

TECHNICAL
REPORT

IEC
 TR 61499-3

 First edition
2004-06

Function blocks for industrial-process
measurement and control systems –

Part 3:
Tutorial information

Reference number
IEC/TR 61499-3:2004(E)

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

Publication numbering

As from 1 January 1997 all IEC publications are issued with a designation in the
60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.

Consolidated editions

The IEC is now publishing consolidated versions of its publications. For example,
edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the
base publication incorporating amendment 1 and the base publication incorporating
amendments 1 and 2.

Further information on IEC publications

The technical content of IEC publications is kept under constant review by the IEC,
thus ensuring that the content reflects current technology. Information relating to
this publication, including its validity, is available in the IEC Catalogue of
publications (see below) in addition to new editions, amendments and corrigenda.
Information on the subjects under consideration and work in progress undertaken
by the technical committee which has prepared this publication, as well as the list
of publications issued, is also available from the following:

• IEC Web Site (www.iec.ch)

• Catalogue of IEC publications

The on-line catalogue on the IEC web site (www.iec.ch/searchpub) enables you to
search by a variety of criteria including text searches, technical committees
and date of publication. On-line information is also available on recently issued
publications, withdrawn and replaced publications, as well as corrigenda.

• IEC Just Published

This summary of recently issued publications (www.iec.ch/online_news/ justpub)
is also available by email. Please contact the Customer Service Centre (see
below) for further information.

• Customer Service Centre

If you have any questions regarding this publication or need further assistance,
please contact the Customer Service Centre:

Email: custserv@iec.ch
Tel: +41 22 919 02 11
Fax: +41 22 919 03 00

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

http://www.iec.ch/
http://www.iec.ch/searchpub
http://www.iec.ch/online_news/ justpub
mailto:custserv@iec.ch

TECHNICAL
REPORT

IEC
TR 61499-3

 First edition
2004-06

Function blocks for industrial-process
measurement and control systems –

Part 3:
Tutorial information

PRICE CODE

 IEC 2004  Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland
Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch

X

For price, see current catalogue

Commission Electrotechnique Internationale
International Electrotechnical Commission
Международная Электротехническая Комиссия

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 2 – TR 61499-3  IEC:2004(E)

CONTENTS

FOREWORD...4
INTRODUCTION...6

1 Scope...7
2 Normative references ...7
3 Frequently asked questions (FAQ)..7

3.1 General questions ...7
3.2 Object orientation ..8
3.3 The event-driven model ...9
3.4 Engineering methodologies ... 11
3.5 Applications... 13

4 Examples ... 14
4.1 Applications of SIFBs .. 14

4.1.1 Views .. 14
4.1.2 Trending .. 15
4.1.3 Remote sensing... 17
4.1.4 Remote actuation .. 18
4.1.5 Remote control .. 19
4.1.6 Combined control and actuation .. 20

4.2 System configuration ... 21
4.3 Use of communication function blocks ... 24
4.4 Contained variables in process control function blocks .. 24
4.5 Use of adapter interfaces to implement object-oriented concepts 25
4.6 Initialization algorithms.. 28

5 State chart implementation with ECCs .. 30
6 Device and resource management.. 32

6.1 Distributed management application .. 32
6.2 Device management function blocks.. 33
6.3 FBMGT Document Type Definition (DTD).. 35
6.4 Request/Response semantics .. 40

Annex A (informative) Relationships to other standards .. 45
Annex B (informative) IEC 61499 and object-oriented development 46

Bibliography.. 48

Figure 1 – Views of a PI_REAL type block .. 14
Figure 2 – Human interface... 15
Figure 3 – Function block type PI_OP_HMI ... 15
Figure 4 – TREND_16_REAL_VS function block type ... 16
Figure 5 – Resource type TC_XMTR... 17
Figure 6 – SIFB type TC_INTFC ... 17
Figure 7 – Resource type VALVE_XCVR .. 18

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61499-3  IEC:2004(E) – 3 –

Figure 8 – S type VALVE_INTFC .. 19
Figure 9 – Resource type PID_RSRC ... 20
Figure 10 – SIFB type PID .. 20
Figure 11 – Resource type PID_VALVE .. 21
Figure 12 – System configuration TC_LOOP... 23
Figure 13 – Example system timing... 23
Figure 14 – Polymorphic adapter type declaration... 26
Figure 15 – Polymorphic acceptor ("client") function block type... 26
Figure 16 – Provider ("server") function block types .. 27
Figure 17 – Resource configuration for testing adapter interfaces ... 28
Figure 18 – Test results .. 28
Figure 19 – HMI example .. 30
Figure 20 – State machine for hypothetical VCR motor control.. 31
Figure 21 – Basic function block implementation of state chart ... 32
Figure 22 – Device management application ... 32
Figure 23 – Remote device proxy.. 33
Figure 24 – Device management resource .. 33
Figure 25 – Device management kernel .. 34
Figure 26 – Device management service interface .. 35

Table 1 – FBMGT DTD ... 35

Table 2 – FBMGT DTD Elements.. 38

Table 3 – Request elements and Response Reason codes .. 40

Table 4 – QUERY Request and Response elements ... 42

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 4 – TR 61499-3  IEC:2004(E)

INTERNATIONAL ELECTROTECHNICAL COMMISSION

FUNCTION BLOCKS FOR INDUSTRIAL-PROCESS

MEASUREMENT AND CONTROL SYSTEMS –

Part 3: Tutorial information

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.

5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with an IEC Publication.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. However, a
technical committee may propose the publication of a technical report when it has collected
data of a different kind from that which is normally published as an International Standard, for
example "state of the art".

IEC 61499-3, which is a technical report, has been prepared by working group 6: Function
blocks, of IEC technical committee 65: Industrial-process measurement and control systems.

The text of this technical report is based on the following documents:

Enquiry draft Report on voting

65/308/DTR 65/321/RVC

Full information on the voting for the approval of this technical report can be found in the
report on voting indicated in the above table.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61499-3  IEC:2004(E) – 5 –

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

IEC 61499 consists of the following parts under the general title Function blocks for industrial-
process measurement and control systems:

Part 1: Architecture
Part 2: Software tools requirements
Part 3: Tutorial information
Part 4: Communication requirements

NOTE Parts 1 and 2 are under consideration.

The committee has decided that the contents of this publication will remain unchanged until
the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in
the data related to the specific publication. At this date, the publication will be

• reconfirmed;
• withdrawn;
• replaced by a revised edition, or
• amended.

A bilingual version of this publication may be issued at a later date.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 6 – TR 61499-3  IEC:2004(E)

INTRODUCTION

The following gives a description of the contents of the various parts of IEC 61499.

a) Part 1 contains

• general requirements, including an introduction, scope, normative references,
definitions, and reference models;

• rules for the declaration of function block types, and rules for the behaviour of
instances of the types so declared;

• rules for the use of function blocks in the configuration of distributed industrial-process
measurement and control systems (IPMCSs);

• rules for the use of function blocks in meeting the communication requirements of
distributed IPMCSs;

• rules for the use of function blocks in the management of applications, resources and
devices in distributed IPMCSs.

b) Part 2 defines requirements for software tools to support the following systems
engineering tasks enumerated in 1.1 of IEC 61499-1:

• the specification of function block types;

• the functional specification of resource types and device types;

• the specification, analysis, and validation of distributed IPMCSs;

• the configuration, implementation, operation, and maintenance of distributed IPMCSs;

• the exchange of information among software tools.
c) Part 3 has the purpose of increasing the understanding, acceptance, and both generic and

domain-specific applicability of IPMCS architectures and software tools meeting the
requirements of the other parts, by providing

• answers to Frequently Asked Questions (FAQs) regarding IEC 61499;

• examples of the use of IEC 61499 constructs to solve frequently encountered
problems in control and automation engineering.

d) Part 4 defines rules for the development of compliance profiles which specify the features
of IEC 61499-1 and IEC 61499-2 to be implemented in order to promote the following
attributes of IEC 61499-based systems, devices and software tools:

• interoperability of devices from multiple suppliers;

• portability of software between software tools of multiple suppliers; and

• configurability of devices from multiple vendors by software tools of multiple suppliers.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61499-3  IEC:2004(E) – 7 –

FUNCTION BLOCKS FOR INDUSTRIAL-PROCESS
MEASUREMENT AND CONTROL SYSTEMS –

Part 3: Tutorial information

1 Scope

This part of IEC 61499, which is a technical report, is intended to provide a simple shorthand
for common functionality in a broad number of "application domains" and, to that extent, may
be considered a "language". It should be noted that IEC 61499 is not a programming
methodology per se.

2 Normative references

The following referenced documents are indispensable for the application of this document.
For dated references, only the edition cited applies. For undated references, the latest edition
of the referenced document (including any amendments) applies.

IEC 61131-3:2003, Programmable controllers – Part 3: Programming languages

IEC 61804-1:2003, Function blocks (FB) for process control – Part 1: Overview of system
aspects

IEC 61804-2:2004, Function blocks (FB) for process control – Part 2: Specification of FB
concept and Electronic Device Description Language (EDDL)

3 Frequently asked questions (FAQ)

3.1 General questions

What is this clause about?

This clause is a compilation of responses to FAQ about the various parts of IEC 61499.

What good is IEC 61499?

IEC 61499-compliant distributed industrial-process measurement and control systems
(IPMCSs), devices, and their associated life-cycle support systems will be able to deliver a
number of significant benefits to their owners and system integrators, including:

a) IEC 61499-compliant life-cycle support systems will be able to reduce engineering costs
through integrated facilities for configuration, programming and data management.
Additional engineering cost savings will result from the ease of system integration
provided by IEC 61499's simple yet complete model of distributed systems. This model
provides hardware- and operating-system-independent representations for all functions of
the system, including control and information processing as well as communications and
process interfaces.

b) Engineers and technicians will be able to reduce system implementation time by
applying a common set of concepts and skills to all elements of the system. Further
reductions in implementation time will result from the elimination of software patches and
"glueware" formerly required to integrate incompatible system elements and software
tools.
1) The elimination of patchware and glueware, the availability of interoperable software

tool sets, the portability of engineering skills, and the ease of integration of system
elements, will yield higher reliability and maintainability over the system life cycle.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 8 – TR 61499-3  IEC:2004(E)

2) IEC 61499 provides an abstract, implementation-independent means of representing
system functions. This common "target" will lead to simplified migration from
existing systems to IEC 61499-compliant systems, and from older to newer
technological platforms (operating systems, communications, etc.) in IEC 61499-
compliant systems.

3) Economies of scale from uniform application of common software and firmware
technologies will provide lower hardware cost per function, since the most
significant cost items in modern control hardware are its firmware and supporting
software.

Is IEC 61499 a "stand-alone" document?

