IEC 61158-6-17:2007(E)

IEC 61158-6-17

Edition 1.0 2007-12

INTERNATIONAL
STANDARD

Industrial communication networks — Fieldbus specifications —
Part 6-17: Application layer protocol specification — Type 17 elements

‘NYIING ATddNS YO0S9 A9 A3 11ddNS “ATNO NOILVOOTSIHL 1V ISN TVYNYILN| ¥OS

FHOTVYONVYE/IHON VY - ‘poHWIT NOOIN OL A3ISN3DIT

THIS PUBLICATION IS COPYRIGHT PROTECTED
Copyright © 2007 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester.

If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication,
please contact the address below or your local IEC member National Committee for further information.

IEC Central Office

3, rue de Varembé
CH-1211 Geneva 20
Switzerland

Email: inmail@iec.ch
Web: www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigenda or an amendment might have been published.

= Catalogue of IEC publications: www.iec.ch/searchpub
The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,...).
It also gives information on projects, withdrawn and replaced publications.

= |EC Just Published: www.iec.ch/online _news/justpub
Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available
on-line and also by email.

" Electropedia: www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions
in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical
Vocabulary online.

® Customer Service Centre: www.iec.ch/webstore/custserv

If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service
Centre FAQ or contact us:

Email: csc@iec.ch

Tel.: +41 22 919 02 11

Fax: +41 22 919 03 00

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

mailto:inmail@iec.ch
http://www.iec.ch/
http://www.iec.ch/searchpub
http://www.iec.ch/online_news/justpub
http://www.electropedia.org/
http://www.iec.ch/webstore/custserv
mailto:csc@iec.ch

IEC 61158-6-17

Edition 1.0 2007-12

INTERNATIONAL
STANDARD

Industrial communication networks — Fieldbus specifications —
Part 6-17: Application layer protocol specification — Type 17 elements

INTERNATIONAL
ELECTROTECHNICAL

COMMISSION PRICE CODE X B

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

ICS 35.100.70; 25.040.40 ISBN 2-8318-9495-6

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

-2- 61158-6-17 © IEC:2007(E)

CONTENTS
FOREWORD ...ccuiii ittt ettt et e e et e e e e e et et e e e e e e e e e e e e e e e e e et eerenns 5
INTRODUGCTION ... e ettt e e e e et e e e e e e e et e et e et e eaaeennes 7
LS T o7 o o 1= TP 8
I N €= o =T - | S 8
1.2 SPECIHICAIIONS . i 8
1.3 CON OIrMaANCE ... e 8
A (] 4 ¢ F= Y YN = £ =Y g o 9
G T B 7= o Y4 o 1 9
3.1 Terms and definitioNs s 9
3.2 Abbreviations and SYMDOIS 15
K TG T 070 o 1YY 01 To o 1= PR 16
4 Abstract syntax desCriplion 18
4.1 FAL PDU abstract SYNtaxccuiiuiiiii e 18
4.2 Abstract syntax of PDU DOAYc..oiiniiiii 18
4.3 P DUS fOr ASES . it 20
4.4 Type defiNitioNS . ..o 23
4 D DaAta LY PO S it 26
B TraNS e SYN A oo e 28
5.1 OVerview Of @NCOAING . .uuiiniii e 28
5.2 APDU header €NCOAING .. .c.uiiuuiiiiiieiie et 28
ESTRC AN =4 1 U I Yo Yo |V =Y g oo o |1 o Yo 0 29
5.4 Data type enCOAiNg MUIES . ..o i 30
FAL protocol state machines structure............oooiiiii e 34
AP-context state machine 35
FAL service protocol machines (FSPMS) ... 35
S 0 R € T=Y o = - | PN 35
8.2 Common parameters of the primitives ... 35
8.3 Variable ASE protocol machine (VARM) ... 36
8.4 Event ASE protocol machine (EVTM) ... 39
8.5 Load region ASE protocol machine (LDRM)........ooiiiiiiiiii e 41
8.6 Function invocation ASE protocol machine (FNIM) ... 43
8.7 Time ASE protocol machine (TIMM) ... 47
8.8 Network management ASE protocol machine (NWMM).........coooviiiiiiiiiiiiiiiieeeen 51
9 Application relationship protocol machines (ARPMS) ... 55
S T € 1= o = - | P 55
9.2 Primitive definitions 55
9.3 State MaAChINE oo 56
0.4 FUNCHONS i e e 64
10 DLL mapping protocol machine (DMPM)o 65
O T €= o= o= | 65
10.2 Primitive definitioNs 66
10.3 DMPM state Mmachine ... e 67
Bl OG AP Y e 70

Figure 1 — APDU OVEIVIBW ..ouiii et ettt e e e e et e et e e et e e e e eneanas 28

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

61158-6-17 © IEC:2007(E) -3-

FIGUIre 2 — TyPe fleld .o e e e 29
Figure 3 — Identifier OCtet.......ooiiiiii e 29
Figure 4 — Length octet (one-octet format)oooiiiiiii s 30
Figure 5 — Length octets (three-octet format) ... 30
Figure 6 — Relationships among protocol machines and adjacent layersc..ccooeoiieniennnes 34
Figure 7 — State transition diagram of VARM ..., 37
Figure 8 — State transition diagram of EVTMo 40
Figure 9 — State transition diagram of LDRM.......c.oiiiiii e 42
Figure 10 — State transition diagram of FNIM 44
Figure 11 — State transition diagram of TIMM..........ccoiiiiiiii e, 48
Figure 12 — State transition diagram of NWMM ..., 52
Figure 13 — State transition diagram of the PTC-ARPM..... ... 57
Figure 14 — State transition diagram of the PTU-ARPM..........ooiii 59
Figure 15 — State transition diagram of the PSU-ARPMcooiiiiiii e, 60
Figure 16 — State transition diagram of the MTU-ARPMooiiiiiiiie e, 62
Figure 17 — State transition diagram of the MSU-ARPM ... 63
Figure 18 — State transition diagram of DMPMo 67
Table 1 — Conventions used for AE state machine definitionscc..cooiii . 17
Table 2 — Encoding of FalArHeader field 28
Table 3 — Primitives exchanged between FAL user and VARM ..., 36
Table 4 — Parameters used with primitives exchanged FAL user and VARM 36
Table 5 — VARM state table — Sender transitionscc.ccooiiiiiiiii i 37
Table 6 — VARM state table — Receiver transitions. ... 38
Table 7 — Functions used by the VARM ... 39
Table 8 — Primitives exchanged between FAL user and EVTMooiiiiiiiiiiiciice e, 39
Table 9 — Parameters used with primitives exchanged FAL user and EVTM.......................... 39
Table 10 — EVTM state table — Sender transitions...........ooooiii e, 40
Table 11 — EVTM state table — Receiver transitions ..., 40
Table 12 — Functions used by the EVTM ... 40
Table 13 — Primitives exchanged between FAL userand LDRM...........ccoiiiiiiiiiniiiieee, 41
Table 14 — Parameters used with primitives exchanged FAL user and LDRM........................ 41
Table 15 — LDRM state table — Sender transitions ... 42
Table 16 — LDRM state table — Receiver transitions ..., 43
Table 17 — Functions used by the LDRM 43
Table 18 — Primitives exchanged between FAL user and FNIM ..., 44
Table 19 — Parameters used with primitives exchanged FAL user and FNIM......................... 44
Table 20 — FNIM state table — Sender transitions..........cc.coiiiiii 45
Table 21 — FNIM state table — Receiver transitions ... 45
Table 22 — Functions used by the FNIM ... e 47
Table 23 — Primitives exchanged between FAL userand TIMMcooiiiiiiiiini i, 47
Table 24 — Parameters used with primitives exchanged FAL user and TIMM......................... 47

Table 25 — TIMM States .. .ouiniiieii e et 48

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

-4 - 61158-6-17 © IEC:2007(E)

Table 26 — TIMM state table — Sender transitions ... 49
Table 27 — TIMM state table — Receiver transitions ..o, 50
Table 28 — Functions used by the TIMM. ... 51
Table 29 — Primitives exchanged between FAL user and NWMM ..., 51
Table 30 — Parameters used with primitives exchanged FAL user and NWMM 52
Table 31 — NWMM States ... e 52
Table 32 — NWMM state table — Sender transitionsccoooveiiiiiini e, 53
Table 33 — NWMM state table — Receiver transitions ..., 54
Table 34 — Functions used by the NWMM ... 55
Table 35 — Primitives exchanged between FSPM and ARPM ..., 56
Table 36 — Parameters used with primitives exchanged FSPM user and ARPM 56
Table 37 — PTC-ARPM States ... 56
Table 38 — PTC-ARPM state table — Sender transitions ..., 57
Table 39 — PTC-ARPM state table — Receiver transitions.............coooiiiiiiin i, 58
Table 40 — PTU-ARPM States ... 59
Table 41 — PTU-ARPM state table — Sender transitions ..., 59
Table 42 — PTU-ARPM state table — Receiver transitions.............coooii 60
Table 43 — PSU-ARPM States ...t 60
Table 44 — PSU-ARPM state table — Sender transitionscooocoiiiiiiiiiin e, 61
Table 45 — PSU-ARPM state table — Receiver transitions.............ooooiiiiiiiiii, 61
Table 46 — MTU-ARPM Stateso e 62
Table 47 — MTU-ARPM state table — Sender transitions...........ccoccoiiiiiiii e 62
Table 48 — MTU-ARPM state table — Receiver transitions ..o, 63
Table 49 — MSU-ARPM States. .. .o 63
Table 50 — MSU-ARPM state table — Sender transitions..............ooiii 64
Table 51 — MSU-ARPM state table — Receiver transitions............ccoooiiiiiiiii, 64
Table 52 — Functions used by the ARPMS ... 65
Table 53 — Primitives exchanged between DMPM and ARPM ..., 66
Table 54 — Primitives exchanged between data-link layer and DMPM ..., 66
Table 55 — DIMPIM States 67
Table 56 — DMPM state table — Sender transitions...........coooiiiiiiiin i, 67
Table 57 — DMPM state table — Receiver transitions ..., 69

Table 58 — Functions used by the DMPM ... 69

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

61158-6-17 © IEC:2007(E) -5-

INTERNATIONAL ELECTROTECHNICAL COMMISSION

INDUSTRIAL COMMUNICATION NETWORKS -
FIELDBUS SPECIFICATIONS -

Part 6-17: Application layer protocol specification — Type 17 elements

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.

5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with an IEC Publication.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.

NOTE Use of some of the associated protocol types is restricted by their intellectual-property-right holders. In all
cases, the commitment to limited release of intellectual-property-rights made by the holders of those rights permits
a particular data-link layer protocol type to be used with physical layer and application layer protocols in Type
combinations as specified explicitly in the IEC 61784 series. Use of the various protocol types in other
combinations may require permission from their respective intellectual-property-right holders.

IEC draws attention to the fact that it is claimed that compliance with this standard may involve the use of patents
as follows, where the [xx] notation indicates the holder of the patent right:

Type 17:
PCT Application No. PCT/JP2004/011537 [YEC] Communication control method
PCT Application No. PCT/JP2004/011538 [YEC] Communication control method
IEC takes no position concerning the evidence, validity and scope of these patent rights.

The holders of these patent rights have assured IEC that they are willing to negotiate licences under reasonable
and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the statement of
the holders of these patent rights are registered with IEC. Information may be obtained from:

[YEC]: Yokogawa Electric Corporation
2-9-32 Nakacho, Musashino-shi, 180-8750 Tokyo,
180-8750 Tokyo,
Japan
Attention: Intellectual Property & Standardization Center

Attention is drawn to the possibility that some of the elements of this standard may be the subject of patent rights
other than those identified above. IEC shall not be held responsible for identifying any or all such patent rights.

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

-6 - 61158-6-17 © IEC:2007(E)

International Standard IEC 61158-6-17 has been prepared by subcommittee 65C: Industrial
networks, of IEC technical committee 65: Industrial-process measurement, control and
automation.

This first edition and its companion parts of the IEC 61158-6 subseries cancel and replace
IEC 61158-6:2003. This edition of this part constitutes a technical addition. This part and its
Type 17 companion parts also cancel and replace IEC/PAS 62405, published in 2005.

This edition of IEC 61158-6 includes the following significant changes from the previous
edition:

a) deletion of the former Type 6 fieldbus for lack of market relevance;

b) addition of new types of fieldbuses;

c) partition of part 6 of the third edition into multiple parts numbered -6-2, -6-3, ...

The text of this standard is based on the following documents:

FDIS Report on voting
65C/476/FDIS 65C/487/RVD

Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.

This publication has been drafted in accordance with ISO/IEC Directives, Part 2.

The committee has decided that the contents of this publication will remain unchanged until
the maintenance result date indicated on the IEC web site under http://webstore.iec.ch in the
data related to the specific publication. At this date, the publication will be:

e reconfirmed;

e withdrawn;

e replaced by a revised edition, or

e amended.

NOTE The revision of this standard will be synchronized with the other parts of the IEC 61158 series.

The list of all the parts of the IEC 61158 series, under the general title Industrial
communication networks — Fieldbus specifications, can be found on the IEC web site.

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

http://webstore.iec.ch/

61158-6-17 © IEC:2007(E) -7-

INTRODUCTION

This part of IEC 61158 is one of a series produced to facilitate the interconnection of
automation system components. It is related to other standards in the set as defined by the
“three-layer” fieldbus reference model described in IEC/TR 61158-1.

The application protocol provides the application service by making use of the services
available from the data-link or other immediately lower layer. The primary aim of this standard
is to provide a set of rules for communication expressed in terms of the procedures to be
carried out by peer application entities (AEs) at the time of communication. These rules for
communication are intended to provide a sound basis for development in order to serve a
variety of purposes:

e as a guide for implementors and designers;
e for use in the testing and procurement of equipment;

e as part of an agreement for the admittance of systems into the open systems environment;

e as a refinement to the understanding of time-critical communications within OSI.

This standard is concerned, in particular, with the communication and interworking of sensors,
effectors and other automation devices. By using this standard together with other standards
positioned within the OSI or fieldbus reference models, otherwise incompatible systems may
work together in any combination.

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

-8- 61158-6-17 © IEC:2007(E)

INDUSTRIAL COMMUNICATION NETWORKS -
FIELDBUS SPECIFICATIONS -

Part 6-17: Application layer protocol specification — Type 17 elements

1 Scope

1.1 General

The fieldbus application layer (FAL) provides user programs with a means to access the
fieldbus communication environment. In this respect, the FAL can be viewed as a “window
between corresponding application programs.”

This standard provides common elements for basic time-critical and non-time-critical
messaging communications between application programs in an automation environment and
material specific to Type 17 fieldbus. The term “time-critical” is used to represent the
presence of a time-window, within which one or more specified actions are required to be
completed with some defined level of certainty. Failure to complete specified actions within
the time window risks failure of the applications requesting the actions, with attendant risk to
equipment, plant and possibly human life.

This standard specifies interactions between remote applications and defines the externally
visible behavior provided by the Type 17 fieldbus application layer in terms of

a) the formal abstract syntax defining the application layer protocol data units conveyed
between communicating application entities;

b) the transfer syntax defining encoding rules that are applied to the application layer
protocol data units;

c) the application context state machine defining the application service behavior visible
between communicating application entities;

d) the application relationship state machines defining the communication behavior visible
between communicating application entities.

The purpose of this standard is to define the protocol provided to

1) define the wire-representation of the service primitives defined in IEC 61158-5-17, and

2) define the externally visible behavior associated with their transfer.

This standard specifies the protocol of the Type 17 fieldbus application layer, in conformance
with the OSI Basic Reference Model (ISO/IEC 7498) and the OSI application layer structure
(ISO/IEC 9545).

1.2 Specifications

The principal objective of this standard is to specify the syntax and behavior of the application
layer protocol that conveys the application layer services defined in IEC 61158-5-17.

A secondary objective is to provide migration paths from previously-existing industrial
communications protocols. It is this latter objective which gives rise to the diversity of
protocols standardized in the IEC 61158-6 series.

1.3 Conformance

This standard does not specify individual implementations or products, nor does it constrain
the implementations of application layer entities within industrial automation systems.

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

61158-6-17 © IEC:2007(E) -9-

Conformance is achieved through implementation of this application layer protocol
specification.

2 Normative reference

The following referenced documents are indispensable for the application of this document.
For dated references, only the edition cited applies. For undated references, the latest edition
of the referenced document (including any amendments) applies.

