TECHNICAL REPORT

IEC 61366-2

First edition 1998-03

Hydraulic turbines, storage pumps and pump-turbines –

Tendering Documents –

Part 2: Guidelines for technical specifications for Francis turbines

Turbines hydrauliques, pompes d'accumulation et pompes-turbines – Documents d'appel d'offres –

Partie 2: Guide des spécifications techniques pour les turbines Francis

Reference number IEC 61366-2:1998(E) As from 1 January 1997 all IEC publications are issued with a designation in the 60000 series.

Consolidated publications

Consolidated versions of some IEC publications including amendments are available. For example, edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the base publication incorporating amendment 1 and the base publication incorporating amendments 1 and 2.

Validity of this publication

The technical content of IEC publications is kept under constant review by the IEC, thus ensuring that the content reflects current technology.

Information relating to the date of the reconfirmation of the publication is available in the IEC catalogue.

Information on the revision work, the issue of revised editions and amendments may be obtained from IEC National Committees and from the following IEC sources:

- IEC Bulletin
- IEC Yearbook
 On-line access*
- Catalogue of IEC publications Published yearly with regular updates (On-line access)*

Terminology, graphical and letter symbols

For general terminology, readers are referred to IEC 60050: International Electrotechnical Vocabulary (IEV).

For graphical symbols, and letter symbols and signs approved by the IEC for general use, readers are referred to publications IEC 60027: *Letter symbols to be used in electrical technology*, IEC 60417: *Graphical symbols for use on equipment. Index, survey and compilation of the single sheets* and IEC 60617: *Graphical symbols for diagrams.*

IEC publications prepared by the same technical committee

The attention of readers is drawn to the end pages of this publication which list the IEC publications issued by the technical committee which has prepared the present publication.

* See web site address on title page.

TECHNICAL REPORT – TYPE 3

IEC 61366-2

First edition 1998-03

Hydraulic turbines, storage pumps and pump-turbines –

Tendering documents -

Part 2: Guidelines for technical specifications for Francis turbines

Turbines hydrauliques, pompes d'accumulation et pompes-turbines – Documents d'appel d'offres –

Partie 2: Guide des spécifications techniques pour les turbines Francis

© IEC 1998 — Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission Telefax: +41 22 919 0300 e

sion 3, e-mail: inmail@iec.ch

3, rue de Varembé Geneva, Switzerland ch IEC web site http://www.iec.ch

Commission Electrotechnique Internationale International Electrotechnical Commission Международная Электротехническая Комиссия

V

For price, see current catalogue

CONTENTS

			Pages	
FO	REWC)RD	4	
Clau	ise			
0	Intro	duction to technical specifications	7	
1	Scop	e	9	
2	Reference documents			
3	Technical requirements			
	3.1 Scope of work			
	3.2	Limits of the contract	10	
	3.3	Supply by Employer	10	
	3.4	Design conditions	11	
	3.5	Technical performance and other guarantees	14	
	3.6	Mechanical design criteria	17	
	3.7	Design documentation	17	
	3.8	Materials and construction	18	
	3.9	Shop inspection and testing	19	
4	Tech	nical specifications for fixed/embedded components	20	
	4.1	Spiral case	21	
	4.2	Stay ring	21	
	4.3	Foundation ring	22	
	4.4	Draft tube and draft tube liner	22	
	4.5	Pit liner	23	
5	Tech	nical specifications for stationary/removable components	23	
	5.1	Headcover and bottom ring	23	
	5.2	Guide vanes	24	
6	Tech	nical specifications for guide vane regulating apparatus	24	
	6.1	Servomotors	24	
	6.2	Connecting rods	24	
	6.3	Regulating ring	25	
	6.4	Guide vane linkage	25	
	6.5	Guide vane overload protection	25	
	6.6	Locking devices	25	
7	Tech	nical specifications for rotating parts, bearings and seals	25	
	7.1	Runner	25	
	7.2	Main shaft	26	
	7.3	Turbine guide bearing	26	
	7.4	Main shaft seal	27	
	7.5	Standstill shaft (maintenance) seal	27	

61366-2 © IEC:1998(E)

Clau	ise		Page		
8	Technical specifications for thrust bearing (when specified as part of				
	turbine supply)				
	8.2	-	27 27		
	8.3	Bearing support	27		
		Bearing assembly			
0	8.4 Taab	Oil injection pressure lift system	28		
9		nical specifications for miscellaneous components	28		
	9.1	Walkways, access platforms and stairs	28		
	9.2	Lifting fixtures	28		
	9.3	Special tools	28		
	9.4	Standard tools	28		
	9.5	Turbine pit hoist	29		
	9.6	Nameplate	29		
10	Tech	nical specifications for auxiliary systems	29		
	10.1	Bearing lubrication system	29		
	10.2	Runner pressure balancing and pressure relief lines	29		
	10.3	Turbine pit drainage	29		
	10.4	Lubrication of guide vane regulating system	29		
	10.5	Air admission system	29		
	10.6	Tailwater depression system	29		
11	Tech	nical specifications for instrumentation	30		
	11.1	Controls	30		
	11.2	Indication	30		
	11.3	Protection	30		
12	Spar	e parts	30		
13	Mode	Model acceptance tests			
14		nstallation and commissioning	31		
	14.1	General	31		
	14.2	Installation procedures	31		
		Tests during installation	32		
		Commissioning tests	32		
15		acceptance tests	32		
-		Scope and reports	32		
		Inspection of cavitating pitting	33		

INTERNATIONAL ELECTROTECHNICAL COMMISSION

HYDRAULIC TURBINES, STORAGE PUMPS AND PUMP-TURBINES – TENDERING DOCUMENTS –

Part 2: Guidelines for technical specifications for Francis turbines

FOREWORD

- 1) The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested National Committees.
- 3) The documents produced have the form of recommendations for international use and are published in the form of standards, technical reports or guides and they are accepted by the National Committees in that sense.
- 4) In order to promote international unification, IEC National Committees undertake to apply IEC International Standards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter.
- 5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with one of its standards.
- 6) Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. The IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. In exceptional circumstances, a technical committee may propose the publication of a technical report of one of the following types:

- type 1, when the required support cannot be obtained for the publication of an International Standard, despite repeated efforts;
- type 2, when the subject is still under technical development or where for any other reason there is the future but no immediate possibility of an agreement on an International Standard;
- type 3, when a technical committee has collected data of a different kind from that which is normally published as an International Standard, for example "state of the art".

Technical reports of types 1 and 2 are subject to review within three years of publication to decide whether they can be transformed into International Standards. Technical reports of type 3 do not necessarily have to be reviewed until the data they provide are considered to be no longer valid or useful.

IEC 61366-2, which is a technical report of type 3, has been prepared by IEC technical committee 4: Hydraulic turbines.

The text of this technical report is based on the following documents:

Committee draft	Report on voting
4/110/CDV	4/122/RVC

Full information on the voting for the approval of this technical report can be found in the report on voting indicated in the above table.

Technical Report IEC 61366-2 is one of a series which deals with Tendering Documents for hydraulic turbines, storage pumps and pump-turbines. The series consists of seven parts:

Part 1: General and annexes (IEC 61366-1)

Part 2: Guidelines for technical specification for Francis turbines (IEC 61366-2)

Part 3: Guidelines for technical specification for Pelton turbines (IEC 61366-3)

Part 4: Guidelines for technical specification for Kaplan and propeller turbines (IEC 61366-4)

Part 5: Guidelines for technical specification for tubular turbines (IEC 61366-5)

Part 6: Guidelines for technical specification for pump-turbines (IEC 61366-6)

Part 7: Guidelines for technical specification for storage pumps (IEC 61366-7)

Parts 2 to 7 are "stand-alone" publications which when used with IEC 1366-1 contain guidelines for a specific machine type (i.e. Parts 1 and 4 represent the combined guide for Kaplan and propeller turbines). A summary of the proposed contents for a typical set of Tendering Documents is given in the following table 1 and annex A. Table 1 summarizes the arrangement of each part of this guide and serves as a reference for the various chapters and sections of the Tendering Documents (see 3.2 of this part).

A bilingual edition of this technical report may be issued at a later date.