No. In order to realize the benefits listed above, distributed industrial-process measurement
and control systems (IPMCSs) will need

• compliance profiles following the rules given in IEC 61499-4, including full definitions of
the communication protocols utilized;

• standard programming languages such as those defined in IEC 61131-3 for the
specification of algorithms in basic function block types;

• libraries of standardized and customized function block types, resource types and device
types and guidelines for their application in specific domains.

How can IEC 61499 function blocks be distinguished from IEC 61131-3 function blocks?

Unfortunately, the term was already used differently in IEC 61131-3 and in the process control
domain as reflected in IEC 61804. IEC 61499 defines the term most generically in terms of a
distributed, event-driven architecture, of which the centralized, scanned architecture
underlying IEC 61131-3 and the distributed, scanned architecture underlying IEC 61804 may
be considered special cases. IEC 61131-3 and IEC 61804 may, in future, choose to specify
their own compliance profiles following the rules of IEC 61499-4 in order to provide full
harmonization of these standards.

3.2 Object orientation

Why use such a heavily object-oriented model?

The degree of object orientation used in IEC 61499 is necessary in order to achieve the
required level of distributability of encapsulated, reusable software modules (function blocks).

The benefits of using object-oriented development, and the extent to which IEC 61499
realizes these benefits, are discussed in Annex B of this document.

Is this not very expensive to implement?

Not necessarily; a full object-oriented implementation is not required by the IEC 61499 model
– only that the externally visible behaviour of function blocks and compliant devices conform
to the requirements of IEC 61499 and possibly of compliance profiles as defined in
IEC 61499-4.

Why not use a general-purpose distributed object model, like DCOM or CORBA?

Implementation of the features specified for these information-technology models would be
too expensive, and their performance would almost always be too slow for use in a distributed
real-time industrial-process measurement and control system (IPMCS).

Additionally, there is no standard, easily understood graphical model for representing the
interconnections of events and data among these kinds of objects in distributed applications.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61499-3  IEC:2004(E) – 9 –

Are data connections and event connections a kind of object?

The declarations of data and event connections contained in library elements can be
considered objects to be manipulated by software tools, as shown in Annex C of IEC 61499-1.
Additionally, data and event connections are regarded as managed objects within
resources, as shown in Annex C of IEC 61499-1.

Why are there no GLOBAL or EXTERNAL variables?

All variables are encapsulated. There is no guarantee that there will be an implicit global
distribution mechanism available. When such mechanisms are available, they can always be
mapped to service interface function blocks.

How can "contained parameters" be accessed?

External access to internal variables of function blocks is contrary to the principles of good
software design. Nonetheless, to accommodate exceptional cases and previous practice, the
READ and WRITE services and associated access paths to internal variables are defined for
management function blocks. However, this practice may substantially degrade system
performance, reliability, maintainability and safety, especially if used instead of the standard
PUBLISH/SUBSCRIBE or CLIENT/SERVER services for high-rate, periodic access to
variables.

Why use function blocks to model device or resource management applications?

The benefits of this approach are

• a consistent model of all applications in the system, including management applications;

• a consistent means of encapsulating and reusing all functions, including management
functions;

• reuse of existing data types;

• use of existing, standardized means for the definition of required new data types and
specification of management messages.

3.3 The event-driven model

Why an event-driven model?

Any execution control strategy (cyclic, time-scheduled, etc.) can be represented in terms of an
event-driven model, but the converse is not necessarily true. IEC 61499 opts for the more
general model in order to provide maximum flexibility and descriptive power to compliant
standards and systems.

How can a change in a data value generate an event?

E_R_TRIG and E_F_TRIG function block types, defined in Annex A of IEC 61499-1, propagate
an input event when the value of a Boolean input rises or falls, respectively, between
successive occurrences of the input event. Instances of this type may be combined with other
function blocks to produce rising- and falling-edge triggers, threshold detection events, etc.

What are event types? What are they used for?

An event type is an identifier associated with an event input or an event output of a function
block type, assigned as part of the event input or output declaration, as described in 2.2.1.1 of
IEC 61499-1. It can be used by software tools to assure that event connections are not
improperly mixed, for instance, to assure that an event output that is intended to be used for
initialization is not connected to an event input that is intended to be used for alarm
processing.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 10 – TR 61499-3  IEC:2004(E)

Event types cannot be detected by execution control charts (ECCs), which control the
execution of algorithms in basic function block types as defined in 2.2 of IEC 61499-1, so the
type of event cannot be used to influence the processing of events in such function block
types.

IEC 61499 does not define any standard event types other than the default type EVENT.

How can this model accommodate sampled-data systems?

The major issues in sampled-data systems such as those used in motion, robotic and
continuous process control are

• how to achieve synchronized sampling of process or machine inputs;

• how to assure that all data has arrived in time for processing by control algorithms;

• how to assure that all outputs are present and ready for sampling before beginning the
next cycle of sampling and execution.

Solutions to these problems typically require specialized communication and operating system
services, which can be represented in terms of the IEC 61499 model by service interface
function blocks. The inputs and outputs to be sampled can likewise be represented by
service interface function blocks, while the algorithms to be performed will typically be
encapsulated in basic function blocks. The relationships between the system services, input
and output sampling, and algorithm execution can then be expressed as event connections
and data connections.

What happens if a critical event is lost by the communication subsystem?

This issue is common to all distributed control systems and its solutions are well known; for
example, via periodic communication, missing event detection and/or positive acknowledge-
ment protocols. The IEC 61499 model provides for notification of abnormal operation via the
IND-, CNF- and INITO- service primitives and STATUS output of service interface function
blocks.

Is there any way to distinguish between "process events" and "execution scheduling
events"?

These events can be distinguished from each other by the event type mechanism. They can
be used by software tools to show only the event types of interest and to restrict connections
to be only among compatible event types.

How can a function block respond to faults and exceptions?

In the IEC 61499 model, faults and exceptions are modelled as event outputs and associated
data outputs of service interface function blocks. These outputs can be connected to
appropriate event inputs and associated data inputs of any function blocks, which must
respond to the fault or exception, for example, by changing their operational modes.

Where can event handling function blocks (E_CYCLE, E_RESTART, etc.) be instantiated?

The standard does not restrict the context for instantiation of event handling function blocks or
service interface function blocks in general. They can, in principle, be used wherever any
other function block type may be instantiated, for instance, as components of composite
function blocks or as part of a resource configuration.

Are there any mechanisms to prioritize execution of algorithms or events ?

There is just some description of priority attributes for algorithms in Annex H of IEC 61499-1;
however, this description is not normative.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61499-3  IEC:2004(E) – 11 –

The rules for algorithm invocation given in 2.2.2.2 of IEC 61499-1 provide a substantial
degree of control over prioritization by defining specifically the processing order of transitions
and actions of an Execution Control Chart (ECC).

How can IEC 61131-3 tasks with priorities and cycling time be converted to IEC 61499?

The E_CYCLE function block is intended to be used mainly for the control of cyclic execution
like the cyclic tasks of IEC 61131-3. See the previous question for a discussion of priorities.

3.4 Engineering methodologies

How can I use IEC 61499 to design and implement state-machine control?

There are various formal and informal methodologies for the design of state-machine control
systems. A general outline of these methods and how IEC 61499 models and software tools
can be used is as follows.

a) Define the desired sequence of operations for the controlled machine or process, as well
as the abnormal sequences which may occur, if possible. This may be done informally in
ordinary language, or by using more formal notations such as Petri nets or IEC 61131-3
Sequential Function Charts (SFCs).

b) Define the actuators that are to be used to implement the desired behaviour, the sensors
that are to be used to determine the actual state of the controlled machine or process, and
their interfaces to the state-machine controller(s). IEC 61499 service interface function
block types may be used for this purpose; such type definitions will typically be provided
for this purpose by the supplier of the IEC 61499-compliant sensor and actuator devices.

c) Model the behaviour of the machine or process in response to commands (events plus
data) given to the actuators, and the resulting, observable time-dependent outputs (events
plus data) from the sensors. This modelling may be done formally using notations such as
Petri nets, or informally using simulation models (which may be implemented with
appropriate IEC 61499 models).

d) Define the appropriate state-machine controllers, typically as the ECCs and algorithms of
basic function block types. Methodologies for doing this step may be informal, based on
engineering experience, or more formal, using for example Petri-net theory. The best
method is to reuse existing, proven state-machine controllers from an IEC 61499 function
block library!

e) Validate the proposed state-machine controllers versus the model of the controlled
machine or process. In order to catch possible design or specification errors, this would
usually be done using simulation; in addition, more formal validation methods may be
used if available.

f) Finally, replace the simulated sensor and actuator interfaces with the service interfaces to
the actual machine or process to be controlled. This installation should normally be
carried out piecewise for testing purposes.

What is an ECC? Why should I use it and when?

An ECC is a specialized state machine to enable multiple events to trigger multiple algorithms
in a basic function block type, possibly dependent on some internal state. It should be used
when maximum flexibility in algorithm selection and scheduling or when a high-performance,
event-driven state machine is needed. Otherwise, the mechanisms in Annex D of IEC 61499-1
for converting IEC 61131-3 function blocks to IEC 61499-style blocks can be used.

Why can a composite function block not have internal variables?

Internal variables are not required in composite function blocks, since all possible sources of
data are accounted for as input or output variables of the composite function block or of its
component function blocks.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 12 – TR 61499-3  IEC:2004(E)

Are extensible user-defined function blocks permitted?

IEC 61499 follows the usage of IEC 61131-3 and does not define a specific syntax for
specification of extensible inputs and outputs of user-defined function blocks. The use of the
ellipsis (...) and accompanying textual descriptions is considered adequate for the
specification of extensible inputs and outputs of standard and service interface function block
types.

Can alternative graphical representations be used?

Software tools can use alternative graphical, textual or tabular representations, as long as the
accompanying documentation specifies an unambiguous mapping to the graphical elements
and associated textual syntax defined in IEC 61499-1.

How can "trend" and "view" objects be created?

In some process control terminologies, a view is a collection of data values from various
sources, arranged for remote access. This function is performed by standard IEC 61499
communication function blocks.

NOTE This usage of the term "view" differs from the well-known Model/View/Controller (MVC) model for user
interface applications.

A trend is a sequence of data values from the same source. The function of collecting trend
data can be implemented as an algorithm of a basic function block, and remote access to the
data so collected can be provided by standard communication function blocks. See 4.1.1 and
4.1.2 for further information.

Why and when should I use the WITH construct?

When you are designing function block types, you use the WITH construct to specify an
association between an event input and a set of input variables, or between an event output
and a set of output variables. Subclause 2.2.2.2 of IEC 61499-1 states that this association
means that the associated input variables are to be sampled at a particular transition of the
ECC state machine; no specific semantics are given for the WITH associations of event
outputs and output variables. It is recommended, but not required, that the following
interpretations be placed on these semantics.