IEC 61158-5-17, Industrial communication networks — Fieldbus specifications - Part 5-17:
Application layer service definition — Type 17 elements

ISO/IEC 7498 (all parts), Information technology — Open Systems Interconnection — Basic
Reference Model

ISO/IEC 8824-2, Information technology — Abstract Syntax Notation One (ASN.1): Information
object specification

ISO/IEC 8825-1, Information technology — ASN.1 encoding rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules
(DER)

ISO/IEC 9545, Information technology — Open Systems Interconnection — Application Layer
structure

ISO/IEC 10731, Information technology — Open Systems Interconnection — Basic Reference
Model — Conventions for the definition of OSI services

3 Definitions
For the purposes of this document, the following terms and definitions apply.

31 Terms and definitions
3.11 ISO/IEC 7498-1 terms
For the purposes of this document, the following terms as defined in ISO/IEC 7498-1 apply:

d) application entity
e) application protocol data unit

f) application service element
3.1.2 ISO/IEC 8824-2 terms

For the purposes of this document, the following terms as defined in ISO/IEC 8824 apply:

D

any type
bitstring type

o O T

)

)

) Boolean type
) choice type
)

false

- O

) integer type
null type

«Q
-

h) octetstring type

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

-10 - 61158-6-17 © IEC:2007(E)

i) sequence of type
i) sequence type

k) simple type

[) structured type
m) tagged type

n) true

o) type

p) value

3.1.3 ISO/IEC 10731 terms
a) (N)-connection

b) (N)-entity

c) (N)-layer

d) (N)-service

e) (N)-service-access-point

f) confirm (primitive)
g) indication (primitive)
h) request (primitive)

i) response (primitive)
3.1.4 Other terms and definitions

3.1.4.1
application
function or data structure for which data is consumed or produced

3.1.4.2

application process

part of a distributed application on a network, which is located on one device and
unambiguously addressed

3.1.43

application relationship

cooperative association between two or more application-entity-invocations for the purpose of
exchange of information and coordination of their joint operation

NOTE This relationship is activated either by the exchange of application-protocol-data-units or as a result of
preconfiguration activities

3.1.5

application relationship application service element

application-service-element that provides the exclusive means for establishing and
terminating all application relationships

3.1.5.1

application relationship endpoint

context and behavior of an application relationship as seen and maintained by one of the
application processes involved in the application relationship

NOTE Each application process involved in the application relationship maintains its own application relationship
endpoint.

3.1.5.2
attribute
description of an externally visible characteristic or feature of an object

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

61158-6-17 © IEC:2007(E) -1 -

NOTE The attributes of an object contain information about variable portions of an object. Typically, they provide
status information or govern the operation of an object. Attributes may also affect the behaviour of an object.
Attributes are divided into class attributes and instance attributes.

3.1.5.3
behaviour
indication of how an object responds to particular eventss

3.1.5.4
bridge
intermediate equipment that connects two or more segments using a data-link layer relay
function

3.1.5.5
channel
single physical or logical link of an input or output application object of a server to the process

3.1.5.6
class
a set of objects, all of which represent the same kind of system component

NOTE A class is a generalisation of an object; a template for defining variables and methods. All objects in a
class are identical in form and behaviour, but usually contain different data in their attributes.

3.1.5.7
client
a) object which uses the services of another (server) object to perform a task

b) initiator of a message to which a server reacts

3.1.5.8
connection
logical binding between application objects that may be within the same or different devices

NOTE 1 Connections may be either point-to-point or multipoint.

NOTE 2 The logical link between sink and source of attributes and services at different custom interfaces of RT-
Auto ASEs is referred to as interconnection. There is a distinction between data and event interconnections. The
logical link and the data flow between sink and source of automation data items is referred to as data
interconnection. The logical link and the data flow between sink (method) and source (event) of operational
services is referred to as event interconnection.

3.1.5.9
connection point
buffer which is represented as a subinstance of an Assembly object

3.1.5.10
conveyance path
unidirectional flow of APDUs across an application relationship

3.1.5.11
dedicated AR
AR used directly by the FAL User

NOTE On Dedicated ARs, only the FAL Header and the user data are transferred.

3.1.5.12
device
physical hardware connected to the link

NOTE A device may contain more than one node.

3.1.5.13
domain
part of the RTE network consisting of one or two subnetwork(s)

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

-12 - 61158-6-17 © IEC:2007(E)

NOTE Two subnetworks are required to compose a dual-redundant RTE network, and each end node in the
domain is connected to both of the subnetworks.

3.1.5.14

domain master

station which performs diagnosis of routes to all other domains, distribution of network time to
nodes inside the domain, acquisition of absolute time from the network time master and
notification of status of the domain

3.1.5.15
domain number
numeric identifier which indicates a domain

3.1.5.16
end node
producing or consuming node

3.1.5.17
endpoint
one of the communicating entities involved in a connection

3.1.5.18

error

discrepancy between a computed, observed or measured value or condition and the specified
or theoretically correct value or condition

3.1.5.19
error class
general grouping for related error definitions and corresponding error codes

3.1.5.20
external bridge
bridge to which neither internal bridges nor RTE stations are connected directly

3.1.5.21
event
an instance of a change of conditions

3.1.5.22
group
a) <general> a general term for a collection of objects. Specific uses:

b) <addressing> when describing an address, an address that identifies more than one entity

3.1.5.23

interface

a) shared boundary between two functional units, defined by functional characteristics,
signal characteristics, or other characteristics as appropriate

b) collection of FAL class attributes and services that represents a specific view on the FAL
class

3.1.5.24
interface port
physical connection point of an end node, which has an independent DL-address

3.1.5.25

internal bridge

bridge to which no routers, external bridges or nodes non-compliant with this specification are
connected directly

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

61158-6-17 © IEC:2007(E) -13 -

3.1.5.26
invocation
act of using a service or other resource of an application process

NOTE Each invocation represents a separate thread of control that may be described by its context. Once the
service completes, or use of the resource is released, the invocation ceases to exist. For service invocations, a
service that has been initiated but not yet completed is referred to as an outstanding service invocation. Also for
service invocations, an Invoke ID may be used to unambiguously identify the service invocation and differentiate it
from other outstanding service invocations.

3.1.5.27

junction bridge

bridge to which at least one router, external bridge or node non-compliant with this
specification, and to which at least one internal bridge or RTE station is connected

3.1.5.28
link
physical communication channel between two nodes

3.1.5.29

method

<object> a synonym for an operational service which is provided by the server ASE and
invoked by a client

3.1.5.30

network

a set of nodes connected by some type of communication medium, including any intervening
repeaters, bridges, routers and lower-layer gateways

3.1.5.31
network time master
station which distributes network time to domain masters

3.1.5.32
node
single DL-entity as it appears on one local link

3.1.5.33
non-redundant interface node
node whch has a single interface port

3.1.5.34
non-redundant station
station that consists of a single end node

NOTE “non-redundant station” is synonymous with “end node”.

3.1.5.35

object

abstract representation of a particular component within a device, usually a collection of
related data (in the form of variables) and methods (procedures) for operating on that data
that have clearly defined interface and behaviour

3.1.5.36
originator
client responsible for establishing a connection path to the target

3.1.5.37
path
logical communication channel between two nodes, which consists of one or two link(s)

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

- 14 - 61158-6-17 © IEC:2007(E)

3.1.5.38
peer
role of an AR endpoint in which it is capable of acting as both client and server

3.1.5.39
producer
node that is responsible for sending data

3.1.5.40
provider
source of a data connection

3.1.5.41

publisher

role of an AR endpoint that transmits APDUs onto the fieldbus for consumption by one or
more subscribers

NOTE A publisher may not be aware of the identity or the number of subscribers and it may publish its APDUs
using a dedicated AR.

3.1.5.42

redundant interface node

node with two interface ports one of which is connected to a primary network, while the other
is connected to a secondary network

3.1.5.43
redundant station
station that consists of a pair of end nodes

NOTE Each end node of a redundant station has the same station number, but has a different DL-address.

3.1.5.44
resource
a processing or information capability of a subsystem

3.1.5.45
RTE station
station compliant with this specification

3.1.5.46
route
logical communication channel between two communication end nodes

3.1.5.47

router

intermediate equipment that connects two or more subnetworks using a network layer relay
function

3.1.5.48
segment
communication channel that connects two nodes directly without intervening bridges

3.1.5.49

server

a) role of an AREP in which it returns a confirmed service response APDU to the client that
initiated the request

b) object which provides services to another (client) object

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

61158-6-17 © IEC:2007(E) -15 -

3.1.5.50

service

operation or function than an object and/or object class performs upon request from another
object and/or object class

3.1.5.51
station
end node or a pair of end nodes that perform a specific application function

3.1.5.52
station number
numeric identifier which indicates a RTE station

3.1.5.53

subnetwork

part of a network that does not contain any routers. A subnetwork consists of end nodes,
bridges and segments

NOTE Every end node included in a subnetwork has the same IP network address.

3.1.5.54
subscriber
role of an AREP in which it receives APDUs produced by a publisher

3.2 Abbreviations and symbols

3.21 ISO/IEC 10731 abbreviations
ASE application-service-element
osli Open Systems Interconnection

3.2.2 ISO/IEC 7498-1 abbreviations and symbols

DL- Data-link layer (as a prefix)
DLL DL-layer

DLM DL-management

DLS DL-service

DLSAP DL-service-access-point
DLSDU DL-service-data-unit

3.23 IEC 61158-5-17 abbreviations and symbols

AE application entity

AL application layer

AP application process

APDU application protocol data unit
AR application relationship

AREP application relationship endpoint
ASN.1 abstract syntax notation one
BCD binary coded decimal

Cnf confirmation

cnf confirmation primitive

Ev_ prefix for data types defined for event ASE
FAL fieldbus application layer

Gn_ prefix for data types defined for general use

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

-16 - 61158-6-17 © IEC:2007(E)

ID identifier

IEC International Electrotechnical Commission
Ind indication

ind indication primitive

IP Internet protocol

ISO International Organization for Standardization
Isb least significant bit

msb most significant bit

PDU protocol data unit

Req request

req request primitive

Rsp response

rsp response primitive

SAP service access point

SDU service data unit

3.24 Other abbreviations and symbols

ARPM application relationship protocol machine

FSPM FAL service protocol machine

MSU-AR multipoint network-scheduled unconfirmed publisher/subscriber AREP
MTU-AR multipoint user-triggered unconfirmed publisher/subscriber AREP
PSU-AR point-to-point network-scheduled unconfirmed client/server AREP
PTC-AR point-to-point user-triggered confirmed client/server AREP

PTU-AR point-to-point user-triggered unconfirmed client/server AREP

3.3 Conventions
3.3.1 General conventions

This standard uses the descriptive conventions given in ISO/IEC 10731.

This standard uses the descriptive conventions given in IEC 61158-5 subseries for FAL
service definitions.

3.3.2 Conventions for APDU abstract syntax definitions

This standard uses the descriptive conventions given in ISO/IEC 8824-2 for APDU definitions.

3.3.3 Conventions for APDU transfer syntax definitions

This standard uses the descriptive conventions given in ISO/IEC 8825-1 for transfer syntax
definitions.

3.3.4 Conventions for AE state machine definitions

The conventions used for AE state machine definitions are described in Table 1.

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

61158-6-17 © IEC:2007(E) -17 -

Table 1 — Conventions used for AE state machine definitions

No. Current state Event / condition => action Next state
Name of this The current Events or conditions that trigger this state The next state
transition state to which transition. after the

this state => actions in this
transition The actions that are taken when the above transition are
applies events or conditions are met. The actions are | taken

always indented below events or conditions

The conventions used in the descriptions for the events, conditions and actions are as follows:

:= The value of an item on the left is replaced by the value of an item on the right. If an item
on the right is a parameter, it comes from the primitive shown as an input event.

XXX Parameter name.
Example:
Identifier := reason

means value of the ‘reason’ parameter is assigned to the parameter called
‘Identifier.’

[13 I

xxx” Indicates fixed value.
Example:
Identifier := “abc”

means value “abc” is assigned to a parameter named ‘Identifier.’

= A logical condition to indicate an item on the left is equal to an item on the right.
< A logical condition to indicate an item on the left is less than the item on the right.
> A logical condition to indicate an item on the left is greater than the item on the right.
<> A logical condition to indicate an item on the left is not equal to an item on the right.
&& Logical “AND”
|| Logical “OR”
The sequence of actions and the alternative actions can be executed using the following
reserved words.

for

endfor

if

else

elseif

The following shows examples of description using the reserved words.
Example 1:
for (Identifier := start_value to end_value)
actions
endfor
Example 2:
If (condition)
actions
else
actions
endif

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

4 Abstract syntax description

4.1 FAL PDU abstract syntax

411 Top level definition

FalArPDU ::=
ConfirmedSend-CommandPDU
|| ConfirmedSend-ResponsePDU
|| UnconfirmedSend-CommandPDU

4.1.2 FalArHeader
FalArHeader ::= Unsigned8{

-- bit 8-7 ProtocolVersion
-- bit 6-4 Protocolldentifier
-- bit 3-1 PDUldentifier

4.1.3 Confirmed send service

ConfirmedSend-CommandPDU ::= SEQUENCE {
FalArHeader,
ServiceType
InvokelD,
ConfirmedServiceRequest

ConfirmedSend-ResponsePDU ::= SEQUENCE {
FalArHeader,
ServiceType
InvokelD,
ConfirmedServiceResponse

4.1.4 Unconfirmed send service

UnconfirmedSend-CommandPDU ::= SEQUENCE {

FalArHeader,

ServiceType

InvokelD,
UnconfirmedServiceRequest

4.2 Abstract syntax of PDU body

4.2.1 ConfirmedServiceRequest PDUs

ConfirmedServiceRequest ::= CHOICE {

-18 - 61158-6-17 © IEC:2007(E)

Read-Request [0] IMPLICIT Read-RequestPDU,
Write-Request [1] IMPLICIT Write-RequestPDU,
DownlLoad-Request [2] IMPLICIT DownLoad-RequestPDU,
UpLoad-Request [3] IMPLICIT UplLoad-RequestPDU,
Start-Request [4] IMPLICIT Start-RequestPDU,
Stop-Request [5] IMPLICIT Stop-RequestPDU,
Resume- Request [6] IMPLICIT Resume-RequestPDU,
DelayCheck-Request [7] IMPLICIT Time- RequestPDU,

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

61158-6-17 © IEC:2007(E)

— 19—

4.2.2 ConfirmedServiceResponse PDUs
ConfirmedServiceResponse ::= CHOICE {

Read-Response
Write-Response
DownlLoad-Response
UpLoad-Response
Start-Response
Stop-Response
Resume-Response
DelayCheck-Response

4.2.3 Unconfirmed PDUs

[0]
(1]
[2]
[3]

UnconfirmedServiceRequest ::= CHOICE {

InformationReport-Request
EventNotification-Request
EventRecovery-Request
TimeDistribution-Request
SetTime-Request
InDiag-Request
ExDiag-Request

StationStatusReport-Request
DomainStatusReport-Request

4.2.4 Error information

4.2.4.1 Error type

ErrorType ::= SEQUENCE {
errorClass
additionalCode
additionalDescription
additionallnfo

[0]
(1]
(2]
(3]
(4]
(5]
(6]
[7]
(8l

[0]
(1]
(2]
(3]

IMPLICIT
IMPLICIT
IMPLICIT
IMPLICIT
IMPLICIT
IMPLICIT
IMPLICIT
IMPLICIT

IMPLICIT
IMPLICIT
IMPLICIT
IMPLICIT
IMPLICIT
IMPLICIT
IMPLICIT
IMPLICIT
IMPLICIT

IMPLICIT
IMPLICIT
IMPLICIT
IMPLICIT

Read-ResponsePDU,
Write-ResponsePDU,
DownlLoad-ResponsePDU,
UpLoad-ResponsePDU,
Start-ResponsePDU,
Stop-ResponsePDU,
Resume-ResponsePDU,
Time-ResponsePDU

InformationReport-RequestPDU,
EventNotification-RequestPDU,
EventRecovery-RequestPDU,
TimeDistribute-RequestPDU,
SetTime-RequestPDU,
InDiag-RequestPDU,
ExDiag-RequestPDU,
StationStatusReport-RequestPDU,
DomainStatusReport-RequestPDU

ErrorClass,

Integer16 OPTIONAL,
VisibleString OPTIONAL,
ANY OPTIONAL

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

4.2.4.2 Error class
ErrorClass ::= CHOICE {

noError [0]
applicationReference [1]
}
definition [2]
}
resource [3]
}
service [4]
}
access [5]
conclude [6]
}
other [7]
}

4.3 PDUs for ASEs
4.3.1 PDUs for Variable ASE

4.3.1.1 Read service PDUs

Read-RequestPDU ::= SEQUENCE {
objectSpecifier CHOICE{
variableSpecifier
variableListSpecifier
listOfvariable

- 20 - 61158-6-17 © IEC:2007(E)

IMPLICIT Integer8 {
normal
other

IMPLICIT Integer8 {
other
application-unreachable
application-reference-invalid
context-unsupported

IMPLICIT Integer8 {
other
object-undefined
object-attributes-inconsistent
name-already-exists
type-unsupported
type-inconsistent

IMPLICIT Integer8 {
other
memory-unavailable

IMPLICIT Integer8 {
other
object-state-conflict
pdu-size
object-constraint-conflict
parameter-inconsistent
illegal-parameter