Table 1 – Summarv of	quide for the preparation of	Tenderina Documents for h	vdraulic turbines, stora	ge pumps and pump-turbines

	CONTENTS OF GUIDE IEC 61366-1 TO IEC 61366-7	SAMPLE TABLE OF CONTENTS OF TENDERING DOCUMENTS (TD) (Example for the Francis turbines; see 61366-1, annex A)			
Part Clause	Title	Chapter Title			
1 - 1 1 1 2 1 3 1 4 1 5 1 6 1 A B C D E F G H 2 to 7 2 3 4 5 6 7	General and annexes Object and scope of this guide Reference documents and definitions Arrangement of Tendering Documents Guidelines for tendering requirements Guidelines for project information Guidelines for general conditions, special conditions and general requirements Annexes Sample table of contents of Tendering Documents for Francis turbines Comments on factors for evaluation of tenders Check list for tender form Examples of technical data sheets Technical performance guarantees Example of cavitation pitting guarantees Check list for model test specifications Sand erosion considerations Francis turbines Pelton turbines Kaplan and propeller turbines Tubular turbines Pump-turbines Storage pumps	1Tendering requirements2Project information3General conditions4Special conditions5General requirements6Technical specifications6.1Technical requirements6.1.1Scope of work6.1.2Limits of the contract6.1.3Supply by Employer6.1.4Design conditions6.1.5Performance and other guarantees6.1.6Mechanical design criteria6.1.7Design documentation6.1.8Materials and construction6.1.9Shop inspection and testing6.2Technical specifications for fixed/embedded components6.3Technical specifications for stationary/removable components6.4Technical specifications for rotating parts, bearings and seals6.6Technical specifications for miscellaneous components6.7Technical specifications for miscellaneous components6.8Technical specifications for auxiliary systems6.9Technical specifications for instrumentation6.10Spare parts6.11Model tests6.12Installation and commissioning6.13Field acceptance tests			

61366-2 © IEC:1998(E)

- 7 -

HYDRAULIC TURBINES, STORAGE PUMPS AND PUMP-TURBINES – TENDERING DOCUMENTS –

Part 2: Guidelines for technical specifications for Francis turbines

0 Introduction to technical specifications

The main purpose of the technical specifications is to describe the specific technical requirements for the hydraulic machine for which the Tendering Documents (TD) are being issued. To achieve clarity and to avoid confusion in contract administration, the Employer should not specify anything in the Technical Specifications which is of importance only to the preparation of the Tender. Such information and instructions should be given only in the Instructions to Tenderers (ITT). Accordingly, the ITT may refer to other chapters and sections of the Tendering Documents but not vice versa. As a general rule the word "Tenderer" should be confined in use only to TD chapter 1 "Tendering Requirements"; elsewhere the term "Contractor" should be used.

Special attention should be given to items of a project specific nature such as materials, protective coating systems, mechanical piping systems, electrical systems and instrumentation. It is common for the Employer to use technical standards for such items which would apply to all contracts for a particular project or projects. In this event, detailed technical standards should be specified in TD chapter 5 "General requirements".

Technical specifications for the various types of hydraulic machines included in this guide are provided in the following parts:

- Francis turbines (Part 2);
- Pelton turbines (Part 3);
- Propeller and Kaplan turbines (Part 4);
- Tubular turbines (Part 5);
- Pump-turbines (Part 6);
- Storage pumps (Part 7).

The guidelines for preparation of Francis turbine specifications include technical specifications for the following:

- Design conditions: Project arrangement, hydraulic conditions, specified conditions, mode of operation, generator characteristics, synchronous condenser characteristics, transient behaviour data, stability of the system, noise, vibration, pressure fluctuations and safety requirements.
- Technical performance and other guarantees:
 - power;
 - discharge;
 - efficiency;
 - maximum momentary pressure;
 - minimum momentary pressure;
 - maximum momentary overspeed;
 - maximum steady state runaway speed;

- cavitation pitting;
- hydraulic thrust;
- maximum weights and dimensions for transportation, erection and maintenance.
- Mechanical design criteria: design standards, stresses and deflections and special design considerations (earthquake acceleration, etc.).

- 8 -

- Design documentation: Contractor's input needed for the Employer's design, Contractor's drawings and data, Contractor's review of the Employer's design and technical reports by Contractor.
- Materials and construction: material selection and standards, quality assurance procedures, shop methods, corrosion protection and painting.
- Shop inspection and testing: general requirements and reports, material tests and certificates, dimensional checks, shop assembly and tests.
- Fixed/embedded components: spiral case with compressible wrapping (if any), stay ring, foundation ring, discharge ring, draft tube, draft tube liner, pit liner, and foundation plates and anchorage.
- Stationary removable components: headcover, bottom ring (may be fixed), facing plates, stationary wearing ring, guide vanes.
- Regulating apparatus for guide vanes: servomotor, connecting rods, regulating ring, guide vane linkage system, guide vane overload protection and locking devices.
- Rotating parts, bearings and seals: runner, main shaft, intermediate shaft, guide bearing with oil supply, oil/water cooler, main shaft seal, standstill (maintenance) shaft seal.
- Thrust bearing (when part of the hydraulic machine supply): bearing support, thrust block, rotating ring, thrust bearing pads and pivots, oil sump with oil supply (common with guide bearing, if any), oil/water coolers, instrumentation.
- Miscellaneous components: walkways, lifting fixtures, special tools, standard tools, turbine pit hoist, nameplate, draft tube maintenance platform.
- Auxiliary systems: runner pressure balancing and pressure relief lines, turbine pit drainage and other drainage systems; lubrication, draft tube air admission, tailwater depression, cooling water supply for runner seal for blow-down operation.
- Instrumentation: controls, indication and protection.
- Spare parts: basic spare parts.
- Model tests: test requirements.
- Site installation and commissioning: installation procedures and commissioning tests.
- Field acceptance tests: scope of field tests, reports and inspection of cavitation pitting.

An example of the proposed table of contents for Tendering Documents for a Francis turbine is given in annex A. The example does not include technical specifications for the control system, relief valves, or high and low pressure side valves or gates which, at the Employer's option, may be included in the Tendering Documents for the Francis turbine, or may be specified in separate documents.

Chapter 6 (technical specifications) of the Tendering Documents should be arranged as follows:

- 6.1 Technical requirements;
- 6.2 Technical specifications for fixed/embedded components;
- 6.3 Technical specifications for stationary/removable components;
- 6.4 Technical specifications for guide vane regulating apparatus;
- 6.5 Technical specifications for rotating parts, guide bearings and seals;
- 6.6 Technical specifications for thrust bearing;
- 6.7 Technical specifications for miscellaneous components;

61366-2 © IEC:1998(E)

- 6.8 Technical specifications for auxiliary systems;
- 6.9 Technical specifications for instrumentation;
- 6.10 Spare parts;
- 6.11 Model acceptance tests;
- 6.12 Site installation and commissioning;
- 6.13 Field acceptance tests.

1 Scope

This technical report, referred to herein as the Guide, is intended to assist in the preparation of Tendering Documents and tendering proposals and in the evaluation of tenders for hydraulic machines. This part of IEC 61366 provides guidelines for Francis turbines.

2 Reference documents

IEC 60041:1992, Field acceptance tests to determine the hydraulic performance of hydraulic turbines, storage pumps and pump-turbines

IEC 60193:1965, International code for model acceptance tests of hydraulic turbines

IEC 60308:1970, International code for testing of speed governing systems for hydraulic turbines

IEC 60609:1978, *Cavitation pitting evaluation in hydraulic turbines, storage pumps and pump-turbines*

IEC 60994:1991, Guide for field measurement of vibrations and pulsations in hydraulic machines (turbines, storage pumps and pump turbines)

IEC 61362,— Guide to specification of hydro-turbine control systems 1)

ISO 3740:1980, Acoustics – Determination of sound power levels of noise sources – Guidelines for the use of basic standards and for the preparation of noise test codes

3 Technical requirements

3.1 Scope of work

This subclause should describe the scope of work and the responsibilities which are to be conferred upon the Contractor. The general statement of scope of work presented in TD $^{2)}$ section 2.1 (5.1 of IEC 61366-1) shall be consistent with what is presented here. In a similar manner, pay items in the tender form, TD section 1.2 (4.2) should be defined directly from TD subsection 6.1.1.

The scope of work should begin with a general statement which outlines the various elements of the work including (where applicable) the design, model testing, supply of materials and labour, fabrication, machining, quality assurance, quality control, shop assembly, shop testing, spare parts, transportation to site, site installation, commissioning, acceptance testing, warranty and other services specified or required for the items of work.

The general statement should be followed by a specific and detailed list of the major items which the Employer wishes to have as separate payment items in the tender form, for example:

¹⁾ To be published.

²⁾ All references to Tendering Documents (TD) apply to annex A of IEC 61366-1.

– 10 –

Item Description

- 1 six (6) vertical shaft Francis type hydraulic turbines each with a specified power of not less than 102 000 kW under a specified specific hydraulic energy of 1 960 J/kg (specified head of 200 m);
- 2 turbine model testing;
- 3 tools, slings and handling devices required for maintenance of the turbines;
- 4 transportation and delivery to site;
- 5 site installation, commissioning and acceptance testing of the turbines;
- 6 preparation and submission of operation and maintenance manual and training of Employer's operating and maintenance staff in optimum use of these manuals; and
- 7 Spare parts required for operation and maintenance.

