

IEC 61158-6-15
Edition 2.0 2010-08

INTERNATIONAL
STANDARD

Industrial communication networks – Fieldbus specifications –
Part 6-15: Application layer protocol specification – Type 15 elements

IE
C

 6
11

58
-6

-1
5:

20
10

(E
)

®

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 THIS PUBLICATION IS COPYRIGHT PROTECTED
 Copyright © 2010 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester.
If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication,
please contact the address below or your local IEC member National Committee for further information.

IEC Central Office
3, rue de Varembé
CH-1211 Geneva 20
Switzerland
Email: 0Hinmail@iec.ch
Web: 1Hwww.iec.ch

About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigenda or an amendment might have been published.
 Catalogue of IEC publications: 2Hwww.iec.ch/searchpub

The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,…).
It also gives information on projects, withdrawn and replaced publications.
 IEC Just Published: 3Hwww.iec.ch/online_news/justpub

Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available
on-line and also by email.
 Electropedia: 4Hwww.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions
in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical
Vocabulary online.
 Customer Service Centre: 5Hwww.iec.ch/webstore/custserv

If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service
Centre FAQ or contact us:
Email: 6Hcsc@iec.ch
Tel.: +41 22 919 02 11
Fax: +41 22 919 03 00

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

IEC 61158-6-15
Edition 2.0 2010-08

INTERNATIONAL
STANDARD

Industrial communication networks – Fieldbus specifications –
Part 6-15: Application layer protocol specification – Type 15 elements

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION XD
ICS 25.04.40; 35.100.70; 35.110

PRICE CODE

ISBN 978-2-88912-131-1

® Registered trademark of the International Electrotechnical Commission

®

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 2 – 61158-6-15 © IEC:2010(E)

CONTENTS

FOREWORD... 0H6
INTRODUCTION... 1H8
1 Scope... 2H9

1.1 General ... 3H9
1.2 Specifications .. 4H9
1.3 Conformance... 5H10

2 Normative references ... 6H10
3 Terms and definitions, abbreviations, symbols and conventions 7H10

3.1 Terms and definitions .. 8H10
3.2 Abbreviations and symbols .. 9H17
3.3 Conventions .. 10H19
3.4 Conventions used in state machines ... 11H21

4 Abstract syntax for client/server ... 12H22
5 Transfer syntax for client/server ... 13H22

5.1 General ... 14H22
5.2 Common APDU structure .. 15H22
5.3 Service-specific APDU structures .. 16H26
5.4 Data representation ‘on the wire’ ... 17H51

6 Abstract syntax for publish/subscribe ... 18H51
7 Transfer syntax for publish/subscribe ... 19H52

7.1 General ... 20H52
7.2 APDU structure ... 21H52
7.3 Sub-message structure ... 22H53
7.4 APDU interpretation .. 23H55
7.5 Service specific APDU structures .. 24H57
7.6 Common data representation for publish/subscribe ... 25H79

8 Structure of FAL protocol state machines ... 26H83
9 AP-context state machines for client/server .. 27H85
10 FAL service protocol machine (FSPM) for client/server ... 28H85

10.1 General ... 29H85
10.2 FSPM state tables ... 30H85
10.3 Functions used by FSPM... 31H92
10.4 Parameters of FSPM/ARPM primitives .. 32H92
10.5 Client/server server transactions ... 33H92

11 Application relationship protocol machines (ARPMs) for client/server 34H94
11.1 Application relationship protocol machines (ARPMs) ... 35H94
11.2 AREP state machine primitive definitions .. 36H95
11.3 AREP state machine functions .. 37H96

12 DLL mapping protocol machine (DMPM) for client/server.. 38H96
12.1 AREP mapping to data link layer ... 39H96
12.2 DMPM states... 40H97
12.3 DMPM state machine .. 41H97
12.4 Primitives exchanged between data link layer and DMPM 42H98
12.5 Client/server on TCP/IP... 43H98

13 AP-Context state machines for publish/subscribe ... 44H102

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 3 –

14 Protocol machines for publish/subscribe ... 45H102
14.1 General ... 46H102
14.2 Publish/subscribe on UDP ... 47H104

Bibliography.. 48H105

Figure 1 – APDU Format ... 49H22
Figure 2 – Client to server confirmed service request.. 50H24
Figure 3 – Normal response from server to client .. 51H24
Figure 4 – Exception response from server to client .. 52H24
Figure 5 – Client to server unconfirmed service request.. 53H25
Figure 6 – Publish/subscribe APDU .. 54H52
Figure 7 – Flags of issue request .. 55H58
Figure 8 – Flags of heartbeat request ... 56H60
Figure 9 – Flags of VAR request ... 57H64
Figure 10 – Flags of GAP request ... 58H66
Figure 11 – Flags of ACK request ... 59H68
Figure 12 – Flags of INFO_DST request ... 60H72
Figure 13 – Flags of INFO_REPLY request ... 61H73
Figure 14 – Flags of INFO_SRC request ... 62H75
Figure 15 – Flags of INFO_TS request.. 63H77
Figure 16 – Flags of PAD request ... 64H78
Figure 17 – Encoding of octet ... 65H80
Figure 18 – Encoding of boolean .. 66H80
Figure 19 – Encoding of unsigned short .. 67H80
Figure 20 – Encoding of unsigned long ... 68H80
Figure 21 – Encoding of unsigned long long.. 69H81
Figure 22 – Encoding of float .. 70H81
Figure 23 – Encoding of double .. 71H81
Figure 24 – Relationships among protocol machines and adjacent layers 72H84
Figure 25 – State transition diagram of FSPM ... 73H85
Figure 26 – Transaction state machine, per connection .. 74H86
Figure 27 – Client/server server transactions .. 75H93
Figure 28 – State transition diagram of the Client ARPM... 76H94
Figure 29 – State transition diagram of the server ARPM .. 77H95
Figure 30 – State transition diagram of DMPM .. 78H97
Figure 31 – APDU Format ... 79H98
Figure 32 – TCP/IP PDU Format ... 80H99
Figure 33 – Publish/subscribe receiver ... 81H103

Table 1 – Conventions used for state machines .. 82H21
Table 2 – Exception code.. 83H25
Table 3 – Read discretes request ... 84H26
Table 4 – Read discretes response ... 85H26

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 4 – 61158-6-15 © IEC:2010(E)

Table 5 – Read coils request .. 86H27
Table 6 – Read coils response.. 87H27
Table 7 – Write single coil request .. 88H28
Table 8 – Write single coil response ... 89H28
Table 9 – Write multiple coils request ... 90H29
Table 10 – Write multiple coils response ... 91H29
Table 11 – Broadcast write single coil request .. 92H30
Table 12 – Broadcast write multiple coils request.. 93H31
Table 13 – Read input registers request ... 94H31
Table 14 – Read input registers response ... 95H32
Table 15 – Read holding registers request .. 96H32
Table 16 – Read holding registers response ... 97H33
Table 17 – Write single holding register request ... 98H33
Table 18 – Write single holding register response ... 99H34
Table 19 – Write multiple holding registers request ... 100H34
Table 20 – Write multiple holding registers response .. 101H35
Table 21 – Mask write holding register request ... 102H36
Table 22 – Mask write holding register request ... 103H36
Table 23 – Read/Write multiple holding registers request.. 104H37
Table 24 – Read/Write multiple holding registers response ... 105H38
Table 25 – Read FIFO request .. 106H38
Table 26 – Read FIFO response ... 107H39
Table 27 – Broadcast write single holding register request.. 108H40
Table 28 – Broadcast write multiple holding registers request ... 109H41
Table 29 – Read file record request .. 110H42
Table 30 – Read file record response ... 111H43
Table 31 – Write file record request .. 112H44
Table 32 – Write file record response ... 113H46
Table 33 – Read device identification request ... 114H47
Table 34 – Device identification categories ... 115H48
Table 35 – Read device ID code ... 116H48
Table 36 – Read device identification response .. 117H49
Table 37 – Conformity level .. 118H50
Table 38 – Requested vs. returned known objects .. 119H51
Table 39 – APDU structure ... 120H53
Table 40 – Sub-message structure ... 121H54
Table 41 – Publish/subscribe service identifier encoding .. 122H54
Table 42 – Attributes changed modally and affecting APDUs interpretations 123H56
Table 43 – Issue request .. 124H57
Table 44 – Meaning of issue request flags .. 125H58
Table 45 – Interpretation of issue.. 126H59
Table 46 – Heartbeat request ... 127H60
Table 47 – Meaning of heartbeat request flags ... 128H61

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 5 –

Table 48 – Interpretation of heartbeat ... 129H62
Table 49 – VAR request .. 130H63
Table 50 – Meaning of VAR request flags ... 131H64
Table 51 – Interpretation of VAR... 132H65
Table 52 – GAP request.. 133H66
Table 53 – Meaning of GAP request flags ... 134H67
Table 54 – Interpretation of GAP... 135H67
Table 55 – ACK request .. 136H68
Table 56 – Meaning of ACK request flags ... 137H69
Table 57 – Interpretation of ACK... 138H69
Table 58 – Header request ... 139H70
Table 59 – Change in state of the receiver .. 140H71
Table 60 – INFO_DST request .. 141H71
Table 61 – Meaning of INFO_DST request flags ... 142H72
Table 62 – INFO_REPLY request ... 143H73
Table 63 – Meaning of INFO_REPLY request flags ... 144H74
Table 64 – INFO_SRC request ... 145H75
Table 65 – Meaning of INFO_SRC request flags ... 146H75
Table 66 – INFO_TS request .. 147H76
Table 67 – Meaning of INFO_TS request flags .. 148H77
Table 68 – PAD request .. 149H78
Table 69 – Meaning of PAD request flags ... 150H78
Table 70 – Semantics ... 151H79
Table 71 – FSPM state table – client transactions... 152H87
Table 72 – FSPM state table – server transactions ... 153H92
Table 73 – Function MatchInvokeID().. 154H92
Table 74 – Function HighBit() ... 155H92
Table 75 – Parameters used with primitives exchanged between FSPM and ARPM 156H92
Table 76 – Client ARPM states ... 157H94
Table 77 – Client ARPM state table .. 158H94
Table 78 – Server ARPM states .. 159H94
Table 79 – Server ARPM state table ... 160H95
Table 80 – Primitives issued from ARPM to DMPM ... 161H95
Table 81 – Primitives issued by DMPM to ARPM .. 162H95
Table 82 – Parameters used with primitives exchanged between ARPM and DMPM 163H96
Table 83 – DMPM state descriptions ... 164H97
Table 84 – DMPM state table – client transactions .. 165H97
Table 85 – DMPM state table – server transactions .. 166H98
Table 86 – Primitives exchanged between data-link layer and DMPM 167H98
Table 87 – Encapsulation parameters for client/server on TCP/IP ... 168H99

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 6 – 61158-6-15 © IEC:2010(E)

INTERNATIONAL ELECTROTECHNICAL COMMISSION

INDUSTRIAL COMMUNICATION NETWORKS –

FIELDBUS SPECIFICATIONS –

Part 6-15: Application layer protocol specification –
Type 15 elements

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

NOTE 1 Use of some of the associated protocol types is restricted by their intellectual-property-right holders. In
all cases, the commitment to limited release of intellectual-property-rights made by the holders of those rights
permits a particular data-link layer protocol type to be used with physical layer and application layer protocols in
Type combinations as specified explicitly in the profile parts. Use of the various protocol types in other
combinations may require permission from their respective intellectual-property-right holders.

International Standard IEC 61158-6-15 has been prepared by subcommittee 65C: Industrial
networks, of IEC technical committee 65: Industrial-process measurement, control and
automation.

This second edition cancels and replaces the first edition published in 2007. This edition
constitutes a technical revision.

The main changes with respect to the previous edition are listed below:

• editorial corrections.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 7 –

The text of this standard is based on the following documents:

FDIS Report on voting

65C/607/FDIS 65C/621/RVD

Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.

This publication has been drafted in accordance with ISO/IEC Directives, Part 2.

A list of all parts of the IEC 61158 series, published under the general title Industrial
communication networks – Fieldbus specifications, can be found on the IEC web site.

The committee has decided that the contents of this publication will remain unchanged until
the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data
related to the specific publication. At this date, the publication will be:

• reconfirmed;
• withdrawn;
• replaced by a revised edition, or
• amended.
NOTE 2 The revision of this standard will be synchronized with the other parts of the IEC 61158 series.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 8 – 61158-6-15 © IEC:2010(E)

INTRODUCTION

This part of IEC 61158 is one of a series produced to facilitate the interconnection of
automation system components. It is related to other standards in the set as defined by the
“three-layer” fieldbus reference model described in IEC/TR 61158-1.

The application protocol provides the application service by making use of the services
available from the data-link or other immediately lower layer. The primary aim of this standard
is to provide a set of rules for communication expressed in terms of the procedures to be
carried out by peer application entities (AEs) at the time of communication. These rules for
communication are intended to provide a sound basis for development in order to serve a
variety of purposes:

• as a guide for implementers and designers;

• for use in the testing and procurement of equipment;

• as part of an agreement for the admittance of systems into the open systems environment;

• as a refinement to the understanding of time-critical communications within OSI.

This standard is concerned, in particular, with the communication and interworking of sensors,
effectors and other automation devices. By using this standard together with other standards
positioned within the OSI or fieldbus reference models, otherwise incompatible systems may
work together in any combination.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 9 –

INDUSTRIAL COMMUNICATION NETWORKS –
FIELDBUS SPECIFICATIONS –

Part 6-15: Application layer protocol specification –

Type 15 elements

1 Scope

1.1 General

The Fieldbus Application Layer (FAL) provides user programs with a means to access the
fieldbus communication environment. In this respect, the FAL can be viewed as a “window
between corresponding application programs.”

This standard provides common elements for basic time-critical and non-time-critical
messaging communications between application programs in an automation environment and
material specific to Type 15 fieldbus. The term “time-critical” is used to represent the
presence of a time-window, within which one or more specified actions are required to be
completed with some defined level of certainty. Failure to complete specified actions within
the time window risks failure of the applications requesting the actions, with attendant risk to
equipment, plant and possibly human life.

This standard defines in an abstract way the externally visible behavior provided by the Type
15 fieldbus Application Layer in terms of

a) the abstract syntax defining the application layer protocol data units conveyed between
communicating application entities,

b) the transfer syntax defining the application layer protocol data units conveyed between
communicating application entities,

c) the application context state machine defining the application service behavior visible
between communicating application entities; and

d) the application relationship state machines defining the communication behavior visible
between communicating application entities; and.

The purpose of this standard is to define the protocol provided to

a) define the wire-representation of the service primitives defined in IEC 61158-5-15, and
b) define the externally visible behavior associated with their transfer.

This standard specifies the protocol of the Type 15 IEC fieldbus Application Layer, in
conformance with the OSI Basic Reference Model (ISO/IEC 7498) and the OSI Application
Layer Structure (ISO/IEC 9545).

1.2 Specifications

The principal objective of this standard is to specify the syntax and behavior of the application
layer protocol that conveys the application layer services defined in IEC 61158-5-15.

A secondary objective is to provide migration paths from previously-existing industrial
communications protocols. It is this latter objective which gives rise to the diversity of
protocols standardized in IEC 61158-6.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 10 – 61158-6-15 © IEC:2010(E)

1.3 Conformance

This standard does not specify individual implementations or products, nor does it constrain
the implementations of application layer entities within industrial automation systems.
Conformance is achieved through implementation of this application layer protocol
specification.

2 Normative references

The following referenced documents are indispensable for the application of this document.
For dated references, only the edition cited applies. For undated references, the latest edition
of the referenced document (including any amendments) applies.

IEC 61158-5-15:2010 0 F

1, Industrial communication networks – Fieldbus specifications - Part
5-15: Application layer service definition – Type 15 elements

ISO/IEC 7498-1, Information technology – Open Systems Interconnection – Basic Reference
Model: The Basic Model

ISO/IEC 8822, Information technology – Open Systems Interconnection – Presentation
service definition

ISO/IEC 8824-1, Information technology – Abstract Syntax Notation One (ASN.1):
Specification of basic notation

ISO/IEC 9545, Information technology – Open Systems Interconnection – Application Layer
structure

3 Terms and definitions, abbreviations, symbols and conventions

3.1 Terms and definitions

For the purposes of this document, the following terms as defined in these publications apply:

3.1.1 ISO/IEC 7498-1 terms
a) application entity
b) application process
c) application protocol data unit
d) application service element
e) application entity invocation
f) application process invocation
g) application transaction
h) real open system
i) transfer syntax

3.1.2 ISO/IEC 8822 terms
a) abstract syntax
b) presentation context

1 To be published.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 11 –

3.1.3 ISO/IEC 9545 terms
a) application-association
b) application-context
c) application context name
d) application-entity-invocation
e) application-entity-type
f) application-process-invocation
g) application-process-type
h) application-service-element
i) application control service element

3.1.4 ISO/IEC 8824-1 terms
a) object identifier
b) type

3.1.5 IEC/TR 61158-1 terms

The following IEC/TR 61158-1 terms apply.

3.1.5.1
application
function or data structure for which data is consumed or produced

3.1.5.2
application layer interoperability
capability of application entities to perform coordinated and cooperative operations using the
services of the FAL

3.1.5.3
application object
object class that manages and provides the run time exchange of messages across the
network and within the network device

NOTE Multiple types of application object classes may be defined.

3.1.5.4
application process
part of a distributed application on a network, which is located on one device and
unambiguously addressed

3.1.5.5
application process identifier
distinguishes multiple application processes used in a device

3.1.5.6
application process object
component of an application process that is identifiable and accessible through an FAL
application relationship

NOTE Application process object definitions are composed of a set of values for the attributes of their class.

3.1.5.7
application process object class
class of application process objects defined in terms of the set of their network-accessible
attributes and services

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 12 – 61158-6-15 © IEC:2010(E)

3.1.5.8
application relationship
cooperative association between two or more application-entity-invocations for the purpose of
exchange of information and coordination of their joint operation

NOTE This relationship is activated either by the exchange of application-protocol-data-units or as a result of
preconfiguration activities.

3.1.5.9
application relationship endpoint
context and behavior of an application relationship as seen and maintained by one of the
application processes involved in the application relationship

NOTE Each application process involved in the application relationship maintains its own application relationship
endpoint.

3.1.5.10
application service element
application-service-element that provides the exclusive means for establishing and
terminating all application relationships

3.1.5.11
attribute
description of an externally visible characteristic or feature of an object

NOTE The attributes of an object contain information about variable portions of an object. Typically, they provide
status information or govern the operation of an object. Attributes may also affect the behavior of an object.
Attributes are divided into class attributes and instance attributes.

3.1.5.12
behavior
indication of how the object responds to particular events

NOTE Its description includes the relationship between attribute values and services.

3.1.5.13
class
set of objects, all of which represent the same kind of system component

NOTE A class is a generalization of the object; a template for defining variables and methods. All objects in a
class are identical in form and behavior, but usually contain different data in their attributes.

3.1.5.14
class attributes
attribute that is shared by all objects within the same class

3.1.5.15
class code
unique identifier assigned to each object class

3.1.5.16
class specific service
service defined by a particular object class to perform a required function which is not
performed by a common service

NOTE A class specific object is unique to the object class which defines it.

3.1.5.17
Client
(a) object which uses the services of another (server) object to perform a task

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 13 –

(b) initiator of a message to which a server reacts, such as the role of an AR endpoint in
which it issues confirmed service request APDUs to a single AR endpoint acting as a
server

3.1.5.18
conveyance path
unidirectional flow of APDUs across an application relationship

3.1.5.19
cyclic
term used to describe events which repeat in a regular and repetitive manner

3.1.5.20
dedicated AR
AR used directly by the FAL user

NOTE On Dedicated ARs, only the FAL Header and the user data are transferred.

3.1.5.21
device
physical hardware connection to the link

NOTE A device may contain more than one node.

3.1.5.22
device profile
collection of device dependent information and functionality providing consistency between
similar devices of the same device type

3.1.5.23
dynamic AR
AR that requires the use of the AR establishment procedures to place it into an established
state

3.1.5.24
endpoint
one of the communicating entities involved in a connection

3.1.5.25
error
discrepancy between a computed, observed or measured value or condition and the specified
or theoretically correct value or condition

3.1.5.26
error class
general grouping for error definitions

NOTE Error codes for specific errors are defined within an error class.

3.1.5.27
error code
identification of a specific type of error within an error class

3.1.5.28
FAL subnet
networks composed of one or more data link segments

NOTE Subnets are permitted to contain bridges, but not routers. FAL subnets are identified by a subset of the
network address.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 14 – 61158-6-15 © IEC:2010(E)

3.1.5.29
logical device
FAL class that abstracts a software component or a firmware component as an autonomous
self-contained facility of an automation device

3.1.5.30
management information
network-accessible information that supports managing the operation of the fieldbus system,
including the application layer

NOTE Managing includes functions such as controlling, monitoring, and diagnosing.

3.1.5.31
network
series of nodes connected by some type of communication medium

NOTE The connection paths between any pair of nodes can include repeaters, routers and gateways.

3.1.5.32
peer
role of an AR endpoint in which it is capable of acting as both client and server

3.1.5.33
pre-defined AR endpoint
AR endpoint that is defined locally within a device without use of the create service

NOTE Pre-defined ARs that are not pre-established are established before being used.

3.1.5.34
pre-established AR endpoint
AR endpoint that is placed in an established state during configuration of the AEs that control
its endpoints

3.1.5.35
Publisher
role of an AR endpoint in which it transmits APDUs onto the fieldbus for consumption by one
or more subscribers

NOTE The publisher may not be aware of the identity or the number of subscribers and it may publish its APDUs
using a dedicated AR. Two types of publishers are defined by this standard, Pull Publishers and Push Publishers,
each of which is defined separately.

3.1.5.36
server
a) role of an AREP in which it returns a confirmed service response APDU to the client that

initiated the request

b) object which provides services to another (client) object

3.1.5.37
service
operation or function than an object and/or object class performs upon request from another
object and/or object class

NOTE A set of common services is defined and provisions for the definition of object-specific services are
provided. Object-specific services are those which are defined by a particular object class to perform a required
function which is not performed by a common service.

3.1.5.38
subscriber
role of an AREP in which it receives APDUs produced by a publisher

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 15 –

NOTE Two types of subscribers are defined by this standard, pull subscribers and push subscribers, each of
which is defined separately.

3.1.6 Specific definitions for client/server

3.1.6.1
coils, discrete outputs
application process object, a set of coils, characterized by the address of a coil and a quantity
of coils, this set is also called discrete outputs when associated with field outputs

3.1.6.2
discrete, discrete input
application process object, addressed by an unsigned number and having a width of one bit,
representing a 1-bit encoded status value, read-only, with the value '1' encoding the status
ON and the value '0' encoding the status OFF, also called discrete input, especially when
associated with field inputs

3.1.6.3
discrete inputs, discretes
application process object, a set of discretes, characterized by the address of a discrete and
a quantity of discretes, this set is also called discrete inputs, especially when associated with
field inputs

3.1.6.4
coil, discrete output
application process object, addressed by an unsigned number and having a width of one bit,
representing a 1-bit encoded status value, read-write, with the value '1' encoding the status
ON and the value '0' encoding the status OFF, also called discrete output when associated
with field output

3.1.6.5
encapsulated interface
mechanism encapsulating a service for an interface, which is an application process object
characterized by an MEI type

3.1.6.6
exception
encoding used to signal a service request failure

3.1.6.7
exception code
encoding associated with an exception, detailing the reason of a service request failure

3.1.6.8
file
application process object, an organization of records, characterized by an unsigned number

3.1.6.9
function code
encoding of a service requested to a server

3.1.6.10
holding register, output register
application process object, addressed by an unsigned number and representing values with
16 bits, read-write, also called output register, especially when associated with field outputs

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 16 – 61158-6-15 © IEC:2010(E)

3.1.6.11
holding registers, output registers
application process object, a set of holding registers, characterized by the address of a
holding register and a quantity of holding registers, also called output registers, especially
when associated with field outputs

3.1.6.12
input register
application process object, addressed by an unsigned number and representing values with
16 bits, read-only

3.1.6.13
input registers
application process object, a set of input registers, characterized by the address of an input
register and a quantity of input registers

3.1.6.14
record
application process object, a set of contiguous registers of a specified type, characterized by
the address of the first register and by the quantity of registers; in the context of this
definition, the registers involved have also been called references

3.1.6.15
reference
denigrated term for register

3.1.6.16
reference type
denigrated term for register type

3.1.6.17
sub-code
specialization of a function code

3.1.6.18
unit ID
logical device identifier

3.1.6.19
MEI type
type specified as an octet value, used to dispatch a service to the appropriate interface in the
context of the encapsulated interface mechanism

3.1.7 Specific definitions for publish/subscribe

3.1.7.1
network object
Publish/subscribe application, reader, or writer

3.1.7.2
GUID
globally unique network object identifier

3.1.7.3
composite state
attributes of a set of network objects

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 17 –

3.1.7.4
reader
subscriber or a CSTReader

3.1.7.5
writer
Publisher or a CSTWriter

3.1.7.6
CSTReader
meta-information-specialized subscriber

3.1.7.7
CSTWriter
meta-information-specialized publisher

3.1.7.8
communication actor
reader or writer

3.1.7.9
domain participant
application that contains publish/subscribe elements, also called publish/subscribe application

NOTE This terminology is adopted to avoid the overuse of the term “application”. At the same time, the term
“domain” has a place within publish/subscribe. The Type extensibility allows for the concept of “domains”, or
independent communication planes, effectively permitting isolation of application exchanges within domains. While
OMG DDS as in “Data Distribution Service for Real-Time Systems Specification, Version 1.1, December 2005” uses
this extension, the feature will not be examined further in this specification, which will consider a single domain.

3.1.7.10
manager
specialized publish/subscribe application, containing specialized publishers and subscribers,
and involved in the described discovery and maintenance mechanism; not to be confused with
any publishing manager

3.1.7.11
managed participant
a publish/subscribe application; the qualifier refers to its role in relation to a manager when
involved in the described discovery and maintenance mechanism; not to be confused with any
publishing manager subordinate

3.1.7.12
sequence number
number used to uniquely identify elementary publish/subscribe messages in an ordered
manner

3.2 Abbreviations and symbols

3.2.1 Common abbreviations and symbols

AE Application Entity
AL Application Layer
ALME Application Layer Management Entity
ALP Application Layer Protocol
APO Application Object
AP Application Process
APDU Application Protocol Data Unit

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 18 – 61158-6-15 © IEC:2010(E)

API Application Process Identifier
AR Application Relationship
AREP Application Relationship End Point
ASCII American Standard Code for Information Interchange
ASE Application Service Element
Cnf Confirmation
DL- (as a prefix) data-link-
DLC data-link Connection
DLCEP data-link Connection End Point
DLL data-link Layer
DLM data-link-management
DLSAP data-link Service Access Point
DLSDU DL-service-data-unit
FAL Fieldbus Application Layer
ID Identifier
IEC International Electrotechnical Commission
Ind Indication
LME Layer Management Entity
lsb Least Significant Bit
msb Most Significant Bit
OSI Open Systems Interconnect
QoS Quality of Service
Req Request
Rsp Response
SAP Service Access Point
SDU Service Data Unit
SMIB System Management Information Base
SMK System Management Kernel

3.2.2 Abbreviations and symbols for client/server

C/S Client/Server
FC Function Code
CAN Controller Area Network
CiA CAN in Automation
MEI Encapsulated Interface type
URL Uniform Resource Locator

3.2.3 Abbreviations and symbols for publish/subscribe

CS Composite State
DCPS Data-Centric Publish-Subscribe
DDS Data Disribution Service
DLRL Data Local Reconstruction Layer
OMG Object Management Group
P/S Publish/Subscribe

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 19 –

3.3 Conventions

3.3.1 Overview

The FAL is defined as a set of object-oriented ASEs. Each ASE is specified in a separate
subclause. Each ASE specification is composed of two parts, its class specification, and its
service specification.