IMPLICIT Integer8 {
other
object-invalidated
hardware-fault
object-access-denied
invalid-address
object-attribute-inconsistent
object-access-unsupported
object-non-existent
type-conflict
named-access-unsupported
access-to-element-unsupported

IMPLICIT Integer8 {
other

IMPLICIT Integer8 {
other

Gn_KeyAttribute,
Gn_KeyAttribute,

(0)

SEQUENCE OF Gn_KeyAttribute

}
optionalParameters [0] IMPLICIT ANY OPTIONAL

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

61158-6-17 © IEC:2007(E) -21-

Read-ResponsePDU ::= SEQUENCE {
result CHOICE({

accessStatus [0] IMPLICIT
listOfAccessStatus [1] IMPLICIT
}
value CHOICE({
data [0] IMPLICIT
listOfData [1] IMPLICIT
}
variableType CHOICE({
dataType [0] IMPLICIT
listOfDataType [1] IMPLICIT
}
optionalParameters [0] IMPLICIT

4.3.1.2 Write service PDUs

Write-RequestPDU ::= SEQUENCE {
objectSpecifier CHOICE({
variableSpecifier
variableListSpecifier
listOfVariable

}
variableType CHOICE({

dataType [0] IMPLICIT
listOfDataType [1] IMPLICIT

}
value CHOICE({

data [0] IMPLICIT
listOfData [1] IMPLICIT
}
optionalParameters [0] IMPLICIT

Write-ResponsePDU ::= SEQUENCE {
result CHOICE({

accessStatus [0] IMPLICIT
listOfAccessStatus [1] IMPLICIT
}
optionalParameters [0] IMPLICIT

4.3.1.3 Information Report service PDUs

InformationReport-RequestPDU::= SEQUENCE {
ListOfVariableSpecifier CHOICE {

ErrorType,
SEQUENCE OF ErrorType

ANY,
SEQUENCE OF ANY

Gn_FullyNestedTypeDescription OPTIONAL,
SEQUENCE OF Gn_FullyNestedTypeDescription
OPTIONAL

ANY OPTIONAL

Gn_KeyAttribute,
Gn_KeyAttribute,
SEQUENCE OF Gn_KeyAttribute

Gn_FullyNestedTypeDescription OPTIONAL,
SEQUENCE OF Gn_FullyNestedTypeDescription
OPTIONAL

ANY,
SEQUENCE OF ANY

ANY OPTIONAL

ErrorType,
SEQUENCE OF ErrorType

ANY OPTIONAL

variableListSpecifier Gn_KeyAttribute,
listOfVariable SEQUENCE OF Gn_KeyAttribute
b
listOfDataType [1] IMPLICIT SEQUENCE OF Gn_FullyNestedTypeDescription
OPTIONAL
listOfData [2] IMPLICIT SEQUENCE OF ANY
optionalParameters [3] IMPLICIT ANY OPTIONAL

4.3.2 PDUs for Event ASE

4.3.2.1 Event Notification service
EventNotification-RequestPDU ::= SEQUENCE {

eventNotifierID IMPLICIT
notificvationSequenceNumber [11 IMPLICIT
listOfEvent [2] IMPLICIT
Notification Time [3] IMPLICIT
optionalParameters [4] IMPLICIT

Gn_ KeyAttribute,,
Ev_SequenceNumber,
SEQUENCE OF Ev_EventData,
Ev_TimeTag OPTIONAL

ANY OPTIONAL

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

- 22 - 61158-6-17 © IEC:2007(E)

4.3.2.2 Notification Recovery service

EventRecovery-RequestPDU ::= SEQUENCE {
eventNotifierlD IMPLICIT Gn_ KeyAttribute,,
sequenceNumber [11 IMPLICIT Ev_SequenceNumber OPTIONAL

4.3.3 PDUs for Load region ASE

4.3.3.1 Download service
DownlLoad-RequestPDU ::= SEQUENCE {

loadRegionKeyAttribute Gn_KeyAttribute,
segmentldentifier [1] IMPLICIT ANY,
loadData [2] IMPLICIT octetString,

}

DownLoad-ResponsePDU ::= SEQUENCE {
loadRegionKeyAttribute Gn_KeyAttribute,
result [1] IMPLICIT ErrorType,

4.3.3.2 Upload service
UpLoad-RequestPDU ::= SEQUENCE {

loadRegionKeyAttribute Gn_KeyAttribute,
segmentldentifier [1] IMPLICIT ANY,

}

UpLoad-ResponsePDU ::= SEQUENCE {
loadRegionKeyAttribute Gn_KeyAttribute,
result [1] IMPLICIT ErrorType,
loadData [2] IMPLICIT octetString,

4.3.4 PDUs for Function Invocation ASE

4.3.4.1 Start service

Start-RequestPDU ::= SEQUENCE {
keyAttribute Gn_KeyAttribute,
optionalParameters [1] IMPLICIT ANY OPTIONAL

Start-ResponsePDU ::= ErrorType

4.3.4.2 Stop service

Stop-RequestPDU ::= SEQUENCE {
keyAttribute Gn_KeyAttribute,
optionalParameters [1] IMPLICIT ANY OPTIONAL

Stop-ResponsePDU ::= ErrorType

4.3.4.3 Resume services

Resume-RequestPDU ::= SEQUENCE {
keyAttribute Gn_KeyAttribute,
optionalParameters [1] IMPLICIT ANY OPTIONAL

Resume-ResponsePDU ::= ErrorType

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

61158-6-17 © IEC:2007(E) - 23 -

4.3.5 PDUs for Time ASE

4.3.5.1 Time service
Time-RequestPDU ::= Time-PDU

Time-ResponsePDU ::= Time-PDU
TimeDistribute-RequestPDU ::= Time-PDU

Time-PDU ::= SEQUENCE {

timeControl [0] IMPLICIT Tm_TimeControl,
Stratum [1] IMPLICIT Unsigned8
Pollinterval [2] IMPLICIT Tm_TimeValue1,
Precision [3] IMPLICIT Tm_TimeValue1,
rootDelay [4] IMPLICIT Tm_TimeValue2,
rootDispersion [5] IMPLICIT Tm_TimeValue2,
referenceldentifier [6] IMPLICIT Tm_ReferencelD,
referenceTimestamp [7] IMPLICIT Tm_Time,
originateTimestamp [8] IMPLICIT Tm_Time,
receiveTimestamp [9] IMPLICIT Tm_Time,
transmitTimestamp [10] IMPLICIT Tm_Time,

}

SetTime-RequestPDU ::= SEQUENCE {
timeValue [0] IMPLICIT Tm_Time,
optionalParameters [1] IMPLICIT ANY OPTIONAL

4.3.6 PDUs for Network Management ASE

4.3.6.1 Network Management service
InDiag-RequestPDU ::= SEQUENCE {

nodelnformation [0] IMPLICIT Nm_Nodelnformation,
nodeStatus [1] IMPLICIT Nm_NodeStatus,
nodePublicKey [2] IMPLICIT Nm_PublicKey,
IlistOfPathStatus [3] [IMPLICIT Nm_ListOfPathStatus

}

ExDiag-RequestPDU ::= SEQUENCE {
doamininformation [0] IMPLICIT Nm_DoaminIinformation,
domainStatus [1] IMPLICIT Nm_DoaminStatus,
domainPublicKey [2] IMPLICIT Nm_PublicKey,
masterPriority [3] IMPLICIT Unsigned8,
IlistOfPathStatus [4] IMPLICIT Nm_ListOfPathStatus,
listOfNodeStatus [5] [IMPLICIT SEQUENCE OF Nm_NodeStatus

}

StationStatusReport-RequestPDU ::= SEQUENCE {
nodelnformation [0] IMPLICIT Nm_Nodelnformation,
nodeStatus [1] IMPLICIT Nm_NodeStatus

}

DomainStatusReport-RequestPDU ::= SEQUENCE {
doamininformation [0] IMPLICIT Nm_DoaminIinformation,
domainStatus [1] IMPLICIT Nm_DomainStatus

4.4 Type definitions
4.41 Variable ASE types

There are no types special for the Variable ASE.

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

4.4.2 Event ASE

Ev_SequenceNumber ::=

Ev_EventData ::= ANY

types
Unsigned8

En_EventCount ::= Unsigned8

Ev_TimeTag ::= Unsigned16

4.4.3 Load Region ASE types

—24 —

61158-6-17 © IEC:2007(E)

There are no types special for the Load Region ASE.

4.4.4 Function Invocation ASE types

There are no types special for the function Invocation ASE.

4.4.5 Time ASE types

Tm_TimeControl ::= BitSt
-- bit 8,7
-- bit 6-4
-- bit 3-1

Tm_TimeValue1 ::= Unsigned32

Tm_TimeValue?2 ::= Unsigned32

Tm_ReferencelD ::= VisibleString4

ring8 {
Leaplindidator
ProtocolVersion
TimeMode

-- eight-bit signed integer, in seconds to the nearest power of two

-- 32-bit signed fixed-point number, in seconds

-- with fraction point between bits 15 and 16

Tm_Time ::= SEQUENCE({

Seconds
SecondsFraction

[0]
[2]

-- identifies the particular reference source

Unsigned32
Unsigned32

4.4.6 Network Management ASE types

Nm_Nodelnformation ::=

SEQUENCE {

Nodeldentifier [0]
NoOflinterfaces [1]
InterfacelD [2]
PerformanceClass SEQUENCE {
MasterPriority [11]
TransmissionClass [12]
ResponseClass [13]
TimePrecisionLevel [14]
configurationSUM [4]
localNodeTime [5]
diaglinterval [6]
stationCoefficeincy [7]

Nm_NodeStatus ::= BitString8 {

-- bit 8
--bit7
-- bit 6
-- bit 5
-- bit 4
-- bit 3
-- bit 2
-- bit 1

CPU-Status
communication-status
reserved-status
redundancy-status
linkStatusOfnterfaceB
linkStatusOfnterfaceA
statusOfNetworkB
statusOfNetworkA

IMPLICIT
IMPLICIT
IMPLICIT

IMPLICIT
IMPLICIT
IMPLICIT
IMPLICIT

IMPLICIT
IMPLICIT
IMPLICIT
IMPLICIT

Nm_Nodeldentifier,
Integer8,
Unsigned8,

Unsigned8,
Unsigned8,
Unsigneds,
Unsigned8,

Unsigned32,
Tm_Time,
BinaryTime2,
Unsigned16

-- True: ready, False: not ready

-- True: ready, False: not ready

-- True: reserved, False: not reserved
-- True: on-service, False: stand-by
-- True: linked, False: not linked

-- True: linked, False: not linked

-- True: healthy, False: failed

-- True: healthy, False: failed

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

61158-6-17 © IEC:2007(E)

Nm_PublicKey ::= Unsigned64

—25_

Nm_ListOfPathStatus ::= CompactBooleanArray

Nm_DoaminInformation ::= SEQUENCE {

Nodeldentifier [0] IMPLICIT
NoOflinterfaces [11 IMPLICIT
InterfacelD [21 IMPLICIT
localNodeTime [3] IMPLICIT
diaglnterval [4] IMPLICIT
}
Nm_DomainStatus ::= BitString8 {
-- bit 8 statusOfNetworkB
-- bit7 statusOfNetworkA
-- bit 6,5 StatusOfTimeSynchronization
-- bit 4-1 TimeGroup

Nm_Nodeldentifier ::= SEQUENCE {
DomainNumber
StationNumber

4.4.7 General types

4.4.71 Gn_KeyAttribute
Gn_KeyAttribute ::= CHOICE {

[0] IMPLICIT
[11 IMPLICIT

-- True: healthy, False: failed

Nm_Nodeldentifier,
Integer8,
Unsigned8,
Tm_Time,
BinaryTime2,

-- True: healthy, False: failed
-- True: healthy, False: failed

-- 00:
-- 01:
--10:
- 11:

not synchronized

synchronized with the domain time master
synchronized with the network time master
synchronized with the external time source

Integer8,
Integer8

-- When this type is specified, only the key attributes of the class referenced are valid.

numericlD

name

listName
numericAddress
symbolicAddress

4.4.7.2 Gn_Name

Gn_Name ::= octetString

4.4.7.3 Gn_NumericAddress

Gn_NumericAddress ::= SEQUENCE {
startAddress [0]
length 11

4.4.7.4 Gn_NumericlD
Gn_NumericlD ::= Unsigned16

4.4.7.5 Gn_SymbolicAddress
Gn_SymbolicAddress ::= VisibleString

[0] [IMPLICIT Gn_NumericlD,

[11 IMPLICIT Gn_Name,

[2] IMPLICIT Gn_Name,

[4] IMPLICIT Gn_NumericAddress,

[6] IMPLICIT Gn_SymbolicAddress

IMPLICIT Unsigned32, -- physical address of the starting location
IMPLICIT Unsigned16 -- octet length of a memory block

-- The values of this parameter are unique within an AP.

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

4.4.7.6

- 26 - 61158-6-17 © IEC:2007(E)

Gn_FullyNestedTypeDescription

Gn_FullyNestedTypeDescription ::= CHOICE {

4.5

4.51

4.5.2

Integer8 ::= INTEGER (-128..+127)
Integer16 ::= INTEGER (-32768..+32767)
Integer32 ::= INTEGER

4.5.3

Unsigned ::= INTEGER

Unsigned8 ::= INTEGER (0..255)
INTEGER (0..65535)
INTEGER

Unsigned16 :
Unsigned32 :

boolean
integer8
integer16
integer32
unsigned8
unsigned16
unsigned32
float32
float64
binaryDate
timeOfDay
timeDifference
universalTime
fieldbusTime
time
bitstring8
bitstring16
bitstring32
visiblestring1
visiblestring2
visiblestring4
visiblestring8
visiblestring16
octetstring1
octetstring2
octetstring4
octetstring8
octetstring16
bed
iso10646¢har
binarytime0
binarytime1
binarytime2
binarytime3
binarytime4
binarytime5
binarytime6
binarytime7
binarytime8
binarytime9
visiblestring
octetstring
bitstring

compactBooleanArray
compactBCDArray

iso646string
structure

Data types

(1]
(2]
(3]
[4]
(5]
(6]
[7]

[47]

Unsigned8,
Unsigned8,
Unsigneds8,
Unsigned8,
Unsigned8,
Unsigneds8,
Unsigned8,
Unsigned8,
Unsigneds8,
Unsigned8,
Unsigned8,
Unsigned8,
Unsigned8,
Unsigned8,
Unsigned8,
Unsigned8,
Unsigned8,
Unsigned8,
Unsigned8,
Unsigned8,
Unsigned8,
Unsigned8,
Unsigned8,
Unsigned8,
Unsigned8,
Unsigned8,
Unsigned8,
Unsigned8,
Unsigned8,
Unsigned8,
Unsigned8,
Unsigned8,
Unsigned8,
Unsigned8,
Unsigned8,
Unsigned8,
Unsigned8,
Unsigned8,
Unsigned8,
Unsigned8,
Unsigned8,
Unsigned8,
Unsigned8,
Unsigneds,
Unsigned8,
Unsigned8,
IMPLICIT SEQUENCE OF Gn_FullyNestedTypeDescription

Notation for the Boolean type
Boolean ::= BOOLEAN

-- TRUE if the value is non-zero.
-- FALSE if the value is zero.

Notation for the Integer type
Integer ::= INTEGER

-- any integer

-- range -27 <= <= 27-1
--range -215 <= <= 215-1
-- range -231 <=j <= 231-1

Notation for the Unsigned type

-- any non-negative integer
--range 0 <=j <= 28-1
--range 0 <=i <= 216-1
--range 0 <=i <= 232-1

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

61158-6-17 © IEC:2007(E)

27—

4.5.4 Notation for the Floating Point type

Floating32 ::= BIT STRING SIZE (4)
Floating64 ::= BIT STRING SIZE (8)

-- IEC-60559Single precision
-- [IEC-60559Double precision

4.5.5 Notation for the BitString type

BitString ::= BIT STRING

BitString4 ::= BIT STRING SIZE (4)
BitString8 ::= BIT STRING SIZE (8)
BitString16 ::= BIT STRING SIZE (16)
BitString32 ::= BIT STRING SIZE (32)

-- For generic use

-- Fixed four bits bitstring

-- Fixed eight bits bitstring
-- Fixed 16 bits bitstring

-- Fixed 32 two bits bitstring

4.5.6 Notation for the octetString type

octetString ::= OCTET STRING

octetString2 ::= OCTET STRING SIZE (2
octetString4 ::= OCTET STRING SIZE (4
octetString6 ::= OCTET STRING SIZE (6
octetString7 ::= OCTET STRING SIZE (7
octetString8 ::= OCTET STRING SIZE (8
octetString16 ::= OCTET STRING SIZE (16)

)
)
)
)
)

-- For generic use

-- Fixed two-octet octet string

-- Fixed four-octet octet string
-- Fixed six-octet octet string

-- Fixed seven-octet octet string
-- Fixed eight-octet octet string
-- Fixed 16 octet octet string

4.5.7 Notation for VisibleString type

VisibleString2 ::= VisibleString SIZE (2)
VisibleString4 ::=VisibleString SIZE (4)
VisibleString8 ::= VisibleString SIZE (8)
VisibleString16 ::= VisibleString SIZE (16)

-- Fixed two-octet visible string
-- Fixed four-octet visible string
-- Fixed eight-octet visible string
-- Fixed 16 octet visible string

4.5.8 Notation for the UNICODEString type

UNICODEString ::= UNICODEString

-- 16-bit character code set defined in ISO 10646.

