the same argument signature for their
PASSED and RESULT clauses. This requirement regarding argument signatures applies for all
TECH_FAMILY(ies)

7.9.7.2.1 PROXY

The PROXY clause identifies a statement that shall be used in place of the current statement should the
application or the run-time fail to provide one. The statement identified in the proxy clause shall have the
same passed and result type sequences as the containing external statement.

NOTE—Coding optional causes the run-time to supply a default function if the application fails to provide one. The
default function supplied by the run-time prevents the proxy from taking effect. When using a proxy clause, do not use
the optional modifier.

7.9.7.3 INTERNAL statement

The syntax for the INTERNAL statement is given in Syntax 7.47.

internal_statement ::= [EXPORT] INTERNAL (name)
method_postfix_modifier : [passed_clause] [result_prototype] %
{ C_CODE }%;

Syntax 7.47: internal_statement

The INTERNAL statement declares a DCL-language interface to code written in the C language.

7.9.8 DCL to C communication

The passed argument list to C code shall consist of the following:

— The Standard Structure pointer as the first argument and named std_struct.

— If the statement contains a result prototype, the next argument shall be the address of the area
where the results are to be placed. The result area shall be a C struct containing elements of the
corresponding type and order for each variable defined in the result prototype. The name of the
return area pointer shall be dcm_rtn.

— If there is no result prototype, the dcm_rtn parameter shall not be present.

— Any additional passed parameters, if any, shall match in quantity, type, and order as expressed in
the passed clause.

The return value of the statement shall be the C type int and shall represent the return code. Successful
completion shall return with value 0. Unsuccessful completion shall return with an error code.

The internal statement maintains the reference counts for aggregate types when the function is called and
again when it returns. To allow the proper manipulation of the reference counts, the return operator shall
not be used in the C function body. Instead, use well-structured programming practices or create a label at
the end of the C function body and use a C goto to jump to the label.

7.9.8.1 Built-in label

Within internal statements, the C function body may use the goto operator in C to jump to the predefined
label dcmStmtExit. The label dcmStmtExit marks the end of the C function body. Within the C function
body, a goto dcmStmtExit shall jump to the end of the C function body.

70
Copyright © 2010 IEEE all rights reserved.

– 70 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

7.9.8.2 dcm_rc

Internal statements have the predefined return variable of type int. This variable returns the error code to
the caller. This variable is initialized to the value of zero before the C function body starts. Error returned C
function body shall be done by assigning the error code value to the predefined variable dcm_rc before
jumping to dcmStmtExit or reaching the end of the C function body.

7.9.9 Constant statement

A constant statement allows the definition of simple constants. These constants are embedded directly in
the text of the executable module.

For example, a constant statement can be used to embed a string in the executable module that other
module examination programs can search for (Syntax 7.48).

constant_statement ::= CONSTANT (name) : RESULT
(simple_assignment_list) ;

simple_assignment_list ::= simple_assignment
{; simple_assignment}
| simple_assignment {; simple_assignment}; default_constant
| default_assignment

simple_assignment ::= (DOUBLE | FLOAT) : name = number_constant
| STRING : name = string_constant

default_constant ::= (DOUBLE | FLOAT) : number_constant
| STRING : string_constant

Syntax 7.48: constant_statement

7.9.10 Calculation statements

The syntax for the calculation is given in Syntax 7.49.

calculation_body ::= [passed_clause] [local_clause]
[conditional_result]

Syntax 7.49: calculation_body

7.9.10.1 CALC statement

The syntax for the CALC statement is given in Syntax 7.50.

calc_statement ::= [EXPORT] CALC (name)method_postfix_modifier
: calculation_body ;

method_postfix_modifier ::= std_postfix_modifier
[DEFAULT (method_name_list)]

method_name_list ::= method_statement_name {,
method_statement_name}

Syntax 7.50: calc_statement

The CALC statement is DCL’s primary numerical calculation statement. It defines a statement that can be
called from other DCL statements.

71
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 71 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

7.9.10.2 ASSIGN statement

The syntax for the ASSIGN statement is given in Syntax 7.51.

assign_statement ::= [EXPORT] ASSIGN (name)
method_postfix_modifier : [passed_clause] [local_clause]
[conditional_result] ;

Syntax 7.51: assign_statement

An ASSIGN statement, which is similar to a CALC statement, shall evaluate and return values specified in
a RESULT clause. The ASSIGN statement, unlike the CALC statement, shall allocate storage for variables
in the RESULT clause and copy the evaluation results into that storage before returning.

An ASSIGN variable has the same scope (visibility) as the defining ASSIGN statement. An ASSIGN
statement shall not reference its own ASSIGN variables.

NOTE—Using the ASSIGN statement can result in side effects if the calculation environment is recursive or reentrant.

7.9.10.3 DELAY statement

The DELAY statement (Syntax 7.52) calculates segment delays for a path.

delay_statement ::= [EXPORT] DELAY (name)
delay_slew_postfix_modifier : [passed_clause] conditional_time
;

delay_slew_postfix_modifier ::= std_postfix_modifier [DEFAULT]
conditional_time ::= early_late_sequence |

delay_slew_when_sequence , OTHERWISE early_late_sequence
early_late_sequence ::=

EARLY (float_expression) LATE (float_expression)
| LATE (float_expression) EARLY (float_expression)

delay_slew_when_sequence ::= WHEN (logical_expression)
early_late_sequence {, WHEN (logical_expression)
early_late_sequence}

Syntax 7.52: delay_statement

7.9.10.3.1 EARLY and LATE clauses and result variables

The DELAY statement does not have an explicit RESULT clause; rather, the statement has two required
clauses, EARLY and LATE, which can appear in any order. The EARLY and LATE clauses define their
respective result variables EARLY and LATE. The DELAY statement returns these values as though it had
the RESULT clause

RESULT(FLOAT: EARLY, LATE)

7.9.10.3.2 DEFAULT modifier for DELAY statements

The DEFAULT modifier identifies the DELAY statement to be used in situations where no other DELAY
statement has been specified.

The DEFAULT modifier has the following restrictions:

72
Copyright © 2010 IEEE all rights reserved.

– 72 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

— Only one DELAY statement may contain the DEFAULT modifier within the scope of a
TECH_FAMILY.

— No passed parameters.

— The DEFAULTDELAY statement shall not have passed parameters. Because the DPCM does not
model the segment, it shall not recognize the proper parameters to pass the statement.

— The DEFAULTDELAY statement shall not reference STORE variables.

7.9.10.4 SLEW statement

The SLEW statement (Syntax 7.53) calculates transition times for a path.

slew_statement ::= [EXPORT] SLEW (name)
delay_slew_postfix_modifier : [passed_clause] conditional_time
;

Syntax 7.53: slew_statement

7.9.10.4.1 EARLY and LATE clauses and result fields

The SLEW statement does not have an explicit RESULT clause; rather, the statement has two required
clauses, EARLY and LATE, which can appear in any order. The EARLY and LATE clauses define their
respective result variables EARLY and LATE. The SLEW statement returns these values as though it had
the RESULT clause

RESULT(FLOAT: EARLY, LATE)

7.9.10.4.2 DEFAULT modifier for slew statements

The DEFAULT modifier identifies the SLEW statement to be used in situations in which no other SLEW
statement has been specified.

The DEFAULT modifier has the following restrictions:

— Only one SLEW statement may contain the DEFAULT modifier within the scope of a
TECH_FAMILY.

— No passed parameters

— The DEFAULTSLEW statement shall not have passed parameters. Because the DPCM does not
model the segment, it shall not recognize the proper parameters to pass the statement.

— The DEFAULTSLEW statement shall not reference STORE variables.

7.9.10.5 CHECK

The syntax for the CHECK statement is given in Syntax 7.54.

73
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 73 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

check_statement ::= [EXPORT] CHECK (name) std_postfix_modifier
: [passed_clause] conditional_bias ;

conditional_bias ::= BIAS (expression) check_when_sequence ,
OTHERWISE BIAS (expression)

check_when_sequence ::=
WHEN (logical_expression) BIAS (expression)
{, WHEN (logical_expression) BIAS (expression) }

Syntax 7.54: check_statement

The CHECK statement computes the allowable difference in arrival times based on the comparison
between a signal’s (data) arrival time and a reference (clock), which shall be present for a circuit to
function.

The CHECK statement does not have an explicit RESULT clause; rather, the statement has a required
clause, BIAS. The CHECK statement returns the value of this BIAS clause as if it had the RESULT clause.

RESULT (float: BIAS)

The BIAS clause computes the allowable difference in arrival times between a signal and reference.

7.9.11 METHOD statement

The syntax for the METHOD statement is given in Syntax 7.55.

method_statement ::= METHOD (name) std_postfix_modifier :
result_prototype ;

Syntax 7.55: check_statement

DCL supports access to multiple statements, which are referenced through a common name (the METHOD
name) and differentiated by the PATH_DATA or CELL_DATA scoping operator associated with particular
PINs, PATHs, or CELLs. The METHOD statement shall declare a common result prototype for all
associated statements. These associated statements are called action statements. An action statement can be
a CALC, ASSIGN, EXPOSE, INTERNAL, or EXTERNAL statement. Within a MODELPROC or
SUBMODEL, the METHODS clause shall associate a particular action statement with a CELL, PIN, or
PATH.

If no specific action statement is associated with a method, the DEFAULT action statement (if defined) is
executed. A DEFAULT action statement is defined via the DEFAULT modifier on a CALC, ASSIGN,
EXPOSE, INTERNAL, or EXTERNAL statement. It shall be an error to reference a METHOD statement
for which there is no associated action statement. The scope of a METHOD statement name shall be global
(i.e.,across all TECH_FAMILY(ies).

7.9.11.1 Default action statement

A DEFAULT action statement may be defined for any METHOD statement and is subject to the following
restrictions:

— A DEFAULT action statement shall not have any passed parameters.

— There shall only be zero or one default action statements registered to each method within a
TECH_FAMILY.

74
Copyright © 2010 IEEE all rights reserved.

– 74 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

7.9.11.2 Selection of action statement

At all times during the execution of DCL statements, a context shall be defined by the contents of the
Standard Structure.

When a METHOD is referenced, the following rules shall specify which action statement is executed:

— The associated CELL, PIN, or PATH is first determined.

— If the METHOD reference uses the scope operator CELL_DATA::, then the action statement is
assumed to be associated with the cell identified by the cellData field of the Standard Structure.
If the METHOD reference uses the scope operator PATH_DATA:: (or if no scope operator was
used), then the action statement is assumed to be associated with the PIN or PATH identified by
the pathData field of the Standard Structure.

— If an action statement was associated with the identified CELL, PIN, or PATH, that action
statement shall be executed.

— If no such action statement was found, or the supplied pathData or cellData handle is zero, and a
DEFAULT action statement was declared, then that DEFAULT statement shall be executed.

— If no action statement was found and no default action statement was declared, then an error shall
be propagated back to the calling statement.

7.10 Predefined types

To enable the language to manipulate objects created by some built-in functions or basic constructs of the
language, these types shall be defined as part of the language.

7.10.1 ACTIVITY_HISTORY_TYPE

The ACTIVITY_HISTORY_TYPE contains a linked list of HISTORY_TYPE objects shown in Table 15.

Table 15—Type definition for ACTIVE_HISTORY_TYPE

typedef(ACTIVE_HISTORY_TYPE):
 result(ACTIVE_HISTORY_TYPE: next;
 HISTORY_TYPE: refobj;
 void: reserved;
 int: activityCode;);

7.10.1.1 next

next creates a linked list of activities that have occurred on the referenced object (refobj).

7.10.1.2 refobj

refobj is the structure representing the history associated with this object.

7.10.1.3 reserved

Reserved is undefined and shall not be referenced. It is reserved for run-time library support only.

7.10.1.4 activityCode

activityCode indicates what operation was performed on this object.

75
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 75 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 16—Permitted activityCode values

Value Meaning

0 Indicates that refobj represents the history for the root rule

1 Indicates that the refobj represents the history for the main program rule

2 Indicates that the refobj represents the history for a C program module

3 Indicates that the refobj represents the history for a subrule that was loaded

4 Indicates that the refobj represents the history for a table that was loaded

5 Indicates that the refobj represents the history for a table that was loaded but the data were not
because they were deferred

6 Indicates that the refobj represents the history for a table that was loaded with the replace option

7 Indicates that the refobj represents the history for a table that was loaded with the override option

8 Indicates that the refobj represents the history for a table’s data that were loaded because it was
deferred but the table was since searched forcing the table data to be placed into the table’s
memory image

9 Indicates a dynamic table was appended

10 Reserved for future use

11 Indicates that the refobj represents a load operation by this subrule

7.10.2 HISTORY_TYPE

HISTORY_TYPE holds the information on individual history events such as table loading information
(Table 17).

Table 17—Type definition for HISTORY_TYPE

typedef(HISTORY_TYPE):
 result(string[*]: info;
 ACTIVITY_HISTORY_TYPE: *activity;
 void: reserved;
 int: kind;);

7.10.2.1 info

The info array contains a list of pertinent information about the table or subrule loaded. The sequence of
messages is determined by the kind of history this instance is. When kind applies to a rule the sequence of
messages are shown in Table 18.

Table 18—Rule history info message types

Index value Type of string message

0 Name

1 Load path

2 Tech_family name

3 Time stamp

4 Control_parm

5 Rule source name

76
Copyright © 2010 IEEE all rights reserved.

– 76 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

When kind represents a table, the permitted values are shown in Table 19.

Table 19—Table History inform message types

Index value Type of string message

0 Name

1 Load path

2 Tech_family name

3 Time stamp

7.10.2.2 activity

The activity structure contains what other actions were spawned as a result of this action.

7.10.2.3 kind

The kind field indicates whether the history applies to a rule or a table as shown in Table 20.

Table 20—Permitted kind values

Value Meaning

0 The history applies to a subrule

1 The history applies to a table

7.10.3 LOAD_HISTORY_TYPE

LOAD_HISTORY TYPE contains the history for both rule and tables loaded as shown in Table 21.

Table 21—LOAD_HISTORY TYPE

typedef (LOAD_HISTORY TYPE):
 result(HISTORY_TYPE[*]: ruleHistory, tableHistory;
 void: reserved1, reserved2, reserved3, reserved4;
 string: techName;);

7.10.3.1 ruleHistory

ruleHistory is an array containing the history records for all the subrules loaded.

7.10.3.2 reserved1, reserved2, reserved3, reserved4

The reserved fields are undefined and shall not be modified.

7.10.3.3 techName

techName is the tech_family name of the root rule.

7.10.4 CELL_LIST_TYPE

CELL_LIST_TYPE (Table 22) contains the cell name, cell qualifier name, and model domain name for a
cell as it appears in the model statement. This structure also contains two undefined fields rsvd1 and rsvd2
that shall not be modified.

77
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 77 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 22—CELL_LIST_TYPE

typedef(CELL_LIST_TYPE):
 result(string: cellName, cellQualName, modelDomainName;
 void: rsvd1, rsvd2;);

7.10.5 TECH_TYPE

TECH_TYPE (Table 23) represents the internal representation of the a specific technology. It is returned as
a result of calling several different default library functions. These structures are created by the run-time
environment and cannot be copied or created using the new operator.

Table 23—TECH_TYPE

typedef(TECH_TYPE):
 result(string: name;
 int: "DEFAULT", dcmInfo;
 void: reserved;);

7.10.5.1 TECH_TYPE field: name

name is the tech_family name this TECH_TYPE represents.

7.10.5.2 TECH_TYPE field: DEFAULT

DEFAULT result contains the tech_family index used by the run-time. This field shall not be modified.

7.10.5.3 TECH_TYPE fields: dcmInfo and reserved

dcmInfo and reserved are undefined and shall not be modified.

7.10.6 DELAY_REC_TYPE

DELAY_REC_TYPE (Table 24) contains two float fields, one for the early delay and the other for the late
delay.

Table 24—DELAY_REC_TYPE

typedef(DELAY_REC_TYPE):
 result(float var: early, late);

7.10.7 SLEW_REC_TYPE

SLEW_REC_TYPE (Table 25) contains two float fields, one for the early slew and the other for the late
slew.

Table 25—SLEW_REC_TYPE

typedef(SLEW_REC_TYPE):
 result(float var: early, late);

7.10.8 CHECK_REC_TYPE

CHECK_REC_TYPE (Table 26) contains a single float field representing a bias calculation result.

78
Copyright © 2010 IEEE all rights reserved.

– 78 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 26—CHECK_REC_TYPE

typedef(CHECK_REC_TYPE):
 result(float var: bias);

7.10.9 CCDB_TYPE

CCDB_TYPE (Table 27) is a type definition used within the Standard Structure. Its use is reserved for the
run-time environment and shall not be created, copied, or modified. Its definition is only present to aid in
the description of the Standard Structure.

Table 27—CCDB_TYPE

typedef(CCDB_TYPE):
 result(int: sfiCount;
 void: sfi, destructor, reserved0, anchor;
 short: ci, flags;
 int: methodsIndex;
 void: reserved1, reserved2, reserved3, reserved4;);

7.10.10 CELL_DATA_TYPE

CELL_DATA_TYPE (Table 28) is generated by the run-time environment during modeling. Typically, they
are used during calculations after the cell has been modeled. This definition is to aid in the description of
the Standard Structure. The CELL_DATA_TYPE shall not be modified, copied, or created using the new
operator.

Table 28—CELL_DATA_TYPE

typedef(CELL_DATA_TYPE):
 result(void: recallData;
 CCDB_TYPE: ccdb;
 int: usageCount;
 void: reserved1;
 short: flags;
 void: cause, reserved3, reserved4;);

7.10.11 PCDB_TYPE

PCDB_TYPE (Table 29) is a type definition used within the Standard Structure. Its use is reserved for the
run-time environment and shall not be created, copied, or modified. Its definition is only present to aid in
the description of the Standard Structure.

Table 29—CCDB_TYPE

typedef(PCDB_TYPE):
result(string: clkflg, objectType;
 int: delayAdj;
 void: delay, slew;
 int: ci, sfiCount;
 void: sfi, destructor, anchor, reserved0, reserved1, reserved2,
 reserved3;
 int: methodsIndex;);

7.10.12 PIN_ASSOCIATION

PIN_ASSOCIATION (Table 30) is used to relate an application pin to an arbitrary DCL library structure.

79
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 79 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 30—PIN_ASSOCIATION

typedef(PIN_ASSOCIATION):
 result(pin var: pinHandle;
 var abstract var: pinInfo;);

7.10.13 PATH_DATA_TYPE

PATH_DATA_TYPE (Table 31) is generated by the run-time environment during modeling. Typically, it is
used during calculations after the cell has been modeled. This definition is to aid in the description of the
Standard Structure. The PATH_DATA_TYPE shall not be modified, copied, or created using the new
operator.

Table 31—PATH_DATA_TYPE

typedef(PATH_DATA_TYPE):
 result(string: path;
 void: recallData;
 PCDB_TYPE: pcdb;
 int: usageCount;
 short: flags, cycle_adj, corrind, modifiers,
 msbStrandSource, lsbStrandSource,
 msbStrandSink, lsbStrandSink;);

7.10.14 STD STRUCT

The STD_STRUCT (Table 32) is the first implicit argument to all DCL statements. The STD_STRUCT is
made up of fields that can be modified and those that shall not be modified. To exercise a library module
effectively as an application, Standard Structures need to be created and modified.

Table 32—STD_STRUCT

typedef(STD_STRUCT):
 result(int: dcminfo;
 void: states;
 string var: cell, cellQual, modelDomain, ctl, model_name,
 instantiated, expanded;
 pin var: block;
 void: inputPins, outputPins, nodes;
 pin var: fromPoint, toPoint;
 int var: inputPinCount, outputPinCount, nodeCount,
 sourceEdge, sinkEdge, sourceMode;
 int var: sinkMode, calcMode;
 var SLEW_REC_TYPE : slew;
 PATH_DATA_TYPE var: pathData;
 void var: applicationInfo;
 CELL_DATA_TYPE var: cellData;
 pin var: utilityHandle;
 int var: processVariation;
 var PIN_ASSOCIATION var: fromPointPinAssociation,
 toPointPinAssociation;
 void: reserved2, reserved3, reserved4, reserved5,
 reserved6;);

7.11 Predefined variables

DCL contains variables whose names and types have been predefined. Predefined variable names are
keywords that are available in both uppercase or lowercase variants.

7.11.1 ARGV

ARGV (Table 33) is an array of strings containing the arguments as they are passed to the application. Each

80
Copyright © 2010 IEEE all rights reserved.

– 80 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

string represents an argument in the list supplied to the application. The order of the strings in the array is
the order the arguments were passed to the application. ARGV only contains valid information if the
application is written in DCL using the TECH_FAMILY MAIN option. Applications written in other
languages such as C the argv array shall contain no elements.

Table 33—ARGV

string[*]: ARGV

7.11.2 CONTROL_PARM

CONTROL_PARM (Table 34) contains the control parameter string with which the rule was loaded. When
a subrule is loaded either by the application or another subrule.

Table 34—CONTROL_PARM

string: CONTROL_PARM

7.12 Built-in function calls

A built-in function is a function built as part of the compiler. Their names are reserved words. There are
several built-in functions to perform a variety of operations. Most provide access to information that could
not otherwise be accessed.

7.12.1 ABS

ABS (Syntax 7.56) returns the absolute value associated with its argument. When the argument type is int,
short, or char, the result’s type is int. When the argument type is float or double, the result’s type is double.
No other types shall be allowed as arguments.

expression ::= expression
| ABS (integer_expression | double_expression)

Syntax 7.56: ABS

7.12.2 Complex number components

To access the individual components of a complex number, there are two built-in functions, imag_part and
real_part.

7.12.2.1 IMAG_PART

IMAG_PART (Syntax 7.57) takes as an argument a complex number and returns the imaginary component.
The type of the result is double.

expression ::= expression
| IMAG_PART (complex_type_expression)

Syntax 7.57: IMAG_PART

7.12.2.2 REAL_PART

REAL_PART (Syntax 7.58) takes as an argument a complex number and returns the real component. The
type of the result is double.

81
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 81 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

expression ::= expression
| REAL_PART (complex_type_expression)

Syntax 7.58: REAL_PART

7.12.3 EXPAND

Expand (Syntax 7.59) takes as an argument a pin range and expands the pin range into a list a pins. The
expanded pin range list is a one-dimensional array of strings in which each string contains the name of one
of the pins in the pin range. The strings are constant and it shall be an error to free them.

expression ::= expression | EXPAND (pin_range)

Syntax 7.59: EXPAND

7.12.4 Array functions

7.12.4.1 IS_EMPTY

IS_EMPTY (Syntax 7.60) takes an array as an argument returns whether the array contains any elements.
The result type is int where the value of zero indicates the array has elements and a value of one indicates
the array contains no elements.

expression ::= expression | IS_EMPTY (array_expression)

Syntax 7.60: IS_EMPTY

7.12.4.2 NUM_DIMENSIONS

NUM_DIMENSIONS (Syntax 7.61) takes as an argument that is an array any type and returns the number
of dimensions contained in that array as an int.

expression ::= expression
| NUM_DIMENSIONS (array_expression)

Syntax 7.61: NUM_DIMENSIONS

7.12.4.3 NUM_ELEMENTS

NUM_ELEMENTS (Syntax 7.62) returns the number of elements contained in the specified dimension of
the array. The function takes two arguments the first is the array to query and the second is the dimension of
interest. The first argument is an array of any type and the second is of type int.

expression ::= expression
| NUM_ELEMENTS (array_expression , int_expression)

Syntax 7.62: NUM_ELEMENTS

7.12.5 Messaging functions

The following subclauses contain the built-in functions contained within the language.

7.12.5.1 ISSUE_MESSAGE

ISSUE_MESSAGE (Syntax 7.63) creates an error whose level is that of the severity argument and issues a

82
Copyright © 2010 IEEE all rights reserved.

– 82 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

text message. The text message is composed with similar syntax and semantics as the ANSI C printf
function.

expression ::= expression
| ISSUE_MESSAGE (int_expression , int_expression ,
string_expression {, expression })

Syntax 7.63: ISSUE_MESSAGE

7.12.5.1.1 Arguments

The arguments are as follows:

— The first argument to ISSUE_MESSAGE is the message number. The first
10 000 message numbers are reserved for the system. If the first argument has a value of 10 000 or
less, then a value of 10 000 shall be added to the first argument before processing the message.

— The second argument shall be the message severity. The value of the second argument shall
conform to the system error severity values. There is a set of predefined constants associated with
error severities in which each predefined constant represents the value associated with its severity.

— INFORM

INFORM represents the value associated with the severity of an informative message. The error
code returned by issue_message when an inform message is issued is zero and no error exit is
taken.

— WARNING
WARNING represents the value associated with the message severity of a warning message. The
error code returned by issue_message when an warning message is issued is zero and no error exit
is taken.

— ERROR
ERROR represent the value associated with the message severity of an error message. The error
code returned by issue_message when an error message is issued is the error number with the error
severity inserted as the high-order byte.

— SEVERE
SEVERE represents the value associated with the message severity of severe. The error code
returned by issue_message when a severe error message is issued is the error number with the
severe severity inserted as the high-order byte.

— TERM

TERM represents the value associated with the message severity of terminate. The error code
returned by issue_message when a terminate error message is issued is the error number with the
terminate severity inserted as the high-order byte.

— The third argument is the format string. It shall conform to the syntax and semantics of the ANSI
C printf format string.

— Any additional parameters shall conform to the format operators used in the format string and
appear in the order the format operators appeared in the format string.

7.12.5.1.2 Result

The result is default field if the integer type and whosevalue is the calculated message number. If the
severity argument is either INFORM or WARNING, then no error is generated and a value of zero is
returned as message number.

83
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 83 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

7.12.5.2 PRINT_VALUE

PRINT_VALUE (Syntax 7.64) prints the value of its argument. Printing is conditional on the debug setting.
If debug is not set to OFF, then the values shall be printed; otherwise, no action is taken. PRINT_VALUE
has no result.

expression ::= expression | PRINT_VALUE (expression)

Syntax 7.64: PRINT_VALUE

7.12.5.3 SOURCE_STRANDS_MSB

SOURCE_STRANDS_MSB (Syntax 7.65) returns the value of the most significant strand at the source end
of the bus. This is a value carried in the Standard Structure that shall only contain valid information during
those calls identified by the application interface clause of this specification.

expression ::= expression | SOURCE_STRANDS_MSB

Syntax 7.65: SOURCE_STRANDS_MSB

7.12.5.4 SOURCE_STRANDS_LSB

SOURCE_STRANDS_LSB (Syntax 7.66) returns the value of the least significant strand at the source end
of the bus. This is a value carried in the Standard Structure that shall only contain valid information during
those calls identified by the application interface clause of this specification.

expression ::= expression | SOURCE_STRANDS_LSB

Syntax 7.66: SOURCE_STRANDS_LSB

7.12.5.5 SINK_STRANDS_MSB

SINK_STRANDS_MSB (Syntax 7.67) returns the value of the most significant strand at the sink end of the
bus. This is a value carried in the Standard Structure that shall only contain valid information during those
calls identified by the application interface clause of this specification.

expression ::= expression | SINK_STRANDS_MSB

Syntax 7.67: SINK_STRANDS_MSB

7.12.5.6 SINK_STRANDS_LSB

SINK_STRANDS_LSB (Syntax 7.68) returns the value of the most significant strand at the sink end of the
bus. This is a value carried in the Standard Structure that shall only contain valid information during those
calls identified by the application interface clause of this specification.

expression ::= expression | SINK_STRANDS_LSB

Syntax 7.68: SINK_STRANDS_LSB

7.13 Tables

A DCL table is a collection of one-dimensional vector(s) of data. Each data vector (called a row) shall have

84
Copyright © 2010 IEEE all rights reserved.

– 84 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

the same structure (i.e., the same number of data values, which are also called fields) and the same
sequence of DCL data types. Each table row shall be associated with a set of qualifiers, which are used to
select the desired row during table search operations. Table data can be created at compile time (static
tables) or at run-time (dynamic tables). Table data can be read from or written to a mass storage device.

Tables shall be defined by a TABLEDEF statement together with one or more TABLE statements. The
TABLEDEF statement defines the name of the table, data format, and search criteria; the TABLE statement
groups data for compiled tables in a collection of rows.

NOTE—The order of the data rows in a table has no effect on the searching for a matching row (see 7.13.3.7).

7.13.1 TABLEDEF statement

The syntax for the TABLEDEF statement is given in Syntax 7.69.

tabledef_statement ::= tabledef_preamble [passed_clause]
tabledef_clauses ;

tabledef_preamble ::= [EXPORT] TABLEDEF (name)
std_postfix_modifier tabledef_modifiers :

tabledef_clauses ::=
qualifiers_clause data_clause default_clause [key_clause]

| qualifiers_clause data_clause [key_clause] default_clause
| qualifiers_clause [key_clause] data_clause default_clause
| [key_clause] qualifiers_clause data_clause default_clause

Syntax 7.69: tabledef_statement

The TABLEDEF statement shall define the name of the table, input parameters, options, returned data
format, and the variable references used to match the table row qualifiers. When the TABLEDEF statement
is called, the associated table is searched for the row that matches the qualifiers, and if found, it returns the
data contained in that row. If a row matching the qualifiers is not found, then an error is returned.

7.13.1.1 QUALIFIERS clause

The QUALIFIERS clause shall define the variables whose values are used to match the qualifier data
associated with each table row during table search operations. The number of the variables listed in this
clause shall match the number of qualifiers specified for each row in the TABLE statement of this table,
with the exception of the PROTOTYPE_RECORD row and the DEFAULT row. The order of the variables
in this clause is significant, as the variable’s value is compared to the qualifier in the same position from the
TABLE statement (see 7.13.3.7).

All qualifier variables shall be of type STRING or are converted to STRING using the following rules:

— Variables of type PIN shall be converted to the type STRING using DCL’s implicit conversions
(see 7.4.5.3.3.1).

— Variables of type INT shall be converted to type STRING as generated by sprintf() using a format
of %d (section 7.9.6.1 of ISO/IEC 9899:1990).

— Variables of type NUMBER, FLOAT and DOUBLE shall be converted to type string as generated
by sprintf using the format of %.0+ (see section 7.9.6.1 of ISO/IEC 9899:1990).

— PINLIST, VOID, aggregate types and array types shall not be used in the QUALIFIERS clause.

85
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 85 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

7.13.1.2 DATA clause

The data clause shall define the name and data type of each field returned by a table search operation. For
scalar data types (INT, FLOAT, STRING, etc.), these variables shall correspond one to one to the data
values in each row of the TABLE statement. For array data types, these variables shall correspond one to
one with data fields enclosed within square brackets.

The pointer types of TECH_TYPE, PIN, PINLIST, and VOID shall not be allowed in the DATA clause of a
TABLEDEF statement.

7.13.1.3 KEY clause

The optional key clause shall define a decryption key as a method of keeping table data private. If a KEY is
used in the TABLEDEF statement that defines the table at compile time, the same KEY shall be used in the
TABLEDEF statement that defines and loads the table at run-time.

The KEY clause shall be valid only for static tables.

7.13.1.4 OVERRIDE modifier

The contents of a table can be built up as the result of merging together information from multiple TABLE
statements with the same table name. This merging is always allowed within a single compilation unit, but
it is only allowed across compilation units if the OVERRIDE modifier is specified on the IMPORTed
TABLEDEF statement prototype (see 7.13.3.9).

The OVERRIDE modifier shall be valid only for static tables. Table merging shall occur only among
subrules of the same TECH_FAMILY.

7.13.1.5 SUPPRESS modifier

The suppress modifier prevents the table search functions associated with the tabledef from issuing error
messages when a row that is being searched for is not in the table.

7.13.1.6 DESCRIPTOR modifier

Tabledefs without the DESCRIPTOR defines a single instance of a table. This instance can either be static,
which is loaded when the table is first searched, or it can be dynamic and read in when the DPCM requests
it. Tabledefs with the descriptor modifier define a general table description that can be used for any number
of table instances.

A table DESCRIPTOR is a type defined by the tabledef and is known by the descriptor name. Tabledef
descriptors are allocated through use of the operator new. All the statements associated with a tabledef
containing a descriptor clause shall have as an implicit first argument a structure var tabledef descriptor.
The association to a specific tabledef is created by statements (LOAD_TABLE, UNLOAD_TABLE,
WRITE_TABLE, LOAD_TABLE, ADD_ROW, and DELETE_ROW) that have tabledef clauses
identifying the specific tabledef statement it is to be associated with.

A new table instance is created when a call is made to LOAD_TABLE with a table descriptor that does not
have a table in memory associated with it. A table instance is removed when a call to UNLOAD_TABLE is
made using a table descriptor. A specific instance of a table may be modified by calls to ADD_ROW,
DELETE_ROW, and LOAD_TABLE using the descriptor.

86
Copyright © 2010 IEEE all rights reserved.

– 86 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

7.13.1.7 DYNAMIC modifier

The DYNAMIC modifier identifies the tables associated with this table may be modified using ADD_ROW
and DELETE_ROW.

7.13.1.8 DEFAULT clause

The optional DEFAULT clause shall define a set of values to return if a qualifier search fails. The
DEFAULT clause shall be specified only for static tables or EXTERNAL TABLEDEF statements. The
DEFAULT clause in the TABLEDEF statement shall be overridden by the DEFAULT row (see 7.13.3.3).

7.13.2 Table visibility rules

A TABLEDEF statement may be static, EXPORTed, IMPORTed, or IMPORTed with an OVERRIDE
modifier. The TABLE corresponding to a TABLEDEF statement shall exist in the same subrule when the
defining TABLEDEF is static, EXPORTed, or IMPORTed with OVERRIDE statement.

The following rules also apply to all TABLEDEF:

— A table defined by a static TABLEDEF shall be visible only within its compilation unit.

— A table defined by an EXPORTTABLEDEF shall be visible within its compilation unit and within
any other compilation unit the same TECH_FAMILY and an IMPORT of that TABLEDEF.

— A compilation unit that contains a static TABLEDEF, an EXPORTTABLEDEF, or an IMPORTed
TABLEDEF that specifies the OVERRIDE modifier shall contain at least one TABLE statement
with the same name as the TABLEDEF.

— A compilation unit that IMPORTs a TABLEDEF and does not specify the OVERRIDE modifier
shall not contain any TABLE statements with the same name as the TABLEDEF.

7.13.3 TABLE statement

Tables represent the data associated with a tabledef. The data in a table shall conform to the definition
established in the associated tabledef. For static compiled tables, the tabledef shall not have the modifiers
DYNAMIC or DESCRIPTOR and shall have the same name as the TABLEDEF that defined its
organization.

Tables associated with a tabledef with the DYNAMIC modifier can be stored on disk in either a binary
format or an ASCII format. The ASCII format table shall consist of a collection of table records that have
the same syntax and semantics as those contained the TABLE statement (Syntax 7.70).

87
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 87 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

table_statement ::= TABLE (name) [table_postfix_modifier] :
prototype_default_records table_records END ;

table_postfix_modifier ::= COMPRESSED
prototype_default_records ::= [prototype_record] [default_record]
prototype_record ::= PROTOTYPE_RECORD : table_data_fields ;
default_record ::= DEFAULT : table_data_fields ;
table_data_fields ::= table_data_element { [,]

table_data_element }
table_array_dimension ::= [[table_data_fields]]
table_multi-dimensional_array ::=

[[table_multi-dimensional_array]
{ [,] [table_multi-dimensional_array] }
| [[table_array_dimension]
{ [,] [table_array_dimension] }

table_data_element ::= statement_name | constant |
table_structure | complex_number | table_array

constant ::= string_literal | integer_constant |
floating_point_constant

table_structure ::= statement_name :
{table_data_element {, table_data_element }}

complex_number ::= (real_part , imaginary_part)
real_part ::= floating_point_constant
imaginary_part ::= floating_point_constant
table_records ::= table_record { table_record }
table_record ::= table_qualifier_list : table_data_fields ;
table_qualifier_list ::= table_qualifier {, table_qualifier}
table_qualifier ::= double_quoted_literal_string

Syntax 7.70: table_statement

For variables of type array declared in the data clause of the TABLEDEF statement, the data values to be
returned in the array shall be enclosed within square brackets. For a multidimensional array, the values for
each dimension shall be enclosed within nested square brackets. The number of values contained within
each set of nested square brackets for the same array shall contain the same number of elements.

7.13.3.1 Static tables

Static tables are compiled and stored in memory image. The static tables are read only and shall not be
modified. The var type modifier shall not be used in static tables.

The TABLE statement shall define data values for static tables. Each TABLE statement requires a
corresponding TABLEDEF statement. The first TABLE statement encountered in the scope of the static or
EXTERNAL TABLEDEF statement shall be considered the original TABLE statement for this table.

The TABLE statement groups data into rows. Each row consists of a set of qualifiers followed by a set of
data fields. The qualifiers of each row correspond to the variables specified in the QUALIFIERS clause in
the associated TABLEDEF statement. The data fields correspond to the DATA clause in the associated
TABLEDEF statement. The number and type of the qualifiers and data fields shall match the qualifiers and
data fields specified in the associated TABLEDEF statement.

Within a single compilation unit there may exist more than one TABLE statement of the same name. The
tables are appended as they lexically appear in the source with the following restrictions:

88
Copyright © 2010 IEEE all rights reserved.

– 88 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

— The DEFAULT record (if present) shall appear in the first table in the source and follows the rules
for default rows.

— The PROTOTYPE_RECORD shall appear in the first table encountered and shall follow all the
rules for prototype_records.

— It shall be considered an error to have two or more data rows in one or more tables associated with
the same TABLEDEF that have identical qualifier sequences.

— All rows in each table associated with a TABLEDEF shall conform to the DATA and QUALIFIER
clauses defined in that TABLEDEF.

Once a table is loaded, independent of whether it originated from one TABLE statement or many, each row
of a table shall be uniquely identified by its qualifiers (see 7.13.1.2). Hence, the table search mechanism is
independent of the row order (e.g., the order of the table rows shall never determine which row is returned).

7.13.3.2 PROTOTYPE_RECORD row

The original TABLE statement of a static table may contain the PROTOTYPE_RECORD row as its first
data row. In this case, the qualifier for this row is the keyword PROTOTYPE_RECORD. Only one
PROTOTYPE_RECORD row shall be allowed per table.

If a PROTOTYPE_RECORD row is present, then any subsequent TABLE rows that do not have the full
number of data fields shall be filled out by copying the appropriate number of trailing fields from the
PROTOTYPE_RECORD row.

7.13.3.3 DEFAULT row

The original TABLE statement for a table may contain the DEFAULT row as its first data row (or as its
second data row if the PROTOTYPE_RECORD row is present). The qualifier for the DEFAULT row is the
keyword DEFAULT. Only one DEFAULT row shall be allowed per table. If a DEFAULT row is defined for
a table, then that row’s data fields shall be returned if a table search operation does not match any of the
other row qualifiers.

If a TABLEDEF statement has a DEFAULT clause and the corresponding TABLE has a DEFAULT row,
the TABLEDEF DEFAULT clause shall never be exercised because the qualifier search can never fail
(except in the case of a reference to a DYNAMIC table that has not been loaded in memory).

If a DEFAULT row is present but no PROTOTYPE_RECORD is present, any subsequent TABLE rows that
do not have the full number of data fields shall be filled out by copying the values from the corresponding
fields of the DEFAULT row.

7.13.3.4 Default operator as table row qualifier

The default operator* may be used for one or more qualifiers in a static table row.

It shall be an error to use the default operator * in a dynamic table row.

7.13.3.5 Default operator in a table reference

It shall be an error to pass the default operator * as the value to be matched when referencing a TABLE.

7.13.3.6 String prefix operator

The string prefix operator * (see 7.6.1 can prefix a nonempty string used as a qualifier component in either
a table row or a table reference.

89
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 89 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

7.13.3.7 Qualifier matching

The search for matching qualifiers in a table reference for any given row shall proceed from the first
qualifier component to the last qualifier component in left-to-right order. The default operator *, if present,
shall be matched only if an exact match between the given qualifier and each of the qualifier component
fails. If no qualifier matches are found and the default row is specified, values from the default row shall be
returned.

The order of the rows in the table shall not affect the matching process.

Matching shall be undefined if multiple table row qualifiers use the string prefix operator and can
potentially match the given qualifier string.

7.13.3.8 COMPRESSED modifier

The compressed modifier in the table statement shall be a hint to the DCL compiler that table storage space
may be saved by removing values from data rows that duplicate values specified in the
PROTOTYPE_RECORD row (or the DEFAULT row, if there is no PROTOTYPE_RECORD row).

The COMPRESSED modifier shall be used only if the table has either a PROTOTYPE_RECORD or a
DEFAULT row. The COMPRESSED modifier shall only be allowed on the original TABLE statement.

7.13.3.9 Duplicate table rows

A duplicate row is defined as one in which all the qualifiers match those in an existing table row for a given
table name. A qualifier which contains the string prefix operator matches another qualifier if it matches the
same strings as the other qualifier.

For static tables, duplicate table rows shall not be allowed within a single compilation unit. Duplicate table
rows shall be allowed in TABLE statements that exist in separate compilation units (see 7.13.1.4). When
duplicate table rows are found in separately compiled table statements, the latter used the OVERRIDE
modifier; the TABLE statement’s data that are loaded later shall supersede the existing table data.

7.13.3.10 Dynamic tables

Dynamic tables are loaded into memory at run-time (using the LOAD_TABLE statement) on request of the
DPCM. These tables can be modified once they are loaded into memory using the ADD_ROW and
DELETE_ROW statements. These tables can also be unloaded from memory (using the
UNLOAD_TABLE statement) or written to disk (using the WRITE_TABLE statement) on request of the
DPCM.

A table shall be designated as dynamic with the DYNAMIC modifier on the appropriate TABLEDEF
statement.

7.13.3.10.1 Dynamic table syntax

Dynamic table data shall be read from a file and shall have the same syntax and semantics as the TABLE
statement for static tables, with the following exceptions:

— Dynamic table data shall consist only of the table row data. Specifically, there shall be no TABLE
keyword, table name, modifiers, or colon (:) at the beginning of the table description. In addition,
there shall be no END keyword or trailing semicolon (;) at the end of the table description.

— There shall be no other data in the file except the table row data.

— The default operator (*) shall not be used as a table row qualifier.

90
Copyright © 2010 IEEE all rights reserved.

– 90 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

— The table shall not contain a PROTOTYPE_RECORD.

7.13.3.10.2 Limitations

The OVERRIDE modifier and the KEY clause shall be considered illegal in a dynamic TABLEDEF
statement.

2.1.1.1.1 Dynamic table manipulation

This section details dynamic table manipulation within DCL.

7.13.4 LOAD_TABLE statement

The syntax for the LOAD_TABLE statement is given in Syntax 7.71.

load_table_statement ::= [EXPORT] LOAD_TABLE (name)
std_postfix_modifier [opt_replace] :
[passed_clause] TABLEDEF (name_of_tabledef)
[opt_file_filter_paths] [opt_integer_default] ;

opt_replace ::= REPLACE
opt_file_filter_paths ::= opt_file_filter_path

{opt_file_filter_path}
opt_file_filter_path ::= (FILE | FILTER | PATH | SUFFIX)

(string_exp)
opt_integer_default ::= DEFAULT

([local_clause] integer_expression)

Syntax 7.71: load_table_statement

The contents of a dynamic table shall be loaded into memory as defined by the LOAD_TABLE statement.
LOAD_TABLE can specify the data be loaded directly from a file or run through a filter program. In either
case, when the data are received by the statement, they shall conform to the QUALIFIER and DATA
clauses of the associated TABLEDEF statement (see 7.13.1).

LOAD_TABLE shall not be declared CONSISTENT.

7.13.4.1 Restrictions

There shall be one FILE clause. At most, there shall be one instance of each of the FILE, FILTER, PATH,
and SUFFIX clauses. The combination of FILE, FILTER, and/or PATH statements shall point to either a
file containing legal table row statements or a program that produces legal table row statements. Each
expression contained within the FILE, FILTER, and PATH clauses shall be of type string.

7.13.4.2 TABLEDEF clause

The TABLEDEF clause shall reference the name of a TABLEDEF statement that is visible in the current
scope. This TABLEDEF statement shall have the DYNAMIC modifier.

7.13.4.3 Result value

The LOAD_TABLE statement has an implicit result (there is no RESULT clause) whose data type is
INTEGER. This implicit result shall be set to zero (0) if the statement is successful in reading the table data
file; otherwise, it shall be set to a nonzero value that refers to an error code.

91
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 91 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

7.13.4.4 FILE clause

The FILE clause shall designate the file name containing the table rows. The extension .table shall be
appended to the file name, so the actual table data file in the file system needs to have this extension or the
DPCM shall not be able to find it. If the file has zero length, then an empty table shall be created. If the
FILTER clause is not present, the FILE shall be read in as is.

7.13.4.5 SUFFIX clause

The SUFFIX clause overrides the default extension of .table. The string expression argument replaces
the default extension of .table with the string supplied.

Example

load_table(t): tabledef(td) file('myTable') suffix(''); loads a table with definition defined by td and with the
name “myTable” using the environment variable DCMTABLEPATH.

7.13.4.6 FILTER clause

The FILTER clause shall contain a STRING that is passed to a shell and whose execution is expected to
read information from stdin and generate table row statements on stdout in the format required.

If the FILTER clause is used in conjunction with the FILE clause, the stdin shall read from the file named
with ".table" appended.

7.13.4.7 PATH clause

The PATH clause shall contain a STRING that designates the name of an environment variable (UNIX) or a
user variable (Windows NT) used to search for the FILE. If the PATH clause is not present, the file shall
either be located in the current directory or the FILE clause shall include the complete path name to that
file. The value of the environment or user variable shall contain a colon delimited list of file system
directory names.

meta-variables can also be used in the PATH clause (see 7.15.6).

7.13.4.8 DEFAULT clause

A LOAD_TABLE statement shall fail when the file name or filter program is not found or if the filter
program returns a nonzero code. (Zero records read shall not cause an error.) If the LOAD_TABLE
statement fails and there is no DEFAULT clause, a nonzero return code shall be sent back to the DPCM. If
there is a DEFAULT clause, then that clause (see 7.13.1.8) shall be executed and the result of that clause
shall be returned to the DPCM.

7.13.4.9 REPLACE modifier

If the REPLACE modifier is specified and a duplicate table row is encountered, older table data shall be
replaced by newer data. If a duplicate table row is encountered during a dynamic table load and the
REPLACE modifier is absent, it shall be considered an error.

7.13.4.10 Descriptor

LOAD_TABLE statements that are associated with a TABLEDEF that had a DESCRIPTOR modifier have
as their first argument a table descriptor. The LOAD_TABLE checks the table descriptor to determine if the
descriptor contains a table already loaded in memory. If a table already exists, the new table is appended to
the existing; otherwise a new table image is created and the table is loaded into it.

92
Copyright © 2010 IEEE all rights reserved.

– 92 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

7.13.5 UNLOAD_TABLE statement

The syntax for the UNLOAD_TABLE statement is given in Syntax 7.72.

unload_table_statement ::= [EXPORT] UNLOAD_TABLE (name)
std_postfix_modifier unload_table_options : [passed_clause]
TABLEDEF (name_of_tabledef) [opt_file_filter_path]
[DEFAULT ([local_clause] integer_expression)] ;

unload_table_options ::= { unload_table_option }
unload_table_option ::= APPENDABLE | BINARY | FREE_SPACE |

INTERNAL

Syntax 7.72: unload_table_statement

The following conditions apply:

— The UNLOAD_TABLE statement shall write an in-memory DYNAMIC table out to the file
specified in the form expected by the LOAD_TABLE statement and shall delete the table from
memory. The file format of the output shall be table records written in ASCII characters.

— The UNLOAD_TABLE has the same fail conditions as the LOAD_TABLE statement (see
7.13.1.8). The DEFAULT clause, if present, shall be executed if this statement fails.

— The syntax and semantics of the TABLEDEF, FILE, FILTER, and PATH clauses shall be the same
as those described in the LOAD_TABLE statement (see 7.13.4), except the file specified shall be
the output file and the filter specified, if any, shall filter the data written to this file.

— The UNLOAD_TABLE statement has as an implicit result (there is no RESULT clause) whose
data type shall be INTEGER. This implicit result shall be set to zero (0) if the statement is
successful in writing the file; otherwise it shall be set to a nonzero value.

— The expression within the DEFAULT clause, if present, shall evaluate to an integer.

— The UNLOAD_TABLE shall not be declared CONSISTENT.

— The UNLOAD_TABLE statement without FILE and FILTER shall empty the table without
writing any data to a file.

7.13.5.1 Descriptor

UNLOAD_TABLE statements that are associated with a tabledef that had a DESCRIPTOR modifier have
as their first argument a table descriptor. The UNLOAD_TABLE uses the descriptor to determine which
table to unload and updates the descriptor to indicate there is no longer a table image in memory.

7.13.5.2 APPENDABLE modifier

The APPENDABLE modifier causes the table to be appended to the end of a file. If no file of the specified
name exists, a new one shall be created. Without the appendable modifier, a new file shall be created. If a
of the same name already exists, it shall be overwritten with the table data.

7.13.5.3 BINARY modifier

The BINARY modifier shall cause the table to being unloaded to be written in memory image. Without the
BINARY modifier, the table shall be written in ASCII format.

7.13.5.4 FREE_SPACE modifier

The FREE_SPACE modifier shall cause the data members for type string stored in the table that is being

93
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 93 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

unloaded to be returned to the system.

7.13.5.5 INTERNAL modifier

When the unload_table statement unloads a table containing statement types, the module containing the
statement pointed to is recorded as well as the statement name. This allows the linker to reestablish the
statement reference that was in the table when it is written. There are situations where this behavior is not
what is desired. The INTERNAL modifier causes the unload to write all statement pointers as though they
were contained in the module containing the UNLOAD_TABLE statement. The INTERNAL modifier is
useful in situations where the table that is being unloaded is intended to be loaded by a different system of
rules. The module that does the loading shall contain executable statements of the same name and
parameter sequences as those contained in the table.

7.13.6 WRITE_TABLE statement

The WRITE_TABLE performs a similar operation and has the same syntax and semantics as the
UNLOAD_TABLE statement. WRITE_TABLE leaves the memory image of the table intact where the
JNLOAD_TABLE removes it.

The syntax for the WRITE_TABLE statement is given in Syntax 7.73.

write_table_statement ::= [EXPORT] WRITE_TABLE (name)
std_postfix_modifier : [passed_clause]
TABLEDEF (name_of_tabledef) [opt_file_filter_path] [DEFAULT
([local_clause] integer_expression)] ;

Syntax 7.73: unload_table_statement

7.13.6.1 Descriptor

WRITE_TABLE statements that are associated with a tabledef that had a descriptor modifier have as their
first argument a table descriptor. The write_table statement uses the table descriptor to determine which
table to write.

7.13.7 ADD_ROW statement

The syntax for the ADD_ROW statement is given in Syntax 7.74.

add_row_statement ::= [EXPORT] ADD_ROW (name)
std_postfix_modifier [opt_replace] :
TABLEDEF (name_of_tabledef) [DEFAULT (expression)] ;

Syntax 7.74: add_row_statement

The ADD_ROW statement declares name as a function that can be called to add a single row to a dynamic
table. The ADD_ROW statement shall not be declare CONSISTENT.

7.13.7.1 TABLEDEF clause

The TABLEDEF clause shall identify the name of a TABLEDEF statement in the current scope that was
declared with the DYNAMIC modifier. The row to be added shall match the qualifier sequence and data
format of the identified TABLEDEF.

94
Copyright © 2010 IEEE all rights reserved.

– 94 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

7.13.7.2 Passed parameters

Although there is no PASSED clause in the definition of the ADD_ROW statement, passed arguments to
the declared statement shall be required. If the add_row statement is associated with a tabledef that has a
descriptor modifier, the first argument shall be a table descriptor and the remaining argument shall be the
number, order, and types of these arguments that are exactly those specified by the concatenation of the
variables in the QUALIFIERS and DATA clauses of the associated TABLEDEF statement.

7.13.7.3 DEFAULT clause

The DEFAULT clause allows another action to be taken should the statement declared by the ADD_ROW
statement fail. A failure shall occur if the row to be added is a duplicate of an existing row (i.e., has the
same qualifiers) and the REPLACE modifier was not specified.

7.13.7.4 REPLACE modifier

Unless the REPLACE modifier is specified, it shall be an error to add a duplicate row. If the REPLACE
modifier is specified and a duplicate table row is encountered, older table data shall be replaced by newer
data.

7.13.7.5 Result value

The ADD_ROW statement has as an implicit result (there is no RESULT clause) whose data type is
INTEGER. This implicit result shall be set to zero (0) if the statement is successful in adding the row;
otherwise it shall be set to a nonzero value.

7.13.7.5.1 Descriptor

For add_row statements that are associated with a tabledef that contains a descriptor modifier, use the
descriptor to determine to which table the row is added. It shall be an error to call add_row supplying a
descriptor that does not have a memory image associated with it.

7.13.8 DELETE_ROW statement

The syntax for the DELETE_ROW statement is given in Syntax 7.75.

delete_row_statement ::= [EXPORT] DELETE_ROW (name)
std_postfix_modifier [FREE_SPACE] :
TABLEDEF (tabledef_statement_name) [default_clause] ;

Syntax 7.75: delete_row_statement

The DELETE_ROW statement shall delete a single row from a dynamic table. The DELETE_ROW
statement shall not be declared CONSISTENT.

7.13.8.1 TABLEDEF clause

The TABLEDEF clause shall identify the name of a TABLEDEF statement and its corresponding TABLE,
from which the row is to be deleted. The TABLEDEF clause shall identify a TABLEDEF in the current
scope that was declared with the DYNAMIC modifier.

7.13.8.2 Passed parameters

Although there is no passed clause in the definition of the DELETE_ROW statement, passed arguments to
the declared statement shall be required. The number, order, and types of these arguments shall be a

95
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 95 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

descriptor if the delete_row statement is associated with a tabledef that contains a descriptor modifier plus
exactly those specified by the QUALIFIERS clause of the associated TABLEDEF statement.

A call to the statement declared by DELETE_ROW shall attempt to match the passed qualifier values
against the qualifiers associated with each table row. If a match is found, the matching row shall be deleted
from the table.

7.13.8.3 Result value

The DELETE_ROW statement has as an implicit result (there is no result clause) whose result variable
order, types, and names shall be the same as those specified in the DATA clause of the TABLEDEF
statement for this table. When the reference to a DELETE_ROW statement is successful, this reference
shall return the data values for the deleted row.

7.13.8.4 DEFAULT clause

The DEFAULT clause (if present) shall be invoked if the parameters passed in a statement reference fails to
match all the qualifiers for any of the table rows. The DEFAULT clause defines the values to be returned
when the DELETE_ROW statement reference fails. A failure shall occur if a matching row cannot be found
and there is no default clause.

The variable order, types, and names referenced in this clause shall be the same as those specified in the
DATA clause of the TABLEDEF statement for this table.

7.13.8.4.1 Descriptor

For delete_row statements that are associated with a tabledef that contains a descriptor modifier, use the
descriptor to determine which table the row is to be deleted from. It shall be an error to call delete_row
supplying a descriptor that does not have a memory image associated with it.

7.14 Built-in library functions

Default library functions are functions that the language automatically makes available without the need to
include additional modules or header files. The names of these functions are not reserved words and shall
be used as shown. No prototypes of definitions for these functions shall be present in the source as they are
understood by the compiler. Prototypes shown in this section are for descriptive reasons only.

7.14.1 Numeric conversion functions

The following built-in functions convert numeric values.

7.14.1.1 floor

floor converts a double-precision floating point value to the nearest whole number who’s value is less than
or equal to the argument (Table 35).

Table 35—Library function floor

import calc(floor):
 passed(double: valueToBeConverted)
 result(double);

7.14.1.2 ifloor

ifloor converts a double -recision floating point value to the nearest integer value greater than or equal to

96
Copyright © 2010 IEEE all rights reserved.

– 96 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

the argument (Table 36).

Table 36—Library function ifloor

import calc(ifloor):
 passed(double: valueToBeConverted)
 result(int);

7.14.1.3 ceil

Ceil converts a double-precision floating point value to the nearest whole number who’s value is greater
than or equal to the argument (Table 37).

Table 37—Library function ceil

import calc(ceil):
 passed(double: valueToBeConverted)
 result(double);

7.14.1.4 iceil

iceil converts a double-precision floating point value to the nearest integer value greater than or equal to the
argument (Table 38).

Table 38—Library Function iceil

import calc(iceil):
 passed(double: valueToBeConverted)
 result(int);

7.14.1.5 rint

rint rounds a double-precision floating point value to the nearest whole number (Table 39).

Table 39—Library function rint

import calc(rint):
 passed(double: valueToBeConverted)
 result(double);

7.14.1.6 round

round rounds a double-precision floating point value to the nearest integer value (Table 40).

Table 40—Library function round

import calc(round):
 passed(double: valueToBeConverted)
 result(int);

7.14.1.7 trunc

trunc converts a double-precision floating point value to a whole number by setting all the digits to the right
of the decimal point to zero (Table 41).

97
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 97 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 41—Library function trunc

import calc(trunc):
 passed(double: valueToBeConverted)
 result(double);

7.14.1.8 itrunc

trunc converts a double-precision floating point value to an integer value by first setting all the digits to the
right of the decimal point to zero and then doing the converting (Table 42).

Table 42—Library function itrunc

import calc(itrunc):
 passed(double: valueToBeConverted)
 result(int);

7.14.2 Tech_family functions

Tech_family functions give access to the tech_family for the purposes of querying or to setting its value in
a Standard Structure. These functions return results pertaining to the space the function was called on.

7.14.2.1 map_tech_family

map_tech_family creates a TECH_TYPE that is associated with the tech_family name of the argument. If
the technology is not present, a value of nil is returned (Table 43).

Table 43—Library function map_tech_family

import calc(map_tech_family):
 passed(string: tech_family_name)
 result(TECH_TYPE: TT);

7.14.2.2 current_tech_type

current_tech_type returns the TECH_TYPE associated with the Standard Structure that has established the
context (Table 44).

Table 44—Library function current_tech_type

import calc(current_tech_type):
 result(TECH_TYPE: TT);

7.14.2.3 subrule_tech_type

subrule_tech_type returns the TECH_TYPE associated with the subrule’s TECH_FAMILY statement
(Table 45).

Table 45—Library function subrule_tech_type

import calc(subrule_tech_type):
 result(TECH_TYPE: TT);

7.14.2.4 is_expose_in_tech

is_expose_in_tech returns an integer value indicating whether the named expose is present in the specified
tech_family. A value of one indicates the expose is present in the tech_family contained with the

98
Copyright © 2010 IEEE all rights reserved.

– 98 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

TECH_TYPE specified in the second argument (Table 46).

Table 46—Library function subrule_tech_type

import calc(subrule_tech_type):
 passed(string: expose_name; TECH_TYPE: TT)
 result(int);

7.14.2.5 get_technology_list

get_technology_list returns an array of TECH_TYPEs where each element of the array is a TECH_TYPE
corresponding to a specific tech_family present in the system of library modules (Table 47).

Table 47—Library function get_technology_list

import calc(get_technology_list):
 result(TECH_TYPE[*]: TT);

7.14.3 Trigonometric functions

7.14.3.1 cos

cos performs the cosine function. The cos function accepts an argument in radians and converts that to the
cosine value between –1 and 1 (Table 48).

Table 48—Library function cos

import calc(cos):
 passed(double:radians)
 result(double);

7.14.3.2 sin

sin function performs the sine function. The sin function accepts an argument in radians and converts that
to the sine value between –1 and 1 (Table 49).

Table 49—Library function sin

import calc(sin):
 passed(double:radians)
 result(double);

7.14.3.3 tan

tan performs the tangent function. The tan function accepts an argument in radians and converts that to the
tangent value between –infinity and +infinity (Table 50).

Table 50—Library function tan

import calc(tan):
 passed(double:radians)
 result(double);

7.14.4 Context manipulation functions

Context manipulation functions query, control, or modify the contexts being used.

99
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 99 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

7.14.4.1 new_plane

new_plane creates a new plane on the same space as that contained in the Standard Structure argument. The
plane may be given a name by passing a string containing the desired name as the second argument. If the
second argument value is nil, then the plane name is the number of the plane being created. The last
argument controls whether errors and their associated messages should be issued during the plane creation
process. If the last argument value is not zero, all errors shall be suppressed; otherwise, error and messages
shall be issued (Table 51).

Table 51—Library function new_plane

import calc(new_plane):
 passed(STD_STRUCT: std; string: planeName; int: suppressErrors)
 result(var sync STD_STRUCT: std_struct);

7.14.4.2 get_plane_name

get_plane_name gets the name of the plane associated with the Standard Structure argument (Table 52).

Table 52—Library function get_plane_name

import calc(get_plane_name):
 passed(STD_STRUCT: std)
 result(string);

7.14.4.3 get_space_name

get_space_name returns the name of the space associated with the Standard Structure argument (Table 53).

Table 53—Library function get_space_name

import calc(get_space_name):
 passed(STD_STRUCT: std)
 result(string);

7.14.4.4 get_max_spaces

get_max_spaces returns the system’s setting for the maximum number of spaces allowed (Table 54).

Table 54—Library function get_max_spaces

import calc(get_max_spaces):
 result(int);

7.14.4.5 get_max_planes

get_max_planes returns the system’s setting for the maximum number of planes allowed per space
(Table 55).

Table 55—Library function get_max_planes

import calc(get_max_planes):
 result(int);

7.14.4.6 get_space_coordinate

get_space_coordinate returns the integer that represents the current space index. Spaces are created with an
integer index starting with zero for the first space created. As additional spaces are created, each one gets

100
Copyright © 2010 IEEE all rights reserved.

– 100 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

the next positive integer up to the maximum number of allowed spaces. The returned index represents the
current space’s position in the order of creation (Table 56).

Table 56—Library_function get_space_coordinate

import calc(get_space_coordinate):
 result(int);

7.14.4.7 get_plane_coordinate

get_plane_coordinate returns the integer that represents the current plane index. Planes for each space are
created with an integer index starting with zero for the first plane created on the space. As additional planes
are created, each one gets the next positive integer up to the maximum number of allowed planes per space.
The index represents the current plane’s position in the order of creation (Table 57).

Table 57—Library_function get_plane_coordinate

import calc(get_plane_coordinate):
 result(int);

7.14.4.8 set_busy_wait

set_busy_wait sets the number of tests the current queue shall perform when the work queue is empty
before suspending operation. set_busy_wait returns the previous test count.

Each plane contains a queue of available work. When the current plane has finished a unit of work and the
queue no longer contains any work items for processing, the planes suspend activities. When another plane
places a unit of work to do for the current thread, the thread is reactivated and resumes processing the
newly asserted unit of work. Busy wait controls the number of attempts the current thread shall make to
determine if the queue has any newly asserted work before suspending operations. The initial value of busy
wait is zero, indicating it shall do no additional attempts to check for newly asserted work before
suspending. If a value greater than zero is asserted, then the current plane shall test the queue the asserted
number of times before suspending. Values greater than zero create a busy wait whose duration is the time
period required the do the asserted number of tests. This is useful when short periods of time may occur
between units of work placed on the current plane’s queue and the operating system’s suspend and
reinstatement periods are long enough compared to the duration of the actual work being performed to
impact the overall throughput (Table 58).

Table 58—Library function set_busy_wait

import calc(set_busy_wait):
 passed(int: numberOfTests)
 result(int);

7.14.5 Debug controls

During the development of a library or program the developer often needs additional information to
determine where problems are. The following functions control the level of debug output and other
available information.

7.14.5.1 change_debug_level

change_debug_level sets the debug level and returns the previous setting. change_debug_level allows the
developer to change the debug level under library control. Its behavior is identical to that of
dpcmChangeDebugLevel but called from within the library (Table 59).

101
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 101 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 59—Library function change_debug_level

import calc(change_debug_level):
 passed(int: newDebugLevel)
 result(int);

7.14.5.2 get_caller_stack

When in debug mode, get_caller_stack returns as an array of strings the call stack of dcl functions only.
Any C or C++ functions such as those used by the application or the run-time library are not returned
(Table 60).

Table 60—Library function get_caller_stack

import calc(get_caller_stack):
 result(string[*]:callerStack);

7.14.6 Utility functions

Utility functions perform an eclectic set of functions that are not otherwise classified.

7.14.6.1 GET_LOAD_HISTORY

GET_LOAD_HISTORY returns the load histories one for each tech_family (Table 61).

Table 61—Library function GET_LOAD_HISTORY

import calc(GET_LOAD_HISTORY):
 result(LOAD_HISTORY_TYPE[*]: loadHistory; VOID : reserved);

7.14.6.1.1 loadHistory

loadHistory contains an array of LOAD_HISTORY_TYPES for each tech_family present in the requested
space.

7.14.6.1.2 reserved

reserved is undefined and shall not be modified.

7.14.6.2 GET_CELL_LIST

GET_CELL_LIST returns the list of cells currently modeled for a tech_family (Table 62).

Table 62—Library function GET_CELL_LIST

import calc(GET_CELL_LIST):
 result(CELL_LIST_TYPE[*]: cellList;);

7.14.7 Table functions

Table functions allow low-level manipulation and querying of DCL tables.

7.14.7.1 GET_ROW_COUNT

GET_ROW_COUNT returns the number of rows not including the optional DEFAULT or the
PROTOTYPE rows contained in a DCL table pointed to by its table descriptor (Table 63).

102
Copyright © 2010 IEEE all rights reserved.

– 102 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 63—Library function GET_ROW_COUNT

import calc(GET_ROW_COUNT):
 passed(TABLE_DESCRIPTOR: td)
 result(int);

7.14.7.2 STEP_TABLE

STEP_TABLE steps through a table by moving a cursor associated with each table. After each successful
move, the data and qualifiers associated with the cursor’s new position are returned.

When a table is searched, the cursor is set to the last row in the table successfully located (Table 64).

Table 64—Library function STEP_TABLE

import calc(STEP_TABLE):
 passed(TABLE_DESCRIPTOR: td;
 int: direction;
 string[*]: qualifiers;
 var abstract: dataRecord)
 result(int);

STEP_TABLE has four arguments: first is the table descriptor, which identifies the table to be searched;
second is the direction to step the table; third is an array of qualifiers that is filled in by step_table; and
fourth is the row’s data record that is also filled in by step_table. Step_table first moves the cursor in the
requested direction, fills in the passed arguments, and then returns an integer indicating whether the cursor
has moved passed the end of the table. If either the qualifier array or the data record arguments have a value
of nil, step_table shall allocate new space before filling them in.

The control of the cursor’s movement is controlled by an argument that controls the direction. The direction
values are controlled by the following predefined constants:

— STEP_TABLE_BACKWARDS: steps the cursor to the previous row in the table.

— STEP_TABLE_CURRENT: steps the table to the last position successfully searched.

— STEP_TABLE_END: steps the table to the last row in the table

— STEP_TABLE_FORWARDS: steps the table to the next row in the table

— STEP_TABLE_START: steps the table to the first row in the table excluding the default record.

— STEP_TABLE_TO_DEFAULT_RECORD: steps the table cursor to the default record.

7.14.8 Subrule controls

The following functions control or query the state of a subrule.

7.14.8.1 GET_LOAD_PATH

GET_LOAD_PATH returns the path the directory where current subrule was loaded from (Table 65).

Table 65—Library function GET_LOAD_PATH

import calc(GET_LOAD_PATH):
 result(string);

7.14.8.2 GET_RULE_NAME

GET_RULE_NAME returns the module name of the current subrule (Table 66).

103
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 103 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 66—Library function GET_RULE_NAME

import calc(GET_RULE_NAME):
 result(string);

7.14.8.3 ADD_RULE

ADD_RULE loads another subrule module. The modules loaded are peers to the existing subrules. A
subrule may load another subrule associated with the same or different tech_families. ADD_RULE returns
an integer where a value of zero indicates a successful load of the subrule and its associated components
(Table 67).

Table 67—Library function ADD_RULE

import calc(ADD_RULE):
 passed(string: ruleName, rulePath, tablePath, controlParm)
 result(int);

7.14.8.3.1 ruleName

ruleName is the name of the module that is the subrule to be loaded.

7.14.8.3.2 rulePath

rulePath is the name of the environment variable containing the search path for the subrule to be loaded.

7.14.8.3.3 tablePath

tablePath is the name of the environment variable containing the search path for any tables the subrule to be
loaded might need.

7.14.8.3.4 controlParm

controlParm is the control parameter the subrule to be loaded shall be given.

7.15 Library control statements

This subclause provides an overview, as well as the purpose, syntax, description, examples, and restrictions
for use of the DCL library control statement classes and their components.

Library control statements control the logical organization and loading of subrules and identify where these
subrules shall be found. A DPCM can be made up of several subrules. The application loads the first (root)
subrule. The DPCM shall automatically load any additional subrules necessary to make up the complete
system. The subrule statement controls the loading of one additional subrule per statement. The subrule
statement identifies a file that contains a list of subrules to be loaded.

A library developer may organize a collection of subrules into a technology family with the
TECH_FAMILY statement. The TECH_FAMILY statement allows the same PI to be implemented for
multiple technologies.

Library control statements shall not be referenced by other statements. Any statement in a subrule with the
name LATENT_EXPRESSION or TERMINATE_EXPRESSION is specially recognized and evaluated by
the DPCM.

104
Copyright © 2010 IEEE all rights reserved.

– 104 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

7.15.1 Meta-variables

Library control statements control the setting of library meta-variables. Meta-variables are variables that
are set by the run-time linker when the DPCM is loaded and remain in effect while the DPCM is loaded.

7.15.2 TECH_FAMILY

The TECH_FAMILY meta-variable is set by the TECH_FAMILY statement that begins each subrule. This
variable can be used within a PATH environment variable (UNIX) or user variable (Windows NT) to alter
the search location.

7.15.3 RULENAME

The RULENAME meta-variable is set to the name of each subrule loaded. This variable may be used
within a PATH environment variable (UNIX) or user variable (Windows NT) to alter the search location.

7.15.4 CONTROL_PARM

The CONTROL_PARM meta-variable may be set by a SUBRULE statement or the control file associated
with the SUBRULES statement. There shall be one CONTROL_PARM meta-variable for each subrule
loaded. If the statement does not specify a CONTROL_PARM, its value shall be the empty string. The
CONTROL_PARM meta-variable may be used within the DCL source code by referencing the predefined
identifier CONTROL_PARM.

7.15.5 SUBRULE statement

The SUBRULE statement shall accept zero or one of each of the following clauses:

— RULE_PATH

— TABLE_PATH

— CONTROL_PARM

The syntax for the SUBRULE statement is given in Syntax 7.76.

subrule_statement ::= SUBRULE (name) [OPTIONAL] :
{rule_or_table_path} ;

rule_or_table_path ::= RULE_PATH (string_literal)
| TABLE_PATH (string_literal)
| CONTROL_PARM (string_literal)

Syntax 7.76: subrule_statement

SUBRULE statements allow one subrule to load another subrule. Subrules are not referenced; rather they
are loaded in the order they appear within the DCL source. Nested subrules are loaded in depth first order.
Subrule statements shall complete the loading of the specified subrule before the next subrule or subrules
statement in the current file is executed.

The SUBRULE statement name shall be the name of the file to be loaded.

The optional RULE_PATH and the TABLE_PATH clauses can be used to control where the technology
library loading subsystem searches for the subrules.

105
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 105 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

7.15.5.1 OPTIONAL modifier

By default, if a subrule is not found, a fatal load error shall occur. However, if the OPTIONAL post-fix
modifier is specified and the subrule cannot be found, normal execution shall continue. The OPTIONAL
modifier shall not suppress errors if the subrule itself encounters errors while being loaded.

7.15.5.2 RULE_PATH clause

The optional RULE_PATH clause shall take one argument, a string constant, which designates an operating
system environment variable (UNIX) or user variable (Windows NT) containing the path list for the
subrule.

This variable shall contain a colon delimited list of file system directory names. The technology library
loading subsystem shall search each subdirectory in the path list, in order, for a file name matching the
SUBRULE name. It shall attempt to load as a subrule the first file (see 7.15.6) it encounters with that
name.

By default the current working directory shall be searched if this clause is not present.

7.15.5.3 TABLE_PATH clause

The optional TABLE_PATH clause shall take one argument, a string constant, which designates an
operating system environment variable (UNIX) or user variable (Windows NT) containing the path list for
locating compiled tables associated with the subrule.

This variable shall contain a colon delimited list of file system directory names. The technology library
loading subsystem shall search each subdirectory in the path list, in order, for compiled tables used by the
subrule (see 7.15.6).

By default the current working directory shall be searched if this clause is not present.

7.15.6 Path list expansion rules

If the following strings are encountered in the TABLE_PATH and RULE_PATH environment or user
variables, they are replaced as follows:

— %RULENAME
 is replaced with the subrule_ name being loaded. On operating systems that do not allow the% to
exist in a path (i.e., Windows NT), the expansion variable is ?RULENAME.

— %TECH_FAMILY
 is replaced with the tech_family_ name of the subrule performing the subrule load operation. On
operating systems that do not allow the% to exist in a path (i.e., Windows NT), the expansion
variable is ?TECH_FAMILY.

— %CONTROL_PARM
is replaced with the CONTROL_PARM value obtained from either the SUBRULE statement’s
CONTROL_PARM clause or the control file’s CONTROL_PARM field associated with the
subrule load operation. On operating the systems that do not allow the % to exist in a path (i.e.,
Windows NT), the expansions variable is ?CONTROL_PARM.

7.15.7 SUBRULES statement

The syntax for the SUBRULES statement is given in Syntax 7.77.

106
Copyright © 2010 IEEE all rights reserved.

– 106 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

subrules_statement ::= SUBRULES (name) : {file_or_path} ;
file_or_path ::= [FILE (string_literal)]

| [FILE_PATH (string_literal)]

Syntax 7.77: subrules_statement

The SUBRULES statement shall instruct the rule loading subsystem that a separate ASCII file contains
additional instructions for loading subrules.

7.15.7.1 FILE_PATH clause

The FILE_PATH clause shall identify the environment variable (UNIX) or user variable (Windows NT)
that contains the colon delimited list of paths to search (in order) for the file named in the FILE clause. If
that search fails, the current working directory shall be searched last. If the FILE clause is omitted, the
FILE_PATH environment or user variable shall contain the file name as well as the path.

7.15.7.2 FILE clause

The FILE clause shall contain the name of the file that contains the instructions to control subrule loading
(see 7.15.8). If the FILE_PATH clause is omitted, the FILE clause shall contain the file name, as well as
the path.

7.15.8 Control file

The control file is an ASCII file consisting of a list of directives that instruct the rule loading subsystem
which subrules are required. Subrules shall be loaded in the order encountered in the file.

7.15.8.1 Directives

Each directive in the control file shall be contained on a single line (record). Each record in the file may be
a comment record, a default record, or a load record:

— Comment records
Comment records shall begin with a # symbol or a // symbol starting in the first character position
of the line. The remainder of the line may be used as comment text.

— Default records

Default records begin with the word “default” starting in the first character position of the line.
The default record doesn’t load any subrules but rather sets the default value for any field in a load
record (except the rule name) that is omitted. There may be as many default records as required.
Subsequent default records shall override field values if already set by previous ones.

— Load records
This record loads subrules, according to the rules defined in 7.15.8.3 and 7.15.8.4 .

7.15.8.2 Default record fields

If no default value for a given field has been defined in a default record, the following are the predefined
default values used:

107
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 107 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

— Rulename
This is the name of the environment variable (UNIX) or user variable (Windows NT) that shall
contain the path for the subrule. DCMRULEPATH shall be used to locate the rule to be loaded.

— Tablename
This is name of the environment or user variable that shall contain the path for the compiled tables
associated with the subrule. DCMTABLEPATH shall be used to locate the tables associated with
this subrule.

— Optional
If this field has any of the characters, y, Y, or 1, then loading the subrule shall be optional. If any
other non-blank character (except *) is used, loading shall be mandatory. By default, subrule
loading is mandatory and if the load of the subrule or any of its compiled tables fails, an error shall
be generated. If the subrule is optional and is not found, the system shall continue and no
messages shall be issued. However, if the subrule is optional, and is found, but generates a loading
error (either on the subrule itself or as a result of associated tables), the load shall be terminated
and the error shall be reported to the application.

— Control parameter
If this field contains a string, then the meta-variable CONTROL_PARM shall be set to the value of
this string. The control parameter string shall not contain embedded white space.

It shall be an error to attempt to load the same subrule more than once. Subrules within the same system
shall come from a unique combination of source file and TECH_FAMILY names.

7.15.8.3 Load and default record fields

Both the default record and the load record shall consist of the following five fields on one line, each
separated by at least one white space: The default record fields are preceded by the keyword default.

— File name
The first field shall contain the file name of the rule to be loaded.

— Rulename
This is the name of the environment variable (UNIX) or user variable (Windows NT) that shall
contain the path for the subrule.

— Table name
This is name of the environment or user variable that shall contain the path for the compiled tables
associated with the subrule.

— Optional
If this field has any of the characters, y, Y, or 1, then loading the subrule shall be optional. If any
other non-blank character (except *) is used, loading shall be mandatory. By default, subrule
loading is mandatory and if the load of the subrule or any of its compiled tables fails, an error shall
be generated. If the subrule is optional and is not found, the system shall continue and no
messages shall be issued. However, if the subrule is optional, and is found, but generates a loading
error (either on the subrule itself or as a result of associated tables), the load shall be terminated
and the error shall be reported to the application.

— Control parameter
If this field contains a string, then the meta-variable CONTROL_PARM shall be set to the value of
this string.

7.15.8.4 Using a default value in the load or default record

A record may indicate selection of a default value (from a default record) for a particular field in two ways:

a) Use the * default operator.

b) Leave the field blank. However, since the fields are free-format, with blanks used as the

108
Copyright © 2010 IEEE all rights reserved.

– 108 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

separators, this can only be done for trailing fields after the last non-blank field.

7.15.9 TECH_FAMILY statement

The syntax for the TECH_FAMILY statement is given in Syntax 7.78.

tech_family_statement ::= TECH_FAMILY (APP | name) [MAIN] ;

Syntax 7.78: tech_family_statement

DCL allows the library developer to organize a collection of subrules into a technology family. Through the
use of the TECH_FAMILY statement, each subrule associated with a particular technology has its activities
coordinated based on issues related to that technology.

Subrules separated into families of technologies provide access to the application through an identical set of
statements, cell names, and so on. The application can work with a consistent interface for all technologies
regardless of the number of TECH_FAMILY(s) loaded, while still being able to distinguish which parts of
their design are associated with a specific technology.

Multiple technology definitions can be loaded simultaneously. With this capability, technology definitions
can be designed independent of each other and each technology can cooperate with the other as required.

Technology families can represent entire chips or major portions of a chip; generally, these are units of
manufacturing by a single manufacturer and not individual library elements. The TECH_FAMILY
statement allows subrules from different vendors to work together, even though no information was
exchanged between the organizations.

NOTE—A run-time cost is associated with changing between TECH_FAMILYs. It is therefore recommended that the
use of TECH_FAMILY subrule grouping be limited to entire technologies.

7.15.9.1 TECH_FAMILY name

Subrules are identified as belonging to the same family by including the TECH_FAMILY statement, whose
argument shall be the family name.

Any subrules that do not contain the TECH_FAMILY statement shall be members of the GENERIC
technology. The family name can be any legal identifier. It shall be unique among the other
TECH_FAMILY names. The TECH_FAMILY name does not have to be unique to other types of statement
names in the other technology families.

7.15.9.2 MAIN option

Modules compiled with a tech_family containing a MAIN option shall be program module that is
executable. Modules with the MAIN option shall perform the normal loading and linking options such as
load subrules associated with any SUBRULE or SUBRULES statements contained within the module.
After the modules and tables are loaded, the LATENT_EXPRESSIONS executed then the expose named
MAIN shall be executed if one exists.

7.15.10 SUBRULE and SUBRULES statements

A SUBRULE (see 7.15.5) or SUBRULES (see 7.15.7) statement may only load other subrules that are of
the same TECH_FAMILY name, with the following exceptions:

— A technology subrule with the name GENERIC can load any other subrule, generic or technology-
specific. In this case, the loaded subrule shall retain its technology-specific characteristics.

109
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 109 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

— A technology-specific subrule may load a GENERIC subrule, in which case the GENERIC
subrule shall inherit the name of the technology-specific subrule that loaded it.

7.16 Modeling

DCL defines a flexible approach to modeling cells based on a graph topology that represents the desired
properties of a cell. A MODELPROC contains a series of statements used to describe the topology to the
application. The application is informed of the topology through a series of callbacks.

Locating the proper modelproc for a cell is done by mapping the cell to a specific modelproc. The MODEL
statement defines those cells that are described by a MODELPROC.

For improved flexibility, commonly used groups of modeling statements can be gathered into a
SUBMODEL that can be called from either a MODELPROC or a SUBMODEL.

7.16.1 Types of modeling

MODELPROC (“model procedure”) statements describe the actions of a circuit with respect to timing,
power, vector power, vector timing, or function.

7.16.1.1 Timing

Modeling for static timing uses the modeling capabilities to generate a graph that represents the cell’s static
timing behavior. This graph consists of internal points called nodes and arcs called paths, bus or test. Each
arc and node carries with it additional information to assist the application and the library to perform the
task of static timing.

For example, the additional information could include the direction of the edges, formulas to use for the
analysis of delay or slew, as well as additional data needed for these calculations.

7.16.1.2 Function modeling

The example in Figure 2 illustrates a typical transformation of a four-input AND-OR cell to an equivalent
function graph form.

As shown in Figure 2, each node shall have a function operation (AND, OR , etc.). In addition, the arcs
shall be defined as a particular data type. During the modeling or elaboration phase, the library shall inform
the application, via implicit callback APIs, of the structure of the functional model under investigation.
Library cells that model the function of a cell or cells shall use a domain named behavior. DCL model
domains are classes of library descriptions that have common properties such as timing or function.

110
Copyright © 2010 IEEE all rights reserved.

Figure 2—Function graph form

A
B

C
D

Z

Example Function

Equivalent function graph

A

B
C

D

Z

f(AND)

f(AND)

f(OR)

– 110 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

7.16.1.3 Vector power and vector timing modeling

Vector power and vector time use a graphical form similar to static timing. The primary difference is in the
additional information carried for the arcs and notes.

Vector-timing, vector-power, and timing-state graphs use graph topologies similar to that of the function
graph, except the nodes in these graph use different operators that apply to the vector timing, vector power,
and timing states.

For example, a model representing the function of a cell uses a graph where each node or output
pinrepresents a Boolean or data flow operation. Each arc in the graph represents the interconnection of the
operators, the data types, and their widths and pin orientations. Vector timing and power graphs are similar
to those representing function except each node or output pin in the graph represents a state transition.

7.16.2 Model organization

This subclause details the MODEL statement and model name matching.

7.16.2.1 MODEL statement

The syntax for the MODEL statement is given in Syntax 7.79.

model_statement ::= MODEL (model_name) :
DEFINES (cell_list) ;

cell_list ::= cell_descriptor { , cell_descriptor }
cell_descriptor ::= cell_name

[. cell_qualifier [. model_domain]]
cell_qualifier ::= name | *
model_domain ::= * | timing | power

Syntax 7.79: tech_family_statement

MODEL statements define which cells are described by a MODELPROC. Each MODEL statement shall
have a corresponding MODELPROC statement of the same name. The MODEL statement shall lexically
precede the corresponding MODELPROC statement.

A cell_descriptor shall be an ordered list of one to three fields, corresponding to the CELL, CELL_QUAL,
and MODEL_DOMAIN components of a fully qualified model. The first field shall be CELL, the second
CELL_QUAL, and the third MODEL_DOMAIN. Omitted (trailing) fields shall be treated as * (asterisk).

The MODEL_DOMAIN values have the following semantics:

— * Only one model exists for power and/or timing.

— Timing is the timing model only.

— Power is the power model only.

7.16.2.1.1 Model name matching

The search for a model proceeds through the three components (CELL, CELL_QUAL, and
MODEL_DOMAIN) in order. For each component, let component app be the field value supplied by the
application, and let component DPCM be the field as present in the DPCM.

It shall be an error for any component app to use the string prefix operator or be a literal *.

111
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 111 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

If the application does not have a specific value for a component app, it shall use the empty string ("") for
that component app.

For each component, the following precedence rules apply to name matching:

— If an exactly-matching component DPCM exists, match it.

— If a match exists with a component DPCM that uses the string prefix operator, match it.

— If a component DPCM exists that consists of *, match it.

7.16.3 MODELPROC statement

The syntax for the MODELPROC statement is given in Syntax 7.80.

model_procedure ::= MODELPROC (name)
modelproc_postfix_modifier : modelproc_statement_list END ;

modelproc_postfix_modifier ::= COMPLEX | MONOLITHIC
modelproc_statement_list ::=

{setvar_statement} properties_statement | {submodel_statement}
submodel_statement ::= do_statement

| bus_statement
| path_statement
| input_statement
| output_statement
| test_statement
| test_bus_statement
| setvar_statement
| path_separator_stmt

Syntax 7.80: model_procedure

A MODELPROC statement (“model procedure”) describes the actions of a circuit with respect to timing
and/or power.

7.16.3.1 MODELPROC flow of control

MODELPROC statements, statement references, and embedded “C” code contained within a
MODELPROC shall be executed in lexical order, except:

— Statement references identified as arguments to the delay, slew, or check statements within the
delay, slew, or check clauses shall be evaluated when the application calls for delay, slew, or
check, respectively. SETVAR variables shall not be referenced as arguments to these statements.

— Statement references identified as arguments to action statements registered to a method within a
METHODS clause shall be evaluated at the time of the method call. SETVAR variables shall not
be referenced as arguments to these statements.

— Statement sequences in WHEN / OTHERWISE clauses shall be skipped if the controlling logical
expression evaluates to false.

— The application shall provide a list of PIN(s) actually present in the design.

— PATH, BUS, and TEST statements shall skip any PIN pairs not found.

— INPUT and OUTPUT statements shall skip all PIN(s) not found.

112
Copyright © 2010 IEEE all rights reserved.

– 112 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

7.16.3.2 MONOLITHIC modifier

The MONOLITHIC modifier directs the DCL compiler to process the MODELPROC as a single
compilation unit.

NOTE—A DCL compiler can choose to handle a MODELPROC as a number of separately compiled units. However, if
the MODELPROC contained embedded C code with labels and GOTO statements, it may be necessary to force the
MODELPROC to be processed as a single compilation unit.

7.16.4 SUBMODEL statement

Submodel statements represent a portion of a cell model. A submodel is a collection of modeling statements
that can be accessed from other functions or models within the library. The submodel statement may accept
arguments and return results. The submodel statement may be exported for use by more than one library
module. Similar to other calculation statements, the submodel statement may be used to define a type
(Syntax 7.81).

submodel_procedure ::= [EXPORT] SUBMODEL (name) :
[passed_clause] [result_prototype] [key_clause]
[consistent_clause] [using_clause] [submodel_statement_list]
END [(result_name = expression
{ ; result_name = expression })] ;

key_clause ::= KEY
(passed_argument_name { , passed_argument_name})

consistent_clause ::= CONSISTENT
(passed_argument_name { , passed_argument_name})

using_clause ::= USING (using_expression_list)
using_expression_list ::=

using_predefined_variable = parameter_name
using_predefined_variable ::=

input_pins | output_pins | nodes

Syntax 7.81: submodel_procedure

A SUBMODEL shall not contain a PROPERTIES statement.

Submodels can be called from calculation statements, MODELPROCs, or SUBMODELs. When a
SUBMODEL is called, it attempts to inherit the current MODELPROC's environment if one is still in
scope. When a SUBMODEL is called and no MODELPROC environment is in scope, it creates an
environment as if it were a MODELPROC. The MODELPROC environment includes the input pins list,
output pins list, anyin list, anyout list, and nodes passed in the Standard Structure and created during the
current call to model.

7.16.4.1 Model consistency information

To reduce the work required to model a cell, both modelprocs and submodels keep consistency information
available to determine if a store operation has been previously performed and if that store information can
be reused. A store operation is the process of caching information of calculations associated with a cell, a
pin, or an arc. Consistent information is information that does not change with different instances of the
same cell. If the information is consistent, the cost of performing the information lookup or the calculation
can be eliminated by reusing the previous store operation.

To make the reuse of consistent information possible, the models as they execute keep track of what cell,
cell_qual, domain, submodel, statement, path, from point, to point, pin, and logical condition a consistent

113
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 113 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

store was performed. Repeated consistent stores are eliminated by examining if the store under these same
conditions has already occurred, and if so, they reuse the previous results.

7.16.4.2 The PASSED clause

The SUBMODEL’s PASSED clause follows the syntax and semantics of PASSED clauses in other DCL
statements.

7.16.4.3 The RESULT clause

The SUBMODEL’s RESULT clause follows the syntax and semantics of the DCL EXTERNAL statement’s
RESULT clause.

7.16.4.4 KEY clause

The KEY clause identifies the passed arguments that are to be added to the consistency information
tracked. The passed arguments identified by the KEY clause shall be either string or integer types.

7.16.4.5 USING clause

By default, modelprocs and submodels assume the list of inputs, outputs, and nodes are contained in the
Standard Structure. The USING clause allows submodels to be passed arguments that contain the list of
inputs, outputs, and nodes to be used, and they are treated as though they were contained in the Standard
Structure. This keeps in tack modeling constructs such as ANYIN or ANYOUT, even though these lists
were derived from passed arguments instead of being created from the Standard Structure. The arguments
identified in the using clause shall be arrays of pins. The array of pins assigned to INPUT_PINS represents
the list of inputs to the submodel, the array of pins assigned to OUTPUT_PINS represents the list of output
pins, and the array of pins assigned to the NODES represent the list of internal points. If any of these
variables are not identified in the USING clause, the list defaults to those identified in the Standard
Structure.

7.16.4.6 CONSISTENT clause

Passed arguments to submodels are assumed to be inconsistent. The consistent clause identifies those
arguments that shall be treated as consistent.

7.16.4.7 The END clause

The SUBMODEL’s END clause contains an semicolon-delimited (;) list of assignment expressions that
follows the syntax and semantics of a DCL EXTERNAL statement’s DEFAULT clause. The expression list
is only present when the RESULT clause is present.

7.16.5 Modeling statements

This subclause lists the modeling statements in DCL.

7.16.5.1 PATH_SEPARATOR statement

The syntax for the PATH_SEPARATOR statement is given in Syntax 7.82.

path_separator_stmt ::= PATH_SEPARATOR (string_literal) ;

Syntax 7.82: path_separator_stmt

The PATH_SEPARATOR statement defines a string that can disambiguate segment names generated by

114
Copyright © 2010 IEEE all rights reserved.

– 114 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

the default operator * used in the PATH clause of the PATH statement. The PATH_SEPARATOR string is
inserted between the concatenation of the FROM pin name and the TO pin name. This constructed string
names the timing segment and can be accessed by the PATH predefined variable.

The definition of a PATH_SEPARATOR string shall extend from the PATH_SEPARATOR statement until
the next PATH_SEPARATOR statement or until the end of the enclosing subrule (whichever occurs
lexically first). Initially within a subrule, the PATH_SEPARATOR string shall be the empty string. The
PATH_SEPARATOR is a compiler directive and has no run-time effect.

7.16.5.2 PATH statement

The syntax for the PATH statement is given in Syntax 7.83.

path_statement ::= PATH (path_list) : from_to_sequence
conditional_propagation_sequence ;

from_to_sequence ::= FROM (pins) TO (pins)
pins ::= pin_range_list

| VAR (pin_assign_variable_reference)
| VAR (pinlist_assign_variable_reference)
| VAR (pin_setvar_variable_reference)
| VAR (pinlist_setvar_variable_reference)
| pin_statement_reference
| pin_list_statement_reference

conditional_propagation_sequence ::= propagation_sequence
| when_propagation
| data_type_sequence

propagation_sequence ::= PROPAGATE
(edge_mode_expression)
pre_code [delay_slew_methods_store_list] post_code

 | data_type_sequence
delay_slew_methods_store_list ::= delay_slew_methods_store

{ delay_slew_methods_store }
delay_slew_methods_store ::=

DELAY (name_of_delay_stmt (parameter_list))
| SLEW (name_of_slew_stmt (parameter_list))
| store_clause
| methods_clause
| clkflg_clause
| ckttype_clause

 | objtype_clause
when_propagation ::= when_propagation_list [, OTHERWISE

propagation_sequence]
when_propagation_list ::=

WHEN (logical_expression) propagation_sequence
{ , WHEN (logical_expression) propagation_sequence }

edge_mode_expression ::= edge_mode_operation
{ ; edge_mode_operation }

edge_mode_operation ::= edge mode edge
edge ::= RISE | FALL | BOTH | TERM | ONE_TO_Z | ZERO_TO_Z

| Z_TO_ZERO | Z_TO_ONE
mode ::= -> | <- | <-> | <-X-> | ->X<-

Syntax 7.83: path_statement

115
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 115 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

There shall be either zero or one of each of delay, slew, or methods clauses present in a
delay_slew_methods_store_list. There shall be zero or more store clauses present in the
delay_slew_methods_store_list.

The PATH statement establishes an association (a segment) between two connection points, each of which
may be an input pin, output pin, or internal timing point (node). The PATH statement associates the
following with each segment:

— Statements to use for computing delay and slew values

— Properties, such as the signal edges that propagate across the segment

— Propagation mode

— Information cached with the STORE clause

— Method names and their associated action statements

For each explicitly named path in the PATH clause, the PATH statement establishes a segment between
every pin specified in the FROM clause to every pin specified in the TO clause.

7.16.5.2.1 VAR clause

The VAR clause indicates that the pin(s) described by either the FROM or TO clauses are specified by the
value of a SETVAR or ASSIGN statement result variable having data type PIN or PINLIST.

7.16.5.2.2 Path list

The syntax for the path_list statement is given in Syntax 7.84.

path_list ::= [default_path_list] | path_name_list
default_path_list ::= *
path_name_list ::= name { , name }

Syntax 7.84: path_list

For each name in the PATH clause (but at least once, even if no name is specified), a segment shall be
constructed during model elaboration between each pair of specified endpoints. The PATH variable in the
Standard Structure is set to the name of the current segment. The name of the segment shall be determined
based on the following rules:

— If no path name is specified, i.e., PATH(), the segment shall have the empty string ("") as its name.

— If a single path name is specified, e.g., PATH(A), the segment shall be given that name.

— If the default operator * is specified, e.g., PATH(*), then the segment’s name shall be constructed
by concatenating the name of the FROM pin, the lexically most recent PATH_SEPARATOR
string, and the name of the TO pin.

— If multiple path names are specified, e.g., PATH(A, B), then a separate segment shall be created
for each name.

7.16.5.2.3 FROM clause

The FROM clause identifies the timing points where the PROPAGATE segments begin. These points can
be an input pin, output pin, or a node. These pins may be specified directly in the DCL source, or they may
be returned by a statement at run-time. The order of search when a pin listed in the FROM clause is
identified as the beginning of a segment shall be the list of application-supplied input pins, then nodes, and
then output pins. Only those pins listed in the FROM clause and found in the application’s supplied pin lists

116
Copyright © 2010 IEEE all rights reserved.

– 116 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

or the list of nodes shall be considered valid segment starting points. All pins listed in the FROM clause but
not found shall be ignored. The application’s lists of supplied pins are searched input pins first, nodes
second, and output pins last.

7.16.5.2.4 TO clause

The TO clause identifies the timing points where the PROPAGATE segments end. These points can be an
input pin, output pin, or a node. These pins may be specified directly in the DCL source, or they may be
returned by a statement at run-time. The order of search when a pin listed in the TO clause is identified as
the end of a segment shall be the list of application-supplied output pins, then nodes, and then input pins.
Only those pins listed in the TO clause and found in the application’s supplied pin lists or the list of nodes
shall be considered valid segment ending points. All pins listed in the TO clause but not found shall be
ignored. The application’s lists of supplied pins are searched output pins first, nodes second, and input pins
last.

7.16.5.2.5 PROPAGATION sequence

The PROPAGATION sequence describes which signal edges at the source of the segment shall be
propagated to the load (sink) of the segment. It can also include the following clauses.

— Delay clause
The delay clause associates a delay statement and the arguments that shall be passed to it with a
segment. The arguments identified as parameters to the delay statement in the delay clause shall be
evaluated when the application calls for delay calculation.

— Slew clause
The slew clause associates a slew statement and the arguments that shall be passed to it with a
segment. The arguments identified as parameters to the slew statement in the slew clause shall be
evaluated when the application calls for slew calculation.

— METHODS clause
The syntax for the METHODS clause is given in 7.16.7.2 .

— STORE clause:
The syntax for the STORE clause is given in 7.16.7.3 .

— CLKFLG clause:
The syntax for the CLKFLG clause is given in Syntax 7.85.

clkflg_clause ::= CLKFLG (string_literal)

Syntax 7.85: clkflg_clause

— The CLKFLG clause identifies segments where the clock performs memory operations.

— The following strings have meaning in the context of a CLKFLG argument.

— X shall be used on the clock segment where a clock combines with data to form a latching
operation. Typically this X flag is specified where the clock is to be converted to data.

— R shall be used where the rising edge of the clock causes the dynamic circuit to evaluate.

— F shall be used where the falling edge of the clock causes the dynamic circuit to evaluate.

— The string_literal value shall be accessible by the application when the PATH_DATA field is not
NIL. The default setting in the Standard Structure if this clause is omitted shall be the string
consisting of a single blank ("").

— CKTTYPE clause

— The syntax for the CKTTYPE clause is given in Syntax 7.86.

117
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 117 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

ckttype_clause ::= CKTTYPE (string_literal)

Syntax 7.86: ckttype_clause

— The ckttype clause enables identification of the class of circuit a path belongs to. The string_literal
value shall be accessible by the application when the PATH_DATA field in the Standard Structure
is not NIL. This standard does not define any special values for string_literal. The default setting if
this clause is omitted shall be a blank (" ").

— OBJTYPE for retain modeling is given in Syntax 7.87.

object_type_clause ::= OBJECT_TYPE (string_literal)
string_literal ::= 'retain'

Syntax 7.87: object_type_clause

7.16.5.2.6 Data type sequence

The arcs that span function nodes carry the data the terminating node needs. The arcs also define the data’s
properties such as type, bit width, and positional orientation. The PATH and BUS statements have two new
clauses that describe these properties. These clauses allow the identification of the data type, which is
traversing from one logical operation to another, and the bit stranding of this data. The syntax is presented
in Syntax 7.83 and Syntax 7.88.

data_type_sequence ::= DATA_TYPE (data_type_enumeration_exp)
[SOURCE_STRANDS (bit_value -- bit_value)
[SINK_STRANDS (bit_value -- bit_value)]]
| DATA_TYPE (data_type_enumeration_exp)

 [ROUTE (bit_value -- bit_value)]
data_type_enumeration_exp ::= integer_expression

| BIT | INT | UNSIGNED INT | CHARACTER
| UNSIGNED CHARACTER | LONG | UNSIGNED LONG | FLOAT
| DOUBLE | EXCESS64 | EXCESS128

bit_value ::= scalar | function_call
| VAR (variable_reference)

Syntax 7.88: data_type_sequence

7.16.5.2.7 DATA_TYPE clause

Arcs represent the connections between any combination of input pins, output pins, or internal pins. Arcs
can represent one or more logical connections between each node. Each arc in a function or vector
representation shall have associated with it properties denoting what type of data and, if it is a bus, the
strand range it represents. The data type clause (Table 68) defines the default bit configuration settings for
the standard data types supported.

Table 68—Data type clause

Data type Default bit layout

BIT Unsigned array of bits, where the width is controlled by the strand fields.

CHARACTER
Signed array of 8 bits (0:7), where the most significant bit (0) is the sign. The bit
ordering can be overridden by the strand clauses.

INTEGER
Signed array of 32 bits (0:31), where the most significant bit (0) is the sign. The
bit ordering can be overridden by the strand clauses.

LONG
Signed array of 64 bits (0:63), where the most significant bit (0) is the sign. The
bit ordering can be overridden by the strand clauses.

118
Copyright © 2010 IEEE all rights reserved.

– 118 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Data type Default bit layout

UNSIGNED
CHARACTER

Unsigned array of 8 bits (0:7), where the most significant bit is bit (0). The bit
ordering can be overridden by the strand clauses.

UNSIGNED INTEGER
Unsigned array of 32 bits (0:31), where the most significant bit is bit (0). The bit
ordering can be overridden by the strand clauses.

UNSIGNED LONG
Unsigned array of 64 bits (0:63), where the most significant bit is bit (0). The bit
ordering can be overridden by the strand clauses.

FLOAT
32 bit IEEE floating point notation bits (0:31), where bits (9:31) represent the
fraction, bits (1:8) represent the exponent, and bit (0) represents the sign.

DOUBLE
64 bit IEEE floating point notation bits (0:63), where bits (12 :63) represent the
fraction, bits (1:11) represent the exponent, and bit (0) represents the sign.

The arc data type (Table 69) defines the enumeration values associated with each type being represented by
the arc.

Table 69—Arc data types

Data type Enumeration value

When the terminating node is a bit or word operator node

BIT 0x0000

When the terminating node is a bit operator or a node

Propagate previous type 0xFFFF

CHARACTER 0x0001

INTEGER (Array of 32 Bits) 0x0002

LONG 0x0004

UNSIGNED CHARACTER 0x1001

UNSIGNED INTEGER (Array of 32 Bits) 0x1002

UNSIGNED LONG 0x1004

When the terminating node is a floating point operation

FLOAT (IEEE floating point) 0x0008

DOUBLE (IEEE double-precision floating point) 0x0010

EXCESS64 (Excess 64 single precision floating point) 0x0020

EXCESS128 (Excess 128 double-precision floating point) 0x0040

Precedence control radiating from a precedence node

PRECEDENCE scope start 0x8000

PRECEDENCE else list 0xC000

PRECEDENCE action list 0xE000

When the terminating node is a user-defined function

User-defined 0x0000 - 0xFFFF

7.16.5.2.8 SOURCE_STRANDS clause

The SOURCE_STRANDS clause contains two integer expressions indicating a range of strands
representing the least significant bit at the source end and the most significant bit at the source end
(inclusive). These two integers are separated by a range delimiter (--). The value on the left represents the
least significant bit, and the value on the right represents the most significant bit.

119
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 119 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Example

SOURCE_STRANDS(63--0) indicates bit 63 is the least significant bit and bit 0 is the most significant bit.

7.16.5.2.9 SINK_STRANDS clause

The SINK_STRANDS clause contains two integer expressions indicating a range of strands representing
the least significant bit at the sink end and the most significant bit at the sink end (inclusive). The
arguments to the SINK_STRANDS clause have the same semantic meaning as SOURCE_STRANDS.

7.16.5.2.10 ROUTE clause

The ROUTE clause contains the same information as the SOURCE_STRANDS clause and is a short-hand
notation to indicate the source and sink have the identical strand range values.

7.16.5.3 BUS statement

The syntax for the BUS statement is given in Syntax 7.89.

bus_statement ::= BUS (path_list) :
FROM (pin_range_list) TO (pin_range_list)
conditional_propagation_sequence ;

Syntax 7.89: bus_statement

The BUS statement has the same syntax and semantics as the PATH statement, with the following
differences:

a) The PATH statement shall construct a fully connected graph between the FROM pin_range and
the TO pin_range; that is, the PATH statement shall establish a segment between every pin
specified and present in the FROM clause to every pin specified and present in the TO clause.

b) The BUS statement shall construct a parallel graph between the FROM pin_range and the TO
pin_range; that is, the BUS statement shall establish a segment between the lexically first pin
identified and present in the FROM clause and the lexically first pin identified and present in the
TO clause. If more pins are present, the BUS statement shall establish a segment between the
lexically next pin identified and present in the FROM clause and the lexically next pin identified
and present in the TO clause.

c) ANYIN and ANYOUT shall not be allowed in the Pin Range list.

d) The pin count in the FROM clause shall match the pin count in the TO clause.

e) The number of pins in the design that match the FROM pin list shall match and be paired with the
number of pins in the TO pin list.

7.16.5.4 TEST statement

The syntax for the TEST statement is given in Syntax 7.90.

120
Copyright © 2010 IEEE all rights reserved.

– 120 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

test_statement ::= TEST (path_list) :
conditional_compare ;

conditional_compare ::= pre_compare_post | when_compare_list [,
OTHERWISE pre_compare_post]

pre_compare_post ::= pre_code compare_list post_code
when_compare_list ::= WHEN (logical_expression)

pre_compare_post { , WHEN (logical_expression)
pre_compare_post }

Syntax 7.90: test_statement

The TEST statement inserts test points into a design. The statement describes the types of tests to be
performed, and the application does the tests. The passed sub_list serve the same purpose as path names in
7.16.5.2 .

7.16.5.4.1 Compare_list

The syntax for the compare_list clause is given in Syntax 7.91.

compare_list ::= [compare_clause] [edges_clause]
[compare_sequence_list]

compare_sequence ::= [test_type_clause]
| [checks_clause]
| [clkflg_clause]
| [ampersand_store_clause]
| [ampersand_methods_clause]
| [ckttype_clause]
| [cycleadj_clause]

Syntax 7.91: compare_list

There shall be one test_type and checks clause for each compare_list. There may be zero or one of clkflg,
ckttype and cycleadj clauses for each compare_list.

The number of compare_lists in the compare_clause shall be the same as the number of
compare_edges_lists in the edges_clause. Corresponding elements of these two lists in the ordinal position
shall have the same mode.

7.16.5.4.2 COMPARE clause

The syntax for the COMPARE clause is given in Syntax 7.92.

compare_clause ::= COMPARE (multi_compare_pin_list)
multi_compare_pin_list ::= compare_pin_list

{ ; compare_pin_list }
compare_pin_list ::= reference_signal_pin test_mode

reference_signal_pin
reference_signal_pin ::= pin_range_list

| REFERENCE (pin_range_list)
| SIGNAL (pin_range_list)

test_mode ::= -> | <- | <->

Syntax 7.92: compare_clause

121
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 121 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

The COMPARE clause defines which pins are to be tested, which are the references, which are the signals,
and in what modes are they to be tested. This clause allows the specification of both early and late mode
tests in the same clause.

Only those pins listed in the COMPARE clause and found in the application’s supplied pin lists or the list
of nodes shall be considered. All pins listed in the COMPARE clause but not found shall be ignored.

If no signal or reference is used, the pins on the left of the mode shall represent the reference pins and those
on the right shall represent the signal pins.

7.16.5.4.3 EDGES clause

The syntax for the EDGES clause is given in Syntax 7.93.

edges_clause ::= EDGES (multi_compare_edge_list)
multi_compare_edge_list ::= compare_edges_list

{ ; compare_edges_list }
compare_edges_list ::= reference_signal_edge mode

reference_signal_edge
reference_signal_edge ::= edge

| REFERENCE (edge)
| SIGNAL (edge)

Syntax 7.93: edges_clause

The EDGES clause identifies the edges to be tested for both the signal and reference pins.

If no signal or reference is used, the edges on the left of the mode shall represent the reference edges and
those on the right shall represent the signal edges.

7.16.5.4.4 TEST_TYPE clause

The syntax for the TEST_TYPE clause is given in Syntax 7.94.

test_type_clause ::= TEST_TYPE (test_type_sequence_list)
test_type_sequence_list ::= test_type_sequence

{ ; test_type_sequence }
test_type_sequence ::= test_type | test_type dual_mode test_type
test_type ::= SETUP | HOLD | CPW | CST | DHT | DPW | DST |

CGPW | CGHT | CGST | NOCHANGE | RECOVERY | REMOVAL | SKEW
dual_mode ::= <->

Syntax 7.94: test_type_clause

The TEST_TYPE clause indicates to the application the type of test to be performed using the following
techniques

— The TEST_TYPE argument expression designates one or two test types depending on the mode
operator of the corresponding compare_pin_list. The test_types to the left of the dual_modes
operator shall indicate the test_type to be used for late mode tests and the test_types to the right of
the dual_modes operator shall indicate the test_type to be used for early mode tests. In cases
where the corresponding compare_pin_list uses no multi-mode operators, test_type shall be the
same as the corresponding type of the compare_pin_list.

122
Copyright © 2010 IEEE all rights reserved.

– 122 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

— CYCLEADJ clause.

— The syntax for the CYCLEADJ clause is given in Syntax 7.95.

cycleadj_clause ::= CYCLEADJ (integer_expression)

Syntax 7.95: cycleadj_clause

— The cycleadj clause enables identification of special multicycle paths. The integer_expression
value shall be accessible by the application when the PATH_DATA field in the Standard Structure
is not NIL. This standard does not define any special values for integer_expression. The default
setting if this clause is omitted shall be zero.

7.16.5.4.5 CHECKS clause

The syntax for the CHECKS clause is given in Syntax 7.96.

checks_clause ::= CHECKS (checks_sequence_list)
checks_sequence_list ::= checks_sequence

{ ; checks_sequence }
checks_sequence ::= check_statement_name

(expression_list)
| check_statement_name (expression_list)
dual_mode check_statement_name (expression_list)

Syntax 7.96: checks_clause

The CHECKS clause identifies the CHECK statement(s) to use when determining the allowable offsets
(bias) between the edge of a signal and the edge of a reference.

The CHECKS argument expression designates one or two CHECKS statements depending on the mode
operator of the corresponding compare_pin_list. If the corresponding compare_pin_list uses only one
mode, early or late, but not any of the combined modes, the checks_sequence shall not contain a
dual_modes operator. If the corresponding checks clause contains a multiple mode operator, then the
checks clause shall contain a dual_modes operator. The check statement left of the dual mode operator shall
be the check statement identified for late mode calculations, and the check statement on the right of the
dual mode operator shall be the check statement used for early mode calculations. In clauses where there is
no dual_modes operator, the check statement referenced shall be for the mode of the corresponding
compare clause. Each CHECKS statement reference shall include all required PASSED parameters.

7.16.5.4.6 METHODS clause

The syntax for the METHODS clause is given in Syntax 7.97.

methods_list ::= METHODS (methods_action_lists)
methods_action_lists ::= methods_action_stmt_list

{ ; methods_action_stmt_list }

Syntax 7.97: methods_list

The METHODS clause registers action statements to the specified test.

There shall be a one to one correspondence between the number of method_action_stmt_list (s) and the
number of compare_pin_list (s).

123
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 123 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

7.16.5.4.7 STORE clause

The syntax for the STORE clause is given in Syntax 7.98.

store_clause ::= STORE (store_list)
store_list ::= store_cache_list { ; store_cache_list }

Syntax 7.98: store_clause

The STORE clause caches statement results associated with the specified test(s).

There shall be a one-to-one correspondence between the number of store_cache_list (s) and the number of
compare_pin_list (s). Each store_cache_list shall contain the store caches for its equivalent lexically
positioned compare_pin_list.

7.16.6 TEST_BUS statement

The TEST_BUS syntax is given in Syntax 7.99.

test_bus_statement ::= TEST_BUS (path_list) :
conditional_compare ;

Syntax 7.99: test_bus_statement

The TEST_BUS statement has the same syntax and semantics as the TEST statement, with the following
differences:

— The TEST statement shall construct a fully connected test arc sequence between the COMPARE
reference pin_range and the COMPARE signal pin_range; that is, the TEST statement shall
establish a segment between every pin specified and present in the COMPARE clause reference
sequence to every pin specified and present in the COMPARE clause signal sequence.

— The TEST_BUS statement shall construct a parallel graph between the reference pin_range and
the signal pin_range; that is, the TEST_BUS statement shall establish a segment between the
lexically first pin identified and present in the reference sequence and the lexically first pin
identified and present in the signal sequence. If more pins are present, the TEST_BUS statement
shall establish a segment between the lexically next pin identified and present in the reference
sequence and the lexically next pin identified and present in the signal sequence.

— ANYIN and ANYOUT shall not be allowed in the Pin Range list.

— The pin count in the reference sequence shall match the pin count in the signal sequence.

— The number of pins in the design that match the reference pin list shall match and be paired with
the number of pins in the signal pin list.

7.16.7 INPUT statement

The syntax for the INPUT statement is given in Syntax 7.100.

124
Copyright © 2010 IEEE all rights reserved.

– 124 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

input_statement ::= INPUT (pin_range_list)
[: opt_conditional_propagation_sequence] ;

opt_conditional_propagation_sequence ::= propagation_sequence |
when_opt_propagation

when_opt_propagation ::= when_opt_propagation_list
[, OTHERWISE opt_propagation_sequence]

when_opt_propagation_list ::=
WHEN (logical_expression) opt_propagation_sequence
{ , WHEN (logical_expression) opt_propagation_sequence }

opt_propagation_sequence ::=
pre_code methods_store_cache_list post_code
| propagation_sequence

methods_store_cache_list ::= store_clause methods_clause
| methods_clause store_clause

Syntax 7.100: input_statement

The INPUT statement models nets, caches information and associates action statements with methods that
relate to input pins. If the INPUT statement includes a propagation_sequence, the application shall connect
timing segments between all sources and the specified load pin.

The pin_range list designates the list of pins to which subsequent propagation clauses apply. If the
pin_range is not ANYIN, then the listed pins shall be excluded from any subsequent expansion of ANYIN
in the same MODELPROC (by any statement or any submodel called). Only those pins listed in the
input_clause and found in application's lists of supplied pins or list of node shall be considered. All pins
listed in the input_clause and not found shall be ignored. The application's lists of supplied pins are
searched input pins first, nodes second and output pins last.

NOTE—There can be double creation of net segments if cell descriptions in a technology library contain both INPUT
and OUTPUT statements.

7.16.7.1 Propagation clause

DCL does not allow control over an individual net segment, but rather it applies the same actions (specified
in the relevant clauses) to all net segments attached to a pin.

Example

If the delay equation netdly is specified for a pin,
all net segments connected to that pin shall use the delay equation netdly to calculate the wire delay.

7.16.7.2 METHODS clause

The syntax for the METHODS clause is given in Syntax 7.101.

methods_clause ::= METHODS (methods_action_stmt_list)
methods_action_stmt_list ::= method_action_pair

{ , method_action_pair }
method_action_pair ::= method_name : statement_name

([comma_expression_list])

Syntax 7.101: methods_clause

The METHODS clause establishes an association of three parts: a segment, a method name, and an action
statement. It shall be an error to associate more than one action statement with the same method name and

125
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 125 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

segment.

The action statements associated with a method may require passed parameters. If so, any such parameters
shall be supplied as part of the METHODS clause, in the parameter list of the statement. The values of such
parameters shall be determined at the time of the method reference.

7.16.7.3 STORE clause

The syntax for the STORE clause is given in Syntax 7.102.

store_clause ::= STORE (store_cache_list)
[: KEY ([key_expression_list])]

store_cache_list ::= store_statement_access
| slot_definition
| store_cache_list , store_statement_access
| store_cache_list , slot_definition

store_statement_access::= statement_name (expression_list)
slot_definition ::= statement_name [scalar_list] : (slot_list)
scalar_list ::= scalar { , scalar }
slot_list ::= [scalar_list] statement_name (expression_list)

{ , [scalar_list] statement_name (expression_list) }
key_expression_list ::= key_expression { , key_expression }
key_expression ::= key_target = string_expression
key_target ::= PATH | TO_POINT | FROM_POINT | PIN

Syntax 7.102: store_clause

The STORE clause describes information to be calculated and cached at model elaboration time
(presumably because that information is independent of which instance references the model).

One may wish to cache the results of accessing the same statement more than once with varying arguments.
To effect this capability, the STORE cache may be declared as an arbitrary dimension array, each element
of which (a slot) contains the result of accessing the statement.

During model elaboration, each STORE shall explicitly specify the array indices of the slot to contain the
result. The syntax identifies the name of the statement being accessed, the number of slots to allocate, and
the number of dimensions for the slot array, and for each statement access, the slot into which the result
shall be stored. Slot array indices shall start with 0 in each dimension. All slots need not be filled. During
expression evaluation, each STORE reference shall explicitly specify the array indices of the slot whose
result is to be used.

The RESULT clause of the statement in the slot_list definition shall match the RESULT clause of the
statement in the slot_definition.

126
Copyright © 2010 IEEE all rights reserved.

– 126 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Example
tabledef(coefficient):
 passed(string:sourceEdge, sinkEdge)
 qualifiers(cell, from_point, to_point, sourceEdge, sinkEdge)
 data(number: k);

model (AND2P) : defines (AND2P);

modelproc (AND2P) :
 path(*) :
 from (A, B) to (Z)
 propagate (rise <-> rise & fall <-> fall)
 delay (stdDlyEq())
 slew (stdSlwEq())
 store(coeffTbl[2]: (
 [0]coeffTbl(rise,rise),
 [1]coeffTbl(fall,fall)
));
end;
calc (example) : result(number: [0]coeffTbl.k + [1]coeffTbl.k);

The CALC statement references a complete copy of the actual computed results. References to a
TABLEDEF statement only cache the pointer to the table row containing the data. Referencing non-slotted
stored data is syntactically identical to referencing an ASSIGN statement variable. Statements that
reference STORE variables shall have the STORE definition statement in scope. For slotted stored data a
reference is pre-appended with an array_index.

A STORE clause can reference CALC, EXPOSE, EXTERNAL, INTERNAL and TABLEDEF statements.
A STORE clause shall not reference an ASSIGN statement.

A STORE clause can use predefined identifiers. See 7.2.3.4 to identify the information to be saved. The
validity of predefined identifiers for the STORE table enumerates which predefined identifiers are valid,
based on the type of statement containing the STORE clause (Table 70).

127
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 127 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 70—Validity of predefined identifiers for STORE clause

Predefined identifier Model statement type

BLOCK all

CELL all

CELL_DATA all but PROPERTIES

CELL_QUAL all

CLKFLG INPUT, OUTPUT, PATH, BUS, TEST

COMPILATION_TIME_STAMP all

FROM_POINT OUTPUT, PATH, BUS

INPUT_PIN_COUNT all

MODEL_DOMAIN all

MODEL_NAME all

NODE_COUNT all

OUTPUT_PIN_COUNT all

PATH PATH, BUS, TEST

PATH_DATA INPUT, OUTPUT, PATH, BUS, TEST

REFERENCE_POINT TEST

SIGNAL_POINT TEST

TO_POINT INPUT, PATH, BUS

A variable referenced in STORE clauses shall have a defined value at model elaboration time.

Example

The predefined identifiers EARLY_MODE, LATE_MODE, SOURCE_EDGE, and SINK_EDGE shall not
be referenced in the statements contained in a STORE clause, because at model elaboration time, these
variables are undefined.

7.16.7.4 KEY store modifier

The KEY modifier overrides the store clause's default value for the consistency keys with the value
expression. The keys that can be overridden are PATH, FROM_POINT, TO_POINT and PIN. PATH,
FROM_POINT and TO_POINT are valid on TEST, TEST_BUS, PATH, and BUS statements. PIN is only
valid on DO statements NODE, CONDITIONAL_NODE, and PIN sequences.

7.16.8 OUTPUT statement

The syntax for the OUTPUT statement is given in Syntax 7.103.

output_statement ::= OUTPUT (pin_range_list)
[: opt_conditional_propagation_sequence] ;

Syntax 7.103: output_statement

The OUTPUT statement controls actions that involve output pins. If the OUTPUT statement contains a
propagation_sequence the application to connect timing segments between the specified load pin and all
sinks. Only those pins listed in the output_clause and found in the application's lists of supplied pin list or
the list of nodes shall be considered. All pins listed in the output_clause but not found shall be ignored. The
application's lists of supplied pins are searched output pins first, nodes second and input pins last.

The OUTPUT statement shall not set the value of the predefined identifier PATH.

128
Copyright © 2010 IEEE all rights reserved.

– 128 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

The pin_range_list expression (see 7.8.13.1) designates the list of pins to which subsequent propagation
clauses apply. If the pin_range_list is not ANYOUT, then the listed pins shall be excluded from any
subsequent expansion of ANYOUT in the same MODELPROC (by any statement or any submodel called).

NOTE—There can be double creation of net segments if the technology library contains descriptions of both the
INPUT and OUTPUT statements.

7.16.8.1 METHODS clause

The syntax for the METHODS clause is given in 7.16.5.4.6 .

7.16.8.2 STORE clause

The syntax for the STORE clause is given in 7.16.5.4.7 .

7.16.9 DO statement

The DO statement has two classes of operations that it may perform. The DO statement controls the scope
within a MODELPROC or SUBMODEL and it can create internal points within a model called nodes.

7.16.9.1 DO statement scope

DO statements create and nest scope. Each scope can contain decision logic, reference variables, or
statements, and it can contain sequences of other statements. Each nested scope that is created is contained
within its parent scope and uses standard scoping rules. That is to say, the nested scope can access the
variables created by the parent, but the parent cannot access the variables created by the nested scope.

7.16.9.2 DO statement nodes

The application analyzing a design has visibility to all the cells, nets, and pins contained within the design.
Before calling the library to model a cell, the application has no visibility to any arcs or nodes that are used
to model the cell. The nodes that are created in the DO statement identify these internal points to the
application so it can reference them as it does detailed analysis of the design.

7.16.9.3 Looping constructs

This specification extends the DCL looping constructs within MODELPROCs and SUBMODELs to
include REPEAT, FOR, WHILE, BREAK, and CONTINUE.

7.16.9.4 FOR loops

FOR loops consist of the following components:

— The initialization, which allows the loop to set the starting values of variables used for loop
control.

— The logical expression, which determines whether the loop continues or terminates. When the
logical expression evaluates true, the loop continues to the next iteration.

— The loop variable processing, which adjusts the loop variable each iteration.

— The do_clause_list, which consists of clauses following the FOR clause. The do_clause_list
represents the section of program that is executed each iteration.

When a FOR loop is entered, the loop initialization clause is executed and then the logical expression is
evaluated. If the logical expression evaluates true, the do_clause_list is executed followed by the loop

129
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 129 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

variable processing clause. The process repeats, with the exclusion of the loop initialization clause, until the
logical expression evaluates false, at which point the loop terminates.

7.16.9.5 WHILE loops

When a WHILE loop is encountered, it evaluates the logical expression. If that logical expression evaluates
true, it executes the associated do_clause_list. When the do_clause_list processing completes, the control
returns to the WHILE 's logical expression. If the logical expression evaluates to true, the process repeats;
otherwise, the loop exits.

7.16.9.6 REPEAT loops

When a REPEAT loop is encountered, the evaluation of the loop body begins. When the loop body
execution has completed, the UNTIL logical expression is evaluated. If the UNTIL logical expression
evaluates to false, the loop body is again executed; otherwise, the loop terminates.

7.16.9.7 BREAK processing

BREAK terminates the execution of a loop at points other than the loop’s logical expression evaluation.
When a BREAK is encountered, the innermost DO statement containing the loop is immediately exited.

7.16.9.8 CONTINUE processing

CONTINUE skips the remaining portion of a loop body and begins execution at the next iteration. When a
CONTINUE is encountered, the flow of control immediately resumes at the logical expression evaluation
of the innermost DO statement containing the loop (Syntax 7.104).

do_statement ::= { DO : do_clause_list } ;
| DO : do_when_sequence
[, OTHERWISE {do_clause_list}] [BREAK | CONTINUE] ;
| DO : do_while_sequence ;
| DO : do_repeat_sequence ;
| DO : do_for_sequence ;

do_clause_list ::= call_clause | pre_code | statements_clause
| node_clause | function_sequence | vector_sequence

do_when_sequence ::= WHEN (logical_expression) {do_clause_list}
[BREAK | CONTINUE]
{ , WHEN (logical_expression) {do_clause_list} [BREAK |
CONTINUE] }

do_while_sequence ::= WHILE (logical_expression)
{do_clause_list}

do_repeat_sequence ::= REPEAT {do_clause_list}
UNTIL (logical_expression)

do_for_sequence :: = FOR ([(loop_initialization)] ,
[(logical_expression)] ,
[(loop_variable_adjustment)]) {do_clause_list}

Syntax 7.104: do_statement – BREAK and CONTINUE

The syntax for the DO statement is given in Syntax 7.105.

130
Copyright © 2010 IEEE all rights reserved.

– 130 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

do_statement ::= { DO : do_clause_list } ;
| DO : do_when_sequence
[, OTHERWISE {do_clause_list}] [BREAK | CONTINUE] ;
| DO : do_while_sequence ;
| DO : do_repeat_sequence ;
| DO : do_for_sequence ;

do_clause_list ::= call_clause
| pre_code
| statements_clause
| node_clause
| function_sequence
| vector_sequence

do_when_sequence ::= WHEN (logical_expression) {do_clause_list}
[BREAK | CONTINUE]
{ , WHEN (logical_expression) {do_clause_list}
[BREAK | CONTINUE] }

do_while_sequence ::= WHILE (logical_expression)
{do_clause_list}

do_repeat_sequence ::= REPEAT {do_clause_list}
UNTIL (logical_expression)

do_for_sequence :: = FOR (([loop_initialization]) ,
(logical_expression) ,
([loop_variable_adjustment])) {do_clause_list}

Syntax 7.105: do_statement

The DO statement enables the use of conditional clauses. Within these conditional clauses, the following
can be specified:

— Calls to submodel procedures

— Nested modelproc statements

— New timing points

A DO statement may contain zero or more occurrences of a NODE clause (see 7.16.9.11.1), atomic
statement reference, embedded C code, statement references, and/or do statement scope.

7.16.9.9 Statement reference

The CALL clause allows the DO statements to invoke a SUBMODEL procedure statement (see
Syntax 7.105). The syntax for the CALL clause is given in Syntax 7.106.

statement_reference ::= statement_name (parameter_list)

Syntax 7.106: statement_reference

7.16.9.10 DO statement brace scope

The DO statement scope allows the use of modelproc statements with the exception of the PROPERTIES
statement, which in turn allows nesting of WHEN clauses. The statement_reference syntax is presented in
Syntax 7.107.

131
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 131 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

do_statement_scope ::= {modelproc_statement_list}

Syntax 7.107: statement_reference

7.16.9.11 Node_sequence grammar

To simplify the description of complex cells, the use of internal points or nodes is often useful. A node is a
point in the graph used for static timing or it contains the behavioral operation to be performed, as shown in
Syntax 7.108. Nodes can be created using a NODE, a COND_NODE, or the PIN clause within a DO
statement.

node_sequence ::= NODE (name { , name })
[import_export_sequence] [primitive_sequence]
| COND_NODE ((name | VAR (pin_assign_variable_reference))
[REPLACE pin_variable_reference]) [primitive_sequence]
| PIN ((name | VAR (string_or_pin_reference))
REPLACE pin_variable_reference) [primitive_sequence]

primitive_sequence ::= PRIMITIVE (primitive_operator)
[MODIFIERS (modifier_enumeration_exp)]
[CKTTYPE (string_literal)]

primitive_operator ::= integer_expression | function_operator_set
function_operator_set ::= unary_operators | diadiac_operators

| triadic operators | other_node_types
unary_operators ::= ! | -|+ | +|- | +|+ | -|- | `~ | -|?

| +|? | ?|- | ?|+ | ?|? | ?|~ | ?|! | ?|*
dyadic_operators ::= > | <= | < | >= | `<< | `>> | + | - | *

| / | % | || | !|| | && | !&& | ^^ | !^^ | `| | `~| | `&
| `~& | `^ | `~^ | -> | <-> | &> | <&>

triadic_operator ::= ?: | @ | @:: | @-> | :
new_predefined_variables ::= PRIMITIVE | MODIFIERS

| DCM_NEG_DYNAMIC_LATCH | DCM_NEG_PRECHARGE_NODE
| DCM_POS_DYNAMIC_LATCH | DCM_POS_PRECHARGE_NODE

modifier_enumeration_exp ::= integer_expression |
new_predefined_variables

Syntax 7.108: node_sequence

7.16.9.11.1 NODE clause

The nodes created by a NODE clause are visible to the MODELPROC and SUBMODEL statements
encountered in the elaboration of a cell's description. The NODE clause unconditionally creates a node. The
node created by the NODE clause is placed on a list of nodes that can be accessed by its name (which is the
argument to the NODE clause). When using the NODE clause, it shall be an error to create more than one
node with the same name within the same model sequence.

7.16.9.11.2 COND_NODE clause

The COND_NODE clause creates a node if and only if that node does not already exist. This allows for the
reuse of constant nodes. The node created, if any, is placed on the list of nodes that can be accessed by
name.

132
Copyright © 2010 IEEE all rights reserved.

– 132 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

7.16.9.11.3 PIN clause

Nodes are named to allow them to be referenced by name in other modeling statements within a
MODELPROC or SUBMODEL. PIN(s) that are referenced by a variable can have duplicate names. Use
the PIN clause to associate a node with a variable (instead of its name).

The PIN clause requests the application construct a named node, but the PIN clause keeps the pin held
privately so name conflicts do not occur. The use of a PIN clause in the DO statement requires setting a
variable to the value of the node created by the application; the REPLACE sequence should be used, where
the target is a VAR variable of type PIN that accepts the application's handle.

7.16.9.11.4 REPLACE operator

There are situations where reusing an existing node is useful. Having direct access to these nodes can
eliminate redundancies, reduce the access time, and simplify the program.

The REPLACE operator overwrites the value of a variable with the pin or node found in a FROM, TO,
NODE, PIN, COND_NODE, OUTPUT, or INPUT clause. The operand target (on the left) of the
REPLACE operator shall be of the VAR variable of type PIN.

7.16.9.11.5 PRIMITIVE clause

The PRIMITIVE clause takes a primitive operator or an integer valued expression, which represents the
desired function at this node, as its argument. See Table 71 through Table 77. Table 81 defines the function
operators to primitive enumeration values in DCL.

Table 71—Logic operators (valid for behavior, vectorTiming, and vectorPower model
domains)

DCL
operator

Enumeration
value

Description

>< 0x0000
No logic functions performed, but merging of strands and buses occurs with
this type of operation. If used in conjunction with address operators and @,
this node becomes the bulk storage node.

! 0x0001 NOT, (!A)
|| 0x0002 OR, (A || B)
!|| 0x0003 NOR, !(A || B)
&& 0x0004 AND, (A && B)
!&& 0x0005 NAND, !(A && B)
^^ 0x0006 XOR, ((!A && B) || (A && !B))
!^^ 0x0007 XNOR, !((!A && B) || (A && !B))

133
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 133 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 72—Logical equivalence operators (valid for behavior model domain)

DCL operator Enumeration value Description
> 0x0010 Greater than, (A > B)
<= 0x0011 Less than or equal, (A<=B)
< 0x0012 Less than, (A < B)
>= 0x0013 Greater than or equal, (A >= B)
== 0x0014 Equal, (A == B)
!= 0x0015 Not equal, (A != B)

Table 73—Unary bitwise operators (valid for behavior, vectorTiming, and vectorPower
model domains)

DCL operator Enumeration value Description
`~ 0x0009 Bitwise inversion of 0110 produces 1001.

Table 74—Binary bitwise operators (valid for behavior, vectorTiming, and vectorPower
model domains)

DCL operator Enumeration value Description
`| 0x000A 0101 & 0011 (bitwise OR) produces 0111.
`~| 0x000B 0101 & 0011 (bitwise NOR) produces 1000.
`& 0x000C 0101 & 0011 (bitwise AND) produces 0001.
`~& 0x000D 0101 & 0011 (bitwise NAND) produces 1110.
`^ 0x000E 0101 & 0011 (bitwise XOR) produces 0110.
`~^ 0x000F 0101 & 0011 (bitwise XNOR) produces 1001.

Table 75—Binary operators (valid for behavior model domain)

DCL operator Enumeration value Description
`< 0x0020 Shift left, (A << B)
`> 0x0021 Shift right, (A >> B)
+ 0x0022 Addition, (A + B)
- 0x0023 Subtraction, (A - B)
* 0x0024 Multiplication, (A * B)
/ 0x0025 Division, (A / B)
% 0x0026 Remainder, (A % B)

134
Copyright © 2010 IEEE all rights reserved.

– 134 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 76—Node primitives for control operators (valid for behavior model domain)

DCL
operator

Enumeration
value

Description

?:
(Selector)

0x0028

Implements the selection function, where one set of inputs
(control) determines which one of another set of inputs (data)
is propagated to the output. There are always two control data
inputs.

@?:
(Priority mux)

0x0029

Implements a selection function where a single data input is
selected to propagate based on the condition of a set of control
inputs. The selection is based on priority order. There are
(control + 1) data inputs. If none of the control inputs are true,
the last data input is propagated.

@::
(Priority storage node)

0x002A

Remembers the last successful state change. A state change is
controlled by a selection process. The selection process is
similar to the priority mux. There are always the same number
of control inputs as data inputs. If none of the control inputs
are, true no state change occurs.

Table 77—Node primitives for edge operators (continued) (valid for behavior,
vectorTiming, and vectorPower model domains)

DCL
operator

Enumeration
value

Description

-|+ 0x0030 Transitions from zero to one.
+|- 0x0031 Transitions from one to zero.
+|+ 0x0032 Steady one.
-|- 0x0033 Steady zero.
-|? 0x0034 Transitions from zero or remains constant.
+|? 0x0035 Transitions from one or remains constant.
?|- 0x0036 Transitions from any arbitrary value to zero, including the remaining constant.
?|+ 0x0037 Transitions from any arbitrary value to one, including the remaining constant.

?|? 0x0038 Transitions from any arbitrary value to another, including the possibility of
remaining constant.

?|* 0x0039 No transition allowed.
?|! 0x003A Arbitrary transition, excluding the possibility of a constant.
?|~ 0x003B Arbitrary transition, where all bits shall toggle.
-> 0x003C Left occurs before the right.

<-> 0x003D Listed elements can occur in any order, excluding the possibility of
simultaneously occurring events.

&> 0x003E Left occurs either before, or at the same time as, the right.

<&> 0x003F Listed elements can occur in any order, including the possibility of
simultaneously switching.

*|+ 0x0043 Arbitrary transition to one.
*|- 0x0044 Arbitrary transition to zero.
+|* 0x0045 Arbitrary transition from one.
-|* 0x0046 Arbitrary transition from zero.
+|^ 0x0047 Transition from logical one to high-impedance state.
-|^ 0x0048 Transition from logical zero to high-impedance state.

135
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 135 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

DCL
operator

Enumeration
value

Description

^|+ 0x0049 Transition from high impedance state to logical one.
^|- 0x004A Transition from high impedance state to logical zero.
~> 0x004B Left occurs before right, with the possibility of other edges in between.

*|? 0x004C A number of arbitrary signal transitions, including possibility of constant value,
with arbitrary final value.

?|= 0x004D Arbitrary steady state, followed by arbitrary transitions.

For the operators listed in Table 78, designates a lower priority storage, whereas @ designates a higher
priority storage. See Table 79 though Table 81.

Table 78—Node primitives for precedence control operators (valid for behavior model
domain)

DCL operator Enumeration value Description
@ 0x0040 Precedence start
: 0x0041 Precedence else
= 0x0050 Blocking assignment

Table 79—Node primitives for constant operators (valid for behavior, vectorTiming,
vectorPower model domains)

DCL operator Enumeration value Description
|=| 0x0051 Constant value
|?| 0x0052 Unknown value
|^| 0x0053 High impedance value

Table 80—Node primitives for user-defined operators

Primitive operator
(Enumeration Value)

Description

USER_DEFINED_MACRO
(0xFFFE)

The user has defined a macro and its details are at the next
lower level of hierarchy. The name of the macro can be found
by examining the cktType field of the Standard Structure
during the call to newTimingPin().

USER_DEFINED_LOGIC_FUNCTION
(0xFFFF)

User-defined operator. The user is obligated to supply a match
service in the library, which can be called by the application.

136
Copyright © 2010 IEEE all rights reserved.

– 136 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 81—Node primitives for miscellaneous operators

Primitive operator
(Enumeration Value)

Description

[@]
(0x0054)

Address selection reserve for the primitive clause. The
standard index operators [Boolean expression] are used
in the function clause (see Table 87).

DCM_PRIMITIVE_VECTOR_DELAY_TARGET
(0x0090)

Target of a vector Boolean expression.

DCM_PRIMITIVE_VECTOR_CHECK_TARGET
(0x0091)

Target of a vector Boolean expression.

DCM_PRIMITIVE_VECTOR_POWER_TARGET
(0x0092)

Target of a vector Boolean expression.

DCM_POSITIVE_DYNAMIC_LATCH
(0x0060)

A latch that remembers its state through the storage of
charge. The latch can change state only when the clock
is high.

DCM_NEGATIVE_DYNAMIC_LATCH
(0x0061)

A latch that remembers its state through the storage of
charge. The latch can change state only when the clock
is low.

DCM_POSITIVE_PRECHARGE_NODE
(0x0062)

Logic devices that precharge during a portion of the
clock cycle where no logical decisions are allowed.
During the other half of the cycle, if the logical function
evaluates true, the charge is discharged; otherwise, it is
left in a charged state. Each positive pre-Scharge node
precharges its output on the positive portion of the clock
and evaluates on the negative portion of the clock.

DCM_NEGATIVE_PRECHARGE_NODE
(0x0063)

Logic devices that precharge during a portion of the
clock cycle where no logical decisions are allowed.
During the other half of the cycle, if the logical function
evaluates true, the charge is discharged; otherwise it is
left in a charged state. A negative precharge node
precharges its output on a negative portion of the clock
and evaluates on the positive portion of the clock.

DCM_HIGH_Z_NODE
(0x0064)

High impedance drive point.

.

Table 82 defines the inputs and outputs for the binary reduction operators. Table 90 defines the inputs and
outputs for a given node.

137
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 137 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 82—Binary reduction operators

Node
function

Input definition
Output

definition
Description

>< Any number of inputs of any
type.

One output of the
same values as
entered the node.

Used to collect or disperse strand groups.

NOT

OR

NOR

AND

NAND

XOR

Any number of inputs of type:
INTEGER,
UNSIGNED INTEGER,
LONG,
UNSIGNED LONG,
CHARACTER,
UNSIGNED CHARACTER,
or BIT.

One output of
type BIT.

Logical inversion. The result value is zero
if any of the input bits has a value of one.

Evaluates to true if any of the bits in the
left arc or the right arc has the value of
one.

Evaluates to true if no bits from the left or
right arcs have the value of one.

Evaluates to true if all the bits have a
value of one.

Evaluates to true if any of the bits has a
value of zero.

Evaluates to true if at least one bit is set
and an odd number of bits have a value of
one.

XNOR Any number of inputs of type:
INTEGER,
UNSIGNED INTEGER,
LONG,
UNSIGNED LONG,
CHARACTER,
UNSIGNED CHARACTER,
or BIT.

One output of
type BIT.

Evaluates to true if no bits are set or an
even number of bits have a value of one.

Table 83 defines the inputs and outputs for the bitwise reduction operators.

138
Copyright © 2010 IEEE all rights reserved.

– 138 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 83—Bitwise reduction operators

Node
function

Input definition Output definition Description

Bitwise
NOT

One input, any type
and width.

Same type and
width as the input. Bitwise complement.

Bitwise
OR

Bitwise
NOR

Bitwise
AND

Bitwise
NAND

Bitwise
XOR

Bitwise
XNOR

Two inputs of any
type. Both inputs have
to be the same width
or one can be a single
strand of BIT.

One output, with
the same type and
number of strands
as the stranded
input.

Bitwise logical OR. All the array of bits are ORed
on a strand-by-strand basis. Single strands of type
BIT are applied uniformly across all strands of the
other input.

Bitwise logical NOR. All the array of bits are
NORed on a strand-by-strand basis. Single binary
logic lines are applied uniformly across all strands
of the other input.

Bitwise logical AND. All the array of bits are
ANDed on a strand-by-strand basis. Single binary
logic lines are applied uniformly across all strands
of the other input.

Bitwise logical NAND. All the array of bits are
NANDed on a strand-by-strand basis. Single
binary logic lines are applied uniformly across all
strands of the other input.

Bitwise logical XOR. All the array of bits are
XORed on a strand-by-strand basis. Single binary
logic lines are applied uniformly across all strands
of the other input.

Bitwise logical XNOR. All the array of bits are
XNORed on a strand-by-strand basis. Single
binary logic lines are applied uniformly across all
strands of the other input.

Table 84 defines the inputs and outputs for the logical reduction operators.

139
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 139 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 84―Logical reduction operators

Node
function

Input definition Output
definition

Description

Greater
than

Two inputs, of type:
INTEGER,
UNSIGNED INTEGER,
LONG,
UNSIGNED LONG,
CHARACTER,
UNSIGNED CHARACTER,
FLOAT,
DOUBLE,
or BIT.
and both the inputs shall have the same
type and width.

One output
of type
BIT.

Mathematical test of magnitude.
This evaluates to true if arc zero’s
bit pattern has a greater value than
arc one’s bit pattern.

Less than
or equal

Mathematical test of magnitude.
This evaluates to true if arc zero’s
bit pattern has a lesser or equal
value than arc one's bit pattern.

Less than Mathematical test of magnitude.
This evaluates to true if arc zero’s
bit pattern has a lesser value than
arc one’s bit pattern.

Greater
than or
equal

Two inputs, of type:
INTEGER,
UNSIGNED INTEGER,
LONG,
UNSIGNED LONG,
CHARACTER,
UNSIGNED CHARACTER,
FLOAT,
DOUBLE,
or BIT.
and both the inputs shall have the same
type and width.

One
output,
single
binary
logic.

Mathematical test of magnitude.
This evaluates to true if arc zero’s
bit pattern has a greater or equal
value of arc one’s bit pattern.

Table 85 defines the inputs and outputs for the array of bits operators.

140
Copyright © 2010 IEEE all rights reserved.

– 140 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 85—Array of bits operators

Node
function

Input definition Output definition Description

Shift left Two inputs with left (DATA)
of type:
INTEGER,
UNSIGNED INTEGER,
LONG,
UNSIGNED LONG,
CHARACTER,
UNSIGNED CHARACTER,
FLOAT,
DOUBLE,
or BIT
(stranded greater than one).
Right input (DATA) of type:
INTEGER,
UNSIGNED INTEGER,
LONG,
UNSIGNED LONG,
CHARACTER,
UNSIGNED CHARACTER,
or BIT.

One output, with the
same number of strands
and type as the left
(DATA) arc.

Shifts the left operand to the left
by the value contained in the
right arc.

Shift right Shifts the left operand to the
right by the value contained in
the right arc.

Addition Two inputs, a left and a right
with the same number of
strands and the same type,
but not a user-defined type.

The right arc is added to the left
arc.

Subtraction The right arc is subtracted from
the left arc using two’s
complement arithmetic.

Multiplication Two inputs, a left and a right
with the same number of
strands and the same type,
but not a user-defined type.

One output. The number
of strands depends on
the input type. For arrays
of bits, the number of
strands is twice the
number of strands in the
input arcs. For floating
point arcs, the number of
strands is the same.

The left arc is multiplied by the
right arc. For array of bits type,
the value can take up to twice as
many bits to represent.

Division Two inputs, a left and a right
with the same number of
strands and the same type,
but not a user-defined type.

One output. The number
of strands depends on
the input type. For types
other than DOUBLE or
FLOAT, the number of
strands is twice the
number of strands in the
input arcs. For floating
point arcs, the number of
strands is the same.

Division of the left arc by the
right arc. In the case of type BIT,
LONG CHARACTER,
INTEGER, and the unsigned
variants, the high-order strands
represent the whole value of the
division and the low-order bits
represent the remainder. In the
case of FLOAT or DOUBLE,
there is no whole or remainder
values, just the resultant number.

Remainder Two inputs of type:
INTEGER,
UNSIGNED INTEGER,
LONG,
UNSIGNED LONG,

One output, with the
same number of strands
as the input arcs.

Division is performed, but only
the remainder is kept.

141
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 141 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Node
function

Input definition Output definition Description

CHARACTER,
UNSIGNED CHARACTER,
or BIT
(strand range > 1).

Table 86 defines the inputs and outputs for the edge operators.

Table 86—Edge operators

Node function Input definition
Output

definition
Description

-|+ (01)

+|- (10)

+|+ (11)

-|- (00)

-|? (0?)

+|? (1?)

?|- (?0)

?|+ (?1)

One input of single
strand of BIT.

One output
of single
strand of
BIT.

The output is true when the input line transitions
from zero to one.

The output is true when the input transitions from
one to zero.

The output is true when the input remains at a
steady one.

The output is true when the input remain at a
steady zero.

The output is true when the input was zero and it
transitions to any other state or remains zero.

The output is true when the input was one and it
transitions to any other state or remains one.

The output is true when the input was at any state
and it transitions to zero.

The output is true when the input was at any state
and it transitions to one.

?|? (??)

?|! (?!)

?|~ (?~)

One input of any
type and any
width.

One output
of single
strand of
BIT.

The input was at an arbitrary value and changes to
another arbitrary value including remaining
constant.

Barterer transition with at least one bit toggling.

Barterer transition with all bits toggling.

->
Two inputs of
single strand of
type BIT.

<->
List of inputs of
single strand of
type BIT.

&>
Two inputs of
single strand of
type BIT.

<&>
List of inputs of
single strand of
type BIT.

One output
strand of
type BIT.

Left-hand argument transitions before the right
hand argument.

The output is true when the list of input
transitions occur in any order, excluding the
possibility of simultaneous transitions.

Left-hand argument transitions before or
simultaneously with the right-hand argument.

The output is true when the list of input
transitions occur in any order, including the
possibility of simultaneous transitions.

142
Copyright © 2010 IEEE all rights reserved.

– 142 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Node function Input definition
Output

definition
Description

*|+ Arbitrary
transition to one

*|- Arbitrary
transition to zero

+|* Arbitrary
transition from one

-| * Arbitrary
transition from zero

*|?

?|*

(+|^) Transition from
a logical one to a high

impedance state

(-|^) Transition from a
impedance state

(^|+) Transition from
a high impedance

state to a logical one

(^|-) Transition from a
high impedance state

to a logical zero

One input of single
strand of BIT.

One output
of single
strand of
BIT.

The output is true when the input strand
transitions from an arbitrary value to a value of
one, including the possibility of a constant value.

The output is true when the input strand
transitions from an arbitrary value to a value of
zero, including the possibility of a constant value.

The output is true when the input strand
transitions from an initial value of one to an
arbitrary value, including the possibility of a
constant value.

The output is true when the input strand
transitions from an initial value of zero to an
arbitrary value, including the possibility of a
constant value.

The output is true when the input has any number
of arbitrary signal transitions, including the
possibility of a constant value, with arbitrary final
value.

The output is true when the input transitions from
an arbitrary steady state and can be followed by
arbitrary transitions.

The output is true when the input transitions from
a one to a high-impedance state.

The output is true when the input transitions from
a zero to a high-impedance state.

The output is true when the input transitions from
a high-impedance state to a one.

The output is true when the input transitions from
a high-impedance state to a zero.

(~>) Left occurs
before right, with the
possibility of other
edges in between

Two inputs of
single strand of
type BIT.

The output is true when the left argument occurs
before the right, with the possibility of other edges
occurring in between.

Table 87 defines the inputs and outputs for the higher function nodes.

Table 87—Higher function nodes

Node function Input definition
Output

definition
Description

Selector (?:) Two sets of inputs: one for
data and the other for
control. Control can be a set
of inputs where the type
shall be a single strand of
BIT or a single input where
the types can be:

One output
only.
or
In cases where
there is a
single data
input, there

The output data value is the value of the
corresponding data input. Correspondence
is determined by selecting the correct input
data bus or bit depending on the value of
the control input(s).
When control evaluates to zero, the data bit
or bus zero is the output value. When the

143
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 143 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Node function Input definition
Output

definition
Description

INTEGER,
UNSIGNED INTEGER,
LONG,
UNSIGNED LONG,
CHARACTER,
UNSIGNED
CHARACTER,
or BIT
(strand range > 1).
When the number of data
inputs is greater than one,
there shall be 2 control
inputs in the case of
multiple control inputs or 2
control strands in the case
of a single control input.
When there is a single data
input, there shall be a single
control input and the
number of strands shall be 2
control strands.
When there are multiple
data inputs, all these inputs
shall have the same data
type and width.

shall be an
output type of
BIT with a
single strand.
or
In cases where
there are
multiple
inputs, the
output type
shall be the
same type and
width as the
input.

control evaluates to 0x01, the output is the
value of data bit one or data bus one and so
on.
The control is evaluated as a binary number
from the concatenation of the individual
input bits or the single control input word.
The values of the control have the least
significant bit corresponding to the bit or
input with the lowest strand value or
control count.

Priority mux (@?:) Two sets of inputs: one for
data and the other for
control. Control can be a set
of inputs where the type
shall be a single strand of
BIT or a single input where
the types can be:
INTEGER,
UNSIGNED INTEGER,
LONG,
UNSIGNED LONG,
CHARACTER,
UNSIGNED
CHARACTER,
or BIT
(strand range > 1).
When the number of data
inputs is greater than one,
there shall be (control + 1)
inputs in the case of
multiple control inputs or
(control + 1) strands in the
case of a single control
input.
When there is a single data
input, there shall be a single
control input and the
number of strands shall be

One output
only, Or in
cases where
there is a
single data
input, there
shall be an
output type of
BIT with a
single strand.
Or, in cases
where there are
multiple
inputs, the
output type
shall be the
same type and
width as the
input.

The output data value is the value of the
corresponding data input. Correspondence
is determined by selecting the correct input
data bus or bit depending on the value of
the control input(s).
Each control input or bit selects a different
data input. When the control bit zero or
input zero (modifier bit 0x4000) is on,
regardless of the other higher order control
inputs or bits, the output is either the value
of data bit zero or data bus zero. If control
bit or input one is on and control bit of
input zero is zero, the output is either data
bit one or data bus one and so on. When
there are no control inputs or bits on, the
output is the value of the last data input or
bus.

144
Copyright © 2010 IEEE all rights reserved.

– 144 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Node function Input definition
Output

definition
Description

(control + 1) strands.
When there are multiple
data inputs, all these inputs
shall have the same data
type and width.

Vector storage
element (@::)

N control logic lines and N
data sources of any type. All
data input types shall be the
same type and strand width
for a node.

One output of
the same type
and strand
width as the
data inputs.

The output is the value of the data whose
corresponding control line evaluates to true.
The control lines are evaluated based on
each line’s modifier value in the order from
lowest to highest. The First control line to
evaluate to true sets the value of the node to
the corresponding data input. If no control
line evaluates to true, the node retains its
previous value.

Precedence (@) A single control line whose
type shall be single binary
logic.

Three optional
outputs:
a) Action list
b)Precedence
else
c) New scope

If the control line evaluates to true, the
action list associated with the new scope is
evaluated; otherwise, the precedence else
action list is evaluated.
The action list members are evaluated one
node at a time in the order they are
encountered.
When an action list member is encountered,
it is completely evaluated before moving to
the next member of the list.
However, a precedence operator can have
an action list if the operator is a member of
the action list at a higher nesting level.

Precedence else (:) One single binary logic
input for the control
function
or
One input for an else_list.

One output
(Action_list)
or
One output
(else_list) for
threading else
nodes.

If the control line evaluates to true, the
action list is evaluated; otherwise, the
precedence else list is evaluated. The action
list members are evaluated, one node at a
time, in the order they are encountered.
When an action list member is encountered,
it is completely evaluated before moving to
the next member of the list.

Index ([@])

One input of any type used
as data.
or
One input of type:
INTEGER,
UNSIGNED INTEGER,
LONG,
UNSIGNED LONG,
CHARACTER,
UNSIGNED
CHARACTER,
or BIT
used for addressing.

One output of
the same type
and width as
the data input.

This node shall immediately precede or
follow a named node. The data are put into
the named node according to the address at
this node.
This node is typically used as part of
precedence operator sequence to capture
the clocking conditions.

Table 88 defines the inputs and outputs for the constant value nodes.

145
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 145 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 88—Constant value nodes

Node function Input definition Output definition Description

Constant, (|=|)

Unknown, |?|

High Z, |^|

No inputs.
One BIT of up to
16 strands.

The constant value is the value held by the
modifiers field.

The constant unknown value.

The constant value of high impedance.

Table 89 defines the inputs and outputs for the miscellaneous operators.

Table 89—Miscellaneous operators

Node function Input definition
Output

definition
Description

Vector delay
target

One input, where
the output is from
a vector Boolean
expression.

No output. Contains the delay and slew actions to take when
the application calls delay or slew after evaluating
the preceding graph as true.

Vector check
target

One input, where
the output is from
a vector Boolean
expression.

No output. Contains the check actions to take when the
application calls check after evaluating the
proceeding graph as true.

Positive dynamic
latch

Negative
dynamic latch

Two inputs, both
the left and right.
are of BIT type
with one strand.

One output, of
type BIT with a
single strand.

Positive dynamic latch tracks the input during the
positive portion of the clock and remains latched
during the negative portion of the clock. This latch
holds its value as a stored charge on the net. Any
discharge of this net during the latched portion of
the cycle shall not be restored.

Negative dynamic latch tracks the input during the
negative portion of the clock and remains latched
during the positive portion of the clock. This latch
holds its value as a stored charge on the net. Any
discharge of this net during the latched portion of
the cycle shall not be restored.

Positive pre-
charge node

Negative pre-
charge node

Two inputs, both
the left and right.
are of BIT type
with one strand.

One output, of
type BIT with a
single strand.

Positive dynamic logic has the value of the
right arc when the left arc is a one and a logic level
of one when the left arc has a value of zero. This is
a dynamic discharge node; that is, while the left arc
is at a value of one and the net evaluates to zero, it
shall not regain a one until the left arc goes to the
value of zero.

Negative dynamic logic has the value of the right
arc when the left arc is a zero and a logic level of
one when the left arc has a value of one. This is a
dynamic discharge node. That is, while the left arc
is at a value of zero and the net evaluates to one, it
shall not regain the value of zero until the left arc
goes to the value of one.

Table 90 defines the inputs and outputs for the user-defined operators.

146
Copyright © 2010 IEEE all rights reserved.

– 146 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 90—User-defined operators

Node
function

Input definition
Output

definition
Description

Special
logical
and math
functions

Any number of
inputs and type
with any number
of strands.

Any number of
outputs and type
with any number
of strands.

Evaluation is performed by the library. The library is
responsible for generating the bit patterns. The application
determines the total bit space by summing all the unique
strands emitting from the node.

An event occurs at the time the signal’s transition crosses the threshold voltage. One signal is considered to
follow another when the following signal’s event occurred at a later point in time.

A signal in the steady state shall be defined as a signal that has completed a transition and has not yet begun
another transition. A transition is considered completed when the signal voltage has reached the upper or
lower transition threshold voltage.

7.16.9.11.6 MODIFIERS clause

Some primitive operators take on different semantic meaning when operating on different types of data.
The MODIFIERS clause identifies in which of the different possible semantic meanings the operator is
being used. Modifiers are broken into different categories depending on the primitive. Basic primitives,
such as AND and OR, have some generic drive strength bits. Other operators, such as + and –, have
operations based on the data organization. Table 91 defines the various groups of operators and the
meaning associated with the modifiers that can be present.

147
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 147 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 91—Valid modifier enumerations for given node primitive operators

Node primitive
operator

Modifier
enumeration

Description

Logic reduction operators

NONE 0x0001 Storage node

!
||
!||
&&
!&&
^^
!^^

0x0001
Weak one, no pull-up device (MODIFIER_WEAK_ONE)

Weak zero, no pull-down device
(MODIFIER_WEAK_ZERO)

Binary reduction operators

>
>=
<
<=
==

Weak one, no pull-up device (MODIFIER_WEAK_ONE)

Weak zero, no pull-down device
(MODIFIER_WEAK_ZERO)

Bitwise operators

`~
`|
`!|
`&
`!&
`^
`!^

0x0001
Weak one, no pull-up device (MODIFIER_WEAK_ONE)

Weak zero, no pull-down device
(MODIFIER_WEAK_ZERO)

Array of bits operators
these bits can be ORed together

148
Copyright © 2010 IEEE all rights reserved.

– 148 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Node primitive
operator

Modifier
enumeration

Description

`>
`<

0x0001

0x0000

0x0004

0x0008

0x0010

Inject a one (MODIFIER_INJECT_ONE)

Mathematical operators
these bits can be ORed together

+
Weak zero, no pull-down device
(MODIFIER_WEAK_ZERO)

Unsigned

-

Weak zero, no pull-down device
(MODIFIER_WEAK_ZERO)

One's complement

Miscellaneous operators

149
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 149 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Node primitive
operator

Modifier
enumeration

Description

Positive dynamic latch,
Negative dynamic
latch,
Positive pre-charge
node,
Negative pre-charge
node,

High impedance

0x0000 - 0xFFFF Relative drive strength, where the greater the value, the
greater the drive strength.

User-defined operators

Special logical and
math functions

0x0000 -0xFFFF User-defined(DATA_TYPE_USER_DEFINED).

7.16.9.11.7 OBJTYPE clause

There are situations where its advantageous for both the library and application to first represent a cell at a
higher level of abstraction. Each node in this abstraction can hold a very complex function that is known by
name. If the application knows the function at this node by name, then the modeling of the lower level of
detail shall be omitted. The OBJTYPE clause holds a string that represents the “well-known” name of the
function. If the named function is not understood, the application can query the library for a more detailed
expansion of the function (for the next level of hierarchy). The application shall call modelSearch with the
Standard Structure fields configured as follows, when additional expansion is desired:

— Cell set to a string containing the same character sequence which was contained in the OBJTYPE
clause.

— cellQual set to a string containing the same character sequence previously contained in cellQual
(during the original call to modelSearch which returned the OBJTYPE clause).

— modelDomain set to a string containing the same character sequence that was contained in
modelDomain (during the original call to modelSearch, which returned the OBJTYPE clause).

— inputPins array containing the list of source nodes or pins that had arcs connected to the node
containing the OBJTYPE clause (in the original model that is being expanded).

— inputPinCount set to the count of the elements contained in inputPins.

— outputPins array containing the list of sink nodes or pins that had arcs connected to the node
containing the OBJTYPE clause (in the original model that is being expanded).

— outputPinCount set to the count of the elements contained in outputPins.

— Nodes and nodeCount set to a value of zero (0).

— Block set to the block name of the containing cell which defined this internal node.

150
Copyright © 2010 IEEE all rights reserved.

– 150 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

7.16.9.12 Function_sequence grammar

Functional descriptions are presented to the application as a graph. Sometimes, it is convenient for the
library developer to construct the function directly using node and path notations. Other times, it is easier to
represent the function of a cell as a Boolean expression. The function sequence represents a syntax that
allows the library developer to represent the cell’s function as a combination of boolean expressions and
Boolean assignments. Syntax 7.109 defines the syntax for expressing function in terms of Boolean
expressions.

function_assignment_expression ::= assignment_sequence =
boolean_expression | precedence_expression

function_assignment_expression_list ::=
function_assignment_expression
{ , function_assignment_expression }

precedence_expression ::= @ boolean_expression
{function_assignment_expression_list}
{ : boolean_expression {function_assignment_expression_list} }

boolean_expression ::= pin_or_node
| monadic_operator boolean_expression
| boolean_expression diadiac_operator boolean_expression
| >< {boolean_expression { , boolean_expression }}
| {boolean_expression { , boolean_expression }}
| <-> {boolean_expression { , boolean_expression }}
| <&> {boolean_expression { , boolean_expression }}
@:: {boolean_expression { , boolean_expression }}
| {boolean_expression { , boolean_expression }}
@?: { boolean_expression { , boolean_expression }}
| {boolean_expression { , boolean_expression }}
?: {boolean_expression { , boolean_expression }}
| (boolean_expression)

assignment_sequence ::= pin_or_node
| pin_or_node [boolean_expression]

pin_or_node ::= pin_or_node_name |
VAR (pin_variable_expression)

function_sequence ::= FUNCTION (function_assignment_list)
monadic_operator ::= |=| | |?| | |^| | +|+ | -|- | ! | -|+

| +|- | +|^ | -|^ | ^|+ | ^|- | -|? | +|? | ?|+ | ?|-
| ?|? | ?|~ | ?|! | ?|* | *|? | *|+ | *|- | `~ | +|* | -|*

dyadic_operator ::= / | ** | - | + | < | > | % | !|| | !&& | ^^
| !^^ | `~| | `~& | `~^ | `& | `| | `^ | `> | `< | == | >= |
<= | || | && | -> | &> | ~>

Syntax 7.109: function_assignment_expression

7.16.9.12.1 FUNCTION clause

The FUNCTION clause transforms a Boolean assignment and its associated Boolean expression (or a
precedence expression) into a graph notation that the application can follow. The graph is transferred to the
application via a sequence of implicit callbacks.

7.16.9.13 Vector_sequence grammar

There are some applications that track the state of a cell as it is performing timing analysis. These

151
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 151 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

applications leverage the knowledge of state when computing delay, slew, timing checks, and power. The
VECTOR clause expresses state-dependent delay, slew, timing checks, and power as a set of associated
Boolean expressions and propagation sequences, as defined in Syntax 7.110.

vector_sequence ::= VECTOR (boolean_expression)
vector_propagation_sequence

vector_propagation_sequence ::= vector_from_to
PROPAGATE (edge_mode_expression) vector_action_sequence
| [store_or_methods_clause]

vector_from_to ::=
FROM (pin_or_node) TO (pin_or_node)

vector_action_sequence ::=
[DELAY (delay_stmt_name (parameter_list))]
[store_or_methods_clauses]
| [SLEW (slew_stmt_name (parameter_list))]
[store_or_methods_clauses]
| [CHECKS (check_stmt_name (parameter_list))
TEST_TYPE (test_types)] [store_or_methods_clauses]

store_or_methods_clauses ::=
{ [store_clause] | [methods_clause] }

Syntax 7.110: vector_sequence

7.16.9.14 VECTOR clause

The VECTOR clause transforms a Boolean expression into a graph of nodes and arcs similar to those in the
FUNCTION clause. The graph generated by a VECTOR clause terminates into a special node, which
indicates to the application a vector timing operation needs to be performed. In addition to the node
primitive value being unique to the vector terminating node, the path data and Standard Structure contain
additional information enabling methods, store operations, delays, slews, or checks. If the VECTOR clause
is used for timing, it shall be in the context of a model domain named vectorTiming. If the VECTOR clause
is used for power, it shall be in the context of a model domain named vectorPower.

When a VECTOR clause is used to represent a timing-state expression for a timing segment, it shall be in
the context of a model domain named “timing” Further, it shall be a degenerative form of the VECTOR
clause used in other model domains. The vector expression in the clause shall contain only constant values
and logical operators. The clause shall not contain a propagation sequence. The timing state represented by
the clause shall be for the from-pin, to-pin and transition specified for the associated timing segment.

Example
submodel(triStateTimingStateGraph):
do: vector(E==1);
end;

7.16.9.15 IMPORT and EXPORT sequences

The syntax for the NODE clause is given in Syntax 7.111.

152
Copyright © 2010 IEEE all rights reserved.

– 152 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

import_export_sequence ::= import_sequence | export_sequence
import_sequence ::= IMPORT (name_or_string)

propagation_sequence
name_or_string ::= name | string_literal
export_sequence ::= EXPORT (name_or_string)

propagation_sequence

Syntax 7.111: import_export_sequence

A NODE clause creates a new timing point referred to as a NODE. A group of related clauses can
potentially describe its interconnection to external circuits plus any propagation properties, including
DELAY and SLEW.

If the timing point created is connected to the input or output pins of the circuit it is modeling, then the
PATH statement shall be used to connect the new timing point. However, if the new timing point is
connected to another circuit’s input or output pins, then the NODE clause’s IMPORT or EXPORT clause
shall be used. The IMPORT and EXPORT clauses do not set the PATH predefined identifier.

The NODE name, IMPORT clause, and EXPORT clause are used as follows:

— NODE name
The NODE clause argument is the name of a single node to be created in parentheses. This name
shall not collide with an existing pin name for the cell.

— IMPORT clause
The IMPORT clause is used to connect the newly created timing point (node) to the output pins of
another circuit. The IMPORT clause instructs the application to create arcs from all pins that drive
the net associated with the argument, except the argument itself, and connect them to the newly
created timing point.

— EXPORT clause
The EXPORT clause is used to connect the newly created timing point (node) to the input pins of
another circuit. The EXPORT clause instructs the application to create arcs from the newly created
timing point to all pins that are sinks on the net associated with the argument, except the argument
itself.

7.16.10 PROPERTIES statement

The syntax for the PROPERTIES statement is given in Syntax 7.112.

153
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 153 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

properties_statement ::= PROPERTIES : [conditional_store_seq] ;
conditional_store_seq ::= [method_store_sequence]

| when_properties_clause [, otherwise_properties_clause]
method_store_sequence ::= [pre_code] [methods_and_store]

[post_code]
pre_code ::= reference_list
reference_list ::= reference_item {reference_item}
reference_item ::= embedded_C_code

| statement_reference
methods_and_store ::= methods_clause store_clause

| store_clause methods_clause
methods_clause ::= METHODS (methods_action_stmt_list)
store_clause ::= STORE (store_cache_list)
post_code ::= reference_list
when_properties_clause ::=

WHEN (logical_expression) [method_store_sequence]
{, WHEN (logical_expression) [method_store_sequence] }

otherwise_properties_clause ::= OTHERWISE
[method_store_sequence]

Syntax 7.112: properties_statement

The PROPERTIES statement stores function results (via the STORE clause) and associates METHOD
action statements with a cell (via the METHODS clause). A MODELPROC shall have at most one
PROPERTIES statement, which shall appear before the first INPUT, OUTPUT, PATH, BUS, or TEST
statement and before any DO statement that contains a NODE clause or CALL clause.

7.16.11 SETVAR statement

The syntax for the SETVAR statement is given in Syntax 7.113.

setvar_statement ::= SETVAR (name) : conditional_result ;

Syntax 7.113: setvar_statement

The SETVAR statement creates and sets the values of variables local to a MODELPROC procedure.

The SETVAR statement has a similar meaning and syntax as the ASSIGN statement except for the
following:

— SETVAR shall not be referenced as a statement or be passed any variables.

— SETVAR variables shall become undefined between calls to the containing MODELPROC and
therefore shall not be used to save information between calls to the same model.

— SETVAR shall be executed, and its variable(s) created, when it is encountered.

A reference to a SETVAR variable is identical to that of an ASSIGN variable (see Syntax 7.23). SETVAR
references may be used anywhere a variable reference is allowed, except it may not be used in DELAY,
SLEW, or CHECK clauses.

SETVAR statements may be used inside successively nested STATEMENTS clauses. Each nested
STATEMENTS clause shall introduce a new scope, such that each nested SETVAR temporarily “hides” the
value of any SETVAR with the same name but is contained within an outer STATEMENTS clause.

154
Copyright © 2010 IEEE all rights reserved.

– 154 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

7.17 Embedded C code

The syntax for the a C code statement is given in Syntax 7.114.

embedded_C_code ::= %{ C_language statement }%

Syntax 7.114: embedded_C_code

In-line C declarations and function definitions may be inserted anywhere in a subrule where a DCL
statement may appear. Any include files that are required by embedded C code shall also be explicitly
coded in the embedded C code.

In-line C-type definitions, type declarations, and C statements, other than function definitions or function
prototypes, may be inserted within modeling statements as pre_code or post_code.

Embedded C code shall be executed when the DCL statement that references it is executed and the
embedded C code reference is encountered.

7.18 Definition of a subrule

The syntax for a subrule is given in Syntax 7.115.

subrule ::= [tech_family_statement] {statement}
statement ::= prototype_statement

| statement_definition
| model_statement
| table_statement
| environment_control_statement

prototype_statement ::= common_prototype_statement
| unload_table_prototype
| load_table_prototype
| add_row_prototype
| delete_row_prototype
| tabledef_prototype
| delay_prototype
| check_prototype

statement_definition ::= assign_statement
| calc_statement
| expose_statement
| external_statement
| internal_statement
| embedded_C_code

table_statement ::= unload_table_statement
| add_row_statement
| delete_row_statement
| tabledef_statement
| table_statement
| load_table_statement

model_statement ::= model_statement
| model_procedure
| submodel_procedure

environment_control_statement ::= subrule_statement
| subrules_statement

Syntax 7.115: subrule

155
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 155 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

7.19 Pragma

A PRAGMA is a directive to the compiler that causes the compiler to change its behavior but does not
change the behavior of the language.

7.19.1 IMPORT_EXPORT_TAG

For the purposes of linking, only IMPORT_EXPORT_TAG concatenates the tag name to the imported or
exported statement’s name. This tag may be used to create sets of imported and exported statements that
link together based on the combination of the statement's name and the tag name. The syntax for a
pragma_declare is given in Syntax 7.116.

pragma_declare ::= PRAGMA IMPORT_EXPORT_TAG (name) ;

Syntax 7.116: pragma_declare

156
Copyright © 2010 IEEE all rights reserved.

– 156 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

8 Power modeling and calculation

This clause describes the power modeling and calculation used in this standard. The formal syntax is
described using the BNF, the conventions of which are described in Clause 7.

8.1 Power overview

There are three techniques for power calculation. Each technique has its own requirements and
responsibilities for both the application and the DPCM. The techniques can vary in computational accuracy
and execution speed due to the type and amount of information needed. The three power calculation
techniques are as follows:

— The AET or “All Events Trace” technique using dpcmGetAETCellPowerWithSensitivity

— The “Group” technique using dpcmCellPowerWithState

— The “Pin Power” technique using dpcmPinPower

The application and DPCM can choose to model any combination of the power computation techniques on
an instance-by-instance basis. Therefore, “handshaking” between the application and the DPCM is required
to agree on the technique to use for each instance. If the application and the DPCM do not support a
common technique for each cell, power calculation may be severely limited.

The techniques of power calculation supported by the DPCM are returned by the call to
dpcmGetCellPowerInfo. This call returns, per cell, the power techniques supported. The following
information may also be returned: group pin lists, group condition lists, sensitivity lists, and initial state
choices (depending on the DPCM supported power calculation techniques). A power state is an electrical
condition in which the cell can persist.