The class specification defines the attributes of the class. The attributes are accessible from
instances of the class using the Object Management ASE services specified in Clause 5 of
this standard. The service specification defines the services that are provided by the ASE.

3.3.2 General conventions

This standard uses the descriptive conventions given in ISO/IEC 10731

3.3.3 Conventions for class definitions

Class definitions are described using templates. Each template consists of a list of attributes
for the class. The general form of the template is shown below:

FAL ASE: ASE Name
CLASS: Class Name
CLASS ID: #
PARENT CLASS: Parent Class Name
ATTRIBUTES:
1 (o) Key Attribute: numeric identifier
2 (o) Key Attribute: name
3 (m) Attribute: attribute name(values)
4 (m) Attribute: attribute name(values)
4.1 (s) Attribute: attribute name(values)
4.2 (s) Attribute: attribute name(values)
4.3 (s) Attribute: attribute name(values)
5. (c) Constraint: constraint expression
5.1 (m) Attribute: attribute name(values)
5.2 (o) Attribute: attribute name(values)
6 (m) Attribute: attribute name(values)
6.1 (s) Attribute: attribute name(values)
6.2 (s) Attribute: attribute name(values)
SERVICES:
1 (o) OpsService: service name
2. (c) Constraint: constraint expression
2.1 (o) OpsService: service name
3 (m) MgtService: service name

(1) The "FAL ASE:" entry is the name of the FAL ASE that provides the services for the class

being specified.

(2) The "CLASS:" entry is the name of the class being specified. All objects defined using
this template will be an instance of this class. The class may be specified by this
standard, or by a user of this standard.

(3) The "CLASS ID:" entry is a number that identifies the class being specified. This number
is unique within the FAL ASE that will provide the services for this class. When qualified
by the identity of its FAL ASE, it unambiguously identifies the class within the scope of
the FAL. The value "NULL" indicates that the class cannot be instantiated. Class IDs
between 1 and 255 are reserved by this standard to identify standardized classes. They
have been assigned to maintain compatibility with existing national standards. CLASS
IDs between 256 and 2 048 are allocated for identifying user defined classes.

(4) The "PARENT CLASS:" entry is the name of the parent class for the class being
specified. All attributes defined for the parent class and inherited by it are inherited for

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 20 – 61158-6-15 © IEC:2010(E)

the class being defined, and therefore do not have to be redefined in the template for this
class.

NOTE The parent-class "TOP" indicates that the class being defined is an initial class definition. The parent class
TOP is used as a starting point from which all other classes are defined. The use of TOP is reserved for classes
defined by this standard.

(5) The "ATTRIBUTES" label indicate that the following entries are attributes defined for the
class.

a) Each of the attribute entries contains a line number in column 1, a mandatory (m) /
optional (o) / conditional (c) / selector (s) indicator in column 2, an attribute type label
in column 3, a name or a conditional expression in column 4, and optionally a list of
enumerated values in column 5. In the column following the list of values, the default
value for the attribute may be specified.

b) Objects are normally identified by a numeric identifier or by an object name, or by
both. In the class templates, these key attributes are defined under the key attribute.

c) The line number defines the sequence and the level of nesting of the line. Each
nesting level is identified by period. Nesting is used to specify

i) fields of a structured attribute (4.1, 4.2, 4.3),
ii) attributes conditional on a constraint statement (5). Attributes may be mandatory

(5.1) or optional (5.2) if the constraint is true. Not all optional attributes require
constraint statements as does the attribute defined in (5.2).

iii) the selection fields of a choice type attribute (6.1 and 6.2).

 (6) The "SERVICES" label indicates that the following entries are services defined for the
class.

a) An (m) in column 2 indicates that the service is mandatory for the class, while an (o)
indicates that it is optional. A (c) in this column indicates that the service is
conditional. When all services defined for a class are defined as optional, at least one
has to be selected when an instance of the class is defined.

b) The label "OpsService" designates an operational service (1).

c) The label "MgtService" designates an management service (2).

d) The line number defines the sequence and the level of nesting of the line. Each
nesting level is identified by period. Nesting within the list of services is used to
specify services conditional on a constraint statement.

3.3.4 Conventions for service definitions

3.3.4.1 General

The FAL is defined as a set of object-oriented ASEs. Each ASE is specified in a separate
subclause. Each ASE specification is composed of three parts: its class definitions, its
services, and its protocol specification. The first two are contained in IEC 61158-5-15. The
protocol specification for each of the ASEs is defined in this standard.

The class definitions define the attributes of the classes supported by each ASE. The
attributes are accessible from instances of the class using the Management ASE services
specified in IEC 61158-5-15. The service specification defines the services that are provided
by the ASE.

This standard uses the descriptive conventions given in ISO/IEC 10731.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 21 –

3.3.5 Conventions for class definitions

The data-link layer mapping definitions are described using templates. Each template consists
of a list of attributes for the class. The general form of the template is defined in IEC/TR
61158-1.

3.3.6 Abstract syntax conventions

When the "optionalParametersMap" parameter is used, a bit number which corresponds to
each OPTIONAL or DEFAULT production is given as a comment.

3.4 Conventions used in state machines

The state machines are described in 169HTable 1:

Table 1 – Conventions used for state machines

Current
state

Event
/ condition
 => action

Next state

Name of
this
transition.

The
current
state to
which this
state
transition
applies.

Events or conditions that trigger this state transaction.

=>

The actions that are taken when the above events or
conditions are met. The actions are always indented below
events or conditions.

The next
state after
the actions
in this
transition is
taken.

The conventions used in the state machines are as follows:

:= Value of an item on the left is replaced by value of an item on the right. If an item on the
right is a parameter, it comes from the primitive shown as an input event.

xxx A parameter name.
 EXAMPLE 1
 Identifier := reason
 means value of a 'reason' parameter is assigned to a parameter called 'Identifier.'

"xxx" Indicates fixed value.
 EXAMPLE 2
 Identifier := "abc"
 means value "abc" is assigned to a parameter named 'Identifier.'

= A logical condition to indicate an item on the left is equal to an item on the right.

< A logical condition to indicate an item on the left is less than the item on the right.

> A logical condition to indicate an item on the left is greater than the item on the right.

<> A logical condition to indicate an item on the left is not equal to an item on the right.

&& Logical "AND"

|| Logical "OR"

This construct allows the execution of a sequence of actions in a loop within one transition.
The loop is executed for all values from start_value to end_value.

 EXAMPLE 3
 for (Identifier := start_value to end_value)
 actions
 endfor

This construct allows the execution of alternative actions depending on some condition (which
might be the value of some identifier or the outcome of a previous action) within one
transition.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 22 – 61158-6-15 © IEC:2010(E)

 EXAMPLE 4
 If (condition)
 actions
 else
 actions
 endif

Readers are strongly recommended to refer to the subclauses for the AREP attribute
definitions, the local functions, and the FAL-PDU definitions to understand protocol machines.
It is assumed that readers have sufficient knowledge of these definitions, and they are used
without further explanations.

4 Abstract syntax for client/server

The abstract syntax of APDUs is combined with their transfer syntax and is specified in
Clause 170H 5.

5 Transfer syntax for client/server

5.1 General

The sending Application Layer prepares an APDU to transfer to the receiving Application
Layer. It uses the parameters from the service primitives to do so. There are several formats
of the APDU:

⎯ request APDU from Client to Server device or devices, or

⎯ normal response and positive confirmation from Server to Client device, or

⎯ response and negative confirmation from Server to Client device.

The format and coding rules for all APDUs are specified in this clause.

5.2 Common APDU structure

All APDUs have a common structure as shown in 171HFigure 1.

Figure 1 – APDU Format

5.2.1 Unit ID

Client/server devices in the role of servers are addressed using a Unit ID. The Unit ID needs
to be unique across all the servers addressable by a client. The set of addressable servers is
determined by the underlying layer. This set is sometimes called connection.

The Unit ID assignment is outside of the scope of this specification.

The Unit ID identifies logical devices. There may be more than one logical device per physical
device.

Some values of Unit ID are reserved and have particular meanings. The value 0 is reserved
for broadcast.

Field Type: Unsigned8

Unit ID Code Data

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 23 –

Allowed values: 1 to 247, and 0 for broadcast where supported.

NOTE In general the Unit ID is only required for logical devices having the role of servers. Often logical devices
can have either role or multiple roles, via configuration, and their Unit ID is not used when they only perform in the
client role. Depending on the underlying layers some devices can have concurrently a client and a server role on
the same access point, this is the case for client/server on Token Bus/HDLC, outside the scope of this
specification.

5.2.2 Code

5.2.2.1 General

This field represents:

⎯ a requested service, confirmed or unconfirmed, via an identifier called function code,
or

⎯ the normal response and positive confirmation of a requested service, represented by
echoing the requested service identifier, or

⎯ the exception response and negative confirmation of a requested service, represented
by echoing the requested service identifier with its high bit turned on. The latter
representation is also called exception.

Field Type: Unsigned8

5.2.2.2 Service identifiers and function codes

Client/server service identifiers are commonly called function codes.

Function codes are encodings of services requested to a server. Some function codes are
further specialized by means of a sub-code, specified as part of the data field. These
encodings are partitioned in three categories, and since the subdivision may propagate to the
sub-codes, for sake of completeness, despite being part of the data field they will also be
mentioned here:

Publicly assigned function codes
These function codes are either assigned to a standard service or reserved for future
assignment. The standard services and their identifiers will be detailed in this
specification.

User definable function codes
These function codes can be used for experimentation in a controlled laboratory
environment. They must not be used in an open environment.

Ranges: There are two ranges, FC 65 (0x41) to 72 (0x48) included, and 100 (0x64) to 110
(0x6E) included.

Reserved function codes
These function codes are currently used by some companies for legacy products and are
not available for public use.

NOTE 1 Function code assignments are managed by the Modbus-IDA industrial consortium.

NOTE 2 The following function codes, while publicly assigned, are not covered by this specification: FC 7 (0x07,
Read Exception Status), FC 8 (0x08, Diagnostics), FC 11 (0x0B, Get Com Event Counter), FC 12 (0x0C, Get Com
Event Log), FC 17 (0x11, Report Slave ID).

NOTE 3 The following function codes and function code/sub-codes are reserved: FC 8/19 (0x08/0x13), FC 8/21-
255 (0x08/0x15-0xFFFF), FC 9 (0x09), FC 10 (0x0A), FC 13 (0x0D), FC 14 (0x0E), FC 41 (0x29), FC 42 (0x2A), FC
43/0-12 (0x2B/0x00-0x0C), FC 43/15-255 (0x2B/0x0F-0xFF), FC 90 (0x5A), FC 91 (0x5B), FC 125 (0x7D), FC 126
(0x7E), FC 127 (0x7F).

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 24 – 61158-6-15 © IEC:2010(E)

5.2.3 Data

For normal requests and responses this is the user data which is transferred between the
application layer and its user. The application layer assembles it from the parameters of a
service primitive or parses it into parameters of a service primitive. Its structure depends upon
the type of APDU. For exception responses it represents the reason for the exception via an
exception code.

Field Type: from 1 to 252 octets; the Type is APDU specific.

5.2.4 Client to server confirmed service request

The format is as in 172HFigure 2.

Figure 2 – Client to server confirmed service request

5.2.5 Normal response from server to client

The format for the normal response to a confirmed service is as in 173HFigure 3. The Unit ID and
the function code fields are the same as the corresponding fields in the request.

Figure 3 – Normal response from server to client

5.2.6 Exception response from server to client

The format for the exception response is as in 174HFigure 4. The Unit ID is the same as the
corresponding field in the request. The exception is produced adding 0x80 to the function
code of the corresponding request.

Figure 4 – Exception response from server to client

The exception codes, giving information on the service failure, are shown in 175HTable 2.

Unit ID Exception Exception code

Unit ID Function code Response Data

Unit ID Function code Request Data

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 25 –

Table 2 – Exception code

Encoding Name Description

0x01 Illegal function The function code received in the query is not an
allowable action for the server. This may be because the
function code is only applicable to newer devices, and
was not implemented in the unit selected. It could also
indicate that the server is in the wrong state to process a
request of this type, for example because it is not
configured and it is being asked to return register values

0x02 Illegal data address The data address received in the query is not an
allowable address for the server. More specifically, the
combination of reference number and transfer length is
invalid. Example For a controller with 100 registers, a
request with offset (data address) 96 and length 4 would
succeed, a request with offset 96 and length 5 would
generate exception code 0x02

0x03 Illegal data value A value contained in the query data field is not an
allowable value for server. This indicates a fault in the
structure of the remainder of a complex request, such as
that the implied length is incorrect. It specifically does
NOT mean for example that a data item submitted for
storage in a register has a value outside the expectation
of the application program, since the client/server
protocol is unaware of the significance of any particular
value for any particular register

0x04 Server device failure An unrecoverable error occurred while the server was
attempting to perform the requested action

0x05 Acknowledge The server accepted the service invocation but the
service requires a relatively long time to execute. The
server therefore returns only an acknowledgement of the
service invocation receipt. This response is returned to
prevent a timeout error from occurring in the client

0x06 Server busy The server was unable to accept the request. The client
application has the responsibility of deciding if and when
to re-send the request

0x08 Memory parity error For specialized use in conjunction with function codes 20
(0x14) and 21 (0x15), to indicate that the extended file
area failed to pass a consistency check. For example,
the server attempted to read record file, but detected a
memory parity error. The client can retry the request, but
service may be required on the server device

0x0A Gateway path
unavailable

For specialized use in conjunction with gateways, hubs,
switches and similar network devices, to indicate that the
gateway was unable to allocate an internal
communication path from the input port to the output port
for processing the request. This usually means that the
gateway is misconfigured or overloaded

0x0B Gateway target device
failed to respond

For specialized use in conjunction with gateways, hubs,
switches and similar network devices, to indicate that no
response was obtained from the target device. This
usually means that the device is not present on the
network

5.2.7 Client to server unconfirmed service request

The format is as in 176HFigure 5. These services are used for broadcast. Only a small number of
function codes allow broadcast.

Figure 5 – Client to server unconfirmed service request

Unit ID = 0 Function code Request Data

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 26 – 61158-6-15 © IEC:2010(E)

5.3 Service-specific APDU structures

5.3.1 Read Discretes FAL PDU

5.3.1.1 Request primitive

Service identifier, function code = 2 (0x02).

This function code is used to read the status of 1 to 2 000 discrete inputs in a remote device.
The request PDU specifies the starting address, i.e. the address of the first input specified,
and the number of inputs. In the PDU Discrete Inputs are addressed starting at zero.
Therefore discrete inputs numbered 1 to 16 are addressed as 0 to 15. The starting address
can be from 0x0000 to 0xFFFF.

The format is given in 177HTable 3.

Table 3 – Read discretes request

Parameter
name / field Type Description

Unit ID Unsigned8 Address of the server.

Allowed values: 1 to 247

Function code Unsigned8 Service identifier, function code = 2 (0x02).

Address of first
discrete

Unsigned16 Address of the first discrete input.

Allowed values: 0x0000 to 0xFFFF

Quantity of discretes Unsigned16 Quantity of discretes.

Allowed values: 1 to 2 000 (0x7D0)

5.3.1.2 Response primitive

The format is given in 178HTable 4.

Table 4 – Read discretes response

Parameter
name / field Type Description

Unit ID Unsigned8 Address of the server. Echo of requested

Function code Unsigned8 Service identifier, function code = 2 (0x02).
Echo of requested

Data octets count Unsigned16 Number of octets read

Data Status bit sequence Status values of the discretes read

The field data contains n octets where n is the number in the field data octets count.

The discrete inputs in the response message are packed as one input per bit of the data field.
Status is indicated as 1= ON; 0= OFF. The lsb (least significant bit) of the first data octet
contains the input addressed in the query. The other inputs follow toward the high order end
of this octet, and from low order to high order in subsequent octets.

If the returned input quantity is not a multiple of eight, the remaining bits in the final data octet
shall be padded with zeros (toward the high order end of the octet). The data octets count
field specifies the quantity of octets of returned inputs data, n (including the padded octet, if
any).

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 27 –

5.3.2 Read Coils FAL PDU

5.3.2.1 Request primitive

Service identifier, function code = 1 (0x01).

This function code is used to read from 1 to 2 000 coils in a remote device. The request PDU
specifies the starting address, i.e. the address of the first coil specified, and the number of
coils. In the PDU, coils are addressed starting at zero. Therefore coils numbered 1 to 16 are
addressed as 0 to 15. The starting address can be from 0x0000 to 0xFFFF.

The format is given in 179HTable 5.

Table 5 – Read coils request

Parameter
name / field Type Description

Unit ID Unsigned8 Address of the server.

Allowed values: 1 to 247

Function code Unsigned8 Service identifier, function code = 1 (0x01).

Address of first coil Unsigned16 Address of the first coil.

Allowed values: 0x0000 to 0xFFFF

Quantity of coils Unsigned16 Quantity of coils.

Allowed values: 1 to 2 000 (0x7D0)

5.3.2.2 Response primitive

The format is given in 180HTable 6.

Table 6 – Read coils response

Parameter
name / field Type Description

Unit ID Unsigned8 Address of the server. Echo of requested

Function code Unsigned8 Service identifier, function code = 1 (0x01).
Echo of requested

Data octets count Unsigned16 Number of octets read

Data Status bit sequence Status values of the discretes read

The field data contains n octets where n is the number in the field data octets count.

The coils in the response message are packed as one input per bit of the data field. Status is
indicated as 1= ON; 0= OFF. The lsb (least significant bit) of the first data octet contains the
input addressed in the query. The other coils follow toward the high order end of this octet,
and from low order to high order in subsequent octets.

If the returned input quantity is not a multiple of eight, the remaining bits in the final data octet
shall be padded with zeros (toward the high order end of the octet). The data octets count
field specifies the quantity of octets of returned inputs data, n (including the padded octet, if
any).
5.3.3 Write Single Coil FAL PDU

5.3.3.1 Request primitive

Service identifier, function code = 5 (0x05).

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 28 – 61158-6-15 © IEC:2010(E)

This function code is used to write a single coil to either ON or OFF in a remote device.

The requested ON/OFF status is specified by a constant in the request data field. A value of
0xFF00 requests the output to be ON. A value of 0x0000 requests it to be OFF. All other
values are illegal and do not affect the output.

The Request PDU specifies the address of the coil to be forced. Coils are addressed starting
at zero. Therefore coil numbered 1 is addressed as 0.

The format is given in 181HTable 7.

Table 7 – Write single coil request

Parameter
name / field Type Description

Unit ID Unsigned8 Address of the server.

Allowed values: 1 to 247

Function code Unsigned8 Service identifier, function code = 5 (0x05).

Address of coil Unsigned16 Address of the coil.

Allowed values: 0x0000 to 0xFFFF

Data single coil Status flag Single coil status value that has to be written.

Allowed values: 0xFF00 or 0x0000

5.3.3.2 Response primitive

The format is given in 182HTable 8.

Table 8 – Write single coil response

Parameter
name / field Type Description

Unit ID Unsigned8 Address of the server. Echo of requested.

Function code Unsigned8 Service identifier, function code = 5 (0x05).
Echo of requested.

Address of coil Unsigned16 Address of the coil. Echo of requested.

Data single coil Status flag Single coil status value that had to be written.
Echo of requested.

The normal response is an echo of the request, returned after the coil state has been written.

5.3.4 Write Multiple Coils FAL PDU

5.3.4.1 Request primitive

Service identifier, function code = 15 (0x0F).

This function code is used to force each coil in a sequence of coils to either ON or OFF in a
remote device.

The Request PDU specifies the coil references to be forced. Coils are addressed starting at
zero. Therefore coil numbered 1 is addressed as 0.

The requested ON/OFF coils status is specified by the contents of the request data field. A
logical '1' in a bit position of the field requests the corresponding output to be ON. A logical '0'
requests it to be OFF.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 29 –

The coils in the request message are packed as one input per bit of the data field. If the
specified quantity of coils is not a multiple of eight, the remaining bits in the final data octet of
data shall be padded with zeros (toward the high order end of the octet). The octet count field
specifies the quantity of octets of data, n (including the padded octet, if any). The field data
contains the n data octets, where n is the number in the field octet count.

The format is given in 183HTable 9.

Table 9 – Write multiple coils request

Parameter
name / field Type Description

Unit ID Unsigned8 Address of the server.

Allowed values: 1 to 247

Function code Unsigned8 Service identifier, function code = 15 (0x0F).

Address of first coil Unsigned16 Address of the first coil.

Allowed values: 0x0000 to 0xFFFF

Quantity of coils Unsigned16 Quantity of coils to be written.

Allowed values: 1 to 1 968 (0x7B0), must be
consistent with the Data octets count and the
Data parameters

Data octets count Unsigned16 Number of octets carrying the coil status values
to be written.

Allowed values: 1 to 246, must be consistent
with the Quantity of coils and the Data
parameters

Data Status bit sequence This parameter shall be used to specify the coil
status values that have to be written.

Allowed values:Must be consistent with the
Quantity of coils and the Data octets count
parameters

5.3.4.2 Response primitive

The format is given in 184HTable 10.

Table 10 – Write multiple coils response

Parameter
name / field Type Description

Unit ID Unsigned8 Address of the server. Echo of requested

Function code Unsigned8 Service identifier, function code = 15 (0x0F)

Address of first coil Unsigned16 Address of the first coil. Echo of requested

Quantity of coils Unsigned16 Quantity of coils. Echo of requested

The normal response is an echo of the requested parameters Unit ID, function code, address
of first coil, and quantity of coils.

5.3.5 Broadcast Write Single Coil FAL PDU

5.3.5.1 Request primitive

Service identifier, function code = 5 (0x05); Unit ID = 0.

This function code is used to write a single coil to either ON or OFF in all the Unit ID
addressable servers, by specifying Unit ID = 0.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 30 – 61158-6-15 © IEC:2010(E)

This is an unconfirmed service.

The requested ON/OFF status is specified by a constant in the request data field. A value of
0xFF00 requests the output to be ON. A value of 0x0000 requests it to be OFF. All other
values are illegal and do not affect the output.

The Request PDU specifies the address of the coil to be forced. Coils are addressed starting
at zero. Therefore coil numbered 1 is addressed as 0.

The format is given in 185HTable 11.

Table 11 – Broadcast write single coil request

Parameter
name / field Type Description

Unit ID Unsigned8 Address of the server.

Allowed values: 0

Function code Unsigned8 Service identifier, function code = 5 (0x05)

Address of coil Unsigned16 Address of the coil.

Allowed values: 0x0000 to 0xFFFF

Data single coil Status flag Single coil status value that has to be written.

Allowed values: 0xFF00 or 0x0000

5.3.6 Broadcast Write Multiple Coils FAL PDU

5.3.6.1 Request primitive

Service identifier, function code = 15 (0x0F); Unit ID = 0.

This function code is used to force each coil in a sequence of coils to either ON or OFF in all
the Unit ID addressable servers, by specifying Unit ID = 0.

This is an unconfirmed service.

The Request PDU specifies the coil references to be forced. Coils are addressed starting at
zero. Therefore coil numbered 1 is addressed as 0.

The requested ON/OFF coils status is specified by the contents of the request data field. A
logical '1' in a bit position of the field requests the corresponding output to be ON. A logical '0'
requests it to be OFF.

The coils in the request message are packed as one input per bit of the data field. If the
specified quantity of coils is not a multiple of eight, the remaining bits in the final data octet of
data shall be padded with zeros (toward the high order end of the octet). The octet count field
specifies the quantity of octets of data, n (including the padded octet, if any). The field data
contains the n data octets, where n is the number in the field octet count.

The format is given in 186HTable 12.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 31 –

Table 12 – Broadcast write multiple coils request

Parameter
name / field Type Description

Unit ID Unsigned8 Address of the server.

Allowed values: 0

Function code Unsigned8 Service identifier, function code = 15 (0x0F)

Address of first coil Unsigned16 Address of the first coil.

Allowed values: 0x0000 to 0xFFFF

Quantity of coils Unsigned16 Quantity of coils to be written.

Allowed values: 1 to 1 968 (0x7B0), must be
consistent with the Data octets count and the
Data parameters

Data octets count Unsigned16 Number of octets carrying the coil status values
to be written.

Allowed values: 1 to 246, must be consistent
with the Quantity of coils and the Data
parameters

Data Status bit sequence This parameter shall be used to specify the coil
status values that have to be written.

Allowed values:Must be consistent with the
Quantity of coils and the Data octets count
parameters

5.3.7 Read Input Registers FAL PDU

5.3.7.1 Request primitive

Service identifier, function code = 4 (0x04).

This function code is used to read from 1 to 125 input registers in a remote device. The
Request PDU specifies the starting register address and the number of registers. In the PDU
Registers are addressed starting at zero. Therefore input registers numbered 1 to 16 are
addressed as 0 to 15.

The format is given in 187HTable 13.

Table 13 – Read input registers request

Parameter
name / field Type Description

Unit ID Unsigned8 Address of the server.

Allowed values: 1 to 247

Function code Unsigned8 Service identifier, function code = 4 (0x04)

Address of input
register to read

Unsigned16 Address of input register.to read.

Allowed values: 0x0000 to 0xFFFF

Quantity of input
registers

Unsigned16 Quantity of input registers to read.

Allowed values: 1 to 125 (0x7D)

5.3.7.2 Response primitive

The format is given in 188HTable 14.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 32 – 61158-6-15 © IEC:2010(E)

Table 14 – Read input registers response

Parameter
name / field Type Description

Unit ID Unsigned8 Address of the server. Echo of requested

Function code Unsigned8 Service identifier, function code = 4 (0x04).
Echo of requested

Data octets count Unsigned16 Number of octets read

Data Array of Unsigned16 Input registers values read

The response parameter data contains n octets, where n is the number in the response
parameter data octet count, equal to twice the requested quantity of input registers.