4.5.9 Notation for Binary Time type

BinaryTimeO ::= BIT STRING SIZE (16)
BinaryTime1 ::= BIT STRING SIZE (16)
BinaryTime2 ::= BIT STRING SIZE (16)
BinaryTime3 ::= BIT STRING SIZE (16)
BinaryTime4 ::= BIT STRING SIZE (16)
BinaryTime5 ::= BIT STRING SIZE (16)
BinaryTime6 ::= BIT STRING SIZE (32)
BinaryTime7 ::= BIT STRING SIZE (32)
BinaryTime8 ::= BIT STRING SIZE (32)
BinaryTime9 ::= BIT STRING SIZE (32)

4.5.10 Notation for BCD type
BCD ::= Unsigned8 (0..9)

-- 10 ps resolution
-- 0.1 ms resolution
-- 1 ms resolution
-- 10 ms resolution
-- 0.1 s resolution
-- 1 s resolution

-- 10 ps resolution
-- 0.1 ms resolution
-- 1 ms resolution
-- 10 ms resolution

-- Lower four bits are used to express one BCD value.

4.5.11 Notation for Compact Boolean Array type

CompactBooleanArray ::= BitString

-- Each zero bit representing Boolean value FALSE.
-- Each one bit representing Boolean value TRUE.

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

-- Unused bits, if any, shall be placed in bits 7-1 of the last octet.

4.5.12 Notation for Compact BCD Array type

CompactBCDArray ::= octetString -- One BCD value is represented by four bits, an unused
-- nibble, if any, shall be placed in bits 4-1 of the last octet,

-- and shall be set to 1111F.

- 28 - 61158-6-17 © IEC:2007(E)

5 Transfer syntax

5.1 Overview of encoding

The FAL-PDUs encoded shall have a uniform format. The FAL-PDUs shall consist of two
major parts, the “APDU Header” part and the “APDU Body” part as shown in Figure 1.

(1) (1) (1) (n) --- octets
FalArHeader Field Type Field (InvokelD) Service Specific Parameters
S e APDU Header ---------=------ > A APDU Body --------=====--- >

NOTE The presence of the InvokelD Field depends on the APDU type.

Figure 1 — APDU overview

To realize an efficient APDU while maintaining flexible encoding, different encoding rules are
used for the APDU Header part and the APDU Body part.

NOTE The data-link layer service provides a DLSDU parameter that implies the length of the APDU. Thus, the
APDU length information is not included in the APDU.

5.2 APDU header encoding

The APDU Header part is always present in all APDUs that conform to this standard. It

consists of three fields: the FalArHeader Field, the Type Field, and the optional InvokelD Field.

They are shown in Figure 1.

5.2.1 Encoding of FalArHeader field
All the FAL PDUs shall have the common PDU-header called FalArHeader. The FalArHeader

identifies abstract syntax, transfer syntax, and each of the PDUs. Table 2 defines how this
header shall be used.

Table 2 — Encoding of FalArHeader field

Bit position of the
FalArHeader PDU type Protocol version
87 | 654 321
01 001 000 ConfirmedSend-CommandPDU Version 1
01 001 100 ConfirmedSend-ResponsePDU Version 1
01 010 000 UnconfirmedSend-CommandPDU Version 1

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

NOTE All other code points are reserved for additional protocols and future revisions.

5.2.2 Encoding of Type field

a) The service type of an APDU is encoded in the Type Field that is always the second octet
of the APDUs.

b) All bits of the Type Field are used to encode the service type.

1) The service types shall be encoded in bits 8 to 1 of the Type Field, with bit 8 the most
significant bit and bit 1 the least significant bit. The range of service type shall be
between 0 (zero) and 254, inclusive.

2) The value of 255 is reserved for future extensions to this specification.
3) The service type is specified in the abstract syntax as a positive integer value.

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

61158-6-17 © IEC:2007(E) - 29 -

c) Figure 2 illustrates the encoding of the Type Field.

8 | 7 | 6 . 5 . 4 | 3 . 2 . 1
Service type

Figure 2 — Type field

5.2.3 Encoding of InvokelD Field

The InvokelD Field shall be present if it is indicated in the abstract syntax. Otherwise, this
field shall not be present. If present, the InvokelD parameter supplied by a service primitive
shall be placed in this field.

5.3 APDU body encoding
5.3.1 General

The FAL encoding rules are based on the terms and conventions defined in ISO/IEC 8825-1.
The encoding consists of three components in the following order:

Identifier octet
Length octet(s)
Contents octet(s)

5.3.2 Identifier octet

The Identifier octet shall encode the tag defined in the FAL Abstract Syntax and shall consist
of one octet.

It consists of the P/C flag and the Tag field as shown in Figure 3.

8 { 7 i 6 i 5 i 4 i 3 i 2 | 1
PIC Tag field

Figure 3 — Identifier octet

The P/C flag indicates that the Contents octet(s) is either a simple component (primitive types,
such as Integer8), or a structured component (constructed, such as SEQUENCE, SEQUENCE
OF types).

P/C Flag =0 means the Contents octet(s) is a simple component.
P/C Flag =1 means the Contents octet(s) is a structured component.

The Tag field identifies the semantics of the Contents octet(s).

5.3.3 Length octet(s)
The Length octet(s) shall consist of one or three octets.

a) If the value of the first Length octet is other than 255, there shall be no subsequent Length
octet(s) and the first octet shall contain the value for the Length octet defined later.

b) If the value of the first Length octet is 255, there shall be two subsequent Length octet(s)
that shall contain the values for the Length octets defined later. In this case, the length
information of the Contents octet(s) shall be represented by the last two octets of the
Length octets, where the most significant bit of the second of three Length octets shall be
the most significant bit of the length value and the least significant bit of the third of the
three Length octets shall be the least significant bit of the length value.

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

-30 - 61158-6-17 © IEC:2007(E)

The sender shall have the option of using either the one-octet format or the three-octet format.

For example, the three-octet format may be used to convey a length value of one.

The meaning of the Length octet(s) depends on the type of value being encoded. If the
encoding of the Contents octet(s) is primitive, the Length octet(s) shall contain the number of
octets in the Contents octets. If the encoding of the Contents octets is constructed, the Length
octet(s) shall contain the number of the first-level components of the Contents octets.

Figure 4 and Figure 5 depict encoding examples of the Length octet(s).

8 7 . 6 5 | 4 | 3 | 2 1
(msb) value of the length octet as defined above (Isb)

Figure 4 — Length octet (one-octet format)

first octet 15 second and third octets 1
11111111 (msb) value of the length octets as defined above (Isb)

Figure 5 — Length octets (three-octet format)

5.34 Contents octet(s)

The Contents octet(s) shall encode the data value according to the encoding rule defined for
its type.

The Contents octet(s) shall have either of the following two forms: primitive encoding or
constructed encoding.

a) If the Contents octet(s) contain a primitive encoding, they represent an encoding of one
value.

b) If the Contents octet(s) contain a constructed encoding, they represent an enumerated
encoding of more than one value.

5.4 Data type encoding rules

5.4.1 General

5.4.1.1 Boolean

A Boolean value shall be encoded as follows.

a) The ldentifier octet and the Length octet(s) shall not be present.

b) The Contents octet(s) component always consists of one octet. If the Boolean value
equals FALSE, all bits of the octet are 0. If the Boolean value equals TRUE, the octet can
contain any combination of bits other than the encoding for FALSE.

5.4.1.2 Integer
An Integer value shall be encoded as follows.

a) The ldentifier octet shall not be present.

b) The Length octet(s) shall not be present if the size of the Integer value is invariable. An
integer with invariable size is created by constraining the possible value. The Length
octet(s) shall be present if the size of the Integer value is variable.

c) The Contents octet(s) shall contain the two’s complement binary number equal to the
Integer value. The most significant eight bits of the Integer value are encoded in bit 8 to
bit 1 of the first octet, the next eight bits in bit 8 to bit 1 of the next octet and so on. If the
values of an Integer type are restricted to negative and non-negative numbers, bit 8 of the

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

61158-6-17 © IEC:2007(E) -31-

first octet gives the sign of the value if the values are restricted to non-negative numbers
only, no sign bit is needed.

5.4.1.3 Unsigned value

An

a)
b)

c)

Unsigned Value shall be encoded as follows.

The Identifier octet shall not be present.

The Length octet(s) shall not be present if the size of the Unsigned Value is invariable.
The length of an Unsigned Value with invariable depends on the specified range of the
value. The Length octet(s) shall be present if the size of the Unsigned Value is variable.

The Contents octet(s) shall be a binary number equal to the Unsigned Value, and consist
of bits 8 to 1 of the first octet, followed by bits 8 to 1 of the second octet, followed by bits
8 to 1 of each octet in turn, up to and including the last octet of the Contents octet(s).

5.4.1.4 Floating Point

A Floating Point value shall be encoded as follows.

The Identifier octet shall not be present.
The Length octet(s) shall not be present.

The Contents octet(s) shall contain floating point values defined in conformance with the
IEC 60559. The sign is encoded by using bit 8 of the first octet. It is followed by the
exponent starting from bit 7 of the first octet, and then the mantissa starting from bit 7 of
the second octet for Floating32 and from bit 4 of the second octet for Floating64.

5.4.1.5 Bit string

A Bit String value shall be encoded as follows.

a)
b)

The ldentifier octet shall not be present.

The Length octet(s) shall not be present if the size of the Bit String value is invariable. A
Bit String with invariable size is created by applying a size constraint containing only one
value on the Bit String type. The Length octet(s) shall be present if the size of the Bit
String value is variable.

The Contents octet(s) comprise as many octets as necessary to contain all bits of the
actual value: N_octets = (N_Bits-1) div 8 + 1. The Bit String value commencing with the
first bit and proceeding to the trailing bit shall be placed in bits 8 to 1 of the first octet,
followed by bits 8 to 1 of the second octet and so on. If the number of bits is not a multiple
of 8, there are so-called unused bits, which are located in the least significant bits of the
last octet. The value of the unused bits may be zero (0) or one (1) and carry no meaning.

5.4.1.6 Octet string

An

a)
b)

c)

octet String value shall be encoded as follows.

The Identifier octet shall not be present.

The Length octet(s) shall not be present if the size of the octet String value is invariable.
An octet String with invariable size is created by applying a size constraint containing only
one value on the octet String type. The Length octet(s) shall be present if the size of the
octet String value is variable.

The Contents octet(s) shall be equal in value to the octets in the data value.

5.4.1.7 Visible string

A Visible String value shall be encoded as follows.

a)
b)

The Identifier octet shall not be present.

The Length octet(s) shall not be present if the size of the Visible String value is invariable.
A Visible String with invariable size is created by applying a size constraint containing

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

-32 - 61158-6-17 © IEC:2007(E)

only one value on the Visible String type. The Length octet(s) shall be present if the size
of the Visible String value is variable.

c) The Contents octet(s) shall be equal in value to the octets in the data value.
5.4.1.8 UNICODE string (ISO 10646 string)
A UNICODE String value shall be encoded as follows.

a) The Identifier octet shall not be present.

b) The Length octet(s) shall indicate the number of octets in the Contents octet(s) as a
binary number.

c) Each ISO 10646 character shall be placed in two octets in the Contents octet(s), with the
high-order octet placed in the first octet and the low-order octet in the subsequent octet,
and with the most significant bit of an octet of the data value aligned with the most
significant bit of an octet of the Contents octet(s).

5.4.1.9 Binary time
A Binary Time value shall be encoded as follows.

a) The Identifier octet shall not be present
b) The Length octet(s) shall not be present.

c) The Contents octet(s) shall be a binary number equal to the Binary Time value and
consisting of bits 8 to 1 of the first octet, followed by bits 8 to 1 of the second octet,
followed by bits 8 to 1 of each octet in turn, up to and including the last octet of the
Contents octet(s).

5.4.1.10 BCD type
a) A BCD value shall be encoded as an Unsigned8 value.

b) A BCD value shall be placed in bits 4 to 1 of the Contents octet of an Unsigned8 value.
The values of the bits 8 to 5 shall be zero (0).

5.4.1.11 Compact Boolean array

A Compact Boolean Array value shall be encoded as a Bit String value.

5.4.1.12 Compact BCD array type

a) A Compact BCD Array value shall be encoded as a primitive type.

b) The Identifier octet shall not be present.

c) The Length octet(s) shall indicate the number of octets in the array as a binary number.

d) If the number of BCD values is zero, there shall be no subsequent octets, and the Length

octet(s) shall be zero.

e) The first BCD value shall be placed as a binary number in bits 8 to 5 of the first Contents
octet(s), and the second BCD value shall be placed in bits 4 to 1 of the first Contents
octet(s). This will be repeated for the remaining BCD values and Contents octet(s) up to
and including the last octet of the Contents octet(s). The values of any unused bits in the
last Contents octet shall be set to 1.

5.4.1.13 SEQUENCE type
A value of a SEQUENCE type shall be encoded as follows.

a) The Identifier octet shall not be present.

b) The Length octet(s) shall be present and specify the number of the first level components
of the Contents octet(s). However, for the first Keyword “SEQUENCE” of FalArPDU, this
length shall not be encoded.

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

61158-6-17 © IEC:2007(E) -33 -

c)

The Contents octet(s) shall consist of the encodings of all the element types in the same
order as they are specified in the ASN.1 description of the SEQUENCE type.

5.4.1.14 SEQUENCE OF type

A value of a SEQUENCE OF type shall be encoded as follows.

The Identifier octet shall not be present.

The Length octet(s) shall be present and specify the number of the first-level components
of the Contents octet(s).

The Contents octet(s) shall consist of the encodings of all the element types in the same
order as they are specified in the ASN.1 description of the SEQUENCE OF type.

5.4.1.15 CHOICE type

A value of a CHOICE type shall be encoded as follows.

The Identifier octet shall not be present.
The Length octet(s) shall not be present.

The Contents octet(s) shall consist of the encoding of the selected type of the alternative
type list.

5.4.1.16 Null

A value of a NULL type shall be encoded as follows.

a)
b)
c)

The Identifier octet shall not be present.
The Length octet(s) shall not be present.
The Contents octet(s) shall not be present.

5.4.1.17 Tagged type

A value of a Tagged type shall be encoded as follows.

The Identifier octet shall only be present if the tagged type is a part of an alternative type
list in a CHOICE construct.

The Length octet(s) shall not be present.

The Contents octet(s) shall consist of the encoding of the type that was tagged.

5.4.1.18 IMPLICIT type

A value of an IMPLICIT type shall be encoded as follows.

The Identifier octet shall not be present.
The Length octet(s) shall not be present.

The Contents octet(s) shall consist of the encoding of the type being referenced by the
IMPLICIT construct, except for the case when the referenced type is a SEQUENCE type.
In this case, the Contents octet(s) consist only of the Contents octet(s) of the referenced
SEQUENCE type, and the Length octet(s) of this SEQUENCE type shall not be present.

5.4.1.19 OPTIONAL and DEFAULT types

A value of an OPTIONAL or DEFAULT type shall be encoded as follows.

The Identifier octet shall not be present.

The Length octet(s) shall be present. If there is no value for this type, the Length octet(s)
contain the value 0.

The Contents octet(s) shall consist of the encoding of the referenced type if there is a
value for this type, otherwise no Contents octets exist.

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

- 34 - 61158-6-17 © IEC:2007(E)

5.4.1.20 ANY type

An ANY type is used for the definition of complex types, whose structure is described
informally rather than in ASN.1.

A value of an ANY type shall be encoded as follows:

a) The Identifier octet shall not be present.
b) The Length octet(s) shall not be present.

c) The Contents octets shall consist of the encoding of all implicit types that constitute the
ANY type.

6 FAL protocol state machines structure

This subclause specifies protocol machines of the FAL and the Interface between them.

NOTE The state machines specified in this clause and ARPMs defined in the following clauses only define the
protocol-related events for each. It is a local matter to handle other events.

The behaviour of the FAL is described by three integrated protocol machines. The three kinds
of protocol machines are: FAL Service Protocol Machines (FSPMs), the Application
Relationship Protocol Machines (ARPMs), and the data-link layer Mapping Protocol Machines
(DMPMs). Specific protocol machines are defined for different AREP types. The relationships
among these protocol machines as well as primitives exchanged among them are depicted in
Figure 6.