For cells which have at least one initial state, the DPCM creates a state cache (during the call to
dpcmSetInitialState) and returns a handle to this cache to the application for each instance (see 8.2). This
state cache is used by the DPCM to track the state of this instance. The power model itself needs to define
the choice and representation of the state. The DPCM can use a state cache for any of the power modeling
techniques.

All load and slew information required for power calculation is supplied by the application. The load and
slew information is cached by the DPCM and a handle to this cache is returned to the application. This
caching technique and the associated load and slew cache handle are described in 8.2 .

the net energy for completed logic transitions is calculated by a call to dpcmGetNetEnergy.

It is the responsibility of the application to accumulate the power over time. The power returned from the
DPCM is given in terms of “static power” and/or “dynamic energy,” depending on the technique of power
calculation. The dynamic and static components of power are defined and used as follows:

— Dynamic energy is

 dynamic_energy_captured_during_the_transition +
(static_power_for_the_state_transitioning_into * time_of_transition)

The dynamic energy returned by the DPCM shall not include a static leakage component.

— Static power is

157
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 157 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

 the_power_for_the_state_just_transitioned_into

The application shall multiply the returned static power value by the time from this change to
the next monitored change on this instance.

8.2 Caching state information

The state cache is private to the DPCM. The contents of the cache shall be defined by the individual power
model. The DPCM is responsible for allocating the associated memory (by request from the application),
returning the cache handle to the application, and updating the data stored in this cache.

The application is responsible to request the cache be created, to associate the returned cache handle with
the instance for which it was requested, and to free the state cache when it is no longer needed.

For each instance with at least one initial modeled state, the application shall obtain a cache handle by
calling dpcmSetInitialState. During a power calculation request, the DPCM shall call
appGetStateCache to retrieve the state cache handle for the instance specified in the Standard Structure.
The DPCM shall only call back to the application to retrieve this state cache handle for cell types that have
at least one initial state modeled.

8.2.1 Initializing the state cache

The application shall initialize the state cache by calling dpcmSetInitialState and passing the desired
initial state index. If a zero cache handle is passed in, the DPCM shall create and return a new cache handle
initialized to the specified state. If a previously created cache handle is passed into dpcmSetInitialState,
the DPCM may reuse this cache (the same cache handle is returned to the application), or may free this
cache and allocate a new one (a different cache handle is returned to the application). In either case, the
state of the cache shall be identical.

8.2.2 State cache lifetime

A cache handle is valid from the time it is created until it is freed by the application via
dpcmFreeStateCache or freed by the DPCM when passed into dpcmSetInitialState.

8.3 Caching load and slew information

The load and slew cache is private to the DPCM. The DPCM is responsible for allocating the associated
memory (by request from the application), returning the cache handle to the application, and updating the
data stored in this cache.

The application is responsible to request the cache be created, to associate the returned cache handle with
the cell type or instance for which it was requested, to request that the cache be updated, and to free the
cache when it is no longer needed.

Once the application initiates a power calculation request using one of the following:

— dpcmGetAETCellPowerWithSensitivity
— dpcmGetCellPowerWithState
— dpcmGetPinPower

the DPCM shall call back to the application requesting the load and slew information necessary to perform
the calculation (except in the case of dpcmGetPinPower if the application has specifically requested that
it not be called back for this information).

158
Copyright © 2010 IEEE all rights reserved.

– 158 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

This callback, appRegisterCellInfo, has three input parameters that indicate the specific data being
requested: loading capacitance, loading resistance, and transition (slew). These input parameters also
indicate the pin types (inputs, outputs, bidirectionals, or all types) for which the requested information is
needed. If the application does not know a value being requested, it shall supply a value of zero (0) for that
field.

8.3.1 Loading the load and slew cache

The application shall take one of the following actions upon being called by the DPCM (via
appRegisterCellInfo):

— Call dpcmFillPinCache to fill a cache with the requested data for each requested pin type on the
instance for which power is being calculated. These calls fill the load and slew information into a
cache to be used by the DPCM for the current power calculation request.

On the first call to dpcmFillPinCache within this appRegisterCellInfo callback, the application
shall either pass in a0 handle (zero), in which case the DPCM shall create a new cache or a cache
handle created during a previous power calculation request provided the cell type remains the
same. If a previous cache handle is used, the data previously filled into that cache remain valid,
and dpcmFillPinCache only needs to be called for those pins where the data being requested are
different than that already in the cache.

On all subsequent calls to dpcmFillPinCache within this appRegisterCellInfo callback, the
application shall pass in the cache handle returned from the previous call to dpcmFillPinCache.
The cache handle returned from the final dpcmFillPinCache call is then passed back to the
DPCM as a return parameter on the appRegisterCellInfo call. This cache is then used for the
current power calculation. The application may choose to save the cache handle returned to the
DPCM for subsequent power calculation requests.

— Return the handle of a cache that was filled during a previous power calculation request of the
same cell instance or type.

8.3.2 Load and slew cache lifetime

A cache handle remains valid, along with the contents of the cache, until either the application frees it (via
dpcmFreePinCache) or the cache handle is invalidated during a call to dpcmFillPinCache. If the
application passes a nonzero cache handle to dpcmFillPinCache and the DPCM returns a different cache
handle, then the cache handle passed in by the application is invalidated and shall not be used for any
subsequent power calculation request. If a cache is invalidated in this way, the DPCM is responsible to
copy all the data from the previous cache to the new cache, update the new cache with the data being
passed in on the current call, and free the previous cache.

8.4 Simulation switching events

Two or more pin change events are considered simultaneous when these events occur within a defined time
interval called the “simultaneous switching window.” Simultaneous switching windows are defined
between pins on a cell using dpcmAETGetSimultaneousSwitchTime for the AET power calculation
technique and dpcmGroupGetSimultaneousSwitchTime for group power calculation technique. There is
no simultaneous switching window for the pin power calculation technique.

For AET and group power calculation techniques, events that are considered simultaneous shall be
considered together and processed in the same power calculation request. For pin power calculation, power
calculation requests shall be made separately for all events, regardless of how closely together they occur.

159
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 159 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

8.5 Partial swing events

A “Settling Time Window” is the time interval specified for a change on a pin to make a complete
transition. A “Partial Swing” occurs when the pin change duration is less than the settling time for that pin,
the electrical level of that pin changes and then changes back (becomes unstable) during the settling time
window. The “settling time window” is defined as the time interval required for a change on a pin to make
a complete transition.

Settling time windows are defined between pins on a cell using dpcmAETGetSettlingTime for the AET
power calculation technique and dpcmGroupGetSettlingTime for group power calculation technique.
There is no settling time window for the pin power calculation technique.

For the AET power technique, power is calculated for partial swing events by using a call to
dpcmCalcPartialSwingEnergy rather than dpcmGetAETCellPowerWithSensitivity.

For the group power technique, power is calculated for partial swing events using a call to
dpcmCalcPartialSwingEnergy instead of calls to dpcmGetCellPowerWithState. Here, the application
evaluates the group condition expressions as if the pin change had made the full transition. For each
condition expression that evaluates to true, a call to dpcmCalcPartialSwingEnergy is made.

There is no provision to calculate the power of a partial swing when an instance is being modeled with the
pin power technique.

8.6 Power calculation

The following list details the sequence of events for power calculation:

a) Model for power. Before calling any of the power functions, including dpcmGetCellPowerInfo,
the application shall call modelSearch on the cells of interest. It can use dpcmGetCellList to
determine whether power is modeled separately from timing. If so, then a separate call to
modelSearch is required, with the MODEL_DOMAIN set to power.

b) Determine the DPCM supported power calculation techniques (per instance). The application calls
dpcmGetCellPowerInfo for each cell to determine the DPCM supported techniques of power
calculation for instances of that cell. The application is free to call any of the DPCM-supported
techniques per instance. Power calculation results are undefined if the power calculation technique
for an instance is switched after the power computations have begun.

c) Determine the application-supported power calculation techniques (per instance). If the
application knows the chronological changes in logic levels of the requested pins of a instance, the
AET power calculation technique can be used for this instance. Guided by the sensitivity list, the
application passes pin changes to the DPCM via dpcmGetAETCellPowerWithSensitivity. The
DPCM is then responsible for tracking the state of the instance.

If the application knows the logic levels and change events of the requested pins of a instance and
the application can process the group condition language, then the group power calculation
technique can be used for this instance. Guided by the group pin list and the group condition list,
the application is responsible to determine which condition expressions are true and request the
power associated with each of these condition expressions via dpcmGetCellPowerWithState.
The application is responsible for tracking the state of the instance.

If the application knows when pins of an instance transition but does not know the present or
previous logic levels of these pins, then the pin power calculation technique can be used for this
instance. The application passes the pin which changes to the DPCM via dpcmGetPinPower.

d) Establish initial states. Initial state choices are specified on a per instance basis. Setting the initial

160
Copyright © 2010 IEEE all rights reserved.

– 160 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

state may be done for any of the supported power calculation techniques. For each instance that
has initial state choices (as returned by dpcmGetCellPowerInfo), the application shall initialize
the instance to one of its initial states prior to any power computation via dpcmSetInitialState.
The application shall associate the state cache handle returned from dpcmSetInitialState with the
instance specified in the Standard Structure.

e) While the application observes pin changes:

1) For AET and group power calculation techniques only:

i) Determine whether the current pin changes are to be considered simultaneous; see 8.4. If
these events are considered simultaneous, then the application accumulates these pin
changes and makes a single call for power as if all the pins changed at the same time.

ii) Determine whether the current pin changes are to be considered a partial swing; see 8.5. If
these events are to be treated as a partial swing, then the application shall make a separate
call to calculate the power consumed by this partial swing in place of the AET or group
power call.

2) The application initiates a power calculation request:

i) dpcmGetAETCellPowerWithSensitivity technique (AET). If this technique is used, the
application is responsible for monitoring the pins returned in the sensitivity list for
changes. These changes are passed into this call in the form of a mask. The mask defines
the type of change that has occurred, such as transitions 0->1, 0->0, 1->0, 0->X and 1-
>HIZ. See 8.11.2.6 for the details of the data being passed into this call.

Chronological ordering of events is important in this technique because the DPCM may
keep the state history, within the state cache.

ii) dpcmCellPowerWithState technique (group). If this technique is used, the application
shall monitor the union of pins specified in the group pin list array. When a monitored pin
transitions, the application shall identify which pin groups contain the pin (“affected pin
groups”). For each affected pin group, the application shall evaluate all associated group
condition expressions. For each group condition expression that evaluates true, the
application shall call for power (either as these events occur or after accumulating these
events).

iii) Chronological ordering of events in not required for this technique. The DPCM cannot
use the chronological ordering of power calculation requests to keep a representation of
previous states.

iv) dpcmPinPower technique (pin). If this technique is used, the application is responsible
to call dpcmPinPower for power on each pin change event. This technique requires no
knowledge on the part of the application or the DPCM about the present or previous pin
logic levels. It can be thought of as a power estimate for a single transition on a pin. This
call can be made as each event occurs or after tracking the pin transitions over time. The
DPCM cannot use the chronological ordering of power calculation requests to keep a
representation of previous states.

3) The DPCM calls the application for state information. For each of these power calculation
techniques, if the instance for which a power calculation is being requested has at least one
initial state choice, then the DPCM shall call back to the application via appGetStateCache
for the state cache handle associated with this instance.

4) The DPCM calls the application for load and slew information. For each of these power
calculation techniques (except when the application calls for pin power and explicitly
indicates it should not be called back for load and slew data), the DPCM shall call back to the
application via appRegisterCellInfo. This function passes in three flags indicating the type
of information being requested (capacitance, resistance, and/or slew) and the types of pins for
which the requested information is needed (i.e., inputs, outputs, bidirectionals, or all). This

161
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 161 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

call back (appRegisterCellInfo) enables the application to update (if necessary) the load and
slew cache for this instance prior to the power calculation via dpcmFillPinCache.

5) The DPCM calculates power for this instance. The DPCM shall calculate and return the static
power and dynamic energy for the specific event (AET power), condition (group power), or
pin transition (pin power) for each power calculation request.

8.7 Accumulation of power consumption by the design

The application is responsible for accumulating the power calculations for the individual events to
determine the total power consumption for a design.

8.8 Group Pin List syntax and semantics

The Group Pin List is an array of strings that is returned by dpcmGetCellPowerInfo when the
dpcmCellPowerWithState power calculation technique is supported. A zero (0) length array is returned
when this information is not available.

Each element of this array is called a GroupPinString. The index into this array is called the GroupIndex.
This array is indexed from 0 to n – 1, where n is the number of array elements. The GroupIndex is one of
the parameters passed into dpcmCellPowerWithState.

The application shall parse each string in the group pin list array to determine which pins are associated
with each GroupIndex.

8.8.1 Syntax

The syntax for a GroupPinString is given in Table 92.

Table 92—Syntax for a GroupPinString

GroupPinString ::= 'group_pin_list'
group_pin_list ::= group_pin_name { , group_pin_name}
group_pin_name ::= PinName | ALLIN | ALLOUT | ANYIN | ANYOUT

where PinName is a sequence of any ASCII, non-whitespace characters except the following special
characters, which shall be escaped with a proceeding backslash (\) if used (\), (’), (,).

8.8.2 Semantics

The semantics for a GroupPinString are as follows:

— A PinName shall not be duplicated within one GroupPinString.
— A PinName may be duplicated in other GroupPinStrings.
— A PinName shall be an actual pin name, ANYIN, ANYOUT, ALLIN, or ALLOUT.
— A Pin Range (see 7.8.13.1) is not allowed in a PinName.

8.8.2.1 Interpreting ANYIN or ANYOUT in a GroupPinString

The PinName ANYIN is equivalent to listing all the inputs and bidirectional pins of the cell in question.
This means if any one of those pins changes value, the associated condition expressions shall be evaluated.

The PinName ANYOUT is equivalent to listing all the outputs and bidirectional pins of the cell in question.
This means if any one of those pins changes value, the associated condition expressions shall be evaluated.

162
Copyright © 2010 IEEE all rights reserved.

– 162 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

8.8.2.2 Interpreting ALLIN or ALLOUT in a GroupPinString

The PinName ALLIN means all inputs and bidirectional pins shall transition together before the associated
condition expressions are evaluated.

The PinName ALLOUT means that all outputs and bidirectional pins shall transition together before the
associated condition expressions are evaluated.

8.8.3 Example

The following is a sample Group Pin List.

group_pin_list[0] = 'A, B, C, D, E, F'
group_pin_list[1] = 'A, B, C'
group_pin_list[2] = 'X, Y, Z'
group_pin_list[3] = 'A[0],A[1],A[2],A[3],B[0],B[1],B[2],B[3],Q'

8.9 Group Condition List syntax and semantics

The Group Condition List is an array of strings that is returned by dpcmGetCellPowerInfo when the
dpcmCellPowerWithState power calculation technique is supported. A zero (0) length array is returned
when this information is not available.

The Group Condition List array and the Group Pin List array are parallel arrays. This means the data in
each array at the corresponding index are related (e.g., the Group Pin List array data at index 2 corresponds
to the Group Condition List array data at index 2).

Each element of the Group Condition List array is called a GroupConditionString. The application uses
the index of the Group Pin List array to index into the Group Condition List array and find the associated
GroupConditionString. The GroupConditionString is composed of one or more elements (separated by
commas). These elements are called “condition expressions.” The position of each element in the
GroupConditionString is called the ConditionIndex. These positions are indexed from 0 to n-1, left to
right, where n is the number of condition expressions in the GroupConditionString.

The GroupIndex and the ConditionIndex uniquely identify a condition expression. These two indices are
passed to dpcmCellPowerWithState to compute the power for this condition expression.

The application shall parse each GroupConditionString to determine both the condition expressions
associated with this index (row) and the position (column) of these condition expressions within each row.
The interpretation of these condition expressions is described in 8.11.2 .

8.9.1 Syntax

The syntax for a GroupConditionString is given in Table 93.

Table 93—Syntax for a GroupConditionString

GroupConditionString ::= ' condition_list '
condition_list ::= condition_expression

{ , condition_expression }

where condition_expression is defined in Table 95.

8.9.2 Semantics

The semantics for a GroupConditionString are as follows:

163
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 163 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

— Each comma delimited condition_expression constitutes a ConditionIndex.
— The application shall evaluate all condition_expressions within the selected

GroupConditionString. For each condition_expression that evaluates to true, the application
shall call dpcmCellPowerWithState to compute the power.

— The list of condition expressions within a group condition string does not have to be exhaustive.
The * (the universal complement operator) condition string, when specified, is the default
condition used when none of the other condition expressions apply.

8.9.3 Example

The following is a sample Group Condition List.

Example
GroupStateArray[0] = 'A&&B&&C&&Q=Q-1, A==A-1&&!B&&!C&&!Q'
GroupStateArray[1] = '*'
GroupStateArray[2] = '!X||!Y||Z!=Z-1,*'

8.10 Sensitivity list syntax and semantics

The Sensitivity List is an array of strings which is returned by dpcmGetCellPowerInfo when the
dpcmGetAETCellPowerWithSensitivity power calculation technique is supported. A zero (0) length
array is returned when this information is not available.

The Sensitivity List array is indexed 0 to n – 1, where n is the number of array elements. The application
shall parse each element of the Sensitivity List array to associate the PinNames found with their array
element index. Pin changes are communicated to the DPCM through a parallel array in which the pin
change values are passed to the DPCM in the same array position as that in which the PinName was found
in the Sensitivity List. See 8.11.4 for more information on how pin changes are communicated to the
DPCM.

8.10.1 Syntax

The syntax for a SensitivityPinString is given in Table 94.

Table 94—Syntax for a SensitivityPinString

SensitivityPinString ::= ' sensitivity_pin_list '
sensitivity_pin_list ::= sensitivity_pin_name

{ , sensitivity_pin_name }
sensitivity_pin_name ::= PinName | ANYIN | ANYOUT

where PinName is a sequence of any ASCII, non-whitespace characters except the following special
characters, which shall be escaped with a proceeding backslash (\) if used: ‘\,

8.10.2 Semantics

The semantics for a SensitivityPinString are as follows:

A PinName shall not be duplicated within one SensitivityPinString.
A PinName may be duplicated in other SensitivityPinStrings.
A PinName shall be an actual pin name, ANYIN, or ANYOUT.
A PinName shall not be ALLIN or ALLOUT.
A Pin Range (see 8.11.2) is not allowed in a PinName.

164
Copyright © 2010 IEEE all rights reserved.

– 164 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

The PinName ANYIN in a SensitivityPinString is equivalent to listing all the inputs and bidirectional pins
of the cell in question.

The PinName ANYOUT in a SensitivityPinString is equivalent to listing all the outputs and bidirectional
pins of the cell in question.

8.10.3 Example

The following is a sample Sensitivity List:

Example
sensitivity_list[0] = 'A0'
sensitivity_list[1] = 'A1'
sensitivity_list[2] = 'A[0],A[1],A[2],A[3]'
sensitivity_list[3] = 'A0, WCLK, READ'

8.11 Group condition language

For the dpcmCellPowerWithState power calculation technique, the DPCM defines each
condition_expression, which represents a logical function of the pins on a cell (internal nodes of a cell
shall not be included in these expressions). When a condition_expression evaluates to true, the
application calls dpcmCellPowerWithState to request the power consumption associated with that
condition_expression.

8.11.1 Syntax

The syntax for a condition_expression is given in Table 95.

Table 95—Syntax for a condition_expression

condition_expression ::= * | L
L ::= PinName_State

| quoted_label_string
| ! L
| (L)
| L == L
| L != L
| L && L
| L || L
| L ^ L

PineName_State ::= PinName_Level | ~ PinName_Level | @
PinName_Level

PinName_Level ::= PinName_Identifier | PinName_Identifier ===
level

PinName_Identifier ::= PinName | PinName – 1
PinName ::= PinNameId | ANYIN | ANYOUT | ALLIN | ALLOUT
level ::= 1 | 0 | X | Z

where * is defined as the universal complement of all explicitly named states in this
group_condition_string involving all the pins listed in the associated GroupPinString, and PinNameId
is a sequence of any ASCII, non-whitespace characters except the following special characters, which shall
be escaped with a proceeding backslash (\) if used: - ~ ” = ! () . , “ \ @ & | ^.

165
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 165 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

8.11.2 Semantics

The semantics for a condition_expression are detailed in the following subclauses.

8.11.2.1 Semantic rules for PinName and PinNameId

The semantics for PinName and PinNameId are as follows:

— A Pin Range (see 7.8.13.1) is not allowed in a PinName.
— A PinNameId shall be a valid PinName for the cell being modeled.

8.11.2.1.1 Interpreting ANYIN and ANYOUT in a condition_expression

The PinName ANYIN has the implied ORing of all the inputs and bidirectional pins of the cell specified in
the associated GroupPinString element.

The PinName ANYOUT has the implied ORing of all the outputs and bidirectional pins of the cell specified
in the associated GroupPinString element.

Where an operator is applied to ANYIN/ANYOUT, the meaning is defined as ORing the effect of the
operator on each pin, as shown in the following example.

Example
GroupPinString: A,B : ~ANYIN implies ~A || ~B
GroupPinString: A,B : (ANYIN) == (ANYIN-1) implies
 (A || B) == (A-1 || B-1)

8.11.2.1.2 Interpreting ALLIN and ALLOUT in a condition_expression

The PinName ALLIN has the implied ANDing of all the inputs and bidirectional pins of the cell specified
in the associated GroupPinString element.

The PinName ALLOUT has the implied ANDing of all the outputs and bidirectional pins of the cell
specified in the associated GroupPinString element.

Where an operator is applied to ALLIN/ALLOUT, the meaning is defined as ANDing the effect of the
operator on each pin, as shown in the following example.

Example
GroupPinString: A,B :~ALLIN implies ~A && ~B
GroupPinString: A,B :(ALLIN) == (ALLIN-1) implies
 (A && B) == (A-1 && B-1)

8.11.2.2 Semantic rules for PinName_Identifier (named P id)

The semantics for a PinName_Identifier are shown in Table 96.

166
Copyright © 2010 IEEE all rights reserved.

– 166 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 96—PinName_Identifier semantics

Operator Example Description

P Means the present state of P, where P is a pin name.

–1 P-1 Means at the last sample of P, where P is a pin name.

8.11.2.3 Semantic rules for PinName_Level (named P level)

The semantics for a PinName_Level are shown in Table 97.

Table 97—PinName_Level semantics

Operator Example Description

=== Pid === V Is TRUE when the logic level of Pid is V,
where Pid is either the present (P) or previous (P-1) state of the pin named P and
V is one of the logic levels:1, 0, X, Z.

Pid Is shorthand for Pid === 1 in a logical condition expression.

8.11.2.4 Semantic rules for PinName_State (shorthand operators)

The semantics for a PinName_State are shown in Table 98.

Table 98—PinName_State semantics

Operator Example Description

~ ~Plevel Is an abbreviation for(P != P-1 && Pevel) and is TRUE when this expression is
TRUE, where P is a pin name and P level is a pin name level expression.
For example, Plevel could be one of the following pin name level expressions: P ===
X, P-1 === 0, P === 1, P-1, etc.

@ @Plevel is an abbreviation for (P == P-1 && Plevel) and is TRUE when this expression is
TRUE, where P is a pin name and Plevel is a pin name level expression.
For example, Plevel could be one of the following pin name level expressions:P ===
X, P-1 === 0, P === 1, P-1, etc.

8.11.2.5 Condition expression labels

A condition_expression consisting of a double-quoted string is considered a label or name that represents
a state of the cell in question. This condition_expression is TRUE when that string or label represents the
current state of the cell.

8.11.2.6 Condition expression operators

The condition_expression operators are detailed in Table 99.

167
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 167 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 99—Condition expression operators

Operator Example Description

== L1 == L2 Is TRUE when the logical expression L1 is equal to L2.

!= L1 != L2 Is TRUE when the logical expression L1 is not equal to L2.

&& L1 && L2 Is TRUE when both the logical expressions L1 and L2 are TRUE.

|| L1 || L2 Is TRUE when one or both the logical expressions L1 and L2 are TRUE.

^ L1 ^ L2 Is TRUE when one but not both the logical expressions L1 and L2 are
TRUE.

! ! L1 Is TRUE when the logical expression L1 is FALSE.

8.11.2.6.1 Semantics for Z (high Z) state

If a pin has logic level Z, any condition including that pin is FALSE unless the condition explicitly
enumerates Z (e.g., pin === Z or ANYIN === Z).

8.11.2.6.2 Semantics for X (unknown) state

If a pin has logic level X, any condition including that pin is FALSE unless the condition explicitly
enumerates X (e.g., pin === X or ANYIN === X).

8.11.3 Condition expression operator precedence

Condition expressions are evaluated left to right. The precedence (from highest to lowest) is as follows:

-1
===
~
@
()
!
&&
^
||
!=
==

The group operator() can always be used to force groupings or expressions to override the default
precedence order. See 8.11.2.1.1 and 8.11.2.1.2 for examples.

8.11.4 Condition expressions referencing pin states and transitions

A condition_expression can express references to states and to transitions. A condition_expression that
contains no references to transitions is TRUE if and only if a transition occurred on at least one of the pins
referenced in the condition_expression and the state evaluates to TRUE. A condition_expression which
contains references to transitions is TRUE if and only if those explicitly described transitions occurred and
for the remaining pins not containing transition references transitions did not occur and the state evaluates
to TRUE.

8.11.5 Semantics of nonexistent pins

A DCL model can be written for a varying number of interface pins. When an application associates an
instance with a model, it supplies the actual interface pins for that instance. Interface pins that are declared

168
Copyright © 2010 IEEE all rights reserved.

– 168 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

in a model and not supplied by the application are called nonexistent pins.

An expression with a nonexistent pin shall behave as if the pin and the tightest binding binary logical
operator adjacent to it were dropped from the expression.

Example

00 && A01 && A02 && A03

shall behave like

A00 && A01 && A02

if pin A03 doesn't exist.

If both of the pins bound to a binary operator do not exist, the next highest level in the interpretation in the
parse tree shall treat that subtree as a nonexistent pin. If all of the pins disappear, then the meaning of the
expression shall be 1 if the top level operator is && and 0 otherwise.

Example

L && L' means L and L'

nonexistent_pin && L' means L'

L && nonexistent_pin means L

nonexistent_pin && nonexistent_pin means nonexistent pin (except at the top, when it
means 1)

L || L' means L or L'

nonexistent_pin || L' means L'

L || nonexistent_pin means L

nonexistent_pin || nonexistent_pin means nonexistent pin (except at the top, when it
means 0)

!(L) means not L

!(nonexistent_pin) means nonexistent pin (except at the top, where it
means 0)

169
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 169 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

9 Application and library interaction

The library communicates to the application a description of a cell’s characteristics. Each cell’s
characteristics are categorized into domains. The use of domains narrows the scope of a cell’s model.

9.1 behavior model domain

The behavior domain uses a graph to represent the Boolean functions of a cell. Each graph transferred
during model elaboration of a cell represents an independent function performed by that cell.

9.2 vectorTiming and vectorPower model domains

The model elaboration process shall describe a cell’s set of vector expressions in a graph format. Each
vector that evaluates to true represents a cell state change. Each cell state change has associated with it a
delay, slew, and check calculation. Once elaboration is complete, the application can evaluate each graph
that evaluates to true and call the library for delay, slew, and check. The application requesting (for the
library to calculate) delay, slew, or check shall provide the pathData pointer associated with the
DCM_PRIMITIVE_VECTOR_DELAY_TARGET orDCM_PRIMITIVE_VECTOR_CHECK_TARGET
to that library. Once the application requests vector delay and vector slew evaluations, the library shall
return the early and late delay and slew values.

Vectors permit description of multiple transitions. For example, the following describes a sequence of
transitions for a given from and to point:

Example
/*
* 2 input AND gate vector power description
*/
model (AND2_vectorTiming) : defines (AND2.*.vectorTiming);

modelproc (AND2_vectorTiming) :
 do: vector(-|+A->-|+B->-|+Z)
 from(B) to(Z) propagate(rise->rise);

 do: vector(-|+B->-|+A->-|+Z)
 from(A) to(Z) propagate(rise->rise);
end;

The 1999 version of this standard only permitted the delay and output slew calculation to be functions of
input slew at pin A. However, as the previous example indicates, delay and output slew calculations can be
functions of more than two pins. Therefore, a library that contains vectorTiming or vectorPower models
can call the application for input slews, output capacitance loads, and resistance on multiple pins via the
EXTERNAL API appRegisterCellInfo(). In response to this call, the application shall provide slews and
loads for the specified pins by calling the EXPOSE API dpcmFillPinCache() for those pins listed in the
vector expression. The library then uses those slews and loads for computing the delay, slew, check, or
power.

9.2.1 Power unit conversion

The library can represent its power modeling in either energy (Joules), power (Watts), or any other
proprietary unit. The library needs to ensure the appropriate energy units are passed for all the functions in
the power and vectorPower domains. These units shall match the exponents returned by
dpcmGetRuleUnitToJoules and dpcmGetRuleUnitToWatts.

170
Copyright © 2010 IEEE all rights reserved.

– 170 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

9.2.2 Vector power calculation

The model elaboration process shall describe a cell’s set of vector expressions in a graph format. Each
vector represents either a cell state change or a steady state of a cell. Each vector has a power calculation
associated with it. Once the model elaboration process for a cell is complete, the application has a set of
vectors and their associated pathData pointers. The application can evaluate the graph for each vector to
determine which occur during simulation. For those that evaluate to true, the application shall call
dpcmGetCellVectorPower (see 10.23.13.15) for the power associated with each vector. The application
shall provide the pathData pointer associated with the DCM_PRIMITIVE_VECTOR_POWER
_TARGET when calling the library to calculate the power.

Once the application has set up the models of power vectors and determined the conditions described by the
vector function graph are met, it can call the DPCM to calculate power for a given vector. The application
shall call dpcmGetCellVectorPower. The application needs to pass the cellData information for the cell
and the pathData for the vector.

To obtain slewrate and capacitance data for the instance, the DPCM shall call back to the application via
the EXTERNAL API appRegisterCellInfo(). This function passes in three flags indicating the type of
information being requested (capacitance, resistance and/or slew) and the types of pins for which the
requested information is needed (i.e., input(s), output(s), bidirectional(s), or all). This call back
(appRegisterCellInfo()) enables the application to update (if necessary) the load and slew cache for this
instance prior to the power calculation via the EXPOSE API dpcmFillPinCache().

Use the following calls to request voltage and temperature parameters:

— appGetCurrentRailVoltage

— appGetCurrentTemperature

The process point is set by the application by calling dpcmSetCurrentProcessPoint (see 10.23.11.1.1).

The switching bits information is requested by calling appGetSwitchingBits (see 10.23.13.5).

171
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 171 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10 Procedural interface (PI)

A standard PI is used for communication between an application and a compiled DPCM.

10.1 Overview

The functions that make up the PI are defined in three different logical components: the DPCM, the
application and the libdcmlr. Each of these components may consist of more than one compiled object,
which are dynamically linked at run-time, as needed.

10.1.1 DPCM

Three categories of functions result from compilation of the DCL subrules of a technology library:

— The main calculation entry points that perform cell modeling and calculate delay, slew and check,
are presented to the application automatically in the DCMTransmittedInfo structure as a result of
the pointer exchange resulting from the call to dcmRT_BindRule, the DPCM primary entry point.
These entry points map directly to the MODELPROC, DELAY, SLEW, and CHECK statements
coded in the DCL source.

— Explicitly named EXPOSE functions (see 7.9.7.1) defined in the DPCM are made available to the
application in a name/function-pointer table after the call to dcmRT_BindRule. These functions are
explicitly defined in the DCL by the library developer. These functions can be called by the
application to request information (such as calculated or default values) relating to the cell library.

— Run-time library functions (see 10.16.2) are implicitly available as a result of code generated
automatically by the DCL compiler. There are no DCL statements that directly map to these
functions. Each of these functions are available for dynamic linking to the application.

10.1.2 Application

The following two categories of functions shall be defined in the EDA application code; the third category
is optional:

— EXTERNAL function entry points are presented to the DPCM via name/function-pointer pairs in
the DCM_FunctionTable argument in the call to dcmRT_BindRule, the DPCM primary entry point
(see 10.25.4.5). The DPCM accesses these functions, using calls to the EXTERNAL functions in
its subrules, for design-specific information (such as interconnect configuration and parasitics)
required for accurate delay calculation.

— Modeling callback functions (see 10.16.6) are used by the DPCM as a result of the application’s
invocation of the modelSearch function to report back to the application information about timing
arcs and propagation characteristics.

— Initialization functions that initialize the library run-time system and loads and links library
modules to an application.

10.1.3 libdcmlr

The DPCM-independent set of initialization functions, dcmRT_BindRule and dcmRT_initRuleSystem (see
10.16.2) shall be available for dynamic linking to the application. These are the key functions that load and
initialize a DPCM.

172
Copyright © 2010 IEEE all rights reserved.

– 172 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.2 Control and data flow

A design goal of the DPCS is to isolate applications from requiring a detailed knowledge of timing models.
However, applications shall conform to the control and data flow mandates of the PI, as shown in Figure 3.

10.3 Architectural requirements

The interface requires integers to be 32 bits (or greater) to properly construct return codes (see 10.10.1).

10.4 Data ownership technique

Many of the DPCM PI functions take pointers to data as passed arguments (text strings, timing values,
etc.). The DPCM assumes all data referenced across the interface is read only (by both the DPCM and the
application).

The DPCS architecture separates the ownership of delay and power models from that of electronic designs.
The application is assumed to "own" (store and fully understand) the design for which delay and power
calculations are desired. The DPCM, on the other hand, "owns" the delay and power models and their
evaluation process, but does not own -- and shall not cache -- any design-specific information, except
where specifically identified.

10.4.1 Persistence of data passed across the PI

For calls across the PI, data only need to persist as follows:

— For data passed by an application to a DPCM-supplied function, the DPCM assumes the data
persist only for the duration of the DPCM function's execution. The practical effect of this
assumption is a DPCM does not store pointers to any data “owned” by the application.

— For data (other than structures and arrays that are not marked transient) returned by a DPCM
function to an application, the DPCM assumes the data need to persist only until the next call to

173
Copyright © 2010 IEEE all rights reserved.

Figure 3—DPCM/application procedural interface

Application DPCMlibdcmir

EXTERNAL FUNCTIONS

MODELING CALLBACKS

Optional

MEMORY MANAGEMENT
MESSAGE PRINTING

MAIN ENTRY POINTS

EXPOSE FUNCTIONS

IMPLICIT RUN-TIME
FUNCTIONS

IEC 61523-1:2012
IEEE Std 1481-2009 – 173 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

any DPCM PI function (including any recursive calls resulting from callbacks by the DPCM to the
application). The practical effect of this assumption is when persistence is desired, an application
shall, immediately after the function call, make its own copy of any data returned by a DPCM
function.

— For arrays or structures returned by a DPCM function to an application that are not marked
transient:

1) The data contained in the structure or array data are read only unless otherwise specified.

2) If the application claims the structure or array (see 10.25.1.4) the data persists until the
application disclaims the array (see 10.25.1.5). When the structure or array is claimed, the
application need not copy the array data and the DPCM shall not free the array data.

3) If the application does not claim the array, the data only persists until the next call to any
DPCM PI function or until the DPCM removes any outstanding claims it may have. In this
case, the application shall copy the array data if the application requires this array data to
persist.

4) Arrays returned by the calls dpcmGetCellPowerWithState, dpcmGetPinPower,
dpcmSetInitialSet, and dpcmGetAETCellPowerWithSensitivity shall not be claimed by the
application. For these calls, the application shall copy the array data if the application requires
this array data to persist.

— For structures and arrays marked transient:

1) The application shall assume the data persist until the next call. If the application requires the
data to be persistent, it shall make a copy of the structure and the data.

10.4.1 Data cache guidelines for the DPCM

The DPCM shall not cache any design-specific data, except where specifically identified. The pin cache is
one instance where the standard directs the DPCM to cache information under the control of the
application. The pin cache is created and maintained by the DPCM but is updated by the application. The
application shall call the DPCM to free the cache.

10.4.2 Application/DPCM interaction

This subclause describes a representative scenario for an application's use of a DPCM to perform timing
delay calculations. By assumption, the application has a design and wants to evaluate design-specific
timing. Not all of these steps need occur for all designs. A similar scenario is provided for an application's
use of the DCPM for power calculation (see Clause 8).

10.4.3 Application initializes message/memory handling

The DPCM allows the application to provide message handling functions (see 10.25.4.10) In addition, the
application is required to register memory management functions (see 10.25.4.4), which shall be used by
both the DPCM and the application.

10.4.4 Application loads and initializes the DPCM

The application first calls dcmRT_InitRuleSystem entry point (see 10.25.4.4) to initialize the DPCM. The
application then calls dcmRT_BindRule to load the main entry point within the DPCM dynamically.
Through this call, the application passes a table of function pointers (for the EXTERNAL functions the
application has defined) to the DPCM and receives back a table of function pointers (for the EXPOSE
functions the DPCM has defined). This handshaking establishes the PI between the application and the
DPCM.

To enable an application to be independent of implementation-specific characteristics of a DPCM, the code

174
Copyright © 2010 IEEE all rights reserved.

– 174 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

that implements the calls dcmRT_InitRuleSystem and/or dcmRT_BindRule shall not be statically linked
with the application.

10.4.5 Application requests timing models for cell instances

An application shall model a cell before calling any PI function which may use pathData or cellData in the
Standard Structure. Timing models in a DPCM become accessible to an application after it calls the
modelSearch function (see 10.27.1).

The application shall determine the association between instances (unique occurrences in the equivalent
flattened design) and particular timing models. The association is often based on an instance’s model name;
an application shall use the modelSearch function to locate a timing model given its name.

10.5 Model domain issues

This subclause defines model issues across the PI.

10.5.1 Model domain selection

The DPCM may have one or more model domains that represent independent but related views of a
technology, one for power, one for timing, and one for function or any combination of these. The DPCM
may combine one or more of these together into a single domain. To prevent the duplication of calls within
multiple model domains, it is the responsibility of the application to select the correct domain when
responding to an interface call. Each of the EXPOSE functions in this specification has a model domain
associated with it. Each EXPOSE function may also require domain-specific pathData and cellData
pointer values. It shall be the responsibility of the application to populate the Standard Structure pathData
and cellData pointer fields from the proper domain before calling the EXPOSE functions.

10.5.2 Model domain determination

The model domain of the pathData and cellData pointers are determined at the time the cell was modeled.
A cell modeled with the domain of timing shall have its pathData and cellData pointers valid for calls in
the timing domain. A cell modeled in the power domain shall have its pathData and cellData pointers valid
for calls in the power domain. If a cell in the library uses the asterisk (*) as its domain, the cellData and
pathData pointers shall be valid for both the timing and power domains.

10.5.3 DPCM invokes application modeling callback functions

Applications shall be capable of dealing with DPCM timing models, which can be parameterized in a
variety of potentially complex ways. For example, a timing model for a scan-sensitive latch may include
certain timing arcs whose existence depends on the latch’s functional “mode.” There can be more than one
timing model structure corresponding to a given timing model name, and timing models can be implicitly
instance specific.

As part of its call to modelSearch, the application supplies the cellName (see 10.17.1.1) and the input
and output pins. Bidirectional pins, which are those pins on a cell that act as both an input and output, shall
appear as an entry on both the list of input pins and the list of output pins. After the call to modelSearch
but before control returns to the application, the DPCM elaborates the timing model by evaluating the
“setup” code in the model. Once the timing arcs and other structures of the timing model have been
determined for this call to modelSearch, the DPCM conveys that information to the application by
making a sequence of calls to the application-supplied modeling functions (see 10.27.6 and 10.27.12). The
information conveyed is sufficient for an application to determine, for example, which input pins connect to
which output pins and which input signal transitions cause which output signal transitions.

175
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 175 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

The application shall save whatever part of this structural information it needs for future use; the DPCM PI
does not have any support for later interrogation of the timing model structure. At the very least, an
application shall save the timing arc-specific or pin-specific values of the pathData to the pathData pointer
field, the delay matrices, the test matrices, and the cell-specific value of the cellData pointer fields in the
Standard Structure (see 10.12), because those values are necessary for any subsequent application request
for a delay calculation from the DPCM. To prevent ambiguity, the DPCM shall not create a model for a cell
that contains more than one pathData per pin or arc. Bidirectional pins are considered two pins: one acting
as an input and one acting as an output. Pins whose delay matrix is not zero shall be taken to mean that the
delay matrix controls the propagation properties for all segments radiating to or from that pin.

NOTE—An application can determine the nature of any reasonable timing model parameterization, because the
model’s “setup” code would have to call application-supplied functions to determine parameter values, and the
application could keep track of whether any such functions were called during modelSearch. Given this knowledge,
an application can efficiently reuse previously elaborated models. Without this special care, however, an application
shall call modelSearch for every instance in the design (even if any particular timing model was previously
elaborated).

10.5.4 Application requests propagation delay

After an instance has been modeled, an application typically wants delay values from the DPCM for each
combination of signal transitions and paths in each of the instances of the design. This requires iteration of
the following simple request:

— Given a timing model, an instance of a cell, and a pair of pins and state transitions, get the pin-to-
pin propagation delay.

To obtain a propagation delay value for either an arc of a cell or a net, the application calls the
delay function see (10.26.1) and passes the following parameters using the DCL Standard
Structure:

— A “handle” for the specific instance (BLOCK) (see 10.11)

— The name of the instance’s timing model (CellName)

— The “from” pin (FROM_POINT)

This argument is a pointer to an application-created pin structure (see 10.27.6).

— The “to” pin (TO_POINT)

This argument is a pointer to an application-created pin structure (see 10.27.6).

— Input slew value (EARLY_SLEW and LATE_SLEW)

— Input (“from” pin) signal transition (SOURCE_EDGE and SOURCE_MODE)

— Output (“to” pin) signal transition (SINK_EDGE and SINK_MODE)

— Value for pathData pointer (PATH_DATA) (see 10.27.13 .

This argument was originally passed by the DPCM to the application during model elaboration
(see 10.5.3).

— Value for cellData pointer (CELL_DATA)

This argument was originally passed by the DPCM to the application during model elaboration
(see 10.5.3).

The call to delay results in the DPCM invoking the DELAY function defined for that particular propagation
in the MODELPROC for the cell. This may result in a simple numerical calculation, a reference to a TABLE
of coefficient data, and/or calls to other functions within the DPCM or EXTERNAL functions that the
application shall support. The application shall retain the pathData pointer given during modeling for use

176
Copyright © 2010 IEEE all rights reserved.

– 176 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

when requesting delays. arc-specific pathData pointers created for delay segments internal to the cell are
associated with those arcs. Pin-specific pathData pointers created on a pin of a cell (due to an INPUT or
OUTPUT statement containing a propagation clause) shall be used for all interconnect delay arcs that
originate or terminate on that pin (see 10.27.13 for information on interconnect delay calculation).

10.5.5 DPCM calls application EXTERNAL functions

The expression for propagation delay depends on the input pin’s slew value and the output pin’s total load
capacitance. The DPCM is passed a value for input slew via the Standard Structure. To get a value for
loading capacitance, the DPCM calls an application-supplied function, passing to the application the same
Standard Structure the DPCM received from the application; see 10.5.4 .

10.6 Reentry requirements

There are cases where a call to an EXTERNAL or EXPOSE can result in nested calls to the same function.
Both EXTERNAL and EXPOSE functions (as well as any functions they might reference) shall be coded for
reentry in order to cope with such situations.

10.7 Application responsibilities when using a DPCM

This subclause details the responsibilities an application shall have when using a DPCM.

10.7.1 Standard Structure rules

The application is required to establish and maintain Standard Structures. The DCL Standard Structure is a
collection of commonly used information and predefined variables. A pointer to this structure is passed as
the first argument in most function calls (see 10.10.2). Most PI functions require values to be initialized in
one or more of the DCL Standard Structure fields (see 10.12).

An application request for a DPCM function frequently leads to the DPCM making callbacks to the
application for more information. As long as the subsequent function calls involve the same cell instance,
the DCL Standard Structure remains unaltered and the pointer is merely passed in during the next function
call. If, however, the application calls a function for a different cell instance during this callback process,
then the application shall use a different Standard Structure for those function calls which reference
different cell instances.

NOTE—The number of extra Standard Structures required for this approach is small (generally one or two).

10.7.2 User object registration

The DPCM has a method dcmRT_registerUserObject (see 10.25.4.20) for allowing an application to
register an object with the Standard Structure. This is purely optional but can be useful if the application
has to allocate memory within a function that loses control before the memory can be freed. Registered
objects are under the control of the application and can be freed on demand by the application. The DPCM
shall delete registered user objects when the Standard Structure they are registered with is deleted.

A registered user object shall conform to the following:

— It shall be a structure whose first element is a pointer to a function that deletes the object when
called.

— The delete function shall accept only one parameter, the address of the user object.

177
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 177 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.7.3 Selection of early and late slew values

When the application calls the DPCM to compute delays and slews, the DPCM returns two numbers—the
“early” and “late” values of the computed quantity. The use of two values allows the delay calculation
process to account for the convergence of paths through the design along which different slew values are
propagated. Slew convergence occurs at the outputs of cells that have delay arcs from multiple inputs and at
the inputs of cells connected to interconnects with more than one driver.

Example

— An AND gate with inputs A and B and output Y shall have delay arcs from A to Y and from B to Y.
Signals arriving at A and B typically have different slew values, depending on the capacitance
loading characteristics of the drivers of those interconnects. If the cell is modeled such that the
slew at the output is dependent on the slew at the input, then two values shall be computed for the
slew at Y, one due to changes at input A and the other due to changes at input B. The slews from A
and B can be said to have “converged” at Y.

— For wider gates, clearly more slew values may converge at the output. A value or values shall be
chosen from the converging slews for propagation over the interconnect to inputs driven by this
output to avoid the explosion of the number of slew values being considered in the design.

Many delay calculation systems chose one slew value using some algorithm, such as choosing the
arithmetic mean. This results in the loss of considerable information and potentially in less accurate results.
The DPCM uses “early” and “late” values to bracket the range of values converging and retain accuracy
while limiting the amount of information that shall be propagated through the design.

The application is responsible for choosing the early and late slew values to propagate forward in the
design from the converging values computed by the DPCM. For example, a static timing analysis
application may choose to propagate as the early slew value the one associated with the earliest arriving
signal and to propagate as the late slew value the one associated with the latest arriving signal. By contrast,
a batch delay calculator or simulation application, which has no notion of arrival times, may choose to
propagate the average of all converging values; in this case, early and late slew values shall be the same. If
the application propagates as the early value the one that results in the smallest delay at the next level of
logic, and as the late value the one that results in the largest delay, then, it shall know whether delay values
vary in the same sense as slew values or in the opposite sense to them.

From the perspective of the DPCM, the use of early and late values means all calculations that depend on
slew shall be repeated for both values. The subrule may detect that early and late slew values (provided by
the application) at the input to a path are sufficiently similar so the computation can be performed once and
the result presented as both early and late result values. Otherwise, if the result of the calculation depends
on slew, it shall be done twice (once using the early value and once using the late value), and the results
presented as the early and late result values, respectively.

10.7.4 Semantics of slew values

The DPCS specification defines the precise, real-world semantics of the slew values passed between the
application and the DPCM to represent the rising and falling logic signals so delay and timing check values
may be computed as a function of these signal shapes. An application can call to determine whether the
slew values have the dimensions of time, and therefore represent the rise and fall time, or have the
dimensions of time/voltage, in which case they represent slew rate.

NOTE—The DPCS does not specify how different applications select and propagate converging slew values.
Therefore, users of the same DPCM with different applications may observe differences in the computed timing
properties of their design. The goals of the DPCS include providing consistent timing information to various
applications, but it is not feasible to guarantee identical final results. The user can be confident residual differences are
due to different application assumptions or capabilities and not to discrepancies in the data used for timing calculation.

178
Copyright © 2010 IEEE all rights reserved.

– 178 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.7.5 Slew calculations

It is up to the technology modeler to define whether or not the slew at the input of a cell effects the slew
value at the output of a cell. DCL allows the library developer to define slew equations for timing arcs
within a cell, as well as for the interconnects between cells. DCL also allows the creation of default slew
equations for those situations where the specific equation has not been specified.

An application shall assume there is a slew equation for all delay arcs and simply request a slew be
calculated based on that assumption. The DPCM shall determine the correct slew equation to use, including
the default if one has not yet been specified. The application, when calling for a slew calculation, shall
supply the appropriate slew value in the Standard Structure. This can be used by the library developer in
the slew equation, if needed.

If the application is coded in this manner, the slew can be propagated or not at the library developer’s
discretion.

10.8 Application use of the DPCM

This subclause details how an application interacts with the DPCM.

10.8.1 Initialization of the DPCM

A running application first calls the function dcmRT_InitRuleSystem, which initializes the library run-
time library system and prepares it for dynamic linking.

The four parameters passed to dcmRT_InitRuleSystem are a function pointer to the application’s
preferred malloc, free, and realloc function pointers as well as a pointer to where dcmRT_InitRuleSystem
can place an integer return value.

dcmRT_InitRuleSystem returns the system’s initial Standard Structure. All other application interactions
shall require a Standard Structure.

10.8.1.1 Standard Structure management

The DPCM maintains many contexts. A context is a combination of a space and a plane. The application
shall assume that one context is independent from another. The application shall assume that one context
can operate simultaneously with other contexts either at the request of the application or the library.

The context is identified in the Standard Structure. When a Standard Structure is created, it contains the
identification of the context that created it. Any operations requested of the DPCM by the application where
the Standard Structure passed in as the first argument shall cause the DPCM to perform the requested
operations on the context identified in that Standard Structure.

The Standard Structure returned from dcmRT_InitRuleSystem shall contain the run-time’s initial context.
The initial context is only valid for creating other contexts by calling dcmRT_BindRule.

The application shall not call for any service except dcmRT_BindRule with the Standard Structure
returned by dcmRT_InitRuleSystem.

10.8.1.2 Tech_family

Each space has one or more tech_families. A tech_family is a set of DPCM modules containing the same
TECH_FAMILY identifier. Each tech_family is independent of any other tech_family within the same
space.

179
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 179 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

When an application requests an operation of a specific tech_family, the application sets the corresponding
tech_type in the Standard Structure before making the call.

To facilitate cooperation between tech_families within the DPCM’s system of modules the DPCM may
temporarily change the tech_family setting in the Standard Structure. The privilege of changing the
tech_family setting is independent of whether or not the Standard Structure is const or not.

10.8.2 Context creation

A context is a system of executable modules called a space and a set of concurrent operations each being
performed in a separate area of memory called a plane. Each system is created by a call to
dcmRT_BindRule, which creates the space and the initial plane. For each concurrent operation the
application wants performed on a space, the application shall create a additional plane to separate the
concurrent operations. The application creates a new plane on a space by calling
dcmRT_newPlaneInSpace. The application shall not attempt concurrent operations on the same context.

dcmRT_BindRule dynamically loads a subrule system and returns a Standard Structure identified with the
newly created context.

10.8.3 Dynamic linking

The process of dynamic linking the library and space creation are combined into a single operation. When
dcmRT_BindRule is called, the required parameters are passed to the run-time library such that any
external references from the library to the application can be resolved. In addition, the library also resolves
any interdependencies between library modules and tables.

When the run-time library returns from the call to dcmRT_BindRule, the application has been given
DCMTransmittedInfo structure pointer containing the EXPOSE entry points made available to the
application from the library called the xmit block.

The xmit block contains the address of a location for the DPCM to store a DCMTransmittedInfo structure
pointer. The DCMTransmittedInfo (see 10.13) is a structure containing pointers to the DPCM functions
modelSearch, delay, slew, and check, followed by a table of EXPOSE pairs. Each EXPOSE pair consists of
a string containing the name of the EXPOSE (as it is defined in the subrule) and a pointer to that function's
entry point. The DPCM shall fill in this structure with its function addresses.

To enable the library to perform its dynamic linking a pointer to a DCM_FunctionTable structure
containing pairs of PI EXTERNAL names and pointers to the functions implementing them, the application
is passed as an argument to dcmRT_BindRule. It is the application’s responsibility to create this structure.

10.8.3.1 Linking order

Subrules are dynamically loaded and linked in the order their references are encountered. The subrules are
scanned from beginning to end, in a depth-first fashion, to locate other subrule references.

EXPOSE entry points with the same name (originating in separate subrules) shall be linked together in a
chain (see 10.8.3.1). Expose chaining is a process which occurs when two or more EXPOSE functions are
defined with the same name within the same TECH_FAMILY. A separate EXPOSE function definition can
potentially exist in each subrule. These EXPOSE functions are linked together in a chain in the order the
individual EXPOSE function definitions were loaded.

The IMPORT prototype of an EXPOSE function links to the first EXPOSE function within the chain. When
the application calls the chained EXPOSE function, it references this first EXPOSE function in the chain. If
this function returns a return code of zero (0), control returns to the caller (the application). If this function
returns an error return code with severity less than 3 (severe) and the return code is not the value returned

180
Copyright © 2010 IEEE all rights reserved.

– 180 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

by dcmHardErrorRC, the next EXPOSE function in the chain is called with the same PASSED parameters.

This process continues until one of the following occur:

— The current EXPOSE function returns a zero (0) return code

— The current EXPOSE function returns a return code with severity 3 or greater

— The current EXPOSE function is the last function in the chain (in which case it returns its return
code back to the application)

10.8.4 Subrule initialization

Each subrule in a DPCM is initialized in the order in which it is loaded. This initialization involves the
following actions:

— Resolution of references to EXTERNAL function defined within the application

— Static TABLE s, if any, defined within the subrules are loaded into memory

— Execution of the LATENT_EXPRESSION functions

Any number of these functions may be used per subrule. These functions are executed after all subrules
have been loaded but before control has been returned to the application. The LATENT_EXPRESSION
functions within a subrule are executed in the order seen in the subrule. This capability gives the library
developer the opportunity to accomplish initialization tasks, such as initializing variables. Once all subrules
have been loaded, these functions are executed in the order the subrules were loaded.

The following rules apply to the LATENT_EXPRESSION function:

— The function name shall be LATENT_EXPRESSION.

— Only one LATENT_EXPRESSION is allowed per subrule.

— The function shall not have PASSED parameters.

— The function shall be one of the following types: ASSIGN, CALC, INTERNAL, or EXPOSE.

— The LATENT_EXPRESSION function may reference any other legal DCL statement.

10.8.5 Use of the DPCM

When dcmRT_BindRule is called, the DPCM loads the remaining subrules specified for this context, cross
links all the EXPORT and IMPORT statements, and uses the DCM_FunctionTable to link the application
EXTERNAL functions to the corresponding EXTERNAL functions listed in the DPCM. It then fills in the
field of the DCMTransmittedInfo structure pointed to by the address specified by the last argument to the
dcmRT_BindRule call.

10.8.6 Application control

Control is returned to the application that then does the following:

— Initializes its function pointer variables for the modelSearch, delay, slew, and check functions to
the addresses provided by the DPCM in the corresponding fields of DCMTransmittedInfo.

— Initializes its function pointer variables to the DPCM services it requires from the table of
EXPOSE functions provided in DCMTransmittedInfo. The calls dcmQuietFindFunction and
dcmFindFunction are convenience tools to find the location of the function pointer given an
EXPOSE name.

181
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 181 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.8.7 Application execution

After subrule loading, run-time linking and subrule initialization has been completed by the DPCM, control
is returned to the application. The application then initiates PI function calls to the DPCM. These function
calls execute run-time library functions or portions of subrules (as required by the application request), and
then return to the application.

The application drives execution in the DPCM. The application shall call the modelSearch function (see
10.27.1) prior to calling functions that require pathData or cellData Standard Structure fields (see Table
117). The MODELPROC function (see 7.16.3) describes to the application the correct delay, slew, and
check formulas to use. If a cell has not been modeled, the “default” delay or slew is used (if one is defined).
The application typically asks the DPCM to model each specific cell instance in a design (by calling the
modelSearch function). The DPCM identifies the corresponding MODELPROC to use for this task from the
MODEL function with the given cell name in its DEFINES clause.

The DPCM models a cell by describing specific static timing arcs of the cell to the application through a
system of callback functions (see 10.27). This description might include interconnectivity, which delay
equations to use, and which edges are propagated. SUBMODEL procedures within the DPCM generally
process a portion of a cell’s description and may be executed as a result of MODELPROC execution. The
functions contained within a MODELPROC or SUBMODEL are generally executed in the order
encountered but within the control of decision logic intrinsic to the function.

10.8.8 Termination of DPCM

When an application is finished using a space and all its associated planes, it may call dcmRT_UnbindRule
(see 10.25.4.4). dcmRT_UnbindRule invokes all TERMINATE_EXPRESSION functions, if defined, in each
loaded subrule, in the opposite order in which the subrules were loaded. This capability gives the library
developer the opportunity to accomplish termination tasks, such as freeing memory.

There may be any number of TERMINATE_EXPRESSION functions within a subrule. Each
TERMINMATE_EXPRESSION function is executed in the opposite order in which they were found within
each subrule.

In the case where the application comes to a normal termination (by calling exit) without calling
dcmRT_UnbindRule, all the TERMINATE_EXPRESSION functions shall be executed in the opposite order
in which the subrules were loaded. After the execution of these functions, the normal termination process
shall continue.

10.9 DPCM library organization

This subclause highlights the DPCM library organization.

10.9.1 Multiple technologies

A subrule may load other subrule that is not of the same TECH_FAMILY. When a subrule is being loaded if
its tech_family is already in the current context this subrule becomes a member of that tech_family already
loaded otherwise a new tech_family grouping is started which is a peer to the subrule doing the loading.

Subrules that do not contain a specific tech_family name are given the name GENERIC.

Interactions between an application and a potentially multiple-technology DPCM are described in
Table 100.

182
Copyright © 2010 IEEE all rights reserved.

– 182 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 100—Interaction between multiple technologies and application

Number of
technologies

Technology names visible to application
Default DPCM visibility to

application

1 Loaded TECH_FAMILY name Everything

>1 All loaded TECH_FAMILY names First tech_family loaded

10.9.2 Model names

A fully qualified model name consists of the three strings cell, cellQual, and modelDomain.

10.9.3 DPCM error handling

When the DPCM detects errors of severity 0, 1, or 2 (see Table 101), it shall perform DEFAULT actions
defined by the function. The DPCM itself, however, shall never generate an error with a severity less than 2
back to the application. When the DPCM detects a return error of severity 3 or 4, it shall terminate all
functions in the current expose chain (see 10.8.3) and return this error to the application at the original
calling function. The DEFAULT actions shall not be processed in this case.

Severity level 2 indicates a local function failure. If the caller has a DEFAULT clause, it shall fire and the
caller shall return a 0 if the DEFAULT clause executed correctly; otherwise, its failure code shall be passed
up the call chain. If there is no DEFAULT clause, then the original level 2 return code (severity and
message number) shall be passed up the call chain to the top level call, or until a successful DEFAULT
clause fires, setting the return code to zero.

Severity level 3 indicates this particular call chain from the DPCM has failed; however, subsequent calls to
the DPCM are still possible. Severity level 4 indicates a catastrophic failure has occurred in the DPCM
(such as a memory allocation error), and the application shall not attempt to reenter this DPCM.

The DPCM shall never terminate the process (call exit(2)).

10.10 C level language for EXPOSE and EXTERNAL functions

The following C language interface conventions shall be honored by applications interfacing with PI
EXTERNALs or EXPOSEs.

10.10.1 Integer return code

Functions return an integer code, which indicates the following:

— Zero means the function completed successfully.

— Nonzero indicates one of several possible conditions.

— The most significant byte of the return code is set according the severity of the condition defined
by Table 101.

Table 101—Return code most significant byte

Decimal severity Meaning

0 Informational

1 Warning

2 Error

3 Severe

4 Terminate

183
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 183 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

— The least significant bytes set a message number defined by Table 102.

Table 102—Return code least significant bytes

Decimal range Meaning

1 through 10 000 Reserved for DCL compiler use

10 001 and above Available for application use

Application developers need to set the return codes according to the conventions described above or
unpredictable results may occur. The tactic of returning a -1 or other negative value shall be avoided.

10.10.2 The Standard Structure pointer

The DCL Standard Structure (see 10.12) contains the frequently used information and predefined variables
of a DPCM. The Standard Structure pointer shall always be passed as the first argument to the DPCM (in
an EXPOSE call) and be expected as the first argument by the application (in its definition of an
EXTERNAL), even if none of the structure variables are actually being used in that particular function.

10.10.3 Result structure pointer

All EXTERNAL and EXPOSE functions return value(s) through a result structure the address of which shall
always be passed as the second argument to the function. It is the responsibility of the caller to allocate the
memory required for the result structure.

NOTE—This result structure is different from the integer return code described in 10.10.1 .

10.10.4 Passed arguments

The PASSED arguments (as listed in the function declaration) follow the results pointer.

The types for the results structure and the passed parameters shall conform to data types as shown in Table
103. The definitions for these data types are available in the header files dcmwords.h and std_stru.h.

10.10.5 DCL array indexing

A DCL array with a n element dimension shall be indexed from 0 to n – 1. The first data element of an
array shall have index 0.

10.10.6 Conversion to C data types

The C data types for each function’s result and passed type names are shown in see Table 103. The
std_stru.h header file provides these definitions.

Table 103—Data types defined in DCL and C

DCL Notation std_stru.h #define ISO C data type

INT or int DCM_INTEGER int

CHAR or char DCM_CHARACTER char

SHORT or short DCM_SHORT short

LONG or long DCM_LONG long

STRING or string DCM_STRING char *

NUMBER or number DCM_FLOAT or DCM_DOUBLE float or double

DOUBLE or double DCM_DOUBLE double

FLOAT or float DCM_FLOAT float

184
Copyright © 2010 IEEE all rights reserved.

– 184 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

DCL Notation std_stru.h #define ISO C data type

PIN or pin
A pointer to an
application-private data
structure with a first field
type char *.

DCM_PIN char **

PINLIST or pinlist
A 0-terminated array of
PINs.

DCM_PINLIST char ***

VOID or void
A pointer to an
indeterminate data
structure.

DCM_VOID void *

Structure
A pointer to a structure of
the defined type.

DCM_STRUCT void * casted to the compatible
application type.
Applications shall not attempt to
free these pointers. Applications
shall only claim or disclaim these
as appropriate.

Array
A pointer to an array of
the type contained in the
array.

DCM_ARRAY void * casted to the compatible
application type.
Applications shall not attempt to
free these pointers. Applications
shall only claim or disclaim these
as appropriate.

10.10.7 include files

An application shall include the header files shown in see Table 104 (as needed to compile correctly) to
obtain typedef and other necessary declarations.

Table 104—Header files

Header file Definition

dcmdebug.h This header file contains code necessary for uniform implementation of debugging
facilities in the DPCM.

dcmintf.h This header file contains the FindFunction declarations, environment variable names
(UNIX), or user variable names (Windows NT), as well as the definition for the
DCMTransmittedInfo structure (see 10.13).

dcmload.h This header file defines how subrules are loaded.

std_macs.h This header file contains macro definitions of the predefined variables that simplify
access to fields in the DCL Standard Structure. It also contains edge and mode
enumeration values, and macros for RESULT variables of INTERNAL functions.

std_stru.h This header file contains the Standard Structure definition (see 10.12) and the typedefs
used by many of the PI functions.

dcmgarray.h
dcmpltfm.h
dcmstate.h
dcmutab.h

Miscellaneous header files containing defines used by the other header files.

To ensure interoperability, header files shall not be modified.

185
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 185 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.11 PIN and BLOCK data structure requirements

The PI uses a common data structure to represent electrical nodes (ports and internal signals) in timing
models and pins on instances of cells. The DPCM expects the application to create this data structure,
including all the information the application may need to process the pin. The DPCM only requires the
structure start with a character pointer (char *) with the name of the node; the application is free to allocate
additional space for its own specialized information. The diagram shown in Figure 4 illustrates the
relationship between PINLIST(s), PIN(s), and STRING(s)

The structure of a block of a pin.

The application shall store enough private data in a PIN’s data structure to be able to answer
appGetHierPinName (see 10.18.6.3), appGetHierBlockName (see 10.18.6.4), and appGetHierNetName
(see 10.18.6.5).

10.12 DCM_STD_STRUCT Standard Structure

Most PI functions exchange information in fields of a DCL Standard Structure (DCM_STD_STRUCT). The
DCM_STD_STRUCT pointer is the first argument passed to most functions (see 10.17). The application
developer shall not alter the definition of the DCM_STD_STRUCT.

Most of the important fields in the DCM_STD_STRUCT can be accessed using DCL reserved words or C
define names. The predefined variable names can be used in DCL subrules and define names can be used in
application source that includes the std_stru.h and std_macs.h header files (or from in-line C code in a DCL
subrule) as shown in Table 105, providing that the application names its Standard Structure variable
“STD_STRUCT.”

Table 105—Predefined macro names

#define (used within C source) Description

DCM__BLOCK Identifies the instance of a cell.

DCM__CALC_MODE
Gives access to the calcMode, which can be the best case, worst case,
or nominal.

DCM__CELL Cell is the name of the cell

186
Copyright © 2010 IEEE all rights reserved.

Figure 4—PIN and PINLIST

S T R I N G 0

char *

DO NOT CARE
Application private data

CHAR **

CHAR **

CHAR **

0

STRING

PIN

PINLIST

– 186 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

#define (used within C source) Description

DCM__CELL_QUAL
Gives access to the cellQual, which is a qualifier for the name of the
cell.

DCM__CKTTYPE Circuit type flag, set in a PROPAGATE or COMPARE clause.

DCM__CLKFLG
Set by the DPCM during modeling time and queried by the
application. The Standard Structure field in the path data control cell
holds the value.

DCM__EARLY_SLEW Gives access to slew.early.

DCM__FROM_POINT
Gives access to fromPoint. Represents a pointer to the sourcePin of
the starting point of an arc.

DCM_FROM_POINT_PIN_ASSOCIATION

Gives access to fromPointPinAssociation. Represents a pointer to the
sourcePin of the starting point of an arc.
FROM_POINT_PIN_ASSOCIATION shall only be used during the
modeling of an arc.

DCM__INPUT_PINS
Gives access to inputPins. Represents an array of pointers of type
PIN. The only member of the PIN type known to the DPCM is the
first member which is the pin name.

DCM__INPUT_PIN_COUNT
Gives access to inputPinCount. Represents the count of the input pins
in the inputPins array.

DCM__LATE_SLEW Gives access to slew.late.

DCM__MODEL_DOMAIN
Gives access to the modelDomain, which is set to either timing or
power.

DCM__MODEL_NAME
Gives access to model_name. Names the DCL Model Procedure
currently in use.

DCM__NODES
Gives access to nodes. Represents an array of pointers of type PIN.
The only known member of the PIN type is the first member, which
is the pin name.

DCM__NODE_COUNT
Gives access to nodeCount. Represents the count of the input pins in
the nodes array.

DCM__OUTPUT_PINS
Gives access to outputPins. Represents an array of pointers of type
PIN. The only known member of the PIN type is the first member,
which is the pin name.

DCM__OUTPUT_PIN_COUNT
Gives access to outputPinCount. Represents the count of the output
pins in the outputPins array.

DCM__PATH
Identifies a path by its name. This predefined variable accesses the
pathData within the Standard Structure and is private to the DPCM.
The application is only required to store the path data block.

DCM__PATH_DATA Pointer to path object.

DCM__PHASE

Gives access to phase. This is a combination of the SOURCE_EDGE
and SINK_EDGE. When the SOURCE_EDGE and the SINK_EDGE
are the same value, PHASE is set to I. If they are not the same value,
PHASE is set to O.

DCM__REFERENCE_EDGE

Gives access to sourceEdge and allows the library developer to
utilize the reference edge within DCL statements. This generally
occurs in TEST and TABLEDEF statements. The application treats
this as though it is the SOURCE_EDGE.

187
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 187 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

#define (used within C source) Description

DCM__REFERENCE_MODE

Gives access to sourceMode and allows the library developer to
utilize the reference edge within DCL statements. This generally
occurs in TEST and TABLEDEF statements. The application treats
this as though it is the SOURCE_MODE.

DCM__REFERENCE_POINT

Allows the library developer to utilize the reference point within
DCL statements. This generally occurs in TEST and TABLEDEF
statements. The application treats this as though it is the
FROM_POINT.

DCM__REFERENCE_POINT_PIN_ASSOCIATION

Allows the library developer to utilize the reference point pin
association within DCL statements.
REFERENCE_POINT_PIN_ASSOCIATION shall only be used
during the modeling of a test arc.

DCM__REFERENCE_SLEW
Gives access to slew.early. From the application’s perspective, it is
the same data field as EARLY_SLEW.

DCM__SIGNAL_EDGE

Gives access to the computed signalEdge. Allows the library
developer to utilize the reference edge within DCL statements. This
generally occurs in TEST and TABLEDEF statements. The
application treats this as though it is the SINK_EDGE.

DCM__SIGNAL_MODE

Gives access to sinkMode and allows the library developer to utilize
the reference edge within DCL statements. This generally occurs in
TEST and TABLEDEF statements. The application treats this as
though it is the SINK_MODE.

DCM__SIGNAL_POINT
Allows the library developer to utilize the reference point within
DCL statements. This generally occurs in TEST and TABLEDEF
statements. The application treats this as though it is the TO_POINT.

DCM__SIGNAL_POINT_PIN_ASSOCIATION

Allows the library developer to utilize the signal point pin association
within DCL statements. SIGNAL_POINT_PIN_ASSOCIATION
shall only be used during the modeling of a test arc.

DCM__SIGNAL_SLEW
Gives access to signalSlew. From the application’s perspective it is
the same data field as LATE_SLEW.

DCM__SINK_EDGE
Gives access to sinkEdge. This is the transition type for the signal on
the load pin. The sinkEdge value is represented by the enumeration
of rise, fall.

DCM__SINK_MODE
Gives access to the timing mode for the load pin sinkMode. The
sinkMode value is represented by the enumeration of early, late, or
terminate.

DCM__SOURCE_EDGE
Gives access to sourceEdge. This is the edge type for the signal on
the source pin. The sourceEdge value is represented by the
enumeration of rise, fall.

DCM__SOURCE_MODE
Gives access to sourceMode. The sourceMode value is represented
by early, late, both early and late, terminate, or both edges
terminated.

DCM__TO_POINT Gives access to toPoint. Represents the end point of an arc.

DCM__TO_POINT_PIN_ASSOCIATION

Gives access to toPointPinAssociation. Represents the end point of
an arc. TO_POINT_PIN_ASSOCIATION shall only be used during
the modeling of an arc.

188
Copyright © 2010 IEEE all rights reserved.

– 188 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

#define (used within C source) Description

DCM__CELL_DATA Pointer to cell object.

DCM__CYCLEADJ
Gives access to the pathdata->cycleadj field of the Standard
Structure. This field is set by the propagation sequence of a PATH
statement.

DCM__EARLY_MODE
Gives access to string value of the sourceMode field in the Standard
Structure.

DCM__LATE_MODE
Gives access to string value of the sinkMode field in the Standard
Structure.

DCM__EARLY_MODE_SCALAR
Gives access to enumeration value of the sourceMode field in the
Standard Structure.

DCM__LATE_MODE_SCALAR
Gives access to enumeration value of the sinkMode field in the
Standard Structure.

DCM__SOURCE_MODE_SCALAR

Gives access to enumeration value of the sourceMode field in the
Standard Structure.

DCM__SINK_MODE_SCALAR
Gives access to enumeration value of the sinkMode field in the
Standard Structure.

DCM__CALC_MODE_SCALAR
Gives access to enumeration value of the CalcMode field in the
Standard Structure.

DCM__DELAY_FUNC Gives access to delay function associated with the pathData pointer.

DCM__SLEW_FUNC Gives access to slew function associated with the pathData pointer.

For the C defines to function properly, C code shall use the name std_struct for the pointer to the
DCM_STD_STRUCT, because all the defines are of the form (std_struct -> XXX).

10.12.1 Alternate semantics for Standard Structure fields

Some of the DCL Standard Structure fields may have different meanings depending on the PI function
called. For example, when the application is requesting a slew or delay calculation, the slew structure’s
fields represent the early and late slew values. When the application is requesting a check calculation, those
same fields represent the values for the reference and signal slew, respectively. For programming
convenience, the REFERENCE_SLEW and SIGNAL_SLEW defines in the std_macs.h header file specify
the same Standard Structure field as EARLY_SLEW and LATE_SLEW. It is the application’s responsibility
to ensure the values set in the DCL Standard Structure are appropriate for the context of the function being
called.

Table 106 lists the different names used for the same fields in the DCL Standard Structure under the
corresponding context headings.

Table 106—Alternate semantics for Standard Structure fields

Standard Structure field
name

Delay and slew calculation Check calculation

slew.early EARLY_SLEW REFERENCE_SLEW

slew.late LATE_SLEW SIGNAL_SLEW

fromPoint FROM_POINT REFERENCE_POINT

fromPointPinAssociation FROM_POINT_PIN_ASSOCIATION
REFERENCE_POINT_PIN_ASSOC
IATION

toPoint TO_POINT SIGNAL_POINT

189
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 189 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Standard Structure field
name

Delay and slew calculation Check calculation

toPointPinAssociation TO_POINT_PIN_ASSOCIATION
SIGNAL_POINT_PIN_ASSOCIATI
ON

sourceMode SOURCE_MODE REFERENCE_MODE

sinkMode SINK_MODE SIGNAL_MODE

SourceEdge SOURCE_EDGE REFERENCE_EDGE

SinkEdge SINK_EDGE SIGNAL_EDGE

10.12.2 Reserved fields

The Standard Structure has several unused fields for internal use, future expansion, and/or elimination of
migration impact. These fields include reserved1, reserved2, reserved3, and reserved4. Do NOT use these
fields!

10.12.3 Standard Structure value restriction

Standard Structure fields of type string shall not be set to the string "*" by the application.

10.13 DCMTransmittedInfo structure

This structure, as defined in the dcmintf.h header file, is used to support dynamic linking to the application
of explicit EXPOSE functions (see 10.31 and implicit Calculation and Modeling functions 10.16.5 and
10.16.6) within the DPCM.

When the application first calls the DPCM entry point (which dcmRT_BindRule provides), it passes a
pointer to a DCMTransmittedInfo structure, along with a table of name/pointer pairs of the EXTERNAL and
implicit functions the application offers to the DPCM.

The DPCM shall locate pointers to the application’s EXTERNAL functions from the passed table. The
DPCM fills the DCMTransmittedInfo structure with pointers to its main calculation entry
points:modelSearch (see 10.27.1), delay (see 10.26.1), slew (see 10.26.2), and check (see 10.26.3),
followed by a table of pointers to functions, each paired with an EXPOSE name from the standard interface.

The application can use dcmRT_FindFunction (see 10.25.4.5) or dcmRT_QuiteFindFunction (see
10.25.4.7) by naming the corresponding EXPOSE function pointer in the DCMTransmittedInfo structure.
The four implicit functions can be called directly by the application.

10.14 Environment or user variables

The environment variables (UNIX) or user variables (Windows NT) DCMRULEPATH and
DCMTABLEPATH may be referenced when subrules or dynamic tables are loaded. These variables shall
contain a colon-delimited sequence of file system directory paths. The subrule- and table-loading
subsystems search each directory in the path sequence, in left-to-right order, for a matching filename.

10.15 Procedural interface (PI) functions summary

This subclause summarizes the PI functions defined by this standard. The PI functions are grouped into
three categories: EXPOSE (which start with the prefix dpcm), EXTERNAL (which start with the prefix
app), and run-time (which start with the prefix dcm).

190
Copyright © 2010 IEEE all rights reserved.

– 190 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.15.1 Expose functions

The Table 107 shows the explicit EXPOSE functions defined in the DPCM and called by the application.
Those EXPOSE functions for which METHODS may be used explicitly call out pathData and cellData as
fields in the Standard Structure. This subclause defines the EXPOSE functions used in this standard.

Table 107—Expose functions

EXPOSE function
section

Description

pcmAddWireLoadModel
10.18.3.9

Add a custom wire load model (write into) DPCM.

pcmAETGetSettlingTime
10.18.9.5

Returns settling time for a list of pins when using the AET
power calculation method.

pcmAETGetSimultaneousSwitchTime
10.18.9.6

Returns simultaneous switch times for a list of pins when
using the AET power calculation method.

pcmBuildInterconnectModels
10.21.9.2

Returns the interconnect models and the library’s updated
net models for the interconnect network.

dpcmBuildLoadModels
10.21.9.1

Returns the load models and the library’s updated net
models for the interconnect network.

dpcmBuildNoiseInterconnectModels
10.22.4.1.3

Returns pointers to the noise interconnect models for a sink
pin on an interconnect network, along with updated versions
of the library’s intermediate noise models for that network.

dpcmBuildNoiseLoadModels
10.22.4.1.4

Returns pointers to the noise load models for a driver of an
interconnect network, along with updated versions of the
library’s intermediate noise models for that network.

dpcmCalcCeff
10.21.12.2

Returns the effective capacitances seen by the passed driver
pin (toPoint).

dpcmCalcCouplingCapacitance
10.21.13.1.1

Calculates the capacitance between the aggressor and victim
conductors.

dpcmCalcInputNoise
10.22.5.1.1

Calculates a set of composite noise pulses at the input of a
cell, given the activity on the direct current (dc)-connected
drivers and the aggressor drivers on coupled nets. The
function can also be called to calculate noise propagated to a
bidirectional pin that is acting as an input.

dpcmCalcOutputNoise
10.22.6.1.1

Calculates a set of composite noise pulses at the output of a
cell, given the activity on the related pins. The function can
also be called to calculate noise propagated to a bidirectional
pin that is acting as an output.

dpcmCalcOutputResistances
10.21.15.6

Returns output resistances for the passed pin corresponding
to the early and late slews and transition waveform (XWF)
structures provided.

dpcmCalcPartialSwingEnergy
10.18.9.9

Returns the energy of a partial logic swing for AET or group
power calculation methods.

dpcmCalcSegmentResistance
10.21.13.1.3

Calculates the resistance.

dpcmCalcSteadyStateResistanceRange
10.21.12.3

Returns the maximum and minimum driving resistances
possible for a cell that is not transitioning, regardless of the
states where those resistances can occur.

dpcmCalcSubstrateCapacitance
10.21.13.1.2

Computes the plate and fringe capacitances between a
conductor on any given layer and the substrate.

191
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 191 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

EXPOSE function
section

Description

dpcmCalcTristateResistanceRange
10.21.12.4

Returns the maximum and minimum driving resistances
possible for a cell that is in the high impedance state.

dpcmCalcXWF
10.23.8.3.3

Returns pointers to XWF structures for the passed pin and
edge direction corresponding to the early and late slews.

dpcmCopyNWFarray
10.22.3.3

Allocates space for a new array of noise waveforms (NWFs)
and copies the contents of the source NWF array passed to it
into this new array.

dpcmCopyPWFarray
10.22.3.4

Allocates space for a new pulse waveform (PWF) array and
then copies the contents of the source PWF array passed to it
into this new array.

dpcmCreatePWF
10.22.3.2

Creates a PWF with points in which the waveform type, the
offsets, and the time and voltage values for each point are all
uninitialized.

dpcmCreatePWFdriverModel
10.22.3.5

Creates a PWFdriverModel that incorporates the PWF
passed to it and includes a resistance array whose size is the
same as the number of points in the PWF.

dpcmCreateSubnetStructure
10.21.6.12

Allocates a new subnet structure and initializes its link
pointers.

dpcmDebug
10.18.8.13

Allows the application to control the debug level setting if
the DPCM is compiled with debugging enabled.

dpcmFillPinCache
10.18.8.16

Supplies the load and slew of the specified pin.

dpcmFreePinCache
10.18.8.17

Frees the load and slew cache.

dpcmGetAETCellPowerWithSensitivity
10.18.9.3

Returns static power per rail, dynamic energy per rail, total
energy, and total static power.

dpcmGetAllResources
10.23.18.1.2

Queries the library for all resources.

dpcmGetBaseCellRailVoltageArray
10.23.9.2

Returns the default values for the voltage rails of the cell
identified by the cellData field in the Standard Structure.

dpcmGetBaseCellTemperature
10.23.9.3

Returns the default temperature value for the cell identified
by the cellData field in the Standard Structure.

dpcmGetBaseFunctionalMode
10.18.5.2

Returns the index number of the default functional mode for
the cell specified in the Standard Structure.

dpcmGetBaseOpPoint
10.23.10.1.2

Obtains the index for the default operating point.

dpcmGetBasePinFrequency
10.23.13.8

Returns the default pin frequency value.

dpcmGetBaseProcessPoint
10.23.11.1.2

Obtains a base process point from the library.

dpcmGetBaseOpRange
10.18.5.12

Returns the name of the base operating range modeled in the
DPCM.

dpcmGetBaseRailVoltage
10.18.5.6

Returns a default voltage value for the specified rail.

dpcmGetBaseTemperature
10.18.5.11

Returns the base operating temperature for the library.

192
Copyright © 2010 IEEE all rights reserved.

– 192 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

EXPOSE function
section

Description

dpcmGetBaseWireLoadModel
10.18.5.9

Returns the index number of the default wire load model for
the library.

dpcmGetCapacitanceLimit
10.18.4.1

Returns the capacitance limits for the specified pin.

dpcmGetCellList
10.18.6.1

Return a list of cells that exist in the library.

dpcmGetCellIOlists
10.18.1.14

Return inputs, outputs, and bidirectional pins for the given
cell.

dpcmGetCellNonScanCell
10.23.12.4.4

Identifies the nonscan flipflop used to construct the scan
flipflop.

dpcmGetCellPowerInfo
10.18.9.1

Returns the power calculation methods supported by the
DPCM.

dpcmGetCellPowerWithState
10.18.9.2

Returns power and energy for the group power calculation
methodology.

dpcmGetCellRailVoltageRangeArray
10.23.11.3.2

Returns the extrema defining the range of legal values for
each of the voltage rails of the cell identified by the cellData
field in the Standard Structure.

dpcmGetCellRestrictClass
10.23.12.4.1

Returns the set of restrict class values which apply to a cell.

dpcmGetCellRestrictClassArray
10.23.12.4

Returns an array of all possible values for the restrict class
within a technology.

dpcmGetCellScanType
10.23.12.4.3

Returns the set of the scan type property indices for a cell.

dpcmGetCellScanTypeArray
10.23.12.4.2

Returns an array of all possible scan type values used within
a technology.

dpcmGetCellSwapClass
10.23.12.4.4

Returns the set of swap class values, which apply to a cell.

dpcmGetCellSwapClassArray
10.23.12.3.3

Returns all possible SwapClass names.

dpcmGetCellTemperatureRange
10.23.11.4.2

Returns the extrema defining a range of legal values for the
temperature of the cell identified by the cellData field in the
Standard Structure.

dpcmGetCellTestProcedure
10.23.24

Obtains the test procedure defined for a cell and returns an
array of path data blocks, the functionality of which, as
specified by the associated function graphs and when
executed in the returned order, performs the desired test
sequence.

dpcmGetCellType
10.23.12.3.2

Returns an array of the cell type indices for a cell.

dpcmGetCellTypeArray
10.23.12.3.1

Returns all possible cell types used within a technology.

dpcmGetCellVectorPower
10.23.13.15

Returns the power associated with a cell for a given state
vector.

dpcmGetControlExistence
10.18.5.4

Returns information which controls the existence of the
segment identified by pathData.

dpcmGetDefaultInterconnectTechnology
10.21.6.14

Returns a technology the application can use when it can not
otherwise determine which technology owns a particular
interconnect subnet back to the application.

193
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 193 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

EXPOSE function
section

Description

dpcmGetDefCellSize
10.18.1.7

Returns cell’s size metric for interconnect load estimation.

dpcmGetDefPinSlews
10.23.17.1

Returns the default pin slews for the passed pinName of the
cell in the Standard Structure.

dpcmGetDifferentialPairPin
10.23.12.1.15

Returns the name of the pin that shall be paired with the
known pin.

dpcmGetDefPortCapacitance
10.18.2.6

Returns default capacitance for a chip primary output.

dpcmGetDefPortSlew
10.18.2.5

Returns default slew for a chip primary input.

dpcmGetDelayGradient
10.18.2.2

Returns the rate of change of the delay at the specified point.

dpcmGetEstLoadCapacitance
10.18.1.10

Returns an estimated load capacitance for the specified pin.

dpcmGetEstimateRC
10.18.2.4

Returns an RC value for a specified pin pair. Called when
the application does not know the RC value for the current
pin pair.

dpcmGetEstWireCapacitance
10.18.1.11

Returns an estimated interconnect capacitance for the
interconnect that the specified pin drives.

dpcmGetEstWireResistance
10.18.1.12

Returns the estimated wire resistance to which the specified
pin is connected.

dpcmGetExistenceGraph
10.23.15.1

Returns a function graph of the existence condition for the
segment identified by the pathData field in the Standard
Structure.

dpcmGetExposePurityAndConsistency
10.18.5.4

Allows the application to determine which EXPOSE
functions provide data the application can cache.

dpcmGetFrequencyLimit
10.23.13.6

Returns the minimum and maximum frequency limit for a
given path or pin.

dpcmGetFunctionalModeArray
10.18.5.1

Returns the functional mode names for the cell specified in
the Standard Structure.

dpcmGetInductanceLimit
10.23.13.10

Returns the minimum and maximum series inductance
permitted on the pin.

dpcmGetLayerArray
10.21.13.2.1

Returns an ordered array of layer names and layer types.

dpcmGetLevelShifter
10.23.12.4.6

Instantiates level shifters between the different chip voltage
islands.

dpcmGetLibraryAccuracyLevelArrays
10.18.5.2

Returns the accuracy levels.

dpcmGetLibraryConnectClassArray
10.23.14.2

Returns the list of all possible ConnectClass names
contained within a library representing a technology.

dpcmGetLibraryConnectivityRules
10.23.14.3

Returns a matrix of connectivity rules between all connect
classes in the library.

dpcmGetLibraryNoiseTypesArray
10.22.1.1.1

Returns an ordered array of strings identifying the custom
noise types defined by the library.

dpcmGetLogicalBISTMap
10.23.23.2

Returns the corresponding logical address and bit index
where the data word maps, as well as indicating whether the
logical data are inverted with respect to the physical data

194
Copyright © 2010 IEEE all rights reserved.

– 194 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

EXPOSE function
section

Description

value.

dpcmGroupGetSettlingTime
10.18.9.7

Returns settling time for a list of pins when using the group
power calculation method.

dpcmGroupGetSimultaneousSwitchTime
10.18.9.8

Returns simultaneous switch time for a list of pins when
using the group power calculation method.

dpcmGetNetEnergy
10.18.9.13

Returns net energy.

dpcmGetNodeSensitivity
10.23.4.3

Returns a list of strand states that shall be monitored.

dpcmGetNoiseViolationDetails
10.22.8.1.2

Returns detailed information about the noise of various
types contributed by each related pin to a violation reported
via appSetNoiseViolation.

dpcmGetOpPointArray
10.23.10.1.1

Obtains the names of the operating points within a library.

dpcmGetOpRangeArray
10.18.5.17

Returns the operating range names that are modeled in the
DPCM.

dpcmGetOutputSourceResistances
10.23.13.11

Returns two output source resistance values, an early value
and a late value, for a modeled arc.

dpcmGetPathLabel
10.23.12.2.1

Returns the SDF label for a vector expression that represents
at least one state for a path.

dpcmGetPhysicalBISTMap
10.23.23.1

Returns the corresponding physical row, column, and bank
where the data word maps, as well as indicating whether the
physical data are inverted with respect to the logical data
value.

dpcmGetPinAction
10.23.12.1.7

Returns all possible values for the Action property.

dpcmGetPinActionArray
10.23.12.1.6

Returns an array of indices, which comprise the
synchronous/asynchronous properties of a signal at the pin
of interest.

dpcmGetPinCapacitance
10.18.1.13

Returns the cell’s pin capacitance for the specified pin.

dpcmGetPinCellConnectivityArrays
10.23.14.1

Returns arrays of pins, which have defined cell-level
connectivity rules relative to the specified pin.

dpcmGetPinConnectClass
10.23.12.1.11

Returns an index into the array of library connect classes.

dpcmGetPinDriveStrength
10.23.13.14

Returns the relative pin drive strength.

dpcmGetPinEnablePin
10.23.12.1.10

Returns the list of pins that enable the pin identified by the
pin pointer argument.

dpcmGetPinIndexArrays
10.23.22.1

Returns the indices of the input, output, and bidirectional
pins of the cell specified in the Standard Structure.

dpcmGetPinJitter
10.23.13.9

Returns the jitter for a given pin.

dpcmGetPinPinType
10.23.12.1.3

Returns the PinType property for a pin.

dpcmGetPinPinTypeArray
10.23.12.1.2

Returns all possible values for the PinType property that can
be used by a technology.

195
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 195 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

EXPOSE function
section

Description

dpcmGetPinPolarity
10.23.12.1.9

Returns the Polarity property for a pin.

dpcmGetPinPolarityArray
10.23.12.1.8

Returns a string array of pin polarities that can be used in the
technology.

dpcmGetPinPower
10.18.9.4

Returns static power per rail, dynamic energy per rail, total
energy, and total static power for a specific pin state change.

dpcmGetPinReadPolarity
10.23.13.2

Returns the ReadPolarity property for a pin.

dpcmGetPinScanPosition
10.23.12.1.12

Returns the position of a pin in the scan for a cell.

dpcmGetPinSignalType
10.23.12.1.5

Returns an array of indices into the signal type array (which
constitutes the complete signal type for the pin of interest).

dpcmGetPinSignalTypeArray
10.23.12.1.4

Returns all possible values for the SignalType property used
by the technology.

dpcmGetPinStuck
10.23.12.1.14

Returns a list of the stuck failure types for a pin.

dpcmGetPinStuckArray
10.23.12.1.13

Returns all possible stuck-at-fault values used within the
technology.

dpcmGetPinTiePolarity
10.23.13.1

Returns the TiePolarity property for a pin.

dpcmGetPinWritePolarity
10.23.13.3

Returns the WritePolarity property for a pin.

dpcmGetPortNames
10.21.7.3

Returns the list of the port names associated with a pin.

dpcmGetPowerStateLabel
10.23.12.2.2

Returns the label for the particular group and condition.

dpcmGetProcessPointRange
10.23.11.2.1

Returns the extrema defining a range of legal values for a
process point other than one represented by the best-case,
nominal, or worst-case calculation modes.

dpcmGetPull
10.23.13.13

Determines the pull up/down resistance in a series with rail
voltages.

dpcmGetPWFarray
10.22.3.1

Converts an array of library-proprietary NWFs into an array
of PWFs, which are suitable for interpretation by an
application or by a different technology than that which
created the NWF.

dpcmGetPWFdriverModelArray
10.22.3.6

Creates an array of PWF driver models using an array of
library-proprietary NWFs and output resistances for the
driver pin passed to it.

dpcmGetRailVoltageArray
10.18.5.9

Returns the voltage rail names that are modeled in the
DPCM.

dpcmGetRuleUnitToFarads
10.18.8.6

Returns the basic units of capacitance assumed by the
technology library.

dpcmGetRuleUnitToHenries
10.18.8.7

Returns the basic units of inductance assumed by the
technology library.

dpcmGetRuleUnitToJoules
10.18.8.9

Returns the basic units of energy assumed by the technology
library.

196
Copyright © 2010 IEEE all rights reserved.

– 196 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

EXPOSE function
section

Description

dpcmGetRuleUnitToOhms
10.18.8.5

Returns the basic units of resistance assumed by the
technology library.

dpcmGetRuleUnitToSeconds
10.18.8.4

Returns the basic units of time assumed by the technology
library.

dpcmGetRuleUnitToWatts
10.18.8.8

Returns the basic units of power assumed by the technology
library.

dpcmGetRuleUnitsToMeters
10.21.13.2.2

Returns the basic units of distance assumed by the
technology.

dpcmGetParasiticCoordinateTypes
10.18.8.11

Returns the type of coordinate measure used for parasitic
elements by the technology.

dpcmGetRailVoltageRangeArray
10.23.11.3.1

Returns the extrema defining the range of legal values for
each rail voltage in a library.

dpcmGetRuleUnitToAmps
10.21.13.2.3

Returns the basic current units the library assumes,
expressed as an integer power of 10.

dpcmGetSimultaneousSwitchTimes
10.23.13.4

Returns an array of skew limits associated with a vector
expression graph.

dpcmGetSinkPinNoiseParasitics
10.22.4.1.1

Returns two pointers to parasitic subnets for a sink pin,
which contain element values for minimum and maximum
on-chip process variation.

dpcmGetSinkPinParasitics
10.21.7.1

Returns the parasitic subnets for a sink pin.

dpcmGetSlewGradient
10.18.2.3

Returns the rate of change of the slew at the specified point.

dpcmGetSlewLimit
10.18.4.2

Returns the slew limit for the specified pin.

dpcmGetSourcePinNoiseParasitics
10.22.4.1.2

Returns two pointers to parasitic subnets for a source pin,
which contain element values for minimum and maximum
on-chip process variation.

dpcmGetSourcePinParasitics
10.21.7.2

Returns the parasitic subnets for the source pin.

dpcmGetSupplyPins
10.23.22.2

Returns the power and ground pins for a cell.

dpcmGetTemperatureRange
10.23.11.4.1

Returns the extrema defining a range of legal values for
temperature.

dpcmGetThresholds
10.18.7.1

Returns voltage and transition and delay points.

dpcmGetTimeResolution
10.18.8.10

Returns the coarsest resolution for time values to be used by
the application to ensure accurate interaction with the
specified technology.

dpcmGetTimingStateGraphs
10.23.15.2

Returns function graphs of the state condition expressions
for the segment identified by the pathData field in the
Standard Structure.

dpcmGetTimingStateStrings
10.23.15.3

Returns the condition expression and the labels for the
timing state identified by the pathData field in the Standard
Structure.

dpcmGetVectorEdgeNumbers
10.23.15.4

Returns numbers for the from-pin and to-pin edges in a
timing vector for the segment identified by the pathData
field in the Standard Structure.

197
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 197 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

EXPOSE function
section

Description

dpcmGetVersionInfo
10.18.8.14

Returns the version identification for the technology library
and with which version of IEEE Std 1481 the library is
compliant.

dpcmGetWireLoadModel
10.18.3.10

Returns wire load model to application.

dpcmGetWireLoadModelArray
10.18.5.13

Returns the wire load model names modeled in the DPCM.

dpcmGetWireLoadModelForBlockSize
10.18.3.11

Returns the index number of the appropriate wire load
model given a specified area.

dpcmFreeStateCache
10.18.9.11

Frees the state cache who’s handle is passed in.

dpcmGetXovers
10.18.4.3

Returns the capacitance limits for cell drive strengths of the
cell to which the specified pin is connected.

dpcmHoldControl
10.18.8.15

Returns a signal from the DPCM that allows hold control to
be performed.

dpcmIdentifyInternalNode
10.21.8.2

Returns the nodeMap index of the node within the
appropriate subnet that corresponds to the internal node
identified by the pathData pointer in the Standard Structure.

dpcmIsSlewTime
10.18.8.12

Returns the units for calculated slews as absolute time or
rate of change.

dpcmModelMoreFunctionDetail
10.23.5.1.1

Expands the hierarchical node.

dpcmPassivateInterconnectModels
10.21.11.1.2

Converts a pair of library interconnect models to a
contiguous collection of bytes that can be persistently stored.

dpcmPassivateLoadModels
10.21.11.1.1

Converts a pair of library load models to a contiguous
collection of bytes that can be persistently stored.

dpcmPerformPrimitive
10.23.4.1

Returns a single dimensional array of integers, each
representing a bit of the primitive's value.

dpcmRestoreInterconnectModels
10.21.11.1.4

Converts a pair of library passivated interconnect models to
the DCM_STRUCT format used by the library during
calculations made using the models.

dpcmRestoreLoadModels
10.21.11.1.3

Converts a pair of library passivated load models to the
DCM_STRUCT format used by the library during
calculations made using the models.

dpcmScaleParasitics
10.21.6.15

Scales the parasitics within a subnet to compensate for
changes in the operating point, process point, voltages, and
temperature.

dpcmSetCurrentOpPoint
10.23.10.1.3

Sets an operating point.

dpcmSetCurrentProcessPoint
10.23.11.1.1

Sets the current process point.

dpcmSetInitialState
10.18.9.10

Set the initial state for a cell.

dpcmSetLevel
10.18.5.5

Instructs the DPCM to perform calculations for performance
(execution speed) or accuracy, and for the scope for derating
supported by the application.

dpcmSetLibraryAccuracyLevel
10.18.5.7

Sets the accuracy levels.

198
Copyright © 2010 IEEE all rights reserved.

– 198 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

EXPOSE function
section

Description

dpcmSetNoiseLimit
10.22.7.1

Specifies an application budget for the specified noise type.

dpcmSetParallelRelatedNoise
10.22.6.2.2

Called once for each driver pin on the net to which
initiatingPin is connected that is parallel to initiatingPin. For
each call, minLoadModel, maxNoiseLoadModel, and noises
shall be passed to enable the library to propagate noise
simultaneously across all of the parallel drivers.

dpcmSetResource
10.23.18.1.1

Sets the value of a resource.

dpcmGetTimingStateArray
10.18.5.20

Returns an array of strings that represent the valid states for
the given segment.

10.15.2 External functions

These functions are defined in the application and declared by the DPCM via the EXTERNAL function, as
shown in Table 108.

Table 108—External functions

EXTERNAL function
section

Description

appForEachNoiseParallelDriver
10.22.6.2.1

When called, the application shall respond by calling
dpcmSetParallelRelatedNoise once for each of the other
parallel driver pins on the net to which the passed pin is
connected.

appForEachParallelDriverByName
10.18.3.4

Returns the additional number of logically redundant parallel
drivers to the specified driver and a DPCM computed value
for driver cells connected in parallel on the specified
interconnect (by pin name).

appForEachParallelDriverByPin
10.18.3.3

Returns the additional number of logically redundant parallel
drivers to the specified driver and a DPCM computed value
for driver cells connected in parallel on the specified
interconnect (by pin pointer).

appGetAggressorOverlapWindows
10.21.15.1

Obtains arrays of arrival-window information about the
aggressor drivers coupled to a net for which propagation-arc
calculation (delay, slew, etc.) is being done.

appGetArcStructure
10.23.4.2

Returns the actual bit pattern present at the time of the call, as
well as the data type and any strand information.

appGetArrivalOffsetArraysByName
10.23.2.1

Returns arrays of arrival offsets and slews for the signal
associated with the edge and pin name passed as the
arguments back to the library.

appGetArrivalOffsetsByName
10.23.2

Returns the arrival offsets and slews for the signal associated
with the edge and pin name passed as the arguments.

appGetCeff
10.21.12.1

Returns the effective capacitances seen by the passed driver
pin (toPoint).

appGetCellName
10.18.6.2

Returns the cell name to which the specified pin is connected.

appGetCellCoordinates
10.18.1.8

Returns the x and y coordinates of the cell.

199
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 199 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

EXTERNAL function
section

Description

appGetCellOrientation
10.18.1.9

Returns how the cell is orientated on the grid.

appGetCurrentFunctionalMode
10.18.5.3

Returns the current functional mode of the cell instance
identified in the Standard Structure.

appGetCurrentOpRange
10.18.5.19

Returns the current operating range.

appGetCurrentRailVoltage
10.18.5.9

Returns a voltage value for the specified rail index number.

appGetCurrentTemperature
10.18.5.18

Returns the desired temperature value to be used for
calculations.

appGetCurrentTimingState
10.18.5.21

Returns the current state or condition.

appGetCurrentWireLoadModel
10.18.5.12

Returns the current wire load model.

appGetDriverThresholds
10.21.14.1

Finds the threshold of the driver cells on the net. If there is
more than one driver, returns all the driver thresholds.

appGetExternalDelayByPin
10.23.21.1

Returns the total delay and path status, from an output pin to
an input pin.

appGetExternalDelayByName
10.23.21.2

Returns the total delay and path status, from an output pin to
an input pin.

appGetExternalStatus
10.18.8.1

Returns whether and to what degree the application
implemented an EXTERNAL.

appGetHierBlockName
10.18.6.4

Returns the hierarchical instance name for the instance to
which the specified pin is connected.

appGetHierNetName
10.18.6.5

Returns the hierarchical interconnect name for the
interconnect to which the specified pin is connected.

appGetHierPinName
10.18.6.3

Returns the hierarchical pin name for the specified pin.

appGetInstanceCount
10.18.3.12

Returns the cell instance count for the interconnect region
containing the driving the specified pin.

appGetInterconnectModels
10.21.9.3

Returns the interconnect models created by the library for the
path between the pins specified in the Standard Structure.

appGetInterfaceVersion
10.23.17.2

Returns an array of strings, identifying the versions of the
IEEE 1481 interface that the application supports.

appGetLoadModels
10.21.9.4

Returns the load models created by the library for the pin
specified in the toPoint field of the Standard Structure.

appGetLogicLevelByName
10.23.21.3

Returns the logic level on the pin specified by the pin name.

appGetLogicLevelByPin
10.23.21.4

Returns the logic level on the pin.

appGetOverlapNWFs
10.21.15.4

Called by the library to obtain arrays of noise waveforms for
dc-connected drivers and aggressor drivers coupled to a net
for which propagation-arc calculation (delay, slew, etc.) is
being done.

appGetParasiticNetworksByName
10.21.10.2

Returns the parasitic networks for the net connected to the
named pin on the block supplied in the Standard Structure.

200
Copyright © 2010 IEEE all rights reserved.

– 200 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

EXTERNAL function
section

Description

appGetParasiticNetworksByPin
10.21.10.1

Returns the parasitic elements structures that represent the
non-reducedparasitic networks for that net.

appGetNumDriversByName
10.18.3.2

Returns the number of source (driving) pins (including
bidirectional pins) on the interconnect to which the named pin
is connected.

appGetNumDriversByPin
10.18.3.1

Returns the number of source (driving) pins (including
bidirectional pins) on the interconnect to which the specified
pin is connected.

appGetNumPinsByName
10.18.3.6

Returns the total number of pins on the interconnect to which
the named pin is connected.

appGetNumPinsByPin
10.18.3.5

Returns the total number of pins on the interconnect to which
the specified pin is connected.

appGetNumSinksByName
10.18.3.8

Returns the number of sinks (including bidirectional pins) on
the interconnect to which the named pin is connected.

appGetNumSinksByPin
10.18.3.7

Returns the number of sinks (including bidirectional pins) on
the interconnect to which the specific pin is connected.

appGetPinFrequency
10.23.13.7

Returns the current frequency on a particular pin.

appGetRC
10.18.2.1

Returns the RC value for the specified pin pair.

appGetResource
10.18.8.3

Returns a user-supplied value for an arbitrary keyword passed
from the DPCM.

appGetSwitchingBits
10.23.13.5

Returns the number of bits switching on a bus during
processing of a dpcmGetCellPowerWithState or a
dpcmGetCellVectorPower, respectively.

appGetThresholds
10.18.7.2

Returns voltage and transition and delay points.

appGetStateCache
10.18.9.12

Retrieves the cache handle associated with a cell instance and
created with the call dpcmSetInitialState

appGetSourcePinCapacitanceByPin
10.18.1.5

Returns the capacitance of the identified pin. The identified
pin shall be a pin that drives an interconnect network.

appGetSourcePinCapacitanceByName
10.18.1.6

Returns the capacitance of the named pin. The named pin shall
be a pin that drives an interconnect network.

appGetTotalLoadCapacitanceByName
10.18.1.2

Returns the total capacitance (sum of capacitance on all pins
plus wire capacitance) for the interconnect to which the named
pin is connected.

appGetTotalLoadCapacitanceByPin
10.18.1.1

Returns the total capacitance (sum of capacitance on all pins
plus wire capacitance) for the interconnect to which the
specified pin is connected.

appGetTotalPinCapacitanceByName
10.18.1.4

Returns the total pin capacitance (sum of capacitance on all
pins on the interconnect) for the interconnect to which the
named pin is connected.

appGetTotalPinCapacitanceByPin
10.18.1.3

Returns the total pin capacitance (sum of capacitance on all
pins on the interconnect) for the interconnect to which the
specified pin is connected.

appGetVersionInfo
10.18.8.2

Returns which version of IEEE Std 1481 the application is
compliant.

201
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 201 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

EXTERNAL function
section

Description

appGetXWF
10.23.8.3.2

Returns the XWF data structures obtained from a previous call
to appSetXWF (which were applied to the pin at the beginning
of this arc).

appNewNoiseCone
10.22.2.1

Describes the set of pins that are related to (that can have
noise affecting) an output pin on a cell.

appRegisterCellInfo
10.18.8.18

This call allows the application to supply load and slew
information.

appSetAggressorInteractWindows
10.21.15.2

Stores arrays of interaction windows, one window in each
array for each aggressor driver, in the application.

appSetCeff
10.21.12.5

Passes the effective load capacitances seen by and output
resistances of the driver pin and for the edge identified by the
toPoint and sinkEdge fields, respectively, in the Standard
Structure

appSetDriverInteractWindows
10.21.15.5

Used to store arrays of interaction windows, one window in
each array for each dc-connected driver, in the application

appSetNoiseViolation
10.22.8.1.1

Describes violations detected by the library during noise
calculation.

appSetParallelOutputNoise
10.22.6.2.3

Called by the library when noise waveforms are computed for
the output of a parallel driver as a side effect of the
calculations done by dpcmCalcOutputNoise for an initiating
driver.

appSetPull
10.23.13.12

Passes the enumeration DCM_PullType, which indicates the
pull-up, pull-down, or both arrangement

appSetSignalDivision
10.23.16.1

Sends data describing input signal sampling or output signal
rate division characteristics for the segment last defined during
timing model elaboration or for which calculation is currently
being performed.

appSetSignalGeneration
10.23.16.3

Sends data describing input signal generation characteristics
for the segment last defined during timing model elaboration
or for which calculation is currently being performed.

appSetSignalMultiplication
10.23.16.2

Sends data describing output signal rate multiplication
characteristics for the segment last defined during timing
model elaboration or for which calculation is currently being
performed.

appSetVectorOperations
10.23.12.4.5

Requests the application store an array of vector operations,
which are associated with the vector specified by the segment
last defined during vector timing model elaboration.

appSetXWF
10.23.8.3.1

Sets computed XWF data structures for the pin, edge, and
timing arc as identified by the toPoint, sinkEdge, and pathData
fields in the Standard Structure.

10.15.3 Deprecated functions

There are several functions that were defined in the previous version of this standard that are considered to
be deprecated. They are presented here with the understanding that in a future release of these functions
may no longer be supported. They are preserved in this standard for the purpose of providing existing
applications and libraries a period of time in which to switch over to using the new versions. The
deprecated functions are defined in Table 109.

202
Copyright © 2010 IEEE all rights reserved.

– 202 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 109—Deprecated functions

Function
section

Description

appGetPiModel
10.28.1.1

Returns the pi model capacitance and resistance values for the
interconnect to which the specified pin is connected.

appGetPolesAndResidues
10.28.1.2

Returns poles and residues for the specified load.

appGetCeffective
10.28.1.3

Returns the value of C-effective of the load seen by the specified
driver.

appGetRLCnetworkByName
10.28.1.5

Returns the RLC elements representing the interconnect to which
the named pin is connected.

appGetRLCnetworkByPin
10.28.1.4

Returns RLC elements representing the interconnect to which the
specified pin is connected.

dpcmCalcPiModel
10.28.1.6

Calculates a pi model for the interconnect driven by the specified
pin drives.

dpcmCalcPolesAndResidues
10.28.1.7

Calculates poles and residues for the specified load.

dpcmCalcCeffective
10.28.1.8

Returns the effective capacitance for the load seen by the specified
driving pin.

dpcmSetRLCmember
10.28.1.9

A function that is called to pass R, L, C, and M elements within
the specified interconnect.

dpcmAppendPinAdmittance
10.28.1.10

Adds the admittance of a receiver pin to the RLC tree for the
interconnect.

dpcmDeleteRLCnetwork
10.28.1.11

Deletes previously created RLC network.

dcmBindRule
10.28.4.6

Loads and links the specified DCL subrule and returns the
initialization entry point.

dcmSetMessageIntercept
10.28.4.14

Allows the application to supply a message interceptor, which
controls the printing of DPCM messages.

dcmSetNewStorageManager
10.28.4.2

Allows the application to assert its storage management system on
the DPCM.

dcmAddRule
10.28.4.7

Adds additional DCL subrules to the DPCM after dcmBindRule
has been called.

dcmCellList
10.28.4.1

Returns the list of cell names in the current library.

dcmFindAppFunction
10.28.4.10

Determines whether the application defined the indicated
EXTERNAL function.

dcmFindFunction
10.28.4.9

Returns a pointer to the function matching the specified name.
Issues an error message if the specified function name cannot be
found.

dcmFree
10.28.4.4

Instructs the DPCM to free memory using the storage management
function currently in effect.

dcmIssueMessage
10.28.4.15

Instructs the DPCM to print a message using the
dcmSetMessageIntercept currently in effect.

203
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 203 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Function
section

Description

dcmMakeRC
10.28.4.12

Returns an error code constructed from the message number and
severity arguments, which shall not conflict with internal DCL
reserved codes (such as those returned from dcmHardErrorRC).

dcmMalloc
10.28.4.3

Instructs the DPCM to allocate memory using the storage
management function currently in effect.

dcmQuietFindFunction
10.28.4.11

Returns a pointer to the function matching the specified name. No
error message is issued if the specified function name cannot be
found.

dcmRealloc
10.28.4.5

Instructs the DPCM to reallocate memory using the storage
management function currently in effect.

dcmUnbindRule
10.28.4.8

Unloads the DPCM from memory and releases any memory it
may have used.

dcm_freeAllTechs
10.28.4.22

Frees the technology list created by dcm_getAllTechs.

dcm_getAllTechs
10.28.4.21

Returns a list of all technologies loaded as part of the current
DPCM.

dcm_getTechnology
10.28.4.20

Returns the technology name where the Standard Structure is
mapped.

dcm_isGeneric
10.28.4.23

Indicates whether the current Standard Structure is pointing to a
generic technology.

dcm_mapNugget
10.28.4.24

Returns the current technology mapping structure.

dcm_registerUserObject
10.28.4.26

Registers a pointer to a user-defined object with the Standard
Structure so that it may be deleted by
dcm_DeleteRegisteredUserObjects or dcm_DeleteOneUserObject.

dcm_rule_init
10.28.4.16

Entry called to initialize the DPCM previously loaded.

dcm_setTechnology
10.28.4.19

Set the technology mapping in the Standard Structure to the
specified technology name.

dcm_takeMappingOfNugget
10.28.4.25

Sets the Standard Structure to point to the technology contained in
the nugget.

dcm_DeleteRegisteredUserObjects
10.28.4.27

Deletes the user objects associated with the specified Standard
Structure.

dcm_DeleteOneUserObject
10.28.4.28

Deletes a single user object that was registered to the specified
Standard Structure.

dcmHardErrorRC
10.28.4.13

Returns the constructed return code “hard error rc.”

DCM_new_DCM_STD_STRUCT
10.28.4.17

Allocates and initializes a new Standard Structure.

DCM_delete_DCM_STD_STRUCT
10.28.4.18

Deletes a previously allocated Standard Structure.

dcm_copy_DCM_ARRAY
10.28.2.1

Copies the contents from one DCM_ARRAY to another
DCM_ARRAY.

204
Copyright © 2010 IEEE all rights reserved.

– 204 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Function
section

Description

dcm_new_DCM_ARRAY
10.28.2.2

Allocates a new DCM_ARRAY.

dcm_sizeof_DCM_ARRAY
10.28.2.3

Calculates the size of a DCM_ARRAY.

dcm_lock_DCM_ARRAY
10.28.2.4

Locks a DCM_ARRAY.

dcm_unlock_DCM_ARRAY
10.28.2.5

Decrements the claim count of a DCM_ARRAY.

dcm_lock_DCM_STRUCT
10.28.3.1

Increments the claim count of a structure.

dcm_unlock_DCM_STRUCT
10.28.3.2

Decrements the claim count of a structure.

dcm_getNumDimensions
10.28.3.3

Returns the number of dimensions of a DCM_ARRAY.

dcm_getNumElementsPer
10.28.3.4

Returns the number of elements in each dimension of a
DCM_ARRAY.

dcm_getNumElements
10.28.3.5

Returns the number of elements in a specific dimension of a
DCM_ARRAY.

dcm_getElementType
10.28.3.6

Returns the element type contained in a DCM_ARRAY.

dcm_arraycmp
10.28.3.7

Tests to determine if two DCM_ARRAYs have the identical
contents.

10.16 Implicit functions

Implicit functions are identified as such because their names do not appear explicitly in the DCL source.
They can be categorized as libdcmlr functions, initialization (or run-time library) functions, calculation
functions (main calculation entry points), and modeling functions. These functions are also available for
use by the application.

10.16.1 libdcmlr

Table 110 lists the libdcmlr functions; calls to these functions shall precede the use of any other DPCM
calls.

Table 110—libdcmlr functions

libdcmlr function
section

Description

dcmRT_InitRuleSystem
10.25.4.1

Initializes the DCL run-time system. The application shall call this
function before calling any other run-time or library calls.

dcmRT_BindRule
10.25.4.2

Loads and links the specified DCL subrule and returns the
initialization entry point.

dcmRT_SetMessageIntercept
10.25.4.10

Allows the application to supply a message intercept, which controls
the printing of DPCM messages.

205
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 205 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.16.2 Run-time library utility functions

Once a DPCM is loaded, various information query and setup calls may be made. These functions shall be
dynamically linkable to the application. Run-time functions shall be separate from the DPCM so multiple
subrules can be linked without conflict.

10.16.2.1 Module control functions

Table 111 describes the module control functions.

Table 111—Module control functions

Initialization function
Section

Description

dcmRT_AppendRule
10.25.4.3

Adds additional DCL subrules to the DPCM after dcmRT_BindRule
has been called.

dcmRT_FindAppFunction
10.25.4.6

Determines whether the application defined the indicated EXTERNAL
function.

dcmRT_FindFunction
10.25.4.5

Returns a pointer to the function matching the specified name and
Issues an error message if the specified function name cannot be found.

dcmRT_QuietFindFunction
10.25.4.7

Returns a pointer to the function matching the specified name. No error
message is issued if the specified function name cannot be found.

dcmRT_UnbindRule
10.25.4.4

Unloads the DPCM from memory and releases any memory it may
have used.

dcmRT_freeAllTechs
10.25.4.17

Frees the technology list created by dcmRT_getAllTechs.

dcmRT_getAllTechs
10.25.4.16

Returns a list of all technologies loaded as part of the current DPCM.

dcmRT_getTechnology
10.25.4.15

Returns the technology name where the Standard Structure is mapped.

dcmRT_isGeneric
10.25.4.18

Indicates whether the current Standard Structure is pointing to a
generic technology.

dcmRT_setTechnology
10.25.4.14

Set the technology mapping in the Standard Structure to the specified
technology name.

dcmRT_takeMappingOfNugget
10.25.4.19

Sets the Standard Structure to point to the technology contained in the
nugget.

10.16.3 Memory control functions

Memory control functions (Table 112) control the allocation, freeing, and serializing access to structures
and arrays.

206
Copyright © 2010 IEEE all rights reserved.

– 206 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 112—Memory control functions

Initialization function
section

Description

dcmRT_claim_DCM_STRUCT
10.25.3.1

Increments the claim count of a DCM_STRUCT.

dcmRT_disclaim_DCM_STRUCT
10.25.3.2

Decrements the claim count of a DCM_STRUCT. The
application shall not call dcmRT_disclaim_DCM_STRUCT
more time than it has called dcmRT_claim_DCM_STRUCT on
any DCM_STRUCT.

dcmRT_longlock_DCM_STRUCT
10.25.3.3.1

Requests serialized access to a DCM_STRUCT with the SYNC
attribute (passed to it by the library).

dcmRT_longunlock_DCM_STRUCT
10.25.3.3.2

Releases the serialized access to a DCM_STRUCT that was
granted earlier through a call to
dcmRT_longlock_DCM_STRUCT. The structure being
unlocked had the SYNC attribute (passed to it by the library).

dcmRT_registerUserObject
10.25.4.20

Registers a pointer to a user-defined object with the Standard
Structure so that it may be deleted by
dcmRT_DeleteRegisteredUserObjects or
dcmRT_DeleteOneUserObject.

dcmRT_DeleteRegisteredUserObjects
10.25.4.21

Deletes the user objects associated with the specified Standard
Structure.

dcmRT_DeleteOneUserObject
10.25.4.22

Deletes a single user object that was registered to the specified
Standard Structure.

dcmRT_new_DCM_STD_STRUCT
10.25.4.12

Allocates and initializes a new Standard Structure.

dcmRT_delete_DCM_STD_STRUCT
10.25.4.13

Deletes a previously allocated Standard Structure.

dcmRT_copy_DCM_ARRAY
10.25.1.1

Copies the contents from one DCM_ARRAY to another
DCM_ARRAY

dcmRT_new_DCM_ARRAY
10.25.1.2

Allocates a new DCM_ARRAY.

dcmRT_sizeof_DCM_ARRAY
10.25.1.3

Calculates the size of a DCM_ARRAY.

dcmRT_claim_DCM_ARRAY
10.25.1.4

Increments the claim count of a DCM_ARRAY.

dcmRT_disclaim_DCM_ARRAY
10.25.1.5

Decrements a claim count of a DCM_ARRAY.

dcmRT_getNumDimensions
10.25.3.4

Returns the number of dimensions of a DCM_ARRAY.

dcmRT_getNumElementsPer
10.25.3.5

Returns the number of elements in each dimension of a
DCM_ARRAY.

dcmRT_getNumElements
10.25.3.6

Returns the number of elements in a specific dimension of a
DCM_ARRAY.

dcmRT_getElementType
10.25.3.7

Returns the element type contained in a DCM_ARRAY.

dcmRT_arraycmp
10.25.3.8

Tests to determine if two DCM_ARRAYs have the identical
contents.

207
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 207 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.16.4 Message and error control functions

Message and error control functions issue messages and set error return code values (Table 113).

Table 113—Message and error control functions

Initialization function
section

Description

dcmRT_IssueMessage
10.25.4.11

Instructs the DPCM to print a message using the dcmSetMessageIntercept
currently in effect.

dcmRT_MakeRC
10.25.4.8

Returns an error code constructed from the message number and severity
arguments, which shall not conflict with internal DCL reserved codes (such as
those returned from dcmHardErrorRC).

dcmRT_HardErrorRC
10.25.4.9

Returns the constructed return code "hard error rc"

10.16.5 Calculation functions

The main calculation entry point functions are called by the application to perform calculation of delay,
slew and timing checks, as shown in Table 114.

Table 114—Calculation functions

Calculation function
section

Description

check
10.26.3

Calculates values to be used for timing checks for the specified timing arc.

elay
10.26.1

Calculates the delay for the specified timing arc.

slew
10.26.2

Calculates the slew for the specified timing arc.

10.16.6 Modeling functions

An application’s call to modelSearch (see 10.27.1) causes implicit callbacks from the DPCM to the
application. modelSearch is used to find a model and convey its structure to an application. Pointers to
these functions paired with the following names are presented to the DPCM, along with the list of
EXTERNAL entries in the call to dcmRT_InitRuleSystem (see 10.25.4.1). The application shall define all
the functions described in Table 115.

208
Copyright © 2010 IEEE all rights reserved.

– 208 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 115—Modeling functions

Modeling function
section

Description

modelSearch
10.27.1

Called by the application for each instance of a cell that has to be
modeled. Initiates a sequence of calls to the application by the
DPCM to convey the model's structure.

newAltTestSegment
10.27.12

Called by the DPCM to create a timing check arc for the specified
from-to pin pair.

newDelayMatrixRow
10.27.7

Called by the DPCM to describe the propagation characteristics
for arcs created by PATH, BUS, INPUT, OUTPUT, DO: NODE
IMPORT, and DO: NODE EXPORT.

newNetSinkPropagateSegments
10.27.8

Called by the DPCM to create delay arcs to a specified pin from
all sources.

newNetSourcePropagateSegments
10.27.9

Called by the DPCM to create delay arcs from a specified pin to
all loads (sinks).

newPropagateSegment
10.27.10

Called by the DPCM to creates a delay arc for a specified from-to
pin pair.

newTestMatrixRow
10.27.11

Called by the DPCM to describe the propagation characteristics
for timing arcs created by DCL TEST statements.

newTimingPin
10.27.6

Called by the DPCM to create storage for a timing node internal
to a cell.

10.17 PI function table description

The description of each PI functions (see 10.15) includes a two-part table and a function description.

The first part of Table 116 defines the function name, and where applicable, the argument(s), result(s) and
Standard Structure field(s) used. The Standard Structure pathData pointer can originate from two sources,
relative to an arc if created by a Path, Bus, or Test statement, or relative to a pin if created by an INPUT or
OUTPUT statement. In the Standard Structure column, when pathData is listed as a required field, it
indicates whether it originates from a pin (“timing pin specific”), an arc (“timing arc specific”), or either
one (“timing”).

The second part of the table illustrates, where applicable, the DCL and/or C syntax of the function call. The
example table below and the subsections following it describe the different characteristics of a PI function.

Table 116—PI function table example

Function name The interface function name. For application functions, this may be different from the
actual name declared in the code (see 10.16).

Arguments An argument is a value passed by the caller to the function.

Result A result is a value or values returned through a structure pointer passed in as an
argument

Standard
Structure fields

The entries listed in this column are those fields within the Standard Structure that may
be read by the called function.

DCL syntax The DCL syntax for the function interface is shown here.

C syntax The C syntax for the function interface is shown here.

10.17.1 Arguments

When there is duplication of data for arguments of functions, the passed parameters take precedence over
data contained in the Standard Structure field.

209
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 209 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.17.1.1 Standard Structure fields

Any names appearing in the Standard Structure fields column of a PI function table are input values to the
function being invoked. Values shall be set in the Standard Structure by the caller, although in some cases,
not all values have to be reset for every iteration in a loop (see 10.7.1).

Common semantics for values are summarized in Table 117 Refer to the description of a particular function
for alternate interpretations of these variables or for descriptions of other variables not included in this
table.

Table 117—Standard Structure field semantics

Value Description

block
The cell instance relevant for the current context. This may be the instance for the pin(s)
identified in the Arguments column, or those identified by the FROM_POINT or TO_POINT
in other fields of the std_struct.

CellName
CellName represents the following three fields in the Standard Structure: cell, cellQual, and
modelDomain. These three fields together uniquely qualify a particular model in the DPCM.

cellData
pathData

Pointers to the current PATH and CELL (returned by the DPCM to the application at
modelSearch time). If these fields are specified in the PI-specific table, then the application
shall supply these values in the Standard Structure, and the DPCM is free to implement the
function using METHOD functions. If these fields are not specified, the DPCM shall not use
METHODs for that PI call.

calcMode
calcMode defines whether the computation is for the best case, worse case, or nominal. All PI
calls that mention calcMode in the list of Standard Structure fields shall return a best case,
worse case, or nominal result based on the value of calcMode.

If neither pathData nor cellData appears in the Standard Structure field list, then that PI function may be
called before modeling that cell (using modelSearch).

10.17.2 DCL syntax

EXPOSE and EXTERNAL functions give only an abbreviated DCL syntax. Depending on the function,
there may be zero or more PASSED parameters or RESULT variables. For a complete syntax, refer to the
appropriate description of a function (see Clause 7).

10.17.3 C syntax

Functions with one or more Result value(s) are declared with a pointer to a specially declared struct.

10.18 PI function descriptions

This subclause details the DPCS standard PI functions. Each DCL statement can be accessed through a PI
function.

10.18.1 Interconnect loading related functions

This subclause describes the interconnect loading related functions.

10.18.1.1 appGetTotalLoadCapacitanceByPin

Table 118 provides information on appGetTotalLoadCapacitanceByPin.

210
Copyright © 2010 IEEE all rights reserved.

– 210 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 118—appGetTotalLoadCapacitanceByPin

Function name appGetTotalLoadCapacitanceByPin

Arguments Pin pointer

Result Total load capacitance

Standard
Structure fields

calcMode

DCL syntax EXTERNAL(appGetTotalLoadCapacitanceByPin):
 passed(pin: outputPin)
 result(double: loadCapByPin);

C syntax typedef struct {
 DCM_DOUBLE loadCap;
} T_TotalLoadCapByPin;

int appGetTotalLoadCapacitanceByPin
 (DCM_STD_STRUCT *std_struct,
 T_TotalLoadCapByPin *rtn, DCM_PIN outputPin);

This returns to the DPCM the total capacitance of the interconnect to which the passed pin is connected.
The total capacitance is the sum of capacitance on all pins on the interconnect plus the interconnect’s total
capacitance.

10.18.1.2 appGetTotalLoadCapacitanceByName

Table 119 provides information on appGetTotalLoadCapacitanceByName.

Table 119—appGetTotalLoadCapacitanceByName

Function name appGetTotalLoadCapacitanceByName

Arguments Pin name

Result Total load capacitance

Standard
Structure fields

block, calcMode

DCL syntax EXTERNAL(appGetTotalLoadCapacitanceByName):
 passed(string: outputPin)
 result(double: loadCapByName);

C syntax typedef struct {
 DCM_DOUBLE loadCap;
} T_TotalLoadCapByName;

int appGetTotalLoadCapacitanceByName
 (DCM_STD_STRUCT *std_struct,
 T_TotalLoadCapByName *rtn, STRING outputPin);

This returns to the DPCM the total capacitance of the interconnect to which the passed pin name is
connected. The total capacitance is the sum of the capacitance of all pins on the interconnect plus the
interconnect’s total capacitance.

10.18.1.3 appGetTotalPinCapacitanceByPin

Table 120 provides information on appGetTotalPinCapacitanceByPin.

211
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 211 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 120—appGetTotalPinCapacitanceByPin

Function name appGetTotalPinCapacitanceByPin

Arguments Pin pointer

Result Total pin capacitance

Standard
Structure fields

calcMode

DCL syntax EXTERNAL(appGetTotalPinCapacitanceByPin):
 passed(pin: outputPin)
 result(double: totalPinCapByPin);

C syntax typedef struct {
 DCM_DOUBLE totalPinCap;
} T_TotalPinCapByPin;

int appGetTotalPinCapacitanceByPin
 (DCM_STD_STRUCT *std_struct,
 T_TotalPinCapByPin *rtn, DCM_PIN outputPin);

This returns the total pin capacitance of the interconnect to which the passed pin is connected. The total
capacitance is the sum of the capacitances for all pins on the interconnect.

10.18.1.4 appGetTotalPinCapacitanceByName

Table 121 provides information on appGetTotalPinCapacitanceByName.

Table 121—appGetTotalPinCapacitanceByName

Function name appGetTotalPinCapacitanceByName

Arguments Pin name

Result Total pin capacitance

Standard
Structure fields

block, calcMode

DCL syntax EXTERNAL(appGetTotalPinCapacitanceByName):
 passed(string: outputPin)
 result(double: totalPinCapByName);

C syntax typedef struct {
 DCM_DOUBLE totalPinCap;
} T_TotalPinCapByName;

int appGetTotalPinCapacitanceByName
 (DCM_STD_STRUCT *std_struct,
 T_TotalPinCapByName *rtn, STRING outputPin);

This returns the total pin capacitance of the interconnect to which the passed pin name is connected. The
total capacitance is the sum of the capacitances for all pins on the interconnect.

10.18.1.5 appGetSourcePinCapacitanceByPin

Table 122 provides information on appGetSourcePinCapacitanceByPin.

212
Copyright © 2010 IEEE all rights reserved.

– 212 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 122—appGetSourcePinCapacitanceByPin

Function name appGetSourcePinCapacitanceByPin

Arguments Driver (source) pin pointer

Result Total sourcePin capacitance

Standard
Structure fields

calcMode

DCL syntax EXTERNAL(appGetSourcePinCapacitanceByPin):
 passed(pin: sourcePin)
 result(double: sourcePinCapByPin);

C syntax typedef struct {
 DCM_DOUBLE sourcePinCap;
} T_sourcePinCapacitanceByPin;

int appGetSourcePinCapacitanceByPin
 (DCM_STD_STRUCT *std_struct,
 T_sourcePinCapacitanceByPin *rtn, DCM_PIN sourcePin);

This returns the total capacitance of all driver (source) pins on the interconnect to which the passed driver
(source) pin is connected. The total capacitance is the sum of the capacitances for all driver (source) pins on
the interconnect (including bidirectional pins).

10.18.1.6 appGetSourcePinCapacitanceByName

Table 123 provides information on appGetSourcePinCapacitanceByName.

Table 123—appGetSourcePinCapacitanceByName

Function name appGetSourcePinCapacitanceByName

Arguments Driver (source) pin name

Result Total driver (source) pin capacitance

Standard
Structure fields

block, calcMode

DCL syntax EXTERNAL(appGetSourcePinCapacitanceByName):
 passed(string: sourcePin)
 result(double: sourcePinCapByName);

C syntax typedef struct {
 DCM_DOUBLE sourcePinCap;
} T_sourcePinCapacitanceByName;

int appGetSourcePinCapacitanceByName
 (DCM_STD_STRUCT *std_struct,
 T_sourcePinCapacitanceByName *rtn,
 STRING sourcePin);

This returns the total capacitance of all driver (source) pins on the interconnect to which the passed driver
(source) pin name is connected. The total capacitance is the sum of the capacitances for all driver (source)
pins on the interconnect (including bidirectional pins).

10.18.1.7 dpcmGetDefCellSize

Table 124 provides information on dpcmGetDefCellSize.

213
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 213 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 124—dpcmGetDefCellSize

Function name dpcmGetDefCellSize

Arguments None

Result Cell's size metric for interconnect load estimation

Standard
Structure fields

CellName

DCL syntax EXPOSE(dpcmGetDefCellSize):
result(double: cellSize);

C syntax typedef struct {
 DCM_DOUBLE cellSize;
} T_defCellSize;

int dpcmGetDefCellSize (const DCM_STD_STRUCT *std_struct,
 T_defCellSize *rtn);

This returns the cell’s size metric for interconnect load estimation.

10.18.1.8 appGetCellCoordinates

Table 125 provides information on appGetCellCoordinates.

Table 125—appGetCellCoordinates

Function name appGetCellCoordinates

Arguments None

Result Cell coordinates

Standard
Structure fields

CellName, Block

DCL syntax EXTERNAL(dpcmGetCellCoordinates):
 result(float: xCoordinate, yCoordinate);

C syntax typedef struct {
 FLOAT xCoordinate, yCoordinate;
} T_cellCoordinates;

int appGetCellCoordinates (DCM_STD_STRUCT *std_struct,
 T_cellCoordinates *rtn);

This returns the cell’s x and y coordinates relative to the lower left corner. The lower left corner shall be
defined to be the lower left corner of the smallest possible rectangle that contains the cell.

10.18.1.9 appGetCellOrientation

Table 126 provides information on appGetCellOrientation.

214
Copyright © 2010 IEEE all rights reserved.

– 214 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 126—appGetCellOrientation

Function name appGetCellOrientation

Arguments None

Result Cell orientation

Standard
Structure fields

CellName, Block

DCL syntax EXTERNAL(appGetCellOrientation):
 result(int: orientation);

C syntax typedef struct {
 INTEGER orientation;
} T_cellOrientation;

int appGetCellOrientation
 (DCM_STD_STRUCT *std_struct,
 T_cellOrientation *rtn);

This returns the cell’s orientation. A cell’s orientation is relative to the default orientation where the y
coordinate is along the left edge of the cell and the x coordinate is along the bottom edge of the cell with
the origin at the lower left corner. When permitted by the technology, the cells can exist in up to eight
configurations. The configurations consist of rotations and flips. A cell can be rotated up to 270º in 90º
increments. A cell can be flipped to its mirror configuration. A cell instantiated in the mirror image is the
case where the cell has been flipped in the y axis such that the original x axis is still on the bottom but the
original y axis is along the right side of the cell and the original origin is at the lower right corner of the
cell. After the operations of flipping and rotating have been completed, the origin is reset to the lower left
corner of the new orientation.

The cellOrientation values shall represent the orientation operations performed on the cell. The legal values
that may be represented by cellOrientation are the values 0 through 7. All others shall be considered an
error. The least significant 2 bits of the cellOrientation (0x3) shall indicate the degrees of rotation in 90º
increments. The third least significant bit (0x4) having a value of 1 shall indicate the cell has been flipped.

10.18.1.10 dpcmGetEstLoadCapacitance

Table 127 provides information on dpcmGetEstLoadCapacitance.

Table 127—dpcmGetEstLoadCapacitance

Function name dpcmGetEstLoadCapacitance

Arguments Pin pointer

Result Estimated interconnect load capacitance

Standard
Structure fields

CellName, calcMode, pathData (timing-pin-specific), cellData (timing)

DCL syntax EXPOSE(dpcmGetEstLoadCapacitance):
 passed(pin: outputPin)
 result(double: estLoadCap);

C syntax typedef struct {
 DCM_DOUBLE estLoadCap;
} T_estLoadCap;

int dpcmGetEstLoadCapacitance
 (const DCM_STD_STRUCT *std_struct, T_estLoadCap *rtn,
 DCM_PIN outputPin);

This returns an estimated loading capacitance taking into account the effects of the interconnects and all
pins connected to which the passed pin is connected.

215
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 215 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

NOTE—This function is used when the loading capacitance value is not otherwise available within the application’s
model.

10.18.1.11 dpcmGetEstWireCapacitance

Table 128 provides information on dpcmGetEstWireCapacitance.

Table 128—dpcmGetEstWireCapacitance

Function name dpcmGetEstWireCapacitance

Arguments Pin pointer

Result Estimated interconnect wire capacitance

Standard
Structure fields

CellName, calcMode, pathData (timing-pin specific), cellData (timing), block

DCL syntax EXPOSE(dpcmGetEstWireCapacitance):
 passed(pin: outputPin)
 result(double: estWireCap);

C syntax typedef struct {
 DCM_DOUBLE estWireCap;
} T_estWireCap;

int dpcmGetEstWireCapacitance
 (const DCM_STD_STRUCT *std_struct, T_estWireCap *rtn,
 DCM_PIN outputPin);

This returns the estimated wire capacitance for the interconnect to which the passed pin is connected. The
DPCM recognizes an output pin value 0 (zero) as a special indicator to return the technology-wide default.

10.18.1.12 dpcmGetEstWireResistance

Table 129 provides information on dpcmGetEstWireResistance.

Table 129—dpcmGetEstWireResistance

Function name dpcmGetEstWireResistance

Arguments Pin pointer

Result Estimated interconnect wire resistance

Standard
Structure fields

CellName, calcMode, pathData (timing-pin-specific), cellData (timing), block

DCL syntax EXPOSE(dpcmGetEstWireResistance):
 passed(pin: outputPin)
 result(double: estWireResistance);

C syntax typedef struct {
 DCM_DOUBLE estWireResistance;
} T_estWireResistance;

int dpcmGetEstWireResistance
 (const DCM_STD_STRUCT *std_struct,
 T_estWireResistance *rtn, DCM_PIN outputPin);

This returns the estimated wire resistance for the interconnect to which the passed pin is connected. The
DPCM takes the estimated RC time constraint and divides it by the estimated wire capacitance to determine
the estimated wire resistance. The DPCM recognizes an output pin value 0 (zero) as a special indicator to
return the technology wide default.

216
Copyright © 2010 IEEE all rights reserved.

– 216 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.18.1.13 dpcmGetPinCapacitance

Table 130 provides information on dpcmGetPinCapacitance.

Table 130—dpcmGetPinCapacitance

Function name dpcmGetPinCapacitance

Arguments Pin name

Result Rise pin capacitance, Fall pin capacitance

Standard
Structure fields

CellName, calcMode, pathData, (timing-pin-specific), cellData (timing), block

DCL syntax EXPOSE(dpcmGetPinCapacitance):
 passed(string: pinName)
 result(double: risePinCap, fallPinCap);

C syntax typedef struct {
 DCM_DOUBLE risePinCap, fallPinCap;
} T_riseFallCap;

int dpcmGetPinCapacitance (const DCM_STD_STRUCT *std_struct,
 T_riseFallCap *rtn, STRING pinName);

This returns the pin capacitance for the passed pinName of the cellName in the Standard Structure.

10.18.1.14 dpcmGetCellIOlists

Table 131 provides information on dpcmGetCellIOlists.

Table 131—dpcmGetCellIOlists

Function name dpcmGetCellIOlists

Arguments

Result Input pins, Output pins, Bidirectional pins

Standard
Structure fields

CellName

DCL syntax EXPOSE(dpcmGetCellIOlists):
 result(string[*]: inputPins, outputPins, bidiPins);

C syntax typedef struct {
 DCM_STRING_ARRAY *inputPins, *outputPins, *bidiPins;
} T_IO_results;

int dpcmGetCellIOlists (const DCM_STD_STRUCT *std_struct,
 T_IO_results *rtn);

This returns the names of the input, output, and the bidirectional pins of the cell specified in the Standard
Structure.

Where any input, output, or bidirectionals of a cell is a bus, the result returned by this function shall
separately enumerate every bit of a bus. The pin names returned by this function call shall be used by the
application for all calls referencing the specified cell name. A zero-length array is returned if the specified
cell does not have any pins of the returned types (inputs, output, or bidirectionals).

10.18.2 Interconnect delay related functions

This subclause describes the interconnect delay related functions.

217
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 217 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.18.2.1 appGetRC

Table 132 provides information on appGetRC.

Table 132—appGetRC

Function name appGetRC

Arguments Driver (source) pin pointer, receiver (sink) pin pointer

Result Interconnect RC delay

Standard
Structure fields

block, cellName, calcMode

DCL syntax EXTERNAL(appGetRC):
 passed(pin: fromPin,toPin)
 result(double: netSegRC);

C syntax typedef struct {
 DCM_DOUBLE rcDelay;
} T_rc;

int appGetRC (DCM_STD_STRUCT *std_struct, T_rc *rtn,
 DCM_PIN fromPin, DCM_PIN toPin);

This returns the equivalent RC (Resistor Capacitor time constant, also known as the Elmore delay for pin to
pin interconnect) value for the interconnect between fromPin and toPin.

BLOCK and CellName fields in the Standard Structure shall describe the driving circuit (FROM_POINT
pin pointer).

The application shall return the value available from its model (e.g., a SPEF file). If no such value exists,
the application shall call dpcmGetEstimateRC (see 10.18.2.4) to get an estimated value for the RC.

10.18.2.2 dpcmGetDelayGradient

Table 133 provides information on dpcmGetDelayGradient.

218
Copyright © 2010 IEEE all rights reserved.

– 218 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 133—dpcmGetDelayGradient

Function name dpcmGetDelayGradient

Arguments

Result Rate of change of delay

Standard
Structure fields

block

DCL syntax EXPOSE(dpcmGetDelayGradient):
 result(
 double:
 LateRateofChangeWithRespectToOutputCapacitance,
 LateRateofChangeWithRespectToInputSlew,
 EarlyRateofChangeWithRespectToOutputCapacitance,
 EarlyRateofChangeWithRespectToInputSlew);

C syntax typedef struct {
 DCM_DOUBLE
 LateRateofChangeWithRespectToOutputCapacitance,
 LateRateofChangeWithRespectToInputSlew,
 EarlyRateofChangeWithRespectToOutputCapacitance,
 EarlyRateofChangeWithRespectToInputSlew;
} T_RecDel;

int dpcmGetDelayGradient (const DCM_STD_STRUCT *std_struct,
 T_RecDel *rtn);

This call shall be made directly following a call for delay. It returns the delay gradient (rate of change for
the delay) associated with the most recent calculation of delay.

10.18.2.3 dpcmGetSlewGradient

Table 134 provides information on dpcmGetSlewGradient.

Table 134—dpcmGetSlewGradient

Function name dpcmGetSlewGradient

Arguments None

Result Rate of change of slew

Standard
Structure fields

block

DCL syntax EXPOSE(dpcmGetSlewGradient):
result(
double: LateRateofChangeWithRespectToOutputCapacitance,
 LateRateofChangeWithRespectToInputSlew,
 EarlyRateofChangeWithRespectToOutputCapacitance,
 EarlyRateofChangeWithRespectToInputSlew);

C syntax typedef struct
{DCM_DOUBLE LateRateofChangeWithRespectToOutputCapacitance,
 LateRateofChangeWithRespectToInputSlew,
 EarlyRateofChangeWithRespectToOutputCapacitance,
 EarlyRateofChangeWithRespectToInputSlew;
} T_RecSlew;

int dpcmGetSlewGradient(const DCM_STD_STRUCT *std_struct,
 T_RecSlew *rtn);

This call shall be made directly following a call for slew. It returns the slew gradient (rate of change for the
slew) associated with the most recent calculation of slew.

219
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 219 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.18.2.4 dpcmGetEstimateRC

Table 135 provides information on dpcmGetEstimateRC.

Table 135—dpcmGetEstimateRC

Function name dpcmGetEstimateRC

Arguments Driver (source) pin pointer, Receiver (sink) pin pointer

Result Interconnect RC delay

Standard
Structure fields

block, CellName, calcMode, pathData (timing-pin-specific), cellData (timing)

DCL syntax EXPOSE(dpcmGetEstimateRC):
 passed(pin: fromPin,toPin)
 result(double: netSegRC);

C syntax typedef struct {
 DCM_DOUBLE netSegRC;
} T_estRC;

int dpcmGetEstimateRC (const DCM_STD_STRUCT *std_struct,
 T_estRC *rtn, DCM_PIN fromPin, DCM_PIN toPin);

This returns a estimated interconnect RC delay value when the application does not know what the
interconnect RC delay value is for the current pin pair.

BLOCK and CellName fields in the Standard Structure shall describe the driving circuit (FROM_POINT
pin pointer).

10.18.2.5 dpcmGetDefPortSlew

Table 136 provides information on dpcmGetDefPortSlew.

Table 136—dpcmGetDefPortSlew

Function name dpcmGetDefPortSlew

Arguments None

Result Default slew

Standard
Structure fields

calcMode

DCL syntax EXPOSE(dpcmGetDefPortSlew):
 result(double: defSlew);

C syntax typedef struct {
 DCM_DOUBLE defSlew;
} T_defPortSlew;

int dpcmGetDefPortSlew (const DCM_STD_STRUCT *std_struct,
 T_defPortSlew *rtn);

This returns a default value for the slew of a signal presented to a chip primary input.

10.18.2.6 dpcmGetDefPortCapacitance

Table 137 provides information on dpcmGetDefPortCapacitance.

220
Copyright © 2010 IEEE all rights reserved.

– 220 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 137—dpcmGetDefPortCapacitance

Function name dpcmGetDefPortCapacitance

Arguments None

Result Default capacitance

Standard
Structure fields

calcMode

DCL syntax EXPOSE(dpcmGetDefPortCapacitance):
 result(double: defPortCap);

C syntax typedef struct {
 DCM_DOUBLE defPortCap;
} T_defPortCap;

int dpcmGetDefPortCapacitance
 (const DCM_STD_STRUCT *std_struct, T_defPortCap *rtn);

This returns a default value of the capacitance load on a chip primary output.

10.18.3 Functions accessing netlist information

This subclause lists the functions that access netlist information.

10.18.3.1 appGetNumDriversByPin

Table 138 provides information on appGetNumDriversByPin.

Table 138—appGetNumDriversByPin

Function name appGetNumDriversByPin

Arguments Pin pointer

Result Number of source pins on the interconnect

Standard
Structure fields

None

DCL syntax EXTERNAL(appGetNumDriversByPin):
 passed(pin: inputPin)
 result(int: numDrivers);

C syntax typedef struct {
 INTEGER drivers;
} T_numDriversByPin;

int appGetNumDriversByPin (DCM_STD_STRUCT *std_struct,
 T_numDriversByPin *rtn, DCM_PIN inputPin);

This returns the number of driver (source) pins on the interconnect to which the passed pin is connected.
This count includes all interconnect drivers, including bidirectional pins.

10.18.3.2 appGetNumDriversByName

Table 139 provides information on appGetNumDriversByName.

221
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 221 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 139—appGetNumDriversByName

Function name appGetNumDriversByName

Arguments Pin name

Result Number of driver (source) pins on the interconnect

Standard
Structure fields

block

DCL syntax EXTERNAL(appGetNumDriversByName):
 passed(string: inputPin)
 result(int: numDrivers);

C syntax typedef struct {
 INTEGER drivers;
} T_numDriversByName;

int appGetNumDriversByName (DCM_STD_STRUCT *std_struct,
 T_numDriversByName *rtn, STRING inputPin);

This returns the number of driver (source) pins on the interconnect to which the passed pin name is
connected. This count includes all interconnect drivers, including bidirectional pins.

10.18.3.3 appForEachParallelDriverByPin

Table 140 provides information on appForEachParallelDriverByPin.

Table 140—appForEachParallelDriverByPin

Function name appForEachParallelDriverByPin

Arguments Pin pointer, function pointer to call at each parallel driver pin, function pointer to call to
perform an operation on the data, initial value

Result Integer count of drivers working in parallel with the pin passed as the argument.
Computed value

Standard
Structure fields

calcMode

DCL syntax FORWARD CALC(EXPOSE_STATEMENT):
 passed(pin: parallelPin)
 result(double: exposeValue);

FORWARD CALC(OPERATOR_STATEMENT):
 passed(double: initialValue, exposeValue)
 result(double: computedValue);

EXTERNAL(appForEachParallelDriverByPin):
 passed(pin: outputPin;
 exposeStatement():
 anyStatementThatHasTheSamePrototypeSignature;
 operatorStatemet():
 anyStatementThatHasTheSamePrototypeSignature;
 double: initialValue)
 result(int: parallelDriverCount;
 double: computedValue);

C syntax typedef struct {
 INTEGER parallelDriverCount; DCM_DOUBLE computedValue;
} T_ParaDrivPin;

typedef int(exposeType*)
 (DCM_STD_STRUCT *std_struct,
 DCM_DOUBLE *exposeValue,
 DCM_PIN parallelPin);

typedef int(operatorType*)

222
Copyright © 2010 IEEE all rights reserved.

– 222 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

 (DCM_STD_STRUCT *std_struct,
 DCM_DOUBLE *resultValue,
 DCM_DOUBLE initialValue,
 DCM_DOUBLE exposeValue);

int appForEachParallelDriverByPin
 (DCM_STD_STRUCT *std_struct, T_ParaDrivPin *rtn,
 DCM_PIN outputPin, exposeType expose_function,
 operatorType operator_function,
 DCM_DOUBLE initialValue);

This performs a callback (to DPCM) for each driver on the interconnect to which the passed pin is
connected that is parallel to the pin. Parallel drivers are those pins on the interconnect that belong to cells
on the interconnect and are wired identically to the cell of the passed pin.

For example, in Figure 5, PinA and PinB are parallel drivers, whereas PinC and PinD are not.

appForEachParallelDriverByPin is called with a pin, two function pointers, and an initial value. The first
function pointer is for an EXPOSE function, which shall accept one passed argument and return a double.
The second function pointer is for an OPERATOR function, which shall accept two doubles representing
the initial accumulated value (which is generated from the previous call to this function) and the value
returned from an expression value (computed by an EXPOSE function). It returns a double representing the
computed value. The application, at each parallel driver pin, calls the DPCM-supplied EXPOSE function if
the pointer is not 0 (zero).

After the EXPOSE function computes its value, the application calls the OPERATOR function and passes it
two values. The first value (initialValue) represents the initial value, which may have been derived from the
last call to the OPERATOR function or, on the first call, the initial value passed as arguments to
appForEachParallelDriverByPin. The next parameter (exposeValue) is the return value from the most
recently called EXPOSE function.

The purpose of the EXPOSE and OPERATOR function pointers is to allow the DPCM to define
computations that shall be performed on the parallel driver pins and to have that processing be executed as
part of appForEachParallelDriverByPin.

Example

To compute the average slew value for the parallel drivers:

— appForEachParallelDriverByPin is called (from the DPCM) with

223
Copyright © 2010 IEEE all rights reserved.

Figure 5—Parallel drivers example

IEC 61523-1:2012
IEEE Std 1481-2009 – 223 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

1) A specified source pin.

2) A function pointer to a DPCM function (EXPOSE) that computes the slew for the pin
specified to it.

3) A function pointer to a DPCM function (OPERATOR) that adds its passed
initialworstCaseValue to its passed exposeValue, adds its passed initialValue to its passed
exposeValue, and returns the sum.

4) A new value for the slew of the specified pin.

— On return from the completed appForEachParallelDriverByPin function, the DPCM is passed the
computedValue result argument that represents the sum of the slew for all the parallel drivers and
the number of parallel drivers (parallelDriverCount). The DPCM can then divide the resulting
slew values by the number of parallel drivers to compute an average value for the slews.

appForEachParallelDriverByPin also records the number of parallel drivers it encounters and returns the
number of parallel drivers (parallelDriverCount) and the last values returned by computedValue. If the
function pointers passed to appForEachParallelDriverByPin are 0 (zero), the function returns the number
of parallel drivers and the passed initial value arguments.

10.18.3.4 appForEachParallelDriverByName

Table 141 provides information on appForEachParallelDriverByName.

Table 141—appForEachParallelDriverByName

Function name appForEachParallelDriverByName

Arguments Pin name, Function pointer to call at each parallel driver pin, Function pointer to call to
perform an operation on the data, Initial value

Result Integer count of drivers working in parallel with the pin passed as the argument,
Computed value

Standard
Structure fields

calcMode, block

DCL syntax FORWARD CALC(EXPOSE_STATEMENT):
 passed(string: outputPin)
 result(double: resultValue);

FORWARD CALC(OPERATOR_STATEMENT):
 passed(double: initialValue, exposeValue)
 result(double: computedValue);

EXTERNAL(appForEachParallelDriverByName):
 passed(string: outputPin;
 exposeStatement():
 anyStatementThatHasTheSamePrototypeSignature;
 operatorStatement():
 anyStatementThatHasTheSamePrototypeSignature;
 double: initialValue)
 result(int: parallelDriverCount;
 double: computedValue);

C syntax typedef struct {
 DCM_INTEGER parallelDriverCount; DCM_DOUBLE computedValue
} T_ParaDrivName;

typedef int(*exposeType)
 (DCM_STD_STRUCT *std_struct,
 DCM_DOUBLE *resultValue,
 DCM_STRING outputPin);

typedef int(*operatorType)
 (DCM_STD_STRUCT *std_struct,
 DCM_DOUBLE *resultValue,

224
Copyright © 2010 IEEE all rights reserved.

– 224 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

 DCM_DOUBLE initialValue,
 DCM_DOUBLE exposeValue);

int appForEachParallelDriverByName
 (DCM_STD_STRUCT *std_struct, T_ParaDrivName *rtn,
 const DCM_STRING outputPin, exposeType
expose_function,
 operatorType operator_function,
 DCM_DOUBLE initialValue);

appForEachParallelDriverByName is identical to appForEachParallelDriverByPin, except the argument
outputPin is of type STRING and contains the name of the pin on the cell for which this call applies.

10.18.3.5 appGetNumPinsByPin

Table 142 provides information on appGetNumPinsByPin.

Table 142—appGetNumPinsByPin

Function name appGetNumPinsByPin

Arguments Pin pointer

Result Total number of pins on the interconnect

Standard
Structure fields

None

DCL syntax EXTERNAL(appGetNumPinsByPin):
 passed(pin: outputPin)
 result(int: totalPins);

C syntax typedef struct {
 INTEGER totalPins;
} T_NumPinsByPin;

int appGetNumPinsByPin (DCM_STD_STRUCT *std_struct,
 T_NumPinsByPin *rtn, DCM_PIN outputPin);

This returns the total number of pins (all driver and receiver pins, including the passed pin) on the
interconnect to which the passed pin is connected. An outputPin value of 0 (zero) shall be legal as it may
result from a 0 (zero) pin pointer passed to dpcmGetEstWireCapacitance or dpcmGetEstWireResistance.

10.18.3.6 appGetNumPinsByName

Table 143 provides information on appGetNumPinsByName.

Table 143—appGetNumPinsByName

Function name appGetNumPinsByName

Arguments Pin name

Result Total number of pins on the interconnect

Standard
Structure fields

block

DCL syntax EXTERNAL(appGetNumPinsByName):
 passed(string: outputPin)
 result(integer: totalPins);

C syntax typedef struct {
 INTEGER totalPins;
} T_NumPinsByName;

int appGetNumPinsByName (DCM_STD_STRUCT *std_struct,
 T_NumPinsByName *rtn, STRING outputPin);

225
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 225 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

This returns the total number of pins (all driver and receiver pins, including the passed pin) on the
interconnect to which the passed pin name is connected.

10.18.3.7 appGetNumSinksByPin

Table 144 provides information on appGetNumSinksByPin.

Table 144—appGetNumSinksByPin

Function name appGetNumSinksByPin

Arguments Pin pointer

Result Total number of sink pins on the interconnect

Standard
Structure fields

DCL syntax EXTERNAL(appGetNumSinksByPin):
 passed(pin: outputPin)
 result(int: totalLoadPins);

C syntax typedef struct {
 INTEGER totalLoadPins;
} T_NumSinksByPin;

int appGetNumSinksByPin (DCM_STD_STRUCT *std_struct,
 T_NumSinksByPin *rtn, DCM_PIN outputPin);

This returns the total number of load (sink) pins (including bidirectional pins) on the interconnect to which
the passed pin is connected. An outputPin value of 0 (zero) shall be legal as it may result from a 0 (zero)
pin pointer passed to dpcmGetEstWireCapacitance or dpcmGetEstWireResistance.

10.18.3.8 appGetNumSinksByName

Table 145 provides information on appGetNumSinksByName.

Table 145—appGetNumSinksByName

Function name appGetNumSinksByName

Arguments Pin name

Result Total number of sink pins on the interconnect

Standard
Structure fields

block

DCL syntax EXTERNAL(appGetNumSinksByName):
 passed(string: outputPin)
 result(int: totalLoadPinsByName);

C syntax typedef struct {
 INTEGER totalLoadPins;
} T_NumSinksByName;

int appGetNumSinksByName (DCM_STD_STRUCT *std_struct,
 T_NumSinksByName *rtn, STRING outputPin);

This returns the total number of load (sink) pins (including bidirectional pins) on the interconnect to which
the passed pin name is connected.

10.18.3.9 dpcmAddWireLoadModel

Table 146 provides information on dpcmAddWireLoadModel.

226
Copyright © 2010 IEEE all rights reserved.

– 226 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 146—dpcmAddWireLoadModel

Function name dpcmAddWireLoadModel

Arguments Model name, Extrapolation constant, Unit resistance, Unit capacitance, Length matrix

Result Model index

Standard
Structure fields

calcMode

DCL syntax EXPOSE(dpcmAddWireLoadModel):
 passed(string: modelName;
 double: extrapolationConstant;
 double[*]: unitResistance, unitCapacitance,
 lengthMatrix)
 result(int: modelIndex);

C syntax typedef struct {
 INTEGER modelIndex;
} T_AddWireLoadModel;

int dpcmAddWireLoadModel (const DCM_STD_STRUCT *std_struct,
 T_AddWireLoadModel *rtn, STRING modelName,
 DCM_DOUBLE extrapolationConstant,
 DCM_DOUBLE_ARRAY *unitResistance,
 DCM_DOUBLE_ARRAY *unitCapacitance,
 DCM_DOUBLE_ARRAY *lengthMatrix);

This function adds custom wire load information to the DPCM. Custom wire load information can be
written into the DPCM with this call. Unit resistance, unit capacitance, an extrapolation constant, and a
length matrix are passed with this call. The length matrix is indexed by fanout. Thus, for a given fanout, a
unit length can be determined. Using this length, resistance and capacitance can be determined. If fanout
exceeds the dimensions of the array, then the extrapolation constant shall be used.

The DPCM shall return a model index such that the application can inform the DPCM which custom wire
load model it can use. The model index returned shall be unique across all wire load models (custom and
default). If unit resistance or unit capacitance does not vary with length, then the respective result array
may be of length 1. If unit resistance or unit capacitance array does vary with length, then the respective
result array shall be of the same length as the lengthMatrix array and is indexed by fanout.

An application-supplied wire load model whose name matches a wire load model name already in this
array shall have the following affect:

a) If the name matches a wire load model supplied with the library (a default wire load model), then
an error is generated and no change in the data occurs.

b) If the name matches a wire load model previously supplied by the application, then the previous
wire load model data are replaced and the same index number in this array is used for this new
wire load model.

The DPCM shall not choose a custom wire load model that was added by the application.

All elements of the lengthMatrix array shall have valid data.

10.18.3.10 dpcmGetWireLoadModel

Table 147 provides information on dpcmGetWireLoadModel.

Table 147—dpcmGetWireLoadModel

Function name dpcmGetWireLoadModel

Arguments Model index

227
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 227 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Result Extrapolation constant, Unit resistance per length, Unit capacitance per length,
Length matrix, Size

Standard
Structure fields

calcMode

DCL syntax EXPOSE(dpcmGetWireLoadModel):
 passed(int: modelIndex)
 result(double: extrapolationConstant;
 double[*]: unitResistance,
 unitCapacitance,
 lengthMatrix;
 double: size);

C syntax typedef struct {
 double extrapolationConstant;
 DCM_DOUBLE_ARRAY *unitResistance,
 *unitCapacitance,
 *lengthMatrix;
 DCM_DOUBLE size;
} T_GetWireLoadModel;

int dpcmGetWireLoadModel
 (const DCM_STD_STRUCT *std_struct,
 T_GetWireLoadModel *rtn, INTEGER modelIndex);

This function transfers a wire load model to the application. A wire load model is selected by modelIndex,
which indicates an element of the array returned by dpcmGetWireLoadModelArray. The data that are
given to the application consist of unit resistance, unit capacitance, and length matrix arrays that are
indexed by fanout, an extrapolation constant, and the number of cells in a block. If unit resistance or unit
capacitance does not vary with length, then the respective result array may be of length 1. If unit resistance
or unit capacitance array does vary with length, then the respective result array shall be of the same length
as the lengthMatrix array. The size shall be zero for user-supplied wire load models.

Size is an abstract quantity associated with a physical block for which the wire load model, estimated
capacitance, estimated resistance, and estimated RC apply. Size is an abstract measure for the block area,
height, width, perimeter, or any combination of these. Size is dimensionless, as opposed to area, length,
width, perimeter, or height. A calculation algorithm for size shall be defined in the library but not be
exposed to the application. Size can be defined as a function of the physical block area, width and height; in
which case, size shall be monotonically increasing with any of these quantities. Verification of the
monotonicity shall be the task of the library’s quality assurance, not the application’s.

10.18.3.11 dpcmGetWireLoadModelForBlockSize

Table 148 provides information on dpcmGetWireLoadModelForBlockSize.

228
Copyright © 2010 IEEE all rights reserved.

– 228 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 148—dpcmGetWireLoadModelForBlockSize

Function name dpcmGetWireLoadModelForBlockSize

Arguments Size

Result Array index of current wire load models according to size

Standard
Structure fields

calcMode

DCL syntax EXPOSE(dpcmGetWireLoadModelForBlockSize):
 passed(double: size)
 result(int: modelIndex);

C syntax typedef struct {
 int modelIndex;
} T_GetWireLoadModelForBlockSize;

int dpcmGetWireLoadModelForBlockSize
 (const DCM_STD_STRUCT *std_struct,
 T_GetWireLoadModelForBlockSize *rtn, DCM_DOUBLE size);

This call requests the index number of the appropriate wire load model given the specified size from the
DPCM. This function only considers the wire load models delivered with the library when determining
which model to return. Application-supplied wire load models shall not be selected via this function

The wire load model is used to estimate interconnect delay. To determine the size to be passed into this
function, the application shall determine the highest level hierarchical block that contains all the endpoints
of the net for which the model is being requested. The area is determined by summing the area of each cell
in this hierarchical unit.

10.18.3.12 appGetInstanceCount

Table 149 provides information on appGetInstanceCount.

Table 149—appGetInstanceCount

Function name appGetInstanceCount

Arguments None

Result Count of instances

Standard
Structure fields

toPoint

DCL syntax EXTERNAL(appGetInstanceCount):
 result(int: countOfInstances);

C syntax typedef struct {
 INTEGER countOfInstances;
} T_InstanceCount;

int appGetInstanceCount (DCM_STD_STRUCT *std_struct,
 T_InstanceCount *rtn);

This returns the number of cell instances found in the cluster(s) or floorplanned region(s) in which the
interconnect specified by the toPoint resides.

NOTE—This particular PI function is used by the DPCM to estimate interconnect delay.

10.18.4 Functions exporting limit information

This subclause lists the functions that export limit information.

229
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 229 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.18.4.1 dpcmGetCapacitanceLimit

Table 150 provides information on dpcmGetCapacitanceLimit.

Table 150—dpcmGetCapacitanceLimit

Function name dpcmGetCapacitanceLimit

Arguments Pin name

Result Maximum capacitance value, Minimum capacitance value

Standard
Structure fields

CellName, block, calcMode, pathData (timing-pin-specific), cellData (timing)

DCL syntax EXPOSE(dpcmGetCapacitanceLimit):
 passed(string: pinName)
 result(double: lowerLimit, upperLimit);

C syntax typedef struct {
 DCM_DOUBLE lowerLimit, upperLimit;
} T_minMaxCap;

int dpcmGetCapacitanceLimit (const DCM_STD_STRUCT *std_struct,
 T_minMaxCap *rtn, STRING pinName);

This returns the minimum and maximum capacitance the passed pin name is allowed to drive. The passed
pin shall be either an output or a bidirectional pin.

NOTE—The intent of this function is to enable an application to ensure a cell operates within its design limits.

10.18.4.2 dpcmGetSlewLimit

Table 151 provides information on dpcmGetSlewLimit.

Table 151—dpcmGetSlewLimit

Function name dpcmGetSlewLimit

Arguments Pin name, Transition type

Result Minimum slew value, Maximum slew value

Standard
Structure fields

CellName, block, pathData (timing-pin-specific), cellData (timing), calcMode

DCL syntax EXPOSE(dpcmGetSlewLimit):
 passed(string: pinName, transitionType)
 result(double: lowerLimit, upperLimit);

C syntax typedef struct {
 DCM_DOUBLE lowerLimit, upperLimit
} T_slewLimits;

int dpcmGetSlewLimit (const DCM_STD_STRUCT *std_struct,
 T_slewLimits *rtn, STRING pinName,
 STRING transitionType);

This returns the maximum and minimum slew limits for the passed pin name. Transition type is F, R, or B
representing falling, rising, or both, respectively.

NOTE—The intent of this function is to ensure a cell operates within its design limits.

10.18.4.3 dpcmGetXovers

Table 152 provides information on dpcmGetXovers.

230
Copyright © 2010 IEEE all rights reserved.

– 230 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 152—dpcmGetXovers

Function name dpcmGetXovers

Arguments Pin name

Result Nominal capacitance, Slow capacitance, Fast capacitance

Standard
Structure fields

CellName, block, pathData (timing-pin-specific), cellData (timing)

DCL syntax EXPOSE(dpcmGetXovers):
 passed(string: pinName)
 result(double: nominal,slow,fast);

C syntax typedef struct {
 DCM_DOUBLE nominal, slow, fast;
} T_nsfCap;

int dpcmGetXovers (const DCM_STD_STRUCT *std_struct,
 T_nsfCap *rtn, STRING pinName);

This returns the drive strengths (load capacitance limits at which design applications, such as synthesis,
switch to specific cell drive strengths) for the cell identified in the Standard Structure with which the passed
pin name is associated. The three capacitance values are alternatives for three different
process/voltage/temperature (PVT) cases chosen by the library developer.

10.18.5 Functions getting/setting model information

This subclause describes the functions that get or set model information.

10.18.5.1 dpcmGetFunctionalModeArray

Table 153 provides information on dpcmGetFunctionalModeArray.

Table 153—dpcmGetFunctionalModeArray

Function name dpcmGetFunctionalModeArray

Arguments none

Result Array of functional mode group names, Array of functional mode names

Standard
Structure fields

CellName

DCL syntax EXPOSE(dpcmGetFunctionalModeArray):
 result(string[*]:modeGroupArray, modeNameArray);

C syntax typedef struct {
 DCM_STRING_ARRAY *modeGroupArray, *modeNameArray;
} T_fModes;

int dpcmGetFunctionalModeArray
 (const DCM_STD_STRUCT *std_struct, T_fModes *rtn);

A cell may have zero or more groups of functional modes. Each group and each functional mode in that
group has a name. The functional mode of a cell identified by specifying the value of modeNameArray for
all mode groups requested by the DPCM. For example, if the DPCM requests the mode group values for all
mode groups of a cell, then the cell’s mode is the aggregate of the modeNameArray values specified.

This call requests the names of the functional mode groups and the names of the functional modes for the
cell specified in the Standard Structure from the DPCM. The DPCM can elect to return two zero-length
arrays to indicate the cell has only one mode.

For cells with multiple functional modes, the ith element of modeGroupArray shall contain the name of the

231
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 231 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

ith functional mode group and the ith element of modeNameArray shall contain a comma-delimited list of
the names of functional modes in that group. Group and function mode names shall not contain embedded
white space.

When the application requests the default functional mode by calling dpcmGetBaseFunctionalMode or the
DPCM requests the current functional mode by calling appGetCurrentFunctionalMode, the
functionalModeGroup is specified as an index into modeGroupArray. The returned index selects an element
from the corresponding modeNameArray, where the first mode has an index value of 0.

Example

Consider a cell that contains the functional mode groups rw (containing modes read and write) and
latch_type (containing modes latching and transparent). A call to dpcmGetFunctionalModeArray returns:

modeGroupArray[0] = "rw"
modeNameArray[0] = "read,write"
modeGroupArray[1] = "latch_type"
modeNameArray[1] = "latching,transparent"

10.18.5.2 dpcmGetBaseFunctionalMode

Table 154 provides information on dpcmGetBaseFunctionalMode.

Table 154—dpcmGetBaseFunctionalMode

Function name dpcmGetBaseFunctionalMode

Arguments FuncModeGroupIndex

Result Index of the default functional mode

Standard
Structure fields

CellName

DCL syntax EXPOSE(dpcmGetBaseFunctionalMode):
 passed(int: FuncModeGroupIndex)
 result(int: modeIndex);

C syntax typedef struct {
 INTEGER modeIndex;
} T_BaseFunctionalMod;

int dpcmGetBaseFunctionalMode
 (const DCM_STD_STRUCT *std_struct,
 T_BaseFunctionalMod *rtn,
 INTEGER FuncModeGroupIndex);

This call specifies a cell (in the Standard Structure) and a functional mode group index (which indicates
one of the functional mode groups returned by dpcmGetFunctionalModeArray) and returns the index
number of the default functional mode for that cell and functional mode group. The returned modeIndex
value shall be between 0 and n – 1 (where n is the number of modes for the functional mode group in the
specified cell) and the first mode has index value 0.

NOTE—This number can be used to index into the modeNameArray returned by dpcmGetFunctionalModeArray to
retrieve the name of the default mode.

10.18.5.3 appGetCurrentFunctionalMode

Table 155 provides information on appGetCurrentFunctionalMode.

232
Copyright © 2010 IEEE all rights reserved.

– 232 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 155—appGetCurrentFunctionalMode

Function name appGetCurrentFunctionalMode

Arguments FuncModeGroupIndex

Result Index of the current functional mode

Standard
Structure fields

block

DCL syntax EXTERNAL(appGetCurrentFunctionalMode):
 passed(int: FuncModeGroupIndex)
 result(int: modeIndex);

C syntax typedef struct {
 INTEGER modeIndex;
} T_modeIndex;

int appGetCurrentFunctionalMode
 (DCM_STD_STRUCT *std_struct, T_modeIndex *rtn,
 INTEGER FuncModeGroupIndex);

This call requests the current functional mode for the specified functional mode group index (which
indicates one of the functional mode groups returned by dpcmGetFunctionalModeArray) and of the cell
instance identified in the Standard Structure. The returned index selects an element from the
modeNameArray corresponding to the specified functional mode group, where the first mode has index
value 0. If no functional modes are defined for this cell instance, then a modeIndex value of –1 shall be
returned.

10.18.5.4 dpcmGetControlExistence

Table 156 provides information on dpcmGetControlExistence.

Table 156—dpcmGetControlExistence

Function name dpcmGetControlExistence

Arguments none

Result Functional Modes, Expression

Standard
Structure fields

fromPoint, toPoint, pathData (timing-arc-specific), cellData (timing), block

DCL syntax EXPOSE(dpcmGetControlExistence):
 result(integer[*]: FunctionalModes;
 string: Expression);

C syntax typedef struct {
 DCM_INTEGER_ARRAY *FunctionalModes;
 char *Expression;
} T_ControlExistence;

int dpcmGetControlExistence
(const DCM_STD_STRUCT *std_struct, T_ControlExistence *rtn);

This returns to the application information that controls the existence of the segment identified by
pathData:

a) The integers returned through the FunctionalModes result encode the elements of the
modeGroupArray and modeNameArray returned by dpcmGetFunctionalModeArray for which the
segment exists.

b) The FunctionalModes array contains zero or more contiguous integer sequences. For each
sequence:

1) The first element value, v1, indicates functional mode group modeGroupArray[v1].

233
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 233 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

2) The second element value, v2, specifies how many functional modes follow in the sequence.

3) The remaining elements (equal in number to v2) indicate modes in modeNameArray[v1].

c) The string returned through the Expression result is a ConditionalExpression using the syntax and
semantics of the “Group Condition Language” (see 8.11) and the segment shall exist unless the
expression evaluates to FALSE.

A zero-length FunctionalModes result indicates there is no controlling functional mode or the controlling
functional mode information is not known. A zero-length Expression indicates a controlling expression
does not exist or is not known.

If possible, an expression shall be used to decide the existence of a segment. If the application can evaluate
expressions and a non-zero-length Expression is returned, the application shall use that Expression to
decide the existence of the segment.