3.2 Limits of the contract

This subclause, by making reference to the Employer's drawings and data, should describe in detail the limits of the Contract considering the following:

- details of the design and supply limits of the high and low pressure sides of the machine;
- details, location and responsibility for field connection to spiral case and penstock or valve on the high-pressure side;
- details and location of the downstream termination of the draft tube liner;
- details and location of gate(s) or valve(s) on low-pressure side;
- orientation and location of the turbine/generator shaft interface;
- responsibility for supply and installation of flange coupling bolts, nuts and guards at generator/turbine coupling, including drilling jig;
- responsibility for supply and installation of bolts, nuts, gaskets at piping termination;
- termination of governor piping;
- termination of spiral case and draft tube dewatering piping;
- termination of spiral air exhaust piping (if any);
- termination of pit drainage piping;
- termination of bearing lubricating oil piping;
- termination of piping (if required) to carry upper runner seal leakage to the draft tube;
- termination of shaft seal piping (if any);
- termination of piping for air admission system (if any) and for runner pressure balancing system (if any);
- termination of cooling water piping for bearings;
- turbine headcover mounted thrust bearing (if specified);
- termination points and junction boxes for wiring for power, control, indication, protection, and lighting;
- compressed air for service and other functions.

NOTE – Contract limits will change if other major items of equipment (such as hydro-turbine control system, turbine inlet valves, generators, excitation systems, control metering and relaying systems, switchgear, and power transformers) are included with the turbine equipment in a common set of Tendering Documents.

3.3 Supply by Employer

This subclause should be complementary to 5.6 of IEC 61366-1 (TD section 2.6), and should list the items and services which will be the responsibility of the Employer. The following items should be considered:

- services during site installation and testing;
- temporary enclosures for site storage of turbine parts or for erection;
- installation in primary concrete of small items provided by the Contractor such as anchors, sole plates, and piping;
- concrete for embedment of turbine components supply, placement and control, including monitoring and verification during and after concrete placing by others;
- grout injection if required either within or around turbine components;
- powerhouse crane and operator;
- connections to powerhouse air, oil and water piping systems;
- supply of filtered water for turbine shaft seal (if by the Employer);
- electrical wiring and hardware external to specified termination points;
- electric motor starters and controls;
- control, annunciation and protection systems external to specified termination points;
- external lubricating oil storage, distribution, and purification systems (if by the Employer);
- lubricants, bearing and governor oil to the Contractor's specifications.

It should be stated that any materials or services required for installation and commissioning of the units, and not specifically mentioned in the above list of the Employer supplied items and services, are to be provided by the Contractor under the contract.

3.4 Design conditions

3.4.1 Project arrangement

The project arrangement should contain the Employer's detailed description together with general arrangement drawings (by the Employer) of the powerhouse and waterways at the high and low pressure side such as channels, galleries, penstocks, surge tank, valves/gates, etc. The description should be an extension of the applicable data provided in TD Chapter 2 "Project information". The data shall be sufficiently clear so that the Contractor can become fully aware of physical conditions which may influence its detailed design.

In any event, the Employer should retain responsibility for specifying values of all parameters on which guarantees are based, as part of the overall design of the plant. This applies particularly to the correct inlet and outlet conditions, and to the co-ordination of the interaction between the hydraulic machine and waterways.

3.4.2 Hydraulic conditions

This subclause should present the hydraulic conditions under which the Employer proposes to operate the completed facility such as:

- range of specific hydraulic energy (head) of the plant;
- specific hydraulic energy losses between headwater level and high pressure reference section of the machine (*E*_{L3-1});
- specific hydraulic energy losses between low pressure reference section of the machine and tailwater level (*E*_{L 2-4});
- specific hydraulic energy (head) of the machine (see 2.5 of IEC 61366-1);
- headwater levels, maximum, minimum and normal and when no water is flowing;
- tailwater levels, maximum, minimum and normal and when no water is flowing;
- minimum tailwater level as a function of discharge for the cavitation guarantee;
- power or discharge values in the range of specific hydraulic energy (head);
- maximum specific hydraulic energy (head) for runaway speed guarantee;

- range of water temperatures;
- water quality analysis (chemical, corrosive nature, biological, and suspended solids);
- range of ambient temperatures and humidity (tropical environment or extreme cold needs to be clearly defined).

3.4.3 Specified conditions

- a) Modes of operation: as an extension to TD section 2.5, the Employer should provide sufficient data to enable the Contractor to understand the Employer's intended mode(s) of operation, e.g. base load or peaking. Data should include, wherever possible, the anticipated number of start-stops per year and the capacity factor of the plant. Special operating features shall also be clearly identified such as synchronous condenser, spinning reserve, isolated and black-start operations, penstock draining through turbine, etc.
- b) Power (P), specific hydraulic energy (E) [head (H)], and discharge (Q): the specified specific hydraulic energy (head) and discharge of the machine are determined from an analysis of available discharge, specific hydraulic energy (head) of the plant, and hydraulic losses external to the machine with respect to statistical duration (refer to 2.3 to 2.6 of IEC 61366-1). Relevant power can be established from a predetermined value of efficiency.

If the range of specific hydraulic energy is wide, more than one specified value for E, Q may need to be selected to define the operational range of the machine.

In the case of an unregulated turbine, and if there are any limitations on maximum discharge at any specific hydraulic energy (head), the Employer shall provide adequate data in the technical specifications to enable the Contractor to optimise turbine design while respecting these limitations.

c) Speed: the choice of speed of the unit has an impact on turbine and generator costs, on the setting of the turbine with respect to tailwater levels, and on powerhouse costs. The choice of speed may also be influenced by strength considerations; e.g. in the case of an underground powerhouse where, because of favourable cavitation conditions, a higher speed could be selected but the higher speed may be limited by strength considerations.

If permitted by the project schedule, the approximate cost per metre of powerhouse setting, (see clause B.3 of annex B), and the approximate cost per kVA for various possible speed options for the generator should be specified by the Employer in the ITT (TD subsection 1.1.5) so that the Tenderers may quote the turbine which best suits site conditions and its available design.

In most cases, the project schedule will dictate an early decision with respect to speed. Under such conditions, discussions should be held with potential suppliers of turbines and generators to fix a preferred speed; alternative proposals may be invited in the ITT.

d) Direction of rotation: the direction of rotation of the turbine is dictated by the optimum orientation of the spiral case with respect to intake, penstock and powerhouse costs. The direction should be specified clockwise or counter-clockwise looking from the generator towards the turbine.

3.4.4 Generator characteristics

The specifications should state the principal characteristics of the generators to which the turbines will be coupled, for example:

- capacity (kVA);
- power factor;
- frequency (normal and exceptional range);
- inertia or flywheel effect of generator;
- preferred speed (if established);
- preferred bearing arrangement (if established);
- approximate rotor diameter (if available);
- inner diameter of stator for passage of turbine components (if available).

3.4.5 Transient behaviour data

During the preliminary design phase of the project and prior to turbine selection, the Employer should determine the various factors relating to power acceptance and power rejection by the turbine. These factors may include:

- acceptable variation in electrical system frequency;
- inertia of the rotating parts or mechanical starting time;
- details of high pressure and low pressure conduits for the turbine, including surge tanks;
- water starting time;
- velocity of pressure waves (sound velocity in the water passages);
- turbine guide vane opening and closing times;
- high (low) pressure side valve(s)/gate(s) opening and closing time;
- transient pressure variations in the turbine spiral case and penstock;
- transient pressure variations in the draft tube;
- pressure fluctuations at high pressure and low pressure side of turbine.

Transient data established by the Employer should be provided, and those data which require verification by the Contractor should be specified. Other data not specified by the Employer may have to be established by the Contractor. (Refer to guarantees in 3.5.5 and 3.5.6.)

3.4.6 Stability of the system

The hydro-turbine control system should be specified in accordance with IEC 61362. The performance of the hydro-turbine control system should be specified according to IEC 60308. The Employer should furnish the information necessary to predict possible resonance in the water passages of the power plant and in the unit. Admissible limits may be specified for fluctuation of shaft torque and of pressure in the draft tube.

3.4.7 Noise

Noise level limits may be legislated by national or local statutes. Noise abatement (see note) measures may be the combined responsibility of the Employer and the Contractor. Reference should be made by the Employer to ISO 3740 together with other standards, statutes and guides to establish noise measurement and acceptance criteria. The limits and the means by which they can be achieved should be specified in TD subsection 6.1.4.7.

NOTE – The Employer should recognize that additional protection to reduce noise level may have a significant effect on the cost of the machine.

3.4.8 Vibration

The specifications should require that the machine operate through its full range of specified conditions without vibration which would be detrimental to its service life. Reference should be made by the Employer to IEC 60994, together with other suitable standards or guides, to establish deflection measurements and acceptance criteria. In any event, limits of vibration may be established for steady state conditions and for normal transient regimes as criteria for final acceptance.