AP Cortext
FAL Service Reg/Rsp Primitives FAL Service Ind/Cnf Primitives
A
FSPM
Y
FSPM Reg/Rsp Primitives FSPM Ind/Cnf Primitives
#n ARPM J
#1 ARPM
ARPM Reg/Rsp Primitives ARPM Ind/Cnf Primitives
DMPM
A
DL Reg/Rsp Primitives DL Ind/Cnf Primitives

A 4
Data-link layer

Figure 6 — Relationships among protocol machines and adjacent layers

The FSPM is responsible for the following activities:

a) to accept service primitives from the FAL service user and convert them into FAL internal
primitives;

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

61158-6-17 © IEC:2007(E) - 35—

b) to select an appropriate ARPM state machine based on the AREP Identifier parameter
supplied by the AP-Context and send FAL internal primitives to the selected ARPM;

c) to accept FAL internal primitives from the ARPM and convert them into service primitives
for the AP-Context;

d) to deliver the FAL service primitives to the AP-Context based on the AREP Identifier
parameter associated with the primitives.
The ARPM is responsible for the following activities:

a) to accept FAL internal primitives from the FSPM and create and send other FAL internal
primitives to either the FSPM or the DMPM, based on the AREP and primitive types;

b) to accept FAL internal primitives from the DMPM and send them to the FSPM in a
converted form for the FSPM;

c) if the primitives are for the Establish or Abort service, it shall try to establish or release the
specified AR.

The DMPM describes the mapping between the FAL and the DLL. It is common to all the
AREP types and does not have any state changes. The DMPM is responsible for the following
activities:

a) to accept FAL internal primitives from the ARPM, prepare DLL service primitives, and
send them to the DLL;

b) to receive DLL indication or confirmation primitives from the DLL and send them to the
ARPM in a converted form for the ARPM.

7 AP-context state machine

There is no AP-Context State Machine defined for this Protocol.

8 FAL service protocol machines (FSPMs)

8.1 General
There are FAL Service Protocol Machines as follows:

e Variable ASE Protocol Machine (VARM)

e Event ASE Protocol Machine (EVTM)

e Load Region ASE Protocol Machine (LDRM)

e Function Invocation ASE Protocol Machine (FNIM)

e Time ASE Protocol Machine (TIMM)

e Network Management ASE Protocol Machine (NWMM)

8.2 Common parameters of the primitives

Many services have the following parameters. Instead of defining them with each service, the
following common definitions are provided.

AREP

This parameter contains sufficient information to identify the AREP to be used to convey the
service. This parameter may use a key attribute of the AREP to identify the application
relationship. When an AREP supports multiple contexts (established using the Initiate service)

at the same time, the AREP parameter is extended to identify the context as well as the AREP.

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

- 36 - 61158-6-17 © IEC:2007(E)

InvokelD

This parameter identifies this invocation of the service. It is used to associate a service
request with its response. Therefore, no two outstanding service invocations can be identified
by the same InvokelD value.

Error Info
This parameter provides error information for service errors. It is returned in confirmed service
primitives and response primitives.

8.3 Variable ASE protocol machine (VARM)
8.3.1 Primitive definitions
8.3.1.1 Primitives exchanged

Table 3 shows the service primitives, including their associated parameters exchanged
between the FAL user and the VARM.

Table 3 — Primitives exchanged between FAL user and VARM

Primitive Associated

Source Functions
name parameters
Read.req FAL VariableSpecifier This primitive is used to read values from remote
User variables.
Write.req FAL VariableSpecifier This primitive is used to write values to remote
User variables.
InfReport.req FAL VariableSpecifier, This primitive is used to publish variables.
User Value,
RemoteArep
Read.rsp FAL VariableSpecifier, This primitive is used to convey values of variables
User Value, requested.
Errorinfo
Write.rsp FAL VariableSpecifier, This primitive is used to report result of writing
User Errorinfo requested.
Read.ind VARM VariableSpecifier This primitive is used to convey a read request.
Write.ind VARM VariableSpecifier This primitive is used to convey a write request.
Value
InfReport.ind VARM VariableSpecifier, This primitive is used to report values of variables
Value published.
Read.cnf VARM VariableSpecifier, This primitive is used to convey values of variables
Value requested and result of reading.
Errorinfo
Write.cnf VARM VariableSpecifier, This primitive is used to report result of writing
Errorinfo requested.

8.3.1.2 Parameters of primitives

The parameters used with the primitives exchanged between the FAL user and the VARM are
listed in Table 4.

Table 4 — Parameters used with primitives exchanged FAL user and VARM

Parameter name Description
VariableSpecifier This parameter specifies a variable or a variable list.
RemoteArep This parameter specifies a remote AREP to which APDU is to be transferred.
Value This parameter contains the value of variable to be read/write.
Errorinfo This parameter provides error information for service errors.

8.3.2 State machine
8.3.2.1 General

The VARM State Machine has only one possible state: ACTIVE.

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

61158-6-17 © IEC:2007(E) - 37 -

Q All transitions

Figure 7 — State transition diagram of VARM

8.3.2.2 State tables

The VARM state machine is described in Figure 7, and in Table 5 and Table 6.

Table 5 — VARM state table — Sender transitions

Event or condition
Current Next state
state => action
S1 | ACTIVE Read.req ACTIVE
=>
AreplD := GetArep(VariableSpecifier)
SelectArep(AreplD, “PTC-AR”),
CS_req{
user_data := Read-RequestPDU
}
S2 | ACTIVE Write.req ACTIVE
=>
AreplD := GetArep(VariableSpecifier)
SelectArep(AreplD, “PTC-AR”"),
CS_req{
user_data := Write-RequestPDU
}
S3 | ACTIVE InfReport.req ACTIVE
=>
SelectArep(RemoteArep, “MSU-AR”),
UCS_req{
user_data := InformationReport-RequestPDU
!
S4 | ACTIVE Read.rsp ACTIVE
=>
SelectArep(AreplD, “PTC-AR”"),
CS_rsp{
user_data := Read-ResponsePDU
}
S5 | ACTIVE Write.rsp ACTIVE
=>
SelectArep(AreplD, “PTC-AR”"),
CS_rsp{
user_data := Write-ResponsePDU
}

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

— 38 -

61158-6-17 © IEC:2007(E)

Table 6 — VARM state table — Receiver transitions

Current
state

Event or condition

=> action

Next state

R1

ACTIVE

CS_ind
&& PDU_Type = Read_RequestPDU
=>
Read.ind{
AreplD := arep_id
Data := user_data

ACTIVE

R2

ACTIVE

}
CS_ind
&& PDU_Type = Write_RequestPDU
=>
Write.ind{
AreplD := arep_id
Data := user_data,

ACTIVE

R3

ACTIVE

CS_ind
&& PDU_Type = Read_ResponsePDU
&& GetErrorinfo() = “success”
=>
Read.cnf(+){
Data := user_data

ACTIVE

R4

ACTIVE

}
CS_ind
&& PDU_Type = Read_ResponsePDU
&& GetErrorinfo() <> “success”
=>
Read.cnf(-){
Errorinfo := GetErrorinfo()

ACTIVE

RS

ACTIVE

}
CS_ind
&& PDU_Type =Write_ResponsePDU
&& GetErrorinfo() = “success”
=>
Write.cnf(+){
Data := user_data

ACTIVE

R6

ACTIVE

}
CS_ind
&& PDU_Type = Write_ResponsePDU
&& GetErrorinfo() <> “success”
=>
Write.cnf(-){
Errorinfo := GetErrorinfo()

ACTIVE

R7

ACTIVE

}
UCS_ind
&& PDU_Type = InformationReport-RequestPDU
=>
InfReport.ind{
Data := user_data

ACTIVE

R8

ACTIVE

}
CS_cnf
&& Status = “success”
=>

(no actions taken)

ACTIVE

R9

ACTIVE

CS_cnf
&& Status <> “success”
&& GetService(InvokelD) = “Read”
=>
Read.cnf(-){
Errorinfo := Status

ACTIVE

R10

ACTIVE

}
CS_cnf
&& Status <> “success”
&& GetService(lnvokelD) = “Write”
=>

Write.cnf(-){

Errorinfo := Status
}

ACTIVE

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

61158-6-17 © IEC:2007(E) -39 -

8.3.2.3 Functions

Table 7 lists the functions used by the VARM, their arguments and their descriptions.

Table 7 — Functions used by the VARM

Function name Parameter Description
SelectArep AreplD, Looks for the AREP entry that is specified by the ArepID and
ARtype AR type
GetArep VariableSpecifier Look for the ArepID based on the specified VariableSpecifier.
GetErrorinfo Gets error information from the APDU
GetService InvokelD Gets service name from the InvokelD

8.4 Event ASE protocol machine (EVTM)
8.4.1 Primitive definitions
8.4.1.1 Primitives exchanged

Table 8 shows the service primitives, including their associated parameters exchanged
between the FAL user and the EVTM.

Table 8 — Primitives exchanged between FAL user and EVTM

Primitive name Source Associated parameters Functions
Notification.req FAL AREP This primitive is used to request publishing of
User NotifierID event messages
Sequence Number
ListOfEventMessages
EventRecovery.req | FAL AREP This primitive is used to request retransmission
User NotifierID of event notification
SequenceNumber
Notification.ind EVTM AREP This primitive is used to inform event notification.
NotifierID
SequenceNumber
List of Event Messages
EventRecovery.ind EVTM AREP This primitive is used to inform request of
NotifierID retransmission of event naotification
SequenceNumber

8.4.1.2 Parameters of primitives

The parameters used with the primitives exchanged between the FAL user and the EVTM are listed
in Table 9.

Table 9 — Parameters used with primitives exchanged FAL user and EVTM

Parameter name Description

NotifierID This conditional parameter identifies the notifier issuing the event notification. It is
present if the AP has more than one notifier defined for it

SequenceNumber This optional parameter is the sequence number for the event notification. It may be
used for notification recovery purposes

NotificationTime This optional parameter is the time of the event notification

ListOfEventMessages This parameter contains the list of event messages that are to be reported. It may
contain messages from one or more event objects, and each object contains the same
set of parameters

8.4.2 State machine
8.4.2.1 General

The EVTM State Machine has only one possible state: ACTIVE.

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

-40 - 61158-6-17 © IEC:2007(E)

Q All transitions

Figure 8 — State transition diagram of EVTM

8.4.2.2 State tables

The EVTM state machine is described in Figure 8, and in Table 10 and Table 11.

Table 10 — EVTM state table — Sender transitions

Event or condition
Current Next state
state => action
S1 | ACTIVE Notification.req ACTIVE
=>
SelectArep(RemoteArep, “MTU-AR”),
UCS_req{
user_data := Event-NotificationPDU
}
S2 | ACTIVE EventRecovery.req ACTIVE
=>
SelectArep(RemoteArep, “PTU-AR”),
UCS_req{
arep := SelectArep(CalledAREP, “PTU-AR"),
user_data := EventRecovery-RequestPDU
}
Table 11 — EVTM state table — Receiver transitions
Event or condition
Current Next state
state => action
R1 | ACTIVE UCS_ind ACTIVE
&& PDU_Type = Event_NotifiationPDU
=>
Notification.ind{
Data := user_data
!
R2 | ACTIVE UCS_ind ACTIVE
&& PDU_Type = EventRecovery-RequestPDU
=>
EventRecovery.ind {
Data := user_data
!

8.4.2.3 Functions

Table 12 lists the function used by the EVTM, their arguments, and their description.

Table 12 — Functions used by the EVTM

Function name Parameter Description

SelectArep AreplD, Looks for the AREP entry that is specified by the AreplD and
ARtype AR type

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

61158-6-17 © IEC:2007(E) -41 -

8.5 Load region ASE protocol machine (LDRM)
8.5.1 Primitive definitions
8.5.1.1 Primitives exchanged

Table 13 shows the service primitives, including their associated parameters exchanged
between the FAL user and the LDRM.

Table 13 — Primitives exchanged between FAL user and LDRM

Primitive s Associated .
ource Functions
name parameters
Download.req FAL AREP This primitive is used to request download data to
User InvokelD the region
LoadRegion
LoadData
Upload.req FAL AREP This primitive is used to request upload data from
User InvokelD the region
LoadRegion
Download.rsp FAL AREP This primitive is used to report result of download
User InvokelD requested
Error Info
Upload.rsp FAL AREP This primitive is used to convey data to be uploaded
User InvokelD
LoadData
Errorinfo
Download.ind LDRM AREP This primitive is used to convey data downloaded
InvokelD
LoadRegion
LoadData
Upload.ind LDRM AREP This primitive is used to convey an upload request
InvokelD
Load region
Download.cnf LDRM AREP This primitive is used to convey a result of download
InvokelD
Errorinfo
Upload.cnf LDRM AREP This primitive is used to convey data uploaded
InvokelD
LoadData
Errorinfo

8.5.1.2 Parameters of primitives

The parameters used with the primitives exchanged between the FAL user and the LDRM are
listed in Table 14.

Table 14 — Parameters used with primitives exchanged FAL user and LDRM

Parameter name Description
LoadRegion This parameter specifies the region from/to which the image is to be loaded
LoadData This parameter contains the data to be loaded
Errorinfo This parameter provides error information for service errors

8.5.2 State machine
8.5.2.1 General

The LDRM State Machine has only one possible state: ACTIVE.

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

8.5.2.2 State tables

—42 —

Q All transitions

61158-6-17 © IEC:2007(E)

Figure 9 — State transition diagram of LDRM

The LDRM state machine is described in Figure 9, and in Table 15 and Table 16.

Table 15 — LDRM state table — Sender transitions
Event or condition
Current Next state
state => action
S1 | ACTIVE Download.req ACTIVE
=>
SelectArep(RemoteArep, “PTC-AR”),
CS_req{
user_data := DownLoad-RequestPDU
S2 | ACTIVE Upload.req ACTIVE
=>
SelectArep(RemoteArep, “PTC-AR”),
CS_req{
user_data := UpLoad-RequestPDU
S3 | ACTIVE Download.rsp ACTIVE
=>
SelectArep(AreplD, “PTC-AR”),
CS_rsp{
arep := SelectArep(CallingAREP, “PTC-AR”),
user_data := DownLoad-ResponsePDU
S4 | ACTIVE Upload.rsp ACTIVE
=>
SelectArep(AreplD, “PTC-AR”),
CS_rsp{
arep := SelectArep(CallingAREP, “PTC-AR"),
user_data := UpLoad-ResponsePDU
!

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

61158-6-17 © IEC:2007(E) - 43 -

Table 16 — LDRM state table — Receiver transitions

Event or condition
Cutrr;ent Next state
state => action

R1 | ACTIVE CS_ind ACTIVE
&& PDU_Type = DownlLoad-RequestPDU
=>
Download.ind {
AreplD := arep_id
Data := user_data

}
R2 | ACTIVE CS_ind ACTIVE
&& PDU_Type = UpLoad-RequestPDU
=>
Upload.ind {
AreplD := arep_id
Data := user_data

!
R3 | ACTIVE CS_ind ACTIVE
&& PDU_Type = DownLoad-ResponsePDU
=>
Download.cnf(+) {
Data := user_data

!
R4 | ACTIVE CS_ind ACTIVE
&& PDU_Type = UpLoad-ResponsePDU
=>
Upload.cnf(+) {
Data := user_data
!

R5 | ACTIVE CS_cnf ACTIVE
&& Status <> “success”
&& GetService(lnvokelD) = “Download”
=>
Download.cnf(-) {
Errorinfo := Status
!

R6 | ACTIVE CS_cnf ACTIVE
&& Status <> “success”
&& GetService(lnvokelD) = “Upload”
=>
Upload.cnf(-) {
Errorinfo := Status
}

8.5.2.3 Functions

Table 17 lists the functions used by the LDRM, their arguments, and their descriptions.

Table 17 — Functions used by the LDRM

Function name Parameter Description
SelectArep AreplD, Looks for the AREP entry that is specified by the AreplD
ARtype and AR type
GetErrorinfo Gets error information from the APDU.
GetService InvokelD Gets service name from the InvokelD.

8.6 Function invocation ASE protocol machine (FNIM)
8.6.1 Primitive definitions
8.6.1.1 Primitives exchanged

Table 18 shows the service primitives, including their associated parameters exchanged
between the FAL user and the FNIM.

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

—44 —

61158-6-17 © IEC:2007(E)

Table 18 — Primitives exchanged between FAL user and FNIM

Primitive Associated .
Source Functions
name parameters
Start.req FAL AREP This primitive is used to request start of the function
User InvokelD
FunctionID
Stop.req FAL AREP This primitive is used to request stop of the
User InvokelD function.
FunctionlD
Resume.req FAL AREP This primitive is used to request resume of the
User InvokelD function.
FunctionlD
Start.rsp FAL AREP This primitive is used to report result of start
User InvokelD requested.
Error Info
Stop.rsp FAL AREP This primitive is used to report result of stop
User InvokelD requested.
Error Info
Resume.rsp FAL AREP This primitive is used to report result of resume
User InvokelD requested.
Error Info
Start.ind FNIM AREP This primitive is used to convey a start request.
InvokelD
FunctionID
Stop.ind FNIM AREP This primitive is used to convey a stop request.
InvokelD
FunctionID
Resume.ind FNIM AREP This primitive is used to convey a resume request.
InvokelD
FunctionID
Start.cnf FNIM AREP This primitive is used to convey a result of start.
InvokelD
Error Info
Stop.cnf FNIM AREP This primitive is used to convey a result of stop.
InvokelD
Error Info
Resume.cnf FNIM AREP This primitive is used to convey a result of resume.
InvokelD
Error Info

8.6.1.2 Parameters of primitives

The parameter used with the primitives exchanged between the FAL user and the FNIM is

listed in Table 19.