The register data in the response parameter data elements is packed as two octets per
register value. For each register, the first octet contains the high order register value bits and
the second octet contains the low order register value bits (big-endian convention).

5.3.8 Read Holding Registers FAL PDU

5.3.8.1 Request primitive

Service identifier, function code = 3 (0x03).

This function code is used to read from 1 to 125 holding registers in a remote device. The
Request PDU specifies the starting register address and the number of registers. In the PDU
Registers are addressed starting at zero. Therefore input registers numbered 1 to 16 are
addressed as 0 to 15.

The format is given in 189HTable 15.

Table 15 – Read holding registers request

Parameter
name / field Type Description

Unit ID Unsigned8 Address of the server.

Allowed values: 1 to 247

Function code Unsigned8 Service identifier, function code = 3 (0x03)

Address of first
holding register to
read

Unsigned16 Address of the first holding register to read.

Allowed values: 0x0000 to 0xFFFF

Quantity of holding
registers to read

Unsigned16 Quantity of holding registers to read.

Allowed values: 1 to 125 (0x7D)

5.3.8.2 Response primitive

The format is given in 190HTable 16.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 33 –

Table 16 – Read holding registers response

Parameter
name / field Type Description

Unit ID Unsigned8 Address of the server. Echo of requested

Function code Unsigned8 Service identifier, function code = 3 (0x03).
Echo of requested

Data octets count Unsigned16 Number of octets read

Data Array of Unsigned16 Holding registers values read

The response parameter data contains n octets, where n is the number in the response
parameter data octet count, equal to twice the requested quantity of holding registers.

The register data in the response parameter data elements is packed as two octets per
register value. For each register, the first octet contains the high order register value bits and
the second octet contains the low order register value bits (big-endian convention).

5.3.9 Write Single Holding Register FAL PDU

5.3.9.1 Request primitive

Service identifier, function code = 6 (0x06).

This function code is used to write a single holding register in a remote device.

The Request PDU specifies the address of the register to be written. Registers are addressed
starting at zero. Therefore register numbered 1 is addressed as 0.

The register data in the request parameter data is packed as two octets per register. For each
register, the first octet contains the high order register bits and the second octet contains the
low order register bits (big-endian convention).

The format is given in 191HTable 17.

Table 17 – Write single holding register request

Parameter
name / field Type Description

Unit ID Unsigned8 Address of the server

Allowed values: 1 to 247

Function code Unsigned8 Service identifier, function code = 6 (0x06)

Address of holding
register to write

Unsigned16 Address of the holding register to write.

Allowed values: 0x0000 to 0xFFFF

Data Unsigned16 Holding register value to be written.

Allowed valies: 0x0000 to 0xFFFF

5.3.9.2 Response primitive

The format is given in 192HTable 18.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 34 – 61158-6-15 © IEC:2010(E)

Table 18 – Write single holding register response

Parameter
name / field Type Description

Unit ID Unsigned8 Address of the server. Echo of requested

Function code Unsigned8 Service identifier, function code = 6 (0x06).
Echo of requested

Address holding
register to write

Unsigned16 Address of the holding register to write. Echo of
requested

Data Unsigned16 Holding register value to be written. Echo of
requested

The normal response is an echo of the request, returned after the register contents have been
written.

5.3.10 Write Multiple Holding Registers FAL PDU

5.3.10.1 Request primitive

Service identifier, function code = 16 (0x10).

This function code is used to write from 1 to 123 holding registers in a remote device.

The Request PDU specifies the starting register address and the number of registers. In the
PDU Registers are addressed starting at zero. Therefore registers numbered 1 to 16 are
addressed as 0 to 15.

The values to be written are specified in the request data parameter. The register data in the
request parameter data elements is packed as two octets per register value. For each
register, the first octet contains the high order register bits and the second octet contains the
low order register bits (big-endian convention).

The format is given in 193HTable 19.

Table 19 – Write multiple holding registers request

Parameter
name / field Type Description

Unit ID Unsigned8 Address of the server.

Allowed values: 1 to 247

Function code Unsigned8 Service identifier, function code = 16 (0x10)

Address of first
holding register to
write

Unsigned16 Address of the first holding register to write.

Allowed values: 0x0000 to 0xFFFF

Quantity of holding
registers to write

Unsigned16 Quantity of holding registers to write.

Allowed values: 1 to 123 (0x7B), must be
consistent with the Data octets count and the
Data parameters

Data octets count Unsigned16 Number of octets to write.

Allowed values: 1 to 246, must be consistent
with the Quantity of holding registers to write
and the Data parameters

Data Array of Unsigned16 Holding registers values to write.

Allowed values: 1 to 123 elements, must be
consistent with the Quantity of holding registers
to write and the Data octets count parameters.
Element values can be from 0x0000 to 0xFFFF

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 35 –

5.3.10.2 Response primitive

The format is given in 194HTable 20.

Table 20 – Write multiple holding registers response

Parameter
name / field Type Description

Unit ID Unsigned8 Address of the server. Echo of requested

Function code Unsigned8 Service identifier, function code = 16 (0x10).
Echo of requested

Address of first
holding register to
write

Unsigned16 Address of the first holding register to write.
Echo of requested

Quantity of holding
registers to write

Unsigned16 Quantity of holding registers to write. Echo of
requested

The normal response returns the requested parameters Unit ID, function code, address of first
holding register to write, and quantity of registers to write.

5.3.11 Mask Write Holding Register FAL PDU

5.3.11.1 Request primitive

Service identifier, function code = 22 (0x16).

This function code is used to modify the contents of a specified holding register using a
combination of an AND mask, an OR mask, and the register's current contents. The function
can be used to set or clear individual bits in the register. This is done according to Equation
(195H1).

() ()MaskANDMaskORMaskANDcontentoldcontentnew _____ ¬∧∨∧= (1)

The request specifies the holding register to be written, the data to be used as the AND mask,
and the data to be used as the OR mask. Registers are addressed starting at zero. Therefore
registers 1 to 16 are addressed as 0 to 15.

The format is given in 196HTable 19.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 36 – 61158-6-15 © IEC:2010(E)

Table 21 – Mask write holding register request

Parameter
name / field Type Description

Unit ID Unsigned8 Address of the server.

Allowed values: 1 to 247

Function code Unsigned8 Service identifier, function code = 22 (0x16)

Address of holding
register to change

Unsigned16 Address of the holding register to change.

Allowed values: 0x0000 to 0xFFFF

AND Mask Unsigned16 Binary mask AND_Mask that contributes to the
new content of the holding register to change
according to equation (197H1).

Allowed values: 0x0000 to 0xFFFF

OR Mask Unsigned16 Binary mask OR_Mask that contributes to the
new content of the holding register to change
according to equation (198H1).

Allowed valies: 0x0000 to 0xFFFF

5.3.11.2 Response primitive

The format is given in 199HTable 22.

Table 22 – Mask write holding register request

Parameter
name / field Type Description

Unit ID Unsigned8 Address of the server. Echo of requested

Function code Unsigned8 Service identifier, function code = 22 (0x16).
Echo of requested

Address of holding
register to change

Unsigned16 Address of the holding register to change. Echo
of requested

AND Mask Unsigned16 Binary mask AND_Mask that contributes to the
new content of the holding register to change
according to equation (200H1). Echo of requested

OR Mask Unsigned16 Binary mask OR_Mask that contributes to the
new content of the holding register to change
according to equation (201H1). Echo of requested

The normal response is an echo of the request, returned after the register contents have been
written.

5.3.12 Read/Write Holding Registers FAL PDU

5.3.12.1 Request primitive

Service identifier, function code = 23 (0x17).

This function code performs a combination of one read operation and one write operation on
holding registers in a single service.

The write operation is performed before the read operation.

Holding registers are addressed starting at zero. Therefore holding registers 1 to 16 are
addressed in the PDU as 0 to 15.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 37 –

The request specifies the starting address and number of holding registers to be read as well
as the starting address, number of holding registers, and the data to be written. The octet
count specifies the number of octets to follow in the write data field.

The parameter data contains n octets, where n is the number in the parameter data octets
count, equal to twice the requested quantity of holding registers to write parameter.

The values to be written are specified in the request data parameter. The register data in the
request parameter data elements is packed as two octets per register value. For each
register, the first octet contains the high order register bits and the second octet contains the
low order register bits (big-endian convention).

The format is given in 202HTable 23.

Table 23 – Read/Write multiple holding registers request

Parameter
name / field Type Description

Unit ID Unsigned8 Address of the server.

Allowed values: 1 to 247

Function code Unsigned8 Service identifier, function code = 23 (0x17)

Address of first
holding register to
read

Unsigned16 Address of the first holding register to read.

Allowed values: 0x0000 to 0xFFFF

Quantity of holding
registers to read

Unsigned16 Quantity of holding registers to read.

Allowed values: 1 to 125 (0x7D).

Address of first
holding register to
write

Unsigned16 Address of the first holding register to write.

Allowed values: 0x0000 to 0xFFFF

Quantity of holding
registers to write

Unsigned16 Quantity of holding registers to write.

Allowed values: 1 to 121 (0x79), must be
consistent with the Data octets count and the
Data parameters

Data octets count Unsigned16 Number of octets to write.

Allowed values: 1 to 242, must be consistent
with the Quantity of holding registers to write
and the Data parameters

Data Array of Unsigned16 Holding registers values to write.

Allowed values: 1 to 123 elements, must be
consistent with the Quantity of holding registers
to write and the Data octets count parameters.
Element values can be from 0x0000 to 0xFFFF

5.3.12.2 Response primitive

The format is given in 203HTable 16.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 38 – 61158-6-15 © IEC:2010(E)

Table 24 – Read/Write multiple holding registers response

Parameter
name / field Type Description

Unit ID Unsigned8 Address of the server. Echo of requested

Function code Unsigned8 Service identifier, function code = 23 (0x17).
Echo of requested

Data octets count Unsigned16 Number of octets read

Data Array of Unsigned16 Holding registers values read

The response parameter data contains n octets, where n is the number in the response
parameter data octet count, equal to twice the requested quantity of holding registers.

The register data in the response parameter data elements is packed as two octets per
register value. For each register, the first octet contains the high order register value bits and
the second octet contains the low order register value bits (big-endian convention).

5.3.13 Read FIFO FAL PDU

5.3.13.1 Request primitive

Service identifier, function code = 24 (0x18).

This function code is used to read a bounded number of holding registers, organized to
facilitate a FIFO policy. The bounded number is a-priori unknown, and it is part of the
response. The bound is 32 registers: the register containing the above number plus up to 31
following registers.

The format is given in 204HTable 25.

Table 25 – Read FIFO request

Parameter
name / field Type Description

Unit ID Unsigned8 Address of the server.

Allowed values: 1 to 247

Function code Unsigned8 Service identifier, function code = 24 (0x18)

Address of FIFO
queue

Unsigned16 Address of the holding register that contains the
count of the FIFO queue data holding registers
to follow.

Allowed values: 0x0000 to 0xFFFF

5.3.13.2 Response primitive

The format is given in 205HTable 26.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 39 –

Table 26 – Read FIFO response

Parameter
name / field Type Description

Unit ID Unsigned8 Address of the server. Echo of requested

Function code Unsigned8 Service identifier, function code = 3 (0x03).
Echo of requested

Data octets count Unsigned16 Number of octets read, including the octets of
the FIFO queue count

FIFO queue count Unsigned16 Number of data holding registers of the FIFO
queue, read in the Data parameter. The FIFO
queue count holding register itself is not
included

Data Array of Unsigned16 Holding registers values read

In a normal response, the data octet count shows the quantity of octets to follow, including the
FIFO queue count octets and the data octets.

The FIFO queue count is the quantity of data registers in the queue (not including the FIFO
queue count register itself).

The register data in the response parameter data elements is packed as two octets per
register value. For each register, the first octet contains the high order register value bits and
the second octet contains the low order register value bits (big-endian convention).

5.3.14 Broadcast Write Single Holding Register FAL PDU

5.3.14.1 Request primitive

Service identifier, function code = 6 (0x06); Unit ID = 0.

This function code is used to write a single holding register in all the Unit ID addressable
servers, by specifying Unit ID = 0.

This is an unconfirmed service.

The Request PDU specifies the address of the register to be written. Registers are addressed
starting at zero. Therefore register numbered 1 is addressed as 0.

The register data in the request parameter data is packed as two octets per register. For each
register, the first octet contains the high order register bits and the second octet contains the
low order register bits (big-endian convention).

The format is given in 206HTable 27.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 40 – 61158-6-15 © IEC:2010(E)

Table 27 – Broadcast write single holding register request

Parameter
name / field Type Description

Unit ID Unsigned8 Address of the server.

Allowed values: 0

Function code Unsigned8 Service identifier, function code = 6 (0x06)

Address of holding
register to write

Unsigned16 Address of the holding register to write.

Allowed values: 0x0000 to 0xFFFF

Data Unsigned16 Holding register value to be written.

Allowed valies: 0x0000 to 0xFFFF

5.3.15 Broadcast Write Multiple Holding Registers FAL PDU

5.3.15.1 Request primitive

Service identifier, function code = 16 (0x10); Unit ID = 0.

This function code is used to write from 1 to 123 holding registers in all the Unit ID
addressable servers, by specifying Unit ID = 0.

This is an unconfirmed service.

The Request PDU specifies the starting register address and the number of registers. In the
PDU Registers are addressed starting at zero. Therefore registers numbered 1 to 16 are
addressed as 0 to 15.

The values to be written are specified in the request data parameter. The register data in the
request parameter data elements is packed as two octets per register value. For each
register, the first octet contains the high order register bits and the second octet contains the
low order register bits (big-endian convention).

The format is given in 207HTable 28.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 41 –

Table 28 – Broadcast write multiple holding registers request

Parameter
name / field Type Description

Unit ID Unsigned8 Address of the server.

Allowed values: 0

Function code Unsigned8 Service identifier, function code = 16 (0x10)

Address of first
holding register to
write

Unsigned16 Address of the first holding register to write.

Allowed values: 0x0000 to 0xFFFF

Quantity of holding
registers to write

Unsigned16 Quantity of holding registers to write.

Allowed values: 1 to 123 (0x7B), must be
consistent with the Data octets count and the
Data parameters

Data octets count Unsigned16 Number of octets to write.

Allowed values: 1 to 246, must be consistent
with the Quantity of holding registers to write
and the Data parameters

Data Array of Unsigned16 Holding registers values to write.

Allowed values: 1 to 123 elements, must be
consistent with the Quantity of holding registers
to write and the Data octets count parameters.
Element values can be from 0x0000 to 0xFFFF.

5.3.16 Read File Record FAL PDU

5.3.16.1 Request primitive

Service identifier, function code = 20 (0x14).

This function code is used to read multiple records from one or more files.

The format is given in 208HTable 29.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 42 – 61158-6-15 © IEC:2010(E)

Table 29 – Read file record request

Parameter
name / field Type Description

Unit ID Unsigned8 Address of the server.

Allowed values: 1 to 247

Function code Unsigned8 Service identifier, function code = 20 (0x14).

Sub-requests all-
elements octets
count

Unsigned8 Total count of octets (excluding itself) of all the following sub-
requests.

Allowed values: 7 (0x07) to 245 (0xF5). The minimum is obtained
when there is only one Sub-request element, and the maximum is
obtained when there are 35 Sub-request elements. The upper
bound is dictated by the maximum size of the APDU for
client/server (Unit ID + Function Code + Data = 254 octets). A
correct Read File Record request will also have to ensure that the
total size of the requested response, including all requested
records, does not exceed this upper bound.

Sub-request 1
reference type

Unsigned8 Part of a sub-request element used to specify the reference type.

Allowed values: In the context of this service the only allowed
value is 6.

Sub-request 1 file
number

Unsigned16 Part of a sub-request element used to specify the file number.

Allowed values: The lowest file number is 1. The highest file
number should be 10 (0x0A).

NOTE 1 While it is allowed for the file fumber to be in the
range 1 to 0xFFFF, it should be noted that interoperability with
legacy equipment may be compromised if the file number is
greater than 10 (0x0A).

Sub-request 1
record number

Unsigned16 Part of a Sub-request element used to specify the record number,
that contributes to the qualification of the record. Records are
identified using the address of their first register and their length,
the latter is specified in number of registers; this parameter
represents the address of the first register of the record.

Allowed values: Each file but the last should contain 10 000
registers, with the last file allowed to have less. This provides for
records addressed from 0x0000 to 0x270F (0 to 9 999 decimal),
at most. As a consequence, the Record Number should be in the
range 0x0000 to 0x270F.

NOTE 2 While it is allowed for any file to have more or less than
10 000 registers, with a maximum of 65 536 (0x10000), and
consequently to have records addressed from 0x0000 to 0xFFFF,
it should be noted that interoperability with legacy equipment may
be compromised if each file but the last does not have 10 000
registers, with the last file allowed to have less.

NOTE 3 Differently from other APOs, like discretes, coils, input
registers and holding registers, where the lowest addressable
instance is known to an application as 1-based and it is
addressed in the protocol as 0-based, the lowest addressable
record is record 0, known to an application as 0-based, and it is
addressed in the protocol using a 0-based register address.

Sub-request 1
record length

Unsigned16 Part of a sub-request element used to specify the record length,
that contributes to the qualification of the record. Records are
identified using the address of their first register and their length,
the latter is specified in number of registers; this parameter
represents the length of the record in number of registers.

Allowed values: For a given record number, the record length, in
number of registers, must result in a record contained in the file.
Moreover, such record length, in combination with all the other
parts of the request, shall not produce a response that exceeds
the maximum size of the APDU for client/server (Unit ID +
Function Code + Data = 254 octets).

Sub-request 2

Sub-request n

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 43 –

5.3.16.2 Response primitive

The format is given in 209HTable 30.

Table 30 – Read file record response

Parameter
name / field Type Description

Unit ID Unsigned8 Address of the server. Echo of requested.

Function code Unsigned8 Service identifier, function code = 20 (0x14). Echo of requested.

Sub-requests all-
elements octets
count

Unsigned8 Total count of octets (excluding itself) of all the following sub-
responses.

Expected values: The successful value depends on the request.
For any successful request the value will be in the range 4 (0x04)
to 250 (0xFA). The minimum is obtained when there is only one
sub-response element and that is the smaller sub-response, with
a record of length 1 register. The maximum can be reached in
several ways, with different combinations of number of sub-
responses and record lengths, for example with 34 sub-
responses each with a record of length 1 register (136 octets so
far), and one additional sub-response with a record of length of
56 registers (2 + (56 * 2) = 114 octets). The upper bound is
dictated by the maximum size of the APDU for client/server (Unit
ID + Function Code + Data = 254 octets). A correct read file
record request will have ensured that the total size of the
requested response, including all requested records, does not
exceed this upper bound.

Sub-response 1
octets count

Unsigned8 Part of a sub-response element used to specify the total count of
octets (excluding itself) for the sub-response. The count includes
the reference type octet and the octets contained in the record
data array, all together 1 + twice the record length specified in
the corresponding sub-request, which is expressed in number of
registers.

Expected values: The successful value depends on the request.
For any successful request the value will be a minimum of 3
(0x03) and a maximum of 249 (0xF9). The minimum is obtained
when the requested record has the length of 1 register. The
maximum is reached when the requested record has the length of
124 registers, and in this case this is the only sub-response.

Sub-response 1
reference type

Unsigned8 Part of a sub-response element used to specify the reference
type. Echo of the requested.

Unsigned16 1-st register of the record data array of a sub-response element.

Unsigned16 2-nd register of the record data array of a sub-response element.

Sub-response 1
record data array

Unsigned16 n-th register of the record data array of a sub-response element.

Sub-response 2

Sub-response n

5.3.17 Write File Record FAL PDU

5.3.17.1 Request primitive

Service identifier, function code = 21 (0x15).

This function code is used to write multiple records into one or more files.

The format is given in 210HTable 31.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 44 – 61158-6-15 © IEC:2010(E)

Table 31 – Write file record request

Parameter
name / field Type Description

Unit ID Unsigned8 Address of the server.

Allowed values: 1 to 247

Function code Unsigned8 Service identifier, function code = 21 (0x15).

Sub-requests all-
elements octets
count

Unsigned8 Total count of octets (excluding itself) of all the following sub-
requests.

Allowed values: 9 (0x09) to 251 (0xFB). The minimum is obtained
when there is only one Sub-request element, and that is the
smaller sub-request, with a record of length 1 register. The
maximum can be reached in several ways, with different
combinations of number of sub-requests and record lengths, for
example with 3 sub-requests, one with a record of length 1
register (9 octets so far), one with a record of length 113
registers (130 octets so far) and finally another one with a record
length of 113 registers (for a total of 251 octets). The upper
bound is dictated by the maximum size of the APDU for
client/server (Unit ID + Function Code + Data = 254 octets). A
correct write file record request will have a normal response that
does not exceed the upper bound, since in this case, as
described below, a successful write file record response is an
exact copy of the write file record request.

Sub-request 1
reference type

Unsigned8 Part of a sub-request element used to specify the reference type.

Allowed values: In the context of this service the only allowed
value is 6.

Sub-request 1 file
number

Unsigned16 Part of a sub-request element used to specify the file number.

Allowed values: The lowest file number is 1. The highest file
number should be 10 (0x0A).

NOTE 1 While it is allowed for the file fumber to be in the
range 1 to 0xFFFF, it should be noted that interoperability with
legacy equipment may be compromised if the file number is
greater than 10 (0x0A).

Sub-request 1
record number

Unsigned16 Part of a Sub-request element used to specify the record number,
that contributes to the qualification of the record. Records are
identified using the address of their first register and their length,
the latter is specified in number of registers; this parameter
represents the address of the first register of the record.

Allowed values: Each file but the last should contain 10 000
registers, with the last file allowed to have less. This provides for
records addressed from 0x0000 to 0x270F (0 to 9 999 decimal),
at most. As a consequence, the Record Number should be in the
range 0x0000 to 0x270F.

NOTE 2 While it is allowed for any file to have more or less than
10 000 registers, with a maximum of 65 536 (0x10000), and
consequently to have records addressed from 0x0000 to 0xFFFF,
it should be noted that interoperability with legacy equipment may
be compromised if each file but the last does not have 10 000
registers, with the last file allowed to have less.

NOTE 3 Differently from other APOs, like discretes, coils, input
registers and holding registers, where the lowest addressable
instance is known to an application as 1-based and it is
addressed in the protocol as 0-based, the lowest addressable
record is record 0, known to an application as 0-based, and it is
addressed in the protocol using a 0-based register address.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 45 –

Parameter
name / field Type Description

Sub-request 1
record length

Unsigned16 Part of a sub-request element used to specify the record length,
that contributes to the qualification of the record. Records are
identified using the address of their first register and their length,
the latter is specified in number of registers; this parameter
represents the length of the record in number of registers.

Allowed values: For a given record number, the record length, in
number of registers, must result in a record contained in the file.
Moreover, such record length, in combination with all the other
parts of the request, shall not produce a response that exceeds
the maximum size of the APDU for client/server (Unit ID +
Function Code + Data = 254 octets).

Unsigned16 1-st register of the record data array of a sub-request element.

Unsigned16 2-nd register of the record data array of a sub-request element.

Sub-request 1
record data array

Unsigned16 3-rd register of the record data array of a sub-request element.

Sub-request 2

Sub-request n

5.3.17.2 Response primitive

The normal response is an echo of the request. The format is given in 211HTable 32.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 46 – 61158-6-15 © IEC:2010(E)

Table 32 – Write file record response

Parameter
name / field Type Description

Unit ID Unsigned8 Address of the server. Echo of requested.

Function code Unsigned8 Service identifier, function code = 21 (0x15). Echo of requested.

Sub-requests all-
elements octets
count

Unsigned8 Total count of octets (excluding itself) of all the following sub-
requests. Echo of requested.

Sub-request 1
reference type

Unsigned8 Part of a sub-request element used to specify the reference type.
Echo of requested.

Sub-request 1 file
number

Unsigned16 Part of a sub-request element used to specify the file number.
Echo of requested.

Sub-request 1
record number

Unsigned16 Part of a Sub-request element used to specify the record number,
that contributes to the qualification of the record. Records are
identified using the address of their first register and their length,
the latter is specified in number of registers; this parameter
represents the address of the first register of the record. Echo of
requested.

Sub-request 1
record length

Unsigned16 Part of a sub-request element used to specify the record length,
that contributes to the qualification of the record. Records are
identified using the address of their first register and their length,
the latter is specified in number of registers; this parameter
represents the length of the record in number of registers. Echo
of requested.

Unsigned16 1-st register of the record data array of a sub-request element.
Echo of requested.

Unsigned16 2-nd register of the record data array of a sub-request element.
Echo of requested.

Sub-request 1
record data array

Unsigned16 3-rd register of the record data array of a sub-request element.
Echo of requested.

Sub-request 2 Echo of requested.

Sub-request n Echo of requested.

5.3.18 Read Device Identification FAL PDU

5.3.18.1 Request primitive

Service identifier, function code/MEI Type = 43 (0x2B)/14 (0x0E).

This function code/MEI Type is used to retrieve the device identification objects.

The format is given in 212HTable 33.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 47 –

Table 33 – Read device identification request

Parameter
name / field Type Description

Unit ID Unsigned8 Address of the server.

Allowed values: 1 to 247

Function code Unsigned8 Service identifier, function code = 43 (0x2B).

MEI Unsigned8 Encapsulated Interface type.

Allowed values:14 (0x0E).

Read device ID
code

Unsigned8 Requested device access type, that qualifies the requested
information based on device categories described in 213HTable 34
and, when supported, individually addressed object retrieval. This
is illustrated in 214HTable 35.

Allowed values: As illustrated in 215HTable 35.

Requested object
ID

Unsigned8 First requested object, or the single requested object, according
to the Read Device ID code. A response cannot exceed the
maximum size of the APDU for client/server (Unit ID + Function
Code + Data = 254 octets). An individual object size is
guaranteed to fit in the maximum size by definition. If the set of
returned objects requires more octets than the maximum size,
then several transactions (request/response) are needed. This is
an application client responsibility. When many objects are
requested, the ID of the first requested object of the first
transaction must be set to 0x00. If the initial object ID is not
0x00, then in general the returned Device Identification will be
incomplete. Subsequent requests within the same set of objects
must set the Requested-object ID to the Next-object ID returned
by the server in the previous response. If a different Requested-
object ID is provided, then in general the returned Device
Identification will be incomplete. When many objects are
requested, if the Requested-object ID does not match any known
object, the server will respond as if the object with ID 0x00 was
requested, effectively restarting from the beginning if this
happens in the middle of the retrieval. When the server supports
the retrieval of a single object, and this is performed with a
Requested-object ID that does not match any known object, the
server will return an error response.