10.18.5.5 dpcmSetLevel

Table 157 provides information on dpcmSetLevel.

Table 157—dpcmSetLevel

Function name dpcmSetLevel

Arguments Desired DPCM computation mode (performance or accuracy), PVT derating and other
scopes

Result Previous DPCM computation mode (performance or accuracy) and scopes

Standard
Structure fields

calcMode

DCL syntax EXPOSE(dpcmSetLevel):
 passed(int: perfLevel, temperatureScope,
 voltageScope,
 functionalModeScope,
 wire load, ModelScope)
 result(int: oldPerfLevel, oldtemperatureScope,
 oldvoltageScope, oldfunctionalModeScope,
 oldwireloadModelScope);

C syntax typedef struct old_per_level {
 DCM_INTEGER oldPerfLevel, oldtemperatureScope,
 oldvoltageScope, oldfunctionalModeScope,
 oldwireloadModelScope;
} T_oldPerfLevels;

int dpcmSetLevel (const DCM_STD_STRUCT *std_struct,
 T_oldPerfLevels *rtn, DCM_INTEGER perfLevel,
 DCM_INTEGER temperatureScope,
 DCM_INTEGER voltageScope,
 DCM_INTEGER functionalModeScope,
 DCM_INTEGER wireloadModelScope);

The application can use dpcmGetExposePurityAndConsistency to determine which EXPOSE functions
provide data the application can cache.

This function instructs the DPCM in two ways. The first parameter (perfLevel) instructs the DPCM to
perform calculations to maximum supported accuracy or at a lesser accuracy in favor of computation speed.
The perfLevel switch affects both timing and power calculations. The subsequent Scope parameters can be
used to indicate to the DPCM how constant the temperature, voltage, functional mode, and wire load model
settings are for this run.

The values of the perfLevel parameter are as follows:

234
Copyright © 2010 IEEE all rights reserved.

– 234 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

0—Indicates calculations for maximum performance
1—Indicates calculations for maximum accuracy

The values of the Scope parameters are as follows:

0—This condition applies to all cell instances equally.
1—This condition can apply to each cell instance uniquely.

For Scopeparameters set to zero, the DPCM can choose to cache the value it receives on the first callback
to the application for this information and avoid subsequent callbacks.

Whenever a call to this function (dpcmSetLevel) is made, the following actions shall occur:

a) The DPCM shall invalidate its caching, if any, of the Scope parameter values and is required to
query the application again for this information prior to any calculations using this information.

b) If the DPCM supports multiple operating ranges, then the DPCM shall query the application for
the current operating range value (via appGetCurrentOpRange).

Calls to dpcmSetLevel shall not cause any changes in the DPCM that require model elaboration.

10.18.5.5.1 Accuracy levels

Additional control of library accuracy has been enhanced with the dpcmSetLibraryAccuracyLevel API. The
DPCM can implement various algorithms that trade off performance versus accuracy. The list of these
algorithms is exposed to the application via the dpcmGetAccuracyLevelArrays API. The DPCM is
responsible for the semantic description of each level. The application shall obtain the names of the
accuracy levels to use during analysis from the user.

The library shall ignore dpcmSetLibraryAccuracyLevel if perfLevel has not been set to 1 by a call to
dpcmSetLevel. If perfLevel is set to 1, the dpcmSetLibraryAccuracyLevel values apply. If the application
does not set dpcmSetLibraryAccuracyLevel, the DPCM shall pick a default behavior. This provides a
backward compatibility to IEEE Std 1481-2009 for applications that do not support the new APIs.

NOTE 1—For example, if different delay equations are used between high accuracy mode and high performance mode,
then both of these equations shall be modeled during the initial elaboration.

NOTE 2—Since no re-elaboration of models is required due to a change in dpcmSetLevel, the model writer shall
consider what is STOREd to support high accuracy versus high performance modes. Setting levels in the library

This subclause details how to set levels within a library.

10.18.5.6 dpcmGetLibraryAccuracyLevelArrays

Table 158 provides information on dpcmGetLibraryAccuracyLevelArrays.

Table 158—dpcmGetLibraryAccuracyLevelArrays

Function name dpcmGetLibraryAccuracyLevelArrays

Arguments none

Result List of cell accuracy levels, List of interconnect accuracy levels

Standard
Structure fields

None

DCL syntax EXPOSE(dpcmGetLibraryAccuracyLevelArrays):
 result(string[*]: cellAccuracyLevel,
 interconnectAccuracyLevel);

235
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 235 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

C syntax typedef struct {
 DCM_STRING_ARRAY *cellAccuracyLevel;
 DCM_STRING_ARRAY *interconnectAccuracyLevel;
} T_GetLibraryAccuracyLevelArrays;

int dpcmGetLibraryAccuracyLevelArrays
 (const DCM_STD_STRUCT *std_struct,
 T_GetLibraryAccuracyLevelArrays *rtn);

This returns the accuracy levels back to the application.

10.18.5.7 dpcmSetLibraryAccuracyLevel

Table 159 provides information on dpcmSetLibraryAccuracyLevel.

Table 159—dpcmSetLibraryAccuracyLevel

Function name dpcmSetLibraryAccuracyLevel

Arguments Cell accuracy level, Interconnect accuracy level

Result Previous cell accuracy level, Previous interconnect accuracy level

Standard
Structure fields

None

DCL syntax EXPOSE(dpcmSetLibraryAccuracyLevel):
 passed(int: cellAccuracyLevel,
 interconnectAccuracyLevel)
 result(int: oldCellAccuracyLevel,
 oldInterconnectAccuracyLevel);

C syntax typedef struct {
 DCM_INTEGER oldCellAccuracyLevel;
 DCM_INTEGER oldInterconnectAccuracyLevel;
} T_SetLibraryAccuracyLevel;

int dpcmSetLibraryAccuracyLevel
 (const DCM_STD_STRUCT *std_struct,
 T_SetLibraryAccuracyLevel *rtn,
 DCM_INTEGER cellAccuracyLevel,
 DCM_INTEGER interconnectAccuracyLevel);

This sets the accuracy levels to be used by the library until the next call to dpcmSetLibraryAccuracyLevel.
The arguments are used as the indices for the arrays returned by dpcmGetLibraryAccuracyLevelArrays.

10.18.5.8 dpcmGetExposePurityAndConsistency

Table 160 provides information on dpcmGetExposePurityAndConsistency.

Table 160—dpcmGetExposePurityAndConsistency

Function name dpcmGetExposePurityAndConsistency

Arguments EXPOSE API name

Result Purity, Consistency

Standard
Structure fields

None

DCL syntax EXPOSE(dpcmGetExposePurityAndConsistency):
 passed(string: exposeName)
 result(int: purity, consistency);

236
Copyright © 2010 IEEE all rights reserved.

– 236 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

C syntax typedef enum DCM_Purity {
 DCM_IMPURE,
 DCM_PURE
} DCM_Purity;

typedef enum DCM_Consistency {
 DCM_INCONSISTENT,
 DCM_CONSISTENT
} DCM_Consistency;

typedef struct {
 DCM_Purity purity;
 DCM_Consistency consistency;
} T_GetExposePurityAndConsistency;

int dpcmGetExposePurityAndConsistency
 (const DCM_STD_STRUCT *std_struct,
 T_GetExposePurityAndConsistency *rtn,
 DCM_STRING exposeName);

This allows the application to determine which EXPOSE functions provide data the application can cache.
The resulting integer values are used where the application passes in the expose name and the DCM returns
the enumerated values, corresponding to PURE or IMPURE for purity and CONSISTENT or
INCONSISTENT for consistency (Table 161 and Table 162).

Table 161—DCM_Purity

Enumerator Enumeration Description

DCM_IMPURE 0 Impure

DCM_PURE 1 Pure

Table 162—DCM_Consistency

Enumerator Enumeration Description

DCM_INCONSISTENT 0 Inconsistent

DCM_CONSISTENT 1 Consistent

10.18.5.9 dpcmGetRailVoltageArray

Table 163 provides information on dpcmGetRailVoltageArray.

Table 163—dpcmGetRailVoltageArray

Function name dpcmGetRailVoltageArray

Arguments None

Result Array of rail voltage

Standard
Structure fields

None

DCL syntax EXPOSE(dpcmGetRailVoltageArray):
 result(string[*]:railArray);

C syntax typedef struct rail_array {
 DCM_STRING_ARRAY *railArray;
} T_railArray;

int dpcmGetRailVoltageArray
 (const DCM_STD_STRUCT *std_struct, T_railArray *rtn);

This call requests the voltage rail names that are modeled in the DPCM. A zero-length array can be returned

237
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 237 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

by a library that does not model voltage.

When requesting the default voltage value for a particular voltage rail (via dpcmGetBaseRailVoltage) or
when the DPCM is asking for the current voltage value for a particular voltage rail (via
appGetCurrentRailVoltage), the index number into this array is used to identify the rail.

10.18.5.10 dpcmGetBaseRailVoltage

Table 164 provides information on dpcmGetBaseRailVoltage.

Table 164—dpcmGetBaseRailVoltage

Function name dpcmGetBaseRailVoltage

Arguments Integer index value for the rail

Result Voltage value for the requested rail (volts)

Standard
Structure fields

calcMode

DCL syntax EXPOSE(dpcmGetBaseRailVoltage):
 passed(int: railIndex)
 result(double:railVoltage);

C syntax typedef struct {
 DCM_DOUBLE railVoltage;
}T_railVoltage;

int dpcmGetBaseRailVoltage (const DCM_STD_STRUCT *std_struct,
 T_railVoltage *rtn, INTEGER railIndex);

This call requests the default voltage value for the specified voltage rail. This value may be different for the
different operating ranges.

10.18.5.11 appGetCurrentRailVoltage

Table 165 provides information on appGetCurrentRailVoltage.

Table 165—appGetCurrentRailVoltage

Function name appGetCurrentRailVoltage

Arguments Integer index value for the rail

Result Voltage value for the current rail (volts)

Standard
Structure fields

calcMode, block

DCL syntax EXTERNAL(appGetCurrentRailVoltage):
 passed(int: railIndex)
 result(double: railVoltage);

C syntax typedef struct {
 DCM_DOUBLE railVoltage;
}T_railVoltage;

int appGetCurrentRailVoltage (DCM_STD_STRUCT *std_struct,
 T_railVoltage *rtn, INTEGER railIndex);

This call requests the voltage value for the specified rail from the application. If provided, this value shall
then be used by the DPCM for its calculations and shall override the default or base voltage value for this
rail.

238
Copyright © 2010 IEEE all rights reserved.

– 238 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.18.5.12 dpcmGetWireLoadModelArray

Table 166 provides information on dpcmGetWireLoadModelArray.

Table 166—dpcmGetWireLoadModelArray

Function name dpcmGetWireLoadModelArray

Arguments None

Result An array of wire load models

Standard
Structure fields

calcMode

DCL syntax EXPOSE(dpcmGetWireLoadModelArray):
 result(string[*]: modelArray);

C syntax typedef struct {
 DCM_STRING_ARRAY *modelArray;
} T_WireLoadModelArray;

int dpcmGetWireLoadModelArray
 (const DCM_STD_STRUCT *std_struct,
 T_WireLoadModelArray *rtn);

This call requests the wire load model names from the DPCM that are modeled in the DPCM. A zero-length
array shall be returned by a library that does not contain any wire load models.

If the application supplies additional wire load models to the DPCM, then these additional models shall be
added to the end of this array by the DPCM and returned on subsequent calls to this function. Adding new
wire load models to the DPCM shall not affect the order of the previous wire load models in this array.

When requesting the default wire load model (dpcmGetBaseWireLoadModel) from the DPCM or when
the DPCM is asking for the current wire load model (appGetCurrentWireLoadModel), the index number
into this array is used to identify it.

10.18.5.13 dpcmGetBaseWireLoadModel

Table 167 provides information on dpcmGetBaseWireLoadModel.

Table 167—dpcmGetBaseWireLoadModel

Function name dpcmGetBaseWireLoadModel

Arguments None

Result Array index of the default wire load models

Standard
Structure fields

calcMode

DCL syntax EXPOSE(dpcmGetBaseWireLoadModel):
 result(int: modelIndex);

C syntax typedef struct {
 INTEGER modelIndex;
} T_BaseWireLoadModel;

int dpcmGetBaseWireLoadModel
 (const DCM_STD_STRUCT *std_struct, T_BaseWireLoadModel *rtn);

This call requests the index number of the default wire load model for the library from the DPCM. If there
are no wire load models, or if the library does not wish to specify a default, then a value of -1 shall be
returned in model index. Otherwise, an index number between 0 and n – 1 (where n is the number of wire
load models) is returned.

239
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 239 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

This number can be used to index into the array returned by dpcmGetWireLoadModelArray (see
10.18.5.12) to retrieve the default wire load model name.

10.18.5.14 appGetCurrentWireLoadModel

Table 168 provides information on appGetCurrentWireLoadModel.

Table 168—appGetCurrentWireLoadModel

Function name appGetCurrentWireLoadModel

Arguments Pin pointer

Result Array index of the current wire load models to use

Standard
Structure fields

calcMode

DCL syntax EXTERNAL(appGetCurrentWireLoadModel):
 passed(pin: pinPointer)
 result(int: modelIndex);

C syntax typedef struct {
 INTEGER modelIndex;
} T_CurrentWireLoadModel;

int appGetCurrentWireLoadModel
 (DCM_STD_STRUCT *std_struct,
 T_CurrentWireLoadModel *rtn, DCM_PIN pinPointer);

This call requests from the application the current wire load model to be used in the DPCM’s calculations.
The index number (into the array returned by dpcmGetWireLoadModelArray) of the current wire load
model shall be returned. If no wire load models are defined for this library, then a value of –1 shall be
returned in the model index.

10.18.5.15 dpcmGetBaseTemperature

Table 169 provides information on dpcmGetBaseTemperature.

Table 169—dpcmGetBaseTemperature

Function name dpcmGetBaseTemperature

Arguments None

Result Default temperature

Standard
Structure fields

calcMode

DCL syntax
EXPOSE(dpcmGetBaseTemperature):
 result(double: temperature);

C syntax

typedef struct {
 DCM_DOUBLE temperature;
} T_BaseTemperature;

int dpcmGetBaseTemperature (const DCM_STD_STRUCT *std_struct,
 T_BaseTemperature *rtn);

This call requests the base temperature for the modeled library from the DPCM. This value may change
depending on opRange.

10.18.5.16 dpcmGetBaseOpRange

Table 170 provides information on dpcmGetBaseOpRange.

240
Copyright © 2010 IEEE all rights reserved.

– 240 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 170—dpcmGetBaseOpRange

Function name dpcmGetBaseOpRange

Arguments None

Result The index (from array) of the base operating range

Standard
Structure fields

None

DCL syntax EXPOSE(dpcmGetBaseOpRange):
 result(int:opRangeIndex);

C syntax typedef struct {
 INTEGER opRangeIndex;
} T_BaseOpRange;

int dpcmGetBaseOpRange (const DCM_STD_STRUCT *std_struct,
 T_BaseOpRange *rtn);

This call requests the index number of the default operating range name for the library from the DPCM. If
there are not distinct operating range names defined for this library, a value of –1 is returned as the index.
Otherwise, an index number between 0 and n – 1 (where n is the number of operating ranges) is returned.
This number can be used to index into the array returned by dpcmGetOpRangeArray to retrieve the default
operating range name.

10.18.5.17 dpcmGetOpRangeArray

Table 171 provides information on dpcmGetOpRangeArray.

Table 171—dpcmGetOpRangeArray

Function name dpcmGetOpRangeArray

Arguments None

Result Array of operating ranges

Standard
Structure fields

None

DCL syntax EXPOSE(dpcmGetOpRangeArray):
 result(string[*]:opRangeArray);

C syntax typedef struct {
 DCM_STRING_ARRAY *opRangeArray;
} T_OpRangeArray;

int dpcmGetOpRangeArray (const DCM_STD_STRUCT *std_struct,
 T_OpRangeArray *rtn);

This call requests the operating range names modeled in the DPCM from the DPCM. Operating ranges
refer to different characterization points of the library. For example, a library may be modeled at different
PVT values for MILITARY, COMMERCIAL, or INDUSTRIAL applications.

There are no predefined operating range names. If the library does not have distinct operating ranges
defined, the DPCM can elect to return a zero-length array. For libraries with multiple operating ranges, the
returned array shall contain the identifying range names. Changing the operating range shall not require re-
elaboration of the timing and power models.

10.18.5.18 appGetCurrentTemperature

Table 172 provides information on appGetCurrentTemperature.

241
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 241 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 172—appGetCurrentTemperature

Function name appGetCurrentTemperature

Arguments None

Result Current temperature

Standard
Structure fields

block, calcMode

DCL syntax EXTERNAL(appGetCurrentTemperature):
 result(double: temperature);

C syntax typedef struct {
 DCM_DOUBLE temperature;
} T_CurrentTemperature;

int appGetCurrentTemperature (DCM_STD_STRUCT *std_struct,
 T_CurrentTemperature *rtn);

This call requests the temperature so the DPCM can use the temperature for its own calculations. This
value, if provided, shall override the default or base temperature.

10.18.5.19 appGetCurrentOpRange

Table 173 provides information on appGetCurrentOpRange.

Table 173—appGetCurrentOpRange

Function name appGetCurrentOpRange

Arguments None

Result Array index of current operating range

Standard
Structure fields

None

DCL syntax EXTERNAL(appGetCurrentOpRange):
 result(int:opRangeIndex);

C syntax typedef struct {
 INTEGER opRangeIndex;
} T_CurrentOpRange;

int appGetCurrentOpRange (DCM_STD_STRUCT *std_struct,
 T_CurrentOpRange *rtn);

This call requests the current operating range. The index number (into the array returned by
dpcmGetOpRangeArray) of the current operating range shall be returned. If no operating ranges are defined
for this library, then a value of –1 shall be returned as the index.

10.18.5.20 dpcmGetTimingStateArray

Table 174 provides information on dpcmGetTimingStateArray.

242
Copyright © 2010 IEEE all rights reserved.

– 242 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 174—dpcmGetTimingStateArray

Function name dpcmGetTimingStateArray

Arguments None

Result Array of valid states and cells

Standard
Structure fields

CellName, pathData (timing-arc-specific), cellData (timing), block

DCL syntax EXPOSE(dpcmGetTimingStateArray):
 result(string[*]: states);

C syntax typedef struct {
 DCM_STRING_ARRAY *states;
} T_timingStateArray;

int dpcmGetTimingStateArray (const DCM_STD_STRUCT *std_struct,
 T_timingStateArray *rtn);

Returns an array of strings that represent the states for the given segment. The syntax and semantics of the
state array elements are described in Group condition language (see 8.11), except where modified, as
follows.

The state array is an ordered list of states; the application shall scan the list from the first array element to
the last and stop at the state index containing the first TRUE state.

If both a condition expression string and a double-quoted “state label” are present within a state array
element and the application can process the condition expression language, then the application shall use
the condition expression string to determine the state of the cell.

The state array elements have the following syntactical requirements:

a) Each array element shall contain at least one conditionExpression

b) Each array element may contain at most two conditionExpressions, separated by a comma and
optionally surrounded by whitespace.

The semantics of the state array element conditionExpressions are the same as the “Group condition
language” semantics (see8.11.2) except:

— If two conditionExpressions are present, one shall be double-quoted (a state label) and the other
shall NOT.

— The state array conditionExpression evaluation is independent of whether the cell is in a steady
state or is transitioning into this state.

— If one conditionExpression is present, it shall not be a state label.

Example

The following is an example of a returned array:
States[0] = "\"chartreuse\", !B"
States[1] = "A&!B, \"green\""
States[3] = "*"

10.18.5.21 appGetCurrentTimingState

Table 175 provides information on appGetCurrentTimingState.

243
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 243 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 175—appGetCurrentTimingState

Function name appGetCurrentTimingState

Arguments None

Result Index of current state

Standard
Structure fields

block, pathData (timing-arc-specific), cellData (timing)

DCL syntax EXTERNAL(appGetCurrentTimingState):
 result(int: stateIndex);

C syntax typedef struct {
 INTEGER stateIndex;
} T_currentState;

int appGetCurrentTimingState (DCM_STD_STRUCT *std_struct,
 T_currentState *rtn);

Returns an index into the timing state array (returned via dpcmGetTimingStateArray).

10.18.6 Functions importing instance name information

This subclause describes importing instance name information functions.

10.18.6.1 dpcmGetCellList

Table 176 provides information on dpcmGetCellList.

Table 176—dpcmGetCellList

Function name dpcmGetCellList
Arguments None
Result Array of cell names, Array of cell name qualifiers, Array of model domains
Standard
Structure fields

None

DCL syntax EXPOSE(dpcmGetCellList):
 result(string[*]: cellNameArray, cellQuallArray,
 model_domainArray);

C syntax typedef struct dcm_T_dcmCellList {
 DCM_STRING_ARRAY *cellNameArray;
 DCM_STRING_ARRAY *cellQualArray;
 DCM_STRING_ARRAY *model_domainArray;
} T_dcmCellList;

int dpcmGetCellList (const DCM_STD_STRUCT *std_struct,
 T_dcmCellList *rtn);

This function returns to the application three parallel arrays containing the cell names, cell name qualifiers,
and model domains loaded with this DPCM. The cell name, cell name qualifier, and model domain fields at
the same array index identify a cell modeled in this DPCM.

Each cell name is a string containing the name of a cell modeled in this DPCM.

Each cell name qualifier is a string whose value is either a cell qualifier string or an asterisk (*). An asterisk
returned for the cell name qualifier means that this cell has no cell name qualifier.

Each model domain is a string whose value is either timing or power or an asterisk (*). The model domain
value of timing indicates this particular cell supports timing calculations. The model domain value of
power indicates this particular cell supports power calculations. An asterisk returned for the model domain
indicates there are not separate timing and power calculation models.

244
Copyright © 2010 IEEE all rights reserved.

– 244 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

The application shall call dpcmGetCellList to retrieve the list of cells in the DPCM. It is a requirement that
any cell name returned by this function shall be found if passed to modelSearch.

NOTE—This function gives the DPCM the opportunity to modify the cell list returned by the function dcmCellList
(which shall not be called directly by the application). This may be required by the DPCM if there are MODEL names
that model multiple cells and the DPCM wants to return a fully enumerated cell list.

10.18.6.2 appGetCellName

Table 177 provides information on appGetCellName.

Table 177—appGetCellName

Function name appGetCellName
Arguments Pin pointer
Result Cell name, cell qualifier, model domain
Standard
Structure fields

None

DCL syntax EXTERNAL(appGetCellName):
 passed(pin: cellPin)
 result(string:cellName, cellQual, modelDomain);

C syntax typedef struct {
 STRING cellName, cellQual, modelDomain;
} T_CellName;

int appGetCellName (DCM_STD_STRUCT *std_struct,
 T_CellName *rtn, DCM_PIN cellPin);

This returns the cell name to which the passed pin belongs.

10.18.6.3 appGetHierPinName

Table 178 provides information on appGetHierPinName.

Table 178—appGetHierPinName

Function name appGetHierPinName
Arguments Pin pointer
Result Hierarchical pin name
Standard
Structure fields

None

DCL syntax EXTERNAL(appGetHierPinName):
 passed(pin: pinPointer)
 result(string:hierPinName);

C syntax typedef struct {
 STRING hierPinName;
} T_HierPinName;

int appGetHierPinName (DCM_STD_STRUCT *std_struct,
 T_HierPinName *rtn, DCM_PIN pinPointer);

This returns the full hierarchical pin name for the passed pin.

10.18.6.4 appGetHierBlockName

Table 179 provides information on appGetHierBlockName.

245
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 245 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 179—appGetHierBlockName

Function name appGetHierBlockName
Arguments Pin pointer
Result Hierarchical cell instance name
Standard
Structure fields

None

DCL syntax EXTERNAL(appGetHierBlockName):
 passed(pin: pinPointer)
 result(string:hierBlockName);

C syntax typedef struct {
 STRING hierBlockName;
} T_HierBlockName;

int appGetHierBlockName (DCM_STD_STRUCT *std_struct,
 T_HierBlockName *rtn, DCM_PIN pinPointer);

This returns the full hierarchical name of the instance to which the passed pin is connected.

10.18.6.5 appGetHierNetName

Table 180 provides information on appGetHierNetName.

Table 180—appGetHierNetName

Function name appGetHierNetName
Arguments Pin pointer
Result Hierarchical interconnect name
Standard
Structure fields

None

DCL syntax EXTERNAL(appGetHierNetName):
 passed(pin: pinPointer)
 result(string:hierNetName);

C syntax typedef struct {
 STRING hierNetName;
} T_HierNetName;

int appGetHierNetName (DCM_STD_STRUCT *std_struct,
 T_HierNetName *rtn, DCM_PIN pinPointer);

This returns the full hierarchical name of the electrical net to which the passed pin is connected.

10.18.7 Process information functions

This subclause lists the process information functions.

10.18.7.1 dpcmGetThresholds

Table 181 provides information on dpcmGetThresholds.

Table 181—dpcmGetThresholds

Function name dpcmGetThresholds
Arguments pin pointer
Result Voltage transition delay points
Standard
Structure fields

calcMode, CellName, block, pathData (timing-pin-specific), cellData (timing)

246
Copyright © 2010 IEEE all rights reserved.

– 246 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

DCL syntax EXPOSE(dpcmGetThresholds):
 passed(pin: pinPointer)
 result(double: vol, voh, lowerTransitionThreshold,
 upperTransitionThreshold,
 riseSwitchLevel, fallSwitchLevel);

C syntax typedef struct {
 DCM_DOUBLE vol, voh, lowerTransitionThreshold,
 upperTransitionThreshold, riseSwitchLevel,
 fallSwitchLevel;
} T_thresholds;

int dpcmGetThresholds (const DCM_STD_STRUCT *std_struct,
 T_thresholds *rtn, DCM_PIN pinPointer);

This function requests voltage, transition, and delay points. This capability can be used to communicate
threshold information between voltage islands and between different technologies.

If a zero value is passed for pinPointer, technology-wide defaults are returned.

upperTransitionThreshold and lowerTransitionThreshold are defined as the points of transition
characterization. RiseSwitchLevel and fallSwitchLevel are defined as the points of delay characterization.
voh and vol are defined as the maximum/minimum voltage swing at which a particular pin was modeled.

10.18.7.2 appGetThresholds

Table 182 provides information on appGetThresholds.

Table 182—appGetThresholds

Function name appGetThresholds
Arguments pin pointer
Result voltage low, voltage high, low transition threshold, high transition threshold, rise switch

level, fall switch level
Standard
Structure fields

None

DCL syntax EXTERNAL(appGetThresholds):
 passed(pin: pinPointer)
 result (double: vol, voh, lowerTransitionThreshold,
 upperTransitionThreshold,
 riseSwitchLevel, fallSwitchLevel);

C syntax typedef struct {
 DCM_DOUBLE vol, voh, lowerTransitionThreshold,
 upperTransitionThreshold, riseSwitchLevel,
 fallSwitchLevel;
} T_thresholds;

int appGetThresholds (DCM_STD_STRUCT *std_struct,
 T_thresholds *rtn, DCM_PIN pinPointer);

This function allows the DPCM to retrieve voltage, transition, and delay points. The application shall call
dpcmGetThresholds to get this information (see 10.18.7.1).

NOTE—If the pin for which thresholds are being requested is in a different technology, this PI call enables the
application to switch to that technology before calling dpcmGetThresholds (and to switch it back when it returns the
answer to the requesting DPCM).

10.18.8 Miscellaneous standard interface functions

This subclause shows the miscellaneous standard interface functions.

247
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 247 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.18.8.1 appGetExternalStatus

Table 183 provides information on appGetExternalStatus.

Table 183—appGetExternalStatus

Function name appGetExternalStatus
Arguments String containing the name of the EXTERNAL
Result Integer encoding status
Standard
Structure fields

None

DCL syntax EXTERNAL(appGetExternalStatus):
 passed(string: externalName)
 result(int: externalStatus);

C syntax typedef struct {
 INTEGER externalStatus;
} T_extenalStatus;

int appGetExternalStatus (DCM_STD_STRUCT *std_struct,
 T_extenalStatus *rtn, STRING externalName);

appGetExternalStatus is an application-supplied function that returns whether, and to what extent, an
application implemented a particular EXTERNAL. The value returned for externalStatus is:

0—if the EXTERNAL is not implemented by the application.
1—if the EXTERNAL is implemented by the application but with code that always returns a return
code of severity ERROR (a “stub”).
2—if the EXTERNAL is truly implemented by the application.

10.18.8.2 appGetVersionInfo

Table 184 provides information on appGetVersionInfo.

Table 184—appGetVersionInfo

Function name appGetVersionInfo
Arguments None
Result Version of P1481 with which application is compliant
Standard
Structure fields

None

DCL syntax EXTERNAL(appGetVersionInfo):
 result(string: P1481_version);

C syntax typedef struct {
 STRING P1481_version;
} T_VersionInfo;

int appGetVersionInfo (DCM_STD_STRUCT *std_struct,
 T_VersionInfo *rtn);

This returns the version of IEEE Std 1481 with which the application is compliant. The string for an
application compliant with this version of IEEE Std 1481 shall be “IEEE 1481-2009.”

10.18.8.3 appGetResource

Table 185 provides information on appGetResource.

248
Copyright © 2010 IEEE all rights reserved.

– 248 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 185—appGetResource

Function name appGetResource
Arguments String containing the name of the resource desired, string containing the resource's

description.
Result String containing the value of the named resource.
Standard
Structure fields

None

DCL syntax EXTERNAL(appGetResource):
 passed(string: resourceName, resourceDescription)
 result(string: resourceValue);

C syntax typedef struct {
 STRING resourceValue;
} T_Resource;

int appGetResource (DCM_STD_STRUCT *std_struct,
 T_Resource *rtn, STRING resourceName,
 STRING resourceDescription);

This returns a string value for the passed resource name. The passed resource description may be used
within an application message to prompt the user for the value.

10.18.8.4 dpcmGetRuleUnitToSeconds

Table 186 provides information on dpcmGetRuleUnitToSeconds.

Table 186—dpcmGetRuleUnitToSeconds

Function name dpcmGetRuleUnitToSeconds
Arguments None
Result Scale factor power
Standard
Structure fields

None

DCL syntax EXPOSE(dpcmGetRuleUnitToSeconds):
 result(integer: scaleFactorPower);

C syntax typedef struct {
 INTEGER scaleFactorPower;
} T_RuleUnitToSecond;

int dpcmGetRuleUnitToSeconds (const DCM_STD_STRUCT *std_struct,
 T_RuleUnitToSecond *rtn);

This returns the basic time units the library assumes, expressed as an integer power of 10. The value 10
scaleFactorPower, when multiplied by a time value, changes the time value’s units to seconds.

The following example shows how a DPCM indicates the time unit in nanoseconds:
EXPOSE calc(dpcmGetRuleUnitToSeconds): result(integer: -9);

10.18.8.5 dpcmGetRuleUnitToOhms

Table 187 provides information on dpcmGetRuleUnitToOhms.

Table 187—dpcmGetRuleUnitToOhms

Function name dpcmGetRuleUnitToOhms
Arguments None
Result Scale factor power
Standard
Structure fields

None

249
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 249 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

DCL syntax EXPOSE(dpcmGetRuleUnitToOhms):
 result(integer: scaleFactorPower);

C syntax typedef struct {
 INTEGER scaleFactorPower;
} T_RuleUnitToOhms;

int dpcmGetRuleUnitToOhms (const DCM_STD_STRUCT *std_struct,
 T_RuleUnitToOhms *rtn);

This returns the basic resistance units the library assumes, expressed as an integer power of 10. The value
10 scaleFactorPower, when multiplied by a resistance value, changes the resistance value’s units to ohms.

The following example shows how a DPCM indicates the resistance unit in Kohms:
EXPOSE calc(dpcmGetRuleUnitToOhms): result(int: 3);

10.18.8.6 dpcmGetRuleUnitToFarads

Table 188 provides information on dpcmGetRuleUnitToFarads.

Table 188—dpcmGetRuleUnitToFarads

Function name dpcmGetRuleUnitToFarads
Arguments None
Result Scale factor power
Standard
Structure fields

None

DCL syntax EXPOSE(dpcmGetRuleUnitToFarads):
 result(int: scaleFactorPower);

C syntax typedef struct {
 INTEGER scaleFactorPower;
} T_RuleUnitToFarads;

int dpcmGetRuleUnitToFarads (const DCM_STD_STRUCT *std_struct,
 T_RuleUnitToFarads *rtn);

This returns the basic capacitance units the library assumes, expressed as an integer power of 10. The value
10 scaleFactorPower, when multiplied by a capacitance value, changes the capacitance value’s units to
Farads.

The following example shows how a DPCM indicates the capacitance unit in picoFarads:
EXPOSE calc(dpcmGetRuleUnitToFarads): result(integer: -12);

10.18.8.7 dpcmGetRuleUnitToHenries

Table 189 provides information on dpcmGetRuleUnitToHenries.

250
Copyright © 2010 IEEE all rights reserved.

– 250 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 189—dpcmGetRuleUnitToHenries

Function name dpcmGetRuleUnitToHenries
Arguments None
Result Scale factor power
Standard
Structure fields

None

DCL syntax EXPOSE(dpcmGetRuleUnitToHenries):
 result(integer: scaleFactorPower);

C syntax typedef struct {
 INTEGER scaleFactorPower;
} T_RuleUnitToHenries;

int dpcmGetRuleUnitToHenries (const DCM_STD_STRUCT *std_struct,
 T_RuleUnitToHenries *rtn);

This returns the basic inductance units the library assumes, expressed as an integer power of 10. The value
10 scaleFactorPower, when multiplied by an inductance value, changes the inductance value’s units to
Henries.

The following example demonstrates how a DPCM indicates the inductance unit in microHenries:
EXPOSE calc(dpcmGetRuleUnitToHenries): result(integer: -6);

10.18.8.8 dpcmGetRuleUnitToWatts

Table 190 provides information on dpcmGetRuleUnitToWatts.

Table 190—dpcmGetRuleUnitToWatts

Function name dpcmGetRuleUnitToWatts
Arguments None
Result Scale factor power
Standard
Structure fields

None

DCL syntax EXPOSE(dpcmGetRuleUnitToWatts):
 result(int: scaleFactorPower);

C syntax typedef struct {
 INTEGER scaleFactorPower;
} T_RuleUnitToWatts;

int dpcmGetRuleUnitToWatts (const DCM_STD_STRUCT *std_struct,
 T_RuleUnitToWatts *rtn);

This returns the basic power units the library assumes, expressed as an integer power of 10. The value 10
scaleFactorPower, when multiplied by a power value, changes the power value’s units to Watts.

The following example demonstrates how a DPCM indicates the power unit in microWatts:
EXPOSE calc(dpcmGetRuleUnitToWatts): result(integer: -6);

10.18.8.9 dpcmGetRuleUnitToJoules

Table 191 provides information on dpcmGetRuleUnitToJoules.

251
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 251 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 191—dpcmGetRuleUnitToJoules

Function name dpcmGetRuleUnitToJoules
Arguments None
Result Scale factor power
Standard
Structure fields

None

DCL syntax EXPOSE(dpcmGetRuleUnitToJoules):
 result(integer: scaleFactorPower);

C syntax typedef struct {
 INTEGER scaleFactorPower;
} T_RuleUnitToJoules;

int dpcmGetRuleUnitToJoules (const DCM_STD_STRUCT *std_struct,
 T_RuleUnitToJoules *rtn);

This returns the basic energy units the library assumes, expressed as an integer power of 10. The value 10
scaleFactorPower, when multiplied by an energy value, changes the energy value’s units to Joules.

Example

The following example demonstrates how a DPCM indicates the energy unit in picoJoules:
EXPOSE calc(dpcmGetRuleUnitToHenries): result(integer: -12);

10.18.8.10 dpcmGetTimeResolution

Table 192 provides information on dpcmGetTimeResolution.

Table 192—dpcmGetTimeResolution

Function name dpcmGetTimeResolution
Arguments None
Result Time resolution power of 10
Standard
Structure fields

None

DCL syntax EXPOSE(dpcmGetTimeResolution):
 result(int: timeResolutionPower);

C syntax typedef struct {
 INTEGER timeResolutionPower;
} T_TimeResolution;

int dpcmGetTimeResolution
 (const DCM_STD_STRUCT *std_struct,
 T_TimeResolution *rtn);

This returns the coarsest resolution for time values to be used by the application to ensure accurate
interaction with the technology to which the Standard Structure is set. The result is expressed as an integer
representing a power of 10. The value 10 timeResolutionPower represents this time value in seconds.

10.18.8.11 dpcmGetParasiticCoordinateTypes

Table 193 provides information on dpcmGetParasiticCoordinateTypes.

252
Copyright © 2010 IEEE all rights reserved.

– 252 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 193—dpcmGetParasiticCoordinateTypes

Function name dpcmGetParasiticCoordinateTypes
Arguments None
Result Distance types, coordinate conversion
Standard
Structure fields

None

DCL syntax EXPOSE(dpcmGetParasiticCoordinateTypes):
 result(short: xCoordinateType, yCoordinateType;
 double: xConversion, yConversion);

C syntax typedef struct {
 SHORT xCoordinateType, yCoordinateType;
 DCM_DOUBLE xStepSize, yStepSize;
} T_ParasiticCoordinateTypes;

int dpcmGetParasiticCoordinateTypes
 (const DCM_STD_STRUCT *std_struct,
 T_ParasiticCoordinateTypes *rtn);

This returns coordinate types, step size conversion scaling factors. The coordinate types shall have a value
of zero (0) indicating the coordinate value is a distance or a value of one (1) indicating the coordinate value
is in stepping units. The step size is the scaling factor used to convert from stepping units to rule distance
units. xConversion and yConversion contain the scaling factor to use in the conversion of stepping units to
rule distance units.

Example
float: distanceInRuleUnitsForTheXaxis =
numberOfUnits*xConversion;

10.18.8.12 dpcmIsSlewTime

Table 194 provides information on dpcmIsSlewTime.

Table 194—dpcmIsSlewTime

Function name dpcmIsSlewTime
Arguments None
Result indicator
Standard
Structure fields

None

DCL syntax EXPOSE(dpcmIsSlewTime):
 result(integer:slewTime);

C syntax typedef struct {
 INTEGER slewTime;
} T_IsSlewTime;

int dpcmIsSlewTime (const DCM_STD_STRUCT *std_struct,
 T_IsSlewTime *rtn);

This returns the units for calculated slews as absolute time or rate of change. If slewTime is nonzero, the
slew values are in time units. If the slewTime is zero, the slew values are rate of change (time/volts) units.

10.18.8.13 dpcmDebug

Table 195 provides information on dpcmDebug.

253
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 253 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 195—dpcmDebug

Function name dpcmDebug
Arguments Debug level
Result Previous level
Standard
Structure fields

None

DCL syntax EXPOSE(dpcmDebug):
 passed(integer: dpcmDebugLevel)
 result(integer: prevLevel);

C syntax typedef struct {
 INTEGER prevLevel;
} T_Debug;

int dpcmDebug (const DCM_STD_STRUCT *std_struct,
 T_Debug *rtn, INTEGER dpcmDebugLevel);

Specifies the debugging level to be used within the DPCM for the current technology family
(TECH_FAMILY). A zero value for debug level disables the debug tracing. Values greater than zero enable
debug trace to a varying degree of detail, where a higher value requests a greater amount of detail. The
return value is the debug level current at the time this function call was made.

NOTE—This function allows the library developer to force the DPCM’s execution to produce diagnostic data in order
to troubleshoot a problem. The number of debug levels supported by a library is determined by the library developer, as
is the association of a debug level value to the diagnostic results produced.

10.18.8.14 dpcmGetVersionInfo

Table 196 provides information on dpcmGetVersionInfo.

Table 196—dpcmGetVersionInfo

Function name dpcmGetVersionInfo
Arguments None
Result Library identifier, version of P1481 with which library is compliant
Standard
Structure fields

None

DCL syntax EXPOSE(dpcmGetVersionInfo):
 result(string: libIdentification, P1481_version);

C syntax typedef struct {
 STRING libIdentification, P1481_version;
} T_intVer;

int dpcmGetVersionInfo (const DCM_STD_STRUCT *std_struct,
 T_intVer *rtn);

This returns strings which identify the technology library and the version of P1481 with which the library is
compliant. The library identification is an arbitrary string. The P1481_version result variable shall be set to
“IEEE 1481-2009.”

10.18.8.15 dpcmHoldControl

Table 197 provides information on dpcmHoldControl.

254
Copyright © 2010 IEEE all rights reserved.

– 254 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 197—dpcmHoldControl

Function name dpcmHoldControl
Arguments None
Result Pointer to application’s node structure
Standard
Structure fields

CellName, fromPoint, toPoint, sourceEdge, sinkEdge

DCL syntax EXPOSE(dpcmHoldControl):
 result(integer: doHoldControlSnip);

C syntax typedef struct {
 INTEGER doHoldControlSnip;
} T_HoldControl;

int dpcmHoldControl (const DCM_STD_STRUCT *std_struct,
 T_HoldControl *rtn);

This function allows the application to query whether hold control should be used. The fromPoint is the pin
from which the signal is launched. The toPoint is where the signal returns back to the latch in a feedback
loop.

dpcmHoldControl indicates a signal shall have been present at the launch latch’s input for the hold control
not to have been violated. Zero (0) signifies to not perform hold snip, and one (1) signifies to perform hold
snip.

For a detailed exposition of the issues surrounding this PI call, see Annex A.

10.18.8.16 dpcmFillPinCache

Table 198 provides information on dpcmFillPinCache.

Table 198—dpcmFillPinCache

Function name dpcmFillPinCache
Arguments Pin pointer, Resistance load, Capacitance load, Slew In, Slew Out, Memory handle in
Result Memory handle out
Standard
Structure fields

CellName, block, cellData (timing or power), pathData (timing or power pin-specific)

DCL syntax EXPOSE dpcmFillPinCache):
 passed(pin: pinPointer;
 double: resistanceLoad;
 double[*]: capLoad, slewIn, slewOut;
 void: memoryHandleIn)
 result(void: memoryHandleOut);

C syntax typedef struct {
 VOID memoryHandleOut;
} T_FillPinCache;

int dpcmFillPinCache (const DCM_STD_STRUCT *std_struct,
 T_FillPinCache *rtn, DCM_PIN pinPointer,
 DCM_DOUBLE resistanceLoad, DCM_DOUBLE_ARRAY *capLoad,
 DCM_DOUBLE_ARRAY *slewIn, DCM_DOUBLE_ARRAY *slewOut,
 VOID memoryHandleIn);

This function is called by the application to supply the load and slew of the specified pin to the DPCM in
response to the DPCM request for this information through the appRegisterCellInfo function. This function
shall supply the capLoad, resistanceLoad, and slew for all pins of the cell specified in the Standard
Structure whose types (inputs, bidirectionals, and outputs) match the types requested on the
appRegisterCellInfo call.

The capLoad and slewIn arrays are indexed by the SINK_EDGE_SCALAR enumeration. The application

255
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 255 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

shall supply the capacitance and input slew values for each of the SINK_EDGE enumerations. The slewOut
array is indexed by the SOURCE_EDGE_SCALAR enumeration. The application shall supply the output
slew value for each of the SOURCE_EDGE enumerations. For requested data that are not known, the
application shall supply a value of zero.

The memory handle parameter passed into this function shall be the memory handle most recently passed
from the DPCM to the application for this timing or power calculation request.

10.18.8.17 dpcmFreePinCache

Table 199 provides information on dpcmFreePinCache.

Table 199—dpcmFreePinCache

Function name dpcmFreePinCache
Arguments Memory handle
Result Return code
Standard
Structure fields

CellName, block, cellData (timing or power)

DCL syntax EXPOSE(dpcmFreePinCache):
 passed(void: memoryHandleIn)
 result(integer: rc);

C syntax typedef struct {
 INTEGER rc;
} T_FreePinCache;

int dpcmFreePinCache (const DCM_STD_STRUCT *std_struct,
 T_FreePinCache *rtn, VOID memoryHandleIn);

This function is called to free the load and slew cache when no longer needed.

10.18.8.18 appRegisterCellInfo

Table 200 provides information on appRegisterCellInfo.

Table 200—appRegisterCellInfo

Function name appRegisterCellInfo
Arguments Integers indicating whether capacitance load, resistance load or slew is needed
Result Memory Handle
Standard
Structure fields

block, cellName

DCL syntax EXTERNAL(appRegisterCellInfo):
 passed(integer: FillCapLoad, FillResLoad, FillSlew)
 result(void: memoryHandleOut);

C syntax typedef struct {
 VOID memoryHandleOut;
} T_memoryHandle;

int appRegisterCellInfo (DCM_STD_STRUCT *std_struct,
 T_memoryHandle *rtn, INTEGER FillCapLoad,
 INTEGER FillResLoad, INTEGER FillSlew);

This function may be called by the DPCM when the DPCM is called to calculate power or timing. This call
enables the application to supply load and slew information to the DPCM. The application supplies this
information by calling the dpcmFillPinCache function for all pins of the cell specified in the Standard
Structure whose types (inputs, bidirectionals, and outputs) match the types registered on the call to this
function.

On delay, slew, check, or power calculations, the DPCM may call back with appRegisterCellInfo. The

256
Copyright © 2010 IEEE all rights reserved.

– 256 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

application has a choice to create a new cache if one was never created before, or pass in the memory
handle of a previously filled in cache (for the same cell type or instance). If the application has a memory
handle with load and slew information for this instance with the requested pins filled in (via previous calls
to dpcmFillPinCache), then the application need not refill this cache. It may pass this memory handle back
to the DPCM in memoryHandleOut. If the application has not previously filled a cache, it shall pass in 0
(zero for memoryHandleIn) to the first call to a dpcmFillPinCache. If on subsequent calls to
dpcmFillPinCache a different memory handle is returned, the new memory handle shall be passed to either
the next call to dpcmFillPinCache or returned to the DPCM when returning from appRegisterCellInfo.

The DPCM shall pass values for the FillCapLoad, FillResLoad and FillSlew parameters to inform the
application of which pins require the requested information (see8.3).

The following values apply to each of the three flags:

0—Indicates this information is not needed for any pins.
1—Indicates this information is needed for input and bidirectional pins.
2—Indicates this information is needed for output and bidirectional pins.
3—Indicates this information is needed for all pins.

10.18.9 Power-related functions

This subclause shows the power-related functions.

10.18.9.1 dpcmGetCellPowerInfo

Table 201 provides information on dpcmGetCellPowerInfo.

Table 201—dpcmGetCellPowerInfo

Function name dpcmGetCellPowerInfo
Arguments None
Result Group pin list, Group condition list, Sensitivity list, Initial state choices, Supported

methods
Standard
Structure fields

CellName, cellData (power)

DCL syntax EXPOSE(dpcmGetCellPowerInfo):
 result(string[*]: groupPinList, groupConditionList,
 sensitivityList, initialStateChoices;
 integer: aet_supported, group_supported,
 pin_supported);

C syntax typedef struct {
 DCM_STRING_ARRAY group_pin_list, *group_condition_list,
 sensitivity_list,
 *initial_state_choices;
 INTEGER aet_supported, group_supported, pin_supported;
} T_lists;

int dpcmGetCellPowerInfo (const DCM_STD_STRUCT *std_struct,
 T_lists *rtn);

Returns the power calculation methods supported by the DPCM for the cell specified in the Standard
Structure.

The “ supported ” flags relate to the following EXPOSE functions for calculating power:

a) aet_supported : dpcmGetAETCellPowerWithSensitivity

b) group_supported : dpcmGetPowerWithState

257
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 257 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

c) pin_supported : dpcmGetPinPower

For the return parameters aet_supported, group_supported, and pin_supported, a value of one (1) indicates
this method for power computation is supported and a value of zero (0) indicates this method is not
supported for this cell.

This function also returns the following arrays of information in support of these power calculation
methods:

— The group_pin_list and group condition list for dpcmGetPowerWithState.

— The sensitivity_list for dcpmAetCellPowerWithSensitivity.

— The initial_state_choices for all three power calculation methods.

A 0 length array is returned for each of the resultant arrays (the group_pin_list, group_condition_list,
sensitivity_list, and initial_state_choices) when this information is not needed or not available.

10.18.9.2 dpcmGetCellPowerWithState

Table 202 provides information on dpcmGetCellPowerWithState.

Table 202—dpcmGetCellPowerWithState

Function name dpcmGetCellPowerWithState
Arguments Group index, Condition index
Result Energy/rail(static), Static power/rail(static), Total energy, Total static power
Standard
Structure fields

CellName, block, cellData (power), calcMode

DCL syntax EXPOSE(dpcmGetCellPowerWithState):
 passed(integer: groupIndex, conditionIndex)
 result(double[*]: energyPerRail, staticPowerPerRail;
 double: totalEnergy, totalStaticPower);

C syntax typedef struct {
 DCM_DOUBLE_ARRAY *energyPerRail, *staticPowerPerRail;
 DCM_DOUBLE totalEnergy;
 DCM_DOUBLE totalStaticPower;
} T_energy;

int dpcmGetCellPowerWithState
 (const DCM_STD_STRUCT *std_struct, T_energy *rtn,
 INTEGER groupIndex, INTEGER conditionIndex);

This returns static power per rail, dynamic energy per rail, total energy, and total static power given a
specific group and condition index. The application uses the group pin lists and group condition lists
returned by dpcmGetCellPowerInfo to determine the group and condition index based on a pin change
event.

10.18.9.3 dpcmGetAETCellPowerWithSensitivity

Table 203 provides information on dpcmGetAETCellPowerWithSensitivity.

258
Copyright © 2010 IEEE all rights reserved.

– 258 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 203—dpcmGetAETCellPowerWithSensitivity

Function name dpcmGetAETCellPowerWithSensitivity
Arguments Sensitivity mask
Result Energy/rail(static), Static power/rail(static), Total energy, Total static power
Standard
Structure fields

CellName, block, cellData, calcMode (power)

DCL syntax EXPOSE(dpcmGetAETCellPowerWithSensitivity):
 passed(integer[*]: sensitivityMask)
 result(double[*]: energyPerRail, staticPowerPerRail;
 double:totalEnergy, totalStaticPower);

C syntax typedef struct {
 DCM_DOUBLE_ARRAY *energyPerRail, *staticPowerPerRail;
 DCM_DOUBLE totalEnergy;
 DCM_DOUBLE totalStaticPower;
} T_energy;

int dpcmGetAETCellPowerWithSensitivity
 (const DCM_STD_STRUCT *std_struct, T_energy *rtn,
 DCM_DOUBLE_ARRAY *sensitivityMask);

This returns static power per rail, dynamic energy per rail, total energy, and total static power given a
specified sensitivity mask array. The mask value is determined based on the state of the pins for the cell in
the Standard Structure. The elements of the sensitivity mask correspond to the elements of the sensitivity
list returned by the call to dpcmGetCellPowerInfo.

The mask definitions are as follows:

— When the element of the sensitivity list array (returned by dpcmGetCellPowerInfo) contains a
single pin:

— Each element of the mask array encodes the from and to states in the two least-significant bytes of
the integer, as shown in Table 204.

Table 204—Integer LSB example

MSB LSB

From To

— For both from and to, the encoding is shown in Table 205.

Table 205—Mask encoding

Value Pin State

0 0

1 1

2 Z

3 X

— When the element of the sensitivity list array (returned by dpcmGetCellPowerInfo) contains
multiple pins:

— Each element of the mask array encodes the state of these pins in the least-significant byte of the
integer, using the encoding:

0—None of the pins changed state
1—At least one of the pins changed state
2—At least one of the pins went to X

— If a pin in the sensitivity list goes to X, this condition takes precedence over other changes and the

259
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 259 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

mask values shall be set to 2.

10.18.9.4 dpcmGetPinPower

Table 206 provides information on dpcmGetPinPower.

Table 206—dpcmGetPinPower

Function name dpcmGetPinPower
Arguments Pin pointer, Ask for registration
Result Energy/rail(static), Static power/rail(static), totalEnergy, totalStaticPower
Standard
Structure fields

CellName, block, cellData (power), pathData (power-pin-specific), calcMode

DCL syntax EXPOSE(dpcmGetPinPower):
 passed(pin: pinPointer; integer: ask_for_registration)
 result(double[*]: energyPerRail, staticPowerPerRail;
 double: totalEnergy, totalStaticPower);

C syntax typedef struct {
 DCM_DOUBLE_ARRAY *energyPerRail, *staticPowerPerRail;
 DCM_DOUBLE totalEnergy;
 DCM_DOUBLE totalStaticPower;
} T_energy;

int dpcmGetPinPower (const DCM_STD_STRUCT *std_struct,
 T_energy *rtn, DCM_PIN pinPointer,
 INTEGER ask_for_registration);

This returns static power per rail, dynamic energy per rail, total energy, and total static power for a specific
pin state change. If ask_for_registration is FALSE (set to 0), the DPCM shall not call back to the
application (using appRegisterCellInfo) for pin load slew, and resistance values of the cell are specified in
the Standard Structure.

10.18.9.5 dpcmAETGetSettlingTime

Table 207 provides information on dpcmAETGetSettlingTime.

Table 207—dpcmAETGetSettlingTime

Function name dpcmAETGetSettlingTime
Arguments None
Result Array of pins, Array of settling times
Standard
Structure fields

CellName, block, cellData (power), calcMode

DCL syntax EXPOSE(dpcmAETGetSettlingTime):
 result(string[*]: pinList; double[*]: settlingTimes);

C syntax typedef struct {
 DCM_STRING_ARRAY *pinList;
 DCM_DOUBLE_ARRAY *settlingTimes;
} T_times;

int dpcmAETGetSettlingTime (const DCM_STD_STRUCT *std_struct,
 T_times *rtn);

This returns two parallel arrays. The first array contains strings, each of which is a pin list whose syntax is
defined in 8.8 . The second array contains the settling time values, where each value is the settling time for
each pin in the associated pin list.

This function shall only be called by the application for AET-related power computation.

See the definition of settling time as well as the method for calculating power in 8.5 and 8.6 . Each pin in

260
Copyright © 2010 IEEE all rights reserved.

– 260 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

the pin list array shall be an actual pin name on the cell specified in the Standard Structure.

10.18.9.6 dpcmAETGetSimultaneousSwitchTime

Table 208 provides information on dpcmAETGetSimultaneousSwitchTime.

Table 208—dpcmAETGetSimultaneousSwitchTime

Function name dpcmAETGetSimultaneousSwitchTime
Arguments None
Result Array of pins, Array of simultaneous switch times
Standard
Structure fields

CellName, block, cellData (power), calcMode

DCL syntax EXPOSE(dpcmAETGetSimultaneousSwitchTime):
 result(string[*]: pinList;
 double[*]: SimultaneousSwitchTimes);

C syntax typedef struct {
 DCM_STRING_ARRAY *pinList;
 DCM_DOUBLE_ARRAY *SimultaneousSwitchTimes;
} T_times;

int dpcmAETGetSimultaneousSwitchTime
 (const DCM_STD_STRUCT *std_struct, T_times *rtn);

This returns two parallel arrays. The first array contains strings, each of which is a pin list whose syntax is
defined in 8.8. The second array contains the simultaneous switch time values, where each value is the
simultaneous switching time for each pin in the associated pin list.

This function shall only be called by the application for AET-related power computation.

See the definition of simultaneous switching time as well as the method for calculating power in 8.4 and
8.6 . Each pin in the pin list array shall be an actual pin name on the cell specified in the Standard Structure.

10.18.9.7 dpcmGroupGetSettlingTime

Table 209 provides information on dpcmGroupGetSettlingTime.

Table 209—dpcmGroupGetSettlingTime

Function name dpcmGroupGetSettlingTime
Arguments None
Result Array of pins, Array of settling times
Standard
Structure fields

CellName, block, cellData (power), calcMode

DCL syntax EXPOSE(dpcmGroupGetSettlingTime):
 result(string[*]: pinList; double[*]: settlingTimes);

C syntax typedef struct {
 DCM_STRING_ARRAY *pinList;
 DCM_DOUBLE_ARRAY *settlingTimes;
} T_times;

int dpcmGroupGetSettlingTime
 (const DCM_STD_STRUCT *std_struct, T_times *rtn);

This returns two parallel arrays. The first array contains strings, each of which is a pin list whose syntax is
defined in 8.8 . The second array contains the corresponding settling time values, where each value is the
settling time between the pins in the associated pin list.

This function shall only be called by the application for group-related power computation.

261
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 261 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

See the definition of settling time as well as the method for calculating power in 8.5 and 8.6 . Each pin in
the pin list array shall be an actual pin name on the cell specified in the Standard Structure.

10.18.9.8 dpcmGroupGetSimultaneousSwitchTime

Table 210 provides information on dpcmGroupGetSimultaneousSwitchTime.

Table 210—dpcmGroupGetSimultaneousSwitchTime

Function name dpcmGroupGetSimultaneousSwitchTime
Arguments None
Result Array of pins, Array of simultaneous switch times
Standard
Structure fields

CellName, block, cellData (power), calcMode

DCL syntax EXPOSE(dpcmGroupGetSimultaneousSwitchTime):
 result(string[*]: pinList;
 double[*]: SimultaneousSwitchTimes);

C syntax typedef struct {
 DCM_STRING_ARRAY *pinList;
 DCM_DOUBLE_ARRAY *SimultaneousSwitchTimes;
} T_times;

int dpcmGroupGetSimultaneousSwitchTime
 (const DCM_STD_STRUCT *std_struct, T_times *rtn);

This returns two parallel arrays. The first array contains strings, each of which is a pin list whose syntax is
defined in 8.8 . The second array contains the simultaneous switch time values, where each value is the
simultaneous switching time for each pin in the associated pin list.

This function shall only be called by the application for group-related power computation.

See the definition of simultaneous switching time as well as the method for calculating power in 8.4 and
8.6 . Each pin in the pin list array shall be an actual pin name on the cell specified in the Standard Structure.

10.18.9.9 dpcmCalcPartialSwingEnergy

Table 211 provides information on dpcmCalcPartialSwingEnergy.

Table 211—dpcmCalcPartialSwingEnergy

Function name dpcmCalcPartialSwingEnergy
Arguments Pin pointer, Pin group index, Pin condition index, Width of occurrence
Result Energy per rail, Total energy
Standard
Structure fields

CellName, block, cellData (power), calcMode

DCL syntax EXPOSE dpcmCalcPartialSwingEnergy):
 passed(pin: pinPointer;
 integer: group_index, condition_index;
 double: width)
 result(double[*]: energyPerRail;
 double: totalEnergy);

C syntax typedef struct {
 DCM_DOUBLE_ARRAY *energyPerRail;
 DCM_DOUBLE totalEnergy;
} T_CalcPartialSwingEnergy;

int dpcmCalcPartialSwingEnergy
 (const DCM_STD_STRUCT *std_struct,
 T_CalcPartialSwingEnergy *rtn, DCM_PIN pinPointer,
 INTEGER Group_index, INTEGER Condition_index,
 DCM_DOUBLE width);

262
Copyright © 2010 IEEE all rights reserved.

– 262 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

This returns the energy of a partial logic swing for a particular pin group. Width is defined as the time for
the pin to transition from a threshold and back to the same threshold.

If the application is using dpcmGetAETCellPowerWithSensitivity, pass in a –1 for the group_index and
Condition_index.

NOTE—No static power is returned by this call; the application shall use the static power associated with the
proceeding cell state.

10.18.9.10 dpcmSetInitialState

Table 212 provides information on dpcmSetInitialState.

Table 212—dpcmSetInitialState

Function name dpcmSetInitialState
Arguments Initial state index, cache handle
Result Static power/rail, Total static power, cacheHandle
Standard
Structure fields

CellName, block, cellData (power)

DCL syntax EXPOSE(dpcmSetInitialState):
 passed(integer: initialStateIndex;
 void: cacheHandleIn)
 result(double[*]: staticPowerPerRail;
 double: totalStaticPower;
 void: cacheHandleOut);

C syntax typedef struct {
 DCM_DOUBLE_ARRAY *staticPowerPerRail;
 double totalStaticPower;
 VOID cacheHandleOut;
} T_energy;

int dpcmSetInitialState (const DCM_STD_STRUCT *std_struct,
 T_energy *rtn, INTEGER initialStateIndex,
 VOID cacheHandleIn);

This function is used by the application to set the initial state of the instance specified in the Standard
Structure. The initialStateIndex is the index number of the desired initial state from the initialStateChoices
array returned by the dpcmGetCellPowerInfo function for this cell.

The initialStateIndex shall be a valid index into the initialStateChoices array.

The static power per rail and the total static power consumed by the specified initial state is returned to the
application. This function may call back for filling of load and slew caches if needed by using
appRegisterCellInfo.

For cells with initial states, the DPCM creates a state cache and returns a handle to this cache back to the
application. This state cache along with the use of the cacheHandleIn and cacheHandleOut are described in
8.3 . The application shall associate the returned state cache handle with the instance specified in the
Standard Structure. During a power calculation request for an instance that has initial states, the DPCM
shall call appGetStateCache to retrieve this state cache handle.

10.18.9.11 dpcmFreeStateCache

Table 213 provides information on dpcmFreeStateCache.

263
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 263 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 213—dpcmFreeStateCache

Function name dpcmFreeStateCache
Arguments cache handle
Result Return code
Standard
Structure fields

CellName, block, cellData

DCL syntax EXPOSE(dpcmFreeStateCache):
 passed(void: cacheHandleIn)
 result(integer: rc);

C syntax typedef struct {
 INTEGER rc;
} T_FreeStateCache;

int dpcmFreeStateCache (const DCM_STD_STRUCT *std_struct,
 T_FreeStateCache *rtn, VOID cacheHandleIn);

This function is called to free the state cache when no longer needed (see 8.2).

10.18.9.12 appGetStateCache

Table 214 provides information on appGetStateCache.

Table 214—appGetStateCache

Function name appGetStateCache
Arguments None
Result cache Handle out
Standard
Structure fields

block, cellName

DCL syntax EXTERNAL(appGetStateCache):
 result(void: cacheHandleOut);

C syntax typedef struct {
 VOID cacheHandleOut;
} T_cacheHandle;

int appGetStateCache (DCM_STD_STRUCT *std_struct,
 T_cacheHandle *rtn);

During a power calculation request on an instance with initial state choices, the DPCM shall call this
function to retrieve the instance’s state cache handle (see 8.2). It is the application’s responsibility to
request this cache be created and initialized (via dpcmSetInitialState), and to associate the returned state
cache handle with the instance specified in the Standard Structure.

10.18.9.13 dpcmGetNetEnergy

Table 215 provides information on dpcmGetNetEnergy.

264
Copyright © 2010 IEEE all rights reserved.

– 264 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 215—dpcmGetNetEnergy

Function name dpcmGetNetEnergy
Arguments None
Result Net energy
Standard
Structure fields

CellName, block, fromPoint, cellData (power), pathData (power-pin-specific),
calcMode

DCL syntax EXPOSE(dpcmGetNetEnergy):
 result(double: netEnergy);

C syntax typedef struct {
 DCM_DOUBLE netEnergy;
} T_NetEnergy;

int dpcmGetNetEnergy (const DCM_STD_STRUCT *std_struct,
 T_NetEnergy *rtn);

This returns the energy consumed by a transition on the net connected to fromPoint.

10.19 Application context

Once an application starts an exchange with a library by calling one of the latter’s functions, and the library
in turn calls an application function during this process, the application might need context information
associated with the library call it made originally to respond correctly to the library’s request. To do this
effectively, the application can attach context data to the Standard Structure passed to the library as part of
the original function call. The application can set the applicationInfo pointer in the Standard Structure to
point to this context data.

The library shall not modify the applicationInfo pointer in any Standard Structure it receives from the
application nor the application data to which this field points. In addition, the library shall ensure this same
pointer value is present in all Standard Structures passed in calls to application functions until the original
function call the application made is complete.

10.19.1 pathData association

The library shall associate a maximum of one pathData pointer with each arc, pin, or internal node in a cell
model. The pathData pointer associated with an arc is used to provide access to information specific to that
arc cached by the library. Similarly, the pathData pointer associated with a pin or node is used to provide
access to information specific to that pin or node or any arcs that radiate from the pin or node.

The application shall be responsible for keeping the input and output parts of a bidirectional pin separate
and distinguishable, so they can be viewed as separate pins by the library. The library shall be able to
associate a unique pathData pointer with each of these parts and the application shall store this pointer with
the appropriate part when requested to do so by the library.

Any attempt by the library to associate (via any API function call) multiple, different pathData pointers
with a given pin, node, or arc shall be an error.

10.20 Application and library interaction

Libraries may contain 5 model domains, timing, power, behavior, vectorTiming and vectorPower. An
application interacting with a library shall maintain separate cell models for each domain it chooses to
represent within the library.

265
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 265 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Example
/*** 2 input AND gate behavior description ***/
model (AND2_behavior) : defines (AND2.*.behavior);

modelproc (AND2_behavior) :
 do: function(
 Z = A `& B
);
end;

/*** 2 input AND gate timing description ***/
model (AND2_timing) : defines (AND2.*.timing);

modelproc (AND2_timing) :
 path(): from(A,B) to(Z) propagate(rise<->rise & fall<->fall);
end;

The application shall only request the library elaborate a cell model for a single domain at a time. The
application shall not use the default operator * in the domain field of the Standard Structure when calling
for model elaboration.

The application shall determine the types of cells and model domains supported in the library by calling the
interface function dpcmGetCellList. For each cell modeled in multiple domains, the DPCM shall return as
many entries in the cell list for that cell as the number of domains where the cell is modeled. Once the
model domains have been determined, the application can then call modelSearch for a given cell, a
cellQual, a list of inputs, a list of outputs, and a specific modelDomain, which is supported by the library.

Model elaboration begins when the application calls modelSearch. The library can call an appropriate
sequence of callback functions (during model elaboration), including the implicit functions
newPropagateSegment(), newDelayMatrixRow(), and so on. The sequence of these call backs and the data
associated with them are unique to the cell being elaborated. The application shall store the pathData
pointers supplied by the implicit call backs. The library shall not construct a model for a cell, cellQual, and
modelDomain combination that requires the application to store more than one pathData pointer for any
single pin, arc, or internal node.

The model elaboration process for the behavior, vectorTiming, and vectorPower domains shall describe the
cell’s function or state in a graph format. The graph format transferred to the application uses nodes to
represent Boolean operations, arcs to represent data sources, and arcs to represent data results of these
Boolean operations. Once the library has transferred the graph to the application, it is the responsibility of
the application to evaluate the graph for its own purposes.

The application can choose to defer the evaluation or directly use the representation transferred by the
library. In either case, the application shall save the pathData pointers returned by the implicit call backs
and the cellData set in the Standard Structure when the call to modelSearch ends. When the application no
longer needs the pathData or cellData pointers, it received from the library, and the application shall call
dcmDeletePathDataBlock or dcmDeleteCellDataBlock, respectively.

10.20.1 behavior model domain

The behavior domain uses a graph to represent the Boolean functions of a cell. Each graph transferred
during model elaboration of a cell represents an independent function performed by that cell.

266
Copyright © 2010 IEEE all rights reserved.

– 266 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.20.2 vectorTiming and vectorPower model domains

The model elaboration process shall describe a cell’s set of vector expressions in a graph format. Each
vector that evaluates to true represents a cell state change. Each cell state change has associated with it a
delay, slew, and check calculation. Once elaboration is complete, the application can evaluate each graph
that evaluates to true and call the library for delay, slew, and check. The application requesting (for the
library to calculate) delay, slew, or check shall provide the pathData pointer associated with the
DCM_PRIMITIVE_VECTOR_DELAY_TARGET or DCM_PRIMITIVE_VECTOR_CHECK_TARGET to
that library. Once the application requests vector delay and vector slew evaluations, the library shall return
the early and late delay and slew values.

Unlike in IEEE Std 1481-1999, vectors permit description of multiple transitions. For example, the
following describes a sequence of transitions for a given from and to point:

Example
/*** 2 input AND gate vector power description ***/
model (AND2_vectorTiming) : defines (AND2.*.vectorTiming);

modelproc (AND2_vectorTiming) :
 do: vector(-|+A->-|+B->-|+Z)
 from(B) to(Z) propagate(rise->rise);
 do: vector(-|+B->-|+A->-|+Z)
 from(A) to(Z) propagate(rise->rise);
end;

For the timing and power domains, the delay and output slew calculation may be functions of input slew at
pin a. However, as the previous example indicates, delay and output slew calculations can be functions of
more than two pins. Therefore, a library that contains vectorTiming or vectorPower models can call the
application for input slews, output capacitance loads, and resistance on multiple pins via the
appRegisterCellInfo(). In response to this call, the application shall provide slews and loads for the
specified pins by calling dpcmFillPinCache() for those pins listed in the vector expression. The library then
uses those slews and loads for computing the delay, slew, check, or power.

10.20.3 Power unit conversion

The library can represent its power modeling in either energy (Joules), power (Watts), or any other
proprietary unit. The library needs to ensure the appropriate energy units are passed for all the functions in
the power and vectorPower domains. These units shall match the exponents returned by
dpcmGetRuleUnitToJoules and dpcmGetRuleUnitToWatts.

10.20.4 Vector power calculation

The model elaboration process shall describe a cell’s set of vector expressions in a graph format. Each
vector represents either a cell state change or a steady state of a cell. Each vector has a power calculation
associated with it. Once the model elaboration process for a cell is complete, the application has a set of
vectors and their associated pathData pointers. The application can evaluate the graph for each vector to
determine which occur during simulation. For those that evaluate to true, the application shall call
dpcmGetCellVectorPower (see 10.23.13.15) for the power associated with each vector. The application
shall provide the pathData pointer associated with the DCM_PRIMITIVE_VECTOR_POWER_TARGET
when calling the library to calculate the power.

Once the application has set up the models of power vectors and determined that the conditions described
by the vector function graph are met, it can call the DPCM to calculate power for a given vector. The
application shall call dpcmGetCellVectorPower. The application needs to pass the cellData information for
the cell and the pathData for the vector.

267
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 267 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

To obtain slewrate and capacitance data for the instance, the DPCM shall call back to the application via
the EXTERNAL API appRegisterCellInfo(). This function passes in three flags indicating the type of
information being requested (capacitance, resistance, and/or slew) and the types of pins for which the
requested information is needed (i.e., inputs, outputs, bidirectionals, or all). This call back
(appRegisterCellInfo()) enables the application to update (if necessary) the load and slew cache for this
instance prior to the power calculation via the EXPOSEAPI dpcmFillPinCache().

Use the following calls to request voltage and temperature parameters:

— appGetCurrentRailVoltage

— appGetCurrentTemperature

The process point is set by the application by calling dpcmSetCurrentProcessPoint (see 10.23.11.1.1).

The switching bits information is requested by calling appGetSwitchingBits (see 10.23.13.5).

10.21 Parasitic analysis

Parasitic analysis typically requires the calculation of the interconnect and driver models associated with an
interconnect network that connects drivers and receivers.

10.21.1 Assumptions

The following represents a procedural interface between an application and a library for the purpose of
exchanging parasitic information. The interface is capable of handling both linear and nonlinear devices.
Some applications and libraries are not able nor desire to process all the potential element types the
interface is capable of processing. An application that encounters devices it is not equipped to process shall
use a suitable default and optionally issue an informative message.

10.21.2 Parasitic networks

A parasitic network is a collection of network fragments called subnets. Each subnet can contain a
collection of interconnected parasitic elements such as resistors, capacitors, inductors, and clamping diodes.
The application needs to assemble the collection of subnets into a single system representing the entire
parasitic network that exists between the driver and receiver(s). The library needs to supply subnets for
those portions of the network that exist within a library element and calculate the reduced models required
for its calculation of delay and slew.

When analyzing the network a cell is driving, the application shall gather all the component parts
(including pin parasitics) and assemble them into a complete network. This network is then presented to the
driving cell for analysis.

A parasitic element is a device that alters the electrical characteristics of a network. A parasitic network is
comprised of a collection of parasitic elements that are connected to terminals called nodes. During the
calculation of interconnect characteristics such as delay and slew, the parasitic network is analyzed to
determine the effect it has on the calculation. Each cell that represents a driver or sink has some type of
parasitic network. So the effects of these parasitics on delay and slew are properly considered, and the
designed interconnect network, as well as driver and sink networks, shall be merged into a single unified
system for analysis.

10.21.3 Basic definitions

This subclause defines some basic terms used during parasitic analysis.

268
Copyright © 2010 IEEE all rights reserved.

– 268 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.21.3.1 Logical pins and internal nodes

A cell can have a logical pin that represents the entry and/or exit point of a logical signal. A pin can be an
entry or exit point, but not both at the same time. This logical entry point shall have one or more connection
points called ports, where the signal retains the same logical function if it is connected to any of these
physical locations. In many situations, there can be cells where the logical pin is not the only location
where analysis measurements shall take place. For example, a very large cell or macro can have a single
logical pin that is routed to several internal points for use by the cell.

10.21.3.2 Physical ports

A physical port is a physical attachment point where an electrical signal can enter or exit the cell. Like
logical pins, the ports can be both an entry and exit point, but not at the same time. Because there can be
many physical ports associated with a pin, the library shall supply a mapping system (port numbers) that
correlates the physical ports with their associated nodes in the parasitic representation of that pin.

The application shall use port numbers to connect nodes in the parasitic network external to the cell to
nodes in the internal parasitic network for the pin. Port names for a pin are contained within an array
associated with each pin. They are identified by their index in the array for rapid mapping. The index of the
first port shall be zero (0).

10.21.3.3 Nodes

Nodes represent points where electrical elements, such as resistors, capacitors, inductors and clamping
diodes, can be connected. They are represented by positive integers beginning at zero (0). Each node has a
type, such as intermediate node or termination node. A termination node is a point where both elements can
be connected and measurements taken. An intermediate node is a point where only elements can be
connected. The node number zero (0) is assumed to be an internal connection to ground.

10.21.3.4 Terminating points

A terminating point is where some measurement can be viewed. It can be a source or a sink. The collection
of interconnect parasitic subnets and parasitic subnets within the source or sink pins comprise the parasitic
network under analysis. Each subnet shall be thought of by its creator as a complete network. The
application shall take this collection of subnets and merge them into a single uniform parasitic network. To
do this, both the application and library shall use a consistent data arrangement that can be viewed and
manipulated.

10.21.3.5 Parasitic elements

A parasitic element is a device contained within a network that alters the performance of a circuit. Each
parasitic element contains the type of element it represents; such as a resistor, capacitor, inductor, or
clamping diode; the list of nodes to which it is connected; and the values associated with that element.

10.21.3.6 Subnets

A subnet consists of an ordered list of node types, a node map (mapping nodes in the subnet to the overall
network’s nodes), a list of elements, a port map (an ordered list of the nodes in the subnet that represent
ports), a change flag, and a pair of linking pointers to other subnets.

An interconnect network is composed of many subnets. At a minimum, there shall be one subnet for each
driver, one for each receiver, and one for the interconnect between the drivers and receivers. The
interconnect subnet can be subdivided to account for voltage and temperature variations and for different
interconnect technologies.

269
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 269 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

The library shall supply the subnets for its drivers and receivers, which are scaled correctly to account for
the current voltages, temperature, and process point. The application is responsible for creating the
interconnect subnets. There are situations where an extraction was performed at voltage, temperature, and
process points that are different from the current conditions. To account for these changes and any on-chip
process variation, the application shall call EXPOSE APIs, allowing the library to scale each interconnect
subnet the application created.

Each element in a subnet has a collection of attached nodes. Each node is a represented by a unique
positive integer. Node zero is reserved for ground; in the absence of a port information, node one shall be
mapped to the logical pin associated with the subnet. Each node also has an associated node type that
indicates whether the node is a measurement point or just an intermediate point in the network. The
terminus of each timing arc that begins or ends at this pin shall be mapped to a measurement point in the
subnet.

10.21.4 Parasitic element data structure

Each parasitic element is represented by a data structure (parasiticElement). The contents of this structure
vary depending on the parasitic element being represented. A member of the data structure (elementType)
identifies the type of the parasitic element. Each type of parasitic element has a different content. The
structure defined for a parasitic element is large enough to handle the most complex parasitic element,
while being space conscientious for simpler elements, such as resistors. The data structure is composed of
several fields, as shown in Table 216; some of the fields are undefined for certain types of parasitic
elements.

Table 216—parasiticElement structure

DCL syntax
typedef(ivcurve):
 result(double var [*] var: voltage, current);

typedef(parasiticElement):
 result(int var: elementType,
 node0Index, node1Index,
 node2Index, node3Index;
 double var: value0, value1, value2, value3, value4;
 var ivcurve var: ivCurve;
 string var : modelName;
 int var : railIndex;
 int var: node0Position, node1Position,
 node2Positon, nodePposiiton;
 void var : ownerPrivate);

C syntax
enum DCM_ElementTypes {
 DCM_RESISTOR,
 DCM_CAPACITOR,
 DCM_INDUCTOR,
 DCM_MUTUAL_INDUCTANCE,
 DCM_LOSSLESS_TRANSMISSION_LINE_TIME_DELAY_BASED,
 DCM_LOSSLESS_TRANSMISSION_LINE_FREQUENCY_BASED,
 DCM_LOSSY_TRANSMISSION_LINE_RLC,
 DCM_LOSSY_TRANSMISSION_LINE_RC,
 DCM_LOSSY_TRANSMISSION_LINE_LC,
 DCM_LOSSY_TRANSMISSION_LINE_LG,
 DCM_DIODE,
 DCM_VOLTAGE_SOURCE
};

typedef DCM_STRUCT DCM_ivCurve;

typedef struct {
 DCM_ElementTypes elementType;
 DCM_INTEGER node0Index, node1Index, node2Index, node3Index;

270
Copyright © 2010 IEEE all rights reserved.

– 270 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

 DCM_DOUBLE value0, value1, value2, value3, value4;
 const DCM_ivCurve *ivCurve;
 const DCM_STRING modelName;
 DCM_INTEGER railIndex;
 DCM_INTEGER node0Postion, node1Position, node2Position,
 node3Position;
 DCM_VOID ownerPrivate;
} DCM_ParasiticElement;

typedef DCM_ParasiticElement *DCM_ParasiticElement_ARRAY;

Table 217 defines the semantics associated with the fields of the parasiticElement structure. The structure
shall contain the complete set of structure fields (i.e., the structure never varies in size), but the number of
members that are valid vary by elementType.

Table 217—Parasitic element variables

Variable name Definition

elementType The enumerated type of the parasitic element

node0 The node index of the first terminal on the parasitic element

node1 The node index of the second terminal on the parasitic element

node2 The node index of the third terminal on the parasitic element

node3 The node index of the fourth terminal on the parasitic element

value0 The first value associated with the parasitic element

value1 The second value associated with the parasitic element

value2 The third value associated with the parasitic element

value3 The fourth value associated with the parasitic element

value4 The fifth value associated with the parasitic element

modelName The clamping diode model name

ivCurve A pointer to the current versus voltage curve that models the clamping diode

railIndex The voltage-source rail index

position0 The physical position of node0

position1 The physical position of node1

position2 The physical position of node2

position3 The physical position of node3

ownerPrivate A pointer pointing to an owner private collection of data

10.21.4.1 elementType

elementType is an enumerated type that identifies the kind of parasitic element a structure represents, as
shown in Table 218.

Table 218—DCM_ElementTypes

Enumerated name Value Definition

DCM_RESISTOR 0 Resistor

DCM_CAPACITOR 1 Capacitor

DCM_INDUCTOR 2 Inductor

DCM_MUTUAL_INDUCTANCE 3 Mutual inductance

DCM_LOSSLESS_TRANSMISSION_LINE_TI 4 Lossless time delay transmission line

271
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 271 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Enumerated name Value Definition

ME_DELAY_BASED

DCM_LOSSLESS_TRANSMISSION_LINE_FR
EQUENCY_BASED

5 Lossless frequency based transmission line

DCM_LOSSY_TRANSMISSION_LINE_RLC 6 Lossy RLC transmission line

DCM_LOSSY_TRANSMISSION_LINE_RC 7 Lossy RC transmission line

DCM_LOSSY_TRANSMISSION_LINE_LC 8 Lossy LC transmission line

DCM_LOSSY_TRANSMISSION_LINE_LG 9 Lossy LG transmission line

DCM_DIODE 10 Clamping diode

DCM_VOLTAGE_SOURCE 11 Voltage source

10.21.4.2 Node index variable values

A parasitic subnet contains an array of nodes. Each parasitic element in the subnet can reference up to four
of these nodes. Each of those nodes is represented by the corresponding index in the subnet’s node map.
Each type of parasitic element shall use preassigned structure variables for its terminals as defined in
Table 219.

Table 219—Node variables

Element type Indices

Resistor
node0Index = one end of the resistor
node1Index = the other end of the resistor

Capacitor
node0Index = positive end of the capacitor
node1Index = negative end of the capacitor

Inductor
node0Index = positive or dotted end of the inductor
node1Index = other end of the inductor

Mutual inductance

node0Index = one inductor
node1Index = other inductor
Inductors are tracked by element number, i.e., they are counted beginning at zero
(0). The first inductor seen in the parasitic elements is identified as zero, the next as
one and so on.

All types of
transmission line

node0Index = input port 1 of the transmission line
node1Index = input port 2 of the transmission line
node2Index = output port 1 of the transmission line
node3Index = output port 2 of the transmission line

Diode
node0Index = positive end of the diode
node1Index = negative end of the diode

Voltage source
node0Index = the positive node
node1Index = the negative node

10.21.4.3 Parasitic element values

Each parasitic element can contain one or more values. The value variable assignments for each type of
parasitic element are defined in Table 220.

Table 220—Value variables

Element type Values

Resistor value0 = resistance

272
Copyright © 2010 IEEE all rights reserved.

– 272 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Element type Values

Capacitor value0 = capacitance

Inductor value0 = inductance

Mutual inductance value0 = coupling coefficient

Lossless transmission
line time delay based

value0 = characteristic impedance
value1 = time delay

Lossless transmission
line frequency based

value0 = characteristic impedance
value1 = frequency
value2 = normalized electrical length

Lossy transmission lines

value0 = resistance/unit length
value1 = inductance/unit length
value2 = conductance/unit length
value3 = capacitance/unit length
value4 = length of the line

— For RLC networks, value0, value1, value3, and value4 shall have valid
values.
For RC networks, value0, value3, and value4 shall have valid values.

— For LC networks, value1, value3, and value4 shall have valid values.
— For LG networks value1, value2 and value4 shall have valid values.

Diode value0 = cut-in voltage

Voltage source
value0 -- value4 are undefined.
railIndex carries the index of the rail voltage to be used as the voltage source.

10.21.4.4 Clamping diodes

A clamping diode has a nonlinear current-voltage characteristic. There are three alternatives for modeling a
clamping diode. The first order approximation of this characteristic is the cut-in voltage. When the voltage
observed across the diode is less than the cut-in voltage (Vplus – Vminus) the current passing through the
diode is zero (0). When the voltage is greater than or equal to this voltage, the diode’s resistance is assumed
to be zero (0).

For more accurate modeling of a diode, a voltage-versus-current curve can be represented in an IV-curve
structure (ivcurve in DCL and DCM_ivCurve in C). This structure contains a pair of synchronized arrays,
one containing voltages and the other containing the current passing through the diode at the corresponding
voltage. The voltage array contains a monotonically increasing list of voltages. Each member in the voltage
array voltage[i] represents a measurement point, whereas the corresponding member of the current array
current[i] is the current flowing through the diode when that voltage is applied. There shall be the same
number of elements in the voltage array as in the current array and ith element of the voltage array shall be
paired with the ith element of the current array.

Finally, the most accurate modeling approach is to use modelName to represent the name of a clamping
diode model. It shall be the responsibility of the library to locate this model.

10.21.4.5 ownerPrivate pointer

ownerPrivate is a pointer-sized space that the owner of the subnet is allowed to use for its own purposes.
This member can be set to any legal value, but if it is a pointer, the data to which it points shall be managed
and destroyed by its creator. When an element structure is deleted, this member shall not be altered in any
way.

NOTE—The application can use this field as a pointer to the element in the application’s memory.

273
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 273 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.21.5 Coordinates

Each element that is a member of a parasitic subnet has a position indicating where that component is
located on the chip. The location of the element shall be its physical location. The location shall consist of
x, y coordinates and the interconnect level. The x and y coordinates shall be the distance from the lower left
corner of the chip. The interconnect level is the level of interconnect counted vertically from the substrate.

It shall be the responsibility of the library to adjust parasitic coordinates to reflect their position relative to
the chip when presenting parasitic subnets to the application (Table 221).

Table 221—Coordinate structure

DCL syntax

typedef(Coordinate):
 result(float var: x,y;
 int var: interconnectLayer);

C syntax

typedef struct {
 float x, y;
 int z;
} Coordinate;

10.21.6 Parasitic subnets

A parasitic subnet consists of a collection of parasitic elements that represents a portion of the interconnect
network, including subnets contained within cells, as shown in Table 222.

Table 222—parasiticSubnet structure

DCL syntax
typedef(parasiticSubnet):
 result(int var: changed;
 var parasiticElement var[*] var :
 parasiticElementArray;
 int var[*] var: portMap, nodeMap, nodeTypeList;
 var parasiticSubnet var: nextSubnet, prevSubnet;
 TECH_TYPE var : techFamily;
 var Coordinates var[*]var: elementPosition;
 void var: ownerPrivate);

274
Copyright © 2010 IEEE all rights reserved.

– 274 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

C syntax
enum DCM_NodeTypes {
 DCM_INTERMEDIATE_NODE,
 DCM_SINK_NODE,
 DCM_SOURCE_NODE,
 DCM_AGGRESSOR_SOURCE_NODE
};

typedef DCM_NodeTypes DCM_NodeTypes_ARRAY;

typedef struct {
 DCM_INTEGER changed;
 DCM_ParasiticElement_ARRAY *parasiticElementArray;
 DCM_INTEGER_ARRAY *portMap, *nodeMap;
 DCM_NodeTypes_ARRAY *nodeTypeList;
 DCM_ParasiticSubnet *nextSubnet, *prevSubnet;
 DCM_TechFamilyNugget *techFamily;
 DCM_VOID ownerPrivate;
} DCM_ParasiticSubnet;

Table 223 shows the set of possible node types (for DCM_NodeType).

Table 223—DCM_NodeTypes

Node type Value Definition

DCM_INTERMEDIATE_NODE 0 The typical internal node in a parasitic graph; this is a
point where parasitic elements with a common connection
point shall be attached. Intermediate nodes are not
measurement points where delays and slews are
calculated.

DCM_SINK_NODE 1 DCM_SINK_NODE represents a node where a receiver is
attached. Sink nodes are measurement points to which
delays and slews are calculated.

DCM_SOURCE_NODE 2 DCM_SOURCE_NODE represents a node where a driver
is attached. Source nodes are measurement points from
which delays and slews are measured.

DCM_AGGRESSOR_SOURCE_NOD
E

3 DCM_AGRESSOR_SOURCE_NODE represents a node
where a coupled aggressor driver is attached.

DCM_PARALLEL_DRIVER_NODE 4 DCM_PARALLEL_DRIVER_NODE represents a node to
which one of a set of drivers acting in unison is attached.

10.21.6.1 Changed

changed represents whether this parasitic subnet has been modified since the last time the subnet was
presented to the library. A change includes adding or deleting parasitic elements, changing the value of a
parasitic element, changing the node ordering, or changing the configuration of the subnet or its relative
placement with respect to other parasitic subnets. If a change has occurred, then the value of changed is 1
(one); otherwise it is 0 (zero).

10.21.6.2 parasiticElementArray

parasiticElementArray is a pointer to a DCM_ARRAY of pointers to DCM_ParasiticElement structures.

275
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 275 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.21.6.3 portMap

Port names shall be defined in an ordered list so they can be referenced by their position within that list.
portMap is an array of node indices; it contains one element for each port associated with a logical pin. The
node number contained at portMap index n is the node associated with port n. The name corresponding to
portMap index n is the nth port name associated with the logical pin.

Because an interconnect subnet is not associated with a cell, it has no ports. The application shall ensure the
port(s) of each subnet which represent a pin’s parasitics are correctly attached to the subnet(s) representing
the design net where that pin is connected.

10.21.6.4 nodeMap

nodeMap is an array of nodes used by the subnet. nodeMap element 0 (zero) shall have a value of 0 (zero)
and shall represent ground. nodeMap element 1 (one) shall represent a logical pin’s default connection
point. All other nodeMap values are consecutive positive integers.

10.21.6.5 nodeTypeList

nodeTypeList is an array of integers (DCM_NodeTypes enum in C) representing the type of each node in the
subnet. The ithnodeType value in nodeTypeList represents the type of node corresponding to the ith entry in
the node map of the subnet. The zeroth and first node types correspond to ground and the default port for a
logical pin, respectively.

10.21.6.6 Link pointers

Parasitic subnets are connected in a linked list to form a parasitic network. nextSubnet and prevSubnet point
to the next and previous subnets in the list, respectively. For the first or last subnet in the list, prevSubnet or
nextSubnet shall have a value of 0 (zero).

10.21.6.7 techFamily

techFamily is a structure containing the TECH_FAMILY to which the subnet belongs. Its contents shall not
bemodified once the subnet is created.

10.21.6.8 elementPosition

The elementPosition array contains an array of coordinates. Each coordinate in the array represents a
physical location within the design. Parasitic elements contain one or more indexes into this array. Parasitic
elements shall have a position index for each valid node.

The array of element positions allows the sharing of coordinate information for those parasitic element
nodes that have a common physical location.

10.21.6.9 ownerPrivate pointer

ownerPrivate is a pointer-sized space that the owner of the subnet is allowed to use for its own purposes.
This member can be set to any legal value, but if it is a pointer, the data to which it points shall be managed
and destroyed by its creator. When a subnet structure is deleted, this member shall not be altered in any
way. When the library is the creator, the user private member may be an abstract type. The library may
achieve this through casting or carrying parallel type definitions.

NOTE—The application can use this field as a pointer to the element in the application’s memory.

276
Copyright © 2010 IEEE all rights reserved.

– 276 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.21.6.10 Linked lists of subnets

A parasitic network is a linked list of subnets, with each subnet containing an array of parasitic elements.
Each subnet shall be linked into the list by the application, which shall convert its parasitic element values
to the units of the driving cell.

For parasitics that it owns, such as those between cells in an interconnect network, the application shall
request that the library create a new subnet structure by calling dpcmCreateSubnetStructure (see
10.21.6.12). The number of parasitic elements to be placed in the subnet shall be specified in this call, and
the subnet returned shall not contain port-map, node-map, nor node-type arrays (pointers to these arrays
shall be set to zero (0) by the library).

The application shall then fill in the element array in this subnet. It shall also request that the library
allocate appropriately sized node-map and node-type arrays (via dcm_new_DCM_ARRAY), set the
corresponding pointers in the subnet to point to them, and fill in them in. The application shall not claim
these arrays, nor shall it disclaim them when the subnet is disclaimed.

The value of the portMap pointer in the subnet shall be left at zero (0), and the application shall set the
ownerPrivate pointer as it deems fit.

The application shall partition any network that traverses more than one technology, more than one voltage
for any voltage rail, or different temperatures into multiple subnets, so that each subnet is confined to a
single voltage set, temperature, and technology.

The application shall also ask the library for the parasitic subnets associated with the sink and source pins
connected to the network, one pin at a a time. In response, the library shall build a parasiticSubnet structure
for each such pin. The parasitic values in a pin subnet provided by the library shall be scaled based on the
current voltage, temperature, and process settings for the design. The library shall return a complete
structure containing port-map (if needed), node-map, and node-type arrays.

The application (during the process of assembling the interconnect network) shall organize the individual
subnets into a double-linked list by setting nextSubnet in each subnet to point to the next subnet in the list
and prevSubnet in that subnet to point to the previous subnet in the list. The first subnet’s prevSubnet shall
have a value of zero (0), and the last subnet’s nextSubnet shall also have a value of zero (0). There shall be
no specific order assumed for or imposed on this list.

The application shall also adjust each subnet’s nodeMap so the node numbers are unique within the
network as a whole, except for entry 0 (zero), which shall be mapped to node 0, representing ground. All of
this is depicted in Figure 6.

NOTE—The application can determine from examining parasitic element coordinates within a library subnet whether
or not additional parasitic elements are required. The application at its discretion may add these components to another
subnet of its own creating using the node numbers corresponding to the reordered node numbers to specify where these
parasitic elements should be attached.

277
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 277 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

278
Copyright © 2010 IEEE all rights reserved.

Figure 6—Subnet node mapping

– 278 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

To accommodate on-chip process variations, two parasitic networks can exist for each net, one containing
element values for the minimum and the other having values for the maximum of the on-chip process
uncertainty (see 10.23.8.3.1). These two networks shall be identical in all other respects, including the
order in which their elements and nodes appear. If on-chip process variation is not to be modeled, then only
one network shall be used.

When the library returns a subnet to the application, the application shall claim that subnet to prevent it and
any of its members from being deleted. When the application is finished with any subnet, it shall unlink it
from the list to which it was attached, setting the subnet’s nextSubnet and prevSubnet pointers to zero (0).
Only then shall the application disclaim that subnet.

The application shall neither claim nor disclaim the arrays within a subnet. The library shall disclaim these
arrays when the subnet of which they are members is disclaimed.

10.21.6.11 Parasitic subnet structure construction

The application shall call the library for the construction of a new subnet so the library can manage the
memory used. When the application calls dpcmCreateSubnetStructure, the library shall return a newly
created subnet.

10.21.6.12 dpcmCreateSubnetStructure

Table 224 provides information on dpcmCreateSubnetStructure.

Table 224—dpcmCreateSubnetStructure

Function name dpcmCreateSubnetStructure
Arguments Number of parasitic elements
Result Parasitic subnet
Standard
Structure fields

None

DCL syntax EXPOSE(dpcmCreateSubnetStructure):
 passed(int: numberOfParasiticElements)
 result(var parasiticSubnet: parasiticData);

C syntax typedef struct {
 DCM_ParasiticSubnet *parasiticData;
} T_ParasiticSubnet;

int dpcmCreateSubnetStructure
 (const DCM_STD_STRUCT *std_struct,
 T_ParasiticSubnet *rtn,
 DCM_INTEGER numberOfParasiticElements);

This allocates a new subnet structure, creates an element array, and attaches that array to the structure. The
element array shall be sufficiently large to hold the number of parasitic elements specified in the argument
numberOfParasiticElements. The library shall set the portMap, nodeMap, nodeTypeList, nextSubnet,
prevSubnet, and ownerPrivate fields of the new subnet to zero (0). The changed field shall also be set to
zero (0), and the techFamily pointer shall be set to point to the technology family referenced in the
Standard Structure.

279
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 279 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.21.6.13 Example array

Below is an example of the DCL code used to create a new subnet.
/***
Entry point the application calls to get a blank subnet for a
specific number of elements
***/

EXPOSE(dpcmCreateSubnetStructure):
 passed(integer: numberOfParasiticElements)
 local(
 // create the subnet structure
 var parasiticSubnet: pe = new(var parasiticSubnet)
&
 // set the changed switch to zero
 pe.changed = 0,

 // create an parasiticElementArray of the specified size
 pe.parasiticElementArray =
 new(var parasiticElement var [numberOfParasiticElements]),
&
 // for every parasitic element
 for((integer: loopCtr = 0),
 (loopCtr < numberOfParasiticElements),
 (loopCtr = loopCtr+1))
 // create a parasitic element structure
 local(
 pe.parasiticElementArray[loopCtr] =
 new(var parasiticElement)
&
 pe.parasiticElementArray[loopCtr].ownerPrivate = nil)
&
 // set port- and node-map, node-type-list pointers to zero
 pe.portMap = nil,
 pe.nodeMap = nil,
 pe.nodeTypeList = nil
&
 // set the linked list pointer to zero
 pe.nextSubnet = nil,
 pe.prevSubnet = nil
&
 // set tech family
 pe.techFamily = current_tech_type().TT
&
 pe.ownerPrivate = nil
)
 result(var parasiticSubnet: parasiticData=pe);

10.21.6.14 dpcmGetDefaultInterconnectTechnology

Table 225 provides information on dpcmGetDefaultInterconnectTechnology.

280
Copyright © 2010 IEEE all rights reserved.

– 280 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 225—dpcmGetDefaultInterconnectTechnology

Function name dpcmGetDefaultInterconnectTechnology
Arguments None
Result Default interconnect technology
Standard
Structure fields

None

DCL syntax EXPOSE(dpcmGetDefaultInterconnectTechnology):
result(TECH_TYPE: techFamily);

C syntax typedef struct {
 const DCM_TechFamilyNugget *techFamily;
} T_Technology;

int dpcmGetDefaultInterconnectTechnology
 (const DCM_STD_STRUCT *std_struct,
 T_Technology *rtn);

This returns a technology the application can use when it cannot otherwise determine which technology
owns a particular interconnect subnet back to the application. It is only valid in the DEFAULT technology;
the application shall only call this function using a Standard Structure that is set to the DEFAULT
technology. The technology returned shall not be used for subnets obtained from the library other than
those created via dpcmCreateSubnetStructure (see 10.21.6.12).

10.21.6.15 dpcmScaleParasitics

Table 226 provides information on dpcmScaleParasitics.

Table 226—dpcmScaleParasitics

Function name dpcmScaleParasitics
Arguments Subnet to scale, Extraction operating point, Extraction voltages, Extraction process

point, Extraction temperature
Result Scaled parasitic subnets
Standard
Structure fields

calcMode

DCL syntax EXPOSE(dpcmScaleParasitics):
 passed(parasiticSubnet: subnet;
 int: extractionOpPointIndex;
 double: positiveExtractionVoltage,
 negativeExtractionVoltage,
 extractionTemperature,
 extractionProcessPoint)
 result(var parasiticSubnet: minSubnet, maxSubnet);

C syntax typedef struct {
 DCM_ParasiticSubnet *minSubnet, *maxSubnet;
} T_ScaledSubnets;

int dpcmScaleParasitics (const DCM_STD_STRUCT *std_struct,
 T_ScaledSubnets *rtn,
 const DCM_ParasiticSubnet *subnet,
 DCM_INTEGER extractionOpPointIndex,
 DCM_DOUBLE positiveExtractionVoltages,
 DCM_DOUBLE negativeExtractionVoltages,
 DCM_DOUBLE extractionTemperature,
 DCM_DOUBLE extractionProcessPoint);

This scales the parasitics within a subnet to compensate for changes in the operating point, process point,
voltages, and temperature. The library shall return subnets containing elements whose values are properly
scaled for the differences between any extraction conditions and the current analysis conditions back to the
application.

This function also provides modeling of on-chip process variation by returning pointers to two scaled

281
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 281 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

subnets, one with element values for the minimum and another with values for the maximum of the on-chip
process uncertainty (see 10.23.8.3.1). These two subnets shall be identical in all other respects, including
the order in which their elements and nodes appear. If on-chip process variation is not supported by the
library, the pointers returned shall be identical, pointing to the same subnet.

The application shall call this function to scale all subnets not contained within a cell. The application shall
not call this function to scale subnets within a cell. The application shall ensure a subnet due to be scaled is
completely owned by the technology called on to scale it. The library shall then set the techFamily
members in the subnets it returns to point to that technology. If the technology does not support this call,
the subnet values shall not be scaled and on-chip process variation shall not be modeled for that subnet.

dpcmScaleParasitics takes several passed arguments that enable it to perform the scaling operation, as
detailed in the next subclauses.

10.21.6.16 extractionOpPointIndex

extractionOpPointIndex is the index into the operating point array (see 10.23.10.1), which identifies the
extraction operating point. The valid range for extractionOpPointIndex is the integers from zero (0) through
the index of the last operating point in the array. If the application chooses to supply the individual
components of a process point, such as extraction temperature, then the value of extractionOpPointIndex
shall be –1.

10.21.6.17 positiveExtractionVoltage

positiveExtractionVoltage represents the greatest positive voltage the driving cell applied to the subnet
during the extraction process. positiveExtractionVoltage is only valid when the value of
extractionOpPointIndex is –1.

10.21.6.18 negativeExtractionVoltage

negativeExtractionVoltage represents the most negative voltage the driving cell applied to the subnet during
the extraction process. negativeExtractionVoltage is only valid when the value of extractionOpPointIndex
is –1.

10.21.6.19 extractionTemperature

extractionTemperature represents the extraction temperature in that portion of the chip where the subnet is
located. extractionTemperature is only valid when the value of extractionOpPointIndex is –1.

10.21.6.20 extractionProcessPoint

extractionProcessPoint represents the process point used during the extraction process.
extractionProcessPoint is only valid when the value of extractionOpPointIndex is –1 (see 10.23.11.1).

10.21.7 Pin parasitics

The application shall provide the library with a complete interconnect network with which the library shall
perform its calculations. The application shall ask the library for pin parasitics subnets to be included in this
network.

Each pin-parasitics subnet returned by the library shall be a complete parasiticSubnet structure containing
port-map (if needed), node-map, and node-type arrays. The entries in the node-map array shall be
initialized to their index values, entry 0 being set to 0, entry 1 to 1, and so on. The library shall set the
changed, nextSubnet and prevSubnet fields of the new subnet to zero (0). The techFamily pointer shall be

282
Copyright © 2010 IEEE all rights reserved.

– 282 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

set to point to the technology family to which the pin’s cell belongs (referenced in the Standard Structure).
The library shall set the ownerPrivate pointer as it determines appropriate.

A pin’s parasitic network can be different depending on whether it is driving the net, in a high impedance
state, or receiving a logical signal. For example, a pin that is bidirectional can act as a receiver or a driver,
whereas a tristate output pin can be in an active or high impedance state, depending on whether or not it is
driving the attached net.

A pin also has separate parasitic subnets containing different element values for rising and falling signals.
For example, pin capacitance can depend on signal direction. If the library models on-chip process
variation, then a pin can have different subnets with different element values representing the minimum and
maximum of the on-chip process uncertainty (see 10.23.11). All of these subnets shall be identical in all
other respects, including the order in which their elements and nodes appear. The application is responsible
for stitching the correct subnets into the overall interconnect work for the calculation desired.

There are two separate calls for obtaining pin parasitics, one for sink (receiver or high impedance) and one
for source (driver) pin roles. For both calls, the library shall return up to four subnets (via pointers),
representing all possible combinations of rising and falling signals and minimum and maximum on-chip
process variation. If, for a given pin, the same parasitic subnet is used for both rising and falling signals,
then the pointers returned for rising signals shall be identical to those for falling signals. If the library does
not support on-chip process variation, then the pointers returned for the minimum of the on-chip process
uncertainty shall be identical to those for its maximum.

Source-pin parasitics shall include only those elements needed to represent the constant portion of an
output pin’s parasitics. Elements representing the active part of a driver pin such as output resistance or
admittance shall not be included. Instead, the library can include driver models for an output pin in the
XWF structures (see 10.23.8), for example, associated with that pin.

The library shall return pointers to subnets appropriate for the current analysis conditions. Different
conditions, with regard to operating point, for example, can yield subnets that are topologically as well as
numerically different.

For a net that has multiple, independent drivers directly connected to it (not counting coupled aggressor
drivers), the application shall create a different set of parasitic networks for use when each one of those
drivers drives the net. For a particular driver, each network in such a set shall include source-pin parasitics
for that driver and sink-pin parasitics for the other drivers. These networks shall then be used when load
and interconnect models (see 10.21.9) are created for that driver and for the net as driven by the driver.

When multiple, parallel drivers act in unison, source-pin parasitics shall be included for each one of them in
every parasitic network constructed for use when they drive a net. This same set of networks shall then be
used when creating load models for each parallel driver and interconnect models for the net when driven by
these drivers.

Under all circumstances, source-pin parasitics shall be used for all aggressor drivers.

Although a bidirectional pin can act as an input or an output, as observed at the pin, it shall not do both
simultaneously. Consequently, when a parasitic network for a net is created for use when a bidirectional pin
drives that net, the application shall include source parasitics only for that pin. Sink parasitics for the pin
shall not be included under such circumstances. Conversely, while creating a parasitic network for use
when a different pin drives the net, only the sink parasitics for that bidirectional pin shall be included.

10.21.7.1 dpcmGetSinkPinParasitics

Table 227provides information on dpcmGetSinkPinParasitics.

283
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 283 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 227—dpcmGetSinkPinParasitics

Function name dpcmGetSinkPinParasitics
Arguments Sink pin pointer
Result Parasitic subnets
Standard
Structure fields

CellName, cellData (timing), pathData (timing-pin-specific), calcMode

DCL syntax EXPOSE(dpcmGetSinkPinParasitics):
 passed(pin: sinkPin)
 result(var parasiticSubnet: risingMinSubnet,
 fallingMinSubnet,risingMaxSubnet,
 fallingMaxSubnet);

C syntax typedef struct {
 DCM_ParasiticSubnet *risingMinSubnet,
 *fallingMinSubnet, *risingMaxSubnet,
 *fallingMaxSubnet;
} T_PinParasitics;

int dpcmGetSinkPinParasitics
 (const DCM_STD_STRUCT *std_struct,
 T_PinParasitics *rtn, const DCM_PIN sinkPin);

This returns pointers to parasitic subnets for a sink pin. These subnets shall be constructed from memory
allocated by the library that is suitable for modification by the application. If any of the subnets within the
scope of a single call are identical, the same pointer shall be returned for them. It shall be a severe error to
call this function for a pin that cannot act as a sink.

10.21.7.2 dpcmGetSourcePinParasitics

Table 228 provides information on dpcmGetSourcePinParasitics.

Table 228—dpcmGetSourcePinParasitics

Function name dpcmGetSourcePinParasitics
Arguments Source pin pointer
Result Parasitic subnets
Standard
Structure fields

CellName, cellData (timing), pathData (timing-pin-specific), calcMode

DCL syntax EXPOSE(dpcmGetSourcePinParasitics):
 passed(pin: sourcePin)
 result(var parasiticSubnet: risingMinSubnet,
 fallingMinSubnet, risingMaxSubnet,
 fallingMaxSubnet);

C syntax typedef struct {
 DCM_ParasiticSubnet *risingMinSubnet,
 *fallingMinSubnet, *risingMaxSubnet,
 *fallingMaxSubnet;
} T_PinParasitics;

int dpcmGetSourcePinParasitics
 (const DCM_STD_STRUCT *std_struct,
 T_PinParasitics *rtn, const DCM_PIN sourcePin);

This returns pointers to parasitic subnets for a source pin back to the application. These parasitic subnets
shall be constructed from memory allocated by the library that is suitable for modification by the
application. If any of the subnets within the scope of a single call are identical, the same pointer shall be
returned for them. It shall be an error to call this function for a pin that cannot act as a source.

10.21.7.3 dpcmGetPortNames

Table 229 provides information on dpcmGetPortNames.

284
Copyright © 2010 IEEE all rights reserved.

– 284 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 229—dpcmGetPortNames

Function name dpcmGetPortNames

Arguments Pin pointer

Result String array of port names

Standard
Structure fields

CellName, cellData (timing), pathData(timing-pin specific)

DCL syntax EXPOSE(dpcmGetPortNames):
 passed(pin: pinPointer)
 result(string[*]: portNames);

C syntax typedef struct {
 DCM_STRING_ARRAY *portNames;
} T_PortNames;

int dpcmGetPortNames
 (const DCM_STD_STRUCT *std_struct,
 T_PortNames *rtn, const DCM_PIN pinPointer);

In many library cells, a single logical pin can have several physical ports where an interconnect network
can be attached. These different attachment points affect the analysis of that interconnect. Ports are named
within in a cell and are associated with a logical pin.

Both the application and library need quick references to these ports while performing an analysis. To
enable this rapid access, the port names for each pin in a cell shall form an ordered list, indexed by the port
numbers for that pin. dpcmGetPortNames returns this list of the port names associated with a pin.

dpcmGetPortNames has one argument, pinPointer, which identifies to the library the pin on a cell for which
a port name list is requested. It returns one result, portNames, an array of the port names for that pin. The
index of each name in this array is the number of the corresponding port.

Other calls referencing a port associated with this pin shall do so using the index of that port ’s name in this
array. It shall be an error to use a port index that is not within the bounds of the port name array for the
associated pin.

10.21.8 Modeling internal nodes

In situations where the internal network of a cell is complicated enough to warrant separate analysis for
individual internal nodes, the library shall use IMPORT or EXPORT clauses to associate these internal
nodes with the appropriate pins. The application shall treat each identified imported or exported node as a
valid measurement point associated with the input or output pin present in the corresponding clause. Each
such node shall be connected to one or more timing arcs which begin or end at the node. In such a situation,
the library can also use the input or output pin as a measurement point.

The application shall detect the presence of an IMPORT or EXPORT clause in a model through a library
call to newNetSinkPropagateSegments() or newNetSourcePropagateSegments(), respectively. However, the
pin involved can be either an input or an output. The following rules shall govern how the application
creates interconnect timing arcs in response to these calls:

— If an import pin is an input, the application shall create interconnect arcs from each driver pin on
the connected net to the internal sink node (the node that is the target of the import). These arcs
shall be created in lieu of those that would otherwise be directed from the driver pins to the import
pin.

— If an import pin is an output, the application shall create interconnect arcs from each driver pin on
the connected net, excluding the import pin, to the internal sink node. These arcs shall be created
in addition to those directed from the import pin to the sink pins connected to the net.

285
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 285 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

— If an export pin is an input, the application shall create interconnect arcs from the internal source
node (the node that is the target of the export) to each sink pin on the connected net, excluding the
export pin. These arcs shall be created in addition to those directed from the driver pins connected
to the net to the export pin.

— If an export pin is an output, the application shall create interconnect arcs from the internal source
node to each sink pin on the connected net. These arcs shall be created in lieu of those that would
otherwise be directed from the export pin to the sink pins.

For a bidirectional pin or tristate output, an imported or exported internal node shall be associated with the
source or sink parasitic subnet for that pin, but not with both.

Because a bidirectional pin can act as either an input or an output, the application shall use the pin handle
provided in each call to determine to which of these roles the call applies. For this to be possible, the
application shall provide different, distinguishable handles for this pin in the input pin and output pin lists
supplied in the Standard Structure for the modelSearch function call made for the cell involved.

The application shall continue to call for the typical common pin-related data, such as pin capacitance or
pin parasitics, using the associated pin, not an internal node. The parasitic subnet for a pin shall contain all
the elements that make up the network between the pin and all the internal sink or source nodes.

A “logical” pin shall be used to obtain the pin parasitics since the pin’s subnet is a network where every
node can be reached from every other node. To eliminate the ambiguity of which of these nodes owns this
subnet, the logical pin shall always have that role. The library shall identify the location of each internal
node in this subnet.

The pathData pointer included in the newTimingPin call (used to define an internal node) is required when
the application requests the library map this node to a node in a parasitic subnet.

10.21.8.1 Mapping parasitic subnet nodes to model nodes

When the application stitches a pin’s parasitic subnet (supplied by the library) to the interconnect network it
created, it shall map the ports and internal nodes in the cell’s timing model that are associated with that pin
to the nodes in this parasitic subnet, as shown in Table 230. For ports, this is done using the portMap in the
subnet. To do this for internal nodes, the application shall call dpcmIdentifyInternalNode for each internal
node associated with the pin. It shall be illegal for an internal node to be represented in more than one
subnet in a cell’s model.

10.21.8.2 dpcmIdentifyInternalNode

Table 230 provides information on application timing arcs.

286
Copyright © 2010 IEEE all rights reserved.

– 286 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 230—Application timing arcs

Function name dpcmIdentifyInternalNode
Arguments None
Result Parasitic subnet node number
Standard
Structure fields

CellName, cellData (timing), pathData(timing-pin-specific)

DCL syntax EXPOSE(dpcmIdentifyInternalNode):
 result(int: nodeNumber);

C syntax typedef struct {
 DCM_INTEGER nodeNumber;
} T_NodeNumber;

int dpcmIdentifyInternalNode
 (const DCM_STD_STRUCT *std_struct, T_NodeNumber *rtn);

This returns the nodeMap index of the node within the appropriate subnet that corresponds to the internal
node identified by the pathData pointer in the Standard Structure back to the application.

10.21.9 Load and interconnect models

The application, after building its own parasitic networks and appending pin subnets to them, shall request
that the library build load models for the networks' drivers and interconnect models for the paths from the
drivers to the sinks on those networks. The library shall represent each of these interconnect networks using
a model of a form that is proprietary to the library and shall return both these network models and the
requested load and interconnect models to the application.

Each load model shall contain sufficient information so that the library can later identify the associated
driver node in the corresponding network using that model. For a network with multiple, parallel drivers,
the load models for the drivers shall contain sufficient information so that all of the driver nodes can be
identified when these models are used together.

Each interconnect model and the load model for the associated driver pin shall together contain sufficient
information so that the library can later identify the driver and sink nodes in the corresponding network
using those models. For a network with multiple, parallel drivers, an interconnect model and the load
models for all of these drivers shall contain sufficient information so that all the drivers can be identified
when these models are used together.

To accommodate on-chip process variations, the application can pass pointers to two parasitic networks for
each net to the library, one with element values for the minimum and another with values for the maximum
of the on-chip process uncertainty (see 10.23.11). These two networks shall be identical in all other
respects, including the order in which their elements and nodes appear. The library shall return two
corresponding load or interconnect models and two corresponding network models to the application, all
via pointers of type DCM_STRUCT *.

If on-chip process variation is not modeled, these networks shall be completely identical, as shall the
corresponding library net models. The parasitic-network pointers passed to the library shall then be the
same, as shall the load- or interconnect-model pointers and the network-model pointers returned to the
application.

During the first request for load or interconnect models for a net, the application shall supply null pointers
for the library’s network models. In subsequent requests to the library, the application shall supply the
network model pointers returned in response to the previous request.

The application shall set (to a value of one (1)) the change field of the first subnet in a parasitic network
that has changed since a load or interconnect model for that network was last requested. This shall be done

287
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 287 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

whether the change was to an existing subnet, the insertion of a new subnet, the deletion of a subnet, or a
change in the order the subnets were presented. The library can, thus, omit the reconstruction of what
would otherwise be duplicate information.

The application shall claim each network model received from the library. When the application has
determined that all the load and interconnect models derived from that network have been obtained, the
application shall disclaim the network model. At this point, if no other reference to it exists, the memory
used for the network model shall then be freed by the library.

The application shall claim the load and interconnect models returned to it if it needs to retain them beyond
the time it makes the next call to any library function. When the application no longer needs a model that it
has already claimed, it shall disclaim that model. Again, if no other reference to it exists, the memory used
for the model shall then be freed by the library.

10.21.9.1 dpcmBuildLoadModels

Table 231 provides information on dpcmBuildLoadModels.

Table 231—dpcmBuildLoadModels

Function name dpcmBuildLoadModels
Arguments Parasitic networks, Library network models, Driving pin node number
Result Library load models, Library network models
Standard
Structure fields

CellName, cellData (timing), block, pathData (timing-pin-specific), toPoint

DCL syntax EXPOSE(dpcmBuildLoadModels):
 passed(parasiticSubnet: minParasitics, maxParasitics;
 void: minNetModel, maxNetModel;
 int: minDrivingPinNodeNumber,
 maxDrivingPinNodeNumber)
 result(void: minLoadModel, maxLoadModel,
 newMinNetModel, newMaxNetModel);

C syntax typedef struct {
 const DCM_STRUCT *minLoadModel, *maxLoadModel;
 const DCM_STRUCT *newMinNetModel, *newMaxNetModel;
} T_BuildLoadModels;

int dpcmBuildLoadModels(
 const DCM_STD_STRUCT *std_struct,
 T_BuildLoadModels *rtn,
 const DCM_ParasiticSubnet *minParasitics,
 const DCM_ParasiticSubnet *maxParasitics,
 const DCM_STRUCT *minNetModel,
 const DCM_STRUCT *maxNetModel,
 DCM_INTEGER minDrivingPinNodeNumber,
 DCM_INTEGER maxDrivingPinNodeNumber);

This returns pointers to the load models for a driver of an interconnect network, along with updated
versions of the net models for the that network. The arguments passed are pointers to linked lists of
parasitic subnets that represent the network and the attached pins, pointers to the net models and the node
numbers of the driving pin for which the load models are to be created. The toPoint field in the Standard
Structure shall be set to the driving pin.

If the parasitic networks passed to this function are identical, then minParasitics and maxParasitics shall
have the same value. Similarly, if the net models passed are identical, then minNetModel and maxNetModel
shall have the same value.

If the load models are identical, then the load-model pointers returned shall have the same value. If the new
net models are identical, then the net-model pointers returned shall have the same value.

288
Copyright © 2010 IEEE all rights reserved.

– 288 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.21.9.2 dpcmBuildInterconnectModels

Table 232 provides information on dpcmBuildLoadModels.

Table 232—dpcmBuildInterconnectModels

Function name dpcmBuildInterconnectModels
Arguments Parasitic networks, Library network models, Driving pin node number, Sink pin node

number
Result Library interconnect models, Library network models
Standard
Structure fields

CellName, cellData (timing), block, pathData (timing-pin specific), fromPoint, toPoint

DCL syntax EXPOSE(dpcmBuildInterconnectModels):
 passed(parasiticSubnet: minParasitics, maxParasitics;
 void: minNetModel, maxNetModel;
 int: minDrivingPinNodeNumber,minSinkPinNodeNumber,
 maxDrivingPinNodeNumber, maxSinkPinNodeNumber)
 result(void: minInterconnectModel,
 maxInterconnectModel,
 newMinNetModel, newMaxNetModel);

C syntax typedef struct {
 const DCM_STRUCT *minInterconnectModel,
 *maxInterconnectModel;
 const DCM_STRUCT *newMinNetModel, *newMaxNetModel;
} T_BuildInterconnectModels;

int dpcmBuildInterconnectModels(
 const DCM_STD_STRUCT *std_struct,
 T_BuildInterconnectModels *rtn,
 const DCM_ParasiticSubnet *minParasitics,
 const DCM_ParasiticSubnet *maxParasitics,
 const DCM_STRUCT *minNetModel,
 const DCM_STRUCT *maxNetModel,
 DCM_INTEGER minDrivingPinNodeNumber,
 DCM_INTEGER minSinkPinNodeNumber,
 DCM_INTEGER maxDrivingPinNodeNumber,
 DCM_INTEGER maxSinkPinNodeNumber);

This returns pointers to models for the path from a driver of an interconnect network to one of the sinks on
that network, along with updated versions of the net models for the that network. The passed arguments are
pointers to linked lists of parasitic subnets that represent the interconnect network and the attached pins,
pointers to the library’s models for that network, and the node numbers of the driving and sink pins for
which the interconnect models are to be created. The fromPoint field in the Standard Structure shall be set
to the driving pin, whereas the toPoint field shall be set to the sink pin.

If the parasitic networks passed to this function are identical, then minParasitics and maxParasitics shall
have the same value. Similarly, if the net models passed to this function are identical, then minNetModel
and maxNetModel shall have the same value.

If the interconnect models are identical, then the interconnect-model pointers returned shall have the same
value. If the new net models are identical, then the net-model pointers shall have the same value.

10.21.9.3 appGetInterconnectModels

Table 233 provides information on appGetInterconnectModels.

289
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 289 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 233—appGetInterconnectModels

Function name appGetInterconnectModels
Arguments None
Result Library interconnect models
Standard
Structure fields

CellName, block, cellData (timing), pathData(timing-pin-specific), fromPoint, toPoint,
sourceEdge, sinkEdge, calcMode

DCL syntax EXTERNAL(appGetInterconnectModels):
 result(void: minInterconnectModel,
 maxInterconnectModel);

C syntax typedef struct {
 const DCM_STRUCT *minInterconnectModel,
 *maxInterconnectModel;
} T_InterconnectModels;

int appGetInterconnectModels
 (const DCM_STD_STRUCT *std_struct,
 T_InterconnectModels *rtn);

In the process of calculating a delay for a net or slew degradation across that net, performance can be
greatly improved if the library can get access to interconnect models created previously. When interconnect
models are created, the application shall associate them with the network being analyzed. When it is time to
use these models for delay and slew calculation, the library shall ask the application for them by using
appGetInterconnectModels.

appGetInterconnectModels returns the interconnect models created by the library for the path between the
pins specified in the Standard Structure. If these interconnect models are identical, then the interconnect
model pointers returned shall have the same value.

10.21.9.4 appGetLoadModels

Table 234 provides information on appGetLoadModels.

Table 234—appGetLoadModels

Function name appGetLoadModels
Arguments Pin pointer, Pin edge
Result Library load models
Standard
Structure fields

CellName, block, cellData (timing), calcMode

DCL syntax EXTERNAL(appGetLoadModels):
 passed(pin: pinPointer ;
 int: edge)
 result(void: minLoadModel, maxLoadModel);

C syntax typedef struct {
 const DCM_STRUCT *minLoadModel, *maxLoadModel;
} T_LoadModels;

int appGetLoadModels(const DCM_STD_STRUCT *std_struct,
 T_LoadModels *rtn, DCM_PIN pinPointer,
 DCM_EdgeTypes edge);

During the processing of cell delay and slew calculations, the driving cells need rapid access to
precalculated load models. When load models are created, the application shall associate them with the
driver pins being analyzed. When it is time to use these models for delay and slew calculation, the library
shall ask the application for them by using appGetLoadModels.

appGetLoadModels returns the load models created by the library for the pin and edge passed to this
function. If the load models are identical, then the load model pointers returned shall have the same value.

290
Copyright © 2010 IEEE all rights reserved.

– 290 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

The legal pin edges for this call are as follows:

— DCM_RisingEdge

— DCM_FallingEdge

— DCM_OneToZ

— DCM_ZtoOne

— DCM_ZeroToZ

— DCM_ZtoZero

10.21.10 Obtaining parasitic networks

To accommodate on-chip process variations, the application can return two parasitic networks for each net
to the library via pointers, one with element values for the minimum and another with values for the
maximum of the on-chip process uncertainty (see 10.23.11). These two networks shall be identical in all
other respects, including the order in which their elements and nodes appear. If on-chip process variation is
not modeled, then these networks shall be completely identical, and the parasitic network pointers returned
by the application shall be the same.

The following functions are defined for the library to use in obtaining parasitic networks.

10.21.10.1 appGetParasiticNetworksByPin

Table 235 provides information on appGetParasiticNetworksByPin.

Table 235—appGetParasiticNetworksByPin

Function name appGetParasiticNetworksByPin
Arguments Pin pointer
Result Parasitic networks
Standard
Structure fields

CellName, cellData (timing), pathData (timing-pin-specific), sinkEdge, calcMode

DCL syntax EXTERNAL(appGetParasiticNetworksByPin):
 passed(pin: pinPointer)
 result(parasiticSubnet: minParasitics, maxParasitics);

C syntax typedef struct {
 const DCM_ParasiticSubnet *minParasitics,
 *maxParasitics;
} T_ParasiticNetworks;

int appGetParasiticNetworksByPin(
 const DCM_STD_STRUCT *std_struct,
 T_ParasiticNetworks *rtn, const DCM_PIN pinPointer);

This requests the application gather up the parasitic elements for a net connected to a pin. The application
shall return the parasitic-element structures that represent the nonreduced parasitic networks for that net
back to the library.

A bad return code from this call shall not be interpreted by the library as indicating parasitic information for
the net is not available. In such cases, the library shall then request the application provide the load and
interconnect models needed to perform the analysis associated with the net.

10.21.10.2 appGetParasiticNetworksByName

Table 236 provides information on appGetParasiticNetworksByName.

291
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 291 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 236—appGetParasiticNetworksByName

Function name appGetParasiticNetworksByName
Arguments Pin name
Result Parasitic networks
Standard
Structure fields

CellName, block, cellData (timing), sinkEdge, calcMode

DCL syntax EXTERNAL(appGetParasiticNetworksByName):
 passed(string: pinName)
 result(parasiticSubnet: minParasitics, maxParasitics);

C syntax typedef struct {
 const DCM_ParasiticSubnet *minParasitics,
 *maxParasitics;
} T_ParasiticNetworks;

int appGetParasiticNetworksByName(
 const DCM_STD_STRUCT *std_struct,
 T_ParasiticNetworks *rtn, const DCM_STRING pinName);

This allows the library to gather parasitic information about pins that are not on the arc being analyzed
(e.g., this call can be used to get parasitics for unbuffered outputs or arcs that pass through a cell
unbuffered).

An unbuffered output is a configuration where a signal present at the input of a cell drives more than one
output and the load on each such output affects the delay to the other outputs. This forces the calculation of
the delay from the input to an output to take into account all the loads on the other unbuffered output pins,
as well as the output of interest.

appGetParasiticNetworksByName returns the parasitic networks for the net connected to the named pin on
the block supplied in the Standard Structure. The application shall return the parasitic-element structures
that represent the nonreduced parasitic networks for the net connected to that pin back to the library. It shall
be an error for the library to request the parasitic networks for a named pin that does not exist on the cell.

A bad return code from this call shall not be interpreted by the library as indicating parasitic information for
the net is not available. In such cases, the library shall then request the application provide the load and
interconnect models needed to perform the analysis associated with the net.

10.21.11 Persistent storage of load and interconnect models

Interconnect and load models contain data proprietary to the library. The application can have a need to
save these models to disk and then restore them within a session or from one session to another. Because
the details of the data in these models are proprietary to the library, the models cannot be saved in a
standard format, such as the reduced models included in SPEF. SPEF only supports poles and zeros for
interconnect and PI models for loading.

10.21.11.1 Application save and restore

The most efficient method for rapid access is to have the application store model information for the
library, so these data are correlated with the design information. To do this, the library shall convert its
proprietary data structures to a form that can be streamed to disk (at the request of the application). In
situations where the application has previously requested the library passivate the load or interconnect
models, the application shall request the library retrieve these models before they are used in calculation
sequences.

To accommodate on-chip process variations, the application can pass two load or interconnect models to
the library using pointers, one for the minimum and another for the maximum of the on-chip process
uncertainty (see 10.23.11). The library shall passivate both models in each pair, storing them in one
collection of bytes. During subsequent retrieval, these models shall be restored by the library and returned

292
Copyright © 2010 IEEE all rights reserved.

– 292 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

to the application as a pair.

If on-chip process variation is not modeled, the models in each pair shall be identical. The load- or
interconnect-model pointers for each pair shall then have the same value.

10.21.11.1.1 dpcmPassivateLoadModels

Table 237 provides information on dpcmPassivateLoadModels.

Table 237—dpcmPassivateLoadModels

Function name dpcmPassivateLoadModels
Arguments Load models
Result Passivated load models, Size
Standard
Structure fields

CellName, block, cellData (timing), pathData (timing-pin-specific), toPoint

DCL syntax EXPOSE(dpcmPassivateLoadModels):
 passed(void: minLoadModel, maxLoadModel)
 result(void: passivatedLoadModels;
 int: size);

C syntax typedef struct {
 DCM_STRUCT *passivatedLoadModels;
 DCM_INTEGER size;
} T_PassivatedLoadModels;

int dpcmPassivateLoadModels(
 const DCM_STD_STRUCT *std_struct,
 T_PassivatedLoadModels *rtn,
 const DCM_STRUCT *minLoadModel,
 const DCM_STRUCT *maxLoadModel);

This converts a pair of library load models to a contiguous collection of bytes that can be persistently
stored. dpcmPassivateLoadModel returns a pointer to the collection of bytes and an integer value indicating
the number of bytes back to the application.

10.21.11.1.2 dpcmPassivateInterconnectModels

Table 238 provides information on dpcmPassivateInterconnectModels.

Table 238—dpcmPassivateInterconnectModels

Function name dpcmPassivateInterconnectModels
Arguments Interconnect models
Result Passivated interconnect models, Size
Standard
Structure fields

CellName, block, cellData (timing), pathData (timing-pin-specific), fromPoint, toPoint

DCL syntax EXPOSE(dpcmPassivateInterconnectModels):
 passed(void: interconnectModels)
 result(void: passivatedInterconnectModels;
 int: size);

C syntax typedef struct {
 DCM_STRUCT *passivatedInterconnectModels;
 int size;
} T_PassivatedInterconnectModels;

int dpcmPassivateInterconnectModels(
 const DCM_STD_STRUCT *std_struct,
 T_PassivatedInterconnectModels *rtn,
 const DCM_STRUCT *minInterconnectModel,
 const DCM_STRUCT *maxInterconnectModel);

This converts a pair of library interconnect models to a contiguous collection of bytes that can be

293
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 293 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

persistently stored. dpcmPassivateInterconnectModel returns a pointer to the first byte in the collection and
an integer value indicating the number of bytes back to the application.

10.21.11.1.3 dpcmRestoreLoadModels

Table 239 provides information on dpcmRestoreLoadModels.

Table 239—dpcmRestoreLoadModels

Function name dpcmRestoreLoadModels
Arguments Library passivated load models, Size of passivated load models
Result Library load models
Standard
Structure fields

CellName, block, cellData (timing), pathData (timing-pin-specific), toPoint

DCL syntax EXPOSE(dpcmRestoreLoadModels):
 passed(void: passivatedLoadModels ;
 int: size)
 result(void: minLoadModel, maxLoadModel);

C syntax typedef struct {
 const DCM_STRUCT *minLoadModel, *maxLoadModel;
} T_LoadModels;

int dpcmRestoreLoadModel(
 const DCM_STD_STRUCT *std_struct,
 T_LoadModels *rtn, void *passivatedLoadModels,
 DCM_INTEGER size);

This converts a pair of library passivated load models to the DCM_STRUCT format used by the library
during calculations made using the models. This call takes as arguments a pointer to the first byte in the
previously passivated load models and an integer value indicating the number of bytes those models
occupy. The application shall manage the memory containing the passivated load models.

10.21.11.1.4 dpcmRestoreInterconnectModels

Table 240 provides information on dpcmRestoreInterconnectModels.

Table 240—dpcmRestoreInterconnectModels

Function name dpcmRestoreInterconnectModels
Arguments Passivated library interconnect models, Size of passivated models
Result Library interconnect models
Standard
Structure fields

CellName, block, cellData (timing), pathData (timing-pin-specific), fromPoint, toPoint

DCL syntax EXPOSE(dpcmRestoreInterconnectModels):
 passed(void: passivatedInterconectModels; int: size)
 result(void: interconnectModels);

C syntax typedef struct {
 const DCM_STRUCT *minInterconnectModel,
 *maxInterconnectModel;
} T_InterconnectModels;

int dpcmRestoredInterconnectModels(
 const DCM_STD_STRUCT *std_struct,
 T_InterconnectModels *rtn,
 void *passivatedInterconnectModels, DCM_INTEGER size);

This converts a pair of library passivated interconnect models to the DCM_STRUCT format used by the
library during calculations made using the models. This call takes as arguments a pointer to the first byte in
the previously passivated interconnect models and an integer value indicating the number of bytes those
models occupy. The application shall manage the memory containing the passivated interconnect models.

294
Copyright © 2010 IEEE all rights reserved.

– 294 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.21.12 Calculating effective capacitances and driving resistances

The following functions are defined for calculation of the effective loading capacitances on the output of a
cell using a PI model for the loading network. The following functions shall be used to perform such
calculations using arbitrary load models.

10.21.12.1 appGetCeff

Table 241 provides information on appGetCeff.

Table 241—appGetCeff

Function name appGetCeff
Arguments Delay calculation function pointer, Slew calculation function pointer, Min load model,

Max load model
Result Late Ceffective, Early Ceffective
Standard
Structure fields

CellName, calcMode, block, sourceEdge, sinkEdge, pathData(timing-arc-specific),
cellData (timing), fromPoint, toPoint, slew->early, slew->late, processVariation

DCL syntax forward calc(stdCeffDelaySlewEq):
 passed(int: propagationMode; double: loadCap)
 result(double: value);

EXTERNAL(appGetCeff):
 passed(stdCeffDelaySlewEq(): delayEq, slewEq;
 void: minLoadModel, maxLoadModel)
 result(double: lateCeffective, earlyCeffective);

C syntax typedef struct {
 DCM_DOUBLE lateCeffective, earlyCeffective;
} T_Ceffective;

int appGetCeff(const DCM_STD_STRUCT *std_struct,
 T_Ceffective *rtn, DCM_GeneralFunction delayEq,
 DCM_GeneralFunction slewEq,
 const DCM_STRUCT *minLoadModel,
 const DCM_STRUCT *maxLoadModel);

This returns the effective capacitances seen by the passed driver pin (toPoint) back to the library.

If on-chip process variation for the driven net is not modeled, the pointers to the minimum and maximum
load models shall be the same.

To obtain effective capacitances, the application shall call dpcmCalcCeff, passing the arguments declared
above to dpcmCalcCeff without altering them.

10.21.12.2 dpcmCalcCeff

Table 242 provides information on dpcmCalcCeff.

295
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 295 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 242—dpcmCalcCeff

Function name dpcmCalcCeff
Arguments Delay calculation function pointer, Slew calculation function pointer, Min load model,

Max load model
Result Late Ceffective, Early Ceffective
Standard
Structure fields

CellName, calcMode, block, sourceEdge, sinkEdge, pathData(timing-arc-specific),
cellData (timing), fromPoint, toPoint, slew->early, slew->late, processVariation

DCL syntax forward calc(stdCeffDelaySlewEq):
 passed(int: propagationMode; double: loadCap)
 result(double: value);

EXPOSE(dpcmCalcCeff):
 passed(stdCeffDelaySlewEq(): delayEq, slewEq;
 void: minLoadModel, maxLoadModel)
 result(double: lateCeffective, earlyCeffective);

C syntax typedef struct {
 DCM_DOUBLE lateCeffective, earlyCeffective;
} T_Ceffective;

int dpcmCalcCeff (const DCM_STD_STRUCT *std_struct,
 T_Ceffective *rtn, DCM_GeneralFunction delayEq,
 DCM_GeneralFunction slewEq,
 const DCM_STRUCT *minLoadModel,
 const DCM_STRUCT *maxLoadModel);

This returns the effective capacitances seen by the passed driver pin (toPoint) back to the application.

The library shall use the processVariation field in the Standard Structure to determine how to use the load
models in computing the early and late effective capacitances. If on-chip process variation for the driven
net is not modeled, then the pointers to the minimum and maximum load models shall be the same.

10.21.12.3 dpcmCalcSteadyStateResistanceRange

Table 243 provides information on dpcmCalcSteadyStateResistanceRange.

Table 243—dpcmCalcSteadyStateResistanceRange

Function name dpcmCalcSteadyStateResistanceRange
Arguments Pin pointer
Result Maximum resistance, Minimum resistance
Standard
Structure fields

CellName, pathData(timing-pin-specific), cellData (timing)

DCL syntax typedef(resistanceRange):
 result(double var: maxResistance, minResistance);

EXPOSE(dpcmCalcSteadyStateResistanceRange):
 passed(pin: outputPin)
 result(resistanceRange: range);

C syntax typedef struct {
 DCM_DOUBLE maxResistance, minResistance;
} DCM_ResistanceRange;

typedef struct {
 DCM_ResistanceRange range;
} T_ResistanceRange;

int dpcmCalcSteadyStateResistanceRange
 (const DCM_STD_STRUCT *std_struct,
 T_ResistanceRange *rtn, DCM_PIN outputPin);

In some situations, the application needs to assemble a parasitic network for the computation of delay
involving both aggressors and victims. Some of the aggressors can be in an unknown but steady state, or a

296
Copyright © 2010 IEEE all rights reserved.

– 296 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

logical one, logical zero, or high-impedance state. For each of these possible states, the output of the cell
has an equivalent resistance to either the power rail or ground. For the purposes of this call, a resistance to
either the power rail or ground is considered an equivalent resistance to ground. For the calculation of delay
to proceed and to account for the effects of drivers in an unknown steady state, the library needs to supply
the maximum and minimum possible resistances the cell is capable of presenting to the output. Typically,
the maximum resistance is used in the calculation of early mode delay and the minimum resistance is used
to calculate the late mode delay.

dpcmCalcSteadyStateResistanceRange returns the maximum and minimum driving resistances possible for
a cell that is not transitioning, regardless of the states where those resistances can occur. The pin handle for
the pin of the requested resistances is the arguments to dpcmCalcSteadyStateResistanceRange.

10.21.12.4 dpcmCalcTristateResistanceRange

Table 244 provides information on dpcmCalcTristateResistanceRange.

Table 244—dpcmCalcTristateResistanceRange

Function name dpcmCalcTristateResistanceRange
Arguments The output pin
Result Resistance range
Standard
Structure fields

CellName, cellData (noise-specific), pathData (noise-pin-specific)

DCL syntax typedef(resistanceRange):
 result(double var: maxResistance, minResistance);

EXPOSE(dpcmCalcTristateResistanceRange):
 passed(pin:outputPin)
 result(resistanceRange: range);

C syntax typedef struct {
 DCM_DOUBLE maxResistance, minResistance;
} DCM_ResistanceRange;

typedef struct {
 DCM_ResistanceRange range;
} T_ResistanceRange;

int dpcmCalcTristateResistanceRange
 (const DCM_STD_STRUCT *std_struct,
 T_ResistanceRange *rtn, DCM_PIN outputPin);

This function returns the maximum and minimum driving resistances possible for a cell that is in the high-
impedance state. For the purposes of this call, a resistance to either the power rail or ground is considered
an equivalent resistance to ground.

10.21.12.5 appSetCeff

Table 245 provides information on appSetCeff.

297
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 297 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 245—appSetCeff

Function name appSetCeff
Arguments Early Ceffective, Late Ceffective
Result None
Standard
Structure fields

CellName, calcMode, block, sinkEdge, toPoint

DCL syntax EXTERNAL(appSetCeff) :
 passed(double: earlyCeff, lateCeff)
 result(int: ignore);

C syntax typedef struct {
 DCM_INTEGER ignore;
} T_Ignore;

int appSetCeff (const DCM_STD_STRUCT *std_struct,
 T_Ignore *rtn, DCM_DOUBLE earlyCeff,
 DCM_DOUBLE lateCeff);

This function sends to the application the effective load capacitances seen by the driver pin and for the edge
identified by the toPoint and sinkEdge fields, respectively, in the Standard Structure.

The library shall call appSetCeff during a cell-arc delay computation initiated by the application during
which these data are calculated. This call shall be made before the library function that calculates these
delays exits.

10.21.13 Parasitic estimation

An interconnect network typically consists of a system of passive parasitic elements. This network is
evaluated to determine the signal’s delay and transition rate degradation as it reaches a terminal on the
network. Accurate parasitic element evaluation is required for accurate delay and slew prediction. The
system shall, however, accommodate those application situations where the complete parasitic information
is not yet fully understood.

At the earliest stages of design, where no placement or wiring information exists, the typical approach is to
use a statistical model, such as the wire load model. This gives crude approximations when there is no other
information available. When simple statistical models, such as wire load models, fail to produce the
accuracy needed, the library needs to be capable of more advanced calculations, which can vary from
simple approximations of the global parasitic elements to more detailed evaluations of each parasitic
element in the network. To accomplish this goal for a wide variety of situations, the library can perform
calculations based on a wire load model or use models of greater detail based on discrete parasitic elements
when more accuracy is necessary.

The application can choose between the two methods and can also choose the amount of precision
contained in each element to be evaluated. It can, for example, estimate the routing length and the amount
of adjacent wire. It can ask the library to calculate the capacitance and resistance on these estimated
elements. It can also determine the individual resistance and capacitances for each individual wire segment
producing a much more accurate result.

A collection of functions is needed so the library and application can interact on the calculation of parasitic
elements. One function calculates the capacitive elements, one calculates the resistive elements, and others
allow for the exchange of technology layer information.

Typically, semiconductor devices are constructed as a sandwich of many different types of layers. Each
layer has a general purpose that shall be described to the application so clear and concise communication
can take place between the library and application. The following is a brief description of this collection of
calls and their basic functions:

298
Copyright © 2010 IEEE all rights reserved.

– 298 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

— dpcmGetLayerArray transmits process layer names and types to the application. This data is
transmitted to the application in a pair of synchronous arrays, one containing the name of each
layers and the other containing their respective types.

— dpcmCalcCouplingCapacitance computes the capacitance between two conductors, even if these
conductors are on different layers.

— dpcmCalcSegmentResistance calculates the resistance of an interconnect segment.

10.21.13.1 Shapes

To utilize the library in the process of capacitance calculation, the application needs to be able to describe
the shapes of the two objects (between which the application needs the capacitance). These shapes shall be
flexible enough to allow the application to make simplifying assumptions, when necessary, or to supply full
detail. The only difference in the quality of the capacitance value calculated is the quality of the arguments
supplied to the call. The shape description is designed to allow the transfer of a varying amounts of detail
from simple rectangles to full polygons.

The shape information is contained in an array of coordinates. Coordinates are paired values where even
elements in the array represent the x coordinates and odd elements represent the y coordinates. The
coordinates shall be ordered in a clockwise or counterclockwise sequence of points, which describe the
enclosed polygon. The coordinate points shall be an absolute distance from some reference point, such as a
corner of the chip or the corner cell, or relative to the first pair of coordinates on the aggressor shape.

Special simplifying shapes can be recognized by the number of elements in the array. For example, simple
rectangles and circles do not have to supply all the points of the shape.

Rectangles can be represented as complete polygons or simplified figures. The simplified rectangle shall
have four elements. The first pair of elements (0 and 1) represent the coordinates of one corner. The second
pair of elements (2 and 3) represent the corner diagonally opposite from the first coordinate pair.

Simplified rectangles can only be used when the coordinates of the rectangles are either parallel or
perpendicular to the coordinates of the chip.

10.21.13.1.1 dpcmCalcCouplingCapacitance

Table 246 provides information on dpcmCalcCouplingCapacitance.

299
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 299 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 246—dpcmCalcCouplingCapacitance

Function name dpcmCalcCouplingCapacitance
Arguments Aggressor XY coordinates, Aggressor layer index, Victim XY coordinates, Victim layer

index
Result Coupling capacitance
Standard
Structure fields

calcMode

DCL syntax EXPOSE(dpcmCalcCouplingCapacitance):
 passed(double[*]: aggressorCoordinates,
 victimCoordinates;
 int: aggressorLayerIndex, victimLayerIndex)
 result(double: couplingCapacitance);

C syntax typedef struct {
 DCM_DOUBLE couplingCapacitance;
} T_CouplingCapacitance;

int dpcmCalcCouplingCapacitance(
 const DCM_STD_STRUCT *std_struct,
 T_CouplingCapacitance *rtn,
 DCM_DOUBLE_ARRAY *aggressorCoordinates,
 DCM_DOUBLE_ARRAY *victimCoordinates,
 DCM_INTEGER aggressorLayerIndex,
 DCM_INTEGER victimLayerIndex);

This takes the aggressor’s shape, the aggressor’s layer, the victim’s shape, and the victim’s layer as
arguments. dpcmCalcCouplingCapacitance calculates the capacitance between these two conductors. The
application needs to ensure there are no conductive obstructions between the aggressor and the victim. This
call is not intended to calculate shielded capacitances.

10.21.13.1.2 dpcmCalcSubstrateCapacitance

Table 247 provides information on dpcmCalcSubstrateCapacitance.

Table 247—dpcmCalcSubstrateCapacitance

Function name dpcmCalcSubstrateCapacitance

Arguments Aggressor XY coordinates, Aggressor layer index

Result Substrate capacitance

Standard
Structure fields

calcMode

DCL syntax EXPOSE(dpcmCalcSubstrateCapacitance):
 passed(double[*]: aggressorCoordinates;
 int: aggressorLayerIndex)
 result(double: substrateCapacitance);

C syntax typedef struct {
 DCM_DOUBLE substrateCapacitance;
} T_SubstrateCapacitance;

int dpcmCalcSubstrateCapacitance(
 const DCM_STD_STRUCT *std_struct,
 T_SubstrateCapacitance *rtn,
 DCM_DOUBLE_ARRAY *aggressorCoordinates,
 DCM_INTEGER aggressorLayerIndex);

This computes the plate and fringe capacitances between a conductor on any given layer and the substrate.
dpcmCalcSubstrateCapacitance computes both plate and fringe capacitances as a single lumped value. The
application shall only call dpcmCalcSubstrateCapacitance for those portions of the conductor with a clear
“view” of the substrate. dpcmCalcSubstrateCapacitance takes as arguments the aggressor’s shape and the
aggressor’s layer index.

300
Copyright © 2010 IEEE all rights reserved.

– 300 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.21.13.1.3 dpcmCalcSegmentResistance

Table 248 provides information on dpcmCalcSegmentResistance.

Table 248—dpcmCalcSegmentResistance

Function name dpcmCalcSegmentResistance
Arguments Metal shape, Layer index, Entrance face, Exit face
Result Resistance
Standard
Structure fields

calcMode

DCL syntax EXPOSE(dpcmCalcSegmentResistance):
 passed(double[*]: shape;
 int: layerIndex, injectingFace, exitFace)
 result(double: resistance);

C syntax typedef struct {
 DCM_DOUBLE resistance;
} T_SegmentResistance;

int dpcmCalcSegmentResistance(
 const DCM_STD_STRUCT *std_struct,
 T_SegmentResistance *rtn,
 DCM_DOUBLE_ARRAY *shape, DCM_INTEGER layerIndex,
 DCM_INTEGER injectingFace, DCM_INTEGER exitFace);

This takes the shape of the wire, the layer where the wire is routed, the side of wire where the current is
injected, and the side where the current exits and calculates the resistance. The shape follows the same
semantics as defined for dpcmCouplingCapacitance. The layerIndex is the index of the layer where the
wire or via is. injectingFace and exitFace represent where the edge current enters and exits the shape,
respectively.

— For fully elaborated polygons, these indicate the first set of coordinates in the shapes matrix
representing the start of the edge of the polygon where the current enters and exits. The values of
injectingFace and exitFace shall be even integers in these cases.

— For rectangles, injectingFace indicates whether the current enters the rectangle along the x or y
coordinate. exitFace indicates whether the current exits the rectangle on the x or y coordinate. A
value of zero (0) for injectingFace or exitFace indicates the x axis; a value of one (1) indicates the
y axis.

— For the part of the via within insulation layers, the current is assumed to enter the top or bottom
and exit the opposite face of the via. The library knows this implicitly, because of the layer index,
and shall ignore the values of injectingFace and exitFace in these situations.

10.21.13.2 Layer definitions

Manufacturing layer types describe a layer’s purpose: the bulk wafer, the interconnecting circuitry within a
cell, insulating layers and the interconnect between cells. Manufacturing layer types are defined in
Table 249.

Table 249—Manufacturing layer type values

Layer type Value Definition

POLY 3 Polysilicon interconnect layer.

DEVICE 2 The layers used to develop the transistor within a cell.

INSULATION 1 Separation layer where vias can penetrate.

INTERCONNECT 0 Metal interconnect layers

301
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 301 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.21.13.2.1 dpcmGetLayerArray

Table 250 provides information on dpcmGetLayerArray.

Table 250—dpcmGetLayerArray

Function name dpcmGetLayerArray
Arguments Number of manufacturing layers
Result Array of layer names, Number of manufacturing layers
Standard
Structure fields

None

DCL syntax EXPOSE(dpcmGetLayerArray):
 passed(integer: numberOfMetalLayers)
 result(string[*]: layerNames; int[*]: layerTypes);

C syntax typedef struct {
 DCM_STRING_ARRAY *layernames;
 DCM_INTEGER_ARRAY *layertypes;
} T_LevelArray;

int dpcmGetLayerArray(const DCM_STD_STRUCT *std_struct,
 T_LevelArray *rtn, DCM_INTEGER numberOfMetalLayers);

This returns an ordered array of layer names and layer types back to the application. The order begins with
the zeroth element, which is the first layer the library chooses for calculating capacitance values, starting
from the layer closest to the device layer and building up. The layer type array is synchronized to the layer
names array, where the ith element of the layer type array contains the value for the ith element of the
layerNames array. The library shall store the value of the argument numberOfMetalLayers for future
reference.

NOTE—For other calls the application makes that use the layer index, such as dpcmCalcCouplingCapacitance, the
index is relative to the last call the application made to this function.

10.21.13.2.2 dpcmGetRuleUnitToMeters

Table 251 provides information on dpcmGetRuleUnitToMeters.

Table 251—dpcmGetRuleUnitToMeters

Function name dpcmGetRuleUnitToMeters
Arguments None
Result Scale factor exponent
Standard
Structure fields

None

DCL syntax EXPOSE(dpcmGetRuleUnitToMeters):
 result(int: scaleFactorPower);

C syntax typedef struct {
 INTEGER scaleFactorPower;
} T_RuleUnitToMeters;

int dpcmGetRuleUnitToMeters
 (const DCM_STD_STRUCT *std_struct,
 T_RuleUnitToMeters *rtn);

This returns the basic distance units the library assumes, expressed as an integer power of 10, back to the
application. The value 10 scaleFactorPower when multiplied by a distance value, changes the distance
value’s units to meters.

302
Copyright © 2010 IEEE all rights reserved.

– 302 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Example

The following example shows how a DPCM indicates the distance unit in nanometers:
EXPOSE calc(dpcmGetRuleUnitToMeters): result(integer: -9);

10.21.13.2.3 dpcmGetRuleUnitToAmps

Table 252 provides information on dpcmGetRuleUnitToAmps.

Table 252—dpcmGetRuleUnitToAmps

Function name dpcmGetRuleUnitToAmps
Arguments None
Result Scale factor power
Standard
Structure fields

None

DCL syntax EXPOSE(dpcmGetRuleUnitToAmps):
 result(int: scaleFactorPower);

C syntax typedef struct {
 INTEGER scaleFactorPower;
} T_RuleUnitToAmps;

int dpcmGetRuleUnitToAmps
 (const DCM_STD_STRUCT *std_struct,
 T_RuleUnitToAmps *rtn);

This returns the basic current units the library assumes, expressed as an integer power of 10, back to the
application. The value 10 scaleFactorPower, when multiplied by a current value, changes the resistance
value’s units to amps.

10.21.14 Threshold voltages

This subclause includes two items related to threshold voltages.

10.21.14.1 appGetDriverThresholds

Table 253 provides information on appGetDriverThresholds.

Table 253—appGetDriverThresholds

Function name appGetDriverThresholds
Arguments inputPin
Result driver thresholds
Standard
Structure fields

CellName, calcMode, block, cellData (timing), pathData(timing-pin specific)

DCL syntax typedef(driverThresholdStruct):
 passed(pin: inputPin)
 result(double: vol, voh, lowerTransitionThreshold,
 upperTransitionThreshold,
 riseSwitchLevel, fallSwitchLevel);

EXTERNAL(appGetDriverThresholds):
 result(driverThresholdStruct [*]: driverThresholds);

303
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 303 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

C syntax typedef struct {
 DCM DOUBLE vol;
 DCM_DOUBLE voh;
 DCM_DOUBLE lowerTransitionThreshold;
 DCM_DOUBLE upperTransitionThreshold;
 DCM_DOUBLE riseSwitchLevel;
 DCM_DOUBLE fallSwitchLevel;
} DCM_DriverThresholds;

typedef DCM_DriverThresholds *DCM_DriverThresholds_ARRAY;

typedef struct {
 DCM_DriverThresholds_ARRAY *driverThresholds;
} T_DriverThresholds;

int appGetDriverThresholds(
 const DCM_STD_STRUCT *std_struct,
 T_DriverThresholds *rtn, const DCM_PIN inputPin);

This function returns the voltage limits and transition and switching thresholds for all of the drivers of the
net connected to the pin identified by the inputPin argument. The application shall call the function
dpcmGetThresholds to obtain this information.

— All values returned by this function shall be voltages referenced to ground.

— If the pin for which thresholds are requested is bidirectional, the pathData field shall be used to
determine whether thresholds for the input or the output part of the pin are returned. If the
pathData field is set to zero (0), then thresholds suitable for use for both parts of this pin shall be
returned.

The order of the drivers in the returned array shall be considered to be arbitrary. No assumptions regarding
this order shall be made by either the application nor by the library.

If any driver of a pin is in a different technology than the cell to which that pin belongs, this function shall
not be used for the pin. If the application detects such a call, then it shall return an error to the library.

10.21.15 Obtaining aggressor window overlaps

This subclause contains specifications for a set of functions used by the library to obtain aggressor timing
window overlaps from the application.

In calculating overlap-window data, the application shall use interaction windows provided previously by
the library. These windows shall indicate intervals of time in which activity at aggressor drivers are of
interest to the library. Each interaction window shall be defined by early and late times that shall be relative
to an edge time at the pin identified by the fromPoint and sourceEdge fields in the Standard Structure.
There shall be separate interaction windows relative to the early and late edge times at the fromPoint pin.

10.21.15.1 appGetAggressorOverlapWindows

Table 254 provides information on appGetAggressorOverlapWindows.

304
Copyright © 2010 IEEE all rights reserved.

– 304 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 254—appGetAggressorOverlapWindows

Function name appGetAggressorOverlapWindows
Arguments early and late overlap windows arrays
Result None
Standard
Structure fields

CellName, calcMode, fromPoint, toPoint, block, sourceEdge, sinkEdge,
processVariation

DCL syntax typedef(overlapWindow):
 result(int var: overlapPresent
 double var: earlyTime, lateTime, earlySlew,
 lateSlew, earlyDriverResistance,
 lateDriverResistance;
 void var: earlyXWF, lateXWF);

EXTERNAL(appGetAggressorOverlapWindows):
 passed(var overlapWindow transient[*]:
 earlyOverlapArray, lateOverlapArray)
 result(int: ignore);

C syntax typedef struct {
 DCM_INTEGER overlapPresent;
 DCM_DOUBLE earlyTime, lateTime, earlySlew, lateSlew;
 DCM_DOUBLE earlyDriverResistance, lateDriverResistance;
 const DCM_STRUCT *earlyXWF, *lateXWF;
} DCT_OverlapWindow;

typedef DCT_OverlapWindow *DCM_OverlapWindow_ARRAY;

typedef struct {
 DCM_INTEGER ignore;
} T_Ignore;

int appGetAggressorOverlapWindows
 (const DCM_STD_STRUCT *std_struct, T_Ignore *rtn,
 DCM_OverlapWindow_ARRAY *earlyOverlapArray,
 *lateOverlapArray);

This function can be called by the library to obtain arrays of arrival-window information about the
aggressor drivers coupled to a net for which propagation-arc calculation (delay, slew, etc.) is being done.
The propagation arc shall be defined by the fromPoint, toPoint, sourceEdge, and sinkEdge fields in the
Standard Structure. The function can also be used during propagation-arc calculation for a cell that drives
such a net.

There shall be one overlap window in each array for each aggressor driver. The order of these windows
shall be the same as the order in which the corresponding aggressor drivers first appear in the parasitic
network for the net as supplied by the application. In calculating these windows, the application shall use
interaction windows provided previously by the library via the function appSetAggressorInteractWindows
(see 10.21.15.2).

All data associated with this function shall be in the units of the library technology that calls the function.

To avoid memory-management overhead for individual overlap windows, the library shall allocate arrays of
transient overlap-window structures (see 7.4.5.1.1), passing them to the application via earlyOverlapArray
and earlyOverlapArray. The application shall fill in the contents of these structures but shall neither claim
nor disclaim the arrays. Because the structures are transient, the application shall not attempt to either claim
or disclaim them.

The overlap windows returned by the application shall define intervals of activity at each of the aggressor
drivers occurring within each of the corresponding interaction windows. Each overlap window shall be
defined by an early and a late time, which shall again be relative to an edge time at the fromPoint pin.
Separate overlap windows for the early and late edge times at that pin shall be returned for each aggressor
driver.

305
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 305 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Each overlap window shall also contain an early and a late slew that define the range of possible slew
values for aggressor transitions that can occur within the window. If available to the application, pointers to
XWF structures corresponding to these slews shall also be supplied. If no such XWF data are available or
these data were provided by a library technology other than that calling this function, these pointers shall be
set to zero (0).

If and only if XWF structures are not supplied, an overlap window shall also contain two output resistances
for the associated aggressor driver, one corresponding to each of the slews provided. If there is no
aggressor activity within an interaction window, these values shall be set to the quiet output resistances of
the driver. The application shall obtain these resistances by calling dpcmCalcSteadyStateResistanceRange
(see 10.21.12.3). The application shall set the earlyDriverResistance field in the overlap-window structure
to the maximum resistance returned by that function and the lateDriverResistance field to the minimum
resistance returned.

If the aggressor is active but it is in a different library technology, output resistances obtained via
dpcmCalcOutputResistances (see 10.21.15.6) shall be used. Whenever XWF structures are supplied, these
resistance values shall be set to zero and shall be ignored by the library.

If aggressor activity can occur within an interaction window, the overlapPresent field in the corresponding
overlap-window structure shall be set to one (1). Otherwise, this field shall be set to zero (0) and the
remaining fields, other than the output resistance, shall not be used by the library.

Each early overlap window shall represent an interval in which an edge can occur at the associated
aggressor that has the same polarity as the edge identified by the sinkEdge field in the Standard Structure.

Each late overlap window shall represent an interval in which an edge can occur at the associated aggressor
that has the opposite polarity from the edge identified by the sinkEdge field in the Standard Structure.

If no interaction-window data have been provided by the library for the propagation arc for which
appGetAggressorOverlapWindows is called, the application shall return default overlap windows of its own
choosing. The contents of these default windows are dependent on the algorithm used by the application to
account for aggressor activity at a design level. If the library provides a zero-valued pointer for an
individual early or late interaction window, the application shall respond as appropriate for the algorithm.
That algorithm shall not be mandated in this standard.

If the library provides a zero-valued pointer for either an early or a late overlap window, the application
shall omit the calculation of data for that window. If the pointer to either the early or the late overlap-
window array has a value of zero (0), the application shall omit all early or all late overlap-window
calculation, respectively, for the arc.

10.21.15.2 appSetAggressorInteractWindows

Table 255 provides information on appSetAggressorInteractWindows.

306
Copyright © 2010 IEEE all rights reserved.

– 306 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 255—appSetAggressorInteractWindows

Function name appSetAggressorInteractWindows
Arguments Early and late interaction-window arrays
Result None
Standard
Structure fields

CellName, calcMode, processVariation, fromPoint, toPoint, block, sourceEdge,
sinkEdge

DCL syntax typedef(timeRange):
 result(double var: earlyTime, lateTime);

EXTERNAL(appSetAggressorInteractWindows):
 passed(timeRange[*]: earlyInteractArray,
 lateInteractArray)
 result(int: ignore);

C syntax typedef struct {
 DCM_DOUBLE earlyTime, lateTime;
} DCM_TimeRange;

typedef DCM_TimeRange *DCM_TimeRange_ARRAY;

typedef struct {
 DCM_INTEGER ignore;
} T_Ignore;

int appSetAggressorInteractWindows(
 const DCM_STD_STRUCT *std_struct, T_Ignore *rtn,
 const DCM_TimeRange_ARRAY *earlyInteractArray,
 const DCM_TimeRange_ARRAY *lateInteractArray);

The library shall use this function to store arrays of interaction windows, one window in each array for each
aggressor driver, in the application. This action shall occur only if overlap windows are needed during
subsequent calculations by the library.

The interaction-window data shall be in the units of the library technology that calls this function.

The library shall call this function only during delay computations initiated by the application. Two arrays
of interaction windows, one corresponding to the early delay and one to the late delay calculated during a
delay computation, shall be set. The order of the windows within each array shall be the same as the order
in which the corresponding aggressor drivers first appear in the parasitic network for the net supplied by the
application.

This function shall set interaction windows for the propagation arc defined by the fromPoint, toPoint,
sourceEdge, and sinkEdge fields in the Standard Structure. The application shall record the passed arrays
for subsequent use in calculating overlap windows at the request of the library (see 10.21.15.1). These
windows shall indicate intervals of time in which activity at the aggressor drivers are of interest to the
library. If the library provides a zero-valued pointer for an individual early or late interaction window, the
application shall assume that no relevant activity can occur for the corresponding aggressor.

The library shall call this function during computation of delay values before the function that calculates
these delays (generated from a DCL DELAY statement) exits. The Standard Structure shall remain
unmodified during this operation.

10.21.15.3 Modeling the effect of propagated noise on delay

An aggressor or dc-coupled driver may have no full transitions that occur within an interaction window of
interest to the library but may still propagate noise during that window. An application can choose to model
the effect of propagated noise on delay, passing information about propagated noise to the library through
appGetOverlapNWFs. This requires support for both the timing domain and the noise domain, and the
application may need to switch between the two domains to iteratively resolve the interactions between

307
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 307 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

them. If the application chooses not to model these effects, it is free to leave appGetOverlapNWFs and
appSetDriverInteractWindows unimplemented.

10.21.15.4 appGetOverlapNWFs

Table 256 provides information on appGetOverlapNWFs.

Table 256—appGetOverlapNWFs

Function name appGetOverlapNWFs

Arguments Noise waveforms, Driver noise waveforms

Results None

Standard
StructureStandar
d Structure fields

CellName, calcMode, fromPoint, toPoint, block, sourceEdge, sinkEdge,
processVariation

DCL syntax typedef(overlapNWFs):
 result(NWF[*] var: NWFs;
 PWFdriverModel var[*]: PWFs);

EXTERNAL(appGetOverlapNwfs):
 passed(var overlapNWFs transient[*]:
 driverOverlapNWFs,
 aggressorOverlapNWFs)
 result(int: ignore);

C syntax typedef struct {
 DCM_NWF_ARRAY *NWFs;
 DCM_PWFdriverModel_ARRAY *PWFs;
} DCT_overlapNWFs;

typedef DCT_overlapNWFs *DCT_overlapNWFs_ARRAY;

int appGetOverlapNWFs(
 DCM_STD_STRUCT *std_struct, T_Ignore *rtn,
 DCT_overlapNWFs_ARRAY *driverOverlapNWFs,
 DCT_overlapNWFs_ARRAY *aggressorOverlapNWFs);

This function can be called by the library to obtain arrays of noise waveforms for dc-connected drivers and
aggressor drivers coupled to a net for which propagation-arc calculation (delay, slew, etc.) is being done.
The propagation arc shall be defined by the fromPoint, toPoint, sourceEdge, and sinkEdge fields in the
Standard Structure. The function can also be used during propagation-arc calculation for a cell that drives
such a net.

There shall be one overlap NWF in the driverOverlapNWFs array for each dc-connected driver. The order
of these overlap NWFs shall be the same as the order in which the corresponding dc-connected drivers first
appear in the parasitic network for the net as supplied by the application. In calculating these overlap
NWFs, the application shall use interaction windows provided previously by the library via the function
appSetDriverInteractWindows (see 10.21.15.5).

There shall be one overlap NWF in the aggressorOverlapNWFs array for each aggressor driver. The order
of these overlap NWFs shall be the same as the order in which the corresponding aggressor drivers first
appear in the parasitic network for the net as supplied by the application. In calculating these overlap
NWFs, the application shall use interaction windows provided previously by the library via the function
appSetAggressorInteractWindows (see 10.21.15.2).

All data associated with this function shall be in the units of the library technology that calls the function.

To avoid the overhead of memory allocation and deallocation, which involves claiming and disclaiming for
individual overlap NWFs, the library shall provide the addresses of arrays of pointers to overlap NWF

308
Copyright © 2010 IEEE all rights reserved.

– 308 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

structures in its own temporary memory. These pointer arrays shall be neither claimed nor disclaimed by
the application. The application can, however, call functions such as dcm_getNumElements to determine
the characteristics of the arrays. The application shall place the requested overlap-NWF data into the
structures so addressed. To indicate the memory used for these structures is of this temporary or transient
sort, the name of the C struct type for an overlap NWF shall begin with the prefix DCT_ (not DCM_).

The overlap NWFs returned by the application shall define intervals of activity at each of the dc-connected
and aggressor drivers occurring within each of the corresponding interaction windows. Each overlap NWF
shall contain offsets for the earliest and latest possible start times for the waveform, which shall be relative
to an edge time at the fromPoint pin.

For drivers that are in the same technology as the fromPoint pin, a pointer to an NWF shall be returned in
the overlap NWFs array, and the corresponding PWF driver-model pointer shall be set to zero (0).

For drivers that are in a different technology than the fromPoint pin, a pointer to a PWF driver model shall
be returned in the overlap NWFs array, and the corresponding NWF pointer shall be set to zero (0). The
PWF driver model shall contain both a piece-wise linear representation of the noise waveform and an
output resistance for each point in the PWF (see Table 264).

If no interaction-window data have been provided by the library for the propagation arc for which
appGetOverlapNWFs is called, the application shall return default overlap NWFs of its own choosing. The
contents of these default overlap NWFs are dependent on the algorithm used by the application to account
for aggressor noise activity at a design level. If the library provides a zero-valued pointer for an individual
early or late interaction window, the application shall respond as appropriate for the algorithm. That
algorithm shall not be mandated in this standard.

If the library provides a zero-valued pointer for an overlap NWF, then the application shall omit the
calculation of data for that window.

10.21.15.5 appSetDriverInteractWindows

Table 257 provides information on appSetDriverInteractWindows.

Table 257—appSetDriverInteractWindows

Function name appSetDriverInteractWindows

Arguments Early and late interaction-window arrays

Result None

Standard
Structure fields

CellName, calcMode, processVariation, fromPoint, toPoint, block, sourceEdge,
sinkEdge

DCL syntax typedef(timeRange):
 result(double var: earlyTime, lateTime);

EXTERNAL(appSetDriverInteractWindows):
 passed(timeRange[*]: earlyInteractArray,
 lateInteractArray)
 result(int: ignore);

C syntax typedef struct {
 DCM_DOUBLE earlyTime, lateTime;
} DCM_TimeRange;

typedef DCM_TimeRange *DCM_TimeRange_ARRAY;

typedef struct {
 DCM_INTEGER ignore;
} T_Ignore;

int appSetDriverInteractWindows

309
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 309 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

 (const DCM_STD_STRUCT *std_struct, T_Ignore *result,
 const DCM_TimeRange_ARRAY *earlyInteractArray,
 const DCM_TimeRange_ARRAY *lateInteractArray);

The library shall use this function to store arrays of interaction windows, one window in each array for each
dc-connected driver, in the application. This action shall occur only if overlapNWFs are needed during
subsequent calculations by the library.

The interaction-window data shall be in the units of the library technology that calls this function.

The library shall call this function only during delay computations initiated by the application. Two arrays
of interaction windows, one corresponding to the early delay and one to the late delay calculated during a
delay computation, shall be set. The order of the windows within each array shall be the same as the order
in which the corresponding dc-connected drivers first appear in the parasitic network for the net supplied
by the application.

This function shall set interaction windows for the propagation arc defined by the fromPoint, toPoint,
sourceEdge, and sinkEdge fields in the Standard Structure. The application shall record the passed arrays
for subsequent use in calculating overlapNWFs at the request of the library (see 10.21.15.4). These
windows shall indicate intervals of time in which activity at thedc-connected drivers are of interest to the
library. If the library provides a zero-valued pointer for an individual early or late interaction window, then
the application shall assume that no relevant activity can occur for the corresponding dc-connected driver.

The library shall call this function during computation of delay values before the function that calculates
these delays (generated from a DCL DELAY statement) exits. The Standard Structure shall remain
unmodified during this operation.

10.21.15.6 dpcmCalcOutputResistances

Table 258 provides information on dpcmCalcOutputResistances.

Table 258—dpcmCalcOutputResistances

Function name dpcmCalcOutputResistances

Arguments Output-pin pointer, Early and late slews, Early and late XWF data structures

Result Early and late output resistances

Standard
Structure fields

calcMode, processVariation, block, pathData (timing-pin-specific), cellData (timing)

DCL syntax EXPOSE(dpcmCalcOutputResistances):
 passed(pin: outputPin;
 double: earlySlew, lateSlew;
 void: earlyXWF, lateXWF)
 result(double: earlyRout, lateRout);

C syntax typedef struct {
 DCM_DOUBLE earlyRout;
 DCM_DOUBLE lateRout;
} T_Rout;

int dpcmCalcOutputResistances(
 const DCM_STD_STRUCT *std_struct,
 T_Rout *rtn, DCM_PIN outputPin,
 DCM_DOUBLE earlySlew, lateSlew,
 const DCM_STRUCT *earlyXWF, *lateXWF);

This function returns output resistances for the passed pin corresponding to the early and late slews and
XWF structures provided. If the pin is not an output nor bidirectional, then an error shall occur.

310
Copyright © 2010 IEEE all rights reserved.

– 310 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

The application shall call this function to obtain output resistances in circumstances for which the XWFs
cannot be used directly. An example of this is when, during crosstalk analysis, overlap-window data for an
aggressor driver in a technology different from that of a victim is requested by the library. The application
can, at its discretion, record these values for use after an immediate need is met.

10.22 Noise analysis

The noise domain includes models and calculations for static noise analysis, including noise propagation
and noise violation checking. For static noise analysis, test vectors are not required. Instead, worst-case
noise values are calculated and propagated through a noise network of cones and pins. Cell models for use
in a noise network are supplied by the library during model elaboration through the function
appNewNoiseCone.

Noise may be present in a circuit through a variety of physical mechanisms, including parasitic coupling
from aggressor nets to victim nets, power supply variations, charge sharing, and noise from external
circuitry (provided by the application). A number of predefined types of noise are included explicitly in the
noise domain. In addition, the noise domain contains interface functions that allow the library to define
additional types of noise and exchange information with the application for calculations and violations
involving those noise types.

Although a library may consider multiple types of noise while doing a particular calculation, noise
propagation is done using a composite NWF that represents the worst-case combination of all types of
noise at a given pin. There are two primary functions for calculating how NWFs propagate. For cells,
dpcmCalcOutputNoise uses the conditions on a cell’s input pins (including NWFs, transitions, and constant
values) as well as noise occurring within the cell (such as that due to charge sharing and leakage) to create
sets of NWFs on the related output pins of the cell. Noise activity can also occur on other pins related to a
particular output, such as power pins or other outputs connected through unbuffered output-to-output
relationships, in which case those pins shall also be considered in the related set for that output. For
interconnect, dpcmCalcInputNoise uses conditions on dc-connect driver pins and coupled aggressor-driver
pins to create a set of NWFs on a receiver input pin.