IEC 61499-1 states that the WITH construct is used to determine

• which input variables to sample when an event occurs at the associated event input of an
instance of the type;

• which output events are used to indicate when values of associated output variables
change.

In either case, it is expected that this information will be used by software tools to assist the
user to ensure that

• the data used by an algorithm in one function block is consistent with the data produced
by an algorithm in another function block and delivered over one or more data connections
associated with one or more event connections;

• the messages transmitted over communication connections between resources in a
distributed application carry consistent data and events between the function block
instances in the application in the way intended by the application designer.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61499-3  IEC:2004(E) – 13 –

Are the "sequences" of service interface function blocks (SIFBs) only for documenta-
tion or can they be used for programming purposes?

The use of service sequences for SIFBs was intended for documentation purposes and
especially to show a direct mapping for well-specified services which follow the ISO 8509
conventions. Even in documentation terms, however, they should be considered as imposing
constraints on the externally observable operational sequences of the corresponding SIFBs.
Software tools may, but are not required to, use these specifications to generate skeleton
code for an implementation language such as IEC 61131-3 ST, C++ or Java.

How is IEC 61499 related to conventional methods of object-oriented development?

See Annex B.

3.5 Applications

Why does IEC 61499 not define applications as instances of application types?
It was determined that an implementation-independent specification of an application type
would be identical to a composite function block type; however, this view has now evolved to
that of a sub-application type. The configuration of applications could then be carried out
according to the following process.

a) Create and interconnect one or more instances of the sub-application types (and possibly
additional function block types) representing the application.

b) Create instances of the service interface function block types representing the process
interfaces of the application.

c) Create appropriate event connections and data connections between the process
interface function blocks and the sub-applications representing the application.

d) Remove the encapsulation around the sub-applications, exposing their component
function blocks (which may also be sub-applications) as distributable elements of the
application.

e) Remove the encapsulation of all of the newly exposed sub-applications, repeating as
necessary.

f) Distribute the application by allocating its function block instances to appropriate
resources.

g) Create and configure appropriate instances of communication function block types to
maintain the event and data flows of the application.
NOTE Software tools would typically provide means of automating many of the operations in this process,
especially in steps d), e) and f).

Can an application contain "sub-applications"?

Yes. See the above description as well as 2.4 of IEC 61499-1.

Can an application interface with other applications?

Not directly, since there is no application type within which an interface could be defined.
However, applications may communicate with each other by means of communication
SIFBs. Also, sub-applications may interface with each other via event connections and data
connections.

How is the loading and starting of applications managed?

Software tools for this purpose will take as input a system configuration and generate
sequences of commands to management function blocks to perform loading and starting of
applications, either locally or remotely via communication function blocks. Details of this
functionality will typically be contained in compliance profiles following the rules given in
IEC 61499-4.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 14 – TR 61499-3  IEC:2004(E)

4 Examples

4.1 Applications of SIFBs

4.1.1 Views

Some system architectures define unique objects to provide specified functions. Such objects
may include "transducer blocks", "views", "trends", "alerts", and remote "links". The purpose
of this subclause is to illustrate the use of SIFBs to replace such specialized objects.

This example illustrates the use of communication function blocks to provide controlled
remote access to real-time data and parameters of function blocks. The general approach is
as follows.

a) Model the desired functionality as a function block with all accessible parameters
externally visible.

b) Use appropriate SIFBs, for example, SERVER, to model the grouping and access control to
parameters.

c) Encapsulate the resulting model with "invisible" contained parameters and internal access
mechanisms.

Figure 1 shows a partial configuration of a resource type which provides an "operator view"
via the block labelled OP_VIEW and an "engineering view" via the block labelled ENG_VIEW of
the data associated with an instance of the PI_REAL composite function block example
described in 2.3.1 of IEC 61499-1. The ENG_VIEW block supplies the KP and KI parameters
and the HOLD variable to the PI block, while the OP_VIEW block supplies the SP variable and
returns the PV variable (provided by a remote publisher via the PV_SUB block) and the XOUT
variable of the PI block.

NOTE 1 The XOUT parameter would typically be connected to a PUBLISH block or a local output point to effect
the desired control; this connection is not shown in this example.

NOTE 2 The naming of the communication SIFB types in this subclause shows a useful convention. The block is
named XXXX_NI_NO, where XXXX is the name of the service, for example, SERVER; NI is the number of inputs,
for example, 2 and NO is the number of outputs, for example, 1. In this example, the block type is SERVER_2_1; the
service interface at the other end of the communication connection then has the reversed number of inputs and
outputs, for example, CLIENT_1_2.

Figure 1 – Views of a PI_REAL type block

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61499-3  IEC:2004(E) – 15 –

Figure 2a illustrates a partial resource configuration for a simple remote operator interface for
the remote resource shown in Figure 1. An instance of a specialized version of the CLIENT
function block type described in Annex F of IEC 61499-1 provides the remote interface for
setting the SP (set point) of the PI algorithm, and reading the PV (process variable) input and
XOUT output of the algorithm. A similar configuration could be used for an engineering
interface; if these two interfaces are placed side-by-side, a display such as that in Figure 2b
could be obtained.

Figure 2a −−−− Partial resource configuration

Figure 2b −−−− Typical display

Figure 2 – Human interface

Figure 3 shows the external interface and internal function block network of the PI_OP_HMI
function block type used for the simple human interface in Figure 2. In practice, a bar chart
display of the three values SP, PV and OUT is typically used.

Figure 3a −−−− External interface

Figure 3b −−−− Implementation

Figure 3 – Function block type PI_OP_HMI

4.1.2 Trending

Figure 4 shows a 16-sample trending function implemented in a TREND_16_REAL_VS function
block. The function block provides an RD/RDO pair to assure that data being read is properly
synchronized. The input data is of type REAL_VS providing both value and status of the data,
as given by the declaration

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 16 – TR 61499-3  IEC:2004(E)

TYPE REAL_VS: (* REAL Value with Status byte *)
 STRUCT
 Status: BYTE; (* Implementation dependent encoding *)
 Value: REAL;
 END_STRUCT;
END_TYPE

Information encoded in the Status byte may include

• good (cascade) – variable value may be used for control;

• good (non-cascade) – the value may be used in operation;

• uncertain – the variable value is suspect;

• bad – the variable value does not reflect the true measurement, calculation, or control
value;

• additional status attributes (i.e., attributes whose interpretation depends on the main
status enumerated above) and limit attributes (for example, high or low limit exceeded)
may also be encoded.

Each piece of input data is stamped with the current date and time in order to account for
possible non-uniform sampling intervals. The stamped data type is given by the declaration

TYPE STAMPED_REAL_VS: (* Time-Stamped REAL Value with Status byte *)
 STRUCT
 Value: REAL_VS;
 Stamp: DATE_AND_TIME;
 END_STRUCT;
END_TYPE

Remote access to the trend values could be provided by an appropriate instance of a
SERVER block as described in Annex F of IEC 61499-1.

Figure 4a −−−− External interface

Figure 4b −−−− ECC

Figure 4 – TREND_16_REAL_VS function block type

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61499-3  IEC:2004(E) – 17 –

4.1.3 Remote sensing

Figure 5 shows a resource type, which publishes the data obtained from a thermocouple
interface represented by an instance of the SIFB type TC_INTFC shown in Figure 6. The
PARAMS input of the TC_INTFC block would contain data appropriate to characterize a
thermocouple interface, including such items as channel number, thermocouple type,
calibration data, engineering units and scaling. The RD_1 output of the TC_INTFC block would
typically be of data type REAL_VS, representing a temperature in appropriate engineering units
and associated status. The STATUS output would indicate conditions specific to the interface
type such as open circuit, short circuit, etc.

In typical operation of this resource, the arrival of an event at the IND output of the TRIGGER
block would trigger the sampling and subsequent publication of the associated data from the
TC block.

A software tool as described in IEC 61499-2 would typically initiate operation of this resource
via the following sequence of operations.

a) Establish a communication connection to a SERVER block connected to the MANAGER block
for the resource.

b) Establish values of the PARAMS inputs of the TRIGGER, TC and PUB blocks, using WRITE or
CREATE management commands.

c) Force initialization by issuing a START command as described in 3.3.2 of IEC 61499-1,
which will cause an event at the WARM output of the START block to be propagated via the
INIT/INITO chain of the TRIGGER, TC and PUB blocks.

d) Verify that correct initialization has occurred by using the READ command to query the
values of the STATUS outputs of the TRIGGER, TC and PUB blocks, and take appropriate
corrective action if necessary.

e) The software tool may also establish its own SUBSCRIBE block to the publish/subscribe
channel established for the PUB block in order to monitor the status of the published
variable.

Figure 5 – Resource type TC_XMTR

NOTE See 4.1.2 for a discussion of the data type REAL_VS.

Figure 6 – SIFB type TC_INTFC

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 18 – TR 61499-3  IEC:2004(E)

4.1.4 Remote actuation

Figure 7 shows a resource type, which subscribes to the data required to operate a valve
interface represented by an instance of the SIFB type VALVE_INTFC illustrated in Figure 8.
The PARAMS input of the VALVE_INTFC block contain data appropriate to characterize its
operation, including such items as channel number, forward or reverse valve action, and
scaling. The SD_1 input of the VALVE_INTFC block would typically be of data type REAL_VS,
representing a scaled valve position and associated data status, while its STATUS output
would indicate conditions such as sticking, over-travel, etc. A block PUB of type PUBLISH_1 is
also provided in this resource type to publish the valve status upon occurrence of an error
condition as indicated by a CNF- primitive of the VALVE_INTFC service.

In typical operation of this resource, the arrival of an event at SUB.IND would trigger the VALVE
block to begin the motion of the valve to the position commanded at SUB.RD_1, followed by an
event at VALVE.CNF with appropriate values at VALVE.QO and VALVE.STATUS. If an error
occurs as indicated by a FALSE value of VALVE.QO, the VALVE.CNF event will be propagated to
PUB.REQ via PUB_SW.EO0, causing the publication of the diagnostic information at
VALVE.STATUS.

A software tool as described in IEC 61499-2 would typically initiate operation of this resource
via the following sequence of operations.

a) Establish a communication connection to a SERVER block connected to the MANAGER block
for the resource.

b) Establish values of the PARAMS inputs of the SUB, VALVE and PUB blocks, using WRITE or
CREATE management commands.

c) Force initialization by issuing a START command, which will cause an event at the WARM
output of the START block to be propagated via the INIT/INITO chain of the SUB, VALVE
and PUB blocks.

d) Verify that correct initialization has occurred by using the READ command to query the
values of the STATUS outputs of the SUB, VALVE and PUB blocks, and take appropriate
corrective action if necessary.

e) The software tool may also establish its own SUBSCRIBE block to the publish/subscribe
channel established for the PUB block in order to monitor the valve status.

Figure 7 – Resource type VALVE_XCVR

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61499-3  IEC:2004(E) – 19 –

NOTE See 4.1.2 for a discussion of the data type REAL_VS.