3.4.9 Sand erosion considerations

Risk of sand erosion may influence the design and operation of the hydraulic machine. In this event, the technical specifications should indicate the content of suspended solids, their type, hardness, size and shape. See annex H of IEC 61366-1.

3.4.10 Safety requirements

The Employer should state specific safety requirements which shall be met in the design of the turbine. These requirements are in addition to the general safety related items outlined in 5.6.

3.5 Technical performance and other guarantees

3.5.1 General

Hydraulic performance guarantees for hydraulic machines are presented in clause 3 of IEC 60041. The main guarantees to be specified are outlined in annex E of IEC 61366-1, and should be read in conjunction with IEC 60041.

The main steady state hydraulic performance guarantees (i.e. power, discharge, efficiency and runaway speed) may be verified by model tests or by field acceptance tests. Guarantees may be referred directly to the hydraulic performance of the model (without scale effect), or alternatively to the hydraulic performance of the prototype computed from model tests with allowance for scale effects. Refer to IEC 60193.

The Employer should establish and specify the parameters on which the performance guarantees are to be based. These parameters include plant specific hydraulic energy (plant head) and energy losses external to the high pressure and low pressure reference sections of the machine. The Employer should retain responsibility for specifying acceptable inlet and outlet conditions of the machine and for co-ordinating the study of the interaction between the machine and the external waterways, under transient and steady-state oscillating conditions.

In those cases where it is not possible to perform field acceptance tests under specified conditions, refer to IEC 60041, the Employer should specify measurement methods and measurement uncertainties which are contractually applied if different than those established by relevant IEC publications. In addition to specifying the guaranteed performance provisions in the technical specification, it is important that the Employer summarize these provisions in TD subsection 1.1.13 of the "Instructions to Tenderers". Also, it is desirable that the manner in which Tenderers present and state their performance guarantees be clearly specified.

The Employer should select the appropriate level and type of performance guarantees for the machine, taking into consideration the intended mode of operation and the importance of the machine in the electrical system. The Employer should specify measurement methods to be applied and the relevant standards which explain the measurement error.

Performance guarantees may be specified for a range of specific hydraulic energy values. If the actual specific hydraulic energy is outside this range, an agreement shall be reached between the Employer and the Contractor to define the new guarantees.

When it is necessary to include other aspects of the machine under performance guarantees (such as stability, noise, and vibration), the Employer should include these provisions at the end of this clause, taking into consideration that available data may not be sufficient based on extended experience. In any event, conditions under which guarantees are evaluated shall be specified.

3.5.2 Guaranteed power

In specifying the guarantee for power, refer to TD subsection 6.1.4.3 of the "Specified Conditions" (see annex A of IEC 61366-1), and state clearly the basis of the guarantee. It is necessary, in this subclause, to establish the contractual obligations of the Contractor if the guaranteed power is not met. The method(s) of measurements, method of comparison with guarantees and application of IEC 60041 shall be defined.

3.5.3 Guaranteed minimum discharge

In some cases, it may be necessary to specify guaranteed requirements for a particularly low, continuous and stable discharge. The Employer should indicate the expected duration of operation and any special discharge conditions. The method of measurement should be specified.

3.5.4 Guaranteed efficiency

The Employer shall establish and specify:

- a) Basis of guarantee: model or prototype.
- b) Method proposed to measure guaranteed efficiency:
 - by model acceptance tests in the Contractor's laboratory or in another laboratory acceptable to both parties, using test results with a mutually agreed step-up formula (see IEC 60193); in this case, model test guarantees for the model have to be given (see clause 13); or
 - by model tests with a mutually agreed step-up formula (see IEC 60193 and clause 13); or
 - by field acceptance tests of one or more prototype turbines (see IEC 60041 and clause 15).
- c) Efficiency weighting formula to allow Tenderers to optimize the guaranteed efficiency in the normal operating range of the turbine with respect to both power and specific hydraulic energy (head), while taking into consideration the value, specified by the Employer, for gain or loss in efficiency (refer to annex B of IEC 61366-1).
- d) Applicable codes (see 2.1 of IEC 61366-1).
- e) Measurement methods and preliminary estimated measurement uncertainties to be contractually applied if different than those established by relevant IEC publications.
- f) Contractual consequences, if any, of the Contractor's failure to fulfill the guaranteed efficiency or of the Contractor exceeding its guaranteed efficiency (penalty or premium).

The technical data sheets of the tender forms should provide space for the Tenderer to record its guaranteed weighted efficiency.

In large multi-unit projects which justify the expense, the Employer may choose to select two or more competing Tenderers to perform turbine model tests at the Employer's expense. In this event, the results of the model tests can be used in the evaluation of the final award of the Contract to the successful Tenderer.

3.5.5 Guaranteed maximum/minimum momentary pressure

It is usual for the Contractor to guarantee momentary pressure even when there is no contractual responsibility for complete design of the plant. (Refer to annex E of E.2.6). The Contractor should be required to calculate and guarantee the maximum momentary pressure under load rejection from specified conditions (specified power and specified specific hydraulic energy), and under the most unfavourable transient conditions established by the Employer. The Employer, however, shall specify all relevant data because of the involvement and influence of the electrical generator, speed regulator, and waterway system in the transient phenomenon (see 3.4.5).

3.5.6 Guaranteed maximum momentary overspeed

The maximum momentary overspeed is the overspeed attained under the most unfavourable transient conditions. Under certain conditions, it may exceed maximum steady state runaway speed. The maximum momentary overspeed should be guaranteed by the Contractor. The Employer, however, shall specify all relevant data because of the involvement and influence of the electrical generator, speed regulator, and waterway system in the transient phenomenon (see 3.4.5).

3.5.7 Guaranteed maximum steady state runaway speed

The specifications should require that the Contractor guarantee the maximum steady state runaway speed under the worst combination of conditions established by the Employer, for example, maximum specific hydraulic energy (head) and physical maximum guide vane opening on the turbine, considering variations in the plant cavitation factor. Taking into consideration powerhouse arrangement, number and type of independent shutoff devices, local or remote control and type of control and protection systems, the specifications should state the duration for which the unit shall be capable of functioning at maximum steady state runaway speed. The duration may vary from a few minutes to several hours at this speed, but the design of the plant should keep this duration to a minimum. The guarantee should be stated in the technical data sheets submitted by the Tenderers.

NOTE – It is recommended not to specify or to conduct steady state runaway speed tests at site. If it is mutually agreed to conduct such tests, they should be performed at reduced specific hydraulic energy (head); refer to IEC 60041. The purpose of this precaution is to reduce physical stresses on the civil structures and the generating unit (particularly the electrical machinery). The value of maximum steady state runaway speed should be verified by model tests.

3.5.8 Cavitation pitting guarantees

Severe cavitation pitting creates three major problems for hydraulic machines: high cost of pitting repairs; loss of revenue caused by outages; and decrease in efficiency. With careful planning, the possibility of severe pitting can be greatly reduced.

In the design of turbines and their application to a specific site, it is necessary to balance the increased costs for a lower turbine setting, larger runner diameter, slower operating speed and increased powerhouse excavation with the potential loss of revenue caused by any outage.

IEC 60609 outlines factors which need to be considered when specifying cavitation guarantees. Refer to annex F of IEC 61366-1, which provides an example of an interpretation of IEC 60609.

Factors which can influence the amount of cavitation pitting damage and the limits of the cavitation guarantee include plant operating range and conditions, low tailwater level, water quality, material selection, shop inspection, quality control and field inspection after commissioning.

3.5.9 Guaranteed hydraulic thrust

This subclause should outline the conditions of operation which can be used by the Contractor to determine the maximum and minimum hydraulic axial thrust. This information will be needed for design of the thrust bearing.

3.5.10 Guaranteed maximum weights and dimensions

In some cases, the Employer may need to establish and fix without subsequent change, certain features of the turbine to be incorporated in the design of the project. These features should be specified in this subsection and may include, for example, such items as inlet valve size, turbine runner and shaft weights and maximum component dimensions and/or weights (for transportation and project handling restrictions), intake gate and draft tube gate size, etc.

3.5.11 Other technical guarantees

This subclause may cover other technical guarantees such as vibration ¹), noise ²), fluctuations of pressure and power and behaviour of protective coatings.

¹⁾ Refer to 3.4.8.

²⁾ Refer to 3.4.7.

If guaranteed limits for vibration are specified by the Employer or agreed upon by the parties to the Contract, reference should be made to IEC 60994, which gives guidelines for measurement procedures.

If the Employer specifies a guarantee for the guide vane hydraulic torque tendency, this guarantee may be confirmed by model tests.

The Employer may specify a guarantee to cover an emergency shutdown of the turbine without cooling and/or lubrication of the bearings.

3.6 Mechanical design criteria

3.6.1 Design standards

This subclause should list the appropriate standards and codes which apply directly to the specified equipment.