Table 19 — Parameters used with primitives exchanged FAL user and FNIM

Parameter name

Description

FunctionlD

This parameter specifies one of the key attributes of the function invocation object

8.6.2 State machine
8.6.2.1 General

The FNIM State Machine has only one possible state: ACTIVE.

Q All transitions

Figure 10 — State transition diagram of FNIM

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

61158-6-17 © IEC:2007(E) - 45—

8.6.2.2 State tables

The FNIM state machine is described in Figure 10, and in Table 20 and Table 21.

Table 20 — FNIM state table — Sender transitions

Event or condition
Current Next state
state => action
S1 | ACTIVE Start.req ACTIVE
=>
SelectArep(RemoteArep, “PTC-AR”),
CS_req{
user_data := Start-RequestPDU
!
S2 | ACTIVE Stop.req.req ACTIVE
=>
SelectArep(RemoteArep, “PTC-AR”),
CS_req{
user_data := Stop-RequestPDU
}
S3 | ACTIVE Resume.req ACTIVE
=>
SelectArep(RemoteArep, “PTC-AR”),
CS_req{
user_data := Resume-ResponsePDU
!
S4 | ACTIVE Start.rsp ACTIVE
=>
SelectArep(AreplD, “PTC-AR”),
CS_rsp{
user_data := Start-ResponsePDU
}
S5 | ACTIVE Stop.rsp ACTIVE
=>
SelectArep(AreplD, “PTC-AR”),
CS_rsp{
user_data := Stop-ResponsePDU
!
S6 | ACTIVE Resume.rsp ACTIVE
=>
SelectArep(AreplD, “PTC-AR”),
CS_rsp{
user_data := Resume-ResponsePDU
!
Table 21 — FNIM state table — Receiver transitions
Event or condition
Current Next state
state => action
R1 ACTIVE CS_ind ACTIVE
&& PDU_Type = Start-RequestPDU
=>
Start.ind {
Data := user_data
R2 ACTIVE CS_ind ACTIVE
&& PDU_Type = Stop-RequestPDU
=>
Stop.ind {
Data := user_data
R3 ACTIVE CS_ind ACTIVE
&& PDU_Type = Resume-RequestPDU
=>
Resume.ind {
Data := user_data
}

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

— 46 —

61158-6-17 © IEC:2007(E)

Event or condition
Current Next state
state => action
R4 ACTIVE CS_ind ACTIVE
&& PDU_Type = Start-ResponsePDU
=>
Start.cnf(+) {
Data := user_data
}
R5 ACTIVE CS_ind ACTIVE
&& PDU_Type = Start-ResponsePDU
&& GetErrorinfo() <> “success”
=>
Start.cnf(-){
Errorinfo := GetErrorinfo()
}
R6 ACTIVE CS_ind ACTIVE
&& PDU_Type = Stop-ResponsePDU
=>
Stop.cnf(+) {
Data := user_data
}
R7 ACTIVE CS_ind ACTIVE
&& PDU_Type = Stop-ResponsePDU
&& GetErrorinfo() <> “success”
=>
Stop.cnf(-){
Errorinfo := GetErrorinfo()
}
R8 ACTIVE CS_ind ACTIVE
&& PDU_Type = Resume-ResponsePDU
=>
Resume.cnf(+) {
Data := user_data
}
R9 ACTIVE CS_ind ACTIVE
&& PDU_Type = Resume-ResponsePDU
&& GetErrorinfo() <> “success”
=>
Resume.cnf(-){
Errorinfo := GetErrorinfo()
}
R10 | ACTIVE CS_cnf ACTIVE
&& Status = “success”
=>
(no actions taken)
R11 | ACTIVE CS_cnf ACTIVE
&& Status <> “success”
&& GetService(lnvokelD) = “Start”
=>
Start.cnf(-) {
Errorinfo := Status
}
R12 | ACTIVE CS_cnf ACTIVE
&& Status <> “success”
&& GetService(InvokelD) = “Stop”
=>
Stop.cnf(-) {
Errorinfo := Status
}
R13 | ACTIVE CS_cnf ACTIVE
&& Status <> “success”
&& GetService(lnvokelD) = “Resume”
=>
Resume.cnf(-) {
Errorinfo := Status
}

8.6.2.3 Functions

Table 22 lists the functions used by the FNIM, their arguments, and their descriptions.

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

61158-6-17 © IEC:2007(E)

—47 —

Table 22 - Functions used by the FNIM

Function name Parameter Description
SelectArep AREPId, Looks for the AREP entry that is specified by the AREPid and
ARtype AR type

GetErrorinfo

Gets error information from the APDU

GetService InvokelD

Gets service name from the InvokelD

8.7 Time ASE protocol machine (TIMM)

8.7.1 Primitive definitions

8.7.1.1 Primitives exchanged

Table 23 shows the service primitives, including their associated parameters exchanged

between the FAL user and the TIMM.

Table 23 — Primitives exchanged between FAL user and TIMM

Primitive Associated .
Source Functions
name parameters
GetTime.req FAL AREP This primitive is used to request network time
User InvokelD
SetTim.req FAL AREP This primitive is used to request setting of time to
User InvokelD the network.
NetworkTime
SetTim.ind TIMM AREP This primitive is used to report setting of network
InvokelD time.
Network-time
Tick.ind TIMM Tick This primitive is used to report periodical trigger
synchronized to network time.
GetTim.cnf TIMM AREP This primitive is used to convey a result of getting of
InvokelD network time.
NetworkTime
Errorinfo
SetTim.cnf TIMM AREP This primitive is used to convey a result of setting of
InvokelD network time.
Errorinfo

8.7.1.2 Parameters of primitives

The parameters used with the primitives exchanged between the FAL user and the TIMM are

listed in Table 24.

Table 24 — Parameters used with primitives exchanged FAL user and TIMM

Parameter name Description
NetworkTime This parameter is the value of the network time
Errorinfo This parameter provides error information for service errors.
Tick This parameter indicates tick timing.

8.7.2 State machine

8.7.2.1 General

The TIMM State Machine has four possible states. The defined states and their descriptions

are shown in Table 25 and Figure 11.

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

- 48 - 61158-6-17 © IEC:2007(E)

Table 25 - TIMM states

State Description
TIM_MST TIMM is acting as network time master
DOM_MST TIMM is acting as domain time master.
SLAVE TIMM is synchronized with domain time master.
IDLE TIMM is not synchronized with network time.
S2,S3
S5, S6
R2, R6, R7

8.7.2.2 State tables

Figure 11 — State transition diagram of TIMM

The TIMM state machine is described in Figure 11, and in Table 26 and Table 27.

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

61158-6-17 © IEC:2007(E) - 49 -

Table 26 — TIMM state table — Sender transitions

Event or condition
Current Next state
state => action
S1 IDLE GetTime.req IDLE
=>
GetTime.cnf {
Error info := “not synchronized”
}
S2 | SLAVE GetTime.req SAME
DOM_MST =>
TIM_MST GetTime.cnf {
NetworkTime := GetLocalTime()
S3 | ANY SetTim.req SAME
=>
SelectArep(“NET”, “MTU-AR”),
UCS_req {
user_data := SetTime-RequestPDU
!
S4 | SLAVE CheckTimer(Timer1) = “Expired” SLAVE
=>
SelectArep (“DOM-MST”, “PTC-AR”),
CS_req {
user_data := Time-RequestPDU
5
StartTimer(Timer1)
S5 | DOM-MST CheckTimer(Timer2) = “Expired” DOM-MST
=>
SelectArep(“DOM”, “MTU-AR”),
UCS_req {
user_data := TimeDistribute-RequestPDU
b
StartTimer(Timer2)
S6 | DOM-MST CheckTimer(Timer3) = “Expired” DOM-MST
=>
SelectArep(“TIM-MST”, “PTC-AR”),
CS_req {
user_data := Time-RequestPDU
5
StartTimer(Timer3)

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

— 50 -

61158-6-17 © IEC:2007(E)

Table 27 — TIMM state table — Receiver transitions

Event or condition
Current Next state
state => action
R1 IDLE UCS_ind SLAVE
&& PDU_Type = TimeDistribute-RequestPDU
=>
R2 SLAVE CheckTimer(Tick) = “Expired” SAME
DOM_MST =>
TIM_MST Tick.ind {}
StartTimer(Tick)
R3 SLAVE UCS_ind SLAVE
&& PDU_Type = TimeDistribute-RequestPDU
=>
UpdateLocalTime(DelayFactor)
R4 SLAVE CS_ind SLAVE
&& PDU_Type = Time-ResponsePDU
=>
DelayFactor = CalcurateDelay()
RS SLAVE CheckNW() == DOM-MST DOM-MST
=>
(no actions taken)
R6 DOM-MST CS_ind DOM-MST
&& PDU_Type = Time-RequestPDU
=>
SelectArep(CallingAREP, “PTC-AR"),
CS_rsp {
user_data := Time-ResponsePDU
}
R7 DOM-MST CS_ind DOM-MST
&& PDU_Type = Time-ResponsePDU
=>
DelayFactor = CalcurateDelay(),
UpdateLocalTime(DelayFactor)
R8 DOM-MST CheckNW() == SLAVE SLAVE
=>
(no actions taken)
R9 DOM-MST CheckNW() == TIM-MST TIM-MST
=>
(no actions taken)
R10 | TIM-MST CS_ind TIM-MST
&& PDU_Type = Time-RequestPDU
=>
SelectArep(CallingAREP, “PTC-AR”),
CS_rsp {
user_data := Time-ResponsePDU
}
R11 | TIM-MST CheckNW() == DOM-MST DOM-MST
=>
(no actions taken)
R12 | TIM-MST CheckNW() == SLAVE SLAVE
=>
(no actions taken)

8.7.2.3 Functions

Table 28 lists the functions used by the TIMM, their arguments, and their descriptions.

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

61158-6-17 © IEC:2007(E)

—-51—

Table 28 - Functions used by the TIMM

Function name Parameter Description
SelectArep AreplD, Looks for the AREP entry that is specified by the ArepID
ARtype and AR type.

The value “DOM” for AreplD specifies all stations of the
domain to which the NWMM belong.

The value “NET” for AreplD specifies all stations of the
network.

The value “DOM-MST” for AreplID specifies the AREP of the
domain time master of the domain to which the NWMM
belong.

The value “TIM-MST” for AreplD specifies the AREP of the
network time master

GetLocalTime

Gets local time from the internal clock

UpdateLocalTime

DelayFactor

Updates local clock with the received time and the delay
factor

CalcurateDelay

Calculate the delay factor from received APDU

CheckTimer TimerlD Checks status of the specified timer. If the timer has been
expired, the value “Expired” is returned
StartTimer TimerlD Starts the timer specified

8.8 Network management ASE protocol machine (NWMM)

8.8.1 Primitive definitions

8.8.1.1 Primitives exchanged

Table 29 shows the service primitives, including their associated parameters exchanged

between the FAL user and the NWMM.

Table 29 - Primitives exchanged between FAL user and NWMM

Primitive Associated .
Source Functions
name parameters
GetNW.req FAL InvokelD This primitive is used to request network status
User
GetSTN.req FAL InvokelD This primitive is used to request station status.
User)
StationID
NWStatus.ind NWMM NetworkStatus This primitive is used to report changes of network
status.
STNStats.ind NWMM StationID This primitive is used to report changes of station
) status.
StationStatus
RouteStatus
GetNW.cnf NWMM InvokelD This primitive is used to convey network status.
NetworkStatus
GetSTN.cnf NWMM InvokelD This primitive is used to convey station status

StationStatus

RouteStatus

requested.

8.8.1.2 Parameters of primitives

The parameters used with the primitives exchanged between the FAL user and the NWMM

are listed in Table 30.

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

-52 - 61158-6-17 © IEC:2007(E)

Table 30 — Parameters used with primitives exchanged FAL user and NWMM

Parameter name

Description

StationID This parameter indicates a station

StationStatus This parameter indicates status of station which is specified in the request primitive.

RouteStatus This parameter indicates status of routes for the station which is specified in the request
primitive.

NetworkStatus This parameter indicates consistency of the primary network and the secondary network.

8.8.2 State machine

8.8.2.1 General

The NWMM State Machine has three possible states. The defined states and their
descriptions are shown in Table 31 and Figure 12.

Table 31 - NWMM states

State Description
MST NWMM as a domain master.
SLAVE NWMM as a slave.

R3 -
SLAVE MST
$1,82,83 $1,82, $4
R1,R2 R1,R2
D R4

Figure 12 — State transition diagram of NWMM

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

61158-6-17 © IEC:2007(E) - 53 -

8.8.2.2

State tables

The NWMM state machine is described in Figure 12, and in Table 32 and Table 33.

Table 32 - NWMM state table — Sender transitions

Event or condition
Current Next state
state => action
S1 | ANY GetNW.req SAME
=>
GetNW.cnf{
NetworkStatus := GetNWstatus()
}
S2 | ANY GetSTN.req SAME
=>
GetSTN.cnf{
StationStatus := GetSTNstatus(StationlID)
RouteStatus := GetRoutestatus(StationID)
}
S3 | SLAVE CheckTimer(DiagTimer) SLAVE
=>
SelectArep(“DOM”, “MTU-AR”),
UCS_req{
user_data := InDiag-RequestPDU
h
StartTimer(DiagTimer)
S4 | MST CheckTimer(DiagTimer) MST
=>
SelectArep(“DOM”, “MTU-AR”),
UCS_req{
user_data := InDiag-RequestPDU
}
SelectArep(“NET”, “MTU-AR”)
UCS_req{
user_data := ExDiag-Request PDU
h
StartTimer(DiagTimer)

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

- 54 - 61158-6-17 © IEC:2007(E)

Table 33 — NWMM state table — Receiver transitions

Event or condition
Cutrr;ent Next state
State => action

R1 | ANY UCS_ind SAME
&& (PDU_Type = InDiag-RequestPDU
|| PDU_Type = ExDiag-RequestPDU)

UpdateNWstatus()

CheckNWstatus(NWstatus-table) = “True”
=>
NWStatus.ind{
NetworkStatus := GetNWstatus()
}

(changedSTN := CheckSTNstatus(NWstatus-table)) <> “None”
=>
STNStats.ind {
StationID := changed-station,
StationStatus := GetSTNstatus(StationID)
RouteStatus := GetRouteStatus(StationID)

!
R2 | ANY CheckTimer(AgingTimer) = “Expired” SAME
=>

UpdateNWstatus()

(changedSTN := CheckSTNstatus(NWstatus-table)) <> “None”
=>
STNStats.ind {
StationID := changed-station,
StationStatus := GetSTNstatus(StationID)
RouteStatus := GetRouteStatus(StationID)
5
StartTimer(AgingTimer)
R3 | SLAVE CheckMaster(NWstatus-table) = “True” MST
=>
(no actions taken)
R4 | MST CheckMaster (NWstatus-table) = “False” SLAVE
=>
(no actions taken)

8.8.2.3 Functions

Table 34 lists the functions used by the NWMM, their arguments, and their descriptions.

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

61158-6-17 © IEC:2007(E)

— 55 —

Table 34 - Functions used by the NWMM

Function name Parameter Description
GetNWstatus NWstatus-table Gets network status from the network status table.
GetSTNstatus NWstatus- Gets station status of the specified station from the
table,StationID network status table.
GetRoutestatus NWstatus-table, Gets route status to the specified station from the network
StationID status table.
SelectArep AreplD, Looks for the AREP entry that is specified by the AreplD
ARtype and AR type.
The value “DOM” for AreplD specifies all stations of the
domain to which the NWMM belongs.
The value “NET” for AreplD specifies all stations of the
network.
CheckTimer TimerID Checks status of the specified timer. If the timer has
expired, the value “Expired” is returned.
StartTimer TimerlD Starts the specified timer.
UpdateNWstatus NWstatus-table Updates the network status table according to received
APDU,
If aging time of each entry of the network status table has
expired, then updates the entry as not valid.
CheckNWstatus() NWstatus-table Checks the network status table. If any change of network
status is detected, the value “True” is returned.
CheckSTNstatus() NWstatus-table Checks the network status table. If any change of station
status is detected, the StationlID of the detected station is
returned.
CheckMaster NWstatus-table Checks the network status table. If the NWMM of own

station is recognized as master of the domain according
to the predefined rules, the value “True” is returned.