Figure 8 – SIFB type VALVE_INTFC

4.1.5 Remote control

Figure 9 shows a resource type which subscribes to the data required to supply the set point
(SP) and process variable (PV) for the operation of an instance of the service interface function
block type PID, and publishes its manipulated variable OUT, as illustrated in Figure 10. The
PARAMS input of the PID block contains data appropriate to characterize its operation,
including sampling time, proportional/integral/derivative constants, operating mode, etc.
A block STATUS_PUB of type PUBLISH_1 is also provided in this resource type to publish the
block status upon occurrence of an error condition as indicated by a CNF- primitive of the PID
service.

In typical operation of this resource, the arrival of an event at PV.IND would trigger the
operation of the PID algorithm, followed by an event at CTRL.CNF with appropriate values at
CTRL.QO, CTRL.STATUS and CTRL.OUT. The CTRL.CNF event will be propagated to PUB.REQ or
STATUS_PUB.REQ via PUB_SW.EO0 or PUB_SW.EO1 respectively, depending on whether the
value of CTRL.QO is TRUE or FALSE respectively.

The set point will be changed by the arrival of an event at SP.IND and corresponding data at
SP.RD_1.

A software tool as described in IEC 61499-2 would typically initiate operation of this resource
via the following sequence of operations.

a) Establish a communication connection to a SERVER block connected to the MANAGER block
for the resource.

b) Establish values of the PARAMS inputs of the PV, SP, CTRL, STATUS_PUB and PUB
blocks, using WRITE or CREATE management commands as described in 3.3.2 of
IEC 61499-1.

c) Force initialization by issuing a START command as described in 3.3.2 of IEC 61499-1,
which will cause an event at the WARM output of the START block to be propagated via the
INIT/INITO chain of the PV, SP, STATUS_PUB and PUB blocks.

d) Verify that correct initialization has occurred by using the READ command to query the
values of the STATUS outputs of the PV, SP, STATUS_PUB and PUB blocks, and take
appropriate corrective action if necessary.

e) The software tool may also establish its own SUBSCRIBE blocks to the publish/subscribe
channels established for the STATUS_PUB and PUB blocks in order to monitor the PID block
status and output value, respectively.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 20 – TR 61499-3  IEC:2004(E)

Figure 9 – Resource type PID_RSRC

NOTE 1 Specification of the internal functionality of this function block type is beyond the scope of this technical
report.

NOTE 2 See 4.1.2 for a discussion of the data type REAL_VS.

Figure 10 – SIFB type PID

4.1.6 Combined control and actuation

Figure 11 shows a resource type which combines the control, actuation and diagnostic
functions illustrated in Figures 9 and 10.

A software tool as described in IEC 61499-2 would typically initiate operation of this resource
via the following sequence of operations.

a) Establish a communication connection to a SERVER block connected to the MANAGER block
for the resource.

b) Establish values of the PARAMS inputs of the PV, SP, CTRL, STATUS_PUB, VALVE and
VALVE_PUB blocks, using WRITE or CREATE management commands.

c) Force initialization by issuing a START command as described in 3.3.2 of IEC 61499-1,
which will cause an event at the WARM output of the START block to be propagated via the
INIT/INITO chain of the PV, SP, CTRL, STATUS_PUB, VALVE and VALVE_PUB blocks.

d) Verify that correct initialization has occurred by using the READ command to query the
values of the STATUS outputs of the PV, SP, CTRL, STATUS_PUB, VALVE and VALVE_PUB
blocks, and take appropriate corrective action if necessary.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61499-3  IEC:2004(E) – 21 –

e) The software tool may also establish its own SUBSCRIBE blocks to the publish/subscribe
channels established for the STATUS_PUB and VALVE_PUB blocks in order to monitor the
status of the PID and VALVE blocks, respectively.

Figure 11 – Resource type PID_VALVE

4.2 System configuration

Figure 12 illustrates how some of the elements defined in 4.1 may be combined into a simple
system configuration. Features of interest in this configuration are as follows.

a) For the purposes of declaration and parameterization, communication connections may be
modelled as function blocks which exist at the system or resource level, depending on
whether the connection end points are in different devices or the same device,
respectively.

b) In this example, it is assumed that either some sort of "directory service" exists that
enables the service interfaces at the connection end points to locate the communication
connections by a name given at the PARAMS input of the corresponding service interface
function block, or that a software tool as described in IEC 61499-2 is able to use this
information to set up appropriate communication connections in an implementation
dependent manner. This is the only additional information that needs to be included in the
resource configurations in order to integrate this application.

c) A simple periodic scheduling scheme can be set up for the system by adding an E_CYCLE
block to issue periodic events, as shown in the configuration for resource TC.LAS. The
resulting timing diagram is shown in Figure 13, assuming a function block execution time
of 10 ms, data transmission times of 5 ms, and valve and thermocouple interface
execution times of 5 ms.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 22 – TR 61499-3  IEC:2004(E)

A software tool as described in IEC 61499-2 would typically initiate operation of this system
via the following sequence of operations.

a) Establish initial values for parameters in the TC.TCX and VALVE.V resources using the
procedures described for the TC_XMTR and PID_VALVE resource types in 4.1.2 and 4.1.5,
respectively. In this example, this would include, among other actions, setting a value of
"CLK_CNXN" for TC.TCX.TRIGGER.PARAMS and a value of "PV.CNXN" for
TC.TCX.PUB.PARAMS and VALVE.V.PV.PARAMS.

b) Establish a communication connection to a SERVER block connected to the MANAGER block
for the TC device and use the CREATE management command to add the LAS resource and
the CLK_CNXN block to the TC device.

c) Establish a communication connection to a SERVER block connected to the MANAGER block
for the TC.LAS resource and then

1) use CREATE management commands to populate the resource with the MAIN.CLK and
the CLK_PUB blocks;

2) use CREATE commands to establish the event and data connections within the
resource;

3) use WRITE or CREATE commands to establish parameter values for the blocks in the
resource.
NOTE The sequence of commands in the steps described above may be derived directly from the
sequence of textual declarations of the associated device and resource configurations, as illustrated in
Annex B.

d) Force initialization by issuing START commands to the appropriate devices through their
management blocks. The exact order of the START commands will depend upon the
required initialization services of the communication function blocks used.

e) The software tool could also create an operator interface application by establishing its
own communication service interfaces and operator interface blocks for monitoring and
operating the various resources, establishing appropriate communication connections
and parameterizing the communication service interfaces available in the various
resources for this purpose.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61499-3  IEC:2004(E) – 23 –

APPLICATION MAIN

SYSTEM TC_LOOP

DEVICE TC

DEVICE VALVE

RESOURCE TC.LAS

Figure 12 – System configuration TC_LOOP

CLK_CNXN

MAIN.TEMPERATURE

PV_CNXN

MAIN.CONTROLLER

MAIN.VALVE

elapsed time, ms 5 10 15 25 30

Figure 13 – Example system timing

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 24 – TR 61499-3  IEC:2004(E)

4.3 Use of communication function blocks

When an application is distributed across resources, those data and event connections of the
application that cross resource boundaries must be mapped onto communication connections
among the resources. In order to assure proper synchronization of application operations, a
unidirectional communication connection comprising an instance of the PUBLISHER function
block type and one or more instances of the SUBSCRIBER function block type described in
F.2.1 of IEC 61499-1 must be provided for each event output and its associated data outputs
whose connections cross resource boundaries; or, if pairwise linking of two event connections
can be identified, a bidirectional communication connection comprising a CLIENT/SERVER
pair, as described in F.2.2 of IEC 61499-1, may be used.

The required communication function blocks may be generated in several different ways, for
example:

a) the application developer may specify them explicitly, especially for operating and
monitoring purposes;

b) software tools may generate them automatically for any connection across resource
boundaries.

4.4 Contained variables in process control function blocks

For some application domains such as those addressed by the IEC 61804 series, contained
variables are defined as variables whose values are configured, set by an operator, higher
level device, or calculated. Access to contained variables can be specified by access paths
as illustrated in the following example of parsing the access path PATHA in the device type
MOTOR_CONTROL.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61499-3  IEC:2004(E) – 25 –

Type declarations Parse of PATHA in MOTOR_CONTROL

TYPE MEASUREMENT: STRUCT
 V: VOLTS;
 A: AMPERES;
END_STRUCT; END_TYPE

TYPE VOLTS: STRUCT
 PhsA: REAL;
 PhsB: REAL;
END_STRUCT; END_TYPE

FUNCTION_BLOCK PROTECTOR
...
VAR
 MX: MEASUREMENT;
 ...
END_VAR
...
END_FUNCTION_BLOCK

FUNCTION_BLOCK BREAKER
...
FBS
 TOC: PROTECTOR;
 ...
END_FBS
...
END_FUNCTION_BLOCK

RESOURCE_TYPE MOTOR_CONTROL
...
FBS
 BreakerA: BREAKER;
 ...

END_FBS
...
VAR_ACCESS
 PATHA: BreakerA.TO3.MX.A.PhsA;
 ...
END_VAR
...
END_RESOURCE

BreakerA -- fb_instance_name
 .TOC -- fb_instance_name
 .MX -- variable_name
 .A -- field_selector
 .PhsA -- field_selector

NOTE Suppressed detail in the above example is indicated by the ellipsis (...)

4.5 Use of adapter interfaces to implement object-oriented concepts

Figure 14a shows an adapter type which can be used to provide polymorphism in the object-
oriented programming sense. This adapter defines an interface for any typed function of two
variables of type INT.

As shown in Figure 14b, the normal operation of this interface may be considered to consist of
sending a message from an acceptor function block, which may be considered a client of the
mathematical function, to a provider function block, which may be considered a server
providing the mathematical function. This is followed by sending another message from the
server to the client consisting of the results of the function evaluation. Figures 14c and 14d
respectively represent the messages sent when evaluation of the function is inhibited and
when it results in an error, respectively. Detailed textual declarations of these service
sequences are given in Figure 14e.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 26 – TR 61499-3  IEC:2004(E)

Figure 14a −−−− Interface Figure 14b −−−− Normal service sequence

Figure 14c −−−− Service inhibited Figure 14d −−−− Service error

SERVICE CLIENT/SERVER

SEQUENCE normal_service
 CLIENT.REQ+(IN1,IN2) -> SERVER.REQ+(IN1,IN2);
 SERVER.CNF+(OUT) -> CLIENT.CNF+(OUT);
END_SEQUENCE

SEQUENCE service_inhibited
 CLIENT.REQ-() -> SERVER.REQ-();
 SERVER.CNF-(STATUS) -> CLIENT.CNF-(STATUS);
END_SEQUENCE

SEQUENCE service_error
 CLIENT.REQ+(IN1,IN2) -> SERVER.REQ+(IN1,IN2);
 SERVER.CNF-(STATUS) -> CLIENT.CNF-(STATUS);
END_SEQUENCE

END_SERVICE

Figure 14e −−−− Textual declarations of service sequences

Figure 14 – Polymorphic adapter type declaration

Different instances of the "client" acceptor function block type shown in Figure 15 may exhibit
different behaviour, depending on the functionality that is plugged into the socket S1.
In object-oriented programming terms, this polymorphic behaviour is provided through
"inheritance by parts" rather than "inheritance by descent".