3.6.2 Stresses and deflections

The Contractor should be required to adopt design methods and practices with regard to allowable stresses and deflections to ensure an extended service life from the turbine, using reasonable care and maintenance. The correlation of allowable stresses to the following load conditions shall be specified for:

- normal load conditions;
- extraordinary load conditions; and
- load case for emergency conditions (including earthquake acceleration).

The Employer should indicate the anticipated service life. Whenever the Contractor proposes to deviate from its conventional successful practice, it should be obliged to justify such deviation in advance to the Employer.

3.6.3 Special design considerations

The technical specifications should describe clearly the particular criteria and requirements relating to operation, reliability and maintainability (for erection, dismantling and maintenance of the main components). Any general statement in this subsection should be expanded as necessary under the headings of the particular components concerned.

The Contractors for the turbine and generator equipment should, as a part of their respective Contract, be required to carry out design of the dynamic behaviour of the combined generator and turbine with respect to critical speed calculations and shaft system alignment criteria. The two Contractors should be obliged to participate in the analysis and mutual agreement for resolution of any problems which may arise in this regard.

3.7 Design documentation

3.7.1 General

The Tendering Documents should provide a general statement on the manner in which Contractor's design documentation will be submitted for review. It shall be recognized that design responsibilities which are assigned to the Contractor by the Employer shall remain under the Contractor's direct control. The provisions of TD subsection 6.1.7 shall be consistent with those given in TD section 5.2 "General Requirements".

3.7.2 Data for the Employer's design

The Employer should outline data to be submitted by the Contractor relating to design and layout of the turbine. Data should include such items as embedded component weights and dimensions, loads to be transferred to the structure, water passage dimensions (i.e. spiral case, stay ring, foundation ring and draft tube), size and location of anchor bolts, dimensions of

first stage concrete voids for subsequent installation of embedded components, weights and dimensions of heaviest and largest components to determine crane capacity and lift height requirements when not specified by the Employer (see 3.5.10), details of lifting devices handled by crane, electrical interconnections, governor system connections, generator coupling data, etc.

3.7.3 Requirements for Contractor's drawings, technical calculations and data

Requirements for the Contractor's drawings, technical calculations and data should be described so that the Contractor is fully aware of information to be submitted. Associated with this is the need for the Employer to specify a predetermined number of design meetings with the Contractor to expedite necessary action items. The extent of review intended by the Employer should be defined. The Contractor is normally responsible for design of the turbine and the Employer's review should only be to the extent that the product conforms to the requirements of the technical specifications, in particular, and the contract documents, in general.

3.7.4 Contractor's review of Employer's design

A number of items in the design of the turbine have an impact on the design of the powerhouse. The Employer should outline the requirements for review by the Contractor of the Employer's design. This could include a review of substructure construction drawings showing turbine anchor bolt and installation details, draft tube water passages and other details which influence turbine layout.

3.7.5 Technical reports by Contractor

The Employer should specify submittal requirements for the Contractor's technical reports. These reports could include model tests, dynamic behaviour of turbine/generator, installation procedures, commissioning and acceptance test procedures and similar items.

3.8 Materials and construction

3.8.1 Scope

Care shall be taken that specifications for materials and construction in TD subsection 6.1.8 are consistent and do not conflict with the general requirements specified in TD section 5.4 "Materials and workmanship". A number of items included in TD subsection 6.1.8 could be specified in TD section 5.4, but this is left to the Employer's preference.

It should be stated that it is not the intent of the Employer, in its specifications, to dictate how the turbine should be constructed but rather to provide sufficient data for the Contractor to establish the class of equipment for which the Employer is willing to pay. The Contractor should be permitted to offer alternatives to the minimum specified requirements, thereby offering the maximum benefit of the Contractor's experience. The basis of such alternatives should be justified and documented.

3.8.2 Material selection and standards

- All materials shall be new and suited to the intended purpose as demonstrated by the Contractor's prior experience, or demonstrated by tests whose results are divulged to the Employer for acceptance.
- Specification should be limited, where possible, to generic types of materials to leave the Contractor the flexibility of procurement from its usual sources.
- Where National material standards are specified, demonstrated equivalents should be accepted.
- Any change of material during contract period shall be subject to approval by the Employer.

3.8.3 Quality assurance procedures

- Minimum quality requirements should be specified, preferably with reference to international or national standards, and should not conflict with the general requirements in TD section 5.5.
- Required documentation attesting to quality checks shall be established.
- Material test certificates including certificates for material of doubtful quality or origin.
- Procedures for repair of defects shall be established.
- Need for the Employer's witness and notice in advance of same.

3.8.4 Shop methods and personnel

- Shop methods and routing information should be divulged to the Employer's representative(s) to the extent necessary to permit evaluation of same and to schedule attendance at important verification points in the manufacturing sequence.
- The Contractor should be required to demonstrate upon request, that the qualifications of its staff and workers for specific tasks such as welding are adequate for the class of work being done.

3.8.5 Corrosion protection and painting

- Minimum general grade of corrosion protection should be specified. The behaviour of paint and coatings systems shall be consistent with the environment to which the turbine components will be subjected, both atmospheric and hydraulic.
- International or national standards may be used to define minimum surface preparation and painting requirements.
- If a particular paint system is specified, its generic type and number of primer and finish coats should be given to facilitate the preparation of estimates during the tender period.
- Minimum or maximum dry film thickness for each coat in the specified paint systems should also be given.
- Minimum corrosion protection requirements for machined surfaces, prior to shipment should be given, along with packaging, transportation and site storage requirements in TD sections 5.7 and 5.8.
- If standard coating systems are specified by the Employer in TD section 5.4 of the general requirements, only the system code number and colour schedules need be specified in the technical specifications with cross reference to TD section 5.7.

3.9 Shop inspection and testing

As with 3.8, some of the requirements set forth in 3.9 could be specified in TD section 5.6. This is left to the author of the documents.

3.9.1 General requirements and reports

This subclause should make reference to and be consistent with TD section 5.6 giving shop test, inspection and report requirements to be met. Reference should be made to TD section 5.5 so that reporting standards and record-keeping are consistent with the specified level of quality assurance.

Method for handling non-conformance cases should be stated.

3.9.2 Material tests and certificates

 Specifications should require that material used in the fabrication of major components of the turbine should be identifiable in the Contractor's records for the project in terms of type, grade and source. Copies of such records for major components should be supplied to the Employer's representative upon request.

- Tests for physical or chemical properties or other characteristics shall be specified for major components and the results reported to the Employer in writing. The Employer's representative shall be given the opportunity to witness such tests.
- The Employer may specify the supply of sample material.
- Where materials are purchased outside the Contractor's organization, it shall be required, as a minimum, that certificates be provided for major components at the time of material shipment, attesting to the type and grade of material being supplied.
- Where no specific tests are specified for major components, it shall be assumed that the tests required by the national standard for a material with the most similar chemical and physical properties shall apply. This is true for:
 - plate and structural steel;
 - castings;
 - forgings; and
 - weldments.

3.9.3 Dimensional checks

Specifications should require that critical dimensions be checked prior to shipment of the component to the job site. The nature of the records to be kept from such checks will be determined by the specified level of quality assurance to be maintained, and by the Contractor's experience regarding the effect of such checks on its ability to assemble, erect, test and guarantee the turbine.

If model acceptance tests are performed, geometric similarity with the model turbine shall be checked in accordance with IEC 60193.

3.9.4 Shop assembly and tests

Detailed specifications of each major component should establish minimum requirements for shop assembly and tests. The following factors should be considered:

- remoteness of project site;
- possibility of shipment of part or all of the turbine fully assembled;
- thoroughness of dimensional checks;
- need for hydrostatic pressure test (e.g. guide vane servomotors);
- importance of a possible error in dimensional checks; and
- match marking to reassemble at site.

Designated auxiliary components and systems should be tested in the shop for proper functioning.

4 Technical specifications for fixed/embedded components

General notes

Clauses 4 to 11 inclusive, outline the technical specifications for major components of the machine. These specifications shall present concisely the Employers' specific technical requirements and preferences for these components. It is suggested that the technical specifications for major components be arranged using the following headings wherever possible:

- general description;
- design data;
- general data.

61366-2 © IEC:1998(E)

Although the guide may appear somewhat repetitive in the clauses which follow, it should be understood that the purpose of this Guide is to illustrate preferred and consistent methods for specifying turbine machinery without presenting detailed specifications. Such details are the responsibility of the Employer. As noted in 3.3.1.1 of IEC 61366-1 and to avoid confusion, requests for information from the Tenderers shall be provided in the instructions to Tenderers and not in the technical specifications.

Consistent with the foregoing notes, TD section 7.2 should begin with a general description of the major embedded components, for example:

"The embedded components for the Francis turbine to be provided normally include:

- spiral case;
- stay ring;
- foundation ring;
- draft tube and draft tube liner;
- pit liner."

4.1 Spiral case

A general description of the spiral case should be given here.