There are two interactions between the timing domain and the noise domain. First, static timing analysis
can determine the lower and upper bounds (early and late values) within which all transitions on an
aggressor net occur. This information from the timing domain can reduce pessimism in the noise domain.
Due to on-chip process variation and other types of uncertainty, noise calculations shall be done assuming
that within those bounds, transitions can occur at all possible times and in all cycles of operation. Thus, an
NWF has a similar range of uncertainty, represented by bounds on the earliest and latest times at which the
waveform can start. Library calculations involving multiple NWFs shall be done considering the worst
possible alignment of these waveforms given those bounds. For asynchronous relationships between
aggressors and victims, aggressor NWFs shall be considered to occur at all possible times.

In the second relationship, crosstalk noise occurring while a transition is propagating across a victim net
can affect the propagation delay of that transition. This noise-induced delay shall be considered in the
timing domain rather than the noise domain, because the most significant crosstalk effects are caused by
full transitions on aggressor nets. However, it is possible for an aggressor to be quiescent during all
possible times that a victim transition can propagate. In that case, there might still be some noise
propagating through the aggressor that may affect the victim transition. To accurately model this case, an
application can use the results of calculations in the noise domain for noise-induced delay calculations in
the timing domain. Iteration at the application level may be necessary to achieve convergence between the
two domains.

The noise domain supports two types of violation checks. A library may enforce its own noise limits to
ensure that circuit elements function properly and reliably. In addition, an application may specify noise
budgets to define a more conservative margin for some designs or to allow for reduction of specific types of
noise to have more margin for other types. Both types of checks are performed by the library during

311
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 311 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

dpcmCalcInputNoise and dpcmCalcOutputNoise, and notification of violations is provided to the
application via the appSetNoiseViolation function.

10.22.1 Types of noise

This subclause contains definitions for a number of predefined types of noise as well as an interface
through which the library can define additional noise types.

10.22.1.1 noiseType

noiseType is an enumerated type that identifies the type of noise involved in a calculation, as shown inTable
259.

Table 259—DCM_NoiseTypes

Enumerated name Value Definition

DCM_TOTAL_NOISE 0
A composite value representing the sum of all of the
types of noise at a given pin.

DCM_PROPAGATED_NOISE 1 Noise propagated from a previous stage.

DCM_CHARGE_SHARING_NOISE
2

Noise due to charge redistribution between parts of a
circuit.

DCM_POWER_NOISE 3 Noise originating on the power or ground rails of a cell.

DCM_CROSS_TALK_NOISE 4
Noise induced on a victim net by activity on an aggressor
net through capacitive or inductive coupling.

DCM_LIBRARY_DEFINED_NOISE 5 A type of noise defined by the library.

10.22.1.1.1 dpcmGetLibraryNoiseTypesArray

Table 260 provides information on dpcmGetLibraryNoiseTypesArray.

Table 260—docmGetLibraryNoiseTypesArray

Function name dpcmGetLibraryNoiseTypesArray

Arguments None

Result Array of noise types

Standard
Structure fields

None

DCL syntax EXPOSE(dpcmGetLibraryNoiseTypesArray):
 result(string[*]: libraryNoiseTypes);

C syntax enum DCM_NoiseTypes {
 DCM_TOTAL_NOISE,
 DCM_PROPAGATED_NOISE,
 DCM_CHARGE_SHARING_NOISE,
 DCM_POWER_NOISE,
 DCM_CROSS_TALK_NOISE,
 DCM_LIBRARY_DEFINED_NOISE
};

typedef struct {
 DCM_STRING_ARRAY *libraryNoiseTypes;
} T_LibraryNoiseTypesArray;

int dpcmGetLibraryNoiseTypesArray(
 const DCM_STD_STRUCT *std_struct,
 T_LibraryNoiseTypesArray *rtn);

312
Copyright © 2010 IEEE all rights reserved.

– 312 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

This returns an ordered array of strings identifying the custom noise types defined by the library. Each
technology can define a single set of custom noise types that are to be used for all of its cells. If a
technology has no custom noise types, then this function shall return an empty array.

10.22.2 Noise models

A library that supports noise analysis shall define a model in the noise domain for each of its cells. Within
the noise domain, there are no arcs. Instead, noise models shall consist of information about relationships
between the output(s) and the other related pins on a cell.

These data shall be in the form of cones of influence known as noise cones, one per output pin, specifying
the related pins from which noise can be propagated to that output pin. Noise can be propagated to an
output pin from any other pin, including an input, another output, a power pin, or an internal node. An
internal node can also assume the role of an output pin for noise-propagation purposes.

To obtain a noise model for a cell, the application shall call the modelSearch function with the
modelDomain field in the standard structureset to the string “noise”. In response, the library shall call the
function appNewNoiseCone for each output pin or internal node to which noise can be propagated.

Because a bidirectional pin can act as either an input or an output, it can appear as both the output pin of a
noise cone and as a related pin in the cone for another output pin. Because of this, the application shall use
the pin handle provided in each call to determine to which of these roles the call applies. For this to be
possible, the application shall provide different, distinguishable handles for a bidirectional pin in the input
pin and output pinlists in the Standard Structure passed to modelSearch.

When a cell is modeled, applications that choose to include noise contributions associated with power-
supply pins shall include the cell’s supply pins in the list of the input pins contained in the Standard
Structure. The application shall identify the supply pins by calling 10.23.22.2 . The application shall not
include supply pins in the list of output pins.

Libraries that model noise contributions associated with power pins shall include those pins in the related-
pins array passed to the application by appNewNoiseCone.

While the modelSearch function is executing, the library can call the function newTimingPin (see 10.21.8)
to define an internal node within a cell. The library can also call newNetSinkPropagateSegments and
newNetSourcePropagateSegments to convey pathData pointers for input and output pins, respectively, to
the application (see 10.21.8).

DCL can be used to define a cell model in the noise domain. A MODELPROC or SUBMODEL construct
associated with the noise domain can contain INPUT and OUTPUT statements describing the cell ’s noise
configuration to the application. The INPUT statements describe the data to be used by the library during
noise calculations performed at input pins. The OUTPUT statements describe the cones of influence passed
to the application and cache noise-related data to be use by the library during noise calculations at output
pins.

An OUTPUT statement contained within a MODELPROC in the noise domain shall not contain a
propagate sequence but shall have a post code sequence containing a call to appNewNoiseCone. The
OUTPUT statement(s) may contain STORE and METHODS clauses for caching and retrieving library
data.

An INPUT statement contained within a MODELPROC in the noise domain shall not contain a propagate
sequence. INPUT statements can contain STORE and METHODS clauses for caching and retrieving
library data.

313
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 313 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

The following example demonstrates the use of a DCL OUTPUT statement in the noise domain:
tabledef(noiseCones):
 passed(string: cellName, domain, outputPin)
 qualifiers(cellName, domain, outputPin)
 data(string[*]: relatedPinNames);

import calc(locateRelatedPins):
 passed(string[*]: relatedPinNames)
 result(pin[*]: relatedPins);

external(appNewNoiseCone):
 passed(pin: outputPin; pin[*]: relatedPins)
 result(integer: ignore);

model(n):
 defines(INV1.*.noise);

modelproc(n):
 output(Z):
 store(noiseCones(cell, model_domain, 'Z'))

appNewNoiseCone(
 from_point,
 locateRelatedPins(
 noiseCones(cell, model_domain, 'Z'
).relatedPinNames
).relatedPins
);
end;

table(noiseCones):
 INV1.noise.Z: [`A'];
end;

10.22.2.1 appNewNoiseCone

Table 261 provides information on appNewNoiseCone.

Table 261—appNewNoiseCone

Function name appNewNoiseCone
Arguments Output pin, Array of related pins
Results None
Standard
Structure fields

None

DCL syntax external(appNewNoiseCone):
 passed(pin: outputPin; pin[*]: relatedPins)
 result(int: ignore);

C syntax int appNewNoiseCone(DCM_STD_STRUCT *std_struct,
 T_Ignore *rtn, DCM_PIN outputPin,
 DCM_PIN_ARRAY *relatedPins);

This function describes the set of pins that are related to (that can have noise affecting) an output pin on a
cell. The order of the related pins in the array provided is significant. The application shall use this order in
subsequent calls to dpcmCalcOutputNoise(see 10.22.6.1.1). The related pins may include inputs, power
pins, internal nodes, and other output pins.

314
Copyright © 2010 IEEE all rights reserved.

– 314 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

In response to a call to modelSearch made by the application for the noise domain, the library shall call this
function for each output pin to which noise can be propagated.

10.22.2.2 Interconnect noise cones

For each input pin on a net, the application shall create an interconnect noise cone. All dc-connected drivers
and all aggressor drivers that are present in the parasitic network supplied to the library for that net (see
10.22.4) shall be included in this cone. The order of these drivers shall be the same as the order in which
they first appear in that parasitic network. This same driver order shall be used when the application
requests that the library calculate noise for the input pin (see 10.22.5).

A bidirectional pin can be included in multiple interconnect noise cones for a net. It can appear as the target
pin of an interconnect cone (reflecting its role as an input) and as a related pin in other interconnect cones
(reflecting its role as an output). A bidirectional pin shall not appear as both the target pin and as a related
pin in the same interconnect noise cone.

If instructed by the library, the application shall substitute an internal node for any given pin in an
interconnect noise cone (see 10.21.8).

10.22.2.3 Modeling internal nodes

For situations in which a cell is complicated enough to warrant separate analysis for individual internal
nodes, the library can use IMPORT or EXPORT clauses to associate these internal nodes with the
appropriate pins. The application shall treat each identified imported or exported node as a valid
measurement point associated with the input or output pin present in the corresponding clause. Each such
node shall be connected to one or more noise cones which begin or end at the node.

The application shall detect the presence of an IMPORT or EXPORT clause in a model through a library
call to newNetSinkPropagateSegments or newNetSourcePropagateSegments, respectively. However, the pin
involved can be either an input or an output. The following rules shall govern how the application creates
interconnect noise cones in response to these calls:

— If an import pin is an input, the application shall create a noise cone from the driver pins on the
connected net to the internal sink node (the node that is the target of the import). This cone shall
be created in lieu of that which would otherwise be directed from those drivers to the import pin.

— If an import pin is an output, the application shall create a noise cone from the driver pins on the
connected net, excluding the import pin, to the internal sink node. This cone shall be created in
addition to those directed from the import pin and the other drivers to the sink pins connected to
the net.

— If an export pin is an input, the application shall include the internal source node (the node that is
the target of the export) together with the driver pins of the connected net in the noise cone
directed to each sink pin on that net, excluding the export pin. These cones shall be created in
addition to that directed from the drivers to the export pin.

— If an export pin is an output, the application shall include the internal source node together with
the other driver pins of the connected net in the noise cone directed to each sink pin on the net.
The export pin shall not be included in these noise cones.

For a bidirectional pin or tristate output, an imported or exported internal node shall be associated with the
source or sink parasitic subnet for that pin, but not with both.

10.22.3 Noise waveforms

Noise waveforms typically originate from a transition on an aggressor net, although they can also be

315
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 315 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

created in other ways. Like transitions, noise waveforms do not have a precise start time. Instead, each
noise waveform is defined to start within a window of time bounded by early and late values. The
characteristics of each noise waveform are defined with respect to their own internal reference point in
time, which has the value 0.

The start time of a noise waveform shall be considered to be an offset added to each time point defined
within that waveform. For a noise waveform having a synchronous relationship with the temporal context
in which it is used, the earliest and latest possible offsets shall be associated with that waveform. Such a
waveform shall be considered to be a synchronous waveform in that context. A noise waveform having an
asynchronous relationship with a temporal context shall be considered to be an asynchronous waveform in
that context. The earliest and latest offsets in an asynchronous waveform shall be considered to be
undefined, and the library shall assume that the waveform may start at any time relative to its context.

There are two representations of noise waveforms. For noise calculations involving a single technology, the
NWF representation, which associates the early and late offsets with arbitrary, library-private data, shall be
used. The PWF representation shall be used when noise calculations involve more than one technology or
when noise waveforms are supplied by the application. Each PWF associates early and late offsets with an
initial voltage and a set of subsequent time-voltage pairs.

The application shall determine whether a noise calculation involves more than one technology. For each
noise waveform originating in a different technology than the one responsible for the calculation, the
application shall call dpcmGetPWFArrayto convert the noise waveform from an NWF representation to a
PWF representation. When the calculation is in the same synchronous frame of reference (temporal
context), the offsets of the NWF and the resultant PWF shall be the same.

The application shall also determine whether a noise calculation involves waveforms that are with respect
to multiple temporal frames of references, and if so convert all of the waveforms into a single consistent
frame of reference for the calculation. To do so, an application shall call dpcmCopyNWFarray or
dpcmCopyNWFarray for each waveform array, then set the offsets for each entry in the new array to reflect
this other frame of reference.

When the calculation is in a different frame of reference that has a synchronous relationship to the original
frame of reference for a waveform, the offsets in the copy of the waveform shall be adjusted to reflect the
difference between the two frames of reference. When the calculation is in a frame of reference that has an
asynchronous relationship to the original frame of reference for a waveform, the waveform type shall be set
to DCM_ASYNCHRONOUS in the copy.

For noise calculations on a victim net that include the effects of noise waveforms at dc-connected driver
pins or coupled aggressor-driver pins, where the receiver pin on the victim net is in a different technology
than a given driver pin, output resistance shall be used in a simplified driver model for that driver pin. A
PWFdriverModelstructure contains a PWF and the corresponding output resistances for the voltages in the
PWF. These voltages and output resistances shall together form a set of Thevenin equivalent models for the
driver, one model for each of the points in the PWF.

The application shall determine when a PWFdriverModelarray is needed for a driver (rather than the
corresponding NWFs) and shall then call dpcmGetPWFdriverModelArrayto obtain that array (Table 262).

Table 262—NWF type

DCL syntax
typedef(NWF):
result(int var: waveformType;
 double var: earlyOffset, lateOffset;
 void var: NWFinfo);

316
Copyright © 2010 IEEE all rights reserved.

– 316 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

C syntax
enum DCM_WaveformTypes {
 DCM_ASYNCHRONOUS,
 DCM_SYNCHRONOUS
};

typedef struct {
 DCM_WaveformTypes waveformType;
 DCM_DOUBLE earlyOffset, lateOffset;
 const DCM_STRUCT *NWFinfo;
} DCM_NWF;

typedef DCM_NWF *DCM_NWF_ARRAY;

An NWF shall contain early and late offsets and arbitrary, library-private data that together describe a noise
waveform. A field indicating the type of the waveform (synchronous or asynchronous) shall also be
included. The early offset shall represent the earliest possible start time for the NWF, whereas the late offset
shall represent its latest possible start time. The offsets in an asynchronous NWF shall be considered
irrelevant and shall be ignored.

The NWFinfo field is a pointer to a library-private representation of the noise waveform. The memory for
this representation shall be managed by the library. Applications shall not modify this field or attempt to
use it or the data to which it points in any way.

When multiple NWFs are stored in an NWF array, they shall represent a collection or set of noise
waveforms at a particular pin. The order of the entries in the array shall not be considered to be significant,
except perhaps to the library technology that has created it (Table 263).

Table 263—PWF type

DCL syntax
typedef(PWFpoint):
result(double var: time, voltage);
typedef(PWF):
result(int var: waveformType;
 double var: earlyOffset, lateOffset;
 var PWFpoint var[*] var: points);

C syntax
typedef struct {
 DCM_DOUBLE time;
 DCM_DOUBLE voltage;
} DCM_PWFpoint;

typedef DCM_PWFpoint *DCM_PWFpoint_ARRAY;

typedef struct {
 DCM_WaveformTypes waveformType;
 DCM_DOUBLE earlyOffset, lateOffset;
 DCM_PWFpoint_ARRAY *points;
} DCM_PWF;

typedef DCM_PWF *DCM_PWF_ARRAY;

A PWF structure explicitly represents the shape of a noise waveform as a set of points, where each point
consists of a time and a voltage value. The first time value shall always be 0, which shall be used as a
reference time for the subsequent points. The subsequent points shall have monotonically increasing time
values.

A field indicating the type of the waveform (synchronous or asynchronous) is also included. The early

317
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 317 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

offset represents the earliest possible start time for the PWF, whereas the late offset represents its latest
possible start time. The offsets in an asynchronous PWF are irrelevant and shall be ignored.

Libraries and applications shall use piece-wise linear interpolation when interpreting a PWF to determine
voltage values between points. Between each pair of points, a linear segment is implicitly defined, and for
any time value between those two points, the corresponding voltage shall be calculated to fall on that linear
segment. For time values less than zero (0), the voltage shall be defined to be the same as the voltage at
time zero (0). For time values greater than the time of the last point, the voltage value shall be defined to be
the same as the voltage at that point.

When the area under the curve of a noise waveform is calculated, the baseline voltage shall be defined as a
linear segment between the voltage at time zero (0) and the voltage at the last point. Although this voltage
might not be a constant, the noise waveform itself shall be described completely between the first and last
points.

The PWF for a noise waveform that represents a constant dc voltage shall contain a single point whose time
is zero and whose voltage is that constant. The area associated with a constant noise waveform shall be
defined to be zero (0).

When multiple PWFs are stored in a PWF array, they shall represent a collection or set of noise waveforms.
The order of the entries in this array shall not be considered to be significant (Table 264.

Table 264—PWFdriverModel

DCL syntax
typedef(PWFdriverModel):
result(var PWF: pwf ;
 double var[*] var: resistances);

C syntax
typedef structure {
 const DCM_PWF *pwf;
 DCM_DOUBLE_ARRAY *resistances;
} DCM_PWFdriverModel;

typedef DCM_PWFdriverModel *DCM_PWFdriverModel_ARRAY;

A PWFdriverModel contains both a noise waveform (as a PWF) and, for each of the points in the PWF, an
associated output resistance. Each output resistance, together with the voltage in the corresponding PWF
point, shall constitute a Thevenin-equivalent model for that point on the waveform. The size of the
resistance array shall be the same as the number of points in the PWF. The order of the points and the
entries in the resistances array shall be the same.

10.22.3.1 dpcmGetPWFarray

Table 265 provides information on dpcmGetPWFarray.

Table 265—dpcmGetPWFarray

Function name dpcmGetPWFarray

Arguments Noise waveform array

Results Pulse waveform array

Standard
Structure fields

None

318
Copyright © 2010 IEEE all rights reserved.

– 318 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

DCL syntax EXPOSE(dpcmGetPWFarray):
 passed(NWF[*]: NWFarray)
 result(PWF[*]: PWFarray);

C syntax typedef struct {
 DCM_PWF_ARRAY *PWFarray;
} T_PWFarray;

int dpcmGetPWFarray(const DCM_STD_STRUCT *std_struct,
 T_PWFarray *rtn, DCM_NWF_ARRAY *NWFarray);

dpcmGetPWFarrayconverts an array of library-proprietary NWFs into an array of PWFs, which are
suitable for interpretation by an application or by a different technology than that which created the NWF.
Applications shall call this function to convert noise waveforms for propagation from one technology to
another.

10.22.3.2 dpcmCreatePWF

Table 266 provides information on dpcmCreatePWF.

Table 266—dpcmCreatePWF

Function name dpcmCreatePWF

Arguments Number of points

Results Empty pulse waveform

Standard
Structure fields

None

DCL syntax EXPOSE(dpcmCreatePWF):
passed(integer numPoints)
result(PWF: emptyPWF);

C syntax typedef struct {
 DCM_PWF *emptyPWF;
} T_PWF;

int dpcmCreatePWF(
 DCM_STD_STRUCT *std_struct,
 T_PWF *rtn,
 DCM_INTEGER numPoints);

dpcmCreatePWF creates a PWF with numPoints points in which the waveform type, the offsets, and the
time and voltage values for each point are all uninitialized. The application shall fill in these fields with the
appropriate values for a specific waveform. The resulting PWF is then suitable for subsequent use by the
library, for example, in calls to dpcmCalcInputNoise or dpcmCalcOutputNoise.

Applications shall call this function to create waveforms for noise sources that they define, such as for
noise injected on a primary input. As each PWF is created, the application shall lock it, then unlock it when
it is no longer needed.

To create an array of PWFs, the application shall call dcm_new_DCM_ARRAY and then set each of the
pointers in that array to point to individual, locked PWFs created using dpcmCreatePWF. When it is no
longer needed, the application shall unlock this array as a unit, which shall result in its PWF entries being
unlocked automatically.

If an individual PWF is included in more than one PWF array, it shall be locked once for each of those
inclusions.

319
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 319 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.22.3.3 dpcmCopyNWFarray

Table 267 provides information on dpcmCopyNWFarray.

Table 267—dpcmCopyNWFarray

Function name dpcmCopyNWFarray

Arguments NWF array

Results NWF array copy

Standard
Structure fields

None

DCL syntax
EXPOSE(dpcmCopyNWFarray):
 passed(NWF[*]: sourceNWFarray)
 result(NWF[*]: NWFarray);

C syntax

typedef struct {
 DCM_NWF_ARRAY *NWFarray;
} T_NWFarray;

int dpcmCopyNWFarray(const DCM_STD_STRUCT *std_struct,
 T_NWFarray *rtn, DCM_NWF_ARRAY *sourceNWFarray);

dpcmCopyNWFarray allocates space for a new array of NWFs and copies the contents of the source NWF
array passed to it into this new array. Each entry in the new array shall have the same values for its
waveformType, earlyOffset, lateOffset, and NWFinfo fields as the corresponding entry in the source array.
For each entry, the structure to which NWFinfo points shall be locked an additional time to account for its
use in the new array.

10.22.3.4 dpcmCopyPWFarray

Table 268 provides information on dpcmCopyPWFarray.

Table 268—dpcmCopyPWF

Function name dpcmCopyPWF

Arguments PWF array

Results PWF array copy

Standard
Structure fields

None

DCL syntax EXPOSE(dpcmCopyPWFarray):
 passed(PWF[*]: sourcePWFarray)
 result(PWF[*]: PWFarray);

C syntax int dpcmCopyPwf(const DCM_STD_STRUCT *std_struct,
 T_PWFarray *rtn, DCM_PWF_ARRAY *sourcePWFarray);

dpcmCopyPWFarray allocates space for a new PWF array and then copies the contents of the source PWF
array passed to it into this new array. Each entry in the new array shall have the same values for its
waveformType, earlyOffset, lateOffset, and points fields as the corresponding entry in the source array. For
each entry, the array to which points points shall be locked an additional time to account for its use in the
new array.

10.22.3.5 dpcmCreatePWFdriverModel

Table 269 provides information on dpcmCreatePWFdriverModel.

320
Copyright © 2010 IEEE all rights reserved.

– 320 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 269—dpcmCreatePWFdriverModel

Function name dpcmCreatePWFdriverModel

Arguments Pulse waveform

Results PWF driver model

Standard
Structure fields

None

DCL syntax EXPOSE(dpcmCreatePWFdriverModel):
 passed(PWF: pwf)
 result(PWFdriverModel: emptyPWFdriverModel);

C syntax typedef struct {
 DCM_PWFdriverModel *emptyPWFdriverModel;
} T_PWFdriverModel;

int dpcmCreatePWFdriverModel(const DCM_STD_STRUCT *std_struct,
 T_PWFdriverModel *rtn, DCM_PWF *PWF);

dpcmCreatePWFdriverModel creates a PWFdriverModel that incorporates the PWF passed to it and
includes a resistance array whose size is the same as the number of points in the PWF. The library shall
lock the PWF to reflect its use in the new PWFdriverModel. The resistance values shall be uninitialized and
shall be set by the application to the appropriate values for a specific driver model. The resulting
PWFdriverModel is then suitable for subsequent use by the library, for example in calls to
dpcmCalcInputNoise.

Applications shall call this function when defining noise models for output pins in a circuit and for external
drivers of primary inputs. As each PWFdriverModel is created, the application shall lock it, then unlock it
when it is no longer needed.

To create a PWFdriverModel array, the application shall call dcm_new_DCM_ARRAY and then set each of
the pointers in that array to an individual, locked PWFdriverModel created using
dpcmCreatePWFdriverModel. When it is no longer needed, the application shall unlock the array as a unit,
which shall result in its PWFdriverModel entries being unlocked automatically.

If an individual PWFdriverModel is included in more than one PWFdriverModel array, it shall be locked
once for each of those inclusions.

10.22.3.6 dpcmGetPWFdriverModelArray

Table 270 provides information on dpcmGetPWFdriverModelArray.

Table 270—dpcmGetPWFdriverModelArray

Function name dpcmGetPWFdriverModelArray

Arguments Driver pin, Array of noise waveforms

Results Array of PWF driver models

Standard
Structure fields

CellName, block, calcMode, CellData (noise-specific), pathData (noise-pin-specific),
processVariation

DCL syntax EXPOSE(dpcmGetPWFdriverModelArray):
 passed(pin: driverPin;
 NWF[*]: NWFarray)
 result(PWFdriverModel[*]: PWFdriverModelArray);

321
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 321 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

C syntax typedef struct {
 DCM_PWFdriverModel_ARRAY *PWFdriverModelArray;
} T_PWFdriverModelArray;

int dpcmGetPWFdriverModelArray(
 DCM_STD_STRUCT *std_struct, T_PWFdriverModelArray *rtn,
 DCM_PIN driverPin, DCM_NWF_ARRAY *NWFarray);

dpcmGetPWFdriverModelArraycreates an array of PWF driver models using an array of library-
proprietary NWFs and output resistances for the driver pin passed to it. These NWFs shall be assumed to
occur at that driver pin, and the output resistances shall correspond to the voltages in the PWFs contained
within the resulting driver models.

10.22.4 Noise network models

For noise propagation across an interconnect network, a large amount of information is required. This
information shall include the interconnect parasitics associated with the network, coupling parasitics to any
aggressor nets, and the interconnect parasitics for those aggressors, and the pin-parasitic subnetworks for
each pin that is a port on the overall network. Similarly, for noise propagation across a cell, a full parasitic
network for the output net, including any coupled aggressor nets, is needed.

The representation of parasitics is described in more detail in 10.21.6 . The application shall build a full
parasitic network for a net and any aggressor nets coupled to it, including the pin-parasitic subnetworks, as
described in 10.21.6.10 .

When preparing a parasitic network for noise calculations, pin parasitics shall be handled differently than
for timing calculation. The application shall call dpcmSinkPinNoiseParasitics and
dpcmSourcePinNoiseParasitics to obtain appropriate pin-parasitic subnetworks for use during noise
calculations.

When creating a parasitic network for use during interconnect-noise propagation, all driver pins shall be
modeled as sources, including both dc-connected drivers and aggressor drivers. When creating a parasitic
network for cell-noise propagation, the driver pin that is the destination of the propagated noise shall be
modeled as a source, aggressor drivers shall also be modeled as sources, but any other dc-connected drivers
on the driven net shall be modeled as sinks.

When the noise propagated across a given net is calculated multiple times for an input pin, performance can
be significantly improved by first creating noise interconnect models for this pin that are specifically
designed for use by the library’s internal algorithms and then reusing the models during those calculations.
The application shall call dpcmCreateNoiseInterconnectModels to allow the library to create these models.
The library can use a parasitic network as a noise interconnect model if it chooses.

Similarly, when the noise propagated across a cell to an output pin is calculated multiple times,
performance can be improved by creating and reusing noise load models for this pin. The application shall
call dpcmBuildNoiseLoadModels to allow the library to create these models. The library can use a parasitic
network as a noise load model if it so chooses.

Each noise load model shall contain sufficient information so that the library can later identify the
associated driver node in the corresponding network using that model. For a network having multiple,
parallel drivers, the load models for the drivers shall contain sufficient information so that all of the driver
nodes can be identified when these models are used together.

Each noise interconnect model and the noise load models for the associated driver pins shall together
contain sufficient information so that the library can later identify the driver and sink nodes in the
corresponding network using those models. For a network having multiple, parallel drivers, an interconnect
model and the load models for all of these drivers shall contain sufficient information so that all of the

322
Copyright © 2010 IEEE all rights reserved.

– 322 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

drivers can be identified when these models are used together.

When a library is called several times to create noise interconnect models for the same parasitic network, it
can be more efficient for the library to create an intermediate model of the network once and then convert
that intermediate model into the noise interconnect noise models for the sink pins on the network. This
intermediate representation of the network shall be referred to as a noise network model.

Multiple calls to create noise load models for the same net shall be handled in a similar manner. However,
since parasitic networks used to create noise load models contain different pin-parasitic subnetworks, the
noise network models produced by the library can be different as well.

If the library chooses not to use noise network models and simply creates noise interconnect and load
models directly from the parasitic networks passed to it, the library shall return null pointer values for the
noise network models.

To accommodate on-chip process variations, the application can pass pointers to two parasitic networks for
each net to the library, one with element values for the minimum and another with values for the maximum
of the on-chip process uncertainty (see 10.23.11). These two networks shall be identical in all other
respects, including the order in which their elements and nodes appear. The library shall return two
corresponding noise load or interconnect models and, optionally, two corresponding noise network models
to the application, all via pointers of type DCM_STRUCT *.

If on-chip process variation is not modeled, these networks shall be completely identical, as shall the
corresponding library network models and the load or interconnect models. The parasitic-network pointers
passed to the library shall then be the same, as shall the load- or interconnect-model pointers and the
network-model pointers returned to the application.

To support libraries that use noise network models, during the first request for noise interconnect models
for a net, the application shall supply null pointers for the library’s noise network models. In subsequent
requests to the library, the application shall supply the noise network model pointers returned in response to
the previous request.

The application shall set (to a value of one (1)) the change field of the first subnet in a parasitic network
that has changed since a noise load or interconnect model for that network was last requested. This shall be
done whether the change was to an existing subnet, the insertion of a new subnet, the deletion of a subnet,
or a change in the order the subnets were presented. The library can thus omit the reconstruction of what
would otherwise be duplicate information.

The application shall lock each noise network model received from the library. When the application has
determined that all the noise load or interconnect models derived from that network model have been
obtained, the application shall unlock that model. At this point, if no other reference to it exists, the
memory used for that model shall then be freed by the library.

The application shall lock the load and interconnect noise models returned to it if it needs to retain them
beyond the time it makes the next call to any library function. When the application no longer needs a noise
model that it has already locked, it shall unlock that model. Again, if no other reference to it exists, the
memory used for the model shall then be freed by the library.

10.22.4.1 Noise pin parasitics

A pin’s parasitic network can be different depending on whether it is driving the connected net, in a high
impedance state, or receiving a logical signal. For example, a pin that is bidirectional can act as a receiver
or a driver, while a tristate output pin can be in an active or a high-impedance state, depending on whether
or not it is driving the attached net.

323
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 323 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

In the noise domain, a pin shall not have different parasitic subnets for rising and falling signals. If the
library models on-chip process variation, a pin can have different subnets with different element values
representing the minimum and maximum of the on-chip process uncertainty (see 10.23.11). These two
subnets shall be identical in all other respects, including the order in which their elements and nodes appear.
The application shall be responsible for stitching the appropriate subnets into overall interconnect networks
for calculations to be performed.

There shall be two separate functions for obtaining pin parasitics, one for sink (receiver or high impedance)
and one for source (driver) pin roles. For both of these functions, the library shall return pointers to either
one or two subnets, with two subnets representing the minimum and maximum on-chip process variation. If
the library does not support on-chip process variation, then the pointers returned for the minimum of the
on-chip process uncertainty shall be identical to those for its maximum.

Source-pin parasitics shall include only those elements needed to represent the constant portion of an
output pin’s parasitics. Elements representing the active part of a driver pin such as output resistance or
admittance shall not be included. Instead, the library can include driver models for an output pin in the
NWF structures (see 10.22.3), for example, associated with that pin.

The library shall return pointers to subnets appropriate for the current analysis conditions. Different
conditions, with regard to operating point, for example, can yield subnets that are topologically as well as
numerically different.

Although a bidirectional pin can act as an input or an output, as observed at the pin, it shall not do both
simultaneously. Consequently, when a parasitic network for a net is created for use when a bidirectional pin
drives that net, the application shall include source parasitics only for that pin. Sink parasitics for the pin
shall not be included under such circumstances. Conversely, while creating a parasitic network for use
when a different pin drives the net, only the sink parasitics for that bidirectional pin shall be included.

10.22.4.1.1 dpcmGetSinkPinNoiseParasitics

Table 271 provides information on dpcmGetSinkPinNoiseParasitics.

Table 271—dpcmGetSinkPinNoiseParasitics

Function name dpcmGetSinkPinNoiseParasitics

Arguments Sink-pin pointer

Result Parasitic subnets

Standard
Structure fields

CellName, cellData (noise), pathData (noise-pin-specific), calcMode

DCL syntax EXPOSE(dpcmGetSinkPinNoiseParasitics):
 passed(pin: sinkPin)
 result(var parasiticSubnet: minSubnet, maxSubnet);

C syntax typedef struct {
 DCM_ParasiticSubnet *minSubnet, *maxSubnet;
} T_PinNoiseParasitics;

int dpcmGetSinkPinNoiseParasitics(
 const DCM_STD_STRUCT *std_struct,
 T_PinNoiseParasitics rtn, const DCM_PIN sinkPin);

This returns two pointers to parasitic subnets for a sink pin, which contain element values for minimum and
maximum on-chip process variation. These subnets shall be constructed from memory allocated by the
library that is suitable for modification by the application. If the two subnets are completely identical, the
same pointer shall be returned for both of them. It shall be a severe error to call this function for a pin
thatcannot act as a sink.

324
Copyright © 2010 IEEE all rights reserved.

– 324 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.22.4.1.2 dpcmGetSourcePinNoiseParasitics

Table 272 provides information on dpcmGetSourcePinNoiseParasitics.

Table 272—dpcmGetSourcePinNoiseParasitics

Function name dpcmGetSourcePinNoiseParasitics

Arguments Source-pin pointer

Result Parasitic subnets

Standard
Structure fields

CellName, cellData (noise), pathData (noise-pin-specific), calcMode

DCL syntax EXPOSE(dpcmGetSourcePinNoiseParasitics):
 passed(pin: sourcePin)
 result(var parasiticSubnet: minSubnet, maxSubnet);

C syntax typedef struct {
 DCM_ParasiticSubnet *minSubnet, *maxSubnet;
} T_PinNoiseParasitics;

int dpcmGetSourcePinNoiseParasitics
 (const DCM_STD_STRUCT *std_struct,
 T_PinNoiseParasitics rtn, const DCM_PIN sourcePin);

This returns two pointers to parasitic subnets for a source pin, which contain element values for minimum
and maximum on-chip process variation. These subnets shall be constructed from memory allocated by the
library that is suitable for modification by the application. If the two subnets are completely identical, the
same pointer shall be returned for both of them. It shall be an error to call this function for a pin that cannot
act as a source.

10.22.4.1.3 dpcmBuildNoiseInterconnectModels

Table 273 provides information on dpcmBuildNoiseInterconnectModels.

Table 273—dpcmBuildNoiseInterconnectModels

Function name dpcmBuildNoiseInterconnectModels

Arguments Parasitic networks, Noise-network, models, Sink pin, Sink-pin node numbers

Results Noise-interconnect, models, Noise-network models

Standard
Structure fields

cellData (noise), cellName, block, pathData, (noise-pin-specific)

DCL syntax EXPOSE(dpcmBuildNoiseInterconnectModels):
 passed(pin: sinkPin;
 int: minSinkPinNodeNumber,
 maxSinkPinNodeNumber;
 parasiticSubnet: minParasitics, maxParasitics;
 void: minNoiseNetworkModel,
 maxNoiseNetworkModel)
 result(void: minNoiseInterconnectModel,
 maxNoiseInterconnectModel,
 newMinNoiseNetworkModel,
 newMaxNoiseNetworkModel);

325
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 325 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

C syntax typedef struct {
 const DCM_STRUCT *minNoiseInterconnectModel;
 const DCM_STRUCT *maxNoiseInterconnectModel;
 const DCM_STRUCT *newMinNoiseNetworkModel;
 const DCM_STRUCT *newMaxNoiseNetworkModel
} T_NoiseInterconnectModels;

int dpcmBuildNoiseInterconnectModels(
 DCM_STD_STRUCT *std_struct,
 T_NoiseInterconnectModels *rtn, DCM_PIN sinkPin,
 DCM_INTEGER minSinkPinNodeNumber,
 DCM_INTEGER maxSinkPinNodeNumber,
 const DCM_parasiticSubNet *minParasitics,
 const DCM_parasiticSubNet *maxParasitics,
 const DCM_STRUCT *minNoiseNetworkModel,
 const DCM_STRUCT *maxNoiseNetworkModel);

This returns pointers to the noise interconnect models for a sink pin (sinkPin) on an interconnect network,
along with updated versions of the library’s intermediate noise models for that network.

The minParasitics and maxParasitics arguments are pointers to linked lists of minimum and maximum
parasitic subnets, respectively, that represent the net, any aggressor nets and the coupling to those nets, and
the pins attached to all of the nets. The minNoiseNetworkModel and maxNoiseNetworkModel arguments are
pointers to the library’s intermediate models for the network. The minSinkPinNodeNumber and
maxSinkPinNodeNumber arguments are the node numbers for the sink pin in the minimum and maximum
networks, respectively.

If the parasitic networks passed to this function are identical, minParasitics and maxParasitics shall have
the same value, as shall minSinkPinNodeNumber and maxSinkPinNodeNumber. Similarly, if the noise
network models passed are identical, minNoiseNetworkModel and maxNoiseNetworkModel shall have the
same value.

If the noise interconnect models are identical, the minNoiseInterconnectModel and
maxNoiseInterconnectModel pointers returned shall have the same value. If the new noise network models
are identical, the minNoiseNetworkModel and maxNoiseNetworkModel pointers returned shall have the
same value.

10.22.4.1.4 dpcmBuildNoiseLoadModels

Table 274 provides information on dpcmBuildNoiseLoadModels.

Table 274—dpcmBuildNoiseLoadModels

Function name dpcmBuildNoiseLoadModels

Arguments Parasitic networks, Noise network models, Driving pin, Driving pin node numbers

Results Noise load models, Noise network models

Standard
Structure fields

cellData (noise), cellName, block, pathData (noise-pin-specific)

DCL syntax EXPOSE(dpcmBuildNoiseLoadModels):
 passed(pin: drivingPin;
 int: minDrivingPinNodeNumber,
 maxDrivingPinNodeNumber;
 parasiticSubnet: minParasitics,
 maxParasitics;
 void: minNoiseNetworkModel,
 maxNoiseNetworkModel)
 result(void: minNoiseLoadModel,
 maxNoiseLoadModel,
 newMinNoiseNetworkModel,
 newMaxNoiseNetworkModel);

326
Copyright © 2010 IEEE all rights reserved.

– 326 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

C syntax typedef struct {
 const DCM_STRUCT *minNoiseLoadModel;
 const DCM_STRUCT *maxNoiseLoadModel;
 const DCM_STRUCT *newMinNoiseNetworkModel;
 const DCM_STRUCT *newMaxNoiseNetworkModel;
} T_noiseModels;

int dpcmBuildNoiseLoadModels(
 DCM_STD_STRUCT *std_struct, T_noiseModels *rtn;
 DCM_PIN drivingPin,
 DCM_INTEGER minDrivingPinNodeNumber,
 DCM_INTEGER maxDrivingPinNodeNumber,
 const DCM_parasiticSubNet *minParasitics,
 const DCM_parasiticSubNet *maxParasitics,
 const DCM_STRUCT *minNoiseNetworkModel,
 const DCM_STRUCT *maxNoiseNetworkModel);

This returns pointers to the noise load models for a driver (drivingPin) of an interconnect network, along
with updated versions of the library’s intermediate noise models for that network.

The minParasitics and maxParasitics arguments are pointers to linked lists of minimum and maximum
parasitic subnets, respectively, that represent the driven net, any aggressor nets and the coupling to those
nets, and the pins attached to all of the nets. The minNoiseNetworkModel and maxNoiseNetworkModel
arguments are pointers to the library’s intermediate models for the network. The
minDrivingPinNodeNumber and maxDrivingPinNodeNumber arguments are the node numbers for the
driver pin in the minimum and maximum networks, respectively.

If the parasitic networks passed to this function are identical, minParasitics and maxParasitics shall have
the same value. Similarly, if the noise network models passed to this function are identical,
minNoiseNetworkModel and maxNoiseNetworkModel shall have the same value.

If the noise load models are identical, the minNoiseLoadModel and maxNoiseLoadModel pointers returned
shall have the same value. If the new noise network models are identical, the minNoiseNetworkModel and
maxNoiseNetworkModel pointers returned shall have the same value.

10.22.5 Calculating composite noise at cell inputs

When calculating noise propagated across an interconnect network, the library can consider a variety of
different factors. The activity on the dc-connected drivers may be important, as well as on the coupled
aggressor drivers.

For each driver pin, the application shall provide this information to the library in a driverPinNoise
structure. An array of driverPinNoise structures with one entry for each of the dc-connected drivers and one
entry for each aggressor driver shall be passed to the function dpcmCalcInputNoise, which performs noise
calculation for a sink pin on the network.

A tristate bus can have several drivers that are active at different times. When a given driver is enabled and
actively driving the bus, noise can be propagated from that driver onto the bus. However, when the driver is
disabled and its output is in a high impedance state, the output stage of the driver is assumed to be perfectly
isolated from the rest of the owning cell, and no noise shall be propagated from that driver onto the bus.
The library may perform case analysis considering both the enabled and disabled states for each driver.

10.22.5.1 driverPinNoise

Table 275 provides information on driverPinNoise.

327
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 327 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 275—driverPinNoise

DCL syntax
typedef(resistanceRange):
 result(double var: maxResistance, minResistance);

typedef(driverTransitionWindow):
 result(double: earlyTime, lateTime, earlySlew, lateSlew,
 earlyResistance, lateResistance;
 void: earlyXWF, lateXWF);

typedef(driverPinNoise):
 result(int: level;
 resistanceRange: holdingResistance, tristateResistance;
 driverTransitionWindow transient [*]: riseTransitions,
 fallTransitions;
 NWF[*]: NWFarray;
 PWFdriverModel[*]: PWFdriverModelArray);

C syntax
typedef struct {
 DCM_DOUBLE maxResistance, minResistance;
} DCM_ResistanceRange;

typedef struct {
 DCM_DOUBLE earlyTime, lateTime, earlySlew, lateSlew;
 DCM_DOUBLE earlyResistance, lateResistance;
 const DCM_STRUCT *earlyXWF, *lateXWF;
} DCT_DriverTransitionWindow;

typedef DCT_DriverTransitionWindow *DCM_DriverTransitionWindow_ARRAY;

typedef struct {
 DCM_LogicLevel level;
 DCM_ResistanceRange holdingResistance, tristateResistance;
 const DCM_DriverTransitionWindow_ARRAY *riseTransitions,
 *fallTransitions;
 const DCM_NWF_ARRAY *NWFarray;
 const DCM_PWFdriverModel_ARRAY *PWFdriverModelArray;
} DCT_DriverPinNoise;

typedef DCT_DriverPinNoise *DCM_DriverPinNoise_ARRAY

A driverPinNoise structure represents all activity at a given driver pin that might be relevant for noise
propagation across a net that the pin drives directly or for noise propagation onto a victim net that is
coupled to the net that the pin drives. Although each structure is transient, it shall be contained within a
managed array having an entry for each of the drivers on the net and its aggressor nets.

Each driverPinNoise structure can include the following three types of data: constant values, full
transitions, and propagated noise. The level field indicates whether a driver pin is held at a constant value
(see 10.23.21.3). If level is DCM_LogicUnknown (indicating a nonconstant value), then the riseTransitions
and fallTransitions fields shall point to arrays representing sets of windows during which full transitions
(rise and fall, respectively) can occur. If only a single rise or a single fall transition can occur (but not both),
either riseTransitions or fallTransitions shall be set to point to the transition data. The other transition-
window array pointer shall then be set to zero (0), and it shall be assumed that no transitions of that other
polarity can occur.

Each transition window shall be represented by a driverTransitionWindow structure in which the earlyTime
and lateTime fields specify the window’s time bounds. The waveform of the transition that occurs between
those times (inclusive) shall be represented by slews and either XWFs or driver resistances. The
earlyResistance and lateResistance fields represent the active resistance of the driver as it propagates
transitions with slews of earlySlew and lateSlew, respectively. If either the earlyXWF or the lateXWF field

328
Copyright © 2010 IEEE all rights reserved.

– 328 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

has a value of zero (0), the library shall use only the slews and driver resistances. If either earlyXWF or
lateXWF field is nonzero, the library shall ignore the driver resistances.

If the level field in a driverPinNoisestructure is DCM_LogicZero or DCM_LogicOne (indicating that the
driver pin is held at the corresponding constant value), riseTransitions and fallTransitions shall be set to
zero (0). If no transition information is available, level shall be set to DCM_LogicUnknown and both
riseTransitions and fallTransitions shall be set to zero (0). In this case, it shall be assumed that a rise or fall
transition could occur at any time.

The holdingResistancefield represents the range of quiescent resistance for periods of time during which
there are no transitions or noise waveforms propagating through the driver. The application shall obtain
these values by calling dpcmCalcSteadyStateResistanceRange (see 10.21.12.3). The tristateResistancefield
represents the resistance range of a tristate driver when the driver is disabled and in a high-impedance state.
The application shall obtain these values by calling dpcmCalcTristateResistanceRange (see 10.21.12.4).

The NWFarray and PWFdriverModelArray fields are both pointers to arrays of noise waveforms present at
the driver pin. Only one of these two fields shall be set to a nonzero value. The contents of the
corresponding array shall be used during noise calculation whether the pin is held at a constant value or not.

When preparing a driverPinNoise structure for use by the library, the application shall determine whether
the sink pin for which noise is to be calculated is in a different technology than the driver pin represented
by that structure. If this is so, the application shall set the earlySlew, lateSlew, earlyResistance, and
lateResistance fields in each driverTransitionWindow structure contained within the driverPinNoise
structure, and it shall set PWFdriverModelArray to point to an array representing noise at that driver. For
this case, the earlyXWF and lateXWF fields in each driverTransitionWindow structure and the NWFarray
pointer shall all be set to zero (0).

The application can also use this approach for driver-pin data it supplies directly and that is not calculated
by the library.

If the sink and driver pins are in the same technology (and the application is not supplying the driver-pin
data), the application shall instead set the NWFarray field to point to an array representing noise
propagated to the driver, and the PWFdriverModelArray pointer shall be set to zero (0). In this case, the
application shall represent driver transitions using slews and either XWFs (if available) or the
corresponding driver resistances in each driverTransitionWindow structure.

10.22.5.1.1 dpcmCalcInputNoise

Table 276 provides information on dpcmCalcInputNoise.

Table 276—dpcmCalcInputNoise

Function name dpcmCalcInputNoise

Arguments Input pin, Noise interconnect models, Driver noise array

Results Noise waveforms

Standard
Structure fields

block, CellName, cellData (noise-specific), pathData (noise-pin-specific), calcMode,
processVariation

DCL syntax EXPOSE(dpcmCalcInputNoise):
 passed(pin inputPin;
 void: minInterconnectModel,maxInterconnectModel;
 driverPinNoise transient[*]: noises)
 result(NWF[*]: noiseWaveforms);

329
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 329 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

C syntax typedef struct {
 DCM_NWF_ARRAY *noiseWaveforms;
} T_NoiseWaveforms;

int dpcmCalcInputNoise(const DCM_STD_STRUCT *std_struct,
 T_NoiseWaveforms *rtn, DCM_PIN inputPin,
 const DCM_NoiseInterconnectModel *minInterconnectModel,
 const DCM_NoiseInterconnectModel *maxInterconnectModel,
 const DCM_DriverPinNoise_ARRAY *noises);

This function calculates a set of composite noise pulses at the input of a cell, given the activity on the dc-
connected drivers and the aggressor drivers on coupled nets. The function can also be called to calculate
noise propagated to a bidirectional pin that is acting as an input.

An unbuffered output pin can act as a related pin (see 10.22.2.1) for other output pins on a cell,
propagating noise into the cell from the net attached to the unbuffered pin. This function can be called for
an unbuffered output pin to calculate noise that is then propagated to the other outputs.

There shall be one driverPinNoise entry in the noises array for each dc-connected driver and each aggressor
driver. The application shall create this array and the transient structures within it (see 7.4.5.1.1). The order
of these entries shall be the same as the order in which the corresponding dc-connected drivers and
aggressor drivers first appeared in the minimum and maximum parasitic networks supplied by the
application when dpcmBuildNoiseInterconnectModels (see 10.22.4.1.3) was called for the input pin.

If the noise interconnect models passed to this function are identical, the minInterconnectModel and
maxInterconnectModel pointers shall have the same value.

When the input pin is connected to a tristate bus, the noises parameter shall be used to describe noise
activity on each of the drivers on the bus, including all tristate drivers. When performing case analysis
considering both the enabled and disabled states for each driver, the library shall only consider the noise
waveforms for a given tristate driver when treating that driver as enabled. When the library is treating a
tristate driver as disabled, it shall use the tristate resistance range from the noises entry for the driver.

When the bus is properly implemented, only one driver is enabled at a given time, and the noise
waveforms for different drivers do not overlap in time. If the noise waveforms for several tristate drivers
overlap in time, this indicates a possibility of bus contention, which the library shall consider during its
analysis.

If the library detects a noise violation while performing these calculations, it shall call
appSetNoiseViolation to communicate information describing the violation to the application.

10.22.6 Calculating composite noise at cell outputs

When calculating noise propagated through a cell, the library can consider several different factors. The
activity on the cell’s input pins may be important, as well as the internal characteristics of the cell. Activity
on other pins, such as power pins and related unbuffered outputs, can also be relevant.

A related pin can have full transitions and noise propagated to it from across an interconnect network, or it
could be held at a constant logic level. For each related pin, the application shall provide this information to
the library in the form of relatedPinNoise structures.

10.22.6.1 relatedPinNoise

Table 277 provides information on relatedPinNoise.

330
Copyright © 2010 IEEE all rights reserved.

– 330 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 277—relatedPinNoise

DCL syntax
typedef(transitionWindow):
result(double: earlyTime, lateTime, earlySlew, lateSlew;
 void: earlyXWF, lateXWF);
typedef(relatedPinNoise):
result(int: level;
 transitionWindow transient[*]: riseTransitions, fallTransitions;
 NWF[*]: NWFarray;
 PWF[*]: PWFarray);

C syntax
typedef struct {
 DCM_DOUBLE earlyTime, lateTime, earlySlew, lateSlew;
 const DCM_STRUCT *earlyXWF, *lateXWF;
} DCT_TransitionWindow;

typedef DCT_TransitionWindow *DCM_TransitionWindow_ARRAY;

typedef struct {
 DCM_LogicLevel level;
 DCM_TransitionWindow_ARRAY *riseTransitions, *fallTransitions;
 const DCM_NWF_ARRAY *NWFarray;
 const DCM_PWF_ARRAY *PWFarray;
} DCT_RelatedPinNoise;

typedef DCT_RelatedPinNoise *DCM_RelatedPinNoise_ARRAY;

A relatedPinNoise structure represents all activity at a given pin on a cell that might be relevant for noise
propagation through the cell to a related output pin. While each structure is transient, it shall be contained
within a managed array having an entry for each of the pins related to the output.

Each relatedPinNoise structure can include the following three types of data: constant values, full
transitions, and propagated noise. The level field indicates whether a related pin is held at a constant value
(see 10.23.21.3). If level is DCM_LogicUnknown (indicating a nonconstant value), the riseTransitions and
fallTransitions fields shall point to arrays representing sets of windows during which full transitions (rise
and fall, respectively) can occur. If only a single rise or a single fall transition can occur (but not both),
either riseTransitions or fallTransitions shall be set to point to the transition data. The other transition-
window array pointer shall then be set to zero (0), and it shall be assumed that no transitions of that other
polarity can occur.

Each transition window shall be represented by a transitionWindow structure in which the earlyTime and
lateTime fields specify the window’s time bounds. The waveform of the transition that occurs between
those times (inclusive) shall be represented by slews and XWFs. If either the earlyXWF or the lateXWF
field has a value of zero (0), the library shall use only the slews.

If the level field in a relatedPinNoisestructure is DCM_LogicZero or DCM_LogicOne (indicating that the
related pin is held at the corresponding constant value), riseTransitionsand fallTransitions shall be set to
zero (0). If no transition information is available, level shall be set to DCM_LogicUnknown and both
riseTransitions and fallTransitions shall be set to zero (0). In this case, it shall be assumed that a rise or fall
transition could occur at any time.

The level field in a structure associated with a power pin shall also be set to DCM_LogicUnknown.

The NWFarray and PWFarray fields are both pointers to arrays of noise waveforms present at the related
pin. Only one of these two fields shall be set to a nonzero value. The contents of the corresponding array
shall be used during noise calculation whether the pin is held at a constant value or not.

331
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 331 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

When the application supplies related-pin data directly (or none are available from the library), it shall set
the earlySlew and lateSlew fields in each transitionWindow structure contained within the relatedPinNoise
structure, and it shall set PWFarray to point to an array representing noise at that pin. For this case, the
earlyXWF and lateXWF fields in each transitionWindow structure and the NWFarray pointer shall all be set
to zero (0).

If related-pin data are available from the library and the application is not supplying it), the application
shall instead set the NWFarray field to point to an array representing noise propagated to the pin, and the
PWFarray pointer shall be set to zero (0). In this case, the application shall represent related-pin transitions
using slews and XWFs (if available) in each transitionWindow structure.

10.22.6.1.1 dpcmCalcOutputNoise

Table 278 provides information on relatedPinNoise.

Table 278—dpcmCalcOutputNoise

Function name dpcmCalcOutputNoise

Arguments The output pin, Min and max noise load models, Array of related pin noises, Array of
tristate driver resistances

Results Noise waveforms

Standard
Structure fields

block, CellName, cellData (noise-specific), pathData (noise-pin-specific), calcMode,
processVariation

DCL syntax EXPOSE(dpcmCalcOutputNoise):
 passed(pin: outputPin;
 void: minLoadModel, maxLoadModel;
 relatedPinNoise transient[*]: noises;
 resistanceRange[*]: tristateResistances)
 result(NWF[*]: noiseWaveforms);

C syntax typedef struct {
 DCM_DOUBLE maxResistance, minResistance;
} DCM_ResistanceRange;

typedef DCM_ResistanceRange *DCM_ResistanceRange_ARRAY;

typedef struct {
 DCM_NWF_ARRAY *noiseWaveforms;
} T_NoiseWaveforms;

int dpcmCalcOutputNoise(
 const DCM_STD_STRUCT *std_struct,
 T_NoiseWaveforms *rtn, DCM_PIN outputPin,
 const DCM_STRUCT *minLoadModel,
 const DCM_STRUCT *maxLoadModel,
 const DCT_RelatedPinNoise_ARRAY *noises,
 const DCM_ResistanceRange_ARRAY *tristateResistances);

This function calculates a set of composite noise pulses at the output of a cell, given the activity on the
related pins. The function can also be called to calculate noise propagated to a bidirectional pin that is
acting as an output.

There shall be one relatedPinNoise entry in the noises array for each related pin. The application shall
create this array and the transient structures within it (see 7.4.5.1.1). The order of these entries shall be the
same as the order in which the related pins appeared in the relatedPins array passed via appNewNoiseCone
(see 10.22.2.1) for the output pin during model elaboration for the noise domain.

If the noise load models passed to this function are identical, the minLoadModel and maxLoadModel
pointers shall have the same value.

332
Copyright © 2010 IEEE all rights reserved.

– 332 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

When the output pin is a driver of a tristate bus, the resistances of the other drivers on the bus can affect
noise propagation to that output. The tristateResistances array shall contain one entry for each driver on the
bus, including the output pin itself. The order of the entries in the this array shall be the same as the order in
which the bus drivers appeared in the min and max parasitic networks passed to
dpcmBuildNoiseLoadModels when the noise load models for the output pin were created.

For non-tristate driver entries in the tristateResistances array, the DCM_ResistanceRange pointer shall be
set to zero (0). If there are no tristate drivers on the net driven by the output pin, including the output pin
itself, the tristateResistances pointer shall be set to zero (0).

If the library detects a noise violation while performing these calculations, it shall call
appSetNoiseViolation to communicate information describing the violation to the application

10.22.6.2 Handling parallel drivers

When dpcmCalcOutputNoise is called for an output pin on one of a set of parallel drivers the library can
choose to do noise propagation simultaneously across all of the parallel drivers. In that case, the library
shall call appForEachNoiseParallelDriver for that output pin (the initiating driver pin) to gather information
about the noise activity on the related pins of all of the other parallel driver pins.

In response, the application shall pass this noise activity data to the library by calling
dpcmSetParallelRelatedNoise for each of those other parallel driver pins. When that function is called, the
library shall record the activity on the related pins and the load models for that parallel driver pin. After this
has been done for all of the other parallel driver pins, the function appForEachNoiseParallelDriver shall
return the count of the other parallel driver pins to the library.

The library shall then calculate the noise propagated to each of the parallel driver pins, including the
initiating driver pin. The noise calculated for each of the other parallel driver pins can be passed back to the
application using appSetParallelOutputNoisebefore dpcmCalcOutputNoise returns. This avoids redundant
calculations for each of the other parallel driver pins.

10.22.6.2.1 appForEachNoiseParallelDriver

Table 279 provides information on appForEachNoiseParallelDriver.

Table 279—appForEachNoiseParallelDriver

Function name appForEachNoiseParallelDriver

Arguments Initiating output pin

Results Parallel driver count

Standard
Structure fields

CellName, cellData (noise-specific), pathData (noise-pin-specific)

DCL syntax EXPOSE(appForEachNoiseParallelDriver):
 passed(pin: outputPin)
 result(int: countOfParallelDrivers);

C syntax typedef struct {
 DCM_INTEGER countOfParallelDrivers;
} T_ParallelDriverCount;

int appForEachNoiseParallelDriver
 (const DCM_STD_STRUCT *std_struct,
 T_ParallelDriverCount *rtn, DCM_PIN outputPin);

When this function is called, the application shall respond by calling dpcmSetParallelRelatedNoise once for
each of the other parallel driver pins on the net to which the passed pin is connected.

333
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 333 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.22.6.2.2 dpcmSetParallelRelatedNoise

Table 280 provides information on dpcmSetParallelRelatedNoise.

Table 280—dpcmSetParallelRelatedNoise

Function name dpcmSetParallelRelatedNoise

Arguments The output pin, Min and max noise load models, Array of input pin info

Results None

Standard
Structure fields

block, CellName, cellData (noise-specific), pathData (noise-pin-specific), calcMode,
processVariation

DCL syntax expose(dpcmSetParallelRelatedNoise):
 passed(pin: outputPin, initiatingPin;
 void: minLoadModel, maxLoadModel ;
 relatedPinNoise transient[*]: noises)
 result(integer: ignored);

C syntax int dpcmSetParallelRelatedNoise
 (const DCM_STD_STRUCT *std_struct, T_Ignore *rtn,
 DCM_PIN initiatingPin, DCM_PIN outputPin,
 const DCM_STRUCT *minLoadModel,
 const DCM_STRUCT *maxLoadModel,
 const DCM_RelatedPinNoise_ARRAY *noises);

This function shall be called once for each driver pin on the net to which initiatingPin is connected that is
parallel to initiatingPin. For each call, minLoadModel, maxNoiseLoadModel, and noises shall be passed to
enable the library to propagate noise simultaneously across all of the parallel drivers. If, as a side effect of
the original propagation started by dpcmCalcOutputNoise for the initiatingPin, the library computes
appropriate noise waveforms at each of the parallel outputPins, those waveforms can be passed back to the
application using appSetParallelOutputNoise.

10.22.6.2.3 appSetParallelOutputNoise

Table 281 provides information on appSetParallelOutputNoise.

Table 281—appSetParallelOutputNoise

Function name appSetParallelOutputNoise

Arguments The output pin, Min and max noise load models, Array of input pin info

Results Noise waveforms

Standard
Structure fields

block, CellName, cellData (noise-specific), pathData (noise-pin-specific), calcMode,
processVariation

DCL syntax expose(appSetParallelOutputNoise):
 passed(pin: outputPin;
 NWF[*]: noiseWaveforms)
 result(int: ignore);

C syntax int appSetParallelOutputNoise
 (const DCM_STD_STRUCT *std_struct, T_Ignore *rtn,
 DCM_PIN outputPin, DCM_NWF_ARRAY *noiseWaveforms);

This function can be called by the library when noise waveforms are computed for the output of a parallel
driver as a side effect of the calculations done by dpcmCalcOutputNoise for an initiating driver. The
application shall store the noise waveforms passed and use them for subsequent noise propagation rather
than making a separate call to dpcmCalcOutputNoise for the parallel output.

10.22.7 Setting noise budgets

Libraries can impose limits on the magnitude of particular types of noise to ensure that a technology

334
Copyright © 2010 IEEE all rights reserved.

– 334 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

functions correctly. Applications can also choose to set budgets for particular noise types supported by the
library.

10.22.7.1 dpcmSetNoiseLimit

Table 282 provides information on dpcmSetNoiseLimit.

Table 282—dpcmSetNoiseLimit

Function name dpcmSetNoiseLimit

Arguments Noise type, Library noise type, Noise limit

Results violations

Standard
Structure fields

CellName, block

DCL syntax external(dpcmSetNoiseLimit):
 passed(NoiseType: noiseType ;
 int: libraryNoiseType;
 double: noiseLimit)
 result(int: ignore);

C syntax int dpcmSetNoiseLimit(const DCM_STD_STRUCT *std_struct,
 T_Ignore *rtn,
 DCM_NoiseTypes noiseType,
 DCM_INTEGER libraryNoiseType,
 DCM_DOUBLE noiseLimit);

This function specifies an application budget for the specified noise type. The noiseLimit argument is
specified in volts and represents the maximum allowable peak magnitude for that type of noise. This noise
limit applies to all calculations for the specified CellName and block until overridden by another call for the
same noise type, CellName, and block.

10.22.8 Reporting noise violations

When the library calculates the noise propagated across an interconnect or through a cell, it may detect one
or more noise budget violations related to a particular pin. These violations shall be reported to the
application by calling appSetNoiseViolation, which uses noiseViolationInfo structures to provide a
summary of these violations. The application can request additional information about the noise
components that contribute to a particular violation by calling dpcmGetNoiseViolationDetails.

10.22.8.1 noiseViolationInfo

Table 283 provides information on noiseViolationInfo.

Table 283—noiseViolationInfo

DCL syntax
typedef(noiseViolationInfo):
result(noiseType: noiseType;
 int: libraryNoiseType;
 double: noiseLimit ;
 int: noiseLimitOrigin;
 double: violationMagnitude, violationArea);

335
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 335 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

C syntax
typedef enum DCM_NoiseLimitOrigin {
 DCM_LibraryNoiseLimit,
 DCM_AppNoiseLimit
} DCM_NoiseLimitOrigin;

typedef struct {
 DCM_NoiseTypes noiseType;
 DCM_INTEGER libraryNoiseType;
 DCM_DOUBLE noiseLimit;
 DCM_NoiseLimitOrigin noiseLimitOrigin;
 DCM_DOUBLE violationMagnitude;
 DCM_DOUBLE violationArea;
} DCM_NoiseViolationInfo;

typedef DCM_NoiseViolationInfo *DCM_NoiseViolationInfo_ARRAY;

A noiseViolationInfo structure provides a summary of a noise-budget violation. The noiseType and
libraryNoiseType fields identify the type of noise for which the violation occurred.

The noiseLimit field represents the noise limit measured in volts and constrains the peak amplitude of the
violation. If this limit was determined by the library, the noiseLimitOrigin field shall be set to
DCM_LibraryNoiseLimit. If the limit was supplied by the application using dpcmSetNoiseLimit, the
noiseLimitOrigin field shall be set to DCM_AppNoiseLimit.

The violationMagnitude field contains the peak noise value (in volts), whereas the violationArea field is the
total area of the noise waveform for which the noise value exceeded noiseLimit.

10.22.8.1.1 appSetNoiseViolation

Table 284 provides information on appSetNoiseViolation.

336
Copyright © 2010 IEEE all rights reserved.

– 336 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 284—appSetNoiseViolation

Function name appSetNoiseViolation

Arguments Pin

Results violations

Standard
Structure fields

CellName, block, pathData, cellData

DCL syntax external(appSetNoiseViolation):
 passed(pin: violatingPin;
 noiseViolationInfo: violationInfo)
 result(integer: ignore);

C syntax int appSetNoiseViolation(DCM_STD_STRUCT *std_struct,
 T_Ignore *rtn, DCM_PIN violatingPin,
 DCM_NoiseViolationInfo_ARRAY *violationInfoArray);

This function describes violations detected by the library during noise calculation. The violatingPin
argument shall be set to the input pin for violations detected during input-noise calculation and to the
output pin for those found during output-noise computation. Several different types of noise violations may
be detected during the same calculation, and violationInfoArray contains entries representing each of these
violations.

10.22.8.1.2 dpcmGetNoiseViolationDetails

Table 285 provides information on dpcmGetNoiseViolationDetails.

Table 285—dpcmGetNoiseViolationDetails

Function name dpcmGetNoiseViolationDetails

Arguments None

Results violations

Standard
Structure fields

CellName, block, pathData, cellData

DCL syntax external(dpcmGetNoiseViolationDetails):
 result(noiseViolationInfo[*][*]: relatedPinDetails);

C syntax typedef struct {
 DCM_NoiseViolationInfo_ARRAY *noiseViolationInfoArray;
} DCM_RelatedPinNoiseViolationDetails;

typedef DCM_RelatedPinNoiseViolationDetails
 *DCM_RelatedPinNoiseViolationDetails_ARRAY;

typedef struct {
 DCM_RelatedPinNoiseViolationDetails_ARRAY
 *relatedPinDetails;
} T_NoiseViolationDetails;

int dpcmGetNoiseViolationDetails
 (const DCM_STD_STRUCT *std_struct,
 T_NoiseViolationDetails *rtn);

Applications can call this function to obtain detailed information about the noise of various types
contributed by each related pin to a violation reported via appSetNoiseViolation. If the application calls this
function for a given violation, it shall do so before the call to appSetNoiseViolation through which that
violation was reported returns.

This function returns an array having one entry for each related pin, and the order of entries in this array
shall be the same as the order of the related pins passed to dpcmCalcInputNoise or dpcmCalcOutputNoise.

337
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 337 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

For each related pin, the array shall contain the values associated with that pin for each relevant noise type.
The library can choose to provide either the original noise values as measured at each related pin or the
noise values propagated from each related pin as measured at the violating pin.

10.23 Delay and slew calculations for differential circuits

In single-ended logic, a signal is measured at one point, with reference to ground. In contrast, a differential
signal is composed of two complementary components, a “true” and a “complement” component, which
are measured relative to each other.

10.23.1 Sample figures

Examples of differential signals and associated timing models are shown in Figure 7 through Figure 9.

When a single-ended signal transitions, it is considered to have changed state when it passes through its
threshold voltage. When one component of a differential signal transitions from a high to a low level and
the other transitions in the opposite direction, the differential signal is considered to change state at the time
these two transitions cross through the same voltage.

338
Copyright © 2010 IEEE all rights reserved.

Figure 7—Differential buffer chain

Figure 8—Timing models for a differential buffer chain

ruse<->rise&fall<->fall ruse<->rise&fall<->fall

rise<->fall&fall<->rise

rise<->fall&fall<->rise

both<->term

Buf 1 Buf 2

A
t

A
t

A
c

A
c

Z
t

Z
t

Z
c

Z
c

Figure 9—Arrival offsets for differential signals

arrival offset arrival offset

– 338 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

To compute the propagation delay of a differential signal transition accurately across a cell, the library shall
compute the point in time at which its component signals cross each other. When viewed as individual
signals, these components have arrivals at the times they cross through their respective threshold voltages.
Using the offset distance between these arrival times together with the slews of these transitions (and the
threshold and other associated voltages), the library can compute the time that the transitions intersect, and
thus, the time at which the differential signal changes state. This is illustrated in Figure 9.

When responding to a call for delay or slew along a path from an input of a differential cell to one of the
cell’s outputs, the library can obtain arrival information for the corresponding complementary input from
the application. The application shall return the arrival information for the transition at this complementary
input that is nearest the transition at the input for which the delay or slew was requested and that has the
edge direction specified by the library.

The early and late arrival times returned by the application shall be relative to the early and late arrival
times of the original input transition, respectively. If the application finds two arrival times of the
complementary input to be equidistant from the early arrival time of the original input, it shall return the
earlier of these two complementary input arrivals. Similarly, if two complementary input arrival times that
are equidistant from the original input’s late arrival are encountered, the application shall return the later of
the two.

A negative offset represents the arrival time at the passed pin that precedes the reference arrival time. A
positive offset represents an arrival time at the passed pin that follows the reference signal arrival time.

10.23.2 appGetArrivalOffsetsByName

Table 286 provides information on appGetArrivalOffsetsByName.

Table 286—appGetArrivalOffsetsByName

Function name appGetArrivalOffsetsByName

Arguments Offset pin name, Offset edge

Result Early arrival time, Late arrival time, Early slew, Late slew

Standard
Structure fields

block, CellName, fromPoint, sourceEdge, calcMode

DCL syntax EXTERNAL(appGetArrivalOffsetsByName):
 passed(string: offsetPinName; int: offsetEdge)
 result(double: earlyArrivalOffset, lateArrivalOffset,
 earlySlew, lateSlew);

C syntax typedef struct {
 DCM_DOUBLE earlyArrivalOffset, lateArrivalOffset;
 DCM_DOUBLE earlySlew, lateSlew;
} T_ArrivalOffsets;

int appGetArrivalOffsetsByName
 (const DCM_STD_STRUCT *std_struct,
 T_ArrivalOffsets *rtn,
 const DCM_STRING offsetPinName,
 DCM_EdgeTypes offsetEdge);

This returns the arrival offsets and slews for the signal associated with the edge and pin name passed as the
arguments back to the library.

One use of appGetArrivalOffsetsByName is to obtain the arrival offset for a differential input pair.
However, the usage of this function is not restricted to differential input pairs. Any input pin from the same
cell is a valid argument to this function.

339
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 339 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.23.2.1 appGetArrivalOffsetArraysByName

Table 287 provides information on appGetArrivalOffsetArraysByName.

Table 287—appGetArrivalOffsetArraysByName

Function name appGetArrivalOffsetArraysByName

Arguments Offset pin names, Offset edges

Result Early arrival time, Late arrival time, Early slew, Late slew

Standard
Structure fields

block, CellName, fromPoint, sourceEdge, calcMode

DCL syntax EXTERNAL(appGetArrivalOffsetArraysByName):
 passed(string[*]: offsetPinName;
 int[*]: offsetEdge)
 result(double[*]: earlyArrivalOffset,
 lateArrivalOffset,
 earlySlew, lateSlew);

C syntax typedef struct {
 DCM_DOUBLE_ARRAY *earlyArrivalOffset,
 *lateArrivalOffset;
 DCM_DOUBLE_ARRAY *earlySlew, *lateSlew;
} T_ArrivalOffsetArrays;

int appGetArrivalOffsetArraysByName
 (const DCM_STD_STRUCT *std_struct,
 T_ArrivalOffsetArrays *rtn,
 const DCM_STRING_ARRAY *offsetPinNames,
 DCM_EdgeTypes *offsetEdges);

This returns arrays of arrival offsets and slews for the signal associated with the edge and pin name passed
as the arguments back to the library.

One use of appGetArrivalOffsetArraysByName is to obtain the arrival offset for differential input pairs.
However, the usage of this function is not restricted to differential input pairs. Any input pin from the same
cell is a valid argument to this function.

10.23.3 API extensions for function modeling

The library conveys the structure of a static timing and power model to the application through the use of a
graph containing the block, pin(s), and arc(s). The block is given as the container of the cell, each pin is a
node in the graph, and the arcs are signal pathways. The boundary condition of the cell, including the
external pins, are supplied by the application as a starting point for the library to begin its modeling
process. This process continues and is expanded to cover function- and vector-specific requirements.

In general, each pin (external or internal) has a name. That name does not have to be unique, except under
the following conditions: the names of the pins given as the inputs shall be unique within the input pin list;
the names of the output pins shall be unique within the list of output pins. In fact, a bidirectional pin is a pin
on both the output pin list and the input pin list which uses the same name. The internal pins generated by
the library and given to the application are typically uniquely named, but this is not a requirement.

The paths between these pins are called arcs and have no name. These are generated by the application at
the library’s request.

The library can send or cache additional information about an arc or a pin through the use of a pointer
called the pathData pointer. Typically, all arcs generated by the library have a pathData pointer. This
pointer shall be returned when the application requests a calculation from the library. The library typically
uses these arc-specific path data pointers to cache arc-specific information for later use during a

340
Copyright © 2010 IEEE all rights reserved.

– 340 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

calculation.

The role of the nodes and arcs have been expanded to carry the function and vector information of a cell.
Each function or vector shall be a graph of nodes connected by arcs. Each node represents a logical
operation such as AND. Each arc contains information on function modeling, data types, and stranding. To
accomplish this, the additional information is accessed through the pathData pointer. This results in internal
nodes being created for function and vector graphs that have nonzero pathData pointer values associated
with them.

10.23.3.1 Standard Structure extensions

The subsequent subclauses describe the extensions to the IEEE Std 1481-1999 Standard Structure
definition.

10.23.3.2 Node representation

A function node is represented through the callback function newTimingPin(). This function instructs the
application to create a new internal point or node in the current cell.

A pathData pointer present in the Standard Structure when newTimingPin() is called is associated with
each node. The application, as part of the required operation for elaborating a function model, shall save
this pointer for later use by the library. The pathData pointer shall point to a PathDataBlock structure with
private (reserved for compiler use) and public (for use by an application) components. A zero-valued
pathData pointer shall not be used in the behavior domain.

10.23.3.3 Path or arc representation

A function path or arc is represented through a callback API to the application. This function is
newPropagateSegment() and instructs the application to create a path with the two pins or nodes supplied
by the function. In contrast to its use in other domains, such as timing, the delay matrix handle supplied
with this function shall be zero (0) when the latter is used to create a function arc. As for a node, a non-zero
pathData pointer contained within the Standard Structure shall be associated with each path.

10.23.3.4 PathDataBlock data structure

Seven fields of the PathDataBlock data structure are utilized by compliant applications. They are all
unsigned short integers, as follows: cycle_adj (the number of valid bytes after this field at the end of the
PathDataBlock), corrind (the enumerated value for a node PRIMITIVE or arc DATA_TYPE), modifiers (the
enumerated value for a node or arc MODIFIER), msbStrandSource, lsbStrandSource, msbStrandSink, and
lsbStrandSink (these last four are for a strand sequence represented by an arc). For both arc- and node-
based statements, such as PATH, BUS, DO, INPUT and OUTPUT, the first two fields (corrind and
modifiers) shall be present if the PRIMITIVE, DATA_TYPE or MODIFIERS clauses are present in the
MODELPROC. When none of the fields associated with the keywords are present, the cycle_adj field shall
have a value of zero (0). When any one or more fields are missing, a default value shall be supplied for its
representative field. The default values for the DATA_TYPE, PRIMITIVE and MODIFIERS values shall be
zero (0). The default value for the STRAND fields shall be 0xFFFF. The contents of the PathDataBlock are
as follows:

341
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 341 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

/***
** PathDataBlock.
***/
struct DCM_PathDataBlock {
/***
** This information is intended for application use.
***/
DCM_STRING path; /* path name under calculation */
/* this variable is set by the */
/* calculator during model build */
/* and can be ignored by other */
/* programs */
void **reserved1 /* reserved for the run-time linker */
/***
** -> path constants data block.
** The PCDB contains both user and DCM control data which is
constant
** for each PROPAGATE clause.
***/
DCM_PCDB *pcdb;
/***
** Items below this line are used by DCM for internal maintenance
and
** consistency checking. DO NOT TOUCH!
***/
int reserved2; /* reserved for the run-time linker */
short reserved3; /* reserved for the run-time linker */
/***
** The first two are shared by TEST and functional statements.
***/
short cycle_adj; /* TEST Cycle adjust, */
/* or functional byte count. */
short corrind; /* TEST Correlation index, */
/* or functional primitive. */
/***
** The rest are for functional statements.
***/
unsigned short modifiers; /* data type modifiers. */
unsigned short msbStrandSource; /* MSB src strand num for arc. */
unsigned short lsbStrandSource; /* LSB src strand num for arc. */
unsigned short msbStrandSink; /* MSB sink strand num for arc */
unsigned short lsbStrandSink; /* LSB sink strand num for arc */
};

10.23.3.5 Arc ordering

Some operations are very dependent on which operand appears on the left or right of the operator. Table
288 provides information on arc ordering. Table 289 describes the modifiers field in the PathDataBlock to
distinguish the left operand from the right and provide a sequence number for user-defined types. This is
only a requirement when arcs are propagated to nodes where the side of the operator where a signal appears
is of concern (e.g., subtraction, division, or shifts). In the case of precedence operations, the modifier field

342
Copyright © 2010 IEEE all rights reserved.

– 342 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

shall represent the level of nesting to follow: zero (0) for the current level of nesting and one (1) for a new
level of nesting.

Table 288—Arc ordering

Predefined data type modifiers Enumeration

When the terminating node represents a dyadic operator

DCM_MODIFIER_RIGHT_OPERAND 0x0000

DCM_MODIFIER_LEFT_OPERAND 0x0001

When the terminating node represents a mux, priority mux, or a priority storage node

DCM_MODIFIER_CONTROL 0x4000 - 0x7FFF

DCM_MODIFIER_DATA 0x0000 - 0x3FFF

When the terminating node represents an @ operator

DCM_MODIFIER_DATA 0x0000 - 0x3FFF

10.23.3.6 Priority operation

The vector operator is a single node that accepts two types of input arcs. Those input arcs that represent
controlling signals have priority arcs with modifier values of 0x4000 - 0x7FFF and those that represent
data have modifier values of 0x0000 - 0x3FFF. Both the priority and data are evaluated in the order of their
respective modifier values, where the arc with the lowest modifier value is analyzed before the next higher
value. The application shall start by analyzing the arc with the modifier value 0x4000 first, then 0x4001,
and so on until the application encounters an arc that evaluates to true. The application next evaluates the
data arc whose modifier value is equal to the offset from 0x4000 of the priority arc that evaluated true. This
data arc is then set as the value of the vector node. If no priority arcs evaluate to true, the priority node shall
remain at its previous value. The modifiers enumeration values are shown in Table 289.

Table 289—PathDataBlock->modifiers enumeration values for priority operation

Predefined data type modifiers Enumeration

When the terminating node represents a mux, priority mux, or a priority storage node

DCM_MODIFIER_CONTROL 0x4000 - 0x7FFF

DCM_MODIFIER_DATA 0x0000 - 0x3FFF

When the terminating node represents an @ operator

DCM_MODIFIER_DATA 0x0000 - 0x3FFF

343
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 343 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Selectors, priority mux, and priority storage element operators all behave in a similar manner. The
difference is in the actual operation performed by the operator and the numerical relationships between the
quantity of control arcs and data arcs, and whether or not the node containing the operator remembers its
last state. This concept is illustrated in Figure 10.

10.23.3.7 Precedence

Precedence is reserved for the control of large blocks where the priority node becomes too unwieldy.
Precedence is a technique for representing scoped “if-then-else” chains, as shown in Figure 11.

344
Copyright © 2010 IEEE all rights reserved.

Figure 10—Priority operation

– 344 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.23.3.8 Boolean assignment operation

The two types of Boolean assignments are nonblocking, which occur at the FUNCTION clause level of
scope, and blocking, which occur within the scope of a precedence operator within the FUNCTION clause.

10.23.3.8.1 Nonblocking assignments

Nonblocking Boolean assignments in the FUNCTION clause scope shall be an arc from the source to the
target. That arc shall have the modifier bit 0x8000, indicating this is an assignment arc. This bit indicates to
the application that this arc leads to a node whose value shall be saved as a temporary state until all the
nonblocking assignments are completed for the cell.

10.23.3.8.2 Blocking assignments

Blocking Boolean assignments are identified by a node with an = primitive. These assignments are in

345
Copyright © 2010 IEEE all rights reserved.

Figure 11—Precedence

IEC 61523-1:2012
IEEE Std 1481-2009 – 345 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

control of the precedence operator where they are chained. The precedence operator has a conditional input
which causes the assignment node where it is connected in this precedence operator to be evaluated in order
or skips to the next ELSE in the else chain. The action list connected to each precedence node can contain a
mixture of Boolean assignments or other precedence operators. Each element in the list is evaluated in the
order encountered, as the list is traversed from the precedence node. When another precedence node is
encountered, all its action nodes shall be evaluated before returning to process the next element on the
action list.

10.23.3.8.3 Strand ranges

Multiwire arcs can be made up of one or more strands. Strands shall be numbered consecutively from the
low strand number to the upper strand number. The least significant bit shall be represented by the
lsbStrand member and the most significant bit shall be represented by the msbStrand member of the
PathDataBlock structure. One set of strand members for the start of the arc (lsbStrandSource and
msbStrandSource) and one set of strand members for the end of the arc (lsbStrandSink and msbStrandSink)
exist on each PathDataBlock for paths that use the sourceStrand or sinkStrand words. For bit arrays, the
most significant number shall be considered the sign bit for signed arithmetic. For floating point operations,
the IEEE floating point arc shall have a bit pattern that conforms to the IEEE floating point standard for its
width. (See ISO/IEC 9899:1990.)

The strand range at the start of an arc and the end of an arc can be different. However, the number of
strands at the start of the arc shall match the number of strands at the end of the arc, as shown in Figure 12.

Figure 12—Strand ranges

10.23.3.8.4 Buses

The bus range (a continuous set of indices identifying the strands of the bus) at the start of an arc and the
end of an arc can be different in strand assignments. However, the number of strands at the start of the arc
shall match the number of strands at the end of the arc. Strand notation can be used to select a portion of a
bus, switch the ordering of a bus, or rotate the bus. A strand notation of (source_strands(0--31)
sink_strands(31--0)) reverses the bit ordering of the bus. The strand notation, combined with the merge
operatornode(><), can be used to swap bytes or portions of a bus.

Example
newBus = (source_strands<0 -- 15>) ><{
(source_strands(0 -- 7) sink_strands(8 -- 15)) data,
(source_strands(8 -- 15) sink_strands(0 -- 7)) data}

10.23.3.8.5 Fanout distributions

When a single point or group of points is routed to an entire bus, the source strands shall select the pattern
bits and the sink strands shall determine the final bus configuration. For example, to save space, an integer
constant of zero (0) can be represented from a single 0 bit that is fanned out to 32 bits (source_strands(0--
0) sink_strands(0--31)). The source strands represent a bit pattern that is replicated until the sink strands bit
width is satisfied.

346
Copyright © 2010 IEEE all rights reserved.

– 346 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Example

A two bit pattern of 0x2 can be fanned out to a width of 64 by using the strand notation:

(source_strands(0--1)sink_strands(0--63))

Results in 0xAAAAAAAAAAAAAAAA

To alter the final bit pattern to 0x5555555555555555, change the strand notation to the following:

(source_strands(1 -- 0) sink_strands(0 -- 63)) or

(source_strands(0 -- 1) sink_strands(63 -- 0))

10.23.3.8.6 Bundling

DCL treats each pin as an entity. The language represents a range of pins as a shorthand to the library
developer that is expanded at run-time. It is useful to group a range of pins and treat them as a single entity
when using data flow operators. The semantics of the dpcmGetCellIOlists() have been extended to handle
bundling. dpcmGetCellIOlists() returns three arrays of strings containing the valid pin names: one for the
inputs, one for the outputs, and one for the bidirectional pins. The extension includes the bundle description
for the behavior, vectorTiming, and vectorPower domains only. The bundle names are in a different name
space than the actual pin names.

Example

A={A[0-128]} the valid pin names: one for the inputs, one for the outputs, and one for the bidirectional
pins. The extension includes the bundle description for the behavior, vectorTiming, and vectorPower
B={B<63-0>,C<0-63>}

The bundled pin name is the identifier before the equal sign and the bundle description is contained within
the {}. A single group of contiguously numbered pins shall be represented with pin range syntax. The range
is delimited by [] or <>. The value on the left of the hyphen represents the LSB and the value on the right
represents the MSB. When a bundle contains a comma-delimited list of pin names, the pin farthest to the
left represents the LSB. All the pins to the right represent increasing strand bits until the ending delimiter is
encountered. When an application communicates with the library, the only valid pin names are bitwise-
expanded pin names of an unbundled list or the bundle name (those names to the left of the equal sign). It
shall be considered an error if the application attempts to model a cell and supplies it with the individual
strands of a bundle.

10.23.3.9 Extensions for retain modeling

An application determines if a particular arc models retain by looking at the following string field in the
Standard Structure :

pathData->pcdb->objectType

This field shall return the string `retain' if, and only if, this path models retain. Any other value implies it is
NOT retain. describes the method a library developer can use to indicate a particular timing arc is used for
retain.

10.23.3.10 Extensions for skew testing

The DIFFERENTIAL_SKEW test mode operator specifies the edge identified as the source shall occur
within a window of time before or after the edge identified as the reference. The bias sets the magnitude of
the window. The BIAS value shall be positive and indicate the signal can vary in time before or after the
reference by the amount of the bias. The use of this test mode operator with the EARLY test mode operator
indicates the test is to be performed on the early edges of both the signal and reference. The use of this test
mode operator with the LATE mode operator indicates the test is to be performed on the late edges of both
the signal and reference. See Table 290 for information on DCM_TestTypes.

347
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 347 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 290—DCM_TestTypes

Enumerator Enumeration Description

DCM_SetupTest 0 DCM Setup test.

DCM_HoldTest 1 DCM hold test.

DCM_ClockPulseWidthTest 2 DCM clock pulse width test.

DCM_ClockSeparationTest 3 DCM clock separation test.

DCM_DataPulseWidthTest 4 DCM data pulse width test.

DCM_DataSeparationTest 5 DCM data separation test.

DCM_ClockGatingPulseWidthTest 6 DCM clock gating pulse width test.

DCM_ClockGatingHoldTest 7 DCM clock gating hold test.

DCM_ClockGatingSetupTest 8 DCM clock gating setup test.

DCM_EndOfCycleTest 9 DCM end of cycle test.

DCM_DataHoldTest 10 DCM data hold test.

DCM_RecoveryTest 11 DCM recovery test.

DCM_RemovalTest 12 DCM removal test.

DCM_SkewTest 13 DCM skew test.

DCM_NoChangeTest 14 DCM no change test.

DCM_DifferentialSkewTest 15 DCM differential skew test.

10.23.4 Explicit APIs for user-defined primitives

The next subclauses specify additional explicit EXPOSE and EXTERNAL functions required for user-
defined primitives.

10.23.4.1 dpcmPerformPrimitive

Table 291 provides information on dpcmPerformPrimitive.

Table 291—dpcmPerformPrimitive

Function name dpcmPerformPrimitive

Arguments None

Result Array of bits for an arc

Standard
Structure fields

block, CellName, cellData, pathData (behavior-node-specific)

DCL syntax EXPOSE(dpcmPerformPrimitive):
 result(int[*]: outputPattern);

C syntax typedef struct {
 DCM_INTEGER_ARRAY *outputPattern;
} T_PerformPrimitive;

int dpcmPerformPrimitive
 (const DCM_STD_STRUCT *std_struct,
 T_PerformPrimitive *rtn);

When an application encounters a user-defined node, the application shall call the library EXPOSE function
dpcmPerformPrimitive, which passes a single dimensional array of integers, each representing a bit of the
primitive’s value, back to the application. Each integer array element represents an enumeration value
corresponding to the pin state.

348
Copyright © 2010 IEEE all rights reserved.

– 348 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.23.4.2 appGetArcStructure

Table 292 provides information on appGetArcStructure.

Table 292—appGetArcStructure

Function name appGetArcStructure

Arguments Sequence number

Result Array of bits for an arc, Arc data type token, Arc ending strand range

Standard
Structure fields

block, CellName, cellData, pathData

DCL syntax EXTERNAL(appGetArcStructure):
 passed(int: sequenceNumber)
 result(int[*]: bitPattern;
 int: arcDataType, endingStrandRangeLsb,
 endingStrandRangeMsb);

C syntax typedef struct {
 DCM_INTEGER_ARRAY *bitPattern;
 DCM_INTEGER arcDataType;
 DCM_INTEGER endingStrandRangeLsb;
 DCM_INTEGER endingStrandRangeMsb;
} T_ArcStructure;

int appGetArcStructure(const DCM_STD_STRUCT *std_struct,
 T_ArcStructure *rtn, DCM_INTEGER sequenceNumber);

During the library’s processing of the user-defined primitive, it can call back the application for information
about the individual arcs propagating to the node under analysis. This includes the actual bit pattern present
at the time of the call, as well as the data type and any strand information.

10.23.4.3 dpcmGetNodeSensitivity

Table 293 provides information on dpcmGetNodeSensitivity.

Table 293—dpcmGetNodeSensitivity

Function name dpcmGetNodeSensitivity

Arguments Sequence number

Result Array of state strings

Standard
Structure fields

block, CellName, cellData, pathData

DCL syntax EXPOSE(dpcmGetNodeSensitivity):
 passed(int: sequenceNumber)
 result(string[*]: stateArray);

C syntax typedef struct {
 DCM_STRING_ARRAY *arcArray;
} stateStructure;

int dpcmGetNodeSensitivity
 (const DCM_STD_STRUCT *std_struct,
 struct stateStructure *rtn,
 DCM_INTEGER sequenceNumber);

To minimize the number of calls to dpcmPerformPrimitive (see 10.23.4.1), the application can make a
call to dpcmGetNodeSensitivity. This returns a list of strand states that shall be monitored. A change to
any of the listed states requires the application to call dpcmPerformPrimitive. To conform to the naming
conventions, the strand numbers shall be immediately preceded by the character “s.”

349
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 349 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.23.5 APIs for hierarchy

Hierarchy can be implicitly implemented using SUBMODEL statements. However, with this type of
implementation, the application does not have access to information regarding the hierarchical structure.
Thus, hierarchy for this specification is defined as the act of an application calling the library for additional
detail for the hierarchy of a cell.

10.23.5.1 Direct callback base hierarchy

Direct callback base hierarchy allows for full hierarchical nesting (i.e., when one level of hierarchy is
expanded, it can contain other hierarchical nodes). The application can call the DPCM for an expansion of
this hierarchical node by calling dpcmModelMoreFunctionDetail. The result of calling this function is a
more detailed function graph replacing the lesser detailed subgraph at the higher level of hierarchy.

A hierarchical node is identified as a node containing a primitive value of USER_DEFINED_MACRO.
The application shall use the list of arc sources feeding the hierarchical node and the list of arc sinks
leaving the hierarchical node to populate a Standard Structure, where the list of arc sources represent the
input list and the list of arc sinks represent the output list, respectively.

10.23.5.1.1 dpcmModelMoreFunctionDetail

Table 294 provides information on dpcmModelMoreFunctionDetail.

Table 294—dpcmModelMoreFunctionDetail

Function name dpcmModelMoreFunctionDetail

Arguments None

Result Boolean indicating detail was returned

Standard
Structure fields

block, CellName, cellData, pathData (behavior-node-specific), inputPins, outputPins,
inputPinCount, outputPinCount

DCL syntax EXPOSE(dpcmModelMoreFunctionDetail):
 result(int: detailProvided);

C syntax typedef struct {
 DCM_INTEGER detailProvided;
} T_DetailProvided;

int dpcmModelMoreFunctionDetail
 (const DCM_STD_STRUCT *std_struct,
 T_DetailProvided *rtn);

This causes the library to model the behavior of the node identified by the pathData field in the Standard
Structure with a greater level of detail (than previously requested by the application). The application shall
create a new Standard Structure and supply it to dpcmModelMoreFunctionDetail.

A returned value of 1 for detailProvided indicates additional detail was provided by the library. Otherwise,
a value of 0 shall be returned.

10.23.6 Built-in APIs for function modeling

Several new built-in functions have been added to ease the locating of input pins, output pins, and nodes.

10.23.6.1 LOCATE_INPUT

The LOCATE_INPUT built-in function takes a string expression as an argument and searches the input pin
list supplied by the application for a matching pin. If the pin is found, the pin handle is returned through the

350
Copyright © 2010 IEEE all rights reserved.

– 350 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

default result. If not, NULL is returned.

10.23.6.2 LOCATE_OUTPUT

The LOCATE_OUTPUT built-in function takes a string expression as an argument and searches the output
pin list supplied by the application for a matching pin. If the pin is found, the pin handle is returned through
the default result. If not, NULL is returned.

10.23.6.3 LOCATE_NODE

The LOCATE_NODE built-in function takes a string expression as an argument and searches the node list
created and maintained by the library for a matching node. If the node is found, the node’s pin handle is
returned through the default result. If not, NULL is returned.

10.23.7 API Extensions for VECTOR modeling

This subclause defines the additional APIs used to model vectors.

10.23.7.1 Vector domains

Libraries that utilize VECTOR clauses to model sequences of transitions shall do so in the “vectorTiming”
or “vectorPower” domains.

10.23.7.2 Standard Structure fields for VECTOR clause in vectorTiming domain

When the VECTOR node is created, the Standard Structure shall also have the fromPoint and toPoint fields
set. The application shall inspect the PathDataBlock associated with a node and, if this pathData is for a
VECTOR node, shall save these fields. When the application calls for delay, slew, check, or other statements
that require the PathDataBlock, the application shall update the fromPoint and toPoint members in the
Standard Structure. The actual value of the member does not have to be identical, but rather the equivalent
information shall be conveyed (i.e., the fromPoint and toPoint are not required to be persistent, but their
content shall be reproduced).

10.23.7.3 VECTOR clause for delay and slew

During the phase when the application models and elaborates cells in the library, the library shall initiate
callbacks to the application indicating the presence of VECTOR clauses for delay and slew of a given
timing arc. This is done via calling newNetSinkPropagateSegments() and newDelayMatrixRow(), and
getting the value of the primitive member in the PathDataBlock. Edge information is transferred to the
application by newDelayMatrixRow() calls. To convey the pin name associated with the vector delay, the
newNetSinkPropagateSegment() call shall have the vector node as the importPin argument. The sinkPin
argument shall have a value of NULL.

The application shall determine whether the vector node has delays associated with it based on the value of
the primitive member. The primitive value 0x0090 identifies this pin as having propagation delays
associated with it. The application shall determine the edges of the vector being analyzed from the delay
matrix row contents, the vector expression, and the function expression. To request a delay, the application
shall call the standard delay function initializing the Standard Structure, where the fromPoint member and
the toPoint member are the same as returned in the Standard Structure during the call to
newNetSinkPropagateSegments().

10.23.7.4 VECTOR clause for timing check

The library callbacks for vector timing checks are identical to those for the vector delay and slew. If the

351
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 351 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

value of the corrind member is 0x0091, this indicates a timing check value is specified in the library. The
type of test (e.g., setup, hold, etc.) is indicated by the value of the modifier’s member of the
PathDataBlock. The type of test indicated in the modifier’s member is the enumeration returned by the
implicit callback function newTestMatrixRow(). The clock or reference pin shall be placed in the fromPoint
field of the Standard Structure and the data or signal pin shall be placed in the toPoint field.

To determine a test time offset or bias, the application shall call the implicit check function. The fromPoint
and toPoint fields shall be set to the values returned by NetSinkPropagateSegments().

10.23.7.5 Vector target node generation

Vector target nodes are nodes that carry the information that allows the application to associate a vector
expression graph with the actions required to query the dpcm for delay and check (0x0090 and 0x0091).
The vector target node is created in a two-step process, as follows:

a) The library issues a call to newTimingPin with three arguments: a Standard Structure, a string
representing the node’s name, and a pointer to where the application can put its newly created pin
handle. The pathData pointer in the Standard Structure argument shall be zero (NULL). In
response to this call, the application shall create a node with a name that is the same as the string
argument.

b) The library then calls newNetSinkPropagateSegments as described in 10.23.7.3 and 10.23.7.4 .
When this call is made to the application, the pathData field of the Standard Structure shall
contain the vector target information and the application shall associate the pathData in the
Standard Structure with the node created on the previous call.

10.23.8 APIs for XWF

Traditional slew measurements rely on measuring the delta time between two points on a waveform (e.g.,
10% and 90% measuring points between ground and vdd), which results in a linear representation. To
provide more accuracy, a library developer-specified definition of XWFs for the analysis of slew, delay, and
so on may be used. XWF is a proprietary library vendor mechanism the library vendor uses to model slews.
Thus, slews no longer need be only linear. Slews can be described using three points, six points, or even a
mathematical representation, such as an equation (see Figure 13). XWFs are DCM_STRUCTs that occupy
library allocated memory that correspond to the slew waveform representation chosen by the library
developer.

The application is not privy to the contents of the library proprietary XWF data. However, the library
vendor is free to publish the format and representation of the contents of an XWF.

An application simply manages handles or pointers to library-calculated output slews for cells and
interconnect during EDA tool interaction with a library that contains XWF representation. The interaction
proceeds as follows: The application requests the library compute output slew based on an input slew (for a
timing arc within a cell). The library shall then request the handle or pointer to an XWF for the input slew

352
Copyright © 2010 IEEE all rights reserved.

Figure 13—Various methods of using XWF to model waveforms for
slew computation

– 352 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

of that cell.

If the application does not have the requested XWF handle or pointer (this occurs when this is a primary
timing input or chip input, i.e., the beginning node of a timing path), the library shall translate the two-point
ramp slew the application provides to an appropriate XWF. This two-point ramp slew is provided in the
Standard Structure as slew->early and slew->late. This shall be done by allocating memory for the XWF
representation and then passing a pointer to the resulting output XWF back to the application.

Once this operation has finished, the application has a handle to the output XWF for this cell. When the
application requests the output slew (either interconnect or cell) for the next stage of this timing path, the
application shall provide the library with the output XWF that was generated by the library (see Figure 14).
During delay and slew calculation, the application shall implicitly be given a two point (piecewise) slew
translation of the internal XWF representation. The slew values so obtained shall be used for determining
slew limits and so on.

The XWF definition contains in the two new APIs, as shown in Table 295. These APIs provide the library
developer with the flexibility of defining the XWF in any format. They are also external and are not
accessible by the application.

Table 295—XWF APIs

New API Description

appGetXWF() Retrieving XWF from the application.

appSetXWF() Setting the computed XWF for an arc in the application.

The application shall compute delay, slew and timing checks with the implicit delayFunction(),
slewFunction() and checkFunction() calls. The library, during the calculation of the requested data, shall
request the application save pointers to the XWF data structure associated with a particular computation.

The application shall continue to use the slew values computed by the library for comparison and reporting
purposes.

The slews and the XWF data computed by the library for the output of a given propagation arc shall be
correlated in their effects on subsequent timing arcs in a circuit path. If the application selects a
representative slew value from the output slews of multiple arcs that converge at a pin, it shall continue to

353
Copyright © 2010 IEEE all rights reserved.

Figure 14—Propagation of XWF “handles” by application

IEC 61523-1:2012
IEEE Std 1481-2009 – 353 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

do so based on comparisons of the slew values themselves. Once this selection is made, the application
shall return the XWF data from the same arc where it obtained this representative slew value (in response
to requests from the library for the XWF at that pin).

10.23.8.1 XWF definition

The library developer shall designate the XWF definition; it shall contain any information the developer
deems necessary. The application shall not attempt to understand the contents of the library-specific XWF
data structure. To accomplish this, the XWF definition shall be passed and returned between the library and
the application as a DCM_STRUCT pointer. The library vendor shall create the XWF definition using the
DCM_STRUCT type. The library is also responsible for allocating the space needed for the structure and its
components.

10.23.8.2 Freeing XWF memory allocation

The application is responsible for freeing all XWF data structure representations returned to it by the
library. This can be accomplished in one of two ways:

a) Do nothing at all. The next time the library is entered at level zero, the space is automatically
released back to the memory pool.

b) The application can first lock the XWF data structure representation, forcing it to remain until it is
eventually unlocked. When the application no longer has any use for that instance of the XWF
data structure representation, it unlocks it. The mechanism for this is described in 10.25.2 .

This simple mechanism minimizes the need for the application to understand the internal organization of
the XWF data structure representation, reduces the need for unwanted copying, and removes the additional
callbacks to free the space.

10.23.8.3 XWF API definitions

The XWF APIs are defined in the next subclauses.

10.23.8.3.1 appSetXWF

Table 296 provides information on appSetXWF.

Table 296—appSetXWF

Function name appSetXWF

Arguments Early and late XWF data structures

Result None

Standard
Structure fields

CellName, toPoint, calcMode, block, sinkEdge, pathData (timing-arc- or pin-specific),
cellData (timing)

DCL syntax EXTERNAL(appSetXWF):
 passed(void: earlyXWF, lateXWF)
 result(int: ignore);

C syntax typedef void DCM_STRUCT;

typedef struct {
 DCM_INTEGER ignore;
} T_Ignore;

int appSetXWF(const DCM_STD_STRUCT *std_struct,
 T_Ignore *rtn,
 DCM_STRUCT *earlyXWF, DCM_STRUCT *lateXWF);

354
Copyright © 2010 IEEE all rights reserved.

– 354 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

The library calls this to store an XWF value in the application. This action shall occur only if the library
developer has implemented the library with an XWF data structure representation.

The library shall call appSetXWF during slew computations initiated by the application. This API informs
the application of the XWF data structure for the specific slew computation requested by the application.

This function sets computed XWF data structures for the pin, edge, and timing arc as identified by the
toPoint, sinkEdge, and pathData fields in the Standard Structure. The application shall record the XWF
pointers for subsequent use. The library developer shall call this function during computation of slew
values before the function that calculates the slews (generated from a DCL SLEW statement) exits. The
Standard Structure shall remain unmodified during this operation.

10.23.8.3.2 appGetXWF

Table 297 provides information on appGetXWF.

Table 297—appGetXWF

Function name appGetXWF

Arguments None

Result Early and late XWF data structure

Standard
Structure fields

CellName, fromPoint, calcMode, block, sourceEdge, pathData (timing-arc- or pin-
specific), cellData (timing)

DCL syntax EXTERNAL(appGetXWF): result(void: earlyXWF, lateXWF);

C syntax typedef void DCM_STRUCT;

typedef struct {
 DCM_STRUCT *earlyXWF;
 DCM_STRUCT *lateXWF;
} T_XWF;

int appGetXWF(const DCM_STD_STRUCT *std_struct,
 T_XWF *rtn);

The library calls this to retrieve the XWF from the application. This action shall occur only if the library
developer has implemented the library with an XWF data structure representation.

The library shall call this function if an application requests the calculation of the delay, slew, or check
values for an arc. The application shall return the XWF data structures obtained from a previous call to
appSetXWF (which were applied to the pin at the beginning of this arc) back to the library. The application
shall return a nonzero return code if the application is unable to honor the XWF computation by the library.
If the application does not implement this API, the library developer is responsible for determining the
default action.

When computing an XWF for an interconnect arc, the library is unaware of whether the computed XWF is
associated with the tech_family of the driver or the receiver, which can be different. In those situations
where the driver’s tech_family is different from that of the receiver’s tech_family, the application shall not
perform the requested appSetXWF call and also shall not return an error to the library.

10.23.8.3.3 dpcmCalcXWF

Table 298 provides information on dpcmCalcXWF.

355
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 355 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 298—dpcmCalcXWF

Function name dpcmCalcXWF

Arguments Pin pointer, Edge, Early and late slews

Result Early and late XWF data structures

Standard
Structure fields

CellName, calcMode, pathData (timing-pin-specific), cellData (timing),
processVariation

DCL syntax EXPOSE(dpcmCalcXWF):
 passed(pin: pinPointer;
 int:edge;
 double: earlySlew, lateSlew)
 result(void: earlyXWF, lateXWF);

C syntax typedef struct {
 DCM_STRUCT *earlyXWF;
 DCM_STRUCT *lateXWF;
} T_XWF;

int dpcmCalcXWF
 (const DCM_STD_STRUCT *std_struct, T_XWF *result,
 DCM_PIN pinPointer, DCM_EdgeTypes edge,
 DCM_DOUBLE earlySlew, DCM_DOUBLE lateSlew);

This function returns pointers to XWF structures for the passed pin and edge direction corresponding to the
early and late slews provided. The edge direction shall be one of the following:

— DCM_RisingEdge

— DCM_FallingEdge

— DCM_OneToZ

— DCM_ZtoOne

— DCM_ZeroToZ

— DCM_ZtoZero

The application shall call this function when the library has requested XWF structures for a pin for which
no appropriate XWF data have been set by the library (see 10.23.8.3.1). The application shall record the
XWF pointers returned by this function for subsequent use.

This API allows the application to obtain XWF data for pins, such as primary inputs for which a library
would otherwise never create such data. This function is also useful when XWF data are requested for an
aggressor driver for which it has not yet been computed during crosstalk analysis.

10.23.9 Extensions and changes to voltages and temperature APIs

This subclause augments the APIs used to gather voltage and temperature information.

10.23.9.1 dpcmGetCellRailVoltageArray

Table 299 provides information on dpcmGetCellRailVoltageArray.

Table 299—dpcmGetCellRailVoltageArray

Function name dpcmGetCellRailVoltageArray

Arguments None

Result Rail array

356
Copyright © 2010 IEEE all rights reserved.

– 356 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Standard
Structure fields

block, CellName, cellData (timing)

DCL syntax EXPOSE(dpcmGetCellRailVoltageArray):
 result(string[*]: railArray);

C syntax typedef struct {
 DCM_STRING_ARRAY *railVoltageArray;
} T_RailArray;

int dpcmGetCellRailVoltageArray
 (const DCM_STD_STRUCT *std_struct, T_RailArray *rtn);

This returns voltage rail names for the cell identified by the cellData field in the Standard Structure back to
the application.

Different cells in a library can contain rail voltages having the same name but referring to different voltage
rails. This function differs from dpcmGetRailVoltageArray as it returns rail voltage names for the
specified cell only, not an entire library. If dpcmGetCellRailVoltageArray is exposed by a DPCM, the
application shall use it instead of, and shall not call, dpcmGetRailVoltageArray.

If dpcmGetCellRailVoltageArray is exposed, the DPCM shall expose the function
dpcmGetBaseCellRailVoltageArray instead of dpcmGetBaseRailVoltage and the function
dpcmGetCellRailVoltageRangeArray shall be exposed instead of dpcmGetRailVoltageRangeArray.

The application shall be free to assume a rail voltage name from different cells refers to the same voltage
rail if all of the following conditions are met:

— The name of the voltage rail is the same for each cell.

— The default value associated with the voltage rail (obtained via
dpcmGetBaseCellRailVoltageArray) is the same for each cell.

— The range of legal values for the voltage rail (obtained via dpcmGetCellRailVoltageRangeArray)
is the same for each cell.

The library shall return a zero-length array for a cell where voltage effects are not modeled.

10.23.9.2 dpcmGetBaseCellRailVoltageArray

Table 300 provides information on dpcmGetBaseCellRailVoltageArray.

Table 300—dpcmGetBaseCellRailVoltageArray

Function name dpcmGetBaseCellRailVoltageArray

Arguments None

Result Rail voltages

Standard
Structure fields

block, CellName, cellData (timing), calcMode

DCL syntax EXPOSE(dpcmGetBaseCellRailVoltageArray):
 result(double[*]: railVoltages);

C syntax typedef struct {
 DCM_DOUBLE_ARRAY *railVoltages;
} T_RailVoltageArray;

int dpcmGetBaseCellRailVoltageArray
 (const DCM_STD_STRUCT *std_struct,
 T_RailVoltageArray *rtn);

357
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 357 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

This returns the default values for the voltage rails of the cell identified by the cellData field in the
Standard Structure back to the application. These values can vary for different operating ranges and
calculation modes.

This function differs from dpcmGetBaseRailVoltage, as it returns all of the default rail voltage values for
the specified cell only, not the default value for a single rail voltage for an entire library. If this function is
exposed by a DPCM, the application shall use it instead of, and shall not call, dpcmGetBaseRailVoltage.
If the function dpcmGetCellRailVoltageArray is exposed by the DPCM, this function shall also be
exposed.

The order of the values returned by this function shall be the same as the order of the voltage rail names
returned by dpcmGetCellRailVoltageArray for the same cell.

10.23.9.3 dpcmGetBaseCellTemperature

Table 301 provides information on dpcmGetBaseCellTemperature.

Table 301—dpcmGetBaseCellTemperature

Function name dpcmGetBaseCellTemperature

Arguments None

Result Temperature

Standard
Structure fields

block, CellName, cellData (timing), calcMode

DCL syntax EXPOSE(dpcmGetBaseCellTemperature):
 result(double: temperature);

C syntax typedef struct {
 DCM_DOUBLE temperature;
} T_BaseTemperature;

int dpcmGetBaseCellTemperature
 (const DCM_STD_STRUCT *std_struct,
 T_BaseTemperature *rtn);

This returns the default temperature value for the cell identified by the cellData field in the Standard
Structure back to the application. This value can be different for different operating ranges and calculation
modes.

This function differs from dpcmGetBaseTemperature, as it returns a temperature value for the specified cell
only, not an entire library. If this function is exposed by a DPCM, the application shall use it instead of, and
shall not call, dpcmGetBaseTemperature.

10.23.10 Operating conditions

This subclause contains the API modifications needed to support a more robust handling of the operating
conditions for a chip. The next subclauses address the topics of on-chip process variation, PVT limits, and
operating points.

10.23.10.1 Operating points

Included in this standard is the concept of operating ranges to represent ranges of PVT over which a
classification of chips shall operate. Once an application specifies an operating range, default values for
process point, rail voltages, and temperature reflect that setting.

It is also desirable to identify a specific process point or a PVT combination for which calculations shall be
performed by a library. For this purpose, the concept of an operating point is defined. An operating point is

358
Copyright © 2010 IEEE all rights reserved.

– 358 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

composed of a base process point and, optionally, a set of base rail voltages, a base temperature, or both.
These base values shall be returned to the application in response to calls to the functions
dpcmGetBaseProcessPoint (see 10.23.11.1.2), dpcmGetBaseRailVoltage, dpcmGetBaseTemperature,
dpcmGetBaseCellRailVoltageArray (see 10.23.9.2), or dpcmGetBaseCellTemperature (see 10.23.9.3).

Each operating point shall be identified by its name. The names of the operating points and the combination
of base PVT values associated with each operating point shall be defined within the library. An operating
point shall be used by the library in a consistent manner across all modeling domains. Once an operating
point has been set by the application, the base process point in that operating point shall be used for all
library calculations performed in each domain.

If an operating point does not include rail voltages or a temperature, the library shall obtain them from the
application using the interface functions appGetCurrentRailVoltage() or appGetCurrentTemperature().

The library can choose to include perturbations about an operating point’s base PVT values in the early and
late results calculated for that operating point.

10.23.10.1.1 dpcmGetOpPointArray

Table 302 provides information on dpcmGetOpPointArray.

Table 302—dpcmGetOpPointArray

Function name dpcmGetOpPointArray

Arguments None

Result Array of operating points

Standard
Structure fields

None

DCL syntax EXPOSE(dpcmGetOpPointArray):
 result(string[*]: opPointArray);

C syntax typedef struct {
 DCM_STRING_ARRAY *opPointIndex;
} T_OpPointArray;

int dpcmGetOpPointArray(const DCM_STD_STRUCT *std_struct,
 T_OpPointArray *rtn);

The application can obtain the names of the operating points within a library using this function.

If the library supports multiple operating ranges, the set of operating points returned shall be associated
with the current operating range in effect at the time of the call. Different operating ranges can have
separate sets of operating points.

10.23.10.1.2 dpcmGetBaseOpPoint

Table 303 provides information on dpcmGetBaseOpPoint.

Table 303—dpcmGetBaseOpPoint

Function name dpcmGetBaseOpPoint

Arguments None

Result Operating point index

Standard
Structure fields

None

359
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 359 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

DCL syntax EXPOSE(dpcmGetBaseOpPoint):
 result(integer: opPointIndex);

C syntax typedef struct {
 DCM_INTEGER opPointIndex;
} T_OpPointIndex;

int dpcmGetBaseOpPoint(const DCM_STD_STRUCT *std_struct,
 T_OpPointIndex *rtn);

The application can use this to obtain the index for the default operating point.

If the library does not support distinct operating points, a value of –1 shall be returned as the index.
Otherwise, an index number between 0 and n – 1, inclusive (where n is the number of operating points)
shall be returned. This number shall be used as an index into the array returned by dpcmGetOpPointArray
to obtain the name of the default operating point.

10.23.10.1.3 dpcmSetCurrentOpPoint

Table 304 provides information on dpcmSetCurrentOpPoint.

Table 304—dpcmSetCurrentOpPoint

Function name dpcmSetCurrentOpPoint

Arguments Operating point index

Result Old operating point index

Standard
Structure fields

None

DCL syntax EXPOSE(dpcmSetCurrentOpPoint):
 passed(int: opPointIndex)
 result(int: oldOpPointIndex);

C syntax typedef struct {
 DCM_INTEGER opPointIndex;
} T_OpPointIndex;

int dpcmSetCurrentOpPoint
 (const DCM_STD_STRUCT *std_struct,
 T_OpPointIndex *rtn, DCM_INTEGER opPointIndex);

The application shall use this to set an operating point.

The operating point index passed to this function shall be between 0 and n – 1, inclusive, where n is the
number of operating point names returned by dpcmGetOpPointArray.

If this function is called successfully, the library shall perform all subsequent calculations using the process
point and any rail voltages or temperature associated with the specified operating point. These values shall
then be returned to the application in response to calls to the interface functions dpcmGetBaseProcessPoint
(see 10.23.11.1.2), dpcmGetBaseRailVoltage()), dpcmGetBaseTemperature(),
dpcmGetBaseCellRailVoltageArray (see 10.23.9.2), or dpcmGetBaseCellTemperature (see 10.23.9.3).

10.23.11 On-chip process variation

The concept of early and late times are the first and last possible times a signal transition can arrive at a
given point in a circuit. Corresponding to these times are early and late delays and slews for a given
propagation arc. These different values can correspond to different physical paths between the two end
points of the arc (e.g., between an input and an output pin on an instance).

The concept of early and late values shall be extended to include on-chip process variation. The additional

360
Copyright © 2010 IEEE all rights reserved.

– 360 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

terms min and max have been added. These terms shall be used to represent the minimum and maximum,
respectively, of the uncertainty in a calculated value due to on-chip process variation. These values shall be
relative to a particular process point representing a chip which can be produced using a given process
technology.

Use of min process variation during timing calculations results in shorter delays and faster slews.
Conversely, use of max process variation yields longer delays and slower slews.

A new enumerated type is also added to for specifying how the effects of on-chip process variation shall be
included in early and late value calculation. This enumerated type is shown in Table 305.

Table 305—DCM_ProcessVariations

Enumerators Enumeration Description

DCM_NoVariation 0 No process variation.

DCM_MinEarly_MaxLate 1
On-chip minimum reflected in early values and on-chip
maximum reflected in late values.

DCM_MaxEarly_MinLate_Ed
gesSame

2 On-chip maximum reflected in early values and on-chip
minimum reflected in late values in a manner suitable for
comparison with values calculated using
DCM_MinEarly_MaxLate for a timing segment common
to two circuit paths which traverse the segment using the
same edge directions.

DCM_MaxEarly_MinLate_Ed
gesOpposite

3 On-chip maximum reflected in early values and on-chip
minimum reflected in late values in a manner suitable for
comparison with values calculated using
DCM_MinEarly_MaxLate for a timing segment common
to two circuit paths which traverse the segment using
opposite edge directions.

The first enumerator DCM_NoVariation (which has an integer value of 0) is used to indicate process
variation and shall not be included in early and late values.

A DCM_ProcessVariations value shall be included in the Standard Structure passed from the application to
an library. The library shall use this information to determine how the effects of on-chip process variation
are reflected in calculated values for delay and slew.

The identifiers PROCESS_VARIATION, process_variation, PROCESS_VARIATION_SCALAR, and
process_variation_scalar are required for implementation of on-chip process variation. These identifiers
can be set to the values shown in Table 306.

361
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 361 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 306—New predefined identifiers

New predefined identifier Value Meaning

PROCESS_VARIATION
process_variation

NoVariation No variation

MinEarly_MaxLate Min early, max late

MaxEarly_MinLate_EdgesSame
Max early, min late,
edges same

MaxEarly_MinLate_EdgesOpposite
Max early, min late,
edges opposite

PROCESS_VARIATION_SCALAR

process_variation_scalar

0 No variation

1 Min early, max late

2
Max early, min late,
edges same

3
Max early, min late,
edges opposite

All EXTERNAL and EXPOSE API functions that require the calcMode field in the Standard Structure shall
also require the processVariation field.

When an application compares the timing between two paths during the evaluation of a timing check, it
often uses the early timing values from one path and the late values from the other.

To produce worst-case timing results when on-chip process variation is considered, the minimum variation
is included in the early values and the maximum variation in the late values. This shall be done by the
library when the application sets the processVariation field in the Standard Structure to
DCM_MinEarly_MaxLate.

For certain circuit configurations, this can produce a result that is unduly pessimistic. For example, when
two paths share a common set of arcs, the effects of on-chip process variation on these arcs should be less
when these two paths are compared than if either were compared with a completely unrelated path.

To take into account the common ambiguity of these arcs due to on-chip process variation without changing
its basic approach to path comparison, the application can instruct the library to include these effects
differently for the common arcs when the timing for one of these paths is calculated.

If the signals propagated along both paths pass through a common arc with the same edge polarities (rising
or falling) at each end, the application can set the processVariation field to
DCM_MaxEarly_MinLate_EdgesSame when the timing of that arc is calculated for one of the paths. This
instructs the library to include the maximum on-chip process variation in the early timing values and the
minimum in the late values, in a manner such that excess on-chip variation is canceled out when the results
are compared with those of the other path (for which a processVariation value of
DCM_MinEarly_MaxLate was used). The library determines the amount of variation that is actually
canceled.

Similarly, a processVariation value of DCM_MaxEarly_MinLate_EdgesOpposite can be used for one of the
paths when the two traverse a common arc but have opposite edge polarities. Again, the library determines
the amount of variation that is actually canceled, but this is perhaps less than when the signal edges were
the same for the two paths.

The library is given complete control over how much the common ambiguity between the two paths is
reduced when they are compared.

362
Copyright © 2010 IEEE all rights reserved.

– 362 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.23.11.1 Process points

The concept of best-case, nominal, and worst-case calculation modes represent process variation across all
of the possible chips produced using a given process technology.

Specifically, best-case, nominal, and worst-case calculation modes shall represent three process points in
the technology represented by a library. The contributions of minimum and maximum on-chip process
variation to calculated values shall be relative to the process point specified via the calculation mode.

For some technologies and design flows, three possible process points might not be sufficient. To address
these circumstances, an additional mechanism is added so the application can set an alternative process
point. In such cases, a process point shall be an abstract floating point number associated by the library
with a single set of process variables for all modeling domains. In contrast with the best-case, nominal, and
worst-case process points, there shall be no single qualitative measure of circuit performance associated
across all modeling domains with a process-point number.

There shall be only one process-point number for an entire chip at any given time. Unlike voltage and
temperature, which are at least in some sense external stimulants to a chip, the process-point number is
inherently a characteristic of the chip itself.

When more than three possible process points are needed, the application shall use
dpcmSetCurrentProcessPoint (see 10.23.11.1.1) to set the current process point.

Once the application successfully sets a process point, it can request timing and power values be calculated
relative to that process point through use of a new calculation mode value, DCM_ProcessPoint. This new
value shall be appended to the DCM_CalculationModes enumeration, as shown in Table 307.

Table 307—DCM_CalculationModes

Enumerator Enumeration Description

DCM_BestCase 0 Best case

DCM_WorstCase 1 Worst case

DCM_NominalCase 2 Nominal case

DCM_ProcessPoint 3 Process point

Use of this value when the library has not accepted a process point via a call to
dpcmSetCurrentProcessPoint (see 10.23.11.1.1) shall result in an error.

10.23.11.1.1 dpcmSetCurrentProcessPoint

Table 308 provides information on dpcmSetCurrentProcessPoint.

Table 308—dpcmSetCurrentProcessPoint

Function name dpcmSetCurrentProcessPoint

Arguments Process point

Result Old process point

Standard
Structure fields

None

DCL syntax EXPOSE(dpcmSetCurrentProcessPoint):
 passed(double: processPoint)
 result(double: oldProcessPoint);

363
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 363 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

C syntax typedef struct {
 DCM_DOUBLE processPoint;
} T_ProcessPoint;

int dpcmSetCurrentProcessPoint
 (const DCM_STD_STRUCT *std_struct,
 T_ProcessPoint *rtn, DCM_DOUBLE processPoint);

The application can use this to set the current process point.

The value set by the application via dpcmSetCurrentProcessPoint shall fall within the range obtained from
the library via dpcmGetProcessPointRange (see 10.23.11.1.2). If the application cannot call
dpcmGetProcessPointRange successfully, a call to dpcmSetCurrentProcessPoint shall result in an error.

10.23.11.1.2 dpcmGetBaseProcessPoint

Table 309 provides information on dpcmGetBaseProcessPoint.

Table 309—dpcmGetBaseProcessPoint

Function name dpcmGetBaseProcessPoint

Arguments None

Result Process point

Standard
Structure fields

None

DCL syntax EXPOSE(dpcmGetBaseProcessPoint):
 result(double: processPoint);

C syntax typedef struct {
 DCM_DOUBLE processPoint;
} T_ProcessPoint;

int dpcmGetBaseProcessPoint
 (const DCM_STD_STRUCT *std_struct,
 T_ProcessPoint *rtn);

The application shall obtain a base process point from the library. The value returned by this function shall
also fall within the range that can be obtained via dpcmGetProcessPointRange (see 10.23.11.2.1).

10.23.11.2 PVT ranges

A set of functions that return process point, voltage, and temperature ranges for the current operating range
is defined in the next subclauses.

10.23.11.2.1 dpcmGetProcessPointRange

Table 310 provides information on dpcmGetProcessPointRange.

Table 310—dpcmGetProcessPointRange

Function name dpcmGetProcessPointRange

Arguments None

Result Minimum process point, Maximum process point

Standard
Structure fields

None

DCL syntax EXPOSE(dpcmGetProcessPoint):
 result(double: minProcessPoint, maxProcessPoint);

364
Copyright © 2010 IEEE all rights reserved.

– 364 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

C syntax typedef struct {
 DCM_DOUBLE minProcessPoint;
 DCM_DOUBLE maxProcessPoint;
} T_ProcessPointRange;

int dpcmGetProcessPointRange
 (const DCM_STD_STRUCT *std_struct,
 T_ProcessPointRange *rtn);

This returns the extrema defining a range of legal values for a process point other than one represented by
the best-case, nominal, or worst-case calculation modes back to the application. This range can be a
function of an operating range. The value the application obtains using dpcmGetBaseProcessPoint and the
value the application sets via dpcmSetCurrentProcessPoint (see 10.23.11.1.1) shall both fall within this
range. If the application can not obtain this range from the library, use of dpcmSetCurrentProcessPoint or
the DCM_ProcessPoint calculation mode value shall result in an error.

These extrema allow the application to give the user a range from which to choose a process point, with the
user’s choice being relative to the extrema only and not in any absolute sense.

10.23.11.3 Rail voltage range

The calls discussed in the next subclauses can be used to determine a rail voltage range.

10.23.11.3.1 dpcmGetRailVoltageRangeArray

Table 311 provides information on dpcmGetRailVoltageRangeArray.

Table 311—dpcmGetRailVoltageRangeArray

Function name dpcmGetRailVoltageRangeArray

Arguments None

Result Minimum rail voltages, Maximum rail voltages

Standard
Structure fields

None

DCL syntax EXPOSE(dpcmGetRailVoltageRangeArray):
 result(double[*]: minRailVoltages, maxRailVoltages);

C syntax typedef struct {
 DCM_DOUBLE_ARRAY *minRailVoltages;
 DCM_DOUBLE_ARRAY *maxRailVoltages;
} T_RailVoltageRangeArray;

int dpcmGetRailVoltageRangeArray
 (const DCM_STD_STRUCT *std_struct,
 T_RailVoltageRangeArray *rtn);

This returns the extrema defining the range of legal values for each rail voltage in a library back to the
application. Each voltage range can be a function of operating range, but shall not be a function of
calculation mode. The value returned by appGetCurrentRailVoltage(), which can be a function of the
calculation mode, shall fall within this range. The value returned by dpcmGetBaseRailVoltage() shall also
fall within this range. The order of the ranges returned by this function shall be the same as the order of the
voltage rail names returned by dpcmGetRailVoltageArray().

10.23.11.3.2 dpcmGetCellRailVoltageRangeArray

Table 312 provides information on dpcmGetCellRailVoltageRangeArray.

365
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 365 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 312—dpcmGetCellRailVoltageRangeArray

Function name dpcmGetCellRailVoltageRangeArray

Arguments None

Result Minimum rail voltages, Maximum rail voltages

Standard
Structure fields

block, CellName, cellData (timing)

DCL syntax EXPOSE(dpcmGetCellRailVoltageRangeArray):
 result(double[*]: minRailVoltages, maxRailVoltages);

C syntax typedef struct {
 DCM_DOUBLE_ARRAY *minRailVoltages;
 DCM_DOUBLE_ARRAY *maxRailVoltages;
} T_RailVoltageRangeArray;

int dpcmGetCellRailVoltageRangeArray
 (const DCM_STD_STRUCT *std_struct,
 T_RailVoltageRangeArray *rtn);

This returns the extrema defining the range of legal values for each of the voltage rails of the cell identified
by the cellData field in the Standard Structure back to the application. These values can be different for
different operating ranges but shall not vary with calculation mode.

This function differs from dpcmGetRailVoltageRangeArray, as it returns the rail voltage ranges for the
specified cell only, not the rail voltage ranges for an entire library. If this function is exposed by a DPCM,
the application shall use it instead of, and shall not call, dpcmGetRailVoltageRangeArray. If the function
dpcmGetCellRailVoltageArray is exposed by the DPCM, this function shall also be exposed in lieu of
dpcmGetRailVoltageRangeArray.

The order of the ranges returned by this function shall be the same as the order of the voltage rail names
returned by dpcmGetCellRailVoltageArray.

The value returned by appGetCurrentRailVoltage, which can be a function of the calculation mode, shall
fall within the range returned by this function (if it is exposed) for the voltage rail specified. The values
returned by dpcmGetBaseCellRailVoltageArray shall also fall within the corresponding ranges returned by
this function.

10.23.11.4 Temperature range

The calls described in the next subclauses can be used to determine a temperature range.

10.23.11.4.1 dcmGetTemperatureRange

Table 313 provides information on dpcmGetTemperatureRange.

Table 313—dpcmGetTemperatureRange

Function name dpcmGetTemperatureRange

Arguments None

Result Minimum temperature, Maximum temperature

Standard
Structure fields

None

DCL syntax EXPOSE(dpcmGetTemperatureRange):
 result(double: minTemperature, maxTemperature);

366
Copyright © 2010 IEEE all rights reserved.

– 366 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

C syntax typedef struct {
 DCM_DOUBLE minTemperature;
 DCM_DOUBLE maxTemperature;
} T_TemperatureRange;

int dpcmGetTemperatureRange
 (const DCM_STD_STRUCT *std_struct,
 T_TemperatureRange *rtn);

This returns the extrema defining a range of legal values for temperature back to the application. This range
can be a function of operating range but shall not be a function of calculation mode. The value returned by
appGetCurrentTemperature(), which can be a function of calculation mode, shall fall within this range. The
value returned by dpcmGetBaseTemperature shall also fall within this range.

10.23.11.4.2 dpcmGetCellTemperatureRange

Table 314 provides information on dpcmGetCellTemperatureRange.

Table 314—dpcmGetCellTemperatureRange

Function name dpcmGetCellTemperatureRange

Arguments None

Result Minimum temperature, Maximum temperature

Standard
Structure fields

block, CellName, cellData (timing)

DCL syntax EXPOSE(dpcmGetCellTemperatureRange):
 result(double: minTemperature, maxTemperature);

C syntax typedef struct {
 DCM_DOUBLE minTemperature;
 DCM_DOUBLE maxTemperature;
} T_CellTemperatureRange;

int dpcmGetCellTemperatureRange
 (const DCM_STD_STRUCT *std_struct,
 T_CellTemperatureRange *rtn);

This returns the extrema defining a range of legal values for the temperature of the cell identified by the
cellData field in the Standard Structure back to the application. These values can be different for different
operating ranges but shall not vary with the calculation mode.

This function differs from dpcmGetTemperatureRange, as it returns a temperature range for the specified
cell only, not an entire library. If this function is exposed by a DPCM, the application shall use it instead of,
and shall not call, dpcmGetTemperatureRange.

The value returned by appGetCurrentTemperature, which can be a function of calculation mode, shall fall
within the range returned by this function (if it is exposed). The value returned by
dpcmGetBaseCellTemperature shall also fall within this range.

10.23.12 Accessing properties and attributes

This subclause describes APIs for accessing cell or pin properties that are constant. The properties are
accessed through a pair of functions for each property. One function, the properties array call, returns an
array of strings in which each string element represents a possible property used within the technology. The
other function, the cell- or pin-specific property call, returns an array of integer indices into the array of
strings returned by the first call in the pair.

The array of strings returned from a properties array call shall contain one element for each possible value a

367
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 367 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

property or its modifier can have for the entire technology. There is no imposed or implied order to the
elements returned in the array. The string array returned by the library shall not contain duplicates. An
empty array indicates this type of property is not supported by the technology. The application shall not call
for cell- or pin-specific properties when the matching array properties call has returned an empty array.

The array of integers returned by the cell- or pin-specific property call represents the cell’s or pin’s specific
property when taken in its entirety. A cell or pin property can consist of a property index and zero or more
modifier indices. The property and modifier indices can appear in any order. The cell or pin property array
shall not contain duplicates. An empty array indicates there is no specific cell or pin property of this type
for this instance.

For all APIs, a nonzero return code indicates that a particular property or attribute for a given vector, pin, or
cell does not exist. In addition, for an API that returns an array of indices to a string array, an empty array
shall indicate that a particular property or attribute for a given vector, pin, or cell does not exist.

10.23.12.1.1 APIs for annotations within PIN object

APIs have been defined to access annotations attached to pin objects. APIs generally appear in pairs, the
first returning an array of available items for an annotation type and the second returning an array of
indices within that array indicating those items that are “attached” to the pin object.

10.23.12.1.2 dpcmGetPinPinTypeArray

Table 315 provides information on dpcmGetPinPinTypeArray.

Table 315—dpcmGetPinPinTypeArray

Function name dpcmGetPinPinTypeArray

Arguments None

Result Array of pin types

Standard
Structure fields

None

DCL syntax EXPOSE(dpcmGetPinPinTypeArray):
 result(string[*]: stringData);

C syntax typedef struct {
 DCM_STRING_ARRAY *stringData;
} T_GetPinPinTypeArray;

int dpcmGetPinPinTypeArray
 (const DCM_STD_STRUCT *std_struct,
 T_GetPinPinTypeArray *rtn);

This returns all possible values for the PinType property that can be used by a technology back to the
application. The string array returned by the library shall contain string elements from the following list.

— Analog—a pin that can have a signal with an arbitrary voltage or current.

— Differential—a pin that requires a signal that is determined by the difference of either voltage or
current between two pins.

— Digital—a pin that can have a signal that changes from Vss to Vdd and back connected to it.

— Reference—a pin that requires a constant voltage as a reference, but this voltage is not to be
connected from the power rails.

— Supply—a pin that supplies power.

— Row—a pin that indicates a physical row of a memory.

368
Copyright © 2010 IEEE all rights reserved.

– 368 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

— Column—a pin that indicates a physical column of a memory.

— Bank—a pin that indicates a physical bank of a memory.

10.23.12.1.3 dpcmGetPinPinType

Table 316 provides information on dpcmGetPinPinType.

Table 316—dpcmGetPinPinType

Function name dpcmGetPinPinType

Arguments Pin pointer

Result Array of pin type properties

Standard
Structure fields

block, CellName, cellData, pathData (pin-specific)

DCL syntax EXPOSE(dpcmGetPinPinType):
 passed(pin: pinPointer)
 result(integer[*]: arrayIndices);

C syntax typedef struct {
 DCM_INTEGER_ARRAY *arrayIndices;
} T_GetPinPinType;

int dpcmGetPinPinType(const DCM_STD_STRUCT *std_struct,
 T_GetPinPinType *rtn, DCM_PIN pinPointer);

This returns the PinType property for a pin back to the application. dpcmGetPinPinType returns an array of
indices into the string array returned by dpcmGetPinPinTypeArray, which apply to the passed pin pointer
argument.

10.23.12.1.4 dpcmGetPinSignalTypeArray

Table 317 provides information on dpcmGetPinSignalTypeArray.

Table 317—dpcmGetPinSignalTypeArray

Function name dpcmGetPinSignalTypeArray

Arguments None

Result Array of signal types

Standard Structure
fields

None

DCL syntax EXPOSE(dpcmGetPinSignalTypeArray):
 result(string[*]: stringData);

C syntax typedef struct {
 DCM_STRING_ARRAY *stringData;
} T_GetPinSignalTypeArray;

int dpcmGetPinSignalTypeArray
 (const DCM_STD_STRUCT *std_struct,
 T_GetPinSignalTypeArray *rtn);

This returns all possible values for the SignalType property used by the technology back to the application.
A signal type is the type of signal which shall be present on the pin of interest. A signal type for a pin
consists of a type and zero or more modifiers.

The DATA signal type is assumed to be present in the list and does not require a bit value.

The possible signal types are

369
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 369 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

— Clock—a signal type indicating a signal that initiates or enables the state change in a memory
device.

— Tie—a signal type indicating this signal is attached to an input pin and has a constant level: a
logical one or a logical zero.

— Refresh—a signal type indicating this signal is attached to an input pin that maintains the contents
of the memory without modifying it.

— Load—a signal type indicating this signal is attached to an input pin that loads control registers.

— IDDQ—a signal type indicating this signal is attached to an input pin that supplies the current
measurement.

The possible modifiers are as follows:

— Address—a modifier indicating the signal on this pin is used to select the specific storage element
in the array where data is written or read.

— Control—a modifier indicating the signal is used to select one or more functions inside the cell.

— Enable—a modifier indicating the signal, when active, allows the device to perform its intended
function.

— Master—a modifier indicating this signal controls the primary latch in an LSSD latch pair.

— Read—a modifier indicating this signal corresponds to the read activity of a memory device.

— Clear—a modifier indicating the signal forces the latch or memory device into a “well known”
zero state.

— Reset—a modifier indicating the signal forces the latch or memory device into a predefined state.

— Set—a modifier indicating the signal forces the latch or memory device into a “well known” one
state.

— Slave—a modifier indicating this signal controls the secondary, or slave, latch in an LSSD latch
pair.

— Scan—a modifier indicating the signal attached to the pin is used for sequentially initializing or
reading the combined state of a system of memory devices.

— Write—a modifier indicating this signal corresponds to the write activity of a memory device.

— Schmitt—a modifier indicating the input pin where the signal is attached requires a significant
amount of hysteresis in its operation.

— Tristate—a modifier indicating the pin under analysis can have three states: a logical zero, a
logical one, or a high impedance state.

— Xtal—a modifier indicating the signal connected to the pin repeats its waveform on a uniform
period.

— Pad—a modifier attached to an output pin indicating this signal is from a circuit driving an off-
chip net.

— Test—a modifier indicating the pin is associated with a TEST operation.

— BIST—a modifier indicating the pin is associated with a built-in–self-test (BIST) operation.

10.23.12.1.5 dpcmGetPinSignalType

Table 318 provides information on dpcmGetPinSignalType.

370
Copyright © 2010 IEEE all rights reserved.

– 370 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 318—dpcmGetPinSignalType

Function name dpcmGetPinSignalType

Arguments Pin pointer

Result Array of indices to string array

Standard
Structure fields

block, CellName, cellData, pathData (pin-specific)

DCL syntax EXPOSE(dpcmGetPinSignalType):
 passed(pin: pinPointer)
 result(int[*]: arrayIndices);

C syntax typedef struct {
 DCM_INTEGER_ARRAY *arrayIndices;
} T_GetPinSignalType;

int dpcmGetPinSignalType
 (const DCM_STD_STRUCT *std_struct,
 T_GetPinSignalType *rtn, DCM_PIN pinPointer);

This returns an array of indices into the signal type array (which constitutes the complete signal type for the
pin of interest) back to the application. If the index array returned by this call is empty or contains only
modifiers, the application shall assume the signal type is data.

10.23.12.1.6 dpcmGetPinActionArray

Table 319 provides information on dpcmGetPinActionArray.

Table 319—dpcmGetPinActionArray

Function name dpcmGetPinActionArray

Arguments None

Result Array of pin actions

Standard
Structure fields

None

DCL syntax EXPOSE(dpcmGetPinActionArray):
 result(string[*]: stringData);

C syntax typedef struct {
 DCM_STRING_ARRAY *stringData;
} T_GetPinActionArray;

int dpcmGetPinActionArray
 (const DCM_STD_STRUCT *std_struct,
 T_GetPinActionArray *rtn);

This returns all possible values for the Action property back to the application. dpcmGetPinActionArray
returns a string array of possible pin actions, where the possible elements are from the following:

— Synchronous—synchronous signals have a relationship in time to a clock.

— Asynchronous—asynchronous signals have no relationship to a clock.

10.23.12.1.7 dpcmGetPinAction

Table 320 provides information on dpcmGetPinAction.

371
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 371 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 320—dpcmGetPinAction

Function name dpcmGetPinAction

Arguments Pin pointer

Result Array of indices to string array

Standard
Structure fields

block, CellName, cellData, pathData (pin-specific)

DCL syntax EXPOSE(dpcmGetPinAction):
 passed(pin: pinPointer)
 result(int[*]: arrayIndices);

C syntax typedef struct {
 DCM_INTEGER_ARRAY *arrayIndices;
} T_GetPinAction;

int dpcmGetPinAction(const DCM_STD_STRUCT *std_struct,
 T_GetPinAction *rtn, DCM_PIN pinPointer);

This returns an array of indices, which comprise the synchronous/asynchronous properties of a signal at the
pin of interest, back to the application.

10.23.12.1.8 dpcmGetPinPolarityArray

Table 321 provides information on dpcmGetPinPolarityArray.

Table 321—dpcmGetPinPolarityArray

Function name dpcmGetPinPolarityArray

Arguments None

Result Array of pin polarities

Standard
Structure fields

None

DCL syntax EXPOSE(dpcmGetPinPolarityArray):
 result(string[*]: stringData);

C syntax typedef struct {
 DCM_STRING_ARRAY *stringData;
} T_GetPinPolarityArray;

int dpcmGetPinPolarityArray
 (const DCM_STD_STRUCT *std_struct,
 T_GetPinPolarityArray *rtn);

This returns the Polarity property for a pin back to the application. dpcmGetPinPolarityArray returns a
string array of pin polarities that can be used in the technology. The possible pin polarities and their
meanings are contained in the following:

— High—the pin is active during the period of time when the signal is at a level one.

— Low—the pin is active during the period of time when the signal is at a level zero.

— Falling_edge—the pin is active when the signal is transitioning from a level one to a level zero.

— Rising_edge—the pin is active when the signal is transitioning from a level zero to a level one.

— Double_edge—the pin is active when the signal is transitioning from a level one to a level zero or
from a level zero to a level one.

372
Copyright © 2010 IEEE all rights reserved.

– 372 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.23.12.1.9 dpcmGetPinPolarity

Table 322 provides information on dpcmGetPinPolarity.

Table 322—dpcmGetPinPolarity

Function name dpcmGetPinPolarity

Arguments Pin pointer

Result Array of indices to string array

Standard
Structure fields

block, CellName, cellData, pathData (pin-specific)

DCL syntax EXPOSE(dpcmGetPinPolarity):
passed(pin: pinPointer)
result(int[*]: arrayIndices);

C syntax typedef struct {
 DCM_INTEGER_ARRAY *arrayIndices;
} T_GetPinPolarity;

int dpcmGetPinPolarity
 (const DCM_STD_STRUCT *std_struct,
 T_GetPinPolarity *rtn, DCM_PIN pinPointer);

This returns an array of indices that make up the pin polarity for the input pin of interest. The application
can only call this function for input pins.

10.23.12.1.10 dpcmGetPinEnablePin

Table 323 provides information on dpcmGetPinEnablePin.

Table 323—dpcmGetPinEnablePin

Function name dpcmGetPinEnablePin

Arguments Pin pointer

Result Array of pin names

Standard
Structure fields

block, CellName, cellData, pathData (pin-specific)

DCL syntax EXPOSE(dpcmGetPinEnablePin):
 passed(pin: pinPointer)
 result(string[*]: pinNames);

C syntax typedef struct {
 DCM_STRING_ARRAY *pinNames;
} T_GetPinEnablePin;

int dpcmGetPinEnablePin
 (const DCM_STD_STRUCT *std_struct,
 T_GetPinEnablePin *rtn, DCM_PIN pinPointer);

This returns the list of pins that enable the pin identified by the pin pointer argument back to the
application.

10.23.12.1.11 dpcmGetPinConnectClass

Table 324 provides information on dpcmGetPinConnectClass.

373
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 373 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 324—dpcmGetPinConnectClass

Function name dpcmGetPinConnectClass

Arguments None

Result Index into library, connect class array

Standard
Structure fields

block, CellName, cellData, pathData (pin-specific)

DCL syntax EXPOSE(dpcmGetPinConnectClass):
 result(int: connectClassIndex);

C syntax typedef struct {
 DCM_INTEGER connectClassIndex;
} T_GetPinConnectClass;

int dpcmGetPinConnectClass
 (const DCM_STD_STRUCT *std_struct,
 T_GetPinConnectClass *rtn);

This returns an index into the array of library connect classes back to the application. The API that obtains
this connect class array is specified in dpcmGetLibraryConnectClassArray. The returned library level
connect class index is used in conjunction with that of another pin to index into the connect class-based
connectivity rule array (see 10.23.14.3) to determine the allowable connectivity between the pins.

10.23.12.1.12 dpcmGetPinScanPosition

Table 325 provides information on dpcmGetPinScanPosition.

Table 325—dpcmGetPinScanPosition

Function name dpcmGetPinScanPosition

Arguments Pin pointer

Result Scan pin position

Standard
Structure fields

block, CellName, cellData, pathData (pin-specific)

DCL syntax EXPOSE(dpcmGetPinScanPosition):
 passed(pin: pinPointer)
 result(int: scanPositionValue);

C syntax typedef struct {
 DCM_INTEGER scanPositionValue;
} T_GetPinScanPosition;

int dpcmGetPinScanPosition
 (const DCM_STD_STRUCT *std_struct,
 T_GetPinScanPosition *rtn, DCM_PIN pinPointer);

This returns the position of a pin in the scan for a cell back to the application. A value of zero (0) indicates
this pin does not appear in the scan chain.

10.23.12.1.13 dpcmGetPinStuckArray

Table 326 provides information on dpcmGetPinStuckArray.

374
Copyright © 2010 IEEE all rights reserved.

– 374 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 326—dpcmGetPinStuckArray

Function name dpcmGetPinStuckArray

Arguments None

Result Array of stuck at types

Standard
Structure fields

None

DCL syntax EXPOSE(dpcmGetPinStuckArray):
 result(string[*]: stringData);

C syntax typedef struct {
 DCM_STRING_ARRAY *stringData;
} T_GetPinStuckArray;

int dpcmGetPinStuckArray
 (const DCM_STD_STRUCT *std_struct,
 T_GetPinStuckArray *rtn);

This returns all possible stuck-at-fault values used within the technology back to the application. The legal
values are as follows:

— stuck_at_0—the pin of a cell has a potential failure mode where a pin can remain at a logical zero,
regardless of the internal state of the cell.

— stuck_at_1—the pin of a cell has a potential failure mode where a pin can remain at a logical one,
regardless of the internal state of the cell.

The application shall not call dpcmGetPinStuckArray for pins that are not outputs.

10.23.12.1.14 dpcmGetPinStuck

Table 327 provides information on dpcmGetPinStuck.

Table 327—dpcmGetPinStuck

Function name dpcmGetPinStuck

Arguments Pin pointer

Result Array of stuck type indices

Standard
Structure fields

block, CellName, cellData, pathData(pin-specific)

DCL syntax EXPOSE(dpcmGetPinStuck):
 passed(pin: pinPointer)
 result(int[*]: arrayIndices);

C syntax typedef struct {
 DCM_INTEGER_ARRAY *arrayIndices;
} T_GetPinStuck;

int dpcmGetPinStuck(const DCM_STD_STRUCT *std_struct,
 T_GetPinStuck *rtn, DCM_PIN pinPointer);

This returns a list of the stuck failure types for a pin back to the application.

10.23.12.1.15 dpcmGetDifferentialPairPin

Table 328 provides information on dpcmGetDifferentialPairPin.

375
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 375 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 328—dpcmGetDifferentialPairPin

Function name dpcmGetDifferentialPairPin

Arguments Pin pointer

Result Differential pair pin name

Standard
Structure fields

block, CellName, cellData, pathData(pin-specific)

DCL syntax EXPOSE(dpcmGetDifferentialPairPin):
 passed(pin: pinPointer)
 result(string: differentialPairPinName);

C syntax typedef struct {
 DCM_STRING differentialPairPinName;
} T_GetDifferentialPairPin;

int dpcmGetdifferentialPairPin
 (const DCM_STD_STRUCT *std_struct,
 T_GetDifferentialPairPin *rtn, DCM_PIN pinPointer);

Cells with pins that require logic signals to be wired as differential pairs exist in many technologies.
dpcmGetDifferentialPairPin returns the name of the pin that shall be paired with the known pin back to the
application. The application calls this function when it knows the signal on a pin is a differential signal but
does not know the corresponding differential pin.

10.23.12.2 APIs for annotations within VECTOR objects

APIs have been defined to access annotations and attributes attached to vector objects.

10.23.12.2.1 dpcmGetPathLabel

Table 329 provides information on dpcmGetPathLabel.

Table 329—dpcmGetPathLabel

Function name dpcmGetPathLabel

Arguments None

Result Path label

Standard
Structure fields

block, CellName, cellData, pathData (vectorTiming pin-specific)

DCL syntax EXPOSE(dpcmGetPathLabel):
 result(string: pathLabel);

C syntax typedef struct {
 DCM_STRING pathLabel;
} T_GetPathLabel;

int dpcmGetPathLabel(const DCM_STD_STRUCT *std_struct,
 T_GetPathLabel *rtn);

This returns the SDF label for a vector expression which represents at least one state for a path back to the
application.

10.23.12.2.2 dpcmGetPowerStateLabel

Table 330 provides information on dpcmGetPowerStateLabel.

376
Copyright © 2010 IEEE all rights reserved.

– 376 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 330—dpcmGetPowerStateLabel

Function name dpcmGetPowerStateLabel

Arguments Group index, Condition index

Result State label

Standard
Structure fields

block, CellName, cellData (power), modelDomain (power)

DCL syntax EXPOSE(dpcmGetPowerStateLabel):
 passed(int: groupIndex, conditionIndex)
 result(string: StateLabel);

C syntax typedef struct {
 DCM_STRING StateLabel;
} T_GetPowerStateLabel;

int dpcmGetPowerStateLabel
 (const DCM_STD_STRUCT *std_struct,
 T_GetPowerStateLabel *rtn,
 DCM_INTEGER groupIndex, DCM_INTEGER conditionIndex);

This returns the label for the particular group and condition back to the application. This call is only valid
for a cell-level state label.

10.23.12.3 APIs for annotations within CELL objects

APIs have been defined to access annotations attached to cell objects. APIs generally appear in pairs, the
first returning an array of available items for an annotation type and the second returning an array of
indices within that array indicating those items that are “attached” to the cell object.

10.23.12.3.1 dpcmGetCellTypeArray

Table 331 provides information on dpcmGetCellTypeArray.

Table 331—dpcmGetCellTypeArray

Function name dpcmGetCellTypeArray

Arguments None

Result Cell types

Standard
Structure fields

None

DCL syntax EXPOSE(dpcmGetCellTypeArray):
 result(string[*]: stringData);

C syntax typedef struct {
 DCM_STRING_ARRAY *stringData;
} T_GetCellTypeArray;

int dpcmGetCellTypeArray
 (const DCM_STD_STRUCT *std_struct,
 T_GetCellTypeArray *rtn);

This returns all possible cell types used within a technology back to the application. A cell type consists of
a primary definition and zero or more adjectives, which further describe the cell type.

The primary cell types are as follows:

— Buffer—cells that are used for line conditioning or drive strength changes. This primary cell type
typically includes both inverting and noninverting circuits.

377
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 377 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

The allowable adjectives that can accompany a buffer cell type are as follows:

— Internal indicates the cell shall be used to send and receive logical signals from other cells on
the same chip.

— Input indicates the cell shall be used to receive logical signals from other chips.

— Output indicates the cell shall be used to transmit logical signals to other chips. The allowable
adjectives that can accompany any buffer adjective, except Internal, are:

— Predriver indicates the load on this buffer is a buffer that drives “off-chip”
circuitry.

— Slotdriver indicates this driver is driving “off-chip” circuitry.

— Combinatorial—cells that perform Boolean operations, but not those cells that have more explicit
definitions defined in this subclause (e.g., a cell that performs the Boolean AND function on two
pins).

— Multiplexer—cells that perform the function of selection.

— Latch—cells that perform memory functions controlled by the level of the clock signal.

— Flipflop—cells that perform memory functions controlled by the transition of the clock signal.

— Memory—cells that perform mass storage of information controlled both by an address and a
clock. They can have two basic operations: reading, which extracts information already stored in
the cell, and writing, which stores new information in the cell. The location where the information
is stored within the cell is controlled by the bit pattern of the address.

— Block—cells that perform very complex logic functions, including finite state machines. Blocks
are composed completely of other library elements. Some applications can request further
information about the configuration of the block by requesting the internal cells to use in
constructing the block, as well as their interconnection details, from the library.

— Core—cells that perform very complex logic functions, including finite state machines. These
cells are typically made using custom transistor design techniques or are prepackaged collections
of application specific integrated circuit (ASIC) cells designed to perform the desired function.
The application shall not request further details about the internal design of core.

— Special—cells that cannot be defined by the other cell types. As an example, some typical cells
that can be considered special are line hold and clamping or suppression devices.

— PLL—cells that form the phase lock loop (PLL).

Their possible modifiers are as follows:

— RAM—a modifier to 'memory’ that indicates the cell is a random access memory (RAM) with
both read and write capabilities.

— ROM—a modifier to 'memory' that indicates the cell is a random access memory with read, but no
write, capability [read only memory (ROM)] in a manner that associates the bit pattern with the
data.

— CAM—a modifier to 'memory' that indicates the cell is a content accessible memory (CAM). This
type of memory is associative in nature. The access is by a bit pattern rather than being an absolute
address. When reading, the bit pattern is supplied and the data associated with the bit pattern are
returned. When writing to the memory, the data are stored in a manner that associates bit pattern
with the data.

— Static—a modifier that indicates the cell is a static device capable of holding a given state
indefinitely.

— Dynamic—a modifier that indicates the cell is a device that holds a state based on the charging of a
capacitance. These devices can hold a state for a limited period of time before the state of the
device becomes undefined.

378
Copyright © 2010 IEEE all rights reserved.

– 378 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

— Asynchronous—a modifier that indicates the cell operates without synchronization with respect to
any controlling signal.

— Synchronous—a modifier that indicates the cell operates in synchronization with a controlling
signal(i.e., a clock).

10.23.12.3.2 dpcmGetCellType

Table 332 provides information on dpcm GetCellType.

Table 332—dpcmGetCellType

Function name dpcmGetCellType

Arguments None

Result Array of indices to cell type string array

Standard
Structure fields

block, CellName, cellData

DCL syntax EXPOSE(dpcmGetCellType):
 result(int[*]: arrayIndices);

C syntax typedef struct {
 DCM_INTEGER_ARRAY *arrayIndices;
} T_GetCellType;

int dpcmGetCellType(const DCM_STD_STRUCT *std_struct,
 T_GetCellType *rtn);

This returns an array of the cell type indices for a cell back to the application.

10.23.12.3.3 dpcmGetCellSwapClassArray

Table 333 provides information on dpcmGetCellSwapClassArray.

Table 333—dpcmGetCellSwapClassArray

Function name dpcmGetCellSwapClassArray

Arguments None

Result Swap class string array

Standard
Structure fields

None

DCL syntax EXPOSE(dpcmGetCellSwapClassArray):
 result(string[*]: swapClassArray);

C syntax typedef struct {
 DCM_STRING_ARRAY *swapClassArray;
} T_GetCellSwapClassArray;

int dpcmGetCellSwapClassArray
 (const DCM_STD_STRUCT *std_struct,
 T_GetCellSwapClassArray *rtn);

This returns all possible SwapClass names back to the application. Cells that are members of the same
swap class can be exchanged in the design by the application. The application shall not substitute cells that
are not members of the same swap class. A cell can be a member of more than one swap class.

An application is responsible for performing the proper substitution of cells as the design process proceeds
toward completion. Provided is a set of swap classes to assist in this process. A swap class is a named
collection of zero or more cells that can be interchanged. Swap classes convey information about a cell ’s
suitable replacements to the application that cannot be readily determined through other APIs.

379
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 379 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Cell swapping is only allowed under the following conditions:

— The RestrictClass annotation (see 10.23.12.4) authorizes usage of the cell.

— The cells to be swapped are compatible from an application standpoint.

Each swap class is named. The library is responsible for providing the list of swap classes supported by the
technology as an array of strings, where each string is the name of a swap class, back to the application.

Each cell in the library is responsible for providing the application a list of swap classes to which it
belongs, as an array of indices into the swap class array provided by the library.

10.23.12.3.4 dpcmGetCellSwapClass

Table 334 provides information on dpcmGetCellSwapClass.

Table 334—dpcmGetCellSwapClass

Function name dpcmGetCellSwapClass

Arguments None

Result Array of indices to string

Standard
Structure fields

array, block, CellName, cellData

DCL syntax EXPOSE(dpcmGetCellSwapClass):
 result(int[*]: arrayIndices);

C syntax typedef struct {
 DCM_INTEGER_ARRAY *arrayIndices;
} T_GetCellSwapClass;

int dpcmGetCellSwapClass
 (const DCM_STD_STRUCT *std_struct,
 T_GetCellSwapClass *rtn);

This returns the set of swap class values, which apply to a cell, back to the application.

10.23.12.4 dpcmGetCellRestrictClassArray

Table 335 provides information on dpcmGetCellRestrictClassArray.

380
Copyright © 2010 IEEE all rights reserved.

– 380 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 335—dpcmGetCellRestrictClassArray

Function name dpcmGetCellRestrictClassArray

Arguments None

Result Restrict class string array

Standard
Structure fields

None

DCL syntax EXPOSE(dpcmGetCellRestrictClassArray):
 result(string[*]: restrictClassArray)

C syntax typedef struct {
 DCM_STRING_ARRAY *restrictClassArray;
} T_GetCellRestrictClassArray;

int dpcmGetCellRestrictClassArray
 (const DCM_STD_STRUCT *std_struct,
 T_GetCellRestrictClassArray *rtn);

This returns an array of restrict class strings supported by the library back to the application, as follows:

— Synthesis—the cell is restricted to applications capable of performing logical synthesis.

— Scan—the cell is restricted to applications capable of performing scan tree insertion.

— Datapath—the cell is restricted to applications capable of performing data path synthesis.

— Clock—the cell is restricted to applications capable of performing clock tree synthesis.

— BIST—he cell is restricted to applications capable of performing BIST.

— Layout—the cell is restricted to applications capable of performing placement, routing, and other
layout tasks.

A wide variety of applications can be used during the design process. Typical logic design operations have
been categorized as restrict classes. Each tool operation that alters the design logic falls into one or more of
these categories depending on the type of operation they are performing at the time. For example, a layout
tool may want to expand the cellset with those cells restricted only to layout, as well as use the more
general cellset of synthesis and scan if it is capable of performing the similar operations of those tools.

In many technologies, cells have already been designed for special portions of the design process, such as
clock tree synthesis. These special purpose cells shall not used by applications that are not performing the
specific design operation for which these cells are intended. The subset of restrict classes associated with a
cell is used to convey in which design operations the cell can be used to the application.

A restrict class is a collection of zero or more cells that can be used for a specific design operation. Each
restrict class is named. The library is responsible for giving a list of all the restrict classes used by that
technology, as an array of strings, back to the application. If a cell has no or any unknown values for
RestrictClass, the application shall not modify any instantiation or allow creation of that cell in the design.
However, the cell shall still be considered for analysis and linking.

A cell that is a member of this class has a reference to zero or more restrict classes with which it is
associated as part of its description. Each cell in the library is responsible for identifying to which of the
library supported restrict classes it belongs, as an array of indices into the restrict class array for the library.

The application shall use a cell if, and only if, that cell contains the restrict classes known by the library and
matches the restrict classes known to the application.

381
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 381 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.23.12.4.1 dpcmGetCellRestrictClass

Table 336 provides information on dpcmGetCellRestrictClass.

Table 336—dpcmGetCellRestrictClass

Function name dpcmGetCellRestrictClass

Arguments None

Result Array of indices to string array

Standard
Structure fields

block, CellName, cellData

DCL syntax EXPOSE(dpcmGetCellRestrictClass):
 result(int[*]: arrayIndices);

C syntax typedef struct {
 DCM_INTEGER_ARRAY *arrayIndices;
} T_GetCellRestrictClass;

int dpcmGetCellRestrictClass
 (const DCM_STD_STRUCT *std_struct,
 T_GetCellRestrictClass *rtn);

This returns the set of restrict class values that apply to a cell back to the application.

10.23.12.4.2 dpcmGetCellScanTypeArray

Table 337 provides information on dpcmGetCellScanTypeArray.

Table 337—dpcmGetCellScanTypeArray

Function name dpcmGetCellScanTypeArray

Arguments None

Result Scan type string array

Standard
Structure fields

None

DCL syntax EXPOSE(dpcmGetCellScanTypeArray):
 result(string[*]: scanTypeArray);

C syntax typedef struct {
 DCM_STRING_ARRAY *scanTypeArray;
} T_GetCellScanTypeArray;

int dpcmGetCellScanTypeArray
 (const DCM_STD_STRUCT *std_struct,
 T_GetCellScanTypeArray *rtn);

This returns an array of all possible scan type values used within a technology back to the application.

— muxscan—the cell uses a multiplexer device to control the scan.

— clocked—the cell uses a special dedicated clock to perform the scan.

— lssd —the cell uses a pair of latches and a special dedicated clock to perform the scan.

— control_0—the scan control pin shall be at a logical zero level for the scan to be active.

— control_1—the scan control pin shall be at a logical one level for the scan to be active.

10.23.12.4.3 dpcmGetCellScanType

Table 338 provides information on dpcmGetCellScanType.

382
Copyright © 2010 IEEE all rights reserved.

– 382 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 338—dpcmGetCellScanType

Function name dpcmGetCellScanType

Arguments None

Result Array of indices to string array

Standard
Structure fields

block, CellName, cellData

DCL syntax EXPOSE(dpcmGetCellScanType):
 result(integer[*]: arrayIndices);

C syntax typedef struct {
 DCM_INTEGER_ARRAY *arrayIndices;
} T_GetCellScanType;

int dpcmGetCellScanType
 (const DCM_STD_STRUCT *std_struct,
 T_GetCellScanType *rtn);

This returns an array of the scan type property indices for a cell back to the application.

10.23.12.4.4 dpcmGetCellNonScanCell

Table 339 provides information on dpcmGetCellNonScanCell.

Table 339—dpcmGetCellNonScanCell

Function name dpcmGetCellNonScanCell

Arguments None

Result Cell or primitive name, Non-scan cell pins, Scan cell pins, Pin mapping array

Standard
Structure fields

block, CellName, cellData

DCL syntax typedef(nonScanCellStruct):
 result(string: cellOrPrimitiveIdentifier;
 string[*]: nonScanIdentifierPins,
 scanIdentifierPins;
 int[*]: pinMappingArray;
 nonScanCellStruct[*]: nextHierarchicalLevel);

EXPOSE(dpcmGetCellNonScanCell):
 result(nonScanCellStruct[*]: nonScanCellAttribute);

C syntax typedef enum DCM_PinMappingTypes {
 DCM_MAPS,
 DCM_DONT_CONNECT,
 DCM_DONT_CARE,
 DCM_TIE_LOW,
 DCM_TIE_HI
} DCM_PinMappingTypes;

typedef DCM_PinMappingTypes DCM_PinMappingTypes_ARRAY;

struct DCM_NonScanCellStruct;

typedef struct DCM_NonScanCellStruct
 *DCM_NonScanCellStruct_ARRAY;

typedef struct DCM_NonScanCellStruct {
 DCM_STRING cellOrPrimitiveIdentifier;
 DCM_STRING_ARRAY *nonScanIdentifierPins;
 DCM_STRING_ARRAY *scanIdentifierPins;
 DCM_PinMappingTypes_ARRAY *pinMappingArray;
 DCM_NonScanCellStruct_ARRAY *nextHierarchicalLevel;
} DCM_NonScanCellStruct;

383
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 383 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

typedef struct {
 DCM_NonScanCellStruct_ARRAY *nonScanCellStructArray;
} T_GetCellNonScanCellResults;

int dpcmGetCellNonScanCell
 (const DCM_STD_STRUCT *std_struct,
 T_GetCellNonScanCellResults *rtn);

This relates a scan cell and a component cell that does not support scan. More complex cells, which are
made from simpler library cells, can exist in many libraries. One such typical case is a scan flipflop can be
made from a non-scan flipflop and some control logic. This call identifies the non-scan flipflop used to
construct the scan flipflop.

A scan to non-scan pin map consists of three pieces of information carried in the scan pins’ array, non-scan
pins’ array, and pin mapping arrays. Each element in these arrays correspond to a single pin within either
cell.

All three arrays shall be the same length, as follows:

a) The ith element in the scan pins array shall be the pin name, which corresponds to the pin name
contained in the ith element in the non-scan pins array.

b) The ith element of the pin map indicates the pins' correlation.

c) If the ith element of the pin map array is not the value DCM_MAPS, then the ith element of either
the scan pins’ array or the non-scan pins’ array, which does not contain a valid pin, shall be
represented by the empty string.

An empty returned array or a non-zero return code shall indicate the NonScanCell property is not valid for
the requested cell.

DCM_NonScanCellStruct_ARRAY is a DCM_ARRAY of pointers to DCM_NonScanCellStruct. Both the
array and the structures whose addresses it contains are allocated by the DPCM. The application shall not
allocate nor free the array or these structures. If the application needs to retain the array itself or any of
these structures, it shall call dcm_lock_DCM_ARRAY or dcm_lock_DCM_STRUCT (for each structure to be
retained), respectively.

The results are the cell or primitive name, and a mapping of pin names that correspond between the scan
and non-scan member, as shown in the following list:

— Cell—he name of the non-scan cell used to construct this scan cell. The sub_qual and domain are
assumed to be the same as that of the scan cell.

— Non-scan pins—an array of pin names contained in the non-scan cell that have a corresponding pin
in the scan cell. If there is no corresponding match for a given pin, this specific entry shall be an
empty string.

— Scan pins—an array of pin names contained in the scan cell that have a corresponding pin in the
non-scan cell. If there is no corresponding match for a given pin, this specific entry shall be an
empty string.

— Pin mapping array (see below)—identifies the map type for each pin in the scan and non-scan
pins’ array.

Table 340 provides information on DCM_PinMappingTypes.

Table 340—DCM_PinMappingTypes

Enumerator Enumeration Description

384
Copyright © 2010 IEEE all rights reserved.

– 384 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

DCM_MAPS 0
A matching pin exists on both the scan and non-scan
cell.

DCM_DONT_CONNECT 1 The pins do not match and do not connect.

DCM_DONT_CARE 2
The pins do not match and whether they connect is
optional.

DCM_TIE_LOW 3
The pins do not match and the non-scan pin shall be
connected to ground.

DCM_TIE_HI 4
The pins do not match and the non-scan pin shall be
connected to a logical high.

10.23.12.4.5 appSetVectorOperations

Table 341 provides information on appSetVectorOperations.

385
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 385 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 341—appSetVectorOperations

Function name appSetVectorOperations

Arguments Array of vector operations

Result None

Standard
Structure fields

block, CellName, cellData, pathData (vectorTiming-arc-specific)

DCL syntax EXTERNAL(appSetVectorOperations):
 passed(int[*]: vectorOperations)
 result(int: ignore);

C syntax typedef enum DCM_VectorOperations {
 DCM_VectorOperationRead,
 DCM_VectorOperationWrite,
 DCM_VectorOperationReadModifyWrite,
 DCM_VectorOperationStart,
 DCM_VectorOperationEnd,
 DCM_VectorOperationRefresh,
 DCM_VectorOperationLoad,
 DCM_VectorOperationIddq,
 DCM_VectorOperationIllegal
} DCM_VectorOperations

typedef DCM_VectorOperations DCM_VECTOR_OPERATIONS_ARRAY;

typedef struct {
 DCM_VECTOR_OPERATIONS_ARRAY *vectorOperations;
} T_VectorOperations;

typedef struct {
 DCM_INTEGER ignore;
} T_Ignore;

int appSetVectorOperations
 (const DCM_STD_STRUCT *std_struct, T_Ignore *rtn,
 T_VectorOperations *vectorOperations);

This requests from the application store an array of vector operations (corresponding to values shown
below), which are associated with the vector specified by the segment last defined during vector timing
model elaboration.

Table 342 provides information on DCM_VectorOperations.

Table 342—DCM_VectorOperations

Enumerator Enumeration Description

DCM_VectorOperationRead 0 A read operation at one address.

DCM_VectorOperationWrite 1 A write operation at one address.

DCM_VectorOperationReadModifyWrite 2
A read followed by a write at the same
address.

DCM_VectorOperationStart
3

The first operation required in a particular
mode.

DCM_VectorOperationEnd 4
The last operation required in a particular
mode.

DCM_VectorOperationRefresh 5
An operation required to maintain the
contents of a dynamic element without
modification.

DCM_VectorOperationLoad 6 An operation for loading control registers.

386
Copyright © 2010 IEEE all rights reserved.

– 386 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Enumerator Enumeration Description

DCM_VectorOperationIddq 7
An operation for quiescent state supply
current measurement.

DCM_VectorOperationIllegal 8 The operation is illegal.

10.23.12.4.6 dpcmGetLevelShifter

Table 343 provides information on dpcmGetLevelShifter.

Table 343—dpcmGetLevelShifter

Function name dpcmGetLevelShifter

Arguments Driver voltage low, Driver voltage high, Receiver voltage low, Receiver voltage high,
Driver cell name, Receiver cell name

Result New driver cell name, New receiver cell name, Replace or add driver cell, Replace or
add receiver cell

Standard
Structure fields

None

DCL syntax EXPOSE(dpcmGetLevelShifter):
 passed(double: driverVol, driverVoh,
 receiverVol, receiverVoh;
 string: driverCell, receiverCell)
result(string: newDriverCell, newReceiverCell;
 int: driverCellAction, receiverCellAction);

C syntax enum DCM_LevelShifterAction {
 DCM_NO_CELL_CHANGE,
 DCM_REPLACE_CELL,
 DCM_ADD_CELL
};

typedef struct {
 DCM_STRING newDriverCell, newReceiverCell;
 DCM_LevelShifterAction driverCellAction,
 receiverCellAction;
} T_NewLevelShifter;

int dpcmGetLevelShifter(const DCM_STD_STRUCT *std_struct,
 T_NewLevelShifter *rtn,
 DCM_DOUBLE driverVol, DCM_DOUBLE driverVoh,
 DCM_DOUBLE receiverVol, DCM_DOUBLE receiverVoh,
 DCM_STRING driverCell, DCM_STRING receiverCell);

This function provides a way for the application to identify new cells to be used to convert signal levels
between two different regions of a design, commonly referred to as voltage islands, in which a given
supply voltage has different values. To begin this process, the application shall first obtain the voltage
thresholds for both the driving pin and receiving pins of a pair cells that share an interconnect network
between two voltage islands. The application shall then call dpcmGetLevelShifter, passing in the driving-
cell threshold, receiving-cell threshold, the driving-cell name, and the receiving-cell name.
DpcmGetLevelShifter shall return any new voltage-shifter cells that are needed and an indication of how
each of these cells is to be used.

The library shall determine whether level-shifting cell(s) are needed based on the thresholds provided. The
library shall identify up to two such cells to the application and provide indication as to whether these cells
shall replace the driver and/or receiver cells identified by the application or be inserted between them.

The library shall set newDriverCell, newReceiverCell, driverCellAction and receiverCellAction to
communicate this information to the application. driverCellAction and receiverCellAction shall both have
one of the following values (with associated actions):

387
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 387 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

— 0—no change to an existing cell nor the addition of a new cell

— 1—replace an existing cell with newDriverCell or newReceiverCell

— 2—add newDriverCell or newReceiverCell between the existing cells

10.23.13 APIs for attribute within a PIN object

APIs have been defined to access attributes attached to pin objects. The APIs return an enumeration value
of the attribute “attached” to the pin object.

10.23.13.1 dpcmGetPinTiePolarity

Table 344 provides information on dpcmGetPinTiePolarity.

Table 344—dpcmGetPinTiePolarity

Function name dpcmGetPinTiePolarity

Arguments Pin pointer

Result Index into an array of pin-polarity strings

Standard
Structure fields

block, CellName, cellData, pathData (pin-specific)

DCL syntax EXPOSE(dpcmGetPinTiePolarity):
 passed(pin: pinPointer)
 result(int: arrayIndex);

C syntax typedef struct {
 DCM_INTEGER arrayIndex;
} T_GetPinTiePolarity;

int dpcmGetPinTiePolarity
 (const DCM_STD_STRUCT *std_struct,
 T_GetPinTiePolarity *rtn, DCM_PIN pinPointer);

This returns the TiePolarity property for a pin back to the application. This index shall be used with the
array of pin-polarity strings returned by dpcmGetPinPolarityArray (see 10.23.12.1.8) for that same pin.