NOTE 1 The values of QO and STATUS are passed directly from the adapter instance S1 to the outputs of the
"parent" function block since the particular implementation of FB_ADD_INT shown does not provide these values.

Figure 15 – Polymorphic acceptor ("client") function block type

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61499-3  IEC:2004(E) – 27 –

Figures 16a and 16b show a "server" provider function block type which provides INT multi-
plication through a MATH2 interface, while Figures 16c and 16d show the provider of an INT
division function.

NOTE 2 In the function block body shown in Figure 16b, the value of P1.QI is passed directly to P1.QO, and the
value of P1.STATUS is set to 0 (false) since the particular implementation of FB_ADD_MUL shown does not
provide these values.

Figure 16a −−−− Multiplication provider interface
Figure 16b −−−− Multiplication provider body

Figure 16c −−−− Division provider interface

Figure 16d −−−− Division provider body

Figure 16 – Provider ("server") function block types

Figure 17 shows a resource configuration for testing an instance named ACC of the
MATH2_I_ACC type. Providers for the multiply and divide operations are given as instances of
the MATH2_I_ADD and MATH2_I_MUL, respectively.

Figure 18a shows the result of a test of the configuration with the MATH2_I_DIV instance
(DIV_PROV) acting as the provider, giving the result OUT = IN1/IN2 + IN3. The top half of
this example shows normal operation and the bottom half shows QO=FALSE with STATUS=4,
indicating an invalid value of OUT due to division by zero as specified in Annex D of
IEC 61499-1. Figure 18b shows the result of a test of the configuration with the MATH2_I_MUL
instance (MUL_PROV) acting as the provider, giving the result OUT = IN1*IN2 + IN3.
The bottom half of this figure shows the result of operation with QI=FALSE; in this case
QO=FALSE but no reason is given in the STATUS output since this output is not given by the
particular implementation of the MATH2_I_MUL block. In the case of the MATH2_I_DIV block,
the STATUS output would have a value of 1 as specified in Annex D of IEC 61499-1.

Management function blocks may be utilized to modify the behaviour of a polymorphic
acceptor instance, for example, by moving the adapter connection start point from
DIV_PROV.P1 to MUL_PROV.P1 in Figure 17.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 28 – TR 61499-3  IEC:2004(E)

Figure 17 – Resource configuration for testing adapter interfaces

Figure 18a −−−− With DIV_PROV

Figure 18b −−−− With MUL_PROV

Figure 18 – Test results

4.6 Initialization algorithms

Subclause 2.2.2.1 of IEC 61499-1 states:

“The function block type may also specify an initialization algorithm to be performed upon the
occurrence of an appropriate event, for example [an] INIT algorithm…. An application can
then specify the conditions under which this algorithm is to be executed, for example by
connecting an output of an instance of the E_RESTART type defined in Annex A to an
appropriate event input….”.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61499-3  IEC:2004(E) – 29 –

Figure 19a shows the configuration of a Human/Machine Interface (HMI) resource illustrating
the above principles. This resource contains instances of three HMI service interface types:

• the IN_EVENT type, which provides a push-button for input of events;

• the CHOICE_IN type, which provides a WSTRING output from a drop-down list of choices;

• the OUT_ANY type, which provides a text field for output of the literal value of an arbitrary
data type.

The operation of the initialization algorithm of each of these types upon the occurrence of an
INIT+ service primitive (i.e., an occurrence of an event at the INIT input when the value of
the QI input is TRUE) is as follows.

a) If the graphical user interface (GUI) element does not exist, it is created and added to the
HMI panel.

b) The GUI element contents are then initialized from the input parameters of the block. The
particular initializations are:

• the IN_EVENT label is initialized from the LABEL input;

• the OUT_ANY width in characters is set from the W input, its initial content is set from
the IVAL input, and any ambiguity in the actual data type is resolved by the contents
of the TYPE input (for instance, "UINT").

• the choices presented by the CHOICE_IN type are given as comma-separated
substrings of the CHOICES input, and the initial choice presented is the first element of
the list.

c) An INITO+ service primitive (an event at the IND output accompanied by a QO value of
TRUE) is emitted.

The normal operation of these blocks is as follows.

• IN_EVENT: When the user clicks on the button, an IND+ service primitive occurs.

• CHOICE_IN: The occurrence of a REQ+ input service primitive or user selection of a value
causes OUT to take on the value of the current choice, and an IND+ then occurs.

• OUT_ANY: The occurrence of a REQ+ input service primitive or user-pressed Enter key
causes OUT to take on the currently entered, and a CNF+ then occurs.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 30 – TR 61499-3  IEC:2004(E)

 a

b

c d e

f

Figure 19 – HMI example

The remaining entries in Figure 19 illustrate the operation of this HMI as follows.

a) The initial situation upon COLD start or WARM restart of the resource.
b) Initial data selection from the drop-down list.
c) State of the HMI following initial selection.
d) State of the HMI following selection of the "b" choice.

e) State of the HMI following a click of the RESET button.

5 State chart implementation with ECCs

The implementation of state-machine control via ECCs can be simpler than more general-
purpose state-machine models. For instance, the state chart shown in Figure 20 for
(simplified) control of a hypothetical Video Cassette Recorder (VCR) motor contains the
following features not included in the ECC construct:

• a "superstate" RUNNING containing two "substates" FWD and REV;

• a "history" node to which return can be made from an external state; for instance, if
the RUN state is active upon the occurrence of a PAUSE event, the RUN state will be
re-activated upon return from the PAUSE state in response to a RESUME event.
NOTE An alternative approach to implementing the state machine in Figure 20, utilizing a separate function
block instance for each of the super-states RUNNING, STOPPED and PAUSED, is given in "An Object
Oriented Approach to Generate Executable Code from the OMT-based Dynamic Model", Journal of Integrated
Design and Process Science, December 1998, Vol.2, No. 4.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61499-3  IEC:2004(E) – 31 –

Figure 20 – State machine for hypothetical VCR motor control

It is important to note that the state machine notation in Figure 20 is a design notation,
whereas the ECC is an implementation notation. Figure 21 presents the interface and ECC
of a basic function block implementing the VCR motor control whose design is expressed in
Figure 20. The ECC retains the same states as the original state chart and uses an internal
variable WAS_FWD to save the state of the motor while pausing. This saved state is then used
to restore the proper motor state when resuming operation. The declarations used to effect
this functionality are:

VAR
 WAS_FWD: BOOL; (* Motor State History *)
END_VAR
ALGORITHM STOP IN ST:
 MTR_FWD:=FALSE;
 MTR_REV:=FALSE;
END_ALGORITHM
ALGORITHM FWD_M IN ST:
 WAS_FWD:=TRUE;
END_ALGORITHM
ALGORITHM REV_M IN ST:
 WAS_FWD:=FALSE;
END_ALGORITHM
ALGORITHM RUN IN ST:
 MTR_FWD:=WAS_FWD;
 MTR_REV:=NOT WAS_FWD;
END_ALGORITHM

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 32 – TR 61499-3  IEC:2004(E)

Interface

ECC

Figure 21 – Basic function block implementation of state chart

6 Device and resource management

6.1 Distributed management application

As shown in Figure 22, the functions of device management may be modelled as a
management application in which a “management client” provided by a software tool and a
“management server” located within the managed device. These are modelled as instances of
the DM_CLT and DEV_MGR types, respectively.

Figure 22 – Device management application

Since the software tool is typically located in a separate device from the one being managed,
the management application will typically be distributed. Communication service interfaces
can be used to implement the necessary communications between a “remote device proxy” in
the software tool and a management resource in the remote device. Such elements can be
constructed as instances of the RMT_PRXY and DM_RES types shown in Figures 23 and 24,
respectively.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61499-3  IEC:2004(E) – 33 –

NOTE 1 The interface of the software tool with the management application is represented by an instance of the
DM_CLT type.

NOTE 2 The interface and functionality of the DM_KRNL type is described in 5.2.

NOTE 3 Suppliers of devices are responsible for providing the equivalent of the value of the MGR_ID input of
their instance of the DM_RES type shown in Figure 27. For instance, this may be the value of the host port element
defined in IETF RFC 1630 to be used for access to the device management services, such as
"localhost:61499". This value may be defined as part of a library element file for the device type or may be
configured through some means beyond the scope of IEC 61499, for instance, via a local serial port or
configuration file.

Figure 23a −−−− Interface
Figure 23b − Body

Figure 23 – Remote device proxy

Figure 24a −−−− Interface

Figure 24b −−−− Body
Figure 24 – Device management resource

6.2 Device management function blocks

As shown in Figure 26, the DM_KRNL function block shown in Figure 25 provides both the
communication service interface (an instance of the SERVER_1_2 type) and the device
management service interface (an instance of the DEV_MGR type) to support the distributed
management application illustrated in Figure 22, in conjunction with the proxy device shown in
Figure 23, which is used by an appropriate software tool.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 34 – TR 61499-3  IEC:2004(E)

Figure 25a −−−− Interface Figure 25b −−−− Body
Figure 25 – Device management kernel

Device management services are provided by an instance of the DEV_MGR type shown in
Figure 26. The types and semantics of the inputs and outputs of this type are identical to the
correspondingly named inputs and outputs of the MANAGER type defined in IEC 61499-1,
with the following extensions.

a) The DST input designates the destination of the RQST input as follows:

• a value of "" (the empty string) designates the device;

• a value containing an IEC 61131-3 identifier designates a resource within the device;

• a value containing a sequence of IEC 61131-3 identifiers separated by periods (the
'.' character) indicates a resource in a containment hierarchy of resources, with the
leftmost identifier corresponding to the outermost resource and the rightmost identifier
corresponding to the innermost resource.

EXAMPLE 1 A DST value of 'RES1' indicates that the RQST input is destined for a
resource named RES1 contained in the managed device.

EXAMPLE 2 A DST value of 'MOTOR1.WINDING2' indicates that the RQST input is destined
for a resource named WINDING2 contained in a resource named MOTOR1
which is contained in the managed device.

b) The RQST input and RESP outputs are encoded according to the Request and Response
elements, respectively, of the XML DTD given in 5.3. The semantics of these elements are
defined in 5.4.

c) As illustrated in Figure 26, a REQ+ primitive input always results in a CNF+ primitive output,
since the actual result including failure conditions is encoded in the RESP output. Similarly,
a REQ- input always results in a CNF- output, since no management operation is attempted
in this case. In particular, this means that, in an instance of the DM_KRNL function block
type shown in Figure 25, an IND- primitive from the communication service interface will
neither cause a management operation to be performed, nor will a response message be
generated.