Allowed values: 0x00 to 0xFF.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 48 – 61158-6-15 © IEC:2010(E)

Table 34 – Device identification categories

Object IDs Object name / description Type Presence Category

0x00 Vendor Name ASCII string Mandatory Basic

0x01 Product Code ASCII string Mandatory

0x02 Major Minor Revision ASCII string Mandatory

0x03 Vendor URL ASCII string Optional Regular

0x04 Product Name ASCII string

0x05 Model Name ASCII string

0x06 User Application Name ASCII string

0x07 Reserved

…

0x7F

0x80 Private application-defined
objects. The object ID
range [0x80 – 0xFF] can
be used by an application
to define its own objects.

Device
dependent

Optional Extended

…

0xFF

Table 35 – Read device ID code

Value Read device ID code

0x01 Request to retrieve the objects in the Basic Device Identification
category. A stream of objects is expected

0x02 Request to retrieve the objects in the Regular Device Identification
category, if any, and this implies a request for the Basic Device
Identification category as well. A stream of objects is expected, with
the Basic Device Identification category returned first, and the Regular
Device Identification category afterward, if any

0x03 Request to retrieve the objects in the Extended Device Identification
category, if any, and this implies a request for the Regular Device
Identification category, if any, and for the Basic Device Identification
category as well. A stream of objects is expected, with the Basic
Device Identification category returned first, the Regular Device
Identification category after that, if any, and finally the Extended
Device Identification category, if any

0x04 Request to retrieve a specific object. If this feature is supported, a
single object is expected, otherwise an error response is returned

NOTE While the returned categories are ordered as from 216HTable 35, no assumption should be made about the
order of returned objects within any category, even across service invocations. This is to avoid any extra
processing load on servers that may reside in very simple devices, and to permit the best object packing when the
retrieval of multiple objects requires multiple request/response transactions.

5.3.18.2 Response primitive

The format is given in 217HTable 36.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 49 –

Table 36 – Read device identification response

Parameter
name / field Type Description

Unit ID Unsigned8 Address of the server. Echo of requested.

Function code Unsigned8 Service identifier, function code = 43 (0x2B). Echo of requested.

MEI Unsigned8 Encapsulated Interface type. Echo of requested.

Read device ID
code

Unsigned8 Requested device access type, that qualifies the requested
information based on device categories described in 218HTable 34
and, when supported, individually addressed object retrieval. This
is illustrated in 219HTable 35. Echo of requested.

Conformity level Unsigned8 Actual object categories and object retrieval access type made
available by the server. Its value is provided by the server in all
the responses, irrespective of the requested Read Device ID
code. Values are illustrated in 220HTable 37. In the Read Device ID
parameter description it was explained what is returned when
dealing with objects unknown to the server. For known objects, if
a Read Device ID code requests a category or a type of access
that is not available on the server, then the returned objects are
as from 221HTable 38.

More-available
flag

Unsigned8 Information about having or not more objects to retrieve after a
request/response. It is meaningful when the Read Device ID code
is one of 0x01, 0x02, or 0x03, and the response exceed the
maximum size of the APDU for client/server (Unit ID + Function
Code + Data = 254 octets). A value of 0x00 means that there are
no more objects available, while a value of 0xFF means that
more requests have to be issued to retrieve the remaining
objects. The meaning of this parameter is related to the one of
the Next-object ID parameter.

Next-object ID Unsigned8 The ID of the object that has to be requested in a subsequent
request when the More-available flag is 0xFF. This is a client’s
responsibility, and if the Next-object ID requested in the
subsequent request does not match any known object, the server
will respond as if the object with ID 0x00 was requested,
effectively restarting from the beginning.

Number of objects Unsigned8 Part of the Read Device Identification array parameter. Each
element carries one object. Each element uniquely identifies and
represents an object within the device identification address
space using the Returned-object ID, the Object length and the
Object value. All is described below.

Object 1

returned-object ID

Unsigned8 Part of the Objects array element, and it uniquely identifies the
object. Its description is the same as for the Requested-object ID,
and it is part of the stream that initiated with the Requested-
object ID.

Object 1

Object length

Unsigned8 Part of the Objects array element. It describes the length of the
object value, in octets.

Object 1

Object value

As from
222HTable 34

Part of the Objects array element and contributes to the device
identification.

Object 2

...

Object n

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 50 – 61158-6-15 © IEC:2010(E)

Table 37 – Conformity level

Value Read device ID code

0x01 The device supports only the Basic Device Identification category, and
only stream access

0x02 In addition to the Basic Device Identification category, the device
supports also the Regular Device Identification category, and only
stream access

0x03 In addition to the Basic Device Identification category and to the
Regular Device Identification category, the device supports also the
Extended Device Identification category, and only stream access

0x81 The device supports only the Basic Device Identification category, and
both stream access and individual access

0x82 In addition to the Basic Device Identification category, the device
supports also the Regular Device Identification category, and both
stream access and individual access

0x83 In addition to the Basic Device Identification category and to the
Regular Device Identification category, the device supports also the
Extended Device Identification category, and both stream access and
individual access

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 51 –

Table 38 – Requested vs. returned known objects

Read
device ID

Conformity
level

Returned objects

0x01or
0x02 or
0x03

0x01 The server returns the objects in the Basic Device Identification
category. Objects are returned as a stream

0x01 0x02 The server returns the objects in the Basic Device Identification
category. Objects are returned as a stream

0x02 or
0x03

0x02 In addition to objects in the Basic Device Identification category,
the server returns afterward also the objects in the Regular Device
Identification category. Objects are returned as a stream

0x01 0x03 The server returns the objects in the Basic Device Identification
category. Objects are returned as a stream

0x02 0x03 In addition to objects in the Basic Device Identification category,
the server returns afterward also the objects in the Regular Device
Identification category. Objects are returned as a stream

0x03 0x03 In addition to objects in the Basic Device Identification category and
after that objects in the Regular Device Identification category, the
server returns afterward also the objects in the Extended Device
Identification category. Objects are returned as a stream

0x04 0x01 or 0x02
or 0x03

The server returns an illegal function error response

0x01or
0x02 or
0x03

0x81 The server returns the objects in the Basic Device Identification
category. Objects are returned as a stream

0x01 0x82 The server returns the objects in the Basic Device Identification
category. Objects are returned as a stream

0x02 or
0x03

0x82 In addition to objects in the Basic Device Identification category,
the server returns afterward also the objects in the Regular Device
Identification category. Objects are returned as a stream

0x01 0x83 The server returns the objects in the Basic Device Identification
category. Objects are returned as a stream

0x02 0x83 In addition to objects in the Basic Device Identification category,
the server returns afterward also the objects in the Regular Device
Identification category. Objects are returned as a stream

0x03 0x83 In addition to objects in the Basic Device Identification category and
after that objects in the Regular Device Identification category, the
server returns afterward also the objects in the Extended Device
Identification category. Objects are returned as a stream

0x04 0x81 or 0x82
or 0x83

The server returns the individually requested object

5.4 Data representation ‘on the wire’

Client/server uses a big-endian representation for addresses and data items. This means that
when a numerical quantity larger than a single octet is transmitted, the most significant octet
is sent first.

EXAMPLE A register is of type Unsigned16, a multiple octet quantity. If its value is 0x1234, then the first octet
sent is 0x12, and the second octet sent is 0x34.

6 Abstract syntax for publish/subscribe

The abstract syntax of APDUs is combined with their transfer syntax and is specified in
Clause 223H 7.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 52 – 61158-6-15 © IEC:2010(E)

7 Transfer syntax for publish/subscribe

7.1 General

The sending Application Layer prepares an APDU to transfer to the receiving Application
Layer. It uses the parameters from the service primitives to do so. There is only one APDU
format, it is the packed format produced with the help of the messenger services, which
thread together APDUs from the other services. This permits flexibility and expansion, with
differences encoded as content in the APDU itself.

In the context of publish/subscribe the packed APDU is also called message, and the
constituent sub-APDUs are also called sub-messages. The APDU composition is illustrated
using UML notation in 224HFigure 6.

Sub-message

Message Header

Sub-message header

Sub-message element

1 1

1 1 .. *

1 1

1 *

Figure 6 – Publish/subscribe APDU

7.2 APDU structure

The generic APDU is made of a leading header followed by a variable number of sub-
messages. Each sub-message starts aligned on a 32-bit boundary with respect to the start of
the message. The APDU details are illustrated in 225HTable 39.

The APDU has a well-known length. This length is not sent explicitly by the publish/subscribe
protocol but is part of the underlying transport with which APDUs are sent. In the case of
UDP/IP, the length of the APDU is the length of the UDP payload.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 53 –

Table 39 – APDU structure

fields content, aligned on a 32 bits boundary

header 4 octets

fixed length 16 octets 4 octets

 4 octets

 4 octets

sub-message 1

starts on a 32 bits boundary and has variable length

… …

sub-message n

starts on a 32 bits boundary and has variable length

It is convenient to see the message header as a sub-APDU itself, despite it being a header. In
IEC 61158-5-15 it has been abstracted as one of the services of the messenger ASE because
it has many similarities with other services there, which modify defaults set by the header. It is
also different, its sub-APDU has the fixed length of 16 octets, it is a singleton and it is
identified by its location instead of having a service identifier. The message header will be
described as part of the service specific APDU structures, after the discussion of the sub-
message structure.

The header is one of the set of logistic sub-messages: header, INFO_DST, INFO_REPLY,
INFO_SRC, INFO_TS, and PAD. The publish/subscribe is a wire protocol, and these
messages are all responsibility of the user application.

NOTE OMG DDS as in “Data Distribution Service for Real-Time Systems Specification, Version 1.1, December
2005” defines services that are here presented as responsibility of the publish/subscribe AL user instead.
publish/subscribe is a wire protocol, and as such some functionality is deferred to the user application. This can be
appreciated by the flexibility offered for implementations where foot-print is at a premium, and contributes to the
pervasiveness of the approach.

Types are defined in IEC 61158-5-15. The octets for every sub-message are in the order
specified up to the flags octet; after that, multi-octet types are placed ‘on the wire’ according
to the endian-ness flag, that may modify the ordering on a per sub-message basis.

7.3 Sub-message structure

7.3.1 General

The general structure of each sub-message in a message is as illustrated in 226HTable 40.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 54 – 61158-6-15 © IEC:2010(E)

Table 40 – Sub-message structure

Parameter
name / Field

Type Description

Sub-message ID Unsigned8 This is the service identifier encoding.

Flags OctetString, 1 octet Flags encode some of the parameters.

OctetsToNextHeader Unsigned16 Parameter that allows the variable length sub-
messages composition.

Sub-message specific
content

OctetString,
variable length

Described with the service specific APDU
structures

7.3.2 Service identifiers

The sub-message ID octet carries the service identifier encoding. IDs 0x00 to 0x7F (inclusive)
are protocol-specific. They are defined as part of the publish/subscribe protocol. The major
version 1 of publish/subscribe defines the sub-message IDs as reported in 227HTable 41.

Table 41 – Publish/subscribe service identifier encoding

Encoding Service

0x01 PAD

0x02 VAR

0x03 Issue

0x04 – 0x05 Reserved

0x06 ACK

0x07 Heartbeat

0x08 GAP

0x09 INFO_TS

0x0A – 0x0B Reserved

0x0C INFO_SRC

0x0D INFO_REPLY

0x0E INFO_DST

0x0F – 0x7F Reserved

0x80 – 0XFF available to be used for vendor specific extensions; their
interpretation is dependent on the vendorID encoded in the
message header

The meaning of the sub-message IDs cannot be modified in this major version (1). Additional
sub-messages can be added in higher minor versions. Sub-messages with ID's 0x80 to 0xFF
(inclusive) are vendor-specific; they will not be defined by the protocol. Their interpretation is
dependent on the vendorId that is current when the sub-message is encountered. The
description of the header will specify how the current vendorId is determined.

7.3.3 Flags

The least-significant bit (lsb) of the flags is always present in all sub-messages and
represents the endian-ness used to encode the information in the sub-message. E=0 means
big-endian, E=1 means little-endian. This is on a per sub-message basis.

This is the only flag that has a dedicated position, the lsb position, in the flags octet.

Other bits in the flags octet have interpretations that depend on the type of sub-message.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 55 –

In the following descriptions of the sub-messages, the character 'X' is used to indicate a flag
that is unused in version 1.0 of the protocol. publish/subscribe implementations of version 1.0
should set these to zero when sending and ignore these when receiving. Higher minor
versions of the protocol can use these flags.

7.3.4 OctetsToNextHeader

The final two octets of the sub-message header contain the number of octets from the first
octet of the contents of the sub-message until the first octet of the header of the next sub-
message. The representation of this field is a Common Data Representation (CDR) unsigned
short (ushort). CDR is documented in “Common Object Request Broker Architecture: Core
Specification”, and in this specification in 228H 7.6 for the part regarding publish/subscribe.

If the sub-message is the last one in the message, the octetsToNextHeader field contains
either the number of octets remaining in the message or the sentinel 0. The meaning of the
sentinel is that the length of the content of the last message has to be derived by other means
(computed from the lengths of all previous sub-messages and the length of the all message).
This allows for a last sub-message larger than what can be specified in the encoding
Unsigned16. In general, due to alignment requirements, the octetsToNextHeader field may be
larger than the length of the current sub-message data.

7.4 APDU interpretation

7.4.1 General

The interpretation and meaning of a sub-message/sub-APDU within a message/APDU may
depend on the previous sub-messages within that same message. Therefore the receiver of a
message must maintain state from previously deserialized sub-messages in the same
message.

229HTable 42 lists attributes that will be encountered examining the service specific APDU
structures; these attributes may be modally changed by the parameters of some service
specific APDUs and affect the interpretation of the following ones. Types are defined in
IEC 61158-5-15.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 56 – 61158-6-15 © IEC:2010(E)

Table 42 – Attributes changed modally and affecting APDUs interpretations

Attribute name Type Description

sourceVersion ProtocolVersion The major and minor version
with which the following sub-
messages need to be interpreted

sourceVendorID VendorID The vendor identification with
which the following vendor-
specific extensions need to be
interpreted

sourceHostID, sourceAppID HostID, AppID The originator’s host and
application identifiers. The
following sub-messages need to
be identified as if they are
coming from this host and
application

destHostID, destAppID HostID, AppID The destination’s host and
application identifiers. The
following sub-messages need to
be identified as if they are meant
for this host and application

unicastReplyIPAddress,
unicastReplyPort

IPAddress, Port An explicit IP address and port
that provides an additional direct
way for the receiver to reply
directly to the originator over
unicast

multicastReplyIPAddress,
multicastReplyPort

IPAddress, Port An explicit IP address and port
that provides an additional direct
way for the receiver to reach the
originator (and potentially many
others) over multicast

haveTimestamp, timestamp Boolean, NtpTime The timestamp applying to all
the following sub-messages

7.4.2 Rules

The following algorithm outlines the rules that a receiver of any message must follow:

a) If a 4-octets sub-message header cannot be read, the rest of the message is considered
invalid;

b) The last two octets of a sub-message header, the octetsToNextHeader field, contains the
number of octets to the next sub-message. If this field is invalid, the rest of the message is
invalid;

c) The first octet of a sub-message header is the sub-messageID. A sub-message with an
unknown ID must be ignored and parsing must continue with the next sub-message.
Concretely: an implementation of publish/subscribe 1.0 must ignore any sub-messages
with IDs that are outside of the sub-messageID list used by version 1.0. IDs in the vendor-
specific range coming from a vendorID that is unknown must be ignored and parsing must
continue with the next sub-message;

d) The second octet of a sub-message header contains flags; unknown flags should be
skipped. An implementation of publish/subscribe 1.0 should skip all flags that are marked
as ‘X’ (unused) in the protocol;

e) A valid octetsToNextHeader field must always be used to find the next sub-message, even
for sub-messages with unknown IDs;

f) A known but invalid sub-message invalidates the rest of the message. 230H 7.5.1 through
231H 7.5.10.1 each describe a known sub-message and when it should be considered invalid.

The reception of a valid message header and/or sub-message has two effects:

⎯ It can change the state of the receiver; this state influences how the following sub-
messages in the message are interpreted. 232H 7.5.1 through 233H 7.5.10.1 show how the state
changes for each sub-message. In this version of the protocol, only the Header and

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 57 –

the sub-messages INFO_SRC, INFO_REPLY and INFO_TS change the state of the
receiver;

⎯ The sub-message, interpreted within the message, has a logical interpretation: it
encodes one of the five basic publish/subscribe services: ACK, GAP, HEARTBEAT,
ISSUE or VAR, beside the logistic services.

7.5 Service specific APDU structures

7.5.1 Issue FAL PDU

7.5.1.1 Request primitive

Service identifier, sub-message ID = 3 (0x03).

This sub-message is used by a publisher to publish user data for one or more subscribers.

This is an unconfirmed service.

The format is given in 234HTable 43, 235HFigure 7 and 236HTable 44.

Table 43 – Issue request

Parameter
name / Field

Type Description

Sub-message ID Unsigned8 Service identifier, sub-message ID = 3 (0x03)

Flags Octet string, 1 octet,
see 237HFigure 7 and
238HTable 44

Octet encoding boolean flags, described
separately

OctetsToNextHeader Unsigned16 Number of octets from the first octet of the
contents of this sub-message until the first octet
of the header of the next sub-message, for all
sub-messages but the last. See 239H 7.3.4.

Allowed values: 0x0000 to 0xFFFF

readerObjectID ObjectID Used to specify the subscription GUID
<destHostID, destAppID, Issue.readerObjectID>
for which the Issue service is meant. The
Issue.readerObjectID can be
OBJECTID_UNKNOWN, in which case the
Issue service applies to all Subscriptions within
the application <destHostId, destAppId>

writerObjectID ObjectID Used to specify the Publication GUID
<sourceHostID, sourceAppID,
Issue.writerObjectID> that originated the Issue

issueSeqNumber SequenceNumber Used to specify the sequence number
identifying the Issue

parameterSequence ParameterSequence Conditional to the value of the
hasParameterSequence flag; it shall be used to
provide a variable list of operational Issue
parameters, and allows for publish/subscribe
extensions

issueData Type is
communicated by
configuration or by
convention on the
topic specification or
by the discovery
mechanism

Used to specify the actual Al user data in this
Issue

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 58 – 61158-6-15 © IEC:2010(E)

 msb lsb

Octet 0 1 2 3 4 5 6 7 Bit Identification

 Bit 7 (lsb) ‘E’: endian-ness

 Bit 6 ‘P’:
hasParameterSequence

 Bit 5 X

 Bit 4 X

 Bit 3 X

 Bit 2 X

 Bit 1 X

 Bit 0 X

Figure 7 – Flags of issue request

Table 44 – Meaning of issue request flags

Boolean flag Description

endian-ness Specifies the endian-ness of this service request and
indication.

Values: {big-endian, 0}, {little-endian, 1}

hasParameterSequence Specifies if there is or not a parameterSequence
parameter.

Values: {NO, 0}, {YES, 1}

7.5.1.2 Validity

This sub-message is invalid when any of the following are true:

⎯ octetsToNextHeader is too small given other sub-messages and message information;

⎯ issueSeqNumber is either not strictly positive (1,2,...) or is not
SEQUENCE_NUMBER_UNKNOWN;

⎯ the parameter sequence is invalid.

7.5.1.3 Change in state of the receiver

None.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 59 –

7.5.1.4 Logical interpretation

Table 45 – Interpretation of issue

Attribute Value Description

subscriptionGUID <destHostid, destAppId,
ISSUE.readerObjectId>

The Subscription for which the ISSUE is
meant. The ISSUE.readerObjectId can
be OBJECTID_UNKNOWN, in which
case the ISSUE applies to all
Subscriptions within the Application
<destHostId, destAppId>

publicationGUID <sourceHostId,
sourceAppId,
ISSUE.writerObjectId>

The Publication object that originated
this issue

issueSeqNumber ISSUE.issueSeqNumber The sequence number of this issue; this
should either be a strictly positive
number (1,2,3,...) or the special
sequence-number
SEQUENCENUMBER_UNKNOWN. The
latter may be used by a simple
publication that does not number
consecutive issues

(parameters) ISSUE.parameters (iff
ISSUE.P==1)

(optional) This is present iff P == 1.
These parameters will allow future
extensions of the protocol

ACKIPAddressPortList {
unicastReplyIPAddress:uni
castReplyPort
 }

The destinations to which the
Publication can send an ACK message
in response to this ISSUE

(timestamp) timestamp
 (present iff
haveTimestamp == true)

(optional) Timestamp of this issue

issueData ISSUE.issueData The actual user data in this issue

7.5.2 Heartbeat FAL PDU

7.5.2.1 Request primitive

Service identifier, sub-message ID = 7 (0x07).

This sub-message is used to probe a reader’s presence, and to inform one or more readers
about a writer’s available information via sequence numbers.

This is an unconfirmed service.

The format is given in 240HTable 46, 241HFigure 8 and 242HTable 47.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 60 – 61158-6-15 © IEC:2010(E)

Table 46 – Heartbeat request

Parameter
name / Field Type Description

Sub-message ID Unsigned8 Service identifier, sub-message ID = 7 (0x07)

Flags Octet string, 1 octet,
see 243HFigure 8 and
244HTable 47

Octet encoding boolean flags, described
separately

OctetsToNextHeader Unsigned16 Number of octets from the first octet of the
contents of this sub-message until the first octet
of the header of the next sub-message, for all
sub-messages but the last. See 245H 7.3.4.

Allowed values: 0x0000 to 0xFFFF

readerObjectID ObjectID Used to specify the reader GUID <destHostID,
destAppID, Heartbeat.readerObjectID> for
which the Heartbeat service is meant. The
Heartbeat.readerObjectID can be
OBJECTID_UNKNOWN, in which case the
Heartbeat service applies to all readers within
the application <destHostId, destAppId>

writerObjectID ObjectID Used to specify the writer GUID <sourceHostID,
sourceAppID, Heartbeat.writerObjectID> that
originated the Heartbeat

firstSeqNumber SequenceNumber Used to specify the first sequence number that
is still available and meaningful in the writer
with writerObjectID. This field must be greater
than or equal to zero. If it is equal to
SEQUENCE_NUMBER_NONE, the writer has
no data available

lastSeqNumber SequenceNumber Used to specify the last sequence number that
is available and in the writer with
writerObjectID. This field must be greater than
or equal to firstSeqNumber. If firstSeqNumber
is equal to SEQUENCE_NUMBER_NONE, then
lastSeqNumber must also be
SEQUENCE_NUMBER_NONE

 msb lsb

Octet 0 1 2 3 4 5 6 7 Bit Identification

 Bit 7 (lsb) ‘E’: endian-ness

 Bit 6 ‘F’:
isResponseRequired

 Bit 5 X

 Bit 4 X

 Bit 3 X

 Bit 2 X

 Bit 1 X

 Bit 0 X

Figure 8 – Flags of heartbeat request

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 61 –

Table 47 – Meaning of heartbeat request flags

Boolean flag Description

endian-ness Specifies the endian-ness of this service request and
indication.

Values: {big-endian, 0}, {little-endian, 1}

responseIsNotRequired Specifies if the application sending the Heartbeat
requires or not a response. Known with ‘F’, that stands
for ‘Final’.

Values: {FALSE, it IS required, 0}, {TRUE, it IS NOT
required, 1}

7.5.2.2 Validity

This sub-message is invalid when any of the following are true:

⎯ octetsToNextHeader is too small given other sub-messages and message information;

⎯ firstSeqNumber is less than 0;

⎯ lastSeqNumber is less than 0;

⎯ lastSeqNumber is strictly less than firstSeqNumber.

7.5.2.3 Change in state of the receiver

None.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 62 – 61158-6-15 © IEC:2010(E)

7.5.2.4 Logical interpretation

Table 48 – Interpretation of heartbeat

Attribute Value Description

FINAL-bit HEARTBEAT.F When the F-bit is set, the application
sending the HEARTBEAT does not
require a response

readerGUID <destHostid, destAppId,
HEARTBEAT.readerObject
Id>

The Reader to which the heartbeat
applies. The
HEARTBEAT.readerObjectId can be
OBJECTID_UNKNOWN, in which case
the HEARTBEAT applies to all Readers
of that writerGUID within the Application
<destHostId, destAppId>

writerGUID <sourceHostId,
sourceAppId,
HEARTBEAT.writerObjectI
d>

The Writer to which the HEARTBEAT
applies

ACKIPAddressPortList {
unicastReplyIPAddress:uni
castReplyPort
 }

An additional list of destinations where
responses (ACKs) to this sub-message
can be sent

firstSeqNumber HEARTBEAT.firstSeqNum
ber

The first sequence number,
firstSeqNumber, that is still available
and meaningful in the writerObject. This
field must be greater than or equal to
zero. If it is equal to
SEQUENCE_NUMBER_NONE, the
Writer has no data available

lastSeqNumber HEARTBEAT.lastSeqNum
ber

The last sequence number,
lastSeqNumber, that is available in the
Writer. This field must be greater than or
equal to firstSeqNumber. If
firstSeqNumber is
SEQUENCE_NUMBER_NONE,
lastSeqNumber must also be
SEQUENCE_NUMBER_NONE

7.5.3 VAR FAL PDU

7.5.3.1 Request primitive

Service identifier, sub-message ID = 2 (0x02).

This sub-message is used by CSTWriters to publish metadata for CSTReaders, in this case
information about the attributes of a network object. This information is part of a composite
state.

This is an unconfirmed service.

The format is given in 246HTable 49, 247HFigure 9 and 248HTable 50.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 63 –

Table 49 – VAR request

Parameter
name / field Type Description

Sub-message ID Unsigned8 Service identifier, sub-message ID = 2 (0x02)

Flags Octet string, 1 octet,
see 249HFigure 9 and
250HTable 50

Octet encoding boolean flags, described
separately

OctetsToNextHeader Unsigned16 Number of octets from the first octet of the
contents of this sub-message until the first octet
of the header of the next sub-message, for all
sub-messages but the last. See 251H 7.3.4

Allowed values: 0x0000 to 0xFFFF

readerObjectID ObjectID Used to specify the reader GUID <destHostID,
destAppID, VAR.readerObjectID> for which the
VAR service is meant. The VAR.readerObjectID
can be OBJECTID_UNKNOWN, in which case
the VAR service applies to all readers of the
writerObjectID within the application
<destHostId, destAppId>

writerObjectID ObjectID Used to specify the CSTWriter GUID
<sourceHostID, sourceAppID,
VAR.writerObjectID> that originated the VAR

hostID HostID Conditional to the value of the
hasHostIDandAppID flag; when present,
combined with the appID and objectID
parameters, shall be used to specify the GUID
of the object the information carried by this VAR
is about

appID AppID Conditional to the value of the
hasHostIDandAppID flag; when present,
combined with the hostID and objectID
parameters, shall be used to specify the GUID
of the object the information carried by this VAR
is about

objectID ObjectID Used to specify the GUID of the object the
information carried by this VAR is about; if the
parameters hostID and appID are present then
the GUID is <VAR.hostID, VAR.appID,
VAR.objectID> otherwise, combined with the
modal/state values provided by the Messenger
service, the GUID is <sourceHostID,
sourceAppID

writerSeqNumber SequenceNumber Used to tag changes in the composite state
provided by the CSTWriter; it is incremented
each time a change in such composite state
occurs; this should be a strictly positive number
(1, 2, ...), or the special sequence number,
SEQUENCE_NUMBER_UNKNOWN, may be
sent to indicate that the sender does not keep
track of the sequence number

parameterSequence ParameterSequence Conditional to the value of the
hasParameterSequence flag; it shall be used to
provide a variable list of operational Issue
parameters, and allows for publish/subscribe
extensions

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 64 – 61158-6-15 © IEC:2010(E)

 msb lsb

Octet 0 1 2 3 4 5 6 7 Bit Identification

 Bit 7 (lsb) ‘E’: endian-ness

 Bit 6 ‘P’:
hasParameterSequence

 Bit 5 ‘A’: alive

 Bit 4 ‘H’: hasHostAndAppID

 Bit 3 X

 Bit 2 X

 Bit 1 X

 Bit 0 X

Figure 9 – Flags of VAR request

Table 50 – Meaning of VAR request flags

Boolean flag Description

endian-ness Specifies the endian-ness of this service request and
indication.