9 Application relationship protocol machines (ARPMs)

9.1 General

This fieldbus has Application Relationship Protocol Machines (ARPMs) for

e point-to-point user-triggered confirmed client/server AREP (PTC-AR);

e point-to-point user-triggered unconfirmed client/server AREP (PTU-AR);

e point-to-point network-scheduled unconfirmed client/server AREP (PSU-AR);

e multipoint user-triggered unconfirmed publisher/subscriber AREP (MTU-AR);

e multipoint network-scheduled unconfirmed publisher/subscriber AREP (MSU-AR).

9.2 Primitive definitions

9.2.1 Primitives exchanged

Table 35 lists the primitives, including their associated parameters exchanged between the FSPM

and the ARPM.

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

— 56 —

61158-6-17 © IEC:2007(E)

Table 35 — Primitives exchanged between FSPM and ARPM

Primitive Source Associated parameters Functions
name
EST_req FSPM Remote_dlIsap_address This primitive is used to request
establishment of the AR
ABT_req FSPM Reason_code This primitive is used to request abort of the
AR.

CS_req FSPM Destination_dIsap_address, | This primitive is used to request sending of
InvokelD, the ConfirmedSend-CommandPDU.
User_data,

UCS_req FSPM Remote_dIsap_address, This primitive is used to request sending of
User_data the UnconfirmedSend-CommandPDU.

CS_rsp FSPM Source_dIsap_address, This primitive is used to request sending of
User_data the ConfirmedSend-ResponsePDU.

CS_ind ARPM Source_dlsap_address, This primitive is used to report the received
InvokelD, ConfirmedSend-CommandPDU.
User_data

UCS_ind ARPM Remote_dlsap_address, This primitive is used to report the received
InvokelD, UnconfirmedSend-CommandPDU.
User_data

EST_cnf ARPM InvokelD, This primitive is used to convey a result of
Result, AR establishment.

CS_cnf ARPM InvokelD, This primitive is used to convey a result of
Result, confirmed sending

9.2.2 Parameters of primitives

The parameters used with the primitives exchanged between the FSPM and the ARPM are

listed in Table 36.

Table 36 — Parameters used with primitives exchanged FSPM user and ARPM

Parameter name

Description

InvokelD

This parameter is locally used and defined by the user to identify the request

Remote_dlsap_address

This parameter contains the destination DLSAP-address in the request and the source
DLSAP-address in the indication.

Destination_dlsap_address

This parameter contains the Destination DLSAP-address.

Source_dIsap_address

This parameter contains the Source DLSAP-address.

User data

This parameter contains the service dependent body for the APDU.

Result

This parameter indicates that the service request succeeded or failed.

Reason_Code

This parameter indicates the reason for the Abort

9.3 State machine

9.3.1

9.3.1.1 General

The PTC-ARPM State Machine has two possible states. The defined states and their

descriptions are shown in Table 37 and Figure 13.

Point-to-point user-triggered confirmed client/server ARPM (PTC-ARPM)

Table 37 - PTC-ARPM states

State Description
CLOSED The AREP is defined, but not capable of sending or receiving FAL-PDUs
OPEN The AREP is defined and capable of sending or receiving FAL-PDUs

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

61158-6-17 © IEC:2007(E) - 57 -

9.3.1.2 States

Figure 13 — State transition diagram of the PTC-ARPM

The PTC-ARPM state machine is described in Figure 13, and in Table 38 and Table 39.

Table 38 — PTC-ARPM state table — Sender transitions

Event or condition
Current Next state
state => action
S$1 | CLOSED EST_req CLOSED
=>
Establish_req{
cardinality := “one-to-one”,
remote_confirm := “True”,
sequence_control := “True”
conveyance_policy := “Queue”
S2 | OPEN ABT_req CLOSED
=>
Abort_req {}
ABT _ind {}
S3 | OPEN CS_req OPEN
&& Role = “Client” || “Peer”
=>
FAL-PDU_req {
disap_id := DLSAP_ID,
called_address := Destination _dlsap_address,
dIsdu := BuildFAL-PDU (
fal_pdu_name :=“CS_PDU”,
fal_data := user_data)
!
S4 | OPEN CS_rsp OPEN
&& Role = “Server” || “Peer”
=>
FAL-PDU_req {
disap_id := DLSAP_ID,
called_address := Destination _dlsap_address,
dIsdu := BuildFAL-PDU (
fal_pdu_name := “CS_RspPDU’",
fal_data := user_data)
}

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

— 58 —

61158-6-17 © IEC:2007(E)

Table 39 — PTC-ARPM state table — Receiver transitions

Current
state

Event or condition

=> action

Next state

R1

CLOSED

Establish_cnf
&& status = “Success”
=>
DLSAP_ID := dIsap_id
EST_cnf{
Status := status

OPEN

R2

OPEN

}

FAL-PDU_ind

&& FAL_Pdu_Type (fal_pdu) = “CS_ReqPDU"

&& Role = “Peer” || “Server”

=>

CS_ind{

Source _dIsap_address := calling_address,
user _data := fal_pdu

OPEN

R3

OPEN

}
FAL-PDU_ind
&& FAL_Pdu_Type (fal_pdu) = “CS_RspPDU”
&& Role = “Client” || “Peer”
=>
CS_cnf{
user_data := fal_pdu

OPEN

R4

OPEN

}
FAL-PDU_ind
&& FAL_Pdu_Type (fal_pdu) <> “CS_ReqPDU"
&& Role = “Server”
=>
(no actions taken)

OPEN

RS

OPEN

FAL-PDU_ind
&& FAL_Pdu_Type (fal_pdu) <> “CS_RspPDU”
&& Role = “Client”
=>
(no actions taken)

OPEN

R6

OPEN

FAL-PDU_ind
&& FAL_Pdu_Type (fal_pdu) <> “CS_ReqPDU"
&& FAL_Pdu_Type (fal_pdu) <> “CS_RspPDU”
&& Role = “Peer”
=>

(no actions taken)

OPEN

R7

OPEN

FAL-PDU_cnf
&& FALPdu_Type(fal-pdu) = “CS_Req PDU”
&& Role = “Client” || “Peer”
&& status <> “success”
=>
CS_Cnf{
user_data := null,
result := status

OPEN

R8

OPEN

}
FAL-PDU_cnf
&& Role = “Client” || “Peer”
&& status = “success”
=>
(no actions taken)

OPEN

R9

OPEN

FAL-PDU_Ind
&& FALPdu_Type(fal-pdu) = “CS_Rsp PDU”
&& Role = “Server” || “Peer”
=>
(no actions taken)

OPEN

R10

OPEN

ErrorTOARPM
=>
(No actions taken. See note.)

OPEN

R11

OPEN

Abort_ind
=>

ABT _ind{}

CLOSED

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

61158-6-17 © IEC:2007(E) - 59 -

9.3.2 Point-to-point user-triggered unconfirmed client/server ARPM (PTU-ARPM)
9.3.2.1 General

The PTU-ARPM State Machine has two possible states. The defined states and their
descriptions are shown in Table 40 and Figure 14.

Table 40 - PTU-ARPM states

State Description
CLOSED The AREP is defined, but not capable of sending or receiving FAL-PDUs
OPEN The AREP is defined and capable of sending or receiving FAL-PDUs
R1
S1 S3, 84, R2
R3, R4, R5
S2,R6

Figure 14 — State transition diagram of the PTU-ARPM

9.3.2.2 State tables

The PTU-ARPM state machine is described in Figure 14, and in Table 41 and Table 42.

Table 41 — PTU-ARPM state table — Sender transitions

Event or condition
Current Next state
state => action
S1 | CLOSED EST_req CLOSED
=>
Establish_req{
cardinality := “one-to-one”,
remote_confirm := “True”,
sequence_control := “False”
conveyance_policy := “Queue”
!
S2 | OPEN ABT_req CLOSED
=>
Abort_req {}
ABT _ind {}
S3 | OPEN UCS_req OPEN
&& Role = “Client” || “Peer”
=>
FAL-PDU_req {
disap_id := DLSAP_ID,
called_address := Remote_dIsap_address,
dIsdu := BuildFAL-PDU (
fal_pdu_name := “UCS_PDU",
fal_data := user_data)
}
S4 | OPEN UCS_req OPEN
&& Role = “Server”
=>
(no actions taken)

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

- 60 - 61158-6-17 © IEC:2007(E)

Table 42 — PTU-ARPM state table — Receiver transitions

Current
state

Event or condition
Next state
=> action

R1 | CLOSED

Establish_cnf OPEN
&& status = “Success”
=>
DLSAP_ID := dlsap_id
EST_cnf{
Status := status
}

R2 | OPEN

FAL-PDU_ind OPEN
&& FAL_Pdu_Type (fal_pdu) = “UCS_PDU”
&& Role = “Server” || “Peer”
=>
CS_ind{
remote_dlsap_address := calling_address,
user_data := fal_pdu

R3 | OPEN

}
FAL-PDU_ind OPEN
&& FAL_Pdu_Type (fal_pdu) <> “UCS_PDU”
&& Role = “Client” || “Peer”
=>

(no actions taken)

R4 | OPEN

FAL-PDU_ind OPEN
&& Role = “Client”
=>

(no actions taken)

R5 | OPEN

ErrorTo)ARPM OPEN
=>
(No actions taken. See note.)

R6 | OPEN

Abort_ind CLOSED
=>

ABT_ind{}

9.3.3 Point-to-point network-scheduled unconfirmed client/server ARMP (PSU-ARPM)

9.3.3.1 General

The PSU-ARPM State Machine has two possible states. The defined states and their

descriptions are shown in Table 43 and Figure 15.

Table 43 - PSU-ARPM states

State Description
CLOSED The AREP is defined but not capable of sending or receiving FAL-PDUs
OPEN The AREP is defined and capable of sending or receiving FAL-PDUs

R1

S S3, $4, S5
R2, R3, R4

S2,R5

Figure 15 — State transition diagram of the PSU-ARPM

9.3.3.2 State tables

The PSU-ARPM state machine is described in Figure 15, and in Table 44 and Table 45.

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

61158-6-17 © IEC:2007(E) -61-

Table 44 — PSU-ARPM state table — Sender transitions

Event or condition
Current Next state
state => action
S1 | CLOSED EST_req CLOSED
=>
Establish_req{
cardinality := “one-to-one”,
remote_confirm := “False”,
sequence_control := “False”
conveyance_policy := “Buffer”
S2 | OPEN ABT _req CLOSED
=>
Abort_req {}
ABT ind {}
S3 | OPEN UCS_req OPEN
&& Role =“PushPublisher”
=>
LoadBuffer(Remote_dlsap_address, user_data)
S4 | OPEN StartTransmitCycleTimer expired OPEN
&& Role =“PushPublisher”
=>
FAL-PDU_req {
disap_id := DLSAP_ID,
called_address := Remote_dIsap_address,,
dIsdu := BuildFAL-PDU (
fal_pdu_name := “UCS_PDU",
fal_data := local_buf)
b
StartTransmitCycleTimer(arep_id)
S5 | OPEN UCS_req OPEN
&& Role = “Subscriber”
=>
(no actions taken)
Table 45 - PSU-ARPM state table — Receiver transitions
Event or condition
Current Next state
state => action
R1 | CLOSED Establish_cnf OPEN
&& status = “Success”
=>
DLSAP_ID :=dlIsap_id
EST_cnf {}
StartTransmitCycleTimer(arep_id)
R2 | OPEN FAL-PDU_ind OPEN
&& Role = “Subscriber”
&& FAL_Pdu_Type (fal_pdu) = “UCS_PDU”
=>
UCS_ind {
remote_dlsap_address := calling_address,
user_data := fal_pdu,
}
R3 | OPEN FAL-PDU_ind OPEN
&& FAL_Pdu_Type (fal_pdu) <> “UCS_PDU”
=>
(no actions taken)
R4 | OPEN FAL-PDU_ind OPEN
&& Role = “Publisher”
=>
(no actions taken)
R5 | OPEN Abort_ind CLOSED
=>
ABT_ind{}

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

- 62 - 61158-6-17 © IEC:2007(E)

9.3.4 Multipoint user-triggered unconfirmed publisher/subscriber ARPM (MTU-ARPM)
9.3.4.1 General

The MTU-ARPM State Machine has two possible states. The defined states and their
descriptions are shown in Table 46 and Figure 16.

Table 46 - MTU-ARPM states

State Description
CLOSED The AREP is defined, but not capable of sending or receiving FAL-PDUs
OPEN The AREP is defined and capable of sending or receiving FAL-PDUs
R1
o1 ‘ ‘ $3,54,R2
R3, R4, R5
S2,R6

Figure 16 — State transition diagram of the MTU-ARPM

9.3.4.2 State tables

The MTU-ARPM state machine is described in Figure 16, and in Table 47 and Table 48.

Table 47 — MTU-ARPM state table — Sender transitions

4 Current Evenf or cqndltlon Next state
state => action

S§1 | CLOSED EST_req CLOSED

=>

Establish_req{
cardinality := “one-to-many”,
remote_confirm := “False”,

sequence_control := “True”
conveyance_policy := “Queue”

}
S§2 | OPEN ABT_req CLOSED
=>
Abort_req {}
ABT_ind {}
S3 | OPEN UCS_req OPEN

&& Role = “Publisher”
=>
FAL-PDU_req {
disap_id := DLSAP_ID,
called_address := Remote_dIsap_address,
dIsdu := BuildFAL-PDU (
fal_pdu_name := “UCS_PDU",
fal_data := user_data)

}
S4 | OPEN UCS_req OPEN
&& Role = “Subscriber”

=>

(no actions taken)

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

61158-6-17 © IEC:2007(E) - 63 -

Table 48 — MTU-ARPM state table — Receiver transitions

Event or condition
Current Next state
state => action
R1 | CLOSED Establish_cnf OPEN
&& status = “Success”
=>
DLSAP_ID := dlsap_id
EST cnf {}
R2 | OPEN FAL-PDU_ind OPEN
&& FAL_Pdu_Type (fal_pdu) = “UCS_PDU”
&& Role = “Subscriber”
=>
CS_ind{
remote_dlsap_address := calling_address,
user_data := fal_pdu
}
R3 | OPEN FAL-PDU_ind OPEN
&& FAL_Pdu_Type (fal_pdu) <> “UCS_PDU”
=>
(no actions taken)
R4 | OPEN FAL-PDU_ind OPEN
&& Role = “Publisher”
=>
(no actions taken)
R5 | OPEN ErrorTOARPM OPEN
=>
(No actions taken. See note.)
R6 | OPEN Abort_ind CLOSED
=>
ABT_ind{}

9.3.5 Multipoint network-Scheduled Unconfirmed publisher/subscriber ARPM (MSU-

ARPM)
9.3.5.1 General

The MSU-ARPM State Machine has two possible states. The defined states and their

descriptions are shown in Table 49 and Figure 17.

Table 49 - MSU-ARPM states

State Description
CLOSED The AREP is defined but not capable of sending or receiving FAL-PDUs
OPEN The AREP is defined and capable of sending or receiving FAL-PDUs

9.3.5.2 State tables

S3, $4, S5
R2,R3, R4

Figure 17 — State transition diagram of the MSU-ARPM

The MSU-ARPM state machine is described in Figure 17, and in Table 50 and Table 51.

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

- 64 - 61158-6-17 © IEC:2007(E)

Table 50 —- MSU-ARPM state table — Sender transitions

Event or condition
Current Next state
state => action
S§1 | CLOSED EST_req CLOSED
=>
Establish_req{
cardinality := “one-to-many”,
remote_confirm := “False”,
sequence_control := “False”
conveyance_policy := “Buffer”
S2 | OPEN ABT _req CLOSED
=>
Abort_req {}
ABT ind {}
S3 | OPEN UCS_req OPEN
&& Role =“Publisher”
=>
LoadBuffer(Remote_dlsap_address, user_data)
S4 | OPEN StartTransmitCycleTimer expired OPEN
&& Role =“Publisher”
=>
FAL-PDU_req {
disap_id := DLSAP_ID,
called_address := Remote_dIsap_address,,
dIsdu := BuildFAL-PDU (
fal_pdu_name := “UCS_PDU",
fal_data := local_buf)
}
StartTransmitCycleTimer(arep_id)
S5 | OPEN UCS_req OPEN
&& Role = “Subscriber”
=>
(no actions taken)
Table 51 — MSU-ARPM state table — Receiver transitions
Event or condition
Current Next state
state => action
R1 | CLOSED Establish_cnf OPEN
&& status = “Success”
=>
DLSAP_ID :=dlIsap_id
EST_cnf {}
StartTransmitCycleTimer(arep_id)
R2 | OPEN FAL-PDU_ind OPEN
&& Role = “Subscriber”
&& FAL_Pdu_Type (fal_pdu) = “UCS_PDU”
=>
UCS_ind {
remote_dIsap_address := calling_address,
user_data := fal_pdu,
}
R3 | OPEN FAL-PDU_ind OPEN
&& || FAL_Pdu_Type (fal_pdu) <> “UCS_PDU”
=>
(no actions taken)
R4 | OPEN FAL-PDU_ind OPEN
&& Role = “Publisher”
=>
(no actions taken)
R5 | OPEN Abort_ind CLOSED
=>
ABT_ind{}
9.4 Functions

Table 52 lists the functions used by the ARPMs, their arguments, and their descriptions.