The sequences of service primitives for device management are shown in Figure 26. The
object denoted "manager" in these service sequences is an instance of class FBManager
described in Annex C of IEC 61499-1. This is the manager of the device or a contained
resource depending on the value of the DST input as explained above.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61499-3  IEC:2004(E) – 35 –

Figure 26a −−−− Interface

Figure 26b −−−− Service sequences

Figure 26 – Device management service interface

6.3 FBMGT Document Type Definition (DTD)

The Request and Response elements defined in the FBMGT DTD shown in Table 1 represent
the XML syntax for the RQST input and RESP output, respectively, of the DEV_MGR function
block type shown in Figure 26. Explanations of the elements of this DTD and (where
applicable) references to the formal syntax for their attributes, are given in Table 2. Allowable
combinations of elements, and constraints on their usage, are as described for various device
classes in IEC 61499-4.

NOTE To provide compact messaging, the prolog and Misc* components used in the XML document
production are not used in FBMGT messages since these components are implicit in the management context;
thus, only the Request or Response element is transmitted as the management message.

Table 1 – FBMGT DTD

<?xml version="1.0" encoding="UTF-8"?>

<!-- REQUEST elements -->
<!ELEMENT Request (FB|Connection|FBType|AdapterType|DataType)>
<!ATTLIST Request
 ID CDATA #REQUIRED
 Action (CREATE|DELETE|START|STOP|KILL|QUERY|READ|WRITE) #REQUIRED >

<!-- RESPONSE elements -->

<!ELEMENT Response (FB | Connection+ | FBType | AdapterType | DataType |
NameList | FBList |EndpointList | FBStatus)?>
<!ATTLIST Response
 ID CDATA #REQUIRED
 Reason (NOT_READY | UNSUPPORTED_CMD | UNSUPPORTED_TYPE |NO_SUCH_OBJECT |
INVALID_OBJECT| INVALID_OPERATION | INVALID_STATE | OVERFLOW) #IMPLIED >

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 36 – TR 61499-3  IEC:2004(E)

Table 1 – FBMGT DTD

<!ELEMENT NameList (#PCDATA)>
<!ELEMENT FBList (#PCDATA)>
<!ELEMENT EndpointList (#PCDATA)>

<!ELEMENT FBStatus EMPTY>
<!ATTLIST FBStatus
 Status (INITIALIZED|WAITING|EVALUATING|PROCESSING|STOPPED|KILLED)
#REQUIRED >

<!-- Common elements -->
<!ELEMENT ByteData (#PCDATA)>

<!ELEMENT VersionInfo EMPTY>
<!ATTLIST VersionInfo
 Organization CDATA #REQUIRED
 Version CDATA #REQUIRED
 Date CDATA #REQUIRED >

<!ELEMENT FB EMPTY>
<!ATTLIST FB
 Name CDATA #REQUIRED
 Type CDATA #REQUIRED >

<!ELEMENT Connection EMPTY>
<!ATTLIST Connection
 Source CDATA #REQUIRED
 Destination CDATA #REQUIRED >

<!ELEMENT VarDeclaration EMPTY>
<!ATTLIST VarDeclaration
 Name ID #REQUIRED
 Type CDATA #REQUIRED
 ArraySize CDATA #IMPLIED
 InitialValue CDATA #IMPLIED >

<!-- FBType elements -->
<!ELEMENT FBType (VersionInfo,InterfaceList,ByteData?) >
<!ATTLIST FBType
 Name CDATA #REQUIRED >

<!ELEMENT InterfaceList
(EventInputs?,EventOutputs?,InputVars?,OutputVars?, Sockets?, Plugs?)>

<!ELEMENT EventInputs (Event+)>
<!ELEMENT EventOutputs (Event+)>
<!ELEMENT InputVars (VarDeclaration+)>
<!ELEMENT OutputVars (VarDeclaration+)>
<!ELEMENT Sockets (AdapterDeclaration+)>
<!ELEMENT Plugs (AdapterDeclaration+)>

<!ELEMENT Event EMPTY>
<!ATTLIST Event
 Name ID #REQUIRED
 Type CDATA #IMPLIED
 With CDATA #IMPLIED >

<!ELEMENT AdapterDeclaration EMPTY>
<!ATTLIST AdapterDeclaration
 Name ID #REQUIRED
 Type CDATA #REQUIRED >

<!-- AdapterType elements -->
<!ELEMENT AdapterType (VersionInfo,InterfaceList,ByteData?)>
<!ATTLIST AdapterType
 Name ID #REQUIRED >

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61499-3  IEC:2004(E) – 37 –

Table 1 – FBMGT DTD

<!-- DataType elements -->
<!ELEMENT DataType (VersionInfo,ASN1Tag, (DirectlyDerivedType
|EnumeratedType|SubrangeType|ArrayType|StructuredType),ByteData?)>
<!ATTLIST DataType
 Name ID #REQUIRED >

<!ELEMENT ASN1Tag EMPTY>
<!ATTLIST ASN1Tag
 Class (UNIVERSAL | APPLICATION | CONTEXT | PRIVATE) #IMPLIED
 Number CDATA #REQUIRED >

<!ELEMENT DirectlyDerivedType EMPTY>
<!ATTLIST DirectlyDerivedType
 BaseType (BOOL | SINT | INT | DINT | LINT | USINT | UINT | UDINT | ULINT
| REAL | LREAL | TIME | DATE | TIME_OF_DAY | DATE_AND_TIME | STRING | BYTE
| WORD | DWORD | LWORD | WSTRING) #REQUIRED
 InitialValue CDATA #IMPLIED >

<!ELEMENT EnumeratedType (#PCDATA)>
<!ATTLIST EnumeratedType
 InitialValue CDATA #IMPLIED >

<!ELEMENT SubrangeType (Subrange)>
<!ATTLIST SubrangeType
 BaseType (SINT|INT|DINT|LINT|USINT|UINT|UDINT|ULINT) #REQUIRED
 InitialValue CDATA #IMPLIED >

<!ELEMENT Subrange EMPTY>
<!ATTLIST Subrange
 LowerLimit CDATA #REQUIRED
 UpperLimit CDATA #REQUIRED >

<!ELEMENT ArrayType (Subrange)+>
<!ATTLIST ArrayType
 BaseType CDATA #REQUIRED
 InitialValues CDATA #IMPLIED >

<!ELEMENT StructuredType
(VarDeclaration|ArrayVarDeclaration|SubrangeVarDeclaration)+>

<!ELEMENT ArrayVarDeclaration (Subrange+) >
<!ATTLIST ArrayVarDeclaration
 Name ID #REQUIRED
 Type CDATA #REQUIRED
 InitialValues CDATA #IMPLIED >

<!ELEMENT SubrangeVarDeclaration (Subrange?) >
<!ATTLIST SubrangeVarDeclaration
 Name ID #REQUIRED
 Type (SINT|INT|DINT|LINT|USINT|UINT|UDINT|ULINT) #REQUIRED
 InitialValue CDATA #IMPLIED >

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 38 – TR 61499-3  IEC:2004(E)

Table 2 – FBMGT DTD elements

Element
 attributes

Textual syntax
(IEC 61131-3, Annex B)

Explanation

Request -- An XML-encoded management request.

 ID -- A unique identifier for the Request/Response transaction.

 Action -- The requested operation to be performed as defined in Table 7

Response -- XML-encoded management response

 ID -- Unique identifier for the Request/Response transaction

 Reason -- Reason for failure to perform a requested action (see Table 3). If
absent, the action has been successfully performed

NameList identifier
{',' identifier}

A list of function block type names or
data type names

FBList fb_instance_name
{',' fb_instance_name}

A list of function block instance names

FBStatus See Figure 24 of IEC 61499-1

ByteData -- Implementation-dependent data, typically encoded in hexadecimal
format

VersionInfo -- Currently loaded or to-be-loaded version of a function block type
or data type

 Organization -- Organization supplying this library element

 Date -- Release date of this version in YYYY-MM-DD format

FB Function block or resource instance

 Name Identifier Function block or resource instance name

 Type Identifier Function block or resource type name

Connection Event connection, data connection or adapter connection

 Source See Note 1

 Destination See Note 1

VarDeclaration Declaration of a variable

 Name input_variable_name|output_variable_name See Note 2

 Type data_type_name
 ArraySize See Note 3

 InitialValue See Note 4

FBType Function block type as defined in IEC 61499-1

 Name fb_type_name

Event Declaration of an event interface

 Name event_input_name | event_output_name See Note 5

 Type event_type
 With (input_variable_name {','input_variable_name})

 | (output_variable_name {',' output_variable_name})
See Note 6

AdapterDeclaration Declaration of a plug or socket interface of a function block type

 Name plug_name | socket_name See Note 7

 Type adapter_type_name See Note 7

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61499-3  IEC:2004(E) – 39 –

Table 2 – FBMGT DTD elements

Element
 attributes

Textual syntax
(IEC 61131-3, Annex B)

Explanation

AdapterType Declaration of an adapter interface type as defined in 2.5 of IEC 61499-
1

 Name Adapter_type_name

DataType Name of a data type as defined in IEC 61131-3

 Name data_type_name

ASN1Tag ASN.1 tag as defined in ISO/IEC 8824

 Class ASN.1 tag class as defined in ISO/IEC 8824

 Number ASN.1 tag number as defined in ISO/IEC 8824

DirectlyDerivedType Directly derived type as defined in IEC 61131-3

 BaseType elementary_type_name
 InitialValue constant

EnumeratedType Same as NameList A comma-separated list of enumerated values

 InitialValue identifier If present, shall be one of the list elements

SubrangeType Subrange type as defined in IEC 61131-3

 BaseType integer_type_name

 InitialValue signed_integer

Subrange Subrange as defined in IEC 61131-3

 LowerLimit signed_integer
 UpperLimit signed_integer

ArrayType Array type as defined in IEC 61131-3

 BaseType non_generic_type_name
 InitialValues array_initialization
 UpperLimit signed_integer

StructuredType Structured data type as defined in IEC 61131-3

ArrayVarDeclaration Declaration of an array as defined in IEC 61131-3
 Name structure_element_name

 Type array_type_name

 InitialValues array_initialization

SubrangeVarDeclaration Declaration of a subrange variable as defined in IEC 61131-3

 Name structure_element_name

 Type integer_type_name

 InitialValue signed_integer

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 40 – TR 61499-3  IEC:2004(E)

Table 2 – FBMGT DTD elements

Element
 attributes

Textual syntax
(IEC 61131-3, Annex B)

Explanation

NOTE 1 Depending on the context, the syntax of a Source or Destination element should
correspond to the syntax of the respective element in one of the productions
connection_end_point or accessed_data given in Annex B of IEC 61499-1.