10.23.13.2 dpcmGetPinReadPolarity

Table 345 provides information on dpcmGetPinReadPolarity.

Table 345—dpcmGetPinReadPolarity

Function name dpcmGetPinReadPolarity

Arguments Pin pointer

Result Index into an array of pin-polarity strings

Standard
Structure fields

block, CellName, cellData, pathData (pin-specific)

DCL syntax EXPOSE(dpcmGetPinReadPolarity):
 passed(pin: pinPointer)
 result(int: arrayIndex);

C syntax typedef struct {
 DCM_INTEGER arrayIndex;
} T_GetPinReadPolarity;

int dpcmGetPinReadPolarity
 (const DCM_STD_STRUCT *std_struct,
 T_GetPinReadPolarity *rtn, DCM_PIN pinPointer);

388
Copyright © 2010 IEEE all rights reserved.

– 388 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

This returns the ReadPolarity property for a pin back to the application. This index shall be used with the
array of pin-polarity strings returned by dpcmGetPinPolarityArray (see 10.23.12.1.8) for that same pin.

10.23.13.3 dpcmGetPinWritePolarity

Table 346 provides information on dpcmGetPinWritePolarity.

Table 346—dpcmGetPinWritePolarity

Function name dpcmGetPinWritePolarity

Arguments Pin pointer

Result Index into an array of pin-polarity strings

Standard
Structure fields

block, CellName, cellData, pathData (pin-specific)

DCL syntax EXPOSE(dpcmGetPinWritePolarity):
 passed(pin: pinPointer)
 result(int: arrayIndex);

C syntax typedef struct {
 DCM_INTEGER arrayIndex;
} T_GetPinWritePolarity;

int dpcmGetPinWritePolarity
 (const DCM_STD_STRUCT *std_struct,
 T_GetPinWritePolarity *rtn, DCM_PIN pinPointer);

This returns the WritePolarity property for a pin back to the application. This index shall be used with the
array of pin-polarity strings returned by dpcmGetPinPolarityArray (see 10.23.12.1.8) for that same pin.

10.23.13.4 dpcmGetSimultaneousSwitchTimes

Table 347 provides information on dpcmGetSimultaneousSwitchTimes.

Table 347—dpcmGetSimultaneousSwitchTimes

Function name dpcmGetSimultaneousSwitchTimes

Arguments None

Result Array of skew limits

Standard
Structure fields

CellName, block, cellData (vectorTiming or vectorPower), pathData (vectorTiming or
vectorPower), calcMode

DCL syntax typedef(skewLimit):
 result(string[*]: listOfPins;
 double: skewLimit);

EXPOSE(dpcmGetSimultaneousSwitchTimes):
 result(skewLimit[*]: skewLimitArray);

C syntax typedef struct {
 DCM_STRING_ARRAY *listOfPins;
 DCM_DOUBLE skewLimit;
} DCM_SkewLimits;

typedef DCM_SkewLimits *DCM_SkewLimits_ARRAY;

typedef struct {
 DCM_SkewLimits_ARRAY *skewLimitsArray;
} T_SkewLimitsArray;

int dpcmGetSimultaneousSwitchTimes
 (const DCM_STD_STRUCT *std_struct,
 T_SkewLimitsArray *rtn);

389
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 389 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

This returns an array of skew limits associated with a vector expression graph back to the application.

Each skewLimit structure shall contain a list of pin names and a skewLimit value. If the separation in time
between transitions on two or more of these pins is less than or equal to the skewLimit, then those
transitions shall be considered simultaneous. An expression can have more than one set of skew limits.
Each skew limit is treated independently. Pins that are listed in more than one skew limit shall satisfy all
the skew limits where they are listed.

The skewLimit value shall be no smaller than the time resolution specified in dpcmGetTimeResolution
(see 10.18.8.10). If this function is not implemented or returns an error code, the application shall consider
two signal transitions to be simultaneous if the time difference between them is less than or equal to the
time resolution.

If a vector expression graph contains one or more simultaneous switching operators, simultaneous
switching shall be interpreted according to the definitions of these operators.

10.23.13.5 appGetSwitchingBits

Table 348 provides information on appGetSwitchingBits.

Table 348—appGetSwitchingBits

Function name appGetSwitchingBits

Arguments None

Result Number of switching bits

Standard
Structure fields

CellName, block, cellData (power), pathData (pin-specific)

DCL syntax EXTERNAL(appGetSwitchingBits):
 passed(string[*]: pinsToMonitorForSwitching)
 result(int: NumBits);

C syntax typedef struct {
 DCM_INTEGER numBits;
} T_appGetSwitchingBits;

int appGetSwitchingBits
 (const DCM_STD_STRUCT *std_struct,
 T_appGetSwitchingBits *rtn
 DCM_STRING_ARRAY *pinsToMonitorForSwitching);

This is defined in the power and vectorPower domains. appGetSwitchingBits requests the application
supply the number of bits switching on a bus during processing of a dpcmGetCellPowerWithState or a
dpcmGetCellVectorPower, respectively. The bus specification is different for power and vectorPower
domains.

For the power domain, the bus is specified by a set of pins whose names are contained in the
pinsToMonitorForSwitching array. The array needs to contain more than one entry for it to specify a bus.
The application shall assume the pins whose names are specified in the array constitute a bus and return the
number of the pins from the array that switched state during the applicable interval.

For the vectorPower domain, the pinsToMonitorForSwitching array shall contain the name of a single pin,
which specifies a bus pin. It is an error to include more than one name of a pin in the array. The application
shall return the number of bits of the specified bus which switched the state during the applicable interval.

10.23.13.6 dpcmGetFrequencyLimit

Table 349 provides information on dpcmGetFrequencyLimit.

390
Copyright © 2010 IEEE all rights reserved.

– 390 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 349—dpcmGetFrequencyLimit

Function name dpcmGetFrequencyLimit

Arguments None

Result Minimum frequency limit, Maximum frequency limit

Standard
Structure fields

CellName, block, cellData, pathData, slew->early, slew->late, calcMode

DCL syntax EXPOSE(dpcmGetFrequencyLimit):
 result(double: minFrequency, maxFrequency);

C syntax typedef struct {
 DCM_DOUBLE minFrequency;
 DCM_DOUBLE maxFrequency;
} T_GetFrequencyLimitResults;

int dpcmGetFrequencyLimit
 (const DCM_STD_STRUCT *std_struct,
 T_GetFrequencyLimitResults *rtn);

This returns the minimum and maximum frequency limit for a given path or pin back to the application.

This new call does not need to be used in conjunction with dpcmGetCellPowerInfo(). The vector where the
frequency limit applies is identified by pathData in the Standard Structure (see 10.23.13.15).

10.23.13.7 appGetPinFrequency

Table 350 provides information on appGetPinFrequency.

Table 350—appGetPinFrequency

Function name appGetPinFrequency

Arguments Pin pointer

Result Frequency value

Standard
Structure fields

CellName, block, cellData, pathData (pin-specific), calcMode

DCL syntax EXTERNAL(appGetPinFrequency):
 passed(pin: pinPointer)
 result(double: frequency);

C syntax typedef struct {
 DCM_DOUBLE frequency;
} T_GetPinFrequency_Results;

int appGetPinFrequency
 (const DCM_STD_STRUCT *std_struct,
 T_GetPinFrequency_Results *rtn, DCM_PIN pinPointer);

This permits the library to request the current frequency on a particular pin from the application. Frequency
is defined as the total number of rise-fall transition pairs per time unit.

10.23.13.8 dpcmGetBasePinFrequency

Table 351 provides information on dpcmGetBasePinFrequency.

Table 351—dpcmGetBasePinFrequency

Function name dpcmGetBasePinFrequency

Arguments Pin pointer

Result Frequency value

391
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 391 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Standard
Structure fields

calcMode

DCL syntax EXPOSE(dpcmGetBasePinFrequency):
 passed(pin: pinPointer)
 result(double: frequency);

C syntax typedef struct {
 DCM_DOUBLE frequency;
} T_GetBasePinFrequency_Results;

int dpcmGetBasePinFrequency
 (const DCM_STD_STRUCT *std_struct,
 T_GetBasePinFrequency_Results *rtn,
 DCM_PIN pinPointer);

This returns the default pin frequency value back to the application.

10.23.13.9 dpcmGetPinJitter

Table 352 provides information on dpcmGetPinJitter.

Table 352—dpcmGetPinJitter

Function name dpcmGetPinJitter

Arguments Pin pointer

Result Jitter value

Standard
Structure fields

CellName, block, cellData, pathData (pin-specific), slew->early, slew->late, sinkEdge,
calcMode

DCL syntax EXPOSE(dpcmGetPinJitter):
 passed(pin: pinPointer)
 result(double: jitter);

C syntax typedef struct {
 DCM_DOUBLE jitter;
} T_GetPinJitterResults;

int dpcmGetPinJitter (const DCM_STD_STRUCT *std_struct,
 T_GetPinJitterResults *rtn, DCM_PIN pinPointer);

This returns the jitter for a given pin back to the application. Pin jitter is the window of uncertainty
associated with a clock edge. The library shall determine what action to perform when the returned values
are outside the library’s min/max validity range, but the library shall not return a non-zero return code when
validity ranges are violated. The validity ranges shall not be exposed to the application.

10.23.13.10 dpcmGetInductanceLimit

Table 353 provides information on dpcmGetInductanceLimit.

Table 353—dpcmGetInductanceLimit

Function name dpcmGetInductanceLimit

Arguments Pin pointer

Result Minimum inductance limit, Maximum inductance limit

Standard
Structure fields

CellName, block, cellData, pathData (pin-specific), calcMode

DCL syntax EXPOSE(dpcmGetInductanceLimit):
 passed(pin: pinPointer)
 result(double: minInductance, maxInductance);

392
Copyright © 2010 IEEE all rights reserved.

– 392 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

C syntax typedef struct {
 DCM_DOUBLE minInductance;
 DCM_DOUBLE maxInductance;
} T_GetInductanceLimitResults;

int dpcmGetInductanceLimit
 (const DCM_STD_STRUCT *std_struct,
 T_GetInductanceLimitResults *rtn, DCM_PIN pinPointer);

This returns the minimum and maximum series inductance permitted on the pin back to the application.

10.23.13.11 dpcmGetOutputSourceResistances

Table 354 provides information on dpcmGetOutputSourceResistances.

Table 354—dpcmGetOutputSourceResistances

Function name dpcmGetOutputSourceResistances

Arguments None

Result Early edge resistance value, Late edge resistance value

Standard
Structure fields

CellName, fromPoint, toPoint, calcMode, slew.early, slew.late, block, sourceEdge,
sinkEdge, sourceMode, sinkMode, pathData (arc-specific), cellData

DCL syntax EXPOSE(dpcmGetOutputSourceResistances):
 result(double: earlyResistance, lateResistance);

C syntax typedef struct {
 DCM_DOUBLE earlyResistance;
 DCM_DOUBLE lateResistance;
} T_OutputSourceResistances;

int dpcmGetOutputSourceResistances
 (const DCM_STD_STRUCT *std_struct,
 T_OutputSourceResistances *rtn);

For a modeled arc, this returns two output source resistance values, an early value and a late value, back to
the application. These values are the equivalent linear resistances presented by a transitioning output pin at
the end of an arc. This function shall not be called for interconnect arcs.

10.23.13.12 appSetPull

Table 355 provides information on appSetPull.

393
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 393 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 355—appSetPull

Function name appSetPull

Arguments Pull type

Result None

Standard
Structure fields

CellName, block, calcMode, cellData, pathData (pin-specific)

DCL syntax EXTERNAL(appSetPull):
 passed(int: pull_type)
 result(int: ignore);

C syntax typedef enum DCM_PullType {
 DCM_PULL_UP,
 DCM_PULL_DOWN,
 DCM_PULL_BOTH
} DCM_PullType;

typedef struct {
 DCM_INTEGER ignore;
} T_Ignore;

int appSetPull(const DCM_STD_STRUCT *std_struct,
 T_Ignore *rtn, DCM_PullType pull_type);

The library calls appSetPull to register with the application that a pull up/down resistance combination
exists in series with a rail voltage. appSetPull passes the enumeration DCM_PullType, which is defined in
Table 356.

During model elaboration, the library shall call this function immediately after calling
newNetSinkPropogateSegment or newNetSourcePropogateSegment.

Table 356—DCM_PullType

Enumerator Enumeration Description

DCM_PULL_UP 0 Only pull-up exists.

DCM_PULL_DOWN 1 Only pull-down exists.

DCM_PULL_BOTH 2 Both pull-up and pull-down exist.

10.23.13.13 dpcmGetPull

Table 357 provides information on dpcmGetPull.

Table 357—dpcmGetPull

Function name dpcmGetPull

Arguments Pin pointer

Result Pull-up resistance value, Pull-down resistance, value, Index to rail 1, Index to rail 2

Standard
Structure fields

CellName, block, calcMode, cellData, pathData (pin-specific)

DCL syntax EXPOSE(dpcmGetPull):
 passed(pin: pinPointer)
 result(double: pullUpResistance, pullDownResistance;
 int: pullUpRailIndex, pullDownRailIndex);

394
Copyright © 2010 IEEE all rights reserved.

– 394 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

C syntax typedef struct {
 DCM_DOUBLE pullUpResistance;
 DCM_DOUBLE pullDownResistance;
 DCM_INTEGER pullUpRailIndex;
 DCM_INTEGER pullDownRailIndex;
} T_PullResults;

int dpcmGetPull(const DCM_STD_STRUCT *std_struct,
 T_PullResults *rtn, DCM_PIN pinPointer);

The application calls dpcmGetPull to determine the value of the pull up/down resistance in series with a rail
voltage associated with the pinPointer.

This call shall only be used after pull_type has been set by appSetPull for this pin. The value of pull_type
determines the corresponding valid resistances and rail indices. The values of invalid resistances and rail
indices shall be ignored.

If the library contains a cell with a tie down to ground, then dpcmGetRailVoltageArray() shall name ground
as a rail.

10.23.13.14 dpcmGetPinDriveStrength

Table 358 provides information on dpcmGetPinDriveStrength.

Table 358—dpcmGetPinDriveStrength

Function name dpcmGetPinDriveStrength

Arguments Pin pointer

Result Pin drive strength

Standard
Structure fields

CellName, block, cellData, pathData (pin-specific), calcMode

DCL syntax EXPOSE(dpcmGetPinDriveStrength):
 passed(pin: pinPointer)
 result(double: drive_strength);

C syntax typedef struct {
 DCM_DOUBLE drive_strength;
} T_GetPinDriveStrengthResults;

int dpcmGetPinDriveStrength
 (const DCM_STD_STRUCT *std_struct,
 T_GetPinDriveStrengthResults *rtn, DCM_PIN pinPointer);

This returns the relative pin drive strength back to the application. The drive strength has no units of
measurement; it is merely a ranking of a cell’s drive strength for a particular transition relative to others in
the library. The library shall determine what action to perform when the values returned are outside the
min/max validity range, but the library shall not return a non-zero return code when validity ranges are
violated. The validity ranges shall not be exposed to the application.

10.23.13.15 dpcmGetCellVectorPower

Table 359 provides information on dpcmGetCellVectorPower.

395
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 395 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 359—dpcmGetCellVectorPower

Function name dpcmGetCellVectorPower

Arguments None

Result Energy per rail, Static power per rail, Total energy, Total static power

Standard
Structure fields

CellName, block, cellData (power), pathData (for vectorPower), calcMode

DCL syntax EXPOSE(dpcmGetCellVectorPower):
 result(double[*]: energyPerRail, staticPowerPerRail;
 double: totalEnergy, totalStaticPower);

C syntax typedef struct {
 DCM_DOUBLE_ARRAY *energyPerRail;
 DCM_DOUBLE_ARRAY *staticPowerPerRail;
 DCM_DOUBLE totalEnergy;
 DCM_DOUBLE totalStaticPower;
} T_cellVectorPower;

int dpcmGetCellVectorPower
 (const DCM_STD_STRUCT *std_struct,
 T_cellVectorPower *rtn);

This returns the power associated with a cell for a given state vector back to the application.

The vector used in calculating the power is identified by pathData in the Standard Structure, as opposed to
groupIndex/conditionIndex in dpcmGetPowerWithState. The application is responsible for storing
pathData pointers for power vectors obtained during the execution of modelSearch and initializing the
pathData field of the Standard Structure with valid data before calling dpcmGetCellVectorPower. The
energy/power per rail is optional. If the energy and static power per rail are not computed, their
corresponding arrays shall be empty.

The application shall not call this API in conjunction with dpcmGetCellPowerInfo.

10.23.14 Connectivity

This subclause defines all the APIs for connectivity.

10.23.14.1 dpcmGetPinCellConnectivityArrays

Table 360 provides information on dpcmGetPinConnectivityArrays.

Table 360—dpcmGetPinConnectivityArrays

Function name dpcmGetPinConnectivityArrays

Arguments None

Result Cell level connectivity

Standard
Structure fields

block, CellName, cellData, pathData (pin-specific)

DCL syntax EXPOSE(dpcmGetPinCellConnectivityArrays):
 result(int[*]: dontConnectPinArray,
 mustConnectPinArray,mayConnectPinArray);

396
Copyright © 2010 IEEE all rights reserved.

– 396 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

C syntax typedef struct {
 DCM_INTEGER_ARRAY *dontConnectPinArray,
 *mustConnectPinArray,
 *mayConnectPinArray;
} T_GetPinCellConnectivityArrays;

int dpcmGetPinConnectivityArrays
 (const DCM_STD_STRUCT *std_struct,
 T_GetPinCellConnectivityArrays *rtn);

This returns arrays of pin indices, which have defined cell level connectivity rules relative to the specified
pin, back to the application. Pins within the same cell can appear in one of the three arrays, the connectivity
rule of which is applied with respect to the pin specified in the Standard Structure.

10.23.14.2 dpcmGetLibraryConnectClassArray

Table 361 provides information on dpcmGetLibraryConnectClassArray.

Table 361—dpcmGetLibraryConnectClassArray

Function name dpcmGetLibraryConnectClassArray

Arguments None

Result List of pins subject to connectivity rules

Standard
Structure fields

None

DCL syntax EXPOSE(dpcmGetLibraryConnectClassArray):
 result(string[*]: connectClassNames);

C syntax typedef struct {
 DCM_STRING_ARRAY *connectClassNames;
} T_GetLibraryConnectClassArray;

int dpcmGetLibraryConnectClassArray
 (const DCM_STD_STRUCT *std_struct,
 T_GetLibraryConnectClassArray *rtn);

This returns the list of all possible ConnectClass names contained within a library representing a
technology back to the application. Each ConnectClass represents a set of pins subjected to connectivity
rules. This API is called prior to calling dpcmGetLibraryConnectivityRules (see Table 362) in order to
obtain the set of connectivity rules based on connect class.

10.23.14.3 dpcmGetLibraryConnectivityRules

Table 362—dpcmGetLibraryConnectivityRules

Function name dpcmGetLibraryConnectivityRules

Arguments None

Result Connectivity object name and lists of indexing pin connection classes

Standard
Structure fields

None

DCL syntax EXPOSE(dpcmGetLibraryConnectivityRules):
 result(int[*,*]: connectivityRuleArray);

397
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 397 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

C syntax typedef enum DCM_ConnectRules {
 DCM_DontConnect,
 DCM_MustConnect,
 DCM_MayConnect
} DCM_ConnectRules;

typedef struct {
 DCM_ConnectRules *connectivityRuleArray;
} T_GetLibraryConnectivityRules;

int dpcmGetLibraryConnectivityRules
 (const DCM_STD_STRUCT *std_struct,
 T_GetLibraryConnectivityRules *rtn);

This returns a matrix of connectivity rules between all connect classes in the library back to the application.
This API is called after calling dpcmGetLibraryConnectClassArray (see 10.23.14.2) in order to obtain
the set of connectivity rules based on connect class.

The returned data is in the form of a two-dimensional square array of DCM_ConnectRules enumeration
values (integers) as defined in Table 363. The indices into this array correspond directly to the order of
connect class names as obtained in 10.23.14.2.

Table 363—DCM_ConnectRules

Enumerator Enumeration Description

DCM_DontConnect 0 Do not connect

DCM_MustConnect 1 Must/shall connect

DCM_MayConnect 2 Might connect

Once the connect class-based rule set is obtained, the application can determine interconnect level
connectivity by obtaining the library connect class array indices of the pins in question using
dpcmGetPinConnectClass (see 10.23.12.1.11). These indices index into the connectivity rules array,
resulting in the corresponding rule for these pins.

10.23.15 Control of timing arc existence and state

An application shall use the procedure described in the following list to obtain information on the
conditional behavior of a timing segment from the timing domain of a DPCM. The following steps shall be
completed as part of the application’s response to a call made by the DPCM to newPropagateSegment
(for a timing measurement) or newAltTestSegment (for a timing check):

a) The application calls dpcmGetExistenceGraph to obtain a graphical description or function graph
of the existence expression for the segment. In response, the DPCM shall call
newPropagateSegment and newTimingPin as needed to describe this expression. The application
shall use the resulting existence condition graph to determine, in part, whether the segment is
active for any instance of the timing model to which the segment belongs.

b) The application calls dpcmGetControlExistence to obtain the mode settings where the segment is
active and a textual representation of the segment’s existence expression. The latter is intended for
informational purposes only, and the application shall not use it to determine whether the segment
is active. The application shall use the mode settings so obtained to determine, in part, whether the
segment is active for any instance of the timing model to which the segment belongs.

c) The application calls dpcmGetTimingStateGraphs to obtain function graphs of the expressions
used to determine the timing state of the segment. In response, the DPCM shall call
newPropagateSegment and newTimingPin as needed to describe these expressions. There shall be
one state condition graph for each timing state of the segment other than the default state. The
application shall use the resulting graphs to determine the timing state of the segment for any

398
Copyright © 2010 IEEE all rights reserved.

– 398 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

instance of the timing model to which the segment belongs.

d) If textual representations of the timing state expressions are needed, the application can call
dpcmGetTimingStateStrings for each timing state of the segment. These descriptions are intended
for informational purposes only, and the application shall not use them to determine the timing
state of the segment.

10.23.15.1 dpcmGetExistenceGraph

Table 364 provides information on dpcmGetExistenceGraph.

Table 364—dpcmGetExistenceGraph

Function name dpcmGetExistenceGraph

Arguments None

Result Boolean value indicating whether the graph has been created

Standard
Structure fields

block, CellName, fromPoint, toPoint, pathData (timing-arc-specific), cellData (timing)

DCL syntax EXPOSE(dpcmGetExistenceGraph):
 result(int: graphCreated);

C syntax typedef struct {
 DCM_INTEGER graphCreated;
} T_graphCreated;

int dpcmGetExistenceGraph
 (const DCM_STD_STRUCT *std_struct, T_graphCreated *rtn);

This causes the library to supply a function graph of the existence condition for the segment identified by
the pathData field in the Standard Structure.

When this function is called, the library shall call newPropagateSegment and newTimingPin as needed to
represent the conditional expression that controls the existence of the specified segment. A pathData
pointer present in the Standard Structure when each of these functions is called shall be associated with
each behavior arc and node, respectively, so defined.

The PathDataBlock structures addressed by these pointers shall contain data used by the application to
determine the role each arc and node plays in the existence-condition function graph, as described in
10.23.3.1 . A zero-valued pathData pointer shall not be used when these functions are called in this context,
except for when newTimingPin is called to define the terminal node for the graph. For this node, and only
this node, the pathData pointer shall have a value of zero (0). The application shall identify this node as the
terminal node of the graph.

In DCL, an existence-condition function graph can be constructed using a FUNCTION clause as specified
in . For this purpose, such clauses shall be limited to the assignment form; use of a precedence expression
shall be illegal.

The modeling of the existence-condition function graph for a segment shall occur in a separate elaboration
sequence initiated by the application during the elaboration of the timing model for a cell and after
elaboration of the segment. The resulting graph shall be contained within the “timing” domain.

If, and only if, the expression represented by this graph evaluates at its terminal node to false, the segment
for which dpcmGetExistenceGraph was called shall be disabled by the application.

This evaluation shall be independent of whether the cell is in a steady state or transitioning into that state.
In particular, the pins at the ends of the segment shall have, for the purpose of this evaluation, the values
associated with the completion of the signal transitions that define, in part, the segment. For example, the

399
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 399 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

pins at the ends of a segment defined for rising edges at both pins shall be assigned values of logical one
during evaluation of this graph.

In all other respects, the semantics of this graph shall correspond to those of the “Group Condition
Language” (see 8.11). Specifically, the node operators shall be limited to those corresponding to entries in
Table 20 of that standard.

Until the call to dpcmGetExistenceGraph returns, all data related to the application shall be used for this
purpose only and shall not have any other effect on the application.

This function shall return an integer value indicating whether an existence condition function graph has
been created. If a function graph has been created, a value of 1 shall be returned. If there is no existence
condition for the specified segment, a value of 0 shall be returned. This shall not be considered to be an
error condition and the error code returned by the function shall be 0 in such cases. The existence control
string returned by the DPCM to the application via the interface function dpcmGetControlExistence is
supplied for informational purposes only and shall not be used by the application to determine the existence
of the segment. The application shall use the existence condition function graph returned by
dpcmGetExistenceGraph for this purpose.

10.23.15.2 dpcmGetTimingStateGraphs

Table 365 provides information on dpcmGetTimingStateGraphs.

Table 365—dpcmGetTimingStateGraphs

Function name dpcmGetTimingStateGraphs

Arguments None

Result Boolean value indicating whether the graphs have been created

Standard
Structure fields

block, CellName, fromPoint, toPoint, pathData (timing-arc-specific), cellData (timing)

DCL syntax EXPOSE(dpcmGetTimingStateGraphs):
 result(int: graphsCreated);

C syntax typedef struct {
 DCM_INTEGER graphsCreated;
} T_graphsCreated;

int dpcmGetTimingStateGraphs
 (const DCM_STD_STRUCT *std_struct, T_graphsCreated *rtn);

This causes the library to supply function graphs of the state condition expressions for the segment
identified by the pathData field in the Standard Structure.

When this function is called, the library shall call newPropagateSegment, newNetSinkPropagateSegments,
and newTimingPin as needed to represent the state-condition expressions for the specified segment. Each
such expression shall be represented by a separate state-condition function graph. A pathData pointer
present in the Standard Structure when each of these functions is called shall be associated with each
behavior arc and node, respectively, so defined.

The PathDataBlock structures addressed by these pointers shall contain data used by the application to
determine the role each arc and node plays in each state-condition function graph, as described in 10.23.3.1
. A zero-valued pathData pointer shall not be used when these functions are called in this context, except
when newTimingPin is called for the terminal node of each graph. For these nodes, and only these nodes,
the pathData pointer shall have a value of zero (0) when newTimingPin is called.

In DCL, a state-condition function graph can be constructed using a degenerative form of a VECTOR

400
Copyright © 2010 IEEE all rights reserved.

– 400 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

clause, as specified in .

The modeling of the state-condition function graphs for a timing segment shall occur in a separate
elaboration sequence initiated by the application during the elaboration of the timing model for a cell and
after elaboration of that segment. These graphs shall be contained within the “timing” domain, and each
graph shall terminate in a node having one of the following operators:

— DCM_PRIMITIVE_VECTOR_DELAY_TARGET

— DCM_PRIMITIVE_VECTOR_CHECK_TARGET

There shall be only one such node in each graph. Each terminal node shall be created using a two-step
process, as follows:

a) The library shall call newTimingPin with three arguments: a Standard Structure, a string
representing the node’s name, and a pointer to the location into which the application shall place a
newly created pin handle for the node. The pathData pointer in the Standard Structure argument
shall be zero (0). In response to this call, the application shall create a node with a name that is the
same as the string argument and return the new pin handle for this node as described previously.

b) The library shall then call newNetSinkPropagateSegments with the terminal node as the importPin
argument. The sinkPin and delayMatrix arguments shall both have values of zero (0). The
fromPoint and toPoint fields in the Standard Structure shall be the same as for the timing segment
for which the graph is being defined. When this call is made to the application, the pathData field
of the Standard Structure shall contain data for the terminal node, and the application shall
associate this pathData with the node created via the previous newTimingPin call.

The order in which these terminal nodes are presented to the application shall define an ordinal state space
for the segment for which dpcmGetTimingStateGraphs was called. To determine the timing state for this
segment, the application shall evaluate the state-condition function graphs in this order. The first graph that
evaluates to true at its terminal node shall determine the timing state of the segment.

The application shall then use the pathData pointer associated with the terminal node from that function
graph when obtaining the delay, slew, or bias values of the segment from the DPCM. This pathData pointer
shall be communicated to the application in the Standard Structure passed via the call to newTimingPin,
which is used to define the terminal node. If none of the function graphs evaluate to true, the application
shall use the pathData pointer supplied by the DPCM when the segment itself is defined. The DPCM shall
then return the default values associated with the segment.

This evaluation shall be independent of whether the cell is in a steady state or transitioning into that state.
In particular, the pins at the ends of the segment shall have, for the purpose of this evaluation, the values
associated with the completion of the signal transitions that define, in part, the segment. For example, the
pins at the ends of a segment defined for rising edges at both pins shall be assigned values of logical one
during evaluation of these function graphs.

In all other respects, the semantics of each function graph shall correspond to those of the “Group
Condition Language” (see 8.11). Specifically, the node operators shall be limited to those corresponding to
the entries in Table 20 of that standard.

This representation shall be contained within the timing domain. Until the call to
dpcmGetTimingStateGraphs returns, all data related to the application shall be used for this purpose only
and shall not have any other effect on the application.

The application shall obtain the condition expression string and an optional set of labels associated with
each state via the function dpcmGetTimingStateStrings. An application that distinguishes timing states
using their labels instead of their conditions shall use the pathData pointers described above to obtain the

401
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 401 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

segment values associated with each set of labels.

Segments having multiple states with the same condition expression, but different labels, are allowed.
These states shall be distinguished from each other only by applications that use state labels for that
purpose. An application that uses condition expressions to distinguish between states shall always
encounter the first of these states in the state space when using the evaluation procedure described
previously. The DPCM shall place the state that is appropriate for such applications before all others in the
state space that has the same condition expression.

This function shall return an integer value indicating whether any state condition function graphs have been
created. If function graphs have been created, a value of 1 shall be returned. If there are no timing states for
the specified segment, a value of 0 shall be returned. This shall not be considered to be an error condition,
and the function shall return an error code of 0 in such cases.

10.23.15.3 dpcmGetTimingStateStrings

Table 366 provides information on dpcmGetTimingStateStrings.

Table 366—dpcmGetTimingStateStrings

Function name dpcmGetTimingStateStrings

Arguments None

Result Condition expression, Labels for state timing

Standard
Structure fields

block, CellName, fromPoint, toPoint, pathData (state-condition-graph-specific),
cellData (timing)

DCL syntax EXPOSE(dpcmGetTimingStateStrings):
 result(string: conditionExpression;
 string[*]: stateLabels);

C syntax typedef struct {
 DCM_STRING conditionExpression;
 DCM_STRING_ARRAY *stateLabels;
} T_timingStateStrings;

int dpcmGetTimingStateStrings
 (const DCM_STD_STRUCT *std_struct,
 T_timingStateStrings *rtn);

This returns the condition expression and the labels for the timing state identified by the pathData field in
the Standard Structure back to the application. Each timing state shall be defined by a state condition
function graph provided by the DPCM to the application via a call to dpcmGetTimingStateGraphs. The
pathData field shall be obtained from the terminal node of the associated state condition function graph.

The condition-expression string is supplied by the DPCM to the application for informational purposes
only and shall not be used by the latter to determine the timing state of the propagation or test segment with
which it is associated. The application shall use the state condition function graphs returned by the function
dpcmGetTimingStateGraphs for this purpose.

The condition expression shall be a textual representation of the corresponding state condition function
graph. The syntax of the expression is described in 8.11 . The expression shall not be an empty string.

The state labels are optional textual identifiers associated with the corresponding timing state. These labels
shall be returned as an array of strings. All strings in this array shall have at least one character. A zero-
length array shall indicate the absence of any labels for the timing state.

402
Copyright © 2010 IEEE all rights reserved.

– 402 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.23.15.4 dpcmGetVectorEdgeNumbers

Table 367 provides information on dpcmGetVectorEdgeNumbers.

Table 367—dpcmGetVectorEdgeNumbers

Function name dpcmGetVectorEdgeNumbers

Arguments None

Result From pin edge, To pin edge

Standard
Structure fields

block, CellName, fromPoint, toPoint, pathData (timing-arc-specific), cellData (timing)

DCL syntax EXPOSE(dpcmGetVectorEdgeNumbers):
 result(int: fromEdgeNumber, toEdgeNumber);

C syntax typedef struct {
 DCM_INTEGER fromEdgeNumber;
 DCM_INTEGER toEdgeNumber;
} T_vectorEdgeNumbers;

int dpcmGetVectorEdgeNumbers
 (const DCM_STD_STRUCT *std_struct,
 T_vectorEdgeNumbers *rtn);

This returns numbers for the from-pin and to-pin edges in a timing vector for the segment identified by the
pathData field in the Standard Structure back to the application.

A timing vector can contain multiple edges of the signals associated with the from-pins and to-pins of the
related propagation or test segment. Each timing arc (described in the context of a timing vector) has an
unique from-edge and to-edge number, both of which are returned by this call. Each edge for each pin shall
be assigned a consecutive integer number, with the first edge for a pin being assigned the number 0 and
subsequent edges for that pin being numbered in ascending order. The edges for each pin shall be numbered
separately from those of the other pin. For each pin, the application shall determine when edge 0 occurs and
shall do so in a manner that preserves the relative temporal relationships between all segments and signal
edges in a cell whenever possible.

The application shall evaluate a propagation segment associated with a vector in response to the from-pin
edge identified using this function. This evaluation shall produce the to-pin edge also identified via the
function.

The application shall evaluate a propagation or a test segment associated with a vector in response to both
the from-pin and to-pin edges identified using this function.

10.23.16 Modeling cores

Table 368 through Table 370 are new interface functions intended to provide signal multiplication, division,
and generation characteristics of cell models to static timing applications. The information provided to the
application via these functions is an abstraction of complex functional behavior that, if presented directly,
would not be suitable for a static timing tool. Through the use of these data, such an application can
generate more accurate timing results than is otherwise possible. Many static timing applications allow
users to provide similar information as attributes to be added to timing arcs already present in cell timing
models. The presentation of such information as arc attributes makes use of these data straightforward for
applications that already support similar constructs.

403
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 403 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.23.16.1 appSetSignalDivision

Table 368—appSetSignalDivision

Function name appSetSignalDivision

Arguments First input/reference direction, Edge list/initial output edge direction, Repeat edge
interval

Result None

Standard
Structure fields

CellName, block, fromPoint, toPoint, pathData (timing-arc-specific), cellData (timing)

DCL syntax EXTERNAL(appSetSignalDivision):
 passed(int: inputEdgeZero;
 int[*]: inputEdgeNumbers;
 int: initialOutputEdge, repeatEdgeInterval)
 result(int: ignore);

C syntax typedef struct {
 DCM_INTEGER ignore;
} T_Ignore;

int appSetSignalDivision
 (const DCM_STD_STRUCT *std_struct, T_Ignore *rtn,
 DCM_EdgeTypes inputEdgeZero,
 DCM_INTEGER_ARRAY *inputEdgeNumbers,
 DCM_EdgeTypes initialOutputEdge,
 DCM_INTEGER repeatEdgeInterval);

This sends data describing input signal sampling or output signal rate division characteristics for the
segment last defined during timing model elaboration or for which calculation is currently being performed.

During model elaboration, the library shall call this function immediately after calling
newPropagateSegment or newAltTestSegment to define a timing segment. The specified
characteristics shall apply to the timing segment so defined.

During an application call to the library calculation functions delay, slew, or check, these characteristics
shall apply to the segment for which that calculation function is being called.

These data shall be expressed in terms of edges of the input or reference signal to which the segment is
sensitive. Each such edge shall be assigned a consecutive integer number, with the first edge being assigned
the number 0 and subsequent edges being numbered in ascending order. The application shall determine
when edge 0 occurs and shall do so in a manner that preserves the relative temporal relationships between
all segments in a cell whenever possible.

Without division characteristic data, a timing segment shall be evaluated by the application in response to
all of these edges. However, a segment for which such data are present shall be evaluated in a manner
prescribed via these data.

The division characteristics for a segment consist of four parameters.

a) The first parameter is the edge direction for edge 0 of the input or reference signal. This parameter
is of type DCM_EdgeTypes and shall have one of the following values:

— DCM_RisingEdge

— DCM_FallingEdge

If the segment is sensitive to only one edge direction of the input or reference signal, this
parameter shall be the same as that edge direction.

404
Copyright © 2010 IEEE all rights reserved.

– 404 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

b) The second parameter, the edge list, is a list of numbers of the edges of the input or reference
signal for which the segment shall be evaluated. While the first edge number in the list need not be
0, nor do these numbers need be contiguous, they shall appear in ascending order.

c) The third parameter is the edge direction for the signal transition at the output of a propagation
segment which is produced by the first edge in the edge list. This parameter is of type
DCM_EdgeTypes and shall have one of the following values:

— DCM_RisingEdge

— DCM_FallingEdge

— DCM_BothEdges

If DCM_RisingEdge is specified, the first output edge shall be a rising edge. If DCM_FallingEdge
is specified, the first output edge shall be a falling edge. If DCM_BothEdges is specified, the first
output edge can be either rising or falling.

Each subsequent output edge shall be of opposite polarity from the previous one (i.e., each rising
edge shall be followed by a falling edge and each falling edge shall be followed by a rising edge).
Each input edge in the input edge list shall produce an output edge.

This parameter shall be ignored if the segment is a test segment.

d) The fourth parameter is the number of input edges which, together with edge 0, defines an
interval for use in repetition of the pattern described via the first three parameters. If greater than 0,
this parameter shall be greater than the last edge number specified in the edge list. The application
shall then consider the pattern to repeat indefinitely, both before and after the original interval.

If the third parameter is DCM_RisingEdge or DCM_FallingEdge (and the segment is not a test segment),
the edge list shall have an even number of entries.

If the fourth parameter is 0, the pattern shall not be repeated and the edge list can have any number of
entries.

The application shall apply these characteristics to a segment as defined as a unit via a call by the DPCM to
newPropagateSegment or newAltTestSegment. These characteristics shall not be applied separately to
individual timing arcs that the application can generate in response to such a call. In particular, the
application shall consider the segment characteristics to be those described in the delay or test matrix
referenced by that call.

If the specified segment has division characteristics, it shall not also have multiplication nor signal
generation characteristics.

10.23.16.2 appSetSignalMultiplication

Table 369—appSetSignalMultiplication

Function name appSetSignalMultiplication

Arguments Multiplication factor, Initial output edge, Duty cycle

Result None

Standard
Structure fields

block, CellName, fromPoint, toPoint, pathData (timing-arc-specific), cellData (timing)

DCL syntax EXTERNAL(appSetSignalMultiplication):
 passed(int: multFactor, initialOutputEdge;
 float: dutyCycle)
 result(int: ignore);

405
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 405 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

C syntax typedef struct {
 DCM_INTEGER ignore;
} T_Ignore;

int appSetSignalMultiplication
 (const DCM_STD_STRUCT *std_struct, T_Ignore *rtn,
 DCM_INTEGER multFactor,
 DCM_EdgeTypes initialOutputEdge,
 DCM_FLOAT dutyCycle);

This sends data describing output signal rate multiplication characteristics for the segment last defined
during timing model elaboration or for which calculation is currently being performed.

During model elaboration, the library shall call this function immediately after calling
newPropagateSegment to define a timing segment. The specified characteristics shall apply to the timing
segment so defined.

During an application call to the library calculation functions delay or slew, these characteristics shall apply
to the segment for which that calculation function is being called.

Without multiplication characteristic data, a propagation segment shall be considered to produce one edge
transition at its output for each edge transition to which the segment is sensitive at its input. However, a
segment for which such data are present shall be evaluated in a manner prescribed via these data.

The multiplication characteristics for a segment consist of three parameters. The description of these
parameters is in ideal terms and does not include the effects of the segment’s delay characteristics. Actual
transition times for segment output edges shall be offset from their ideal times by the segment’s delays and
their slews shall be determined from the segment’s propagation characteristics. The three parameters are as
follows:

a) The first parameter, the multiplication factor, is a positive integer that specifies the number of
edges at the segment output produced by each edge to which the segment is sensitive at its input.
This parameter shall have a minimum value of 2.

b) The second parameter is the edge direction for the first signal transition at the output which is
produced by each edge at the input. This parameter is of type DCM_EdgeTypes and shall have one
of the following values:

— DCM_RisingEdge

— DCM_FallingEdge

— DCM_BothEdges

If DCM_RisingEdge or DCM_FallingEdge is specified, the segment shall produce an edge of the
opposite polarity for each consecutive output transition. The multiplication parameter shall have an
even value and each pair of output edges shall form a cycle of the output waveform. The interval
of time between one input edge and the next shall be equally divided among the cycles that occur
between them, thus defining their period. This shall be done independently for each pair of input
edges. The duty cycle of this waveform shall be defined by the third parameter, as described in
item c).

If DCM_BothEdges is specified, the output shall be considered to be capable of producing edges
of either polarity for each input transition. In this case, the output edges shall be equally spaced in
the interval of time between one input edge and the next. This shall be done independently for
each pair of input edges.

c) The third parameter is a positive floating point value that presents the duty cycle of the
segment’s output waveform if the second parameter does not have a value of DCM_BothEdges.
This third parameter represents the fraction of each cycle during which the output maintains its

406
Copyright © 2010 IEEE all rights reserved.

– 406 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

initial value and shall be less than 1.0. If the second parameter has the value DCM_BothEdges, this
third parameter shall be ignored.

The application shall apply these characteristics to a segment as defined as a unit via a call by the DPCM to
newPropagateSegment. These characteristics shall not be applied separately to individual timing arcs that
the application can generate in response to such a call. In particular, the application shall consider the
segment characteristics to be those described in the delay matrix referenced by that call.

If the specified segment has multiplication characteristics, it shall not also have division nor signal
generation characteristics.

10.23.16.3 appSetSignalGeneration

Table 370—appSetSignalGeneration

Function name appSetSignalGeneration

Arguments List of edge times, First input direction, Period

Result None

Standard
Structure fields

block, CellName, fromPoint, toPoint, pathData (timing-arc-specific), cellData (timing)

DCL syntax EXTERNAL(appSetSignalGeneration):
 passed(float[*]: inputEdgeTimes;
 int: initialInputEdge;
 float: period)
 result(int: ignore);

C syntax typedef struct {
 DCM_INTEGER ignore;
} T_Ignore;

int appSetSignalGeneration
 (const DCM_STD_STRUCT *std_struct, T_Ignore *rtn,
 DCM_FLOAT_ARRAY *inputEdgeTimes,
 DCM_EdgeTypes initialInputEdge,
 DCM_FLOAT period);

This sends data describing input signal generation characteristics for the segment last defined during timing
model elaboration or for which calculation is currently being performed.

During model elaboration, the library shall call this function immediately after calling
newPropagateSegment to define a timing segment. The specified characteristics shall apply to the timing
segment so defined.

During an application call to the library calculation functions delay or slew, these characteristics shall apply
to the segment for which that calculation function is being called.

These data shall describe a signal waveform for the input of the segment relative to time 0. The application
shall determine when time 0 occurs and shall do so in a manner that preserves the relative temporal
relationships between all segments in a cell whenever possible.

The signal generation characteristics for a segment consist of three parameters. Transition times and slews
for segment output edges shall be determined from the input waveform described via these parameters and
from the segment’s propagation characteristics.

a) The first parameter, the edge time list, is a list of times at which transitions occur at the input of the
segment. These shall be non-negative floating point numbers and shall be specified in ascending
order.

b) The second parameter is the edge direction for the first signal transition at the input. This

407
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 407 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

parameter is of type DCM_EdgeTypes and shall have one of the following values:

— DCM_RisingEdge

— DCM_FallingEdge

— DCM_BothEdges

If DCM_RisingEdge or DCM_FallingEdge is specified, the segment input shall be considered to
have an edge of the opposite polarity for each consecutive transition. If DCM_BothEdges is
specified, the input shall be considered to have edges of either polarity for each time in the edge
time list and any number of entries can be included in the latter.

c) The third parameter is a non-negative floating point value that presents the period of the
segment’s input waveform. If this parameter has a positive value, it shall be greater than the last
time in the edge time list. If the second parameter is DCM_RisingEdge or DCM_FallingEdge, the
edge time list shall have an even number of entries.

If the third parameter has a value of 0.0, the input waveform shall be considered to have
transitionsat the times specified in the edge time list only. In this case, the latter can have any
number of entries.

The application shall apply these characteristics to a segment as defined as a unit via a call by the DPCM to
newPropagateSegment. These characteristics shall not be applied separately to individual timing arcs that
the application can generate in response to such a call. In particular, the application shall consider the
segment characteristics to be those described in the delay matrix referenced by that call.

If the specified segment has signal generation characteristics, it shall not also have multiplication or
division characteristics.

10.23.17 Default pin slews and interface version calls

This subclause defines the default pin slews call and the interface version and sequencing call.

10.23.17.1 dpcmGetDefPinSlews

Table 371 provides information on dpcmGetDefPinSlews.

Table 371—dpcmGetDefPinSlews

Function name dpcmGetDefPinSlews

Arguments Pin pointer

Result Default rise pin slew, Default fall pin slew

Standard
Structure fields

block, CellName, cellData (timing), pathData (timing-pin-specific), calcMode

DCL syntax EXPOSE(dpcmGetDefPinSlews):
 passed(pin: pinPointer)
 result(double: defRisePinSlew, defFallPinSlew);

C syntax typedef struct {
 DCM_DOUBLE defRisePinSlew;
 DCM_DOUBLE defFallPinSlew;
} T_defPinSlews;

int dpcmGetDefPinSlews(const DCM_STD_STRUCT *std_struct,
 T_defPinSlews *rtn, DCM_PIN pinPointer);

This returns the default slews for the pin identified by the passed pinPointer argument of the cell in the
Standard Structure back to the application.

408
Copyright © 2010 IEEE all rights reserved.

– 408 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.23.17.2 appGetInterfaceVersion

Table 372 provides information on dpcmGetInterfaceVersion.

Table 372—appGetInterfaceVersion

Function name appGetInterfaceVersion

Arguments None

Result Array of supported versions

Standard
Structure fields

None

DCL syntax EXTERNAL(appGetInterfaceVersion):
 result(string [*]: array_of_supported_versions);

C syntax typedef struct {
 DCM_STRING_ARRAY *interfaceVersion;
} T_Ver;

int appGetInterfaceVersion
 (const DCM_STD_STRUCT *std_struct, T_Ver *rtn);

This returns an array of strings, identifying the versions of the IEEE 1481 interface which the application
supports, back to the library.

The valid versions for IEEE 1481 dpcmGetVersionInfo() and appGetInterfaceVersionInfo() are shown in
Table 373.

Table 373—Valid interface version strings

''IEEE 1481-1998''

''IEEE 1481-1999 V1.0''

''IEEE 1481-2003 V2.0''

An example of the call sequence is:

a) The application calls dpcmGetVersionInfo().

b) The DPCM calls appGetInterfaceVersion().

c) The application returns the supported interface versions.

d) The DPCM selects one of the application supported versions.

e) The DPCM returns the selected version back to the initial dpcmGetVersionInfo() call.

10.23.18 API to access library required resources

The library can require the application set the generic resources it needs (e.g., the type of application where
it is interfaced). This is accomplished with two resource-specific APIs. The new APIs allow the application
to query the library for a valid list of resources and set the value of a resource within the library.

10.23.18.1 Expose APIs for resources

A resource is an arbitrarily named variable that can contain an arbitrary value. This value shall be
maintained as a string. Each resource description structure contains information about the resource’s type,
the valid ranges, a description of each resource, and a description of each possible resource value. The
application can use the resource description structure to set up a user query for the value of a resource.

409
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 409 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

The application can use EXPOSE APIs to obtain the resource name and description, the possible values for
the resource, a description for each value, the default value, and the type for the value.

10.23.18.1.1 dpcmSetResource

Table 374 provides information on dpcmSetResource.

Table 374—dpcmSetResource

Function name dpcmSetResource

Arguments Resource name, Resource value

Result Old resource value

Standard
Structure fields

None

DCL syntax EXPOSE(dpcmSetResource):
 passed(string: resourceName, resourceValue)
 result(string: oldResourceValue);

C syntax typedef struct {
 STRING oldResourceValue;
} T_OldResource;

int dpcmSetResource(const DCM_STD_STRUCT *std_struct,
 T_OldResource *rtn,
 DCM_STRING resourceName,
 DCM_STRING resourceValue);

This allows the application to set the value of a resource. The resourceValue shall follow the resource
description for the named resource. The resourceValue responses are described by the resourceTypes (see
Table 376).

10.23.18.1.2 dpcmGetAllResources

Table 375 provides information on dpcmGetAllResources.

Table 375—dpcmGetAllResources

Function name dpcmGetAllResources

Arguments None

Result Resource data

Standard
Structure fields

None

DCL syntax typedef(resource_data):
 result(string: resourceName, resourceDescription;
 int: resourceType;
 string[*]: resourceValues,
 resourceValueDescriptions;
 string: defaultResourceValue);

EXPOSE(dpcmGetAllResources):
 result(resource_data[*]: resourceData);

C syntax typedef enum DCM_ResourceTypes {
 DCM_ResourceType_arbitary_number,
 DCM_ResourceType_arbitary_string,
 DCM_ResourceType_enumerated_number,
 DCM_ResourceType_enumerated_string,
 DCM_ResourceType_number_range,
 DCM_ResourceType_character_range
} DCM_ResourceTypes;

410
Copyright © 2010 IEEE all rights reserved.

– 410 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

typedef struct {
 DCM_STRING resourceName;
 DCM_STRING resourceDescription;
 DCM_ResourceTypes resourceType;
 DCM_STRING_ARRAY *resourceValues;
 DCM_STRING_ARRAY *resourceValueDescriptions;
 DCM_STRING defaultResourceValue;
} DCM_ResourceData;

typedef DCM_ResourceData *DCM_ResourceData_ARRAY;

typedef struct {
 DCM_ResourceData_ARRAY *resourceData;
} T_AllResources;

int dpcmGetAllResources(const DCM_STD_STRUCT *std_struct,
 T_AllResources *rtn);

This allows the application to query the library for all resources. The array of structures returned by this
call contains the set of resource description structures. Each resource description (DCM_ResourceData)
contains the resource’s name, a descriptive string describing the resource, an enumeration identifying the
type of resource, and a matching pair of arrays: one containing the resource values and the other a
description of each resource value.

10.23.19 Resource types

The resource types are defined by the enumeration name DCM_ResourceTypes, as shown in Table 376.
They are used to indicate how the application is to treat each type of resource.

Table 376—DCM_ResourceTypes

Enumerator
(enumeration)

Description

DCM_ResourceType_arbitary_number
(0)

In response to the library query
appGetResource of a named resource of this type, the
application shall return a string representation of any
arbitrary number. The array of resourceValues and
resourceValueDescriptions shall be empty.

DCM_ResourceType_arbitary_string
(1)

In response to the library query
appGetResource of a named resource of this type, the
application shall return a string representation of any
arbitrary string. The array of resourceValues and
resourceValueDescriptions shall be empty.

DCM_ResourceType_enumerated_number
(2)

In response to the library query
appGetResource of a named resource of this type, the
application shall return a string representing one of the
elements contained in the resourceValue array. The
resourceValue array shall contain an element for each
possible response by the application. In this type of
resource, the resourceValueDescription array shall
contain a matching descriptive string for each possible
value.

DCM_ResourceType_enumerated_string
(3)

In response to the library query appGetResource of a
named resource of this type, the application shall return a
string contained as one of the elements contained in the
resourceValue array. The resourceValue array shall
contain an element for each possible response by the

411
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 411 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Enumerator
(enumeration)

Description

application. In this type of resource, the
resourceValueDescription array shall contain a matching
descriptive string for each possible value.

DCM_ResourceType_number_range
(4)

In response to the library query
appGetResource of a named resource of this type, the
application shall return a string representing a number
that is within the number range (inclusive) specified by
one of the elements contained in the resourceValue array.
The resourceValue array shall contain an element for
each possible response by the application. In this type of
resource, the resourceValueDescription array shall
contain a matching descriptive string for each possible
value. The number ranges contained in the resourceValue
arrange shall consist of string representing two numbers
separated by a hyphen (-).

DCM_ResourceType_character_range
(5)

In response to the library query
appGetResource of a named resource of this type, the
application shall return a string representing a single
character that is within the character range (inclusive)
specified by one of the elements contained in the
resourceValue array. The resourceValue array shall
contain an element for each possible response by the
application. In this type of resource, the
resourceValueDescription array shall contain a matching
descriptive string for each possible value. The character
ranges contained in the resourceValue arrange shall
consist of a string representing two single characters
separated by a hyphen (-).

10.23.20 Library extensions for phase locked loop processing

PLLs are specialized circuits that have several purposes. Typical usage of PLL includes chip-to-chip skew
control, frequency multiplication and frequency division. There also needs to be a method for describing
the characteristics of a PLL to enable static timing analysis.

To do this, special timing arcs for phase locked loops are introduced. Although the PLL typically has no
physical propagation path from the input to the output, there is a time relationship between these two
signals. This time relationship can be represented as an arc from the input to the output. The delay placed
on the arc traversing from input to output is a function of the feedback delay (the delay from the output to
the feedback pin). The arc representing the input to output timing relationship can be easily understood by
static timing tools.

The input to output delay of this arc causes the static timer to adjust the arrival times so they correspond to
the actual arrival times that would have occurred on the implemented circuit. To make this possible, the
DPCM calls appGetExternalDelayByName or appGetExternalDelayByPin to determine the delay from the
PLL’s output to the feedback input.

In addition to simply knowing the delays from the oscillator output to the feedback, there are other
properties of the feedback that need to be known. These include the general condition of the feedback path,
such as whether there is signal reconvergence or a single edge generates more than one edge at the
reference. In addition, some PLL feed back configurations can be used to multiply or divide the input
frequency.

412
Copyright © 2010 IEEE all rights reserved.

– 412 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

These conditions are returned by the application when the library makes calls requesting such information
(see 10.23.21).

10.23.21 API definitions for external conditions

The following set of calls in Table 377 request information regarding aspects of the external environment
that affect delay calculation for a particular cell instance.

10.23.21.1 appGetExternalDelayByPin

Table 377—appGetExternalDelayByPin

Function name appGetExternalDelayByPin

Arguments Output pin pointer, Input pin name, Edge direction at output (enum), Edge direction at
input (enum)

Result Early external delay, Late external delay, Multi-arc, Multi-edge path

Standard
Structure fields

block, CellName, calcMode, sinkEdge

DCL syntax EXTERNAL(appGetExternalDelayByPin):
 passed(pin: outputPinPointer;
 string: inputPinName;
 int: edgeDirectionAtOutput,
 edgeDirectionAtInput)
 result(double: earlyExternalDelay, lateExternalDelay;
 int: multiArcMultiEdgePath);

C syntax typedef struct {
 DCM_DOUBLE earlyExternalDelay, lateExternalDelay;
 DCM_INTEGER multiArcMultiEdgePath;
} T_ExternalDelay;

int appGetExternalDelayByPin
 (const DCM_STD_STRUCT *std_struct,
 T_ExternalDelay *rtn,
 DCM_PIN outputPinPointer,
 DCM_STRING inputPinName,
 DCM_EdgeTypes edgeDirectionAtOutput,
 DCM_EdgeTypes edgeDirectionAtInput);

This returns the total delay and path status, from an output pin to an input pin, back to the library.

— Passed parameter definitions include the following:

— outputPinPointer: The point where the delay is to start, typically the output pin of the
cell.

— inputPinName: The name of the pin on the same cell where the delay is to be measured,
typically the reference pin of the cell.

— edgeDirectionAtOutput: The edge at the output used for delay calculation purposes.

— edgeDirectionAtInput: The output delay starting at the output edge is measured to this
edge at the input pin.

NOTE—If the application can not compute the delay using the edges supplied, it shall return an error to the
library.

— Returned value definitions include the following:

— earlyExternalDelay: The time, in library units, of the shortest time period the output pin
edge takes to propagate back to the input pin.

413
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 413 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

— lateExternalDelay: the time, in library units, of the longest time period the output pin
edge takes to propagate back to the input pin.

— multiArcMultiEdgePath: an OR ed bit field containing the output to input test bits and the
multiplication or division factor. The multiplication or division factor occupies the high
order two bytes and the test bits occupy the low order two bytes, as shown below.

Table 378 provides information on multiArcMultiEdgePath.

Table 378—Description of multiArcMultiEdgePath (XXXX are do not care bits)

multiArc
MuliEdgePath

value
#define name Description

0xXXXX0000 DCM_EXTERNAL_SIMPLE_PATH
The external path includes none of
the conditions described for the other
values below.

0xXXXX00001 DCM_EXTERNAL_RECONVERGENCE

The cone of logic starting at the
output fans out to multiple paths, at
least two of which reconverge and
then lead to the input.

0xXXXX0002 DCM_EXTERNAL_DIV_MULT
The external path includes frequency
division or multiplication.

0xXXXX0004 DCM_EXTERNAL_INJECTED_SIGNAL
The external path is affected by one
or more logic signals other than that
from the output.

0xXXXX0008 DCM_EXTERNAL_NO_PATH No path.

0xXXXX0010 DCM_EXTERNAL_NO_EDGE No edge.

0xIJKL00020 DCM_EXTERNAL_FREQUENCY_DIVISION
An external frequency division value
of 0xIJKL.

0xIJKL0040
DCM_EXTERNAL_FREQUENCY_
MULTIPLICATION

An external frequency multiplication
value of 0xIJKL.

The library shall call appSetSignalDivision (see 10.23.16.1) or appSetSignalMultiplication (see 10.23.16.2
) if the library has determined a change in signal rate division or multiplication characteristics, respectively,
has occurred along the path originally supplied by the application in the interface function call that lead the
library to call appGetExternalDelayByPin.

10.23.21.2 appGetExternalDelayByName

Table 379 provides information on appGetExternalDelayByName.

414
Copyright © 2010 IEEE all rights reserved.

– 414 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 379—appGetExternalDelayByName

Function name appGetExternalDelayByName

Arguments Output pin name, Input pin name, Edge direction at output (enum), Edge direction at
input (enum)

Result Early external delay, Late external delay, Multi-arc, Multi-edge path

Standard
Structure fields

block, CellName, calcMode, sinkEdge

DCL syntax EXTERNAL(appGetExternalDelayByName):
 passed(string: outputPinName;
 string: inputPinName;
 int: edgeDirectionAtOutput,
 edgeDirectionAtInput)
 result(double: earlyExternalDelay, lateExternalDelay;
 int: multiArcMultiEdgePath);

C syntax typedef struct {
 DCM_DOUBLE earlyExternalDelay, lateExternalDelay;
 DCM_INTEGER multiArcMultiEdgePath;
} T_ExternalDelay;

int appGetExternalDelayByName
 (const DCM_STD_STRUCT *std_struct,
 T_ExternalDelay *rtn,
 DCM_STRING outputPinName,
 DCM_STRING inputPinName,
 DCM_EdgeTypes edgeDirectionAtOutput,
 DCM_EdgeTypes edgeDirectionAtInput);

This returns the total delay and path status, from an output pin to an input pin, back to the library.

Passed parameter definitions include the following:

— outputPinName: The name of the pin where the delay is to start, typically the output pin of the
cell.

— inputPinName: The name of the pin on the same cell where the delay is to be measured, typically
the reference pin of the cell.

— edgeDirectionAtOutput: The edge at the output used for delay calculation purposes.

— edgeDirectionAtInput: The output delay starting at the output edge is measured to this edge at the
input pin.

NOTE—If the application can not compute the delay using the edges supplied, it shall return an error to the library.

Returned value definitions include the following:

— earlyExternalDelay: The time, in library units, of the shortest time period the output pin edge
takes to propagate back to the input pin.

— lateExternalDelay: The time, in library units, of the longest time period the output pin edge takes
to propagate back to the input pin.

— multiArcMultiEdgePath: An OR ed bit field containing the output to input test bits and the
multiplication or division factor. The multiplication or division factor occupies the high order two
bytes and the test bits occupy the low order two bytes, as shown in Table 378.

The library shall call appSetSignalDivision (see 10.23.16.1) or appSetSignalMultiplication (see 10.23.16.2
) if the library has determined a change in signal rate division or multiplication characteristics, respectively,
has occurred along the path originally supplied by the application in the interface function call that lead the

415
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 415 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

library to call appGetExternalDelayByName.

10.23.21.3 appGetLogicLevelByName

Table 380 provides information on appGetLogicLevelByName.

Table 380—appGetLogicLevelByName

Function name appGetLogicLevelByName

Arguments Pin name

Result Logic level enumeration

Standard
Structure fields

block, CellName

DCL syntax EXTERNAL(appGetLogicLevelByName):
 passed(string: pinName)
 result(int: level);

C syntax typedef enum DCM_LogicLevel {
 DCM_LogicUnknown,
 DCM_LogicZero,
 DCM_LogicOne
} DCM_LogicLevel;

typedef struct {
 DCM_LogicLevel level;
} T_logicLevel;

int appGetLogicLevelByName
 (const DCM_STD_STRUCT *std_struct, T_logicLevel *rtn,
 DCM_STRING pinName);

Some cells in a library, such as PLLs, typically have control lines with fixed, yet programmable, voltage
levels. The library needs to query the state of such pins from the application. appGetLogicLevelByName
returns the logic level on the pin specified by the pin name back to the library. The logic level can have
three enumerated possible states: logical one, logical zero, or unknown, as shown in Table 381.

Table 381—DCM_LogicLevel

Enumerator Enumeration Description

DCM_LogicUnknown -1 Logic level unknown

DCM_LogicZero 0 Logic zero

DCM_LogicOne 1 Logic one

10.23.21.4 appGetLogicLevelByPin

Table 382 provides information on appGetLogicLevelByPin.

416
Copyright © 2010 IEEE all rights reserved.

– 416 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 382—appGetLogicLevelByPin

Function name appGetLogicLevelByPin

Arguments Pin pointer

Result Logic level enumeration

Standard
Structure fields

block, CellName

DCL syntax EXTERNAL(appGetLogicLevelByPin):
 passed(pin: pinPointer)
 result(int: level);

C syntax typedef enum DCM_LogicLevel {
 DCM_LogicUnknown,
 DCM_LogicZero,
 DCM_LogicOne
} DCM_LogicLevel;

typedef struct {
 DCM_LogicLevel level;
} T_logicLevel;

int appGetLogicLevelByPin
 (const DCM_STD_STRUCT *std_struct, T_logicLevel *rtn,
 DCM_PIN pinPointer);

This returns the logic level on the pin back to the library. The enumeration returned as the logic level can
have three possible states: logical one, logical zero, or unknown, as shown in Table 381.

10.23.22 Extensions for listing pins

Applications need a method for translating indexed netlist pins with the named pins of a cell. Certain netlist
description languages allow pin reference by order rather than by name. The pins of a cell in the library are
represented by names. To map between pin order and pin name, the application needs to query a cell for the
indices of its pins. Each pin index shall be represented as an integer.

10.23.22.1 dpcmGetPinIndexArrays

Table 383 provides information on dpcmGetPinIndexArrays.

Table 383—dpcmGetPinIndexArrays

Function name dpcmGetPinIndexArrays

Arguments None

Result Input pin indices, Output pin indices, Bidirectional pin indices

Standard
Structure fields

CellName

DCL syntax EXPOSE(dpcmGetPinIndexArrays):
 result(int[*]: inputPinIndices, outputPinIndices,
 bidiPinIndices);

C syntax typedef struct {
 DCM_INTEGER_ARRAY *inputPinIndices, *outputPinIndices,
 *bidiPinIndices;
} T_PinIndices;

int dpcmGetPinIndexArrays(const DCM_STD_STRUCT *std_struct,
 T_PinIndices *rtn);

This returns the indices of the input, output, and bidirectional pins of the cell specified in the Standard
Structure back to the application. The order of the indices shall be the same as the order of the pins in the

417
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 417 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

corresponding pin name arrays returned by dpcmGetCellIOlists.

10.23.22.2 dpcmGetSupplyPins

Table 384 provides information on dpcmGetSupplyPins.

Table 384—dpcmGetSupplyPins

Function name dpcmGetSupplyPins

Arguments None

Result Array of power pins

Standard
Structure fields

CellName

DCL syntax typedef(powerPinInfo):
 result(string: pinName; int: railIndex);

EXPOSE(dpcmGetSupplyPins):
 result(powerPinInfo[*]: powerPins);

C syntax typedef struct {
 DCM_STRING pinName;
 DCM_INTEGER railIndex;
} DCM_PowerInfo;

typedef DCM_PowerInfo *DCM_PowerInfo_ARRAY;

typedef struct {
 DCM_PowerInfo_ARRAY *powerInfoArray;
} T_GetSupplyPins;

int dpcmGetSupplyPins(const DCM_STD_STRUCT *std_struct,
 T_GetSupplyPins *rtn);

Certain classes of applications need access to the supply pins of a cell. dpcmGetSupplyPins returns the
power and ground pins for a cell back to the application; it returns the individual pins as an array of
structures, each containing the name of the power pin and the voltage rail with which it is associated.

DCM_PowerInfo_ARRAY is a DCM_ARRAY of pointers to DCM_PowerInfo. Both the array and the
structures whose addresses it contains are allocated by the DPCM. The application shall neither allocate nor
free the array or these structures. If the application needs to retain the array itself or any of these structures,
it shall call dcm_lock_DCM_ARRAY or dcm_lock_DCM_STRUCT (for each structure to be retained),
respectively.

10.23.23 Memory BIST mapping

A memory BIST tool requires information relating the logical address and data to a physical row, column,
and bank in order to perform test functions, such as writing bit patterns into the memory and reading
expected bit patterns from the memory. The APIs in this subclause can be used to provide the BIST tool
with this logical/physical mapping.

Because the tool needs to know whether the physical data in a specific location are inverted with respect to
the corresponding logical data, the enumerations in Table 385 specify whether there is inversion between
the physical/logical mapping.

418
Copyright © 2010 IEEE all rights reserved.

– 418 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 385—DCM_BistInversion

Enumerator Enumeration Description

DCM_BistInversion_False 0 No inversion

DCM_BistInversion_True 1 Inverted data

10.23.23.1 dpcmGetPhysicalBISTMap

Table 386 provides information on dpcmGetPhysicalBISTMap.

Table 386—dpcmGetPhysicalBISTMap

Function name dpcmGetPhysicalBISTMap

Arguments Logical address, Data word bit index

Result Physical row, Physical column, Physical bank, Inversion

Standard
Structure fields

CellName, block, cellData, pathData(pin-specific)

DCL syntax EXPOSE(dpcmGetPhysicalBISTMap):
 passed(int: logicalAddress, dataIndex)
 result(int: physicalRow, physicalColumn, physicalBank,
 dataInversion);

C syntax typedef enum DCM_BistInversion {
 DCM_BistInversion_False,
 DCM_BistInversion_True
} DCM_BistInversion;

typedef struct {
 DCM_INTEGER physicalRow;
 DCM_INTEGER physicalColumn;
 DCM_INTEGER physicalBank;
 DCM_BistInversion dataInversion;
} T_GetPhysicalBISTMap;

int dpcmGetPhysicalBISTMap(const DCM_STD_STRUCT *std,
 T_GetPhysicalBISTMap *rtn,
 DCM_INTEGER logicalAddress,
 DCM_INTEGER dataIndex);

Given a logical address and bit index within the data word, this returns the corresponding physical row,
column, and bank where the data word maps, as well as indicating whether the physical data are inverted
with respect to the logical data value, back to the application.

10.23.23.2 dpcmGetLogicalBISTMap

Table 387 provides information on dpcmGetLogicalBistMap.

Table 387—dpcmGetLogicalBISTMap

Function name dpcmGetLogicalBISTMap

Arguments Physical row, Physical column, Physical bank

Result Logical address, Data word bit index, Inversion

Standard
Structure fields

CellName, block, cellData, pathData (pin-specific)

DCL syntax EXPOSE(dpcmGetLogicalBISTMap):
 passed(int: physicalRow, physicalColumn, physicalBank)
 result(int: logicalAddress, dataIndex, dataInversion);

419
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 419 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

C syntax typedef enum DCM_BistInversion {
 DCM_BistInversion_False,
 DCM_BistInversion_True
} DCM_BistInversion;

typedef struct {
 DCM_INTEGER logicalAddress;
 DCM_INTEGER dataIndex;
 DCM_BistInversion dataInversion;
} T_GetLogicalBISTMap;

int dpcmGetLogicalBISTMap(const DCM_STD_STRUCT *std,
 T_GetLogicalBISTMap *rtn,
 DCM_INTEGER physicalRow,
 DCM_INTEGER physicalColumn,
 DCM_INTEGER physicalBank);

Given a physical row, column, and bank, this returns the corresponding logical address and bit index where
the data word maps, as well as indicating whether the logical data are inverted with respect to the physical
data value, back to the application.

10.23.24 dpcmGetCellTestProcedure

Table 388 provides information on dpcmGetCellTestProcedure.

Table 388—dpcmGetCellTestProcedure

Function name dpcmGetCellTestProcedure

Arguments None

Result Array of path data blocks

Standard
Structure fields

CellName, block, cellData

DCL syntax EXPOSE(dpcmGetCellTestProcedure):
 result(PATH_DATA [*]: testProcedurePathDataArray);

C syntax typedef struct {
 DCM_PathDataBlock *testProcedurePathDataArray
} T_GetCellTestProcedure;

int dpcmGetCellTestProcedure
 (const DCM_STD_STRUCT *std,
 T_GetCellTestProcedure *rtn);

This obtains the test procedure defined for a cell and returns an array of path data blocks, the functionality
of which, as specified by the associated function graphs, when executed in the returned order, performs the
desired test sequence.

10.24 Interconnect delay calculation intraface

This subclause contains the specification of an intraface through which interconnect calculation code in a
library can interact with the cell-calculation part of that library. The term intraface is employed here to
identify a collection of functions and data types used for communication between modules within a library
as opposed to between the library and an application. This Interconnect Delay Calculation (IDC) intraface
supports both delay and slew computation for interconnect arcs and the inclusion of interconnect-network
loading during cell-arc calculation.

All calculations in a library are, from the perspective of the application, performed by a cell model within
the library. This is true even for interconnect calculations, for which the application provides data to the
library identifying the driving cell and pin. For the purpose of delay and slew calculation, a technology
family in a library can be divided into two modules, a Cell Calculation Module (CCM) and an Interconnect

420
Copyright © 2010 IEEE all rights reserved.

– 420 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Calculation Module (ICM). The ICM provides a computational resource to the CCM to be used when
interconnect calculation is requested by the application. The CCM exposes functions to the ICM needed by
the latter during its own computations, for example during calculation of the effects of interconnect loading
on cell delay and slew.

The units used for all quantities involved during these IDC computations shall be those of the CCM.

An ICM shall be written such that it can support use by multiple technology families in the library. In
particular, the ICM shall not assume that the technology of the CCM that calls one of its functions is the
same as for any other call to that or any other ICM function. It shall also be possible for different
technology families to use different ICM implementations.

To facilitate this, each ICM shall provide a table of pointers to its functions; a CCM shall call ICM
functions via these pointers. So that use of these ICM function pointers can be made transparent to the bulk
of the DCL code in a CCM, DCL macros through which the ICM functions can be called shall be defined.
To prevent conflicts between the names of these macro and those of the functions, the DCL function
declarations shall use names ending in “_ft” (standing for “function type”), and each corresponding macro
shall have a similar name without the “_ft” ending. As is the case for all DCL functions, each ICM function
name is also the DCL type name for the data structure returned by that function.

It is, of course, possible to construct a library that includes interconnect calculation without using this
approach. Such a library would be compliant to this standard overall. The intent behind this subclause is not
to mandate that all compliant libraries be written to use this intraface. The intent is, however, to provide a
normative description of the IDC intraface such that a library written to comply with it shall adhere to the
specifications enumerated in the remainder of this subclause.

10.24.1 Control and data flows

Because the application interacts primarily with the CCM, the ICM shall return all of its results back to the
CCM, which shall in turn be responsible for returning these data to the application. This arrangement
facilitates memory management of aggregate data structures such as arrays and structures via utilities
provided by the run-time environment. Such management is automatically enabled during return of data to
the application in this manner.

In order to complete its calculations, the ICM might require additional data beyond what is initially
provided by the application. Rather than making requests for these data via the CCM, the ICM shall call
application functions directly. Although these functions shall provide the requested data, the ICM shall pass
no data to the application except that needed by the latter to fulfill such requests. During this process, the
ICM shall not provide data that are to be stored in or managed by the application. The overall control and
data flows among the application, CCM, and ICM are illustrated in Figure 15.

421
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 421 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

The following subclauses contain specifications of the functions that constitute the IDC intraface. In
general, early and late versions of all computational results are calculated, using different interconnect
networks or models when available.

10.24.2 Model generation functions

So that the ICM can perform interconnect calculations, the CCM shall cede generation of the load and
interconnect models associated with an interconnect network to the ICM. When the application calls library
functions implemented in the CCM that return these models, these CCM functions shall call the equivalent
ICM functions to generate the models requested.

These ICM functions shall generate load and interconnect models that are compatible with the specific ICM
implementation to which the functions belong. The functions dpcmBuildLoadModels and
dpcmBuildInterconnectModels (see 10.21.9) shall call the corresponding ICM functions to generate such
models when requested by the application. When these models are needed by the ICM for computational
purposes and they are not passed to it as function arguments, it shall obtain them from the application by
calling appGetLoadModels (see 10.21.9.4) or appGetInterconnectModels (see 10.21.9.3).

10.24.2.1 icmBuildLoadModels

Table 389 provides information on icmBuildLoadModels.

422
Copyright © 2010 IEEE all rights reserved.

Figure 15—Application, CCM and ICM control and data flows

CCM ICM

Application

OLA Interface

Library

key: control data

– 422 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 389—icmBuildLoadModels

Function name icmBuildLoadModels

Arguments Parasitic networks, ICM network models, Driving pin node number

Result ICM load models, ICM network models

Standard
Structure fields

CellName, cellData (timing), pathData (timing-pin-specific), toPoint

DCL syntax forward calc(icmBuildLoadModels_ft):
 passed(parasiticSubnet: minParasitics, maxParasitics;
 void: minNetModel, maxNetModel;
 int: minDrivingPinNodeNumber,maxDrivingPinNodeNumber)
 result(void: minLoadModel, maxLoadModel,
 newMinNetModel, newMaxNetModel);

C syntax typedef struct {
 const DCM_STRUCT *minLoadModel, *maxLoadModel;
 const DCM_STRUCT *newMinNetModel, *newMaxNetModel;
} T_BuildLoadModels;

int icmBuildLoadModels(
 const DCM_STD_STRUCT *std_struct,
 T_BuildLoadModels *rtn,
 const DCM_ParasiticSubnet *minParasitics,
 const DCM_ParasiticSubnet *maxParasitics,
 const DCM_STRUCT *minNetModel,
 const DCM_STRUCT *maxNetModel,
 DCM_INTEGER minDrivingPinNodeNumber,
 DCM_INTEGER maxDrivingPinNodeNumber);

This function creates load models for a driver of an interconnect network that are compatible with the
specific ICM implementation to which the function belongs. Its semantics shall be identical to those of
dpcmBuildLoadModels (see 10.21.9.1).

10.24.2.2 icmBuildInterconnectModels

Table 390 provides information on icmBuildInterconnectModels.

Table 390—icmBuildInterconnectModels

Function name icmBuildInterconnectModels

Arguments Parasitic networks, ICM network models, Driving pin node number, Sink pin node
number

Result ICM interconnect models, ICM network models

Standard
Structure fields

CellName, cellData (timing), pathData (timing-pin specific), fromPoint, toPoint

DCL syntax forward calc(icmBuildInterconnectModels_ft):
 passed(parasiticSubnet: minParasitics, maxParasitics;
 void: minNetModel, maxNetModel;
 int: minDrivingPinNodeNumber,minSinkPinNodeNumber,
 maxDrivingPinNodeNumber,maxSinkPinNodeNumber)
result(void: minInterconnectModel, maxInterconnectModel,
 newMinNetModel, newMaxNetModel);

423
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 423 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

C syntax typedef struct {
 const DCM_STRUCT *minInterconnectModel,
 *maxInterconnectModel;
 const DCM_STRUCT *newMinNetModel, *newMaxNetModel;
} T_BuildInterconnectModels;

int icmBuildInterconnectModels(
 const DCM_STD_STRUCT *std_struct,
 T_BuildInterconnectModels *rtn,
 const DCM_ParasiticSubnet *minParasitics,
 const DCM_ParasiticSubnet *maxParasitics,
 const DCM_STRUCT *minNetModel,
 const DCM_STRUCT *maxNetModel,
 DCM_INTEGER minDrivingPinNodeNumber,
 DCM_INTEGER minSinkPinNodeNumber,
 DCM_INTEGER maxDrivingPinNodeNumber,
 DCM_INTEGER maxSinkPinNodeNumber);

This function creates interconnect models for a path through an interconnect network that are compatible
with the specific ICM implementation to which the function belongs. Its semantics shall be identical to
those of dpcmBuildInterconnectModels (see 10.21.9.2).

10.24.3 Calculation functions

These functions calculate delays, output slews, and related data both for paths through interconnect
networks and for paths through cells driving such networks. The additional data produced can include
(optionally) output XWF structures (see 10.23.8) and interaction-window arrays (see 10.21.15). If such
data are not computed, pointers having zero (0) values for the associated arrays or structures shall be
returned.

Any XWF structures used during these calculations shall be compatible with the ICM implementation to
which the functions belong. The contents of these structures shall be private to the ICM. Such structures
shall be generated by the ICM via the functions icmCalcCellDelaySlew (see10.24.4.1) or icmCalcXWF
(see 10.24.4.7). In order to generate compatible structures, the function dpcmCalcXWF (see 10.23.8.3.3)
shall call icmCalcXWF as needed.

Pointers to XWF structures generated by the ICM shall be passed to the application by the CCM using the
function appSetXWF (see 10.23.8.3.1). These structures shall be retrieved for subsequent use by the ICM
via the function appGetXWF (see 10.23.8.3.2).

Other XWF structures are not guaranteed to be compatible with the ICM and therefore shall not be used.

10.24.3.1 icmCalcInterconnectDelaySlew

Table 391 provides information on icmCalcInterconnectDelaySlew.

Table 391—icmCalcInterconnectDelaySlew

Function name icmCalcInterconnectDelaySlew

Arguments ICM interconnect, models

Result Early and late delays, Early and late output slews, Early and late XWF data structures,
Early and late interaction-window arrays

Standard
Structure fields

CellName, calcMode, processVariation, block, fromPoint, toPoint, slew.early, slew.late,
sourceEdge, sinkEdge, sourceMode, sinkMode, cellData (timing), pathData (timing-pin
specific)

424
Copyright © 2010 IEEE all rights reserved.

– 424 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

DCL syntax typedef(timeRange):
 result(double var: earlyTime, lateTime);
forward calc(icmCalcInterconnectDelaySlew_ft):
 passed(void: minInterconnectModel, maxInterconnectModel)
 result(float: earlyDelay, lateDelay, earlySlew, lateSlew;
 void: earlyXWF, lateXWF;
 timeRange[*]: earlyInteractWindows, lateInteractWindows);

C syntax typedef struct {
 DCM_DOUBLE earlyTime, lateTime;
} DCM_TimeRange;

typedef DCM_TimeRange *DCM_TimeRange_ARRAY;

typedef struct {
 DCM_FLOAT earlyDelay, lateDelay;
 DCM_FLOAT earlySlew, lateSlew;
 const DCM_STRUCT *earlyXWF, *lateXWF;
 const DCM_TimeRange_ARRAY *earlyInteractWindows;
 const DCM_TimeRange_ARRAY *lateInteractWindows;
} T_InterconnectDelaySlew;

int icmCalcInterconnectDelaySlew(
 const DCM_STD_STRUCT *std_struct,
 T_InterconnectDelaySlew *rtn,
 const DCM_STRUCT *minInterconnectModel,
 const DCM_STRUCT *maxInterconnectModel);

This function calculates delays, output slews, and related data for a path through an interconnect network.
Interconnect models for this path generated by icmBuildInterconnectModels (see10.24.2.2) shall be used
during these computations. If load models for the path’s source pin are also used, they shall be generated by
icmBuildLoadModels (see 10.24.2.1).

10.24.4 Cell calculation functions

Cell delays and slews are often characterized using lumped load capacitances, and these delay and slew
values are usually nonlinear functions of that capacitance. The CCM shall perform the actual delay and
slew calculations for a cell path given an effective load capacitance. The ICM can also calculate delay and
slew for the path using data obtained from the CCM and the load model for the interconnect network. The
ICM shall be responsible for selecting a load-capacitance value such that these two sets of delay and slew
values match.

Matching of network loading to these (nonlinear) cell characteristic can be an iterative process. To
accomplish this, the ICM function icmCalcCellDelaySlew can make multiple calls to the CCM function
ccmCalcDelaySlew. Early and late calculations can take different numbers of iterations and result in
different sets of values. Consequently, early and late computations shall be made via separate calls to
ccmCalcDelaySlew by the ICM.

10.24.4.1 icmCalcCellDelaySlew

Table 392 provides information on icmCalcCellDelaySlew.

Table 392—icmCalcCellDelaySlew

Function name icmCalcCellDelaySlew

Arguments ICM load models

Result Early and late delays, Early and late output slews, Early and late XWF data structures,
Early and late Ceffectives, Early and late interaction-window arrays

425
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 425 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Standard
Structure fields

CellName, calcMode, processVariation, block, fromPoint, toPoint, slew.early, slew.late,
sourceEdge, sinkEdge, sourceMode, sinkMode, cellData (timing), pathData (timing-arc
specific)

DCL syntax typedef(timeRange):
 result(double var: earlyTime, lateTime);
forward calc(icmCalcCellDelaySlew_ft):
passed(void: minLoadModel, maxLoadModel)
 result(float: earlyDelay, lateDelay, earlySlew,
 lateSlew;
 void: earlyXWF, lateXWF;
 double earlyCeffective, lateCeffective;
 timeRange[*]: earlyInteractWindows, lateInteractWindows);

C syntax typedef struct {
 DCM_DOUBLE earlyTime, lateTime;
} DCM_TimeRange;

typedef DCM_TimeRange *DCM_TimeRange_ARRAY;

typedef struct {
 DCM_FLOAT earlyDelay, lateDelay;
 DCM_FLOAT earlySlew, lateSlew;
 const DCM_STRUCT *earlyXWF, *lateXWF;
 DCM_DOUBLE earlyCeffective, lateCeffective;
 const DCM_TimeRange_ARRAY *earlyInteractWindows;
 const DCM_TimeRange_ARRAY *lateInteractWindows;
} T_CellDelaySlew;

int icmCalcCellDelaySlew(
 const DCM_STD_STRUCT *std_struct,
 T_CellDelaySlew *rtn,
 const DCM_STRUCT *minLoadModel,
 const DCM_STRUCT *maxLoadModel);

This function calculates delays, output slews, and related data for a cell path, taking into account the
loading on the sink pin of that path presented by the attached interconnect network. Load models for the
sink pin generated by icmBuildLoadModels (see 10.24.2.1) shall be used during these computations.

In addition to those optional items listed in , the related data calculated shall include effective load
capacitances seen at the sink pin. The XWF structures can contain data used to represent the sink pin during
subsequent delay and slew calculations for paths through the interconnect network driven by that pin (see
10.24.3.1).

10.24.4.2 ccmCalcDelaySlew

Table 393 provides information on ccmCalcDelaySlew.

Table 393—ccmCalcDelaySlew

Function name ccmCalcDelaySlew

Arguments propagation mode, load capacitance

Result Delay, Output slew, Gradients vs. capacitance

Standard
Structure fields

CellName, calcMode, processVariation, block, fromPoint, toPoint, slew.early, slew.late,
sourceEdge, sinkEdge, cellData (timing), pathData (timing-arc specific)

DCL syntax EXPOSE(ccmCalcDelaySlew):
 passed(int: propagationMode;
 double: loadCapacitance)
 result(double: delayValue, delayCapGradient, slewValue,
 slewCapGradient);

426
Copyright © 2010 IEEE all rights reserved.

– 426 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

C syntax typedef struct {
 DCM_DOUBLE delayValue, delayCapGradient;
 DCM_DOUBLE slewValue, slewCapGradient;
} T_DelaySlew;

int ccmCalcDelaySlew(
 const DCM_STD_STRUCT *std_struct,
 T_DelaySlew *rtn,
 DCM_PropagationTypes propagationMode,
 DCM_DOUBLE loadCapacitance);

This function calculates the delay and output slew for a cell path given an effective load capacitance. It
serves to make available to the ICM the delay and output-slew characteristics of the path as functions of
load capacitance. The ICM shall match these characteristics with the load presented by the interconnect
network driven by the path’s sink pin. In order to facilitate this process, ccmCalcDelaySlew shall also
return the gradients of these functions at the capacitance value provided.

10.24.4.3 ccmEarlyLateIdentical

Table 394 provides information on ccmEarlyLateIdentical.

Table 394—ccmEarlyLateIdentical

Function name ccmEarlyLateIdentical

Arguments None

Result Boolean value indicating whether identical delays and slews shall be produced for early
and late propagation modes

Standard
Structure fields

CellName, calcMode, processVariation, block, fromPoint, toPoint, slew.early, slew.late,
sourceEdge, sinkEdge, cellData (timing), pathData (timing-arc specific)

DCL syntax EXPOSE(ccmEarlyLateIdentical):
 result(int: earlyLateIdentical);

C syntax typedef struct {
 DCM_INTEGER earlyLateIdentical;
} T_EarlyLateIdentical;

int ccmEarlyLateIdentical(
 const DCM_STD_STRUCT *std_struct,
 T_EarlyLateIdentical *rtn);

This function can be called by the ICM to determine whether, given the same load capacitance,
ccmCalcDelaySlew would return identical delay and slew values for both early and late propagation modes.
If this is true, the function shall return a value of one (1). Otherwise, a value of zero (0) shall be returned.

When the CCM results would be identical and other factors such as the early and late load models are the
same, the ICM can avoid redundant computations.

10.24.4.4 ccmGetICMcontrolParams

Table 395 provides information on ccmGetICMcontrolParams.

427
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 427 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 395—ccmGetICMcontrolParams

Function name ccmGetICMcontrolParams

Arguments None

Result Ceffective iteration limit, Relative tolerance, Absolute tolerance

Standard
Structure fields

None

DCL syntax EXPOSE(ccmGetICMcontrolParams):
 result(int: ceffIterLimit;
 double: relTol, absTol);

C syntax typedef struct {
 DCM_INTEGER ceffIterLimit;
 DCM_DOUBLE relTol, absTol;
} T_ICMcontrolParams;

int ccmIterICMcontrolParams(
 const DCM_STD_STRUCT *std_struct,
 T_ICMcontrolParams *rtn);

This function returns parameters used by the ICM to control delay and slew calculations.

The parameters relTol and absTol are the relative and absolute tolerances, respectively, used to
determine when convergence of iterations used to compute effective load capacitance and corresponding
delays and slews has been reached. When the magnitudes of the differences in delay, slew, and other
quantities being compared between one iteration and the next by the ICM fall below values determined
using the following expression, the ICM shall terminate the iteration process and return the final quantities
to the CCM:

relTol * value + absTol

Here, value is the smaller of the two values (delay, slew, etc.) being compared from the current and
previous iterations.

ceffIterLimit is the number of iterations after which an attempt to converge shall be aborted. When
this occurs, the ICM function shall return an error to the CCM.

10.24.4.5 icmCalcOutputResistances

Table 396 provides information on icmCalcOutputResistances.

Table 396—icmCalcOutputResistances

Function name icmCalcOutputResistances

Arguments Output-pin pointer, Early slew, Late slew, Early XWF data structure, Late XWF data
structure

Result Early and late output resistances

Standard
Structure fields

CellName, calcMode, processVariation, block, pathData (timing-pin-specific), cellData
(timing)

DCL syntax EXPOSE(icmCalcOutputResistances_ft):
 passed(pin: outputPin;
 double: earlySlew, lateSlew;
 void: earlyXWF, lateXWF)
 result(double: earlyRout, lateRout);

428
Copyright © 2010 IEEE all rights reserved.

– 428 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

C syntax typedef struct {
 DCM_DOUBLE earlyRout;
 DCM_DOUBLE lateRout;
} T_Rout;

int icmCalcOutputResistances(
 const DCM_STD_STRUCT *std_struct,
 T_Rout *rtn,
 DCM_PIN outputPin,
 DCM_DOUBLE earlySlew, lateSlew,
 const DCM_STRUCT *earlyXWF, *lateXWF);

This function returns output resistances for the passed pin corresponding to the early and late slews and
XWF structures provided. These structures shall be compatible with the specific ICM implementation to
which the function belongs. The function’s semantics shall be identical to those of
dpcmCalcOutputResistances (see 10.21.15.6).

10.24.4.6 icmCalcTotalLoadCapacitances

Table 397 provides information on icmCalcTotalLoadCapacitances.

Table 397—icmCalcTotalLoadCapacitances

Function name icmCalcTotalLoadCapacitances

Arguments ICM load models

Result Early and late load capacitances

Standard
Structure fields

CellName, calcMode, processVariation, block, toPoint, sinkEdge, sourceMode,
sinkMode, cellData (timing), pathData (timing-arc specific)

DCL syntax forward calc(icmCalcTotalLoadCapacitances_ft):
 passed(void: minLoadModel, maxLoadModel)
 result(double: earlyLoadCap, lateLoadCap);

C syntax typedef struct {
 DCM_DOUBLE earlyLoadCap, lateLoadCap;
} T_TotalLoadCaps;

int icmCalcTotalLoadCapacitances(
 const DCM_STD_STRUCT *std_struct,
 T_TotalLoadCaps *rtn,
 const DCM_STRUCT *minLoadModel,
 const DCM_STRUCT *maxLoadModel);

This function calculates total load capacitances presented to the pin identified by the toPoint field in the
Standard Structure by an interconnect network. Different versions of the network can be used for early and
late calculations. Each capacitance returned shall include the total capacitance of the corresponding
network, including the capacitances of all attached pins.

10.24.4.7 icmCalcXWF

Table 398 provides information on icmCalcXWF.

429
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 429 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 398—icmCalcXWF

Function name icmCalcXWF

Arguments Pin pointer, Edge, Early slew, Late slew

Result Early and late XWF data structures

Standard
Structure fields

CellName, calcMode, processVariation, pathData (timing-pin-specific), cellData
(timing)

DCL syntax forward calc(icmCalcXWF_ft):
 passed(pin: pinPointer;
 int: edge;
 double: earlySlew, lateSlew)
 result(void: earlyXWF, lateXWF);

C syntax typedef struct {
 DCM_STRUCT *earlyXWF;
 DCM_STRUCT *lateXWF;
} T_XWF;

int icmCalcXWF(
 const DCM_STD_STRUCT *std_struct,
 T_XWF *result,
 DCM_PIN pinPointer,
 DCM_EdgeTypes edge,
 DCM_DOUBLE earlySlew,
 DCM_DOUBLE lateSlew);

This function returns pointers to XWF structures for the passed pin and edge direction corresponding to the
early and late slews provided. These structures shall be compatible with the specific ICM implementation
to which the function belongs. The function’s semantics shall be identical to those of dpcmCalcXWF (see
10.23.8.3.3).

10.24.5 ICM initialization

Before the ICM is requested to perform any calculations, it shall be initialized by the CCM. During this
initialization, the ICM shall obtain, via pointers, access to CCM functions and to application functions
needed by the ICM. The ICM shall in turn provide pointers to its functions to the CCM.

The initialization procedure used shall support both the use of different ICM implementations in different
technology families in the library as well as the use of a particular ICM by multiple technology families.
This procedure shall also support specification of the ICM implementation used for a particular technology
through modification of the bill of materials (BOM) for that technology. Recompilation of the source code
for either the CCM in that technology or the ICM itself shall not be required to change the ICM
implementation used.

10.24.5.1 icmInit

Table 399 provides information on icmInit.

Table 399—icmInit

Function name icmInit

Arguments None

Result ICM function pointers

Standard
Structure fields

None

430
Copyright © 2010 IEEE all rights reserved.

– 430 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

DCL syntax typedef(icmFuncs):
 result(
 icmBuildInterconnectModels_ft():
 icmBuildInterconnectModels_fp;
 icmBuildLoadModels_ft():
 icmBuildLoadModels_fp;
 icmCalcCellDelaySlew_ft():
 icmCalcCellDelaySlew_fp;
 icmCalcInterconnectDelaySlew_ft():
 icmCalcInterconnectDelaySlew_fp;
 icmCalcOutputResistances_ft():
 icmCalcOutputResistances_fp;
 icmCalcTotalLoadCapacitances_ft():
 icmCalcTotalLoadCapacitances_fp;
 icmCalcXWF_ft():
 icmCalcXWF_fp;
);
EXPOSE(icmInit):
 result(icmFuncs);

C syntax typedef struct {
 DCM_GeneralFunction icmBuildInterconnectModels_fp;
 DCM_GeneralFunction icmBuildLoadModels_fp;
 DCM_GeneralFunction icmCalcCellDelaySlew_fp;
 DCM_GeneralFunction icmCalcInterconnectDelaySlew_fp;
 DCM_GeneralFunction icmCalcOutputResistances_fp;
 DCM_GeneralFunction icmCalcTotalLoadCapacitances_fp;
 DCM_GeneralFunction icmCalcXWF_fp;
} ICM_Funcs;

This function initializes an ICM; during this process, it shall obtain pointers to CCM and application
functions. It shall return a table of pointers to the ICM functions exposed to the CCM. So that the CCM in a
technology family can call ICM functions without explicit knowledge of a specific ICM technology family
and using a Standard Structure set to its own technology (not that of the ICM), these functions shall be
called via the pointers returned.

Each ICM shall have its own, specific DCL implementation of icmInit. Different function pointers shall be
returned by different ICM implementations. For an ICM that is implemented primarily in C, this function
can in turn call a C function to perform the actual initialization. An example of the DCL code used to call
such a C function is shown in 10.24.5.3 .

10.24.5.2 ICM DCL header file (icm.h)

This subclause contains the DCL header file (icm.h) that shall be used both in the implementation of an
ICM and in CCM code that interacts with that ICM. So that the use of the ICM function pointers returned
by icmINIT can be made transparent to the bulk of the CCM, macros through which ICM functions can be
called are provided.

#ifndef _ICM_H
#define _ICM_H

typedef(ivcurve):
result(double var [*] var: voltage, current);

#define RESISTOR 0
#define CAPACITOR 1
#define INDUCTOR 2
#define MUTUAL_INDUCTANCE 3
#define LOSSLESS_TRANSMISSION_LINE_TIME_DELAY_BASED 4
#define LOSSLESS_TRANSMISSION_LINE_FREQUENCY_BASED 5
#define LOSSY_TRANSMISSION_LINE_RLC 6
#define LOSSY_TRANSMISSION_LINE_RC 7
#define LOSSY_TRANSMISSION_LINE_LC 8
#define LOSSY_TRANSMISSION_LINE_LG 9
#define DIODE 10

431
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 431 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

#define VOLTAGE_SOURCE 11

typedef(parasiticElement):
result(
 int var: elementType, node0Index, node1Index, node2Index, node3Index ;
 double var: value0, value1, value2, value3, value4 ;
 var ivcurve var: ivCurve ;
 string var: modelName ;
 int var: railIndex ;
 void var: ownerPrivate
);

#define INTERMEDIATE_NODE 0
#define SINK_NODE 1
#define SOURCE_NODE 2
#define AGGRESSOR_SOURCE_NODE 3

typedef(parasiticSubnet):
result(
 int var: changed ;
 var parasiticElement var[*] var: parasiticElementArray ;
 int var[*] var: portMap, nodeMap, nodeTypeList ;
 var parasiticSubnet var: nextSubnet, prevSubnet ;
 TECH_TYPE var: techFamily ;
 void var: ownerPrivate
);

forward calc(icmBuildInterconnectModels_ft) impure:
passed(
 parasiticSubnet: minParasitics, maxParasitics ;
 void: minNetModel, maxNetModel ;
 int: minDrivingPinNodeNumber, minSinkPinNodeNumber,
 maxDrivingPinNodeNumber, maxSinkPinNodeNumber
)
result(
 void: minInterconnectModel, maxInterconnectModel, newMinNetModel, newMaxNetModel
);

forward calc(icmBuildLoadModels_ft) impure:
passed(
 parasiticSubnet: minParasitics, maxParasitics ;
 void: minNetModel, maxNetModel ;
 int: minDrivingPinNodeNumber, maxDrivingPinNodeNumber
)
result(
 void: minLoadModel, maxLoadModel, newMinNetModel, newMaxNetModel
);

typedef(timeRange):
result(double var: earlyTime, lateTime);

forward calc(icmCalcCellDelaySlew_ft) impure:
passed(void: minLoadModel, maxLoadModel)
result(
 float: earlyDelay, lateDelay, earlySlew, lateSlew ;
 void: earlyXWF, lateXWF ;
 double: earlyCeffective, lateCeffective ;
 timeRange[*]: earlyInteractWindows, lateInteractWindows
);

forward calc(icmCalcInterconnectDelaySlew_ft) impure:
passed(void: minInterconnectModel, maxInterconnectModel)
result(
 float: earlyDelay, lateDelay, earlySlew, lateSlew ;
 void: earlyXWF, lateXWF ;
 timeRange[*]: earlyInteractWindows, lateInteractWindows
);

forward calc(icmCalcOutputResistances_ft) impure:
passed(

432
Copyright © 2010 IEEE all rights reserved.

– 432 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

 pin: outputPin ;
 double: earlySlew, lateSlew ;
 void: earlyXWF, lateXWF
)
result(double: earlyRout, lateRout);

forward calc(icmCalcTotalLoadCapacitances_ft) impure:
passed(void: minLoadModel, maxLoadModel)
result(double: earlyLoadCap, lateLoadCap);

forward calc(icmCalcXWF_ft) impure:
passed(
 pin: pinPointer ;
 int: edge ;
 double: earlySlew, lateSlew
)
result(void: earlyXWF, lateXWF);

typedef(icmFuncs):
result(
icmBuildInterconnectModels_ft() impure:
icmBuildInterconnectModels_fp ;

icmBuildLoadModels_ft() impure:
icmBuildLoadModels_fp ;

icmCalcCellDelaySlew_ft() impure:
icmCalcCellDelaySlew_fp ;

icmCalcInterconnectDelaySlew_ft() impure:
icmCalcInterconnectDelaySlew_fp ;

icmCalcOutputResistances_ft() impure:
icmCalcOutputResistances_fp ;

icmCalcTotalLoadCapacitances_ft() impure:
icmCalcTotalLoadCapacitances_fp ;

icmCalcXWF_ft() impure: icmCalcXWF_fp ;
);

#ifdef _ICM_BODY

/* ICM module body declarations */

expose(ccmCalcDelaySlew):
passed(
 int: propagationMode ;
 double: loadCapacitance
)
local(
:issue_message(0, SEVERE,
'\nICM dummy function ccmCalcDelaySlew called!\n')
)
result
 double: delayValue = 0.0, delayCapGradient = 0.0, slewValue = 0.0,
slewCapGradient = 0.0
);

expose(ccmEarlyLateIdentical):
local(
:issue_message(0, SEVERE,
'\nICM dummy function ccmEarlyLateIdentical called!\n')
)
result(int: earlyLateIdentical = 0);

expose(ccmGetICMcontrolParams):
local(
:issue_message(0, SEVERE,
'\nICM dummy function ccmGetICMcontrolParams called!\n')

433
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 433 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

)
result(
 int: ceffIterLimit = 0 &
 double: relTol = 0.0, absTol = 0.0
);

#else

/* ICM client (not module body) declarations */

import expose(icmInit) optional:
result(icmFuncs: funcs);

assign(icmFuncTbl):
local(
TECH_TYPE: techType = map_tech_family(CONTROL_PARM).TT
)
result(icmFuncs: funcs = techType::icmInit().funcs);

calc(LATENT_EXPRESSION) impure:
local(:icmFuncTbl());

#define icmBuildInterconnectModels(\
minParasitics, maxParasitics, minNetModel, maxNetModel, \
minDrivingPinNodeNumber, minSinkPinNodeNumber, \
maxDrivingPinNodeNumber, maxSinkPinNodeNumber \
) \
icmFuncTbl.funcs.icmBuildInterconnectModels_fp(\
minParasitics, maxParasitics, minNetModel, maxNetModel, \
minDrivingPinNodeNumber, minSinkPinNodeNumber, \
maxDrivingPinNodeNumber, maxSinkPinNodeNumber \
)

#define icmBuildLoadModels(\
minParasitics, maxParasitics, minNetModel, maxNetModel, \
minDrivingPinNodeNumber, maxDrivingPinNodeNumber \
) \
icmFuncTbl.funcs.icmBuildLoadModels_fp(\
minParasitics, maxParasitics, minNetModel, maxNetModel, \
minDrivingPinNodeNumber, maxDrivingPinNodeNumber \
)

#define icmCalcCellDelaySlew(\
minLoadModel, maxLoadModel \
) \
icmFuncTbl.funcs.icmCalcCellDelaySlew_fp(\
minLoadModel, maxLoadModel \
)

#define icmCalcInterconnectDelaySlew(\
minInterconnectModel, maxInterconnectModel \
) \
icmFuncTbl.funcs.icmCalcInterconnectDelaySlew_fp(\
minInterconnectModel, maxInterconnectModel \
)

#define icmCalcOutputResistances(\
pinPointer, earlySlew, lateSlew, earlyXWF, lateXWF \
) \
icmFuconst DCM_STD_STRUCT *std, DCM_STRUCT
*structurencTbl.funcs.icmCalcOutputResistances_fp(\
pinPointer, earlySlew, lateSlew, earlyXWF, lateXWF \
)

#define icmCalcTotalLoadCapacitances(\
minLoadModel, maxLoadModel \
) \
icmFuncTbl.funcs.icmCalcTotalLoadCapacitances_fp(\
minLoadModel, maxLoadModel \
)

434
Copyright © 2010 IEEE all rights reserved.

– 434 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

#define icmCalcXWF(\

pinPointer, edge, earlySlew, lateSlew \
) \
icmFuncTbl.funcs.icmCalcXWF_fp(\
pinPointer, edge, earlySlew, lateSlew \
)

#endif /* ifdef _ICM_BODY */

#endif /* _ICM_H */

10.24.5.3 ICM DCL initialization example

This subclause contains an example implementation of icmInit that calls a C function to perform the actual
initialization.

tech_family(ACME_ICM);

#define _ICM_BODY
#include "icm.h"

%{
typedef struct {

DCM_GeneralFunction icmBuildInterconnectModels_fp;
DCM_GeneralFunction icmBuildLoadModels_fp;
DCM_GeneralFunction icmCalcCellDelaySlew_fp;
DCM_GeneralFunction icmCalcInterconnectDelaySlew_fp;
DCM_GeneralFunction icmCalcOutputResistances_fp;
DCM_GeneralFunction icmCalcTotalLoadCapacitances_fp;
DCM_GeneralFunction icmCalcXWF_fp;

} ICM_Funcs;

void acme_icm_init(
const DCM_STD_STRUCT *std_struct,
ICM_Funcs *const rtn,
DCM_GeneralFunction appGetAggressorOverlapWindows_fp,
DCM_GeneralFunction appGetXWF_fp,
DCM_GeneralFunction ccmCalcDelaySlew_fp,
DCM_GeneralFunction ccmEarlyLateIdentical_fp,
DCM_GeneralFunction ccmGetICMcontrolParams_fp,
DCM_StructWizard DCM_TimeRange_wizard_fp,
DCM_StructWizard DCT_OverlapWindow_wizard_fp,
DCM_DataScope *dcm_rule_anchor);

}%

typedef(overlapWindow):
result(
int var: overlapPresent &
double var: earlyTime, lateTime, earlySlew, lateSlew,
earlyDriverResistance, lateDriverResistance &
void var: earlyXWF, lateXWF
);
external(appGetAggressorOverlapWindows) optional impure:
passed
var overlapWindow transient[*]: earlyOverlapArray, lateOverlapArray
)
 result(int: ignore);

external(appGetXWF) optional:
passed(void: earlyXWF, lateXWF)
result(int: ignore);

expose(icmInit):
local(
appGetAggressorOverlapWindows():

435
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 435 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

appGetAggressorOverlapWindows_fp = appGetAggressorOverlapWindows;
appGetXWF() pure inconsistent: appGetXWF_fp = appGetXWF;
ccmCalcDelaySlew(): ccmCalcDelaySlew_fp = ccmCalcDelaySlew;
ccmEarlyLateIdentical():
ccmEarlyLateIdentical_fp = ccmEarlyLateIdentical;
ccmGetICMcontrolParams():
ccmGetICMcontrolParams_fp = ccmGetICMcontrolParams;
var icmFuncs: acme_icm_funcs = new(var icmFuncs);
:$acme_icm_init(
$std_struct,
$"(ICM_Funcs *)"(acme_icm_funcs),
$"(DCM_GeneralFunction)"(appGetAggressorOverlapWindows_fp),
$"(DCM_GeneralFunction)"(appGetXWF_fp),
$"(DCM_GeneralFunction)"(ccmCalcDelaySlew_fp),
$"(DCM_GeneralFunction)"(ccmEarlyLateIdentical_fp),
$"(DCM_GeneralFunction)"(ccmGetICMcontrolParams_fp),
$DCM_DCM_WIZ_ITEM($timeRange),
$DCM_DCM_WIZ_ITEM($overlapWindow),
$DCM_RULE_ANCHOR()
)
)
result(icmFuncs: funcs = acme_icm_funcs);

10.25 DCL run-time support

Subclauses 10.25.1 through 10.25.4 describe the support functions implicitly supplied by the delay
calculation system. These functions are dynamically linked to the application using standard C practices.

10.25.1 Array manipulation functions

These functions allow the application to manipulate array data that is returned by the DPCM.

10.25.1.1 dcmRT_copy_DCM_ARRAY

Function name dcmRT_copy_DCM_ARRAY

Arguments DCM_ARRAY, DCM_AATTS

Result DCM_ARRAY

Standard
Structure fields

None

C syntax DCM_ARRAY *dcmRT_copy_DCM_ARRAY
 (const DCM_STD_STRUCT *std,
 DCM_ARRAY *originalArray, DCM_AATTS attributes);

The application service dcmRT_copy_DCM_ARRAY allocates a new DCM_ARRAY and copies the contents
of the original array into the newly allocated one. The attributes argument shall have the value 0xFF.

10.25.1.2 dcmRT_new_DCM_ARRAY

Table 400 provides information on dcmRT_new_DCM_ARRAY.

Table 400—dcmRT_new_DCM_ARRAY

Function name dcmRT_new_DCM_ARRAY

Arguments Standard Structure, number of dimensions, vector of elements per dimension,
size of each element,

Result DCM_ARRAY

Standard
Structure fields

None

436
Copyright © 2010 IEEE all rights reserved.

– 436 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

C syntax DCM_ARRAY *dcmRT_new_DCM_ARRAY
 (const DCM_STD_STRUCT *std_struct,
 int numDims, int *elementsPer, size_t elementSize,
 DCM_ATYPE elementType, DCM_AATTS attributes,
 DCM_AINIT initialize,
 DCM_ArrayInitUserFunction initializer);

The application service dcm_new_DCM_ARRAY allocates a new array according to the number of
dimensions, the number of elements in each dimension, and the size of each element. There are options to
control the how an array is initialized. The maximum value for numDims is 255. When the system does not
allocate the required space, an error is generated. A newly created array is locked once.

The DCM_ATYPE is an enumeration that enumerates the possible types of DCM_ARRAY data; see
Table 401.

Table 401—DCM_ATYPE enumeration

C syntax

typedef enum
DCM_Array_Element_Types
{DCM_ATYPE_ERROR, /* Error */
 DCM_ATYPE_Integer = 1, /* INTEGER */
 DCM_ATYPE_String = 2, /* STRING */
 DCM_ATYPE_Double = 3, /* DOUBLE */
 DCM_ATYPE_Float = 4, /* FLOAT or NUMBER in TABLEDEF DATA*/
 DCM_ATYPE_Function = 5, /* Function array. */
 DCM_ATYPE_Complex = 6, /* complex number */
 DCM_ATYPE_Void = 7, /* void * /
 DCM_ATYPE_Structure = 8, /* dcm structure pointer/
 DCM_ATYPE_Function_PureC = 9, /* array of pure consistent
 function pointers */
 DCM_ATYPE_Function_PureI = 10, /* array of pure inconsistent
 function pointers */
 DCM_ATYPE_Character = 11, /* array of char */
 DCM_ATYPE_Short = 12, /* array of short */
 DCM_ATYPE_Long =13, /* array of long */
 DCM_ATYPE_Pin =14, /* array of pin */
 DCM_ATYPE_Function_Launchable = 15, /* array of launchable
 function pointer structures */
 DCM_ATYPE_Array = 0x10, /* array of arrays */
/**
** Future additions go here.
**/
 DCM_ATYPE_MAX} /* Ceiling. */
DCM_ATYPE;

This enumeration represents a switch on which the allocator knows the initialization values for the DCM
types.

The attributes argument shall have the value 0xFF.

The DCM_AINIT (Table 402) represents an enumeration that controls the initialization of DCM_ARRAYs.

Table 402—DCM_AINIT enumeration

C syntax

typedef enum
DCM_Array_Initialization
{DCM_AINIT_doNotInitialize,
 DCM_AINIT_initAllZeroes,
 DCM_AINIT_initByType,
 DCM_AINIT_useFunction,
 DCM_AINIT_compilerInits,
 DCM_AINIT_debugInits,
 DCM_AINIT_MAX}
DCM_AINIT;

437
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 437 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

a) DCM_AINIT_doNotInitialize indicates no initialization is to be performed on the array returned.
With this option, the data space is left in the same state as the operating system that furnished it.

b) DCM_AINIT_initAllZeroes initializes all the data bytes to the value of zero.

c) DCM_AINIT_initByType causes the data bytes to be initialized to bit pattern corresponding to the
DCM_ATYPE and its related pattern.

d) DCM_AINIT_useFunction causes the dcmRT_new_DCM_ARRAY to call the supplied initializer
function. If this scalar value is present and the initializer parameter is 0 (zero), then no
initialization of the array elements takes place.

e) DCM_AINIT_compilerInits causes the dcmRT_new_DCM_ARRAY to insert the values the
compiler would initialize the variables to.

f) DCM_AINIT_debugInits causes the dcmRT_new_DCM_ARRAY to insert the values the compiler
would initialize the variables to if the debug flags were set during compilation.

If DCM_AINIT_initByType is passed in, then the following type preinitialization patterns occur:

— INTEGER sets each element to MININT

— CHAR set each element to the minimum value a char type can hold.

— SHORT set each element to the minimum value a short type can hold.

— LONG set each element to the minimum value a long type can hold.

— PIN sets each element toNULL (0)

— VOID sets each element toNULL; (0)STRING sets each element to NULL (0)

— STRUCTURE sets each element toNULL (0)

— FUNCTION sets each element toNULL (0).
DOUBLE sets each element to NaN.
FLOAT sets each element to NaN

The DCM_ArrayInitUserFunction (Table 403) is a prototype definition for an application supplied function
to initialize the data elements of a DCM_ARRAY. When supplied, this function shall accept a DCM_ARRAY
pointer that the application uses to initialize the data members.

Table 403—DCM_ArrayInitUserFunction

C syntax typedef int(*DCM_ArrayInitUserFunction)(DCM_ARRAY *);

10.25.1.3 dcm_sizeof_DCM_ARRAY

Table 404 provides information on dcm_RT_sizeof_DCM_ARRAY.

Table 404—dcmRT_sizeof_DCM_ARRAY

Function name dcmRT_sizeof_DCM_ARRAY

Arguments DCM_STD_STRUCT *, DCM_ARRAY

Result Size of the DCM array

Standard
Structure fields

None

C syntax int dcmRT_sizeof_DCM_ARRAY(const DCM_STD_STRUCT *std,
 DCM_ARRAY *array);

438
Copyright © 2010 IEEE all rights reserved.

– 438 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

The application service dcmRT_sizeof_DCM_ARRAY returns the number of bytes the DCM_ARRAY ’s data
elements consume. The application shall pass in the DCM_ARRAY pointer to be evaluated. If there is an
error, a value of ‒1 is returned.

NOTE—Zero is a valid size for an empty array.

10.25.1.4 dcmRT_claim_DCM_ARRAY

Table 405 provides information on dcmRT_claim_DCM_ARRAY.

Table 405—dcmRT_claim_DCM_ARRAY

Function name dcmRT_claim_DCM_ARRAY

Arguments DCM_STD_STRUCT *, DCM_ARRAY

Result Return code

Standard
Structure fields

None

C syntax int dcmRT_claim_DCM_ARRAY(const DCM_STD_STRUCT *std,
 DCM_ARRAY *array);

dcmRT_claim_DCM_ARRAY claims the array. The array shall persist until it is disclaimed. The array may
be claimed multiple times, by both the application and the DPCM.

If for any reason the system encounters an error, a nonzero value is returned; otherwise, a successful return
value of zero is returned.

10.25.1.5 dcmRT_disclaim_DCM_ARRAY

Table 406 provides information on dcmRT_disclaim_DCM_ARRAY.

Table 406—dcmRT_disclaim_DCM_ARRAY

Function name dcmRT_disclaim_DCM_ARRAY

Arguments DCM_STD_STRUCT *, DCM_ARRAY *

Result Return code

Standard
Structure fields

None

C syntax int dcmRT_disclaim_DCM_ARRAY(const DCM_STD_STRUCT *std,
 DCM_ARRAY *array);

dcmRT_disclaim_DCM_ARRAY disclaims the array. The array shall be deleted when it has been disclaimed
as many times as it was claimed. Neither the application nor the DPCM shall disclaim the array more times
than the application or the DPCM respectively claimed it.

If for any reason the system encounters an error, a nonzero value is returned; otherwise, a successful return
value of zero is returned.

10.25.2 Memory management

A DCM_STRUCT is a library-specific collection of data that includes memory management support.
Memory management within the DPCM shall conform to the following behavior:

a) When the DPCM creates a new array or structure, it keeps a count (initialized to 1) indicating how
many references to that object exist.

439
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 439 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

b) When the DPCM returns or passes an DCM_ARRAY or DCM_STRUCT to the application, the
claim count for that object is incremented. During the application’s next call to the DPCM at a
primary entry point, such as modelSearch, delay, slew, or check, the claim count is decremented.

c) When the application claims the object or the library creates a reference to the object, the claim
count is incremented. When the application disclaims the object or the library removes a
reference to the object, the claim count is decremented.

d) The application is responsible for disclaiming the object as many times as it has claimed it. The
library is responsible for removing references to the object it no longer needs.

e) Once the reference count becomes 0, the memory is returned to the system.

10.25.3 Structure manipulation functions

DCM_STRUCT type represents a pointer to a C style data structure. DCM Structures like DCM_ARRAY
contain additional information in a header. The following functions manipulate the data contained in these
headers. The application shall not directly allocate, free, or manipulate structure header information.

The DPCM supports concurrent operations on separate contexts. To prevent data corruption structures that
may be accessed concurrently on more than one context shall have the SYNC attribute. The SYNC
ATTRIBUTE indicates the structure shall be locked before accessing its data fields and unlocked after the
last field update or access is completed.

10.25.3.1 dcmRT_claim_DCM_STRUCT

Table 407 provides information on dcmRT_claim_DCM_STRUCT.

Table 407—dcmRT_disclaim_DCM_STRUCT

Function name dcmRT_claim_DCM_STRUCT

Arguments DCM_STD_STRUCT *, DCM_STRUCT *

Result Return code

Standard Structure fields None

C syntax

int dcmRT_claim_DCM_STRUCT
(const DCM_STD_STRUCT *std, DCM_STRUCT *structure);

dcmRT_claim_DCM_STRUCT claims the structure. The shall persist until it is disclaimed. The structure
may be claimed multiple times by both the application and the DPCM.

If for any reason the system encounters an error, a nonzero value is returned; otherwise, a successful return
value of zero is returned.

10.25.3.2 dcmRT_disclaim_DCM_STRUCT

Table 408 provides information on dcmRT_disclaim_DCM_STRUCT.

440
Copyright © 2010 IEEE all rights reserved.

– 440 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 408—dcmRT_disclaim_DCM_STRUCT

Function name dcmRT_disclaim_DCM_STRUCT

Arguments DCM_STD_STRUCT *, DCM_STRUCT*

Result Return code

Standard
Structure fields

None

C syntax int dcmRT_disclaim_DCM_STRUCT
(const DCM_STD_STRUCT *std, DCM_STRUCT *structure);

dcmRT_disclaim_DCM_STRUCT disclaims the structure. The structure shall be deleted when it has been
disclaimed as many times as it was claimed. Neither the application nor the DPCM shall disclaim the
structure more times than the application or the DPCM respectively claimed it.

If for any reason the system encounters an error, a nonzero value is returned; otherwise, a successful return
value of zero is returned.

10.25.3.3 Locking options

The serialization options can take on several forms, as follows:

a) Exclusive access can be granted that allows for both safe reading and writing of the structure’s
data fields.

b) Nonexclusive access for the purpose of reading the structure’s data fields. With this option,
changing the values in the structure’s data fields is not guaranteed to be safe, but reading the fields
is.

10.25.3.3.1 dcmRT_longlock_DCM_STRUCT

Table 409 provides information on dcmRT_longlock_DCM_STRUCT.

Table 409—dcmRT_longlock_DCM_STRUCT

Function name dcmRT_longLock_DCM_STRUCT

Arguments Standard Structure pointer, Structure pointer, Options

Result error indicator

Standard
Structure fields

None

C syntax int dcmRT_longLock_DCM_STRUCT
(const DCM_STD_STRUCT *context,
 DCM_STRUCT *dcmStruct,
 unsigned int lockOptions);

The application shall call dcmRT_longlock_DCM_STRUCT prior to accessing a DCM_STRUCT with the
SYNC attribute. dcmRT_longlock_DCM_STRUCT serializes the access to data that may be updated on
more than one context. If no other context has blocked access to the DCM_STRUCT, then
dcmRT_longlock_DCM_STRUCT grants access to the structure, blocks access to all other contexts, and
returns. When another context has blocked access to the DCM_STRUCT,
dcmRT_longlock_DCM_STRUCT waits until the existing block is removed, grants access, blocks all other
contexts, and then returns. dcmRT_longlock_DCM_STRUCT shall not block if it is called more than once
for the same structure on the same context that it has already been granted access to.
dcmRT_longlock_DCM_STRUCT returns a value of zero unless an error is encountered such as making
this call with a DCM_STRUCT argument that does not have the SYNC attribute.

441
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 441 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.25.3.3.2 dcmRT_longunlock_DCM_STRUCT

Table 410 provides information on dcmRT_longunlock_DCM_STRUCT.

Table 410—dcmRT_longunlock_DCM_STRUCT

Function name dcmRT_longUnlock_DCM_STRUCT

Arguments Standard Structure pointer, Structure pointer, Options

Result error code

Standard
Structure fields

None

C syntax int dcmRT_longUnlock_DCM_STRUCT
(const DCM_STD_STRUCT *context,
DCM_STRUCT *dcmStruct,
unsigned int lockOptions);

The application shall call dcm_longunlock_DCM_STRUCT to remove a lock on the structure set by
dcmRT_lock_DCM_STRUCT. The application shall call dcmRT_longunlock_DCM_STRUCT as many
times as it has called dcmRT_longlock_DCM_STRUCT on the same structure.

10.25.3.3.2.1 Context

A context is a space, plane pair. The Standard Structure contains the context is the application is operating
on. The is the context the application is requesting access for.

10.25.3.3.2.2 Sync structures

Sync structures are DCM_STRUCT types that have the SYNC attribute. The SYNC attribute indicates the
data contained within the structure shall only be accessed or updated by one context at a time. To gain
access, the application shall call dcmRT_lock_DCM_STRUCT supplying the access context prior to
accessing the structure’s data elements. When a context has finished accessing the structure’s data, the
context shall release the block by calling dcmRT_unlock_DCM_STRUCT.

10.25.3.3.2.3 Options

The application shall set the options argument to the value of 0x00000002. All other values are reserved
for use by the compiler.

10.25.3.3.2.4 Error code

If the lock is successful, then dcmRT_longunlock_DCM_STRUCT shall return a value of zero. Any other
value shall be an error.

10.25.3.4 dcmRT_getNumDimensions

Table 411 provides information on dcmRT_getNumDimensions.

442
Copyright © 2010 IEEE all rights reserved.

– 442 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 411—dcmRT_getNumDimensions

Function name dcmRT_getNumDimensions

Arguments DCM_STD_STRUCT *, DCM_ARRAY *

Result Number of dimensions

Standard
Structure fields

None

C syntax int dcmRT_getNumDimensions(const DCM_STD_STRUCT *std,
 DCM_ARRAY *array);

The application service dcmRT_getNumDimensions returns the number of dimensions defined for the
DCM_ARRAY passed in by the application.

If for any reason there is an error in determining the number of dimensions, a value of ‒1 is returned,
otherwise the number of dimensions is returned.

10.25.3.5 dcmRT_getNumElementsPer

Table 412 provides information on dcmRT_getNumElementsPer.

Table 412—dcmRT_getNumElementsPer

Function name dcmRT_getNumElementsPer

Arguments DCM_STD_STRUCT *, DCM_ARRAY *, int *

Result Number of elements in each dimension

Standard
Structure fields

None

C syntax int *dcmRT_getNumElementsPer(const DCM_STD_STRUCT *std,
 DCM_ARRAY *array, int *answer);

The application service dcmRT_getNumElementsPer returns an array whose elements are the length of
each dimension of the array argument.

The application shall supply a DCM_ARRAY and an integer array where the application service can place
its results. dcmRT_getNumElementsPer places in each element of the answer array the number of elements
in the corresponding DCM_ARRAY, where the zeroth index of the DCM_ARRAY corresponds to the zeroth
element of the answer array. If the service detects an error, it returns (int*) 0; otherwise, it returns the
answer.

10.25.3.6 dcmRT_getNumElements

Table 413 provides information on dcmRT_getNumElements.

Table 413—dcmRT_getNumElements

Function name dcmRT_getNumElements

Arguments DCM_STD_STRUCT *, DCM_ARRAY *, int

Result Number of dimensions

Standard
Structure fields

None

C syntax int dcmRT_getNumElements(const DCM_STD_STRUCT *std,
 DCM_ARRAY *array, int dimension);

443
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 443 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

The application service dcmRT_getNumElements returns the number of elements for the dimension
specified. If an error is encountered, the value returned is ‒1. The dimension parameter passed in from the
application shall be between 0 and the number_of_dimensions ‒1.

10.25.3.7 dcmRT_getElementType

Table 414 provides information on dcmRT_getElementType.

Table 414—dcmRT_getElementType

Function name dcmRT_getElementType

Arguments DCM_STD_STRUCT *, DCM_ARRAY *

Result Type of element

Standard
Structure fields

None

C syntax DCM_ATYPE dcmRT_getElementType(const DCM_STD_STRUCT *std
 DCM_ARRAY *array);

The application service dcmRT_getElementType is passed a DCM_ARRAY and returns the type of elements
stored.

If the application service detects an error, the element type DCM_ATYPE_ERROR is returned.

10.25.3.8 dcmRT_arraycmp

Table 415 provides information on dcmRT_arraycmp.

Table 415—dcmRT_arraycmp

Function name dcmRT_arraycmp

Arguments DCM_STD_STRUCT *, Two DCM_ARRAYs *

Result evaluation

Standard
Structure fields

None

C syntax int dcmRT_arraycmp(const DCM_STD_STRUCT *std,
 DCM_ARRAY *a1, DCM_ARRAY *a2);

The application service dcmRT_arraycmp is passed two DCM_ARRAYs and compares them for equality. If
the two arrays contain (bit-by-bit) identical data, the value of zero is returned; otherwise, a nonzero value is
returned.

10.25.4 Initialization functions

Initialization functions are called by an application to load or unload a DPCM, or to set a universal storage
manager or message handler. These functions are called as part of the process of preparing the system to
accept a DPCM or to clean up after one has been terminated. They are available to the application because
the dynamically loaded modules that make up a DPCM are not yet in memory and cannot perform these
operations.

An application shall call dcmSetNewStorageManager to assert common storage management between the
DPCM and the application.

444
Copyright © 2010 IEEE all rights reserved.

– 444 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.25.4.1 dcmRT_InitRuleSystem

Table 416 provides information on dcmRT_InitRuleSystem.

Table 416—dcmRT_InitRuleSystem

Function name dcmRT_InitRuleSystem

Arguments Function pointer to a memory allocator, Function pointer to a free function, Function
pointer to a reallocation function, Pointer to a location where a return code may be
stored.

Result Standard Structure pointer

Standard
Structure fields

None

C syntax typedef void * (*DCM_Malloc_Type) (size_t);
typedef void (*DCM_Free_Type) (void *);
typedef void * (*DCM_Realloc_Type) (void *, size_t);
DCM_STD_STRUCT *dcmRT_InitRuleSystem
(DCM_Malloc_Type new_malloc,
 DCM_Free_Type new_free,
 DCM_Realloc_Type new_realloc,
 int* rc);

Creates and returns a Standard Structure representing the initialized run-time support system. This Standard
Structure contains no context; that is, it is not associated with any space or plane. The primary purpose for
this Standard Structure is to load the initial rule system by calling dcmRT_BindRule. The standard returned
from this call shall not be used to call any dpcm or modeling function.

The input arguments initialize in the run-time system the proper malloc, free, and realloc functions for the
library to use. The application shall either supply all three function pointers or three pointer values of null
(0). If these function pointers are null (0), the library shall insert is own run-time versions of these calls.
The run-time versions of these calls shall be parallel safe.

The integer pointer parameter rc shall contain the return code this function establishes. After a call to
dcmRT_InitRuleSystem, the value of rc shall be zero in the cases where the function completes
successfully; all other values of rc shall be considered an error.

10.25.4.2 dcmRT_BindRule

Table 417 provides information on dcmRT_BindRule.

445
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 445 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 417—dcmRT_BindRule

Function name dcmRT_BindRule

Arguments Standard Structure pointer, Rule name, Rule environment variable name, Table
environment variable name, Control parameter, Space name, Plane name, ,Message
handler function, Application services, Library services

Result Standard Structure pointer

Standard
Structure fields

None

C syntax DCM_STD_STRUCT *dcmBindRule(const DCM_STD_STRUCT *context,
 const char *rootSubruleName,
 const char *rulePathEnvName,
 const char *tablePathEnvName,
 const char *controlParm,
 const char *spaceName,
 const char *planeName,
 DCM_Message_Intercept_Type intercept,
 DCM_FunctionTable *externals,
 DCMTransmittedInfo *xmit);

This creates a new space then loads and links the specified primary rule system into that space.
dcmRT_BindRule also creates the first plane associated with the new space.

The context argument is any valid Standard Structure.

The rootSubruleName argument is a pointer to a string containing the name of the primary (root) library
rule to be loaded into the space.

The rulePathEnvName argument is a pointer to a string containing the name of an environment variable.
This environment variable shall contain the paths the library uses to locate modules during the loading
process.

The tablePathEnvName argument is a pointer to a string containing the name of an environment variable.
This environment variable shall contain the paths the library is to use during the loading of tables.

The controlParm parameter is a pointer to a string that the root rule receives during the loading process.

The spaceName parameter is a pointer to a string that contains the name to be associated with the space
created by the call to dcmRT_BindRule. If a zero (NULL) is supplied, the name of the space defaults to the
index associated with the space.

The planeName parameter is a pointer to a string that contains the name to be associated with the plane
created by the call to dcmRT_BindRule. If a zero (NULL) is supplied, the name of the plane defaults to the
index associated with the plane.

The intercept parameter is a function pointer the library can use to display any messages it may generate. If
no function pointer is supplied default operating services shall be utilized for this purpose.

The externals parameter is an array of structures containing the function pointer name pairs the library uses
to link application services to external statements of the same name. The DCM_FunctionTable structure
contains the application’s EXTERNAL function pointer pairs. It is the application’s responsibility to create
this structure.

The xmit argument is an address where the library can place an array of function pointer name pairs the
application uses to link exposed library services of the same name. The DCMTransmittedInfo is a structure

446
Copyright © 2010 IEEE all rights reserved.

– 446 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

containing all the EXPOSE function pointer pairs along with a pointer to DPCM functions modelSearch,
delay, slew, and check. Each EXPOSE function pointer pair consists of a string containing the name of the
EXPOSE as it is seen in the subrule and a pointer to that function’s entry point.

dcmRT_BindRule returns a Standard Structure pointer initialized to the context the root rule was loaded
into. This context shall consist of a new space and a new plane. If the rule can not be found or there was an
error in loading, the pointer returned is zero. When the application communicates with the root rule on this
space, it shall supply Standard Structures that are initialized to the same space.

After the root subrule is loaded and its initialization function has been called, the application then does the
following:

a) Uses the DCMTransmittedInfo to initialize its pointers to the DPCM services required.
dcmRT_FindFunction and dcmRT_QuietFindFunction are used to locate the function pointers
associated with each EXPOSE desired.

b) Initializes its modeling function pointer by the named field within the DCMTransmittedInfo for
DPCM functions modelSearch, delay, slew, and check.

10.25.4.3 dcmRT_AppendRule

Table 418 provides information on dcmRT_AppendRule.

Table 418—dcmRT_AppendRule

Function name dcmRT_AppendRule

Arguments Standard Structure pointer, rule name, Rule environment variable name, Table
environment variable name, Control parameter, flags, options, Application services,
Library services

Result return code

Standard
Structure fields

None

C syntax int dcmRT_AppendRule(DCM_STD_STRUCT *context,
 const char *rulename,
 const char *rulePathEnvName,
 const char *tablePathEnvName,
 const char *controlParm,
 unsigned int flags,
 unsigned int options,
 DCM_FunctionTable *externals,
 DCMTransmittedInfo *xmit);

This adds additional DCL subrules to the DPCM during execution. dcmRT_AppendRule does not alter
subrules in the current DPCM.

The context argument is a valid Standard Structure created on the context the subrules are to be added to.

The ruleName argument is a pointer to a string containing the name of the library rule to be added to the
space identified in the context argument.

The rulePathEnvName argument is a pointer to a string containing the name of the environment variable.
The environment variable shall contain the paths to the library modules to be loaded.

The tablePathEnvName argument is a pointer to a string containing the name of the environment variable.
The environment variable shall contain the paths to the library tables to be loaded.

447
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 447 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

The controlParm parameter is a pointer to a string that the added rule receives during the loading process.

The flags argument shall have a value of zero.

The options argument shall have a value of zero.

The externals parameter is a delta array of structures containing the function pointer name pairs the library
uses to link application services to external statements of the same name. The DCM_FunctionTable
structure contains the additional application EXTERNAL function pointer pairs. It is the application’s
responsibility to create this structure. A value of zero/NULL shall mean no additional services are provided.

The xmit argument is an address where the library can place the array of function pointer name pairs the
application uses to link exposed library services of the same name. The DCMTransmittedInfo is a structure
containing all the EXPOSE function pointer pairs along with a pointer to DPCM functions modelSearch,
delay, slew, and check. Each EXPOSE function pointer pair consists of a string containing the name of the
EXPOSE as it is seen in the subrule and as a pointer to that function’s entry point.

This function may only be called following a successful call to dcmRT_BindRule and preceding a
successful call to dcmRT_UnbindRule on the associated space.

The dcmRT_AppendRule function returns an int return code. A value of zero indicates the subrule was
loaded successfully; any other value indicates an error occurred during the load process.

After the additional subrule is loaded and its initialization function has been called, the application then
uses the DCMTransmittedInfo to initialize its pointers to the DPCM services required.
dcmRT_FindFunction and dcmRT_QuietFindFunction are used to locate the function pointers associated
with each additional EXPOSE desired.

10.25.4.4 dcmRT_UnbindRule

Table 419 provides information on dcmRT_Unbind_Rule.

Table 419—dcmRT_UnbindRule

Function name dcmRT_UnbindRule

Arguments Standard Structure pointer

Result None

Standard
Structure fields

None

C syntax int dcmRT_UnbindRule(DCM_STD_STRUCT *context);

This unloads the subrules associated with a context.

The context argument is a Standard Structure associated with the space the subrules are to be unloaded
from. A way to meet this requirement is to use the Standard Structure returned from the dcmRT_BindRule
that loaded these subrules as the context argument to this call.

dcmRT_UnbindRule returns an integer return code with a zero value when the function completes without
error; otherwise, a nonzero value is returned.

10.25.4.5 dcmRT_FindFunction

Table 420 provides information on dcmRT_FindFunction.

448
Copyright © 2010 IEEE all rights reserved.

– 448 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 420—dcmRT_FindFunction

Function name dcmRT_FindFunction

Arguments Standard Structure pointer, EXPOSE function name, Function table

Result None

Standard
Structure fields

None

C syntax DCM_GeneralFunction dcmRT_FindFunction
(const DCM_STD_STRUCT *context,
 char *fcnName, DCM_FunctionTable exposes);

Locates the passed EXPOSE function within the loaded DPCM and returns a pointer to the function.

The context argument is a Standard Structure associated with the space the function table returned by the
dcmRT_BindRule call earlier. A way to meet this requirement is to use the Standard Structure returned
from the dcmRT_BindRule as the context argument to this call; however, any Standard Structure from any
plane on this space is acceptable.

The fcnName argument is a pointer to the requested EXPOSE name.

The exposes argument is the initialization table set returned by the dcmRT_BindRule call.

The result is a pointer to the EXPOSE function within the DPCM.

When the matching function cannot be found, an error message is issued and the returned pointer is zero.

10.25.4.6 dcmRT_FindAppFunction

Table 421 provides information on dcmRT_FindAppFunction.

Table 421—dcmRT_FindAppFunction

Function name dcmRT_FindAppFunction

Arguments Standard Structure pointer EXTERNAL function name

Result None

Standard
Structure fields

None

C syntax int dcmRT_FindAppFunction (const DCM_STD_STRUCT *context,
 char *fcnName);

The context argument identifies the space the test shall be performed on.

Determines whether the application defined the indicated EXTERNAL function. This function returns a
nonzero value if the application did define the function; otherwise, a zero value is returned.

10.25.4.7 dcmRT_QuietFindFunction

Table 422 provides information on dcmRT_QuietFindFunction.

449
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 449 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 422—dcmRT_QuietFindFunction

Function name dcmRT_QuietFindFunction

Arguments Standard Structure pointer EXPOSE function name, Function table

Result None

Standard
Structure fields

None

C syntax DCM_GeneralFunction dcmRT_QuietFindFunction
 (const DCM_STD_STRUCT *context,
 char *fcnName, DCM_FunctionTable *exposes);

This function is the same as dcmRT_FindFunction, except no error is issued if the function is not found

10.25.4.8 dcmRT_MakeRC

Table 423 provides information on dcmRT_MakeRC.

Table 423—dcmRT_MakeRC

Function name dcmRT_MakeRC

Arguments Standard Structure pointer, Message number, Message severity, Error code address

Result complete error code

Standard
Structure fields

None

C syntax int dcmRT_MakeRC(const DCM_STD_STRUCT *context,
 int messageNumber,
 DCM_Message_Severities severity, int *errorCode);

This returns an error code constructed from the message number and severity arguments that does not
conflict with internal DCL reserved codes (such as those returned from dcmRT_HardErrorRC).

The function returns as an integer value from the constructed error code by taking the absolute value of
messageNumber and adding 10 000 (the upper limit of the message numbers reserved for DCL system
itself). The constructed code is also copied to the address specified by the third argument. If severity is zero
or one, then the returned value shall be all zeros; otherwise, the severity byte is used as the most significant
byte of the return value and the constructed error code is use as the least significant bytes.

If the message number contains any bits in the high-order byte, an informative message is issued.

The context argument is any valid Standard Structure.

10.25.4.9 dcmRT_HardErrorRC

Table 424 provides information on dcmRT_HardErrorRC.

450
Copyright © 2010 IEEE all rights reserved.

– 450 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 424—dcmRT_HardErrorRC

Function name dcmRT_HardErrorRC

Arguments Standard Structure pointer, Message severity

Result None

Standard
Structure fields

None

C syntax int dcmHardErrorRC(const DCM_STD_STRUCT * context,
 DCM_Message_Severities severity);

This returns a return code constructed from the message severity argument. If the message severity is
inform or warning (see Table 101), the return code is 0. Otherwise, the return code has the passed message
severity with a message number of 0x00EEEEEE.

The context argument is any valid Standard Structure.

10.25.4.10 dcmRT_SetMessageIntercept

Table 425 provides information on dcmRT_SetMessageIntercept.

Table 425—dcmRT_SetMessageIntercept

Function name dcmRT_SetMessageIntercept

Arguments Standard Structure pointer, Application-defined function for printing messages

Result None

Standard
Structure fields

None

C syntax DCM_Message_Intercept_Type dcmRT_SetMessageIntercept
(const DCM_STD_STRUCT * context,
 DCM_Message_Intercept_Type msgfn);

This sets the function pointer to be used to print messages generated by the DPCM or library. This function
may be called at any time. This function is a pointer to the previous message intercept function or is NULL
if there was no prior function.

For consistent message handling, the application shall set the message handler before it loads a DPCM.
Message handlers can be changed at any time the application chooses; however, if a change is done after
the DPCM is loaded, only those messages occurring after the change are directed to the new handler.
Messages prior to that shall be handled in a default manner as determined by DCL (if the message handler
was not set) or as dictated by the previous call to dcmSetMessageIntercept.

The context argument identifies the space this message intercept function shall be applied to.

10.25.4.11 dcmRT_IssueMessage

Table 426 provides information on dcmRT_IssueMessage.

451
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 451 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 426—dcmRT_IssueMessage

Function name dcmRT_IssueMessage

Arguments Standard Structure pointer, Message number, Message severity, Message format string
[format arguments]

Result None

Standard
Structure fields

None

C syntax int dcmRT_IssueMessage
(const DCM_STD_STRUCT *context,
 int msgNum,
 DCM_Message_Severities msgSev,
 char* msgFormat [, ...]);

This prints a message using the current message function in effect. This function assembles a complete
DCL message from the severity, message number, format, and format arguments. dcmRT_IssueMessage
can be called by an application as well as by the DPCM (inside INTERNAL or in-line C code) to generate a
DCL-style message. Use this function, instead of direct calls to printf() or fprintf(), to ensure proper
ordering of both DPCM and application messages in the same output stream (see 10.25.4.10).

This function takes a minimum of four arguments. The first is the DCM_STD_STRUCT pointer. This
argument contains the context this message is to be associated with. The message number and severity
arguments shall follow the interface conventions defined in integer return code. The fourth argument is a
format string thar follows the conventions of the C printf function. The remaining arguments, if any, fulfill
the conversion specifications identified in the format string.

This function returns the same integer value as dcmRT_MakeRC would if it were passed the same severity
and message number (see 10.25.4.8).

This function shall not buffer any messages.

10.25.4.12 dcmRT_new_DCM_STD_STRUCT

Table 427 provides information on dcmRT_new_DCM_STD_STRUCT.

Table 427—dcmRT_new_DCM_STD_STRUCT

Function name dcmRT_new_DCM_STD_STRUCT

Arguments Standard Structure pointer

Result None

Standard
Structure fields

None

C syntax DCM_STD_STRUCT *dcmRT_new_STD_STRUCT
 (const DCM_STD_STRUCT * context);

This is a constructor function to allocate and properly initialize a Standard Structure. The newly allocated
Standard Structure shall be associated with the same context as the Standard Structure argument.

10.25.4.13 dcmRT_delete_DCM_STD_STRUCT

Table 428 provides information on dcmRT_delete_DCM_STD_STRUCT.

452
Copyright © 2010 IEEE all rights reserved.

– 452 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 428—dcmRT_delete_DCM_STD_STRUCT

Function name dcmRT_delete_DCM_STD_STRUCT

Arguments Standard Structure pointer

Result None

Standard
Structure fields

None

C syntax void dcmRT_delete_DCM_STD_STRUCT
 (DCM_STD_STRUCT *std_struct);

This is a destructor function to free a Standard Structure.

10.25.4.14 dcmRT_setTechnology

Table 429 provides information on dcmRT_setTechnology.

Table 429—dcmRT_setTechnology

Function name dcmRT_setTechnology

Arguments Standard Structure pointer, Pointer to technology name

Result None

Standard
Structure fields

None

C syntax const char* dcmRT_setTechnology
 (DCM_STD_STRUCT *std_struct, const char *tech_name);

A DPCM can contain one or more technologies. If no technology was specified, then a DPCM contains the
GENERIC technology. If a single technology was specified, then the DPCM contains that specified
technology. If multiple technologies were specified, then the DPCM contains the GENERIC technology (at
least for the root subrule) as well as the other specified technologies.

At any time, there is a current technology set in the Standard Structure; the DPCM as a whole has no notion
of what technology is considered current. A newly created Standard Structure selects a technology
according to the following rules:

a) If the DPCM has no technology or has a single technology, that technology is selected.

b) If the DPCM has multiple technologies, the first technology loaded is selected.

An application can change the technology selected by a Standard Structure by calling either this function
(dcmRT_setTechnology) or dcmRT__takeMappingOfNugget (see 10.25.4.19) to modify the passed
Standard Structure to select the specified technology.

An application can switch between technologies by either using a single Standard Structure and calling
dcmRT_setTechnology or dcmRT_takeMappingOfNugget or maintaining multiple Standard Structures,
each of which has been modified to select a different technology, and choosing the appropriate structure to
pass across the PI.

10.25.4.15 dcmRT_getTechnology

Table 430 provides information on dcmRT_getTechnology.

453
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 453 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 430—dcmRT_getTechnology

Function name dcmRT_getTechnology

Arguments Standard Structure pointer

Result None

Standard
Structure fields

None

C syntax const char* dcmRT_getTechnology
(const DCM_STD_STRUCT *std_struct);

This returns the technology name of the Standard Structure in use and returns a 0 value if completion is
unsuccessful.

NOTE—Do not free the result string as it is constant.

10.25.4.16 dcmRT_getAllTechs

Table 431 provides information on dcmRT_getAllTechs.

Table 431—dcmRT_getAllTechs

Function name dcmRT_getAllTechs

Arguments Standard Structure pointer

Result None

Standard
Structure fields

None

C syntax char ** dcmRT_getAllTechs
 (const DCM_STD_STRUCT *std_struct);

This returns an array of all technologies named within the current DPCM and Returns a 0 value if
completion is unsuccessful.

NOTE—Do not free the result within the calling application; use dcmRT_FreeAllTechs instead.

10.25.4.17 dcmRT_freeAllTechs

Table 432 provides information on dcmRT_freeAllTechs.

Table 432—dcmRT_freeAllTechs

Function name dcmRT_freeAllTechs

Arguments Standard Structure pointer, Array pointer

Result None

Standard
Structure fields

None

C syntax void dcmRT_freeAllTechs
 (const DCM_STD_STRUCT *std_struct, char **techArray);

This frees storage occupied by the string array returned by a call to dcmRT_getAllTechs. Although the
first argument is required to be a Standard Structure, this function ignores the structure’s contents. This
function is passed a pointer to the pointer array to be freed.

454
Copyright © 2010 IEEE all rights reserved.

– 454 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.25.4.18 dcmRT_isGeneric

Table 433 provides information on dcmRT_isGeneric.

Table 433—dcmRT_isGeneric

Function name dcmRT_isGeneric

Arguments Standard Structure pointer

Result None

Standard
Structure fields

None

C syntax int dcmRT_isGeneric(const DCM_STD_STRUCT *std_struct);

This returns whether or not the Standard Structure is currently pointing to the generic technology. A
nonzero return value indicates the Standard Structure is pointing to the generic technology. A zero return
value indicates the Standard Structure is not pointing to the generic technology.

10.25.4.19 dcmRT_takeMappingOfNugget

Table 434 provides information on dcmRT_takeMappingOfNugget.

Table 434—dcmRT_takeMappingOfNugget

Function name dcmRT_takeMappingOfNugget

Arguments Standard Structure pointer, Technology nugget

Result None

Standard
Structure fields

None

C syntax int dcmRT_takeMappingOfNugget
 (DCM_STD_STRUCT *std_struct,
 DCM_TechFamilyNugget *tech_nugget);

This sets the Standard Structure argument to use the technology for which tech_nugget was computed
(using dcmRT_mapNugget).

A nonzero return code indicates the function did not successfully complete. A zero return code indicates
success.

10.25.4.20 dcmRT_registerUserObject

Table 435 provides information on dcmRT_registerUserObject.

Table 435—dcmRT_registerUserObject

Function name dcmRT_registerUserObject

Arguments Standard Structure pointer, Pointer to application structure to be registered

Result None

Standard
Structure fields

None

C syntax int dcmRT_registerUserObject (DCM_STD_STRUCT *std_struct,
 void *app_struct_to_register);

This registers an application-specific data structure with the passed Standard Structure. A registered user

455
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 455 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

object is a structure that is application-private with the provision the first member of that structure is a
function pointer to the destructor function, which takes as its only argument the pointer to the registered
user object. This registered structure can be deleted later by the application (see 10.25.4.21). This function
is passed by a pointer to the application structure to be registered. A nonzero return code indicates the
function did not successfully complete. A zero return code indicates successful registration.

10.25.4.21 dcmRT_DeleteRegisteredUserObjects

Table 436 provides information on dcmRT_DeleteRegisteredUserObjects.

Table 436—dcmRT_DeleteRegisteredUserObjects

Function name dcmRT_DeleteRegisteredUserObjects

Arguments Standard Structure pointer

Result None

Standard
Structure fields

None

C syntax void dcmRT_DeleteRegisteredUserObjects
(DCM_STD_STRUCT *std_struct);

This deletes all the registered user objects that were registered to the specified Standard Structure.

10.25.4.22 dcmRT_DeleteOneUserObject

Table 437 provides information on dcmRT_DeleteOneUserObject.

Table 437—dcmRT_DeleteOneUserObject

Function name dcmRT_DeleteOneUserObject

Arguments Standard Structure pointer, Pointer to object to be deleted

Result None

Standard
Structure fields

None

C syntax void dcmRT_DeleteOneUserObject
(DCM_STD_STRUCT *std_struct, void *userObject);

This locates and deletes the user object contained within the specified Standard Structure. See 10.25.4.21
for a description of registered user object.

10.26 Calculation functions

These predefined functions allow the application to request basic functions from the DPCM. These
functions are used by an application to call for the delay, slew, and timing checks of a cell, as well as cell
modeling.

10.26.1 delay

Table 438 provides information on delay.

456
Copyright © 2010 IEEE all rights reserved.

– 456 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 438—delay

Function name delay

Arguments Standard Structure pointer

Result DCM_DELAY_REC pointer

Standard
Structure fields

CellName, fromPoint, toPoint, calcMode, slew.early, slew.late, block, sourceEdge,
sinkEdge, sourceMode, sinkMode, pathData (timing arc or pin specific), cellData
(timing)

C syntax typedef struct {
 float early, late;
} DCM_DELAY_REC;

int delay(const DCM_STD_STRUCT *std_struct,
 DCM_DELAY_REC *delay_value);

This function is called by the application to calculate the delay for a modeled arc. the values are returned
through a pointer to DCM_DELAY_REC, which is a structure containing two floats, one for early delay and
one for late delay.

During model elaboration (see 10.27.1), the DPCM passes a PATH_DATA pointer to the application for
each timing arc. An application shall save the PATH_DATA pointer values and put the appropriate one into
the Standard Structure before calling the DPCM to calculate a delay value.

The DPCM recognizes a PATH_DATA pointer value of 0 (zero) as a special indicator the DPCM shall
evaluate the default DELAY function (identified by the DEFAULT modifier). An error occurs if the
PATH_DATA pointer is 0 and no such DEFAULT function was specified within a DCL subrule of the
DPCM.

This function is not called explicitly by name but is accessed via a pointer supplied in the
DCMTransmittedInfo structure as a result of the first call to the subrule returned by dcmRT_BindRule
(see 10.25.4.2).

10.26.2 slew

Table 439 provides information on slew.

Table 439—slew

Function name slew

Arguments Standard Structure pointer

Result DCM_SLEW_REC pointer

Standard
Structure fields

CellName, fromPoint, toPoint, calcMode, slew.early, slew.late, block, sourceEdge,
sinkEdge, sourceMode, sinkMode, pathData (timing arc or pin specific), cellData
(timing)

C syntax typedef struct {
 float early, late;
} DCM_SLEW_REC;

int slew (const DCM_STD_STRUCT *std_struct,
 DCM_SLEW_REC *slew_value);

This function is called by the application to calculate the slew for a modeled arc. The values are returned
through a pointer to DCM_SLEW_REC, which is a structure containing two floats, one for early slew and
one for late slew.

457
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 457 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

During model elaboration (see 10.27.1), the DPCM passes a PATH_DATA pointer to the application for
each timing arc. The application shall save the PATH_DATA pointer values and put the appropriate one into
the Standard Structure before calling the DPCM to calculate a slew value.

The DPCM recognizes a PATH_DATA pointer value of 0 (zero) as a special indicator; the DPCM shall
evaluate the default SLEW function (identified by the DEFAULT modifier). An error occurs if the
PATH_DATA pointer is 0 and no such DEFAULT function was specified within a DCL subrule of the
DPCM.

This function is not called explicitly by name but is accessed via a pointer supplied in the
DCMTransmittedInfo structure as a result of the first call to the subrule returned by dcmRT_BindRule (see
10.25.4.2).

10.26.3 check

Table 440 provides information on check.

Table 440—check

Function name check

Arguments Standard Structure pointer

Result DCM_CHECK_REC pointer

Standard
Structure fields

CellName, fromPoint, toPoint, calcMode, slew.early, slew.late, sourceEdge, sinkEdge,
sourceMode, sinkMode, pathData (timing-arc-specific), cellData (timing)

C syntax typedef struct {
 float bias;
} DCM_CHECK_REC;

int check (const DCM_STD_STRUCT *std_struct,
 DCM_CHECK_REC *test_bias);

This function is called by the application to compute the timing offset between signals. The bias value
returned represents the difference in arrival times between the specified signal (or data) pin and the
specified reference (or clock) pin.

This function is called by the application to perform timing checks (time offset between signals) for a
modeled test arc. The function result, conveyed through a pointer to the DCM_CHECK_REC, is a float
containing the bias, or offset, for the requested timing check.

The slew, edge, and mode fields of the DCM_STD_STRUCT are the same locations as those for the delay
and slew functions, but the interpretations are different (see 10.12.1).

Bias values represent the minimum time between the reference and the signal. A bias may be computed for
all the different types of tests. For example, a positive bias value for a hold test represents the minimum
time the data shall remain stable after the clock has transitioned, whereas a positive bias value for a setup
test represents the minimum time the data shall remain stable before the clock transitions (see Figure 16).
Setup and hold tests assume the reference is a clock and the signal is the data.

This function is not called explicitly by name, but is accessed via a pointer supplied in the
DCMTransmittedInfo structure as a result of the first call to the subrule returned by dcmRT_BindRule.

Clock separation implies the reference and signal edges are two different clocks, as shown in Figure 17.

458
Copyright © 2010 IEEE all rights reserved.

– 458 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Clock pulse width implies the signal and reference are the same clock but different edges (see Figure 18).

For clock pulse width checking, where the checking is a function of the rising and falling slews, the rising
slew is passed within the EARLY_SLEW and the falling slew is passed within the LATE_SLEW.

459
Copyright © 2010 IEEE all rights reserved.

Figure 16—Clock separation

SIGNAL(data)

REFERENCE (clock)

Separation test types

Bias value
(cst, dst)

Reference edge

Figure 17—Bias calculation

SIGNAL(data)

REFERENCE (clock)

Setup and hold test types (setup, hold)

Bias value
+hold
-setup

Bias value
-hold
+setup

Reference edge

IEC 61523-1:2012
IEEE Std 1481-2009 – 459 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.27 Modeling functions

The application initiates the modeling process with a call to modelSearch. This call results in multiple
callbacks to the application, which convey the model’s structure from DPCM to the application. These
functions allow the application to remember the characteristics of each cell and not have to recompute them
each time a particular cell is encountered during processing. All these modeling callback functions shall be
implemented by any standards-compliant application. The modeling functions return the number 0 (zero)
on success and nonzero on error or failure.

10.27.1 modelSearch

Table 441 provides information on modelSearch.

Table 441—modelSearch

Function name modelSearch

Arguments Standard Structure pointer

Result None

Standard
Structure fields

block, CellName, inputPins, outputPins, inputPinCount, outputPinCount, nodes,
nodeCount

C syntax int modelSearch(DCM_STD_STRUCT *std_struct);

Called by the application for each instance of a cell that has to be modeled. Given the flexibility of the DCL
language, models may depend on instance-specific data. If a cell’s model does not depend on instance-
specific data, an application can elaborate that model once and share the results among all instances of that
cell. If a cell’s model does depend on instance-specific data, the application shall elaborate that model for
each instance. An application can safely use models using either of the following two approaches:

a) Choose to always elaborate (i.e., call modelSearch) models for every instance.

b) Instrument all “callback” PI functions (those application functions the DPCM can call) so the
application can determine—after modelSearch returns control to the application—which
functions (if any) were called during the computations that are part of modelSearch processing.
Given that information, the application can then decide whether the particular model elaboration
can be shared with other instances of the same cell.

modelSearch causes callbacks to the application that describe the behavior for the specified cell. The
internal timing arcs are constructed and stored within the application through the DPCM callbacks of

460
Copyright © 2010 IEEE all rights reserved.

Figure 18—Clock pulse width

SIGNAL&REFERENCE

Pulse Width test types

Bias value (cpw, dpw)

– 460 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

necessary modeling functions for paths and their propagation properties (see 10.27). The application shall
save this information because there is no other mechanism for conveying model structure to the application.

modelSearch enables the DPCM to “instruct” the application to model the requirements of the technology
cell. The DPCM translates DCL mode operators into enumerations passed to the application through calls
to newDelayMatrixRow. Each call to newDelayMatrixRow transfers the edge at the start of the timing
arc, the corresponding edge at the output, the mode of propagation at the start of the timing arc (for that
edge), and the mode of propagation at the end of the timing arc for its corresponding edge.

The DPCM may generate multiple calls to newDelayMatrixRow and shall make enough calls to
enumerate all of the edges and modes propagated. After enumerating all edge propagations, the DPCM
begins enumerating the timing arcs that have these edge propagations. The three different types of timing
arcs that can be generated are as follows:

a) Within in a cell

b) From a cell’s output to all receivers it drives

c) From all sources to a cell’s input

Timing arcs that are within a cell, or with a known start and end point, are identified through calls to
newPropagateSegment. Timing arcs that have only a known starting point are identified by calls to
newNetSourcePropagateSegments. Timing arcs with only a known ending point are identified by calls
to newNetSinkPropagateSegments to support the calls for delay, slew, or check.

For newPropagateSegment calls, the application generates one segment that spans the known start and
end points. For newNetSourcePropagateSegment calls, the application is expected to connect the cell’s
output pin to all receivers on the interconnect. For newNetSinkPropagateSegments calls, the
application is expected to generate timing arcs from all drivers on the interconnect.

The general sequence of events is initiated by calling modelSearch on a particular cell. The DPCM then
calls the application back via sequences of newDelayMatrixRow, followed by sequences of one of the
propagate segment calls, depending on the type of function. DCL PATH and BUS statements call
newPropagateSegment. DCL OUTPUT statements call newNetSourcePropagateSegments. As the
application fulfills the requests from the DPCM, it creates a complete timing graph for both the intercell
and intracell timing arcs.

The DPCM describes test segments in a manner similar to timing arcs. First, the DPCM calls back the
application through newTestMatrixRow to establish test properties. These properties include the edge of
the reference, the edge of the signal, the test mode for the signal, and the test mode for the reference. There
may be more than one of these calls in a sequence before the DPCM has completely described all the test
properties. After completing the test property description, the DPCM continues calling the application back,
indicating the pins that shall be tested with these properties. The DPCM calls back the application through
newAltTestSegment for each signal and reference point to be tested.

This function is not called explicitly by name but is accessed via a pointer supplied in the
DCMTransmittedInfo structure as a result of the first call to the subrule returned by dcmRT_BindRule.

Unless the application can define internal timing points understood by the MODELPROC, the Standard
Structure fields NODES and NODE_COUNT shall be set to 0 (zero).

The inputPins field of the Standard Structure shall contain handles for all input and bidirectional pins that
are used by the block identified in the Standard Structure.

The outputPins field of the Standard Structure shall contain handles for all output and bidirectional pins
that are used by the block identified in the Standard Structure.

461
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 461 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

The application shall be responsible for keeping the input and output parts of a bidirectional pin separate
and distinguishable. The two parts shall have their own unique pin handles, so they can be viewed as
separate pins by the library. The library shall be able to associate a unique pathData pointer with each of
these parts, and the application shall store such a pointer with the appropriate part when requested to do so
by the library.

10.27.2 Mode operators

Mode operators describe propagation and test properties. For calls to newDelayMatrixRow and
newTestMatrixRow, the mode operator is not passed to the application. Instead, the mode operators are
split into two enumerations, each representing the starting and ending point of the timing arc shown in
Table 442. newTestMatrixRow decomposes the mode operator <-> into two calls, one for the late mode
operator (<-) and one for the early mode operator (->). newTestMatrixRow shall not support the
operators <-X-> and - >X<-.

Table 442—Mode propagation operators

Mode
operator

Timing arc starting
point

Timing arc end
point

Description

<- DCM_LateMode DCM_SameMode Propagate only late mode times.

-> DCM_EarlyMode DCM_SameMode Propagate only early times.

<-> DCM_BothModes DCM_SameMode Propagate both early and late times.

<-X-> DCM_Late DCM_Early Propagate earliest arriving late mode edge

->X<- DCM_Early DCM_Late Propagate latest arriving early mode edge

The application shall communicate the mode of operation for delay, slew, and check calculations by putting
an enumeration representing the operations requested into the Standard Structure. The mode enumerations
are presented to the DPCM as the mode for the early mode evaluation, the mode for the late mode
evaluation, and the mode for the check evaluation. The enumeration values are the same for the application
communication to the DPCM, but the legal combinations are different (see 10.27.4 .

The mode operators for delay and slew are shown in Table 443.

Table 443—Mode computation operators for delay and slew

Mode
operator

sourceMode/EARLY_MODE sinkMode/LATE_MODE Description

<- DCM_LateMode DCM_LateMode Compute late mode values;
short circuiting the early
mode calculations is
permitted.

-> DCM_EarlyMode DCM_EarlyMode Compute early values; the
late mode value may be short
circuited.

<-> DCM_EarlyModes DCM_LateMode Compute both early and late
values.

<-X-> DCM_EarlyMode DCM_EarlyMode Compute earliest arriving late
mode edge and the earliest
arriving early mode edge

->X<- DCM_LateMode DCM_LateMode Compute latest arriving early
mode edge and the latest
arriving late mode edge

462
Copyright © 2010 IEEE all rights reserved.

– 462 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

The application shall only be required to communicate one value of mode for calls to check. The legal
combinations of mode for test are in Table 444

Table 444—Mode operator enumerators for check

Mode operator sourceMode/TEST_MODE Description

<- DCM_LateMode Compute late mode bias value a.

-> DCM_EarlyMode Compute early mode bias value.

10.27.3 Arrival time merging

Static timing dictates when two signals converge at a point, a data reduction can occur. To achieve this, at
each convergence point converging late mode edges, the application retains the information associated with
the latest arriving edge. An analogous case exists for the early mode edges; in this situation, the application
retains the information associated with the earliest edge. In the situation where both modes are propagated,
but in the complement mode (such as <-X->), the beginning mode propagation indicates the propagation to
be altered during convergence.

The lateMode, complementMode (<-X->) instructs the application to do the following:

— Propagate both mode edges

— Reduce the early mode edges by keeping the earliest arriving early mode edges of the same type

— Reduce the late mode edges by keeping the earliest of the late mode edges of the same type.

— The earlyMode, complementMode (->X<-) instructs the application to do the following:

— Propagate both mode edges

— Reduce the late mode edges by keeping the latest arriving late mode edges of the same type

— Reduce the early mode edges by keeping the latest arriving early mode edges of the same type

10.27.4 Edge propagation communication to the application

The DPCM represents edge propagation as a pair of enumerations. Table 445 is a representative sampling
of enumeration pairs that can exist. The enumeration pairs are the same for test segments as they are for
propagation segments. Also, the following is true:

a) Whenever the ending edge specification is identical to the starting edge and the edge type
is either RISE or FALL, DCM_SameEdge shall be passed to the application for the ending edge.

b) Whenever the ending edge specification is identical to the starting edge and that edge is
BOTH, DCM_BothEdges shall be passed to the application for the ending edge.

c) The ending edge scalar shall always be passed as DCM_SameMode for mode operators
->, <-, and <->.

463
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 463 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 445—Edge propagation enumeration pairs

Propagation

Starting
enumeration/

Reference
enumeration

Ending enumeration/

Signal enumeration
Meaning

DCM_RisingEdge DCM_SameEdge Rise to Rise

DCM_FallingEdge DCM_SameEdge Fall to Fall

DCM_BothEdge DCM_SameEdge

Rise to Rise
and

Fall to Fall

DCM_RisingEdge DCM_FallingEdge Rise to Fall

DCM_FallingEdge DCM_RisingEdge Fall to Rise

DCM_BothEdge DCM_ComplementEdge

Fall to Rise
and

Rise to Fall

DCM_BothEdges DCM_BothEdges

Both to Both

DCM_RisingEdge DCM_Terminate Rise to

464
Copyright © 2010 IEEE all rights reserved.

X

– 464 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Propagation

Starting
enumeration/

Reference
enumeration

Ending enumeration/

Signal enumeration
Meaning

Terminate

X DCM_FallingEdge DCM_Terminate
Fall to
Terminate

DCM_RisingEdge

DCM_FallingEdge

DCM_Terminate

DCM_Terminate

Rise to
Terminate and

Fall to
Terminate

DCM_RisingEdge DCM_OneToZ
Rise to
One_To_Z

Zero to Z DCM_FallingEdge DCM_ZeroToZ
Fall to
Zero_To_Z

DCM_RisingEdge DCM_ZeroToZ
Rise to
Zero_To_Z

DCM_FallingEdge DCM_OneToZ
Fall to
One_To_Z

DCM_ZtoOne DCM_RisingEdge
Z_to_One to
Rise

DCM_ZtoOne DCM_FallingEdge
Z_to_One to
Fall

DCM_ZtoZero DCM_RisingEdge
Z_to_Zero to
Rise

465
Copyright © 2010 IEEE all rights reserved.

X

X

one to Z

Zero to Z

Z to One

Z to One

Z to Zero

One to Z

IEC 61523-1:2012
IEEE Std 1481-2009 – 465 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Propagation

Starting
enumeration/

Reference
enumeration

Ending enumeration/

Signal enumeration
Meaning

DCM_ZtoZero DCM_FallingEdge
Z_to_Zero to
Fall

DCM_BothEdges DCM_RisingEdge
Both to Rise

DCM_RisingEdge DCM_BothEdges
Rise to Both

DCM_FallingEdge DCM_BothEdges
Fall to Both

DCM_Terminate DCM_RisingEdge
Terminate to
Rise

DCM_Terminate DCM_FallingEdge
Terminate to
Fall

DCM_Terminate DCM_BothEdges

Terminate to
Both

DCM_BothEdges DCM_Terminate

Both to
Terminate

466
Copyright © 2010 IEEE all rights reserved.

Z to Zero

Term

Term

Term

Term

– 466 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Propagation

Starting
enumeration/

Reference
enumeration

Ending enumeration/

Signal enumeration
Meaning

DCM_RisingEdge DCM_Terminate
Rise to
Terminate

DCM_FallingEdge DCM_Terminate
Fall to
Terminate

10.27.5 Edge propagation communication to the DPCM

Although the DPCM passes edge enumerations that represent more than one edge pair, the application shall
limit itself to single edge combinations. The application shall break up complex edges (such as BOTH) into
component parts. Table 446 is a representative sampling of the enumeration pairs the are allowed.

Table 446—Edge propagation communication with DPCM

Edge pair
Source edge/

reference edge
Sink edge/
signal edge

Rising Input Rising Output DCM_RisingEdge DCM_RisingEdge

Rising Input Falling Output DCM_RisingEdge DCM_FallingEdge

Falling Input Falling Output DCM_FallingEdge DCM_FallingEdge

Falling Input Rising Output DCM_FallingEdge DCM_RisingEdge

Falling Input ZeroToZ Output DCM_FallingEdge DCM_ZeroToZ

Falling Input OneToZ Output DCM_FallingEdge DCM_OneToZ

Rising Input ZeroToZ Output DCM_RisingEdge DCM_ZeroToZ

Rising Input OneToZ Output DCM_RisingEdge DCM_OneToZ

Falling Input ZtoZero Output DCM_FallingEdge DCM_ZtoZero

Rising Input ZtoZero Output DCM_RisingEdge DCM_ZtoZero

Falling Input ZtoOne Output DCM_FallingEdge DCM_ZtoOne

Rising Input ZtoOne Output DCM_RisingEdge DCM_ZtoOne

For edge propagation enumeration passed into the DPCM, the application shall use the exact edge (same
and complementEdge(s) are not supported).

10.27.6 newTimingPin

Table 447 provides information on newTimingPin.

467
Copyright © 2010 IEEE all rights reserved.

Term

Term

IEC 61523-1:2012
IEEE Std 1481-2009 – 467 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 447—newTimingPin

Function name newTimingPin

Arguments Standard Structure pointer, Pointer to node name

Result Pointer to application’s node structure

Standard
Structure fields

pathData (timing)

C syntax int newTimingPin (DCM_STD_STRUCT *std_struct,
 DCM_HANDLE *appstruct, char *nodename);

The DPCM calls newTimingPin to create an internal node for the cell being modeled for timing. A pointer
to the name of the internal node (nodename) is passed to the application.

The application returns a pointer to its internal pin structure (appstruct) whose first field shall be a char
* that points to a string representing the pin name.

Names for internal cell nodes are unique only within the life span of a single call to a modelSearch (see
odelSearch 10.27.1).

— If the pathData field in the Standard Structure has a value other than zero (0), then the application
shall record that value and associate it with this internal node for subsequent use.

Multiple calls of this function for the same node shall constitute an error.

10.27.7 newDelayMatrixRow

Table 448 provides information on newDelayMatrixRow.

Table 448—newDelayMatrixRow

Function name newDelayMatrixRow

Arguments Standard Structure pointer, Signal edge type for beginning edge, Propagation mode for
beginning edge, Signal edge type for ending edge, Propagation mode for ending edge

Result Pointer to application structure for the delay matrix

Standard
Structure fields

None

C syntax int newDelayMatrixRow (DCM_STD_STRUCT *std_struct,
 DCM_HANDLE *delayMatrix,
 DCM_EdgeTypes edge1,
 DCM_PropagationTypes mode1,
 DCM_EdgeTypes edge2,
 DCM_PropagationTypes mode2);

The DPCM calls newDelayMatrixRow to describe how one of the edges of the signal shall propagate
across the timing arc. A timing arc may propagate multiple edges. newDelayMatrixRow is called once for
each edge.

Initially, delayMatrix is 0; it signals to the application that it needs to create the first delay matrix row. The
application creates its appropriate structure and returns the pointer to the DPCM. Subsequent calls to
newDelayMatrixRow shall reuse this pointer, which allows the application to add propagation information
about the arc.

The resulting collection of propagation information is supplied as the delayMatrix parameter to the
newNetSinkPropagateSegments, newNetSourcePropagateSegments, or newPropagateSegments functions.

468
Copyright © 2010 IEEE all rights reserved.

– 468 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

The same delay matrix may be reused for any number of arcs created by the same DCL modeling
statement.

Example

Consider the following DCL PATH statement:
PATH(*): FROM(A) TO(Y)
PROPAGATE(RISE->RISE & FALL<-FALL)....;

This example results in the following:
DCM_Handle dpcmDelayHandle = 0; ...
newDelayMatrixRow(const std_struct,
&dpcmDelayHandle,
DCM_RisingEdge,
DCM_EarlyMode,
DCM_SameEdge,
DCM_SameMode); ...
newDelayMatrixRow(const std_struct,
&dpcmDelayHandle,
DCM_FallingEdge,
DCM_LateMode,
DCM_SameEdge,
DCM_SameMode); ...

10.27.8 newNetSinkPropagateSegments

Table 449 provides information on newNetSinkPropagateSegments.

Table 449—newNetSinkPropagateSegments

Function name newNetSinkPropagateSegments

Arguments Standard Structure pointer, Node (sink) pin pointer, Import pin pointer, Delay matrix
(created by newDelayMatrixRow)

Result None

Standard
Structure fields

pathData (power or timing pin-specific)

C syntax int newNetSinkPropagateSegments
(DCM_STD_STRUCT *std_struct,
 DCM_HANDLE importPin,
 DCM_HANDLE sinkPin,
 DCM_HANDLE delayMatrix);

The DPCM calls newNetSinkPropagateSegments to request the application find all sources on the net
to which the passed import pin is connected and build propagation arcs from these sources to the passed
node (sink) pin. That sink pin may or may not be a part of the physical interconnect to which the source pin
is connected. Arcs are to be generated from every source pin except the import pin argument. The
propagation characteristics are described by the delay matrix created by previous newDelayMatrixRow
calls. The clkflg value is made available to the application at pathData->pcdb->clkflg.