4.1.1 Design data

The Employer's design data should be carefully outlined including such items as:

- design pressure;
- maximum permissible stresses into surrounding concrete, limitable by compressible wrapping;
- test pressure and location of test (shop or site);
- internal pressure during embedment;
- concrete embedment pour rates, monitoring, verification, etc.;
- material by generic type or recognized national standards (indicate if alternatives will be accepted).

4.1.2 General data for geometry, connections and auxiliaries

The Employer should provide general data which apply to the spiral case such as:

- location, size and type of turbine inlet connection (specify tolerances);
- location, size, and type of all other connections for peripheral or auxiliary systems (cooling water, potable water, service water, pressure relief devices, irrigation devices, etc.);
- location, size and details of access for maintenance;
- details of all indication and test connections and devices;
- temporary and permanent transportation and erection support and handling devices.

4.2 Stay ring

As with the spiral case, the Employer should provide similar subsections beginning with a short description of the stay ring.

4.2.1 Design data

- See 4.1.1.

- Weight of concrete, generator and other vertical loads supported by the stay ring.

4.2.2 General data for geometry, connections and auxiliaries

- Tolerances on location in plan and elevation.
- Provisions for concrete placement and grouting.
- Location, size, type and other details of connections (e.g. turbine pit drains, test connections, etc.).

- 22 -

- Transportation and erection support and handling devices.

4.3 Foundation ring

Brief description of foundation ring.

4.3.1 Design data

- Special loading conditions, if any.
- Material.
- Transportation and site handling limitations.

4.3.2 General data for geometry, connections and auxiliaries

- Tolerances on location in plan and elevation.
- Provisions for concrete placement and grouting.
- Location, size, type and other details of connections (turbine pit drains, draft tube aeration, test, etc.).
- Temporary and permanent transportation and erection support and handling devices.

4.4 Draft tube and draft tube liner

Brief description of draft tube.

4.4.1 Design data

- Minimum external design pressure for liner.
- Maximum allowable pressure pulsation amplitude.
- Minimum thickness if pertinent.
- Minimum external rib arrangement for limiting infiltration to powerhouse.
- Type of material.
- Transportation and site handling limitations (dimensional).
- Concrete embedment rates, and other details.
- Dimensional tolerances, concrete and liner.

4.4.2 General data for connections and auxiliaries

- Location and details of downstream limit of draft tube liner.
- Location, size and details of access for maintenance.
- Location, size, type and details of runner maintenance platform and devices.
- Location, size and details of all connections (e.g. spiral case, draft tube drains, aeration piping or devices, cooling water, service water, draft tube water level controls, indication and test devices, etc.).

61366-2 © IEC:1998(E)

- Temporary and permanent transportation and erection support and handling devices (anchors, tie rods, supports, etc.).

4.5 Pit liner

Brief description of pit liner.

4.5.1 Design data

- External pressure.
- Minimum thickness if pertinent.
- Minimum external rib arrangement.
- Type of material.
- Servomotor support criteria.
- Openings for generator air circulation.
- Support for turbine pit hoist, if any.

4.5.2 General data connections and auxiliaries

- Approximate lifting diameter required (e.g. for stator clearance).
- Elevation of top of pit liner with respect to the turbine distributor centreline.
- Location, size and details of turbine pit access.
- Preferred location of guide vane servomotor support flanges.
- Location, size and details of piping connections (generator pit drainage, turbine pit drainage, bearing cooling water, bearing lubricating oil, servomotor, service air, central grease lubrication system, etc.).
- Transportation and erection support and handling devices.
- Permanent turbine pit hoist, if required.

5 Technical specifications for stationary/removable components

The Employer should give a general description of the distributor assembly.

5.1 Headcover and bottom ring

The Employer should give a short description of the headcover and bottom ring.

5.1.1 Design data

- Preferred arrangement (e.g. both headcover and bottom ring to be removable for maintenance; guide vane bushings to be replaceable without dismantling headcover and bottom ring, etc.).
- Requested type of material.
- Preferred turbine pit drainage arrangement.
- Preferred guide and thrust bearing location.

5.1.2 Facing plates

- Comments on preferred arrangement.
- Material by generic type.
- Minimum thickness.

5.1.3 Runner seal stationary wearing rings

- Comments on preferred arrangement.
- Type of material (resistant to corrosion, erosion and cavitation).

5.1.4 Guide bearing support

- Comments on preferred arrangement.
- Access for maintenance of guide bearing.

5.1.5 Guide vane bearing housing and bushings

- Preferred material.
- Special features (dirt seals).

5.2 Guide vanes

The Employer should provide a brief description of guide vanes

5.2.1 Design data

- Rates for opening and closing when governor system is not included in turbine supply.
- Requested type of material (corrosion resistant, erosion resistant).
- Preferred hydraulic torque characteristic.

5.2.2 Guide vane stems

- Requested material by generic type.
- Other requirements.
- Arrangement and material for guide vane stem seals.

6 Technical specifications for guide vane regulating apparatus

Description of apparatus either with a regulating ring or an individual servomotor for each guide vane.

6.1 Servomotors

- Material type.
- Preferred location in turbine pit considering generator foundations.
- Maximum and minimum allowable operating pressure if governor supplied separately.
- Guide vane restoring device for governor.
- Requirements for pressure tests.
- Responsibility for alignment at assembly.
- Other requirements regarding operation and maintenance.
- Cross-reference TD subsection 6.3.2.1 for opening and closing times.

6.2 Connecting rods

- Preferred arrangement.
- Minimum bushing requirements.
- Type of material.

6.3 Regulating ring

- Preferred arrangement.
- Minimum support requirements on headcover.
- Type of material.

6.4 Guide vane linkage

- Preferred arrangement.
- Types of material.
- Individual adjustment on each guide vane in closed position.

6.5 Guide vane overload protection

- Preferred arrangement.
- Basic criteria.
- Criteria for readjustment (on-line, off-line spiral case drained).
- Overload indication.
- Overload annunciation.

6.6 Locking devices

- Preferred arrangement.
- Automatic or manual.
- "Closed" or "open" positions.
- Are they required to be adjustable for limiting power?.
- Lock position detection.
- Lock position annunciation.

7 Technical specifications for rotating parts, bearings and seals

Description of rotating parts and method of erection and dismantling.

7.1 Runner

Description of runner.

7.1.1 Design data

- Minimum material requirements by generic type (weldable, corrosion resistant, erosion resistant, and cavitation resistant).
- Support of runner and shaft during erection and subsequent maintenance.
- Static balancing requirements.

7.1.2 Runner water passage shape and surface finish

Proper control of runner water passage shape and surface conditions is an important step in limiting potential cavitation damage. Proper quality control shall be provided during all phases of fabrication and manufacture to ensure that the final product is homologous with the model runner, in the case of model tests or to the hydraulic design. Reference should be made to IEC 60193.

7.1.3 Rotating seal rings

- Material type.
- Compatibility with materials used on stationary wearing rings.
- Preferred design, i.e. removable, one piece with runner, etc.

7.2 Main shaft

Description of shaft.

7.2.1 Design data

- Coupling standard, if any.
- Material type.
- Elevation of main shaft coupling flange(s) with respect to centreline distributor.
- Need, if any, for concentric hole through shaft for QC inspection, or for dismantling.
- Coupling bolt holes, interchangeability requirement.
- Lowest or first critical speed calculation (greater than maximum steady state runaway speed).
- Define co-ordination with generator supplier for combined alignment, dimensional interface and critical speed.
- Shaft seal sleeve.

7.2.2 Coupling bolts, nuts and nut guards

- Material type.
- Responsibility for supply and installation, including drilling template.
- Turbine end.
- Generator end.
- Interchangeability.
- Locking devices.
- Nut guards at turbine and generator ends.

7.3 Turbine guide bearing

- General description for type and construction.
- Access for maintenance.
- Material types.
- Lubrication.
- Cooling of bearing oil.
- Oil fill and drain piping.
- Oil circulation.
- Oil level detection for control and annunciation.
- Oil level indication.
- Contamination of oil (test connections).
- Bearing temperature.
- Bearing oil temperature.

7.4 Main shaft seal

- General description.
- Material for housing and wear elements.
- Design for longevity and ease of maintenance.
- Clean lubricating water and cooling water.
- Quality and quantity of cooling water.
- Shaft seal temperature detection and indication.
- Shaft seal cooling water flow detection and indication.
- Wear indicator.
- Shaft seal sleeve material type and special maintenance requirements.

7.5 Standstill shaft (maintenance) seal

- General description.
- Material for housing and active seal ring.
- Actuation (e.g. by compressed air).

8 Technical specifications for thrust bearing (when specified as part of turbine supply)

Description of bearing assembly and location.

8.1 Design data

- Weights and loads on bearing external to turbine.
- Limitation for operation under runaway speed conditions.
- Cooling water temperature range.
- Deflection limitations.