NOTE 2 The productions input_variable_name and output_variable_name apply when the
associated VarDeclaration element is part of an InputVars or OutputVars element,
respectively.

NOTE 3 The syntax of this element when present shall be equivalent to the syntactic expression
(subrange {',' subrange}) | integer {',' integer}
where the non-terminals subrange and integer are as defined in IEC 61131-3. Each term
of the second form is equivalent to the subrange 0..n-1, where n is the value of the
corresponding integer syntactic element. If this element is missing, the variable is not an
array.

NOTE 4 The syntax of this element is the syntax for initialization of the corresponding variable type as
defined in IEC 61131-3.

NOTE 5 The terms event_input_name and event_output_name apply when the Event
element is part of an EventInputs or EventOutputs element, respectively.

NOTE 6 The terms event_input_name and event_output_name apply when the Event
element is part of an EventInputs or EventOutputs element, respectively.

NOTE 7 The terms plug_name and socket_name apply when the associated
AdapterDeclaration element is part of a Plugs or Sockets element, respectively.

6.4 Request/Response semantics

The following rules apply to the use of the Request and Response elements defined in 5.3 in
the normal_request service sequence shown in Figure 26.

1. The ID attribute of the Response element is identical to the ID attribute of the Request
element to which the Response element refers.

2. The absence of a Reason attribute in a Response element indicates normal completion of
the requested operation.

3. The use of sub-elements in Request and Response elements, and the meaning of possible
Reason attributes of the Response element when the requested operation fails, are defined
in Tables 3 and 4.

Table 3 – Request elements and Response Reason codes

Request

Action Sub-element

Reason code

 NOT_READY: The manager is not in a state that enables it
to process the request.

 UNSUPPORTED_CMD: The requested operation is not
supported by the manager.

Any Any INVALID_OBJECT: Invalid sub-element or attribute syntax
not covered by other, more specific Reason codes.

 INVALID_OPERATION: The specified action is not a valid
operation on the specified sub-element.

 OVERFLOW: A previous transaction is still pending.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61499-3  IEC:2004(E) – 41 –

Table 3 – Request elements and Response Reason codes

Request

Action Sub-element

Reason code

 FB UNSUPPORTED_TYPE: The requested FB type is not known
to the manager.

INVALID_OPERATION: The requested FB or resource
cannot be created in its containing resource or device.

INVALID_STATE: An FB instance already exists with the
specified name.

CREATE Connection NO_SUCH_OBJECT: One or both of the connection end
points cannot be found.

INVALID_STATE: The specified connection already exists.

 FBType
AdapterType
DataType

UNSUPPORTED_TYPE: A type does not exist for a variable
or adapter sub-element.

INVALID_STATE: A library element type already exists
with the specified name.

 FB NO_SUCH_OBJECT: No FB instance of the specified type
can be found with the specified instance name.

INVALID_STATE: The FB instance is not in the STOPPED
or KILLED state.

DELETE Connection NO_SUCH_OBJECT: One or both of the connection end
points cannot be found.

 FBType
AdapterType
DataType

UNSUPPORTED_TYPE: A library element of the specified
type does not exist with the given type name.

INVALID_STATE: At least one instance of the specified
type still exists.

INVALID_OPERATION: The specified type is undeletable.

START
STOP
KILL

FB NO_SUCH_OBJECT: No FB instance of the specified type
can be found with the specified instance name.

INVALID_STATE: The FB instance is not in a state from
which the specified operation can be performed.

READ Connection
(Source = Location,
Destination=null)

NO_SUCH_OBJECT: The specified Source location cannot
be found.

See NOTE 1.

WRITE Connection
(Source = Data,

Destination = Location
)

NO_SUCH_OBJECT: The specified Destination location
cannot be found.

INVALID_OBJECT: The format of the Source attribute is
not correct for data to be written to the Destination
location.

See NOTE 2.

NOTE 1 A normal Response to a READ Request will contain a Connection sub-element with the
Source attribute encoded according to the data_element production defined in Annex B.5.

NOTE 2 A WRITE Request contains a Connection sub-element with its Source attribute encoded
according to the data_element production defined in Annex B.5, and with its Destination
attribute encoded according to the connection_end_point production defined in Annex
B.5.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 42 – TR 61499-3  IEC:2004(E)

Table 4 – QUERY Request and Response elements

Request
sub-element

Normal Responsesub-element Abnormal Response Reason codes

FB
(Name <> "*")

FBStatus NO_SUCH_OBJECT: No FB
instance of the specified type can
be found with the specified instance
name.

FB
(Name = "*")

FBList: A list of all instances of
the specified FB type.

NO_SUCH_OBJECT: No instances
exist of the specified FB type.

Connection
(Destination="*")

EndpointList: A list of the
destinations of all connections
originating at the specified
source.

INVALID_OBJECT: The source
specification is not a hierarchical
name.

Connection
(Source = "*")

.

Connection+: A list of the
sources of all connections
terminating at the specified
destination.

INVALID_OBJECT: The destination
specification is not a hierarchical
name.

FBType | DataType
| AdapterType

(No sub-elements,
Name <> "*")

FBType | DataType |
AdapterType: The declaration of
the library type with the specified
name.

UNSUPPORTED_TYPE: The
requested library type is not known
to the manager.

FBType | DataType
| AdapterType

(No sub-elements,
Name = "*")

NameList: A list of names of all
library elements of the specified
type.

UNSUPPORTED_TYPE: There are no
library elements of the specified
type.

EXAMPLE Suppose a system configuration contains a declaration of a resource named
RES1 within a device named DEV1 as shown below:

RESOURCE RES1: EMB_RES
FBS
 FF: E_SR;
 SB: SUBSCRIBE_2;
 AD: FB_ADD_REAL;
 PUB: PUBLISH_1;
END_FBS
EVENT_CONNECTIONS
 START.COLD TO FF.S;
 START.WARM TO FF.S;
 START.STOP TO FF.R;
 FF.EO TO SB.INIT;
 SB.INITO TO PUB.INIT;
 SB.IND TO AD.REQ;
 AD.CNF TO PUB.REQ;
END_CONNECTIONS
DATA_CONNECTIONS
 SB.RD_1 TO AD.IN1;
 SB.RD_2 TO AD.IN2;
 AD.OUT TO PUB.SD_1;
 FF.Q TO SB.QI;
 SB.QO TO AD.QI;
 SB.QO TO PUB.QI;
 "225.0.0.2:1026" TO SB.ID;
 "225.0.0.1:1025" TO PUB.ID;
END_CONNECTIONS
END_RESOURCE

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61499-3  IEC:2004(E) – 43 –

The Request/Response transactions shown below illustrate the configuration of this resource.
The actual DST input to the corresponding DEV_MGR block in DEV1 is given by deleting the
"DEV1" string (and full stop character '.' if any) from the indicated destination; for example,
the DST string of request #85 is empty and the DST string of request #86 is "RES1".

DEV1: <Request ID="85" Action="CREATE" >
 <FB Name="RES1" Type="EMB_RES" />
</Request>
DEV1: <Response ID="85" />

DEV1.RES1: <Request ID="86" Action="CREATE" >
<FB Name="FF" Type="E_SR" />
</Request>
DEV1.RES1: <Response ID="86" />

DEV1.RES1: <Request ID="87" Action="CREATE" >
<FB Name="SB" Type="SUBSCRIBE_2" />
</Request>
DEV1.RES1: <Response ID="87" />

DEV1.RES1: <Request ID="88" Action="CREATE" >
<FB Name="AD" Type="FB_ADD_REAL" />
</Request>
DEV1.RES1: <Response ID="88" />

DEV1.RES1: <Request ID="89" Action="CREATE" >
<FB Name="PUB" Type="PUBLISH_1" />
</Request>
DEV1.RES1: <Response ID="89" />

DEV1.RES1: <Request ID="90" Action="CREATE" >
<Connection Source="START.COLD" Destination="FF.S" />
</Request>
DEV1.RES1: <Response ID="90" />

DEV1.RES1: <Request ID="91" Action="CREATE" >
<Connection Source="START.WARM" Destination="FF.S" />
</Request>
DEV1.RES1: <Response ID="91" />

DEV1.RES1: <Request ID="92" Action="CREATE" >
<Connection Source="START.STOP" Destination="FF.R" />
</Request>
DEV1.RES1: <Response ID="92" />

DEV1.RES1: <Request ID="93" Action="CREATE" >
<Connection Source="FF.EO" Destination="SB.INIT" />
</Request>
DEV1.RES1: <Response ID="93" />

DEV1.RES1: <Request ID="94" Action="CREATE" >
<Connection Source="SB.INITO" Destination="PUB.INIT" />
</Request>
DEV1.RES1: <Response ID="94" />

DEV1.RES1: <Request ID="95" Action="CREATE" >
<Connection Source="SB.IND" Destination="AD.REQ" />
</Request>
DEV1.RES1: <Response ID="95" />

DEV1.RES1: <Request ID="96" Action="CREATE" >
<Connection Source="AD.CNF" Destination="PUB.REQ" />
</Request>
DEV1.RES1: <Response ID="96" />

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 44 – TR 61499-3  IEC:2004(E)

DEV1.RES1: <Request ID="97" Action="CREATE" >
<Connection Source="SB.RD_1" Destination="AD.IN1" />
</Request>
DEV1.RES1: <Response ID="97" />

DEV1.RES1: <Request ID="98" Action="CREATE" >
<Connection Source="SB.RD_2" Destination="AD.IN2" />
</Request>
DEV1.RES1: <Response ID="98" />

DEV1.RES1: <Request ID="99" Action="CREATE" >
<Connection Source="AD.OUT" Destination="PUB.SD_1" />
</Request>
DEV1.RES1: <Response ID="99" />

DEV1.RES1: <Request ID="100" Action="CREATE" >
<Connection Source="FF.Q" Destination="SB.QI" />
</Request>
DEV1.RES1: <Response ID="100" />

DEV1.RES1: <Request ID="101" Action="CREATE" >
<Connection Source="SB.QO" Destination="AD.QI" />
</Request>
DEV1.RES1: <Response ID="101" />

DEV1.RES1: <Request ID="102" Action="CREATE" >
<Connection Source="SB.QO" Destination="PUB.QI" />
</Request>
DEV1.RES1: <Response ID="102" />

DEV1.RES1: <Request ID="103" Action="WRITE" >
<Connection Source=""225.0.0.2:1026"" Destination="SB.ID" />
</Request>
DEV1.RES1: <Response ID="103" />

DEV1.RES1: <Request ID="104" Action="WRITE" >
<Connection Source=""225.0.0.1:1025"" Destination="PUB.ID" />
</Request>
DEV1.RES1: <Response ID="104" />

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61499-3  IEC:2004(E) – 45 –

Annex A
(informative)

Relationships to other standards

This annex provides a shortened scope description and an analysis of relevance for each of a
number of standards that have been suggested as possibly having a relationship to
IEC 61499. Formal references to these standards are listed in Clause 2 and in the
Bibliography

IEC 61131-3 specifies the programming languages to be used for the programming of
programmable controller systems. The relationship of IEC 61499 to IEC 61131-3 is elucidated
in Annex D of IEC 61499-1.