Calls to this function result from one of two different MODELPROC functions, as follows:

a) An INPUT function generates calls where the node (sink) pin and the import pin arguments are the
same pointer.

b) The NODE clause (in a DO function) generates calls with the import pin set to the pin designated

469
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 469 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

by the associated IMPORT clause and the node (sink) pin set to the new NODE being defined.

c) When the sinkPin and importPin arguments identify the same pin, the pathData value supplied in
the Standard Structure shall be associated with this pin. If this pathData value is nonzero, the
application shall record it for subsequent use. If, under these circumstances, the delayMatrix
argument has a value of zero (0), the application shall perform no other actions in response to this
call. This can result from an INPUT statement without a propagation sequence.

d) When the sinkPin and importPin arguments are different, the pathData field in the Standard
Structure shall be associated with the node identified by sinkPin. Under these circumstances, the
delayMatrix argument shall have a nonzero value. The node so identified shall have already been
created via a call by the library to newTimingPin() (see 10.27.6). If a pathData value for the node
has been recorded by the application in response to that call and a nonzero pathData value is
supplied with this call, then these two values shall be the same. If no pathData value for the node
has been recorded previously and a nonzero value is supplied with this call, then the application
shall record this value. If a pathData value of zero (0) is supplied with this call, then it shall be
ignored by the application.

e) It shall be an error for the library to provide different pathData values in multiple calls to this
function made for the same pin or node.

NOTE—This situation can arise, for example, in ECL and other bipolar technologies where wired outputs are allowed
to alter the state of a storage element.

Both of these are demonstrated in Figure 19 and Figure 20.

470
Copyright © 2010 IEEE all rights reserved.

Figure 19—Sample MODELPROC results

Arc 1

Arc 2

Arc 3

B0

Import pin = sink pin

a) Generated by INPUT(B0)...
A0Z1N1

Arc 2

Arc 1

Import Pinnode(sink)

b) Generated by NODE(n1) IMPORT (Z1)...
 (A0 not included since it is an input pin,
 only source pins on the net to be used)

– 470 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.27.9 newNetSourcePropagateSegments

Table 450 provides information on newNetSourcePropagateSegments.

Table 450—newNetSourcePropagateSegments

Function name newNetSourcePropagateSegments

Arguments Standard Structure pointer, node (source) pin pointer, export pin pointer, Delay matrix
(created by newDelayMatrixRow)

Result None

Standard
Structure fields

pathData (power or timing pin-specific)

C syntax int newNetSourcePropagateSegments
(DCM_STD_STRUCT *std_struct,
 DCM_HANDLE sourcePin,
 DCM_HANDLE exportPin,
 DCM_HANDLE delayMatrix);

The DPCM calls newNetSourcePropagateSegments to request the application find all sinks on the net
where the passed export pin is connected and build propagation arcs to these sinks from the passed node
(source) pin. That source pin may or may not be a part of the physical interconnect to which the export pin
is connected. Arcs are to be generated to every sink pin except the export pin argument. The propagation
characteristics are described by the delay matrix created by previous newDelayMatrixRow calls.

Calls to this function result from one of two different MODELPROC functions, as follows:

a) An OUTPUT function generates calls where the export pin and the node (source) pin arguments
are the same pointer.

b) The NODE clause (in a DO function) generates calls with the export pin set to the pin designated
by the associated EXPORT clause and the node (source) pin set to the new NODE being defined.

471
Copyright © 2010 IEEE all rights reserved.

Figure 20—Additional MODELPROC results

a) Generated by OUTPUT(Q0)... N1

A0

b) Generated by NODE(N1) EXPORT (Z1)...
 (A0 not included since it is an output pin,
 only sink pins on the net to be used)

Z1

Arc 1

Arc 2
Q0

node(source)export pin

IEC 61523-1:2012
IEEE Std 1481-2009 – 471 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

c) When the sourcePin and exportPin arguments identify the same pin, the pathData value supplied
in the Standard Structure shall be associated with this pin. If this pathData value is nonzero, then
the application shall record it for subsequent use. If, under these circumstances, the delayMatrix
argument has a value of zero (0), the application shall perform no other actions in response to this
call. This can result from an OUTPUT statement without a propagation sequence.

d) When the sourcePin and exportPin arguments are different, the pathData field in the Standard
Structure shall be associated with the node identified by sourcePin. Under these circumstances,
the delayMatrix argument shall have a nonzero value. The node so identified shall have already
been created via a call by the library to newTimingPin() (see 10.27.6). If a pathData value for
the node has been recorded by the application in response to that call and a non-zero pathData
value is supplied with this call, then these two values shall be the same. If no pathData value for
the node has been recorded previously and a nonzero value is supplied with this call, then the
application shall record this value. If a pathData value of zero (0) is supplied with this call, it shall
be ignored by the application.

e) It shall be an error for the library to provide different pathData values in multiple calls to this
function made for the same pin or node.

10.27.10 newPropagateSegment

Table 451 provides information on newPropagateSegment.

Table 451—newPropagateSegment

Function name newPropagateSegment

Arguments Standard Structure pointer, Driver (source) pin, Receiver (sink) pin, Delay matrix
(created by newDelayMatrixRow)

Result New timing arc handle pointer

Standard
Structure fields

pathData (timing-arc-specific)

C syntax int newPropagateSegment
(DCM_STD_STRUCT *std_struct,
 DCM_HANDLE *output,
 DCM_HANDLE sourcePin,
 DCM_HANDLE sinkPin,
 DCM_HANDLE delayMatrix);

DPCM calls this function to connect a timing arc between the two specified points in the model, the driver
(source) pin and receiver (sink) pin. The propagation characteristics are described within the delay matrix
created by previous newDelayMatrixRow function calls.

The application returns a pointer to the newly created timing arc through the function’s output parameter.

The PATH function generates a call to newPropagateSegment for each segment modeled.

NOTE—DPCM expects the application to save the PATH_DATA field in the Standard Structure for later use when
delay and slew calculations are desired for this timing arc.

10.27.11 newTestMatrixRow

Table 452 provides information on newTestMatrixRow.

472
Copyright © 2010 IEEE all rights reserved.

– 472 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 452—newTestMatrixRow

Function name newTestMatrixRow

Arguments Standard Structure pointer, Signal edge type for beginning edge, Propagation mode for
beginning edge, Signal edge type for ending edge, Propagation mode for ending edge,
Test type

Result Pointer to the application’s test matrix structure

Standard
Structure fields

None

C syntax int newTestMatrixRow
(DCM_STD_STRUCT *std_struct,
 DCM_HANDLE *testMatrix,
 DCM_EdgeTypes edge1,
 DCM_PropagationTypes mode1,
 DCM_EdgeTypes edge2,
 DCM_PropagationTypes mode2,
 DCM_TestTypes testType);

DPCM calls this function to describe the propagation characteristics for timing arcs created by DCL TEST
statements. Initially, testMatrix is 0, indicating a test matrix row needs to be created. The application shall
create its appropriate structure and return a pointer to that structure to the DPCM (*testMatrix). Subsequent
calls to this function from the DPCM shall reuse this pointer, which allows the application to add test
information.

The resulting collection of test information is supplied as the testMatrix parameter to the
newAltTestSegment function. The same test matrix may be reused for any number of test arcs created by
the same DCL modeling statement.

The values of testType are enumerated in Table 7.

10.27.12 newAltTestSegment

Table 453 provides information on newAltTestSegment.

Table 453—newAltTestSegment

Function name newAltTestSegment

Arguments Standard Structure pointer, From pin, To pin, Test matrix (created by
newTestMatrixRow)

Result Pointer to the test arc handle

Standard
Structure fields

pathData (timing-arc-specific)

C syntax int newAltTestSegment
(DCM_STD_STRUCT *std_struct,
 DCM_HANDLE *output,
 DCM_HANDLE clock,
 DCM_HANDLE data,
 DCM_HANDLE testMatrix);

The DPCM calls this function when a specific test arc is to be created between the two specified pins. The
From pin is described by the clock parameter and the To pin is described by the data parameter. The
propagation characteristics are described by the test matrix, which was created by previous newTestMatrix
calls.

The TEST function generates a call to newAltTestSegment for each segment tested.

473
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 473 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

NOTE—The DPCM expects the application to save the pathData field in the Standard Structure for later use when test
calculations are desired for this arc.

10.27.13 Interactions between interconnect modeling and modeling functions

The two strategies for modeling interconnect in DCL are as follows:

a) Use OUTPUT and/or INPUT statements in the model.

b) Use the DEFAULT delay and slew calculation statement.

The application shall determine whether the DPCM used either an INPUT or OUTPUT function with a
propagation sequence by examining the passed argument named delayMatrix from callback functions
newNetSourcePropagationSegment and newNetSinkPropagationSegment. When the argument
delayMatrix has a value of zero (0), it shall mean NO propagation sequence was present with the
associated INPUT or OUTPUT function.

An application shall perform the following in order to handle interconnect calculations correctly:

— At modelSearch time (when model structure is conveyed to the application by the DPCM):

— The application shall remember the pathData pointer for any OUTPUT or INPUT
functions in the model. Conceptually, the application shall associate such pathData
pointer values with the appropriate nodes in the design.

— At interconnect delay/slew calculation time:

— For situations when nonzero values of the argument delayMatrix to the call
newNetSourcePropagationSegment are received, the application shall use the pathData
pointer associated with this call when calling for delays and slews on those nets. For
situations when non-zero values for the argument delayMatrix to the call
newNetSinkPropagationSegment are received, the application shall use the pathData
pointer associated with this call when calling for delays and slews on those nets. For
situations where only zero (0) values for delayMatrix are received for call backs
associated with both ends of the net, the application shall use the pathData pointer
associated with the newNetSourcePropagationSegment if called; otherwise, the value of
zero (0) shall be used for the pathData pointer.

— For situations where no call backs were made on pins associated with the net, the
application shall use a value of zero (0) for the pathData pointer when calling for delays
and slews. The application shall further assume the net propagation properties are a rise
edge at the source causes a rise at the sink and a fall edge at the source causes a fall at the
sink.

— The application shall ensure all the fields required by the call to delay and slew are filled,
and for interconnect calculation, the application shall also ensure that fields such as cell,
cellQual, and modelDomain represent the cell driving the net.

Calculation functions are not called explicitly by name, but are accessed with pointers supplied in
DCMTransmittedInfo as a result of the first call to the dcmRT_BindRule (see 10.25.4.2 .

10.28 Deprecated functions

The function definitions contained in this subclause are here for compatibility with older versions of this
specification. The use of these functions for new applications and library is strongly discouraged. These
functions have a high probability of being removed from future revisions of this standard.

474
Copyright © 2010 IEEE all rights reserved.

– 474 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.28.1 Parasitic handling

The following functions were for processing RLC networks. These functions have newer replacements.

10.28.1.1 appGetPiModel

Table 454 provides information on appGetPiModel.

Table 454—appGetPiModel

Function name appGetPiModel

Arguments Pin pointer

Result estFlag, Capacitance value (nearest the driver), Capacitance value (nearest the load),
Resistance value

Standard
Structure fields

None

DCL syntax EXTERNAL(appGetPiModel):
passed(pin: outputPin)
result(int: estFlag &
double: capNear,capFar,Resistance);

C syntax typedef struct
{INTEGER estFlag ; DCM_DOUBLE capNear, capFar, Resistance}
T_capResValue;

int appGetPiModel
(DCM_STD_STRUCT *std_struct,
 T_capResValue *rtn,
 DCM_PIN outputPin);

This returns the capacitance and resistance values for the π model of the interconnect to which the passed
pin is connected. This is meant for use in computation of the load-dependent delay portion of an
interconnect delay.

capNear represents the capacitance value nearest the sourcePin and capFar represents the capacitance
value farthest from the sourcePin. An example is shown in Figure 21.

estFlag indicates whether the π model’s values were computed accurately or merely estimated. It is valid
for an application, which cannot compute (or otherwise access) π values, to return an approximation of
those values, in which case estFlag shall be set to a nonzero value. Because calculation of C-effective from
this model may be expensive, if the input values are merely an approximation or estimate, the DPCM may
be coded to approximate its calculation for C-effective. An estFlag value of 0 indicates that the π model is
accurate.

475
Copyright © 2010 IEEE all rights reserved.

Figure 21—Capacitance value example

capNear capFar

Resistamce

in
out

IEC 61523-1:2012
IEEE Std 1481-2009 – 475 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

In the case of an error, or if the application cannot answer the request at all, it shall set the function return
code to a nonzero value in accordance with the rules described in 10.10.1 . In this error situation, the
DPCM (or DCL subrule) is expected to use the appropriate default model.

10.28.1.2 appGetPolesAndResidues

Table 455 provides information on appGetPolesAndResidues.

Table 455—appGetPolesAndResidues

Function name appGetPolesAndResidues

Arguments Driver (source) pin pointer, Receiver (sink) pin pointer, Order number

Result An array of real and imaginary poles and an array of real and imaginary residues

Standard
Structure fields

None

DCL syntax EXTERNAL(appGetPolesAndResidues):
passed(pin: sourcePin, receiverPin;
 int:orderNum)
result(double[*]: rel_poles, img_poles, rel_residues, img_residues);

C syntax typedef struct {
 DCM_DOUBLE_ARRAY *rel_poles, *img_poles, *rel_residues, *img_residues;}
T_polesResid;

int appGetPolesAndResidues
(DCM_STD_STRUCT *std_struct,
 T_polesResid *rtn,
 DCM_PIN sourcePin,
 DCM_PIN receiverPin,
 INTEGER orderNum);

This returns the step response poles and residues for the transient response function of the receiver (sink)
pin as seen by the passed driver (source) pin. The transient response of the sink can then be expressed as
shown in Figure 22.

The orderNum argument is the maximum number of pole/residue pairs to be returned.

The real and imaginary components of the poles and the residues are returned in the resulting arguments
rel_poles, img_poles and rel_residues, img_residues.

NOTE—If the application cannot compute or access the requested pole-residue information, it may call
dpcmCalcPolesAndResidues to request these values. The DPCM may then (dependent on the library code) call
appGetRLCnetworkByPin to get the complete RLC configuration of the network (which it can reduce to an equivalent
circuit and compute the poles and residues).

476
Copyright © 2010 IEEE all rights reserved.

NOTE—q is the number of poles, ki are the residues, and
Pi are the poles (rad/s).

Figure 22—Equation for poles and residues

vstep t =vdc∑
i=1

q

k i e
Pi∗t

– 476 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.28.1.3 appGetCeffective

Table 456 provides information on appGetCeffective.

Table 456—appGetCeffective

Function name appGetCeffective

Arguments delay calculation function pointer, slew calculation function pointer, PI model

Result late Ceffective, early Ceffective

Standard
Structure fields

None

DCL syntax forward calc(stdDelaySlewEq):
 passed(double: loadCap, inputTransition)
 result(double);

forward calc(getPiModel):
 passed(pin: outputPin)
 result(int: estFlag ;
 double:nearCap,farCap,resistance);

EXTERNAL(appGetCeffective):
 passed(stdDelaySlewEq(): delayEq;
 stdDelaySlewEq(): slewEq;
 getPiModel: piModel)
 result(double: lateCeff, earlyCeff);

C syntax typedef struct {
 INTEGER estFlag;
 DCM_DOUBLE nearCap, farCap, resistance;
} getPIModelStruct;

typedef struct {
 DCM_DOUBLE lateCeffective, earlyCeffective;
} T_Ceffective;

int appGetCeffective (
 DCM_STD_STRUCT *std_struct,
 T_Ceffective *rtn,
 DCM_GeneralFunction delayEq,
 DCM_GeneralFunction slewEq,
 getPIModelStruct *piModel);

This returns an equivalent value for the effective capacitance (C-effective) seen by the passed driver
(source) pin. Effective capacitance is an equivalent capacitance value (as seen by the driving circuit) that
correctly models the slew and delay values taking into account resistance and capacitance on the
interconnect. Because of the resistance within the network, the driving output may reach a sufficient
voltage to have switched before the driven interconnect reaches this voltage. Effective capacitance is the
value of a lumped capacitance that alone (with no resistance counterpart) would cause the cell to have taken
the same amount of time to switch. This allows the library developer to model the library with simple
capacitors. This function passes through the application the necessary parameters for the calculation of C-
effective. The application shall pass these parameters to dcpmCalcCeffective without altering them.

10.28.1.4 appGetRLCnetworkByPin

Table 457 provides information on AppGetRLCnetworkByPin.

Table 457—appGetRLCnetworkByPin

Function name appGetRLCnetworkByPin

Arguments Pin pointer, RLC network handle

Result newRLCnetwork handle

477
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 477 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Standard
Structure fields

None

DCL syntax EXTERNAL(appGetRLCnetworkByPin):
passed(pin: inputPin, void:RLCnetwork)
result(void: newRLCnetwork);

C syntax typedef struct {
 VOID newRLCnetwork;
} T_RLCnetworkByPin;

int appGetRLCnetworkByPin
(DCM_STD_STRUCT *std_struct,
 T_RLCnetworkByPin *rtn,
 DCM_PIN inputPin,
 VOID RLCnetwork);

Returns the RLCnetwork handle for the interconnect specified by the PASSED pin pointer argument. If the
PASSED RLCnetwork argument is 0, then an existing RLCnetwork handle may be returned. If an
appropriate RLCnetwork does not yet exist, then the application is expected to request the DPCM to build
one.

If the PASSED RLCnetwork argument is nonzero, it signifies a nested call as a result of an
dpcmAppendPinAdmittance call (on a pass-through device, for example) while the application was
constructing an RLCnetwork from an earlier appGetRLCnetworkByPin call.

10.28.1.5 appGetRLCnetworkByName

Table 458 provides information on appGetRLCnetworkByName.

Table 458—appGetRLCnetworkByName

Function name appGetRLCnetworkByName

Arguments Pin name, RLC network handle

Result Address of the structure that contains the RLC network in the DPCM (see
pcmSetRLCmember 10.28.1.9)

Standard
Structure fields

block

DCL syntax EXTERNAL(appGetRLCnetworkByName):
passed(string: pinName, void:RLCnetwork)
result(void:newRLCnetwork);

C syntax typedef struct {
 VOID newRLCnetwork;
} T_RLCnetworkByName;

int appGetRLCnetworkByName
(DCM_STD_STRUCT *std_struct,
 T_RLCnetworkByName *rtn,
 STRING pinName,
 VOID RLCnetwork);

This returns the RLCnetwork handle for the interconnect specified by the PASSED pin name argument. The
behavior and semantics of this function are the same as those for the appGetRLCnetworkByPin in Table
454.

10.28.1.6 dpcmCalcPiModel

Table 459 provides information on dpcmCalcPiModel.

478
Copyright © 2010 IEEE all rights reserved.

– 478 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 459—dpcmCalcPiModel

Function name dpcmCalcPiModel

Arguments Driver (source) pin pointer, RLC network pointer

Result estFlag, Capacitance value (nearest the driver), Capacitance value (nearest the load),
Resistance value

Standard
Structure fields

block, CellName, pathData (timing-arc-specific), cellData (timing)

DCL syntax (dpcmCalcPiModel):
passed(pin: sourcePin;
 void: RLCnetwork)
result(int: estFlag;
 double: capNear, capFar, Resistance);

C syntax typedef struct {
 INTEGER estFlag;
 DCM_DOUBLE capNear, capFar, Resistance;
} T_calcCapRes;
int dpcmCalcPiModel
(const DCM_STD_STRUCT *std_struct,
 T_calcCapRes *rtn,
 DCM_PIN sourcePin,
 VOID RLCnetwork);

This requests the DPCM to compute the capacitance and resistance values for the π model of the
interconnect to which the passed driver (source) pin is connected, for use in computation of the load
dependent delay or slew portion of an arc. A zero value for RLCnetwork passed by the application indicates
this call shall create a new RLC network rather than reuse one generated by another function call.

capNear represents the capacitance value nearest the sourcePin and capFar represents the capacitance
value farthest from the sourcePin. For an example, see Figure 22.

See 10.27.13 for details about the interaction between the DPCM and the application during the calculation
of π values.

estFlag indicates whether or not the π model’s values were computed accurately or merely estimated. It is
valid for the DPCM, which cannot compute (or otherwise access) π values, to return an approximation of
those values, in which case estFlag shall be set to a nonzero value.

10.28.1.7 dpcmCalcPolesAndResidues

Table 460 provides information on dpcmCalcPolesAndResideues.

Table 460—dpcmCalcPolesAndResidues

Function name dpcmCalcPolesAndResidues

Arguments Driver (source) pin pointer, Receiver (sink) pin pointer, Order number, RLC network
pointer

Result An array of real and imaginary poles and an array of real and imaginary residues

Standard
Structure fields

CellName, block, pathData, (timing-pin-specific), cellData (timing)

DCL syntax EXPOSE(dpcmCalcPolesAndResidues):
passed(pin: sourcePin, loadPin;
 int: orderNum;
 void:RLCnetwork)
result(double[*]: rel_poles, img_poles, rel_residues,
 img_residues);

479
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 479 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

C syntax typedef struct {
 DCM_DOUBLE_ARRAY *rel_poles, *img_poles;
 DCM_DOUBLE_ARRAY *rel_residues, *img_residues;
} T_calcPolesRes;
int dpcmCalcPolesAndResidues
(const DCM_STD_STRUCT *std_struct,
 T_calcPolesRes *rtn,
 DCM_PIN sourcePin,
 DCM_PIN sinkPin,
 INTEGER orderNum,
 VOID RLCnetwork);]

This requests the DPCM to compute the step response poles and residues for the transient response function
of the receiver (sink) pin specified by driver (source) pin as seen by the driver (source) pin. For the relevant
formula, see Figure 22.

The orderNum argument is the maximum number of pole/residue pairs to be returned.

The real and imaginary components of the poles and the residues are returned in the result arguments
rel_poles, img_poles and rel_residues, img_residues. Each of these resulting arguments is actually a pointer
to an array of floats containing the real and imaginary components.

When the application calls this function, a zero value for the RLCnetwork indicates that this function shall
call back the application to build another RLC network.

NOTE—The DPCM may then (dependent on the library code) call back the application, through
appGetRLCnetworkByPin to get the complete RLC configuration of the network (which it can reduce to an equivalent
circuit and compute the poles and residues).

10.28.1.8 dpcmCalcCeffective

Table 461 provides information on dpcmCalcCeffective.

Table 461—dpcmCalcCeffective

Function name dpcmCalcCeffective

Arguments delay calculation function pointer, slew calculation function pointer, PI model

Result late Ceffective, early Ceffective

Standard
Structure fields

CellName, block, sourceEdge, sinkEdge, pathData (timing-arc-specific), cellData
(timing), toPoint, fromPoint, earlySlew, lateSlew

DCL syntax forward calc(stdDelaySlewEq):
passed(double: loadCap, inputTransition)
result(double);
forward calc(getPiModel):
passed(pin: outputPin)
result(int: estFlag;
double:capNear,capFar,Resistance);
EXPOSE(dpcmCalcCeffective):
passed(stdDelaySlewEq(): delayEq;
 stdDelaySlewEq(): slewEq;
 getPIModel: piModel)
result(double: lateCeff, earlyCeff);

480
Copyright © 2010 IEEE all rights reserved.

– 480 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

C syntax typedef struct {
 INTEGER estFlag; DCM_DOUBLE capNear, capFar, resistance;
} getPIModelStruct;

typedef struct {
 DCM_DOUBLE lateCeffective, earlyCeffective;
} T_Ceffective;

int dpcmCalcCeffective
(const DCM_STD_STRUCT *std_struct,
 T_Ceffective *rtn,
 DCM_GeneralFunction DelayEq,
 DCM_GeneralFunction slewEq,
 getPIModelStruct *piModel);

This returns an equivalent “effective” capacitance as seen by the passed toPoint.

10.28.1.9 dpcmSetRLCmember

Table 462 provides information on dpcmSetRLCmember.

Table 462—dpcmSetRLCmember

Function name dpcmSetRLCmember

Arguments RLC network to add this member to, Driver (source) pin pointer, Receiver (sink) pin
pointer, Element type (R, L, C, or M), Element name, Element value (capacitance,
resistance, inductance or mutual inductance), Terminal 1 type, Terminal 2 type

Result newRLCnetwork

Standard
Structure fields

None

DCL syntax EXPOSE(dpcmSetRLCmember):
passed(void: RLCnetwork;
 pin: terminal1, terminal2;
 string: elementType, elementName;
 double: elementValue;
 int: terminal1Type, terminal2Type)
result(void: newRLCnetwork);

C syntax typedef struct {
 VOID newRLCnetwork;
} T_SetRLCmember;

int dpcmSetRLCmember
(const DCM_STD_STRUCT *std_struct,
 T_SetRLCmember *rtn,
 VOID RLCnetwork,
 DCM_PIN terminal1,
 DCM_PIN terminal2,
 STRING elementType,
 STRING elementName,
 DCM_DOUBLE elementValue,
 INTEGER terminal1Type,
 INTEGER terminal2Type);

This sends an R, L, C, or M element value for an arc of the interconnect identified from the last call of
appGetRLCnetworkByPin or appGetRLCnetworkByName.

The elementType field is set to R if the value is for a resistor, L if the value is an inductor, C if the value is
for a capacitor, and M if the value is mutual inductance. A terminal type of 1 indicates a port and terminal
type of 0 indicates an internal node of the interconnect network.

481
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 481 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

If the RLCnetwork PASSED parameter is the handle 0, the DPCM shall create a new RLC network. If the
RLCnetwork PASSED parameter is nonzero, the DPCM shall assume it is a handle to an RLC network
created previously by the DPCM. In either case, the DPCM shall add the PASSED member information to
the network and return the current network handle in the newRLCnetwork RESULT parameter. The handle
shall be a pointer to a structure whose first element is itself a pointer to a function with the same argument
signature as dpcmSetRLCmember. This latter function shall be called for all additions to the RLC network.

Subsequent calls made by the application to add members to any RLC network shall always use the latest
newRLCnetwork handle returned from the last call to dpcmSetRLCmember as the PASSED RLCnetwork
argument.

The DPCM shall cache as many RLCnetworks as requested by an application until they are explicitly
removed via dpcmDeleteRLCnetwork. See 10.28.1.11 . If the RLCnetwork PASSED parameter is not a valid
handle returned by a prior call to dpcmSetRLCmember, then the behavior is undefined. The passed driver
(source) and receiver (sink) pin pointers may refer to instance pins or internal nodes on the network (note
node1 and node2 in Figure 3).

If the elementType field is R, L, or M then both the driver (source) and receiver (sink) pins are required
(resistance and inductance are always assumed between two nodes or ports). If elementType is C and is
grounded, then both terminal1 and terminal2 shall be the non-grounded node.

In Figure 23, Pin1 and Pin2 are terminal type 1 indicating ports, all others are terminal type 0 indicating
internal nodes.

Figure 23—Example RC network

10.28.1.10 dpcmAppendPinAdmittance

Table 463 provides information on dpcmAppendPinAdmittance.

Table 463—dpcmAppendPinAdmittance

Function name dpcmAppendPinAdmittance

Arguments Sink pin handle, RLC network handle

Result RCLnetwork handle

Standard
Structure fields

block, CellName, pathData (timing-pin-specific), cellData (timing)

DCL syntax EXPOSE(dpcmAppendPinAdmittance):
passed(pin: sinkPin;
 void: RLCnetwork)
result(void: newRLCnetwork);

482
Copyright © 2010 IEEE all rights reserved.

– 482 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

C syntax typedef struct {
 VOID newRLCnetwork;
} T_AppendPinAdmittance;

int dpcmAppendPinAdmittance
(const DCM_STD_STRUCT *std_struct,
 T_AppendPinAdmittance *rtn,
 DCM_PIN inputPin,
 VOID RLCnetwork);

This function causes the DPCM to add the admittance for the specified pin to the specified RLCnetwork. If
the RLCnetwork PASSED parameter is the handle 0, the DPCM shall create a new RLC network. If the
RLCnetwork PASSED parameter is nonzero, the DPCM shall assume it is a handle to an RLC network
created previously by the DPCM. In either case, the DPCM shall add the PASSED member information to
the network and return the current network handle in the newRLCnetwork RESULT parameter. The handle
shall be a pointer to a structure whose first element is itself a pointer to a function with the same argument
signature as dpcmSetRLCmember. This latter function shall be called for all additions to the RLC network.

It is possible that the admittance for the specified pin is equivalent to the RLCnetwork for another pin, such
as for the device output pin in the case of pass-through devices. In this case, the DPCM shall call
appGetRLCnetwork for the pin specified in the original dpcmAppendPinAdmittance call.

10.28.1.11 dpcmDeleteRLCnetwork

Table 464 provides information on dpcmDeleteRLCnetwork.

Table 464—dpcmDeleteRLCnetwork

Function name dpcmDeleteRLCnetwork

Arguments RLC network handle

Result return code

Standard
Structure fields

None

DCL syntax EXPOSE(dpcmDeleteRLCnetwork):
passed(void: RLCnetwork)
result(int: rc);

C syntax typedef struct {
 INTEGER rc;
} T_DeleteRLCnetwork;

int dpcmDeleteRLCnetwork
(const DCM_STD_STRUCT *std_struct,
 T_DeleteRLCnetwork *rtn,
 VOID RLCnetwork);

A DPCM is required to cache an RLCnetwork until the application calls dpcmDeleteRLCnetwork with that
handle; however, the DPCM is not obligated to do anything (such as free any storage) as a result of such a
call. The behavior of the DPCM as a result of subsequent use by the application of a deleted handle is
undefined.

The application shall specify the same technology when calling dpcmDeleteRLCnetwork as was used when
the network was created.

10.28.2 Array manipulation functions

These functions allow the application to manipulate array data that is returned by the DPCM.

483
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 483 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.28.2.1 dcm_copy_DCM_ARRAY

Table 465 provides information on dcm_copy_DCM_ARRAY.

Table 465—dcm_copy_DCM_ARRAY

Function name dcm_copy_DCM_ARRAY

Arguments DCM_ARRAY, DCM_AATTS

Result DCM_ARRAY

Standard
Structure fields

None

C syntax DCM_ARRAY *dcm_copy_DCM_ARRAY
(DCM_ARRAY *originalArray, DCM_AATTS attributes);

The application service dcm_copy_DCM_ARRAY allocates a new DCM_ARRAY and copies the contents of
the original array into the newly allocated one. The attributes argument shall have the value 0xFF.

10.28.2.2 dcm_new_DCM_ARRAY

Table 466 provides information on dcm_new_DCM_ARRAY.

Table 466—dcm_new_DCM_ARRAY

Function name dcm_new_DCM_ARRAY

Arguments number of dimensions, vector of elements per dimension, size of each element,

Result DCM_ARRAY

Standard
Structure fields

None

C syntax DCM_ARRAY *dcm_new_DCM_ARRAY
(int numDims,
 int *elementsPer,
 int elementSize,
 DCM_ATYPE elementType,
 DCM_AATTS attributes,
 DCM_AINIT initialize,
 DCM_ArrayInitUserFunction initializer);

The application service dcm_new_DCM_ARRAY allocates a new array according to the number of
dimensions, the number of elements in each dimension, and the size of each element. There are options to
control the how an array is initialized. The maximum value for numDims is 255. When the system does not
allocate the required space, an error is generated. A newly created array is locked once.

10.28.2.3 dcm_sizeof_DCM_ARRAY

Table 467 provides information on dcm_sizeof_DCM_ARRAY.

Table 467—dcm_sizeof_DCM_ARRAY

Function name dcm_sizeof_DCM_ARRAY

Arguments DCM_ARRAY

Result Size of the DCM array

Standard
Structure fields

None

C syntax int dcm_sizeof_DCM_ARRAY(DCM_ARRAY *array);

484
Copyright © 2010 IEEE all rights reserved.

– 484 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

The application service dcm_sizeof_DCM_ARRAY returns the number of bytes the DCM_ARRAY ’s data
elements consume. The application shall pass in the DCM_ARRAY pointer to be evaluated. If there is an
error, a value of ‒1 is returned.

NOTE—Zero is a valid size for an empty array.

10.28.2.4 dcm_lock_DCM_ARRAY

Table 468 provides information on dcm_lock_DCM_ARRAY.

Table 468—dcm_lock_DCM_ARRAY

Function name dcm_lock_DCM_ARRAY

Arguments DCM_ARRAY

Result Return code

Standard
Structure fields

None

C syntax int dcm_lock_DCM_ARRAY(DCM_ARRAY *array);

dcm_lock_DCM_ARRAY locks the array. The array shall persist until it is unlocked. The array may be
locked multiple times by both the application and the DPCM.

If for any reason the system encounters an error, a nonzero value is returned; otherwise, a successful return
value of zero is returned.

10.28.2.5 dcm_unlock_DCM_ARRAY

Table 469 provides information on dcm_unlock_DCM_ARRAY.

Table 469—dcm_unlock_DCM_ARRAY

Function name dcm_unlock_DCM_ARRAY

Arguments DCM_ARRAY

Result Return code

Standard
Structure fields

None

C syntax int dcm_unlock_DCM_ARRAY(DCM_ARRAY *array);

dcm_unlock_DCM_ARRAY unlocks the array. The array shall be deleted when it has been unlocked as
many times as it was locked. Neither the application nor the DPCM shall unlock the array more times than
the application or the DPCM respectively locked it.

If for any reason the system encounters an error, a nonzero value is returned; otherwise, a successful return
value of zero is returned.

10.28.3 Memory management

A DCM_STRUCT is a library-specific collection of data that includes memory management support.
Memory management within the DPCM shall conform to the following behavior:

a) When the DPCM creates a new array or structure, it keeps a count (initialized to 1) indicating how
many references to that object exist. During the application’s next call to the DPCM at a primary
entry point, such as modelSearch, delay, slew, or check, the count is decremented; this is only done

485
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 485 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

once per object during the first call to the DPCM after the object is allocated.

b) When the application locks the object or the library creates a reference to the object, the count is
incremented. When the application unlocks the object or the library removes a reference to the
object, the count is decremented.

c) The application is responsible for unlocking the object as many times as it has locked it. The
library is responsible for removing references to the object it no longer needs.

d) Once the reference count becomes 0, the memory is returned to the system.

10.28.3.1 dcm_lock_DCM_STRUCT

Table 470 provides information on dcm_lock_DCM_STRUCT.

Table 470—dcm_lock_DCM_STRUCT

C syntax int dcm_lock_DCM_STRUCT(DCM_STRUCT *dcmStruct);

The application shall call dcm_lock_DCM_STRUCT (prior to calling the library again) to increment the
reference count in a DCM_STRUCT (passed to it by the library).

10.28.3.2 dcm_unlock_DCM_STRUCT

Table 471 provides information on dcm_unlock_DCM_STRUCT.

Table 471—dcm_unlock_DCM_STRUCT

C syntax int dcm_unlock_DCM_STRUCT(DCM_STRUCT *dcmStruct);

The application shall call dcm_unlock_DCM_STRUCT to decrement the reference count of a
DCM_STRUCT. The application shall not call dcm_unlock_DCM_STRUCT more times than it called
dcm_lock_DCM_STRUCT on any DCM_STRUCT.

10.28.3.3 dcm_getNumDimensions

Table 472 provides information on dcm_getNumDimensions.

Table 472—dcm_getNumDimensions

Function name dcm_getNumDimensions

Arguments DCM_ARRAY

Result Number of dimensions

Standard
Structure fields

None

C syntax int dcm_getNumDimensions(DCM_ARRAY *array);

The application service dcm_getNumDimensions returns the number of dimensions defined for the
DCM_ARRAY passed in by the application.

If for any reason there is an error in determining the number of dimensions, a value of ‒1 is returned;
otherwise, the number of dimensions is returned.

486
Copyright © 2010 IEEE all rights reserved.

– 486 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.28.3.4 dcm_getNumElementsPer

Table 473 provides information on dcm_getNumElementsPer.

Table 473—dcm_getNumElementsPer

Function name dcm_getNumElementsPer

Arguments DCM_ARRAY

Result Number of elements in each dimension

Standard
Structure fields

None

C syntax int *dcm_getNumElementsPer
(DCM_ARRAY *array, int *answer);

The application service dcm_getNumElementsPer returns an array whose elements are the length of each
dimension of the array argument.

The application shall supply a DCM_ARRAY and an integer array where the application service can place
its results. dcm_getNumElementsPer places in each element of the answer array the number of elements in
the corresponding DCM_ARRAY, where the zeroth index of the DCM_ARRAY corresponds to the zeroth
element of the answer array. If the service detects an error, it returns (int*) 0; otherwise, it returns the
answer.

10.28.3.5 dcm_getNumElements

Table 474 provides information on dcm_getNumElements.

Table 474—dcm_getNumElements

Function name dcm_getNumElements

Arguments DCM_ARRAY

Result Number of dimensions

Standard
Structure fields

None

C syntax int dcm_getNumElements(DCM_ARRAY *array, int dimension);

The application service dcm_getNumElements returns the number of elements for the dimension specified.
If an error is encountered, the value returned is ‒1. The dimension parameter passed in from the application
shall be between 0 and the number_of_dimensions ‒1.

10.28.3.6 dcm_getElementType

Table 475 provides information on dcm_getElementType.

Table 475—dcm_getElementType

Function name dcm_getElementType

Arguments DCM_ARRAY

Result Type of element

Standard
Structure fields

None

C syntax DCM_ATYPE dcm_getElementType(DCM_ARRAY *array);

487
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 487 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

The application service dcm_getElementType is passed a DCM_ARRAY and returns the type of elements
stored.

If the application service detects an error, the element type DCM_ATYPE_ERROR is returned.

10.28.3.7 dcm_arraycmp

Table 476 provides information on dcm_arraycmp.

Table 476—dcm_arraycmp

Function name dcm_arraycmp

Arguments Two DCM_ARRAYs

Result None

Standard
Structure fields

None

C syntax int dcm_arraycmp(DCM_ARRAY *a1, DCM_ARRAY *a2);

The application service dcm_arraycmp is passed to two DCM_ARRAYs and compares them for equality. If
the two arrays contain (bit-by-bit) identical data, then the value of zero is returned; otherwise, a nonzero
value is returned.

10.28.4 Initialization functions

Initialization functions are called by an application to load or unload a DPCM, or to set a universal storage
manager or message handler. These functions are called as part of the process of preparing the system to
accept a DPCM or to clean up after one has been terminated. They are available to the application because
the dynamically loaded modules that make up a DPCM are not yet in memory and cannot perform these
operations.

An application shall call dcmSetNewStorageManager to assert common storage management between the
DPCM and the application.

10.28.4.1 dcmCellList

Table 477 provides information on dcmCellList.

Table 477—dcmCellList

Function name dcmCellList

Arguments Standard Structure pointer

Result Array of cell names, Array of cell name qualifiers, Array of model domain

Standard
Structure fields

None

C syntax typedef struct dcm_T_dcmCellList {
 DCM_STRING_ARRAY *cellNameArray;
 DCM_STRING_ARRAY *cellQualArray;
 DCM_STRING_ARRAY *model_domainArray;
} T_dcmCellList;

int dcmCellList
(const DCM_STD_STRUCT *std_struct,
 T_dcmCellList *rtn);

This returns three parallel arrays with cell names, cell name qualifiers, and model domains contained in the

488
Copyright © 2010 IEEE all rights reserved.

– 488 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

current DPCM. The cell name, cell name qualifier, and model domain fields at the same array index
identify a cell modeled in this DPCM. If no cell name qualifier or model domain field is specified for a
given MODEL in the DCL source, the corresponding array element contains an asterisk (*).

This function shall only be called from a DPCM. An application shall always call dpcmGetCellList to
determine the MODELs in the DPCM.

10.28.4.2 dcmSetNewStorageManager

Table 478 provides information on dcmSetNewStorageManager.

Table 478—dcmSetNewStorageManager

Function name dcmSetNewStorageManager

Arguments malloc function pointer, free function pointer, realloc function pointer

Result None

Standard
Structure fields

None

C syntax int dcmSetNewStorageManager
(DCM_Malloc_Type malloc,
DCM_Free_Type free,
DCM_Realloc_Type realloc);

This sets the function pointers for memory allocation, free, and reallocation functions for the DPCM. The
typedefs match the ISO C (ISO/IEC 9899:1990) malloc(), free() and realloc() functions, respectively.

dcmSetNewStorageManager may only be called once, and it shall be called before any DPCM is loaded or
any application call to dcm_new_DCM_ARRAY or dcm_new_DCM_STD_STRUCT. If the call to this
function is made after the call to dcmBindRule, it shall not perform the pointer instantiation and shall
returns a nonzero result. Zero as a return value indicates the pointer instantiation was successful.

Once dcmSetNewStorageManager has been called to designate memory management functions defined in
the application, calls to dcmMalloc, dcmFree, or dcmRealloc result in the DPCM calling back the
designated application functions.

10.28.4.3 dcmMalloc

Table 479 provides information on dcmMalloc.

Table 479—dcmMalloc

Function name dcmMalloc

Arguments Number of bytes to allocate

Result None

Standard
Structure fields

None

C syntax void *dcmMalloc(size_t numBytes);

This returns a pointer to a block of memory at least numBytes long, using the storage management function
currently in effect.

10.28.4.4 dcmFree

Table 480 provides information on dcmFree.

489
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 489 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 480—dcmFree

Function name dcmFree

Arguments Pointer to memory block to be freed

Result None

Standard
Structure fields

None

C syntax void dcmFree(void *allocatedBlock);

This frees memory allocated by dcmMalloc or dcmRealloc, using the storage management function
currently in effect. The allocatedBlock shall first have been returned by dcmMalloc or dcmRealloc.

10.28.4.5 dcmRealloc

Table 481 provides information on dcmRealloc.

Table 481—dcmRealloc

Function name dcmRealloc

Arguments Number of bytes to reallocate

Result None

Standard
Structure fields

None

C syntax void *dcmRealloc(void *allocatedBlock, size_t numBytes);

This returns a pointer to a block of memory at least numBytes long, using the storage management function
currently in effect. This function call also copies the data from the allocated block to the newly reallocated
space. The allocatedBlock shall first have been returned by dcmMalloc or dcmRealloc.

10.28.4.6 dcmBindRule

Table 482 provides information on dcmBindRule.

Table 482—dcmBindRule

Function name dcmBindRule

Arguments Rule name

Result None

Standard
Structure fields

None

C syntax void *dcmBindRule(const char *rootSubruleName);

This loads and links the specified primary rule.

The passed argument is a pointer to a string containing the name of the primary (root) library rule to be
loaded See 10.14 .

dcmBindRule returns a pointer to the rule initialization entry point dcm_rule_init ee if the primary (root)
library rule can be found and loaded. If the rule cannot be found or there was an error in loading, the
pointer returned is zero. If this call is successful, then the application shall not call it again until a
successful response from dcmUnbindRule occurs.

490
Copyright © 2010 IEEE all rights reserved.

– 490 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.28.4.7 dcmAddRule

Table 483 provides information on dcmAddRule.

Table 483—dcmAddRule

Function name dcmAddRule

Arguments rule name

Result return code

Standard
Structure fields

None

C syntax void* dcmAddRule(const char subruleName, int *returnCode);

This adds additional DCL subrules to the DPCM during execution. dcmAddRule does not alter subrules in
the current DPCM. The passed parameter is a pointer to a string that contains the subrule name for the
technology library to be added. See 10.14 . returnCode is set to the integer return code for this function call
(see 10.10.1).

This function may only be called following a successful call to dcmBindRule and preceding a successful
call to dcmUnbindRule.

The dcmAddRule function returns a pointer to the rule initialization entry if the subrule is found and loaded.
If the subrule cannot be found or a loading error occurs, the pointer returned is zero.

10.28.4.8 dcmUnbindRule

Table 484 provides information on dcmUnbindRule.

Table 484—dcmUnbindRule

Function name dcmUnbindRule

Arguments None

Result None

Standard
Structure fields

None

C syntax int dcmUnbindRule(void *initFunction);

This unloads the DPCM from memory and releases any memory the DPCM may have consumed.

The passed argument is the void pointer returned from dcmBindRule. dcmUnbindRule returns an integer
return code with a zero value when the function completes without error; otherwise, a nonzero value is
returned.

10.28.4.9 dcmFindFunction

Table 485 provides information on dcmFindFunction.

Table 485—dcmFindFunction

Function name dcmFindFunction

Arguments EXPOSE function name, Function table

Result None

491
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 491 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Standard
Structure fields

None

C syntax DCM_GeneralFunction dcmFindFunction
(char *fcnName,
 DCM_FunctionTable exposes);

This locates the passed EXPOSE function within the loaded DPCM and returns a pointer to the function.

The first passed argument is a pointer to the requested EXPOSE name (*fcnName). The second passed
argument (exposes) is the initialization table set up by the DPCM initialization function dcm_rule_init. See
10.28.4.16 .

The result is a pointer to the EXPOSE function within the DPCM.

When the matching function cannot be found, an error message is issued and the returned pointer is zero.

10.28.4.10 dcmFindAppFunction

Table 486 provides information on dcmFindAppFunction.

Table 486—dcmFindAppFunction

Function name dcmFindAppFunction

Arguments EXTERNAL function name

Result None

Standard
Structure fields

None

C syntax int dcmFindAppFunction(char *fcnName);

This determines whether the application defined the indicated EXTERNAL function. This function returns a
nonzero value if the application did define the function; otherwise, a zero value is returned.

10.28.4.11 dcmQuietFindFunction

Table 487 provides information on dcmQuietFindFunction.

Table 487—dcmQuietFindFunction

Function name dcmQuietFindFunction

Arguments EXPOSE function name, Function table

Result None

Standard
Structure fields

None

C syntax DCM_GeneralFunction dcmQuietFindFunction
(char *fcnName,
 DCM_FunctionTable *exposes);

This function is the same as dcmFindFunction, except no error is issued if the function is not found (see
10.28.4.11).

10.28.4.12 dcmMakeRC

Table 488 provides information on dcmMakeRC.

492
Copyright © 2010 IEEE all rights reserved.

– 492 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 488—dcmMakeRC

Function name dcmMakeRC

Arguments Message number, Message severity, Error code address

Result complete error code

Standard
Structure fields

None

C syntax int dcmMakeRC
(int messageNumber,
 DCM_Message_Severities severity,
 int *errorCode);

This returns an error code constructed from the message number and severity arguments, which does not
conflict with internal DCL reserved codes (such as those returned from dcmHardErrorRC).

The function returns as an integer value the constructed error code by taking the absolute value of
messageNumber and adding 10 000 (the upper limit of the message numbers reserved for DCL system
itself). The constructed code is also copied to the address specified by the third argument. If severity is zero
or one, then the returned value shall be all zeros; otherwise, the severity byte is used as the most significant
byte of the return value and the constructed error code is use as the least significant bytes.

If the message number contains any bits in the high-order byte, an informative message is issued.

10.28.4.13 dcmHardErrorRC

Table 489 provides information on dcmHardErrorRC.

Table 489—dcmHardErrorRC

Function name dcmHardErrorRC

Arguments Message severity

Result None

Standard
Structure fields

None

C syntax int dcmHardErrorRC(DCM_Message_Severities severity);

This returns a return code constructed from the message severity argument. If the message severity is
inform or warning (see Table Table 101), the return code is 0. Otherwise, the return code has the passed
message severity with a message number of 0x00EEEEEE.

10.28.4.14 dcmSetMessageIntercept

Table 490 provides information on dcmSetMessageIntercept.

Table 490—dcmSetMessageIntercept

Function name dcmSetMessageIntercept

Arguments Application-defined function for printing messages

Result None

Standard
Structure fields

None

C syntax DCM_Message_Intercept_Type dcmSetMessageIntercept
(DCM_Message_Intercept_Type msgfn);

493
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 493 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

This sets the function pointer to be used to print messages generated by the DPCM or library. This function
may be called at any time. This function is a pointer to the previous message intercept function or is NULL
if there was no prior function.

For consistent message handling, the application shall set the message handler before it loads a DPCM.
Message handlers can be changed at any time the application chooses; however, if a change is done after
the DPCM is loaded, then only those messages occurring after the change are directed to the new handler.
Messages prior to that shall be handled in a default manner as determined by DCL (if the message handler
was not set) or as dictated by the previous call to dcmSetMessageIntercept.

10.28.4.15 dcmIssueMessage

Table 491 provides information on dcmIssueMessage.

Table 491—dcmIssueMessage

Function name dcmIssueMessage

Arguments Standard Structure pointer, Message number, Message severity, Message format string
[format arguments]

Result None

Standard
Structure fields

None

C syntax int dcmIssueMessage
(const DCM_STD_STRUCT *std_struct,
 int msgNum,
 DCM_Message_Severities msgSev,
 char* msgFormat [, ...]);

This prints a message using the current message function in effect. This function assembles a complete
DCL message from the severity, message number, format, and format arguments. dcmIssueMessage can be
called by an application as well as by the DPCM (inside INTERNAL or in-line C code) to generate a DCL
style message. Use this function instead of direct calls to printf() or fprintf() to ensure proper ordering of
both DPCM and application messages in the same output stream (see 10.28.4.14).

This function takes a minimum of four arguments. The first is the DCM_STD_STRUCT pointer. This
argument is presented to keep this function consistent with the DCL standard function argument passing
conventions. The message number and severity arguments shall follow the interface conventions defined in
integer return code (see 10.10.1). The fourth argument is a format string that follows the conventions of the
C printf function. The remaining arguments, if any, fulfill the conversion specifications identified in the
format string.

This function returns the same integer value as dcmMakeRC would if it were passed the same severity and
message number (see 10.28.4.12).

This function shall not buffer any messages.

10.28.4.16 dcm_rule_init

Table 492 provides information on dcmrule_init.

Table 492—dcm_rule_init

Function name dcm_rule_init

Arguments None

Result None

494
Copyright © 2010 IEEE all rights reserved.

– 494 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Standard
Structure fields

None

C syntax int dcm_rule_init
(DCMTransmittedInfo *xmitStruct,
 DCM_FunctionTable *externals);

This entry point called by the application after the root subrule of a DPCM was successfully loaded by
dcmBindRule. dcm_rule_init causes the root subrule to load and link all other subrules and sets up the
linkage for EXPOSE and EXTERNAL functions.

The call to dcm_rule_init takes two parameters: a pointer to a DCMTransmittedInfo and a pointer to a
DCM_FunctionTable.

The DCMTransmittedInfo is a structure containing all the EXPOSE function pointer pairs along with a
pointer to DPCM functions modelSearch, delay, slew, and check. Each EXPOSE function pointer pair
consists of a string containing the name of the EXPOSE as it is seen in the subrule and a pointer to that
function’s entry point.

The second parameter is a pointer to a DCM_FunctionTable structure containing the application’s
EXTERNAL function pointer pairs. It is the application’s responsibility to create this structure.

When dcm_rule_init is called, the DPCM loads the remaining subrules specified, cross-links all the
EXPORTs and IMPORTs, and uses the DCM_FunctionTable to link the application EXTERNAL functions to
the corresponding EXTERNAL functions listed in the DPCM. It then fills in the DCMTransmittedInfo with
its EXPOSEs and modeling functions.

After the root subrule is loaded and its initialization function has been called, the application then:

— Uses the DCMTransmittedInfo to initialize its pointers to the DPCM services required.
dcmFindFunction and dcmQuietFindFunction are used to locate the function pointers associated
with each EXPOSE desired.

— Initializes its modeling function pointer by the named field within the DCMTransmittedInfo for
DPCM functions modelSearch, delay, slew, and check.

NOTE—This function is not called explicitly by name but is accessed a pointier supplied by the return value
dcmBindRule.

10.28.4.17 DCM_new_DCM_STD_STRUCT

Table 493 provides information on DCM_new_DCM_STD_STRUCT.

Table 493—DCM_new_DCM_STD_STRUCT

Function name DCM_new_DCM_STD_STRUCT

Arguments None

Result None

Standard
Structure fields

None

C syntax DCM_new_DCM_STD_STRUCT *DCM_new_STD_STRUCT(void);

This constructor function is used to allocate and properly initialize a Standard Structure.

495
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 495 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.28.4.18 DCM_delete_DCM_STD_STRUCT

Table 494 provides information on DCM_delete_DCM_STD_STRUCT.

Table 494—DCM_delete_DCM_STD_STRUCT

Function name DCM_delete_DCM_STD_STRUCT

Arguments None

Result None

Standard
Structure fields

None

C syntax void DCM_delete_DCM_STD_STRUCT(DCM_STD_STRUCT *std_struct);

This destructor function is used to free a Standard Structure.

10.28.4.19 dcm_setTechnology

Table 495 provides information on dcm_setTechnology.

Table 495—dcm_setTechnology

Function name dcm_setTechnology

Arguments Standard Structure pointer, Pointer to technology name

Result None

Standard
Structure fields

None

C syntax const char* dcm_setTechnology
(DCM_STD_STRUCT *std_struct,
 const char *tech_name);

A DPCM can contain one or more technologies. If no technology was specified, then a DPCM contains the
GENERIC technology. If a single technology was specified, then the DPCM contains that specified
technology. If multiple technologies were specified, then the DPCM contains the GENERIC technology (at
least for the root subrule), as well as the other specified technologies.

At any time, there is a current technology set in the Standard Structure; the DPCM as a whole has no notion
of what technology is considered current. A newly created Standard Structure selects a technology
according to the following rules:

— If the DPCM has no technology or has a single technology, that technology is selected.

— If the DPCM has multiple technologies, the GENERIC technology is selected.

An application can change the technology selected by a Standard Structure by calling either this function
(dcm_setTechnology) or dcm_takeMappingOfNugget (see 10.28.4.25) to modify the passed Standard
Structure to select the specified technology.

An application can switch between technologies by either using a single Standard Structure and calling
dcm_setTechnology or dcm_takeMappingOfNugget, or maintaining multiple Standard Structures, each of
which has been modified to select a different technology, and choosing the appropriate structure to pass
across the PI.

496
Copyright © 2010 IEEE all rights reserved.

– 496 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

10.28.4.20 dcm_getTechnology

Table 496 provides information on dcm_getTechnology.

Table 496—dcm_getTechnology

Function name dcm_getTechnology

Arguments Standard Structure pointer

Result None

Standard
Structure fields

None

C syntax const char* dcm_getTechnology(const DCM_STD_STRUCT *std_struct);

This returns the technology name of the Standard Structure in use and returns a 0 value if completion is
unsuccessful.

NOTE—Do not free the result string as it is constant.

10.28.4.21 dcm_getAllTechs

Table 497 provides information on dcm_getAllTechs.

Table 497—dcm_getAllTechs

Function name dcm_getAllTechs

Arguments Standard Structure pointer

Result None

Standard
Structure fields

None

C syntax char ** dcm_getAllTechs(const DCM_STD_STRUCT *std_struct);

This returns an array of all technologies named within the current DPCM and returns a 0 value if
completion is unsuccessful.

NOTE—Do not free the result within the calling application, use dcm_FreeAllTechs instead.

10.28.4.22 dcm_freeAllTechs

Table 498 provides information on dcm_freeAllTechs.

Table 498—dcm_freeAllTechs

Function name dcm_freeAllTechs

Arguments Standard Structure pointer, Array pointer

Result None

Standard
Structure fields

None

C syntax void dcm_freeAllTechs
(DCM_STD_STRUCT *std_struct,
 char **techArray);

This frees storage occupied by the string array returned by a call to dcm_getAllTechs. Although the first
argument is required to be a Standard Structure, this function ignores the structure’s contents. This function

497
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 497 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

is passed a pointer to the pointer array to be freed.

10.28.4.23 dcm_isGeneric

Table 499 provides information on dcm_isGeneric.

Table 499—dcm_isGeneric

Function name dcm_isGeneric

Arguments Standard Structure pointer

Result None

Standard
Structure fields

None

C syntax int dcm_isGeneric(const DCM_STD_STRUCT *std_struct);

This returns whether or not the Standard Structure is currently pointing to the generic technology. A
nonzero return value indicates the Standard Structure is pointing to the generic technology. A zero return
value indicates the Standard Structure is not pointing to the generic technology.

10.28.4.24 dcm_mapNugget

Table 500 provides information on dcm_mapNugget.

Table 500—dcm_mapNugget

Function name dcm_mapNugget

Arguments Standard Structure pointer, Technology name

Result None

Standard
Structure fields

None

C syntax int dcm_mapNugget
(DCM_STD_STRUCT *std_struct,
 const char *tech_name,
 DCM_TechFamilyNugget *tech_nugget);

This maps the passed technology name into the “nugget” tech_nugget. This enables rapid technology
switching with the dcm_takeMappingOfNugget function.

NOTE 1—The application is responsible for setting the current technology in the DCL Standard Structure when the
DPCM contains multiple technologies. This is not required if the DPCM contains only one technology.

NOTE 2—dcm_setTechnology (see 10.28.4.19) may also be used to set the current technology.

10.28.4.25 dcm_takeMappingOfNugget

Table 501 provides information on dcm_takeMappingOfNugget.

498
Copyright © 2010 IEEE all rights reserved.

– 498 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 501—dcm_takeMappingOfNugget

Function name dcm_takeMappingOfNugget

Arguments Standard Structure pointer, Technology nugget

Result None

Standard
Structure fields

None

C syntax int dcm_takeMappingOfNugget
(DCM_STD_STRUCT *std_struct,
 DCM_TechFamilyNugget *tech_nugget);

This sets the Standard Structure argument to use the technology for which tech_nugget was computed
(using dcm_mapNugget).

A nonzero return code indicates the function did not successfully complete. A zero return code indicates
success.

10.28.4.26 dcm_registerUserObject

Table 502 provides information on dcm_registerUserObject.

Table 502—dcm_registerUserObject

Function name dcm_registerUserObject

Arguments Standard Structure pointer, Pointer to application structure to be registered

Result None

Standard
Structure fields

None

C syntax int dcm_registerUserObject
(DCM_STD_STRUCT *std_struct,
 void *app_struct_to_register);

This registers an application-specific data structure with the passed Standard Structure. A registered user
object is a structure that is application private with the provision that the first member of that structure is a
function pointer to the destructor function, which takes as its only argument the pointer to the registered
user object. This registered structure can be deleted later by the application (see 10.28.4.27). This function
passes a pointer to the application structure to be registered. A nonzero return code indicates the function
did not successfully complete. A zero return code indicates successful registration.

10.28.4.27 dcm_DeleteRegisteredUserObjects

Table 503 provides information on dcm_DeleteRegisteredUserObjects.

Table 503—dcm_DeleteRegisteredUserObjects

Function name dcm_DeleteRegisteredUserObjects

Arguments Standard Structure pointer

Result None

Standard
Structure fields

None

C syntax void dcm_DeleteRegisteredUserObjects
(DCM_STD_STRUCT *std_struct);

499
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 499 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

This deletes all the registered user objects that were registered to the specified Standard Structure.

10.28.4.28 dcm_DeleteOneUserObject

Table 504 provides information on dcm_DeleteOneUserObject.

Table 504—dcm_DeleteOneUserObject

Function name dcm_DeleteOneUserObject

Arguments Pointer to object to be deleted

Result None

Standard
Structure fields

None

C syntax void dcm_DeleteOneUserObject
(DCM_STD_STRUCT *std_struct,
 void *userObject);

This locates and deletes the user object contained within the specified Standard Structure. See 10.28.4.27
for a description of a registered user object.

10.29 Standard Structure (std_stru.h) file

Standard Structure (std_stru.h) file.

#ifndef _STDSTRUCT_H
#define _STDSTRUCT_H
/**
** INCLUDE NAME..... std_stru.h
**
** PURPOSE..........
** This is the NDCL standard structure definition.
**
** NOTES.............
**
** ASSUMPTIONS.......
**
** RESTRICTIONS.....
**
** LIMITATIONS......
**
** DEVIATIONS.......
**
** AUTHOR(S)......... H. John Beatty, Peter C. Elmendorf
**
** CHANGES:05/10/99 - A.K.: support DCM_SHORT
** 07/16/99 - A.K.: support DCM_LONG
**
**/
#include <dcmpltfm.h>

/*!
 \file
 \brief Definition of the Standard Structure and associated support items.
 Used in both rules and application code.
*/

/**!***
** Type for a list of names. Hide implementation from the rule.
**/
typedef struct DCM_R_nameList DCM_R_nameList;

/**!***

500
Copyright © 2010 IEEE all rights reserved.

– 500 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

** Type for a list of pins. Hide implementation from the rule.
**/
typedef struct DCM_R_pinList DCM_R_pinList;

/**!***
** Type for a collection of pins. Hide implementation from the rule.
**/
typedef struct DCM_R_pinCollection DCM_R_pinCollection;

#ifdef __cplusplus
class DCM_Phony;
#endif

#ifdef DCM_GEN_DOC
class DCM_STD_STRUCT; /*!< For doc generator only. */
#else
/**!***
** The typedef for the standard structure, the context of each DCL action.
**/
typedef struct DCM_STD_STRUCT DCM_STD_STRUCT;
#endif

#include <dcmfunction.h>

/**!***
** Type for the DCL Universe, the root of DCL activity.
**/
typedef struct DCM_Universe DCM_Universe;

/**!***
** Type for the DCL System, a collection of rule sets.
**/
typedef struct DCM_System DCM_System;

/**!***
** Type for the DCL Space, which contains one rule set.
**/
typedef struct DCM_Space DCM_Space;

/**!***
** Type for the DCL Plane, a context/thread within one rule set.
**/
typedef struct DCM_Plane DCM_Plane;

#ifdef DCM_GUTS
/**
** These declarations are used when building DCL.
**/
class DCM_DataScope;
class DCMRT_LoadScope;
struct dcm_T_TECH_TYPE;
#else
/**
** This declaration of DCM_DataScope is accessed by rules code.
**
** Allow some visibility of the DataScope content to the rule code to
** improve efficiency.
**
** For now, only the dcm___uniqueItemsByPlane field need be seen and
** manipulated by the rule code. This provides fast contextual access
** to data which varies per plane and per space. Also provides
** reliable access to data which might change during the course of ADD_RULE.
**
** The reserved fields are for future expansion and must not be used by
** rule code at this time.
**/
typedef struct DCM_DataScope {
 void ***dcm___uniqueItemsByPlane; /*!< Unique items vector. */
 void **dcm___reserved0; /*!< reserved */

501
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 501 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

 void *dcm___reserved1; /*!< reserved */
 void *dcm___reserved2; /*!< reserved */
 void *dcm___reserved3; /*!< reserved */
 void *dcm___reserved4; /*!< reserved */
 void *dcm___reserved5; /*!< reserved */
} DCM_DataScope;

#ifdef DCL_RULE_CODE
/**!***
** Inside rule C code (user-written), map any mistaken dcmRT_Malloc call
** to dcmRT_R_Malloc (required to avoid deadlocks.)
**/
#define dcmRT_Malloc(d_std, d_siz) dcmRT_R_Malloc((d_std),(d_siz),DCM_RULE_ANCHOR())
/**!***
** Inside rule C code (user-written), map any mistaken dcmRT_Free call
** to dcmRT_R_Free (required to avoid deadlocks.)
**/
#define dcmRT_Free(d_std, d_it) dcmRT_R_Free((d_std),(d_it),DCM_RULE_ANCHOR())
/**!***
** Inside rule C code (user-written), map any mistaken dcmRT_Realloc call
** to dcmRT_R_Realloc (required to avoid deadlocks.)
**/
#define dcmRT_Realloc(d_std, d_it, d_siz) dcmRT_R_Realloc((d_std),(d_it),
(d_siz),DCM_RULE_ANCHOR())

#else
/**!***
** Inside application C code, map any mistaken dcmRT_Malloc call
** to dcmRT_AppMalloc (required to avoid deadlocks.)
**/
#define dcmRT_Malloc(d_std, d_siz) dcmRT_AppMalloc((d_std),(d_siz))
/**!***
** Inside application C code, map any mistaken dcmRT_Free call
** to dcmRT_AppFree (required to avoid deadlocks.)
**/
#define dcmRT_Free(d_std, d_it) dcmRT_AppFree((d_std),(d_it))
/**!***
** Inside application C code, map any mistaken dcmRT_Realloc call
** to dcmRT_AppRealloc (required to avoid deadlocks.)
**/
#define dcmRT_Realloc(d_std, d_it, d_siz) dcmRT_AppRealloc((d_std),(d_it),(d_siz))
#endif /* DCL_RULE_CODE */
#endif

/**!**
** Forward structure: the Path Data
**/
typedef struct DCM_PathDataBlock DCM_PathDataBlock;

/**!**
** Forward structure: the Cell Data
**/
typedef struct DCM_CellDataBlock DCM_CellDataBlock;

/**!**
** Forward structure: the Function Table
**/
typedef struct DCM_FunctionTable DCM_FunctionTable;

/**
** Typedef for a general function.
**/
#ifdef __cplusplus
/**!***
** General function pointer, returning int.
**/
typedef int (*DCM_GeneralFunction)(...);
/**!***
** General function pointer, returning pointer.
**/
typedef void * (*DCM_GeneralPtrFunc)(...);

502
Copyright © 2010 IEEE all rights reserved.

– 502 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

#else
/**!***
** General function pointer, returning int.
**/
typedef int (*DCM_GeneralFunction)();
/**!***
** General function pointer, returning pointer.
**/
typedef void * (*DCM_GeneralPtrFunc)();
#endif /* __cplusplus */

/**!**
** Memory management from INSIDE APPLICATION CODE ONLY
** \warning NEVER CALL FROM INSIDE A RULE!
**/
DCM_XC void *dcmRT_AppMalloc
(const DCM_STD_STRUCT *std, /*!< the context */
 size_t size /*!< size of block desired. */
);

/**! \copydoc dcmRT_AppMalloc */
DCM_XC void dcmRT_AppFree
(const DCM_STD_STRUCT *std, /*!< the context. */
 void *it /*!< -> block to free. */
);

/**! \copydoc dcmRT_AppMalloc */
DCM_XC void *dcmRT_AppRealloc
(const DCM_STD_STRUCT *std, /*!< the context */
 void *it, /*!< -> block to resize. */
 size_t size /*!< new size. */
);

/**!**
** Set unrecoverable error handling intercept - for applications (usually).
**
** This function will be called whenever the DCL Runtime Environment
** encounters an error so severe that it has no recourse but to call exit().
**
** If the user intercept returns, then the DCL Runtime Environment will call
** exit().
**
** Returns the previous setting. NULL result means "no previous setting."
** May be called as often as desired.
**/
DCM_XC DCM_GeneralFunction dcmRT_SetUnrecoverableErrorAppIntercept
(const DCM_STD_STRUCT *std, /*!< current context for operation.*/
 DCM_GeneralFunction func /*!< Error handling function ptr.*/
);

/**!**
** Tells what severity level the message is.
**/
typedef enum DCM_Message_Severities {
 DCM_Msg_Inform = 0x00, /*!< Inform (rc zero.) */
 DCM_Msg_Warning = 0x01, /*!< Warning (rc still zero.) */
 DCM_Msg_Error = 0x02, /*!< Error (nonzero rc.) */
 DCM_Msg_Severe = 0x03, /*!< Severe (nonzero rc.) */
 DCM_Msg_Terminate = 0x04 /*!< Terminate (nonzero rc.) */
} DCM_Message_Severities;

/**!**
** Type for the user's message intercept function.
**
** NOTE: the message text is placed in a buffer that is reused on the
** next message issuance. Copy the information out of the buffer if you
** intend to keep it.
**/
typedef void (*DCMRT_Message_Intercept_Type)
 (const DCM_STD_STRUCT *std, /*!< context of the message. */

503
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 503 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

 int msgnum, /*!< message number. */
 DCM_Message_Severities sev, /*!< message severity. */
 const char *msgText /*!< message text. */
);

/**!**
** This function sets a new message intercept and return the current
** intercept. You may change intercepts as often as desired during a run.
**
** NULL means "no intercept in use", and is a legal parameter and also
** legal return value.
**/
DCM_XC DCMRT_Message_Intercept_Type dcmRT_SetMessageIntercept
(const DCM_STD_STRUCT *std, /*!< context for the operation. */
 DCMRT_Message_Intercept_Type func /*!< Function to assert. */
);

/**!**
** This function issues an official-looking message from DCM C code
** or for the DCM message built-in function.
**
** Has a variable number of args.
**
** \return standard error code
**
** \warning DO NOT CALL THIS FROM APPLICATIONS!
**/
DCM_XC int dcmRT_R_IssueMessage
 (const DCM_STD_STRUCT *std, /*!< Context. */
 int msgNum, /*!< user's message number. */
 DCM_Message_Severities sev, /*!< message severity. */
 const char *format, /*!< printf format. */
 ...);

/**!**
** This function issues an official-looking message from applications.
**
** Has a variable number of args.
**
** \return standard error code
**
** \warning DO NOT CALL THIS FROM RULE CODE!
**/
DCM_XC int dcmRT_AppIssueMessage
 (const DCM_STD_STRUCT *std, /*!< Context. */
 int msgNum, /*!< user's message number. */
 DCM_Message_Severities sev, /*!< message severity. */
 const char *format, /*!< printf format. */
 ...);

#ifdef DCL_RULE_CODE
/**!***
** Inside rule code, map the generic message issuing function.
**/
#define dcmRT_IssueMessage dcmRT_R_IssueMessage
#else
/**!***
** Inside application code, map the generic message issuing function.
**/
#define dcmRT_IssueMessage dcmRT_AppIssueMessage
#endif

/**!**
** GET_RESOURCE:
** Resource resolution, for applications or DCM C-code.
**
** \return the resource string value.
**/
DCM_XC char *dcmRT_GetResource
(const DCM_STD_STRUCT *std, /*!< the context */

504
Copyright © 2010 IEEE all rights reserved.

– 504 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

 const char *resourceName, /*!< name of the resource. */
 const char *description /*!< descriptive commentary. */
);

/**
** Return code assistants.
**/

/**!**
** Returns "hard error" that breaks EXPOSE chaining.
** User is allowed to set the severity.
**/
DCM_XC int dcmRT_HardErrorRC
 (const DCM_STD_STRUCT *std, /*!< Context. */
 DCM_Message_Severities sev /*!< message severity. */
);

/**!**
** Returns "soft error" that stops the function at hand but
** allows EXPOSE chaining and DEFAULT clauses to work.
**
** User is allowed to set the severity.
**
** Severe or Terminate levels will still disallow EXPOSE chaining
** and DEFAULT clauses.
**/
DCM_XC int dcmRT_SoftErrorRC
 (const DCM_STD_STRUCT *std, /*!< Context. */
 DCM_Message_Severities sev /*!< message severity. */
);

/**!**
** Make a standard style return code from a given message number and severity.
** Adds 10,000 to the msgNum just like dcmRT_IssueMessage() does.
**/
DCM_XC int dcmRT_MakeRC
 (const DCM_STD_STRUCT *std, /*!< Context. */
 int msgNum, /*!< user's message number. */
 DCM_Message_Severities sev, /*!< message severity. */
 int *userNum /*!< Number after massage. */
);

/**!**
** Given a return code, return..
** \li 1 if the return code is one that breaks EXPOSE chaining.
** \li 0 if the return code is one that does NOT break EXPOSE chaining.
**/
DCM_XC int dcmRT_BreaksExposeChains
(const DCM_STD_STRUCT *std, /*!< the context */
 int rc, /*!< a return code value */
 const DCM_DataScope *ds /*!< the data scope. */
);

/**!**
** Given a return code, return..
** \li 1 if the return code is severe enough to stop DEFAULT clauses from working.
** \li 0 if the return code is not that severe.
**/
DCM_XC int dcmRT_BreaksDefaultClauses
(const DCM_STD_STRUCT *std, /*!< the context */
 int rc, /*!< a return code value */
 const DCM_DataScope *ds /*!< the data scope. */
);

/**!**
** This is how DCM views an application handle
**
** DCL just depends on the string pointer to the handle's name being the
** first member. We don't care what the rest of the object looks like.
**/
typedef struct DCM_HandleStruct {

505
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 505 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

 char *name; /*!< Name of the object. */
} DCM_HandleStruct;

/**!***
** The DCL PIN (handle) type is defined as a pointer to a handle structure.
**/
typedef DCM_HandleStruct *DCM_HANDLE;

/**!***
** DCM_HANDLE to name conversion macro.
***/
#define DCM_NameInHandle(h) ((h)->name)

/**
** Other handy definitions.
**/

/**!***
** DCL type: CHARACTER
**/
typedef char DCM_CHARACTER;

/**!***
** DCL type: SHORT
**/
typedef short DCM_SHORT;

/**!***********************LONG**
** DCL type:
**/
typedef long DCM_LONG;

/**!***
** DCL type: DOUBLE
**/
typedef double DCM_DOUBLE;

/**!***
** DCL type: FLOAT
**/
typedef float DCM_FLOAT;

/**!***
** DCL type: INTEGER
**/
typedef int DCM_INTEGER;

/**!***
** DCL type: NUMBER
**/
typedef double DCM_NUMBER;

/**!***
** DCL type: PIN
**/
typedef DCM_HandleStruct *DCM_PIN;

/**!***
** DCL type: PINLIST
**/
typedef DCM_PIN *DCM_PINLIST;

/**!***
** DCL type: STRING
**/
typedef char *DCM_STRING;

/**!***
** DCL type: VOID
**/
typedef void *DCM_VOID;

506
Copyright © 2010 IEEE all rights reserved.

– 506 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

/**!**
** DCL type: COMPLEX
**/
typedef struct DCM_COMPLEX {
 DCM_DOUBLE realPart; /*!< real part */
 DCM_DOUBLE imagPart; /*!< imaginary part */
} DCM_COMPLEX;

/**!**
** The DELAY structure.
**/
typedef struct DCM_DELAY_REC {
 DCM_FLOAT early; /*!< The early delay value. */
 DCM_FLOAT late; /*!< The late delay value. */
} DCM_DELAY_REC;

/**!**
** The SLEW structure.
**/
typedef struct DCM_SLEW_REC {
 DCM_FLOAT early; /*!< The early delay value. */
 DCM_FLOAT late; /*!< The late delay value. */
} DCM_SLEW_REC;

/**!**
** The CHECK structure.
**/
typedef struct DCM_CHECK_REC {
 DCM_FLOAT bias; /*!< The time difference. */
} DCM_CHECK_REC;

/**!**
** DCL type: DCL statement function type.
**/
typedef DCM_GeneralFunction FUNCTION;

#include <dcmgarray.h>
#include <dcmgstruct.h>

/**!**
** DCL type: ABSTRACT structure
**/
typedef DCM_STRUCT DCM_ABSTRACT;

/**!**
** DCL type: PIN_ASSOCIATION
**/
typedef struct DCM_PIN_ASSOCIATION {
 DCM_HANDLE pinHandle; /*!< Pin handle. */
 DCM_ABSTRACT *pinInfo; /*!< associated rule information*/
} DCM_PIN_ASSOCIATION;

/**!**
** The EDGE values
**/
typedef enum DCM_EdgeTypes {
 DCM_RisingEdge, /*!< RISE */
 DCM_FallingEdge, /*!< FALL */
 DCM_BothEdges, /*!< BOTH */
 DCM_SameEdge,
 DCM_ComplimentEdge,
 DCM_Terminate,
 DCM_TerminateBoth,
 DCM_OneToZ,
 DCM_ZtoOne,
 DCM_ZeroToZ,
 DCM_ZtoZero,
 DCM_AllEdges

507
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 507 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

} DCM_EdgeTypes;

/**!**
** The propagation values.
**/
typedef enum DCM_PropagationTypes {
 DCM_EarlyMode, /*!< EARLY -> */
 DCM_LateMode, /*!< LATE <- */
 DCM_BothModes, /*!< BOTH <-> */
 DCM_SameMode,
 DCM_ComplimentMode
} DCM_PropagationTypes;

/**!**
** Calculation mode:
**/
typedef enum DCM_CalculationModes {
 DCM_BestCase,
 DCM_WorstCase,
 DCM_NominalCase,
 DCM_ProcessPoint
} DCM_CalculationModes;

/**!**
** The test types.
**/
typedef enum DCM_TestTypes {
 DCM_SetupTest, /*!< SETUP */
 DCM_HoldTest, /*!< HOLD */
 DCM_ClockPulseWidthTest, /*!< CPW */
 DCM_ClockSeparationTest, /*!< CST */
 DCM_DataPulseWidthTest, /*!< DPW */
 DCM_DataSeparationTest, /*!< DST */
 DCM_ClockGatingPulseWidthTest, /*!< CGPW */
 DCM_ClockGatingHoldTest, /*!< CGHT */
 DCM_ClockGatingSetupTest, /*!< CGST */
 DCM_EndOfCycleTest, /*!< ECT */
 DCM_DataHoldTest, /*!< DHT */
 DCM_RecoveryTest, /*!< RECOVERY */
 DCM_RemovalTest, /*!< REMOVAL */
 DCM_SkewTest, /*!< SKEW */
 DCM_NoChangeTest, /*!< NOCHANGE */
 DCM_DifferentialSkewTest /*!< DIFFERENTIAL_SKEW */
} DCM_TestTypes;

/**!**
** The process variations.
**/
typedef enum DCM_ProcessVariations {
 DCM_NoVariation,
 DCM_MinEarly_MaxLate,
 DCM_MaxEarly_MinLate_EdgesSame,
 DCM_MaxEarly_MinLate_EdgesOpposite
} DCM_ProcessVariations;

/**!**
** Typedef for a general DCM statement.
**/
typedef int (*DCM_StatementFunction)(DCM_STD_STRUCT *std, void *rtn, ...);

/**!***
** Typedef for a utility function.
**/
typedef int (*DCM_UtilityFunction)(const DCM_STD_STRUCT *std, ...);

/**!**
** Typedef for a factored STORE function.
**/
typedef int (*DCM_StoreFunction)(DCM_STD_STRUCT *std);

/**!**

508
Copyright © 2010 IEEE all rights reserved.

– 508 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

** Typedef for a DELAY function.
**/
typedef int (*DCM_DelayFunctionType)(DCM_STD_STRUCT *std, DCM_DELAY_REC *rtn);

/**!**
** Typedef for a SLEW function.
**/
typedef int (*DCM_SlewFunctionType)(DCM_STD_STRUCT *std, DCM_SLEW_REC *rtn);

/**!**
** Typedef for a CHECK function.
**/
typedef int (*DCM_CheckFunctionType)(DCM_STD_STRUCT *std, DCM_CHECK_REC *rtn);

/**!**
** Technology nugget.
** \warning DO NOT MODIFY THE CONTENTS!
** \warning DO NOT MODIFY THE FIELDS!
**/
typedef struct DCM_TechFamilyNugget {
 DCM_STRING name; /*!< Technology name. */
 DCM_INTEGER DEFAULT; /*!< Technology index */
 unsigned int dcmInfo; /*!< reserved */
 void *reserved; /*!< reserved */
} DCM_TechFamilyNugget;

/**!**
** This structure defines ONE unit of STORE() function information.
** One of these exists for each STORE function mentioned in a STORE clause.
**/
typedef struct DCM_SFI {
 void *reserved0; /*!< Reserved. */
 DCM_StoreFunction storer; /*!< Who created the recall data. */
 char *storerName; /*!< -> name of func doing store. */
 int recordSize; /*!< Size of data record. */
 int table; /*!< I table descriptor ID. */
 int unique; /*!< I import function ID. */
 int reserved1; /*!< Reserved. */
} DCM_SFI;

/**!**
** Structure which associates string names to their functions or unique#
**
** \li Imports have the unique# set and the func ptr NULL.
** \li Others have the func ptr set and the unique# is 0.
**
** The very last entry in these arrays has two NULL pointers therein.
**/
typedef struct DCM_MethodVector {
 char *name; /*!< -> string name of function. */
 DCM_GeneralFunction function; /*!< -> actual function. */
 int uniqueID; /*!< unique # for imported object */
} DCM_MethodVector;

/**!**
** Cell Constant Data Block
**
** Associated with PROPERTIES units.
**
** All members are used by the runtime and are written by the compiler.
** \warning DO NOT MODIFY!
**/
typedef struct DCM_CCDB {
 int sfiCount; /*!< # of stored function results.*/
 DCM_SFI *sfi; /*!< -> store function info vector*/
 void *reserved0; /*!< RESERVED. */
 void *reserved1; /*!< RESERVED. */
 const DCM_DataScope *anchor; /*!< Anchor. */

509
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 509 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

 unsigned short ci; /*!< PROPERTIES unit number. */
 unsigned short flags; /*!< Bit flgas. */
 int methodsIndex; /*!< uniqueID of METHODS vector.*/
 unsigned int reserved2; /*!< RESERVED. */
 /**
 ** For use in possible future extensions.
 **/
 void *reserved3; /*!< reserved. */
 void *reserved4; /*!< reserved. */
 void *reserved5; /*!< reserved. */
 void *reserved6; /*!< reserved. */
} DCM_CCDB;

/**!***
** These flags control the CCDB.
**/
typedef enum DCM_CCDBFlags {
 /**!***
 ** The CCDB represents an inconsistent PROPERTIES.
 **/
 DCM_CCDBInconsistent = 0x0001,
 /**!***
 ** The CCDB represents an inconsistent STORE in the PROPERITES.
 **/
 DCM_CCDBInconsistentStore = 0x0002
} DCM_CCDBFlags;

/**!***
** A anonymous type. The rule needs to know it exists but must not
** know how it is structured. Only the runtime need know the layout.
**/
typedef struct DCM_ConsistencyLookup DCM_ConsistencyLookup;

/**!***
** Cell Data Block
**
** Represents METHODS/STORE data for a particular PROPERTIES unit.
**/
struct DCM_CellDataBlock {
 void **recallData; /*!< points to the stored data */
 /*!***
 ** -> cell constants data block.
 ** The CCDB contains both user and DCM control data which is constant
 ** for each circuit.
 **/
 DCM_CCDB *ccdb;
 unsigned int reserved0; /*!< reserved */
 unsigned short flags2; /*!< Control flags. */
 unsigned short flags; /*!< Control flags. */
 DCM_ConsistencyLookup *cause; /*!< Used by DCL runtime. */
 /**
 ** For use in possible future extensions.
 **/
 void *reserved3; /*!< reserved */
 void *reserved4; /*!< reserved */
};

/**!**
** Marks that STORE() completed OK. \n
** Valid for both CellData and PathData. \n
** \note MUST BE the value 0x0004!
**/
#define DCM_Pdb_Cdb_StoreComplete 0x0004

/**!**
** These flags control cell data space.
**/
typedef enum DCM_CellDataFlags {
 /**!**

510
Copyright © 2010 IEEE all rights reserved.

– 510 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

 ** Means that the modelproc is CAPABLE of being inconsistent.
 ** Therefore, the model must be called and made every time.
 ** (Example: possible path differences.)
 **/
 DCM_CdbInconsistentModel = 0x0001,
 /**!**
 ** Means that an inconsistent STORE actually executed in this modelling.
 ** (Not potential, but actual.)
 **/
 DCM_CdbInconsistentStore = 0x0002,
 /**!**
 ** Marks that STORE() completed OK.
 ** \li MUST BE the value 0x0004!
 ** \li MAKE SURE this is the same bit as that used for DCM_PdbStoreComplete!
 **/
 DCM_CdbStoreComplete = DCM_Pdb_Cdb_StoreComplete,
 /**!**
 ** CDB is in a consistency tree.
 **/
 DCM_CdbInCT = 0x0008,
 /**!**
 ** Set to 1 when the CELL qualifier field
 ** matches the default qualifier (*) during model search.
 **/
 DCM_CdbCellDefault = 0x0010,
 /**!**
 ** Set to 1 when the CELL_QUAL qualifier field
 ** matches the default qualifier (*) during model search.
 **/
 DCM_CdbCellQualDefault = 0x0020,
 /**!**
 ** Set to 1 when the MODEL_DOMAIN qualifier field
 ** matches the default qualifier (*) during model search.
 **/
 DCM_CdbModelDomainDefault = 0x0040,
 /**!**
 ** Means that the PROPERTIES stmt has not run yet.
 **/
 DCM_CdbPropertiesNotSet = 0x8000
} DCM_CellDataFlags;

/**!**
** For the Application Code: \n
** Destroy DCM_CellDataBlocks.
** Obeys the built-in destructor ptr.
** Always call this function to delete DCM_CellDataBlock items.
**/
DCM_XC int dcmRT_DeleteCellDataBlock
(const DCM_STD_STRUCT *std, /*!< the context */
 DCM_CellDataBlock *cdb /*!< cellData to destroy. */
);

/**!**
** Path Constant Data Block
**
** Associated with INPUT/OUTPUT/PATH/BUS/TEST/NODE.
**
** All members are used by the runtime and are written by the compiler.
** \warning DO NOT MODIFY!
**/
typedef struct DCM_PCDB {
 DCM_STRING clkflg; /*!< clock identification string */
 DCM_STRING objectType; /*!< object identification string */
 /**!***
 ** holds the numbers of cycles this path should be adjusted BY.
 **/
 int delayAdj;
 /**!***
 ** DELAY function ptr. (For TEST, the CHECK function ptr.)
 **/
 DCM_DelayFunctionType delay;

511
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 511 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

 DCM_SlewFunctionType slew; /*!< SLEW function ptr. */
 int reserved_int; /*!< RESERVED. */
 int sfiCount; /*!< # of stored function results.*/
 DCM_SFI *sfi; /*!< -> store function info vector*/
 void *reserved0; /*!< reserved */
 const DCM_DataScope *anchor; /*!< Anchor. */
 /**
 ** For use in possible future extensions.
 **/
 void *reserved1; /*!< reserved */
 void *reserved2; /*!< reserved */
 void *reserved3; /*!< reserved */
 /**
 ** Bit flags.
 **/
 unsigned int extendedPTE:1; /*!< Extended PTE in use. */
 unsigned int inconsistent:1; /*!< Inconsistent */
 unsigned int experimental:1; /*!< Experimental functions */
 unsigned int reserved4:29; /*!< reserved */
 /**!**
 ** METHODS vector unique ID.
 **/
 int methodsIndex;
} DCM_PCDB;

/**!**
** These flags control path data space.
**/
typedef enum DCM_PathDataFlags {
 DCM_PathFromMalloc = 0x0001, /*!< PATH name was malloc'd. */
 DCM_PdbInCT = 0x0002, /*!< PDB is in a consistency tree.*/
 /**!**
 ** Marks that STORE() completed OK.
 ** \li MUST BE the value 0x0004!
 ** \li MAKE SURE this is the same bit as that used for DCM_CdbStoreComplete!
 **/
 DCM_PdbStoreComplete = DCM_Pdb_Cdb_StoreComplete,

 DCM_PdbMagicMask = 0xFF00
} DCM_PathDataFlags;

/**!***
** Path Data Block.
**
** Represents data for a particular segment or node.
***/
struct DCM_PathDataBlock {
 /**!***
 ** path name under calculation. this variable is set by the
 ** calculator during model build and may be ignored by other programs
 **/
 DCM_STRING path;
 void **recallData; /*!< points to the store clause data*/
 /**!**
 ** -> path constants data block.
 ** The PCDB contains both user and DCM control data which is constant
 ** for each PROPAGATE clause.
 **/
 DCM_PCDB *pcdb;
 unsigned int reserved0; /*!< reserved. */
 DCM_SHORT flags; /*!< Control flags. */
 /**!***
 ** TEST Cycle adjust or functional byte count.
 **/
 DCM_SHORT cycle_adj;
 /**!***
 ** TEST Correlation index, or functional primitive.
 **/
 unsigned short corrind;
 /**

512
Copyright © 2010 IEEE all rights reserved.

– 512 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

 ** The rest are for functional statements.
 **/
 unsigned short modifiers; /*!< data type modifiers. */
 unsigned short msbStrandSource; /*!< MSB src strand number for arc. */
 unsigned short lsbStrandSource; /*!< MSB src strand number for arc. */
 unsigned short msbStrandSink; /*!< MSB sink strand number for arc.*/
 unsigned short lsbStrandSink; /*!< MSB sink strand number for arc.*/

#if defined _HP && defined __cplusplus
 /**!**
 ** constructor, destructor, operator new and delete needed for aCC
 ** AK 01/20/99
 ***/
 DCM_PathDataBlock();
 ~DCM_PathDataBlock();
 void * operator new(size_t s);
 void operator delete(void * item, size_t);
#endif /* _HP and C++ */

}; /* DCM_PathDataBlock */

/**!**
** For Application Code: Destroy DCM_PathDataBlocks.
** Obeys the built-in destructor ptr.
** Always call this function to delete DCM_PathDataBlock items.
**/
DCM_XC int dcmRT_DeletePathDataBlock
(const DCM_STD_STRUCT *std, /*!< the context */
 DCM_PathDataBlock *pdb /*!< path data to destroy */
);

/**!**
** Returns nonzero if the model search matched a default op for CELL.
**/
#define dcmRT_FoundDefaultCell(std) \
((std)->cellData->flags & DCM_CdbCellDefault)

/**!**
** Returns nonzero if the model search matched a default op for CELL_QUAL
**/
#define dcmRT_FoundDefaultCellQual(std) \
 ((std)->cellData->flags & DCM_CdbCellQualDefault)

/**!**
** Returns nonzero if the model search matched a default op for MODEL_DOMAIN.
**/
#define dcmRT_FoundDefaultModelDomain(std) \
 ((std)->cellData->flags & DCM_CdbModelDomainDefault)

/**!**
** Allocate and initialize a new std structure, givin an existing one.
**/
DCM_XC DCM_STD_STRUCT *dcmRT_new_DCM_STD_STRUCT(const DCM_STD_STRUCT *source);

/**!**
** Assign one std structure to another.
**/
DCM_XC DCM_STD_STRUCT *dcmRT_assign_DCM_STD_STRUCT
(DCM_STD_STRUCT *target,
 const DCM_STD_STRUCT *source);

/**!**
** Delete a std structure.
**/
DCM_XC void dcmRT_delete_DCM_STD_STRUCT(DCM_STD_STRUCT *std);

/**
** Set a std structure to a given named technology.
** (High-performance uses should leverage "DCM_TechFamilyNugget".)
**

513
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 513 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

** \return name of previous technology mapping.
**
** \param std the context
** \param name name of the desired technology.
**/
DCM_XC const char *dcmRT_setTechnology
(DCM_STD_STRUCT *std,
 const char *name
);

/**
** Return the name of the technology to which the std structure is
** currently mapped.
**
** \return name of current technology mapping.
**
** \param std the context
**/
DCM_XC const char *dcmRT_getTechnology(const DCM_STD_STRUCT *std);

/**!**
** Get a vector of all technology names in the Space
**/
DCM_XC char **dcmRT_getAllTechs(const DCM_STD_STRUCT *std);

/**!**
** Get a vector of all technology names in the Space, in a format
** suitable for use as a PINLIST in a discrete loop.
**/
DCM_XC char ***dcmRT_getAllTechsAsPinlist(const DCM_STD_STRUCT *std);

/**!***
** Free the result of dcmRT_getAllTechs().
**/
DCM_XC void dcmRT_freeAllTechs(const DCM_STD_STRUCT *std,

 char **vec);

/**!***
** Free the result of dcmRT_getAllTechsAsPinlist().
**/
DCM_XC void dcmRT_freeAllTechsAsPinlist(const DCM_STD_STRUCT *std,

char ***vec);

/**!**
** Returns nonzero if the std structure is currently mapped to
** the GENERIC technology.
**/
DCM_XC int dcmRT_isGeneric(const DCM_STD_STRUCT *std);

#ifndef DCM_SUPPRESS_API_INTERNAL_USE
/**!**
** Allocate and initialize a new DCM_TechFamilyNugget, and set it to
** the named technology.
**/
DCM_XC DCM_TechFamilyNugget *
 dcmRT_new_DCM_TechFamilyNugget(const DCM_STD_STRUCT *std,

 const char *name);

/**!**
** Delete a DCM_TechFamilyNugget.
**/
DCM_XC void dcmRT_delete_DCM_TechFamilyNugget(const DCM_STD_STRUCT *std,

 DCM_TechFamilyNugget *nugget);
#endif

/**!**
** Map the given std structure to the technology represented by the
** given DCM_TechFamilyNugget.
**
** Returns nonzero on error (ran out of memory, DCM_STD_STRUCT invalid,

514
Copyright © 2010 IEEE all rights reserved.

– 514 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

** or unable to take technology mapping.)
**/
DCM_XC int dcmRT_takeMappingOfNugget(DCM_STD_STRUCT *std,

 const DCM_TechFamilyNugget *nugget);

/**!***
** Register a user object on the given std struct.
**/
DCM_XC int dcmRT_registerUserObject(DCM_STD_STRUCT *std,

 const void *object);

/**!***
** Delete all user objects registered on the given std struct.
**/
DCM_XC void dcmRT_deleteRegisteredUserObjects(DCM_STD_STRUCT *std);

/**!***
** Delete the indicated user object registered on the given std struct.
**/
DCM_XC void dcmRT_deleteOneUserObject(DCM_STD_STRUCT *std,

 void *object);

/**!**
** Return nonzero if the pathData (in the std struct)
** has something stored on it.
**/
DCM_XC int dcmRT_isSomethingStored(const DCM_STD_STRUCT *std);

/**!**
** Return nonzero if there is a STORE of a function with the
** given name on the pathData (in the std struct).
**
** Note this does not resolve possible name ambiguity.
**/
DCM_XC int dcmRT_isThisFunctionStored(const DCM_STD_STRUCT *std,

 const char *name);

/**!**
** Return nonzero if this PATH on the pathData (in the std struct)
** is inconsistent. (Means instance-specific data exists.)
**/
DCM_XC int dcmRT_isPathInconsistent(const DCM_STD_STRUCT *std);

/**!**
** Return nonzero if this model presents inconsistent STOREs anywhere
** on the pathData (in the std struct).
** (Means instance-specific data exists.)
**/
DCM_XC int dcmRT_isModelDataInconsistent(const DCM_STD_STRUCT *std);

/**!**
** Return nonzero if this model is possibly inconsistent
** on the pathData (in the std struct).
** (Means do NOT attempt to reuse model, must call for model each time.)
**/
DCM_XC int dcmRT_isModelPossiblyInconsistent(const DCM_STD_STRUCT *std);

/**!**
** Structure for getting the list of all cells in the technology.
**
** Represents CELL.QUAL.DOMAIN in 1-1-1 correspondence across the vectors.
**/
typedef struct dcm_T_dcmRT_CellList {
 DCM_STRING_ARRAY *cellNameArray; /*!< cell name vector. */
 DCM_STRING_ARRAY *cellQualArray; /*!< cellQual name vector. */
 DCM_STRING_ARRAY *model_domainArray; /*!< modelDomain name vector. */
} dcm_T_dcmRT_CellList;

515
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 515 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

/**!**
 ** Routine for getting the list of all cells in the technology.
**/
DCM_XC int dcmRT_CellList
(const DCM_STD_STRUCT *std, /*!< the context (implies tech.)*/
 dcm_T_dcmRT_CellList *rtn /*!< -> place to put answer */
);

#include <dcmstate.h> /* The state block. */

/**
** The standard structure.
**/
#ifdef DCM_GEN_DOC
class DCM_STD_STRUCT /* For doc generator only. */
#else
struct DCM_STD_STRUCT /* Real declaration. */
#endif
{
 /**!***
 ** Runtime only information. DO NOT MODIFY!
 **/
 unsigned int dcmInfo;
 /**!***
 ** States used by generated code, runtime, and special macros.
 ** DO NOT MODIFY!
 **/
 DCM_StateBlock *dcmStates;
 /**
 ** Strings.
 **/
 DCM_STRING cell; /*!< first model qualifier */
 DCM_STRING cellQual; /*!< second model qualifier */
 DCM_STRING modelDomain; /*!< third and last model qualifier*/
 /**!***
 ** Specifies latch FLUSH/NOFLUSH (or other things.)
 **/
 DCM_STRING ctl;
 /**!***
 ** the identifing name of the model to be called when
 ** modelling this cell. this variable is set by the
 ** calculator and is set once as the model is entered.
 **/
 DCM_STRING model_name;
 /**!***
 ** indicates to the calculator that the database exists for this cell.
 ** it is an optional variable which can be used in
 ** conditional expressions to alter the behavior of the calculator.
 **
 ** \li 'y' == exists in the database
 ** \li 'n' == doesnot exist in the database
 **/
 DCM_STRING instantiated;
 /**!***
 ** indicates to the calculator that the cell has been
 ** expanded in the database and the model for the cell need not be built.
 ** in actuality it is a variable that can be expressions where
 ** \li 'y' == expanded
 ** \li 'n' == not expanded
 **/
 DCM_STRING expanded;
 /**!***
 ** the block that is to be built or have a delay calculated for.
 **/
 DCM_HANDLE block;
 /**!***
 ** a vector of input pins.
 **/
 DCM_HANDLE *inputPins;

516
Copyright © 2010 IEEE all rights reserved.

– 516 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

 /**!***
 ** a vector of output pins.
 **/
 DCM_HANDLE *outputPins;
 /**!***
 ** a vector of node points.
 **/
 DCM_HANDLE *nodes;
 /**!***
 ** FROM (source) pin of a segment.
 ** \li set during modelling by the rule.
 ** \li set prior to delay or slew calculation by the calling subsystem.
 **/
 DCM_HANDLE fromPoint;
 /**!***
 ** TO (sink) pin of a segment.
 ** \li set during modelling by the rule.
 ** \li set prior to delay or slew calculation by the calling subsystem.
 **/
 DCM_HANDLE toPoint;
 /**!***
 ** Number of elements in inputPins.
 **/
 int inputPinCount;
 /**!***
 ** Number of elements in outputPins.
 **/
 int outputPinCount;
 /**!***
 ** Number of elements in nodes.
 **/
 int nodeCount;
 /**!**
 ** Edge(s) at the source pin.
 **/
 DCM_EdgeTypes sourceEdge;
 /**!**
 ** Edge(s) at the sink pin.
 **/
 DCM_EdgeTypes sinkEdge;
 /**!***
 ** Propagation mode on the segment at the source pin end.
 **/
 DCM_PropagationTypes sourceMode;
 /**!***
 ** Propagation mode on the segment at the sink pin end.
 **/
 DCM_PropagationTypes sinkMode;
 /**!**
 ** Calculation mode:
 **/
 DCM_CalculationModes calcMode;
 /**!**
 ** Slew values (early and late).
 **/
 DCM_SLEW_REC slew;
 /**!***
 ** The following pointer is used to point to rule specific data for each
 ** segment modelled. If the distructor function pointer is null the
 ** data applies to all circuits for which this is modelled for and
 ** should not be delete otherwise if the function pointer is not null
 ** then call it for each segment deleted.
 ***/
 DCM_PathDataBlock *pathData;
 /**!***
 ** The following pointer is present to allow additions to the standard
 ** structure which the timer or other applications understand. Changes
 ** here will not affect the compiler as the macros to access the data
 ** can be stored in the .h file libraries required for each technology.
 ** DCM will not alter the data contained in this application block
 ** so if the rule creates a new standard structure for its purposes

517
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 517 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

 ** it will merely copy the pointers value. On the other side when
 ** the rule discards a standard structure it created it simply forgets
 ** the pointer.
 ***/
 void *applicationInfo;
 /**!***
 ** The following pointer is used to point to rule specific data for each
 ** circuit modelled. If the distructor function pointer is null the
 ** data applies to all circuits for which this is modelled for and
 ** should not be delete otherwise if the function pointer is not null
 ** then call it.
 ***/
 DCM_CellDataBlock *cellData;
 /**!**
 ** The utility handle for extensions such as the VECTOR clause.
 **/
 DCM_HANDLE utilityHandle;
 /**!**
 ** Process Variation.
 **/
 DCM_ProcessVariations processVariation;
 /**!**
 ** PIN_ASSOCIATION type (user data) associated with the FROM pin.
 **/
 DCM_PIN_ASSOCIATION *fromPointPinAssociation;
 /**!**
 ** PIN_ASSOCIATION type (user data) associated with the TO pin.
 **/
 DCM_PIN_ASSOCIATION *toPointPinAssociation;
 /**
 ** reserved states.
 **/
 void *reserved2;
 void *reserved3; /*!< reserved. */
 void *reserved4; /*!< reserved. */
 void *reserved5; /*!< reserved. */
 void *reserved6; /*!< reserved. */

#if defined(__cplusplus) && !defined(DCM_GEN_DOC)
 /* Following portion not for the documentation generator.
 The standard is written to a C interface only. */
 private:
 /**
 ** Constructor.
 **/
 void *operator new(size_t s);
 DCM_STD_STRUCT();
 /**
 ** Destructor.
 **/
 void operator delete(void *item, size_t);
 ~DCM_STD_STRUCT();
 /**
 ** Assignment.
 **/
 DCM_STD_STRUCT & operator =(DCM_STD_STRUCT &);
 public:
 friend class DCM_Phony;
 /**
 ** method to create new DCM_STD_STRUCT in same plane as another one.
 **/
 static DCM_STD_STRUCT *new_DCM_STD_STRUCT(const DCM_STD_STRUCT *std);
 /**
 ** method to delete DCM_STD_STRUCT in plane context.
 **/
 void delete_DCM_STD_STRUCT();
 /**
 ** Technology mapping.
 ** The "generic" technology is the string "GENERIC".
 ** A NULL passed parameter is treated same as the "generic" technology.
 ** setTechnology() returns NULL on an error.

518
Copyright © 2010 IEEE all rights reserved.

– 518 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

 **
 ** The input string is NOT copied. No storage management is performed
 ** by the method. DO NOT FREE THE RESULT!
 **/
 const char *setTechnology(const char *);/* Set new mapping, return old one.*/
 /* NOTE: no strings are copied! */
 /* only the pointer is remembered.*/
 /**
 ** The "generic" technology is the string "GENERIC".
 ** getTechnology() returns NULL on an error.
 ** DO NOT FREE THE RESULT!
 **/
 const char *getTechnology() const;

 /**
 ** Return a NULL-terminated pointer vector of technology names
 ** available in this run.
 **
 ** Both the vector and the strings exist in space caller must free.
 **
 ** Returns NULL on error.
 **/
 char **getAllTechs() const;
 char ***getAllTechsAsPinlist() const;

 void freeAllTechs(char **) const;
 void freeAllTechsAsPinlist(char ***) const;
 /**
 ** Return nonzero if this object is mapped to the generic technology.
 **/
 int isGeneric() const;
 /**
 ** Return the given technology mapping in a nugget.
 ** Does NOT affect the current mapping of the standard structure.
 **/
 DCM_TechFamilyNugget *newNugget(const char *name) const;
 /**
 ** Given a mapping in a nugget, convert the current standard structure
 ** to that technology mapping.
 **/
 int takeMappingOfNugget(const DCM_TechFamilyNugget *);
 /**
 ** User object registration and management.
 **/
 int registerUserObject(const void *);
 void deleteRegisteredUserObjects();
 void deleteOneUserObject(void *);

 /**
 ** Methods that deal with the hidden path information.
 ** They depend on pathData being properly set.
 **/

 /**
 ** Return nonzero if the path has something stored on it.
 **/
 int isSomethingStored() const; /* zero means "no" */
 /**
 ** Return nonzero if there is a STORE of a function with the
 ** given name.
 **
 ** Note this does not resolve possible name ambiguity.
 **/
 int isThisFunctionStored(const char *name) const; /* Zero means "no" */
 /**
 ** Return nonzero if this PATH is inconsistent.
 ** (Means instance-specific data exists.)
 **/
 int isPathInconsistent() const; /* zero means "no" */
 /**
 ** Return nonzero if this model presents inconsistent STOREs anywhere.

519
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 519 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

 ** (Means instance-specific data exists.)
 **/
 int isModelDataInconsistent() const; /* zero means "no" */
 /**
 ** Return nonzero if this model is possibly inconsistent.
 ** (Means do NOT attempt to reuse model, must call for model each time.)
 **/
 int isModelPossiblyInconsistent() const; /* zero means "no" */

 /**
 ** Old, unsupported routines.
 **/
 int mapNugget(const char *name, DCM_TechFamilyNugget *) const;

#endif

}; /* End of STD_STRUCT. */

/**!**
** STEP_TABLE controls.
**/
typedef enum DCMStepDirections {
 DCMStepTableStart, /*!< Move to start of qualifier data.*/
 DCMStepTableBackwards, /*!< Move backwards to prev data. */
 DCMStepTableForwards, /*!< Move forwards to next data. */
 DCMStepTableEnd, /*!< Move to end of qualifier data.*/
 /**!***
 ** Return the DEFAULT record. (does not affect table cursor.)
 **/
 DCMStepTableToDefaultRecord,
 DCMStepTableCurrent, /*!< Return the current record */
 DCMStepDirectionsMax /*!< Ceiling of enumeration. */
} DCMStepDirections;

#include <dcmBackCompat.h>

#endif

10.30 Standard macros (std_macs.h) file

This subclause lists the std_macs.h file.

#ifndef _H_STD_MACROS
#define _H_STD_MACROS
/**
** INCLUDE NAME..... std_macs.h
**
** PURPOSE..........
** These are the standard macros used by the DCL language.
** They appear to be built-in functions from the rules coder viewpoint.
**
** NOTES.............
**
** ASSUMPTIONS.......
**
** RESTRICTIONS.....
**
** LIMITATIONS......
**
** DEVIATIONS.......
**
** AUTHOR(S)......... H. John Beatty, Peter C. Elmendorf
**
** CHANGES:
**
**/

/*!

520
Copyright © 2010 IEEE all rights reserved.

– 520 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

 \file
 \brief These are the standard macros used by the DCL language.
 They appear to be built-in functions from the rules coder viewpoint.
*/

/**!**
** Maps EDGE scalar to EDGE string.
**/
static const char * const dcmStdStructEdges[] = {
 "R", /*!< Rising edge. */
 "F", /*!< Falling edge. */
 "B", /*!< Both edges. */
 "X", /*!< Same edge. */
 "C", /*!< Compliment edge. */
 "T", /*!< Terminate. */
 "Y", /*!< Terminate both. */
 "1Z", /*!< OneToZ */
 "Z1", /*!< ZtoOne */
 "0Z", /*!< ZeroToZ */
 "Z0", /*!< ZtoZero */
 "A" /*!< All edges. */
 };

/**!***
** Maps MODE scalar to MODE string.
**/
static const char * const dcmStdStructModes[] = {
 "E", /*!< Early mode. */
 "L", /*!< Late mode. */
 "B", /*!< Both modes. */
 "X", /*!< Same mode. */
 "C" /*!< Compliment mode. */
 };

/**!***
** Maps CALC_MODE scalar to CALC_MODE string.
**/
static const char * const dcmCalcModes[] = {
 "B", /*!< Best case. */
 "W", /*!< Worst case. */
 "N", /*!< Nominal case. */
 "P" /*!< Use preset Process Point. */
 };

/**!***
** Maps PROCESS_VARIATION scalar to PROCESS_VARIATION string.
**/
static const char * const dcmProcessVariations[] = {
 "NoVariation", /*!< No process variation. */
 "MinEarly_MaxLate", /*!< Min Early, Max Late */
 "MaxEarly_MinLate_EdgesSame", /*!< Max Early, Min Late. */
 "MaxEarly_MinLate_EdgesOpposite" /*!< Max Early, Min Late. */
 };

/**
** The built-in names for standard structure fields.
** The DCL Compiler may generate code that references these macros.
**/

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** BTR (Deprecated) => CELL
**/
#define DCM__BTR (std_struct->cell)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** BHC (Deprecated) => CELL_QUAL
**/
#define DCM__BHC (std_struct->cellQual)

521
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 521 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** BRC (Deprecated) => MODEL_DOMAIN
**/
#define DCM__BRC (std_struct->modelDomain)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** CELL
**/
#define DCM__CELL (std_struct->cell)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** CELL_QUAL
**/
#define DCM__CELL_QUAL (std_struct->cellQual)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** MODEL_DOMAIN
**/
#define DCM__MODEL_DOMAIN (std_struct->modelDomain)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** CLKFLG
**/
#define DCM__CLKFLG (std_struct->pathData->pcdb->clkflg)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
**
** CKTTYPE is obsolete
**/
#define DCM__CKTTYPE (std_struct->pathData->pcdb->objectType)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** OBJTYPE
**/
#define DCM__OBJTYPE (std_struct->pathData->pcdb->objectType)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** DELAYADJ
**/
#define DCM__DELAYADJ (std_struct->pathData->pcdb->delayAdj)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** CORRIND
**/
#define DCM__CORRIND (std_struct->pathData->corrind)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** CYCLEADJ
**/
#define DCM__CYCLEADJ (std_struct->pathData->cycle_adj)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** MODEL_NAME
**/
#define DCM__MODEL_NAME (std_struct->model_name)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** PATH

522
Copyright © 2010 IEEE all rights reserved.

– 522 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

**/
#define DCM__PATH (std_struct->pathData->path)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** PHASE
**/
#define DCM__PHASE ((std_struct->sourceEdge==std_struct->sinkEdge)\

 ? "I" : "O")

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** INSTANTIATED
**/
#define DCM__INSTANTIATED (std_struct->instantiated)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** EXPANDED
**/
#define DCM__EXPANDED (std_struct->expanded)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** BLOCK
**/
#define DCM__BLOCK (std_struct->block)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** INPUT_PINS
**/
#define DCM__INPUT_PINS (std_struct->inputPins)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** OUTPUT_PINS
**/
#define DCM__OUTPUT_PINS (std_struct->outputPins)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** NODES
**/
#define DCM__NODES (std_struct->nodes)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** FROM_POINT
**/
#define DCM__FROM_POINT (std_struct->fromPoint)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** FROM_POINT_PIN_ASSOCIATION
**/
#define DCM__FROM_POINT_PIN_ASSOCIATION (std_struct->fromPointPinAssociation)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** TO_POINT
**/
#define DCM__TO_POINT (std_struct->toPoint)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** TO_POINT_PIN_ASSOCIATION
**/
#define DCM__TO_POINT_PIN_ASSOCIATION (std_struct->toPointPinAssociation)

523
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 523 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** INPUT_PIN_COUNT
**/
#define DCM__INPUT_PIN_COUNT (std_struct->inputPinCount)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** OUTPUT_PIN_COUNT
**/
#define DCM__OUTPUT_PIN_COUNT (std_struct->outputPinCount)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** NODE_COUNT
**/
#define DCM__NODE_COUNT (std_struct->nodeCount)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** SOURCE_MODE
**/
#define DCM__SOURCE_MODE ((char *)dcmStdStructModes[std_struct->sourceMode])

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** SINK_MODE
**/
#define DCM__SINK_MODE ((char *)dcmStdStructModes[std_struct->sinkMode])

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** SOURCE_EDGE
**/
#define DCM__SOURCE_EDGE ((char *)dcmStdStructEdges[std_struct->sourceEdge])

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** SINK_EDGE
**/
#define DCM__SINK_EDGE ((char *)dcmStdStructEdges[std_struct->sinkEdge])

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** CALC_MODE
**/
#define DCM__CALC_MODE ((char *)dcmCalcModes[std_struct->calcMode])

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** SOURCE_MODE_SCALAR
**/
#define DCM__SOURCE_MODE_SCALAR (std_struct->sourceMode)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** SINK_MODE_SCALAR
**/
#define DCM__SINK_MODE_SCALAR (std_struct->sinkMode)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** SOURCE_EDGE_SCALAR
**/
#define DCM__SOURCE_EDGE_SCALAR (std_struct->sourceEdge)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** SINK_EDGE_SCALAR
**/

524
Copyright © 2010 IEEE all rights reserved.

– 524 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

#define DCM__SINK_EDGE_SCALAR (std_struct->sinkEdge)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** CALC_MODE_SCALAR
**/
#define DCM__CALC_MODE_SCALAR (std_struct->calcMode)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
**
**/
#define DCM__DELAY_FUNC (std_struct->pathData->pcdb->delay)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
**
**/
#define DCM__SLEW_FUNC (std_struct->pathData->pcdb->slew)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
**
**/
#define DCM__EARLY (dcm_rtn->early)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
**
**/
#define DCM__LATE (dcm_rtn->late)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** NODE_POINT
**/
#define DCM__NODE_POINT DCM__FROM_POINT

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** NODE_POINT_PIN_ASSOCIATION
**/
#define DCM__NODE_POINT_PIN_ASSOCIATION DCM__FROM_POINT_PIN_ASSOCIATION

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** REFERENCE_POINT
**/
#define DCM__REFERENCE_POINT DCM__FROM_POINT

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** REFERENCE_POINT_PIN_ASSOCIATION
**/
#define DCM__REFERENCE_POINT_PIN_ASSOCIATION DCM__FROM_POINT_PIN_ASSOCIATION

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** REFERENCE_EDGE
**/
#define DCM__REFERENCE_EDGE DCM__SOURCE_EDGE

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** REFERENCE_MODE
**/
#define DCM__REFERENCE_MODE DCM__SOURCE_MODE

525
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 525 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** SIGNAL_POINT
**/
#define DCM__SIGNAL_POINT DCM__TO_POINT

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** SIGNAL_POINT_PIN_ASSOCIATION
**/
#define DCM__SIGNAL_POINT_PIN_ASSOCIATION DCM__TO_POINT_PIN_ASSOCIATION

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** SIGNAL_MODE
**/
#define DCM__SIGNAL_MODE DCM__SINK_MODE

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** SIGNAL_EDGE
**/
#define DCM__SIGNAL_EDGE DCM__SINK_EDGE

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** PATH_DATA
**/
#define DCM__PATH_DATA (std_struct->pathData)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** CELL_DATA
**/
#define DCM__CELL_DATA (std_struct->cellData)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** PROCESS_VARIATION
**/
#define DCM__PROCESS_VARIATION ((char *)dcmProcessVariations[std_struct-
>processVariation])

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** PROCESS_VARIATION_SCALAR
**/
#define DCM__PROCESS_VARIATION_SCALAR (std_struct->processVariation)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** FUNCTION
**/
#define DCM__FUNCTION ((std_struct->pathData->cycle_adj)!=0)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** PRIMITIVE
**/
#define DCM__PRIMITIVE (std_struct->pathData->corrind)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** DATA_TYPE
**/
#define DCM__DATA_TYPE (std_struct->pathData->corrind)

526
Copyright © 2010 IEEE all rights reserved.

– 526 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** MODIFIERS
**/
#define DCM__MODIFIERS (std_struct->pathData->modifiers)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** SOURCE_STRANDS_LSB
**/
#define DCM__SOURCE_STRANDS_LSB (std_struct->pathData->lsbStrandSource)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** SOURCE_STRANDS_MSB
**/
#define DCM__SOURCE_STRANDS_MSB (std_struct->pathData->msbStrandSource)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** SINK_STRANDS_LSB
**/
#define DCM__SINK_STRANDS_LSB (std_struct->pathData->lsbStrandSink)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** SINK_STRANDS_MSB
**/
#define DCM__SINK_STRANDS_MSB (std_struct->pathData->msbStrandSink)

/***
** Use these macros for accessing the different slew rates in the standard
** structure.
***/

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** LATE_SLEW
**/
#define DCM__LATE_SLEW (std_struct->slew.late)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** EARLY_SLEW
**/
#define DCM__EARLY_SLEW (std_struct->slew.early)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** SIGNAL_SLEW
**/
#define DCM__SIGNAL_SLEW (std_struct->slew.late)

/**!***
** Macro targeted by DCL compiler and other DCL macros for keyword:
** REFERENCE_SLEW
**/
#define DCM__REFERENCE_SLEW (std_struct->slew.early)

/**!**
** Use to set the DEFAULT RESULT field of INTERNAL statements.
**/
#define DEFAULT_RESULT DCM__DEFAULT_RESULT

/**!***
** Use to set a named RESULT field of INTERNAL statements.**
**/
#define RESULT(a) DCM__RESULT(a)

527
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 527 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

/**!***
** Use to set the DEFAULT RESULT field of INTERNAL statements.
**/
#define DCM__DEFAULT_RESULT (dcm_rtn->DEFAULT)

/**!***
** Use to set a named RESULT field of INTERNAL statements.**
**/
#define DCM__RESULT(a) (dcm_rtn->a)

#endif /* _H_STD_MACROS */

10.31 Standard interface structures (dcmintf.h) file

This subclause lists the dcmintf.h file.

#ifndef _H_DCMINTF
#define _H_DCMINTF
/**
** INCLUDE NAME..... dcmintf.h
**
** PURPOSE..........
** This include defines the interface structures used for communication
** between a DCM-compiled rule and the outside world.
**
** NOTES.............
**
** ASSUMPTIONS.......
**
** RESTRICTIONS.....
**
** LIMITATIONS......
**
** DEVIATIONS.......
**
** AUTHOR(S)......... H. John Beatty, Peter C. Elmendorf
**
** CHANGES:
**
**/
#include <dcmpltfm.h>

/*!
 \file
 \brief This include defines the interface structures used for communication
 between a DCM-compiled rule and the outside world.
*/

/**!**
** This flag tells the library the vintage of the interface on the
** application end.
**/
#define DCM_BIND_RULE_VERSION_FLAGS 1

/**
** Now for our standard interface structure.
**/
typedef struct DCMTransmittedInfo DCMTransmittedInfo;

#include <std_stru.h>
#include <dcmgarray.h>
#include <dcmgstruct.h>

/**!***
** The name of the environment which sets directories in which to look for
** compiled tables.
**/
static const char DCMRT_TableEnv[] = "DCMTABLEPATH";

528
Copyright © 2010 IEEE all rights reserved.

– 528 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

/**!***
** The name of the environment which sets directories in which to look for
** compiled rules.
**/
static const char DCMRT_RuleEnv[] = "DCMRULEPATH";

static const char DCMRT_ErrEnv[] = "DCMSTDERR";

/**!***
** The name of the environment which sets the uncompressor for rules.
**/
static const char DCMRT_SR_UNCOMPRESSOR_ENV[] = "DCM_SRULE_UNCOMPRESSOR_ENV";

/**!***
** The name of the environment which sets the uncompressor for tables.
**/
static const char DCMRT_TABLE_UNCOMPRESSOR_ENV[] = "DCM_TABLE_UNCOMPRESSOR_ENV";

/**!**
** The name of an optional function which the DCM rule can call
** at initialization.
**/
static const char DCMRT_BeginRule[] = "DCM_BEGIN";

/**!**
** The name of an optional function which the DCM rule can call
** at termination.
**/
static const char DCMRT_EndRule[] = "DCM_END";

/**!**
** Typedef for the model procs.
**
** \return zero for OK, otherwise an error code.
**
** \param std the context.
**/
typedef int (*DCM_ModelProcType)(DCM_STD_STRUCT *std);

/**!**
** Typedef for data passed to the DCM startup and termination functions.
**/
typedef struct DCMBeginAndEndData {
 int dcmRV; /*!< Runtime version #. */
 int dcmRL; /*!< Runtime level #. */
 const char *techFamily; /*!< Tech family name. */
 const char *ruleLoadName; /*!< Name of rule, as loaded. */
 const char *ruleTimeStamp; /*!< string timestamp, rule compilation.*/
} DCMBeginAndEndData;

/**!**
** Typedef for the DCM startup and termination functions.
**
** \return zero for OK, otherwise and error code.
** \param packet -> DCMBeginAndEndData structure provided by DCL.
**/
typedef int (*DCMBeginAndEndFunction)(DCMBeginAndEndData *packet);

/**!**
** Structure which associates string names to their functions.
**
** An array of these is passed to DCM from the caller. This allows DCM
** to map external function names.
**
** An array of these is passed from DCM to the caller. This allows the
** caller to map DCM internal function names.
**
** The very last entry in these arrays has two NULL pointers therein.
**/
struct DCM_FunctionTable {

529
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 529 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

 char *name; /*!< -> string name of function. */
 DCM_GeneralFunction function; /*!< -> actual function. */
};

/**!**
** This structure is passed from DCM to the external world.
**
** The application provides this structure, and the rule load routine
** fills it in. See the DCL manuals for complete details.
**/
struct DCMTransmittedInfo {
 DCM_ModelProcType modelSearch; /*!< -> model search function.*/
 DCM_DelayFunctionType delayFunction; /*!< -> delay function. */
 DCM_SlewFunctionType slewFunction; /*!< -> slew function. */
 DCM_CheckFunctionType checkFunction; /*!< -> check function. */
 const DCM_FunctionTable *inits; /*!< -> table of expose statements. */
 DCM_GeneralFunction reserved0; /*!< Reserved for future use. */
 DCM_GeneralFunction reserved1; /*!< Reserved for future use. */
 DCM_GeneralFunction reserved2; /*!< Reserved for future use. */
 const DCM_FunctionTable *reserved2L; /*!< Reserved for future use. */
 /**
 ** As further function/standards are defined, these reserved
 ** fields may be used to help implement them.
 **
 ** These fields are NOT initialized by the DCM unless that DCM
 ** is loaded with a VALID nonzero flag parameter to dcmLoadRule().
 **/
 DCM_GeneralFunction reserved3; /*!< Reserved for future use. */
 DCM_GeneralFunction reserved4; /*!< Reserved for future use. */
 DCM_GeneralFunction reserved5; /*!< Reserved for future use. */
 DCM_GeneralFunction reserved6; /*!< Reserved for future use. */
 DCM_GeneralFunction reserved7; /*!< Reserved for future use. */
 DCM_GeneralFunction reserved8; /*!< Reserved for future use. */
 DCM_GeneralFunction reserved9; /*!< Reserved for future use. */
 DCM_GeneralFunction reserved10; /*!< Reserved for future use. */
 DCM_GeneralFunction reserved11; /*!< Reserved for future use. */
 DCM_GeneralFunction reserved12; /*!< Reserved for future use. */
 DCM_GeneralFunction reserved13; /*!< Reserved for future use. */
 DCM_GeneralFunction reserved14; /*!< Reserved for future use. */
 DCM_GeneralFunction reserved15; /*!< Reserved for future use. */
 DCM_GeneralFunction reserved16; /*!< Reserved for future use. */
 DCM_GeneralFunction reserved17; /*!< Reserved for future use. */
 DCM_GeneralFunction reserved18; /*!< Reserved for future use. */
 DCM_GeneralFunction reserved19; /*!< Reserved for future use. */
 DCM_GeneralFunction reserved20; /*!< Reserved for future use. */
};

/**!**
** This function looks for a given function name in the passed
** table of functions.
**
** \return
** \li function pointer associated with the passed string name as
** found in the passed function table.
**
** \li NULL if:
** \n Name not found.
** \n Either parameter NULL.
**/
DCM_XC DCM_GeneralFunction dcmRT_FindFunction(
 const DCM_STD_STRUCT *std,

 const char * functionName, /*!< I -> string name of function.*/
 const DCM_FunctionTable * table /*!< I -> function table to use. */
);

/**!**
** This is a version of dcmFindFunction which issues no messages.
** \see dcmRT_FindFunction.
**/
DCM_XC DCM_GeneralFunction dcmRT_QuietFindFunction(

 const DCM_STD_STRUCT *std, /*!< the context. */

530
Copyright © 2010 IEEE all rights reserved.

– 530 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

 const char * functionName, /*!< I -> string name of function.*/
 const DCM_FunctionTable * table /*!< I -> function table to use. */
);

/**!**
** This function merges N FunctionTables into a single table.
**
** \return -> the merged table, or NULL on error.
**
** \param std the context
** \param in a NULL terminated vector of pointers to FunctionTable pointers.
**
** \note Result allocated by us must be freed by the caller.
**/
DCM_XC DCM_FunctionTable *dcmRT_MergeFunctionTable(const DCM_STD_STRUCT *std,

 DCM_FunctionTable **in);

/**!**
** Given a standard structure with the technology already set,
** and the name of an EXPOSE statement, return whether or not the
** the EXPOSE has an implementation in the technology.
**/
DCM_XC DCM_GeneralFunction dcmRT_FindExposeInTech(DCM_STD_STRUCT *std,

 const char *exposeName);

/**!**
** Given a standard structure (for context) in any technology,
** and the name of an EXPOSE statement,
** return the function pointer which is the master entry point for
** the named EXPOSE.
**/
DCM_XC DCM_GeneralFunction dcmRT_FindMasterExpose(DCM_STD_STRUCT *std,

 const char *exposeName);

/**!**
** Given a standard structure (for context),
** and the name of an application service,
** return the function pointer for that service.
**/
DCM_XC DCM_GeneralFunction dcmRT_FindAppFunction(const DCM_STD_STRUCT *std,

 const char *svcName);

/**!**
** Typedef for timestamp services.
**/
typedef struct DCM_TableTimeStampInfo {
 const char *dcmTimeStamp; /*!< timestamp. */
 const char *name; /*!< table name. */
} DCM_TableTimeStampInfo;

/**!**
** Typedef for timestamp services.
**/
typedef struct DCM_TimeStampInfo {
 const char *dcmTimeStamp; /*!< rule timestamp. */
 const char *dcmTechFamily; /*!< tech family (%TECHFAMILY) */
 const char *localName; /*!< local name (%RULENAME) */
 const char *loadPath; /*!< -> path to exact rule file. */
 /**!***
 ** -> vector of pointers to DCM_TableTimeStampInfo, one for each
 ** loaded table in the run.
 **/
 DCM_TableTimeStampInfo **tables;
} DCM_TimeStampInfo;

/**!**
** Extract timestamp info for a given technology and context.
**
** \return a pointer to a vector of pointers to DCM_TimeStampInfo objects,
** one per rule in the tech family.
**

531
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 531 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

** \param std the context
** \param name the desired tech famly name.
**/
DCM_XC DCM_TimeStampInfo **dcmRT_GetTechFamilyTS(const DCM_STD_STRUCT *std,

 const char *name);

/**!**
** Function to delete the storage returned by dcmRT_GetTechFamilyTS().
**
** \param std the context
** \param info the pointer returned by dcmRT_GetTechFamilyTS().
**/
DCM_XC void dcmRT_DelTechFamilyTS(const DCM_STD_STRUCT *std,

 DCM_TimeStampInfo **info);

#endif /* _H_DCMINTF */

10.32 Standard loading (dcmload.h) file

This subclause lists the dcmload.h file.

#ifndef _H_DCMLOAD
#define _H_DCMLOAD
/**
** INCLUDE NAME..... dcmload.h
**
** PURPOSE.......... Declare the means by which rules are loaded.
**
** NOTES............. Only dynamic load is supported.
**
** ASSUMPTIONS.......
**
** RESTRICTIONS.....
**
** LIMITATIONS......
**
** DEVIATIONS.......
**
** AUTHOR(S)......... Peter C. Elmendorf, Unmesh Ballal
**
** CHANGES:
**
**/
#include <dcmpltfm.h>

/*!
 \file
 \brief Declarations for management of rule system loads.
*/

/**!***
** function type for a malloc call to assert on DCL when initializing.
**/
typedef void * (*DCM_Malloc_Type) (size_t);

/**!***
** function type for a free call to assert on DCL when initializing.
**/
typedef void (*DCM_Free_Type) (void *);

/**!***
** function type for a realloc call to assert on DCL when initializing.
**/
typedef void * (*DCM_Realloc_Type) (void *, size_t);

#include <dcmintf.h>
#include <dcmcontext.h>

532
Copyright © 2010 IEEE all rights reserved.

– 532 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

/**
** Dynamic load control.
** Scaffolding defines dcmLoadRule() as a macro.
**/
#ifdef DCM_SCAFFOLD
include <dcmscaff.h> /*!< For developer testing use ONLY*/
/**
** Some platforms have dynamic load support.
**/
#endif

/**!**
** Initilizes the rule system and uses the passed in memory manager functions.
**
** \return a new context DCM_STD_STRUCT pointer for use. This context
** represents the entire rule system. The returned context has a unqiue thread
** associated with it.
**
** \param new_malloc user-supplied malloc function, if desired.
** \param new_free user-supplied free function, if desired.
** \param new_realloc user-supplied realloc function, if desired.
** \param rc -> integer error code.
**
** \note If user memory functions are NULL, the built-in DCL thread-exploiting
** memory manager is used.
**
** \note All three user-supplied memory functions must be present for them
** to override the built-in memory manager.
**
** \warning All three user-supplied memory functions must be at least
** thread-safe and preferably thread-exploiting.
**/
DCM_XC DCM_STD_STRUCT *dcmRT_InitRuleSystem(DCM_Malloc_Type new_malloc,

 DCM_Free_Type new_free,
 DCM_Realloc_Type new_realloc,
 int* rc);

/**!**
** Create a new plane in the space contained by "context"
**
** \return a new context DCM_STD_STRUCT pointer for use. This context
** represents the new plane. The returned plane context has a unqiue thread
** associated with it.
**
** \param context any context within the space in which to create the
** new plane.
**
** \param planeName a string name to assoicate with the new plane, for
** debugging and messages.
**
** \param intercept optional message intercept for any DCL or DPCM messages
** issued by code whose context is the new plane.
**
** \note This function is best used after a rule has been loaded.
** It will create an addtional plane in the space into which the rule
** were loaded.
**/
DCM_XC DCM_STD_STRUCT *
 dcmRT_CreateNewPlaneInSpace(const DCM_STD_STRUCT* context,

 const char* planeName,
 DCMRT_Message_Intercept_Type intercept);

/**!**
** Load the first (root) rule in the given context.
**
** \return
** \li a new DCM_STD_STRUCT context into which the rule(s) were loaded.
** \li NULL on error
**
** If no rule is currently loaded in the Space of the passed context,
** the rule is loaded into that space.

533
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 533 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

**
** If any rule is previously loaded in the passed "context", a new Space
** is created and the rule is loaded in that new Space's context.
**/
DCM_XC DCM_STD_STRUCT* dcmRT_BindRule
 (DCM_STD_STRUCT *context, /*!< the context */
 /**!**
 ** the name of the rule file
 ***/
 const char *rulename,
 /**!**
 ** name of environment that contains paths to search
 ** for loading the rule.
 ***/
 const char *rulePathEnvName,
 /**!**
 ** name of environment that contains paths to search
 ** for loading compiled tables associated with the rule
 ***/
 const char *tablePathEnvName,
 /**!**
 ** the CONTROL_PARM value used when loading the rule.
 ***/
 const char *controlParm,
 const char *spaceName, /*!< name to use for the space */
 const char *planeName, /*!< name to use for the plane */
 /**!**
 ** message intercept to use, if desired
 ***/
 DCMRT_Message_Intercept_Type intercept,
 /**!**
 ** For rule loading, this is the table of EXTERNAL services provided
 ** by the application.
 **
 ** For rule appending, this is the DELTA table of EXTERNAL services provided
 ** by the application.
 ***/
 DCM_FunctionTable *externals,
 /**!**
 ** -> the DCMTransmittedInfo we write into in the app (as usual)
 ***/
 DCMTransmittedInfo *xmit
);

/**!**
** This function defines the standard routine to append new DCM in
** existing rule system (space, and plane) identified by context.
**
** \return
** \li zero for OK
** \li an error code otherwise
**/
DCM_XC int dcmRT_AppendRule
 (DCM_STD_STRUCT *context, /*!< the context */
 /**!**
 ** the name of the rule file
 ***/
 const char *rulename,
 /**!**
 ** name of environment that contains paths to search
 ** for loading the rule.
 ***/
 const char *rulePathEnvName,
 /**!**
 ** name of environment that contains paths to search
 ** for loading compiled tables associated with the rule
 ***/
 const char *tablePathEnvName,
 /**!**
 ** the CONTROL_PARM value used when loading the rule.
 ***/

534
Copyright © 2010 IEEE all rights reserved.

– 534 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

 const char *controlParm,
 /**!**
 ** Flags passed for appending 3.2 and earlier rules only.
 ** Currently ignored for 4.* version rules.
 ***/
 unsigned int flags,
 /**!**
 ** options passed for appending 3.2 and earlier rules only.
 ** Currently ignored for 4.* version rules.
 ***/
 unsigned int options,
 /**!**
 ** For rule appending, this is the DELTA table of EXTERNAL services provided
 ** by the application. This information is used in addition to
 ** any previous external service tables provided when the root rule
 ** was loaded and/or previous append operations were performed.
 ** NULL means "no deltas".
 ***/
 DCM_FunctionTable *externals,
 /**!**
 ** -> the DCMTransmittedInfo we write into in the app (as usual)
 ** It will contain the latest information, including any EXPOSEs from
 ** the appended rule(s).
 ***/
 DCMTransmittedInfo *xmit
);

/**!**
** This function defines the standard routine that unloads the root DCM
** associated with the context.
**
** \return
** \li zero for OK
** \li an error code otherwise
**
** \param context the context which is to have all its rules unloaded
** and associated data deleted.
**
** \note The context remains intact, but is empty
** of rules and data. Any additional planes that were created in the
** context continue to exist, but are also empty of rules and data.
**/
DCM_XC int dcmRT_UnbindRule(DCM_STD_STRUCT *context);

/**!**
** This function unloads all rules in all the contexts in the DCM system.
** It then deletes all the contexts and the DCM system itself.
**
** \return
** \li zero for OK
** \li an error code otherwise
**/
DCM_XC int dcmRT_TerminateRuleSystem(DCM_STD_STRUCT* context);

#endif /* DCMLOAD_H */

10.33 Standard debug (dcmdebug.h) file

This subclause lists the dcmdebug.h file.

#ifndef _H_DCMDEBUG
#define _H_DCMDEBUG
/**
** INCLUDE NAME..... dcmdebug.h
**
** PURPOSE..........
** This include defines all the items and functions needed for
** generated C code to utilize the DCM Debugging Functions.
**

535
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 535 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

** NOTES.............
** see below
**
** RESTRICTIONS.....
**
** LIMITATIONS......
**
** DEVIATIONS.......
**
** AUTHOR(S)......... Peter C. Elmendorf
**
** CHANGES:
**
**/

/**!***
** \file
** \brief Define items needed to support debug compilation.
**
** When the rule is compiled in debug mode, the necessary includes and
** declarations are available so that all debug facilities are
** accessible.
**
** When the rule is compiled in non-debug mode, the debug variables
** are bypassed. And, instead of declarations for the debugging functions
** called by the DCM compiler, macros are included instead.
** These macros look just like the debug calls generated by DCM, but
** the expand into nothing. Poof! the debug calls vanish.
**
** (Note that the debug TYPES are always included regardless of mode.)
**
** This eases code generation in the compiler. The compiler generated
** code is independent of debug level used in the rule. All debug code
** generation or elimination is handled when the rule is itself compiled.
**
** Use of this approach also improves readability of the DCM-generated
** code (and thus its debuggability) because the generated C code is
** not cluttered with #ifdef preprocessor statements.
**
** ASSUMPTIONS.......
** When not in debug or internals mode, define the debugging function
** calls to be null macros.
**
** This permits the calls to these functions to remain in the code
** because cpp will replace the function calls with whitespace.
**
** This is a very easy and reliable way of writing code or rules which
** always contain their debugging sections. Use of numerous annoying
** ifdef's and endif's is avoided. Code is cleaner, reads better, is
** easier to work with.
**/

/**!**
** These are the debugging switches.
**/
typedef enum DCMDebugSettings {
 DCM_OFF, /*!< Debug turned off. */
 DCM_LOW, /*!< Basic debug info. */
 DCM_MEDIUM, /*!< More detail. */
 DCM_HIGH, /*!< Lots of detail. */
 DCM_FULLBORE /*!< You better be serious. */
} DCMDebugSettings;

/**!**
** Typedef for structure dumpers.
**
** The compiler generates these functions for each structure type which can be
** referenced in DCL statements. The function is passed to runtime
** routines that use it to print the contents.
**

536
Copyright © 2010 IEEE all rights reserved.

– 536 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

** \param std the current context
**
** \param rtn -> the structure to print
**
** \param ds the current DCM_DataScope for this rule.
**/
typedef void (*DCMStructureDumper)(const DCM_STD_STRUCT *std,

 const DCM_VOID rtn,
 const DCM_DataScope *ds);

/**!***
** These enums tell the runtime support where the variable is which
** is currently being printed.
**/
typedef enum DCM_DebugParmsPosition {
 /**!***
 ** PASSED in at entry to statement.
 **/
 DCM_DebugParmsPosition_PassedAtEntry,
 /**!***
 ** PASSED VAR, modified in a LOCAL.
 **/
 DCM_DebugParmsPosition_PassedModifiedInLocal,
 /**!***
 ** PASSED VAR, modified in a RESULT.
 **/
 DCM_DebugParmsPosition_PassedModifiedInResult,
 /**!***
 ** LOCAL, modified in LOCAL.
 **/
 DCM_DebugParmsPosition_LocalBeforeResult,
 /**!***
 ** LOCAL, modified in RESULT.
 **/
 DCM_DebugParmsPosition_LocalModifiedInResult
} DCM_DebugParmsPosition;

/**!**
** Scalars for condition tracing.
**
** These enums tell the runtime support what kind of syntax unit
** we are currently in, so the runtime can keep track of nesting and
** print appropriate messages as needed.
**/
typedef enum DCM_DebugAnyConditions {
 /**!***
 ** In a WHEN
 **/
 DCM_DebugAnyConditions_When,
 /**!***
 ** In an OTHERWISE
 **/
 DCM_DebugAnyConditions_Otherwise,
 /**!***
 ** Top of REPEAT loop.
 **/
 DCM_DebugAnyConditions_Repeat_Start,
 /**!***
 ** REPEAT loop test condition.
 **/
 DCM_DebugAnyConditions_Repeat_Test,
 /**!***
 ** End of WHEN or OTHERWISE.
 **/
 DCM_DebugAnyConditions_WhenOtherwiseEnd,
 /**!***
 ** Hit a BREAK directive (leave a loop).
 **/
 DCM_DebugAnyConditions_Break,
 /**!***
 ** Hit a CONTINUE directive (iterate a loop).

537
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 537 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

 **/
 DCM_DebugAnyConditions_Continue,
 /**!***
 ** At entry to WHILE.
 **/
 DCM_DebugAnyConditions_While_Start,
 /**!***
 ** At test condition of WHILE.
 **/
 DCM_DebugAnyConditions_While_Test,
 /**!***
 ** At entry to FOR.
 **/
 DCM_DebugAnyConditions_For_Start,
 /**!***
 ** At test condition of FOR.
 **/
 DCM_DebugAnyConditions_For_Test,
 /**!***
 ** At increment expression of FOR.
 **/
 DCM_DebugAnyConditions_For_Increment,
 /**!***
 ** At statement error exit handler code.
 **/
 DCM_DebugAnyConditions_StmtErrorExit,
 /**!**
 ** TryCatch Entering try scope
 **/
 DCM_DebugAnyConditions_TryStart,
 /**!**
 ** TryCatch Entering catch scope
 **/
 DCM_DebugAnyConditions_CatchStart,
 /**!**
 ** TryCatch Leaving
 **/
 DCM_DebugAnyConditions_CatchEnd
} DCM_DebugAnyConditions ;

#include <dcmdebugger.h> /* interactive debugger. */

/**!**
** For fetching the global debug level.
**
** This handles the interface debug feature for EXPOSE and EXTERNAL.
**/
#define DCM_GLOBAL_DEBUG_LEVEL() \
 (*(DCMDebugSettings
*)dcmRT_ObtainItemDirectlyByPlane(std_struct,dcm_global_debug_level))

/**!***
** Called at entry to EXPOSE and EXTERNAL statements.
**/
DCM_XC void dcmRT_global_debugEntry(
 const DCM_STD_STRUCT *std, /*!< I -> std struct. */
 const char *stmtType, /*!< I -> name of stmt type. */
 const char *name, /*!< I -> statement name. */
 int lineNum, /*!< I -> rule line no. */
 const char *ruleName, /*!< I -> rule name. */
 DCM_DebugInfo *di, /*!< I -> stmt info block. */
 const DCM_DataScope *scope /*!< I -> current data scope. */
);

/**!***
** Called at entry to EXPOSE and EXTERNAL statements.
** \li Does not try to print DCM_STD_STRUCT contents.
**/
DCM_XC void dcmRT_global_debugEntryNoStd(
 const DCM_STD_STRUCT *std, /*!< I -> std struct. */

538
Copyright © 2010 IEEE all rights reserved.

– 538 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

 const char *stmtType, /*!< I -> name of stmt type. */
 const char *name, /*!< I -> statement name. */
 int lineNum, /*!< I -> rule line no. */
 const char *ruleName, /*!< I -> rule name. */
 DCM_DebugInfo *di, /*!< I -> stmt info block. */
 const DCM_DataScope *scope /*!< I -> current data scope. */
);

/**!***
** Called at exit from EXPOSE and EXTERNAL statements.
** \li No RESULTs to print.
**/
DCM_XC void dcmRT_global_debugExit(
 const DCM_STD_STRUCT *std, /*!< I -> std struct. */
 const char *stmtType, /*!< I -> name of stmt type. */
 const char *name, /*!< I -> statement name. */
 int lineNum, /*!< I -> rule line no. */
 const char *ruleName, /*!< I -> rule name. */
 int *rc, /*!< I stmt return code. */
 const DCM_DataScope *scope /*!< I -> current data scope. */
);

/**!***
** Called at exit from EXPOSE and EXTERNAL statements.
** \li Prints RESULTs.
**/
DCM_XC void dcmRT_global_debugExitWithDump(
 const DCM_STD_STRUCT *std, /*!< I -> std struct. */
 const char *stmtType, /*!< I -> name of stmt type. */
 const char *name, /*!< I -> statement name. */
 int lineNum, /*!< I -> rule line no. */
 const char *ruleName, /*!< I -> rule name. */
 int *rc, /*!< I stmt return code. */
 DCMStructureDumper dumper,/*!< I printing function to call.*/
 DCM_VOID value, /*!< I -> result structure. */
 const DCM_DataScope *scope /*!< I -> current data scope. */
);

/**!***
** Called at exit from EXPOSE and EXTERNAL statements.
** \li Used when the statment returns with an error (no valid RESULTs)
**/
DCM_XC void dcmRT_global_debugExitBad(
 const DCM_STD_STRUCT *std, /*!< I -> std struct. */
 const char *stmtType, /*!< I -> name of stmt type. */
 const char *name, /*!< I -> statement name. */
 int lineNum, /*!< I -> rule line no. */
 const char *ruleName, /*!< I -> rule name. */
 int *rc, /*!< I stmt return code. */
 const DCM_DataScope *scope /*!< I -> current data scope. */
);

/**!***
** Called at exit from EXPOSE and EXTERNAL statements.
** \li No RESULTs to print.
** \li Does not try to print DCM_STD_STRUCT contents.
**/
DCM_XC void dcmRT_global_debugExitNoStd(
 const DCM_STD_STRUCT *std, /*!< I -> std struct. */
 const char *stmtType, /*!< I -> name of stmt type. */
 const char *name, /*!< I -> statement name. */
 int lineNum, /*!< I -> rule line no. */
 const char *ruleName, /*!< I -> rule name. */
 int *rc, /*!< I stmt return code. */
 const DCM_DataScope *scope /*!< I -> current data scope. */
);

/**!***
** Called at exit from EXPOSE and EXTERNAL statements.
** \li Prints RESULTs.
** \li Does not try to print DCM_STD_STRUCT contents.

539
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 539 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

**/
DCM_XC void dcmRT_global_debugExitWithDumpNoStd(
 const DCM_STD_STRUCT *std, /*!< I -> std struct. */
 const char *stmtType, /*!< I -> name of stmt type. */
 const char *name, /*!< I -> statement name. */
 int lineNum, /*!< I -> rule line no. */
 const char *ruleName, /*!< I -> rule name. */
 int *rc, /*!< I stmt return code. */
 DCMStructureDumper dumper,/*!< I printing function to call.*/
 DCM_VOID value, /*!< I -> result structure. */
 const DCM_DataScope *scope /*!< I -> current data scope. */
);

/**!***
** Called at exit from EXPOSE and EXTERNAL statements.
** \li Used when the statment returns with an error (no valid RESULTs)
** \li Does not try to print DCM_STD_STRUCT contents.
**/
DCM_XC void dcmRT_global_debugExitBadNoStd(
 const DCM_STD_STRUCT *std, /*!< I -> std struct. */
 const char *stmtType, /*!< I -> name of stmt type. */
 const char *name, /*!< I -> statement name. */
 int lineNum, /*!< I -> rule line no. */
 const char *ruleName, /*!< I -> rule name. */
 int *rc, /*!< I stmt return code. */
 const DCM_DataScope *scope /*!< I -> current data scope. */
);

/**!***
** This function is a generalized printproc in the runtime library.
** It will perform the same function as a custom-generated printproc
** (made by the compiler) by using the DCM_WIZARD_INFO which describes
** structure layout. Slower, but handy on occasion.
**
** \param std context
**
** \param stru -> object to print
**
** \param info -> description of structure
**
** \param ds Data Scope for current rule.
**/
DCM_XC void dcmRT_PrintProcGeneralized(const DCM_STD_STRUCT *std,

 const void *stru,
 const DCM_WIZARD_INFO *info,
 const DCM_DataScope *ds);

/**!***
** A special print routine that gives a message the that variable
** is a NIL pointer.
**
** \param std context
** \param name name of the variable
** \param scope Data Scope for current rule.
**/
DCM_XC void dcmRT_PrintProcNULL(const DCM_STD_STRUCT *std,

const char *name,
const DCM_DataScope *scope);

/**!***
** Print the appropriate debug message that shows a variable of this type.
**
** \return the original input value of the variable.
**
** \param std the context
** \param name name of the variable
** \param value the value of the variable
** \param scope Data Scope for current rule.
**/
DCM_XC DCM_CHARACTER dcmRT_PrintProcChar(const DCM_STD_STRUCT *std,

 const char *name,

540
Copyright © 2010 IEEE all rights reserved.

– 540 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

 const DCM_CHARACTER value,
 const DCM_DataScope *scope);

/**!***
** Same idea as dcmRT_PrintProcChar().
**/
DCM_XC DCM_DOUBLE dcmRT_PrintProcDouble(const DCM_STD_STRUCT *std,

const char *name,
const DCM_DOUBLE value,
const DCM_DataScope *scope);

/**!***
** Same idea as dcmRT_PrintProcChar().
**/
DCM_XC DCM_DOUBLE dcmRT_PrintProcFloat(const DCM_STD_STRUCT *std,

 const char *name,
 const DCM_DOUBLE value,
 const DCM_DataScope *scope);

/**!***
** Same idea as dcmRT_PrintProcChar(), except for
** parameter "value", a pointer to a COMPLEX item.
**/
DCM_XC DCM_COMPLEX dcmRT_PrintProcComplex(const DCM_STD_STRUCT *std,

 const char *name,
 const DCM_COMPLEX *value,
 const DCM_DataScope *scope);

/**!***
** Same idea as dcmRT_PrintProcChar(), except for
** parameter "value", a poiner to a DCM_SLEW_REC.
**/
DCM_XC DCM_SLEW_REC *dcmRT_PrintProcSlew(const DCM_STD_STRUCT *std,

 const char *name,
 const DCM_SLEW_REC *value,
 const DCM_DataScope *scope);

/**!***
** Same idea as dcmRT_PrintProcChar().
**/
DCM_XC DCM_INTEGER dcmRT_PrintProcInt(const DCM_STD_STRUCT *std,

 const char *name,
 const DCM_INTEGER value,
 const DCM_DataScope *scope);

/**!***
** Same idea as dcmRT_PrintProcChar().
**/
DCM_XC DCM_SHORT dcmRT_PrintProcShort(const DCM_STD_STRUCT *std,

 const char *name,
 const DCM_SHORT value,
 const DCM_DataScope *scope);

/**!***
** Same idea as dcmRT_PrintProcChar().
**/
DCM_XC DCM_LONG dcmRT_PrintProcLong(const DCM_STD_STRUCT *std,

 const char *name,
 const DCM_LONG value,
 const DCM_DataScope *scope);

/**!***
** Same idea as dcmRT_PrintProcChar().
**/
DCM_XC DCM_STRING dcmRT_PrintProcString(const DCM_STD_STRUCT *std,

const char *name,
const DCM_STRING value,
const DCM_DataScope *scope);

/**!***
** Same idea as dcmRT_PrintProcChar().

541
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 541 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

**/
DCM_XC DCM_HANDLE dcmRT_PrintProcPin(const DCM_STD_STRUCT *std,

 const char *name,
 const DCM_HANDLE value,
 const DCM_DataScope *scope);

/**!***
** Same idea as dcmRT_PrintProcChar().
**/
DCM_XC DCM_HANDLE *dcmRT_PrintProcPinList(const DCM_STD_STRUCT *std,

 const char *name,
 const DCM_HANDLE *value,
 const DCM_DataScope *scope);

/**!***
** Same idea as dcmRT_PrintProcChar().
**/
DCM_XC DCM_GeneralFunction dcmRT_PrintProcFunc(const DCM_STD_STRUCT *std,

 const char *name,
 const DCM_GeneralFunction value,
 const DCM_DataScope *scope);

/**!***
** Same idea as dcmRT_PrintProcChar().
**/
DCM_XC DCM_VOID dcmRT_PrintProcVoid(const DCM_STD_STRUCT *std,

 const char *name,
 const DCM_VOID value,
 const DCM_DataScope *scope
);

/**!***
** Routine used to emit a message that the named variable's type
** cannot be printed.
**/
DCM_XC void dcmRT_PrintProcErr(const DCM_STD_STRUCT *std,

 const char *name,
 const DCM_DataScope *scope);

/**!***
** Routine used to emit a message that a dump of the PASSED parameters
** follows.
**
** \return zero
**
** \param std the context
**
** \param position A scalar that indicates what position in the statement
** we are showing the PASSED values (at entry, after LOCAL, after RESULT, etc).
**
** \param ds the Data Scope for the current rule.
**/
DCM_XC int dcmRT_StmtParmsContent(const DCM_STD_STRUCT *std,

 DCM_DebugParmsPosition position,
 const DCM_DataScope *ds);

/**!***
** Routine used to emit a message that a dump of the LOCAL parameters
** follows.
**
** \return zero
**
** \param std the context
**
** \param position A scalar that indicates what position in the statement
** we are showing the PASSED values (after LOCAL, after RESULT, etc).
**
** \param ds the Data Scope for the current rule.
**/
DCM_XC int dcmRT_StmtLocalContent(const DCM_STD_STRUCT *std,

 DCM_DebugParmsPosition position,

542
Copyright © 2010 IEEE all rights reserved.

– 542 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

 const DCM_DataScope *ds);

/**!***
** Routine used to emit a message that the RESULT clause has started.
**
** \return zero
**
** \param std the context
**
** \param ds the Data Scope for the current rule.
**/
DCM_XC int dcmRT_StmtResultStarts(const DCM_STD_STRUCT *std,

 const DCM_DataScope *ds);

/**!***
** A generalized routine to print a structure and its contents in a
** disciplined way. The contents of the structure are also printed,
** and the nesting is followed. The runtime prevents a ring of objects
** from causing an infinite loop: the runtime notices the loop and does not
** follow it, giving a message to that effect. This continues until the
** entire network of objects has been printed.
**
** \return the original pointer to the structure.
**
** \param std the current context
** \param it -> the structure to be printed
** \param trans nonzero if the structure is TRANSIENT
** \li if TRANSIENT, there is no structure header to print.
** \li not TRANSIENT: show header data such as SHARED/SYNC/Claim Count/etc
** \param dumper the generated printproc function for the structure
** \param type the name of the structure data type
** \param name the name of the structure variable
** \param ds the Data Scope for the current rule.
**/
DCM_XC DCM_STRUCT *dcmRT_StructPrint(const DCM_STD_STRUCT *std,

 const DCM_STRUCT *it,
 int trans,
 DCMStructureDumper dumper,
 const char *type,
 const char *name,
 const DCM_DataScope *ds);

/**!***
** Emits a message whenever a structure is being printed.
** Shows the data type of the structure.
**
** \returns zero
**
** \param std the current context
** \param it -> the structure to be printed
** \param type the name of the structure data type
** \param ds the Data Scope for the current rule.
**/
DCM_XC int dcmRT_StructStart(const DCM_STD_STRUCT *std,

 const DCM_STRUCT *it,
 const char *type,
 const DCM_DataScope *ds);

/**!***
** Emits a message whenever a structure being printed is finished.
** Shows the data type of the structure.
**
** \returns zero
**
** \param std the current context
** \param it -> the structure to be printed
** \param type the name of the structure data type
** \param ds the Data Scope for the current rule.
**/
DCM_XC void dcmRT_StructEnd(const DCM_STD_STRUCT *std,

 const DCM_STRUCT *it,

543
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 543 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

 const char *type,
 const DCM_DataScope *ds);

#ifdef DCL_DEBUG
/**
** These control array and structure initialization for DEBUG COMPILE.
**/

/**!***
** When in debug mode, arrays will be initialized for easier debugging
** as documented in the DCL Manual.
**/
#define DCM_AINIT_DEBUG_DEPENDENT DCM_AINIT_debugInits

/**!***
** When in debug mode, structures will be initialized for easier debugging
** as documented in the DCL Manual.
**/
#define DCM_SINIT_DEBUG_DEPENDENT DCM_SINIT_debugInits

#else
/**
** These control array and structure initialization for NORMAL COMPILE.
**/

/**!***
** When in non-debug mode, arrays will be initialized for expediency
** as documented in the DCL Manual.
**/
#define DCM_AINIT_DEBUG_DEPENDENT DCM_AINIT_compilerInits

/**!***
** When in non-debug mode, structures will be initialized for expediency
** as documented in the DCL Manual.
**/
#define DCM_SINIT_DEBUG_DEPENDENT DCM_SINIT_compilerInits
#endif

/**
** Emit this code in DEBUG mode OR when compiling the runtime
** support library and compiler.
**/
#ifdef DCM_GUTS_OR_DEBUG

#define DCM_DEBUG_CONDX_PTR(x) (x)

/**
** For debug purpose
**/
DCM_XC int dcmRT_debugDeclareStmtNames(const DCM_STD_STRUCT *std,

 const char **stmtNames,
 const int stmtCount,
 DCM_DataScope* ds);

/**
** For interactive debug purpose.
**/
DCM_XC int dcmRT_debugDeclareFileNames(const DCM_STD_STRUCT *std,

const char **debugFileNames,
DCM_DataScope* ds);

DCM_XC int dcmRT_debugAnnounceAssignVar(const DCM_STD_STRUCT *std,
 DCM_AssignStmtVar* asvs,
 DCM_DataScope* ds);

DCM_XC int dcmRT_debugDeclareLines(const DCM_STD_STRUCT *std,
 DCM_DebugLineInfo ***lines,
 DCM_DataScope* ds);

/**!**
** A debugging checking routine that tests if a structure can be

544
Copyright © 2010 IEEE all rights reserved.

– 544 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

** modified. (This currently means "belongs to TABLEDEF", and is not
** related to VAR declarations - since VAR can be overridden with FORCE.)
**
** If the structure is not modifiable, emit an error message to that
** effect. The resulting return value will cause the statement to return
** with that error code.
**
** \return
** \li zero if the structure can be modified.
** \li an error code if the structure can not be modified.
**
** \param std the current context
** \param it -> the structure to be printed
** \param vn the name of the variable
** \param fn the name of the statement in which this occurs
** \param ds the Data Scope for the current rule.
**/
DCM_XC int dcmRT_CheckWritableStruct(const DCM_STD_STRUCT *std,

 const DCM_STRUCT *it,
 const char *vn,
 const char *fn,
 const DCM_DataScope *ds);

/**!**
** A debugging checking routine that tests if an array can be
** modified. (This currently means "belongs to TABLEDEF", and is not
** related to VAR declarations - since VAR can be overridden with FORCE.)
**
** If the array is not modifiable, emit an error message to that
** effect. The resulting return value will cause the statement to return
** with that error code.
**
** \return
** \li zero if the array can be modified.
** \li an error code if the array can not be modified.
**
** \param std the current context
** \param it -> the array to be printed
** \param vn the name of the variable
** \param fn the name of the statement in which this occurs
** \param ds the Data Scope for the current rule.
**/
DCM_XC int dcmRT_CheckWritableArray(const DCM_STD_STRUCT *std,

 const DCM_ARRAY *it,
 const char *vn,
 const char *fn,
 const DCM_DataScope *ds);

/**!**
** This function is called on entry to an NDCL statement in debug mode.
**/
DCM_XC void dcmRT_debugEntry(
 const DCM_STD_STRUCT *std, /*!< I -> std struct. */
 const char *stmtType, /*!< I -> name of stmt type. */
 const char *name, /*!< I -> statement name. */
 int lineNum, /*!< I -> rule line no. */
 const char *ruleName, /*!< I -> rule name. */
 DCM_DebugInfo *di, /*!< I -> stmt info block. */
 const DCM_DataScope *scope /*!< I -> current data scope. */
);

/**!**
** This function is called on exit from an NDCL statement in debug mode.
** \li No RESULTs to print.
**/
DCM_XC void dcmRT_debugExit(
 const DCM_STD_STRUCT *std, /*!< I -> std struct. */
 const char *stmtType, /*!< I -> name of stmt type. */
 const char *name, /*!< I -> statement name. */
 int lineNum, /*!< I -> rule line no. */
 const char *ruleName, /*!< I -> rule name. */

545
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 545 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

 int *rc, /*!< I stmt return code. */
 const DCM_DataScope *scope /*!< I -> current data scope. */
);

/**!**
** This function is called on exit from an NDCL statement in debug mode.
** \li Prints RESULTs.
**/
DCM_XC void dcmRT_debugExitWithDump(
 const DCM_STD_STRUCT *std, /*!< I -> std struct. */
 const char *stmtType, /*!< I -> name of stmt type. */
 const char *name, /*!< I -> statement name. */
 int lineNum, /*!< I -> rule line no. */
 const char *ruleName, /*!< I -> rule name. */
 int *rc, /*!< I stmt return code. */
 DCMStructureDumper dumper,/*!< I printing function to call.*/
 DCM_VOID value, /*!< I -> result structure. */
 const DCM_DataScope *scope /*!< I -> current data scope. */
);

/*!***
** This function is called on exit from an NDCL statement in debug mode.
** \li Used when the statment returns with an error (no valid RESULTs)
**/
DCM_XC void dcmRT_debugExitBad(
 const DCM_STD_STRUCT *std, /*!< I -> std struct. */
 const char *stmtType, /*!< I -> name of stmt type. */
 const char *name, /*!< I -> statement name. */
 int lineNum, /*!< I -> rule line no. */
 const char *ruleName, /*!< I -> rule name. */
 int *rc, /*!< I stmt return code. */
 const DCM_DataScope *scope /*!< I -> current data scope. */
);

/**!**
** This function is called on entry to an NDCL statement in debug mode.
** \li Does not try to print DCM_STD_STRUCT contents.
**/
DCM_XC void dcmRT_debugEntryNoStd(
 const DCM_STD_STRUCT *std, /*!< I -> std struct. */
 const char *stmtType, /*!< I -> name of stmt type. */
 const char *name, /*!< I -> statement name. */
 int lineNum, /*!< I -> rule line no. */
 const char *ruleName, /*!< I -> rule name. */
 DCM_DebugInfo *di, /*!< I -> stmt info block. */
 const DCM_DataScope *scope /*!< I -> current data scope. */
);

/**!**
** This function is called on exit from an NDCL statement in debug mode.
** \li No RESULTs to print.
** \li Does not try to print DCM_STD_STRUCT contents.
**/
DCM_XC void dcmRT_debugExitNoStd(
 const DCM_STD_STRUCT *std, /*!< I -> std struct. */
 const char *stmtType, /*!< I -> name of stmt type. */
 const char *name, /*!< I -> statement name. */
 int lineNum, /*!< I -> rule line no. */
 const char *ruleName, /*!< I -> rule name. */
 int *rc, /*!< I stmt return code. */
 const DCM_DataScope *scope /*!< I -> current data scope. */
);

/**!**
** This function is called on exit from an NDCL statement in debug mode.
** \li Prints RESULTs.
** \li Does not try to print DCM_STD_STRUCT contents.
**/
DCM_XC void dcmRT_debugExitWithDumpNoStd(
 const DCM_STD_STRUCT *std, /*!< I -> std struct. */
 const char *stmtType, /*!< I -> name of stmt type. */

546
Copyright © 2010 IEEE all rights reserved.

– 546 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

 const char *name, /*!< I -> statement name. */
 int lineNum, /*!< I -> rule line no. */
 const char *ruleName, /*!< I -> rule name. */
 int *rc, /*!< I stmt return code. */
 DCMStructureDumper dumper,/*!< I printing function to call.*/
 DCM_VOID value, /*!< I -> result structure. */
 const DCM_DataScope *scope /*!< I -> current data scope. */
);

/**!**
** This function is called on exit from an NDCL statement in debug mode.
** \li Used when the statment returns with an error (no valid RESULTs)
** \li Does not try to print DCM_STD_STRUCT contents.
**/
DCM_XC void dcmRT_debugExitBadNoStd(
 const DCM_STD_STRUCT *std, /*!< I -> std struct. */
 const char *stmtType, /*!< I -> name of stmt type. */
 const char *name, /*!< I -> statement name. */
 int lineNum, /*!< I -> rule line no. */
 const char *ruleName, /*!< I -> rule name. */
 int *rc, /*!< I stmt return code. */
 const DCM_DataScope *scope /*!< I -> current data scope. */
);

/**!**
** This function emits messages about a default clause being taken.
**/
DCM_XC void dcmRT_debugDefault(
 const DCM_STD_STRUCT *std, /*!< I -> std struct. */
 int lineNum, /*!< I -> rule line no. */
 const char *ruleName, /*!< I -> rule name. */
 int *rc, /*!< I stmt return code. */
 const DCM_DataScope *scope /*!< I -> current data scope. */
);

/**
** This function emits messages about a default clause being prohibited.
**/
DCM_XC void dcmRT_debugDefaultCantFire(
 const DCM_STD_STRUCT *std, /*!< I -> std struct. */
 int lineNum, /*!< I -> rule line no. */
 const char *ruleName, /*!< I -> rule name. */
 int *rc, /*!< I stmt return code. */
 const DCM_DataScope *scope /*!< I -> current data scope. */
);

/**!**
** This function is called at entry to a (complex) modelproc.
** It prints the std structure contents, including pins.
** It dumps the pin collections.
**/
DCM_XC void dcmRT_debugModelProcInit(
 const DCM_STD_STRUCT *std, /*!< I -> std struct. */
 const DCM_R_pinCollection *nodesP, /*!< I -> nodes */
 const DCM_R_pinCollection *anyinP, /*!< I -> inputs */
 const DCM_R_pinCollection *anyoutP, /*!< I -> outputs */
 const DCM_DataScope *scope /*!< I -> current data scope. */
);

/**
** This function is called at entry to a (simple) modelproc.
** It prints the std structure contents, including pins.
** There are no pin collections to dump.
**/
DCM_XC void dcmRT_debugModelProcSimple(
 const DCM_STD_STRUCT *std, /*!< I -> std structure. */
 const DCM_DataScope *scope /*!< I -> current data scope. */
);

/**!**
** Used to print the FROM or TO pin lists for PATH/BUS/TEST statements.

547
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 547 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

**/
DCM_XC void dcmRT_debugPathPins(
 const DCM_STD_STRUCT *std, /*!< I -> std struct. */
 const char *fromOrTo, /*!< I -> From/To string (for msg).*/
 const DCM_R_pinList *list, /*!< I -> list to dump. */
 const DCM_DataScope *scope /*!< I -> current data scope. */
);

/**!**
** This function prints simple name lists for PATH/BUS/TEST statements.
**/
DCM_XC void dcmRT_debugNameList(
 const DCM_STD_STRUCT *std, /*!< I -> std struct. */
 const char *fromOrTo, /*!< I -> From/To string (for msg).*/
 const DCM_R_nameList *list, /*!< I -> list to dump. */
 const DCM_DataScope *scope /*!< I -> current data scope. */
);

/**!**
** This function prints a single model proc pin collection.
**/
DCM_XC void dcmRT_dumpMPPins(
 const DCM_STD_STRUCT *std, /*!< I -> std struct. */
 const DCM_R_pinCollection *pins,/*!< I -> pins */
 const char *name, /*!< I -> name of collection. */
 const DCM_DataScope *scope /*!< I -> current data scope. */
);

/**!***
** This function prints the names of the pins in a PINLIST vector.
***/
DCM_XC void dcmRT_dumpPinList(
 const DCM_STD_STRUCT *std, /*!< I -> std struct. */
 const DCM_HANDLE *list, /*!< I Pin List pointer. */
 const DCM_DataScope *scope /*!< I -> current data scope. */
);

/**!**
** This function prints the standard structure.
**/
DCM_XC void dcmRT_dump_STD_STRUCT
 (const DCM_STD_STRUCT *context, /*!< I -> the current std struct context.*/
 const DCM_STD_STRUCT *std, /*!< I -> the std struct to dump. */
 const DCM_DataScope *ds /*!< I -> current data scope. */
);

/**!**
** Emit messages concerning loading of compiled tables at rule initialization.
**
** \param std the current context
** \param name the name of the TABLEDEF
** \param table the unique ID of the associated DCMRT_TableDescriptor
** \param ds the current Data Scope
**/
DCM_XC void dcmRT_debugTableLoading
 (const DCM_STD_STRUCT *std,
 const char *name,
 const int table,

 const DCM_DataScope *ds);

/**!**
** Emit messages concerning loading of DEFERred
** compiled tables at rule initialization.
**
** \param std the current context
** \param name the name of the TABLEDEF
** \param table the unique ID of the associated DCMRT_TableDescriptor
** \param ds the current Data Scope
**/
DCM_XC void dcmRT_debugTableDeferred
 (const DCM_STD_STRUCT *std,

548
Copyright © 2010 IEEE all rights reserved.

– 548 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

 const char *name,
 const int table,
 const DCM_DataScope *ds);

/**!**
** Emit a debug message concerning dynamic table row addition.
** Show the qualifiers and data being added.
** Uses compiler-generated printproc for the DATA clause structure
** to display the data being added.
**/
DCM_XC void dcmRT_debugTableAdd
 (const DCM_STD_STRUCT *std, /*!< I context */
 const char **quals, /*!< I -> qualifiers. */
 void *data, /*!< I -> data. */
 const char *name, /*!< I -> name of table. */
 DCMStructureDumper dumper, /*!< I printproc. */
 int replace, /*!< I replace option. */
 const DCM_DataScope *ds /*!< I -> data scope. */
);

/**!**
** Emit a message concerning dynamic table row deletion.
** Show the qualifiers of the row being deleted.
**/
DCM_XC void dcmRT_debugTableDel
 (const DCM_STD_STRUCT *std, /*!< I context */
 const char **quals, /*!< I -> qualifiers. */
 const char *name, /*!< I -> name of table. */
 const DCM_DataScope *ds /*!< I -> data scope. */
);

/**!**
** Emit a message about model search, showing the qualifiers used.
**/
DCM_XC void dcmRT_debugModelSearch(
 const DCM_STD_STRUCT *std, /*!< I -> standard struct. */
 const char *btr, /*!< I -> BTR to search for. */
 const char *bhc, /*!< I -> BHC to search for. */
 const char *brc, /*!< I -> BRC to search for. */
 const DCM_DataScope *scope /*!< I -> current data scope. */
);

/**!**
** Emit a message when starting to load a subrule.
**
** \param std the context
** \param subrule name of the subrule module
** \param scope the current Data Scope
**/
DCM_XC void dcmRT_debugSubruleLoad(const DCM_STD_STRUCT *std,

 const char *subrule,
 const DCM_DataScope *scope);

/**!**
** Emit a message when starting to load a prelinked subrule.
**
** \param std the context
** \param subrule name of the subrule module
** \param scope the current Data Scope
**/
DCM_XC void dcmRT_debugSubrulePreLoad(const DCM_STD_STRUCT *std,

 const char *subrule,
 const DCM_DataScope *scope);

/**!**
** Emit a message about timing segment information when making a segment.
**
** \param std the context
** \param pcdb -> the DCM_PCDB for this segment (or node)
** \param scope the current Data Scope

549
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 549 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

**/
DCM_XC void dcmRT_debugSegData(const DCM_STD_STRUCT *std,

 const DCM_PCDB *pcdb,
 const DCM_DataScope *scope);

/**!**
** Emit a message when creating a FUNCTION clause.
**
** \param std the context
** \param pdb -> the DCM_PathDataBlock describing the primitive
** \param primitive the particular primitive
** \param scope the current Data Scope
**/
DCM_XC void dcmRT_debugFunctionData(const DCM_STD_STRUCT *std,

 const DCM_PathDataBlock *pdb,
 int primitive,
 const DCM_DataScope *scope);

/**!**
** Emit a message when creating a node.
**
** \param std the context
** \param name the node name
** \param scope the current Data Scope
**/
DCM_XC void dcmRT_debugNodeCall(const DCM_STD_STRUCT *std,

const char *name,
const DCM_DataScope *scope);

/**!**
** Emit a message when processing a STORE
**
** \param std the context
** \param name the name of the function being STOREd
** \param scope the current Data Scope
**/
DCM_XC void dcmRT_debugStoreCall(const DCM_STD_STRUCT *std,

 const char *name,
 const DCM_DataScope *scope);

/**!**
** Emit a message when processing a slotted STORE
**
** \param std the context
** \param name the name of the function being STOREd
** \param scope the current Data Scope
**/
DCM_XC void dcmRT_debugSlotStoreCall(const DCM_STD_STRUCT *std,

 const char *name,
 const DCM_DataScope *scope);

/**!**
** Emit a message to show the delay matrix (PATH/BUS)
**
** \param std the context
** \param edge1 source edge
** \param mode1 mode (RISE/FALL/etc)
** \param edge2 sink edge
** \param mode2 target mode
** \param delay name of delay equation (NULL means none)
** \param slew name of slew equation (NULL means none)
** \param scope the current Data Scope
**/
DCM_XC void dcmRT_debugDelayMatrix
 (const DCM_STD_STRUCT *std,
 const char *edge1,
 const char *mode1,
 const char *edge2,
 const char *mode2,
 const char *delay,
 const char *slew,

550
Copyright © 2010 IEEE all rights reserved.

– 550 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

 const DCM_DataScope *scope);

/**!**
** Emit a message when processing a METHODS clause
** (PATH/BUS/TEST/PROPERTIES/NODE/INPUT/OUTPUT)
**
** \param std the context
** \param className name of the METHOD class
** \param funcName name of the statement used as the METHOD
** \param scope the current Data Scope
**/
DCM_XC void dcmRT_debugMethodsClause(const DCM_STD_STRUCT *std,

 const char *className,
 const char *funcName,
 const DCM_DataScope *scope);

/**!**
** Emit a message to show the test matrix (TEST stmt).
**
** \param std the context
** \param edge1 source edge
** \param mode1 mode (RISE/FALL/etc)
** \param edge2 sink edge
** \param mode2 target mode
** \param type name of the TEST_TYPE
** \param cycle CYCLE_ADJ value
** \param corel CORRIND value
** \param check name of the CHECK equation
** \param scope the current Data Scope
**/
DCM_XC void dcmRT_debugTestMatrix
 (const DCM_STD_STRUCT *std,
 const char *edge1,
 const char *mode1,
 const char *edge2,
 const char *mode2,
 const char *type,
 int cycle,
 int corel,
 const char *check,
 const DCM_DataScope *scope);

/**!**
** Emit a message when creating a PATH/BUS segment
** Takes values (like FROM and TO points) from the std structure.
**
** \param std the context
** \param pdb_new when zero, the DCM_PathDataBlock was reused
** \param scope the current Data Scope
**/
DCM_XC void dcmRT_debugPathSegment (const DCM_STD_STRUCT *std,

 char pdb_new,
 const DCM_DataScope *scope);

/**!**
** Emit a message when creating a TEST segment.
**
** \param std the context
** \param pdb_new when zero, the DCM_PathDataBlock was reused
** \param scope the current Data Scope
**/
DCM_XC void dcmRT_debugTestSegment(const DCM_STD_STRUCT *std,

 char pdb_new,
 const DCM_DataScope *scope);

/**!**
** Emit a message when creating a segment for INPUT/OUTPUT.
**
** \param std the context
** \param netPin the net pin handle
** \param sourcePin the source pin handle

551
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 551 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

** \param pdb_new when zero, the DCM_PathDataBlock was reused
** \param scope the current Data Scope
**/
DCM_XC void dcmRT_debugNetSegment
 (const DCM_STD_STRUCT *std,
 const DCM_HANDLE netPin,
 const DCM_HANDLE sourcePin,
 char pdb_new,
 const DCM_DataScope *scope);

/**!**
** For PRINT_VALUE
**
** This macro, in debug mode, prints a value by calling the corresponding
** print routine and returning the original value. Used as a term in
** expressions, and slips in the value printing because the print expression
** also returns the value.
**/
#define dcmRT_debugPrintValue(dcm_pp_expr,dcm_expr) (dcm_pp_expr)

/**!***
** In debug mode, check FORCE target to see if it should not be modified.
** (Don't allow modification of compiled table data.)
**/
#define dcmRT_checkWritableArray(std,arr,vn,fn) \
 dcmRT_CheckWritableArray((std),(arr),(vn),(fn),DCM_RULE_ANCHOR())

/**!***
** In debug mode, check FORCE target to see if it should not be modified.
** (Don't allow modification of compiled table data.)
**/
#define dcmRT_checkWritableStruct(std,str,vn,fn) \
 dcmRT_CheckWritableStruct((std),(str),(vn),(fn),DCM_RULE_ANCHOR())

/**!***
** Save the modelproc indentation settings.
** In case of model proc error, the indentation is reset correctly.
**
** \param std the context
** \param scope the current Data Scope
**/
DCM_XC int dcmRT_debugModelIndentSaver(const DCM_STD_STRUCT *std,

 const DCM_DataScope *scope);
/**!***
** Save the modelproc indentation settings.
** In case of model proc error, the indentation is reset correctly.
**
** The indentation is saved in a local C variable in the modelproc,
** and restored before leaving the statement whether there was an error or not.
** This allows the indentation of the invoking statement to be restored
** regardless of what happened in the modelproc.
**/
#define dcmRT_ModelIndentSaver() \
 int dcmIndentSave = dcmRT_debugModelIndentSaver(std_struct,DCM_RULE_ANCHOR())

/**!***
** Restore the modelproc indentation settings.
** In case of model proc error, the indentation is reset correctly.
**
** \param std the context
** \param dcmIndentSave the saved indentation value
** \param scope the current Data Scope
**/
DCM_XC void dcmRT_debugModelIndentRestorer(const DCM_STD_STRUCT *std,

 int dcmIndentSave,
 const DCM_DataScope *scope);

/**!***
** Restore the modelproc indentation settings.
** In case of model proc error, the indentation is reset correctly.
**
** use the local C variable to reset the indentation.