Values: {big-endian, 0}, {little-endian, 1}

hasParameterSequence Specifies if there is or not a parameterSequence
parameter.

Values: {NO, 0}, {YES, 1}

alive Indicates to the reader whether the data-object is alive
or else is not-alive (disposed).

Values: {NO, 0}, {YES, 1}

hasHostAndAppID Specifies if there are or not the hostID and the appID
parameters.

Values: {NO, 0}, {YES, 1}

7.5.3.2 Validity

This sub-message is invalid when any of the following are true:

⎯ octetsToNextHeader is too small given other sub-messages and message information;

⎯ writerSeqNumber is not strictly positive (1,2,...) or is
SEQUENCE_NUMBER_UNKNOWN;

⎯ the parameter sequence is invalid.

7.5.3.3 Change in state of the receiver

None.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 65 –

7.5.3.4 Logical interpretation

Table 51 – Interpretation of VAR

Attribute Value Description

readerGUID <destHostid, destAppId,
VAR.readerObjectId>

The Reader to which the VAR applies.
The VAR.readerObjectId can be
OBJECTID_UNKNOWN, in which case
the VAR applies to all Readers of that
writerGUID within the Application
<destHostId, destAppId>

writerGUID <sourceHostId,
sourceAppId,
VAR.writerObjectId>

The CSTWriter that sent the information

objectGUID <VAR.hostId, VAR.appId,
VAR.objectId> (iff H == 1)

 <sourceHostId,
sourceAppId,
VAR.objectId> (iff H == 0)

The object this information (contained in
the parameters) is about

writerSeqNumber VAR.writerSeqNumber Incremented each time a change in the
Composite State provided by the
CSTWriter occurs. This should be a
strictly positive number (1, 2, ...). Or,
the special sequence number,
SEQUENCE_NUMBER_UNKNOWN,
may be sent to indicate that the sender
does not keep track of the sequence
number

(timestamp) current.timestamp if
current.haveTimestamp ==
true

(optional) This is present iff
current.haveTimestamp == true.
Timestamp of the new parameters sent
with this sub-message

(parameters) VAR.parameters (iff
VAR.P==1)

(optional) This is present iff VAR.P == 1.
Contains information about the object

ALIVE-bit VAR.A Indicates to the reader whether the
data-object is alive or else is not-alive
(disposed)

ACKIPAddressPortList {
unicastReplyIPAddress:uni
castReplyIPPort,
writer>IPAddressPortList()
 }

Where to sent ACKs in reply to this sub-
message

7.5.4 GAP FAL PDU

7.5.4.1 Request primitive

Service identifier, sub-message ID = 8 (0x08).

This sub-message is sent from a CSTWriter to a CSTReader to indicate that a range of
sequence numbers is no longer relevant. The set may be a contiguous range of sequence
numbers or a specific set of sequence numbers.

This is an unconfirmed service.

The format is given in 252HTable 52, 253HFigure 10 and 254HTable 53.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 66 – 61158-6-15 © IEC:2010(E)

Table 52 – GAP request

Parameter
name / Field Type Description

Sub-message ID Unsigned8 Service identifier, sub-message ID = 3 (0x03)

Flags Octet string, 1 octet,
see 255HFigure 10 and
256HTable 53

Octet encoding boolean flags, described
separately

OctetsToNextHeader Unsigned16 Number of octets from the first octet of the
contents of this sub-message until the first octet
of the header of the next sub-message, for all
sub-messages but the last. See 257H 7.3.4.

Allowed values: 0x0000 to 0xFFFF

readerObjectID ObjectID Used to specify the reader GUID <destHostID,
destAppID, GAP.readerObjectID> for which the
GAP service is meant. The GAP.readerObjectID
can be OBJECTID_UNKNOWN, in which case
the GAP service applies to all readers within
the application <destHostId, destAppId>

writerObjectID ObjectID Used to specify the CSTWriter GUID
<sourceHostID, sourceAppID,
GAP.writerObjectID> that is the subject of the
GAP sequence numbers of this GAP service
invocation

firstSeqNumber SequenceNumber Used with the bitmap parameter to specify the
sequence numbers that are no longer available
in the writerObjectID network object; the list of
the no longer available sequence numbers is
the union of:

all the sequence numbers in the range from
GAP.firstSeqNumber up to
GAP.bitmap.bitmapBase – 1; this list is empty if
the firstSeqNumber is greater than or equal to
the bitmapBase of the bitmap;
GAP.firstSeqNumber should always be greater
than or equal to 1;

and

the sequence numbers that have the
corresponding bit in the bitmap set to 1

bitmap Bitmap Used with the firstSeqNumber parameter to
specify the sequence numbers that are no
longer available in the writerObjectID network
object, as detailed in the firstSeqNumber
parameter description above

 msb lsb

Octet 0 1 2 3 4 5 6 7 Bit Identification

 Bit 7 (lsb) ‘E’: endian-ness

 Bit 6 X

 Bit 5 X

 Bit 4 X

 Bit 3 X

 Bit 2 X

 Bit 1 X

 Bit 0 X

Figure 10 – Flags of GAP request

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 67 –

Table 53 – Meaning of GAP request flags

Boolean flag Description

endian-ness Specifies the endian-ness of this service request and
indication.

Values: {big-endian, 0}, {little-endian, 1}

7.5.4.2 Validity

This sub-message is invalid when any of the following are true:

⎯ octetsToNextHeader is too small given other sub-messages and message information;

⎯ bitmap is invalid;

⎯ firstSeqNumber is 0 or negative.

7.5.4.3 Change in state of the receiver

None.

7.5.4.4 Logical interpretation

Table 54 – Interpretation of GAP

Attribute Value Description

readerGUID <destHostId, destAppId,
GAP.readerObjectId>

The GUID of the CSTReader for which
the gapList is meant. The
GAP.readerObjectId can be
OBJECTID_UNKNOWN, in which case
the GAP applies to all Readers within
the Application <destHostId, destAppId>

writerGUID <sourceHostId,
sourceAppId,
GAP.writerObjectId>

The GUID of the CSTWriter to which the
gapList applies

ACKIPAddressPortList {
unicastReplyIPAddress:uni
castReplyPort
 }

If the CSTReader that receives this sub-
message needs to reply with an ACK
sub-message, then this ACK can be
sent to one of the explicit destinations in
this list

gapList {
GAP.firstSeqNumber,
GAP.firstSeqNumber+1,...,
GAP.bitmap.bitmapBase-1
 }

and

all sequence numbers that
have a corresponding bit
set to 1 in the bitmap

The list of sequence numbers that are
no longer available in the writerObject.
This list is the union of:

All the sequence numbers in the range
from GAP.firstSeqNumber up to
GAP.bitmap.bitmapBase - 1. This list is
empty if the firstSeqNumber is greater
than or equal to the bitmapBase of the
bitmap. GAP.firstSeqNumber should
always be greater than or equal to 1;

and

The sequence numbers that have the
corresponding bit in the bitmap set to 1

7.5.5 ACK FAL PDU

7.5.5.1 Request primitive

Service identifier, sub-message ID = 6 (0x06).

This sub-message is used to communicate the state of a Reader to a Writer.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 68 – 61158-6-15 © IEC:2010(E)

This is an unconfirmed service.

The format is given in 258HTable 55, 259HFigure 11 and 260HTable 56.

Table 55 – ACK request

Parameter
name / Field Type Description

Sub-message ID Unsigned8 Service identifier, sub-message ID = 3 (0x03)

Flags Octet string, 1 octet,
see 261HFigure 11 and
262HTable 56

Octet encoding boolean flags, described
separately

OctetsToNextHeader Unsigned16 Number of octets from the first octet of the
contents of this sub-message until the first octet
of the header of the next sub-message, for all
sub-messages but the last. See 263H 7.3.4.

Allowed values: 0x0000 to 0xFFFF

readerObjectID ObjectID Used to specify the GUID <sourceHostID,
sourceAppID, ACK.readerObjectID> of the
reader acknowledges receipt of certain
sequence numbers and/or requests to receive
certain sequence numbers

writerObjectID ObjectID Used to specify the GUID <destHostID,
deatAppID, ACK.writerObjectID> of the writer
that the reader has received these sequence
numbers from and/or wants to receive these
sequence numbers from

bitmap Bitmap Used to specify the ACK botmap: a “0” in this
bitmap means that the corresponding
sequence-number is missing; a “1” in the
bitmap conveys no information, that is, the
corresponding sequence number may or may
not be missing; by sending an ACK, the
readerGUID object acknowledges receipt of all
messages up to and including the sequence
number (bitmap.bitmapBase -1)

 msb lsb

Octet 0 1 2 3 4 5 6 7 Bit Identification

 Bit 7 (lsb) ‘E’: endian-ness

 Bit 6 ‘F’:
isResponseRequired

 Bit 5 X

 Bit 4 X

 Bit 3 X

 Bit 2 X

 Bit 1 X

 Bit 0 X

Figure 11 – Flags of ACK request

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 69 –

Table 56 – Meaning of ACK request flags

Boolean flag Description

endian-ness Specifies the endian-ness of this service request and
indication.

Values: {big-endian, 0}, {little-endian, 1}

responseIsNotRequired Specifies if the application sending the Heartbeat
requires or not a response. Known with ‘F’, that stands
for ‘Final’.

Values: {FALSE, it IS required, 0}, {TRUE, it IS NOT
required, 1}

7.5.5.2 Validity

This sub-message is invalid when any of the following are true:

⎯ octetsToNextHeader is too small given other sub-messages and message information;

⎯ bitmap is invalid.

7.5.5.3 Change in state of the receiver

None.

7.5.5.4 Logical interpretation

Table 57 – Interpretation of ACK

Attribute Value Description

FINAL-bit ACK.F When the F-bit is set, the application
sending the ACK does not expect a
response to the ACK

readerGUID <sourceHostId,
sourceAppId,
ACK.readerObjectId>

The GUID of the Reader that
acknowledges receipt of certain
sequence numbers and/or requests to
receive certain sequence numbers

writerGUID <destHostId, destAppId,
ACK.writerObjectId>

The GUID of the Writer that the reader
has received these sequence numbers
from and/or wants to receive these
sequence numbers from

replyIPAddressPortList {
unicastReplyIPAddress:uni
castReplyPort,
multicastReplyIPAddress:
multicastReplyPort
 }

This is an additional list of addresses
that the receiving application can use to
respond to this ACK

bitmap ACK.bitmap A “0” in this bitmap means that the
corresponding sequence-number is
missing. A “1” in the bitmap conveys no
information, that is, the corresponding
sequence number may or may not be
missing. By sending an ACK, the
readerGUID object acknowledges
receipt of all messages up to and
including the sequence number
(bitmap.bitmapBase -1)

7.5.6 Header FAL PDU

7.5.6.1 General

It is convenient to see the message header as a sub-APDU itself, despite it being a header. In
IEC 61158-5-15 it has been abstracted as one of the services of the messenger ASE because

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 70 – 61158-6-15 © IEC:2010(E)

it has many similarities with other services there, which modify defaults set by the header. It is
also different, its sub-APDU has the fixed length of 16 octets, it is a singleton and it is
identified by its location instead of having a service identifier.

The header is one of the set of logistic sub-messages: header, INFO_DST, INFO_REPLY,
INFO_SRC, INFO_TS, and PAD.

7.5.6.2 Request primitive

Service identifier: positional, it is at the beginning of every message.

The format is given in 264HTable 58.

Table 58 – Header request

Parameter
name / field Type Description

1st header marker Octer string, 1 octet Ascii character ‘R’.

2nd header marker Octet string, 1 octet Ascii character ‘T’.

3rd header marker Octet string, 1 octet Ascii character ‘P’.

4th header marker Octet string, 1 octet Ascii character ‘S’.

version ProtocolVersion The type is defined in IEC 61158-5-15.

This specification refers to {major = 0x1, minor
= 0x0}

vendorID VendorID Used to specify the vendor of the middleware
implementing the publish/subscribe protocol
and allows this vendor to add specific
extensions to the protocol. The vendorID does
not refer to the vendor of the device or product
that contains publish/subscribe middleware.
The type is defined in IEC 61158-5-15

hostID HostID Used to to specify sourceHostID for the
receiver and for the reader and writer services
that use sourceHostID; the value setting is
modal, as specified until changed

appID AppID Used to to specify sourceAppID for the receiver
and for the reader and writer services that use
sourceAppID; the value setting is modal, as
specified until changed

7.5.6.3 Validity

A header is invalid when any of the following are true:

⎯ The full APDU has less than the required number of octets to contain a full header (16
octets);

⎯ its first 4 octets are not ‘R’ ‘T’ ‘P’ ‘S’;

⎯ the major protocol version is larger than the major protocol version supported by the
implementation.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 71 –

7.5.6.4 Change in state of the receiver

Table 59 – Change in state of the receiver

attribute value

sourceHostID Header.hostID

sourceAppID Header.appID

sourceVersion Header.version

sourceVendorID Header.vendorID

haveTimestamp false

7.5.6.5 Logical interpretation

None.

7.5.7 INFO_DST FAL PDU

7.5.7.1 Request primitive

Service identifier, sub-message ID = 14 (0x0E).

This sub-message modifies the logical destination for the service requests that follow it.

This is an unconfirmed service.

The format is given in 265HTable 60, 266HFigure 12 and 267HTable 61.

Table 60 – INFO_DST request

Parameter
name / field Type Description

Sub-message ID Unsigned8 Service identifier, sub-message ID = 14 (0x0E)

Flags Octet string, 1 octet,
see 268HFigure 12 and
269HTable 61

Octet encoding boolean flags, described
separately

OctetsToNextHeader Unsigned16 Number of octets from the first octet of the
contents of this sub-message until the first octet
of the header of the next sub-message, for all
sub-messages but the last. See 270H 7.3.4.

Allowed values: 0x0000 to 0xFFFF

hostID HostID Used to specify destHostID for the reader and
writer services that use destHostID; the value
setting is modal, as specified until changed

appID AppID Used to specify destAppID for the reader and
writer services that use destAppID; the value
setting is modal, as specified until changed

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 72 – 61158-6-15 © IEC:2010(E)

 msb lsb

Octet 0 1 2 3 4 5 6 7 Bit Identification

 Bit 7 (lsb) ‘E’: endian-ness

 Bit 6 X

 Bit 5 X

 Bit 4 X

 Bit 3 X

 Bit 2 X

 Bit 1 X

 Bit 0 X

Figure 12 – Flags of INFO_DST request

Table 61 – Meaning of INFO_DST request flags

Boolean flag Description

endian-ness Specifies the endian-ness of this service request and
indication.

Values: {big-endian, 0}, {little-endian, 1}

7.5.7.2 Validity

This sub-message is invalid when any of the following are true:

⎯ octetsToNextHeader is too small given other sub-messages and message information.

7.5.7.3 Change in state of the receiver
if(INFO_DST.hostId != HOSTID_UNKNOWN) {
 destHostId = INFO_DST.hostId
} else {
 destHostId = hostId of application receiving the message
}

if(INFO_DST.appId != APPID_UNKNOWN) {
 destAppId = INFO_DST.appId
} else {
 destAppId = appId of application receiving the message
}

In other words, an INFO_DST with a HOSTID_UNKNOWN means that any host may interpret
the following submessages as if they were meant for it. Similarly, an INFO_DST with a
APPID_UNKNOWN means that any application may interpret the following submessages as if
they were meant for it.

7.5.7.4 Logical interpretation

None; this only affects the interpretation of the submessages that follow it.

7.5.8 INFO_REPLY FAL PDU

7.5.8.1 Request primitive

Service identifier, sub-message ID = 13 (0x0D).

This sub-message specifies explicit information on where to send a reply to the requests that
follow it within the same message.

This is an unconfirmed service.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 73 –

The format is given in 271HTable 62, 272HFigure 13 and 273HTable 63.

Table 62 – INFO_REPLY request

Parameter
name / field Type Description

Sub-message ID Unsigned8 Service identifier, sub-message ID = 13 (0x0D)

Flags Octet string, 1 octet,
see 274HFigure 13 and
275HTable 63

Octet encoding boolean flags, described
separately

OctetsToNextHeader Unsigned16 Number of octets from the first octet of the
contents of this sub-message until the first octet
of the header of the next sub-message, for all
sub-messages but the last. See 276H 7.3.4.

Allowed values: 0x0000 to 0xFFFF

unicastReplyIPAddre
ss

IPAddress Used to specify the IP address of where to send
a reply to the requests that follow within the
same message; the value setting is modal, as
specified until changed

unicastReplyPort Port Used to specify the port of where to send a
reply to the requests that follow within the same
message; the value setting is modal, as
specified until changed

multicastReplyIPAddr
ess

IPAddress Conditional to the value of the hasMulticast
parameter. It shall be used to specify the IP
address of where to send a reply to the
requests that follow within the same message;
the value setting is modal, as specified until
changed

multicastReplyPort Port Conditional to the value of the hasMulticast
parameter. It shall be used to specify the port of
where to send a reply to the requests that
follow within the same message; the value
setting is modal, as specified until changed

 msb lsb

Octet 0 1 2 3 4 5 6 7 Bit Identification

 Bit 7 (lsb) ‘E’: endian-ness

 Bit 6 ‘M’: hasMulticast

 Bit 5 X

 Bit 4 X

 Bit 3 X

 Bit 2 X

 Bit 1 X

 Bit 0 X

Figure 13 – Flags of INFO_REPLY request

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 74 – 61158-6-15 © IEC:2010(E)

Table 63 – Meaning of INFO_REPLY request flags

Boolean flag Description

endian-ness Specifies the endian-ness of this service request and
indication.

Values: {big-endian, 0}, {little-endian, 1}

hasMulticast Specifies if there is multicast information.

Values: {NO, 0}, {YES, 1}

7.5.8.2 Validity

This sub-message is invalid when any of the following are true:

⎯ octetsToNextHeader is too small given other sub-messages and message information.

7.5.8.3 Change in state of the receiver
if (INFO_REPLY.unicastReplyIPAddress != IPADDRESS_INVALID) {
 unicastReplyIPAddress = INFO_REPLY.unicastReplyIPAddress;
}
unicastReplyPort = INFO_REPLY.replyPort
if (M==1) {
 multicastReplyIPAddress = INFO_REPLY.multicastReplyIPAddress
 multicastReplyPort = INFO_REPLY.multicastReplyPort
} else {
 multicastReplyIPAddress = IPADDRESS_INVALID
 multicastReplyPort = PORT_INVALID
}

7.5.8.4 Logical interpretation

None; this only affects the interpretation of the submessages that follow it.

7.5.9 INFO_SRC FAL PDU

7.5.9.1 Request primitive

Service identifier, sub-message ID = 12 (0x0C).

This sub-message modifies the logical source for the service requests that follow it.

This is an unconfirmed service.

The format is given in 277HTable 64, 278HFigure 14 and 279HTable 65.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 75 –

Table 64 – INFO_SRC request

Parameter
name / field Type Description

Sub-message ID Unsigned8 Service identifier, sub-message ID = 12 (0x0C)

Flags Octet string, 1 octet,
see 280HFigure 14 and
281HTable 65

Octet encoding boolean flags, described
separately

OctetsToNextHeader Unsigned16 Number of octets from the first octet of the
contents of this sub-message until the first octet
of the header of the next sub-message, for all
sub-messages but the last. See 282H 7.3.4.

Allowed values: 0x0000 to 0xFFFF

appIPAddress IPAddress Used to specify the IP address of where to send
a reply to the requests that follow within the
same message; the value setting is modal, as
specified until changed

version ProtocolVersion The type is defined in IEC 61158-5-15.

This specification refers to {major = 0x1, minor
= 0x0}

vendorID VendorID Used to specify the vendor of the middleware
implementing the publish/subscribe protocol
and allows this vendor to add specific
extensions to the protocol. The vendorID does
not refer to the vendor of the device or product
that contains publish/subscribe middleware.
The type is defined in IEC 61158-5-15

hostID HostID Used to specify sourceHostID for the receiver
and for the reader and writer services that use
sourceHostID; the value setting is modal, as
specified until changed

appID AppID Used to specify sourceAppID for the receiver
and for the reader and writer services that use
sourceAppID; the value setting is modal, as
specified until changed

 msb lsb

Octet 0 1 2 3 4 5 6 7 Bit Identification

 Bit 7 (lsb) ‘E’: endian-ness

 Bit 6 X

 Bit 5 X

 Bit 4 X

 Bit 3 X

 Bit 2 X

 Bit 1 X

 Bit 0 X

Figure 14 – Flags of INFO_SRC request

Table 65 – Meaning of INFO_SRC request flags

Boolean flag Description

endian-ness Specifies the endian-ness of this service request and
indication.

Values: {big-endian, 0}, {little-endian, 1}

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 76 – 61158-6-15 © IEC:2010(E)

7.5.9.2 Validity

This sub-message is invalid when any of the following are true:

⎯ octetsToNextHeader is too small given other sub-messages and message information.

7.5.9.3 Change in state of the receiver

sourceHostId = INFO_SRC.hostId
sourceAppId = INFO_SRC.appId
sourceVersion = INFO_SRC.version
sourceVendorId = INFO_SRC.vendorId
unicastReplyIPAddress = INFO_SRC.appIPAddress
unicastReplyPort = PORT_INVALID
multicastReplyIPAddress = IPADDRESS_INVALID
multicastReplyPort = PORT_INVALID
haveTimestamp = false

7.5.9.4 Logical interpretation

None; this only affects the interpretation of the submessages that follow it.

7.5.10 INFO_TS FAL PDU

7.5.10.1 Request primitive

Service identifier, sub-message ID = 9 (0x09).

This sub-message is used to send a timestamp which applies to the service requests that
follow it.

This is an unconfirmed service.

The format is given in 283HTable 66, 284HFigure 15 and 285HTable 67.

Table 66 – INFO_TS request

Parameter
name / field Type Description

Sub-message ID Unsigned8 Service identifier, sub-message ID = 9 (0x09)

Flags Octet string, 1 octet,
see 286HFigure 15 and
287HTable 67

Octet encoding boolean flags, described
separately

OctetsToNextHeader Unsigned16 Number of octets from the first octet of the
contents of this sub-message until the first octet
of the header of the next sub-message, for all
sub-messages but the last. See 288H 7.3.4.

Allowed values: 0x0000 to 0xFFFF

ntpTimestamp NtpTime Conditional to the value of the noTimestamp
flag. It shall be used to specify the timestamp
for the requests that follow within the same
message; the value setting is modal, as
specified until changed

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 77 –

 msb lsb

Octet 0 1 2 3 4 5 6 7 Bit Identification

 Bit 7 (lsb) ‘E’: endian-ness

 Bit 6 ‘I’: hasTimestamp

 Bit 5 X

 Bit 4 X

 Bit 3 X

 Bit 2 X

 Bit 1 X

 Bit 0 X

Figure 15 – Flags of INFO_TS request

Table 67 – Meaning of INFO_TS request flags

Boolean flag Description

endian-ness Specifies the endian-ness of this service request and
indication.

Values: {big-endian, 0}, {little-endian, 1}

hasTimestamp Specifies if there is (0) or not (1) a timestamp.

Values: {hasTimestamp, 0}, {thereIsNOTimestamp, 1}

7.5.10.2 Validity

This sub-message is invalid when any of the following are true:

⎯ octetsToNextHeader is too small given other sub-messages and message information.

7.5.10.3 Change in state of the receiver

if (INFO_TS.I==0) {
 haveTimestamp = true
 timestamp = INFO_TS.ntpTimestamp
} else {
 haveTimestamp = false
}

7.5.10.4 Logical interpretation

None; this only affects the interpretation of the submessages that follow it.

7.5.11 PAD FAL PDU

7.5.11.1 Request primitive

Service identifier, sub-message ID = 1 (0x01).

This sub-message is used for alignment purposes within the message, whereas the receiver
will skip the PAD service request length and will get to the next request. The length is
specified as part of the request format. The service has no other meaning.

This is an unconfirmed service.

The format is given in 289HTable 68, 290HFigure 16 and 291HTable 69.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 78 – 61158-6-15 © IEC:2010(E)

Table 68 – PAD request

Parameter
name / field Type Description

Sub-message ID Unsigned8 Service identifier, sub-message ID = 1 (0x01)

Flags Octet string, 1 octet,
see 292HFigure 16 and
293HTable 69

Octet encoding boolean flags, described
separately

OctetsToNextHeader Unsigned16 Number of octets from the first octet of the
contents of this sub-message until the first octet
of the header of the next sub-message, for all
sub-messages but the last. See 294H 7.3.4.

Allowed values: 0x0000 to 0xFFFF

 msb lsb

Octet 0 1 2 3 4 5 6 7 Bit Identification

 Bit 7 (lsb) ‘E’: endian-ness

 Bit 6 X

 Bit 5 X

 Bit 4 X

 Bit 3 X

 Bit 2 X

 Bit 1 X

 Bit 0 X

Figure 16 – Flags of PAD request

Table 69 – Meaning of PAD request flags

Boolean flag Description

endian-ness Specifies the endian-ness of this service request and
indication.

Values: {big-endian, 0}, {little-endian, 1}

7.5.11.2 Validity

This sub-message is invalid when any of the following are true:

⎯ octetsToNextHeader is too small given other sub-messages and message information.

7.5.11.3 Change in state of the receiver

None.

7.5.11.4 Logical interpretation

Logistic only, the receiver skips the PAD using octetsToNextHeader.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 79 –

7.6 Common data representation for publish/subscribe

7.6.1 General

The following is a summary of the CDR (defined within the OMG CORBA protocol) data format
and the OMG IDL syntax to the extent that they are used by the publish/subscribe protocol
and its description in this document.