IEC 61360-1 provides a basis for the definition of characteristic properties (data element
types) of all elements of electrotechnical systems from basic components to subassemblies
and full systems. Use of this standard facilitates the exchange of data describing
electrotechnical systems. Closely associated with IEC 61360-1 is IEC 61360-2, which
contains the information model, using the EXPRESS modelling language. Use of this
information model allows dictionary information to be exchanged between different systems
using the STEP Physical File Format as defined in ISO 10303-21. IEC 61360-4 specifies a
collection of data element types, intended for use in computerized systems for component
selection and component management, parts list processing and CAD, CAM, and CAT.

To the extent that devices and resources, as defined in IEC 61499-1, may be considered as
elements of electrotechnical systems, the constructs of IEC 61499-1 may be used to define
the software-implemented aspects of such elements as described by IEC 61360.

IEC 61506 defines the requirements for the documentation of software in industrial process
measurement and control systems. Since IEC 61499 specifies the software-implemented
functionality of such systems, the requirements of IEC 61506 should be taken into account in
the documentation of systems utilizing the IEC 61499 architecture.

IEC 61804-1 defines overall requirements for function blocks to provide control, and to
facilitate maintenance and technical management as applications, which interact with
actuators and measurement devices in digital process control systems. IEC 61804-2 specifies
function blocks for process control through

a) a device model;
b) conceptual specifications of function blocks for measurement, actuation and processing;
c) an Electronic Device Description Language (EDDL) which specifies the methodology for

the electronic and computable property description of device parameters for automation
system components. An Electronic Device Description (EDD) based on the EDDL is used
for configuration, parameterization, monitoring and the operational behaviour of a device.
An extensive discussion of the relationships between IEC 61804 and IEC 61499-1 is given
in Annexes C and D of IEC 61804-1. Further discussion of issues related to function
blocks for process control is found in 4.4.

IEC 82045-1 specifies principles and methods to define metadata for the management of
documents associated with objects throughout their life cycle. When such objects are elements
of industrial-process measurement and control systems implemented according to the
IEC 61499 architecture, management of the corresponding IEC 61499 library elements could be
described in terms of appropriate metadata according to the principles of IEC 82045-1.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 46 – TR 61499-3  IEC:2004(E)

Annex B
(informative)

IEC 61499 and object-oriented development

The book Real-Time UML – Developing Efficient Objects for Embedded Systems by B.P.
Douglass enumerates the primary advantages and goals of object-oriented (OO)
development. A close comparison with IEC 61499-1 and IEC 61499-2 shows that this
architecture achieves these advantages and goals, namely the following.

Consistency of model views (analysis/design view)

IEC 61499-2 deals with the mapping of the analysis model to the design model. The design
model is elaborated from the analysis model by adding design concepts, for example,
distribution strategy, by means of a transformational development model. This allows the
building of translators to embody design decisions directly, for example, implementing the
communication infrastructure by use of appropriate real-time communication SIFBs.

Improved problem domain abstraction

The independence of the model from application domains and hardware infrastructure,
its encapsulation concepts, the strong cohesion between data items (internal and external)
and the operations manipulating them, and the SIFB concept provide a high level of
abstraction. This allows users and vendors to understand the implication of user requirements
very clearly because it is constructed with the users' own concepts. The application engineer
can concentrate directly on automation objects rather than on the computer science
implementation domain.

Improved stability in the presence of changes

The concept of encapsulation of functionality and data into objects called function blocks
(FBs) decreases the probability that small changes in requirements or implementation might
have catastrophic effects on the entire software structure. Changing requirements can usually
be addressed by removing or adding aspects, represented by types or classes of function
blocks, resources and devices, rather than totally restructuring the system.

Improved model facilities for reuse

Reuse often is understood as either another use of an exact copy of the component in a
different environment. If the new run time and development environment is not compatible
with the old one, then typically the source code of the component must be altered or
"integration glueware" developed to fit the component to the new environment.

OO development and IEC 61499 function block modelling includes two tactical means for
improving reuse – generalization and refinement. Generalization (inheritance) supports reuse
by adding and extending components with no changes to their source code. This
programming by difference allows the developer to code only the alterations. Refinement is
similar to generalization but allows the incomplete specification of objects, which are then
refined by adding the missing pieces. The same basic structure is reused by using different
missing parts. An example could be to write a common data sort kernel and then refine it for
different data types, like integers, floats, etc. by adding specific code segments (methods).

Both concepts are supported by the class or type building mechanism in IEC 61499 together
with its adapter interface concept.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61499-3  IEC:2004(E) – 47 –

An interesting function block modelling mechanism is the "adapter interface mechanism“.
It allows the specification of a standard function block interface (data and event outputs and
inputs) called the "adapter interface type“. "Provider" type function blocks use this interface
type as "plugs", which are in turn used by "sockets" of "acceptor" type function blocks. The
concept is quite similar to the "interface“ concept of UML.

In this concept a provider function block provides (besides performing some other
functionality) a particular functionality which is encapsulated in a specific interface type as a
plug for use in an acceptor function block.

This concept allows for the modelling of conceptually related classes of functionalities and the
introduction of semantic interfaces into the design. Refinement-specific component function
blocks to common functionalities (function blocks) are added by simply adding and using
sockets and plugs with common adapter-type interfaces. It allows “incomplete” specification of
objects (function block with sockets), which are then refined by adding missing parts (function
block with plugs).

Improved scalability

IEC 61499 has a high level of abstraction and encapsulation. This allows loose coupling
among components. Coupling via events and data is extremely flexible. Scalability is also
supported through a common basic notation throughout the development process, even when
moving from analysis to design and from to design to implementation. The notation is quite
simple but complete. It avoids ad hoc artefacts necessary to circumvent deficiencies. This
provides the basis for extending small systems to larger ones without concomitant increases
in complexity. This is true for the whole life cycle of the system, even through run time
(dynamic creation and deletion of system elements, system reconfiguration).

Better support for reliability and safety concerns

Because of better abstraction and encapsulation, the interaction of different OO components
should be limited to a few well-defined interfaces. IEC 61499 improves system reliability by
providing a precisely defined mechanism of interaction of system components. Data passing
through FB boundaries and any kind of component interaction is unambiguously defined.
Predictability is the guiding principle. The interfaces between FBs and the services provided
by underlying real-time operating systems are exactly defined and standardized, both
syntactically and semantically, through the SIFB concept.

Inherent support for concurrency

IEC 61499 realizes this benefit of OO design through

a) its distributed architecture to support concurrent execution on separate devices and
resources;

b) its event-driven architecture combined with appropriately implemented multi-tasking or
multi-threading scheduling functions to support concurrent execution even within the same
resource.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 48 – TR 61499-3  IEC:2004(E)

Bibliography

IEC 61360-1:2002, Standard data element types with associated classification scheme for
electric components – Part 1: Definitions – Principles and methods

IEC 61360-2:2002, Standard data element types with associated classification scheme for
electric components – Part 2: EXPRESS dictionary schema

IEC 61360-4:1997, Standard data element types with associated classification scheme for
electric components – Part 4: IEC reference collection of standard data element types,
component classes and terms

IEC 61506:1997, Industrial-process measurement and control – Documentation of application
software

IEC 82045-1:2001, Document management – Part 1: Principles and methods

ISO/IEC 10731:1994, Information technology – Open Systems Interconnection – Basic
Reference Model – Conventions for the definition of OSI services

ISO 10303-21:2002, Industrial automation systems and integration – Product data
representation and exchange – Part 21: Implementation methods: Clear text encoding of the
exchange structure

“An Object Oriented Approach to Generate Executable Code from the OMT-based Dynamic
Model”, Journal of Integrated Design and Process Science, December 1998, Vol. 2, No. 4.

DOUGLASS, BP, Real-Time UML:Developing Efficient Objects for Embedded Systems.
Addison-Wesley, 1998. ISBN 0-201-32579-9.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

Standards Survey

The IEC would like to offer you the best quality standards possible. To make sure that we
continue to meet your needs, your feedback is essential. Would you please take a minute
to answer the questions overleaf and fax them to us at +41 22 919 03 00 or mail them to
the address below. Thank you!

Customer Service Centre (CSC)

International Electrotechnical Commission
3, rue de Varembé
1211 Genève 20
Switzerland

or

Fax to: IEC/CSC at +41 22 919 03 00

Thank you for your contribution to the standards-making process.

Non affrancare
No stamp required

Nicht frankieren
Ne pas affranchir

 A Prioritaire

RÉPONSE PAYÉE

SUISSE

Customer Service Centre (CSC)
International Electrotechnical Commission
3, rue de Varembé
1211 GENEVA 20
Switzerland

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

Q1 Please report on ONE STANDARD and
ONE STANDARD ONLY . Enter the exact
number of the standard: (e.g. 60601-1-1)

...

Q2 Please tell us in what capacity(ies) you
bought the standard (tick all that apply).
I am the/a:

purchasing agent R

librarian R

researcher R

design engineer R

safety engineer R

testing engineer R

marketing specialist R

other...

Q3 I work for/in/as a:
(tick all that apply)

manufacturing R

consultant R

government R

test/certification facility R

public utility R

education R

military R

other...

Q4 This standard will be used for:
(tick all that apply)

general reference R

product research R

product design/development R

specifications R

tenders R

quality assessment R

certification R

technical documentation R

thesis R

manufacturing R

other...

Q5 This standard meets my needs:
(tick one)

not at all R

nearly R

fairly well R

exactly R

Q6 If you ticked NOT AT ALL in Question 5
the reason is: (tick all that apply)

standard is out of date R

standard is incomplete R

standard is too academic R

standard is too superficial R

title is misleading R

I made the wrong choice R

other ..

Q7 Please assess the standard in the
following categories, using
the numbers:
(1) unacceptable,
(2) below average,
(3) average,
(4) above average,
(5) exceptional,
(6) not applicable

timeliness ...
quality of writing....................................
technical contents.................................
logic of arrangement of contents
tables, charts, graphs, figures
other ..

Q8 I read/use the: (tick one)

French text only R

English text only R

both English and French texts R

Q9 Please share any comment on any
aspect of the IEC that you would like
us to know:

..

..

..

..

..

..

..

..

..

..

..

..

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 ISBN 2-8318-7465-3

-:HSMINB=]\Y[ZY:
ICS 25.040.40; 35.240.50

Typeset and printed by the IEC Central Office
GENEVA, SWITZERLAND

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