8.2 Bearing support

- Location.
- Materials.
- Accessibility.

8.3 Bearing assembly

- General description of type or construction.
- Design accessible for maintenance.
- Material types.
- Lubrication.
- Cooling of bearing oil.
- Oil fill and drain piping.
- Oil circulation.
- Oil level detection for control and annunciation.
- Oil level indication.
- Oil contamination (test connections).

- Bearing temperature.
- Bearing oil temperature.

8.4 Oil injection pressure lift system

- Number and types of pumps (a.c. or d.c.).
- Filters.
- Flow regulators.
- Pressure detectors.

9 Technical specifications for miscellaneous components

Description of miscellaneous components.

9.1 Walkways, access platforms and stairs

- Pit access.
- Runner inspection platform.
- Description of minimum requirements.
- Removal and handling weight limitations.
- Minimum design loading criteria.
- Reference to applicable safety codes.

9.2 Lifting fixtures

- Runner and shaft.
- Headcover with guide vanes and regulating mechanism.
- Servomotors.
- Guide vane operating mechanism in pit.
- Guide vanes.
- Bottom cover.
- Coupling bolts.
- Main guide bearing.

9.3 Special tools

- Coupling bolt loosening and tightening device.
- Replacing overload protection and guide vane levers.
- Special wrenches.
- Special jacks.
- Shaft lifting device.
- Slings.
- Runner transfer cart.

9.4 Standard tools

- Complete new set for maintenance requirements (not for erection).

9.5 Turbine pit hoist

 If required by turbine size to facilitate maintenance of main guide bearing, guide vane operating mechanism, etc.

9.6 Nameplate

- Minimum data.
- Size.
- Mounting location.

10 Technical specifications for auxiliary systems

Description of systems included.

10.1 Bearing lubrication system

When an external oil cooling system is preferred, specify:

- number and type of pumps, filters and coolers;
- dimension criteria for external tank (e.g. with capacity to contain complete system volume);
- detectors for level, flow, humidity, etc.

10.2 Runner pressure balancing and pressure relief lines

Define responsibility for external piping, if any.

10.3 Turbine pit drainage

- Describe preferred system.
- Define responsibility for all pumps, controls and piping where required.

10.4 Lubrication of guide vane regulating system

- Self-lubricating bushings are recommended.
- Describe preferred arrangement if grease lubrication is adopted.
- Controls, indication, malfunction annunciation.

10.5 Air admission system

- Define limits of responsibility.
- Automatic isolation of air admission system in load ranges where not required.
- Preferred type of design.

10.6 Tailwater depression system

Applicable only for synchronous condenser operation.

- Quantity of air required for initial depression.
- Quantity of air required to sustain depression.
- Maximum duration to fill accumulator.
- Limits of supply items.
- General description of system and its controls, if included.
- Runner seal and shaft seal lubrication (if needed).

11 Technical specifications for instrumentation

Description of instrumentation.

11.1 Controls

List controls included in the contract. Detailed cross-references should be given to the subsection dealing with the item involved; e.g. unit start interlocks, low flow to guide bearing cooling, low flow to shaft seal lubrication, etc.

11.2 Indication

Define devices for indication such as:

- bearing oil level;
- shaft seal wear;
- bearing temperature, etc.

11.3 Protection

Define protection requirements, for example:

- bearing high temperature;
- shaft seal high temperature;
- excessive shaft displacement (run-out).

12 Spare parts

Requirements for basic spare parts for turbines should be established by the Employer.

Extent of spare parts will depend on operating criteria, location of project, availability of replacement components. The basic spare parts list required by the Employer may be augmented by the experience of the Contractor. Spare parts should be manufactured with the main contract and delivered with turbine components.

Provide a list of minimum requirements, e.g.:

- bearing shell or pads;
- set of guide vane bushings;
- shaft seal wear elements;
- complete set of seals and/or gaskets for dismantling;
- spare studs, nuts, bolts, etc.

The Employer may request that Tenderers submit their list of recommended spare parts and prices with their tender.

13 Model acceptance tests

It is recommended that model tests be performed. The results may be used to determine the guaranteed or anticipated performance of the turbine. For some small units and for special cases where near homologous model data are available, it may be cost-effective to accept a model design which can be readily adapted to the site of the work. In this event, the Contractor should be required to explain the basis of numerically adapted performances. The Employer

61366-2 © IEC:1998(E)

may elect to use the Contractor's applicable existing model data available from previous homologous model tests.

Under certain circumstances the Employer may wish to receive tenders, evaluate them and select two or three Tenderers to construct turbine models, at the Employer's expense, for competitive testing at an independent laboratory or, by mutual agreement, model tests may be conducted in the successful Tenderer's laboratory. A contract may then be awarded on the basis of best performance and price. Nevertheless, model tests should be carried out in accordance with IEC 60193. Only supplementary requirements need to be specified in detail.

The use of the model test should be stated:

- model acceptance tests; verification of guarantees on the model;
- comparison of model test results with guarantees on prototype with due consideration of scale effects in accordance with IEC 60193;
- evaluation of model performance with regard to cavitation behaviour (setting of the machine);
- evaluation of specific operating characteristics, such as runaway speed, hydraulic thrust, guide vane torque, etc., in accordance with IEC 60193;
- comparative/competitive model tests performed according to the rules of the model acceptance tests;
- evaluation of competing designs from different Tenderers;
- development model tests as the basis for prototype design; in this case, model tests will
 provide information on performance and machine behaviour at an early stage of the project.

The schedule of conducting the model tests, including witnessing by the Employer, and for submitting the final report should be specified, taking into account that design, manufacturing, and tests of a model may require a 12 months to 18 months programme.

A check list for model acceptance test specifications is given in IEC 61366-1, annex G. Refer also to IEC 60193 in which items which need agreement between the parties are listed.

14 Site installation and commissioning

14.1 General

- Refer to IEC 60545.
- Elaborate on what is stated in TD section 5.10 and in TD subsections 6.1.1, 6.1.2, and 6.1.3.
- Outline clearly the limits of Contractor's responsibilities.
- State the method the Employer proposes to use to control, monitor and verify the Contractor's embedded parts and anchor bolts are not disturbed during concrete placement and grouting operations by others. This should include such items as pour rate and pressure limitations imposed by the Employer on construction of civil works. The Contractor shall be given the opportunity to comment on and agree to these provisions for control.

14.2 Installation procedures

- The specifications should stipulate that an erection procedure be prepared by the Contractor and submitted to the Employer before the start of erection and installation at site. This will allow the Employer to resolve any conflicts which may exist with other Contractors on the site. The procedures should contain full cross-referencing to turbine drawings and to location of measurement points; and should become a part of the operating and maintenance manual (TD section 2.5).
- Erection tolerances, if specified, should follow national or industry standards or guidelines.

- The procedures should incorporate the controls and monitoring of concreting around embedded parts, and limits for location of embedded parts which need to be verified and monitored by the Employer during concreting and grouting by others.
- The procedures should take into account the requirements of the connected generator.
- Requirements should be specified for measurement records to be made during alignment and installation, e.g. clearances, relative location and rotational test results.

14.3 Tests during installation

Specify requirements and responsibilities for tests during installation such as:

- functional tests on components and systems;
- non-destructive testing such as radiographic, ultrasonic, dye penetrant, etc., proposed for structural field welds on major components;
- pressure test requirements (if performed) on spiral case; include specifications for test bulkheads;
- specify other site tests such as tightness of guide vanes which may be required during installation.

14.4 Commissioning tests

List all tests to be done upon completion of erection, for example:

- rotational checks;
- guide vane operating times in the dry (if conducted);
- operation of unit without load and at speeds specified for checking run-out of rotating parts and for verifying guide and thrust bearing behaviour and for setting overspeed trip devices;
- operation of unit under load to full guide vane opening at the available specific hydraulic energy (head) to set servomotor stops (if provided) to check bearing behaviour; to check run-out of rotating parts under load, thereby permitting the setting of shaft run-out monitors (if provided); and to check for vibration, pulsation and noise;
- load rejection tests (adjust guide vane operating times, if necessary);
- blow down and refilling tests for synchronous condenser operation (if specified);
- operation of other turbine components.

15 Field acceptance tests

15.1 Scope and reports

Field acceptance tests should be done in accordance with IEC 60041, in particular with reference to clause 4 "Organization of tests". The measuring method should be fixed in the technical specifications.

Field acceptance tests for confirming that hydraulic performance guarantees have been met may comprise:

- efficiency tests, i.e., determination of absolute efficiency of the machine (if model acceptance tests were not performed); and
- power tests as a function of hydraulic parameters (E, Q).

If model acceptance tests have been performed, informative field tests may be conducted for:

- power-guide vane relationship tests;
- index tests for relative efficiency, see clause 15 of IEC 60041.