NOTE The authoritative source of the CDR specification and OMG IDL is the CORBA protocol (available through
the Object Management Group <http://www.omg.org>). In the CORBA V2.3.1 specification, the relevant sections
are 15.3 (General Inter-ORB Protocol—CDR Transfer Syntax) and 3.10 (OMG IDL Syntax and Semantics— Type
Declaration). Unless mentioned explicitly, CDR for publish/subscribe follows the CDR standard for GIOP version
1.1.

publish/subscribe makes some additional restrictions on CDR and makes concrete choices
where CDR for GIOP 1.1 is not fully defined. Notable are the implementation of the wide
characters and strings (wchar and wstring) and the definition of the publish/subscribe
Identifier, which only allows certain characters.

7.6.2 Primitive Types

7.6.2.1 Semantics

Table 70 – Semantics

OMG IDL-name Size Meaning

octet 1 8 uninterpreted bits

boolean 1 TRUE or FALSE

unsigned short 2 integer N, 0 <= N < 2^16

short 2 integer N, -2^15 <= N < 2^15

unsigned long 4 integer N, 0 <= N < 2^32

long 4 integer N, -2^31 <= N < 2^31

unsigned long long 8 integer N, 0 <= N < 2^64

long long 8 integer N, -2^63 <= N < 2^63

float 4 IEEE single-precision fp number

double 8 IEEE double-precision fp number

char 1 a character following ISO8859-1

wchar 2 a wide-character following UNICODE

Remarks:

⎯ CDR defines some additional primitive types, such as "long double"; these are
currently disallowed by publish/subscribe;

⎯ CDR leaves the width of the wchar open; publish/subscribe gives it a fixed length of
two octets.

7.6.2.2 Encoding

CDR has both a big-endian ("BE") and a little-endian ("LE") encoding. The sender is allowed
to choose the encoding. The receiver needs to know which encoding has been used by the
sender to unpack the data correctly. This endianness-bit is transmitted as part of the
publish/subscribe protocol.

7.6.2.3 octet

An octet is encoded as shown in 295HFigure 17.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 80 – 61158-6-15 © IEC:2010(E)

BE/LE

0...2...........7
+-+-+-+-+-+-+-+-+
|7|6|5|4|3|2|1|0|
+-+-+-+-+-+-+-+-+

Figure 17 – Encoding of octet

7.6.2.4 boolean

A boolean is encoded as shown in 296HFigure 18.

TRUE BE/LE

0...2...........7
+-+-+-+-+-+-+-+-+
|0|0|0|0|0|0|0|1|
+-+-+-+-+-+-+-+-+

FALSE BE/LE

0...2...........7
+-+-+-+-+-+-+-+-+
|0|0|0|0|0|0|0|0|
+-+-+-+-+-+-+-+-+

Figure 18 – Encoding of boolean

7.6.2.5 unsigned short

An unsigned short is encoded as shown in 297HFigure 19.

BE

0...2...........7...............15
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|msb | lsb|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

LE
0...2...........7...............15
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| lsb|msb |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 19 – Encoding of unsigned short

7.6.2.6 short

A short has the same encoding as an unsigned short, but uses 2's complement
representation.

7.6.2.7 unsigned long

An unsigned long is encoded as shown in 298HFigure 20.

BE

0...2...........7...............15..............23..............31
+-+
|msb |msb X |msb Y | lsb|
+-+

LE

0...2...........7...............15.............23...............31
+-+
| lsb|msb Y |msb X |msb |
+-+

Figure 20 – Encoding of unsigned long

7.6.2.8 long

A long has the same encoding as an unsigned long, but uses 2's complement representation.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 81 –

7.6.2.9 unsigned long long

An unsigned long long is encoded as in 299HFigure 21.

BE

0...2...........7...............15.............23...............31
+-+
|msb |msb A |msb B |msb C |
+-+
|msb D |msb E |msb F | lsb|
+-+

LE

0...2...........7...............15.............23...............31
+-+
| lsb|msb F |msb E |msb D |
+-+
|msb C |msb B |msb A |msb |
+-+

Figure 21 – Encoding of unsigned long long

7.6.2.10 long long

A long long has the same encoding as an unsigned long long, but uses 2's complement
representation.

7.6.2.11 float

A float is encoded as shown in 300HFigure 22.

BE
....2...........8...............16.............24...............32
+-+
|S| E1 |E| F1 | F2 | F3 |
+-+

LE

....2...........8...............16.............24...............32
+-+
| F3 | F2 |E| F1 |S| E1 |
+-+

Figure 22 – Encoding of float

7.6.2.12 double

A double is encoded as shown in 301HFigure 23.

BE
....2...........8...............16.............24...............32
+-+
|S| E1 | E2 | F1 | F2 | F3 |
+-+
| F4 | F5 | F6 | F7 |
+-+

LE

....2...........8...............16.............24...............32
+-+
| F7 | F6 | F5 | F4 |
+-+
| F3 | F2 | E2 | F1 |S| E1 |
+-+

Figure 23 – Encoding of double

7.6.2.13 char

A character has the same encoding as an octet.

7.6.2.14 wchar

A wide-character occupies two octets and follows UNICODE encoding.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 82 – 61158-6-15 © IEC:2010(E)

7.6.3 Constructed types

7.6.3.1 Alignment

In CDR, only the primitive types listed in 302H 7.6.2 have alignment constraints. The primitive types
need to be aligned on their length. For example, a long must start on a 4-octets boundary.
The boundaries are counted from the start of the CDR stream.

7.6.3.2 Identifiers

An identifier is a sequence of ASCII alphabetic and numeric characters, plus the underscore
character. The first character must be an ASCII alphabetic character.

7.6.3.3 List of constructed types

publish/subscribe supports the following subset of CDR constructed types:

struct structure
array fixed size array (the length is part of the type)
sequence variable size array (the maximum length is part of the type)
string string of 1-byte characters
wstring string of wide character

NOTE There are some additional constructed types in CDR, such as unions and fixed-point decimal types; these
are currently not supported in publish/subscribe.

7.6.3.4 Struct

A structure has a name (an identifier) and an ordered sequence of elements. Each element
has a name (an identifier) and a type. In OMG IDL, a structure is defined by the keyword
"struct", followed by an identifier and a sequence of the elements of the structure. An example
of the definition of a structure named "myStructure" in OMG IDL is:

struct myStructure {
 long long l;
 unsigned short s;
 myType t;
}

In CDR, the components of such a structure are encoded in the order of their declaration in
the structure. The only alignment requirements are at the level of the primitive types.

7.6.3.5 Enumeration

An enumeration has a name (an identifier) and an ordered set of case-keywords which also
are identifiers. In OMG IDL, an enumeration is defined by the keyword "enum", followed by an
identifier and a list of identifiers in the enumeration. For example:

enum myEnumeration { case1, case2, case3 }

In CDR, enumerations are encoded as unsigned longs, where the identifiers in the
enumeration are numbered from left to right, starting with 0.

7.6.3.6 Sequence

A sequence is a variable number of elements of the same type. Optionally, the type can
specify the maximum number of elements in the sequence. OMG IDL uses the keyword
"sequence". The syntax for an unbounded sequence of floats is:

sequence<float>

The syntax for a sequence of unsigned long longs with a maximum length is:

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 83 –

sequence<unsigned long long, MAX_NUMBER_OF_ELEMENTS>

In CDR, sequences are encoded as the number of elements (as an unsigned long) followed
by each of the elements in the sequence.

7.6.3.7 Array

Arrays have a fixed and well-known number of elements of the same type. In OMG IDL, an
array is defined using the symbols "[" and "]", following the C/C++ style. An example is:

float[17]

In CDR, arrays are encoded by encoding each of its elements from low to high index. In multi-
dimensional arrays, the index of the last dimension varies most quickly.

7.6.3.8 String

A string is an optionally bounded sequence of characters. In OMG IDL, a string of unbounded
length is identified by the keyword "string"; a bounded string is specified as follows:

string<MAX_LENGTH>

On the wire, strings are encoded as an unsigned long (indicating the number of octets that
follow to encode the string), followed by each of the characters in the string and a terminating
zero. For example, the string "Hello" is encoded as the unsigned long 6 followed by the octets
’H’, ’e’, ’l’, ’l’, ’o’, 0.

7.6.3.9 Wstring

A wide-string is a string of wide-characters. In OMG IDL, unbounded and bounded strings are
specified, respectively, as follows:

wstring
wstring<MAX_LENGTH>

In CDR (GIOP 1.1), a wide-string is encoded as an unsigned long indicating the length of the
string on octets or unsigned integers (determined by the transfer syntax for wchar), followed
by the individual wide characters. Both the string length and contents include a terminating
NULL.

8 Structure of FAL protocol state machines

Interface to FAL services and protocol machines are specified in this subclause.

NOTE The state machines specified in this subclause and ARPMs defined in the following sections only define
the valid events for each. It is a local matter to handle the invalid events.

The behavior of the FAL is described by three integrated protocol machines. Specific sets of
these protocol machines are defined for different AREP types. The three protocol machines
are: FAL Service Protocol Machine (FSPM), the Application Relationship Protocol Machine
(ARPM), and the data-link layer Mapping Protocol Machine (DMPM). The relationship among
these protocol machines as well as primitives exchanged among them are depicted in 303HFigure
24.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 84 – 61158-6-15 © IEC:2010(E)

 AP_Context

FA L Se rvice Req/Rsp P rimiti ves FAL Se rvic e Ind/Cnf P rimiti ves

FSP M

FSP M Req /Rsp P rimitives FSP M Ind/Cnf P rimiti ves

#n ARPM

#1 ARPM

 A RPM Req/Rsp P rimitiv es A RPM In d/Cnf P rimit ives

DMPM

DL Req/Rsp Primit ives DL Ind/ Cnf P rimit ives

Dat a Link Layer

Figure 24 – Relationships among protocol machines and adjacent layers

The FSPM describes the service interface between the AP-Context and a particular AREP.
The FSPM is common to all the AREP classes and does not have any state changes. The
FSPM is responsible for the following activities:

a) to accept service primitives from the FAL service user and convert them into FAL internal
primitives;

b) to select an appropriate ARPM state machine based on the AREP Identifier parameter
supplied by the AP-Context and send FAL internal primitives to the selected ARPM;

c) to accept FAL internal primitives from the ARPM and convert them into service primitives
for the AP-Context;

d) to deliver the FAL service primitives to the AP-Context based on the AREP Identifier
parameter associated with the primitives.

The ARPM describes the establishment and release of an AR and exchange of FAL-PDUs
with a remote ARPM(s). The ARPM is responsible for the following activities:

a) to accept FAL internal primitives from the FSPM and create and send other FAL internal
primitives to either the FSPM or the DMPM, based on the AREP and primitive types;

b) to accept FAL internal primitives from the DMPM and send them to the FSPM as a form of
FAL internal primitives;

c) if the primitives are for the Establish or Abort service, it shall try to establish or release the
specified AR.

The DMPM describes the mapping between the FAL and the DLL. It is common to all the
AREP types and does not have any state changes. The DMPM is responsible for the following
activities:

d) to accept FAL internal primitives from the ARPM, prepare DLL service primitives, and send
them to the DLL;

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 85 –

e) to receive DLL indication or confirmation primitives from the DLL and send them to the
ARPM in a form of FAL internal primitives.

9 AP-context state machines for client/server

There is no AP-Context State Machine in this Type of FAL.

10 FAL service protocol machine (FSPM) for client/server

10.1 General

FAL Service Protocol Machine is common to all the AREP types. Only applicable primitives
are different among different AREP types. It has one state called "ACTIVE" as shown in
304HFigure 25.

ACTIVE All Transactions

Figure 25 – State transition diagram of FSPM

10.2 FSPM state tables

305HTable 71 and 306HTable 72 specifiy the FSPM protocol machine.

The invoke_ID used in the protocol machine is the transaction identifier object and it must be
unique across all the transaction identifiers still pending on the connection involved.

The transaction object is instantiated for the duration of the service invocation, and in general
it is used to couple requests and confirmations for confirmed services, and destroyed
afterward. The service invocation is supposed to be completed within a device and connection
specific amount of time. If the prescribed amount of time expires, then the transaction object
is discarded as the confirmation matching the associated request is no longer expected, and
the client is notified.

The transaction object also acts as a moderator. If a client can only instantiate one
transaction object at a time then, when invoking a service, it is not necessary to dynamically
create a transaction object and exchange its identifier with lower layers, since the main
reason for having a transaction object is to properly couple requests with confirmations, which
is automatic for these clients. In these situations a single static transaction object effectively
acts like a client token, which is either taken or available, and only of interest to the client. For
these clients there will be only one pending request at a time, and the invoke_ID as used in
the state tables may be considered empty in the request and always matching in the
confirmation.

For unconfirmed services, transaction objects are disposed-of after an amount of time that is
device and connection specific. This allows for proper propagation.

On a given connection, a new transaction can only take place if the request for the transaction
object is granted. Therefore, all the .req events in the FSPM client transactions state table
reported in 307HTable 71 have to be interpreted as being produced after the client successfully
obtains a transaction object for the particular instantiation of the .req event.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 86 – 61158-6-15 © IEC:2010(E)

There is a transaction state machine associated with every connection. The transaction state
machine for a connection is illustrated in 308HFigure 26. It has one state called "ACTIVE".

Figure 26 – Transaction state machine, per connection

In 309HFigure 26, the TransactionIDRequestForConnection is the event used by the client to
request a new transaction object, and the associated Invoke_ID, for a given connection.

TA is the number of transactions that are currently available. The initial setting of the TA
parameter is implementation and connection dependent, and it may be per connection or
across connections. It is in general related to the type of connection and to platform
resources.

The ConfirmedTransactionIDForConnectionMatched is a side event generated by the FSPM
client transactions state machine when, upon receipt of a .cnf event, the function
MatchInvokeID(Invoke_ID) is successful.

There is one timer per transaction object.

The ConfirmedTransactionIDForConnectionTimedOut is an event generated by the
transaction object associated timer. Beside local state machine maintenance, this event
produces a client notification.

The UnconfirmedTransactionIDForConnectionPropagated is an event generated by the
transaction object associated timer, used to self-pace the transaction activity after an
unconfirmed transaction, if needed.

When upon reception of a .cnf event the MatchInvokeID(Invoke_ID) fails, either because the
transaction object associated timer expired and that Invoke_ID was no longer expected, or
due of other reasons, the associated confirmation is discarded.

ACTIVE

TransactionIDRequestForConnection AND TA = 0/
TransactionIDRefused

UnconfirmedTransactionIDForConnectionPropagated/
TA = TA + 1; TimerReset

ConfirmedTransactionIDForConnectionTimedOut/
TA = TA +1; TimerReset; NotifyClient

ConfirmedTransactionIDForConnectionMatched/
TA = TA + 1; TimerReset

TransactionIDRequestForConnection AND TA > 0/
(TA = TA -1); TransactionIDGranted; TimerStarted

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 87 –

Table 71 – FSPM state table – client transactions

Current state Event or condition
 => action Next state

S1 ACTIVE ReadDiscretes.req
=>
 Transaction.req {
 remote_address := AREP_ID,
 invoke_ID := unique_per_connection_ID,
 user_data := alpdu
 }

ACTIVE

S2 ACTIVE ReadCoils.req
=>
 Transaction.req {
 remote_address := AREP_ID,
 invoke_ID := unique_per_connection_ID,
 user_data := alpdu
 }

ACTIVE

S3 ACTIVE WriteSingleCoil.req
=>
 Transaction.req {
 remote_address := AREP_ID,
 invoke_ID := unique_per_connection_ID,
 user_data := alpdu
 }

ACTIVE

S4 ACTIVE WriteMultipleCoils.req
=>
 Transaction.req {
 remote_address := AREP_ID,
 invoke_ID := unique_per_connection_ID,
 user_data := alpdu
 }

ACTIVE

S5 ACTIVE BroadcastWriteSingleCoil.req
=>
 Transaction.req {
 remote_address := AREP_ID,
 invoke_ID := unique_per_connection_ID,
 user_data := alpdu
 }

ACTIVE

S6 ACTIVE BroadcastWriteMultipleCoils.req
=>
 Transaction.req {
 remote_address := AREP_ID,
 invoke_ID := unique_per_connection_ID,
 user_data := alpdu
 }

ACTIVE

S7 ACTIVE ReadInputRegisters.req
=>
 Transaction.req {
 remote_address := AREP_ID,
 invoke_ID := unique_per_connection_ID,
 user_data := alpdu
 }

ACTIVE

S8 ACTIVE ReadHoldingRegisters.req
=>
 Transaction.req {
 remote_address := AREP_ID,
 invoke_ID := unique_per_connection_ID,
 user_data := alpdu
 }

ACTIVE

S9 ACTIVE WriteSingleHoldingRegister.req
=>
 Transaction.req {
 remote_address := AREP_ID,
 invoke_ID := unique_per_connection_ID,
 user_data := alpdu
 }

ACTIVE

S10 ACTIVE WriteMultipleHoldingRegisters.req
=>
 Transaction.req {
 remote_address := AREP_ID,
 invoke_ID := unique_per_connection_ID,
 user_data := alpdu
 }

ACTIVE

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 88 – 61158-6-15 © IEC:2010(E)

310HTable 71 (continued)

Current state Event or condition
 => action Next state

S11 ACTIVE MaskWriteHoldingRegister.req
=>
 Transaction.req {
 remote_address := AREP_ID,
 invoke_ID := unique_per_connection_ID,
 user_data := alpdu
 }

ACTIVE

S12 ACTIVE Read/WriteHoldingRegisters.req
=>
 Transaction.req {
 remote_address := AREP_ID,
 invoke_ID := unique_per_connection_ID,
 user_data := alpdu
 }

ACTIVE

S13 ACTIVE ReadFIFO.req
=>
 Transaction.req {
 remote_address := AREP_ID,
 invoke_ID := unique_per_connection_ID,
 user_data := alpdu
 }

ACTIVE

S14 ACTIVE BroadcastWriteSingleHoldingRegister.req
=>
 Transaction.req {
 remote_address := AREP_ID,
 invoke_ID := unique_per_connection_ID,
 user_data := alpdu
 }

ACTIVE

S15 ACTIVE BroadcastWriteMultipleHoldingRegisters.req
=>
 Transaction.req {
 remote_address := AREP_ID,
 invoke_ID := unique_per_connection_ID,
 user_data := alpdu
 }

ACTIVE

S16 ACTIVE ReadFileRecord.req
=>
 Transaction.req {
 remote_address := AREP_ID,
 invoke_ID := unique_per_connection_ID,
 user_data := alpdu
 }

ACTIVE

S17 ACTIVE WriteFileRecord.req
=>
 Transaction.req {
 remote_address := AREP_ID,
 invoke_ID := unique_per_connection_ID,
 user_data := alpdu
 }

ACTIVE

S18 ACTIVE ReadDeviceIdentification.req
=>
 Transaction.req {
 remote_address := AREP_ID,
 invoke_ID := unique_per_connection_ID,
 user_data := alpdu
 }

ACTIVE

S19 ACTIVE Transaction.cnf
&& MatchInvokeID(Invoke_ID)
&& HighBit(code) == “True”
=>
 ReadDiscretes.cnf(-) {
 ArepID := remote_address,
 ExceptionCode := data
 }

ACTIVE

S20 ACTIVE Transaction.cnf
&& MatchInvokeID(Invoke_ID)
&& HighBit(code) == “True”
=>
 ReadCoils.cnf(-) {
 ArepID := remote_address,
 ExceptionCode := data
 }

ACTIVE

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 89 –

310HTable 71 (continued)

Current state Event or condition
 => action Next state

S21 ACTIVE Transaction.cnf
&& MatchInvokeID(Invoke_ID)
&& HighBit(code) == “True”
=>
 WriteSingleCoil.cnf(-) {
 ArepID := remote_address,
 ExceptionCode := data
 }

ACTIVE

S22 ACTIVE Transaction.cnf
&& MatchInvokeID(Invoke_ID)
&& HighBit(code) == “True”
=>
 WriteMultipleCoils.cnf(-) {
 ArepID := remote_address,
 ExceptionCode := data
 }

ACTIVE

S23 ACTIVE Transaction.cnf
&& MatchInvokeID(Invoke_ID)
&& HighBit(code) == “True”
=>
 ReadInputRegisters.cnf(-) {
 ArepID := remote_address,
 ExceptionCode := data
 }

ACTIVE

S24 ACTIVE Transaction.cnf
&& MatchInvokeID(Invoke_ID)
&& HighBit(code) == “True”
=>
 ReadHoldingRegisters.cnf(-) {
 ArepID := remote_address,
 ExceptionCode := data
 }

ACTIVE

S25 ACTIVE Transaction.cnf
&& MatchInvokeID(Invoke_ID)
&& HighBit(code) == “True”
=>
 WriteSingleHoldingRegister.cnf(-) {
 ArepID := remote_address,
 ExceptionCode := data
 }

ACTIVE

S26 ACTIVE Transaction.cnf
&& MatchInvokeID(Invoke_ID)
&& HighBit(code) == “True”
=>
 WriteMultipleHoldingRegister.cnf(-) {
 ArepID := remote_address,
 ExceptionCode := data
 }

ACTIVE

S27 ACTIVE Transaction.cnf
&& MatchInvokeID(Invoke_ID)
&& HighBit(code) == “True”
=>
 MaskWriteHoldingRegister.cnf(-) {
 ArepID := remote_address,
 ExceptionCode := data
 }

ACTIVE

S28 ACTIVE Transaction.cnf
&& MatchInvokeID(Invoke_ID)
&& HighBit(code) == “True”
=>
 Read/WriteHoldingRegisters.cnf(-) {
 ArepID := remote_address,
 ExceptionCode := data
 }

ACTIVE

S29 ACTIVE Transaction.cnf
&& MatchInvokeID(Invoke_ID)
&& HighBit(code) == “True”
=>
 ReadFIFO.cnf(-) {
 ArepID := remote_address,
 ExceptionCode := data
 }

ACTIVE

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 90 – 61158-6-15 © IEC:2010(E)

310HTable 71 (continued)

Current state Event or condition
 => action Next state

S30 ACTIVE Transaction.cnf
&& MatchInvokeID(Invoke_ID)
&& HighBit(code) == “True”
=>
 ReadFileRecord.cnf(-) {
 ArepID := remote_address,
 ExceptionCode := data
 }

ACTIVE

S31 ACTIVE Transaction.cnf
&& MatchInvokeID(Invoke_ID)
&& HighBit(code) == “True”
=>
 WriteFileRecord.cnf(-) {
 ArepID := remote_address,
 ExceptionCode := data
 }

ACTIVE

S32 ACTIVE Transaction.cnf
&& MatchInvokeID(Invoke_ID)
&& HighBit(code) == “True”
=>
 ReadDeviceIdentification.cnf(-) {
 ArepID := remote_address,
 ExceptionCode := data
 }

ACTIVE

S33 ACTIVE Transaction.cnf
&& MatchInvokeID(Invoke_ID)
&& HighBit(code) == “False”
=>
 ReadDiscretes.cnf(+) {
 ArepID := remote_address,
 ResponseData := data
 }

ACTIVE

S34 ACTIVE Transaction.cnf
&& MatchInvokeID(Invoke_ID)
&& HighBit(code) == “False”
=>
 ReadCoils.cnf(+) {
 ArepID := remote_address,
 ResponseData := data
 }

ACTIVE

S35 ACTIVE Transaction.cnf
&& MatchInvokeID(Invoke_ID)
&& HighBit(code) == “False”
=>
 WriteSingleCoil.cnf(+) {
 ArepID := remote_address,
 ResponseData := data
 }

ACTIVE

S36 ACTIVE Transaction.cnf
&& MatchInvokeID(Invoke_ID)
&& HighBit(code) == “False”
=>
 WriteMultipleCoils.cnf(+) {
 ArepID := remote_address,
 ResponseData := data
 }

ACTIVE

S37 ACTIVE Transaction.cnf
&& MatchInvokeID(Invoke_ID)
&& HighBit(code) == “False”
=>
 ReadInputRegisters.cnf(+) {
 ArepID := remote_address,
 ResponseData := data
 }

ACTIVE

S38 ACTIVE Transaction.cnf
&& MatchInvokeID(Invoke_ID)
&& HighBit(code) == “False”
=>
 ReadHoldingRegisters.cnf(+) {
 ArepID := remote_address,
 ResponseData := data
 }

ACTIVE

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 91 –

310HTable 71 (continued)

Current state Event or condition
 => action Next state

S39 ACTIVE Transaction.cnf
&& MatchInvokeID(Invoke_ID)
&& HighBit(code) == “False”
=>
 WriteSingleHoldingRegister.cnf(+) {
 ArepID := remote_address,
 ResponseData := data
 }

ACTIVE

S40 ACTIVE Transaction.cnf
&& MatchInvokeID(Invoke_ID)
&& HighBit(code) == “False”
=>
 WriteMultipleHoldingRegister.cnf(+) {
 ArepID := remote_address,
 ResponseData := data
 }

ACTIVE

S41 ACTIVE Transaction.cnf
&& MatchInvokeID(Invoke_ID)
&& HighBit(code) == “False”
=>
 MaskWriteHoldingRegister.cnf(+) {
 ArepID := remote_address,
 ResponseData := data
 }

ACTIVE

S42 ACTIVE Transaction.cnf
&& MatchInvokeID(Invoke_ID)
&& HighBit(code) == “False”
=>
 Read/WriteHoldingRegisters.cnf(+) {
 ArepID := remote_address,
 ResponseData := data
 }

ACTIVE

S43 ACTIVE Transaction.cnf
&& MatchInvokeID(Invoke_ID)
&& HighBit(code) == “False”
=>
 ReadFIFO.cnf(+) {
 ArepID := remote_address,
 ResponseData := data
 }

ACTIVE

S44 ACTIVE Transaction.cnf
&& MatchInvokeID(Invoke_ID)
&& HighBit(code) == “False”
=>
 ReadFileRecord.cnf(+) {
 ArepID := remote_address,
 ResponseData := data
 }

ACTIVE

S45 ACTIVE Transaction.cnf
&& MatchInvokeID(Invoke_ID)
&& HighBit(code) == “False”
=>
 WriteFileRecord.cnf(+) {
 ArepID := remote_address,
 ResponseData := data
 }

ACTIVE

S46 ACTIVE Transaction.cnf
&& MatchInvokeID(Invoke_ID)
&& HighBit(code) == “False”
=>
 ReadDeviceIdentification.cnf(+) {
 ArepID := remote_address,
 ResponseData := data
 }

ACTIVE

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 92 – 61158-6-15 © IEC:2010(E)

Table 72 – FSPM state table – server transactions

Current state Event or condition
 => action Next state

R1 ACTIVE Transaction.ind
=>
 al_service.ind {
 Invoke_Id := invoke_id,
 Arep_Id := arep_id,
 alpdu := user_data
 }

ACTIVE

R2 ACTIVE Transaction.rsp
=>
 al_service.rsp {
 Invoke_Id := invoke_id,
 Arep_Id := arep_id,
 alpdu := user_data
 }

ACTIVE

NOTE al_service includes all AL services. The appropriate indication or response primitive is used depending upon
the type of service.