552
Copyright © 2010 IEEE all rights reserved.

– 552 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

**/
#define dcmRT_ModelIndentRestorer() \
 dcmRT_debugModelIndentRestorer(std_struct,dcmIndentSave,DCM_RULE_ANCHOR())

/**!***
** Save the statement indentation settings.
** In case of statement error, the indentation is reset correctly.
**
** \param std the context
** \param scope the current Data Scope
**/
DCM_XC int dcmRT_debugStmtIndentSaver(const DCM_STD_STRUCT *std,

 const DCM_DataScope *scope);
/**!***
** Save the statement indentation settings.
** In case of statement error, the indentation is reset correctly.
**
** The indentation is saved in a local C variable in the statement,
** and restored before leaving the statement whether there was an error or not.
** This allows the indentation of the invoking statement to be restored
** regardless of what happened in the current statement.
**/
#define dcmRT_StmtIndentSaver() \
 int dcmIndentSave = dcmRT_debugStmtIndentSaver(std_struct,DCM_RULE_ANCHOR());

/**!***
** Restore the statement indentation settings.
** In case of statement error, the indentation is reset correctly.
**
** \param std the context
** \param dcmIndentSave the saved indentation value
** \param scope the current Data Scope
**/
DCM_XC void dcmRT_debugStmtIndentRestorer(const DCM_STD_STRUCT *std,

 int dcmIndentSave,
 const DCM_DataScope *scope);

/**!***
** Restore the statement indentation settings.
** In case of statement error, the indentation is reset correctly.
**
** use the local C variable to reset the indentation.
**/
#define dcmRT_StmtIndentRestorer() \
 dcmRT_debugStmtIndentRestorer(std_struct,dcmIndentSave,DCM_RULE_ANCHOR())

/**!**
** Emit a message to say when the modelproc has finished.
**
** \param std the context
** \param scope the current Data Scope
**/
DCM_XC int dcmRT_EndModelProc(const DCM_STD_STRUCT *std,

 const DCM_DataScope *scope);

/**!**
** Emit a message to say when the modelproc has finished.
**/
#define dcmRT_debugModelSearchEnd() dcmRT_EndModelProc(NULL,DCM_RULE_ANCHOR());

/**!***
** Set the debug level.
**
** \param std the context
** \param value the debug level to set.
** \param scope the current Data Scope
**
** \return the old debug level.
**/
DCM_XC DCMDebugSettings dcmRT_debugSetDebugLevel(const DCM_STD_STRUCT *std,

 int value,
 const DCM_DataScope *scope);

553
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 553 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

/**!***
** For use in user C code in a rule to set the debug level.
**/
#define SET_DCM_DEBUG_LEVEL(dcmLevel) \
 dcmRT_debugSetDebugLevel(std_struct,dcmLevel,DCM_RULE_ANCHOR())

#define SET_DCM_DEBUG_LEVEL_VOID(dcmLevel) \
 (std_struct,(void) dcmRT_debugSetDebugLevel(dcmLevel,DCM_RULE_ANCHOR()))

/**!***
** Get the debug level.
**
** \param std the context
** \param scope the current Data Scope
**
** \return the current debug level.
**/
DCM_XC DCMDebugSettings dcmRT_debugGetDebugLevel(const DCM_STD_STRUCT *std,

 const DCM_DataScope *scope);
/**!***
** For use in user C code in a rule to get the debug level.
**/
#define GET_DCM_DEBUG_LEVEL() dcmRT_debugGetDebugLevel(std_struct,DCM_RULE_ANCHOR())

#define DCM_STRUCT_DUMPER(a) ((DCMStructureDumper)(a))

/**!**
** Emit a message when begining a discrete math loop.
**
** \param std the context
** \param name name of loop variable
** \param lineno line number in source
** \param ruleName current rule name
** \param scope the current Data Scope
**/
DCM_XC void dcmRT_debugLoopStart(
 const DCM_STD_STRUCT *std,
 const char *name,
 int lineno,
 const char *ruleName,
 const DCM_DataScope *scope
);

/**!**
** Emit a message when ending a discrete math loop.
**
** \param std the context
** \param name name of loop variable
** \param lineno line number in source
** \param ruleName current rule name
** \param scope the current Data Scope
**/
DCM_XC void dcmRT_debugLoopEnd(
 const DCM_STD_STRUCT *std,
 const char *name,
 int lineno,
 const char *ruleName,
 const DCM_DataScope *scope
);

/**!**
** Emit a message when iterating a discrete math INTEGER loop.
**
** \param std the context
** \param name name of loop variable
** \param init initial value
** \param term termination value
** \param inc incrementing value
** \param result result value
** \param rtnType result type
** \param lineno line number in source

554
Copyright © 2010 IEEE all rights reserved.

– 554 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

** \param ruleName current rule name
** \param scope the current Data Scope
**/
DCM_XC void dcmRT_debugIntLoop(
 const DCM_STD_STRUCT *std,
 const char *name,
 int *init,
 int *term,
 int *inc,

 void *result,
 unsigned int rtnType,
 int lineno,
 const char *ruleName,
 const DCM_DataScope *scope
);

/**!**
** Emit a message about PINLIST discrete math loops
**
** \param std the context
** \param name name of loop variable
** \param pl the driving pinlist
** \param lineno line number in source
** \param ruleName current rule name
** \param scope the current Data Scope
**/
DCM_XC void dcmRT_debugPinLoop(
 const DCM_STD_STRUCT *std,
 const char *name, /*!< I -> loop var name. */
 const DCM_HANDLE *pl, /*!< I the PINLIST. */
 int lineno,
 const char *ruleName, /*!< I -> rule name. */
 const DCM_DataScope *scope /*!< I -> current data scope. */
);

/**!**
** Emit a message to show the result of a discrete math loop.
**
** \param std the context
** \param d the result of the loop.
** \param lineno line number in source
** \param ruleName current rule name
** \param scope the current Data Scope
**/
DCM_XC void dcmRT_debugLoopResult(
 const DCM_STD_STRUCT *std,
 DCM_DOUBLE *d,
 int lineno,
 const char *ruleName,
 const DCM_DataScope *scope
);

/**
** Debug functions for chained EXPOSEs.
**/
/**!**
** Emit a message when an EXPOSE chains forward (due to detecting an error
** code that is sufficient to cause chaining but not cause termination.)
**
** \param std the context
** \param name name of the statement
** \param rc return code that caused chaining.
** \param scope the current Data Scope
**/
DCM_XC void dcmRT_debugExposeChainForward(
 const DCM_STD_STRUCT *std,
 const char *name, /*!< I -> statement name. */
 int rc, /*!< I stmt return code. */
 const DCM_DataScope *scope /*!< I -> current data scope. */
);

555
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 555 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

/**!**
** Emit a message when an EXPOSE cannot chains forward (due to detecting
** an error code that is sufficient to cause termination.)
**
** \param std the context
** \param name name of the statement
** \param rc return code that caused termination.
** \param scope the current Data Scope
**/
DCM_XC void dcmRT_debugExposeChainStops(
 const DCM_STD_STRUCT *std,
 const char *name, /*!< I -> statement name. */
 int rc, /*!< I stmt return code. */
 const DCM_DataScope *scope /*!< I -> current data scope. */
);

/**!**
** Emit a message about the name of a variable whose value will follow.
**
** \param std the context
** \param string the name to be printed in the message.
** \param scope the current Data Scope
**/
DCM_XC int dcmRT_debugRevealVariable
 (const DCM_STD_STRUCT *std,
 const char *string,
 const DCM_DataScope *scope
);

/**!**
** A macro used by the compiler to assoicate a string with a value
** and print a debug message that does so.
**/
#define dcmRT_VariablePrint(str,call) \
 (dcmRT_debugRevealVariable(std_struct,(str),DCM_RULE_ANCHOR()) ? ((call),1) : 0)

/**!**
** Test a given debug level, and return indicator value.
**
** \return
** \li zero if the debug level parameter is below the existing threshold.
** \li one of the debug level parameter is above the existing threshold.
**
** \param std the context
** \param level debug level to test
** \param scope the current Data Scope
**/
DCM_XC int dcmRT_debugGateForLevel(const DCM_STD_STRUCT *std,

 int level,
 const DCM_DataScope *scope);

/**
** Naked line debug routines generated by ndcl compiler.
**/
DCM_XC int dcmRT_debugSetLineNum(const DCM_STD_STRUCT *std,

 char *stmtName,
 char *stmtType,
 int lineNum,
 const char *ruleName,
 const DCM_DataScope *ds);

/**!**
** Emit a message about when executing conditions or subelements of
** WHEN/OTHERWISE, REPEAT, WHILE, and FOR.
**
** \param std the context
** \param condx whether condition evaluated TRUE or FALSE
** \param text specific qualifying text
** \param code indicates which kind of condition or subelement

556
Copyright © 2010 IEEE all rights reserved.

– 556 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

** \param lineNum line number in source
** \param ruleName name of this rule
** \param scope the current Data Scope
**
** \return the value of "condx", so it can be used in the condition itself.
**
** \note in debug mode, this function is called by passing the logical
** condtion (such as for WHEN) as the "condx" parameter (a logical
** expression in C, such as (x+4 > y)). This evaluates to 1 or zero.
** After the routine emits all necessary debug messages, its return value
** is passed along as the condition being evaluated
**
**/
DCM_XC int dcmRT_debugAnyCondition
 (const DCM_STD_STRUCT *std,
 int condx,
 const char *text,
 DCM_DebugAnyConditions code,
 int lineNum,
 const char *ruleName,
 const DCM_DataScope *scope
);

/**!**
** Emit a message about try catch scope
**
** \param std the context
** \param dcm_rc the current error code
** \param code indicates which kind of condition or subelement
** \param lineNum line number in source
** \param ruleName name of this rule
** \param scope the current Data Scope
**
** \return the value of "condx", so it can be used in the condition itself.
**
** \note in debug mode, this function is called by passing the logical
** condtion (such as for WHEN) as the "condx" parameter (a logical
** expression in C, such as (x+4 > y)). This evaluates to 1 or zero.
** After the routine emits all necessary debug messages, its return value
** is passed along as the condition being evaluated
**/
DCM_XC int dcmRT_debugTryCatch
 (const DCM_STD_STRUCT *std,
 DCM_DebugAnyConditions code,
 int dcm_rc,
 int lineNum,
 const char *ruleName,
 const DCM_DataScope *ds
);

/**!**
** Macro to issue debug messages about the status of a WHEN.
**/
#define dcmRT_debugWhenCondition(std,condx,text,code,ln,fn,rs) \
 dcmRT_debugAnyCondition((std),(condx),(text),(code),(ln),(fn),(rs))

/**!**
** Macro to issue debug messages about the status of a REPEAT.
**/
#define dcmRT_debugRepeatCondition(std,condx,text,code,ln,fn,rs) \
 dcmRT_debugAnyCondition((std),(condx),(text),(code),(ln),(fn),(rs))

/**!**
** Macro to issue debug messages about the status of a WHILE.
**/
#define dcmRT_debugWhileCondition(std,condx,text,code,ln,fn,rs) \
 dcmRT_debugAnyCondition((std),(condx),(text),(code),(ln),(fn),(rs))

/**!**
** Macro to issue debug messages about the status of a FOR.
**/

557
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 557 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

#define dcmRT_debugForCondition(std,condx,text,code,ln,fn,rs) \
 dcmRT_debugAnyCondition((std),(condx),(text),(code),(ln),(fn),(rs))

/**
** Define the disappearing macros for non-debug mode.
**/
#else

#define DCM_DEBUG_CONDX_PTR(x) NULL

#ifdef dcmRT_debugPrintValue
#undef dcmRT_debugPrintValue
#endif
#define dcmRT_debugPrintValue(dcm_pp_expr,dcm_expr) (dcm_expr)

#ifdef dcmRT_debugEntry
#undef dcmRT_debugEntry
#endif
#define dcmRT_debugEntry(dcmStd,dcmType,dcmName,dcmLn,dcmFn,dcmDi,dcmScope)

#ifdef dcmRT_debugExit
#undef dcmRT_debugExit
#endif
#define dcmRT_debugExit(dcmStd,dcmType,dcmName,dcmLn,dcmFn,dcmrc,dcmScope)

#ifdef dcmRT_debugExitWithDump
#undef dcmRT_debugExitWithDump
#endif
#define dcmRT_debugExitWithDump(dcmStd,dcmType,cdNname,dcmLn,dcmFn,dcmrc,\
 dcmDumper,dcmValue,dcmScope)

#ifdef dcmRT_debugExitBad
#undef dcmRT_debugExitBad
#endif
#define dcmRT_debugExitBad(dcmStd,dcmType,dcmName,dcmLn,dcmFn,dcmrc,dcmScope)

#ifdef dcmRT_debugEntryNoStd
#undef dcmRT_debugEntryNoStd
#endif
#define dcmRT_debugEntryNoStd(dcmStd,dcmType,dcmName,dcmLn,dcmFn,dcmDi,dcmScope)

#ifdef dcmRT_debugExitNoStd
#undef dcmRT_debugExitNoStd
#endif
#define dcmRT_debugExitNoStd(dcmStd,dcmType,dcmName,dcmLn,dcmFn,dcmrc,dcmScope)

#ifdef dcmRT_debugExitWithDumpNoStd
#undef dcmRT_debugExitWithDumpNoStd
#endif
#define dcmRT_debugExitWithDumpNoStd(dcmStd,dcmType,cdNname,dcmLn,dcmFn,dcmrc,\

 dcmDumper,dcmValue,dcmScope)

#ifdef dcmRT_debugExitBadNoStd
#undef dcmRT_debugExitBadNoStd
#endif
#define dcmRT_debugExitBadNoStd(dcmStd,dcmType,dcmName,dcmLn,dcmFn,dcmrc,dcmScope)

#ifdef dcmRT_debugDefault
#undef dcmRT_debugDefault
#endif
#define dcmRT_debugDefault(dcmStd,dcmLn,dcmFn,dcmrc,dcmScope)

#ifdef dcmRT_debugDefaultCantFire
#undef dcmRT_debugDefaultCantFire
#endif
#define dcmRT_debugDefaultCantFire(dcmStd,dcmLn,dcmFn,dcmrc,dcmScope)

#ifdef dcmRT_debugModelProcInit
#undef dcmRT_debugModelProcInit

558
Copyright © 2010 IEEE all rights reserved.

– 558 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

#endif
#define dcmRT_debugModelProcInit(dcmStd,dcmNodes,dcmAnyin,dcmAnyout,dcmScope)

#ifdef dcmRT_debugModelProcSimple
#undef dcmRT_debugModelProcSimple
#endif
#define dcmRT_debugModelProcSimple(dcmStd,dcmScope)

#ifdef dcmRT_debugTableLoading
#undef dcmRT_debugTableLoading
#endif
#define dcmRT_debugTableLoading(dcmStd,dcmName,dcmTable,dcmScope)

#ifdef dcmRT_debugTableDeferred
#undef dcmRT_debugTableDeferred
#endif
#define dcmRT_debugTableDeferred(dcmStd,dcmName,dcmTable,dcmScope)

#ifdef dcmRT_debugTableAdd
#undef dcmRT_debugTableAdd
#endif
#define dcmRT_debugTableAdd(dcmStd,dcmP1,dcmP2,dcmP3,dcmSD,dcmI1,dcmScope)

#ifdef dcmRT_debugTableDel
#undef dcmRT_debugTableDel
#endif
#define dcmRT_debugTableDel(dcmStd,dcmP1,dcmP2,dcmScope)

#ifdef dcmRT_debugModelSearch
#undef dcmRT_debugModelSearch
#endif
#define dcmRT_debugModelSearch(dcmStd,dcmbtr,dcmbhc,dcmbrc,dcmScope)

#ifdef dcmRT_debugModelSearchEnd
#undef dcmRT_debugModelSearchEnd
#endif
#define dcmRT_debugModelSearchEnd()

#ifdef dcmRT_ModelIndentSaver
#undef dcmRT_ModelIndentSaver
#endif
#define dcmRT_ModelIndentSaver()

#ifdef dcmRT_ModelIndentRestorer
#undef dcmRT_ModelIndentRestorer
#endif
#define dcmRT_ModelIndentRestorer()

#ifdef dcmRT_StmtIndentSaver
#undef dcmRT_StmtIndentSaver
#endif
#define dcmRT_StmtIndentSaver()

#ifdef dcmRT_StmtIndentRestorer
#undef dcmRT_StmtIndentRestorer
#endif
#define dcmRT_StmtIndentRestorer()

#ifdef dcmRT_debugPathPins
#undef dcmRT_debugPathPins
#endif
#define dcmRT_debugPathPins(dcmStd,dcmKind,dcmList,dcmScope)

#ifdef dcmRT_debugNameList
#undef dcmRT_debugNameList
#endif
#define dcmRT_debugNameList(dcmStd,dcmKind,dcmList,dcmScope)

#ifdef dcmRT_dumpMPPins
#undef dcmRT_dumpMPPins

559
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 559 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

#endif
#define dcmRT_dumpMPPins(dcmStd, dcmPins, dcmString,dcmScope)

#ifdef dcmRT_dumpPinList
#undef dcmRT_dumpPinList
#endif
#define dcmRT_dumpPinList(dcmStd, dcmList,dcmScope)

#ifdef dcmRT_dump_STD_STRUCT
#undef dcmRT_dump_STD_STRUCT
#endif
#define dcmRT_dump_STD_STRUCT(dcmStd,dcmScope)

#ifdef dcmRT_debugInit
#undef dcmRT_debugInit
#endif
#define dcmRT_debugInit(dcmData)

#ifdef dcmRT_debugTerm
#undef dcmRT_debugTerm
#endif
#define dcmRT_debugTerm(dcmData)

#ifdef dcmRT_debugSubruleLoad
#undef dcmRT_debugSubruleLoad
#endif
#define dcmRT_debugSubruleLoad(dcmStd, dcmSubRule, dcmScope)

#ifdef dcmRT_debugSubrulePreLoad
#undef dcmRT_debugSubrulePreLoad
#endif
#define dcmRT_debugSubrulePreLoad(dcmStd, dcmSubRule, dcmScope)

#ifdef dcmRT_debugSegData
#undef dcmRT_debugSegData
#endif
#define dcmRT_debugSegData(dcmStd, dcmPC, dcmScope)

#ifdef dcmRT_debugFunctionData
#undef dcmRT_debugFunctionData
#endif
#define dcmRT_debugFunctionData(dcmStd, dcmPD, dcmint, dcmScope)

#ifdef dcmRT_debugNodeCall
#undef dcmRT_debugNodeCall
#endif
#define dcmRT_debugNodeCall(dcmStd, dcmName, dcmScope)

#ifdef dcmRT_debugStoreCall
#undef dcmRT_debugStoreCall
#endif
#define dcmRT_debugStoreCall(dcmStd, dcmName, dcmScope)

#ifdef dcmRT_debugSlotStoreCall
#undef dcmRT_debugSlotStoreCall
#endif
#define dcmRT_debugSlotStoreCall(dcmStd, dcmName, dcmScope)

#ifdef dcmRT_debugDelayMatrix
#undef dcmRT_debugDelayMatrix
#endif
#define dcmRT_debugDelayMatrix(dcmStd,dcmS1,dcmS2,dcmS3,dcmS4,dcmS5,dcmS6,dcmScope)

#ifdef dcmRT_debugMethodsClause
#undef dcmRT_debugMethodsClause
#endif
#define dcmRT_debugMethodsClause(dcmStd,dcmS1,dcmS2,dcmScope)

#ifdef dcmRT_debugTestMatrix
#undef dcmRT_debugTestMatrix
#endif

560
Copyright © 2010 IEEE all rights reserved.

– 560 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

#define
dcmRT_debugTestMatrix(dcmStd,dcmS1,dcmS2,dcmS3,dcmS4,dcmS5,dcmI6,dcmI7,dcmS8,dcmScope)

#ifdef dcmRT_debugPathSegment
#undef dcmRT_debugPathSegment
#endif
#define dcmRT_debugPathSegment(dcmStd,dcmI1,dcmScope)

#ifdef dcmRT_debugTestSegment
#undef dcmRT_debugTestSegment
#endif
#define dcmRT_debugTestSegment(dcmStd,dcmI1,dcmScope)

#ifdef dcmRT_debugNetSegment
#undef dcmRT_debugNetSegment
#endif
#define dcmRT_debugNetSegment(dcmStd,dcmS1,dcmS2,dcmI3,dcmScope)

#ifdef SET_DCM_DEBUG_LEVEL
#undef SET_DCM_DEBUG_LEVEL
#endif
#define SET_DCM_DEBUG_LEVEL(dcmLevel) (DCM_OFF)

#ifdef SET_DCM_DEBUG_LEVEL_VOID
#undef SET_DCM_DEBUG_LEVEL_VOID
#endif
#define SET_DCM_DEBUG_LEVEL_VOID(dcmLevel)

#ifdef GET_DCM_DEBUG_LEVEL
#undef GET_DCM_DEBUG_LEVEL
#endif
#define GET_DCM_DEBUG_LEVEL() (DCM_OFF)

#ifdef dcmRT_debugIntLoop
#undef dcmRT_debugIntLoop
#endif
#define dcmRT_debugIntLoop(dcmStd, dcmS1, dcmI1, dcmI2, dcmI3, dcmI4, dcmt, dcmLn, dcmFn,
dcmScope)

#ifdef dcmRT_debugLoopResult
#undef dcmRT_debugLoopResult
#endif
#define dcmRT_debugLoopResult(dcmStd, dcmd, dcmLn, dcmFn, dcmScope)

#ifdef dcmRT_debugLoopStart
#undef dcmRT_debugLoopStart
#endif
#define dcmRT_debugLoopStart(dcmStd, dcmd, dcmLn, dcmFn, dcmScope)

#ifdef dcmRT_debugLoopEnd
#undef dcmRT_debugLoopEnd
#endif
#define dcmRT_debugLoopEnd(dcmStd, dcmd, dcmLn, dcmFn, dcmScope)

#ifdef dcmRT_debugPinLoop
#undef dcmRT_debugPinLoop
#endif
#define dcmRT_debugPinLoop(dcmStd, dcmS1, dcmP1, dcmLn, dcmFn, dcmScope)

#ifdef dcmRT_debugExposeChainForward
#undef dcmRT_debugExposeChainForward
#endif
#define dcmRT_debugExposeChainForward(dcmStd,dcmName,dcmrc,dcmScope)

#ifdef dcmRT_debugExposeChainStops
#undef dcmRT_debugExposeChainStops
#endif
#define dcmRT_debugExposeChainStops(dcmStd,dcmName,dcmrc,dcmScope)

561
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 561 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

#ifdef DCM_STRUCT_DUMPER
#undef DCM_STRUCT_DUMPER
#endif
#define DCM_STRUCT_DUMPER(a) ((DCMStructureDumper)NULL)

#ifdef dcmRT_checkWritableArray
#undef dcmRT_checkWritableArray
#endif

#ifdef dcmRT_checkWritableStruct
#undef dcmRT_checkWritableStruct
#endif

#define dcmRT_checkWritableArray(std,arr,vn,fn)
#define dcmRT_checkWritableStruct(std,str,vn,fn)

#ifdef dcmRT_VariablePrint
#undef dcmRT_VariablePrint
#endif
#define dcmRT_VariablePrint(str,call)

#ifdef dcmRT_debugGateForLevel
#undef dcmRT_debugGateForLevel
#endif
#define dcmRT_debugGateForLevel(dcmStd,lvl,rs) 0

#ifdef dcmRT_debugAnyCondition
#undef dcmRT_debugAnyCondition
#endif
#define dcmRT_debugAnyCondition(dcmStd,dcm_condx,str1,code1,dcmLn,dcmFn,rs)

#ifdef dcmRT_debugTryCatch
#undef dcmRT_debugTryCatch
#endif
#define dcmRT_debugTryCatch(dcmStd,code1,dcm_rc,dcmLn,dcmFn,ds)

#ifdef dcmRT_debugWhenCondition
#undef dcmRT_debugWhenCondition
#endif
#define dcmRT_debugWhenCondition(dcmStd,dcm_condx,str1,code1,ln,fn,rs) dcm_condx

#ifdef dcmRT_debugRepeatCondition
#undef dcmRT_debugRepeatCondition
#endif
#define dcmRT_debugRepeatCondition(dcmStd,dcm_condx,str1,code1,ln,fn,rs) dcm_condx

#ifdef dcmRT_debugWhileCondition
#undef dcmRT_debugWhileCondition
#endif
#define dcmRT_debugWhileCondition(dcmStd,dcm_condx,str1,code1,ln,fn,rs) dcm_condx

#ifdef dcmRT_debugForCondition
#undef dcmRT_debugForCondition
#endif
#define dcmRT_debugForCondition(dcmStd,dcm_condx,str1,code1,ln,fn,rs) dcm_condx

#endif /* DCM_GUTS_OR_DEBUG */

#endif /* _H_DCMDEBUG */

10.34 Standard array (dcmgarray.h) file

This subclause lists the dcmgarray.h file.

/**
** INCLUDE NAME..... dcmgarray.h
**
** PURPOSE.......... General declares for DCL Arrays.

562
Copyright © 2010 IEEE all rights reserved.

– 562 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

**
** NOTES............. These functions and types are needed in
** Applications that use DCL Arrays.
** Rules that use DCL Arrays.
** Rule C-code that uses DCL Arrays.
**
** ASSUMPTIONS.......
**
** RESTRICTIONS.....
**
** LIMITATIONS......
**
** DEVIATIONS.......
**
** AUTHOR(S)......... Peter C. Elmendorf
**
** CHANGES: 05/28/99 AK: support DCM_SHORT
** 07/14/99 AK: support DCM_LONG
**
**/
#ifndef _H_DCMGARRAY
#define _H_DCMGARRAY

/*!
 \file
 \brief General purpose definitions for DCL Array support.
 Used in both rule code and application code.
*/

/**!**
** Arrays are defined a pointer to DCM_ARRAY, a void type.
** The compiler keeps track of the true data type.
** Use of a void type at the C level allows general-purpose support
** routines to be written for all data types of array.
**/
typedef void DCM_ARRAY;

/**!**
** typedef for functions that print arrays.
**
** \param array -> the array to print.
**/
typedef void (*DCM_ArrayFormatFunction)(const DCM_ARRAY *array);

/**!**
** Typedef for user-written functions that initialize arrays
** created in application code.
**
** \see dcmRT_new_DCM_ARRAY
**
** \return nonzero for ok, error otherwise.
**
** \param std the context
** \param array points to the array area to initialize.
**/
typedef int (*DCM_ArrayInitUserFunction)(const DCM_STD_STRUCT *std,

 DCM_ARRAY *array);

/**!**
** Typedef for user-written functions that destruct arrays
** created in application code.
**
** \see dcmRT_new_DCM_ARRAY
**
** \return nonzero for ok, error otherwise.
**
** \param std the context
**
** \param rc -> integer status. nonzero for ok, error otherwise.
** Allows the destructor to be a DCL statement.
**

563
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 563 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

** \param array points to the array.
**/
typedef int (*DCM_ArrayDstrUserFunction)(const DCM_STD_STRUCT *std,

 int *rc,
 DCM_ARRAY *array);

/**!**
** Typedef for DCL-written functions that initialize arrays.
**
** \see dcmRT_R_new_DCM_ARRAY
**
** \param std the context
** \param array points to the array area to initialize.
**/
typedef void (*DCM_ArrayInitDCMFunction)(const DCM_STD_STRUCT *std,

 DCM_ARRAY *array);

/**!**
** Typedef for functions that destruct arrays.
**
** \see dcmRT_R_new_DCM_ARRAY
**
** \return nonzero for ok, error otherwise.
**
** \param std the context
**
** \param rc -> integer status. nonzero for ok, error otherwise.
** Allows the destructor to be a DCL statement.
**
** \param array points to the array.
**/
typedef int (*DCM_ArrayDstrDCMFunction)(const DCM_STD_STRUCT *std,

int *rc,
DCM_ARRAY *array);

/*!***
** Scalars for the type of the items in the array.
**/
typedef enum DCM_Array_Element_Types {
 DCM_ATYPE_ERROR, /*!< OOPS! */
 DCM_ATYPE_Integer = 1, /*!< INTEGER array. */
 DCM_ATYPE_String = 2, /*!< STRING array. */
 DCM_ATYPE_Double = 3, /*!< DOUBLE (NUMBER) array. */
 DCM_ATYPE_Float = 4, /*!< FLOAT or NUMBER in TABLEDEF DATA*/
 DCM_ATYPE_Function= 5, /*!< Function array. */
 DCM_ATYPE_Complex = 6, /*!< Complex array. */
 DCM_ATYPE_Void = 7, /*!< void pointer array. */
 DCM_ATYPE_Structure=8, /*!< Array of structure (ptr). */
 DCM_ATYPE_Function_PureC=9, /*!< Array of pure consistent fcn.*/
 DCM_ATYPE_Function_PureI=10, /*!< Array of pure inconsistent fcn.*/
 DCM_ATYPE_Character=11, /*!< CHAR array. */
 DCM_ATYPE_Short =12, /*!< SHORT array. */
 DCM_ATYPE_Long =13, /*!< LONG array. */
 DCM_ATYPE_Pin =14, /*!< PIN array. */
 DCM_ATYPE_Function_Launchable=15, /*!< Array of launchable function.*/
 DCM_ATYPE_Array = 0x10, /*!< Array of Arrays */
 /**!**
 ** Ceiling.
 ** Future additions will go here.
 **/
 DCM_ATYPE_MAX

} DCM_ATYPE;

#define DCM_ATYPE_LAST_SINGLE_TYPE DCM_ATYPE_Function_Launchable

/**!**
** Array variant type for helpful use in the standard.
**/
typedef DCM_INTEGER DCM_INTEGER_ARRAY;
typedef DCM_STRING DCM_STRING_ARRAY; /*!< \copydoc DCM_INTEGER_ARRAY*/

564
Copyright © 2010 IEEE all rights reserved.

– 564 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

typedef DCM_DOUBLE DCM_DOUBLE_ARRAY; /*!< \copydoc DCM_INTEGER_ARRAY*/
typedef DCM_FLOAT DCM_FLOAT_ARRAY; /*!< \copydoc DCM_INTEGER_ARRAY*/
typedef DCM_GeneralFunction DCM_FUNCTION_ARRAY; /*!< \copydoc DCM_INTEGER_ARRAY*/
typedef DCM_COMPLEX DCM_COMPLEX_ARRAY; /*!< \copydoc DCM_INTEGER_ARRAY*/
typedef DCM_VOID DCM_VOID_ARRAY; /*!< \copydoc DCM_INTEGER_ARRAY*/

/**!**
** For back compatibility ONLY.
**/
#define DCM_ATYPE_Real DCM_ATYPE_Double

/**!***
** Given an array type scalar, returns a string of its name for use
** in code generation tools or messages.
**
** \return -> string syntax for the data type.
**
** \param std the context
** \param type the scalar data type value.
**/
DCM_XC const char *dcmRT_array_type_string(const DCM_STD_STRUCT *std,

 DCM_ATYPE type);

/**!**
** Array initialization option scalars.
**
** Initialization options:
**
** DCM_AINIT_doNotInitialize - do not initialize.
**
** DCM_AINIT_initAllZeroes - initialize space to all zeroes.
**
** DCM_AINIT_initByType - initialize space depending on type:
** \li INTEGER - MININT
** \li STRING - NULL
** \li NUMBER - NaNS
** \li PIN - NULL
** \li FLOAT - NaNS
** \li DOUBLE - NaNS
** \li VOID - NULL
** \li user type - call the initializer function
** if present. Do nothing if
** initializer function is
** not present (NULL).
**
** DCM_AINIT_useFunction - call the initializer function if present.
** Do nothing if initializer function is
** not present (NULL).
**/
typedef enum DCM_Array_Initialization {
 DCM_AINIT_doNotInitialize, /*!< Do not initialize at all. */
 DCM_AINIT_initAllZeroes, /*!< Init all elements to zeroes. */
 DCM_AINIT_initByType, /*!< Init by type of element. */
 DCM_AINIT_useFunction, /*!< Initialize with a function. */
 DCM_AINIT_compilerInits, /*!< For compiler-defined minimum inits.*/
 DCM_AINIT_debugInits, /*!< For compiler-defined debug inits.*/
 DCM_AINIT_MAX
} DCM_AINIT;

/**!***
** Attributes for DCM_ARRAYs.
**
** Unused bits are all RESERVED for future expansion.
**/
typedef unsigned int DCM_ARRAY_ATTS;

/**!**
** Attributes which can be set by the user.
**
** DCM_ARRAY_ATTS_DEFAULT is the only value permitted right now.
** It is symbolic, meaning "take all default values."

565
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 565 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

**/
#define DCM_ARRAY_ATTS_DEFAULT 0xFFFFFFFF

/**!**
** sizeof() for a DCM_ARRAY.
** \return size (in bytes) of array space (just the elements.)
** Includes any padding that may be present. Just like C sizeof().
** Return zero on error.
**
** \param std the context
** \param array the array pointer
**/
DCM_XC int dcmRT_sizeof_DCM_ARRAY(const DCM_STD_STRUCT *std,

 const DCM_ARRAY *array);

/**!**
** Given a DCM_ARRAY, return the number of dimensions.
**
** \return the number of dimensions, or -1 on error.
**
** \param std the context
** \param array the array pointer
**/
DCM_XC int dcmRT_getNumDimensions(const DCM_STD_STRUCT *std, const

 DCM_ARRAY *array);

/**!**
** Given a DCM_ARRAY, return the number of elements in each dimension.
** Caller supplies space to write answer into.
**
** \return answer value if OK, NULL on error.
**
** \param std the context
** \param array the array pointer
** \param answer -> preallocated int vector to hold the results.
**
** The caller must preallocate the "answer" vector having first called
** dcmRT_getNumDimensions to determine the number of dimensions.
**/
DCM_XC int *dcmRT_getNumElementsPer(const DCM_STD_STRUCT *std,

 const DCM_ARRAY *array,
 int *answer);

/**!**
** Given a DCM_ARRAY and a dimension, return the number of elements
** in that dimension.
**
** \return the number of elements, or -1 on error.
**
** \param std the context
** \param array the array pointer
** \param dimension the dimension number, starting at zero.
**
** \note For a vector, dcmRT_getNumElements(context,array,0) will return
** the number of elements in the vector.
**/
DCM_XC int dcmRT_getNumElements(const DCM_STD_STRUCT *std,

const DCM_ARRAY *array,
int dimension);

/**!**
** Given a DCM_ARRAY, return the type of the elements.
**
** \return the data type, or DCM_Array_Element_ERROR on error.
**
** \param std the context
** \param array the array pointer
**/
DCM_XC DCM_ATYPE dcmRT_getElementType(const DCM_STD_STRUCT *std,

 const DCM_ARRAY *array);

566
Copyright © 2010 IEEE all rights reserved.

– 566 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

/**!***
** Scalar to communicate the style of printing for dcmRT_print_array_stats().
**/
typedef enum DCM_AVS {
 DCM_AVS_DoNothing, /*!< do nothing */
 DCM_AVS_JustStats, /*!< Print stats but not content*/
 DCM_AVS_Describe /*!< Print stats and content. */
} DCM_AVS;

/**!**
** Function for the user to print out vital stats of a DCM_ARRAY.
**/
DCM_XC void dcmRT_print_array_stats
 (const DCM_STD_STRUCT *std, /*!< The context. */
 const DCM_ARRAY *array, /*!< -> array to print. */
 DCM_AVS options, /*!< options. */
 /**!***
 ** Optional formatter function to print a debug dump of the array.
 ** If NULL, dcmRT_print_array_stats does its simple dump to stderr.
 ***/
 DCM_ArrayFormatFunction formatter);

#endif /* _H_DCMGARRAY */

10.35 Standard user array defines (dcmuarray.h) file

This subclause lists the dcmuarray.h file.

***/
/**
** INCLUDE NAME..... dcmuarray.h
**
** PURPOSE.......... User structures and functions to support arrays.
**
** NOTES.............
**
** ASSUMPTIONS.......
**
** RESTRICTIONS.....
**
** LIMITATIONS......
**
** DEVIATIONS.......
**
** AUTHOR(S)......... Peter C. Elmendorf
**
** CHANGES:
**
**/
#ifndef _H_DCMUARRAY
#define _H_DCMUARRAY 1

/*!
 \file
 \brief structures and functions to support array use for applications.
*/

#ifndef DCM_SUPPRESS_API_INTERNAL_USE
/**!**
** APPLICATION SERVICE to allocate space for a new array.
**
** Return NULL on error.
**/
DCM_XC
DCM_ARRAY *dcmRT_new_DCM_ARRAY
 (const DCM_STD_STRUCT *std, /*!< The context. */
 int numDims, /*!< Number of dimensions. */
 const int *elementsPer, /*!< -> # of elements per dimension.*/
 int elementSize, /*!< Size of an element. */

567
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 567 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

 DCM_ATYPE elementType, /*!< Type of an element. */
 /**!***
 ** Flags made from DCM_ARRAY_ATTS.
 ** Use DCM_ARRAY_ATTS_DEFAULT to create a claimed restricted array.
 **
 ** Other possibly useful combinations:
 ** \li DCM_ARRAY_ATTS_NewClaimed | DCM_ARRAY_ATTS_Shared
 ** \li DCM_ARRAY_ATTS_NewClaimed | DCM_ARRAY_ATTS_Sync
 **
 ** This parameter is not checked for consistency.
 ** If you use something other than DCM_ARRAY_ATTS_DEFAULT,
 ** be sure you know what you are doing!
 ***/
 DCM_ARRAY_ATTS attributes,
 /**!***
 ** Initialization option:
 **
 ** \li zero - do not initialize.
 ** \li 1 - initialize space to all zeroes.
 ** \li 2 - initialize space depending on type: \n
 ** INTEGER - MININT \n
 ** STRING - NULL \n
 ** NUMBER - NaNS \n
 ** PIN - NULL \n
 ** FLOAT - NaNS \n
 ** (user type - not supported.)
 ***/
 DCM_AINIT initialize,
 DCM_ArrayInitUserFunction initializer, /*!< Init function. */
 DCM_ArrayDstrUserFunction destructor /*!< destruct function. */
);

/**!**
** APPLICATION SERVICE to allocate space for a new array of structures and
** space for the structures. Initialize structures appropriately
** (according to DCL Laws and debug mode) and point the array elements
** at the structures.
**
** Creates TRANSIENT structures only.
**
** Return NULL on error.
**/
DCM_XC DCM_ARRAY *dcmRT_new_aggregate_DCM_ARRAY
 (const DCM_STD_STRUCT *std_struct,
 int numDims, /*!< Number of dimensions. */
 const int *elementsPer, /*!< -> # of elements per dimension.*/
 /**!***
 ** Flags made from DCM_ARRAY_ATTS.
 ** Use DCM_ARRAY_ATTS_DEFAULT to create a claimed restricted array.
 **
 ** Other possibly useful combinations:
 ** \li DCM_ARRAY_ATTS_NewClaimed | DCM_ARRAY_ATTS_Shared
 ** \li DCM_ARRAY_ATTS_NewClaimed | DCM_ARRAY_ATTS_Sync
 **
 ** This parameter is not checked for consistency.
 ** If you use something other than DCM_ARRAY_ATTS_DEFAULT,
 ** be sure you know what you are doing!
 ***/
 DCM_ARRAY_ATTS attributes,
 /**!***
 ** Optional destructor function for the Array.
 ***/
 DCM_ArrayDstrUserFunction destructor,
 /**!***
 ** Size of one of the transient STRUCTUREs.
 ** In general, use sizeof(structure_type) to account for padding.
 ** This routine will NOT attempt to account for padding.
 ***/
 size_t structSize,
 /**!***

568
Copyright © 2010 IEEE all rights reserved.

– 568 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

 ** Initialization option for the structures.
 **
 ** Supported values:
 ** \li DCM_SINIT_initAllZeroes
 ** \li DCM_SINIT_useFunction
 **
 ** Optional initialization function.
 ** (Beware: the structures will be TRANSIENT.)
 ***/
 DCM_SINIT s_initialize,
 DCM_StructInitDCMFunction s_initializer);

/**!**
** Application claim on a DCM_ARRAY.
**
** This uses the same claim counter as ASSIGN statements etc use.
** If you claim, you must disclaim.
** Claims only the base object.
**/
DCM_XC
int dcmRT_claim_DCM_ARRAY(const DCM_STD_STRUCT *std, /*!< context */

 DCM_ARRAY *array /*!< -> object to claim. */
);

/**!**
** Application disclaim on a DCM_ARRAY.
**
** This uses the same claim counter as ASSIGN statements etc use.
** If you claim, you must disclaim.
** Disclaims only the base object.
**/
DCM_XC
int dcmRT_disclaim_DCM_ARRAY(const DCM_STD_STRUCT *std, /*!< context */

 DCM_ARRAY *array /*!< object to disclaim. */
);

#endif

/**!**
** sizeof() for a DCM_ARRAY.
**
** \li Returns size (in bytes) of array space (just the elements.)
** \li Return zero on error.
**/
DCM_XC
int dcmRT_sizeof_DCM_ARRAY(const DCM_STD_STRUCT *std, /*!< context */

 const DCM_ARRAY *array /*!< object of interest*/
);

/**!**
** Given a DCM_ARRAY, return the number of dimensions.
**
** Return -1 on error.
**/
DCM_XC
int dcmRT_getNumDimensions(const DCM_STD_STRUCT *std, /*!< context */

 const DCM_ARRAY *array /*!< object of interest.*/
);

/**!**
** Given a DCM_ARRAY, return the number of elements in each dimension.
** Caller supplies space to write answer into.
**
** \return answer if OK, NULL on error.
**
** \param std the context
** \param array the object of interest
** \param answer -> place to put the results.
**/

569
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 569 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

DCM_XC
int *dcmRT_getNumElementsPer(const DCM_STD_STRUCT *std,

 const DCM_ARRAY *array,
 int *answer);

/**!**
** Given a DCM_ARRAY and a dimension, return the number of elements
** in that dimension.
**
** \return -1 on error.
**
** \param std the context
** \param array the object of interest
** \param dimension the desired dimension.
**/
DCM_XC
int dcmRT_getNumElements(const DCM_STD_STRUCT *std,

 const DCM_ARRAY *array,
 int dimension);

/**!**
** Given a DCM_ARRAY, return the type of the elements.
**
** \return DCM_Array_Element_ERROR on error.
**
** \param std the context
** \param array the object of interest
**/
DCM_XC
DCM_ATYPE dcmRT_getElementType(const DCM_STD_STRUCT *std,

 const DCM_ARRAY *array);

/**!**
** See if an array is empty.
**
** \return 1 if it is empty, zero if it is not.
**
** \param std the context
** \param array the object of interest
**/
DCM_XC
int dcmRT_isArrayEmpty(const DCM_STD_STRUCT *std, const DCM_ARRAY *array);

/**
** Operations.
**/

/**!**
** Array compare.
**
** \return zero for absolutely equal, nonzero for not equal.
**
** \param std the context
** \param a1 the object of interest
** \param a2 the object of interest
**/
DCM_XC int dcmRT_arraycmp(const DCM_STD_STRUCT *std,

 const DCM_ARRAY *a1,
 const DCM_ARRAY *a2);

/**!**
** Return pointer to the specified element in the array.
** Intended for development and debugging purposes.
** Not high performance. Has high amounts of checking.
**
** Returns NULL on error.
**
** \param std the context

570
Copyright © 2010 IEEE all rights reserved.

– 570 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

** \param array the object of interest
** \param index -> a vector of indices to find the element pointer.
**/
DCM_XC
void *dcmRT_index_array(const DCM_STD_STRUCT *std,

 const DCM_ARRAY *array,
 const int *index);

/**!**
** APPLICATION SERVICE to allocate space for and copy an existing array.
** You can change the attributes.
**
** \return NULL on error or a pointer to the new array.
**/
DCM_XC DCM_ARRAY *dcmRT_copy_DCM_ARRAY
 (const DCM_STD_STRUCT *std, /*!< context */
 DCM_ARRAY *originalArray, /*!< I: source array. */
 /***
 ** Flags made from DCM_AATTS.
 ***/
 DCM_ARRAY_ATTS attributes /*!< I: attributes for the new copy.*/
);

/**!**
** Application service to get claim count for array
**
** \return the claim count value
**
** \param std the context
** \param array the object of interest
**/
DCM_XC int dcmRT_Get_DCM_ARRAY_ClaimCount (const DCM_STD_STRUCT *std,

 DCM_ARRAY *array);

#endif /* _H_DCMUARRAY */

10.36 Standard platform-dependency (dcmpltfm.h) file

This subclause lists the dcmpltfm.h file.

#ifndef _H_DCMPLTFM
#define _H_DCMPLTFM
/**
** INCLUDE NAME..... dcmpltfm.h
**
** PURPOSE..........
** This include provides platform-dependent definitions for DCM.
**
** NOTES.............
**
** Code applicable to different platforms is defined for potential
** implementation on those platforms. However, this does not imply that
** IBM has or will be making the product available on those platforms
** in the future.
**
** ASSUMPTIONS.......
**
** RESTRICTIONS.....
**
** LIMITATIONS......
**
** DEVIATIONS.......
**
** AUTHOR(S)......... Peter C. Elmendorf
**
** CHANGES:
** 01 Oct 93 PCE add HP
** 11 Feb 98 Unmesh Ballal added INTEL specific defines.
** 27 May 99 AK: support DCM_SHORT

571
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 571 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

** 14 Jul 99 AK: support DCM_LONG
**/

/*!
 \file
 \brief This include provides platform-dependent definitions for DC
*/

/**
** Make sure a platform is chosen.
**/
#if !defined(_IBMRS) && !defined(_SUN) && !defined(_HP) && !defined(_SOL) && !
defined(_NT) && !defined(_LINUX)
if !defined(_IBM_DCM_PLATFORM_OVERRIDE)

 /**
 ** This deliberate syntax error is fed to the or C compiler
 ** when the user has failed to define a platform at compile time.
 **
 ** We must catch this omission, lest inappropriate code be
 ** accidentally compiled without any mention of this situation.
 **/

 One_platform_must_be_chosen_when_compiling_DCM_code
 Choose_one_of -D_IBMRS -D_SUN -D_HP -D_SOL -D_NT

endif
#endif

/**
** System includes.
**/
#ifdef _IBMRS
#ifndef _POSIX_SOURCE
define _POSIX_SOURCE
#endif
#ifndef _ALL_SOURCE
define _ALL_SOURCE
#endif
#include <sys/types.h>
#endif

/* added the include limits.h 07/19/99 AK */
#include <limits.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>

#ifdef _HP
if defined(_INCLUDE_XOPEN_SOURCE_EXTENDED)
include <math.h>
else
define _INCLUDE_XOPEN_SOURCE_EXTENDED
include <math.h>
undef _INCLUDE_XOPEN_SOURCE_EXTENDED
endif
#else
#include <math.h>
#endif

#if defined(__cplusplus) && !defined(_IBM_DCL_SPECIAL_OVERRIDE_XC_FACTOR)

/**!***
** DCM_XC allows 'extern "C"' to disappear in C code.
**/
#define DCM_XC extern "C"
/**!***
** DCM_XCX allows 'extern "C"' to disappear in C code.
**/
#define DCM_XCX extern "C"

572
Copyright © 2010 IEEE all rights reserved.

– 572 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

/**!***
** DCM_XCX allows 'extern "C" {' to disappear in C code.
**/
#define DCM_XC_OPEN extern "C" {
/**!***
** DCM_XCX allows closing brace of 'extern "C" {' to disappear in C code.
**/
#define DCM_XC_CLOSE }

#else

#define DCM_XC
#define DCM_XCX extern
#define DCM_XC_OPEN
#define DCM_XC_CLOSE

#endif

/**
** DCL_DEBUG and DCL_DEBUG_INIT same as their NDCL counterparts.
**/
#if defined(DCL_DEBUG) && !defined(NDCL_DEBUG)
#define NDCL_DEBUG 1
#endif

#if defined(DCL_DEBUG_INIT) && !defined(NDCL_DEBUG_INIT)
#define NDCL_DEBUG_INIT 1
#endif

#if defined(NDCL_DEBUG) && !defined(DCL_DEBUG)
#define DCL_DEBUG 1
#endif

#if defined(NDCL_DEBUG_INIT) && !defined(DCL_DEBUG_INIT)
#define DCL_DEBUG_INIT 1
#endif

/**
** DCL_DEBUG_INIT implies DCL_DEBUG
**/
#ifdef DCL_DEBUG_INIT
ifndef DCL_DEBUG
define DCL_DEBUG 1
endif
#endif

/**
** Internal compile or rule in debug mode?
**/
#ifdef DCM_GUTS
#define DCM_GUTS_OR_DEBUG 1
#else
ifdef DCL_DEBUG
define DCM_GUTS_OR_DEBUG 1
#endif
#endif

/**
** The #define NULL statment is meant to override the
** #define NULL ((void *)0) declaration found in stdlib.h
**/
#undef NULL
#define NULL 0

#ifdef _IBM_DCM_PLATFORM_OVERRIDE
#include <dcmpltov.h>
#endif

/*===*/

/**

573
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 573 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

** Special includes so DCM will work on the RS.
**/
#ifdef _IBMRS

#define DCM_DEV_NULL_FILE_NAME "/dev/null"

#define _IBMAIX 1 /* A unix-ish system. */
#define DCM_DYNAMIC_LOAD_AVAILABLE 1 /* Dynamic load exists. */
#define DCMRT_R_INIT_UNLOCKED_VALUE 0

#ifndef _ALL_SOURCE
define _ALL_SOURCE
#endif

#include <float.h> /* Floating point. */

#endif /* _IBMRS */

/*===*/

/**
** Special includes so DCM will work on SOLARIS.
**/
#ifdef _SOL
ifndef _SUN
define _SUN 1
endif
#endif

/**
** Special includes so DCM will work on LINUX.
**/
#ifdef _LINUX

#define DCM_DEV_NULL_FILE_NAME "/dev/null"

#define _IBMAIX 1 /* A unix-ish system. */
#define DCM_DYNAMIC_LOAD_AVAILABLE 1 /* Dynamic load exists. */
#define DCMRT_R_INIT_UNLOCKED_VALUE 0

typedef struct dcm_2int { int a; int b; } dcm_2int;
/**
** Define the Float Signalling Not a Number.
**/
static int dcm_SNANFV = 0x7f855555;
static const float * const dcm_SNANFP = (float *)&dcm_SNANFV;
#define FLT_SNAN (*dcm_SNANFP)

/**
** Define the Float Quiet Not a Number.
**/
static int dcm_QNANFV = 0x7fc00000;
static const float * const dcm_QNANFP = (float *)&dcm_QNANFV;
#define FLT_QNAN (*dcm_QNANFP)

/**
** Define the Dbl Signalling Not a Number.
**/
static dcm_2int dcm_SNANDV = { 0x7ff55555, 0x55555555 };
static const double * const dcm_SNANDP = (double *)&dcm_SNANDV;
#define DBL_SNAN (*dcm_SNANDP)

/**
** Define the DBL Quiet Not a Number.
**/
static dcm_2int dcm_QNANDV = { 0x7ff80000, 0x00000000 };
static const double * const dcm_QNANDP = (double *)&dcm_QNANDV;
#define DBL_QNAN (*dcm_QNANDP)

#endif /* _LINUX */

574
Copyright © 2010 IEEE all rights reserved.

– 574 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

/*===*/

/**
** Special includes so DCM will work on SOLARIS.
**/
#ifdef _SOL
ifndef _SUN
define _SUN 1
endif
#endif

/*===*/

/**
** Special includes so DCM will work on the SUN.
**/
#ifdef _SUN

#define DCM_DEV_NULL_FILE_NAME "/dev/null"

#define _IBMAIX 1 /* A unix-ish system. */
#define DCM_DYNAMIC_LOAD_AVAILABLE 1 /* Dynamic load exists. */
#define DCMRT_R_INIT_UNLOCKED_VALUE 0

typedef unsigned long ulong; /* A BSD type. */

typedef struct dcm_2int { int a; int b; } dcm_2int;
/**
** Define the Float Signalling Not a Number.
**/
static int dcm_SNANFV = 0x7f855555;
static const float * const dcm_SNANFP = (float *)&dcm_SNANFV;
#define FLT_SNAN (*dcm_SNANFP)

/**
** Define the Float Quiet Not a Number.
**/
static int dcm_QNANFV = 0x7fc00000;
static const float * const dcm_QNANFP = (float *)&dcm_QNANFV;
#define FLT_QNAN (*dcm_QNANFP)

/**
** Define the Dbl Signalling Not a Number.
**/
static dcm_2int dcm_SNANDV = { 0x7ff55555, 0x55555555 };
static const double * const dcm_SNANDP = (double *)&dcm_SNANDV;
#define DBL_SNAN (*dcm_SNANDP)

/**
** Define the DBL Quiet Not a Number.
**/
static dcm_2int dcm_QNANDV = { 0x7ff80000, 0x00000000 };
static const double * const dcm_QNANDP = (double *)&dcm_QNANDV;
#define DBL_QNAN (*dcm_QNANDP)

#endif /* _SUN */

/*===*/

/**
** Special includes so DCM will work on the HP.
**/
#ifdef _HP

#define DCM_DEV_NULL_FILE_NAME "/dev/null"

#define _IBMAIX 1 /* A unix-ish system. */
#define DCM_DYNAMIC_LOAD_AVAILABLE 1 /* Dynamic load exists. */
#define DCMRT_R_INIT_UNLOCKED_VALUE 1

typedef struct dcm_2int { int a; int b; } dcm_2int ;

575
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 575 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

/**
** Define the Float Signalling Not a Number.
**/
static int dcm_SNANFV = 0x7f855555;
static const float * const dcm_SNANFP = (float *)&dcm_SNANFV;
#define FLT_SNAN (*dcm_SNANFP)

/**
** Define the Float Quiet Not a Number.
**/
static int dcm_QNANFV = 0x7fc00000;
static const float * const dcm_QNANFP = (float *)&dcm_QNANFV;
#define FLT_QNAN (*dcm_QNANFP)

/**
** Define the Dbl Signalling Not a Number.
**/
static dcm_2int dcm_SNANDV = { 0x7ff55555, 0x55555555 };
static const double * const dcm_SNANDP = (double *)&dcm_SNANDV;
#define DBL_SNAN (*dcm_SNANDP)

/**
** Define the DBL Quiet Not a Number.
**/
static dcm_2int dcm_QNANDV = { 0x7ff80000, 0x00000000 };
static const double * const dcm_QNANDP = (double *)&dcm_QNANDV;
#define DBL_QNAN (*dcm_QNANDP)

#endif

#ifdef _NT

#define DCM_DEV_NULL_FILE_NAME "nul"

#define DCM_DYNAMIC_LOAD_AVAILABLE 1 /* Dynamic load exists. */
#define DCMRT_R_INIT_UNLOCKED_VALUE 0

typedef struct dcm_2int { int a; int b; } dcm_2int ;
/**
** Define the Float Signalling Not a Number.
**/
static int dcm_SNANFV = 0x7f855555;
static const float * const dcm_SNANFP = (float *)&dcm_SNANFV;
#define FLT_SNAN (*dcm_SNANFP)

/**
** Define the Float Quiet Not a Number.
**/
static int dcm_QNANFV = 0x7fc00000;
static const float * const dcm_QNANFP = (float *)&dcm_QNANFV;
#define FLT_QNAN (*dcm_QNANFP)

/**
** Define the Dbl Signalling Not a Number.
**/
static dcm_2int dcm_SNANDV = { 0x7ff55555, 0x55555555 };
static const double * const dcm_SNANDP = (double *)&dcm_SNANDV;
#define DBL_SNAN (*dcm_SNANDP)

/**
** Define the DBL Quiet Not a Number.
**/
static dcm_2int dcm_QNANDV = { 0x7ff80000, 0x00000000 };
static const double * const dcm_QNANDP = (double *)&dcm_QNANDV;
#define DBL_QNAN (*dcm_QNANDP)

#endif /* INTEL */

/*===*/
/*===*/

576
Copyright © 2010 IEEE all rights reserved.

– 576 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

/* GENERIC DEFINITIONS! */
/*===*/
/*===*/

/**
** Here are the GENERIC PLATFORM DEFINITIONS.
** These definitions are not specific to a platform, but are common
** across a family of platforms.
** 07/19/99 AK: MAX and MIN defines are now using values from limits.h
** which is included globally
**/
#define DCM_MAX_CHAR (CHAR_MAX) /* biggest char value */
#define DCM_MIN_CHAR (CHAR_MIN) /* smallest char value */

#define DCM_MAX_SHORT (SHRT_MAX) /* largest short value */
#define DCM_MIN_SHORT (SHRT_MIN) /* smallest short value */

#define DCM_MAX_INT (INT_MAX) /* largest int value */
#define DCM_MIN_INT (INT_MIN) /* smallest int value */

#define DCM_MAX_LONG (LONG_MAX) /* largest long value */
#define DCM_MIN_LONG (LONG_MIN) /* smallest long value */

/*===*/

#endif /* _H_DCMPLTFM */

10.37 Standard state variables (dcmstate.h) file

This subclause lists the dcmstate.h file.

/**

** To the extent this file contains source code,

** such source code is IBM Confidential information.

**

** All source code and object code supplied to you in this file

** is licensed to you under your separate written license agreements with IBM.

**

** Copyright 2006 IBM, All Rights Reserved.

***/

#ifndef _H_DCMSTATE

#define _H_DCMSTATE 1

/**
** INCLUDE NAME..... dcmstate.h
**
** PURPOSE..........
** Add the DCM state variables.
**
** NOTES.............
**

577
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 577 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

** ASSUMPTIONS.......
**
** RESTRICTIONS.....
** THE DECLARATIONS INCLUDED BELOW ARE NOT TO BE CONSIDERED
** AS PART OF THE INTERFACE. DO NOT REFERENCE THESE SYMBOLS IN
** APPLICATION CODE. THEY MAY CHANGE OVER TIME. ANY CHANGE
** TO THIS DECLARATION WILL NOT BE CONSIDERED AS GROUNDS FOR
** AN APAR OR ANY OTHER KIND OR FORM OF COMPLAINT OR
** SUGGESTION!
**
** LIMITATIONS...... DO NOT TOUCH!
**
** DEVIATIONS.......
**
** AUTHOR(S)......... Peter C. Elmendorf
**
** CHANGES:
**
**/

/*!
 \file
 \brief Declare the DCM_StateBlock, which hangs off the std structure
 and contains information which the DCL compiler generated code depends
 upon.

 \warning the structure and macros declared herein are
 for ** OFFICIAL DCM CODE ONLY ** to access magic fields.
*/

/**!**
** The std structure's state block.
**
** USERS MUST NOT MODIFY ANY OF THE CONTENTS!
**
** MANAGED AND USED BY RULE CODE AND THE RUNTIME ONLY!
**/
typedef struct DCM_StateBlock {
 /**!***
 ** node pin collection for complex modelprocs.
 **/
 DCM_R_pinCollection *dcmNodePins;
 /**!***
 ** ANYIN pin collection for complex modelprocs.
 **/
 DCM_R_pinCollection *dcmAnyinPins;
 /**!***
 ** ANYOUT pin collection for complex modelprocs.
 **/
 DCM_R_pinCollection *dcmAnyoutPins;
 /**!***
 ** Reserved
 **/
 void *reserved0;
 /**!***
 ** Pointer to load scope in this System. Convenient to have.
 **/
 struct DCMRT_LoadScope *dcm_lscope;
 /**!***
 ** Technology type pointer used during cross-technology calls.
 **/
 struct dcm_T_TECH_TYPE *dcm_scopingTT;
 /**!***
 ** Tech family index for the technology to which the context is currently
 ** set. Provides very fast technology operations.
 **/
 short dcm_tf;
 /**!***
 ** Bit flags needed by the runtime.
 **/

578
Copyright © 2010 IEEE all rights reserved.

– 578 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

 unsigned short stateFlags;
 /**!***
 ** Used as the indentation counter for statement nesting in debug mode
 ** so debug messages are neatly indented for each statement nesting.
 **/
 unsigned int dcmDepth;
 /**!***
 ** User-managed object list.
 **/
 void *olist;
 /**!***
 ** Reserved
 **/
 void *reserved1;
 /**!***
 ** Consistency lookup data to manage modelling consistency spaces.
 **/
 void *dcm_cl_data;
 /**!***
 ** Space related to this context. Convenient to have.
 **/
 DCM_Space *dcmSpace;
 /**!***
 ** Plane related to this context. Convenient to have.
 **/
 DCM_Plane *dcmPlane;
 /**!***
 ** Space serial number related to this context. Convenient to have.
 **/
 int dcmSpaceNum;
 /**!***
 ** store shifting index.
 **/
 int storeShiftIndex; /* Hands OFF! */
 /**!***
 ** Plane serial number related to this context. Convenient to have.
 **/
 int dcmPlaneNum;
 /**!***
 ** Plane flattened serial number related to this context. Convenient to have.
 **/
 int dcmPlaneID;
 void *reserved3; /*!< Reserved */
 void *reserved4; /*!< Reserved */
 void *reserved5; /*!< Reserved */
} DCM_StateBlock;

/**
** Macros for ** OFFICIAL DCM CODE ONLY ** to access magic fields.
**/

#define DCM_GET_NODE_PINS(std) ((std)->dcmStates->dcmNodePins)
#define DCM_SET_NODE_PINS(std,t) ((std)->dcmStates->dcmNodePins=(DCM_R_pinCollection *)
(t))

#define DCM_GET_ANYIN_PINS(std) ((std)->dcmStates->dcmAnyinPins)
#define DCM_SET_ANYIN_PINS(std,t) ((std)->dcmStates->dcmAnyinPins=(DCM_R_pinCollection *)
(t))

#define DCM_GET_ANYOUT_PINS(std) ((std)->dcmStates->dcmAnyoutPins)
#define DCM_SET_ANYOUT_PINS(std,t) ((std)->dcmStates->dcmAnyoutPins=(DCM_R_pinCollection
*)(t))

#define DCM_CB_PTR(std) ((std)->dcmStates->dcm_cb_data)
#define DCM_SET_CB_PTR(std,x) (((std)->dcmStates->dcm_cb_data)=(x))

#define DCM_GET_LSCOPE(std) ((std)->dcmStates->dcm_lscope)
#define DCM_SET_LSCOPE(std,x) ((std)->dcmStates->dcm_lscope=(x))

#define DCM_GET_TF(std) ((std)->dcmStates->dcm_tf)
#define DCM_SET_TF(std,x) ((std)->dcmStates->dcm_tf = (x))

579
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 579 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

#define DCM_GET_SCOPING_TT(std) ((std)->dcmStates->dcm_scopingTT)
#define DCM_SET_SCOPING_TT(std,x) ((std)->dcmStates->dcm_scopingTT=(x))

#define DCM_STATE_FLAGS(std) ((std)->dcmStates->stateFlags)

#define DCM_DEPTH(std) ((std)->dcmStates->dcmDepth)

#define DCM_GET_OLIST(std) ((std)->dcmStates->olist)
#define DCM_SET_OLIST(std,l) (((std)->dcmStates->olist)=(void *)(l))

#define DCM_GET_CL_DATA(std) ((std)->dcmStates->dcm_cl_data)
#define DCM_SET_CL_DATA(std,l) ((std)->dcmStates->dcm_cl_data=(l))
#define DCM_TEST_CL_SETUP(std) (*(void **)((std)->dcmStates->dcm_cl_data))

#define DCM_GET_SPACE(std) ((std)->dcmStates->dcmSpace)
#define DCM_SET_SPACE(std,s) ((std)->dcmStates->dcmSpace=(s))

#define DCM_GET_PLANE(std) ((std)->dcmStates->dcmPlane)
#define DCM_SET_PLANE(std,s) ((std)->dcmStates->dcmPlane=(s))

#define DCM_GET_SPACE_NUM(std) ((std)->dcmStates->dcmSpaceNum)
#define DCM_SET_SPACE_NUM(std,s) ((std)->dcmStates->dcmSpaceNum=(s))

#define DCM_GET_PLANE_NUM(std) ((std)->dcmStates->dcmPlaneNum)
#define DCM_SET_PLANE_NUM(std,s) ((std)->dcmStates->dcmPlaneNum=(s))

#define DCM_GET_PLANE_ID(std) ((std)->dcmStates->dcmPlaneID)
#define DCM_SET_PLANE_ID(std,s) ((std)->dcmStates->dcmPlaneID=(s))

/**!**
** Alternate access to the global dcmRT_System
**/
#define DCM_GET_SYSTEM(std) (DCM_GET_PLANE(std)->getSystem())

#endif /* _H_DCMSTATE. */

580
Copyright © 2010 IEEE all rights reserved.

– 580 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

11 Parasitics

This subclause describes the parasitics used within the DPCS.

11.1 Introduction

The SPEF provides a standard medium to pass parasitic information between EDA tools during any stage in
the design process. Parasitics can be represented on a net by net basis in many different levels of
sophistication from a simple lumped capacitance, to a fully distributed RC tree, to a multiple pole AWE
representation.

11.2 Targeted applications for SPEF

SPEF is suitable for use in many different tool combinations. Because parasitics can be represented in
various levels of sophistication, SPEF files can communicate parasitic information throughout the design
flow process. A design can be distributed between multiple SPEF files. The files can also communicate
information such as slews and the “routing confidence,” which indicate at what stage of the design process
and/or how the parasitics were generated. A diagram of how SPEF interfaces with various example
applications is shown in Figure 24.

11.3 SPEF specification

This subclause details the SPEF grammar and SPEF_file syntax.

11.3.1 Grammar

Keywords, identifiers, characters, and numbers are delimited by syntax characters, white_space, or
newline. Syntax characters are any nonalphanumeric characters required by the syntax. Alphanumeric
characters include uppercase and lowercase alphabetic characters, all numbers, and the underscore (_)
character. white_space (space and tab) and newline may be used to separate lexical tokens, except for
hierarchy separators in pathnames, pin delimiters or bus delimiters, where no white_space or newline is
allowed. All keywords in SPEF start with an asterisk (*) and are composed of all capital letters (for

581
Copyright © 2010 IEEE all rights reserved.

Figure 24—SPEF targeted applications

Interconnect
Estimation

Floorplanning

Place & Route

Layout Parasitic
Extraction

Package/Board
Parasitics

Synthesis/
Optimization

Circuit Simulation

Delay Calculation

Rule Checks (e.g.
maxload)

Power calculation

Crosstalk Analysis

SPEF

(Hard Macros)

IEC 61523-1:2012
IEEE Std 1481-2009 – 581 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

example, *SPEF).

11.3.1.1 Alphanumeric definition

The syntax for alphanumeric characters and numbers in SPEF is given in Syntax 11.1.

alpha ::= upper | lower
upper ::= A – Z
lower :: = a – z
digit ::= 0 – 9
sign ::= pos_sign | neg_sign
pos_sign ::= +
neg_sign ::= -
integer ::= [sign]<digit>{<digit>}
decimal ::= [sign]<digit>{<digit>}.{<digit>}
fraction ::= [sign].<digit>{<digit>}
radix ::= integer | decimal | fraction
exp_char ::= E | e
exp ::= <radix><exp_char><integer>
float ::= decimal | fraction | exp
number ::= integer | float
pos_integer ::= <digit>{<digit>}
pos_decimal ::= <digit>{<digit>}.{<digit>}
pos_fraction ::= .<digit>{<digit>}
pos_radix ::= pos_integer | pos_decimal | pos_fraction
pos_exp ::= <pos_radix><exp_char><integer>
pos_float ::= pos_decimal | pos_fraction | pos_exp
pos_number ::= pos_integer | pos_float

Syntax 11.1: Alphanumeric characters

582
Copyright © 2010 IEEE all rights reserved.

– 582 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

11.3.1.2 Names definition

The basic grammar for names in SPEF is given in Syntax 11.2.

hchar ::= . | / | : | |
hier_delim ::= hchar
special_char ::= ! | # | $ | % | & | ' | (|) | * | + | , | -

| . | / | : | ; | < | = | > | ? | @ | [| \ |] | ^ | ` |
{ | | | } | ~

escaped_char_set ::= special_char | "
escaped_char ::= \<escaped_char_set>
identifier_char ::= escaped_char | alpha | digit | _
identifier ::= <identifier_char>{<identifier_char>}
prefix_bus_delim ::= [| { | (| < | : | .
suffix_bus_delim ::=] | } |) | >
bit_identifier ::= identifier |

<identifier><prefix_bus_delim><pos_integer>[<suffix_bus_delim>
]

partial_path ::= <identifier><heir_delim>
path ::=[<hier_delim>]<bit_identifier> |

[<hier_delim>]<partial_path>{<partial_path>}<bit_identifier>
white_space ::= space | tab
qstring_char ::= special_char | alpha | digit | white_space | _
qstring ::= "{qstring_char}"
name ::= qstring | identifier
physical_name ::= name
partial_physical_ref ::= <hier_delim><physical_name>
physical_ref ::= <physical_name>{<partial_physical_ref>}

Syntax 11.2: SPEF names

11.3.2 Escaping rules

This subclause gives the escaping rules for identifiers in SPEF.

11.3.2.1 Special characters

Any character other than alphanumerics and underscore (_) shall be escaped when used in an identifier in a
SPEF file. These special characters are legal to use without escaping within a qstring but shall be escaped
to use in an identifier or bit_identifier:

! # $ % & ' () * + , -. / : ; < = > ? @ [\] ^ ` { | } ~

The quote (") is not allowed within a qstring, but it can be used within an identifier or bit_identifier when
escaped. Exceptions to the escaping rules are as follows:

— The pin_delim between an instance and pin name, such as : in I\$481:X

— The hier_delim character, such as / in /top/coreblk/cpu1/inreg0/I\$481

— A prefix_bus_delim or suffix_bus_delim being used to denote a bit of a logical bus or an
arrayed instance, such as DATAOUT[12]

583
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 583 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

11.3.2.2 Character escaping mechanism for identifiers in SPEF

Escape a character by preceding it with a backslash (\). An alphanumeric or underscore preceded with a
backslash is legal and merely maps to the unescaped character. For example, \A and A in a SPEF file are
both interpreted by a SPEF reader as A. Some characters shall not be included in an identifier under any
circumstances, such as whitespace and control characters.

11.3.3 File syntax

This subclause lists the syntax to use within a SPEF file.

11.3.3.1 Basic file definition

The syntax for the base SPEF file definition is given in Syntax 11.3.

SPEF_file ::= header_def [name_map] [power_def] [external_def]
[define_def] [variation_def] internal_def

Syntax 11.3: SPEF_file

11.3.3.2 Header definition

The syntax for the header definition is given in Syntax 11.4.

header_def ::= SPEF_version design_name date vendor
program_name_program_version design_flow hierarchy_div_def
pin_delim_def bus_delim_def unit_def

SPEF_version ::= *SPEF qstring
design_name ::= *DESIGN qstring
date ::= *DATE qstring
vendor ::= *VENDOR qstring
program_name ::= *PROGRAM qstring
program_version ::= *VERSION qstring
design_flow ::= *DESIGN_FLOW qstring { qstring }
hierarchy_div_def ::= *DIVIDER heir_delim
pin_delim ::= hchar
pin_delim_def ::= *DELIMITER pin_delim
bus_delim_def ::= *BUS_DELIMITER prefix_bus_delim

[suffix_bus_delim]

Syntax 11.4: header_def

584
Copyright © 2010 IEEE all rights reserved.

– 584 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

The syntax for the unit definition is given in Syntax 11.5.

unit_def ::= time_scale cap_scale res_scale induc_scale
time_scale ::= *T_UNIT pos_number time_unit
time_unit ::= NS | PS
cap_scale ::= *C_UNIT pos_number cap_unit
cap_unit ::= PF | FF
res_scale ::= *R_UNIT pos_number res_unit
res_unit ::= OHM | KOHM
induc_scale ::= *L_UNIT pos_number induc_unit
induct_unit ::= HENRY | MH | UH

Syntax 11.5: unit_def

11.3.3.3 Name map definition

The syntax for the name map definition is given in Syntax 11.6.

name_map ::= *NAME_MAP name_map_entry {name_map_entry}
name_map_entry ::= index mapped_item
index ::= <*><pos_integer>
mapped_item ::= identifier | bit_identifier | path | name |

physical_ref

Syntax 11.6: name_map

11.3.3.4 Power and ground nets definition

The syntax for power nets and ground nets definition is given in Syntax 11.7.

power_def ::= power_net_def [ground_net_def] |
ground_net_def

power_net_def ::= *POWER_NETS net_name {net_name}
net_name ::= net_ref | pnet_ref
net_ref :: index | path
pnet_ref ::= index | physical_ref
ground_net_def ::= *GROUND_NETS net_name {net_name}

Syntax 11.7: power_def

11.3.3.5 External definition

The syntax for the external definition is given in Syntax 11.8.

585
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 585 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

external_def ::= port_def [physical_port_def] |
physical_port_def

port_def ::= *PORTS port_entry {port_entry}
port_entry ::= port_name direction { conn_attr }
port_name ::= [<inst_name><pin_delim>]<port>
inst_name ::= index | path
port ::= index | bit_identifier
direction ::= I | B | O
conn_attr ::= coordinates | cap_load | slews | driving_cell
physical_port_def ::= *PHYSICAL_PORTS pport_entry {pport_entry}
pport_entry ::= pport_name direction { conn_attr }
pport_name ::= [<pysical_inst><pin_delim>]<pport>
physical_inst ::= index | physical_ref
pport ::= index | name

Syntax 11.8: external_def

The syntax for connection attributes definition is given in Syntax 11.9.

conn_attr ::= coordinates | cap_load | slews | driving_cell
coordinates ::= *C number number
cap_load ::= *L par_value
par_value ::= float | <float><:><float><:><float>
slews ::= *S par_value par_value [threshold threshold]
threshold ::= pos_fraction |

<pos_fraction><:><pos_fraction><:><pos_fraction>
driving_cell ::= *D cell_type
cell_type ::= index | name

Syntax 11.9: conn_attr

11.3.3.6 Hierarchical SPEF (entities) definition

The syntax for the entities definition supporting hierarchical SPEF is given in Syntax 11.10.

define_def ::= define_entry { define_entry }
define_entry ::= *DEFINE inst_name {inst_name} entity

| *PDEFINE physical_inst entity
entity ::= qstring

Syntax 11.10: define_def

586
Copyright © 2010 IEEE all rights reserved.

– 586 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

11.3.3.7 Process and temperature variation definition

The syntax for the process and temperature variation definition is given in Syntax 11.11.

variation_def ::= *VARIATION_PARAMETERS {process_parm_def}
[temperature_coeff_def]

process_parm_def ::= param_id param_name param_type_for_cap
param_type_for_res param_type_for_induc var_coeff
normalization_factor

temperature_coeff_def ::= crt_entry1 crt_entry2
nominal_temperature

param_id ::= integer
param_name ::= qstring
param_type_for_cap ::= N | D | X
param_type_for_res ::= N | D | X
param_type_for_induc ::= N | D | X
var_coeff ::= float
normalization_factor ::= float
crt_entry1 ::= param_id CRT1
crt_entry2 ::= param_id CRT2
nominal_temperature ::= float

Syntax 11.11: variation_def

11.3.3.8 Internal definition

The syntax for the internal definition is given in Syntax 11.12.

internal_def ::= nets {nets}
nets ::= d_net | r_net | d_pnet | r_pnet

Syntax 11.12: internal_def

11.3.3.8.1 Detailed net definition

The syntax for the detailed net definition is given in Syntax 11.13.

d_net ::= *D_NET net_ref total_cap [routing_conf] [conn_sec]
[cap_sec] [res_sec] [induc_sec] *END

total_cap ::= par_value
routing_conf ::= *V conf
conf_ ::= pos_integer

Syntax 11.13: d_net

587
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 587 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

The syntax for the detailed net connectivity section definition is given in Syntax 11.14.

conn_sec ::= *CONN conn_def {conn_def} {internal_node_coord}
conn_def ::= *P external_connection direction {conn_attr}

| *I internal_connection direction {conn_attr}
external_connection ::= port_name | pport_name
internal_connection ::= pin_name | pnode_ref
pin_name ::= <inst_name><pin_delim><pin>
pin ::= index | bit_identifier
pnode_ref ::= <physical_inst><pin_delim><pnode>
pnode ::= index | name
internal_node_coord ::= *N internal_node_name coordinates
internal_node_name ::= <net_ref><pin_delim><pos_integer>

Syntax 11.14: conn_sec

The syntax for the capacitance section definition is given in Syntax 11.15.

cap_sec ::= *CAP cap_elem {cap_elem}
cap_elem ::= cap_id node_name par_value [sensitivity] | cap_id

node_name node_name2 par_value [sensitivity]
cap_id ::= pos_integer
node_name ::= external_connection | internal_connection |

internal_node_name | pnode_ref
sensitivity ::= *SC <param_id><:><sensitivity_coeff>

{<param_id><:><sensitivity_coeff>}
param_id ::= integer
sensitivity_coeff ::= float
node_name2 ::= node_name | <pnet_ref><pin_delim><pos_integer> |

<net_ref2><pin_delim><pos_integer>
net_ref2 ::= net_ref

Syntax 11.15: cap_sec

The syntax for the resistance section definition is given in Syntax 11.16.

res_sec ::= *RES res_elem { res_elem }
res_elem ::= res_id node_name node_name pas_value [sensitivity]
res_id ::= pos_integer

Syntax 11.16: res_sec

The syntax for the inductance section definition is given in Syntax 11.17.

induc_sec ::= *INDUC induc_elem {induc_elem}
induc_elem ::= induc_id node_name node_name par_value

[sensitivity]
induc_id ::= pos_integer

Syntax 11.17: induc_sec

588
Copyright © 2010 IEEE all rights reserved.

– 588 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

11.3.3.8.2 Reduced net definition

The syntax for the reduced net is given in Syntax 11.18.

r_net ::= *R_NET net_ref total_cap [routing_conf] {driver_reduc}
*END

driver_reduc ::= driver_pin driver_cell pi_model load_desc
driver_pin ::= *DRIVER pin_name
driver_cell ::= *CELL cell_type
pi_model ::= *C2_R1_C1 par_value par_value par_value

Syntax 11.18: r_net

The syntax for the reduced net load description definition is given in Syntax 11.19.

load_desc ::= *LOADS rc_desc {rc_desc}
rc_desc ::= *RC pin_name par_value [pole_residue_desc]
pole_residue_desc ::= pole_desc residue_desc
pole_desc ::= *Q pos_integer pole {pole}
pole ::= complex_par_value
complex_par_value ::= cnumber | number |

<cnumber><:><cnumber>:><cnumber> |
<number><:><number><:><number>

cnumber ::= (real_component imaginary_component)
real_component ::= number
imaginary_component ::= number
residue_desc ::= *K pos_integer residue {residue}
residue ::= complex_par_value

Syntax 11.19: load_desc

11.3.3.8.3 Detailed physical-only net definition

The syntax for the detailed physical-only net definition is given in Syntax 11.20.

d_pnet ::= *D_PNET pnet_ref total_cap [routing_conf] [pconn_sec]
[pcap_sec] [pres_sec] [pinduc_sec] *END

Syntax 11.20: d_pnet

The syntax for the detailed physical-only net connectivity section definition is given in Syntax 11.21.

pconn_sec ::= *CONN pconn_def {pconn_def}
{internal_pnode_coord}

pconn_def ::= *P pexternal_connection direction {conn_attr}
| *I internal_connection direction {conn_attr}

pexternal_connection ::= pport_name
internal_pnode_coord ::= *N internal_pnode_name coordinates
internal_pnode_name ::= <pnet_ref><pin_delim><pos_integer>

Syntax 11.21: pconn_sec

589
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 589 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

The syntax for the detailed physical-only net capacitance section definition is given in Syntax 11.22.

pcap_sec ::= *CAP pcap_elem {pcap_elem}
pcap_elem ::= cap_id pnode_name par_value [sensitivity] | cap_id

pnode_name pnode_name2 par_value [sensitivity]
pnode_name ::= pexternal_connection | internal_connection |

internal_pnode_name | pnode_ref
pnode_name2 ::= pnode_name | <net_ref><pin_delim><pos_integer> |

pnet_ref2><pin_delim><pos_integer>
pnet_ref2 ::= pnet_ref

Syntax 11.22: pcap_sec

The syntax for the detailed physical-only net resistance section definition is given in Syntax 11.23.

pres_sec ::= *RES pres_elem {pres_elem}
pres_elem ::= res_id pnode_name pnode_name par_value

[sensitivity]

Syntax 11.23: pres_sec

The syntax for the detailed physical-only net inductance section definition is given in Syntax 11.24.

pinduc_sec ::= *INDUC pinduc_elem {pinduc_elem}
pinduc_elem ::= induc_id pnode_name pnode_name par_value

[sensitivity]

Syntax 11.24: pinduc_sec

11.3.3.8.4 Reduced physical-only net definition

The syntax for the reduced physical-only net definition is given in Syntax 11.25.

r_pnet ::= *R_NET pnet_ref total_cap [routing_conf]
{pdriver_reduc} *END

pdriver_reduc ::= pdriver driver_cell pi_model load_desc
pdriver ::= *DRIVER internal_connection

Syntax 11.25: r_pnet

11.3.4 Comments

// begins a single-line comment anywhere on the line, which is terminated by a newline. /* begins a
multiline comment, terminated by */. No nesting of comments is allowed; // appearing between /* and */ is
treated as characters within the multiline comment.

An application may ignore comments and is not required to pass them forward.

11.3.5 File semantics

This subclause describes the semantic intent underlying each construct.

a) SPEF_file ::= header_def [name_map] [power_def] [external_def] [define_def]
[variation_def] internal_def

590
Copyright © 2010 IEEE all rights reserved.

– 590 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Each SPEF file consists of these items and sections.

b) header_def ::= SPEF_version design_name date vendor program_name
program_version design_flow hierarchy_div_def pin_delim_def bus_delim_def unit_def

This section contains basic global information about the design and/or how this SPEF file was created.

c) SPEF_version ::= *SPEF qstring

qstring represents the SPEF version. The version described herein is “IEEE 1481-2009”.

d) design_name ::= *DESIGN qstring

qstring represents the name of the design for which this SPEF file was generated.

e) date ::= *DATE qstring

qstring represents the date and time when this SPEF file was generated.

f) vendor ::= *VENDOR qstring

qstring represents the name of the vendor of the program used to generate this SPEF file.

g) program_name ::= *PROGRAM qstring

qstring represents the name of the program used to generate this SPEF file.

h) program_version ::= *VERSION qstring

qstring represents the version number of the program used to generate this SPEF file.

i) design_flow ::= *DESIGN_FLOW qstring {qstring}

This construct gives information about the content of this SPEF file and/or at which stage in the design
flow this SPEF file was generated. It may save processing time to not have to determine whether the
SPEF file contains certain information. The construct can identify where certain information being
absent from the SPEF file carries meaning.
The application reading the SPEF file is thus able to interpret correctly the SPEF file and determine
whether its content is appropriate for the design flow being used or for this stage in the design flow.
New qstring values may be defined for specific design flows. The predefined values shown in Table
505 provide standard interpretation of common design flow information.

591
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 591 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 505—Design flow values

Value Definition

EXTERNAL_LOADS External loads, if any, are fully specified in the SPEF file. The
absence of EXTERNAL_LOADS means they either are not
specified or are not fully specified in this SPEF file; if the
application requires this information, the application shall have
some other means of getting external load information, or if
none is available, it shall issue an error message and exit.

EXTERNAL_SLEWS External slews, if any, are fully specified in the SPEF file. The
absence of EXTERNAL_SLEWS means they either are not
specified or are not fully specified in this SPEF file; if the
application requires this information, the application shall have
some other means of getting external slew information, or if
none is available, it shall issue an error message and exit.

FULL_CONNECTIVITY All connectivity corresponding to the logical netlist for the
design is included in the SPEF file. The absence of
FULL_CONNECTIVITY means if the application needs
complete connectivity information, the application shall obtain
it from another source, or if none is available, it shall issue an
error message and exit. the presence or absence of physical-only
nets (nets not corresponding to the logical netlist) or power
and/or ground nets does not affect FULL_CONNECTIVITY; the
value pertains to nets related to the design function.

MISSING_NETS Some logical nets in the design are or may be missing from the
SPEF file. The application shall determine and fill in the
missing information, such as merging missing logical net
parasitics from another source or reading the netlist and
estimating the missing parasitics. The absence of
MISSING_NETS means the SPEF file contains entries for all
logical nets in the design. If an application requires all logical
connectivity information to be present in the SPEF file, it shall
issue an error message and exit if MISSING_NETS is present.
It shall be a semantic error for both FULL_CONNECTIVITY
and MISSING_NETS to be listed in the same SPEF file. The
presence or absence of physical-only nets and power and/or
ground nets does not affect MISSING_NETS; the value pertains
to logical nets related to the design function.

NETLIST_TYPE_VERILOG The SPEF file uses Verilog type naming conventions. It shall be
a semantic error for more than one netlist type to be listed for
the same SPEF file.

NETLIST_TYPE_VHDL87 The SPEF file uses VHDL87 naming conventions. It shall be a
semantic error for more than one netlist type to be listed for the
same SPEF file.

NETLIST_TYPE_VHDL93 The SPEF file uses VHDL93 naming conventions. It shall be a
semantic error for more than one netlist type to be listed for the
same SPEF file.

592
Copyright © 2010 IEEE all rights reserved.

– 592 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Value Definition

NETLIST_TYPE_EDIF The SPEF file uses Edif type naming conventions. It shall be a
semantic error for more than one netlist type to be listed for the
same SPEF file.

ROUTING_CONFIDENCE conf This specifies a default routing confidence value for all the nets
contained in the SPEF file. ROUTING_CONFIDENCE is further
described under d_net semantics.

ROUTING_CONFIDENCE_ENTRY
conf qstring

This DESIGN_FLOW construct defines routing confidence
values to supplement the predefined routing confidence values.
The conf value shall be consistent with predefined values
described in the d_net semantics.

NAME_SCOPE scope This DESIGN_FLOW construct specifies whether the path(s)
contained in this SPEF file are LOCAL (relative to this SPEF
file) or FLAT (relative to the top of the complete design). See .
The default scope is LOCAL. This construct has no meaning in
a top level SPEF file. This construct is required if this SPEF file
is a physical instance not corresponding to a logical instance or
it contains internal_def entries for physical-only nets, because
the scope in this case shall be FLAT.

SLEW_THRESHOLDS threshold
threshold

This construct specifies default input slew thresholds for the
design, where the first threshold is the low-input threshold as a
percentage of the voltage level for the input pin, and the second
threshold is the high-input threshold as a percentage of the
voltage level for the input pin. threshold is a single or triplet
pos_fraction.

PIN_CAP cap_calc_method This construct specifies what type of pin capacitances are
included in the total_cap entries for all nets in the SPEF file. A
cap_calc_method of NONE designates no pin capacitances are
included in the total_cap entries, INPUT_OUTPUT (the default
value) designates both input and output pin capacitances are
included, and INPUT_ONLY designates only input pin
capacitances (no output pin capacitances) are included.

j) hierarchy_div_def ::= *DIVIDER hier_delim

hier_delim is the hierarchy delimiter.

k) pin_delim_def ::= *DELIMITER pin_delim

pin_delim is the delimiter between an instance name and pin name. To allow for naming
conventions having the pin_delim being the same character as the hier_delim, the application
reading the SPEF file needs to distinguish between the two based on context.

l) bus_delim_def ::= *BUS_DELIMITER prefix_bus_delim [suffix_bus_delim]

prefix_bus_delim denotes the opening of designation of a bus bit or arrayed instance number;

593
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 593 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

suffix_bus_delim denotes the closing of the designation of the bus bit or arrayed instance, such as
[and] in DATA[2]. It shall be a semantic error if a bus delimiter character is the same as the
hier_delim or pin_delim. It shall be a semantic error if the suffix_bus_delim is not the
corresponding closing character for a prefix_bus_delim. There normally is not a
suffix_bus_delim if the prefix_bus_delim is : or ..

Examples

A SPEF file produced from a Verilog netlist would normally specify *BUS_DELIMITER [] so
dummy[21] would be a legal SPEF bit_identifier with no escaping. If *BUS_DELIMITER : is
used instead, then bit identifier dummy:21 is legal.

m) unit_def ::= time_scale cap_scale res_scale induc_scale

This section defines the units for this SPEF file.

n) time_scale ::= *T_UNIT pos_number time_unit

This specifies the time unit used throughout the SPEF file. pos_number is a floating point
number and time_unit is NS for nanoseconds or PS for picoseconds.

o) cap_scale ::= *C_UNIT pos_number cap_unit

This specifies the capacitive unit used throughout the SPEF file. pos_number is a floating point
number and cap_unit is FF for femtofarad or PF for picofarad.

p) res_scale ::= *R_UNIT pos_number res_unit

This specifies the resistive unit used throughout the SPEF file. pos_number is a floating point
number and res_unit is OHM for ohm or KOHM for kilohm.

q) induc_scale ::= *L_UNIT pos_number induc_unit

This specifies the inductance unit used throughout the SPEF file. pos_number is a floating point
number and induc_unit is HENRY for henry, MH for millihenry, or UH for microhenry.

r) name_map ::= *NAME_MAP name_map_entry {name_map_entry}

A name map is an optional capability of SPEF to reduce file space by mapping a name that may be
used multiple times in the SPEF file. The first part of a name map entry is the index (hash id) used
throughout the SPEF file to represent the name and the second part is the name being mapped.

s) power_def ::= power_net_def [ground_net_def] | ground_net_def

This optional section identifies logical and physical net name(s) that are power or ground nets.
These logical and physical nets may or may not have internal_def entries and may or may not be
captured in the design’s netlist. These net names are commonly used in logical netlists to tie cell
inputs high (power) or low (ground).

t) power_net_def ::= *POWER_NETS net_name {net_name}

This specifies the power net name(s) used in the SPEF file. net_name can be a reference to a
logical net or physical-only net, which represents the logical hierarchy name of, or reference to, a
logical net. net_name can also be a physical-only hierarchy name of, or reference to, a physical-
only net.

594
Copyright © 2010 IEEE all rights reserved.

– 594 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Example

*POWER_NETS /top/core_0/vdd2 VDD *34

u) ground_net_def ::= *GROUND_NETS net_name {net_name}

This specifies the ground net name(s) used in the SPEF file. net_name can be a reference to a
logical net or to a physical-only net.

v) external_def ::= port_def [physical_port_def] | physical_port_def

This section defines the logical and physical-only ports for a group of parasitics. Connections to
the parent SPEF file or to the outside world from a top-level SPEF file are made through these
ports. This section optionally also specifies the drive strengths, slews, and capacitive loads on the
ports. If a port can be referenced by both a logical and physical name, the logical name is
recommended.

w) port_def ::= *PORTS port_entry {port_entry}

This defines the logical ports for the SPEF file. Information shown in the *PORTS section shall
be consistent with that in the *CONN section of applicable d_nets; conn_attr shown in the two
sections are cumulative. If an application determines required information is missing from both
sections, the application shall issue an error message and exit. All nets connected to ports shall be
in detailed form (d_net) to provide for multiple SPEF files; r_nets cannot connect to ports.
Each port_entry is defined as
port_entry ::= port_name direction {conn_attr}
The port_name is defined as
port_name ::= [<inst_name><pin_delim>]<port>
inst_name is a path or an index to a path denoting the instance of the logical entity owning the
port, pin_delim is the hchar defined by *DELIMITER, and port is a bit_identifier or an index to
a bit_identifier denoting the name of the scalar or bus bit port of the logical entity. In a top-level
SPEF file, there is usually no inst_name and pin_delim.
The direction shall be I, B, or O (input, bidirectional, or output, respectively).
All conn_attr(s) are optional and are shown in Table 506

595
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 595 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Table 506—conn_attr

Type Definition

*C number number Coordinates for the geometric location of the logical or
physical-only port.

*L par_value The capacitive load is in terms of the C_UNIT.

*S par_value par_value [threshold
threshold]

This construct defines the shape of the waveform on the
logical or physical-only port in question. The first par_value
is the rising slew in terms of the T_UNIT, whereas the second
par_value is the falling slew. The threshold specification is
optional and overrides for this port the default specified by
the optional SLEW_THRESHOLDS value for DESIGN_FLOW.
The first threshold is the percentage expressed as a
pos_fraction of the input voltage defining the low input
threshold, and the second threshold is the percentage
defining the high input threshold.,as in capacitive loads or any
other numeric value in this SPEF file.

*D cell_type The cell_type is a name or an index to a name defining the
type of the driving cell. The case of the driving cell type not
being known is designated by the reserved cell type
UNKNOWN_DRIVER, which is also the default value when *D
is absent. The application shall be responsible for determining
what action to take when it sees UNKNOWN_DRIVER,
whether or not the library has a cell by this reserved name. An
approximation of the output characteristics of an unknown
driving cell type may be inferred from *S information for the
port.

x) physical_port_def ::= *PHYSICAL_PORTS pport_entry {pport_entry}

This defines the physical-only ports for the SPEF file. Information shown in the
*PHYSICAL_PORTS section shall be consistent with that in the *CONN section of applicable
d_pnet(s); conn_attr(s) shown in the two sections are cumulative. If an application determines
required information is missing from both sections, the application shall issue an error message
and exit. All physical-only nets connected to ports shall be in detailed form (d_pnet) in order to
provide for multiple SPEF files; r_pnet(s) cannot connect to ports.

Each pport_entry is defined as follows:

pport_entry ::= pport_name direction {conn_attr}

The pport_name is defined as follows:

pport_name ::= [<physical_inst><pin_delim>]<pport>

physical_inst is a physical_ref or an index to a physical_ref denoting the physical instance of
the entity owning the pport, pin_delim is the hchar defined by *DELIMITER and pport is a
name or an index to a name denoting the port of the physical entity. In a top level SPEF file,
there is usually no physical_inst and pin_delim as part of the pport_name.

596
Copyright © 2010 IEEE all rights reserved.

– 596 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Example
*PHYSICAL_PORTS "My_Design"/"main power"

The direction shall be I, B, or O (input, bidirectional, or output, respectively).

All conn_attr(s) are optional. They are the same as shown in Table 507

y) define_def ::= define_entry {define_entry}

This optional section specifies entity instances within the current SPEF file that are actually
parasitic SPEF file partitions described in one or more other SPEF files. The application thus
knows to read and merge the multiple SPEF files in order to find the parasitics for the overall
design. Example applications include package parasitics added around a chip design, prerouted
blocks being included in a design, dividing a large design into regions for parasitic extraction, or
partitioning the design into sections which are at different stages of the design process.

Nesting is allowed. Each parent SPEF file shall be read before its child SPEF files. The application
shall know separately the searchpaths and SPEF file names for the multiple SPEF files.

There shall be a separate define_entry for each child SPEF file referenced in the current parent
SPEF file of the form:

define_entry ::= *DEFINE inst_name {inst_name} entity
| *PDEFINE physical_inst entity

1) An entity is a qstring whose value shall correspond to the qstring for *DESIGN in the
child SPEF file. Logical nets within a physical partition may connect to physical-only
ports, because those physical-only ports may not exist in the logical netlist. pnet(s) can
also be connected to physical-only ports.

i) If the entity follows logical hierarchy, the *DEFINE keyword shall be used and
each corresponding inst_name is a path or an index to a path. If the entity
does not contain any physical objects, the entity may be instantiated more than
once (have more than one inst_name), such as a pre-routed block instantiated
twice in a design floorplan. An entity may contain physical-only objects (e.g.,
pnet(s) and pport(s)). If the child SPEF file for an entity contains any physical-
only objects (e.g., pnet(s) or pport(s)), then all paths and physical_ref(s) in the
child SPEF file shall be relative to the top of the complete design (the
NAME_SCOPE for the child SPEF file shall be FLAT) and only one inst_name
is allowed. It shall be a semantic error if physical-only ports for an entity are
connected to logical nets; pport(s) for an entity can only be connected to
pnet(s). If the child SPEF file represents a logical partition, then logical net
connections from the parent to the child partition in the parent SPEF file shall be
instance pins, and it shall be a semantic violation if they are pnode(s). Also,
logical net connections to the parent in the child SPEF file shall be logical ports,
and it shall be a semantic violation if they are physical-only ports. This allows,
but does not require, correspondence between the logical and physical hierarchy
for the boundary between the two files.

ii) If the child entity is a physical partition not following logical hierarchy, then the
*PDEFINE keyword shall be used, the corresponding physical_inst is a
physical_ref or an index to a physical_ref, and the NAME_SCOPE of the child
SPEF file shall be FLAT. Logical net connections from the parent to the physical
child partition in the parent SPEF file may be either instance pin(s) or pnode(s).

597
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 597 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Likewise, logical net connections from the child to the parent in the child SPEF
file may be either logical or physical ports. This allows, but does not require,
correspondence between the logical and physical hierarchy for any portion of
the boundary between the two files.

2) A pnet within a SPEF file may only connect to physical-only ports; it shall be a semantic
error if a pnet is connected to a logical port. However, a pnet may connect to both pin(s)
and pnode(s) for logical and physical objects, including entity(s) in child SPEF file(s).

It shall be a semantic error if a logical net in one SPEF file is connected to a pnet in the
other (i.e., net(s) being merged across the boundary between SPEF files shall be of a
consistent type, either logical or physical). Because reduction cannot be performed until
all parasitics for a net or pnet are known, any logical net crossing the boundary between
parent and child SPEF files shall be in d_net form in both files, and any pnet crossing
the boundary between parent and child SPEF files shall be in d_pnet form in both files.
Any net or pnet crossing the boundary between parent and child SPEF files that is in
r_net or r_pnet form shall constitute a semantic error; r_net(s) and r_pnet(s) are not
allowed to connect to logical or physical port(s), or to pin(s) or pnode(s) of entity(s) in
child SPEF file(s).

When merging SPEF files, it shall be a semantic error if the child SPEF file logical or
physical port and parent SPEF file instance pin or pnode directions do not correspond
(e.g., a connection between the parent and child cannot be called an output in both files or
an input in both files, but a bidirectional in one SPEF file may be connected to an input,
output, or bidirectional in the other SPEF file).

3) total_cap shall be recalculated by the SPEF reader for net(s) and pnet(s) crossing the
boundary (in accordance with the PIN_CAP calculation method designated in the top-
level SPEF file), and conn_attr values for net(s) and pnet(s) crossing the boundary
removed or adjusted as appropriate to reflect updated information from merging the files.
Mapping for net(s) being merged, and for net(s), pin(s), and instances within the child
SPEF file(s), shall be updated to reflect the overall design logical hierarchy. As the child
SPEF file is read, the unit_def section for par_value entries and naming conventions
(including delimiters) shall be adjusted to those of the parent. Routing confidence entries
shall be reconciled; nets crossing a boundary normally are demoted to the lower routing
confidence value between the parent and child SPEF files. *DESIGN_FLOW values
shall be adjusted in the merged SPEF file as appropriate (e.g., if either the parent or child
has MISSING_NETS, then the merged SPEF file also has MISSING_NETS).

It is the responsibility of the application to determine and adjust parasitics for over the
cell and over the block routing as applicable when merging multiple SPEF files.

z) variation_def ::= *VARIATION_PARAMETERS var_param_entry {var_param_entry}

The variation_def section defines the variation parameters for interconnect modeling. It includes
process variation parameters and temperature variation coefficients. Process variation parameters
include, but are not limited to, thickness, width, and resistivity of interconnect layers; thickness
and permittivity of dielectric layers; and resistance of via layers. Process variation parameters
affect the capacitance, inductance, and resistance of an interconnect. Temperature variation
coefficients affect the resistance of an interconnect. Each process variation parameter is specified
with three parameter types for each of capacitance, resistance, and inductance computations,
respectively. Each parameter type is with value N, D, or X to indicate this parameter’s use in
capacitance, resistance, and inductance computations, respectively. An N type parameter is used
for a numerator term calculation; a D type parameter is used for a denominator term calculation,
and an X type parameter is not used during calculation. Each process variation parameter is

598
Copyright © 2010 IEEE all rights reserved.

– 598 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

defined with a var_coeff (variation coefficient) and a normalization_factor. The normalization
factor is used to normalize both variation coefficient and related sensitivity coefficients. A tool that
reads in the SPEF file can compute capacitance, resistance, and inductance at a variation point as a
product of a sensitivity coefficient var_coeff and a variation multiplier. Note that the product of
sensitivity coefficient and var_coeff is independent of the normalization_factor. The
temperature variation effect to resistance is defined by a quadratic formula. Two predefined
parameters CRT1 and CRT2 represent the first-order and second-order coefficients, respectively.
These coefficients are equal to zero by default. The nominal_temperature is a float value that
specifies the nominal temperature for the extraction. Nominal temperature is used to calculate the
effect of temperature on interconnect resistance.

The equations for the capacitances, inductances, and resistances computations are given in
Table 507.

Table 507—Variation effect equations

599
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 599 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

aa) internal_def ::= nets {nets}

The internal_def section is the main part of the SPEF file and contains the parasitic representation
for the nets in the SPEF file. The two types corresponding to the logical netlist format are d_net
(detailed nets) and r_net (reduced nets). The two types of physical nets having no correspondence
to the logical design netlist, such as power nets in some netlist formats, are d_pnet (detailed
physical-only nets) and r_pnet (reduced physical-only nets). All four types of nets can be in an
SPEF file in any order. Applications that only are concerned with the logical function of a design
and do not utilize physical-only net information may ignore physical-only nets. It shall be a
semantic error if any given net is defined more than once in the same SPEF file or group of SPEF
files associated by define_def. If a net can be referenced both logically and physically, it is
recommended to use the logical name.

ab) d_net ::= *D_NET net_ref total_cap [routing_conf] [conn_sec] [cap_sec] [res_sec]
[induc_sec] *END

A d_net contains distributed parasitic information for a logical net. The parasitic network may be
derived from an estimation, global route, extraction, or some other source, or it may be a partial
reduction (using AWE or some other means) of a more detailed parasitic network. If the parasitic
values are small enough to yield an insignificant RC delay, the d_net can be simplified to a
lumped capacitance form.

1) The net_ref can either be a path or an index to a path. The total_cap is a par_value
and is simply the total of all capacitances on the net, not an equivalent capacitance, and it
also includes cross-coupling capacitances and external loads (from the *CONN and/or
*PORTS sections). Whether it includes pin capacitances is determined by the
*DESIGN_FLOW value for PIN_CAP. Cross-coupling capacitances are assumed to be
to ground for this calculation. The total_cap is a simple lumped capacitance if there is no
cap_sec.

2) The routing_conf allows a tool to record a confidence factor specifying the accuracy of
the parasitics for the net. This routing_conf field allows different nets in a SPEF file to
have different levels of accuracy, such as when some nets in a design have been extracted
while others were estimated. The default parasitic confidence value for the SPEF file can
be set in the *DESIGN_FLOW statement by use of the ROUTING_CONFIDENCE
construct.

The routing_conf is optional for both *R_NET and *D_NET and follows total_cap.

The predefined values are as follows:

10 Statistical wire load model

20 Physical wire load model

30 Physical partitions with locations, no cell placement

40 Estimated cell placement with steiner tree based route

50 Estimated cell placement with global route

60 Final cell placement with Steiner route

70 Final cell placement with global route

80 Final cell placement, final route, 2d extraction

600
Copyright © 2010 IEEE all rights reserved.

– 600 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

90 Final cell placement, final route, 2.5d extraction

100 Final cell placement, final route, 3d extraction

If a design flow requires one or more values for conf other than provided in the
predefined set, special values can be defined it in the *DESIGN_FLOW construct using
the ROUTING_CONFIDENCE_ENTRY value. Room is provided between predefined
conf values so that a new ROUTING_CONFIDENCE_ENTRY conf value can be

consistent with predefined values (e.g., a new conf value of 25 can designate an estimate whose accuracy
is better than physical wire load models but not as good as physical partitions with locations, less cell
placement).

3) conn_sec is defined as follows:

conn_sec ::= *CONN conn_def {conn_def} {internal_node_coord}
conn_def ::= *P external_connection direction {conn_attr}
| *I internal_connection direction {conn_attr}
external_connection ::= port_name | pport_name
internal_connection ::= pin_name | pnode_ref
internal_node_coord ::= *N internal_node_name coordinates

This section defines the connections on a net. A connection begins with a *P if it is
external (a port or pport), and with a *I if it is internal (a pin of a logical instance or a
pnode of a physical-only object). The d_net can be connected to a pport only if the
current SPEF file describes a child physical partition; otherwise, it can only connect to
logical ports. Similarly, the d_net can be connected to a pnode only if the SPEF file
describes a parent with one or more physical partition child SPEF files; otherwise, it can
only connect to logical pin(s). If the optional *CONN section is missing, an application
that requires all connectivity information to be present in the SPEF file shall issue an
error message and exit.

i) The port_name is defined as follows:

[<inst_name><pin_delim>]<port>

where inst_name is a path or an index to a path denoting the instance of the
logical entity owning the port, pin_delim is the hchar defined by
*DELIMITER, and port is a bit_identifier or an index to a bit_identifier
denoting the name of the scalar or bus bit port of the logical entity. In a top-level
SPEF file, there is usually no inst_name and pin_delim.

ii) The pport_name is defined as follows:

pport_name ::= [<physical_inst><pin_delim>]<pport>

where physical_inst is a physical_ref or an index to a physical_ref, relative
to the top of the design, denoting the physical-only instance of the current SPEF
physical partition SPEF file owning the pport, pin_delim is the hchar defined
by *DELIMITER, and pport is a name or an index to a name for the port. It
shall be a semantic error for a d_net in a top level SPEF file or in a logical
partition child SPEF file to be connected to a pport.

iii) The pin_name is defined as follows:

601
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 601 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

<inst_name><pin_delim><pin>

where inst_name is a path or an index to a path denoting the logical instance
of a cell type or entity, pin_delim is the hchar defined by *DELIMITER, and
pin is a bit_identifier or an index to a bit_identifier denoting the name of the
scalar or bus pin of the cell type or entity.

iv) The pnode_ref is defined as follows:

<physical_inst><pin_delim><pnode>

where physical_inst is a physical_ref or an index to a physical_ref, relative to
the top of the design, denoting the physical-only instance of the child physical
partition SPEF file owning the pnode, and pnode is a name or an index to a
name denoting the physical-only node of the child physical partition SPEF file.
It shall be a semantic error for a d_net to be connected to a pnode of a logical
partition child SPEF file.

— The direction shall be I, B, or O (input, bidirectional, or output, respectively).

— The conn_attr definitions are the same as those for a port.

— The optional internal_node_coord enables coordinates to be specified for
internal nodes, just as they can be for other items listed in the node_name
(described below in part D, cap_sec).

internal_node_coord ::= *N internal_node_name coordinates

The internal_node_name is defined as

internal_node_name ::= <net_ref><pin_delim><pos_integer>

Information shown in the *CONN section shall be consistent with that in the
*PORTS section; conn_attr(s) shown in the two sections are cumulative. If an
application determines required information is missing from both sections, the
application shall issue an error message and exit.

4) The cap_sec is defined as follows:

cap_sec ::= *CAP cap_elm {cap_elem}
cap_elem ::= cap_id node_name par_value [sensitivity]
| cap_id node_name node_name2 par_value [sensitivity]

In the first cap_elem definition, the capacitance is assumed to be between node_name
and ground. The second definition is typically used for cross-coupling capacitance. A
cross-coupling cap_elem shall appear in the *CAP sections for both nets to which it is
connected, whether they are d_net(s), d_pnet(s), or a mixture, and the value shall be the
same in both locations.

i) The cap_id is a pos_integer used to identify the capacitor uniquely. Because
the cap_id is unique within the scope of the current net, the same cap_id can be
repeated in another net without collision.

ii) The node_name can be one of the following:

602
Copyright © 2010 IEEE all rights reserved.

– 602 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

node_name ::= external_connection | internal_connection |
internal_node_name | pnode_ref

The first two definitions for node_name specify connections to external ports
and objects internal to the SPEF file, respectively, with the same restrictions for
physical ports and pnodes as described earlier for the *CONN section. The
third definition is used to specify internal nodes or junction points on the current
logical net. The fourth definition is used to specify physical pins on a physical
partition that have no logical correspondence or correspondence to physical
partition child SPEF files.

iii) node_name2 can be one of the following:

node_name2 ::= node_name
| <pnet_ref><pin_delim><pos_integer>
| <net_ref2><pin_delim><pos_integer>
net_ref2 ::= net_ref

The first definition is the same as above in part b, node_name. The second
definition describes an internal node or junction point on a pnet connected to
the other end of a coupling capacitor. The third definition is used to specify
internal nodes or junction points on a logical net other than the current one
connected to the other end of a coupling capacitor.

iv) The par_value is specified in units of capacitance defined in the C_UNIT
definition.

v) The optional sensitivity is defined as follows:

sensitivity ::= *SC <parameter_id><:><sensitivity_coeff>
{<param_id>:<sensitivity_coeff>}

The param_id is the index of a variation parameter that is defined in the
variation_def section. The sensitivity_coeff specifies the value of the
associated variation parameter. The details of the computation equations can be
found in Table 504.

5) The res_sec is defined as follows:

res_sec ::= *RES res_elem {res_elem}
res_elem ::= res_id node_name node_name par_value [sensitivity]

The res_id is a pos_integer used to identify the resistor uniquely. Because it is unique
within the scope of the current net, the same res_id can be repeated in another net
without collision.

The node_name has the same definition as shown above in part D, cap_sec. The
par_value is specified in units of resistance defined in the R_UNIT definition.

The sensitivity has the same definition as shown above in part D, cap_sec.

6) The induc_sec is defined as follows:

induc_sec ::= *INDUC induc_elem {induc_elem}

603
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 603 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

induc_elem ::= induc_id node_name node_name par_value [sensitivity]

The induc_id is a pos_integer used to identify the inductor uniquely. Because it is
unique within the scope of the current net, the same induc_id can be repeated in another
net without collision. The node_name has the same definition as in part D, cap_sec.
The par_value is specified in units of inductance defined in the L_UNIT definition. The
sensitivity has the same definition as shown above in part D, cap_sec.

ac) r_net ::= *R_NET net_ref total_cap [routing_conf] {driver_reduc} *END

An r_net is a net that has been reduced from a distributed model to an electrical equivalent
through AWE or some other similar method. Because all parasitics for a net shall be known before
reduction, a portion of a net that crosses the boundary between a parent and child SPEF file cannot
be in r_net form, and an r_net cannot connect to a logical or physical-only port or to a pnode or
pin in a child SPEF file. If the parasitic values are small enough to yield an insignificant RC delay,
the r_net can be simplified to a lumped capacitance form.

There shall be one driver_reduc element for each driver that a net has. If a net has four different
drivers, then there shall be four different driver_reduc sections in the r_net definition.

1) The net_ref can either be a path or an index to a path. The total_cap is a par_value
and is simply the total of all capacitances on the net, not an equivalent capacitance, and it
also includes cross-coupling capacitances. Whether it includes pin capacitances is
determined by the *DESIGN_FLOW value for PIN_CAP. Cross-coupling capacitances
are assumed to be to ground for this calculation.

2) The total_cap is a simple lumped capacitance if there is no driver_reduc.

3) The routing_conf is defined the same as it was for a d_net.

4) The driver_reduc is defined as follows:

driver_reduc ::= driver_pin driver_cell pi_model load_desc

i) driver_pin ::= *DRIVER pin_name

This statement specifies the driver to which the net reduction was done. The
pin_name is defined as follows:

pin_name ::= <inst_name><pin_delim><pin>

where inst_name is a a path or an index to a path denoting the instance of the
driving cell, pin_delim is the hchar defined by *DELIMITER and pin is a
bit_identifier or an index to a bit_identifier denoting the name of the scalar or
bus pin of the cell type for the instance.

ii) driver_cell ::= *CELL cell_type

The cell_type is a name or an index to a name which gives the cell type of the
driving cell. Because an r_net cannot be connected to a port,
UNKNOWN_DRIVER is not allowed as the type of driving cell.

conn attributes cannot be specified in r_nets. If the optional driver_reduc
section is missing, an application which requires all connectivity information to

604
Copyright © 2010 IEEE all rights reserved.

– 604 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

be present in the SPEF file shall issue an error message and exit.

iii) The pi_model is defined as follows:

pi_model ::= *C2_R1_C1 par_value par_value par_value

The pi_model is an electrical description of the admittance model seen by the
driving cell. The first par_value C2 is the capacitor closest to driving cell. The
third par_value C1 is the capacitor furthest away from the driving cell. They
are connected by the resistor R1, which is the second par_value in the previous
description.

iv) The load_desc is defined as follows:

load_desc ::= *LOADS rc_desc {rc_desc}

There shall be an rc_desc for each load or input connection on a net. The
rc_desc can contain a single pole Elmore delay (given as par_value) or a
single pole Elmore delay followed by additional poles and residues.

rc_desc ::= *RC pin_name par_value [pole_residue_desc]
pole_residue_desc ::= pole_desc residue_desc

The pin_name is as described above in part a, driver_pair. A pole_desc is
defined as follows:

pole_desc ::= *Q pos_integer pole {pole}
pole ::= complex_par_value

The pos_integer specifies the number of pole(s) to be defined. The
complex_par_value is just like a par_value except the numbers can either be
a number or a cnumber.

cnumber is defined as follows:

cnumber ::= (number number)

A cnumber is a representation for a complex number. The first number is the
real component and the second number is the imaginary component. The
parentheses are part of the syntax.

A residue_desc is defined as follows:

residue_desc ::= *K pos_integer residue {residue}

The pos_integer specifies the number of residues to be defined. The
complex_par_value is just like a par_value except the numbers can either be
a number or a cnumber.

residue is defined the same as for pole provided previously.

ad) d_pnet ::= *D_PNET pnet_ref total_cap [routing_conf] [pconn_sec] [pcap_sec] [pres_sec]
[pinduc_sec] *END

605
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 605 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

A d_pnet contains distributed parasitic information for a physical-only net (pnet). The parasitic
network may be derived from an estimation, global route, extraction, or some other source, or it
may be a partial reduction (using AWE or some other means) of a more detailed parasitic network.
If the parasitic values are small enough to yield an insignificant RC delay, the d_pnet can be
simplified to a lumped capacitance form.

1) The pnet_ref can either be a physical_ref or an index to a physical_ref. The total_cap
is a par_value and is simply the total of all capacitances on the pnet, not an equivalent
capacitance, and it also includes cross-coupling capacitances and external loads (from the
*CONN and/or *PHYSICAL_PORTS sections). Whether it includes pin capacitances is
determined by the *DESIGN_FLOW value for PIN_CAP. Cross-coupling capacitances
are assumed to be to ground for this calculation.

2) The total_cap is a simple lumped capacitance if there is no pcap_sec.

3) The routing_conf is defined the same as for d_net, except applying to a physical-only
net rather than a logical net.

4) pconn_sec is defined as follows:

pconn_sec ::= *CONN pconn_def {pconn_def} {internal_pnode_coord}

pconn_def ::= *P pexternal_connection direction {conn_attr}
| *I internal_connection direction {conn_attr}

pexternal_connection ::= pport_name

internal_connection ::= pin_name | pnode_ref
internal_pnode_coord ::= *N internal_pnode_name coordinates

This section defines the connections on a pnet. The connection begins with a *P if it is
external (a pport), and with a *I if it is internal (a pin of a logical instance or a pnode of a
physical-only object). The d_pnet can be connected only to physical-only ports (pport);
it shall be a semantic violation if connected to a logical port. Internally, the d_pnet can
be connected to either a pnode or a pin of a logical instance.

i) The pport_name is defined as follows:

pport_name ::= <physical_inst><pin_delim><pport>

where physical_inst is a physical_ref or an index to a physical_ref, relative to
the top of the design, denoting the physical-only instance of the current SPEF
physical partition SPEF file owning the port, pin_delim is the hchar defined by
*DELIMITER, and pport is a name or an index to a name for the port. It shall
be a semantic error for a d_pnet to be connected to a logical port.

ii) The pin_name is defined as follows:

pin_name ::= <inst_name><pin_delim><pin>

where inst_name is a path or an index to a path denoting the logical instance
of a cell type or entity, pin_delim is the hchar defined by *DELIMITER, and
pin is a bit_identifier or an index to a bit_identifier denoting the name of the

606
Copyright © 2010 IEEE all rights reserved.

– 606 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

scalar or bus pin of the cell type or entity.

iii) The pnode_ref is defined as follows:

pnode_ref ::= <physical_inst><pin_delim><pnode>

where physical_inst is a physical_ref or an index to a physical_ref, relative to
the top of the design, denoting the physical-only instance of a physical-only
object within the SPEF file owning the pnode, and pnode is a name or an
index to a name denoting the physical node of the physical-only object.

iv) The direction shall be I, B, or O (input, bidirectional, or output, respectively).

v) The conn_attr definitions are the same as those for a port.

vi) The optional internal_pnode_coord enables coordinates to be specified for
internal nodes, just as they can be for other items listed in the pnode_name
described in item 5).

— internal_pnode_coord ::= *N internal_pnode_name coordinates

The internal_pnode_name is defined as follows:

internal_pnode_name ::= <pnet_ref><pin_delim><pos_integer>

Information shown in the *CONN section shall be consistent with that in the
*PHYSICAL_PORTS section; conn_attr(s) attributes shown in the two
sections are cumulative. If an application determines required information is
missing from both sections, the application shall issue an error message and exit.

5) The pcap_sec is defined as follows:

pcap_sec ::= *CAP pcap_elm {pcap_elem}

pcap_elem ::= cap_id pnode_name par_value [sensitivity]
| cap_id pnode_name pnode_name2 par_value [sensitivity]

In the first pcap_elem definition, the capacitance is assumed to be between
pnode_name and ground. The second definition is typically used for cross-coupling
capacitance. A cross-coupling pcap_elem shall appear in the *CAP sections for both
nets to which it is connected, whether they are d_nets, d_pnets, or a mixture, and the
value shall be the same in both locations.

The cap_id is a pos_integer used to identify uniquely the capacitor. Because the cap_id
is unique within the scope of the current pnet, the same cap_id can be repeated in
another net or pnet without collision.

The pnode_name can be one of the following:

pnode_name ::= pexternal_connection
| internal_connection
| internal_pnode_name
| pnode_ref

607
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 607 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

The first two definitions for pnode_name specify connections to external ports and
objects internal to the SPEF file, respectively, with the same restrictions for logical ports
as described earlier for the *CONN section. The third definition is used to specify
internal nodes or junction points on the current pnet. The fourth definition is used to
specify physical pins on a physical partition that have no correspondence to the current
set of SPEF files.

pnode_name2 can be one of the following:

pnode_name2 ::= pnode_name
| <net_ref><pin_delim><pos_integer>
| <pnet_ref2><pin_delim><pos_integer>

The first definition is the same as for part b, pnode_name, as presented previously. The
second definition describes an internal node or junction point on a logical net connected
to the other end of a coupling capacitor. The third definition is used to specify internal
nodes or junction points on a physical-only net other than the current one connected to
the other end of a coupling capacitor.

The par_value is specified in units of capacitance defined in the C_UNIT definition.

The sensitivity has the same definition as shown previously in d_net part D, cap_sec.

6) The pres_sec is defined as follows:

pres_sec ::= *RES pres_elem {pres_elem}
pres_elem ::= res_id pnode_name pnode_name par_value [sensitivity]

The res_id is a pos_integer used to identify the resistor uniquely. Because it is unique
within the scope of the current pnet, the same res_id can be repeated in another net or
pnet without collision. The pnode_name has the same definition as in the pcap_sec.
The par_value is specified in units of resistance that are defined in the R_UNIT
definition.

The sensitivity has the same definition as shown previously in d_net part D, cap_sec.

7) The pinduc_sec is defined as follows:

pinduc_sec ::= *INDUC pinduc_elem {pinduc_elem}
pinduc_elem ::= induc_id pnode_name pnode_name par_value [sensitivity]

The induc_id is a pos_integer used to identify the inductor uniquely. Because it is
unique within the scope of the current pnet, the same induc_id can be repeated in
another net or pnet without collision. The pnode_name has the same definition as in
the pcap_sec. The par_value is specified in units of inductance defined in the L_UNIT
definition.

The sensitivity has the same definition as shown previously in d_net part D, cap_sec.

ae) r_pnet ::= *R_PNET pnet_ref total_cap [routing_conf] {pdriver_reduc} *END

An r_pnet is a physical-only net that has been reduced from a distributed model to an electrical
equivalent through AWE or some other similar method. Because all parasitics for a pnet shall be
known before reduction, a portion of a pnet that crosses the boundary between a parent and child

608
Copyright © 2010 IEEE all rights reserved.

– 608 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

SPEF file(s) cannot be in r_pnet form and an r_pnet cannot connect to a logical or physical port
or to a pnode or pin of a child SPEF file. If the parasitic values are small enough to yield an
insignificant RC delay, the r_net can be simplified to a lumped capacitance form.

There shall be one pdriver_reduc section for each driver that a pnet has. If a pnet has four
different drivers, then there shall be four different pdriver_reduc sections in the r_pnet
definition.

1) The pnet_ref can either be a physical_ref or an index to a physical_ref. The total_cap
is a par_value and is simply the total of all capacitances on the pnet, not an equivalent
capacitance, and it also includes cross-coupling capacitances. Whether it includes pin
capacitances is determined by the *DESIGN_FLOW value for PIN_CAP. Cross-
coupling capacitances are assumed to be to ground for this calculation.

2) The total_cap is a simple lumped capacitance if there is no pdriver_reduc.

3) The routing_conf is defined the same as it was for a d_net.

4) The pdriver_reduc is defined as follows:

pdriver_reduc ::= pdriver driver_cell pi_model load_desc

The pdriver is defined as follows:

pdriver ::= *DRIVER internal_connection

This statement specifies the driver to which the pnet reduction was done. The
internal_connection can be either a pin_name or a pnode_ref to the pin or pnode of
the driver, because the driver may be either a logical or physical-only instance.

The driver_cell is defined as follows:

driver_cell ::= *CELL cell_type

The cell_type is a name or an index to a name that gives the cell type of the driving
cell. Because an r_pnet cannot be connected to a port, UNKNOWN_DRIVER is not
allowed as the type of driving cell. conn_attr cannot be specified in r_net(s).

The pi_model is defined as follows:

pi_model ::= *C2_R1_C1 par_value par_value par_value

The pi_model is an electrical description of the admittance model seen by the driving
cell. The first par_value C2 is the capacitor closest to driving cell. The third par_value
C1 is the capacitor furthest away from the driving cell. They are connected by the resistor
R1, which is the second par_value in the above description.

The load_desc is defined as follows:

load_desc ::= *LOADS rc_desc {rc_desc}

There shall be a rc_desc for each load or input connection on a pnet. The rc_desc can
contain a single pole Elmore delay (given as par_value) or a single pole Elmore delay
followed by additional poles and residues.

609
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 609 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

rc_desc ::= *RC pin_name par_value [pole_residue_desc]
pole_residue_desc ::= pole_desc residue_desc

The pin_name is as described previously in part a, pdriver_pair. A pole_desc is
defined as

pole_desc ::= *Q pos_integer pole {pole}
pole ::= complex_par_value

The pos_integer specifies the number of poles to be defined. The complex_par_value
is just like a par_value except the numbers can either be a number or a cnumber.

cnumber is defined as follows:

cnumber ::= (number number)

A cnumber is a representation for a complex number. The first number is the real
component, and the second number is the imaginary component. The parentheses are part
of the syntax.

A residue_desc is defined as follows:

residue_desc ::= *K pos_integer residue {residue}

The pos_integer specifies the number of residue(s) to be defined. The
complex_par_value is just like a par_value except the numbers can either be a
number or a cnumber.

11.4 Examples

This subclause lists some examples of the various types of data which can be represented in SPEF.

11.4.1 Basic *D_NET file

The following SPEF file shows how detailed parasitic networks are represented in *D_NET(s).

*SPEF "IEEE 1481-2009"
*DESIGN "Sample"
*DATE "13:03:59 Monday December 18, 1995"
*VENDOR "Sample Tool Vendor"
*PROGRAM "Parasitics Generator"
*VERSION "1.1.0"
*DESIGN_FLOW "EXTERNAL_LOADS" "EXTERNAL_SLEWS" "MISSING_NETS"
*DIVIDER /
*DELIMITER :
*BUS_DELIMITER []
*T_UNIT 1 NS
*C_UNIT 1 PF
*R_UNIT 1 OHM
*L_UNIT 1 HENRY

*POWER_NETS VDD
*GND_NETS VSS

610
Copyright © 2010 IEEE all rights reserved.

– 610 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

*PORTS
CONTROL O *L 30 *S 0 0
FARLOAD O *L 30 *S 0 0
INVX1FNTC_IN I *L 30 *S 5 5
NEARLOAD O *L 30 *S 0 0
TREE O *L 30 *S 0 0

*D_NET INVX1FNTC_IN 0.033
*CONN
*P INVX1FNTC_IN I
*I FL_1281:A *L 0.033
*END

*D_NET INVX1FNTC 2.033341
*CONN
*I FL_1281:X O *L 0.0
*I I1184:A I *L 0.343
*I FL_1000:A I *L 0.343
*I NL_1000:A I *L 0.343
*I TR_1000:A I *L 0.343
*CAP
216 FL_1000:A 0.346393
217 I1184:A 0.344053
218 INVX1FNTC_IN 0
219 INVX1FNTC_IN:10 0.0154198
220 INVX1FNTC_IN:11 0.0117827
221 INVX1FNTC_IN:12 0.0463063
222 INVX1FNTC_IN:13 0.0384381
223 INVX1FNTC_IN:14 0.00246845
224 INVX1FNTC_IN:15 0.00350198
225 INVX1FNTC_IN:16 0.00226712
226 INVX1FNTC_IN:17 0.0426184
227 INVX1FNTC_IN:18 0.0209701
228 INVX1FNTC_IN:2 0.0699292
229 INVX1FNTC_IN:20 0.019987
230 INVX1FNTC_IN:21 0.0110279
231 INVX1FNTC_IN:24 0.0192603
232 INVX1FNTC_IN:25 0.0141824
233 INVX1FNTC_IN:3 0.0520437
234 INVX1FNTC_IN:4 0.0527105
235 INVX1FNTC_IN:5 0.1184749
236 INVX1FNTC_IN:6 0.0468458
237 INVX1FNTC_IN:7 0.0391578
238 INVX1FNTC_IN:8 0.0113856
239 INVX1FNTC_IN:9 0.0142528
240 NL_1000:A 0.344804
241 TR_1000:A 0.34506
*RES
152 INVX1FNTC_IN INVX1FNTC_IN:18 8.39117
153 INVX1FNTC_IN INVX1FNTC_IN:5 25.1397
154 INVX1FNTC_IN:11 INVX1FNTC_IN:20 4.59517
155 INVX1FNTC_IN:12 INVX1FNTC_IN:13 3.688
156 INVX1FNTC_IN:13 INVX1FNTC_IN:17 25.102
157 INVX1FNTC_IN:14 INVX1FNTC_IN:16 0.0856444
158 INVX1FNTC_IN:14 NL_1000:A 0.804

611
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 611 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

159 INVX1FNTC_IN:15 INVX1FNTC_IN:16 1.73764
160 INVX1FNTC_IN:15 INVX1FNTC_IN:24 0.307175
161 INVX1FNTC_IN:17 INVX1FNTC_IN:25 5.65517
162 INVX1FNTC_IN:18 FL_1000:A 1.36317
163 INVX1FNTC_IN:2 INVX1FNTC_IN:4 6.95371
164 INVX1FNTC_IN:2 INVX1FNTC_IN:5 50.9942
165 INVX1FNTC_IN:20 INVX1FNTC_IN:21 4.71035
166 INVX1FNTC_IN:21 I1184:A 0.403175
167 INVX1FNTC_IN:25 TR_1000:A 0.923175
168 INVX1FNTC_IN:3 INVX1FNTC_IN:12 31.7256
169 INVX1FNTC_IN:3 INVX1FNTC_IN:4 11.9254
170 INVX1FNTC_IN:4 INVX1FNTC_IN:7 25.3618
171 INVX1FNTC_IN:5 INVX1FNTC_IN:6 23.3057
172 INVX1FNTC_IN:6 INVX1FNTC_IN:24 8.64717
173 INVX1FNTC_IN:7 INVX1FNTC_IN:8 7.46529
174 INVX1FNTC_IN:8 INVX1FNTC_IN:10 2.04729
175 INVX1FNTC_IN:9 INVX1FNTC_IN:10 10.8533
176 INVX1FNTC_IN:9 INVX1FNTC_IN:11 1.05164
*END

*D_NET NE_794 1.98538
*CONN
*I NL_1039:X O *L 0 *D INVX
*I NL_2039:A I *L 0.343
*I NL_1040:A I *L 0.343
*CAP
3387 NE_794 0
3388 NE_794:1 0.0792492
3389 NE_794:10 0.0789158
3390 NE_794:11 0.0789991
3391 NE_794:12 0.0789991
3392 NE_794:13 0.0792992
3393 NE_794:14 0.00093352
3394 NE_794:15 0.00063346
3395 NE_794:16 0.0792992
3396 NE_794:17 0.080116
3397 NE_794:18 0.080116
3398 NE_794:19 0.00125452
3399 NE_794:2 0.0789158
3400 NE_794:20 0.00336991
3401 NE_794:21 0.00668512
3402 NE_794:23 0.00294932
3403 NE_794:25 0.00259882
3404 NE_794:26 0.00184653
3405 NE_794:3 0.0789158
3406 NE_794:4 0.0796826
3407 NE_794:5 0.0796826
3408 NE_794:6 0.0789991
3409 NE_794:7 0.0789991
3410 NE_794:8 0.0793992
3411 NE_794:9 0.0789158
3412 NL_1039:X 0.00871972
3413 NL_1040:A 0.344453
3414 NL_2039:A 0.343427

612
Copyright © 2010 IEEE all rights reserved.

– 612 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

*RES
2879 NE_794:1 NE_794:13 66.1953
2880 NE_794:1 NE_794:2 0.311289
2881 NE_794:11 NE_794:12 0.311289
2882 NE_794:13 NE_794:14 0.353289
2883 NE_794:14 NE_794:19 0.365644
2884 NE_794:15 NE_794:16 0.227289
2885 NE_794:15 NE_794:20 0.239644
2886 NE_794:17 NE_794:18 0.14
2887 NE_794:19 NE_794:21 0.0511746
2888 NE_794:2 NE_794:9 65.9153
2889 NE_794:20 NE_794:23 1.15117
2890 NE_794:21 NL_1039:X 3.01917
2891 NE_794:25 NE_794:26 0.166349
2892 NE_794:26 NL_1040:A 0.651175
2893 NE_794:3 NE_794:10 65.9153
2894 NE_794:3 NE_794:4 0.311289
2895 NE_794:4 NE_794:17 66.5437
2896 NE_794:5 NE_794:18 66.5437
2897 NE_794:5 NE_794:6 0.311289
2898 NE_794:6 NE_794:11 65.9853
2899 NE_794:7 NE_794:12 65.9853
2900 NE_794:7 NE_794:8 0.311289
2901 NE_794:8 NE_794:16 66.3213
2902 NE_794:9 NE_794:10 0.311289
2903 NL_1039:X NE_794:25 1.00317
2904 NL_2039:A NE_794:23 0.171175
*END

11.4.2 Basic *R_NET file

The following subclause is an SPEF file containing the basic reduced form of nets. Note the smaller size of
*R_NET descriptions compared to *D_NET(s). The nets connected to ports shall not be reduced.

*SPEF "IEEE 1481-2009"
*DESIGN "Sample"
*DATE "Fri Feb 9 15:29:56 1996"
*VENDOR "Sample Tool Vendor"
*PROGRAM "Parasitics Generator"
*VERSION "1.1.0"
*DESIGN_FLOW "EXTERNAL_LOADS" "EXTERNAL_SLEWS" "MISSING_NETS"
*DIVIDER /
*DELIMITER :
*BUS_DELIMITER []
*T_UNIT 1.0 PS
*C_UNIT 1.0 PF
*R_UNIT 1.0 OHM
*L_UNIT 1.0 HENRY

*POWER_NETS VDD
*GROUND_NETS VSS

*PORTS
TREE O *L 30 *S 0.0 0.0
FARLOAD O *L 30 *S 0.0 0.0

613
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 613 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

NEARLOAD O *L 30 *S 0.0 0.0
CONTROL O *L 30 *S 0.0 0.0
INVX1FNTC_IN I *L 30 *S 5000 5000

*R_NET NE_794 2.67137
*DRIVER NL_1039:X
*CELL INVX
*C2_R1_C1 1.0039 367.972 1.66747
*LOADS
*RC NL_1040:A 1.25641
*RC NL_2039:A 714.176
*END

*D_NET INVX1FNTC_IN 0.033
*CONN
*P INVX1FNTC_IN I
*I FL_1281:A *L 0.033
*END

*R_NET INVX1FNTC 33.4053
*DRIVER FL_1281:X
*CELL BUF1
*C2_R1_C1 30.9631 80.4849 2.44227
*LOADS
*RC TR_1000:A 235.429
*RC NL_1000:A 93.728
*RC FL_1000:A 6.90054
*RC I1184:A 215.966
*END

11.4.3 *R_NET with poles and residues plus name mapping

This SPEF file is similar to the previous one, with two poles and residues and name mapping. Even though
it is not evident in this small example, name mapping typically reduces SPEF file size significantly.

*SPEF "IEEE 1481-2009"
*DESIGN "Sample"
*DATE "Fri Feb 9 15:36:08 1996"
*VENDOR "Sample Tool Vendor"
*PROGRAM "Parasitics Generator"
*VERSION "1.1.0"
*DESIGN_FLOW "EXTERNAL_SLEWS" "EXTERNAL_LOADS" "MISSING_NETS"
*DIVIDER /
*DELIMITER :
*BUS_DELIMITER []
*T_UNIT 1.0 PS
*C_UNIT 1.0 PF
*R_UNIT 1.0 OHM
*L_UNIT 1.0 HENRY

*NAME_MAP
*1 CONTROL
*2 FARLOAD
*3 INVX1FNTC_IN

614
Copyright © 2010 IEEE all rights reserved.

– 614 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

*4 NEARLOAD
*5 TREE
*6 I1184
*7 A
*8 FL_1000
*9 NL_1000
*10 TR_1000
*11 NE_794
*12 NL_1039
*13 X
*14 INVX
*15 NL_2039
*16 NL_1040
*17 INVX1FNTC
*18 FL_1281

*POWER_NETS VDD
*GND_NETS VSS

*PORTS
*5 O *L 30 *S 0.0 0.0
*2 O *L 30 *S 0.0 0.0
*4 O *L 30 *S 0.0 0.0
*1 O *L 30 *S 0.0 0.0
*3 I *L 30 *S 5000 5000

*R_NET *11 2.67137
*DRIVER *12:X
*CELL INVX
*C2_R1_C1 1.0039 367.972 1.66747
*LOADS
*RC *16:A 1.25641
*Q 2 -0.0016133 -0.0186079
*K 2 -0.000149569 0.0203331
*RC *15:A 714.176
*Q 2 -0.0016133 -0.0186079
*K 2 0.00188211 -0.00310052
*END

*D_NET *3 0.033
*CONN
*P *3 I
*I *18:A *L 0.033
*END

*R_NET *17 33.4053
*DRIVER *18:X
*CELL BUF1
*C2_R1_C1 30.9631 80.4849 2.44227
*LOADS
*RC *10:A 235.429
*P 2 -0.00488949 -0.0195209
*K 2 0.00587537 -0.00393605
*RC *9:A 93.728

615
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 615 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

*Q 2 -0.00488949 -0.0195209
*K 2 0.00135562 0.0141087
*RC *8:A 6.90054
*Q 2 -0.00488949 -0.0195209
*K 2 -0.00141386 0.0251656
*RC *6:A 215.966
*Q 2 -0.00488949 -0.0195209
*K 2 0.00525456 -0.00145752
*END

11.4.4 *D_NET with triplet par_value

The following *D_NET SPEF file shows the use of triplet par_values.

*SPEF "IEEE 1481-2009"
*DESIGN " Sample"
*DATE "13:03:59 Monday December 18, 1995"
*VENDOR "Sample Tool Vendor"
*PROGRAM "Parasitics Generator"
*VERSION "1.1.0"
*DESIGN_FLOW "EXTERNAL_SLEWS" "EXTERNAL_LOADS" "MISSING_NETS"
*DIVIDER /
*DELIMITER :
*BUS_DELIMITER []
*T_UNIT 1 NS
*C_UNIT 1 PF
*R_UNIT 1 OHM
*L_UNIT 1 Henry

*POWER_NETS VDD
*GROUND_NETS VSS

*PORTS
CONTROL O *L 30:30:30 *S 0:0:0 0:0:0
FARLOAD O *L 30:30:30 *S 0:0:0 0:0:0
INVX1FNTC_IN I *L 30:30:30 *S 5:5:5 5:5:5
NEARLOAD O *L 30:30:30 *S 0:0:0 0:0:0
TREE O *L 30:30:30 *S 0:0:0 0:0:0

*D_NET INVX1FNTC_IN 0.030:0.033:0.037
*CONN
*P INVX1FNTC_IN I
*I FL_1281:A *L 0.030:0.033:0.037
*END

*D_NET INVX1FNTC 32.0005:32.0813:32.1809
*CONN
*I FL_1281:X O *L 0.0
*I I1184:A I *L I.343:0.343:0.343
*I FL_1000:A I *L I.343:0.343:0.343
*I NL_1000:A I *L I.343:0.343:0.343
*I TR_1000:A I *L I.343:0.343:0.343
*CAP
216 FL_1000:A 0.345636:0.345975:0.346393

616
Copyright © 2010 IEEE all rights reserved.

– 616 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

217 I1184:A 0.343818:0.343923:0.344053
218 INVX1FNTC_IN 0:0:0
219 INVX1FNTC_IN:10 0.0136644:0.0154198:0.0175862
220 INVX1FNTC_IN:11 0.0104414:0.0117827:0.0134381
221 INVX1FNTC_IN:12 0.0410348:0.0463063:0.0528121
222 INVX1FNTC_IN:13 0.0340623:0.0384381:0.0438385
223 INVX1FNTC_IN:14 0.00218744:0.00246845:0.00281526
224 INVX1FNTC_IN:15 0.00310331:0.00350198:0.00399399
225 INVX1FNTC_IN:16 0.00200903:0.00226712:0.00258564
226 INVX1FNTC_IN:17 0.0377667:0.0426184:0.0486061
227 INVX1FNTC_IN:18 0.0185829:0.0209701:0.0239163
228 INVX1FNTC_IN:2 0.0619685:0.0699292:0.079754
229 INVX1FNTC_IN:20 0.0177117:0.019987:0.0227951
230 INVX1FNTC_IN:21 0.00977248:0.0110279:0.0125773
231 INVX1FNTC_IN:24 0.0170677:0.0192603:0.0219663
232 INVX1FNTC_IN:25 0.0125679:0.0141824:0.016175
233 INVX1FNTC_IN:3 0.046119:0.0520437:0.0593556
234 INVX1FNTC_IN:4 0.0467099:0.0527105:0.0601161
235 INVX1FNTC_IN:5 0.104987:0.118474:0.135119
236 INVX1FNTC_IN:6 0.0415129:0.0468458:0.0534274
237 INVX1FNTC_IN:7 0.0347001:0.0391578:0.0446593
238 INVX1FNTC_IN:8 0.0100895:0.0113856:0.0129852
239 INVX1FNTC_IN:9 0.0126303:0.0142528:0.0162553
240 NL_1000:A 0.344598:0.344804:0.345057
241 TR_1000:A 0.344826:0.34506:0.34535

*RES
152 INVX1FNTC_IN INVX1FNTC_IN:18 11.5385:8.39117:14.7993
153 INVX1FNTC_IN INVX1FNTC_IN:5 34.5689:25.1397:44.3383
154 INVX1FNTC_IN:11 INVX1FNTC_IN:20 6.31869:4.59517:8.1044
155 INVX1FNTC_IN:12 INVX1FNTC_IN:13 5.07126:3.688:6.50445
156 INVX1FNTC_IN:13 INVX1FNTC_IN:17 34.517:25.102:44.2719
157 INVX1FNTC_IN:14 INVX1FNTC_IN:16 0.117767:0.0856444:0.151049
158 INVX1FNTC_IN:14 NL_1000:A 1.10556:0.804:1.418
159 INVX1FNTC_IN:15 INVX1FNTC_IN:16 2.38938:1.73764:3.06464
160 INVX1FNTC_IN:15 INVX1FNTC_IN:24 0.422388:0.307175:0.541758
161 INVX1FNTC_IN:17 INVX1FNTC_IN:25 7.77626:5.65517:9.9739
162 INVX1FNTC_IN:18 FL_1000:A 1.87446:1.36317:2.40419
163 INVX1FNTC_IN:2 INVX1FNTC_IN:4 9.56185:6.95371:12.2641
164 INVX1FNTC_IN:2 INVX1FNTC_IN:5 70.1207:50.9942:89.9374
165 INVX1FNTC_IN:20 INVX1FNTC_IN:21 6.47707:4.71035:8.30754
166 INVX1FNTC_IN:21 I1184:A 0.554394:0.403175:0.711071
167 INVX1FNTC_IN:25 TR_1000:A 1.26943:0.923175:1.62818
168 INVX1FNTC_IN:3 INVX1FNTC_IN:12 43.625:31.7256:55.9538
169 INVX1FNTC_IN:3 INVX1FNTC_IN:4 16.3983:11.9254:21.0326
170 INVX1FNTC_IN:4 INVX1FNTC_IN:7 34.8743:25.3618:44.7301
171 INVX1FNTC_IN:5 INVX1FNTC_IN:6 32.047:23.3057:41.1038
172 INVX1FNTC_IN:6 INVX1FNTC_IN:24 11.8905:8.64717:15.2508
173 INVX1FNTC_IN:7 INVX1FNTC_IN:8 10.2653:7.46529:13.1664
174 INVX1FNTC_IN:8 INVX1FNTC_IN:10 2.81517:2.04729:3.61076
175 INVX1FNTC_IN:9 INVX1FNTC_IN:10 14.9241:10.8533:19.1417
176 INVX1FNTC_IN:9 INVX1FNTC_IN:11 1.44608:1.05164:1.85475

*END

617
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 617 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

*D_NET NE_794 1.83746:1.98538:2.16794
*CONN
*I NL_1039:X O *L 0:0:0 *D INVX
*I NL_2039:A I *L 0.343:0.343:0.343
*I NL_1040:A I *L 0.343:0.343:0.343
*CAP
3387 NE_794 0:0:0
3388 NE_794:1 0.0702275:0.0792492:0.0903834
3389 NE_794:10 0.069932:0.0789158:0.0900031
3390 NE_794:11 0.0700058:0.0789991:0.0900982
3391 NE_794:12 0.0700058:0.0789991:0.0900982
3392 NE_794:13 0.0702718:0.0792992:0.0904404
3393 NE_794:14 0.000827248:0.00093352:0.00106468
3394 NE_794:15 0.000561347:0.00063346:0.000722459
3395 NE_794:16 0.0702718:0.0792992:0.0904404
3396 NE_794:17 0.0709956:0.080116:0.091372
3397 NE_794:18 0.0709956:0.080116:0.091372
3398 NE_794:19 0.00111171:0.00125452:0.00143077
3399 NE_794:2 0.069932:0.0789158:0.0900031
3400 NE_794:20 0.00298628:0.00336991:0.00384337
3401 NE_794:21 0.00592409:0.00668512:0.00762435
3402 NE_794:23 0.00261357:0.00294932:0.00336369
3403 NE_794:25 0.00230297:0.00259882:0.00296394
3404 NE_794:26 0.00163632:0.00184653:0.00210596
3405 NE_794:3 0.069932:0.0789158:0.0900031
3406 NE_794:4 0.0706115:0.0796826:0.0908777
3407 NE_794:5 0.0706115:0.0796826:0.0908777
3408 NE_794:6 0.0700058:0.0789991:0.0900982
3409 NE_794:7 0.0700058:0.0789991:0.0900982
3410 NE_794:8 0.0703604:0.0793992:0.0905545
3411 NE_794:9 0.069932:0.0789158:0.0900031
3412 NL_1039:X 0.00772707:0.00871972:0.0099448
3413 NL_1040:A 0.344288:0.344453:0.344657
3414 NL_2039:A 0.343379:0.343427:0.343488

*RES
2879 NE_794:1 NE_794:13 91.0233:66.1953:116.747
2880 NE_794:1 NE_794:2 0.428045:0.311289:0.549014
2881 NE_794:11 NE_794:12 0.428045:0.311289:0.549014
2882 NE_794:13 NE_794:14 0.485798:0.353289:0.623088
2883 NE_794:14 NE_794:19 0.502787:0.365644:0.644879
2884 NE_794:15 NE_794:16 0.312539:0.227289:0.400865
2885 NE_794:15 NE_794:20 0.329528:0.239644:0.422655
2886 NE_794:17 NE_794:18 0.19251:0.14:0.246915
2887 NE_794:19 NE_794:21 0.0703687:0.0511746:0.0902555
2888 NE_794:2 NE_794:9 90.6382:65.9153:116.253
2889 NE_794:20 NE_794:23 1.58294:1.15117:2.03029
2890 NE_794:21 NL_1039:X 4.15157:3.01917:5.32485
2891 NE_794:25 NE_794:26 0.228742:0.166349:0.293386
2892 NE_794:26 NL_1040:A 0.895412:0.651175:1.14846
2893 NE_794:3 NE_794:10 90.6382:65.9153:116.253
2894 NE_794:3 NE_794:4 0.428045:0.311289:0.549014
2895 NE_794:4 NE_794:17 91.5023:66.5437:117.362
2896 NE_794:5 NE_794:18 91.5023:66.5437:117.362
2897 NE_794:5 NE_794:6 0.428045:0.311289:0.549014
2898 NE_794:6 NE_794:11 90.7345:65.9853:116.377

618
Copyright © 2010 IEEE all rights reserved.

– 618 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

2899 NE_794:7 NE_794:12 90.7345:65.9853:116.377
2900 NE_794:7 NE_794:8 0.428045:0.311289:0.549014
2901 NE_794:8 NE_794:16 91.1965:66.3213:116.969
2902 NE_794:9 NE_794:10 0.428045:0.311289:0.549014
2903 NL_1039:X NE_794:25 1.37943:1.00317:1.76927
2904 NL_2039:A NE_794:23 0.235378:0.171175:0.301898
*END

11.4.5 *R_NET with poles and residues plus triplet par_value

This SPEF file illustrates the use of triplet par_values in *R_NET(s).

*SPEF "IEEE 1481-2009"
*DESIGN "Sample"
*DATE "Fri Feb 9 15:33:56 1996"
*VENDOR "Sample Tool Vendor"
*PROGRAM "Parasitics Generator"
*VERSION "1.1.0"
*DESIGN_FLOW "EXTERNAL_LOADS" "EXTERNAL_SLEWS" "MISSING_NETS"
*DIVIDER /
*DELIMITER :
*BUS_DELIMITER []
*T_UNIT 1.0 PS
*C_UNIT 1.0 PF
*R_UNIT 1.0 OHM
*L_UNIT 1.0 HENRY

*POWER_NETS VDD
*GND_NETS VSS

*PORTS
TREE O *L 30 *S 0.0 0.0
FARLOAD O *L 30 *S 0.0 0.0
NEARLOAD O *L 30 *S 0.0 0.0
CONTROL O *L 30 *S 0.0 0.0
INVX1FNTC_IN I *L 30 *S 5000 5000

*R_NET NE_794 2.52345:2.67137:2.85393
*DRIVER NL_1039:X
*CELL INVX
*C2_R1_C1 0.973238:1.0039:1.04094 518.264:367.972:632.372
1.55022:

 1.66747:1.813
*LOADS
*RC NL_1040:A 1.72649
*Q 2 -0.0012327:-0.0016133:-0.0012327 -0.0149216:-0.0186079:-
0.0149216
*K 2 -0.000108146:-0.000149569:-0.000108146

0.0162307:0.0203331:0.0162307
*RC NL_2039:A 927.913
*Q 2 -0.0012327:-0.0016133:-0.0012327
 -0.0149216:-0.0186079:-0.0149216
*K 2 0.00142598:0.00188211:0.00142598

-0.00233962:-0.00310052:-0.00233962

619
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 619 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

*END

*D_NET INVX1FNTC_IN 0.030:0.033:0.037
*CONN
*P INVX1FNTC_IN I
*I FL_1281:A *L 0.030:0.033:0.037
*END

*R_NET INVX1FNTC 33.3296:33.4048:33.4976
*DRIVER FL_1281:X
*CELL BUF1
*C2_R1_C1 30.9494:30.9627:30.979 110.977:80.4861:

 141.498 2.3802:2.4421:2.51864
*LOADS
*RC TR_1000:A 315.895
*Q 2 -0.00363545:-0.00488981:-0.00269951

-0.0143592:-0.0195225:-0.0109169
*K 2 0.00435796:0.00587588:0.00325278 -0.00285373:-0.00393692:

-0.00223742
*RC NL_1000:A 126.052
*Q 2 -0.00363545:-0.00488981:-0.00269951 -0.0143592:-0.0195225:

-0.0109169
*K 2 0.000998293:0.00135582:0.000756817
 0.0104162:0.0141094:0.00785629
*RC FL_1000:A 9.45107
*Q 2 -0.00363545:-0.00488981:-0.00269951 -0.0143592:-0.0195225:

-0.0109169
*K 2 -0.00106519:-0.00141402:-0.00076858
 0.0185665:0.025168:0.014025
*RC I1184:A 289.75
*Q 2 -0.00363545:-0.00488981:-0.00269951 -0.0143592:-0.0195225:

-0.0109169
*K 2 0.00389526:0.00525476:0.00291069 -0.00102619:-0.00145709:

-0.000853997
*END

11.4.6 Merging SPEF files

The following example shows two separate SPEF files and how they might look after a SPEF reader read in
both of them and then wrote out the merged results.

11.4.6.1 topLevel.spef

The top-level SPEF file is from a floorplan that includes a prerouted child block with its own SPEF file.
External slews and external loads are fully specified.

*SPEF "IEEE 1481-2009"
*DESIGN "topLevel"
*DATE "MON Sep 9 9:34:01 1997"
*VENDOR "Sample Tool Vendor"
*PROGRAM "ParasiticsGenerator"
*VERSION "1.0 ALPHA"
*DESIGN_FLOW "EXTERNAL_SLEWS" "EXTERNAL_LOADS" \

620
Copyright © 2010 IEEE all rights reserved.

– 620 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

"ROUTING_CONFIDENCE 50" "NETLIST_TYPE_EDIF"
*DIVIDER |
*DELIMITER :
*BUS_DELIMITER []
*T_UNIT 1.0 PS
*C_UNIT 1.0 PF
*R_UNIT 1.0 OHM
*L_UNIT 1.0 UH

*NAME_MAP
*1 IN1
*2 net1a
*3 blk1
*4 net3b
*5 OUT1

*PORTS
*5 O *L 0.05
*1 I *S 5000 5000

*DEFINE *3 "subBLOCK"

*D_NET *4 0.32429
*CONN
*I *3:OUT2 O
*I I104:I I *L 0.044
*CAP
1 *3:OUT2 0.011307
2 I104:I 0.128838
3 *4:1 0.140145
*RES
5 *3:OUT2 *4:1 7.128
6 *4:1 I104:I 2.55215
*END

*D_NET *2 0.02
*CONN
*I I101:Z 0 *D BUFFD3
*I *3:IN2 I
*END

*D_NET *1 0.064
*CONN
*P *1 I *D UNKNOWN_DRIVER
*I I101:I I
*CAP
1 I101:I 0.014
2 *1 0.05
*RES
1 *1 I101:I 4.25
*END

621
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 621 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

*D_NET *5 0.05
*CONN
*I I104:Z O *D BUFFD3
*P *5 O *L 0.05
*END

11.4.6.2 subBLOCK.spef

The child SPEF file describes a prerouted block with a routing confidence of 90.

*SPEF "IEEE 1481-2009"
*DESIGN "subBLOCK"
*DATE "MON Sep 9 9:34:01 1997"
*VENDOR "Sample Tool Vendor"
*PROGRAM "ParasiticsGenerator"
*VERSION "1.0 ALPHA"
*DESIGN_FLOW "EXTERNAL_SLEWS" "EXTERNAL_LOADS" \
"NAME_SPACE LOCAL" "FULL_CONNECTIVITY" "ROUTING_CONFIDENCE 90" \
"NETLIST_TYPE_VERILOG"
*DIVIDER /
*DELIMITER :
*BUS_DELIMITER []
*T_UNIT 1.0 PS
*C_UNIT 1.0 PF
*R_UNIT 1.0 KOHM
*L_UNIT 1.0 UH

*NAME_MAP
*1 IN2
*2 net2
*3 OUT2

*POWER_NETS VDD
*GND_NETS VSS

*PORTS
*3 O *L 0.05
*1 I *S 5000 5000

*D_NET *1 0.020873:0.29862:0.38869
*CONN
*P *1 I *D UNKNOWN_DRIVER
*I I102:I I
*CAP
1 I102:I 0.020873:0.029862:0.038869
*END

*R_NET *2 0.040873:0.049862:0.058869
*DRIVER I102:Z
*CELL BUFFD3
*C2_R1_C1 0.0 0.0 0.040873:0.049862:0.058869
*LOADS
*RC I103:I 0.0

622
Copyright © 2010 IEEE all rights reserved.

– 622 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

*END

*D_NET *3 0.22076
*CONN
*I I103:Z O *D BUFFD3
*P *3 O *L 0.05
*CAP
1 I103:Z 0.03076
2 *3:1 0.140
3 *3 0.0
*RES
1 I103:Z *3:1 .004351
2 *3:1 *3 .0024376
*END

11.4.6.3 Resulting merged SPEF file

total_cap values were recalculated for the nets crossing the nets crossing the boundary between child and
parent. The *L value for the child’s output port was deleted and not included in the merged net’s total_cap
because it is replaced by the capacitances from the net in the parent SPEF file. The routing confidence of
the parent SPEF file has been used as the default of the merged SPEF file, whereas the prerouted net from
the child SPEF file retains its routing confidence value through *V. The child’s boundary nets assumed the
lower routing confidence value of the parent SPEF file. The nets that formerly crossed the parent-child
boundary use the corresponding net name from the parent SPEF file.

Instances from the child SPEF file now reflect their hierarchy in the merged SPEF file. External slews and
external loads are still fully specified in the merged SPEF file. The resistance units and naming conventions
are reconciled to the parent SPEF file’s specifications. Because the parent SPEF file did not have the
*DESIGN_FLOW value FULL_CONNECTIVITY, the merged SPEF file does not either. The child SPEF
file’s power_def has been carried to the merged SPEF file.

*SPEF "IEEE 1481-2009"
*DESIGN "topLevel"
*DATE "MON Sep 9 9:34:01 1997"
*VENDOR "Sample Tool Vendor"
*PROGRAM "ParasiticsGenerator"
*VERSION "1.0 ALPHA"
*DESIGN_FLOW "EXTERNAL_SLEWS" "EXTERNAL_LOADS" \
"ROUTING_CONFIDENCE 50" "NETLIST_TYPE_EDIF"
*DIVIDER |
*DELIMITER :
*BUS_DELIMITER []
*T_UNIT 1.0 PS
*C_UNIT 1.0 PF
*R_UNIT 1.0 OHM
*L_UNIT 1.0 UH

*NAME_MAP
*1 IN1
*2 net1a
*3 blk1|IN2
*4 blk1|net2
*6 net3b
*7 OUT1

623
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 623 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

*POWER_NETS VDD
*GND_NETS VSS

*PORTS
*7 O *L 0.05
*1 I *S 5000 5000

*D_NET *6 0.49505
*CONN
*I blk1|I103:Z O *D BUFFD3
*I I104:I I *L 0.044
*CAP
1 *6:3 0.011307
2 I104:I 0.128838
3 *6:1 0.140145
4 blk1|I103:Z 0.03076
5 *6:2 0.140
*RES
1 *6:3 *6:1 7.128
2 *6:1 I104:I 2.55215
3 blk1|I103:Z *6:2 4.351
4 *6:2 *6:3 2.4376
*END

*D_NET *2 0.040873:0.049862:0.058869
*CONN
*I I101:Z O *D BUFFD3
*I blk1|I102:I I
*CAP
1 *2 0.02
2 blk1|I102:I 0.020873:0.029862:0.038869
*END

*D_NET *1 0.064
*CONN
*P *1 I *D UNKNOWN_DRIVER
*I I101:I I
*CAP
1 I101:I 0.014
2 *1 0.05
*RES
1 *1 I101:I 4.25
*END

*D_NET *5 0.05
*CONN
*I I104:Z O *D BUFFD3
*P *5 O *L 0.05
*END

*R_NET *4 *V 90 0.040873:0.049862:0.058869
*DRIVER blk1|I102:Z

624
Copyright © 2010 IEEE all rights reserved.

– 624 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

*CELL BUFFD3
*C2_R1_C1 0.0 0.0 0.040873:0.049862:0.058869
*LOADS
*RC blk1|I103:I 0.0
*END

11.4.7 A SPEF file header section with *VARIATION_PARAMETERS definition

The following SPEF segment shows how variation parameters are represented:

*VARIATION_PARAMETERS

0 "field_oxide_T" D X X 0.080 1

1 "poly_T" D X X 0.030 1

2 "poly_W" D X X 0.023 1

3 "Diel1_T" X X D 0.050 1
4 "metal1_T" X N X 0.050 1
5 "metal1_W" X N X 0.030 1
6 CRT1
7 CRT2
27.0000

11.4.8 CAP and RES statements with sensitivity information in a SPEF file

The following SPEF segment shows how sensitivity information is specified:

*CAP
1 n1_n2:I 0.00471916 *SC 0:-0.005 1:0.029 2:0.026 4:0.146
 5:0.089

*RES
1 p1:A p3:Z 2.50093 *SC 4:0.900 5:0.531 6:0.00321 7:-0.00021

625
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 625 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Annex A
(normative)

Implementation requirements
Part of the DPCS strategy is to create a problem-free “plug-and-play” interoperability among DPCMs and
applications that may have been created by different vendors with different compilers and linkers. Both
linklevel and source-code portability are required.

The following rules constitute a practical common denominator that is expected to provide the necessary
interoperability across a wide range of potential tool configurations. Although currently there are no formal
compliance requirements, violation of these guidelines may result in failure to interoperate correctly with
other software.

A.1 Compiler limits
The bracketed number after each quantity is the minimum level of support required of DPCS
implementation.

Any given compiler implementation may support values in excess of these limits. A developer shall not
exceed these limits (even if a particular compiler allows it) because the resulting code may fail to be
interoperable in some configurations.

Implementations shall be able to translate and execute a program that contains at least one instance of every
one of the following limits:

a) Nesting levels of compound statements, iteration control structures, and selection control
structures [15].

b) Nesting levels of conditional inclusion [8].

c) Nesting levels of parenthesized declarators within a full declarator [31].

d) Nesting levels of parenthesized expressions within a full expression [32].

e) Number of dimensions of an array [255].

f) Pointer, array, and function declarators (in any combinations) modifying an arithmetic, a structure,
a union, or an incomplete type in a declaration [12].

g) Significant initial characters in an internal identifier or macro name [31].

h) Significant initial characters in an external identifier [31].

i) External identifiers in one translation unit [511].

j) Identifiers with block scope declared in one block [127].

k) Macro identifiers simultaneously defined in one translation unit [1024].

l) Parameters in one function definition [31].

m) Arguments in one function call [31].

626
Copyright © 2010 IEEE all rights reserved.

– 626 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

n) Parameters in one macro definition [31].

o) Arguments in one macro invocation [31].

p) Characters in one logical source line [509].

q) Characters in a character string literal or wide string literal (after concatenation) [509].

r) Bytes in an object (in a hosted environment only) [32767].

s) Nesting levels for #include files [8].

t) caselabels for a switchstatement (excluding those for any nested switchstatements) [257].

u) Members in a single structure or union [127].

v) Enumeration constants in a single enumeration [127].

w) Levels of nested structure or union definitions in a single struct-declaration-list [15].

A.2 Constants and variables
The following lists the limits for constants and variables within DCL:

— A DCL INTEGER shall be of type int native to the C compiler of a given platform and be able to
represent a number between –2 147 483 647 and +2 147 483 647.

— A DCL NUMBER:

1) When used in PASSED or RESULT clauses of EXPOSE, INTERNAL, EXTERNAL, CALC,
or ASSIGN statements, itshall be a type double native to the C compiler of a given platform
and be able to represent a number with 10 significant digits (invariant across conversions
to/from internal representation) between 1E–37 and 1E+37.

2) When used in table data and values for the delay, slew, or check structures, it shall be a type
float native to the C compiler of a given platform and be able to represent a number with six
significant digits (invariant across conversions to/from internal representation) between
1E–37 and 1E+37.

— A DCL STRING literal shall be any valid C-string ≤509 bytes in length (after concatenation).

— A DCL PIN, PINLIST, or VOID shall be of type pointer native to the C compiler of a given
platform. The developer cannot make assumptions regarding the size of pointer objects, because
the number of bits in a pointer may vary among platforms.

— A DCL DOUBLE shall be of type double native to the C compiler of a given platform and be able
to represent a number with 10 significant digits (invariant across conversions to/from internal
representation) between 1E–37 and 1E+37.

— A DCL FLOAT shall be of type float native to the C compiler of a given platform and be able to
represent a number with six significant digits (invariant across conversions to/from internal
representation) between 1E–37 and 1E+37.

627
Copyright © 2010 IEEE all rights reserved.

IEC 61523-1:2012
IEEE Std 1481-2009 – 627 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

A.3 Interface function coding requirements
C interfacing shall follow ISO/IEC 9899:1990.

628
Copyright © 2010 IEEE all rights reserved.

– 628 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

Annex B

(informative)

IEEE List of Participants

At the time this trial-use standard was submitted to the IEEE-SA Standards Board, the Integrated Circuit
(IC) Open Library Architecture (OLA) Working Group had the following membership:

Harry J. Beatty III, Chair
Timothy J. Ehrler, Vice Chair

Sandeep Bhutani
Shir-Shen Chang
Sumit DasGupta
Antenor de Carvalho
Stacy Doss
Martin Foltin
Mark Hahn

Robert C. Kezer
Archie Lachner
Timothy Lehner
ChiYuan Lo
Daniel Moritz
Joseph Morrell

Tina Nevin
Steve Rayko
Bernard Sheehan
Jayesh Siddhiwala
Olivier Touzet
Emre Tuncer
Jim Wilmore

The following members of the balloting committee voted on this trial-use standard. Balloters may have
voted for approval, disapproval, or abstention.