15.2 Inspection of cavitation pitting

- Refer to 3.5.8.
- Define participation of contracting parties (see annex F of IEC 61366-1).
- Ensure that operating records are maintained during the guarantee period to verify that the machine has been operated within specified ranges of net positive suction specific hydraulic energy together with power, discharge, and specific hydraulic energy (head).

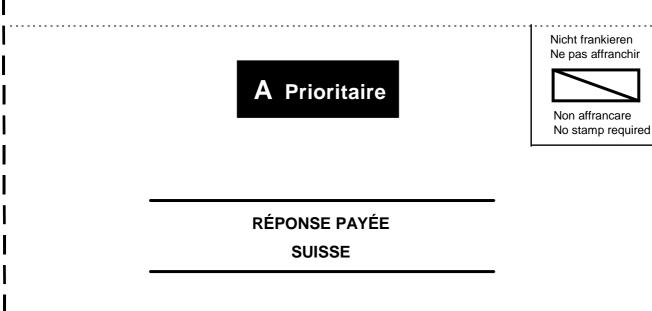
LICENSED TO MECON Limited. - RANCHI/BANGALORE FOR INTERNAL USE AT THIS LOCATION ONLY, SUPPLIED BY BOOK SUPPLY BUREAU.

We at the IEC want to know how our standards are used once they are published.

The answers to this survey will help us to improve IEC standards and standard related information to meet your future needs

Would you please take a minute to answer the survey on the other side and mail or fax to:

Customer Service Centre (CSC)


International Electrotechnical Commission 3, rue de Varembé Case postale 131

1211 Geneva 20 Switzerland

or

Fax to: CSC at +41 22 919 03 00

Thank you for your contribution to the standards making process.

Customer Service Centre (CSC) International Electrotechnical Commission 3, rue de Varembé Case postale 131 1211 GENEVA 20 Switzerland

1.			7.		13.	
No. of IEC standard:		Please rate the standard in the following areas as (1) bad, (2) below average, (3) average, (4) above average,		If you said yes to 12 then how many volumes:		
		(5) e	(5) exceptional, (0) not applicable:			
2.			clearly written	14.		
	us why you have the standard.		logically arranged	Whi	ch standards organizations	
(che	eck as many as apply). I am:		information given by tables	pub	lished the standards in your	
	the buyer		illustrations		ary (e.g. ISO, DIN, ANSI, BSI,	
	the user		technical information	etc.).	
	a librarian	8.				
	a researcher	-	uld like to know how I can legally			
	an engineer		oduce this standard for:	15.		
	a safety expert		internal use		organization supports the idards-making process (check as	
	involved in testing		sales information		ny as apply):	
	with a government agency		product demonstration		buying standards	
	in industry		other		using standards	
	other	9.		_	0	
			hat madium of standard dass your		membership in standards organization	
3. This	standard was purchased from?	orga	In what medium of standard does your organization maintain most of its standards (check one):		serving on standards development committee	
			paper		other	
			microfilm/microfiche	16.		
			mag tapes		organization uses (check one)	
4.			CD-ROM	iviy		
	s standard will be used eck as many as apply):		floppy disk		French text only	
	for reference		on line		English text only	
_	in a standards library	9A.			Both English/French text	
	·	-		17.		
	to develop a new product	If your organization currently maintains		Oth	er comments:	
	to write specifications	elec	tronic media, please indicate the	Our		
	to use in a tender	form	at(s):			
	for educational purposes		raster image			
	for a lawsuit		full text			
	for quality assessment	10.				
	for certification	In what medium does your organization				
	for general information		intend to maintain its standards collection in the future (check all that apply):			
	for design purposes		paper			
	for testing		microfilm/microfiche			
	other					
			mag tape CD-ROM			
5.				18.		
	standard will be used in conjunction (check as many as apply):		floppy disk		ase give us information about you your company	
	IEC		on line	anu	your company	
_	ISO	10A		nam	ie:	
			electronic media which format will be			
	corporate	_	sen (check one)	job	title:	
	other (published by)		raster image	com	ipany:	
	other (published by)		full text	2011		
	other (published by)	11.		add	ress:	
6.		My organization is in the following sector				
This standard meets my needs		(e.g. engineering, manufacturing)				
(check one)						
	not at all					
	almost	Doe libra	s your organization have a standards			
_			·· , ·			

no

yes

LICENSED TO MECON Limited. - RANCHI/BANGALORE FOR INTERNAL USE AT THIS LOCATION ONLY, SUPPLIED BY BOOK SUPPLY BUREAU.

No. employees at your location:.....

turnover/sales:.....

- \Box almost
- fairly well
- exactly

Publications de la CEI préparées par le Comité d'Etudes nº 4

60041 (1991) Essais de réception sur place des turbines hydrauliques, pompes d'accumulation et pompes-turbines, en vue de la détermination de leurs performances hydrauliques. 60193 (1965) Code international concernant les essais de réception sur modèle des turbines hydrauliques. Modification n° 1 (1977). 60193A (1972) Premier complément. 60198 (1966) Code international concernant les essais de réception sur place des pompes d'accumulation. Modification n°1 (1971). 60308 (1970) Code international d'essai des régulateurs de vitesse pour turbines hydrauliques. 60497 (1976) Code international concernant les essais de réception sur modèle réduit des pompes d'accumulation. 60545 (1976) Guide pour la réception, l'exploitation et l'entretien des turbines hydrauliques. 60607 (1978) Méthode thermodynamique de mesure du rendement des turbines, pompes d'accumulation et pompesturbines hydrauliques. 60609 (1978) Evaluation de l'érosion de cavitation dans les tur-bines, les pompes d'accumulation et les pompes-turbines hydrauliques. 60609-2 (1997) Part 2: Evaluation dans les turbines Pelton. 60805 (1985) Guide pour la réception, l'exploitation et l'entretien des pompes d'accumulation et des pompes-turbines fonctionnant en pompe. 60994 (1991) Guide pour la mesure in situ des vibrations et fluctuations sur machines hydrauliques (turbines, pompes d'accumulation et pompes-turbines). 60995 (1991) Détermination des performances industrielles des machines hydrauliques à partir des essais sur modèle en considérant les effets d'échelle. 61116 (1992) Guide pour l'équipement électromécanique des petits aménagements hydro-électriques. 61362 (1998) Guide pour la spécification des régulateurs des turbines hydrauliques. 61366.— (Publiée en langue anglaise seulement). 61366-1 (1998) (Publiée en langue anglaise seulement). 61366-2 (1998) (Publiée en langue anglaise seulement). 61366-3 (1998) (Publiée en langue anglaise seulement). 61366-4 (1998) (Publiée en langue anglaise seulement). 61366-5 (1998) (Publiée en langue anglaise seulement). 61366-6 (1998) (Publiée en langue anglaise seulement). 61366-7 (1998) (Publiée en langue anglaise seulement).

IEC publications prepared by Technical Committee No. 4

- 60041 (1991) Field acceptance tests to determine the hydraulic performance of hydraulic turbines, storage pumps and pump-turbines. 60193 (1965) International code for model acceptance tests of hydraulic turbines. Amendment No. 1 (1977). 60193A (1972) First supplement. 60198 (1966) International code for the field acceptance tests of storage pumps. Amendment No. 1 (1971). 60308 (1970) International code for testing of speed governing systems for hydraulic turbines. 60497 (1976) International code for model acceptance tests of storage pumps. 60545 (1976) Guide for the commissioning, operation and maintenance of hydraulic turbines. 60607 (1978) Thermodynamic method for measuring the efficiency of hydraulic turbines, storage pumps and pumpturbines. 60609 (1978) Cavitation pitting evaluation in hydraulic turbines, storage pumps and pump-turbines. 60609-2 (1997) Part 2: Evaluation in Pelton turbines. 60805 (1985) Guide for commissioning, operation and maintenance of storage pumps and of pump-turbines operating as pumps. Guide for field measurement of vibrations and 60994 (1991) pulsations in hydraulic machines (turbines, storage pumps and pump-turbines). 60995 (1991) Determination of the prototype performance from model acceptance tests of hydraulic machines with consideration of scale effects. 61116 (1992) Electromechanical equipment guide for small hydroelectric installations. 61362 (1998) Guide to specification of hydraulic turbine control systems. 61366.- Hydraulic turbines, storage pumps and pump-turbines -Tendering Documents. 61366-1 (1998) Part 1: General and annexes. 61366-2 (1998) Part 2: Guidelines for technical specifications for Francis turbines. 61366-3 (1998) Part 3: Guidelines for technical specifications for Pelton turbines. 61366-4 (1998) Part 4: Guidelines for technical specifications for Kaplan and propeller turbines. 61366-5 (1998) Part 5: Guidelines for technical specifications for tubular turbines. 61366-6 (1998) Part 6: Guidelines for technical specifications for pump-turbines.
 - 61366-7 (1998) Part 7: Guidelines for technical specifications for storage pumps.

ICS 27.140