10.3 Functions used by FSPM
311HTable 73 and 312HTable 74 define the functions used by the FSPM

Table 73 – Function MatchInvokeID()

Name MatchInvokeID Used in FSPM
Input Output
Invoke_ID True || False
Function
Matches requests with responses, and upon successful match disposed of the transaction object.

Table 74 – Function HighBit()

Name HighBit Used in FSPM
Input Output
Code True || False
Function
Checks the code field to see if it is an exception (msb of the octet is high)

10.4 Parameters of FSPM/ARPM primitives

The parameters used with the primitives exchanged between the FSPM and the ARPM are
described in 313HTable 75.

Table 75 – Parameters used with primitives exchanged between FSPM and ARPM

Parameter name Description

Invoke_ID This parameter conveys the value used to match requests and responses.

arep_id This parameter is used to identify the instance of the AREP that has issued a
primitive. A means for such identification is not specified by this specification.

code code field of the APDU.

user_data This parameter conveys user data.

10.5 Client/server server transactions

10.5.1 General

The server transactions are detailed in 314HFigure 27.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 93 –

Wait for Indication

Validate Service

Validate APO address

Process

Send
ExceptionCode
0x01

Send
ExceptionCode
0x02

Send
ExceptionCode
0x03

Send
ExceptionCode
0x04 | 0x05 | 0x06

Validate APO parameters

Send Normal Response

Invalid

Received Indication

Valid

Valid

Valid

Done

Error

Invalid

Invalid

Figure 27 – Client/server server transactions

The client is responsible for the parsing of the confirmation beyond the reception of a
negative confirmation encoded via exception codes. While there is no standard encoding, the
following two cases must be handled, and the application must be notified with an error:

⎯ Unit ID : the Unit ID of the confirmation does not match the Unit ID of the associated
request ;

⎯ Function code (service identifier): the Function code of the confirmation does not
match the Function code of the associated request.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 94 – 61158-6-15 © IEC:2010(E)

11 Application relationship protocol machines (ARPMs) for client/server

11.1 Application relationship protocol machines (ARPMs)

11.1.1 AR protocol machine (ARPM) for client AREP

11.1.1.1 Client ARPM states
The states of the Client ARPM and their descriptions are shown in 315HTable 76 and 316HFigure 28.

Table 76 – Client ARPM states

IDLE The AREP is not active.

WAIT for
CONFIRM

The AREP has sent a request PDU to a Server and is waiting for a confirmation from the Server.

Figure 28 – State transition diagram of the Client ARPM

11.1.1.2 Client ARPM state table
317HTable 77 specifies the Client ARPM state machine.

Table 77 – Client ARPM state table

Current state Event or condition
 => action Next state

S1 IDLE Transaction.req
=>
 DTC_req {
 called_address := remote_address,
 dlsdu := user_data
 }

WAIT for
CONFIRM

S2 WAIT for
CONFIRM

DTC_cnf
=>
 Transaction.cnf {
 remote_address := responding_address,
 user_data := dlsdu
 }

IDLE

NOTE DTC is Data Transmission Confirmed.

11.1.2 AR protocol machine (ARPM) for server AREP

11.1.2.1 Server ARPM states
The states of the Server ARPM and their descriptions are shown in 318HTable 78 and 319HFigure 29.

Table 78 – Server ARPM states

IDLE The AREP is not active.

WAIT for
RESPONSE

The AREP has received a PDU from DLL, has sent the corresponding indication to the AL user
and is waiting for a response from the AL user.

IDLE

WAIT for

CONFIRM

S1

S2

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 95 –

Figure 29 – State transition diagram of the server ARPM

11.1.2.2 Server ARPM state table
320HTable 79 specifies the Server ARPM state machine.

Table 79 – Server ARPM state table

Current state Event or condition
 => action Next state

S1 IDLE DTC_ind

=>
 Transaction.ind {
 user_data := dlsdu
 }

WAIT for
RESPONSE

S2 WAIT for
RESPONSE

Transaction.rsp
=>
 DTC_rsp {
 dlsdu := user_data
 }

IDLE

11.2 AREP state machine primitive definitions

11.2.1 Primitives exchanged between DMPM and ARPM
The primitives exchanged between the DMPM and the ARPM are specified in 321HTable 80 and
322HTable 81.

Table 80 – Primitives issued from ARPM to DMPM

Primitive
names

Source Associated parameters Functions

DTC_req ARPM called_address, dlsdu This primitive is used to request the DMPM to
transfer an ALPDU to a Server device.

DTC_rsp ARPM dlsdu This primitive is used to request the DMPM to
transfer an ALPDU to a Client device.

Table 81 – Primitives issued by DMPM to ARPM

Primitive
names

Source Associated parameters Functions

DTC_ind DMPM dlsdu This primitive is used to pass an ALPDU received
as a Data Like Layer service data unit to the
Server ARPM.

DTC_cnf DMPM responding_address, dlsdu This primitive is used to convey an ALPDU
received from the Server device.

11.2.2 Parameters of ARPM/DMPM primitives
The parameters used with the primitives exchanged between the ARPM and the DMPM are
described in 323HTable 82.

IDLE

WAIT for

RESPONSE

S1

S2

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 96 – 61158-6-15 © IEC:2010(E)

Table 82 – Parameters used with primitives exchanged between ARPM and DMPM

Parameter name Description

called_address This parameter conveys the value of the address parameter supplied with the Data
Like Layer primitive.

responding_address This parameter conveys the value of the address parameter of the received
primitive.

dlsdu This parameter conveys the value of the data to be conveyed or received by data-
link layer.

11.3 AREP state machine functions
ARPM does not use any functions.

12 DLL mapping protocol machine (DMPM) for client/server

12.1 AREP mapping to data link layer

12.1.1 General
This section describes the mapping of the AL to the Fieldbus data-link layer. It does not
redefine the DLSAP attributes or DLME attributes that are defined in the data-link layer
specification; rather, it defines how they are used by each of the AR classes. A means to
configure and monitor the values of these attributes is provided by Network Management.
The following class definitions describe the DLSAP attributes and the DLME attributes
required to support each of the AREP classes.
NOTE Undefined attributes use the same definitions as those previously defined.

12.1.2 DLL mapping of client AREP class

12.1.2.1 Client AREP class formal model
The DLL Mapping attributes and their permitted values and the DLL services used with the
Client AREP class are defined in this subclause.
CLASS: Client
PARENT CLASS: Top
ATTRIBUTES:
1. (m) Attribute: RemoteAddress
DLL SERVICES:
1. (m) OpsService: Transmit_request
2. (m) OpsService: Receive_confirm

12.1.2.2 Attributes
RemoteAddress
This attribute specifies the remote address to which request APDUs are sent, or from which
confirm APDUs are received.

12.1.2.3 DLL services

12.1.2.3.1 Transmit_request
This service is used in the Client device to transfer an APDU to the remote Server DLL user.
12.1.2.3.2 Receive_confirm
The DLL uses this service to receive the response APDU from a remote Server DLL user.
12.1.3 DLL mapping of server AREP class

12.1.3.1 Server AREP class formal model
The DLL Mapping attributes and their permitted values and the DLL services used with the
Server AREP class are defined in this subclause.
CLASS: Server
PARENT CLASS: Top
ATTRIBUTES:

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 97 –

1. (m) Attribute: Address
DLL SERVICES:

1. (m) OpsService: Receive_indication
2. (m) OpsService: Transmit_response

12.1.3.2 Attributes
Address
This attribute specifies the address that the Slave device uses to receive and send DLPDU.

12.1.3.3 DLL services

12.1.3.3.1 Receive_indication
The DLL uses this service to transfer the indication APDU from a remote Client DLL user.
12.1.3.3.2 Transmit_response
This service is used in the Server device to transfer an APDU to the remote Client DLL user.
12.2 DMPM states
The defined states and their descriptions of the DMPM are shown in 324HTable 83 and 325HFigure 30.

Table 83 – DMPM state descriptions

State
Name

Description

ACTIVE The DMPM in the ACTIVE state is ready to transmit or receive primitives to or from the Data Like Layer
and the ARPM.

OPEN

All Transactions

Figure 30 – State transition diagram of DMPM

12.3 DMPM state machine
326HTable 84 and 327HTable 85 specify the DMPM state machine.

Table 84 – DMPM state table – client transactions

Current
state

Event or condition
 => action

Next
state

S1 ACTIVE DTC_req
=>
 Transmit.request {
 address := called_address,
 dl_dls_user_data := dlsdu
 }

ACTIVE

S1 ACTIVE Receive. confirm
=>
 DTC_cnf {
 responding_address := address,
 dlsdu:= dl_dls_user_data
 }

ACTIVE

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 98 – 61158-6-15 © IEC:2010(E)

Table 85 – DMPM state table – server transactions

Current
state

Event or condition
 => action

Next
state

S1 ACTIVE DTC_rsp
=>
 Transmit. response {
 dl_dls_user_data := dlsdu
 }

ACTIVE

S1 ACTIVE Receive. indication
=>
 DTC_ind {
 dlsdu:= dl_dls_user_data
 }

ACTIVE

12.4 Primitives exchanged between data link layer and DMPM
The primitives exchanged between the data-link layer and the DMPM are specified in 328HTable
86.

Table 86 – Primitives exchanged between data-link layer and DMPM

Primitive names Source Associated parameters

Receive. indication data-link layer dl_dls_user_data

Receive. confirm data-link layer address,

dl_dls_user_data

Transmit.request DMPM address,

dl_dls_user_data

Transmit. response DMPM dl_dls_user_data

12.4.1 Functions used by DMPM
DMPM does not use any functions.

12.5 Client/server on TCP/IP

12.5.1 General

This section describes the client/server encapsulation when the DLL is TCP/IP.

12.5.2 TCP/IP encapsulation

The APDU for client/server is as described in this document in Clause 329H 5.2, and illustrated in
330HFigure 31.

Figure 31 – APDU Format

TCP/IP encapsulation is obtained by adding a header to the APDU. The parameters of the
header are described in 331HTable 87.

Unit ID Code Data

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 99 –

Table 87 – Encapsulation parameters for client/server on TCP/IP

Parameter Length Description

Transaction Identifier 2 octets Invoke_ID, allows pairing of
request/response

Protocol Identifier 2 octets 0 for client/server

Length 2 octets number of octets in APDU

The PDU carried as payload by TCP/IP becomes the one described in 332HFigure 32.

Figure 32 – TCP/IP PDU Format

The transaction identifier is the same as the Invoke ID, and it must be unique across all the
identifiers still pending on the connection involved.

12.5.3 Assigned Port

client/server communicates using port 502, assigned by IANA.

12.5.4 Protocol Identifier

The protocol identifier for Type 15 client/server must be 0. The server must discard any
transaction with a different protocol identifier.

12.5.5 Unit ID

On TCP/IP, when no gateways or IP co-located application entities are involved, the client
and server are the intended end-points of the connection, and they are fully identified using
the IP address. In this case the Unit ID may be ignored by the server, and the client should
set it to the value of 255.

In case of gateways or IP co-located application entities, the Unit ID is used to identify the
server connected to the gateway, or the server amongst the IP co-located application entities.
In this case the value of 255 is recommended for addressing the gateway itself, or the IP
device hosting the application entities.

12.5.6 TCP as a streaming protocol

The length field in the TCP envelope is used to identify the transaction payload boundaries,
since TCP is a streaming protocol.

The server must be able to handle situations with several outstanding indications in pipelined
transaction on the same connection, up to an implementation dependent number, usually

Unit ID Code Data Transaction
ID

Protocol
Identifier

Length

253 octets

254 octets

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 100 – 61158-6-15 © IEC:2010(E)

dictated by resource constraints. If such a number is exceeded the server must respond with
Exception code = 0x06: Server Busy.

The above limit may be per connection, or it may be a shared limit across the connections on
the same server.

The streaming nature of the TCP protocol allows for cases where the server received only a
partial transaction, according to a valid length. The server must be able to buffer the partial
transaction and wait for the remaining payload. The server may implement mechanisms, e.g.
via a timer, to reclaim resources if the wait exceed a configured time.

12.5.7 [Informative] TCP interfaces and parameterization

The Berkeley Software Distribution (BSD) Socket Interface is often used to communicate
using TCP (see for example “TCP/IP Illustrated, Volume 2, Gary R. Wright and W. Richard
Stevens”).

A socket is an endpoint of communication. After the establishment of the TCP connection the
data can be transferred. The send() and recv() functions are designed specifically to be used
with sockets that are already connected.

The setsockopt () function allows a socket’s creator to associate options with a socket.
These options modify the behavior of the socket. The description of these options and
recommended settings useful for Type 15 client/server will follow.

12.5.7.1 Connection parameters

SO-RCVBUF, SO-SNDBUF:

These parameters allow setting the high water mark for the send and the receive sockets.
They can be adjusted for flow control management. The size of the receive buffer is the
maximum size advertised window for that connection. Socket buffer sizes must be increased
in order to increase performances. Nevertheless these values must be smaller than internal
driver resources in order to close the TCP window before exhausting internal driver
resources.

The receive buffer size depends on the TCP Windows size, the TCP Maximum segment size
and the time needed to absorb the incoming frames. With a Maximum Segment Size of 300
octets (easily accommodating a Type 15 client/server request), to accommodate 3 frames, the
socket buffer size value can be adjusted to 900 octets.

TCP-NODELAY:

Small packets (called tinygrams) are normally not a problem on LANs, since most LANs are
not congested, but these tinygrams can lead to congestion on wide area networks. A simple
solution, called the "NAGLE algorithm", is to collect small amounts of data and sends them in
a single segment when the TCP acknowledgments of a previous packet arrive.

In order to have better behavior it is recommended to send small amounts of data directly
without trying to gather them in a single segment. That is why it is recommended to force the
TCP-NODELAY option that disables the "NAGLE algorithm" on client and server connections.

SO-REUSEADDR:

When a Type 15 server closes a TCP connection initialized by a remote client, the local port
number used for this connection cannot be reused for a new opening while that connection
stays in the "Time-wait" state (during two MSL : Maximum Segment Lifetime).

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 101 –

It is recommended to specify the SO-REUSEADDR option for each client and server
connection to bypass this restriction. This option allows the process to assign itself a port
number that is part of a connection that is in the 2MSL wait for client and listening socket.

SO-KEEPALIVE:

By default on the TCP/IP protocol there is no data sent across an idle TCP connection.
Therefore if no process at the ends of a TCP connection is sending data to the other, nothing
is exchanged.

Under the assumption that either the client application or the server application uses timers to
detect inactivity in order to close a connection, it is recommended to enable the KEEPALIVE
option on both client and server connections in order to poll the other end to know its status.

Nevertheless it must be considered that enabling KEEPALIVE can cause perfectly good
connections to be dropped during transient failures, and that it consumes unnecessary
bandwidth if the keep alive timer is too short.

12.5.7.2 TCP layer parameters

Time Out on establishing a TCP Connection:

Most Berkeley-derived systems set a time limit of 75 seconds on the establishment of a new
connection, this default value should be adapted to the constraint of the application.

Keep alive parameters:

The default idle time for a connection is 2 hours. Idles times in excess of this value trigger a
keep alive probe. After the first keep alive probe, a probe is sent every 75 seconds for a
maximum number of times unless a probe response is received.

The maximum number of keep alive probes sent out on an idle connection is 8. If no probe
response is received after sending out the maximum number of keep alive probes, TCP
signals an error to the application that can decide to close the connection.

Time-out and retransmission parameters:

A TCP packet is retransmitted if its loss has been detected. One way to detect the loss is to
manage a Retransmission Time-Out (RTO) that expires if no acknowledgement has been
received from the remote side.

TCP manages a dynamic estimation of the RTO. For that purpose a Round-Trip Time (RTT) is
measured after the sending of every packet that is not a retransmission. The Round-Trip Time
(RTT) is the time taken for a packet to reach the remote device and to get back an
acknowledgement to the sending device. The RTT of a connection is calculated dynamically,
nevertheless if TCP cannot get an estimate within 3 seconds, the default value of the RTT is
set to 3 seconds.

If the RTO has been estimated, it applies to the sending of the next packet. If the
acknowledgement of the next packet is not received before the estimated RTO expiration, the
‘Exponential BackOff’ (detailed below) is activated. A maximum number of retransmissions of
the same packet are allowed during a certain amount of time. After that if no
acknowledgement has been received, the connection is aborted.

Some TCP/IP stacks allow the set-up of the maximum number of retransmissions and the
maximum amount of time before the abort of the connection.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 102 – 61158-6-15 © IEC:2010(E)

Some retransmission algorithms are defined in TCP IETF RFCs and other papers:

⎯ The Jacobson's RTO estimation algorithm is used to estimate the Retransmission
Time-Out (RTO);

⎯ The Karn's algorithm says that the RTO estimation should not be done on a
retransmitted segment;

⎯ The Exponential BackOff defines that the retransmission time-out is doubled for each
retransmission with an upper limit of 64 seconds;

⎯ The fast retransmission algorithm allows retransmitting after the reception of three
duplicate acknowledgments. This algorithm is advised because on a LAN it may lead to
a quicker detection of the loss of a packet than waiting for the RTO expiration.

The use of these algorithms is recommended for a Type 15 client/server implementation. They
are described in “TCP/IP Illustrated, Volume 2, Gary R. Wright and W. Richard Stevens”,
which also points to the original sources.

13 AP-Context state machines for publish/subscribe

There is no AP-Context State Machine in this Type of FAL.

14 Protocol machines for publish/subscribe

14.1 General

publish/subscribe communicates using the following characteristics:

⎯ the transport has a generalized notion of a unicast address (shall fit within 16 octets);

⎯ the transport has a generalized notion of a port (shall fit within 4 octets), e.g. could be
a UDP port, an offset in a shared memory segment, etc.;

⎯ the transport can send a datagram (uninterpreted sequence of octets) to a specific
address/port;

⎯ the transport can receive a datagram at a specific address/port;

⎯ the transport will drop messages if incomplete or corrupted during transfer (i.e.
publish/subscribe assumes messages are complete and not corrupted);

⎯ the transport provides a means to deduce the size of the received message.

Publish/subscribe exchanges messages composed of service requests as detailed in 333H 7.2.
The 334HFigure 33 illustrates the receiver state machine, according to the APDU interpretation
described in 335H 7.4.
There is only one APDU, composed of al the requests, and it is sent as an unconfirmed
service.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 103 –

Wait for Indication

Validate Header,
validate pointer
to 1st message

Extract and
validate next
submessage

Disregard
message

Process sub-message,
changing state of
receiver

Invalid

Received Indication

Valid

Valid

Invalid

More sub-messages

Done

Figure 33 – Publish/subscribe receiver

The general extraction and validation process for a sub-message is according to 336H 7.4.2 and it
is repeated here for convenience:

a) The last two octets of a sub-message header, the octetsToNextHeader field, contains the
number of octets to the next sub-message. If this field is invalid, the rest of the message
is invalid;

b) The first octet of a sub-message header is the sub-messageID. A sub-message with an
unknown ID must be ignored and parsing must continue with the next sub-message.
Concretely: an implementation of publish/subscribe 1.0 must ignore any sub-messages
with IDs that are outside of the sub-messageID list used by version 1.0. IDs in the vendor-
specific range coming from a vendorID that is unknown must be ignored and parsing must
continue with the next sub-message;

c) The second octet of a sub-message header contains flags; unknown flags should be
skipped. An implementation of publish/subscribe 1.0 should skip all flags that are marked
as ‘X’ (unused) in the protocol;

d) A valid octetsToNextHeader field must always be used to find the next sub-message, even
for sub-messages with unknown IDs;

In addition to the general rules, there are sub-message specific rules. A known but invalid
sub-message invalidates the rest of the message. 337H 7.5.1 through 338H 7.5.10.1 each describe a
known sub-message and when it should be considered invalid.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

 – 104 – 61158-6-15 © IEC:2010(E)

The processing of a sub-message has the following effects:

⎯ It can change the state of the receiver; this state influences how the following sub-
messages in the message are interpreted. 339H 7.5.1 through 340H 7.5.10.1 show how the state
changes for each sub-message. In this version of the protocol, only the Header and
the sub-messages INFO_SRC, INFO_REPLY and INFO_TS change the state of the
receiver;

⎯ The sub-message, interpreted within the message, has a logical interpretation: it
encodes one of the five basic publish/subscribe services: ACK, GAP, HEARTBEAT,
ISSUE or VAR, beside the logistic services. The logical interpretation is also described
in 341H 7.5.1 through 342H 7.5.10.1.

14.2 Publish/subscribe on UDP

14.2.1 General

14.2.1.1 publish/subscribe and the UDP payload

When publish/subscribe is used over UDP/IP, a message is the contents (payload) of exactly
one UDP/IP Datagram.

14.2.1.2 UDP/IP Destinations

A UDP/IP destination consists of an IPAddress and a Port. This document uses notation such
as "12.44.123.92:1024" or "225.0.1.2:6701" to refer to such a destination. The IP address can
be a unicast or multicast address.

14.2.1.3 Note on relative addresses

The publish/subscribe protocol often sends IP addresses to a sender of messages, so that the
sender knows where to send future messages. These destinations are always interpreted
locally by the sender of UDP datagrams. Certain IP addresses, such as "127.0.0.1" have only
relative meaning (i.e. they do not refer to a unique host).

14.2.2 Well known ports

At the network level, publish/subscribe uses the following three well-known ports:

wellknownManagerPort = portBaseNumber + 10 * portGroupNumber
wellknownUsertrafficMulticastPort = 1 + portBaseNumber + 10 * portGroupNumber
wellknownMetatrafficMulticastPort = 2 + portBaseNumber + 10 * portGroupNumber

Within a network, all applications need to use the same portBaseNumber. Applications that
want to communicate with each other use the same portGroupNumber; applications that need
to be isolated from each other use a different portGroupNumber.

Each application needs to be configured with the correct portBaseNumber and
portGroupNumber.

Except for the rules stated above, publish/subscribe does not define which portBaseNumber
and portGroupNumber are used nor how the applications participating in a network obtain this
information, but the base number 7400 should be the one used, since the ports 7400, 7401
and 7402 are the one assigned by IANA for publish/subscribe usage.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

61158-6-15 © IEC:2010(E) – 105 –

Bibliography

IEC/TR 61158-1:2010 1F

2, Industrial communication networks – Fieldbus specifications – Part 1:
Overview and guidance for the IEC 61158 and IEC 61784 series

ISO/IEC 7498-3, Information technology – Open Systems Interconnection – Basic Reference
Model: Naming and addressing

OMG UML 2.0 Superstructure Specification, available at <http://www.omg.org>

GARY R. WRIGHT and W. RICHARD STEVENS, TCP/IP Illustrated, Volume 2,

Modbus-IDA: Modbus Messaging on TCP/IP Implementation Guide, available at
<http://www.Modbus-IDA.org>

2 To be published.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

3, rue de Varembé
PO Box 131
CH-1211 Geneva 20
Switzerland

Tel: + 41 22 919 02 11
Fax: + 41 22 919 03 00
info@iec.ch
www.iec.ch

C
opyrighted m

aterial licensed to B
R

 D
em

o by T
hom

son R
euters (S

cientific), Inc., subscriptions.techstreet.com
, dow

nloaded on N
ov-28-2014 by Jam

es M
adison. N

o further reproduction or distribution is perm
itted. U

ncontrolled w
hen printed.