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

61158-6-17 © IEC:2007(E) - 65—

Table 52 - Functions used by the ARPMs

Function name Parameter Description

BuildFAL-PDU fal_pdu_name, This function builds an FAL-PDU out of the parameters given as
fal_data input variables

FAL_Pdu_Type fal_pdu This function decodes the FAL-PDU that is conveyed in the

dis_user_data parameter and retrieves one of the FALPDU types

LoadBuffer Remote_dIsap_address, | This function loads user data into the local buffer.
user_data

StartTransmitCycleTimer arep_id This function starts the timer specified by arep_id.

10 DLL mapping protocol machine (DMPM)

10.1 General

The DLL Mapping Protocol Machine is common to all the AREP types.

The primitives issued by ARPM to DMPM are passed to the data-link layer as the DLS
primitives. The primitives issued to DMPM from the data-link layer are notified to an
appropriate ARPM out of the ARPMs.

DMPM adds and deletes parameters to/from the primitives exchanged between ARPM and the
data-link layer if necessary.

— Remarks about DL-identifiers:

The data-link layer specification defines two types of identifiers to distinguish each DL
primitive or to match one DL outgoing primitive with the corresponding incoming primitive.
These two identifiers are suffixed as DL-identifier and DLS-user-identifier, respectively. In a
real implementation of an FAL-DL interface, these identifications may be achieved by means
of a pointer to a memory location or a return value of a function call, or something else. For
this reason, these identifiers are not included as parameters of the primitives issued by the
ARPM.

The “DL-identifiers” and “DLS-user-identifiers” are mandatory in the DL-services. The FAL
assumes that the values of these parameters are provided by a local means.

— Remark about DLS-user identification:

It is assumed that a connection between one ARPM instance and one DMPM instance is
established locally rather than by means of a protocol. Therefore, DLS-user identification
parameters are not used in the primitives issued by the ARPM.

— Remark about buffer or queue identifiers:

The data-link layer uses parameters to identify the queue or buffer shared between the data-
link layer and the DLS-user. Although they are useful to clarify the operations of the data-link
layer, none of them affects the protocol behaviour of the FAL and DL. In a real implementation,
these parameters are implementation-dependent. Therefore, parameters that correspond
direct to these buffer or queue identifiers are not described. A means for identifying the
buffers and queues between the FAL and the DL is a local matter.

— Remark about initialization of the data-link layer:

The data-link layer specification defines services to setup resources within the layer, such as
DL-Create or DL-Bind services. Although they are useful to clarify the operations of the data-
link layer, none of them affects the protocol behavior of the FAL and DL. Therefore, the FAL
assumes that such initialization procedures have been executed prior to the operations of the
FAL state machines.

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

10.2 Primitive definitions

- 66 - 61158-6-17 © IEC:2007(E)

10.2.1 Primitives exchanged between DMPM and ARPM

Table 53 lists the primitives exchanged between the DMPM and the ARPM.

Table 53 — Primitives exchanged between DMPM and ARPM

Primitive name Source Associated parameters Functions

Establish_req ARPM cardinality, This primitive is used to request the establishment
remote_confirm, ofa AR
conveyance_policy,
sequence_control

Abort_req ARPM This primitive is used to request an abort without

transferring an FAL-PDU.

FAL-PDU_req ARPM disap_id, This primitive is used to request the DMPM to
called_address, transfer an FAL-PDU. It passes the FAL-PDU to
dll_priority, the DMPM as a DLSDU. It also carries some of
disdu the data-link layer parameters that are referenced

there.

Establish_cnf DMPM disap_id This primitive is used to report completion of the

requested establishment of an AR.

FAL-PDU_ind DMPM calling_address, This primitive is used to pass an FAL-PDU
fal_pdu, received as a data-link layer service data unit to a

designated ARPM. It also carries some of the
data-link layer parameters that are referenced in
the ARPM.

FAL-PDU_cnf DMPM status

Abort_ind DMPM reason This primitive is used to convey the indication of

abort of provider and its reason.

ErrorTOARPM DMPM originator, This primitive is used to convey selected
reason communication errors reported by the data-link

layer to a designated ARPM.

10.2.2 Primitives exchanged between data-link layer and ARPM

Table 54 lists the primitives exchanged between the data-link layer and the ARPM.

Table 54 — Primitives exchanged between data-link layer and DMPM

Primitive name Source Associated parameters Functions
DL-UNITDATA _req DMPM dl_called address,
dl_dls_user data
DL_CREATE_req DMPM Maximum DLSDU size,
Maximum queue depth,
Queue DL-identifier
DL_BIND_req DMPM dl_service_subtype,
dl_dlsap_id
DL-DELETE_req DMPM Queue DL-identifier
DL-UNBIND_req DMPM DLSAP DL-identifier
DLM-SET_req DMPM DLM-object-identifier,
Desired-value,
dl_status
DLM-GET_req DMPM DLM-object-identifier,
Current-value,
Status
DLM-AcCTION_req DMPM Desired-action
DL-UNITDATA_ind Data-link layer dl_calling_address,
dl_dls_user_data
DL-UNITDATA_cnf Data-link layer dl_status
DLM-AcTioN_cnf Data-link layer dl_status
DLM-EvVeENT_ind Data-link layer DLM-event-identifier

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

61158-6-17 © IEC:2007(E) - 67 -

10.2.3 Parameters of DMPM/data-link layer primitives
The parameters used with the primitives exchanged between the DMPM and the data-link

layer are identical to those defined in Section 4 of this PAS. They are prefixed by “dl_" to
indicate that they are used by the FAL.

10.3 DMPM state machine
10.3.1 DMPM states

The DMPM State Machine has only one possible state. The defined state and their
descriptions are shown in Table 55 and Figure 18.

Q All transitions

Figure 18 — State transition diagram of DMPM

Table 55 - DMPM states

State Description

ACTIVE The DMPM in the ACTIVE state is ready to transmit or receive primitives to or from
the data-link layer and the ARPM.

10.3.2 DMPM state table

The DMPM state machine is described in Table 56 and Table 57

Table 56 — DMPM state table — Sender transitions

Event or condition

Current Next state
state => action
S1 | ACTIVE Establish_req ACTIVE
&& cardinality = “one-to-one”
&& remote_confirm = “True”
&& sequence_control := “True”

=>
DL_BIND_req(in)
dl_service_subtype := “ASS”
}

DL_BIND_req(out) -- immediate response
=>

Establish_cnf{
disap_id := dI_dlsap_id
}

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

- 68 - 61158-6-17 © IEC:2007(E)

Event or condition

Current Next state
state => action
S2 | ACTIVE Establish_req ACTIVE
&& cardinality = “one-to-one”
&& remote_confirm = “True”
&& sequence_control := “False”
=>
DL_BIND_req(in)
dl_service_subtype := “AUS”
}
DL_BIND_req(out) -- immediate response
=>
Establish_cnf{
disap_id := dI_dlsap_id
}
S§3 | ACTIVE Establish_req ACTIVE
&& cardinality = “one-to-one”
&& remote_confirm = “False”
&& sequence_control := “False”
=>
DL_BIND_req(in)
di_service_subtype := “UUS”
}
DL_BIND_req(out) -- immediate response
=>
Establish_cnf{
disap_id := dI_dlIsap_id
}
S4 | ACTIVE Establish_req ACTIVE
&& cardinality = “one-to-many”
&& remote_confirm = “False”
&& sequence_control := “False”
=>
DL_BIND_req(in)
dl_service_subtype := “MUS”
}
DL_BIND_req(out) -- immediate response
=>
Establish_cnf{
disap_id := dI_dlsap_id
S5 | ACTIVE Establish_req ACTIVE
&& cardinality = “one-to-many”
&& remote_confirm = “False”
&& sequence_control := “True”
=>
DL_BIND_req(in)
dl_service_subtype := “MSS”
}
DL_BIND_req(out) -- immediate response
=>
Establish_cnf{
disap_id := dI_dlsap_id
}
S6 | ACTIVE Abort_req ACTIVE
=>
DL-UnsIND_req{},
Abort_ind{}
S7 | ACTIVE FAL-PDU_req ACTIVE
=>

PickDlsap (dIsap_id),

DL-UNITDATA _req{
dl_called_address := called_address,
di_dlIs_user_data := disdu

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

61158-6-17 © IEC:2007(E)

— 69 —

Table 57 — DMPM state table — Receiver transitions

Event or condition
Current Next state
state => action
R1 | ACTIVE DL_Unitdata.ind ACTIVE
&& FindAREP (dI_called_address) = “False”
=>
(no actions taken)
R2 | ACTIVE DL_Unitdata.ind ACTIVE
&& FindAREP (dI_called_address) = “True”
=>
FAL-PDU_ind {
calling_address := dI_calling_address,
fal_pdu :=dl_dIs_user_data
!
R3 | ACTIVE DL_Unitdata.cnf ACTIVE
&& dl_status <> “success”
=>
ErrorToARPM {
originator := “local_dls”,
reason := dI_status
}
FAL-PDU_cnf {
status := dI_status
}
R4 | ACTIVE DL_Unitdata.cnf ACTIVE
&& dl_status = “success”
=>
(no actions taken)
FAL-PDU_cnf {
status := dI_status
!

10.3.3 Functions used by DMPM

Table 58 contains the functions used by the DMPM, their arguments and their descriptions.

Table 58 — Functions used by the DMPM

Function name Parameter Description
PickDlsap disap_id This function selects the DLSAP specified by the dIsap_id
parameter. After this function is executed, the attributes of the
selected DLSAP are available to the state machine.
FindAREP dl_called_address This function identifies the AREP that shall be bound with an

active DMPM. True means the AREP exists. After this function is
executed, the attributes of the selected AREP are available to the
state machine.

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

-70 - 61158-6-17 © IEC:2007(E)
Bibliography

IEC/TR 61158-1 (Ed.2.0), Industrial communication networks — Fieldbus specifications —
Part 1: Overview and guidance for the IEC 61158 and IEC 61784 series

IEC 61158-3-17, Industrial communication networks — Fieldbus specifications - Part 3-17:
Data-link layer service definition — Type 17 elements

IEC 61158-4-17, Industrial communication networks — Fieldbus specifications — Part 4-17:
Data-link layer protocol specification — Type 17 elements

IEC 61784-1 (Ed.2.0), Industrial communication networks — Profiles — Part 1: Fieldbus profiles

IEC 61784-2, Industrial communication networks — Profiles — Part 2: Additional fieldbus
profiles for real-time networks based on ISO/IEC 8802-3

‘NV3ANg ATddNS 009 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3SN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IIW OL d3ISN3DIT

LICENSED TO MECON Limited. - RANCHI/BANGALORE
FOR INTERNAL USE AT THISLOCATION ONLY, SUPPLIED BY BOOK SUPPLY BUREAU.

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

3, rue de Varembé
P.O. Box 131
CH-1211 Geneva 20
Switzerland

Tel: +41 2291902 11
Fax: + 41 22 919 03 00
info@iec.ch
www.iec.ch

‘NV3ANg A1ddNS YO0S9 A9 A3ITddNS ‘ATNO NOILVYOOTSIHL 1V 3ISN TYNYILNI J0d

FHOTVONYE/IHON VY - ‘PaHWIT NOD3IW OL d3ISN3DIT

	CONTENTS
	FOREWORD
	INTRODUCTION
	1 Scope
	1.1 General
	1.2 Specifications
	1.3 Conformance

	2 Normative reference
	3 Definitions
	3.1 Terms and definitions
	3.2 Abbreviations and symbols
	3.3 Conventions

	4 Abstract syntax description
	4.1 FAL PDU abstract syntax
	4.2 Abstract syntax of PDU body
	4.3 PDUs for ASEs
	4.4 Type definitions
	4.5 Data types

	5 Transfer syntax
	5.1 Overview of encoding
	5.2 APDU header encoding
	5.3 APDU body encoding
	5.4 Data type encoding rules

	6 FAL protocol state machines structure
	7 AP-context state machine
	8 FAL service protocol machines (FSPMs)
	8.1 General
	8.2 Common parameters of the primitives
	8.3 Variable ASE protocol machine (VARM)
	8.4 Event ASE protocol machine (EVTM)
	8.5 Load region ASE protocol machine (LDRM)
	8.6 Function invocation ASE protocol machine (FNIM)
	8.7 Time ASE protocol machine (TIMM)
	8.8 Network management ASE protocol machine (NWMM)

	9 Application relationship protocol machines (ARPMs)
	9.1 General
	9.2 Primitive definitions
	9.3 State machine
	9.4 Functions

	10 DLL mapping protocol machine (DMPM)
	10.1 General
	10.2 Primitive definitions
	10.3 DMPM state machine

	Bibliography
	Figures
	Figure 1 – APDU overview
	Figure 2 – Type field
	Figure 3 – Identifier octet
	Figure 4 – Length octet (one-octet format)
	Figure 5 – Length octets (three-octet format)
	Figure 6 – Relationships among protocol machines and adjacent layers
	Figure 7 – State transition diagram of VARM
	Figure 8 – State transition diagram of EVTM
	Figure 9 – State transition diagram of LDRM
	Figure 10 – State transition diagram of FNIM
	Figure 11 – State transition diagram of TIMM
	Figure 12 – State transition diagram of NWMM
	Figure 13 – State transition diagram of the PTC-ARPM
	Figure 14 – State transition diagram of the PTU-ARPM
	Figure 15 – State transition diagram of the PSU-ARPM
	Figure 16 – State transition diagram of the MTU-ARPM
	Figure 17 – State transition diagram of the MSU-ARPM
	Figure 18 – State transition diagram of DMPM

	Tables
	Table 1 – Conventions used for AE state machine definitions
	Table 2 – Encoding of FalArHeader field
	Table 3 – Primitives exchanged between FAL user and VARM
	Table 4 – Parameters used with primitives exchanged FAL user and VARM
	Table 5 – VARM state table – Sender transitions
	Table 6 – VARM state table – Receiver transitions
	Table 7 – Functions used by the VARM
	Table 8 – Primitives exchanged between FAL user and EVTM
	Table 9 – Parameters used with primitives exchanged FAL user and EVTM
	Table 10 – EVTM state table – Sender transitions
	Table 11 – EVTM state table – Receiver transitions
	Table 12 – Functions used by the EVTM
	Table 13 – Primitives exchanged between FAL user and LDRM
	Table 14 – Parameters used with primitives exchanged FAL user and LDRM
	Table 15 – LDRM state table – Sender transitions
	Table 16 – LDRM state table – Receiver transitions
	Table 17 – Functions used by the LDRM
	Table 18 – Primitives exchanged between FAL user and FNIM
	Table 19 – Parameters used with primitives exchanged FAL user and FNIM
	Table 20 – FNIM state table – Sender transitions
	Table 21 – FNIM state table – Receiver transitions
	Table 22 – Functions used by the FNIM
	Table 23 – Primitives exchanged between FAL user and TIMM
	Table 24 – Parameters used with primitives exchanged FAL user and TIMM
	Table 25 – TIMM states
	Table 26 – TIMM state table – Sender transitions
	Table 27 – TIMM state table – Receiver transitions
	Table 28 – Functions used by the TIMM
	Table 29 – Primitives exchanged between FAL user and NWMM
	Table 30 – Parameters used with primitives exchanged FAL user and NWMM
	Table 31 – NWMM states
	Table 32 – NWMM state table – Sender transitions
	Table 33 – NWMM state table – Receiver transitions
	Table 34 – Functions used by the NWMM
	Table 35 – Primitives exchanged between FSPM and ARPM
	Table 36 – Parameters used with primitives exchanged FSPM user and ARPM
	Table 37 – PTC-ARPM states
	Table 38 – PTC-ARPM state table – Sender transitions
	Table 39 – PTC-ARPM state table – Receiver transitions
	Table 40 – PTU-ARPM states
	Table 41 – PTU-ARPM state table – Sender transitions
	Table 42 – PTU-ARPM state table – Receiver transitions
	Table 43 – PSU-ARPM states
	Table 44 – PSU-ARPM state table – Sender transitions
	Table 45 – PSU-ARPM state table – Receiver transitions
	Table 46 – MTU-ARPM states
	Table 47 – MTU-ARPM state table – Sender transitions
	Table 48 – MTU-ARPM state table – Receiver transitions
	Table 49 – MSU-ARPM states
	Table 50 – MSU-ARPM state table – Sender transitions
	Table 51 – MSU-ARPM state table – Receiver transitions
	Table 52 – Functions used by the ARPMs
	Table 53 – Primitives exchanged between DMPM and ARPM
	Table 54 – Primitives exchanged between data-link layer and DMPM
	Table 55 – DMPM states
	Table 56 – DMPM state table – Sender transitions
	Table 57 – DMPM state table – Receiver transitions
	Table 58 – Functions used by the DMPM