Harry J. Beatty III
Victor Berman
Keith Chow
Ellis Cohen
Thomas Dineen

Timothy J. Ehrler
Randall Groves
Werner Hoelzl
Charles Ngethe
Ulrich Pohl

Bartian Sayogo
Stephen Schwarm
Walter Struppler
Srinivasa Vemuru
Oren Yuen

When the IEEE-SA Standards Board approved this standard on 9 December 2009, it had the following
membership:

Robert M. Grow, Chair
Thomas Prevost, Vice Chair
Steve M. Mills, Past Chair
Judith Gorman, Secretary

John Barr
Karen Bartleson
Victor Berman
Ted Burse
Richard DeBlasio
Andy Drozd
Mark Epstein

Alexander Gelman
Jim Hughes
Richard H. Hulett
Young Kyun Kim
Joseph L. Koepfinger*
John Kulick

David J. Law
Ted Olsen
Glenn Parsons
Ronald C. Petersen
Narayanan Ramachandran
Jon Walter Rosdahl
Sam Sciacca

*Member Emeritus

IEC 61523-1:2012
IEEE Std 1481-2009 – 629 –

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEEE Std 1481-2009
IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)

Also included are the following nonvoting IEEE-SA Standards Board liaisons:

Howard L. Wolfman, TAB Representative
Michael Janezic, NIST Representative

Satish K. Aggarwal, NRC Representative

Lorraine Patsco
IEEE Standards Program Manager, Document Development

Michael D. Kipness
IEEE Standards Program Manager, Technical Program Development

628
Copyright © 2010 IEEE all rights reserved.

– 630 –
IEC 61523-1:2012

IEEE Std 1481-2009

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

3, rue de Varembé
PO Box 131
CH-1211 Geneva 20
Switzerland

Tel: + 41 22 919 02 11
Fax: + 41 22 919 03 00
info@iec.ch
www.iec.ch

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

	CONTENTS
	\376\377�1� �O�v�e�r�v�i�e�w
	\376\377�1�.�1� �S�c�o�p�e
	\376\377�1�.�2� �P�u�r�p�o�s�e
	\376\377�1�.�3� �I�n�t�r�o�d�u�c�t�i�o�n

	\376\377�2� �N�o�r�m�a�t�i�v�e� �r�e�f�e�r�e�n�c�e�s
	\376\377�3� �D�e�f�i�n�i�t�i�o�n�s
	\376\377�4� �A�c�r�o�n�y�m�s� �a�n�d� �a�b�b�r�e�v�i�a�t�i�o�n�s
	\376\377�5� �T�y�p�o�g�r�a�p�h�i�c�a�l� �c�o�n�v�e�n�t�i�o�n�s
	\376\377�5�.�1� �S�y�n�t�a�c�t�i�c� �e�l�e�m�e�n�t�s
	\376\377�5�.�2� �C�o�n�v�e�n�t�i�o�n�s

	\376\377�6� �D�P�C�S� �f�l�o�w
	\376\377�6�.�1� �O�v�e�r�v�i�e�w
	\376\377�6�.�1�.�1� �P�r�o�c�e�d�u�r�a�l� �i�n�t�e�r�f�a�c�e
	\376\377�6�.�1�.�2� �G�l�o�b�a�l� �p�o�l�i�c�i�e�s� �a�n�d� �c�o�n�v�e�n�t�i�o�n�s

	\376\377�6�.�2� �F�l�o�w� �o�f� �c�o�n�t�r�o�l
	\376\377�6�.�3� �D�P�C�M ��a�p�p�l�i�c�a�t�i�o�n� �r�e�l�a�t�i�o�n�s�h�i�p�s
	\376\377�6�.�3�.�1� �T�e�c�h�n�o�l�o�g�y� �l�i�b�r�a�r�y
	\376\377�6�.�3�.�2� �S�u�b�r�u�l�e

	\376\377�6�.�4� �I�n�t�e�r�o�p�e�r�a�b�i�l�i�t�y

	\376\377�7� �D�e�l�a�y� �c�a�l�c�u�l�a�t�i�o�n� �l�a�n�g�u�a�g�e� �(�D�C�L�)
	\376\377�7�.�1� �C�h�a�r�a�c�t�e�r� �s�e�t
	\376\377�7�.�2� �L�e�x�i�c�a�l� �e�l�e�m�e�n�t�s
	\376\377�7�.�2�.�1� �W�h�i�t�e�s�p�a�c�e
	\376\377�7�.�2�.�2� �C�o�m�m�e�n�t�s
	\376\377�7�.�2�.�3� �T�o�k�e�n�s
	\376\377�7�.�2�.�3�.�1� �K�e�y�w�o�r�d
	\376\377�7�.�2�.�3�.�2� �I�d�e�n�t�i�f�i�e�r
	\376\377�7�.�2�.�3�.�3� �D�o�u�b�l�e� �q�u�o�t�e�d� �c�h�a�r�a�c�t�e�r� �s�e�q�u�e�n�c�e
	\376\377�7�.�2�.�3�.�4� �P�r�e�d�e�f�i�n�e�d� �r�e�f�e�r�e�n�c�e�s� �t�o� �S�t�a�n�d�a�r�d� �S�t�r�u�c�t�u�r�e� �f�i�e�l�d�s
	\376\377�7�.�2�.�3�.�5� �C�o�m�p�i�l�e�r� �g�e�n�e�r�a�t�e�d� �p�r�e�d�e�f�i�n�e�d� �i�d�e�n�t�i�f�i�e�r�s
	\376\377�7�.�2�.�3�.�6� �C�o�n�s�t�a�n�t
	\376\377�7�.�2�.�3�.�6�.�1� �P�r�e�d�e�f�i�n�e�d� �c�o�n�s�t�a�n�t� �N�I�L
	\376\377�7�.�2�.�3�.�6�.�2� �E�d�g�e� �t�y�p�e� �e�n�u�m�e�r�a�t�i�o�n�s
	\376\377�7�.�2�.�3�.�6�.�3� �P�r�o�p�a�g�a�t�i�o�n� �t�y�p�e� �e�n�u�m�e�r�a�t�i�o�n�s
	\376\377�7�.�2�.�3�.�6�.�4� �C�a�l�c�u�l�a�t�i�o�n� �m�o�d�e� �e�n�u�m�e�r�a�t�i�o�n
	\376\377�7�.�2�.�3�.�6�.�5� �T�e�s�t� �t�y�p�e� �e�n�u�m�e�r�a�t�i�o�n

	\376\377�7�.�2�.�3�.�7� �S�t�r�i�n�g� �l�i�t�e�r�a�l
	\376\377�7�.�2�.�3�.�8� �O�p�e�r�a�t�o�r�s
	\376\377�7�.�2�.�3�.�9� �P�u�n�c�t�u�a�t�o�r
	\376\377�7�.�2�.�3�.�1�0� �N�a�m�e

	\376\377�7�.�2�.�4� �H�e�a�d�e�r� �n�a�m�e�s
	\376\377�7�.�2�.�5� �P�r�e�p�r�o�c�e�s�s�i�n�g� �d�i�r�e�c�t�i�v�e�s

	\376\377�7�.�3� �C�o�n�t�e�x�t
	\376\377�7�.�3�.�1� �S�p�a�c�e
	\376\377�7�.�3�.�2� �P�l�a�n�e
	\376\377�7�.�3�.�3� �C�o�n�t�e�x�t� �o�p�e�r�a�t�i�o�n
	\376\377�7�.�3�.�4� �L�i�b�r�a�r�y� �p�a�r�a�l�l�e�l�i�s�m
	\376\377�7�.�3�.�5� �A�p�p�l�i�c�a�t�i�o�n� �p�a�r�a�l�l�e�l�i�s�m

	\376\377�7�.�4� �D�a�t�a� �t�y�p�e�s
	\376\377�7�.�4�.�1� �B�a�s�e� �t�y�p�e�s
	\376\377�7�.�4�.�2� �N�a�t�i�v�e� �d�a�t�a� �t�y�p�e�s
	\376\377�7�.�4�.�3� �M�a�t�h�e�m�a�t�i�c�a�l� �c�a�l�c�u�l�a�t�i�o�n� �d�a�t�a� �t�y�p�e�s
	\376\377�7�.�4�.�3�.�1� �C� �t�y�p�e�s
	\376\377�7�.�4�.�3�.�2� �C�O�M�P�L�E�X� �t�y�p�e

	\376\377�7�.�4�.�4� �P�o�i�n�t�e�r� �d�a�t�a� �t�y�p�e�s
	\376\377�7�.�4�.�4�.�1� �S�T�R�I�N�G
	\376\377�7�.�4�.�4�.�2� �P�I�N
	\376\377�7�.�4�.�4�.�3� �P�I�N�L�I�S�T
	\376\377�7�.�4�.�4�.�4� �V�O�I�D

	\376\377�7�.�4�.�5� �A�g�g�r�e�g�a�t�e� �d�a�t�a� �t�y�p�e�s
	\376\377�7�.�4�.�5�.�1� �R�e�s�u�l�t� �t�y�p�e�s
	\376\377�7�.�4�.�5�.�1�.�1� �T�R�A�N�S�I�E�N�T� �a�t�t�r�i�b�u�t�e

	\376\377�7�.�4�.�5�.�2� �A�b�s�t�r�a�c�t� �t�y�p�e
	\376\377�7�.�4�.�5�.�3� �S�t�a�t�e�m�e�n�t� �t�y�p�e�s
	\376\377�7�.�4�.�5�.�3�.�1� �A�r�r�a�y� �t�y�p�e�s
	\376\377�7�.�4�.�5�.�3�.�2� �M�o�d�i�f�i�c�a�t�i�o�n� �o�f� �d�a�t�a
	\376\377�7�.�4�.�5�.�3�.�2�.�1� �V�a�r� �p�e�r�m�i�s�s�i�o�n�s

	\376\377�7�.�4�.�5�.�3�.�3� �T�y�p�e� �c�o�n�v�e�r�s�i�o�n�s
	\376\377�7�.�4�.�5�.�3�.�3�.�1� �I�m�p�l�i�c�i�t� �c�o�n�v�e�r�s�i�o�n�s
	\376\377�7�.�4�.�5�.�3�.�3�.�2� �E�x�p�l�i�c�i�t� �c�o�n�v�e�r�s�i�o�n�s
	\376\377�7�.�4�.�5�.�3�.�3�.�3� �A�b�s�t�r�a�c�t� �t�y�p�e� �c�o�n�v�e�r�s�i�o�n
	\376\377�7�.�4�.�5�.�3�.�3�.�4� �T�r�a�n�s�i�e�n�t� �c�o�n�v�e�r�s�i�o�n�s
	\376\377�7�.�4�.�5�.�3�.�3�.�5� �S�H�A�R�E�D� �a�t�t�r�i�b�u�t�e
	\376\377�7�.�4�.�5�.�3�.�3�.�6� �S�Y�N�C� �a�t�t�r�i�b�u�t�e

	\376\377�7�.�5� �I�d�e�n�t�i�f�i�e�r�s
	\376\377�7�.�5�.�1� �N�a�m�e� �s�p�a�c�e�s� �o�f� �i�d�e�n�t�i�f�i�e�r�s
	\376\377�7�.�5�.�2� �S�t�o�r�a�g�e� �d�u�r�a�t�i�o�n�s� �o�f� �o�b�j�e�c�t�s
	\376\377�7�.�5�.�3� �S�c�o�p�e� �o�f� �i�d�e�n�t�i�f�i�e�r�s
	\376\377�7�.�5�.�4� �L�i�n�k�a�g�e�s� �o�f� �i�d�e�n�t�i�f�i�e�r�s
	\376\377�7�.�5�.�4�.�1� �E�X�P�O�R�T
	\376\377�7�.�5�.�4�.�2� �I�M�P�O�R�T
	\376\377�7�.�5�.�4�.�3� �F�O�R�W�A�R�D
	\376\377�7�.�5�.�4�.�4� �O�P�T�I�O�N�A�L
	\376\377�7�.�5�.�4�.�5� �C�h�a�i�n�i�n�g� �o�f� �E�X�P�O�S�E� �i�d�e�n�t�i�f�i�e�r�s

	\376\377�7�.�6� �O�p�e�r�a�t�o�r� �d�e�s�c�r�i�p�t�i�o�n�s
	\376\377�7�.�6�.�1� �S�t�r�i�n�g� �p�r�e�f�i�x� �o�p�e�r�a�t�o�r
	\376\377�7�.�6�.�2� �E�x�p�l�i�c�i�t� �s�t�r�i�n�g� �p�r�e�f�i�x� �o�p�e�r�a�t�o�r
	\376\377�7�.�6�.�3� �E�m�b�e�d�d�e�d� �s�t�r�i�n�g� �p�r�e�f�i�x� �o�p�e�r�a�t�o�r
	\376\377�7�.�6�.�4� �S�t�r�i�n�g� �p�r�e�f�i�x� �s�e�m�a�n�t�i�c�s
	\376\377�7�.�6�.�5� �A�s�s�i�g�n�m�e�n�t� �o�p�e�r�a�t�o�r
	\376\377�7�.�6�.�6� �N�e�w� �o�p�e�r�a�t�o�r
	\376\377�7�.�6�.�6�.�1� �M�e�m�o�r�y� �m�a�n�a�g�e�m�e�n�t
	\376\377�7�.�6�.�6�.�2� �A�G�G�R�E�G�A�T�E� �d�i�r�e�c�t�i�v�e
	\376\377�7�.�6�.�6�.�3� �D�e�s�t�r�u�c�t�o�r� �s�t�a�t�e�m�e�n�t�s

	\376\377�7�.�6�.�7� �S�C�O�P�E� �o�p�e�r�a�t�o�r�(�s�)
	\376\377�7�.�6�.�8� �L�a�u�n�c�h� �o�p�e�r�a�t�o�r
	\376\377�7�.�6�.�9� �P�u�r�i�t�y� �o�p�e�r�a�t�o�r
	\376\377�7�.�6�.�1�0� �F�o�r�c�e� �o�p�e�r�a�t�o�r

	\376\377�7�.�7� �T�i�m�i�n�g� �p�r�o�p�a�g�a�t�i�o�n
	\376\377�7�.�7�.�1� �T�i�m�i�n�g� �c�h�e�c�k�s
	\376\377�7�.�7�.�2� �T�e�s�t� �m�o�d�e� �o�p�e�r�a�t�o�r�s
	\376\377�7�.�7�.�2�.�1� �C�G�H�T
	\376\377�7�.�7�.�2�.�1�.�1� �C�G�P�W

	\376\377�7�.�7�.�2�.�2� �C�G�S�T
	\376\377�7�.�7�.�2�.�3� �C�P�W
	\376\377�7�.�7�.�2�.�4� �C�S�T
	\376\377�7�.�7�.�2�.�5� �D�H�T
	\376\377�7�.�7�.�2�.�6� �D�I�F�F�E�R�E�N�T�I�A�L�_�S�K�E�W
	\376\377�7�.�7�.�2�.�7� �D�P�W
	\376\377�7�.�7�.�2�.�8� �D�S�T
	\376\377�7�.�7�.�2�.�9� �H�O�L�D
	\376\377�7�.�7�.�2�.�1�0� �N�O�C�H�A�N�G�E
	\376\377�7�.�7�.�2�.�1�1� �R�E�C�O�V�E�R�Y
	\376\377�7�.�7�.�2�.�1�2� �R�E�M�O�V�A�L
	\376\377�7�.�7�.�2�.�1�3� �S�E�T�U�P
	\376\377�7�.�7�.�2�.�1�4� �S�K�E�W

	\376\377�7�.�8� �E�x�p�r�e�s�s�i�o�n�s
	\376\377�7�.�8�.�1� �A�r�r�a�y� �s�u�b�s�c�r�i�p�t�i�n�g
	\376\377�7�.�8�.�2� �S�t�a�t�e�m�e�n�t� �c�a�l�l�s
	\376\377�7�.�8�.�3� �G�e�n�e�r�a�l� �s�y�n�t�a�x
	\376\377�7�.�8�.�4� �M�e�t�h�o�d� �s�t�a�t�e�m�e�n�t� �c�a�l�l�s
	\376\377�7�.�8�.�5� �A�s�s�i�g�n� �v�a�r�i�a�b�l�e� �r�e�f�e�r�e�n�c�e
	\376\377�7�.�8�.�6� �S�t�o�r�e� �v�a�r�i�a�b�l�e� �r�e�f�e�r�e�n�c�e
	\376\377�7�.�8�.�7� �M�a�t�h�e�m�a�t�i�c�a�l� �e�x�p�r�e�s�s�i�o�n�s
	\376\377�7�.�8�.�8� �M�a�t�h�e�m�a�t�i�c�a�l� �o�p�e�r�a�t�o�r�s
	\376\377�7�.�8�.�9� �D�i�s�c�r�e�t�e� �m�a�t�h� �e�x�p�r�e�s�s�i�o�n
	\376\377�7�.�8�.�1�0� �I�N�T� �d�i�s�c�r�e�t�e
	\376\377�7�.�8�.�1�1� �P�I�N�L�I�S�T� �d�i�s�c�r�e�t�e
	\376\377�7�.�8�.�1�2� �L�o�g�i�c�a�l� �e�x�p�r�e�s�s�i�o�n�s� �a�n�d� �o�p�e�r�a�t�o�r�s
	\376\377�7�.�8�.�1�3� �M�O�D�E� �e�x�p�r�e�s�s�i�o�n�s
	\376\377�7�.�8�.�1�3�.�1� �P�i�n� �r�a�n�g�e
	\376\377�7�.�8�.�1�3�.�2� �P�i�n� �r�a�n�g�e� �s�y�n�t�a�x
	\376\377�7�.�8�.�1�3�.�3� �P�i�n� �r�a�n�g�e� �s�e�m�a�n�t�i�c�s
	\376\377�7�.�8�.�1�3�.�4� �C�o�n�s�t�r�a�i�n�t�s

	\376\377�7�.�8�.�1�4� �E�m�b�e�d�d�e�d� �C� �c�o�d�e� �e�x�p�r�e�s�s�i�o�n�s
	\376\377�7�.�8�.�1�5� �C�o�m�p�u�t�a�t�i�o�n� �o�r�d�e�r
	\376\377�7�.�8�.�1�5�.�1� �P�r�e�c�e�d�e�n�c�e� �f�o�r� �m�a�t�h�e�m�a�t�i�c�a�l� �e�x�p�r�e�s�s�i�o�n�s
	\376\377�7�.�8�.�1�5�.�2� �P�r�e�c�e�d�e�n�c�e� �f�o�r� �l�o�g�i�c�a�l� �e�x�p�r�e�s�s�i�o�n�s
	\376\377�7�.�8�.�1�5�.�3� �P�a�s�s�e�d� �p�a�r�a�m�e�t�e�r�s
	\376\377�7�.�8�.�1�5�.�4� �W�H�E�N� �c�l�a�u�s�e
	\376\377�7�.�8�.�1�5�.�4�.�1� �B�r�e�a�k
	\376\377�7�.�8�.�1�5�.�4�.�2� �C�o�n�t�i�n�u�e

	\376\377�7�.�8�.�1�5�.�5� �R�E�P�E�A�T� �-� �U�N�T�I�L� �c�l�a�u�s�e
	\376\377�7�.�8�.�1�5�.�6� �W�H�I�L�E� �l�o�o�p�s
	\376\377�7�.�8�.�1�5�.�7� �F�O�R� �c�l�a�u�s�e
	\376\377�7�.�8�.�1�5�.�8� �L�O�C�K� �c�l�a�u�s�e
	\376\377�7�.�8�.�1�5�.�8�.�1� �W�R�I�T�E�_�L�O�C�K
	\376\377�7�.�8�.�1�5�.�8�.�2� �R�E�A�D�_�L�O�C�K
	\376\377�7�.�8�.�1�5�.�8�.�3� �W�A�I�T
	\376\377�7�.�8�.�1�5�.�8�.�4� �B�U�S�Y
	\376\377�7�.�8�.�1�5�.�8�.�5� �R�E�T�R�Y

	\376\377�7�.�9� �D�C�L� �m�a�t�h�e�m�a�t�i�c�a�l� �s�t�a�t�e�m�e�n�t�s
	\376\377�7�.�9�.�1� �S�t�a�t�e�m�e�n�t� �n�a�m�e�s
	\376\377�7�.�9�.�2� �C�l�a�u�s�e�s
	\376\377�7�.�9�.�2�.�1� �P�A�S�S�E�D� �c�l�a�u�s�e
	\376\377�7�.�9�.�2�.�2� �R�E�S�U�L�T� �c�l�a�u�s�e
	\376\377�7�.�9�.�2�.�3� �R�e�s�u�l�t� �p�r�o�t�o�t�y�p�e�s
	\376\377�7�.�9�.�2�.�3�.�1� �C�o�n�d�i�t�i�o�n�a�l� �l�o�g�i�c

	\376\377�7�.�9�.�2�.�4� �D�e�f�a�u�l�t� �v�a�r�i�a�b�l�e
	\376\377�7�.�9�.�2�.�5� �L�O�C�A�L� �c�l�a�u�s�e
	\376\377�7�.�9�.�2�.�5�.�1� �L�O�C�A�L� �c�o�n�d�i�t�i�o�n�a�l� �l�o�g�i�c
	\376\377�7�.�9�.�2�.�5�.�2� �L�o�c�a�l� �v�a�r�i�a�b�l�e�s
	\376\377�7�.�9�.�2�.�5�.�3� �L�o�c�a�l� �v�a�r�i�a�b�l�e� �d�e�f�i�n�i�t�i�o�n
	\376\377�7�.�9�.�2�.�5�.�4� �L�o�c�a�l� �c�l�a�u�s�e� �p�l�a�c�e�m�e�n�t

	\376\377�7�.�9�.�2�.�6� �D�E�F�A�U�L�T� �c�l�a�u�s�e

	\376\377�7�.�9�.�3� �M�o�d�i�f�i�e�r�s
	\376\377�7�.�9�.�3�.�1� �S�t�a�t�e�m�e�n�t� �p�u�r�i�t�y
	\376\377�7�.�9�.�3�.�2� �S�t�a�t�e�m�e�n�t� �c�o�n�s�i�s�t�e�n�c�y
	\376\377�7�.�9�.�3�.�3� �L�o�c�k�i�n�g� �m�o�d�i�f�i�e�r�s
	\376\377�7�.�9�.�3�.�3�.�1� �A�U�T�O�L�O�C�K
	\376\377�7�.�9�.�3�.�3�.�2� �L�O�C�K

	\376\377�7�.�9�.�3�.�4� �C�o�n�t�e�x�t� �m�o�d�i�f�i�e�r�s
	\376\377�7�.�9�.�3�.�4�.�1� �C�O�M�M�O�N

	\376\377�7�.�9�.�3�.�5� �A�c�c�e�s�s� �m�o�d�i�f�i�e�r�s
	\376\377�7�.�9�.�3�.�5�.�1� �S�H�A�R�E�D
	\376\377�7�.�9�.�3�.�5�.�2� �S�Y�N�C

	\376\377�7�.�9�.�4� �P�r�o�t�o�t�y�p�e�s
	\376\377�7�.�9�.�4�.�1� �P�r�o�t�o�t�y�p�e� �m�o�d�i�f�i�e�r�s
	\376\377�7�.�9�.�4�.�2� �T�A�B�L�E�D�E�F� �p�r�o�t�o�t�y�p�e
	\376\377�7�.�9�.�4�.�3� �L�O�A�D�_�T�A�B�L�E�,� �U�N�L�O�A�D�_�T�A�B�L�E� �a�n�d� �W�R�I�T�E�_�T�A�B�L�E� �p�r�o�t�o�t�y�p�e�s
	\376\377�7�.�9�.�4�.�4� �A�D�D�_�R�O�W� �a�n�d� �D�E�L�E�T�E�_�R�O�W� �p�r�o�t�o�t�y�p�e�s
	\376\377�7�.�9�.�4�.�5� �D�E�L�A�Y� �a�n�d� �S�L�E�W� �p�r�o�t�o�t�y�p�e�s
	\376\377�7�.�9�.�4�.�6� �C�H�E�C�K� �p�r�o�t�o�t�y�p�e
	\376\377�7�.�9�.�4�.�7� �S�U�B�M�O�D�E�L� �p�r�o�t�o�t�y�p�e

	\376\377�7�.�9�.�5� �S�t�a�t�e�m�e�n�t� �f�a�i�l�u�r�e
	\376\377�7�.�9�.�6� �T�y�p�e� �d�e�f�i�n�i�t�i�o�n� �s�t�a�t�e�m�e�n�t�s
	\376\377�7�.�9�.�6�.�1� �T�Y�P�E�D�E�F
	\376\377�7�.�9�.�6�.�1�.�1� �T�Y�P�E�D�E�F� �R�E�S�U�L�T� �c�l�a�u�s�e

	\376\377�7�.�9�.�7� �I�n�t�e�r�f�a�c�i�n�g� �s�t�a�t�e�m�e�n�t�s
	\376\377�7�.�9�.�7�.�1� �E�X�P�O�S�E� �s�t�a�t�e�m�e�n�t
	\376\377�7�.�9�.�7�.�1�.�1� �F�I�R�S�T� �m�o�d�i�f�i�e�r
	\376\377�7�.�9�.�7�.�1�.�2� �L�E�A�D�I�N�G� �m�o�d�i�f�i�e�r
	\376\377�7�.�9�.�7�.�1�.�3� �T�R�A�I�L�I�N�G� �m�o�d�i�f�i�e�r
	\376\377�7�.�9�.�7�.�1�.�4� �L�A�S�T� �m�o�d�i�f�i�e�r

	\376\377�7�.�9�.�7�.�2� �E�X�T�E�R�N�A�L� �s�t�a�t�e�m�e�n�t
	\376\377�7�.�9�.�7�.�2�.�1� �P�R�O�X�Y

	\376\377�7�.�9�.�7�.�3� �I�N�T�E�R�N�A�L� �s�t�a�t�e�m�e�n�t

	\376\377�7�.�9�.�8� �D�C�L� �t�o� �C� �c�o�m�m�u�n�i�c�a�t�i�o�n
	\376\377�7�.�9�.�8�.�1� �B�u�i�l�t�-�i�n� �l�a�b�e�l
	\376\377�7�.�9�.�8�.�2� �d�c�m�_�r�c

	\376\377�7�.�9�.�9� �C�o�n�s�t�a�n�t� �s�t�a�t�e�m�e�n�t
	\376\377�7�.�9�.�1�0� �C�a�l�c�u�l�a�t�i�o�n� �s�t�a�t�e�m�e�n�t�s
	\376\377�7�.�9�.�1�0�.�1� �C�A�L�C� �s�t�a�t�e�m�e�n�t
	\376\377�7�.�9�.�1�0�.�2� �A�S�S�I�G�N� �s�t�a�t�e�m�e�n�t
	\376\377�7�.�9�.�1�0�.�3� �D�E�L�A�Y� �s�t�a�t�e�m�e�n�t
	\376\377�7�.�9�.�1�0�.�3�.�1� �E�A�R�L�Y� �a�n�d� �L�A�T�E� �c�l�a�u�s�e�s� �a�n�d� �r�e�s�u�l�t� �v�a�r�i�a�b�l�e�s
	\376\377�7�.�9�.�1�0�.�3�.�2� �D�E�F�A�U�L�T� �m�o�d�i�f�i�e�r� �f�o�r� �D�E�L�A�Y� �s�t�a�t�e�m�e�n�t�s

	\376\377�7�.�9�.�1�0�.�4� �S�L�E�W� �s�t�a�t�e�m�e�n�t
	\376\377�7�.�9�.�1�0�.�4�.�1� �E�A�R�L�Y� �a�n�d� �L�A�T�E� �c�l�a�u�s�e�s� �a�n�d� �r�e�s�u�l�t� �f�i�e�l�d�s
	\376\377�7�.�9�.�1�0�.�4�.�2� �D�E�F�A�U�L�T� �m�o�d�i�f�i�e�r� �f�o�r� �s�l�e�w� �s�t�a�t�e�m�e�n�t�s

	\376\377�7�.�9�.�1�0�.�5� �C�H�E�C�K

	\376\377�7�.�9�.�1�1� �M�E�T�H�O�D� �s�t�a�t�e�m�e�n�t
	\376\377�7�.�9�.�1�1�.�1� �D�e�f�a�u�l�t� �a�c�t�i�o�n� �s�t�a�t�e�m�e�n�t
	\376\377�7�.�9�.�1�1�.�2� �S�e�l�e�c�t�i�o�n� �o�f� �a�c�t�i�o�n� �s�t�a�t�e�m�e�n�t

	\376\377�7�.�1�0� �P�r�e�d�e�f�i�n�e�d� �t�y�p�e�s
	\376\377�7�.�1�0�.�1� �A�C�T�I�V�I�T�Y�_�H�I�S�T�O�R�Y�_�T�Y�P�E
	\376\377�7�.�1�0�.�1�.�1� �n�e�x�t
	\376\377�7�.�1�0�.�1�.�2� �r�e�f�o�b�j
	\376\377�7�.�1�0�.�1�.�3� �r�e�s�e�r�v�e�d
	\376\377�7�.�1�0�.�1�.�4� �a�c�t�i�v�i�t�y�C�o�d�e

	\376\377�7�.�1�0�.�2� �H�I�S�T�O�R�Y�_�T�Y�P�E
	\376\377�7�.�1�0�.�2�.�1� �i�n�f�o
	\376\377�7�.�1�0�.�2�.�2� �a�c�t�i�v�i�t�y
	\376\377�7�.�1�0�.�2�.�3� �k�i�n�d

	\376\377�7�.�1�0�.�3� �L�O�A�D�_�H�I�S�T�O�R�Y�_�T�Y�P�E
	\376\377�7�.�1�0�.�3�.�1� �r�u�l�e�H�i�s�t�o�r�y
	\376\377�7�.�1�0�.�3�.�2� �r�e�s�e�r�v�e�d�1�,� �r�e�s�e�r�v�e�d�2�,� �r�e�s�e�r�v�e�d�3�,� �r�e�s�e�r�v�e�d�4
	\376\377�7�.�1�0�.�3�.�3� �t�e�c�h�N�a�m�e

	\376\377�7�.�1�0�.�4� �C�E�L�L�_�L�I�S�T�_�T�Y�P�E
	\376\377�7�.�1�0�.�5� �T�E�C�H�_�T�Y�P�E
	\376\377�7�.�1�0�.�5�.�1� �T�E�C�H�_�T�Y�P�E� �f�i�e�l�d�:� �n�a�m�e
	\376\377�7�.�1�0�.�5�.�2� �T�E�C�H�_�T�Y�P�E� �f�i�e�l�d�:� �D�E�F�A�U�L�T
	\376\377�7�.�1�0�.�5�.�3� �T�E�C�H�_�T�Y�P�E� �f�i�e�l�d�s�:� �d�c�m�I�n�f�o� �a�n�d� �r�e�s�e�r�v�e�d

	\376\377�7�.�1�0�.�6� �D�E�L�A�Y�_�R�E�C�_�T�Y�P�E
	\376\377�7�.�1�0�.�7� �S�L�E�W�_�R�E�C�_�T�Y�P�E
	\376\377�7�.�1�0�.�8� �C�H�E�C�K�_�R�E�C�_�T�Y�P�E
	\376\377�7�.�1�0�.�9� �C�C�D�B�_�T�Y�P�E
	\376\377�7�.�1�0�.�1�0� �C�E�L�L�_�D�A�T�A�_�T�Y�P�E
	\376\377�7�.�1�0�.�1�1� �P�C�D�B�_�T�Y�P�E
	\376\377�7�.�1�0�.�1�2� �P�I�N�_�A�S�S�O�C�I�A�T�I�O�N
	\376\377�7�.�1�0�.�1�3� �P�A�T�H�_�D�A�T�A�_�T�Y�P�E
	\376\377�7�.�1�0�.�1�4� �S�T�D� �S�T�R�U�C�T

	\376\377�7�.�1�1� �P�r�e�d�e�f�i�n�e�d� �v�a�r�i�a�b�l�e�s
	\376\377�7�.�1�1�.�1� �A�R�G�V
	\376\377�7�.�1�1�.�2� �C�O�N�T�R�O�L�_�P�A�R�M

	\376\377�7�.�1�2� �B�u�i�l�t�-�i�n� �f�u�n�c�t�i�o�n� �c�a�l�l�s
	\376\377�7�.�1�2�.�1� �A�B�S
	\376\377�7�.�1�2�.�2� �C�o�m�p�l�e�x� �n�u�m�b�e�r� �c�o�m�p�o�n�e�n�t�s
	\376\377�7�.�1�2�.�2�.�1� �I�M�A�G�_�P�A�R�T
	\376\377�7�.�1�2�.�2�.�2� �R�E�A�L�_�P�A�R�T

	\376\377�7�.�1�2�.�3� �E�X�P�A�N�D
	\376\377�7�.�1�2�.�4� �A�r�r�a�y� �f�u�n�c�t�i�o�n�s
	\376\377�7�.�1�2�.�4�.�1� �I�S�_�E�M�P�T�Y
	\376\377�7�.�1�2�.�4�.�2� �N�U�M�_�D�I�M�E�N�S�I�O�N�S
	\376\377�7�.�1�2�.�4�.�3� �N�U�M�_�E�L�E�M�E�N�T�S

	\376\377�7�.�1�2�.�5� �M�e�s�s�a�g�i�n�g� �f�u�n�c�t�i�o�n�s
	\376\377�7�.�1�2�.�5�.�1� �I�S�S�U�E�_�M�E�S�S�A�G�E
	\376\377�7�.�1�2�.�5�.�1�.�1� �A�r�g�u�m�e�n�t�s
	\376\377�7�.�1�2�.�5�.�1�.�2� �R�e�s�u�l�t

	\376\377�7�.�1�2�.�5�.�2� �P�R�I�N�T�_�V�A�L�U�E
	\376\377�7�.�1�2�.�5�.�3� �S�O�U�R�C�E�_�S�T�R�A�N�D�S�_�M�S�B
	\376\377�7�.�1�2�.�5�.�4� �S�O�U�R�C�E�_�S�T�R�A�N�D�S�_�L�S�B
	\376\377�7�.�1�2�.�5�.�5� �S�I�N�K�_�S�T�R�A�N�D�S�_�M�S�B
	\376\377�7�.�1�2�.�5�.�6� �S�I�N�K�_�S�T�R�A�N�D�S�_�L�S�B

	\376\377�7�.�1�3� �T�a�b�l�e�s
	\376\377�7�.�1�3�.�1� �T�A�B�L�E�D�E�F� �s�t�a�t�e�m�e�n�t
	\376\377�7�.�1�3�.�1�.�1� �Q�U�A�L�I�F�I�E�R�S� �c�l�a�u�s�e
	\376\377�7�.�1�3�.�1�.�2� �D�A�T�A� �c�l�a�u�s�e
	\376\377�7�.�1�3�.�1�.�3� �K�E�Y� �c�l�a�u�s�e
	\376\377�7�.�1�3�.�1�.�4� �O�V�E�R�R�I�D�E� �m�o�d�i�f�i�e�r
	\376\377�7�.�1�3�.�1�.�5� �S�U�P�P�R�E�S�S� �m�o�d�i�f�i�e�r
	\376\377�7�.�1�3�.�1�.�6� �D�E�S�C�R�I�P�T�O�R� �m�o�d�i�f�i�e�r
	\376\377�7�.�1�3�.�1�.�7� �D�Y�N�A�M�I�C� �m�o�d�i�f�i�e�r
	\376\377�7�.�1�3�.�1�.�8� �D�E�F�A�U�L�T� �c�l�a�u�s�e

	\376\377�7�.�1�3�.�2� �T�a�b�l�e� �v�i�s�i�b�i�l�i�t�y� �r�u�l�e�s
	\376\377�7�.�1�3�.�3� �T�A�B�L�E� �s�t�a�t�e�m�e�n�t
	\376\377�7�.�1�3�.�3�.�1� �S�t�a�t�i�c� �t�a�b�l�e�s
	\376\377�7�.�1�3�.�3�.�2� �P�R�O�T�O�T�Y�P�E�_�R�E�C�O�R�D� �r�o�w
	\376\377�7�.�1�3�.�3�.�3� �D�E�F�A�U�L�T� �r�o�w
	\376\377�7�.�1�3�.�3�.�4� �D�e�f�a�u�l�t� �o�p�e�r�a�t�o�r� �a�s� �t�a�b�l�e� �r�o�w� �q�u�a�l�i�f�i�e�r
	\376\377�7�.�1�3�.�3�.�5� �D�e�f�a�u�l�t� �o�p�e�r�a�t�o�r� �i�n� �a� �t�a�b�l�e� �r�e�f�e�r�e�n�c�e
	\376\377�7�.�1�3�.�3�.�6� �S�t�r�i�n�g� �p�r�e�f�i�x� �o�p�e�r�a�t�o�r
	\376\377�7�.�1�3�.�3�.�7� �Q�u�a�l�i�f�i�e�r� �m�a�t�c�h�i�n�g
	\376\377�7�.�1�3�.�3�.�8� �C�O�M�P�R�E�S�S�E�D� �m�o�d�i�f�i�e�r
	\376\377�7�.�1�3�.�3�.�9� �D�u�p�l�i�c�a�t�e� �t�a�b�l�e� �r�o�w�s
	\376\377�7�.�1�3�.�3�.�1�0� �D�y�n�a�m�i�c� �t�a�b�l�e�s
	\376\377�7�.�1�3�.�3�.�1�0�.�1� �D�y�n�a�m�i�c� �t�a�b�l�e� �s�y�n�t�a�x
	\376\377�7�.�1�3�.�3�.�1�0�.�2� �L�i�m�i�t�a�t�i�o�n�s
	\376\377�2�.�1�.�1�.�1�.�1� �D�y�n�a�m�i�c� �t�a�b�l�e� �m�a�n�i�p�u�l�a�t�i�o�n

	\376\377�7�.�1�3�.�4� �L�O�A�D�_�T�A�B�L�E� �s�t�a�t�e�m�e�n�t
	\376\377�7�.�1�3�.�4�.�1� �R�e�s�t�r�i�c�t�i�o�n�s
	\376\377�7�.�1�3�.�4�.�2� �T�A�B�L�E�D�E�F� �c�l�a�u�s�e
	\376\377�7�.�1�3�.�4�.�3� �R�e�s�u�l�t� �v�a�l�u�e
	\376\377�7�.�1�3�.�4�.�4� �F�I�L�E� �c�l�a�u�s�e
	\376\377�7�.�1�3�.�4�.�5� �S�U�F�F�I�X� �c�l�a�u�s�e
	\376\377�7�.�1�3�.�4�.�6� �F�I�L�T�E�R� �c�l�a�u�s�e
	\376\377�7�.�1�3�.�4�.�7� �P�A�T�H� �c�l�a�u�s�e
	\376\377�7�.�1�3�.�4�.�8� �D�E�F�A�U�L�T� �c�l�a�u�s�e
	\376\377�7�.�1�3�.�4�.�9� �R�E�P�L�A�C�E� �m�o�d�i�f�i�e�r
	\376\377�7�.�1�3�.�4�.�1�0� �D�e�s�c�r�i�p�t�o�r

	\376\377�7�.�1�3�.�5� �U�N�L�O�A�D�_�T�A�B�L�E� �s�t�a�t�e�m�e�n�t
	\376\377�7�.�1�3�.�5�.�1� �D�e�s�c�r�i�p�t�o�r
	\376\377�7�.�1�3�.�5�.�2� �A�P�P�E�N�D�A�B�L�E� �m�o�d�i�f�i�e�r
	\376\377�7�.�1�3�.�5�.�3� �B�I�N�A�R�Y� �m�o�d�i�f�i�e�r
	\376\377�7�.�1�3�.�5�.�4� �F�R�E�E�_�S�P�A�C�E� �m�o�d�i�f�i�e�r
	\376\377�7�.�1�3�.�5�.�5� �I�N�T�E�R�N�A�L� �m�o�d�i�f�i�e�r

	\376\377�7�.�1�3�.�6� �W�R�I�T�E�_�T�A�B�L�E� �s�t�a�t�e�m�e�n�t
	\376\377�7�.�1�3�.�6�.�1� �D�e�s�c�r�i�p�t�o�r

	\376\377�7�.�1�3�.�7� �A�D�D�_�R�O�W� �s�t�a�t�e�m�e�n�t
	\376\377�7�.�1�3�.�7�.�1� �T�A�B�L�E�D�E�F� �c�l�a�u�s�e
	\376\377�7�.�1�3�.�7�.�2� �P�a�s�s�e�d� �p�a�r�a�m�e�t�e�r�s
	\376\377�7�.�1�3�.�7�.�3� �D�E�F�A�U�L�T� �c�l�a�u�s�e
	\376\377�7�.�1�3�.�7�.�4� �R�E�P�L�A�C�E� �m�o�d�i�f�i�e�r
	\376\377�7�.�1�3�.�7�.�5� �R�e�s�u�l�t� �v�a�l�u�e
	\376\377�7�.�1�3�.�7�.�5�.�1� �D�e�s�c�r�i�p�t�o�r

	\376\377�7�.�1�3�.�8� �D�E�L�E�T�E�_�R�O�W� �s�t�a�t�e�m�e�n�t
	\376\377�7�.�1�3�.�8�.�1� �T�A�B�L�E�D�E�F� �c�l�a�u�s�e
	\376\377�7�.�1�3�.�8�.�2� �P�a�s�s�e�d� �p�a�r�a�m�e�t�e�r�s
	\376\377�7�.�1�3�.�8�.�3� �R�e�s�u�l�t� �v�a�l�u�e
	\376\377�7�.�1�3�.�8�.�4� �D�E�F�A�U�L�T� �c�l�a�u�s�e
	\376\377�7�.�1�3�.�8�.�4�.�1� �D�e�s�c�r�i�p�t�o�r

	\376\377�7�.�1�4� �B�u�i�l�t�-�i�n� �l�i�b�r�a�r�y� �f�u�n�c�t�i�o�n�s
	\376\377�7�.�1�4�.�1� �N�u�m�e�r�i�c� �c�o�n�v�e�r�s�i�o�n� �f�u�n�c�t�i�o�n�s
	\376\377�7�.�1�4�.�1�.�1� �f�l�o�o�r
	\376\377�7�.�1�4�.�1�.�2� �i�f�l�o�o�r
	\376\377�7�.�1�4�.�1�.�3� �c�e�i�l
	\376\377�7�.�1�4�.�1�.�4� �i�c�e�i�l
	\376\377�7�.�1�4�.�1�.�5� �r�i�n�t
	\376\377�7�.�1�4�.�1�.�6� �r�o�u�n�d
	\376\377�7�.�1�4�.�1�.�7� �t�r�u�n�c
	\376\377�7�.�1�4�.�1�.�8� �i�t�r�u�n�c

	\376\377�7�.�1�4�.�2� �T�e�c�h�_�f�a�m�i�l�y� �f�u�n�c�t�i�o�n�s
	\376\377�7�.�1�4�.�2�.�1� �m�a�p�_�t�e�c�h�_�f�a�m�i�l�y
	\376\377�7�.�1�4�.�2�.�2� �c�u�r�r�e�n�t�_�t�e�c�h�_�t�y�p�e
	\376\377�7�.�1�4�.�2�.�3� �s�u�b�r�u�l�e�_�t�e�c�h�_�t�y�p�e
	\376\377�7�.�1�4�.�2�.�4� �i�s�_�e�x�p�o�s�e�_�i�n�_�t�e�c�h
	\376\377�7�.�1�4�.�2�.�5� �g�e�t�_�t�e�c�h�n�o�l�o�g�y�_�l�i�s�t

	\376\377�7�.�1�4�.�3� �T�r�i�g�o�n�o�m�e�t�r�i�c� �f�u�n�c�t�i�o�n�s
	\376\377�7�.�1�4�.�3�.�1� �c�o�s
	\376\377�7�.�1�4�.�3�.�2� �s�i�n
	\376\377�7�.�1�4�.�3�.�3� �t�a�n

	\376\377�7�.�1�4�.�4� �C�o�n�t�e�x�t� �m�a�n�i�p�u�l�a�t�i�o�n� �f�u�n�c�t�i�o�n�s
	\376\377�7�.�1�4�.�4�.�1� �n�e�w�_�p�l�a�n�e
	\376\377�7�.�1�4�.�4�.�2� �g�e�t�_�p�l�a�n�e�_�n�a�m�e
	\376\377�7�.�1�4�.�4�.�3� �g�e�t�_�s�p�a�c�e�_�n�a�m�e
	\376\377�7�.�1�4�.�4�.�4� �g�e�t�_�m�a�x�_�s�p�a�c�e�s
	\376\377�7�.�1�4�.�4�.�5� �g�e�t�_�m�a�x�_�p�l�a�n�e�s
	\376\377�7�.�1�4�.�4�.�6� �g�e�t�_�s�p�a�c�e�_�c�o�o�r�d�i�n�a�t�e
	\376\377�7�.�1�4�.�4�.�7� �g�e�t�_�p�l�a�n�e�_�c�o�o�r�d�i�n�a�t�e
	\376\377�7�.�1�4�.�4�.�8� �s�e�t�_�b�u�s�y�_�w�a�i�t

	\376\377�7�.�1�4�.�5� �D�e�b�u�g� �c�o�n�t�r�o�l�s
	\376\377�7�.�1�4�.�5�.�1� �c�h�a�n�g�e�_�d�e�b�u�g�_�l�e�v�e�l
	\376\377�7�.�1�4�.�5�.�2� �g�e�t�_�c�a�l�l�e�r�_�s�t�a�c�k

	\376\377�7�.�1�4�.�6� �U�t�i�l�i�t�y� �f�u�n�c�t�i�o�n�s
	\376\377�7�.�1�4�.�6�.�1� �G�E�T�_�L�O�A�D�_�H�I�S�T�O�R�Y
	\376\377�7�.�1�4�.�6�.�1�.�1� �l�o�a�d�H�i�s�t�o�r�y
	\376\377�7�.�1�4�.�6�.�1�.�2� �r�e�s�e�r�v�e�d

	\376\377�7�.�1�4�.�6�.�2� �G�E�T�_�C�E�L�L�_�L�I�S�T

	\376\377�7�.�1�4�.�7� �T�a�b�l�e� �f�u�n�c�t�i�o�n�s
	\376\377�7�.�1�4�.�7�.�1� �G�E�T�_�R�O�W�_�C�O�U�N�T
	\376\377�7�.�1�4�.�7�.�2� �S�T�E�P�_�T�A�B�L�E

	\376\377�7�.�1�4�.�8� �S�u�b�r�u�l�e� �c�o�n�t�r�o�l�s
	\376\377�7�.�1�4�.�8�.�1� �G�E�T�_�L�O�A�D�_�P�A�T�H
	\376\377�7�.�1�4�.�8�.�2� �G�E�T�_�R�U�L�E�_�N�A�M�E
	\376\377�7�.�1�4�.�8�.�3� �A�D�D�_�R�U�L�E
	\376\377�7�.�1�4�.�8�.�3�.�1� �r�u�l�e�N�a�m�e
	\376\377�7�.�1�4�.�8�.�3�.�2� �r�u�l�e�P�a�t�h
	\376\377�7�.�1�4�.�8�.�3�.�3� �t�a�b�l�e�P�a�t�h
	\376\377�7�.�1�4�.�8�.�3�.�4� �c�o�n�t�r�o�l�P�a�r�m

	\376\377�7�.�1�5� �L�i�b�r�a�r�y� �c�o�n�t�r�o�l� �s�t�a�t�e�m�e�n�t�s
	\376\377�7�.�1�5�.�1� �M�e�t�a�-�v�a�r�i�a�b�l�e�s
	\376\377�7�.�1�5�.�2� �T�E�C�H�_�F�A�M�I�L�Y
	\376\377�7�.�1�5�.�3� �R�U�L�E�N�A�M�E
	\376\377�7�.�1�5�.�4� �C�O�N�T�R�O�L�_�P�A�R�M
	\376\377�7�.�1�5�.�5� �S�U�B�R�U�L�E� �s�t�a�t�e�m�e�n�t
	\376\377�7�.�1�5�.�5�.�1� �O�P�T�I�O�N�A�L� �m�o�d�i�f�i�e�r
	\376\377�7�.�1�5�.�5�.�2� �R�U�L�E�_�P�A�T�H� �c�l�a�u�s�e
	\376\377�7�.�1�5�.�5�.�3� �T�A�B�L�E�_�P�A�T�H� �c�l�a�u�s�e

	\376\377�7�.�1�5�.�6� �P�a�t�h� �l�i�s�t� �e�x�p�a�n�s�i�o�n� �r�u�l�e�s
	\376\377�7�.�1�5�.�7� �S�U�B�R�U�L�E�S� �s�t�a�t�e�m�e�n�t
	\376\377�7�.�1�5�.�7�.�1� �F�I�L�E�_�P�A�T�H� �c�l�a�u�s�e
	\376\377�7�.�1�5�.�7�.�2� �F�I�L�E� �c�l�a�u�s�e

	\376\377�7�.�1�5�.�8� �C�o�n�t�r�o�l� �f�i�l�e
	\376\377�7�.�1�5�.�8�.�1� �D�i�r�e�c�t�i�v�e�s
	\376\377�7�.�1�5�.�8�.�2� �D�e�f�a�u�l�t� �r�e�c�o�r�d� �f�i�e�l�d�s
	\376\377�7�.�1�5�.�8�.�3� �L�o�a�d� �a�n�d� �d�e�f�a�u�l�t� �r�e�c�o�r�d� �f�i�e�l�d�s
	\376\377�7�.�1�5�.�8�.�4� �U�s�i�n�g� �a� �d�e�f�a�u�l�t� �v�a�l�u�e� �i�n� �t�h�e� �l�o�a�d� �o�r� �d�e�f�a�u�l�t� �r�e�c�o�r�d

	\376\377�7�.�1�5�.�9� �T�E�C�H�_�F�A�M�I�L�Y� �s�t�a�t�e�m�e�n�t
	\376\377�7�.�1�5�.�9�.�1� �T�E�C�H�_�F�A�M�I�L�Y� �n�a�m�e
	\376\377�7�.�1�5�.�9�.�2� �M�A�I�N� �o�p�t�i�o�n

	\376\377�7�.�1�5�.�1�0� �S�U�B�R�U�L�E� �a�n�d� �S�U�B�R�U�L�E�S� �s�t�a�t�e�m�e�n�t�s

	\376\377�7�.�1�6� �M�o�d�e�l�i�n�g
	\376\377�7�.�1�6�.�1� �T�y�p�e�s� �o�f� �m�o�d�e�l�i�n�g
	\376\377�7�.�1�6�.�1�.�1� �T�i�m�i�n�g
	\376\377�7�.�1�6�.�1�.�2� �F�u�n�c�t�i�o�n� �m�o�d�e�l�i�n�g
	\376\377�7�.�1�6�.�1�.�3� �V�e�c�t�o�r� �p�o�w�e�r� �a�n�d� �v�e�c�t�o�r� �t�i�m�i�n�g� �m�o�d�e�l�i�n�g

	\376\377�7�.�1�6�.�2� �M�o�d�e�l� �o�r�g�a�n�i�z�a�t�i�o�n
	\376\377�7�.�1�6�.�2�.�1� �M�O�D�E�L� �s�t�a�t�e�m�e�n�t
	\376\377�7�.�1�6�.�2�.�1�.�1� �M�o�d�e�l� �n�a�m�e� �m�a�t�c�h�i�n�g

	\376\377�7�.�1�6�.�3� �M�O�D�E�L�P�R�O�C� �s�t�a�t�e�m�e�n�t
	\376\377�7�.�1�6�.�3�.�1� �M�O�D�E�L�P�R�O�C� �f�l�o�w� �o�f� �c�o�n�t�r�o�l
	\376\377�7�.�1�6�.�3�.�2� �M�O�N�O�L�I�T�H�I�C� �m�o�d�i�f�i�e�r

	\376\377�7�.�1�6�.�4� �S�U�B�M�O�D�E�L� �s�t�a�t�e�m�e�n�t
	\376\377�7�.�1�6�.�4�.�1� �M�o�d�e�l� �c�o�n�s�i�s�t�e�n�c�y� �i�n�f�o�r�m�a�t�i�o�n
	\376\377�7�.�1�6�.�4�.�2� �T�h�e� �P�A�S�S�E�D� �c�l�a�u�s�e
	\376\377�7�.�1�6�.�4�.�3� �T�h�e� �R�E�S�U�L�T� �c�l�a�u�s�e
	\376\377�7�.�1�6�.�4�.�4� �K�E�Y� �c�l�a�u�s�e
	\376\377�7�.�1�6�.�4�.�5� �U�S�I�N�G� �c�l�a�u�s�e
	\376\377�7�.�1�6�.�4�.�6� �C�O�N�S�I�S�T�E�N�T� �c�l�a�u�s�e
	\376\377�7�.�1�6�.�4�.�7� �T�h�e� �E�N�D� �c�l�a�u�s�e

	\376\377�7�.�1�6�.�5� �M�o�d�e�l�i�n�g� �s�t�a�t�e�m�e�n�t�s
	\376\377�7�.�1�6�.�5�.�1� �P�A�T�H�_�S�E�P�A�R�A�T�O�R� �s�t�a�t�e�m�e�n�t
	\376\377�7�.�1�6�.�5�.�2� �P�A�T�H� �s�t�a�t�e�m�e�n�t
	\376\377�7�.�1�6�.�5�.�2�.�1� �V�A�R� �c�l�a�u�s�e
	\376\377�7�.�1�6�.�5�.�2�.�2� �P�a�t�h� �l�i�s�t
	\376\377�7�.�1�6�.�5�.�2�.�3� �F�R�O�M� �c�l�a�u�s�e
	\376\377�7�.�1�6�.�5�.�2�.�4� �T�O� �c�l�a�u�s�e
	\376\377�7�.�1�6�.�5�.�2�.�5� �P�R�O�P�A�G�A�T�I�O�N� �s�e�q�u�e�n�c�e
	\376\377�7�.�1�6�.�5�.�2�.�6� �D�a�t�a� �t�y�p�e� �s�e�q�u�e�n�c�e
	\376\377�7�.�1�6�.�5�.�2�.�7� �D�A�T�A�_�T�Y�P�E� �c�l�a�u�s�e
	\376\377�7�.�1�6�.�5�.�2�.�8� �S�O�U�R�C�E�_�S�T�R�A�N�D�S� �c�l�a�u�s�e
	\376\377�7�.�1�6�.�5�.�2�.�9� �S�I�N�K�_�S�T�R�A�N�D�S� �c�l�a�u�s�e
	\376\377�7�.�1�6�.�5�.�2�.�1�0� �R�O�U�T�E� �c�l�a�u�s�e

	\376\377�7�.�1�6�.�5�.�3� �B�U�S� �s�t�a�t�e�m�e�n�t
	\376\377�7�.�1�6�.�5�.�4� �T�E�S�T� �s�t�a�t�e�m�e�n�t
	\376\377�7�.�1�6�.�5�.�4�.�1� �C�o�m�p�a�r�e�_�l�i�s�t
	\376\377�7�.�1�6�.�5�.�4�.�2� �C�O�M�P�A�R�E� �c�l�a�u�s�e
	\376\377�7�.�1�6�.�5�.�4�.�3� �E�D�G�E�S� �c�l�a�u�s�e
	\376\377�7�.�1�6�.�5�.�4�.�4� �T�E�S�T�_�T�Y�P�E� �c�l�a�u�s�e
	\376\377�7�.�1�6�.�5�.�4�.�5� �C�H�E�C�K�S� �c�l�a�u�s�e
	\376\377�7�.�1�6�.�5�.�4�.�6� �M�E�T�H�O�D�S� �c�l�a�u�s�e
	\376\377�7�.�1�6�.�5�.�4�.�7� �S�T�O�R�E� �c�l�a�u�s�e

	\376\377�7�.�1�6�.�6� �T�E�S�T�_�B�U�S� �s�t�a�t�e�m�e�n�t
	\376\377�7�.�1�6�.�7� �I�N�P�U�T� �s�t�a�t�e�m�e�n�t
	\376\377�7�.�1�6�.�7�.�1� �P�r�o�p�a�g�a�t�i�o�n� �c�l�a�u�s�e
	\376\377�7�.�1�6�.�7�.�2� �M�E�T�H�O�D�S� �c�l�a�u�s�e
	\376\377�7�.�1�6�.�7�.�3� �S�T�O�R�E� �c�l�a�u�s�e
	\376\377�7�.�1�6�.�7�.�4� �K�E�Y� �s�t�o�r�e� �m�o�d�i�f�i�e�r

	\376\377�7�.�1�6�.�8� �O�U�T�P�U�T� �s�t�a�t�e�m�e�n�t
	\376\377�7�.�1�6�.�8�.�1� �M�E�T�H�O�D�S� �c�l�a�u�s�e
	\376\377�7�.�1�6�.�8�.�2� �S�T�O�R�E� �c�l�a�u�s�e

	\376\377�7�.�1�6�.�9� �D�O� �s�t�a�t�e�m�e�n�t
	\376\377�7�.�1�6�.�9�.�1� �D�O� �s�t�a�t�e�m�e�n�t� �s�c�o�p�e
	\376\377�7�.�1�6�.�9�.�2� �D�O� �s�t�a�t�e�m�e�n�t� �n�o�d�e�s
	\376\377�7�.�1�6�.�9�.�3� �L�o�o�p�i�n�g� �c�o�n�s�t�r�u�c�t�s
	\376\377�7�.�1�6�.�9�.�4� �F�O�R� �l�o�o�p�s
	\376\377�7�.�1�6�.�9�.�5� �W�H�I�L�E� �l�o�o�p�s
	\376\377�7�.�1�6�.�9�.�6� �R�E�P�E�A�T� �l�o�o�p�s
	\376\377�7�.�1�6�.�9�.�7� �B�R�E�A�K� �p�r�o�c�e�s�s�i�n�g
	\376\377�7�.�1�6�.�9�.�8� �C�O�N�T�I�N�U�E� �p�r�o�c�e�s�s�i�n�g
	\376\377�7�.�1�6�.�9�.�9� �S�t�a�t�e�m�e�n�t� �r�e�f�e�r�e�n�c�e
	\376\377�7�.�1�6�.�9�.�1�0� �D�O� �s�t�a�t�e�m�e�n�t� �b�r�a�c�e� �s�c�o�p�e
	\376\377�7�.�1�6�.�9�.�1�1� �N�o�d�e�_�s�e�q�u�e�n�c�e� �g�r�a�m�m�a�r
	\376\377�7�.�1�6�.�9�.�1�1�.�1� �N�O�D�E� �c�l�a�u�s�e
	\376\377�7�.�1�6�.�9�.�1�1�.�2� �C�O�N�D�_�N�O�D�E� �c�l�a�u�s�e
	\376\377�7�.�1�6�.�9�.�1�1�.�3� �P�I�N� �c�l�a�u�s�e
	\376\377�7�.�1�6�.�9�.�1�1�.�4� �R�E�P�L�A�C�E� �o�p�e�r�a�t�o�r
	\376\377�7�.�1�6�.�9�.�1�1�.�5� �P�R�I�M�I�T�I�V�E� �c�l�a�u�s�e
	\376\377�7�.�1�6�.�9�.�1�1�.�6� �M�O�D�I�F�I�E�R�S� �c�l�a�u�s�e
	\376\377�7�.�1�6�.�9�.�1�1�.�7� �O�B�J�T�Y�P�E� �c�l�a�u�s�e

	\376\377�7�.�1�6�.�9�.�1�2� �F�u�n�c�t�i�o�n�_�s�e�q�u�e�n�c�e� �g�r�a�m�m�a�r
	\376\377�7�.�1�6�.�9�.�1�2�.�1� �F�U�N�C�T�I�O�N� �c�l�a�u�s�e

	\376\377�7�.�1�6�.�9�.�1�3� �V�e�c�t�o�r�_�s�e�q�u�e�n�c�e� �g�r�a�m�m�a�r
	\376\377�7�.�1�6�.�9�.�1�4� �V�E�C�T�O�R� �c�l�a�u�s�e
	\376\377�7�.�1�6�.�9�.�1�5� �I�M�P�O�R�T� �a�n�d� �E�X�P�O�R�T� �s�e�q�u�e�n�c�e�s

	\376\377�7�.�1�6�.�1�0� �P�R�O�P�E�R�T�I�E�S� �s�t�a�t�e�m�e�n�t
	\376\377�7�.�1�6�.�1�1� �S�E�T�V�A�R� �s�t�a�t�e�m�e�n�t

	\376\377�7�.�1�7� �E�m�b�e�d�d�e�d� �C� �c�o�d�e
	\376\377�7�.�1�8� �D�e�f�i�n�i�t�i�o�n� �o�f� �a� �s�u�b�r�u�l�e
	\376\377�7�.�1�9� �P�r�a�g�m�a
	\376\377�7�.�1�9�.�1� �I�M�P�O�R�T�_�E�X�P�O�R�T�_�T�A�G

	\376\377�8� �P�o�w�e�r� �m�o�d�e�l�i�n�g� �a�n�d� �c�a�l�c�u�l�a�t�i�o�n
	\376\377�8�.�1� �P�o�w�e�r� �o�v�e�r�v�i�e�w
	\376\377�8�.�2� �C�a�c�h�i�n�g� �s�t�a�t�e� �i�n�f�o�r�m�a�t�i�o�n
	\376\377�8�.�2�.�1� �I�n�i�t�i�a�l�i�z�i�n�g� �t�h�e� �s�t�a�t�e� �c�a�c�h�e
	\376\377�8�.�2�.�2� �S�t�a�t�e� �c�a�c�h�e� �l�i�f�e�t�i�m�e

	\376\377�8�.�3� �C�a�c�h�i�n�g� �l�o�a�d� �a�n�d� �s�l�e�w� �i�n�f�o�r�m�a�t�i�o�n
	\376\377�8�.�3�.�1� �L�o�a�d�i�n�g� �t�h�e� �l�o�a�d� �a�n�d� �s�l�e�w� �c�a�c�h�e
	\376\377�8�.�3�.�2� �L�o�a�d� �a�n�d� �s�l�e�w� �c�a�c�h�e� �l�i�f�e�t�i�m�e

	\376\377�8�.�4� �S�i�m�u�l�a�t�i�o�n� �s�w�i�t�c�h�i�n�g� �e�v�e�n�t�s
	\376\377�8�.�5� �P�a�r�t�i�a�l� �s�w�i�n�g� �e�v�e�n�t�s
	\376\377�8�.�6� �P�o�w�e�r� �c�a�l�c�u�l�a�t�i�o�n
	\376\377�8�.�7� �A�c�c�u�m�u�l�a�t�i�o�n� �o�f� �p�o�w�e�r� �c�o�n�s�u�m�p�t�i�o�n� �b�y� �t�h�e� �d�e�s�i�g�n
	\376\377�8�.�8� �G�r�o�u�p� �P�i�n� �L�i�s�t� �s�y�n�t�a�x� �a�n�d� �s�e�m�a�n�t�i�c�s
	\376\377�8�.�8�.�1� �S�y�n�t�a�x
	\376\377�8�.�8�.�2� �S�e�m�a�n�t�i�c�s
	\376\377�8�.�8�.�2�.�1� �I�n�t�e�r�p�r�e�t�i�n�g� �A�N�Y�I�N� �o�r� �A�N�Y�O�U�T� �i�n� �a� �G�r�o�u�p�P�i�n�S�t�r�i�n�g
	\376\377�8�.�8�.�2�.�2� �I�n�t�e�r�p�r�e�t�i�n�g� �A�L�L�I�N� �o�r� �A�L�L�O�U�T� �i�n� �a� �G�r�o�u�p�P�i�n�S�t�r�i�n�g

	\376\377�8�.�8�.�3� �E�x�a�m�p�l�e

	\376\377�8�.�9� �G�r�o�u�p� �C�o�n�d�i�t�i�o�n� �L�i�s�t� �s�y�n�t�a�x� �a�n�d� �s�e�m�a�n�t�i�c�s
	\376\377�8�.�9�.�1� �S�y�n�t�a�x
	\376\377�8�.�9�.�2� �S�e�m�a�n�t�i�c�s
	\376\377�8�.�9�.�3� �E�x�a�m�p�l�e

	\376\377�8�.�1�0� �S�e�n�s�i�t�i�v�i�t�y� �l�i�s�t� �s�y�n�t�a�x� �a�n�d� �s�e�m�a�n�t�i�c�s
	\376\377�8�.�1�0�.�1� �S�y�n�t�a�x
	\376\377�8�.�1�0�.�2� �S�e�m�a�n�t�i�c�s
	\376\377�8�.�1�0�.�3� �E�x�a�m�p�l�e

	\376\377�8�.�1�1� �G�r�o�u�p� �c�o�n�d�i�t�i�o�n� �l�a�n�g�u�a�g�e
	\376\377�8�.�1�1�.�1� �S�y�n�t�a�x
	\376\377�8�.�1�1�.�2� �S�e�m�a�n�t�i�c�s
	\376\377�8�.�1�1�.�2�.�1� �S�e�m�a�n�t�i�c� �r�u�l�e�s� �f�o�r� �P�i�n�N�a�m�e� �a�n�d� �P�i�n�N�a�m�e�I�d
	\376\377�8�.�1�1�.�2�.�1�.�1� �I�n�t�e�r�p�r�e�t�i�n�g� �A�N�Y�I�N� �a�n�d� �A�N�Y�O�U�T� �i�n� �a� �c�o�n�d�i�t�i�o�n�_�e�x�p�r�e�s�s�i�o�n
	\376\377�8�.�1�1�.�2�.�1�.�2� �I�n�t�e�r�p�r�e�t�i�n�g� �A�L�L�I�N� �a�n�d� �A�L�L�O�U�T� �i�n� �a� �c�o�n�d�i�t�i�o�n�_�e�x�p�r�e�s�s�i�o�n

	\376\377�8�.�1�1�.�2�.�2� �S�e�m�a�n�t�i�c� �r�u�l�e�s� �f�o�r� �P�i�n�N�a�m�e�_�I�d�e�n�t�i�f�i�e�r� �(�n�a�m�e�d� �P� �i�d� �)
	\376\377�8�.�1�1�.�2�.�3� �S�e�m�a�n�t�i�c� �r�u�l�e�s� �f�o�r� �P�i�n�N�a�m�e�_�L�e�v�e�l� �(�n�a�m�e�d� �P� �l�e�v�e�l� �)
	\376\377�8�.�1�1�.�2�.�4� �S�e�m�a�n�t�i�c� �r�u�l�e�s� �f�o�r� �P�i�n�N�a�m�e�_�S�t�a�t�e� �(�s�h�o�r�t�h�a�n�d� �o�p�e�r�a�t�o�r�s�)
	\376\377�8�.�1�1�.�2�.�5� �C�o�n�d�i�t�i�o�n� �e�x�p�r�e�s�s�i�o�n� �l�a�b�e�l�s
	\376\377�8�.�1�1�.�2�.�6� �C�o�n�d�i�t�i�o�n� �e�x�p�r�e�s�s�i�o�n� �o�p�e�r�a�t�o�r�s
	\376\377�8�.�1�1�.�2�.�6�.�1� �S�e�m�a�n�t�i�c�s� �f�o�r� �Z� �(�h�i�g�h� �Z�)� �s�t�a�t�e
	\376\377�8�.�1�1�.�2�.�6�.�2� �S�e�m�a�n�t�i�c�s� �f�o�r� �X� �(�u�n�k�n�o�w�n�)� �s�t�a�t�e

	\376\377�8�.�1�1�.�3� �C�o�n�d�i�t�i�o�n� �e�x�p�r�e�s�s�i�o�n� �o�p�e�r�a�t�o�r� �p�r�e�c�e�d�e�n�c�e
	\376\377�8�.�1�1�.�4� �C�o�n�d�i�t�i�o�n� �e�x�p�r�e�s�s�i�o�n�s� �r�e�f�e�r�e�n�c�i�n�g� �p�i�n� �s�t�a�t�e�s� �a�n�d� �t�r�a�n�s�i�t�i�o�n�s
	\376\377�8�.�1�1�.�5� �S�e�m�a�n�t�i�c�s� �o�f� �n�o�n�e�x�i�s�t�e�n�t� �p�i�n�s

	\376\377�9� �A�p�p�l�i�c�a�t�i�o�n� �a�n�d� �l�i�b�r�a�r�y� �i�n�t�e�r�a�c�t�i�o�n
	\376\377�9�.�1� �b�e�h�a�v�i�o�r� �m�o�d�e�l� �d�o�m�a�i�n
	\376\377�9�.�2� �v�e�c�t�o�r�T�i�m�i�n�g� �a�n�d� �v�e�c�t�o�r�P�o�w�e�r� �m�o�d�e�l� �d�o�m�a�i�n�s
	\376\377�9�.�2�.�1� �P�o�w�e�r� �u�n�i�t� �c�o�n�v�e�r�s�i�o�n
	\376\377�9�.�2�.�2� �V�e�c�t�o�r� �p�o�w�e�r� �c�a�l�c�u�l�a�t�i�o�n

	\376\377�1�0� �P�r�o�c�e�d�u�r�a�l� �i�n�t�e�r�f�a�c�e� �(�P�I�)
	\376\377�1�0�.�1� �O�v�e�r�v�i�e�w
	\376\377�1�0�.�1�.�1� �D�P�C�M
	\376\377�1�0�.�1�.�2� �A�p�p�l�i�c�a�t�i�o�n
	\376\377�1�0�.�1�.�3� �l�i�b�d�c�m�l�r

	\376\377�1�0�.�2� �C�o�n�t�r�o�l� �a�n�d� �d�a�t�a� �f�l�o�w
	\376\377�1�0�.�3� �A�r�c�h�i�t�e�c�t�u�r�a�l� �r�e�q�u�i�r�e�m�e�n�t�s
	\376\377�1�0�.�4� �D�a�t�a� �o�w�n�e�r�s�h�i�p� �t�e�c�h�n�i�q�u�e
	\376\377�1�0�.�4�.�1� �P�e�r�s�i�s�t�e�n�c�e� �o�f� �d�a�t�a� �p�a�s�s�e�d� �a�c�r�o�s�s� �t�h�e� �P�I
	\376\377�1�0�.�4�.�1� �D�a�t�a� �c�a�c�h�e� �g�u�i�d�e�l�i�n�e�s� �f�o�r� �t�h�e� �D�P�C�M
	\376\377�1�0�.�4�.�2� �A�p�p�l�i�c�a�t�i�o�n�/�D�P�C�M� �i�n�t�e�r�a�c�t�i�o�n
	\376\377�1�0�.�4�.�3� �A�p�p�l�i�c�a�t�i�o�n� �i�n�i�t�i�a�l�i�z�e�s� �m�e�s�s�a�g�e�/�m�e�m�o�r�y� �h�a�n�d�l�i�n�g
	\376\377�1�0�.�4�.�4� �A�p�p�l�i�c�a�t�i�o�n� �l�o�a�d�s� �a�n�d� �i�n�i�t�i�a�l�i�z�e�s� �t�h�e� �D�P�C�M
	\376\377�1�0�.�4�.�5� �A�p�p�l�i�c�a�t�i�o�n� �r�e�q�u�e�s�t�s� �t�i�m�i�n�g� �m�o�d�e�l�s� �f�o�r� �c�e�l�l� �i�n�s�t�a�n�c�e�s

	\376\377�1�0�.�5� �M�o�d�e�l� �d�o�m�a�i�n� �i�s�s�u�e�s
	\376\377�1�0�.�5�.�1� �M�o�d�e�l� �d�o�m�a�i�n� �s�e�l�e�c�t�i�o�n
	\376\377�1�0�.�5�.�2� �M�o�d�e�l� �d�o�m�a�i�n� �d�e�t�e�r�m�i�n�a�t�i�o�n
	\376\377�1�0�.�5�.�3� �D�P�C�M� �i�n�v�o�k�e�s� �a�p�p�l�i�c�a�t�i�o�n� �m�o�d�e�l�i�n�g� �c�a�l�l�b�a�c�k� �f�u�n�c�t�i�o�n�s
	\376\377�1�0�.�5�.�4� �A�p�p�l�i�c�a�t�i�o�n� �r�e�q�u�e�s�t�s� �p�r�o�p�a�g�a�t�i�o�n� �d�e�l�a�y
	\376\377�1�0�.�5�.�5� �D�P�C�M� �c�a�l�l�s� �a�p�p�l�i�c�a�t�i�o�n� �E�X�T�E�R�N�A�L� �f�u�n�c�t�i�o�n�s

	\376\377�1�0�.�6� �R�e�e�n�t�r�y� �r�e�q�u�i�r�e�m�e�n�t�s
	\376\377�1�0�.�7� �A�p�p�l�i�c�a�t�i�o�n� �r�e�s�p�o�n�s�i�b�i�l�i�t�i�e�s� �w�h�e�n� �u�s�i�n�g� �a� �D�P�C�M
	\376\377�1�0�.�7�.�1� �S�t�a�n�d�a�r�d� �S�t�r�u�c�t�u�r�e� �r�u�l�e�s
	\376\377�1�0�.�7�.�2� �U�s�e�r� �o�b�j�e�c�t� �r�e�g�i�s�t�r�a�t�i�o�n
	\376\377�1�0�.�7�.�3� �S�e�l�e�c�t�i�o�n� �o�f� �e�a�r�l�y� �a�n�d� �l�a�t�e� �s�l�e�w� �v�a�l�u�e�s
	\376\377�1�0�.�7�.�4� �S�e�m�a�n�t�i�c�s� �o�f� �s�l�e�w� �v�a�l�u�e�s
	\376\377�1�0�.�7�.�5� �S�l�e�w� �c�a�l�c�u�l�a�t�i�o�n�s

	\376\377�1�0�.�8� �A�p�p�l�i�c�a�t�i�o�n� �u�s�e� �o�f� �t�h�e� �D�P�C�M
	\376\377�1�0�.�8�.�1� �I�n�i�t�i�a�l�i�z�a�t�i�o�n� �o�f� �t�h�e� �D�P�C�M
	\376\377�1�0�.�8�.�1�.�1� �S�t�a�n�d�a�r�d� �S�t�r�u�c�t�u�r�e� �m�a�n�a�g�e�m�e�n�t
	\376\377�1�0�.�8�.�1�.�2� �T�e�c�h�_�f�a�m�i�l�y

	\376\377�1�0�.�8�.�2� �C�o�n�t�e�x�t� �c�r�e�a�t�i�o�n
	\376\377�1�0�.�8�.�3� �D�y�n�a�m�i�c� �l�i�n�k�i�n�g
	\376\377�1�0�.�8�.�3�.�1� �L�i�n�k�i�n�g� �o�r�d�e�r

	\376\377�1�0�.�8�.�4� �S�u�b�r�u�l�e� �i�n�i�t�i�a�l�i�z�a�t�i�o�n
	\376\377�1�0�.�8�.�5� �U�s�e� �o�f� �t�h�e� �D�P�C�M
	\376\377�1�0�.�8�.�6� �A�p�p�l�i�c�a�t�i�o�n� �c�o�n�t�r�o�l
	\376\377�1�0�.�8�.�7� �A�p�p�l�i�c�a�t�i�o�n� �e�x�e�c�u�t�i�o�n
	\376\377�1�0�.�8�.�8� �T�e�r�m�i�n�a�t�i�o�n� �o�f� �D�P�C�M

	\376\377�1�0�.�9� �D�P�C�M� �l�i�b�r�a�r�y� �o�r�g�a�n�i�z�a�t�i�o�n
	\376\377�1�0�.�9�.�1� �M�u�l�t�i�p�l�e� �t�e�c�h�n�o�l�o�g�i�e�s
	\376\377�1�0�.�9�.�2� �M�o�d�e�l� �n�a�m�e�s
	\376\377�1�0�.�9�.�3� �D�P�C�M� �e�r�r�o�r� �h�a�n�d�l�i�n�g

	\376\377�1�0�.�1�0� �C� �l�e�v�e�l� �l�a�n�g�u�a�g�e� �f�o�r� �E�X�P�O�S�E� �a�n�d� �E�X�T�E�R�N�A�L� �f�u�n�c�t�i�o�n�s
	\376\377�1�0�.�1�0�.�1� �I�n�t�e�g�e�r� �r�e�t�u�r�n� �c�o�d�e
	\376\377�1�0�.�1�0�.�2� �T�h�e� �S�t�a�n�d�a�r�d� �S�t�r�u�c�t�u�r�e� �p�o�i�n�t�e�r
	\376\377�1�0�.�1�0�.�3� �R�e�s�u�l�t� �s�t�r�u�c�t�u�r�e� �p�o�i�n�t�e�r
	\376\377�1�0�.�1�0�.�4� �P�a�s�s�e�d� �a�r�g�u�m�e�n�t�s
	\376\377�1�0�.�1�0�.�5� �D�C�L� �a�r�r�a�y� �i�n�d�e�x�i�n�g
	\376\377�1�0�.�1�0�.�6� �C�o�n�v�e�r�s�i�o�n� �t�o� �C� �d�a�t�a� �t�y�p�e�s
	\376\377�1�0�.�1�0�.�7� �i�n�c�l�u�d�e� �f�i�l�e�s

	\376\377�1�0�.�1�1� �P�I�N� �a�n�d� �B�L�O�C�K� �d�a�t�a� �s�t�r�u�c�t�u�r�e� �r�e�q�u�i�r�e�m�e�n�t�s
	\376\377�1�0�.�1�2� �D�C�M�_�S�T�D�_�S�T�R�U�C�T� �S�t�a�n�d�a�r�d� �S�t�r�u�c�t�u�r�e
	\376\377�1�0�.�1�2�.�1� �A�l�t�e�r�n�a�t�e� �s�e�m�a�n�t�i�c�s� �f�o�r� �S�t�a�n�d�a�r�d� �S�t�r�u�c�t�u�r�e� �f�i�e�l�d�s
	\376\377�1�0�.�1�2�.�2� �R�e�s�e�r�v�e�d� �f�i�e�l�d�s
	\376\377�1�0�.�1�2�.�3� �S�t�a�n�d�a�r�d� �S�t�r�u�c�t�u�r�e� �v�a�l�u�e� �r�e�s�t�r�i�c�t�i�o�n

	\376\377�1�0�.�1�3� �D�C�M�T�r�a�n�s�m�i�t�t�e�d�I�n�f�o� �s�t�r�u�c�t�u�r�e
	\376\377�1�0�.�1�4� �E�n�v�i�r�o�n�m�e�n�t� �o�r� �u�s�e�r� �v�a�r�i�a�b�l�e�s
	\376\377�1�0�.�1�5� �P�r�o�c�e�d�u�r�a�l� �i�n�t�e�r�f�a�c�e� �(�P�I�)� �f�u�n�c�t�i�o�n�s� �s�u�m�m�a�r�y
	\376\377�1�0�.�1�5�.�1� �E�x�p�o�s�e� �f�u�n�c�t�i�o�n�s
	\376\377�1�0�.�1�5�.�2� �E�x�t�e�r�n�a�l� �f�u�n�c�t�i�o�n�s
	\376\377�1�0�.�1�5�.�3� �D�e�p�r�e�c�a�t�e�d� �f�u�n�c�t�i�o�n�s

	\376\377�1�0�.�1�6� �I�m�p�l�i�c�i�t� �f�u�n�c�t�i�o�n�s
	\376\377�1�0�.�1�6�.�1� �l�i�b�d�c�m�l�r
	\376\377�1�0�.�1�6�.�2� �R�u�n�-�t�i�m�e� �l�i�b�r�a�r�y� �u�t�i�l�i�t�y� �f�u�n�c�t�i�o�n�s
	\376\377�1�0�.�1�6�.�2�.�1� �M�o�d�u�l�e� �c�o�n�t�r�o�l� �f�u�n�c�t�i�o�n�s

	\376\377�1�0�.�1�6�.�3� �M�e�m�o�r�y� �c�o�n�t�r�o�l� �f�u�n�c�t�i�o�n�s
	\376\377�1�0�.�1�6�.�4� �M�e�s�s�a�g�e� �a�n�d� �e�r�r�o�r� �c�o�n�t�r�o�l� �f�u�n�c�t�i�o�n�s
	\376\377�1�0�.�1�6�.�5� �C�a�l�c�u�l�a�t�i�o�n� �f�u�n�c�t�i�o�n�s
	\376\377�1�0�.�1�6�.�6� �M�o�d�e�l�i�n�g� �f�u�n�c�t�i�o�n�s

	\376\377�1�0�.�1�7� �P�I� �f�u�n�c�t�i�o�n� �t�a�b�l�e� �d�e�s�c�r�i�p�t�i�o�n
	\376\377�1�0�.�1�7�.�1� �A�r�g�u�m�e�n�t�s
	\376\377�1�0�.�1�7�.�1�.�1� �S�t�a�n�d�a�r�d� �S�t�r�u�c�t�u�r�e� �f�i�e�l�d�s

	\376\377�1�0�.�1�7�.�2� �D�C�L� �s�y�n�t�a�x
	\376\377�1�0�.�1�7�.�3� �C� �s�y�n�t�a�x

	\376\377�1�0�.�1�8� �P�I� �f�u�n�c�t�i�o�n� �d�e�s�c�r�i�p�t�i�o�n�s
	\376\377�1�0�.�1�8�.�1� �I�n�t�e�r�c�o�n�n�e�c�t� �l�o�a�d�i�n�g� �r�e�l�a�t�e�d� �f�u�n�c�t�i�o�n�s
	\376\377�1�0�.�1�8�.�1�.�1� �a�p�p�G�e�t�T�o�t�a�l�L�o�a�d�C�a�p�a�c�i�t�a�n�c�e�B�y�P�i�n
	\376\377�1�0�.�1�8�.�1�.�2� �a�p�p�G�e�t�T�o�t�a�l�L�o�a�d�C�a�p�a�c�i�t�a�n�c�e�B�y�N�a�m�e
	\376\377�1�0�.�1�8�.�1�.�3� �a�p�p�G�e�t�T�o�t�a�l�P�i�n�C�a�p�a�c�i�t�a�n�c�e�B�y�P�i�n
	\376\377�1�0�.�1�8�.�1�.�4� �a�p�p�G�e�t�T�o�t�a�l�P�i�n�C�a�p�a�c�i�t�a�n�c�e�B�y�N�a�m�e
	\376\377�1�0�.�1�8�.�1�.�5� �a�p�p�G�e�t�S�o�u�r�c�e�P�i�n�C�a�p�a�c�i�t�a�n�c�e�B�y�P�i�n
	\376\377�1�0�.�1�8�.�1�.�6� �a�p�p�G�e�t�S�o�u�r�c�e�P�i�n�C�a�p�a�c�i�t�a�n�c�e�B�y�N�a�m�e
	\376\377�1�0�.�1�8�.�1�.�7� �d�p�c�m�G�e�t�D�e�f�C�e�l�l�S�i�z�e
	\376\377�1�0�.�1�8�.�1�.�8� �a�p�p�G�e�t�C�e�l�l�C�o�o�r�d�i�n�a�t�e�s
	\376\377�1�0�.�1�8�.�1�.�9� �a�p�p�G�e�t�C�e�l�l�O�r�i�e�n�t�a�t�i�o�n
	\376\377�1�0�.�1�8�.�1�.�1�0� �d�p�c�m�G�e�t�E�s�t�L�o�a�d�C�a�p�a�c�i�t�a�n�c�e
	\376\377�1�0�.�1�8�.�1�.�1�1� �d�p�c�m�G�e�t�E�s�t�W�i�r�e�C�a�p�a�c�i�t�a�n�c�e
	\376\377�1�0�.�1�8�.�1�.�1�2� �d�p�c�m�G�e�t�E�s�t�W�i�r�e�R�e�s�i�s�t�a�n�c�e
	\376\377�1�0�.�1�8�.�1�.�1�3� �d�p�c�m�G�e�t�P�i�n�C�a�p�a�c�i�t�a�n�c�e
	\376\377�1�0�.�1�8�.�1�.�1�4� �d�p�c�m�G�e�t�C�e�l�l�I�O�l�i�s�t�s

	\376\377�1�0�.�1�8�.�2� �I�n�t�e�r�c�o�n�n�e�c�t� �d�e�l�a�y� �r�e�l�a�t�e�d� �f�u�n�c�t�i�o�n�s
	\376\377�1�0�.�1�8�.�2�.�1� �a�p�p�G�e�t�R�C
	\376\377�1�0�.�1�8�.�2�.�2� �d�p�c�m�G�e�t�D�e�l�a�y�G�r�a�d�i�e�n�t
	\376\377�1�0�.�1�8�.�2�.�3� �d�p�c�m�G�e�t�S�l�e�w�G�r�a�d�i�e�n�t
	\376\377�1�0�.�1�8�.�2�.�4� �d�p�c�m�G�e�t�E�s�t�i�m�a�t�e�R�C
	\376\377�1�0�.�1�8�.�2�.�5� �d�p�c�m�G�e�t�D�e�f�P�o�r�t�S�l�e�w
	\376\377�1�0�.�1�8�.�2�.�6� �d�p�c�m�G�e�t�D�e�f�P�o�r�t�C�a�p�a�c�i�t�a�n�c�e

	\376\377�1�0�.�1�8�.�3� �F�u�n�c�t�i�o�n�s� �a�c�c�e�s�s�i�n�g� �n�e�t�l�i�s�t� �i�n�f�o�r�m�a�t�i�o�n
	\376\377�1�0�.�1�8�.�3�.�1� �a�p�p�G�e�t�N�u�m�D�r�i�v�e�r�s�B�y�P�i�n
	\376\377�1�0�.�1�8�.�3�.�2� �a�p�p�G�e�t�N�u�m�D�r�i�v�e�r�s�B�y�N�a�m�e
	\376\377�1�0�.�1�8�.�3�.�3� �a�p�p�F�o�r�E�a�c�h�P�a�r�a�l�l�e�l�D�r�i�v�e�r�B�y�P�i�n
	\376\377�1�0�.�1�8�.�3�.�4� �a�p�p�F�o�r�E�a�c�h�P�a�r�a�l�l�e�l�D�r�i�v�e�r�B�y�N�a�m�e
	\376\377�1�0�.�1�8�.�3�.�5� �a�p�p�G�e�t�N�u�m�P�i�n�s�B�y�P�i�n
	\376\377�1�0�.�1�8�.�3�.�6� �a�p�p�G�e�t�N�u�m�P�i�n�s�B�y�N�a�m�e
	\376\377�1�0�.�1�8�.�3�.�7� �a�p�p�G�e�t�N�u�m�S�i�n�k�s�B�y�P�i�n
	\376\377�1�0�.�1�8�.�3�.�8� �a�p�p�G�e�t�N�u�m�S�i�n�k�s�B�y�N�a�m�e
	\376\377�1�0�.�1�8�.�3�.�9� �d�p�c�m�A�d�d�W�i�r�e�L�o�a�d�M�o�d�e�l
	\376\377�1�0�.�1�8�.�3�.�1�0� �d�p�c�m�G�e�t�W�i�r�e�L�o�a�d�M�o�d�e�l
	\376\377�1�0�.�1�8�.�3�.�1�1� �d�p�c�m�G�e�t�W�i�r�e�L�o�a�d�M�o�d�e�l�F�o�r�B�l�o�c�k�S�i�z�e
	\376\377�1�0�.�1�8�.�3�.�1�2� �a�p�p�G�e�t�I�n�s�t�a�n�c�e�C�o�u�n�t

	\376\377�1�0�.�1�8�.�4� �F�u�n�c�t�i�o�n�s� �e�x�p�o�r�t�i�n�g� �l�i�m�i�t� �i�n�f�o�r�m�a�t�i�o�n
	\376\377�1�0�.�1�8�.�4�.�1� �d�p�c�m�G�e�t�C�a�p�a�c�i�t�a�n�c�e�L�i�m�i�t
	\376\377�1�0�.�1�8�.�4�.�2� �d�p�c�m�G�e�t�S�l�e�w�L�i�m�i�t
	\376\377�1�0�.�1�8�.�4�.�3� �d�p�c�m�G�e�t�X�o�v�e�r�s

	\376\377�1�0�.�1�8�.�5� �F�u�n�c�t�i�o�n�s� �g�e�t�t�i�n�g�/�s�e�t�t�i�n�g� �m�o�d�e�l� �i�n�f�o�r�m�a�t�i�o�n
	\376\377�1�0�.�1�8�.�5�.�1� �d�p�c�m�G�e�t�F�u�n�c�t�i�o�n�a�l�M�o�d�e�A�r�r�a�y
	\376\377�1�0�.�1�8�.�5�.�2� �d�p�c�m�G�e�t�B�a�s�e�F�u�n�c�t�i�o�n�a�l�M�o�d�e
	\376\377�1�0�.�1�8�.�5�.�3� �a�p�p�G�e�t�C�u�r�r�e�n�t�F�u�n�c�t�i�o�n�a�l�M�o�d�e
	\376\377�1�0�.�1�8�.�5�.�4� �d�p�c�m�G�e�t�C�o�n�t�r�o�l�E�x�i�s�t�e�n�c�e
	\376\377�1�0�.�1�8�.�5�.�5� �d�p�c�m�S�e�t�L�e�v�e�l
	\376\377�1�0�.�1�8�.�5�.�5�.�1� �A�c�c�u�r�a�c�y� �l�e�v�e�l�s

	\376\377�1�0�.�1�8�.�5�.�6� �d�p�c�m�G�e�t�L�i�b�r�a�r�y�A�c�c�u�r�a�c�y�L�e�v�e�l�A�r�r�a�y�s
	\376\377�1�0�.�1�8�.�5�.�7� �d�p�c�m�S�e�t�L�i�b�r�a�r�y�A�c�c�u�r�a�c�y�L�e�v�e�l
	\376\377�1�0�.�1�8�.�5�.�8� �d�p�c�m�G�e�t�E�x�p�o�s�e�P�u�r�i�t�y�A�n�d�C�o�n�s�i�s�t�e�n�c�y
	\376\377�1�0�.�1�8�.�5�.�9� �d�p�c�m�G�e�t�R�a�i�l�V�o�l�t�a�g�e�A�r�r�a�y
	\376\377�1�0�.�1�8�.�5�.�1�0� �d�p�c�m�G�e�t�B�a�s�e�R�a�i�l�V�o�l�t�a�g�e
	\376\377�1�0�.�1�8�.�5�.�1�1� �a�p�p�G�e�t�C�u�r�r�e�n�t�R�a�i�l�V�o�l�t�a�g�e
	\376\377�1�0�.�1�8�.�5�.�1�2� �d�p�c�m�G�e�t�W�i�r�e�L�o�a�d�M�o�d�e�l�A�r�r�a�y
	\376\377�1�0�.�1�8�.�5�.�1�3� �d�p�c�m�G�e�t�B�a�s�e�W�i�r�e�L�o�a�d�M�o�d�e�l
	\376\377�1�0�.�1�8�.�5�.�1�4� �a�p�p�G�e�t�C�u�r�r�e�n�t�W�i�r�e�L�o�a�d�M�o�d�e�l
	\376\377�1�0�.�1�8�.�5�.�1�5� �d�p�c�m�G�e�t�B�a�s�e�T�e�m�p�e�r�a�t�u�r�e
	\376\377�1�0�.�1�8�.�5�.�1�6� �d�p�c�m�G�e�t�B�a�s�e�O�p�R�a�n�g�e
	\376\377�1�0�.�1�8�.�5�.�1�7� �d�p�c�m�G�e�t�O�p�R�a�n�g�e�A�r�r�a�y
	\376\377�1�0�.�1�8�.�5�.�1�8� �a�p�p�G�e�t�C�u�r�r�e�n�t�T�e�m�p�e�r�a�t�u�r�e
	\376\377�1�0�.�1�8�.�5�.�1�9� �a�p�p�G�e�t�C�u�r�r�e�n�t�O�p�R�a�n�g�e
	\376\377�1�0�.�1�8�.�5�.�2�0� �d�p�c�m�G�e�t�T�i�m�i�n�g�S�t�a�t�e�A�r�r�a�y
	\376\377�1�0�.�1�8�.�5�.�2�1� �a�p�p�G�e�t�C�u�r�r�e�n�t�T�i�m�i�n�g�S�t�a�t�e

	\376\377�1�0�.�1�8�.�6� �F�u�n�c�t�i�o�n�s� �i�m�p�o�r�t�i�n�g� �i�n�s�t�a�n�c�e� �n�a�m�e� �i�n�f�o�r�m�a�t�i�o�n
	\376\377�1�0�.�1�8�.�6�.�1� �d�p�c�m�G�e�t�C�e�l�l�L�i�s�t
	\376\377�1�0�.�1�8�.�6�.�2� �a�p�p�G�e�t�C�e�l�l�N�a�m�e
	\376\377�1�0�.�1�8�.�6�.�3� �a�p�p�G�e�t�H�i�e�r�P�i�n�N�a�m�e
	\376\377�1�0�.�1�8�.�6�.�4� �a�p�p�G�e�t�H�i�e�r�B�l�o�c�k�N�a�m�e
	\376\377�1�0�.�1�8�.�6�.�5� �a�p�p�G�e�t�H�i�e�r�N�e�t�N�a�m�e

	\376\377�1�0�.�1�8�.�7� �P�r�o�c�e�s�s� �i�n�f�o�r�m�a�t�i�o�n� �f�u�n�c�t�i�o�n�s
	\376\377�1�0�.�1�8�.�7�.�1� �d�p�c�m�G�e�t�T�h�r�e�s�h�o�l�d�s
	\376\377�1�0�.�1�8�.�7�.�2� �a�p�p�G�e�t�T�h�r�e�s�h�o�l�d�s

	\376\377�1�0�.�1�8�.�8� �M�i�s�c�e�l�l�a�n�e�o�u�s� �s�t�a�n�d�a�r�d� �i�n�t�e�r�f�a�c�e� �f�u�n�c�t�i�o�n�s
	\376\377�1�0�.�1�8�.�8�.�1� �a�p�p�G�e�t�E�x�t�e�r�n�a�l�S�t�a�t�u�s
	\376\377�1�0�.�1�8�.�8�.�2� �a�p�p�G�e�t�V�e�r�s�i�o�n�I�n�f�o
	\376\377�1�0�.�1�8�.�8�.�3� �a�p�p�G�e�t�R�e�s�o�u�r�c�e
	\376\377�1�0�.�1�8�.�8�.�4� �d�p�c�m�G�e�t�R�u�l�e�U�n�i�t�T�o�S�e�c�o�n�d�s
	\376\377�1�0�.�1�8�.�8�.�5� �d�p�c�m�G�e�t�R�u�l�e�U�n�i�t�T�o�O�h�m�s
	\376\377�1�0�.�1�8�.�8�.�6� �d�p�c�m�G�e�t�R�u�l�e�U�n�i�t�T�o�F�a�r�a�d�s
	\376\377�1�0�.�1�8�.�8�.�7� �d�p�c�m�G�e�t�R�u�l�e�U�n�i�t�T�o�H�e�n�r�i�e�s
	\376\377�1�0�.�1�8�.�8�.�8� �d�p�c�m�G�e�t�R�u�l�e�U�n�i�t�T�o�W�a�t�t�s
	\376\377�1�0�.�1�8�.�8�.�9� �d�p�c�m�G�e�t�R�u�l�e�U�n�i�t�T�o�J�o�u�l�e�s
	\376\377�1�0�.�1�8�.�8�.�1�0� �d�p�c�m�G�e�t�T�i�m�e�R�e�s�o�l�u�t�i�o�n
	\376\377�1�0�.�1�8�.�8�.�1�1� �d�p�c�m�G�e�t�P�a�r�a�s�i�t�i�c�C�o�o�r�d�i�n�a�t�e�T�y�p�e�s
	\376\377�1�0�.�1�8�.�8�.�1�2� �d�p�c�m�I�s�S�l�e�w�T�i�m�e
	\376\377�1�0�.�1�8�.�8�.�1�3� �d�p�c�m�D�e�b�u�g
	\376\377�1�0�.�1�8�.�8�.�1�4� �d�p�c�m�G�e�t�V�e�r�s�i�o�n�I�n�f�o
	\376\377�1�0�.�1�8�.�8�.�1�5� �d�p�c�m�H�o�l�d�C�o�n�t�r�o�l
	\376\377�1�0�.�1�8�.�8�.�1�6� �d�p�c�m�F�i�l�l�P�i�n�C�a�c�h�e
	\376\377�1�0�.�1�8�.�8�.�1�7� �d�p�c�m�F�r�e�e�P�i�n�C�a�c�h�e
	\376\377�1�0�.�1�8�.�8�.�1�8� �a�p�p�R�e�g�i�s�t�e�r�C�e�l�l�I�n�f�o

	\376\377�1�0�.�1�8�.�9� �P�o�w�e�r�-�r�e�l�a�t�e�d� �f�u�n�c�t�i�o�n�s
	\376\377�1�0�.�1�8�.�9�.�1� �d�p�c�m�G�e�t�C�e�l�l�P�o�w�e�r�I�n�f�o
	\376\377�1�0�.�1�8�.�9�.�2� �d�p�c�m�G�e�t�C�e�l�l�P�o�w�e�r�W�i�t�h�S�t�a�t�e
	\376\377�1�0�.�1�8�.�9�.�3� �d�p�c�m�G�e�t�A�E�T�C�e�l�l�P�o�w�e�r�W�i�t�h�S�e�n�s�i�t�i�v�i�t�y
	\376\377�1�0�.�1�8�.�9�.�4� �d�p�c�m�G�e�t�P�i�n�P�o�w�e�r
	\376\377�1�0�.�1�8�.�9�.�5� �d�p�c�m�A�E�T�G�e�t�S�e�t�t�l�i�n�g�T�i�m�e
	\376\377�1�0�.�1�8�.�9�.�6� �d�p�c�m�A�E�T�G�e�t�S�i�m�u�l�t�a�n�e�o�u�s�S�w�i�t�c�h�T�i�m�e
	\376\377�1�0�.�1�8�.�9�.�7� �d�p�c�m�G�r�o�u�p�G�e�t�S�e�t�t�l�i�n�g�T�i�m�e
	\376\377�1�0�.�1�8�.�9�.�8� �d�p�c�m�G�r�o�u�p�G�e�t�S�i�m�u�l�t�a�n�e�o�u�s�S�w�i�t�c�h�T�i�m�e
	\376\377�1�0�.�1�8�.�9�.�9� �d�p�c�m�C�a�l�c�P�a�r�t�i�a�l�S�w�i�n�g�E�n�e�r�g�y
	\376\377�1�0�.�1�8�.�9�.�1�0� �d�p�c�m�S�e�t�I�n�i�t�i�a�l�S�t�a�t�e
	\376\377�1�0�.�1�8�.�9�.�1�1� �d�p�c�m�F�r�e�e�S�t�a�t�e�C�a�c�h�e
	\376\377�1�0�.�1�8�.�9�.�1�2� �a�p�p�G�e�t�S�t�a�t�e�C�a�c�h�e
	\376\377�1�0�.�1�8�.�9�.�1�3� �d�p�c�m�G�e�t�N�e�t�E�n�e�r�g�y

	\376\377�1�0�.�1�9� �A�p�p�l�i�c�a�t�i�o�n� �c�o�n�t�e�x�t
	\376\377�1�0�.�1�9�.�1� �p�a�t�h�D�a�t�a� �a�s�s�o�c�i�a�t�i�o�n

	\376\377�1�0�.�2�0� �A�p�p�l�i�c�a�t�i�o�n� �a�n�d� �l�i�b�r�a�r�y� �i�n�t�e�r�a�c�t�i�o�n
	\376\377�1�0�.�2�0�.�1� �b�e�h�a�v�i�o�r� �m�o�d�e�l� �d�o�m�a�i�n
	\376\377�1�0�.�2�0�.�2� �v�e�c�t�o�r�T�i�m�i�n�g� �a�n�d� �v�e�c�t�o�r�P�o�w�e�r� �m�o�d�e�l� �d�o�m�a�i�n�s
	\376\377�1�0�.�2�0�.�3� �P�o�w�e�r� �u�n�i�t� �c�o�n�v�e�r�s�i�o�n
	\376\377�1�0�.�2�0�.�4� �V�e�c�t�o�r� �p�o�w�e�r� �c�a�l�c�u�l�a�t�i�o�n

	\376\377�1�0�.�2�1� �P�a�r�a�s�i�t�i�c� �a�n�a�l�y�s�i�s
	\376\377�1�0�.�2�1�.�1� �A�s�s�u�m�p�t�i�o�n�s
	\376\377�1�0�.�2�1�.�2� �P�a�r�a�s�i�t�i�c� �n�e�t�w�o�r�k�s
	\376\377�1�0�.�2�1�.�3� �B�a�s�i�c� �d�e�f�i�n�i�t�i�o�n�s
	\376\377�1�0�.�2�1�.�3�.�1� �L�o�g�i�c�a�l� �p�i�n�s� �a�n�d� �i�n�t�e�r�n�a�l� �n�o�d�e�s
	\376\377�1�0�.�2�1�.�3�.�2� �P�h�y�s�i�c�a�l� �p�o�r�t�s
	\376\377�1�0�.�2�1�.�3�.�3� �N�o�d�e�s
	\376\377�1�0�.�2�1�.�3�.�4� �T�e�r�m�i�n�a�t�i�n�g� �p�o�i�n�t�s
	\376\377�1�0�.�2�1�.�3�.�5� �P�a�r�a�s�i�t�i�c� �e�l�e�m�e�n�t�s
	\376\377�1�0�.�2�1�.�3�.�6� �S�u�b�n�e�t�s

	\376\377�1�0�.�2�1�.�4� �P�a�r�a�s�i�t�i�c� �e�l�e�m�e�n�t� �d�a�t�a� �s�t�r�u�c�t�u�r�e
	\376\377�1�0�.�2�1�.�4�.�1� �e�l�e�m�e�n�t�T�y�p�e
	\376\377�1�0�.�2�1�.�4�.�2� �N�o�d�e� �i�n�d�e�x� �v�a�r�i�a�b�l�e� �v�a�l�u�e�s
	\376\377�1�0�.�2�1�.�4�.�3� �P�a�r�a�s�i�t�i�c� �e�l�e�m�e�n�t� �v�a�l�u�e�s
	\376\377�1�0�.�2�1�.�4�.�4� �C�l�a�m�p�i�n�g� �d�i�o�d�e�s
	\376\377�1�0�.�2�1�.�4�.�5� �o�w�n�e�r�P�r�i�v�a�t�e� �p�o�i�n�t�e�r

	\376\377�1�0�.�2�1�.�5� �C�o�o�r�d�i�n�a�t�e�s
	\376\377�1�0�.�2�1�.�6� �P�a�r�a�s�i�t�i�c� �s�u�b�n�e�t�s
	\376\377�1�0�.�2�1�.�6�.�1� �C�h�a�n�g�e�d
	\376\377�1�0�.�2�1�.�6�.�2� �p�a�r�a�s�i�t�i�c�E�l�e�m�e�n�t�A�r�r�a�y
	\376\377�1�0�.�2�1�.�6�.�3� �p�o�r�t�M�a�p
	\376\377�1�0�.�2�1�.�6�.�4� �n�o�d�e�M�a�p
	\376\377�1�0�.�2�1�.�6�.�5� �n�o�d�e�T�y�p�e�L�i�s�t
	\376\377�1�0�.�2�1�.�6�.�6� �L�i�n�k� �p�o�i�n�t�e�r�s
	\376\377�1�0�.�2�1�.�6�.�7� �t�e�c�h�F�a�m�i�l�y
	\376\377�1�0�.�2�1�.�6�.�8� �e�l�e�m�e�n�t�P�o�s�i�t�i�o�n
	\376\377�1�0�.�2�1�.�6�.�9� �o�w�n�e�r�P�r�i�v�a�t�e� �p�o�i�n�t�e�r
	\376\377�1�0�.�2�1�.�6�.�1�0� �L�i�n�k�e�d� �l�i�s�t�s� �o�f� �s�u�b�n�e�t�s
	\376\377�1�0�.�2�1�.�6�.�1�1� �P�a�r�a�s�i�t�i�c� �s�u�b�n�e�t� �s�t�r�u�c�t�u�r�e� �c�o�n�s�t�r�u�c�t�i�o�n
	\376\377�1�0�.�2�1�.�6�.�1�2� �d�p�c�m�C�r�e�a�t�e�S�u�b�n�e�t�S�t�r�u�c�t�u�r�e
	\376\377�1�0�.�2�1�.�6�.�1�3� �E�x�a�m�p�l�e� �a�r�r�a�y
	\376\377�1�0�.�2�1�.�6�.�1�4� �d�p�c�m�G�e�t�D�e�f�a�u�l�t�I�n�t�e�r�c�o�n�n�e�c�t�T�e�c�h�n�o�l�o�g�y
	\376\377�1�0�.�2�1�.�6�.�1�5� �d�p�c�m�S�c�a�l�e�P�a�r�a�s�i�t�i�c�s
	\376\377�1�0�.�2�1�.�6�.�1�6� �e�x�t�r�a�c�t�i�o�n�O�p�P�o�i�n�t�I�n�d�e�x
	\376\377�1�0�.�2�1�.�6�.�1�7� �p�o�s�i�t�i�v�e�E�x�t�r�a�c�t�i�o�n�V�o�l�t�a�g�e
	\376\377�1�0�.�2�1�.�6�.�1�8� �n�e�g�a�t�i�v�e�E�x�t�r�a�c�t�i�o�n�V�o�l�t�a�g�e
	\376\377�1�0�.�2�1�.�6�.�1�9� �e�x�t�r�a�c�t�i�o�n�T�e�m�p�e�r�a�t�u�r�e
	\376\377�1�0�.�2�1�.�6�.�2�0� �e�x�t�r�a�c�t�i�o�n�P�r�o�c�e�s�s�P�o�i�n�t

	\376\377�1�0�.�2�1�.�7� �P�i�n� �p�a�r�a�s�i�t�i�c�s
	\376\377�1�0�.�2�1�.�7�.�1� �d�p�c�m�G�e�t�S�i�n�k�P�i�n�P�a�r�a�s�i�t�i�c�s
	\376\377�1�0�.�2�1�.�7�.�2� �d�p�c�m�G�e�t�S�o�u�r�c�e�P�i�n�P�a�r�a�s�i�t�i�c�s
	\376\377�1�0�.�2�1�.�7�.�3� �d�p�c�m�G�e�t�P�o�r�t�N�a�m�e�s

	\376\377�1�0�.�2�1�.�8� �M�o�d�e�l�i�n�g� �i�n�t�e�r�n�a�l� �n�o�d�e�s
	\376\377�1�0�.�2�1�.�8�.�1� �M�a�p�p�i�n�g� �p�a�r�a�s�i�t�i�c� �s�u�b�n�e�t� �n�o�d�e�s� �t�o� �m�o�d�e�l� �n�o�d�e�s
	\376\377�1�0�.�2�1�.�8�.�2� �d�p�c�m�I�d�e�n�t�i�f�y�I�n�t�e�r�n�a�l�N�o�d�e

	\376\377�1�0�.�2�1�.�9� �L�o�a�d� �a�n�d� �i�n�t�e�r�c�o�n�n�e�c�t� �m�o�d�e�l�s
	\376\377�1�0�.�2�1�.�9�.�1� �d�p�c�m�B�u�i�l�d�L�o�a�d�M�o�d�e�l�s
	\376\377�1�0�.�2�1�.�9�.�2� �d�p�c�m�B�u�i�l�d�I�n�t�e�r�c�o�n�n�e�c�t�M�o�d�e�l�s
	\376\377�1�0�.�2�1�.�9�.�3� �a�p�p�G�e�t�I�n�t�e�r�c�o�n�n�e�c�t�M�o�d�e�l�s
	\376\377�1�0�.�2�1�.�9�.�4� �a�p�p�G�e�t�L�o�a�d�M�o�d�e�l�s

	\376\377�1�0�.�2�1�.�1�0� �O�b�t�a�i�n�i�n�g� �p�a�r�a�s�i�t�i�c� �n�e�t�w�o�r�k�s
	\376\377�1�0�.�2�1�.�1�0�.�1� �a�p�p�G�e�t�P�a�r�a�s�i�t�i�c�N�e�t�w�o�r�k�s�B�y�P�i�n
	\376\377�1�0�.�2�1�.�1�0�.�2� �a�p�p�G�e�t�P�a�r�a�s�i�t�i�c�N�e�t�w�o�r�k�s�B�y�N�a�m�e

	\376\377�1�0�.�2�1�.�1�1� �P�e�r�s�i�s�t�e�n�t� �s�t�o�r�a�g�e� �o�f� �l�o�a�d� �a�n�d� �i�n�t�e�r�c�o�n�n�e�c�t� �m�o�d�e�l�s
	\376\377�1�0�.�2�1�.�1�1�.�1� �A�p�p�l�i�c�a�t�i�o�n� �s�a�v�e� �a�n�d� �r�e�s�t�o�r�e
	\376\377�1�0�.�2�1�.�1�1�.�1�.�1� �d�p�c�m�P�a�s�s�i�v�a�t�e�L�o�a�d�M�o�d�e�l�s
	\376\377�1�0�.�2�1�.�1�1�.�1�.�2� �d�p�c�m�P�a�s�s�i�v�a�t�e�I�n�t�e�r�c�o�n�n�e�c�t�M�o�d�e�l�s
	\376\377�1�0�.�2�1�.�1�1�.�1�.�3� �d�p�c�m�R�e�s�t�o�r�e�L�o�a�d�M�o�d�e�l�s
	\376\377�1�0�.�2�1�.�1�1�.�1�.�4� �d�p�c�m�R�e�s�t�o�r�e�I�n�t�e�r�c�o�n�n�e�c�t�M�o�d�e�l�s

	\376\377�1�0�.�2�1�.�1�2� �C�a�l�c�u�l�a�t�i�n�g� �e�f�f�e�c�t�i�v�e� �c�a�p�a�c�i�t�a�n�c�e�s� �a�n�d� �d�r�i�v�i�n�g� �r�e�s�i�s�t�a�n�c�e�s
	\376\377�1�0�.�2�1�.�1�2�.�1� �a�p�p�G�e�t�C�e�f�f
	\376\377�1�0�.�2�1�.�1�2�.�2� �d�p�c�m�C�a�l�c�C�e�f�f
	\376\377�1�0�.�2�1�.�1�2�.�3� �d�p�c�m�C�a�l�c�S�t�e�a�d�y�S�t�a�t�e�R�e�s�i�s�t�a�n�c�e�R�a�n�g�e
	\376\377�1�0�.�2�1�.�1�2�.�4� �d�p�c�m�C�a�l�c�T�r�i�s�t�a�t�e�R�e�s�i�s�t�a�n�c�e�R�a�n�g�e
	\376\377�1�0�.�2�1�.�1�2�.�5� �a�p�p�S�e�t�C�e�f�f

	\376\377�1�0�.�2�1�.�1�3� �P�a�r�a�s�i�t�i�c� �e�s�t�i�m�a�t�i�o�n
	\376\377�1�0�.�2�1�.�1�3�.�1� �S�h�a�p�e�s
	\376\377�1�0�.�2�1�.�1�3�.�1�.�1� �d�p�c�m�C�a�l�c�C�o�u�p�l�i�n�g�C�a�p�a�c�i�t�a�n�c�e
	\376\377�1�0�.�2�1�.�1�3�.�1�.�2� �d�p�c�m�C�a�l�c�S�u�b�s�t�r�a�t�e�C�a�p�a�c�i�t�a�n�c�e
	\376\377�1�0�.�2�1�.�1�3�.�1�.�3� �d�p�c�m�C�a�l�c�S�e�g�m�e�n�t�R�e�s�i�s�t�a�n�c�e

	\376\377�1�0�.�2�1�.�1�3�.�2� �L�a�y�e�r� �d�e�f�i�n�i�t�i�o�n�s
	\376\377�1�0�.�2�1�.�1�3�.�2�.�1� �d�p�c�m�G�e�t�L�a�y�e�r�A�r�r�a�y
	\376\377�1�0�.�2�1�.�1�3�.�2�.�2� �d�p�c�m�G�e�t�R�u�l�e�U�n�i�t�T�o�M�e�t�e�r�s
	\376\377�1�0�.�2�1�.�1�3�.�2�.�3� �d�p�c�m�G�e�t�R�u�l�e�U�n�i�t�T�o�A�m�p�s

	\376\377�1�0�.�2�1�.�1�4� �T�h�r�e�s�h�o�l�d� �v�o�l�t�a�g�e�s
	\376\377�1�0�.�2�1�.�1�4�.�1� �a�p�p�G�e�t�D�r�i�v�e�r�T�h�r�e�s�h�o�l�d�s

	\376\377�1�0�.�2�1�.�1�5� �O�b�t�a�i�n�i�n�g� �a�g�g�r�e�s�s�o�r� �w�i�n�d�o�w� �o�v�e�r�l�a�p�s
	\376\377�1�0�.�2�1�.�1�5�.�1� �a�p�p�G�e�t�A�g�g�r�e�s�s�o�r�O�v�e�r�l�a�p�W�i�n�d�o�w�s
	\376\377�1�0�.�2�1�.�1�5�.�2� �a�p�p�S�e�t�A�g�g�r�e�s�s�o�r�I�n�t�e�r�a�c�t�W�i�n�d�o�w�s
	\376\377�1�0�.�2�1�.�1�5�.�3� �M�o�d�e�l�i�n�g� �t�h�e� �e�f�f�e�c�t� �o�f� �p�r�o�p�a�g�a�t�e�d� �n�o�i�s�e� �o�n� �d�e�l�a�y
	\376\377�1�0�.�2�1�.�1�5�.�4� �a�p�p�G�e�t�O�v�e�r�l�a�p�N�W�F�s
	\376\377�1�0�.�2�1�.�1�5�.�5� �a�p�p�S�e�t�D�r�i�v�e�r�I�n�t�e�r�a�c�t�W�i�n�d�o�w�s
	\376\377�1�0�.�2�1�.�1�5�.�6� �d�p�c�m�C�a�l�c�O�u�t�p�u�t�R�e�s�i�s�t�a�n�c�e�s

	\376\377�1�0�.�2�2� �N�o�i�s�e� �a�n�a�l�y�s�i�s
	\376\377�1�0�.�2�2�.�1� �T�y�p�e�s� �o�f� �n�o�i�s�e
	\376\377�1�0�.�2�2�.�1�.�1� �n�o�i�s�e�T�y�p�e
	\376\377�1�0�.�2�2�.�1�.�1�.�1� �d�p�c�m�G�e�t�L�i�b�r�a�r�y�N�o�i�s�e�T�y�p�e�s�A�r�r�a�y

	\376\377�1�0�.�2�2�.�2� �N�o�i�s�e� �m�o�d�e�l�s
	\376\377�1�0�.�2�2�.�2�.�1� �a�p�p�N�e�w�N�o�i�s�e�C�o�n�e
	\376\377�1�0�.�2�2�.�2�.�2� �I�n�t�e�r�c�o�n�n�e�c�t� �n�o�i�s�e� �c�o�n�e�s
	\376\377�1�0�.�2�2�.�2�.�3� �M�o�d�e�l�i�n�g� �i�n�t�e�r�n�a�l� �n�o�d�e�s

	\376\377�1�0�.�2�2�.�3� �N�o�i�s�e� �w�a�v�e�f�o�r�m�s
	\376\377�1�0�.�2�2�.�3�.�1� �d�p�c�m�G�e�t�P�W�F�a�r�r�a�y
	\376\377�1�0�.�2�2�.�3�.�2� �d�p�c�m�C�r�e�a�t�e�P�W�F
	\376\377�1�0�.�2�2�.�3�.�3� �d�p�c�m�C�o�p�y�N�W�F�a�r�r�a�y
	\376\377�1�0�.�2�2�.�3�.�4� �d�p�c�m�C�o�p�y�P�W�F�a�r�r�a�y
	\376\377�1�0�.�2�2�.�3�.�5� �d�p�c�m�C�r�e�a�t�e�P�W�F�d�r�i�v�e�r�M�o�d�e�l
	\376\377�1�0�.�2�2�.�3�.�6� �d�p�c�m�G�e�t�P�W�F�d�r�i�v�e�r�M�o�d�e�l�A�r�r�a�y

	\376\377�1�0�.�2�2�.�4� �N�o�i�s�e� �n�e�t�w�o�r�k� �m�o�d�e�l�s
	\376\377�1�0�.�2�2�.�4�.�1� �N�o�i�s�e� �p�i�n� �p�a�r�a�s�i�t�i�c�s
	\376\377�1�0�.�2�2�.�4�.�1�.�1� �d�p�c�m�G�e�t�S�i�n�k�P�i�n�N�o�i�s�e�P�a�r�a�s�i�t�i�c�s
	\376\377�1�0�.�2�2�.�4�.�1�.�2� �d�p�c�m�G�e�t�S�o�u�r�c�e�P�i�n�N�o�i�s�e�P�a�r�a�s�i�t�i�c�s
	\376\377�1�0�.�2�2�.�4�.�1�.�3� �d�p�c�m�B�u�i�l�d�N�o�i�s�e�I�n�t�e�r�c�o�n�n�e�c�t�M�o�d�e�l�s
	\376\377�1�0�.�2�2�.�4�.�1�.�4� �d�p�c�m�B�u�i�l�d�N�o�i�s�e�L�o�a�d�M�o�d�e�l�s

	\376\377�1�0�.�2�2�.�5� �C�a�l�c�u�l�a�t�i�n�g� �c�o�m�p�o�s�i�t�e� �n�o�i�s�e� �a�t� �c�e�l�l� �i�n�p�u�t�s
	\376\377�1�0�.�2�2�.�5�.�1� �d�r�i�v�e�r�P�i�n�N�o�i�s�e
	\376\377�1�0�.�2�2�.�5�.�1�.�1� �d�p�c�m�C�a�l�c�I�n�p�u�t�N�o�i�s�e

	\376\377�1�0�.�2�2�.�6� �C�a�l�c�u�l�a�t�i�n�g� �c�o�m�p�o�s�i�t�e� �n�o�i�s�e� �a�t� �c�e�l�l� �o�u�t�p�u�t�s
	\376\377�1�0�.�2�2�.�6�.�1� �r�e�l�a�t�e�d�P�i�n�N�o�i�s�e
	\376\377�1�0�.�2�2�.�6�.�1�.�1� �d�p�c�m�C�a�l�c�O�u�t�p�u�t�N�o�i�s�e

	\376\377�1�0�.�2�2�.�6�.�2� �H�a�n�d�l�i�n�g� �p�a�r�a�l�l�e�l� �d�r�i�v�e�r�s
	\376\377�1�0�.�2�2�.�6�.�2�.�1� �a�p�p�F�o�r�E�a�c�h�N�o�i�s�e�P�a�r�a�l�l�e�l�D�r�i�v�e�r
	\376\377�1�0�.�2�2�.�6�.�2�.�2� �d�p�c�m�S�e�t�P�a�r�a�l�l�e�l�R�e�l�a�t�e�d�N�o�i�s�e
	\376\377�1�0�.�2�2�.�6�.�2�.�3� �a�p�p�S�e�t�P�a�r�a�l�l�e�l�O�u�t�p�u�t�N�o�i�s�e

	\376\377�1�0�.�2�2�.�7� �S�e�t�t�i�n�g� �n�o�i�s�e� �b�u�d�g�e�t�s
	\376\377�1�0�.�2�2�.�7�.�1� �d�p�c�m�S�e�t�N�o�i�s�e�L�i�m�i�t

	\376\377�1�0�.�2�2�.�8� �R�e�p�o�r�t�i�n�g� �n�o�i�s�e� �v�i�o�l�a�t�i�o�n�s
	\376\377�1�0�.�2�2�.�8�.�1� �n�o�i�s�e�V�i�o�l�a�t�i�o�n�I�n�f�o
	\376\377�1�0�.�2�2�.�8�.�1�.�1� �a�p�p�S�e�t�N�o�i�s�e�V�i�o�l�a�t�i�o�n
	\376\377�1�0�.�2�2�.�8�.�1�.�2� �d�p�c�m�G�e�t�N�o�i�s�e�V�i�o�l�a�t�i�o�n�D�e�t�a�i�l�s

	\376\377�1�0�.�2�3� �D�e�l�a�y� �a�n�d� �s�l�e�w� �c�a�l�c�u�l�a�t�i�o�n�s� �f�o�r� �d�i�f�f�e�r�e�n�t�i�a�l� �c�i�r�c�u�i�t�s
	\376\377�1�0�.�2�3�.�1� �S�a�m�p�l�e� �f�i�g�u�r�e�s
	\376\377�1�0�.�2�3�.�2� �a�p�p�G�e�t�A�r�r�i�v�a�l�O�f�f�s�e�t�s�B�y�N�a�m�e
	\376\377�1�0�.�2�3�.�2�.�1� �a�p�p�G�e�t�A�r�r�i�v�a�l�O�f�f�s�e�t�A�r�r�a�y�s�B�y�N�a�m�e

	\376\377�1�0�.�2�3�.�3� �A�P�I� �e�x�t�e�n�s�i�o�n�s� �f�o�r� �f�u�n�c�t�i�o�n� �m�o�d�e�l�i�n�g
	\376\377�1�0�.�2�3�.�3�.�1� �S�t�a�n�d�a�r�d� �S�t�r�u�c�t�u�r�e� �e�x�t�e�n�s�i�o�n�s
	\376\377�1�0�.�2�3�.�3�.�2� �N�o�d�e� �r�e�p�r�e�s�e�n�t�a�t�i�o�n
	\376\377�1�0�.�2�3�.�3�.�3� �P�a�t�h� �o�r� �a�r�c� �r�e�p�r�e�s�e�n�t�a�t�i�o�n
	\376\377�1�0�.�2�3�.�3�.�4� �P�a�t�h�D�a�t�a�B�l�o�c�k� �d�a�t�a� �s�t�r�u�c�t�u�r�e
	\376\377�1�0�.�2�3�.�3�.�5� �A�r�c� �o�r�d�e�r�i�n�g
	\376\377�1�0�.�2�3�.�3�.�6� �P�r�i�o�r�i�t�y� �o�p�e�r�a�t�i�o�n
	\376\377�1�0�.�2�3�.�3�.�7� �P�r�e�c�e�d�e�n�c�e
	\376\377�1�0�.�2�3�.�3�.�8� �B�o�o�l�e�a�n� �a�s�s�i�g�n�m�e�n�t� �o�p�e�r�a�t�i�o�n
	\376\377�1�0�.�2�3�.�3�.�8�.�1� �N�o�n�b�l�o�c�k�i�n�g� �a�s�s�i�g�n�m�e�n�t�s
	\376\377�1�0�.�2�3�.�3�.�8�.�2� �B�l�o�c�k�i�n�g� �a�s�s�i�g�n�m�e�n�t�s
	\376\377�1�0�.�2�3�.�3�.�8�.�3� �S�t�r�a�n�d� �r�a�n�g�e�s
	\376\377�1�0�.�2�3�.�3�.�8�.�4� �B�u�s�e�s
	\376\377�1�0�.�2�3�.�3�.�8�.�5� �F�a�n�o�u�t� �d�i�s�t�r�i�b�u�t�i�o�n�s
	\376\377�1�0�.�2�3�.�3�.�8�.�6� �B�u�n�d�l�i�n�g

	\376\377�1�0�.�2�3�.�3�.�9� �E�x�t�e�n�s�i�o�n�s� �f�o�r� �r�e�t�a�i�n� �m�o�d�e�l�i�n�g
	\376\377�1�0�.�2�3�.�3�.�1�0� �E�x�t�e�n�s�i�o�n�s� �f�o�r� �s�k�e�w� �t�e�s�t�i�n�g

	\376\377�1�0�.�2�3�.�4� �E�x�p�l�i�c�i�t� �A�P�I�s� �f�o�r� �u�s�e�r�-�d�e�f�i�n�e�d� �p�r�i�m�i�t�i�v�e�s
	\376\377�1�0�.�2�3�.�4�.�1� �d�p�c�m�P�e�r�f�o�r�m�P�r�i�m�i�t�i�v�e
	\376\377�1�0�.�2�3�.�4�.�2� �a�p�p�G�e�t�A�r�c�S�t�r�u�c�t�u�r�e
	\376\377�1�0�.�2�3�.�4�.�3� �d�p�c�m�G�e�t�N�o�d�e�S�e�n�s�i�t�i�v�i�t�y

	\376\377�1�0�.�2�3�.�5� �A�P�I�s� �f�o�r� �h�i�e�r�a�r�c�h�y
	\376\377�1�0�.�2�3�.�5�.�1� �D�i�r�e�c�t� �c�a�l�l�b�a�c�k� �b�a�s�e� �h�i�e�r�a�r�c�h�y
	\376\377�1�0�.�2�3�.�5�.�1�.�1� �d�p�c�m�M�o�d�e�l�M�o�r�e�F�u�n�c�t�i�o�n�D�e�t�a�i�l

	\376\377�1�0�.�2�3�.�6� �B�u�i�l�t�-�i�n� �A�P�I�s� �f�o�r� �f�u�n�c�t�i�o�n� �m�o�d�e�l�i�n�g
	\376\377�1�0�.�2�3�.�6�.�1� �L�O�C�A�T�E�_�I�N�P�U�T
	\376\377�1�0�.�2�3�.�6�.�2� �L�O�C�A�T�E�_�O�U�T�P�U�T
	\376\377�1�0�.�2�3�.�6�.�3� �L�O�C�A�T�E�_�N�O�D�E

	\376\377�1�0�.�2�3�.�7� �A�P�I� �E�x�t�e�n�s�i�o�n�s� �f�o�r� �V�E�C�T�O�R� �m�o�d�e�l�i�n�g
	\376\377�1�0�.�2�3�.�7�.�1� �V�e�c�t�o�r� �d�o�m�a�i�n�s
	\376\377�1�0�.�2�3�.�7�.�2� �S�t�a�n�d�a�r�d� �S�t�r�u�c�t�u�r�e� �f�i�e�l�d�s� �f�o�r� �V�E�C�T�O�R� �c�l�a�u�s�e� �i�n� �v�e�c�t�o�r�T�i�m�i�n�g� �d�o�m�a�i�n
	\376\377�1�0�.�2�3�.�7�.�3� �V�E�C�T�O�R� �c�l�a�u�s�e� �f�o�r� �d�e�l�a�y� �a�n�d� �s�l�e�w
	\376\377�1�0�.�2�3�.�7�.�4� �V�E�C�T�O�R� �c�l�a�u�s�e� �f�o�r� �t�i�m�i�n�g� �c�h�e�c�k
	\376\377�1�0�.�2�3�.�7�.�5� �V�e�c�t�o�r� �t�a�r�g�e�t� �n�o�d�e� �g�e�n�e�r�a�t�i�o�n

	\376\377�1�0�.�2�3�.�8� �A�P�I�s� �f�o�r� �X�W�F
	\376\377�1�0�.�2�3�.�8�.�1� �X�W�F� �d�e�f�i�n�i�t�i�o�n
	\376\377�1�0�.�2�3�.�8�.�2� �F�r�e�e�i�n�g� �X�W�F� �m�e�m�o�r�y� �a�l�l�o�c�a�t�i�o�n
	\376\377�1�0�.�2�3�.�8�.�3� �X�W�F� �A�P�I� �d�e�f�i�n�i�t�i�o�n�s
	\376\377�1�0�.�2�3�.�8�.�3�.�1� �a�p�p�S�e�t�X�W�F
	\376\377�1�0�.�2�3�.�8�.�3�.�2� �a�p�p�G�e�t�X�W�F
	\376\377�1�0�.�2�3�.�8�.�3�.�3� �d�p�c�m�C�a�l�c�X�W�F

	\376\377�1�0�.�2�3�.�9� �E�x�t�e�n�s�i�o�n�s� �a�n�d� �c�h�a�n�g�e�s� �t�o� �v�o�l�t�a�g�e�s� �a�n�d� �t�e�m�p�e�r�a�t�u�r�e� �A�P�I�s
	\376\377�1�0�.�2�3�.�9�.�1� �d�p�c�m�G�e�t�C�e�l�l�R�a�i�l�V�o�l�t�a�g�e�A�r�r�a�y
	\376\377�1�0�.�2�3�.�9�.�2� �d�p�c�m�G�e�t�B�a�s�e�C�e�l�l�R�a�i�l�V�o�l�t�a�g�e�A�r�r�a�y
	\376\377�1�0�.�2�3�.�9�.�3� �d�p�c�m�G�e�t�B�a�s�e�C�e�l�l�T�e�m�p�e�r�a�t�u�r�e

	\376\377�1�0�.�2�3�.�1�0� �O�p�e�r�a�t�i�n�g� �c�o�n�d�i�t�i�o�n�s
	\376\377�1�0�.�2�3�.�1�0�.�1� �O�p�e�r�a�t�i�n�g� �p�o�i�n�t�s
	\376\377�1�0�.�2�3�.�1�0�.�1�.�1� �d�p�c�m�G�e�t�O�p�P�o�i�n�t�A�r�r�a�y
	\376\377�1�0�.�2�3�.�1�0�.�1�.�2� �d�p�c�m�G�e�t�B�a�s�e�O�p�P�o�i�n�t
	\376\377�1�0�.�2�3�.�1�0�.�1�.�3� �d�p�c�m�S�e�t�C�u�r�r�e�n�t�O�p�P�o�i�n�t

	\376\377�1�0�.�2�3�.�1�1� �O�n�-�c�h�i�p� �p�r�o�c�e�s�s� �v�a�r�i�a�t�i�o�n
	\376\377�1�0�.�2�3�.�1�1�.�1� �P�r�o�c�e�s�s� �p�o�i�n�t�s
	\376\377�1�0�.�2�3�.�1�1�.�1�.�1� �d�p�c�m�S�e�t�C�u�r�r�e�n�t�P�r�o�c�e�s�s�P�o�i�n�t
	\376\377�1�0�.�2�3�.�1�1�.�1�.�2� �d�p�c�m�G�e�t�B�a�s�e�P�r�o�c�e�s�s�P�o�i�n�t

	\376\377�1�0�.�2�3�.�1�1�.�2� �P�V�T� �r�a�n�g�e�s
	\376\377�1�0�.�2�3�.�1�1�.�2�.�1� �d�p�c�m�G�e�t�P�r�o�c�e�s�s�P�o�i�n�t�R�a�n�g�e

	\376\377�1�0�.�2�3�.�1�1�.�3� �R�a�i�l� �v�o�l�t�a�g�e� �r�a�n�g�e
	\376\377�1�0�.�2�3�.�1�1�.�3�.�1� �d�p�c�m�G�e�t�R�a�i�l�V�o�l�t�a�g�e�R�a�n�g�e�A�r�r�a�y
	\376\377�1�0�.�2�3�.�1�1�.�3�.�2� �d�p�c�m�G�e�t�C�e�l�l�R�a�i�l�V�o�l�t�a�g�e�R�a�n�g�e�A�r�r�a�y

	\376\377�1�0�.�2�3�.�1�1�.�4� �T�e�m�p�e�r�a�t�u�r�e� �r�a�n�g�e
	\376\377�1�0�.�2�3�.�1�1�.�4�.�1� �d�c�m�G�e�t�T�e�m�p�e�r�a�t�u�r�e�R�a�n�g�e
	\376\377�1�0�.�2�3�.�1�1�.�4�.�2� �d�p�c�m�G�e�t�C�e�l�l�T�e�m�p�e�r�a�t�u�r�e�R�a�n�g�e

	\376\377�1�0�.�2�3�.�1�2� �A�c�c�e�s�s�i�n�g� �p�r�o�p�e�r�t�i�e�s� �a�n�d� �a�t�t�r�i�b�u�t�e�s
	\376\377�1�0�.�2�3�.�1�2�.�1�.�1� �A�P�I�s� �f�o�r� �a�n�n�o�t�a�t�i�o�n�s� �w�i�t�h�i�n� �P�I�N� �o�b�j�e�c�t
	\376\377�1�0�.�2�3�.�1�2�.�1�.�2� �d�p�c�m�G�e�t�P�i�n�P�i�n�T�y�p�e�A�r�r�a�y
	\376\377�1�0�.�2�3�.�1�2�.�1�.�3� �d�p�c�m�G�e�t�P�i�n�P�i�n�T�y�p�e
	\376\377�1�0�.�2�3�.�1�2�.�1�.�4� �d�p�c�m�G�e�t�P�i�n�S�i�g�n�a�l�T�y�p�e�A�r�r�a�y
	\376\377�1�0�.�2�3�.�1�2�.�1�.�5� �d�p�c�m�G�e�t�P�i�n�S�i�g�n�a�l�T�y�p�e
	\376\377�1�0�.�2�3�.�1�2�.�1�.�6� �d�p�c�m�G�e�t�P�i�n�A�c�t�i�o�n�A�r�r�a�y
	\376\377�1�0�.�2�3�.�1�2�.�1�.�7� �d�p�c�m�G�e�t�P�i�n�A�c�t�i�o�n
	\376\377�1�0�.�2�3�.�1�2�.�1�.�8� �d�p�c�m�G�e�t�P�i�n�P�o�l�a�r�i�t�y�A�r�r�a�y
	\376\377�1�0�.�2�3�.�1�2�.�1�.�9� �d�p�c�m�G�e�t�P�i�n�P�o�l�a�r�i�t�y
	\376\377�1�0�.�2�3�.�1�2�.�1�.�1�0� �d�p�c�m�G�e�t�P�i�n�E�n�a�b�l�e�P�i�n
	\376\377�1�0�.�2�3�.�1�2�.�1�.�1�1� �d�p�c�m�G�e�t�P�i�n�C�o�n�n�e�c�t�C�l�a�s�s
	\376\377�1�0�.�2�3�.�1�2�.�1�.�1�2� �d�p�c�m�G�e�t�P�i�n�S�c�a�n�P�o�s�i�t�i�o�n
	\376\377�1�0�.�2�3�.�1�2�.�1�.�1�3� �d�p�c�m�G�e�t�P�i�n�S�t�u�c�k�A�r�r�a�y
	\376\377�1�0�.�2�3�.�1�2�.�1�.�1�4� �d�p�c�m�G�e�t�P�i�n�S�t�u�c�k
	\376\377�1�0�.�2�3�.�1�2�.�1�.�1�5� �d�p�c�m�G�e�t�D�i�f�f�e�r�e�n�t�i�a�l�P�a�i�r�P�i�n
	\376\377�1�0�.�2�3�.�1�2�.�2� �A�P�I�s� �f�o�r� �a�n�n�o�t�a�t�i�o�n�s� �w�i�t�h�i�n� �V�E�C�T�O�R� �o�b�j�e�c�t�s
	\376\377�1�0�.�2�3�.�1�2�.�2�.�1� �d�p�c�m�G�e�t�P�a�t�h�L�a�b�e�l
	\376\377�1�0�.�2�3�.�1�2�.�2�.�2� �d�p�c�m�G�e�t�P�o�w�e�r�S�t�a�t�e�L�a�b�e�l

	\376\377�1�0�.�2�3�.�1�2�.�3� �A�P�I�s� �f�o�r� �a�n�n�o�t�a�t�i�o�n�s� �w�i�t�h�i�n� �C�E�L�L� �o�b�j�e�c�t�s
	\376\377�1�0�.�2�3�.�1�2�.�3�.�1� �d�p�c�m�G�e�t�C�e�l�l�T�y�p�e�A�r�r�a�y
	\376\377�1�0�.�2�3�.�1�2�.�3�.�2� �d�p�c�m�G�e�t�C�e�l�l�T�y�p�e
	\376\377�1�0�.�2�3�.�1�2�.�3�.�3� �d�p�c�m�G�e�t�C�e�l�l�S�w�a�p�C�l�a�s�s�A�r�r�a�y
	\376\377�1�0�.�2�3�.�1�2�.�3�.�4� �d�p�c�m�G�e�t�C�e�l�l�S�w�a�p�C�l�a�s�s

	\376\377�1�0�.�2�3�.�1�2�.�4� �d�p�c�m�G�e�t�C�e�l�l�R�e�s�t�r�i�c�t�C�l�a�s�s�A�r�r�a�y
	\376\377�1�0�.�2�3�.�1�2�.�4�.�1� �d�p�c�m�G�e�t�C�e�l�l�R�e�s�t�r�i�c�t�C�l�a�s�s
	\376\377�1�0�.�2�3�.�1�2�.�4�.�2� �d�p�c�m�G�e�t�C�e�l�l�S�c�a�n�T�y�p�e�A�r�r�a�y
	\376\377�1�0�.�2�3�.�1�2�.�4�.�3� �d�p�c�m�G�e�t�C�e�l�l�S�c�a�n�T�y�p�e
	\376\377�1�0�.�2�3�.�1�2�.�4�.�4� �d�p�c�m�G�e�t�C�e�l�l�N�o�n�S�c�a�n�C�e�l�l
	\376\377�1�0�.�2�3�.�1�2�.�4�.�5� �a�p�p�S�e�t�V�e�c�t�o�r�O�p�e�r�a�t�i�o�n�s
	\376\377�1�0�.�2�3�.�1�2�.�4�.�6� �d�p�c�m�G�e�t�L�e�v�e�l�S�h�i�f�t�e�r

	\376\377�1�0�.�2�3�.�1�3� �A�P�I�s� �f�o�r� �a�t�t�r�i�b�u�t�e� �w�i�t�h�i�n� �a� �P�I�N� �o�b�j�e�c�t
	\376\377�1�0�.�2�3�.�1�3�.�1� �d�p�c�m�G�e�t�P�i�n�T�i�e�P�o�l�a�r�i�t�y
	\376\377�1�0�.�2�3�.�1�3�.�2� �d�p�c�m�G�e�t�P�i�n�R�e�a�d�P�o�l�a�r�i�t�y
	\376\377�1�0�.�2�3�.�1�3�.�3� �d�p�c�m�G�e�t�P�i�n�W�r�i�t�e�P�o�l�a�r�i�t�y
	\376\377�1�0�.�2�3�.�1�3�.�4� �d�p�c�m�G�e�t�S�i�m�u�l�t�a�n�e�o�u�s�S�w�i�t�c�h�T�i�m�e�s
	\376\377�1�0�.�2�3�.�1�3�.�5� �a�p�p�G�e�t�S�w�i�t�c�h�i�n�g�B�i�t�s
	\376\377�1�0�.�2�3�.�1�3�.�6� �d�p�c�m�G�e�t�F�r�e�q�u�e�n�c�y�L�i�m�i�t
	\376\377�1�0�.�2�3�.�1�3�.�7� �a�p�p�G�e�t�P�i�n�F�r�e�q�u�e�n�c�y
	\376\377�1�0�.�2�3�.�1�3�.�8� �d�p�c�m�G�e�t�B�a�s�e�P�i�n�F�r�e�q�u�e�n�c�y
	\376\377�1�0�.�2�3�.�1�3�.�9� �d�p�c�m�G�e�t�P�i�n�J�i�t�t�e�r
	\376\377�1�0�.�2�3�.�1�3�.�1�0� �d�p�c�m�G�e�t�I�n�d�u�c�t�a�n�c�e�L�i�m�i�t
	\376\377�1�0�.�2�3�.�1�3�.�1�1� �d�p�c�m�G�e�t�O�u�t�p�u�t�S�o�u�r�c�e�R�e�s�i�s�t�a�n�c�e�s
	\376\377�1�0�.�2�3�.�1�3�.�1�2� �a�p�p�S�e�t�P�u�l�l
	\376\377�1�0�.�2�3�.�1�3�.�1�3� �d�p�c�m�G�e�t�P�u�l�l
	\376\377�1�0�.�2�3�.�1�3�.�1�4� �d�p�c�m�G�e�t�P�i�n�D�r�i�v�e�S�t�r�e�n�g�t�h
	\376\377�1�0�.�2�3�.�1�3�.�1�5� �d�p�c�m�G�e�t�C�e�l�l�V�e�c�t�o�r�P�o�w�e�r

	\376\377�1�0�.�2�3�.�1�4� �C�o�n�n�e�c�t�i�v�i�t�y
	\376\377�1�0�.�2�3�.�1�4�.�1� �d�p�c�m�G�e�t�P�i�n�C�e�l�l�C�o�n�n�e�c�t�i�v�i�t�y�A�r�r�a�y�s
	\376\377�1�0�.�2�3�.�1�4�.�2� �d�p�c�m�G�e�t�L�i�b�r�a�r�y�C�o�n�n�e�c�t�C�l�a�s�s�A�r�r�a�y
	\376\377�1�0�.�2�3�.�1�4�.�3� �d�p�c�m�G�e�t�L�i�b�r�a�r�y�C�o�n�n�e�c�t�i�v�i�t�y�R�u�l�e�s

	\376\377�1�0�.�2�3�.�1�5� �C�o�n�t�r�o�l� �o�f� �t�i�m�i�n�g� �a�r�c� �e�x�i�s�t�e�n�c�e� �a�n�d� �s�t�a�t�e
	\376\377�1�0�.�2�3�.�1�5�.�1� �d�p�c�m�G�e�t�E�x�i�s�t�e�n�c�e�G�r�a�p�h
	\376\377�1�0�.�2�3�.�1�5�.�2� �d�p�c�m�G�e�t�T�i�m�i�n�g�S�t�a�t�e�G�r�a�p�h�s
	\376\377�1�0�.�2�3�.�1�5�.�3� �d�p�c�m�G�e�t�T�i�m�i�n�g�S�t�a�t�e�S�t�r�i�n�g�s
	\376\377�1�0�.�2�3�.�1�5�.�4� �d�p�c�m�G�e�t�V�e�c�t�o�r�E�d�g�e�N�u�m�b�e�r�s

	\376\377�1�0�.�2�3�.�1�6� �M�o�d�e�l�i�n�g� �c�o�r�e�s
	\376\377�1�0�.�2�3�.�1�6�.�1� �a�p�p�S�e�t�S�i�g�n�a�l�D�i�v�i�s�i�o�n
	\376\377�1�0�.�2�3�.�1�6�.�2� �a�p�p�S�e�t�S�i�g�n�a�l�M�u�l�t�i�p�l�i�c�a�t�i�o�n
	\376\377�1�0�.�2�3�.�1�6�.�3� �a�p�p�S�e�t�S�i�g�n�a�l�G�e�n�e�r�a�t�i�o�n

	\376\377�1�0�.�2�3�.�1�7� �D�e�f�a�u�l�t� �p�i�n� �s�l�e�w�s� �a�n�d� �i�n�t�e�r�f�a�c�e� �v�e�r�s�i�o�n� �c�a�l�l�s
	\376\377�1�0�.�2�3�.�1�7�.�1� �d�p�c�m�G�e�t�D�e�f�P�i�n�S�l�e�w�s
	\376\377�1�0�.�2�3�.�1�7�.�2� �a�p�p�G�e�t�I�n�t�e�r�f�a�c�e�V�e�r�s�i�o�n

	\376\377�1�0�.�2�3�.�1�8� �A�P�I� �t�o� �a�c�c�e�s�s� �l�i�b�r�a�r�y� �r�e�q�u�i�r�e�d� �r�e�s�o�u�r�c�e�s
	\376\377�1�0�.�2�3�.�1�8�.�1� �E�x�p�o�s�e� �A�P�I�s� �f�o�r� �r�e�s�o�u�r�c�e�s
	\376\377�1�0�.�2�3�.�1�8�.�1�.�1� �d�p�c�m�S�e�t�R�e�s�o�u�r�c�e
	\376\377�1�0�.�2�3�.�1�8�.�1�.�2� �d�p�c�m�G�e�t�A�l�l�R�e�s�o�u�r�c�e�s

	\376\377�1�0�.�2�3�.�1�9� �R�e�s�o�u�r�c�e� �t�y�p�e�s
	\376\377�1�0�.�2�3�.�2�0� �L�i�b�r�a�r�y� �e�x�t�e�n�s�i�o�n�s� �f�o�r� �p�h�a�s�e� �l�o�c�k�e�d� �l�o�o�p� �p�r�o�c�e�s�s�i�n�g
	\376\377�1�0�.�2�3�.�2�1� �A�P�I� �d�e�f�i�n�i�t�i�o�n�s� �f�o�r� �e�x�t�e�r�n�a�l� �c�o�n�d�i�t�i�o�n�s
	\376\377�1�0�.�2�3�.�2�1�.�1� �a�p�p�G�e�t�E�x�t�e�r�n�a�l�D�e�l�a�y�B�y�P�i�n
	\376\377�1�0�.�2�3�.�2�1�.�2� �a�p�p�G�e�t�E�x�t�e�r�n�a�l�D�e�l�a�y�B�y�N�a�m�e
	\376\377�1�0�.�2�3�.�2�1�.�3� �a�p�p�G�e�t�L�o�g�i�c�L�e�v�e�l�B�y�N�a�m�e
	\376\377�1�0�.�2�3�.�2�1�.�4� �a�p�p�G�e�t�L�o�g�i�c�L�e�v�e�l�B�y�P�i�n

	\376\377�1�0�.�2�3�.�2�2� �E�x�t�e�n�s�i�o�n�s� �f�o�r� �l�i�s�t�i�n�g� �p�i�n�s
	\376\377�1�0�.�2�3�.�2�2�.�1� �d�p�c�m�G�e�t�P�i�n�I�n�d�e�x�A�r�r�a�y�s
	\376\377�1�0�.�2�3�.�2�2�.�2� �d�p�c�m�G�e�t�S�u�p�p�l�y�P�i�n�s

	\376\377�1�0�.�2�3�.�2�3� �M�e�m�o�r�y� �B�I�S�T� �m�a�p�p�i�n�g
	\376\377�1�0�.�2�3�.�2�3�.�1� �d�p�c�m�G�e�t�P�h�y�s�i�c�a�l�B�I�S�T�M�a�p
	\376\377�1�0�.�2�3�.�2�3�.�2� �d�p�c�m�G�e�t�L�o�g�i�c�a�l�B�I�S�T�M�a�p

	\376\377�1�0�.�2�3�.�2�4� �d�p�c�m�G�e�t�C�e�l�l�T�e�s�t�P�r�o�c�e�d�u�r�e

	\376\377�1�0�.�2�4� �I�n�t�e�r�c�o�n�n�e�c�t� �d�e�l�a�y� �c�a�l�c�u�l�a�t�i�o�n� �i�n�t�r�a�f�a�c�e
	\376\377�1�0�.�2�4�.�1� �C�o�n�t�r�o�l� �a�n�d� �d�a�t�a� �f�l�o�w�s
	\376\377�1�0�.�2�4�.�2� �M�o�d�e�l� �g�e�n�e�r�a�t�i�o�n� �f�u�n�c�t�i�o�n�s
	\376\377�1�0�.�2�4�.�2�.�1� �i�c�m�B�u�i�l�d�L�o�a�d�M�o�d�e�l�s
	\376\377�1�0�.�2�4�.�2�.�2� �i�c�m�B�u�i�l�d�I�n�t�e�r�c�o�n�n�e�c�t�M�o�d�e�l�s

	\376\377�1�0�.�2�4�.�3� �C�a�l�c�u�l�a�t�i�o�n� �f�u�n�c�t�i�o�n�s
	\376\377�1�0�.�2�4�.�3�.�1� �i�c�m�C�a�l�c�I�n�t�e�r�c�o�n�n�e�c�t�D�e�l�a�y�S�l�e�w

	\376\377�1�0�.�2�4�.�4� �C�e�l�l� �c�a�l�c�u�l�a�t�i�o�n� �f�u�n�c�t�i�o�n�s
	\376\377�1�0�.�2�4�.�4�.�1� �i�c�m�C�a�l�c�C�e�l�l�D�e�l�a�y�S�l�e�w
	\376\377�1�0�.�2�4�.�4�.�2� �c�c�m�C�a�l�c�D�e�l�a�y�S�l�e�w
	\376\377�1�0�.�2�4�.�4�.�3� �c�c�m�E�a�r�l�y�L�a�t�e�I�d�e�n�t�i�c�a�l
	\376\377�1�0�.�2�4�.�4�.�4� �c�c�m�G�e�t�I�C�M�c�o�n�t�r�o�l�P�a�r�a�m�s
	\376\377�1�0�.�2�4�.�4�.�5� �i�c�m�C�a�l�c�O�u�t�p�u�t�R�e�s�i�s�t�a�n�c�e�s
	\376\377�1�0�.�2�4�.�4�.�6� �i�c�m�C�a�l�c�T�o�t�a�l�L�o�a�d�C�a�p�a�c�i�t�a�n�c�e�s
	\376\377�1�0�.�2�4�.�4�.�7� �i�c�m�C�a�l�c�X�W�F

	\376\377�1�0�.�2�4�.�5� �I�C�M� �i�n�i�t�i�a�l�i�z�a�t�i�o�n
	\376\377�1�0�.�2�4�.�5�.�1� �i�c�m�I�n�i�t
	\376\377�1�0�.�2�4�.�5�.�2� �I�C�M� �D�C�L� �h�e�a�d�e�r� �f�i�l�e� �(�i�c�m�.�h�)
	\376\377�1�0�.�2�4�.�5�.�3� �I�C�M� �D�C�L� �i�n�i�t�i�a�l�i�z�a�t�i�o�n� �e�x�a�m�p�l�e

	\376\377�1�0�.�2�5� �D�C�L� �r�u�n�-�t�i�m�e� �s�u�p�p�o�r�t
	\376\377�1�0�.�2�5�.�1� �A�r�r�a�y� �m�a�n�i�p�u�l�a�t�i�o�n� �f�u�n�c�t�i�o�n�s
	\376\377�1�0�.�2�5�.�1�.�1� �d�c�m�R�T�_�c�o�p�y�_�D�C�M�_�A�R�R�A�Y
	\376\377�1�0�.�2�5�.�1�.�2� �d�c�m�R�T�_�n�e�w�_�D�C�M�_�A�R�R�A�Y
	\376\377�1�0�.�2�5�.�1�.�3� �d�c�m�_�s�i�z�e�o�f�_�D�C�M�_�A�R�R�A�Y
	\376\377�1�0�.�2�5�.�1�.�4� �d�c�m�R�T�_�c�l�a�i�m�_�D�C�M�_�A�R�R�A�Y
	\376\377�1�0�.�2�5�.�1�.�5� �d�c�m�R�T�_�d�i�s�c�l�a�i�m�_�D�C�M�_�A�R�R�A�Y

	\376\377�1�0�.�2�5�.�2� �M�e�m�o�r�y� �m�a�n�a�g�e�m�e�n�t
	\376\377�1�0�.�2�5�.�3� �S�t�r�u�c�t�u�r�e� �m�a�n�i�p�u�l�a�t�i�o�n� �f�u�n�c�t�i�o�n�s
	\376\377�1�0�.�2�5�.�3�.�1� �d�c�m�R�T�_�c�l�a�i�m�_�D�C�M�_�S�T�R�U�C�T
	\376\377�1�0�.�2�5�.�3�.�2� �d�c�m�R�T�_�d�i�s�c�l�a�i�m�_�D�C�M�_�S�T�R�U�C�T
	\376\377�1�0�.�2�5�.�3�.�3� �L�o�c�k�i�n�g� �o�p�t�i�o�n�s
	\376\377�1�0�.�2�5�.�3�.�3�.�1� �d�c�m�R�T�_�l�o�n�g�l�o�c�k�_�D�C�M�_�S�T�R�U�C�T
	\376\377�1�0�.�2�5�.�3�.�3�.�2� �d�c�m�R�T�_�l�o�n�g�u�n�l�o�c�k�_�D�C�M�_�S�T�R�U�C�T
	\376\377�1�0�.�2�5�.�3�.�3�.�2�.�1� �C�o�n�t�e�x�t
	\376\377�1�0�.�2�5�.�3�.�3�.�2�.�2� �S�y�n�c� �s�t�r�u�c�t�u�r�e�s
	\376\377�1�0�.�2�5�.�3�.�3�.�2�.�3� �O�p�t�i�o�n�s
	\376\377�1�0�.�2�5�.�3�.�3�.�2�.�4� �E�r�r�o�r� �c�o�d�e

	\376\377�1�0�.�2�5�.�3�.�4� �d�c�m�R�T�_�g�e�t�N�u�m�D�i�m�e�n�s�i�o�n�s
	\376\377�1�0�.�2�5�.�3�.�5� �d�c�m�R�T�_�g�e�t�N�u�m�E�l�e�m�e�n�t�s�P�e�r
	\376\377�1�0�.�2�5�.�3�.�6� �d�c�m�R�T�_�g�e�t�N�u�m�E�l�e�m�e�n�t�s
	\376\377�1�0�.�2�5�.�3�.�7� �d�c�m�R�T�_�g�e�t�E�l�e�m�e�n�t�T�y�p�e
	\376\377�1�0�.�2�5�.�3�.�8� �d�c�m�R�T�_�a�r�r�a�y�c�m�p

	\376\377�1�0�.�2�5�.�4� �I�n�i�t�i�a�l�i�z�a�t�i�o�n� �f�u�n�c�t�i�o�n�s
	\376\377�1�0�.�2�5�.�4�.�1� �d�c�m�R�T�_�I�n�i�t�R�u�l�e�S�y�s�t�e�m
	\376\377�1�0�.�2�5�.�4�.�2� �d�c�m�R�T�_�B�i�n�d�R�u�l�e
	\376\377�1�0�.�2�5�.�4�.�3� �d�c�m�R�T�_�A�p�p�e�n�d�R�u�l�e
	\376\377�1�0�.�2�5�.�4�.�4� �d�c�m�R�T�_�U�n�b�i�n�d�R�u�l�e
	\376\377�1�0�.�2�5�.�4�.�5� �d�c�m�R�T�_�F�i�n�d�F�u�n�c�t�i�o�n
	\376\377�1�0�.�2�5�.�4�.�6� �d�c�m�R�T�_�F�i�n�d�A�p�p�F�u�n�c�t�i�o�n
	\376\377�1�0�.�2�5�.�4�.�7� �d�c�m�R�T�_�Q�u�i�e�t�F�i�n�d�F�u�n�c�t�i�o�n
	\376\377�1�0�.�2�5�.�4�.�8� �d�c�m�R�T�_�M�a�k�e�R�C
	\376\377�1�0�.�2�5�.�4�.�9� �d�c�m�R�T�_�H�a�r�d�E�r�r�o�r�R�C
	\376\377�1�0�.�2�5�.�4�.�1�0� �d�c�m�R�T�_�S�e�t�M�e�s�s�a�g�e�I�n�t�e�r�c�e�p�t
	\376\377�1�0�.�2�5�.�4�.�1�1� �d�c�m�R�T�_�I�s�s�u�e�M�e�s�s�a�g�e
	\376\377�1�0�.�2�5�.�4�.�1�2� �d�c�m�R�T�_�n�e�w�_�D�C�M�_�S�T�D�_�S�T�R�U�C�T
	\376\377�1�0�.�2�5�.�4�.�1�3� �d�c�m�R�T�_�d�e�l�e�t�e�_�D�C�M�_�S�T�D�_�S�T�R�U�C�T
	\376\377�1�0�.�2�5�.�4�.�1�4� �d�c�m�R�T�_�s�e�t�T�e�c�h�n�o�l�o�g�y
	\376\377�1�0�.�2�5�.�4�.�1�5� �d�c�m�R�T�_�g�e�t�T�e�c�h�n�o�l�o�g�y
	\376\377�1�0�.�2�5�.�4�.�1�6� �d�c�m�R�T�_�g�e�t�A�l�l�T�e�c�h�s
	\376\377�1�0�.�2�5�.�4�.�1�7� �d�c�m�R�T�_�f�r�e�e�A�l�l�T�e�c�h�s
	\376\377�1�0�.�2�5�.�4�.�1�8� �d�c�m�R�T�_�i�s�G�e�n�e�r�i�c
	\376\377�1�0�.�2�5�.�4�.�1�9� �d�c�m�R�T�_�t�a�k�e�M�a�p�p�i�n�g�O�f�N�u�g�g�e�t
	\376\377�1�0�.�2�5�.�4�.�2�0� �d�c�m�R�T�_�r�e�g�i�s�t�e�r�U�s�e�r�O�b�j�e�c�t
	\376\377�1�0�.�2�5�.�4�.�2�1� �d�c�m�R�T�_�D�e�l�e�t�e�R�e�g�i�s�t�e�r�e�d�U�s�e�r�O�b�j�e�c�t�s
	\376\377�1�0�.�2�5�.�4�.�2�2� �d�c�m�R�T�_�D�e�l�e�t�e�O�n�e�U�s�e�r�O�b�j�e�c�t

	\376\377�1�0�.�2�6� �C�a�l�c�u�l�a�t�i�o�n� �f�u�n�c�t�i�o�n�s
	\376\377�1�0�.�2�6�.�1� �d�e�l�a�y
	\376\377�1�0�.�2�6�.�2� �s�l�e�w
	\376\377�1�0�.�2�6�.�3� �c�h�e�c�k

	\376\377�1�0�.�2�7� �M�o�d�e�l�i�n�g� �f�u�n�c�t�i�o�n�s
	\376\377�1�0�.�2�7�.�1� �m�o�d�e�l�S�e�a�r�c�h
	\376\377�1�0�.�2�7�.�2� �M�o�d�e� �o�p�e�r�a�t�o�r�s
	\376\377�1�0�.�2�7�.�3� �A�r�r�i�v�a�l� �t�i�m�e� �m�e�r�g�i�n�g
	\376\377�1�0�.�2�7�.�4� �E�d�g�e� �p�r�o�p�a�g�a�t�i�o�n� �c�o�m�m�u�n�i�c�a�t�i�o�n� �t�o� �t�h�e� �a�p�p�l�i�c�a�t�i�o�n
	\376\377�1�0�.�2�7�.�5� �E�d�g�e� �p�r�o�p�a�g�a�t�i�o�n� �c�o�m�m�u�n�i�c�a�t�i�o�n� �t�o� �t�h�e� �D�P�C�M
	\376\377�1�0�.�2�7�.�6� �n�e�w�T�i�m�i�n�g�P�i�n
	\376\377�1�0�.�2�7�.�7� �n�e�w�D�e�l�a�y�M�a�t�r�i�x�R�o�w
	\376\377�1�0�.�2�7�.�8� �n�e�w�N�e�t�S�i�n�k�P�r�o�p�a�g�a�t�e�S�e�g�m�e�n�t�s
	\376\377�1�0�.�2�7�.�9� �n�e�w�N�e�t�S�o�u�r�c�e�P�r�o�p�a�g�a�t�e�S�e�g�m�e�n�t�s
	\376\377�1�0�.�2�7�.�1�0� �n�e�w�P�r�o�p�a�g�a�t�e�S�e�g�m�e�n�t
	\376\377�1�0�.�2�7�.�1�1� �n�e�w�T�e�s�t�M�a�t�r�i�x�R�o�w
	\376\377�1�0�.�2�7�.�1�2� �n�e�w�A�l�t�T�e�s�t�S�e�g�m�e�n�t
	\376\377�1�0�.�2�7�.�1�3� �I�n�t�e�r�a�c�t�i�o�n�s� �b�e�t�w�e�e�n� �i�n�t�e�r�c�o�n�n�e�c�t� �m�o�d�e�l�i�n�g� �a�n�d� �m�o�d�e�l�i�n�g� �f�u�n�c�t�i�o�n�s

	\376\377�1�0�.�2�8� �D�e�p�r�e�c�a�t�e�d� �f�u�n�c�t�i�o�n�s
	\376\377�1�0�.�2�8�.�1� �P�a�r�a�s�i�t�i�c� �h�a�n�d�l�i�n�g
	\376\377�1�0�.�2�8�.�1�.�1� �a�p�p�G�e�t�P�i�M�o�d�e�l
	\376\377�1�0�.�2�8�.�1�.�2� �a�p�p�G�e�t�P�o�l�e�s�A�n�d�R�e�s�i�d�u�e�s
	\376\377�1�0�.�2�8�.�1�.�3� �a�p�p�G�e�t�C�e�f�f�e�c�t�i�v�e
	\376\377�1�0�.�2�8�.�1�.�4� �a�p�p�G�e�t�R�L�C�n�e�t�w�o�r�k�B�y�P�i�n
	\376\377�1�0�.�2�8�.�1�.�5� �a�p�p�G�e�t�R�L�C�n�e�t�w�o�r�k�B�y�N�a�m�e
	\376\377�1�0�.�2�8�.�1�.�6� �d�p�c�m�C�a�l�c�P�i�M�o�d�e�l
	\376\377�1�0�.�2�8�.�1�.�7� �d�p�c�m�C�a�l�c�P�o�l�e�s�A�n�d�R�e�s�i�d�u�e�s
	\376\377�1�0�.�2�8�.�1�.�8� �d�p�c�m�C�a�l�c�C�e�f�f�e�c�t�i�v�e
	\376\377�1�0�.�2�8�.�1�.�9� �d�p�c�m�S�e�t�R�L�C�m�e�m�b�e�r
	\376\377�1�0�.�2�8�.�1�.�1�0� �d�p�c�m�A�p�p�e�n�d�P�i�n�A�d�m�i�t�t�a�n�c�e
	\376\377�1�0�.�2�8�.�1�.�1�1� �d�p�c�m�D�e�l�e�t�e�R�L�C�n�e�t�w�o�r�k

	\376\377�1�0�.�2�8�.�2� �A�r�r�a�y� �m�a�n�i�p�u�l�a�t�i�o�n� �f�u�n�c�t�i�o�n�s
	\376\377�1�0�.�2�8�.�2�.�1� �d�c�m�_�c�o�p�y�_�D�C�M�_�A�R�R�A�Y
	\376\377�1�0�.�2�8�.�2�.�2� �d�c�m�_�n�e�w�_�D�C�M�_�A�R�R�A�Y
	\376\377�1�0�.�2�8�.�2�.�3� �d�c�m�_�s�i�z�e�o�f�_�D�C�M�_�A�R�R�A�Y
	\376\377�1�0�.�2�8�.�2�.�4� �d�c�m�_�l�o�c�k�_�D�C�M�_�A�R�R�A�Y
	\376\377�1�0�.�2�8�.�2�.�5� �d�c�m�_�u�n�l�o�c�k�_�D�C�M�_�A�R�R�A�Y

	\376\377�1�0�.�2�8�.�3� �M�e�m�o�r�y� �m�a�n�a�g�e�m�e�n�t
	\376\377�1�0�.�2�8�.�3�.�1� �d�c�m�_�l�o�c�k�_�D�C�M�_�S�T�R�U�C�T
	\376\377�1�0�.�2�8�.�3�.�2� �d�c�m�_�u�n�l�o�c�k�_�D�C�M�_�S�T�R�U�C�T
	\376\377�1�0�.�2�8�.�3�.�3� �d�c�m�_�g�e�t�N�u�m�D�i�m�e�n�s�i�o�n�s
	\376\377�1�0�.�2�8�.�3�.�4� �d�c�m�_�g�e�t�N�u�m�E�l�e�m�e�n�t�s�P�e�r
	\376\377�1�0�.�2�8�.�3�.�5� �d�c�m�_�g�e�t�N�u�m�E�l�e�m�e�n�t�s
	\376\377�1�0�.�2�8�.�3�.�6� �d�c�m�_�g�e�t�E�l�e�m�e�n�t�T�y�p�e
	\376\377�1�0�.�2�8�.�3�.�7� �d�c�m�_�a�r�r�a�y�c�m�p

	\376\377�1�0�.�2�8�.�4� �I�n�i�t�i�a�l�i�z�a�t�i�o�n� �f�u�n�c�t�i�o�n�s
	\376\377�1�0�.�2�8�.�4�.�1� �d�c�m�C�e�l�l�L�i�s�t
	\376\377�1�0�.�2�8�.�4�.�2� �d�c�m�S�e�t�N�e�w�S�t�o�r�a�g�e�M�a�n�a�g�e�r
	\376\377�1�0�.�2�8�.�4�.�3� �d�c�m�M�a�l�l�o�c
	\376\377�1�0�.�2�8�.�4�.�4� �d�c�m�F�r�e�e
	\376\377�1�0�.�2�8�.�4�.�5� �d�c�m�R�e�a�l�l�o�c
	\376\377�1�0�.�2�8�.�4�.�6� �d�c�m�B�i�n�d�R�u�l�e
	\376\377�1�0�.�2�8�.�4�.�7� �d�c�m�A�d�d�R�u�l�e
	\376\377�1�0�.�2�8�.�4�.�8� �d�c�m�U�n�b�i�n�d�R�u�l�e
	\376\377�1�0�.�2�8�.�4�.�9� �d�c�m�F�i�n�d�F�u�n�c�t�i�o�n
	\376\377�1�0�.�2�8�.�4�.�1�0� �d�c�m�F�i�n�d�A�p�p�F�u�n�c�t�i�o�n
	\376\377�1�0�.�2�8�.�4�.�1�1� �d�c�m�Q�u�i�e�t�F�i�n�d�F�u�n�c�t�i�o�n
	\376\377�1�0�.�2�8�.�4�.�1�2� �d�c�m�M�a�k�e�R�C
	\376\377�1�0�.�2�8�.�4�.�1�3� �d�c�m�H�a�r�d�E�r�r�o�r�R�C
	\376\377�1�0�.�2�8�.�4�.�1�4� �d�c�m�S�e�t�M�e�s�s�a�g�e�I�n�t�e�r�c�e�p�t
	\376\377�1�0�.�2�8�.�4�.�1�5� �d�c�m�I�s�s�u�e�M�e�s�s�a�g�e
	\376\377�1�0�.�2�8�.�4�.�1�6� �d�c�m�_�r�u�l�e�_�i�n�i�t
	\376\377�1�0�.�2�8�.�4�.�1�7� �D�C�M�_�n�e�w�_�D�C�M�_�S�T�D�_�S�T�R�U�C�T
	\376\377�1�0�.�2�8�.�4�.�1�8� �D�C�M�_�d�e�l�e�t�e�_�D�C�M�_�S�T�D�_�S�T�R�U�C�T
	\376\377�1�0�.�2�8�.�4�.�1�9� �d�c�m�_�s�e�t�T�e�c�h�n�o�l�o�g�y
	\376\377�1�0�.�2�8�.�4�.�2�0� �d�c�m�_�g�e�t�T�e�c�h�n�o�l�o�g�y
	\376\377�1�0�.�2�8�.�4�.�2�1� �d�c�m�_�g�e�t�A�l�l�T�e�c�h�s
	\376\377�1�0�.�2�8�.�4�.�2�2� �d�c�m�_�f�r�e�e�A�l�l�T�e�c�h�s
	\376\377�1�0�.�2�8�.�4�.�2�3� �d�c�m�_�i�s�G�e�n�e�r�i�c
	\376\377�1�0�.�2�8�.�4�.�2�4� �d�c�m�_�m�a�p�N�u�g�g�e�t
	\376\377�1�0�.�2�8�.�4�.�2�5� �d�c�m�_�t�a�k�e�M�a�p�p�i�n�g�O�f�N�u�g�g�e�t
	\376\377�1�0�.�2�8�.�4�.�2�6� �d�c�m�_�r�e�g�i�s�t�e�r�U�s�e�r�O�b�j�e�c�t
	\376\377�1�0�.�2�8�.�4�.�2�7� �d�c�m�_�D�e�l�e�t�e�R�e�g�i�s�t�e�r�e�d�U�s�e�r�O�b�j�e�c�t�s
	\376\377�1�0�.�2�8�.�4�.�2�8� �d�c�m�_�D�e�l�e�t�e�O�n�e�U�s�e�r�O�b�j�e�c�t

	\376\377�1�0�.�2�9� �S�t�a�n�d�a�r�d� �S�t�r�u�c�t�u�r�e� �(�s�t�d�_�s�t�r�u�.�h�)� �f�i�l�e
	\376\377�1�0�.�3�0� �S�t�a�n�d�a�r�d� �m�a�c�r�o�s� �(�s�t�d�_�m�a�c�s�.�h�)� �f�i�l�e
	\376\377�1�0�.�3�1� �S�t�a�n�d�a�r�d� �i�n�t�e�r�f�a�c�e� �s�t�r�u�c�t�u�r�e�s� �(�d�c�m�i�n�t�f�.�h�)� �f�i�l�e
	\376\377�1�0�.�3�2� �S�t�a�n�d�a�r�d� �l�o�a�d�i�n�g� �(�d�c�m�l�o�a�d�.�h�)� �f�i�l�e
	\376\377�1�0�.�3�3� �S�t�a�n�d�a�r�d� �d�e�b�u�g� �(�d�c�m�d�e�b�u�g�.�h�)� �f�i�l�e
	\376\377�1�0�.�3�4� �S�t�a�n�d�a�r�d� �a�r�r�a�y� �(�d�c�m�g�a�r�r�a�y�.�h�)� �f�i�l�e
	\376\377�1�0�.�3�5� �S�t�a�n�d�a�r�d� �u�s�e�r� �a�r�r�a�y� �d�e�f�i�n�e�s� �(�d�c�m�u�a�r�r�a�y�.�h�)� �f�i�l�e
	\376\377�1�0�.�3�6� �S�t�a�n�d�a�r�d� �p�l�a�t�f�o�r�m�-�d�e�p�e�n�d�e�n�c�y� �(�d�c�m�p�l�t�f�m�.�h�)� �f�i�l�e
	\376\377�1�0�.�3�7� �S�t�a�n�d�a�r�d� �s�t�a�t�e� �v�a�r�i�a�b�l�e�s� �(�d�c�m�s�t�a�t�e�.�h�)� �f�i�l�e

	\376\377�1�1� �P�a�r�a�s�i�t�i�c�s
	\376\377�1�1�.�1� �I�n�t�r�o�d�u�c�t�i�o�n
	\376\377�1�1�.�2� �T�a�r�g�e�t�e�d� �a�p�p�l�i�c�a�t�i�o�n�s� �f�o�r� �S�P�E�F
	\376\377�1�1�.�3� �S�P�E�F� �s�p�e�c�i�f�i�c�a�t�i�o�n
	\376\377�1�1�.�3�.�1� �G�r�a�m�m�a�r
	\376\377�1�1�.�3�.�1�.�1� �A�l�p�h�a�n�u�m�e�r�i�c� �d�e�f�i�n�i�t�i�o�n
	\376\377�1�1�.�3�.�1�.�2� �N�a�m�e�s� �d�e�f�i�n�i�t�i�o�n

	\376\377�1�1�.�3�.�2� �E�s�c�a�p�i�n�g� �r�u�l�e�s
	\376\377�1�1�.�3�.�2�.�1� �S�p�e�c�i�a�l� �c�h�a�r�a�c�t�e�r�s
	\376\377�1�1�.�3�.�2�.�2� �C�h�a�r�a�c�t�e�r� �e�s�c�a�p�i�n�g� �m�e�c�h�a�n�i�s�m� �f�o�r� �i�d�e�n�t�i�f�i�e�r�s� �i�n� �S�P�E�F

	\376\377�1�1�.�3�.�3� �F�i�l�e� �s�y�n�t�a�x
	\376\377�1�1�.�3�.�3�.�1� �B�a�s�i�c� �f�i�l�e� �d�e�f�i�n�i�t�i�o�n
	\376\377�1�1�.�3�.�3�.�2� �H�e�a�d�e�r� �d�e�f�i�n�i�t�i�o�n
	\376\377�1�1�.�3�.�3�.�3� �N�a�m�e� �m�a�p� �d�e�f�i�n�i�t�i�o�n
	\376\377�1�1�.�3�.�3�.�4� �P�o�w�e�r� �a�n�d� �g�r�o�u�n�d� �n�e�t�s� �d�e�f�i�n�i�t�i�o�n
	\376\377�1�1�.�3�.�3�.�5� �E�x�t�e�r�n�a�l� �d�e�f�i�n�i�t�i�o�n
	\376\377�1�1�.�3�.�3�.�6� �H�i�e�r�a�r�c�h�i�c�a�l� �S�P�E�F� �(�e�n�t�i�t�i�e�s�)� �d�e�f�i�n�i�t�i�o�n
	\376\377�1�1�.�3�.�3�.�7� �P�r�o�c�e�s�s� �a�n�d� �t�e�m�p�e�r�a�t�u�r�e� �v�a�r�i�a�t�i�o�n� �d�e�f�i�n�i�t�i�o�n
	\376\377�1�1�.�3�.�3�.�8� �I�n�t�e�r�n�a�l� �d�e�f�i�n�i�t�i�o�n
	\376\377�1�1�.�3�.�3�.�8�.�1� �D�e�t�a�i�l�e�d� �n�e�t� �d�e�f�i�n�i�t�i�o�n
	\376\377�1�1�.�3�.�3�.�8�.�2� �R�e�d�u�c�e�d� �n�e�t� �d�e�f�i�n�i�t�i�o�n
	\376\377�1�1�.�3�.�3�.�8�.�3� �D�e�t�a�i�l�e�d� �p�h�y�s�i�c�a�l�-�o�n�l�y� �n�e�t� �d�e�f�i�n�i�t�i�o�n
	\376\377�1�1�.�3�.�3�.�8�.�4� �R�e�d�u�c�e�d� �p�h�y�s�i�c�a�l�-�o�n�l�y� �n�e�t� �d�e�f�i�n�i�t�i�o�n

	\376\377�1�1�.�3�.�4� �C�o�m�m�e�n�t�s
	\376\377�1�1�.�3�.�5� �F�i�l�e� �s�e�m�a�n�t�i�c�s

	Annex A (normative) Implementation requirements
	Annex B (informative) IEEE List of Participants