	CONTENTS
	\376\377�F�O�R�E�W�O�R�D
	INTRODUCTION
	\376\377�1� �S�c�o�p�e
	\376\377�1�.�1� �G�e�n�e�r�a�l
	\376\377�1�.�2� �S�p�e�c�i�f�i�c�a�t�i�o�n�s
	\376\377�1�.�3� �C�o�n�f�o�r�m�a�n�c�e

	\376\377�2� �N�o�r�m�a�t�i�v�e� �r�e�f�e�r�e�n�c�e�s
	\376\377�3� �T�e�r�m�s� �a�n�d� �d�e�f�i�n�i�t�i�o�n�s�,� �a�b�b�r�e�v�i�a�t�i�o�n�s�,� �s�y�m�b�o�l�s� �a�n�d� �c�o�n�v�e�n�t�i�o�n�s
	\376\377�3�.�1� �T�e�r�m�s� �a�n�d� �d�e�f�i�n�i�t�i�o�n�s
	\376\377�3�.�2� �A�b�b�r�e�v�i�a�t�i�o�n�s� �a�n�d� �s�y�m�b�o�l�s
	\376\377�3�.�3� �C�o�n�v�e�n�t�i�o�n�s
	\376\377�3�.�4� �C�o�n�v�e�n�t�i�o�n�s� �u�s�e�d� �i�n� �s�t�a�t�e� �m�a�c�h�i�n�e�s

	\376\377�4� �A�b�s�t�r�a�c�t� �s�y�n�t�a�x� �f�o�r� �c�l�i�e�n�t�/�s�e�r�v�e�r
	\376\377�5� �T�r�a�n�s�f�e�r� �s�y�n�t�a�x� �f�o�r� �c�l�i�e�n�t�/�s�e�r�v�e�r
	\376\377�5�.�1� �G�e�n�e�r�a�l
	\376\377�5�.�2� �C�o�m�m�o�n� �A�P�D�U� �s�t�r�u�c�t�u�r�e
	\376\377�5�.�3� �S�e�r�v�i�c�e�-�s�p�e�c�i�f�i�c� �A�P�D�U� �s�t�r�u�c�t�u�r�e�s
	\376\377�5�.�4� �D�a�t�a� �r�e�p�r�e�s�e�n�t�a�t�i�o�n� ˘�o�n� �t�h�e� �w�i�r�e ˇ

	\376\377�6� �A�b�s�t�r�a�c�t� �s�y�n�t�a�x� �f�o�r� �p�u�b�l�i�s�h�/�s�u�b�s�c�r�i�b�e
	\376\377�7� �T�r�a�n�s�f�e�r� �s�y�n�t�a�x� �f�o�r� �p�u�b�l�i�s�h�/�s�u�b�s�c�r�i�b�e
	\376\377�7�.�1� �G�e�n�e�r�a�l
	\376\377�7�.�2� �A�P�D�U� �s�t�r�u�c�t�u�r�e
	\376\377�7�.�3� �S�u�b�-�m�e�s�s�a�g�e� �s�t�r�u�c�t�u�r�e
	\376\377�7�.�4� �A�P�D�U� �i�n�t�e�r�p�r�e�t�a�t�i�o�n
	\376\377�7�.�5� �S�e�r�v�i�c�e� �s�p�e�c�i�f�i�c� �A�P�D�U� �s�t�r�u�c�t�u�r�e�s
	\376\377�7�.�6� �C�o�m�m�o�n� �d�a�t�a� �r�e�p�r�e�s�e�n�t�a�t�i�o�n� �f�o�r� �p�u�b�l�i�s�h�/�s�u�b�s�c�r�i�b�e

	\376\377�8� �S�t�r�u�c�t�u�r�e� �o�f� �F�A�L� �p�r�o�t�o�c�o�l� �s�t�a�t�e� �m�a�c�h�i�n�e�s
	\376\377�9� �A�P�-�c�o�n�t�e�x�t� �s�t�a�t�e� �m�a�c�h�i�n�e�s� �f�o�r� �c�l�i�e�n�t�/�s�e�r�v�e�r
	\376\377�1�0� �F�A�L� �s�e�r�v�i�c�e� �p�r�o�t�o�c�o�l� �m�a�c�h�i�n�e� �(�F�S�P�M�)� �f�o�r� �c�l�i�e�n�t�/�s�e�r�v�e�r
	\376\377�1�0�.�1� �G�e�n�e�r�a�l
	\376\377�1�0�.�2� �F�S�P�M� �s�t�a�t�e� �t�a�b�l�e�s
	\376\377�1�0�.�3� �F�u�n�c�t�i�o�n�s� �u�s�e�d� �b�y� �F�S�P�M
	\376\377�1�0�.�4� �P�a�r�a�m�e�t�e�r�s� �o�f� �F�S�P�M�/�A�R�P�M� �p�r�i�m�i�t�i�v�e�s
	\376\377�1�0�.�5� �C�l�i�e�n�t�/�s�e�r�v�e�r� �s�e�r�v�e�r� �t�r�a�n�s�a�c�t�i�o�n�s

	\376\377�1�1� �A�p�p�l�i�c�a�t�i�o�n� �r�e�l�a�t�i�o�n�s�h�i�p� �p�r�o�t�o�c�o�l� �m�a�c�h�i�n�e�s� �(�A�R�P�M�s�)� �f�o�r� �c�l�i�e�n�t�/�s�e�r�v�e�r
	\376\377�1�1�.�1� �A�p�p�l�i�c�a�t�i�o�n� �r�e�l�a�t�i�o�n�s�h�i�p� �p�r�o�t�o�c�o�l� �m�a�c�h�i�n�e�s� �(�A�R�P�M�s�)
	\376\377�1�1�.�2� �A�R�E�P� �s�t�a�t�e� �m�a�c�h�i�n�e� �p�r�i�m�i�t�i�v�e� �d�e�f�i�n�i�t�i�o�n�s
	\376\377�1�1�.�3� �A�R�E�P� �s�t�a�t�e� �m�a�c�h�i�n�e� �f�u�n�c�t�i�o�n�s

	\376\377�1�2� �D�L�L� �m�a�p�p�i�n�g� �p�r�o�t�o�c�o�l� �m�a�c�h�i�n�e� �(�D�M�P�M�)� �f�o�r� �c�l�i�e�n�t�/�s�e�r�v�e�r
	\376\377�1�2�.�1� �A�R�E�P� �m�a�p�p�i�n�g� �t�o� �d�a�t�a� �l�i�n�k� �l�a�y�e�r
	\376\377�1�2�.�2� �D�M�P�M� �s�t�a�t�e�s
	\376\377�1�2�.�3� �D�M�P�M� �s�t�a�t�e� �m�a�c�h�i�n�e
	\376\377�1�2�.�4� �P�r�i�m�i�t�i�v�e�s� �e�x�c�h�a�n�g�e�d� �b�e�t�w�e�e�n� �d�a�t�a� �l�i�n�k� �l�a�y�e�r� �a�n�d� �D�M�P�M
	\376\377�1�2�.�5� �C�l�i�e�n�t�/�s�e�r�v�e�r� �o�n� �T�C�P�/�I�P

	\376\377�1�3� �A�P�-�C�o�n�t�e�x�t� �s�t�a�t�e� �m�a�c�h�i�n�e�s� �f�o�r� �p�u�b�l�i�s�h�/�s�u�b�s�c�r�i�b�e
	\376\377�1�4� �P�r�o�t�o�c�o�l� �m�a�c�h�i�n�e�s� �f�o�r� �p�u�b�l�i�s�h�/�s�u�b�s�c�r�i�b�e
	\376\377�1�4�.�1� �G�e�n�e�r�a�l
	\376\377�1�4�.�2� �P�u�b�l�i�s�h�/�s�u�b�s�c�r�i�b�e� �o�n� �U�D�P

	Bibliography
	Figures
	\376\377�F�i�g�u�r�e� �1� �� �A�P�D�U� �F�o�r�m�a�t
	\376\377�F�i�g�u�r�e� �2� �� �C�l�i�e�n�t� �t�o� �s�e�r�v�e�r� �c�o�n�f�i�r�m�e�d� �s�e�r�v�i�c�e� �r�e�q�u�e�s�t
	\376\377�F�i�g�u�r�e� �3� �� �N�o�r�m�a�l� �r�e�s�p�o�n�s�e� �f�r�o�m� �s�e�r�v�e�r� �t�o� �c�l�i�e�n�t
	\376\377�F�i�g�u�r�e� �4� �� �E�x�c�e�p�t�i�o�n� �r�e�s�p�o�n�s�e� �f�r�o�m� �s�e�r�v�e�r� �t�o� �c�l�i�e�n�t
	\376\377�F�i�g�u�r�e� �5� �� �C�l�i�e�n�t� �t�o� �s�e�r�v�e�r� �u�n�c�o�n�f�i�r�m�e�d� �s�e�r�v�i�c�e� �r�e�q�u�e�s�t
	\376\377�F�i�g�u�r�e� �6� �� �P�u�b�l�i�s�h�/�s�u�b�s�c�r�i�b�e� �A�P�D�U
	\376\377�F�i�g�u�r�e� �7� �� �F�l�a�g�s� �o�f� �i�s�s�u�e� �r�e�q�u�e�s�t
	\376\377�F�i�g�u�r�e� �8� �� �F�l�a�g�s� �o�f� �h�e�a�r�t�b�e�a�t� �r�e�q�u�e�s�t
	\376\377�F�i�g�u�r�e� �9� �� �F�l�a�g�s� �o�f� �V�A�R� �r�e�q�u�e�s�t
	\376\377�F�i�g�u�r�e� �1�0� �� �F�l�a�g�s� �o�f� �G�A�P� �r�e�q�u�e�s�t
	\376\377�F�i�g�u�r�e� �1�1� �� �F�l�a�g�s� �o�f� �A�C�K� �r�e�q�u�e�s�t
	\376\377�F�i�g�u�r�e� �1�2� �� �F�l�a�g�s� �o�f� �I�N�F�O�_�D�S�T� �r�e�q�u�e�s�t
	\376\377�F�i�g�u�r�e� �1�3� �� �F�l�a�g�s� �o�f� �I�N�F�O�_�R�E�P�L�Y� �r�e�q�u�e�s�t
	\376\377�F�i�g�u�r�e� �1�4� �� �F�l�a�g�s� �o�f� �I�N�F�O�_�S�R�C� �r�e�q�u�e�s�t
	\376\377�F�i�g�u�r�e� �1�5� �� �F�l�a�g�s� �o�f� �I�N�F�O�_�T�S� �r�e�q�u�e�s�t
	\376\377�F�i�g�u�r�e� �1�6� �� �F�l�a�g�s� �o�f� �P�A�D� �r�e�q�u�e�s�t
	\376\377�F�i�g�u�r�e� �1�7� �� �E�n�c�o�d�i�n�g� �o�f� �o�c�t�e�t
	\376\377�F�i�g�u�r�e� �1�8� �� �E�n�c�o�d�i�n�g� �o�f� �b�o�o�l�e�a�n
	\376\377�F�i�g�u�r�e� �1�9� �� �E�n�c�o�d�i�n�g� �o�f� �u�n�s�i�g�n�e�d� �s�h�o�r�t
	\376\377�F�i�g�u�r�e� �2�0� �� �E�n�c�o�d�i�n�g� �o�f� �u�n�s�i�g�n�e�d� �l�o�n�g
	\376\377�F�i�g�u�r�e� �2�1� �� �E�n�c�o�d�i�n�g� �o�f� �u�n�s�i�g�n�e�d� �l�o�n�g� �l�o�n�g
	\376\377�F�i�g�u�r�e� �2�2� �� �E�n�c�o�d�i�n�g� �o�f� �f�l�o�a�t
	\376\377�F�i�g�u�r�e� �2�3� �� �E�n�c�o�d�i�n�g� �o�f� �d�o�u�b�l�e
	\376\377�F�i�g�u�r�e� �2�4� �� �R�e�l�a�t�i�o�n�s�h�i�p�s� �a�m�o�n�g� �p�r�o�t�o�c�o�l� �m�a�c�h�i�n�e�s� �a�n�d� �a�d�j�a�c�e�n�t� �l�a�y�e�r�s
	\376\377�F�i�g�u�r�e� �2�5� �� �S�t�a�t�e� �t�r�a�n�s�i�t�i�o�n� �d�i�a�g�r�a�m� �o�f� �F�S�P�M
	\376\377�F�i�g�u�r�e� �2�6� �� �T�r�a�n�s�a�c�t�i�o�n� �s�t�a�t�e� �m�a�c�h�i�n�e�,� �p�e�r� �c�o�n�n�e�c�t�i�o�n
	\376\377�F�i�g�u�r�e� �2�7� �� �C�l�i�e�n�t�/�s�e�r�v�e�r� �s�e�r�v�e�r� �t�r�a�n�s�a�c�t�i�o�n�s
	\376\377�F�i�g�u�r�e� �2�8� �� �S�t�a�t�e� �t�r�a�n�s�i�t�i�o�n� �d�i�a�g�r�a�m� �o�f� �t�h�e� �C�l�i�e�n�t� �A�R�P�M
	\376\377�F�i�g�u�r�e� �2�9� �� �S�t�a�t�e� �t�r�a�n�s�i�t�i�o�n� �d�i�a�g�r�a�m� �o�f� �t�h�e� �s�e�r�v�e�r� �A�R�P�M
	\376\377�F�i�g�u�r�e� �3�0� �� �S�t�a�t�e� �t�r�a�n�s�i�t�i�o�n� �d�i�a�g�r�a�m� �o�f� �D�M�P�M
	\376\377�F�i�g�u�r�e� �3�1� �� �A�P�D�U� �F�o�r�m�a�t
	\376\377�F�i�g�u�r�e� �3�2� �� �T�C�P�/�I�P� �P�D�U� �F�o�r�m�a�t
	\376\377�F�i�g�u�r�e� �3�3� �� �P�u�b�l�i�s�h�/�s�u�b�s�c�r�i�b�e� �r�e�c�e�i�v�e�r

	Tables
	\376\377�T�a�b�l�e� �1� �� �C�o�n�v�e�n�t�i�o�n�s� �u�s�e�d� �f�o�r� �s�t�a�t�e� �m�a�c�h�i�n�e�s
	\376\377�T�a�b�l�e� �2� �� �E�x�c�e�p�t�i�o�n� �c�o�d�e
	\376\377�T�a�b�l�e� �3� �� �R�e�a�d� �d�i�s�c�r�e�t�e�s� �r�e�q�u�e�s�t
	\376\377�T�a�b�l�e� �4� �� �R�e�a�d� �d�i�s�c�r�e�t�e�s� �r�e�s�p�o�n�s�e
	\376\377�T�a�b�l�e� �5� �� �R�e�a�d� �c�o�i�l�s� �r�e�q�u�e�s�t
	\376\377�T�a�b�l�e� �6� �� �R�e�a�d� �c�o�i�l�s� �r�e�s�p�o�n�s�e
	\376\377�T�a�b�l�e� �7� �� �W�r�i�t�e� �s�i�n�g�l�e� �c�o�i�l� �r�e�q�u�e�s�t
	\376\377�T�a�b�l�e� �8� �� �W�r�i�t�e� �s�i�n�g�l�e� �c�o�i�l� �r�e�s�p�o�n�s�e
	\376\377�T�a�b�l�e� �9� �� �W�r�i�t�e� �m�u�l�t�i�p�l�e� �c�o�i�l�s� �r�e�q�u�e�s�t
	\376\377�T�a�b�l�e� �1�0� �� �W�r�i�t�e� �m�u�l�t�i�p�l�e� �c�o�i�l�s� �r�e�s�p�o�n�s�e
	\376\377�T�a�b�l�e� �1�1� �� �B�r�o�a�d�c�a�s�t� �w�r�i�t�e� �s�i�n�g�l�e� �c�o�i�l� �r�e�q�u�e�s�t
	\376\377�T�a�b�l�e� �1�2� �� �B�r�o�a�d�c�a�s�t� �w�r�i�t�e� �m�u�l�t�i�p�l�e� �c�o�i�l�s� �r�e�q�u�e�s�t
	\376\377�T�a�b�l�e� �1�3� �� �R�e�a�d� �i�n�p�u�t� �r�e�g�i�s�t�e�r�s� �r�e�q�u�e�s�t
	\376\377�T�a�b�l�e� �1�4� �� �R�e�a�d� �i�n�p�u�t� �r�e�g�i�s�t�e�r�s� �r�e�s�p�o�n�s�e
	\376\377�T�a�b�l�e� �1�5� �� �R�e�a�d� �h�o�l�d�i�n�g� �r�e�g�i�s�t�e�r�s� �r�e�q�u�e�s�t
	\376\377�T�a�b�l�e� �1�6� �� �R�e�a�d� �h�o�l�d�i�n�g� �r�e�g�i�s�t�e�r�s� �r�e�s�p�o�n�s�e
	\376\377�T�a�b�l�e� �1�7� �� �W�r�i�t�e� �s�i�n�g�l�e� �h�o�l�d�i�n�g� �r�e�g�i�s�t�e�r� �r�e�q�u�e�s�t
	\376\377�T�a�b�l�e� �1�8� �� �W�r�i�t�e� �s�i�n�g�l�e� �h�o�l�d�i�n�g� �r�e�g�i�s�t�e�r� �r�e�s�p�o�n�s�e
	\376\377�T�a�b�l�e� �1�9� �� �W�r�i�t�e� �m�u�l�t�i�p�l�e� �h�o�l�d�i�n�g� �r�e�g�i�s�t�e�r�s� �r�e�q�u�e�s�t
	\376\377�T�a�b�l�e� �2�0� �� �W�r�i�t�e� �m�u�l�t�i�p�l�e� �h�o�l�d�i�n�g� �r�e�g�i�s�t�e�r�s� �r�e�s�p�o�n�s�e
	\376\377�T�a�b�l�e� �2�1� �� �M�a�s�k� �w�r�i�t�e� �h�o�l�d�i�n�g� �r�e�g�i�s�t�e�r� �r�e�q�u�e�s�t
	\376\377�T�a�b�l�e� �2�2� �� �M�a�s�k� �w�r�i�t�e� �h�o�l�d�i�n�g� �r�e�g�i�s�t�e�r� �r�e�q�u�e�s�t
	\376\377�T�a�b�l�e� �2�3� �� �R�e�a�d�/�W�r�i�t�e� �m�u�l�t�i�p�l�e� �h�o�l�d�i�n�g� �r�e�g�i�s�t�e�r�s� �r�e�q�u�e�s�t
	\376\377�T�a�b�l�e� �2�4� �� �R�e�a�d�/�W�r�i�t�e� �m�u�l�t�i�p�l�e� �h�o�l�d�i�n�g� �r�e�g�i�s�t�e�r�s� �r�e�s�p�o�n�s�e
	\376\377�T�a�b�l�e� �2�5� �� �R�e�a�d� �F�I�F�O� �r�e�q�u�e�s�t
	\376\377�T�a�b�l�e� �2�6� �� �R�e�a�d� �F�I�F�O� �r�e�s�p�o�n�s�e
	\376\377�T�a�b�l�e� �2�7� �� �B�r�o�a�d�c�a�s�t� �w�r�i�t�e� �s�i�n�g�l�e� �h�o�l�d�i�n�g� �r�e�g�i�s�t�e�r� �r�e�q�u�e�s�t
	\376\377�T�a�b�l�e� �2�8� �� �B�r�o�a�d�c�a�s�t� �w�r�i�t�e� �m�u�l�t�i�p�l�e� �h�o�l�d�i�n�g� �r�e�g�i�s�t�e�r�s� �r�e�q�u�e�s�t
	\376\377�T�a�b�l�e� �2�9� �� �R�e�a�d� �f�i�l�e� �r�e�c�o�r�d� �r�e�q�u�e�s�t
	\376\377�T�a�b�l�e� �3�0� �� �R�e�a�d� �f�i�l�e� �r�e�c�o�r�d� �r�e�s�p�o�n�s�e
	\376\377�T�a�b�l�e� �3�1� �� �W�r�i�t�e� �f�i�l�e� �r�e�c�o�r�d� �r�e�q�u�e�s�t
	\376\377�T�a�b�l�e� �3�2� �� �W�r�i�t�e� �f�i�l�e� �r�e�c�o�r�d� �r�e�s�p�o�n�s�e
	\376\377�T�a�b�l�e� �3�3� �� �R�e�a�d� �d�e�v�i�c�e� �i�d�e�n�t�i�f�i�c�a�t�i�o�n� �r�e�q�u�e�s�t
	\376\377�T�a�b�l�e� �3�4� �� �D�e�v�i�c�e� �i�d�e�n�t�i�f�i�c�a�t�i�o�n� �c�a�t�e�g�o�r�i�e�s
	\376\377�T�a�b�l�e� �3�5� �� �R�e�a�d� �d�e�v�i�c�e� �I�D� �c�o�d�e
	\376\377�T�a�b�l�e� �3�6� �� �R�e�a�d� �d�e�v�i�c�e� �i�d�e�n�t�i�f�i�c�a�t�i�o�n� �r�e�s�p�o�n�s�e
	\376\377�T�a�b�l�e� �3�7� �� �C�o�n�f�o�r�m�i�t�y� �l�e�v�e�l
	\376\377�T�a�b�l�e� �3�8� �� �R�e�q�u�e�s�t�e�d� �v�s�.� �r�e�t�u�r�n�e�d� �k�n�o�w�n� �o�b�j�e�c�t�s
	\376\377�T�a�b�l�e� �3�9� �� �A�P�D�U� �s�t�r�u�c�t�u�r�e
	\376\377�T�a�b�l�e� �4�0� �� �S�u�b�-�m�e�s�s�a�g�e� �s�t�r�u�c�t�u�r�e
	\376\377�T�a�b�l�e� �4�1� �� �P�u�b�l�i�s�h�/�s�u�b�s�c�r�i�b�e� �s�e�r�v�i�c�e� �i�d�e�n�t�i�f�i�e�r� �e�n�c�o�d�i�n�g
	\376\377�T�a�b�l�e� �4�2� �� �A�t�t�r�i�b�u�t�e�s� �c�h�a�n�g�e�d� �m�o�d�a�l�l�y� �a�n�d� �a�f�f�e�c�t�i�n�g� �A�P�D�U�s� �i�n�t�e�r�p�r�e�t�a�t�i�o�n�s
	\376\377�T�a�b�l�e� �4�3� �� �I�s�s�u�e� �r�e�q�u�e�s�t
	\376\377�T�a�b�l�e� �4�4� �� �M�e�a�n�i�n�g� �o�f� �i�s�s�u�e� �r�e�q�u�e�s�t� �f�l�a�g�s
	\376\377�T�a�b�l�e� �4�5� �� �I�n�t�e�r�p�r�e�t�a�t�i�o�n� �o�f� �i�s�s�u�e
	\376\377�T�a�b�l�e� �4�6� �� �H�e�a�r�t�b�e�a�t� �r�e�q�u�e�s�t
	\376\377�T�a�b�l�e� �4�7� �� �M�e�a�n�i�n�g� �o�f� �h�e�a�r�t�b�e�a�t� �r�e�q�u�e�s�t� �f�l�a�g�s
	\376\377�T�a�b�l�e� �4�8� �� �I�n�t�e�r�p�r�e�t�a�t�i�o�n� �o�f� �h�e�a�r�t�b�e�a�t
	\376\377�T�a�b�l�e� �4�9� �� �V�A�R� �r�e�q�u�e�s�t
	\376\377�T�a�b�l�e� �5�0� �� �M�e�a�n�i�n�g� �o�f� �V�A�R� �r�e�q�u�e�s�t� �f�l�a�g�s
	\376\377�T�a�b�l�e� �5�1� �� �I�n�t�e�r�p�r�e�t�a�t�i�o�n� �o�f� �V�A�R
	\376\377�T�a�b�l�e� �5�2� �� �G�A�P� �r�e�q�u�e�s�t
	\376\377�T�a�b�l�e� �5�3� �� �M�e�a�n�i�n�g� �o�f� �G�A�P� �r�e�q�u�e�s�t� �f�l�a�g�s
	\376\377�T�a�b�l�e� �5�4� �� �I�n�t�e�r�p�r�e�t�a�t�i�o�n� �o�f� �G�A�P
	\376\377�T�a�b�l�e� �5�5� �� �A�C�K� �r�e�q�u�e�s�t
	\376\377�T�a�b�l�e� �5�6� �� �M�e�a�n�i�n�g� �o�f� �A�C�K� �r�e�q�u�e�s�t� �f�l�a�g�s
	\376\377�T�a�b�l�e� �5�7� �� �I�n�t�e�r�p�r�e�t�a�t�i�o�n� �o�f� �A�C�K
	\376\377�T�a�b�l�e� �5�8� �� �H�e�a�d�e�r� �r�e�q�u�e�s�t
	\376\377�T�a�b�l�e� �5�9� �� �C�h�a�n�g�e� �i�n� �s�t�a�t�e� �o�f� �t�h�e� �r�e�c�e�i�v�e�r
	\376\377�T�a�b�l�e� �6�0� �� �I�N�F�O�_�D�S�T� �r�e�q�u�e�s�t
	\376\377�T�a�b�l�e� �6�1� �� �M�e�a�n�i�n�g� �o�f� �I�N�F�O�_�D�S�T� �r�e�q�u�e�s�t� �f�l�a�g�s
	\376\377�T�a�b�l�e� �6�2� �� �I�N�F�O�_�R�E�P�L�Y� �r�e�q�u�e�s�t
	\376\377�T�a�b�l�e� �6�3� �� �M�e�a�n�i�n�g� �o�f� �I�N�F�O�_�R�E�P�L�Y� �r�e�q�u�e�s�t� �f�l�a�g�s
	\376\377�T�a�b�l�e� �6�4� �� �I�N�F�O�_�S�R�C� �r�e�q�u�e�s�t
	\376\377�T�a�b�l�e� �6�5� �� �M�e�a�n�i�n�g� �o�f� �I�N�F�O�_�S�R�C� �r�e�q�u�e�s�t� �f�l�a�g�s
	\376\377�T�a�b�l�e� �6�6� �� �I�N�F�O�_�T�S� �r�e�q�u�e�s�t
	\376\377�T�a�b�l�e� �6�7� �� �M�e�a�n�i�n�g� �o�f� �I�N�F�O�_�T�S� �r�e�q�u�e�s�t� �f�l�a�g�s
	\376\377�T�a�b�l�e� �6�8� �� �P�A�D� �r�e�q�u�e�s�t
	\376\377�T�a�b�l�e� �6�9� �� �M�e�a�n�i�n�g� �o�f� �P�A�D� �r�e�q�u�e�s�t� �f�l�a�g�s
	\376\377�T�a�b�l�e� �7�0� �� �S�e�m�a�n�t�i�c�s
	\376\377�T�a�b�l�e� �7�1� �� �F�S�P�M� �s�t�a�t�e� �t�a�b�l�e� �� �c�l�i�e�n�t� �t�r�a�n�s�a�c�t�i�o�n�s
	\376\377�T�a�b�l�e� �7�2� �� �F�S�P�M� �s�t�a�t�e� �t�a�b�l�e� �� �s�e�r�v�e�r� �t�r�a�n�s�a�c�t�i�o�n�s
	\376\377�T�a�b�l�e� �7�3� �� �F�u�n�c�t�i�o�n� �M�a�t�c�h�I�n�v�o�k�e�I�D�(�)
	\376\377�T�a�b�l�e� �7�4� �� �F�u�n�c�t�i�o�n� �H�i�g�h�B�i�t�(�)
	\376\377�T�a�b�l�e� �7�5� �� �P�a�r�a�m�e�t�e�r�s� �u�s�e�d� �w�i�t�h� �p�r�i�m�i�t�i�v�e�s� �e�x�c�h�a�n�g�e�d� �b�e�t�w�e�e�n� �F�S�P�M� �a�n�d� �A�R�P�M
	\376\377�T�a�b�l�e� �7�6� �� �C�l�i�e�n�t� �A�R�P�M� �s�t�a�t�e�s�
	\376\377�T�a�b�l�e� �7�7� �� �C�l�i�e�n�t� �A�R�P�M� �s�t�a�t�e� �t�a�b�l�e
	\376\377�T�a�b�l�e� �7�8� �� �S�e�r�v�e�r� �A�R�P�M� �s�t�a�t�e�s�
	\376\377�T�a�b�l�e� �7�9� �� �S�e�r�v�e�r� �A�R�P�M� �s�t�a�t�e� �t�a�b�l�e
	\376\377�T�a�b�l�e� �8�0� �� �P�r�i�m�i�t�i�v�e�s� �i�s�s�u�e�d� �f�r�o�m� �A�R�P�M� �t�o� �D�M�P�M
	\376\377�T�a�b�l�e� �8�1� �� �P�r�i�m�i�t�i�v�e�s� �i�s�s�u�e�d� �b�y� �D�M�P�M� �t�o� �A�R�P�M
	\376\377�T�a�b�l�e� �8�2� �� �P�a�r�a�m�e�t�e�r�s� �u�s�e�d� �w�i�t�h� �p�r�i�m�i�t�i�v�e�s� �e�x�c�h�a�n�g�e�d� �b�e�t�w�e�e�n� �A�R�P�M� �a�n�d� �D�M�P�M
	\376\377�T�a�b�l�e� �8�3� �� �D�M�P�M� �s�t�a�t�e� �d�e�s�c�r�i�p�t�i�o�n�s
	\376\377�T�a�b�l�e� �8�4� �� �D�M�P�M� �s�t�a�t�e� �t�a�b�l�e� �� �c�l�i�e�n�t� �t�r�a�n�s�a�c�t�i�o�n�s
	\376\377�T�a�b�l�e� �8�5� �� �D�M�P�M� �s�t�a�t�e� �t�a�b�l�e� �� �s�e�r�v�e�r� �t�r�a�n�s�a�c�t�i�o�n�s
	\376\377�T�a�b�l�e� �8�6� �� �P�r�i�m�i�t�i�v�e�s� �e�x�c�h�a�n�g�e�d� �b�e�t�w�e�e�n� �d�a�t�a�-�l�i�n�k� �l�a�y�e�r� �a�n�d� �D�M�P�M
	\376\377�T�a�b�l�e� �8�7� �� �E�n�c�a�p�s�u�l�a�t�i�o�n� �p�a�r�a�m�e�t�e�r�s� �f�o�r� �c�l�i�e�n�t�/�s�e�r�v�e�r� �o�n� �T�C�P�/�I�P

